
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



1

KIASA TECHN ICAL 	NASA TM X-73653
MEMORANDUM

3

j

M

C
X

(NASA-TM-X-73653) INTERACTIVE CALCULATION	 V77-23408(A PROCEDURE FOR SUPERSONIC FLOWS Ph.D. Thesis
Case Western BQserve Univ., 1976. Final

`^	 Z Report (NASA) 170 p HC A0.8XMF A01 CSCL 20D Unclas
G3/34 29075

INTERACTIVE CALCULATION PROCEDURE FOR

SUPERSONIC FLOWS'
v^ a°

by Yehuda Tassa, Bernhard H. Anderson,	 ,,	 E®
R^^E^ Facev^ :-and Eli Reshotko	

`?, NPSP Ŝ  B^NCt^
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CHAPTER I

INTRODUCTION

It has been recognized for some time that proper calculation of

supersonic internal and external flows requires consideration of the

mutual, interaction between the highly viscous region near the surface

and the weakly viscous region away from the surface. For supersonic

internal flows such as in mixed compression inlets or in exit nozzles

it is furthermore desirable to be able to track the shock structure

even into the boundary layer to properly incorporate design features

such as for example boundary layer control.

Over the past decade much interest and effort have been devoted

to viscous-inviscid interaction analyses. However, most of these

methods have failed adequately to predict experimental data on con-

figurations with significant curvatures or in situations such as at

high Mach numbers where the boundary layer is relatively thick.

Generally there are two reasons for this failure: a) The interaction

procedure between the inviscid supersonic region and the highly

viscous layer near the wall may have some impropriety, and b) the

description of the viscous layer in the classical boundary layer manner

is inadequate when curvature effects are important.

There are several approaches for attacking the viscous-inviscid

interaction problem in supersonic flow. The ultimate approach would

be to solve the time dependent Navier-Stokes equations for the whole
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flow field thus eliminating the patching procedure between the viscous

region near the surface and the inviscid region away from the wall.

However since the Navier-Stokes equations are spatially elliptic it

is unfeasible and impractical from the points of view of both com-

puter storage and running time. The objective of the present work

is to develop a viscous-inviscid interactive procedure in supersonic

flow that represents an intermediate development between past treat-

ments and exact solution of the Navier-Stokes equations. The inter-

active flow analysis developed herein is based on dividing the flow

field into regions where in one region the flow is supersonic with

a dominant inviscid character and is treated by a hyperbolic system

of equations, while the second region where the flow is highly vis-

cous is treated by a parabolic set of equations. In both regions

forward marching techniques can be used thus considerably reducing

storage and time requirements. However when replacing the Navier-

Stokes equations that are elliptic with sets of equations that are

hyperbolic and parabolic in character, there is no capability of

directly dealing with upstream influence effects. Hence the present

procedure cannot handle flow separation or strong shock interactions

where the elliptic behavior is important.

A. Applicable Earlier Work

The interaction methods that have been developed for supersonic

flow all consider the flow field to consist of two regions. Generally

these regions are a boundary layer or equivalent viscous layer and

an external supersonic region. The methods however differ in the

0&1.
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complexity of the modeling assumptions for each of the regions and

in the coupling procedures for effecting interaction.

An early but most significant formulation of an interaction

procedure for supersonic flows was by Crocco and Lees (reference 1).

In their work they related the pressure distribution of the external
f

supersonic flow to the local slope of the displacement thickness of

the viscous region using the Prandtl-Meyer relation which is a one-

family characteristics procedure. The viscous layer in the Crocco-

Lees procedure is based on the classical boundary layer approximation

but was treated as a mixing layer using a specially-developed momentum

integral procedure. Lees and Reeves (reference 2) extended the Crocco-

Lees method by additionally employing a moment of momentum integral

equation to improve the treatment of entrainment. The extension of

the Lees-Reeves integral interaction procedure to include consideration

of heat transfer was by Klineberg and Lees (reference 3).

Reyhner and Flugge-Lotz (reference 4) improved the treatment of

the viscous portion of the interaction analysis by applying a full

finite difference technique to solution of the compressible laminar

boundary layer equations in the physical plane. The boundary layer

is treated in the classical limit with the normal pressure gradient

taken as zero. As with the earlier described procedures, the coupling

between pressure and local streamline deflection at the edge of the

boundary layer is through the Prandtl-Meyer relation.

Miller (reference 5) argues however that the inviscid flow must

be calculated by a two-family characteristics method in order to
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obtain a mathematically well-posed supersonic interactive problem,

and thus eliminate the saddle point type singularity that is intro-

duced by using the Prandtl-Meyer relation which is a one-family

characteristics solution.

Ferri and Dash (reference 6) improved the treatment of viscous-

inviscid interactions in supersonic flow in two ways: first, by

applying a higher approximation for the boundary layer that includes

normal pressure gradient and longitudinal curvature effects, and

second, by using a two-family rotational characteristics scheme in

the outer region that allows for entropy changes due to viscous effects.

The pressure distribution across the viscous region was assumed to

be a polynomial of fourth degree uncoupled from the rest of the system.

The coefficients were determined by assuming that the first and

second normal derivatives of the pressure at the wall are zero and

that the remaining terms are de.;>endent on the longitudinal curvature

effects. The system of equations obtained were solved numerically.

In the viscous region the x-momentum and the energy equations were

expressed in finite difference form and solved simultaneously for u

and T. The normal velocity distribution was obtained by integration

of the continuity equation and the process repeated iteratively until

convergence was obtained for u, v, T and p.

B. The Present Method

The present work is an extension of the idea of Ferri and Dash

(reference 6) wherein the flow field is divided into two regions:

a) an inner region which is highly viscous and mostly subsonic and

i

r
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b) an outer region where the flow is supersonic and in which viscous

effects are small but not negligible.

The inner region is treated by a system of equations of the

boundary layer type. This system is obtained by reexamining the

Navier-Stokes equations for steady compressible two-dimensional or

axisymmetric flow in curvilinear coordinates and through an ordering

procedure retaining terms of order unity and (d/L). In addition to

the classical boundary layer equations the system of equations so

obtained includes in a consistent way the second order effects of

longitudinal and transverse curvature as well as normal pressure

gradient.

In this system the normal momentum equation is retained. The

equations are a coupled parabolic set in the longitudinal velocity, u,

the normal velocity component, v, and the static temperature, T. By

incorporating a suitable effective viscosity hypothesis, the system

can be used to calculate both laminar and turbulent boundary layers.

The system of equations obtained is solved simultaneously in the

physical coordinate plane using an implicit finite difference technique.

This procedure provides an exact and stable numerical solution to the

viscous flow equations in the inner region.

The numerical solutions for the outer region are obtained by

applying the method of characteristics to a system of equations

which includes viscous and conductive transport terms normal to

streamlines. In this streamline-normal coordinate system, terms

of order unity and (S/L) are retained for the viscous and heat flux

i
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terms added, whereas curvature effects are kept fully. By introducir.s

the transport terms as corrections, the equations retain their hyper-

bolic character. These correction terms include additional second	
4

order terms, over and above those retained by Ferri and Dash (reference.
.4.,. a

6). The solution of the characteristic equations have been structured

as an inverse grid scheme in a streamline-normal network. In this

reverse scheme both characteristic Mach lines are extended back until

they intersect the known data region on a normal to the streamlines.

The streamline condition has been replaced by a streamfunction con-

dition thereby preserving mass flow within a stream tube. This allows

for a very equitable mesh distribution which always maintains itself

in the downstream direction without redistribution of the grid points.

The resulting system of equations in both the outer and the inner

regions are consistent to order (6/L).

In the interactive mode following the suggestion of Ferri and

Dash (reference 6), the inner and the outer regions are matched

along a line where the Mach number is approximately 1.2. The match-

ing conditions are continuity of the flow variables u, v, T and p at

the interface. The detailed algorithm of the interactive procedure

for the interaction mode is given.

Each of the portions of this analysis will be discussed separately.

The development of equations and numerical solution procedure for the

outer region together with some illustrative examples is presented

in Chapter II, This is followed in Chapter III by an equivalent

presentation for the inner region. The interaction procedure between

f

t
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the two regions is described in Chapter IV. Discussion and summary

of the major portion of the present work is given in Chapter V.



CHAPTER II

OUTER REGION

A.	 Equations of Motion

The equations of motion for the outer region are written for

steady viscous compressible two-dimensional or axisymmetric flow.

These equations for the coordinate system shown in figure 1 are:

Continuity

(P*u*Y*o)	 (P*v*Y*o)+ a *ax*	 y
= 0 (1)

Longitudinal momentum

P*u* au* + P*v* au* _ - ap*
+1	

2	
(u*y *6

au* )
ax*	 ay*	 ax* y*a ay*	 ay*

+	 (u*ax*	 ax* ) (2)

Normal-momentum

* * av* + P *V* aV* _ - 8P*
P u	 P v

+	
l	 a	 * *6 av*

(u y	 *)ax*	 ay*	 8y* *a ay*	 ay
Y

+ (u* 
8x*)aX*

(3) 

Energy

P*u*C* 
aT* 

+ P*V*C* aT* - (u* —R + v*	 p*)
p ax*	 p ay* ax*	 ay*

= *Q ay* (y * 6k* +	 (k* IT—*)
ay

* )	 D x*
Y

+ u*t au* + ay* l 2 + 2u* ^ ( Du* ) 2 + ( av*
) 2 ^ (4)

ay*	 ax* aX*	 ay*

8
{

,a
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Equation of State`

P* = P*R*T* (5)

In these equations

o = 1 for axisymmetric flow

o = 0 for two-dimensional flow.

The equations of motions (1) to (5) are made dimensionless in

the following manner:

U*	 _ V*
'

^_.P `
=	 =	 T

T*
=

x*
PU	

'REF' 
V	

'REF '
;	 P	 ,

PREF	 PREF TREF 	
x

LREF

y = Y* ; P = P*	 ; CP = CCP— ; k = k* (6)
LREF	 REF REFPREF

The resulting dimensionless equations are:

Continuity

(Puy')	 (PVy^)
ax	 + ay - 0 (7)

Longitudinal-momentum

P u au + PV,au = _ 1 .R +	 1	 { la-	 (uyo au
) + a (^, au ) }

ax	 y	 M2
Y REF

ax	 Re REFy 
ay ay	 8x ax

(3)

Normal-momentum

Pu 8v + PV ay
	

-	
1— ^ +	 1	 {1- a (uy6 

@V ) + 2— ( 
1 v }ax	 ay	 VM2 ay	 Re,',,',va	 ay ay 8x	 ax

N"
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Energy

puC aT + pv0 aT - (-1)(u a + v p)
P ax	 p ay	 Y	 ax	 ay

	

__	 1	 1a	 o aT	 1	 8
	 DT

Pr REF Re
REF y  ay (y lc ay ) + Pr REF ReREF ax (k ax

2	 2

+
Re REFu[(ay + ax) + 2((aX)2 + (ay)2 )]

REF

Equation of state

p = PT

where:

	

uREF 1/2

	

Reference Mach number

	

EF	
(yRT REF

) 

PREFu REF LREF
Re REFu	

- Reference Reynolds number
REF

uREFO
Pr F =	 K pREF
	

Reference Prandtl number
REF

The equations of motions (7) to (11) are now transformed from cartesian

coordinates (x,y) to curvilinear coordinates (s,n) where: s and n are

respectively the distance along a streamline and the distance normal

to a streamline. Transport effects such as viscous shear and heat

flux are retained only normal to the streamline. This is because from

2	 2
an ordering procedure, terms such as	 /ant are of order of (d/L)2

that can be neglected in the present analysis.

ob.. i

(10)

(11)
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The governing equations (7) to (11) when transformed and simplified

(details given in Appendix A) are:

Continuity

as 	 + pq 
an - 6^ sine	 (12)

Y

s-momentum

pq a + YM
2 as - Q1	 (13)

REF

n-momentum

pq_2 as + MM 2̂	 an Q2	
(14)

YMREF

Energy equation	

M2
pq a—s - (-^) q a = (Y-1) ^EFQ3	 (15)

Eauation of state

p = pT	 (16)

where q is the velocity in the streamline direction, 6 is the stream-

line direction and Q1, 
Q
2' Q3 are correction terms due to viscous

shear and heat flux. The detailed expressions for the correction

terms are rewritten here:

2
__ 1	 a aq + o pcose aq - uq(ae) _ Qu. sin2 8 a}

Ql Re REFtan( n)
	 y	 an	

an	 y

(17)

Q = 1 {u—
q ae + U1 gcos3e 8e + a (u

q ae)}
2 Re 

REFan 
an y	 an an	 an

(18)

2	 2
__	 1	 2 ae1	

M	
a

	

DT	 oil 	 DT

Q3 	 Re F {u( an) + 
2uq 

( an) + PrREF(Y-lREF[an^uan) + Y cos 8 and}

(19)

w• ^
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By considering these terms as known source terms the systems of

equations (12) to (16) retains its hyperbolic character.

B. Method of Characteristics

The characteristics derived from the system of equations (12)

to (16) are defined by two ordinary first order differential equations

where the independent variables are the static pressure, p and the

streamline direction, 6. The detailed derivation of the characteristics

	

relations is given in Appendix B. 	 I

The characteristics equation is:

do = ±tana	 (20)
ds

where a = sin 1 
M 

is the Mach angle. These characteristic directions

are the same as for inviscid flow. The compatability relation is

given by: ;
2	 2

dp + de	 osine Q1 _ (y-1)MREF	
Q2M sina	

dx
yP	 sinacosa +	 y +	 2	 pq	 Q3 ±	 p	 ^cosacos(6+X) - 0

Pq
(21)

The + and - signs correspond to C+ and C characteristic lines res-

pectively. The quantities 
Q1' Q

V Q3 are functions of the local normal

gradients of velocity and temperature and have the same role as the

entropy terms in equivalent equations for inviscid rotational flows.

The variations of entropy, S, and stagnation temperature along

r
the streamline as derived in Appendix B are:

E

M2

ds	
Y REF Q

3	 (22)
Pq

4 ;

i

1
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dTs _ 
(y-1)r REF	 + Q1(Y-1)MREF	 (23)

d 	 p 	 Q3	 P

The oblique shock wave relation required in dealing with shock

points in the characteristic net is obtained from Reference (7) and is

given by:

sin 6RSH + b sin 4RSH + c sin 26SH + d = 0	 (24)

where

ASH is the shock angle

2

b = - M 22 - ysin2S
M

C = 2M2+1 + I(^)2+(^]sin26
M	 M

cos 2d
d = -

M4

In these equations, M is the Mach number upstream of shock wave and

S is the local streamline deflection angle.

In order to establish a well-posed problem, the following boundary

conditions must be given:

(a) data for all quantities must be prescribed along
an initial datum line. In the absence of the
correction terms Ql ,Q2 and Q 3 , only p, e and M n.ced
be specified to allow the characteristics calculation
to proceed. However, upon including Ql, Q 2 and Q33
the velocity and temperature information is needed•as
well.

(b) the shape of the boundary surface or bounding stream-
line, y = SB(x).

C. Numerical Procedure

The conditions at each grid point (x,y) in the physical plane

.6.. 1
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are determined by the characteristic equation (20) and the com

condition (21). A non-uniform grid point distribution on the

the streamline is chosen to allow a fine mesh spacing in the i

portion of the outer region and coarse spacing at the outer po

of the outer region. The computational procedure divides itse

the following four basic elements:

1. Conical flow field calculation (for axisymmetric
2. Boundary point calculation
3. Field point calculation
4. Shock point calculation

Conical Flow Field Calculation - The flow past an infinit

with attached shock front is described by the Taylor-Maccoll equations

which are solved numerically by means of Runge-Kutta integration (see

Appendix C). The .conical shock angle, 
ASH 

is calculated by an iterative

procedure beginning with a first guess of the shock angle for the given

freestream conditions. The integration is continued to the cone sur-

face and the resultant cone angle compared with the specified cone angle.

A new estimate of the shock angle 
0 
S is made based on the error and

the process is repeated until convergence is obtained. The converged

solution gives complete information on the conical flow field.

Boundary Point Calculation — Calculation of a boundary point

(Fig. 2) requires that the normal velocity at the boundary point be

zero. The boundary point A can be either on a solid boundary or a

point on a prescribed streamline whose deflection is known. The

pressure at the boundary point A is calculated in an iterative way.

Using a reverse scheme the C- characteristic is extended f

in the upstream direction until it intersects the normal t



streamlines at point B. The flow variables at point B are determined

by interpolation. Using average values of points A and B the com-

patibility condition for the C- characteristic curve will give new

flow variables for point A in terms of the known values at point B.
.,►.. 1

Iteration is continued until convergence is obtained for point A.

Field Point Calculation - Calculation of point D (Fig. 3) is

done using the reverse scheme, that is both the C+ characteristic

and the C- characteristic lines are extended from point D in the up-

stream direction where they intersect the upstream datum line at points

A and B respectively. Point D is located on the normal to the stream-

line through point E [x(2,J-1), y(2,J-1)].

The compatibility equations at point D determine the flow

variables and the streamline slope for point D in terms of the flow

variables at points A and B. Integrating the mass flow between point

D and the previously calculated point E [x(2,J-1), y(2,J-1)] the

stream function at point D is:

%= ^E+a	 (25)

In order to preserve mass, the new location of point D on the normal

to the streamline, is corrected with respect to the difference de-

fined by:

6^ = ^D - W)	 (26)

Normally convergence is obtained in a few iterations.

Shock-Point Calculation - Shock point calculations are basically

different than the field point calculations. Since conditions upstream

of the shock wave are known, the oblique shock relations must be in-

corporated into the calculation procedure.
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Point B (Fig. 4) is located just downstream of the shock wave

and on the normal to the streamline from point C[x(2,J-1), y(2,J-1)].

An initial guess is required for the flow variables and streamline

deflection at point B. Then point A can be determined by the inter-

section of the C+ characteristic through point B and the upstream normal

to the streamlines. The shock wave angle is calculated using equation

(24). This determines the flow variables at point B from oblique

shock wave relations. The coefficients of the compatibility equation

are updated using averages of the flow variables at points A and B.

The streamline deflection is recalculated and thus a new shock wave

angle is calculated. Again in an iterative way, convergence is

obtained.

D. Numerical Results

To test and illustrate the procedure developed for the outer

region, two sets of calculations were performed. The first of these

is for the waisted body tested by Winter, Smith and Rotta (reference

8) while the second set is for a Mach number 3.5 mixed compression

inlet for which characteristics calculations were performed by

Syberg and Hickcox (reference 9) usirLg a different scheme than

developed herein.

The geometry of the waisted body of revolution is described

(figure 5) by a set of five polynomial functions each pertaining to

only a section of the body. Calculations were performed for a

series of supersonic Mach numbers for which experimental data are

available. The correction terms Q11% Q2 and Q3 have been excluded

I
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in these calculations.

Figure 6 shows the oblique shock waves for M = 1.7, 2.0, 2.4

and 2.8. The wall Mach number distributions along the body are shown

in figure 7 for the same free stream Mach numbers. A comparison of

the calculated Mach number distribution on the surface and the measured

Mach number distribution at the edge of the boundary layer (reference 8)

shown in figure 7 shows very good agreement except perhaps at M., = 2.8

in the vicinity of Lx	 0.4. Examination of the experimental
REF

velocity profile at this Mach number and location (figure 9 of reference

8) shows that the velocity is still slowly increasing beyond the nominal

"edge" of the boundary layer as chosen by Winter et al (reference 8).

The calculated wall static pressure distributions for the same

free stream Mach numbers are shown in figure 8. It is seen that the

pressure minimum occurs consistently in the vicinity of the inflection

point of the body (L x	 0.42). Unfortunately, experimental wall
REF

pressure data are not available in reference 8 for comparison with

these results.

The streamline patterns as calculated for the waisted body at

M = 1.7 and M., = 2.8 are shown in figures 9 and 10 respectively.

parti ;--Ui-hr interest is the appearance at M = 2.8 of a noticeable
Co

second shock wave in the flow field emanating from x/L REF ^=-- 0.75.

This wave for the same Mach 2.8 test n-F TTintor qmii-k and Rnttn Cana

also identified in the "smooth shock-

reference 10.

Of

.0.1.
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Figure 11 shows the pressure distribution along normals to t

streamlines emanating from a number of stations on the body. The

'presentation for MC, = 1.7 (figure lla) is a composite of the pree

along the normals to the streamlines labeled A through N in figul

The ordinate in figure lla is (y-yBMy3H-y B ) for the points on t

aforementioned normal lines. From the pressure distributions foi

x
B REF
/L	 > 0.787, a mild shock wave seems to appear in the pressui

-

distribution although there is no apparent corresponding streamli

deflection in figure 9.

Figure llb gives a similar portrayal for M
C, 
= 2.8. The shock

wave appearing in the pressure distribution for xB/LREF > 0.787 is

readily identified with the locus of streamline deflections in figure

10 and is coincident with the shock location as calculated in ref-

erence 10.

Numerical calculations were also done for the Mach number 3.5

mixed compression inlet sketched in figure 12. Geometrical data for

this inlet are given in reference 9. The pressure distribution

calculated with the inlet by both the present streamline-normal

procedure excluding the correction terms Q 15 Q2 and Q3 and by the

more conventional characteristics scheme of reference 9 are compared

in figure 13 for the center body surface and in figure 14 for the

cowl surface. The excellent agreement between the two computational

schemes indicates that little if any accuracy is lost by neglecting

Mach wave intersections between the datum planes that is characteristic

of inverse scheme methods.
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In order to investigate the effects of the correction terms in

the outer region, a power law velocity profile (n=11) of suitable

thickness has been imposed in the initial datum line where the wall

Mach number was chosen as Mw = 1.9. The wave pattern for the mixed

compression inlet is calculated both with and without the correction

terms. For the purposes of this exercise, the correction terms

are evaluated using Sutherland viscosity and Pr = Q.72. The

numerical results shown in figure 15 indicate a shift of the wave

location and curving of the wave reflection due to the viscous and

conduction terms. This partial simulation of the presence of a

boundary layer gives some indication of what might be expected in an

interactive calculation.

i
1
a
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CHAPTER III

INNER REGION

The various methods for dealing with the viscous region differ

in the order of the terms kept in the system of governing equations.

In past work on interactions the tendency has been to use classical

boundary layer equations (with ^ = 0) or else such equations augmented

by a centrifugal correction for normal pressure gradients. The pre-

sent interaction procedure depends however on having accurate re-

presentations of the normal velocity distributions at the matching

location in the boundary layer even in situations with longitudinal

and transverse curvature. Hence it is desirable herein to employ a

set of equations that are consistent to order (S/L) relative to the

leading or classical boundary layer equations. In that way the sets

of equations for the inner and outer regions are consistent to order

(8/L). Within this second order approximation, the normal momentum

equation appears as a coupled member of the set of inner layer equations.

Lefore proceeding into the details, a brief review of pertinent second-

order effects is appropriate.

The boundary--layer concept introduced by Prandtl has been

successful in yielding solutions for viscous flows at high Reynolds

numbers, as long as the boundary layer remains attached to the surface

and remains thin enough so that it does not noticably affect the

external flow. A general discussion of higher-order approximation

20	 :s,
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for boundary layers has been given by Van Dyke (reference-11). In

that review article, Van Dyke classified the second-order corrections

into two categories according to whether the additional terms appear

in the differential equation through the curvatures or through inter-

action with the external flow. Van Dyke further subdivided each

category giving some analytical details and physical interpertation

for the described effects.

Maslen (reference 12) has presented a set of equations that is

complete with respect to the inclusion of second order boundary-

layer effects. This set of equations is the starting set for the

developments in this chapter. Maslen himself in reference 12 went

on to study some weak interaction questions by means of similarity

solutions. Seginer (reference 13) solved a system ofequations
1/2

retaining terms to order ( 
1	 ) where Re	 is the reference

ReLREF	
LREF

length Reynolds number. In his system the normal momentum equation

is a coupled member of the parabolic set of governing equations.

Seginer then went on using the Stewartson transformation and

similarity arguments to obtain ordinary differential equations for

the second order boundary layer system. He obtained solutions for

a two-dimensional flat plate at Mach number 4 to illustrate the

very slight effect even for that case of the normal pressure gradient.

The present system draws on both of the abovo.- works in its

development of the second order system of equations but the solution

procedure is developed in physical coordinsLes for later interactive

matching with the outer solution. Similarity arguments are not invoked.
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A. Equations of Motion for the Inner Region - Laminar Flow

The highly viscous flow in the inner region is assumed t

steady, compressible, laminar or turbulent, two dimensional c

flow over an adiabatic or non-adiabatic surface. The appropt

system of equations in dimensional form is given in reference 11.

Expressed in curvilinear coordinates (C,^) in which E is measured,

along the surface and ^ normal to the surface (figure 16) and where

u, v are the corresponding velocities, these equations are:

Continuity

*
*( p *u*r*o) + a *(P*v*(1 + R)l = 0	 (27)

* - momentum

*	 *	 * * _ p^
p*u* DC* + p*v* 2^* (1 + k* ) + uR^	 DC*

k 
R* 

av* - u*
+ r*6R(R*+ * 2*^U*r*o(R

*+*)2( a^* + R* + 
C* 

)^
)

*
+ 2 

a	
* *o(R* aE* + v*)

r*a aE*^u r	 (R* + *)

2 *Q R* + C*
r	

( R* )(u*sinew+ v*cosew)sineW

R* 
3u*+ v*_ 2 a 

{u*	
8E	 + av, +	 (u*sine + v*cos8 )]}

DE*	 (R* + ^*)	 aL*	 r*	 w	 w

..6.. ;



C*-momentum

R* * * 2v*	 * * DV* _ *u*? _ _ @P*
(R*+^*) P u 	+ P v a* R*+^*	 D^*

	R * 8u*	 *
+	 2	

a ^U,tir*6(R
*+ * 8v* _	 2u*	 8E* + v

r*o (R*+ *) 3^*	 ) @^*^	 (R*+^*)^ R*+C*

R*	 a	 o Du*	 9E*8V* u*	 2u*a Cos w
+	 a *[u*r* (au* + R*+ *	 )l -	 2	

(u*sine
(R*+C*)r* 	 au*	 r*	 w

R* — - u*
+ v* cos ew) - 3 2 a*^ u* ( R*+* 	) + u* av*

u*sin6 + v*cose
+ u*a (	

w	 w)
lr*

energy

R*	 * * ah*	 * * 2h* _	 R*	 *	 * gyp*
(R*+%*) p u a^* + P v 8^* 	 ^(R*+^*) u a^* + v

	 }

_ t a r*au* 8h*R*	 8	 R*r*o	2h*
r*o	

+
^a^( Pr	 8^*)	 (R*+	 aE*((R*+C*)Pr

ah*	
* 2	 R* au* + v*

+ u* Pr(R*+C*) + u*{2(a *) + 2( 
R*

+C*	 + r*2(u*sinew+v*cos8w)2

	

* ^v*	 * 2	 * au*	 *
au*	 R DE* - u	 2 R a*

+ v	 2v* a
(	 +	 )	 —[—	 +	 + —(u*sine +v*cose ) ) }aC*	 R*+^*	 3	 R*+^*	 r*	 w	 w

(30)

In these equations r* is'the lateral radius of curvature of the point

R* is the longitudinal radius of curvature of the surface, and

is positive for convex surfaces (reference 11) while

c = 0 for two dimensional flow

and

a 1 for axisymmetric flow.
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The angle 0
w 

is the local slope of the axisymmetric body relative to

the normal to the axis. Thus

cos0 - 
dr*

w dC*

Reexamining the equations of motion using dimensional analysis

(see Appendix n), a set of equations is obtained constituting a higher

approximation than the classical boundary layer for the inner region,

since terms of order unity and of order (S/L REF ) are retained. The

non-dimensional equations of motion obtained to this order expressed

in terms of reference Reynolds number Re REFbecome:

continuity

a [Pura] + L[pvro(1 + 1/2 R 	
(31)

ReREF

^-momentum

D U	 1	 au	 1 puv	 Dp
pu

DC 
+ pv(1 + 1/2 R) a^ +	 +1/2 R	 aE

Re 
1/2
	

Re 
1/2

1 a	 a	 1	 au	 1	 1 u a	 a
_ o a^^ur (1 +
	 1/2 R) a^^ -	 1/2 a R a^(ur )
	 (32)

r
	 Re 

1/2 	
Re 

1/2
r

C-momentum

1 [pu 
Dv+ Pv(1 + 1
	 ) 9v] - pu2 + Re' /2(l + 1 ^)

1/2'	 8	 1/2 R ac	 R	 REF	 1/2 R a
Re	 ReReREF	

Re

2 1 a	 a Dv	 1 1 a a au

	

Re 
1/2 ra e^(ur 

ac ) 
+ Rel/2 r 
	
(Pr a^)

REF	 REF

- 2 
Re 1/2 a [ U au 

+ av + csusin6w ,

3	 REF aC	 DE	 a^	 r

(33)

r{
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energy

pu 
ac

+ pv(1 + 1/2 R) a^ — (Y-1) -, [U 8 + (1 + 1/2 R)v 
'P]

Re 
1/2

Re
REF

1	 1 a	 r 	 aT, + 1	 P DT
(l { Re 1/2 R) ro. ac ^u Pr REF

a
 ^Rel/2 

Pr 
REF

R 8;

REF	 REF
2

+ P(Y—l)MiEF [(l + Rel/2 R	 a^)(a^)	 Re1/2 R	 ]	 (34)

REF	 REF

eauation of state

Tp = ^^_

YI REF

B. Eq uations of Motion for the Inner Region - Turbulent Flow

When the equations of motion are written in terms of mean quantities

(velocities, pressure, density, temperature, etc.) and fluctuations

about the mean, and then averaged with respect to time, the resulting

set for turbulent flow (a detailed development is given in Appendix E)

keeping only the leading correlations u'v' and v'T' is:

continuit

a[Pur + a—̂[Pvra (1 + 1/2 R) ] = 0	 (36)
ReREF

E—momentum

— au --	 1 C au	 1 puv + ap
pu a + Pv( 1 + Rel/2 R)	 + DC Rel/2 R	 DE

REF	 REF

1 a [1jro (1 + 1 ) auk — 1 a [ro (1 + l ) p u'v'
r6 8^
	 Rel/2 R DC	 ro 

a^	 Re 1/2 R
REF	 REF

1	 1 u a	 a	 1	 - u'v'

Re 1/2 r  R 8C
(ur) - Re 1/2 P R	 (37)

REF	 REF

J

r

*-- j

(35)
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^-momentum

1 {pu @V+ pv(1 + 1	 ) av} _ Put + R 1/2 (1 + 1	 ) DP

1/2	 a	 1/2 R a^	 R	 REF	 1/2 R a^
	Re 1/2Re	

e
REF

	
Re 1/2

	

2 1 a	 o av	 1 l a Q au
=

Re 
1/2 

ra a^
	 a^^ + Re 1/2 ro a^
	 act

REF	 REF
_	 asin6 u

_	 2	 a	 au + U av + u	 w 	
1	

1 a ^r6pu^v,^

	

1/2 aC	 a	
DC	

r
	 Re 1/2 r  a

REF3R eREF

(38)

energy

Pu DT + Pv (1 +	 i ) 8T _ ^Y_1) L	 ^u	 + v(1 +	 1	 1) '121
8 	 /2 R	 a^	 MREF	 a	 1/2 R	 a^

l/
Re Re

1	 1
- (1 + 1/2 R)	 o

a	 it	 aT,

a ^ [PrREF a ^ + 

^_

Re 1/2

1	 1 aT

Pr REFR a^Re	 r
REF REF

+ (y-1) M2	 u{ (1 +
REF

-
1	

C ) (au)

1/
1/2 R	 a^

2
-	 2

1/
1/2

u On

R a^
Re Re

- T 8^^(1 +
	

1/2 R)r p v^ T ^] (39)

Re
REF

equation of state

P 
	 PT _	 (40)

YMREF

C. Viscosity Laws

The equations are formulated to accommodate any variation of

viscosity that may be required in properly implementing a boundary

layer calculation. For the examples presented in the work the dynamic

or absolute viscosity is represented by the Sutherland viscosity

relation which in dimensionless form is
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u _ (1+a ) T3/2
T+a

where:

a =
198.6

TREF

For turbulent boundary layers, the momentum and energy transfer

correlations u'v' and v'T' are included in the equations of motion and

are evaluated using Boussinesq scalar eddy viscosity and eddy con-

ductivity coefficients through which these transport terms are in

turn related to local mean velocity and temperature gradients. Thus

the turbulent transport coefficients are defined:

-u'v'	
au

 = 
eu 8

_
	

DT	 u 8T

	

- v T - et a^ = 
e
Pr  a ^ 	 (42)

where eu is the scalar eddy viscosity and Pr  is the turbulent Prandtl

number.

Eddy Viscosity Model: Experimental data with equilibrium tur-

bulent boundary layers indicates that the scalar eddy viscosity

function can be simulated by a two-layer model (reference 14). The

inner layer in the vicinity of the wall is characterized by increasing

turbulence with distance from the wall namely e
u 
varies almost

linearly* with distance from the wall. In the outer layer the scalar

eddy viscosity function is nearly constant except for the intermittency

factor. Cebeci and Smith (reference 15) have extended the Van-driest

In the very near neighborhood of the wall e ti y2.
u

(41)
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formulation of the law-of-the-wall (reference 16) in order to include

effects of pressure gradient and heat and mass transfer at the wall.

The Cebeci-Smith model for effective eddy viscosity will be used in

the present calculations for turbulent flow. While these are other

suggested models for the eddy viscosity (reference 17 for example),

the Cebeci-Smith formulation has been shown to be adequate for engineer-

ing calculations.

The Cebeci-Smith model (reference 15) written for axisymmetric

flow* is as follows:

Inner Layer

[E:
	 = L2 r I Sul	

0 <	 <
U i	

r 
	 9 ^	 c

Outer Layer

[ CU ] = r-aue d*	 ^c <	 < S	 (43)
0

where:
r

L 0.40rw In 
r 

{1.0 - exp[- 
A 

In (r )]}
w	 w

A-is a function of pressure gradient, mass transfer at the wall and

viscous shear stress at the wall and is given by:

	

T -1/2	 1/2

A = A+ N (pw)	 (p
w	 w

where

The two-dimensional version

and evaluating the expressioi

..b..	 J
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A+ = 26

2 +	 u	 u

N Z ^(Pe) -^{1 - exp(11.8• 
w 

v+)} + exp(11.8 
w 

v )
Pe Pw v+	 u w	 u w

w
u

+	
u du
e e ep	 U3 d

+ isV = —
w uT

T 1/2

uT	
(pw)

w	 j

1+Tr
0

a	 ao(1

a = 0.0168
o

Tr = .55
0

Tr = 0.55 {1 - exp[-0.243z11/2 _ 0.298z1J}

z = R^ - 1
1 425

1
Re = Reynolds number based on momentum thickness

I

The intermittency factor is given by:

1
r - 1+5.5(S)^	 (45)

The condition of continuity of the eddy viscosity function determines

the values of
c
, i.e.;

Eu. (c) _ E
u ( c )	 (46)

1	 o

The two-layer representation of the eddy viscosity function is

sketched in figure 17.
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Substituting the expressions (42) for the turbulent transport

terms into equations (37) to ( 39) the system of equations becomes:

continuity

a,[Pur + D ^[Pvr6 (1 + 1/2 R)l = 0	 (47)
Re

REF

E—momentum

au --	 1	 8u	 1 puv
+

Pu 
ac 

+ P v(1 
+ 1/2 R) 9^ + 1/2 R	 DE

Re 
1/2 	

Re 
1/2

=	 1	 8 [ro
o	 a^

(1 +	 1	
^) (p +Pe

1/2 R ) 
au l+

u	 a

Pe1	 u 8u
3^1/2	 R1/2

r Re
REF

Re

—	 1
1/21/2

1	 u 8	
(pr

Q R 3^ (48)
Re r

?;—momentum

1

1/21/2 {Pu 8v +8 Pv(1 
+	 1

1/21/2
) av I-

R	 D^
Put + Re 1/2 (1 +
R	 REF

1	 )
1/2 R	 8^1/2Re Re Re

2	 1
1/2

o Dva
[pr	 ]a^	 8^

1
+ /2Rel

1	 a	 a—[r
a

.	 )(p -Fps
u

@U

a^Re	 roREF REF
ro

/23Re1 a^[ p a^ + u

posin6	 _

8	 +	 r	 w u] (49)

REF
energy

Pu a + Pv (1 + Re 1/2 R) a
	

(Y_1) REF[u
	 + v(1 +
 Re 1/2 R) a

REF	 REF

_ 1 8 ro 1 + 1	 - PrREFEu

re a^ [PrREF (

	

	
Re 1/2 R) (p + P Pr 

REF

M	
— 1

+ (Y-1) REF p{(1 + Re 1/2 RXDa 	
Rel/2 R 

a	 (50)

REF	 REF

.AA. I

i
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equation of state
_T

P 
^	

(51)
yNEF

Equations (31) to (35) for the laminar case or equations (47) to

(51) for the turbulent case are a coupled parabolic system in the

variables u, v, and T, hence two poinl boundary conditions for u, v,

and T and one boundary condition for the pressure are required. For

convenience in computation the pressure is split as follows:

P (E ' O = PEXT W + P I (^, O	 (52)

where p
EXT Q) is the external pressure (presumably known), and

pI (,^) is an induced pressure due to normal momentum consideration.

D. Boundary Conditions

The boundary conditions at the wall (C = 0) are:

u(E,0) = 0

V Q10) = { 0	 for impermeable walls

vw ( ^) for suction or blowing

T (^: 0 ) = Tw(E)

or

DT	 = 0	 (53)
D ^ C=O

The outer boundary conditions depend on the use made of the inner-

region equations. Those presented here are the outer conditions for

boundary layer calculations. The outer boundary conditions employed

in the interaction procedure are described in Chapter IV. For com-

L
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putational purposes, the outer edge of the boundary layer is taken to

be well outside the conventionally defined thicknesses. In practice

this turns out to be three to four times S* for the laminar boundary

layer and of the order 106* for the turbulent boundary layers. At

this location: (^ —, d)

PI (^,d) = 0

a(puro)I

	

	 + a^I pvro (1 + 1/2 R)31	 = 0=d Re 1/2	
C-d

REF

dub  _ dpEXT M
p 8 u 6 dE	 dE

dT6	
M2
	 dpEXT(O

P 6 
u6 d	 = ('Y-1) REF 

u8	 dC
(54)

Initial Profile: For starting the finite difference calculation,

profiles for the unknowns, u, v, T and p at a specified initial

station. E  are needed. For laminar boundary layers, similarity

solutions have been incorporated to start the finite difference flow

field calculation. For incompressible turbulent boundary layers the

starting profile has been constructed from the law-of-the-wall.

E. Numerical Solution of the Inner-Region Equations

For solution of the non-linear partial differential system,

equations (31) to (35) for laminar flow or equations (47) to (51)

for turbulent flow are linearized and then replaced by a system of

linear algebraic equations using a modified Crank-Nicolson implicit

finite difference scheme. Since because of the nonlinearity'of the basic

system the flow variables in the coefficient matrix depend on the

...,.
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solution vector, an iterative procedure is applied until the differences

between the flow variables for successive iterations is as small as

desired.

A primary objective in the development of a numerical procedure

is to get it to yield a stable and convergent solution for the system

of finite difference equations. Stability and convergence of

numerical solutions of partial differential equations is discussed by

Roache (reference 18). Basically, instability results from un-

avoidable small perturbations in the flow field due for example to

round-off error,truncation error, etc. If in marching downstream

the errors diminish then the method is stable; if the errors grow in

marching downstream the method is unstable.

It was decided to apply an implicit difference scheme rather than

an explicit one. A broad discussion of the two schemes is given in

reference 18.	 Generally it is expected that implicit difference

schemes are fax more stable than explicit difference schemes. On

the other hand implicit schemes involve a system of algebraic

equations that must be solved simultaneously since the equations

are coupled.

Other investigators have attempted solving the flow equations in

the physical plane using implicit difference schemes. Reyhner and

Flugge-Lotz (reference 4) solved the system of classical boundary

.layer equations simultaneously in the physical plane for u, v and T.

Their numerical results indicated an oscillation in the normal

velocity at the edge of the boundary layer. Such oscillations are

3

r
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undesirable if the method is to be used as part of an interaction

calculation. Since their system of equations includes only continuity,

x-momentum and energy equations the normal pressure gradient is

assumed to be zero.

Ferri and Dash (reference 6) have included an uncoupled normal

momentum equation in their mathematical model. Their numerical

solution was also done in the physical plane. Although they used an

implicit difference scheme, their procedure is quite different than

that of Reyhner and Flugge-Lotz (reference 4). They assumed the

pressure distribution across the boundary layer to be a polynomial

of fourth order uncoupled from the rest of the system. The co-

efficients were determined by assuming that first and second normal

derivatives of the pressure at the wall are zero and that the re-

maining terms are dependent on the longitudinal curvature effects.

The system of equations i.e., continuity, x-momentum and the energy

equations were expressed in finite difference form. Solution of the

finite difference equations was done successively; that is they

first solved simultaneously for u and T using the x--momentum and

energy equations, then the normal velocity distribution was ob-

tained by integration of the continuity equation. The process

was repeated iteratively until convergence was obtained for u, v

and T. The converged solution was then used to determine the variation

of p across the boundary layer.

.+- 7
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The objective in the present work is to solve the second order

system of equations for the viscous region in the physical plane and

by e-mending the Reyhner-Flugge-Lotz method (reference 4) and

solving the coupled parabolic system of equations simultaneously.

Difference Scheme and Quotients - The grid scheme on which the

expressions for the difference quotients are based is shown in

figure 18. A grid with variable mesh size in the normal ^ direction

and a uniform mesh size in the longitudinal C direction has been

chosen. In order to obtain a fine mesh near the surface where the

gradients are large and a coarse mesh away from the surface, a

geometric series has been chosen to locate the grid points in the

C direction.

n-1
r n = DK• (K K - 110
	

n=1,2 ... N-1,N	 (55)

where:

DK = first interval

K = ratio between two consecutive intervals

C  = C coordinate of the nth grid point

The truncation errors of the difference quotients are based on

a Taylor series expansion of a function with two independent vari-

ables about a point where the function and its derivatives are known.

The validity of the expansion depends on the existence and continuity

of all derivatives of the function f(x,y) which here represents any

of the unknown functions u, v, T and p. The value of f(x+h,y+t)
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can be expressed as follows:

2

f (x+h,y+SC) = f (x,y) + (h ax + Q ay) f (x^Y)+ 2 (h ax +Y , ay ) f (x,Y)

3
+ 1 (h ax + Q ay ) f(x,Y) + ...

	

of	 of	 1 2 3 2 f	 a2f	 2 a2f

	

= f (x, y ) + h 8x + Q 8 + 2^ (h	 2 + 2hP, 
axa + k	 2)+ .. .

Y	 ax	 Y	 ay

(56)

For any of the unknown functions u, v, T and p represented here either

by f(x,y) or g(x,y) the expressions for first and second derivatives

of the above mentioned functions at the point A (figure 18) located

at (^m+l/2,^n) depend on the differencing scheme. The expressions

for centered differences, backward differences and forward differences

are given below:

Centered Differences

1) First derivative in E-direction:

f	 = f	 +, of l A^ + 1 
92f l (—A^ 2+ 

1 a 3f l (A^ + .. .
m+l,n	 m+1/2,n a^ A 2	 2! 3E2 

A 
2	 3! 9E 3 A 2

(57)

f	 = f	 - of	 0E + 1 a 2f AE 2	 1 a3f	
AE 3

m,n	 m+1/2,n DE A 2	 2! 3^ 2 A ( 2 ) 
- 3! 9E3 A ( 2 ) + .

(58)

subtracting (58) from (57) yields

of l = (fm+l,n	
fm,n)

+ Cg L (AE) 2 l	 (59)
DE A	 of



2)	 First derivative in ^-direction:

The derivative in C-direction is obtained as a weighted average

of the derivatives in the C-direction at station m and station M+l.

f

2
f	 + ailA^n+l +	 a	

2 (AC	 +2 Im+l,n+l ur+-1,n m+l,n	 2 ! 9C

	
m+l,n	 n+l

(60)

f
Df	 A^	 1	 2	

2 +f f 	A C+ 2!	 3l2T^Im+l,n-1 m+l,,n	 n	 nm+l,n	 a C	 m+l,n
(61)

Since Ain+1 = A^ n K, the resulting expression is

of
f 
m+l,n+1	 + U[(A^ 2 

A (62)ac m+l,n A^ (1+K)	 nn

Similarly for station m

Df f 
M, +1	

f m.,n-1)
D^I AC (1+K) (63)

m,n n
Finally we obtain:

of = X	 ( @f	 + (1-X )( @f )l
1 ac	 9C (64)

D^ m+1/2,n m+l,n	 M,n

For X, = 1/2, the Crank-Nicolson centered difference expression is

obtained.

Second Derivative - Second derivatives appear in the flow

equations only in the ^-direction.	 For centered differences:

f

2
f	 + 

af	 A^	
+ 

1 rf (AC)+2!	 2IM+l,n	 ai l

 m+l,n	 n+1m+l,n+l @^ m+l,n	 n+l
(65)

af	 1	 . 
a 2f 	 2

f 
m+l, n7 1

)f m+l,n	 DC1 M+I n	
AC 
n	 2!	 ac 2 M+l,n	 n

,
(66)
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Backward Differen

First Derivative

_	 _ of I	 1
fm+l,n-1 - f	

^^ +
m+l,n	 a^ 

m+l,n	
n 

2!

I
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Multiplying equation (65) by (A^ n) and equation (6 6 ) by (A^n+1) 
and

adding the resulting equations yields

2	 (f	 + K f	 - (1+K) f	 )
a fl	 = 2	

m+l,n+l	 m+l,n-1	 m+l,n

ac  m+l,n	 K(1+K)(ACn)2

(67)

For flexibility a weighted average has been used to obtain the second

derivative at point A:

32f1	
= a 

a221	
+ (1-a2) a22I

a^ m+-1/2,nl/2,n	 ac m+l,n	 ac m,n	 (68)

Again for X 2 = 2 th e equal-weighted Crank-Nicolson result is obtained.

Other Derivatives

^af)2I	 = (fm+l,n+l fm+l,n+l ) (fm,n+l	 fm,n-1)

2
a^	 m+1/2,n (1+K)2 Wd (69)

of	 a9 l (fm+l n+l	 fmi-1,n-1 ) (gm,n+1 gm,n-1)

a^ a^ m+1/2,n
=

2(ACn)2(1+K)2

(gm+l,n+l	 gm+l,n-1)(fm,n+l fm,n-1)+

2(AC )2(1+K)2

n (70)

To be noted is the linearity of these expressions in the quantities

evalnataci at station m+l.

..6'.	 i
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2

fm+l,n-2	 fm+l,n	 8^ I 	 (^^n-1 
+ Din) ^-	 a2I	

^(A^n-1)+(An)]2m+l,n	 a^ m+l,n

(72)

Multiply equation (71) by (non + ACn-l ) 2 and equation (72) by (A^n)2.

Then subtraction of (72) from (71) yields:

af l	= f	 1+2K	 -	 1+K)	 2
a^ m+l,n	 m4-1,n (1+K)A^n fm+l,n-1 

Ain 
+ fm+l,n-2 (1+K)^^n

+ al (A^n) 2]

(73)

Hence the first derivative for point A (figure 18) using backward

differencing and weighted averaging becomes:

of I	 = a 
of 

I	 + (1-a ) of l	 (74)
ac 

m+1/2,n	 3 8C m+l,n	 3 ac 
m,n

Forward Differences

L';	 D	 teriva ive

2

fm+l,n+1 fm+l,n +	
A
n+l + 2! a 2 I	 (A^)2 +

	

aC	
'

m+l,n	 a^ m+l,n	 n+l

(7S)

f	 f	
af(	

(AC
	

+ 0C	
) + 1 a 2 fI	

(0C +a^	 ) 2+ ...
m+l,n+2	 m+l,n 3Cm+1,n	 n+2	

n+l	 2! a ^2 l ^ n n+l n+2

(76)

Multiplying equation (75) by (A^n+l + ACn+2)2 and equation (76) by

2W n+l) then subtracting equation (76) from equation (75) and ex-

pressing in terms of AC
n 

we obtain:

.6^. 1

f
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DfI	
= - f	 (2+K)	 1+K)1

aC m+l,n	 m+l,n (1+K)KACn + K20C	
_

n fm+l,n+1 fm+l,n+2 K
2(l+K) CC

(77)

Then as for backward differencing, the expression for the first de-

rivative at point A is:

of I	 = X of	 + (1-a) of I	 (78)
a  

m+1/2,n	 3 ac m+l,n	
3 DC m,n

Difference Equations

Following the suggestion of Reyhner and Flugge-Lotz(reference 4)

the system of non linear partial differential equations has been

linearized in the following way:

continuity

a[rapul 
+ a^[roPv(l + 1/2 R)^	

0	 (79)

ReREF
E-momentum

(Pu) Wau + (P au) W (1 + 1/2 R)°
a^	 8^	 Re

REF
2

	

+ [ (1 +	 1/2 R)u(1 + PE)) (1) a 2
Re

REF
	 a

+[r ac	
Re

+ R 1/2 R)u(1 +))](1) a^
eREF

(i)	
-

Rel/2 (RrQ )	 (ura)

REF

(PE) M au	 P (l ) uv
1/2	 D^ -	 1/2 R	 (80)Re 1/2Re 

REF
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C—momentum

pu (1) av	 1	 (i)	 1	 av _	 1/2 r	 1 ^

1/2	 a^ 
+ [(1 +	 1/2 R) pv^	 1/2 8C — —Re REF (?	 1/2 R)DC

Re 1/2 	 Re 1/2 	 Re 1/2ReREF

2	 (i) a 2v
+ 

1 av	 a	 cr

Re
l/2[u	

ac  
	 r  a^ 

a^(ur )]

REF

+	
1	

{ [u (1 + P' ) ] 
(i) a 

2 
u

1/2	 u	 8a^
Re 

1/2

Du	 .E (i) au (i) aT	 u au (1) a	 P cy
+ [a^(1 + u )]	 (aT)	

a + (ra a
)	 a [(l + , )r ]}

2	 (1) au (i) aT

22	
+ u(i) 

a 2u 
+ (au)(1) (-9V 

(i) aT

Mel
	 {( aT )	 (W) a 	 acDE	 aT	 9	 a^

REF

2	 (i) using (1)	 sine W
+ u (i) a v + ^ ( au) 	(	 w)	 aT + 6u(i) (	 ^)	 a u}

a ^ 2
	 aT	 r	 r	 a^

+ 
^u)(i 

u - 2 ou 
(1) 

Dr 
(1)

R	 3	 1/2 2 ( a^ ) 	a	
(81)

ReREFr

energy

(P.u) (1) aT + 
(1 +	 1)v(P 3T

)(1) 	 (Y-1)MREF[u(1)
a	 1/2 R	 8C

Re 
1/2

(1 +	 1	 )(1) v( )	 p	 + (Y-1)--1tEF u M
1/2 R

Re REF

[ (1 +
/2R)Re1

W au )W au
a^	 ac

_	 2u i)

Rel/2R

auk
a^

REF REF

+ [(1 +
ii	

pe
(1 + r

Pr REF (i)
)^

92T

Re
l/L)

R
REF

Pr REF
Pr ac 

+ 1[a (r6 (1 +B
1	 )	 u
1/2 R)

(i)
(1 

+ PEPr 
REF))^	 aT

11	 Pr 	 aC
ro Re

REF (82)
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Terms with superscript (i) are linearized terms and are updated after

each iteration.

Following reference 4, to enhance stability, the continuity

equation is written for point B (figure 18) and the two momentum

equations and the energy equation are written for point A. The

resulting system of algebraic linear finite difference equations

which is derived in detail in Appendix F is:

Ainum+l,n-1 + Binum+l,n + Ginum+l,n+l + Dinvm+l,n-1 + Einvm+l,n

+ F v	 + G	 +	 +
in m+l,n+l	 in 

T 
m+l,n-1 

H 
in 

T 
m+l,n 

I 
in 

T
m+l,n+l

+ Jinpm+l,n-1 + Kinpm+l,n + Linpm+l,n+l Sin

(83)

where:

i = 1, 2, 3, 4

2 <n <N-1

A centered differencing has been used for the variables u, v, and T

in which the truncation error is of order [(AC) 2 ], while for the

pressure a forward two-point differencing has been applied. Though

it is accurate only up to (A^) it gives a more stable solution than

a centered differencing which is accurate up to (AC) 2 . This numerical

instability associated with including the normal pressure gradient

has been noted also by other investigators (reference 19).
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In matrix notation the system of equations (83) can be written

in a more compact form:

MX = g (84)

where M is a block tridiagonal matrix defined:

M2	E2	 0 0	 0

D 3	M3	 E3 0

_ 0	 D4	 M4 E4
M =

DN-2 N-2 EN-2

0	 0 0 DN.-1 N-1

(85)

Each element in M is a 4x4 matrix incorporating the coefficients of the

system of the finite difference equations:

Blk	 Elk	 Hlk Klk Olk Flk Ilk Llk

B 2	 Elk	 H 2 K 2 _	 02k F 2 I 2 L 2_

Mk
k

_

kB 3	 E 3	 H 3 K 3 C 3 F 3 I 3 L 3

f

B4k	 E4k	 H4k K4k C4k F4k I4k L4k

R
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and

Alk Dlk Glk

A 2 D 2 G 2
Dk =

A 3 D 3 G 3

A 4 D 4 G 4

in equations (84) X is the

is itself a 4-element colui

Jlk

J2k

J3k

J4k
(86)

unknown column vector. Each element of X

nn vector defined:

um+l,k

v
m+l , k

Xk
Tm+l, lc

Pm+l , k

(87)

g in equation (84) is a known column vector whose elements are de-

fined by:

Slk

S 2
gk

S 3

S 4	 (88)

Writing the equations for 2 < n < N-1 (see Appendix G) 4N-8 equations

in 4N-1 unknowns are obtained, i.e., u 	 , v	 , T	 for
m+l,n m+l,n m+l,n



A2 0 0

D3 A3 0

0 D4
A4

L =^

0

0

DN-2
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1 < n < N and p
m+l 

n for 2 < n < N. After applying the three boundary

conditions at the wall (n=1) and the four conditions at the edge of

the boundary layer (n=N), an additional calculation for the pressure

at the wall. is needed in order to obtain the density at the wall

through the equation of state. The induced pressure at the wall is

calculated by applying the ^-momentum equation at the wall to obtain

the pressure gradient and using a two-point differencing scheme the

wall pressure can be determined and hence also the density at the

wall. A detailed derivation of the expressions for calculating the

pressure at the wall is given in Appendix H.

Method of Solution

Using the technique for block tridiagonal systems the block

tridiagonal matrix M in equation (84) is decomposed into:

M = LU	 (89)

where L is the lower block diagonal matrix, and U is the upper block

diagonal matrix. L and U are defined by:



and

0	 0I2 N2

0 I3 N3

0

An = Mn - DnNn-1	
3 < n < N-1

N =A -1 E	 2 <
n	 n	 n

The method for solving equation (84) is 1

LUX = g

or letting	 UX = W

Equation (93) becomes:

LW = 9

46

U=

IN-3 NN-3	 0

IN-2 NN-2

00	
IN-1

(91)

By comparison of the corresponding elements from both sides of

equation (89) the following relationships are obtained:

A2 = M2

1 -N2= A2 E2	 (92)

and:
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The unknown vectors W are solved as follows:
n-1-

W2 = A2
 92

-1 -
Wn = An (gn - DnWn-1)	

for 3 < n < N-1	 (96)
r

After solving for Wn , the required unknown X  vectors can be obtained„

using the following procedure:

N-1 - WN-1

R  = Wn - NnXn+l	 N-2 > n > 2	 (97)

By underrelaxing the solution vectors the coefficients of the linear

difference equations are updated and thus the iteration procedure

is continued until convergence of the solution vector is obtained.

The equation for the underrelaxation procedure is:

X = X	 + 0 (X	 - X	 )	 (98)
n	 nOLD	 nNBW	 nOLD

where Q is a positive number that is less than one. Most calculations

were performed with S2 ,^zi 0.75.

F. Numerical Results

Numerical solutions using the second-order inner region pro-

cedure have been obtained for a) the compressible laminar boundary

layer on a flat plate over the Mach number range from 0 to 4, b)

the compressible laminar boundary layer on a 20 degree half-angle

cone at a free steam Mach number of 2.8, c) the compressible laminar

boundary layer over the waisted body of reference 8 also at MC, = 2.8,

and d) the turbulent boundary layer on a flat plate at MC, = 0.

The laminar cases were computed for Pr = 0.72 and Sutherland viscosity.
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To get the inner region solution started on its march down-

stream, data are required along an initial station in addition to

the specification of boundary conditions. In the present system of

equations, profiles for u, v, T and p must be given. For the pre-

sented laminar cases which all begin with nearly zero pressure

gradient, the Blasius solution corrected for compressibility through

the Howarth-Dorodintsyn transformation and adjusted when necessary

for axial symmetry by the Mangier transformation has been used. The

temperature profile has been obtained from the velocity profile

using the Crocco integral and the induced pressure had been assumed

to be zero across the boundary layer. Once the u, T and p profiles

are known, the initial v profile is obtained by integration of the

continuity equation. Sometimes, particularly at high Mach number,

iteration of these approximate initial profiles is required in order

to proceed downstream in a stable and convergent manner.

a) Laminar Flat Plate: The results obtained for the flat plate

are in excellent agreement with classical boundary layer solutions.

This is quite understandable since curvature effects are unimportant

in this case. Nonetheless the present program is in physical co-

ordinates and also gives direct calculation of the normal velocity

distribution. In figures 19 and 20 the longitudinal and normal

velocity distributions at M = 0 are seen to be essentially in-

distinguishable from their Blasius counterparts. Similarly for the

variation of the normal velocity at the edge of the boundary layer

at M.= 0 (figure 21), except for a small blip at the beginning
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indicating an initial datum line defect which however is damped out

immediately. With increase in Mach number the calculation procedure

yields convergent, smooth normal velocity distributions. The vari-

ation of their edge values with distance along the plate at different

Mach numbers is shown in figure 22. The induced pressure distribution

is very small in this case as expected.

The skin friction coefficient,form factor and displacement

thickness distributions along the plate are shown in figure 23 for

MCO 
= 0 for a range of unit Reynolds numbers and are seen to be

indistinguishable from the similarity solutions. The very very

slight differences are attributable to the different viscosity laws

used, i.e. a linear viscosity temperature assumption in the Howarth-

Dorodnitsyn stretching of thi similarity solution as compared to the

Sutherland viscosity relation in the finite difference solution. The

same information at a	 Reynolds number of 1.5 x 10 6	but at

Mach numbers up to 4 is shown in figure 24. These results again

show good agreement with the similarity solutions.

b) Cone: As a first axisymmetric example, numerical solutions

for the compressible laminar boundary layer over a 20 degree half-

angle cone, were obtained for a free stream Mach number of 2.8. The

normal velocity at the edge of the boundary layer is given in figure

25 which indicates that a stable and convergent solution has been

achieved. As shown in the normal velocity has a negative sign for

this cone angle indicating that the streamlines are directed into

the surface whereas in the case of the flat plate or more slender cones

.b.. r

-I ­W
I	

I- ­ 	 I 	 I - 	I

_	 J
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the edge streamlines are directed away from the surface. The skin

friction coefficient along the surface is given in figure 26 in-

dicating that a stable and convergent solution has been achieved.

c) Laminar Flow over Waisted Body: The compressible laminar

boundary layer over the waisted body of revolution of Winter, Smith

and Rotta (reference 6 ) has been calculated for M = 2.799.co

Curvature effects, lateral as well as longitudinal are pronounced

in this case.

Variation of displacement thickness along the surface of Mc. = 2.799

is shown in figure 27. The relatively large increase of the dis-

placement thickness is mainly due to longitudinal curvature effect.

In figure 28 the wall skin friction distribution is given and is seen

to drop quite rapidly after 
X/L 

REF -- 0.30. The normal velocity dis-

tribution at the edge of the boundary layer is shown in figure 29.

On the conical part of the waisted body the normal velocity is negative

while further downstream the normal velocity at the edge changes

sign due to curvature effects.

The pressure distribution across the boundary layer is shown

in figure 30 at three stations: X/LREF - 0.1125 on the conical part,

X/L
REF

 = 0.325 near the maximum diameter and at X/LREF = 0.450

after the inflection point of the surface. As shown the normal

pressure gradient in the conical part is quite small whereas near

the peak where curvature is pronounced the difference in wall press-

ure can be of the order of 5% of the inviscid wall pressure. Down-

stream at X/LREF - 0.450 the pressure distribution across the boundary

i

i
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layer changes due to curvature and differs noticeably from the

inviscid value.

d. Incompressible Turbulent Flow Over Flat Plate

Numerical solutions have been obtained for the incompressible

turbulent boundary layer over a flat plate using the two layer model

for eddy viscosity. Initial profiles were generated using the law of

the wall as formulated by Walz (reference 20) in terms of the follow-

ing three algebraic relations corresponding respectively to the

laminar sublayer for y+ < 4, a transition region for 4 < y+ < 26,

and the logarithmic law for y+ > 26.

u+ = y+	 y+ < 4	 (99)

u4- = c1 ln(1 + y+) + c2 + [(1 - c 1 c2 • a)y+ - c2 ] e- 
ay+

4 < y+ < 26	 (100)

u+ = c1kn y+ + c 2	y+ > 26	 (101)

In these expressions

u+ _
u*

u
T

Y+ = Y	 -^uT^

uT = Aw/P

The constants c15 c2 and a in equation (100) are taken as 2.50, 5.10

and 0.3 respectively.
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All the following results are for a reference Reynolds

5
number of 1.588 x 10	 In figure 31 are shown distributions of

skin friction coefficient displacement and momentum thicknesses as

well as edge normal velocity. The skin friction coefficience compare

well with the Karman-Schoenherr relation as given in reference 21.

Some oscillations are seen in the beginning of the edge normal velocity

distribution but these rapidly die out. Obviously the initial

datum line has some inconsistencies with the difference equations.

Any such deviations in the initial data show up immediately in the

normal velocity and induced pressure profiles. The displacement and

momentum thickness distributions generally behave as expected.

Figure 32 displays the u and v velocity profiles along the plate.

The u-profiles that were calculated are as expected while for the

normal velocity profiles a slight oscillatory character can be

seen in the first three stations.

G. Convergence and Stability

The objective of this section is to list some of the major

difficulties that have been met while trying to solve the non-linear

partial differential equations that were replaced for solution by a

system of linear algebraic equations using an implicit finite

difference scheme.	 .

It seems that in a complex system of non-linear partial diff-

erential equations such as developed herein for the inner layer, it

is quite difficult to estimate stability criteria in closed form



by applying the Von Neumann method or some equivalent numerical sta-

bility analysis. Also when the solution becomes unstable it is

difficult to trace the cause for that instability. Therefore only

by trying different grid sizing and different weighting coefficients

Xc' Xu $ xv' XT and a
p , have regions of stable calculation been found.

The accuracy of the numerical solution has been checked with cases

for which exact solutions exist.

Continuity Equation: It has been recognized that the continuity

equation written as a central differencing in the ^ direction may

lead to strong oscillations or even to divergence because of the

boundary condition at the wall for the density or pressure (reference

22). One way to overcome this oscillatory behavior is to add an

artificial eddy viscosity term into the continuity equation. In

the present analysis however, a weighting factor of a c = 0.85 gives

well behaved results (see Appendix F). Figures 33, 34, and 35 shows

the normal velocity at the edge of the i'ricompressible laminar

boundary layer along a flat plate for a = 0.50; a = 0.85 and
c

c
= 1.20 respectively. For X c = 0.5, the solution is clearly

oscillatory and with increasing amplitude of oscillation. The

solution for a c = 1.20 (figure 35) is overdamped. A value of

X  = 0.85 is nearly optimal since only slight overdamping is seen

for the first two stations and further downstream the results are

the same as for the exact solution. The oscillatory behavior for

ac = 0.5 is also maintained for the compressible boundary layers.

A representative result at M 	 0.5 is seen in figure 36. All inner

1
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layer calculations other than these stability and convergence tests

were performed with X 
c 

= 0.85.

The solutions of Reyhner and Flugge-Lotz (reference 4) which

utilize central differencing (a
c 
= 0.5) display the same oscillatory

behavior as seen in figures 33 and 36. For the purposes of inter-

active calculation their edge normal velocity distribution was taken

as the average of the peak-to-peak oscillations. They did not succeed

in obtaining a smooth longitudinal variation of edge normal velocity.

Pressure

It has been recognized and reported (references 19 and 23) that

departures from the proper solution can occur as a result of the

(8p/8E) terms in the E momentum and the energy equations. Besides

in the present system there is an additional pressure gradient term (ap/D^)

in the ^-momentum equations and in the energy equation. It is found

that these departures can be controlled by splitting the pressure

as follows:

p (E, O = pEXTW + P I (^, O	 (102)

where pEXT M is the external pressure imposed on the viscous layer

by some outer region solution and pI ( „) is the induced pressure

which is generally small compared to pEXT(0.

Basically two options are used for calculating the pressure

gradient in the C direction. They are:

a) a centered difference for point A (see figure 18)

ap 	 apEXTO
 (,^)	 aE	 + (pI	 - p 	 ) /A^m+1m+l,n	 m,n
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apEXT(^)where:	
a	

is a presumably known function and pl,m+l,n

is the unknown induced pressure.

b) The induced pressure gradient is taken as the gradient of

average induced pressure across the boundary layer as follows:

9p 1	

fo

a

a = [-	 PI
 m+l,n

In this option the induced pressure gradient is a known function

which depends on the updated induced pressure distribution across

the boundary layer. Both of these options have been used successfully

in the present calculations. There is no clear preference among

them at this time.
8p

For each of the above-mentioned options for D ^ , the ^-

derivative of induced pressure was treated in several ways:

a) a centered-difference scheme accurate to order of
2

(A^ ) and for which a stable solution could not be achieved. In
n

marching downstream a growing oscillatory behavior developed that

could not be controlled.

b) a backward difference scheme which includes two-point differ-

encing accurate to order of	 (A n ). With this option stable

solutions have been obtained.

c) a forward difference-scheme which includes two-point differ-

encing accurate to order of 	 (ACn ). Also here stable solutions

have been obtained. The forward differencing is preferred since it

is most convenient for matching when the inner region solution pro-

cedure is used in interactive calculations.
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Grid Size: From experience with the program, it has been

realized that careful selection of 
A^m+-1 

and 
Ain 

must be made in

order to obtain stable and convergent solutions. The choice has an

upper bound as well as a lower bound. Roughly speaking taking

A^m+1 of the order of 4 to 5 times ACN will give stable solutions.
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CHAPTER IV

INTERACTION PROCEDURE

In the interactive mode, following the suggestion of Ferri and

Dash (reference 6), the inner and outer regions are matched at

grid points where the Mach number is approximately 1.2 (figure 37).

The matching procedure is however differently structured.

In order that the computer programs for each region interact

properly, the two programs have been restructured and written in an

overlay mode. Namely the computer program is divided into segments,

a main segment and other segments of lesser heirarchy connected to

the main segment like branches of a tree. Thus when the main segment

calls for a program in a particular segment of lesser hierarchy all

other segments of equivalent lesser hierarchy are ignored and only

this segment is in the operating mode for use. Overlay operation

is needed mainly for three reasons: a) to reduce the need for

storage capacity b) to eliminate the rewriting of the program

because of the similar name variables in the two programs, and c)

for convenience, while calculating one of the regions, the computer

program for the other region is not needed, and therefore can be

stored in a scratch file.

A general flow diagram for the interactive mode is given in

figure 38. Flow diagrams for the component outer region and inner

region programs are shown in figures 39 and 40 respectively.
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A. Initial Datum Line

In order to start the numerical calculation in the interactive

mode, an initial datum line is required which must be consistent in

an interactive sense between the inner and outer regions. For con-

venience the initial datum line has been fixed in a region where

the cone flow solution is still valid. Accordingly the procedure

for creating the initial datum line for axisymmetric flow is as

follows:

1. Calculate the "inviscid" flow field using the outer
region program.

2. Solve the inner region flow field using edge
boundary conditions taken from the outer region
solution of step 1.

3. At a station sufficiently downstream of the apex such
that the inner region solution is well behaved,
the Mach number 1.2 location is determined within
the inner region and the slope of the local
streamline (tan6 = —v) is obtained.

U

4. At the station chosen in step 3, the outer region
is recalculated using the Taylor-Maccoll equations
with the slope of the streamline at the inter-
face of the two regions (from step 3) taken as a
boundary condition in place of the usual surface
slope. Thus the shock angle and the flow field
variables are changed slightly doe to the inter-
action.

5. The portion of the outer region profile from
Mach number 1.2 to the edge of the boundary
layer was scaled in order to get continuous pro-
files of the flow variables for this portion
of the outer region. This was done simply by
multiplying the outer region profile by a
dimensionless form of the inner profile.

The procedure then gives complete information at the initial datum

station.

..6,-
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B. Matching Procedure

The matching between the inner and outer regions requires an

iterative procedure. The matching conditions are continuity of the

flow variables u, v, T and p. Discontinuities in the derivatives with
..,. 1

respect fo ^ of the flow variables about the matching grid points are

due to the use of different numerical procedures on either side of the

match points and to inconsistencies of order (a/L REF )2 or higher in

the systems of equations describing the two regions. The numerical

results indicate that these discontinuities are very minor. Referring

to figure 37, the matching grid points A and B are in the transonic

regime where the Mach number is of the order of 1.2.

Point B is chosen at the intersection of an extended streamline

through point A and 3 normal to the wall at station (m+l). The

slope e  of the streamline at point B (station m+l) is assumed

initially to be equal to the streamline slope e  at point A

(station m), where the flow variables are all known. The flow vari-

ables uB , vB , TB and PB can be determined from information at point

C (station m) using the boundary point procedure of the outer region

program.

The inner region can now be calculated for station m+l using

R	 the following converged data for point B as "edge condition":

u (m+l, N)

f

	
T (m+1, N)

E
	

p(m+1,N)
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Using the normal velocity gradient at the edge of the inner region

as determined through the continuity equation, a new normal velocity

vBI for point B is obtained from the inner region solution. The

new normal velocity is used to correct the slope at B to:

v
6	 = tan _ 1 

BI	
(103)

BNEW	 u 

with the new stream slope for point B the entire process is repeated

until convergence is obtained for the flow variables at point B.

Following this, the flow field in the outer region at station m+l

can be solved using the outer region system thus completing the

calculation for station m+l.

C. Numerical Results

The interactive program has been applied to two examples: a)

a supersonic flow over a 20 degree half angle cone at Mc. = 2.80 and

b) supersonic flow over the waisted body described in reference 8 also

at M = 2.80. Both cases were for compressible laminar flow.
CO

a. Cone: Numerical results for the wall static pressure are

very slightly different than the inviscid flow field results as ex-

pected for this weakly interactive cafe. The difference of the shock

angle between the interactive solution and the outer region solution

is shown in figure 41. A slight oscillation is noticed at about

x/LREF ~ 0.3.

b. Waisted Body: Variation of static pressure difference

relative to the inviscid static pressure is shown in figure 42 for the

interactive and inner region solutions. The inner region solution
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shows the reduction in surface pressure due to longitudinal curvature

effects. This reduction is restored by the displacement effects in

the interaction solution.

In Figure 43 the Mach number profile from the interactive

calculation is compared with the separately calculated inviscid and

boundary layer profiles. The interactive profile is reasonably

continuous in slope at the matching line between the inner and

outer regions. The interactive calculation indicates a larger skin

friction than the boundary layer calculation and the approach to the

inviscid Mach number distribution is slower than one would expect

from comparison with the non-interactive boundary layer profile.

It is suspected that this solution is not fully converged to the

weak interaction solution.

Nevertheless, the interactive program does work and the

indication from these results is that more experience is required

In starting procedure, choice of matching location and convergence

criteria to make the program fully useful as a design tool.

L'
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CHAPTER V

SUMMARY

A method has been developed for analysis of viscous-inviscid

i
interactions in supersonic flows. The outer supersonic region of the

flow field is represented by a two-family method of characteristics.

In the present scheme, inclusion of viscous and conductive terms in

the formulation allows calculation of the supersonic portion of

boundary layers and the tracing of wave reflection within those

supersonic regions. It has been shown that shock wave patterns can

be altered by inclusion of the correction terms. The inner region

I
is handled by a second order boundary layer system that includes

longitudinal and transverse curvature effects and a normal momentum

equation. This nonlinear partial differential system of equations

of parabolic type have been solved numerically in the physical plane

by replacing them by a system of linear algebraic equations using a 	
i

modified Crank-Nicolson implicit finite difference scheme. The

nonlinearity of inner region equations was taken into account by an

iterative procedure until the difference between the flow variables

for successive iterations is as small as desired. Generally 4 to 10

iterations are needed to get a convergent solution. This depends:

however on the accuracy of information on the initial datum line.	 l

i
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An interesting and useful byproduct of the present work

experience gained in overcoming the difficulties of obtaining

and convergent solution for the coupled parabolic non-linear F

differential set in the inner region. Other investigators hat

encountered these difficulties even for less complicated syste

equations. They overcame• the difficulties either by decouplin

equations, i.e., solving the equations successively or by arb:

smoothing the oscillatory results. It has been recognized by

investigators that the terms involving the pressure gradient

lead to instabilities in the numerical results. Besides in t]

procedure an additional pressure gradient (ap/a^) appearing ii

^-momentum equation and energy equation is another source for causing

numerical instabilities.. It is found in the present work that the

numerical instabilities can be controlled by splitting the pressure

into PEXT
	
and an induced pressure P I (E,C), where PEXT(^)' the

"external" pressure is obtained from the outer layer solution pro-

cedure. The C derivative of the induced pressure was treated by a

two-point backward or forward difference scheme that leads to a

stable and convergent solution. A centered difference scheme would

dead to an unstable solution. Also it has been recognized here that

the continuity equation which is a first order differential

equation when written as a central differencing in the C direction
t
r

leads to strong oscillation and divergence of the numerical solution.

i
In the present work a weighted differencing scheme has been used.

The oscillatory behavior that was particularly pronounced in the normal
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velocity has been damped out by choosing a proper weighting factor.

Numerical results obtained herein for compressible laminar

boundary layers agree very well with exact solutions. Numerical

results for the waisted body where longitudinal curvature is important

leads to pressure variation in the normal direction across the boundary

layer. The wall static pressures differ by as much as 5% from PEXT'

In the interactive mode the matching between the inner and the

outer regions requires an iterative procedure. The normal velocity

is the key parameter for matching the two solutions in the transonic

region where the Mach number is of the order of 1.2. Thus it is

important to get a stable and convergent inner solution for the normal

velocity. It is interesting to note that the inner region solution

converges at a faster rate in an interactive mode compared to the

solution of the inner region in the non-interactive mode. The

matching procedure works satisfactorily and numerical results for a

20 degree half angle cone and for the waisted body of Winter, Smith

and Rotta at M = 2.8 have been obtained.
CO

Supersonic viscous-inviscid interactive analysis is an important

area that has received only limited attention to date. The inter-

active procedure developed-herein should be quite useful in dealing

with supersonic flow fields where separation and strong-shock inter-

action effects are absent. Further work is required in order to make

interaction procedures such as the present one more encompassing and

versatile.

.....
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APPENDIX A

TRANSFORMATION TO STREAMLINE-NORMAL COORDINATES

The non-dimensional system of equations (7) to (11) written in

cartesian coordinates (x,y) is transformed to a curvilinear coordinate

system (s,n) where s and n are respectively the distance along a

streamline and the distance normal to the streamline. In this form

it is easy and straightforward to identify and retain the transport

effects such as viscous,shear and heat flux only normal to the stream-

lines.

Transformation Relation: The transformation relations from cartesian

coordinates (x,y) to the curvilinear coordinates (s,n) are (see

figure 1):

ax = cos8 as - sin8 an

a- sinO as + cos8 an
	

(A-1)

Also the velocity components (u,v) in cartesian coordinates expressed

in terms of the velocity vector magnitude q, and flow direction, 8,

are:

E	 u = q cos8

t	 v = q sin8	 (A-2)
i

F
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After substitution of relations (A-1) and (A-2), the governing

equations (7) to (11) when simplified and expressed in curvilinear

system (s,n) are:

Continuity

Cosa as(pq cos y yo ) - sine an(pq cos6yo) + sine ^^(pq sineyo)

+ Cosa L. (pq sineyo ) = 0
an

(A-3)

Expanding and rearranging the terms, the resulting equation is:

a	 ae	 apgsin8
( pq ) + pq	 - -as	 an	 y (A-4)

Longitudinal momentum

pq cos8[cose as (gcosa) - sine an(gcose)]

+ pq sine[sin8 as (gcose) + Cosa 3(gcose)]

_ -	 2	 [cos8 a - sine a ] + (A-5)
an

YI^REF
a2	 a 2 2

Considering an ordering procedure, 
asz/ant 

is of the order of (6/L)

therefore terms of this order are neglected in the present analysis.

The resulting expression is:

1	 1	 a	 o-	 a`
{	 cos8	 NY Cosa

AQl = Re	 an	 an(gcose)]
REF y

+ sine a[usina an (gcos8)]} (A-6)

Expanding equation (A-5) and rearranging terms yields:

pq as (gcos8) _ -	 Cosa a +as 	 a :+ AQ1
M2	 MM^2

(A-7)
Y -REF	 Y__REF
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Normal momentum

pq cose[cosa A
a
s (gsina) - sine 

a 
an(gsina)]

+ pgsine[sina as (gsina) + Cosa an(gsina)]

2 [sine a + Cosa a ] + AQ 2	(A-8)

Y^EF

where:

1
AQ2 = Re
	 I-!-- cosy aan[uyo
	 8
toss an(gsina)]

REF Y

+ sine an[usine an (gsina)])	 (A-9)

Expanding and rearranging yields:

pq as (gsine) _ - 2_ sine a - 
M
2 Cosa n + AQ2	(A-10)

, ^ F	 Y REF

Energy

For the simplified thermodynamic assumptions used herein, namely

Pr 
REF 

= 1
Pr	

= U
0

C
pREF = 1	 , ,

C	
u - k

P^

the energy equation becomes:

pgcose(cosa8s - sine an) + pgsine(sine as + Cosa an)

- (Y-1) [qcosO(cosB p - sin6 -^R) + gsina(sine p + Cosa ^)]

	

Y	 as	 an	 as	 an

	

- AQ3
	 (A-11)

where:
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AQ	 =	 1	 {1 cose a [y6ucose DT 	 + sine a[usinO3	 PrREFReREF yo	 9n	 an	 an
NI
an

(Y_1) 2

+ Re	 REF{p[cos8 an (gcose) - sine an(gsine)]2REF

+ 2p[sin 28(an (gcose)) 2 + Cos 28(an (gsin8)) 2 ]} (A-12)

Expansion and rearrangement yields:

Pq 8s _ SYYIZ q aIR + AQ 3 (A-13)

Upon multiplication of equation (A-7) by Lose and (A-10) by sine

and then adding the equations, the following is obtained:

Pq a +	 2	 a ' = Ql (A-14)

YMREF

where:

Ql = AQ1 cose + AQ 2 sine (A-15)

Multiplication of equation (A-7) by (-sine) and (A-10) by cose and

then adding the equations yields the following:

Pq2 8s +	 M2	
a	

-Q2
Y REF

(A-16)

where:

Q2 = sine AQl - cose AQ 2 (A-17)

The energy equation becomes:

Pq as	
(y-1) q 

as	 (d -1)MREFQ3
(A-18)

where:

Q3 = AQ3/ (Y-1)EF

_6u. 1
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Transport terms

The correction terms Q 1 , Q2 and Q3 dud to viscous shear and heat flux

which are considered as source terms in the method of characteristics

solution of the system of equations (A-4), (A-7), (A-10) and (A-13)

can be simplified in the following way:

Ql - term

Ql = cose AQl + sine AQ2

se {l
 cose an [pyo cos8 i.(gcose)]

ReREF Y o

• sine an [usine an(gcose)])

sine cose a o	 a^	 + sine a	 a (gsine)]}•	 {	 [uY cose	 ,gsn8) ]	 [^tsin8
Re REFYo an	 an	 an	 an

(A-19)

Expansion and cancellation of terms reduces the expression for Q 1 to:

__ 1	 a	 ag 6coseu 8R _	 ae 2- ^ S	 2
Q1 Re REF { an (u an ) +	 y	 an uq(an )	 y an sin 61

(A-20)

Q2 - term

Q 2	 sine • AQ1 - cose•AQ2

ne {1Q cose an[u
yocose an(gcose)]

ReREF Y

• sine an [usine an(gcose)} - Resa { SOSe an [uyocose --(gsine)]
REF	 Y

• sine an [psine an (gsine)]}	 (A-21)

i

'r
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Expanding and rearranging the terms yields:

1 {u ag ae 
+ 2__ (uq ae ) + Qugcos 3 e ae}	

(A-22)Q2	 ReREF an an an	 8n	 y	 8n

Q 3 - term

1	 cose a	 Cr	 aTa	 aT
E Q -	 {	 [uy cosh	 ] + sine —[using 	

])
REF 3 - Pr

REFReREF y° an
	 an	 an	 all

(y-,)M2
p	 a	 a	 2
{[cose an(gcose) - sine an(gsine)]

T Re REF

+ 2[sin2 e(an (gcose)) 2 + Cos 26(an (gsi..ne)) 2 ]}	 (A 23)

Expansion and rearrangement yields:

(Y-l)M
2	 __	 1	 a	 YE) + oucos 36 aT
REFQ3 Pr 

REF 
Re 

REF{ 
an (u an	 y	 an}

('Y`°1)REF	 a 2	 2 a 8 2
{u(an) + 2uq (an)}-r Re

REF

(A-24)

The Ql , Q2 and Q3 are correct to order (S/L).
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APPENDIX B

METHOD OF CHARACTERISTICS

The characteristic equations are derived here for steady viscous

compressible rotational two-dimensional or axisymmetric configurations

in supersonic flow. The independent variables chosen are the static

pressure, p and the streamline direction, 8.

For convenience equations (12) to (16) are repeated here as

(B-1) through (B-S).

Continuity

as	 an + Pq 8n = - opq sin8	 (B-1)

s-momentum

Pq a + M2 a = Q1 	(B-2)

Y REF

n-momentum

pq2 a8 + 2	 a = -Q 2 	(B-3)

YMREF

Energy

BT	 (Y-1)	 8	 2

Pq as - Y	 q as = 
(Y-1) REFQ3	 (B-4)

Equation of state

p = pT	 CB-5)

73
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Equation (B-1) can be written as follows:

1 
aP+ 

1	 ae _ _ osine
P as	 q as + an	 Y

Equation (B-2) upon dividing through by pq 2 becomes:

1q- Q1- 1	 1
q as	 pq2 

YM2	 Pq 
2 as

The equation of state in differential form is:

1 a  = 1 ^R - 1 3 
P as	 p as	 T as

and upon dividing through by pqT the energy equation becomes:

1 8T = 
(Y-1)MREF Q + (Y- 1) 1

T as	 pqT	 3	 Y	 pT as

Substitution of (B-7), (B-8) and (B-9) into (B-6) yields:

(Y-1)MREF 	 (Y-1) 1	 Ql	 1	 1 1

p 8 - { P qT	 Q3 + Y pT as} + pq2 - M2 pq2 a s
ZZEF

+ ae = _ asine

an	 y

or_ M2

1	 (M2-1) + 
ae _ asine + (Y l̂  REF Q — Q1 2	 (B-10)

M
2 	 g as	 an	 Y

	
pqT	 3 pq

Y- REFp q

In order to obtain the characteristi cs the followin
g system con-

sisting of equations (B-10), (B-3) and identities for the differentials

dp and de must be solved:

ir

k^

(B-6)

(B-7)

(B-8)

(B-9)
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(M2-1	 aP	 + 28	 = _ osin8	 (Y-1)MREF^_	 41
yM2

EF 
q2 as	 an	 y	 pqT	 3 pq2

-R

	

1 
ap +

2 â e	 __ _

M_2	 an pq as	 Q2
yMREF

as ds	
+ a do 	 = d'p

DO
TS .ds + an do = d8

(B-11)

The characteristic curves must satisfy the following relations:

	

M2-1	 0	 0	 12	 2
YM 

REFpq

	

0	
2	

pq2	 0

y REF	 = 0

	

ds	 do	 0	 0

	

0	 0	 ds	 do

M2-1
2	 2

MREF q

0

ds

0

(B-12)

0
	 0	 osin8 + (y-1) REFQ3 - Ql

y	 pqT	 pq2

Y REF
M2 	 pq2	 -Q2

=0

do	 0	 dp

0	 ds	 d8

(B-13)
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Upon expanding equation (B-12) the equation of characteristics is

obtained:

do = ±tanX	 (B-14)
ds

where:

X = sin 1 
P-11 

is the Mach angle.

The compatibility condition is obtained by solving equation

(B-13) :

dp 	 d8	 + [
asin6 + Q1 _ (Y-1) 

M2
REF Q

Yp	sinacosa	 y	 pq2	 pqT	 3

+ Q MREF sinal	
dx	

= 0
2	 p	 cosacos (O±a)

(B-15)

The + and - signs correspond to C+ and C- characteristic lines res-

pectively.

The non-dimensional form of the entropy relation in terms of

temperature, T and the pressure, p is:

dS = — y dT - dp	 (B-16)
(y-1) T	 p

where:

S^S = .R

The viscous shear and heat flux lead to entropy changes along a

streamline. Using the energy equation (B-4):

aT - (Y-1)NEF	 + -1) 1 ap
as	 pq	 Q3	 Y	 P as

Thus:

(Y—l)M2
dS _ Y _ aT _ 1 8p _ Y	 REF	 ++ (Y-1) 1 ap — 1 ap

ds	 (Y-1) T as	 p as	 (Y-1)	 pTo	 Q3	 Y	 pT as	 p as

i

L
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t

or upon further reduction

M2	 M2

dS 	
-1) 

REF	 _ Y REF

ds	 pq	 43	 pq 43

The variation of stagnation temperature, T s along a strean

as derived from the energy equation (B-4) and s-momentum (B-2)

dTs (Y-1) REF	 (Y-lNEF__
ds	 Pq	

Q3 + 41	 P

._:fit-......_.. _..._..._ Y
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APPENDIX C

CONICAL FLOWFIELD

The conical flow.field is derived for steady, isentropic, and

irrotational flow with cylindrical symmetry about the x-axis

(reference 24). For the mathematical construction of the conical

flow pattern, since there is no length scale, all flow variables

depend only on the ray angle from the apex or on the ratio:

W = x
	 (C-1)

y

The differential equations used for this potential flow are:

av _au
ax	 ay	

(irrotational flow) 	 (C-2)

IL 8u	 uv Dv	 v2 8v + -° = 0	 (C-3)(1 - 2)	 -8x	 ` 2 ax + (1 - 2) ay y
c	 c	 c

and

() 
22

) +(Y+1) 
c2 = c2(u +v
	

*	
(C-4)

where u is the velocity component in the x--direction, v is the

velocity component in the y-direction, c is the local speed of sound

and cr, is the critical sound speed.

Expressing the equation in terms of m equations (C-2) and (C-3)
i

become respectively:
r

r	
a w

+ w 8u = 0	 (C-5)

and
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1

2	 2 au	 av	 2	 2	 av	 2
(c - u ) 

aw - 
2uv 

aw - (
c - v) w 

aw + 
c v = 0	 (C-6)

Clearly this pair is equivalent to one equation of second order for

one function only. Equation (C-6) assumes a particularly useful

form when v is introduced as a function of u. Thus from (C-5):

av
aw	 av

aw

Differentiating (C-7) with respect to w

D	 ava av au
1 - 

- 
aw ( a u) - - au ( au) aw

or

Bu = _ 1	 (C-8)
aw	 a2v

au 

Substituting (C-8) into (C-5) yields the relation:

av
@v = _ au	 (C-9)
a w	

a2v
2

au

Introducing (C-7), (C-8) and (C-9) into equation (C-6) leads to the

following particularly simple form of the Taylor-Maccoll equation:
DV 2

DV = 1 + (av) 
2_ 

(u+v au)
V	

(c-lo)
au	 au	 2

C

Eliminating c 
2
by means of equation (C-4) yields

2

au	 av 2 ( 2 ) (u+v au)
v av 

= 1 + ( a u) -	 -2 _ y-1 2 2

	

c* (y+1)(u	 )	 (C-11)

Along the cone surface the flow has the direction of the ray

W = X traced by the cone in the x,y plane and thus:
y



a

C
a	 `F

i
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W = u
v

8v  _ u	 (C-12)
8u	 v

a

The conditions to be satisfied along the conical shock (reference 24)

	

are given by:	 2
c

u :^ (1 - +i) qo cos 2 ssH + q*
	

(C-13)
0

and
{

v = (qo - u) Coto	 (C-14)

where qo is the dimensionless free stream velocity and ASH 
is

the conical shock-angle. In addition the initial slope along the

shock is given by:

8v -v	 (C-15)
8u u-q

0

f^

l	 .
i	 —



APPENDIX D

DIMENSIONAL ANALYSIS OF INNER REGION EQUATIONS

4	
The highly viscous flow in the inner region is assumed to be

steady, compressible, laminar or turbulent, two-dimensional or

axisymmetric flow over an adiabatic or non-adiabatic surface. The

gas is assumed to be perfect. The system of equations is that pre-

sented by Maslen (reference 12) consisting of continuity, com-

pressible Navier-Stokes and energy equations. The equations are put

into curvilinear coordinates (E*,O) in which E* measured along the

surface and 0 is measured normal to the surface. The equations

in dimensional form are:

continuity

*

	

a * (p*u*r*6 ) + a 3*[p*v*r*a (1 +R )] = 0	 (D-1)

^-momentum

p*u* au* + p*v*(1 +R) au* + *R*v* + 
@P*

av*

	

*	 fi;<<	 * - u*

- r*cr R*(R*+^*) a *[u*r*J(R*+ *)2 (at'* +
-

 
_ 

R*+0	 )]

* 8u*
2 a	 6 R 8*

+ v	 _ 2u*a R*+C*
+	 0 8*

[u*r* 
( R*+ *	 )]	 2 ( R* )(u*sine +v*cos8 )siner*	 r*	 w	 w	 w

R* Du* + V*

E	
_ 2 a 

[U*(
	 8	 )f u* Dv* + 

ou*
(u*sine +v*cos8 )]3 8E*	 R*+C*	

r
*o	 w	 w

(D-2)

81
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C*—momentum

P*u* R* av* + p*v* aV* — P*u*2 F	 2	 8 [u*r*cr(R*+. *) —
R*+^* D*	 9^* R*+^* D* r* Cr	 DC*	 D^*

Du*	 Dv*

2u* 
R* 

DE* + v* +	 R*	 D	 * *cs au* R* D^* - u*
R*+C* ( R*+C*	 ) (R*+C*) r*6 DE*LU r ( D* + R*+C*	 )

R* Du* + v*

2*^cr cose^(u*sinew + v*cosew) - 3 DC*[ I'	 R**	 )+ I' D^*
r

(u*sine + v*cosh )
+ u*o	 wr*	 w ]	 (D-3)

energy

p*u*R* ah* + * * ah* _ R*u* 	 ^P*	 * ap,*(R*+^*) 
DC*	

p v D^*	 ((R*+^
*) DC* + v DO

1	 D r
*6p* 

ah*	 1	 R*	 a R*r*cu a*

T*o DC*(
	 Pr*	 ) + . a (R*+^*) D *(Pr*^R*+^*) )

*	 *	 2P* ah*	* 2	
R* Du* + v*

+ Pr*(R*+C*) + u*[2 (a **) + 2( R*+^* 	)

R* av* -u* 2
*	 *

+ r*2 (u*sin 6w + v*cosew) + (D* + R*+C* )

R* u
*
* + v*

3 (	 @**	
+ 3v* + r*(u*sinew + v*cosew)) 2 ]	 (D-4)

Equation. of state

p* = p*RT*	 (D-5)

In these equations, the angle 6
w 

is the local slope of the axisymmetric

body relative to the normal to the axis cos6 w = a	
and R* is the longi-

tudinal ri.dius of curvature taken as positive for convex surfaces (ref. 11).

Dimensionless Equations

Reexamining the equations of motion using dimensional analysis,

a set of equations is obtained constituting a higher approximation
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than the classical boundary layer for the inner region, since terms of

order unity and of order (S/L REF ) are retained.

The non-dimensional variables are defined as follows:

A

F =*	 -	 R = R*	 r*	 u*	 v*
L	 ^- 8	

L , r= 
L	

u= 
u	

v= v
REF	 REF	 REF	 REF	 REF

*	 *	 T*	 h*	 u*

PREF REF	 PREF	 TREF	 REF	 PREF

(D-6)

The transformation relations are:

a = a ate = 1	 a

a* a a* L
REF a^

a	 = a = 1 a
a^* 8C a^* 6 a^ (D-7)

using the non-dimensional variables and the transformation relation,

the dimensionless equations are then obtained.

continuity

v	 L
a	

P
L

	

[Pura I 
+ REF REF

 a^[Pvra ( 1 + a	 R)^ = 0	
(D-8)

REF	 REF

By setting

vREFLREF = 1
'REFS

it is established that in conserving mass, the normal velocity is of

the following mangitude compared to the longitudinal velocity:

'	 vREF uREF(LREF)	
(D- 9)

Thus equation (D-8) becomes:

a[Pura ] +a^[pvra (1 + Ls R] = 0	 (D-10)
REF

1

i

7
3

L,

	

iW
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The remaining equations are:

E-momentum

pu au + pv(1 + s ^) au + ( S ) puv +
a	 LREF R 8^	 LREF R	 DE

1 2	 1	 1	 a	 o 2	 S	 2au

(L S ) Re REF(1 + S R)
	

r 
a 
R 
2 a^Lur R (1 + LREF R)(a^

REF	 L REF

L S (L 
S 

a	 R)	 au +	 S y
+ REF REF	 )] + 2	 a Luro (aC REF R)]

S	 ReREF ra a^	 (1 + 
S

(1 + L 
REF
-- R

)	 LREF R )

2	
6u S ^) (usi.n8 + S vcos8 )sin6Re REFr2 ( l+ 

LREF R	 w L
REF
	 w	 w

au	 S v

2 a	 (aZ + LREF R)

Me REF
a 	

(1 + S C)
LREF R

.b...

I

av
+ u —a ^ + r

u^ (usin6w + L 
s 

vcosew)]
REF

^-momentum	
S(1 +	 ^)

av	 S	 av	 8 - 2 +

	

LREF R
[Pu 9^ + pv( 1 + LREF R) a^] 

LREF	 R 	 ac (6/L REF)

2	 1	
a^,uroR(1 +	 S -^-) ']

S Re • raR 	 LREF R 3^

L

	
REF

(D-11)
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au	 d v

2 
A a
	 LREF R + 1	 a	 o au

Re	 [REF R (1 + d ^)	 S	 o a —[-Pr a^

	

L	 R	 (L ) ReREFr
REF	 REF

	

S 2 3 _ S	 u

+ u(LREF) aE LREF R ] -Reg u2 CosaW(usinO
(1 + d ^)	 REF r

LREF R
P

+ L 
S 

vcoseW)(1 + L d ^)
REF	 REF R

(1 +	 (au +	 S v)

2	 LREF R a	 a E LREF R	
Dv

3	 u( S 	 a^[	 (1 + 
S

) + u a^)Re

 REF	 LREF R

+ -P—a(usineW 
L+ d vcosBW)]
REF

(D-12)

energy
u2

ah

	

p  ah + pv(1 + S ^) 	 – 'REF [u^R + v(1 + da	
LREF R a^ hREF a^	 LREF R) a^]

S 
^)	 ah(1 

+LREF R	 1 a (uro 	 ah ) +	 1	 a	 r6	 @^

(^ 
S 

)2Re	
6r a^ Pr REF

a
	Re Fr

a 
aE[PrREF (1 + LS	 )]

LREF	 REF
	 REF

(1 +L 
S 

R) u2	 2
+ , u	 1 ah +	 REF	 REF	 av

( 
S 

)Re	 Pr	 a^	 Re	 h	 u{2(a)LREF REF REFR	 REF	 REF

au	 d v 2
(a 

+ LREF 
R)	

2Q	 d	 2+ 2	
d	 2 + 2(usin.BW + L	 vsineW)

(l + L	 R)	 r	 REF
REF 

S av _ u	 au	 d v

1	 au LREF a^ R 2 2 a^ LREF R	 av
+ ( d	 a^ +	 d	 ) – (	 + 

8^

	

)	 (1 + 2
r S )

T'	
R–REF	

(1 +
	

3

LREFR LREF
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6(usin6	 +	
6	

vcose )) 2}
r	 w	 L

REF	 w
(D-13)

where:

PREF REF LREF
Re	 =	 is the reference Reynolds numberREF	

p

REF

and
u^FcPREF

is the reference Prandtl number.Pr REF=
-REF

In order that viscous forces be of same order as inertia forces;

2

del 	= (L 6 ) (D-14)
REF	 REF

The non-dimensional equations of motion obtained by retaining

terms of order unity and terms of order. (6/L REF
	
are now presented.

By using the Taylor series expansion for:

16	
2= 1 -	 • R +	 V [ ^L s ) ]L6 (D-15)

1 +	 REF	 REF
LREF R

equations (D-10) to (D-13) become:

continuity

6	
R)] = 0[puro ] + a_[pura (1 + (D-16)

DE	
L
REF

E-momentum

9u	 6	 au	 6	 puv	 DP

+	 p•'(1 +	 +	 +pu DE	 aE
LREF R

) 3C
LREF	 R

2
1	 8	

[uraR2((1 +
	 6	 ^ )	 2u

(1 + L6	R)raR2	
2C	

LREF R
	 3^

REF

6	 R) ]- (1 +	
6	

R) (D-17)L	 LREF	 REF
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C-momentum	 S	 C)

	

2 (1+L	
Rav	 d	 av d	 au	 REF	 2R[pu 2c + pv(1 + L	 R) ac]L w.. .. R +	 S	 a^REF	 REF

LREF

2	 S a	 o	 av	 o
= Q L	 a^[ur R(1 + L	 R

d^
) a^ L]+	

au
Q

d 1 a 
a^[ur a^]

r R REF	 REF	 REF r

- 3(L d ) a^[u 8^ + u 2 + ur usinew ]	 (D-18)
REF

energy
2

	

ah	 d	 ah uREFd	 appu 8 + pv(1 + 
LREF R) aC - hREF[u aE + v(1 + LREF R)aC]

S	 1 a uro 	 ah	 d	 1	 u ah- 
(1 + LREF R) ro a^(PrREF aC) + LREF Pr REFR a^

2	 2
+ (1 + d ) 'REF 

P{( 
Du - 2 S	 u au	 1	 }

LREF 
R 

hREF	 B^	 LREF R aC (1 + S)
LREF R

(D-19)

The energy equation in terms of temperature using perfect gas relation:

dh = cpdT	 (D-20)

becomes:

pu a
IT
 

+ pv(1 LREF R) a^ (Y-1) 'REF DEa + v(1 + 
LREF R) ^

DP

(1 + d ^) 1 a (pro	 IT ) + _ S	 1 u IT

LREF 
R 

r  
	

rREF 
9^	

LREF Pr REF
R DC

+ (Y-1) M2	 u{ (1 + d ^) (au)2	 2 L 
S 

R 
Lu	 (D-21)

REF	 LREF R a^	 REF

Rewriting equations (D-16) to (D-21) in terms of Re REFusing relation

(D-14) yields:

s



I	 II	 I	 I	 II	 II	 1I

sa

continuity

a 
[ Pura ] + a^[pvra (1 + 

1/2 
R) ] = o	 (D-22)

Re
REF

E-momentum

u au +	 1	 au	 1 puv ap
p	 pv(1 + 1/2 R) aC + 1/2 R + D^

Re
REF
	

Pe 
1/2

1 8	 6 1 	au _	 1	 1 u a	 u
= o a^[u r (1 + 1/2 R) a^ ] 	 1/2 o R a^(ur )	 (D-23)

r
	
Re	

'u
 Re 1/2r

^-momentum

1/2[pu a- + pv(1 + X1-/2 R) ac] - R + ReREF(1 + Re1/2 R) 8
Re 

1/ 	 Re	 ReREF

_ 2 _ a	 a av	 1	 1 a	 a au

Re 
1/2 r6 a^[ur cl^ ] + Re 1/2 ro a [ur a^]
REF	 REF

ousin6

- 3Re1/2 a [ a + p a^ + ir--r 
c"']
	 (D-24)

REF

energyM?-

pu a + pv(1 + Re 1 /2 R) a^ - (Y-1) EF[u	 + (1 + Rel/2 R) v ]

REF	 REF

1	 1 a p	
] +

_ DT	 1	 p DT
(1 + Re 1/2 R) r  8c[PrREF a^ 	 Ref/2Pr	 R DC

REF	 REF REF

M	
2

+ (Y- ')- REF u{ (1 + 1/2 R) ( a^ )	 1/2 R DC)
ReREF	 Re REF(D-25)

equation of state

P _ --ZT--	 (D- 25)

Y REF
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APPENDIX E

TURBUl'.,ENT INNER LAYER

The dimensionless tinge-dependent second-girder Boundary layer

equations are:

continuity

ro 8t + a(Aura ) + a^Cpvro (,1 + 1/ R ) ^ = 0	 (E-1)
Re

REF
E-momentum

DU
	 au	 1	 au _ 1	 pu	 31)?

A at + pu a^ + pv
( 1. + Re 

REF R) a^ + Re	

u

f/2 R	
a^

REF	 REF

1 a	 Q	 1	 au _	 1	 1 u a	 o

	

- a ac
Cur (1 +	 1/2 R) a^)

	
1/2 c R aC (pr)	 (E-2)

r	
ReeREF

	

ReeREF r

r_-Momentum 

+ u — +
Ref

/2CA at 	 A at	 Pvrl + Re1/2 R) at 1

REF	 REF'

—

	

PR-.
 

+ Re 
1
/2 (l +	

1	 ) 3 P_	 2"	1 a CUrc av^
R	 REF	 1/2 R Dr, - 1/2 a

	

Re 
1/2 	 Re 1/2 r

1	 1 a	 o

Re 1
/
2 

r  a [ur act

REF

usin8
a au	 av	 o	 w.

	

Me 1/2 a (u a+ u a^ + u	 r	 J	 (Eµ_3)
REF
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enema

aT + Pu aT + Pv(1 + 1 C 9T - (Y-1)I2 [u aP + v(1 + 1 C)^]P
at	 a	 1/2 R a^	 REF	 DE	 Re 1/2 R a^

Re 
1/2

REF

1	 1 8 pro ?T, + 1	 1 _ 3 
(1 Re 1/2 R) r

o a^[PrREF 
dr,	 Re	 REFPrREF R a^

REF	 REF

+ (Y-1) M2 p{ (1 + 1 ) (au) 
2 
_ 2 u au}

REF	 1/2 R ac	 1/2 R a^	 (E-4)

	

Re 
1/2 	

Re 1/2

Derivation of the second-order turbulent boundary layer equations

follows by using the Reynolds procedure of representing each quantity

by the sum of its time average and its departure or fluctuation from

the time average; namely

u = u+u'

V = v+v'

T = T+T'

p = p+p^

P = p + p	 (E-5)

where the barred quantities are time-averaged and the primed quantities

are the fluctuations. Viscosity fluctuations are neglected herein

as they do not contribute to the leading turbulent transport effects.

The time average of any of the quantities in equation (E-5) is

defined by:
t + T

f = 1	 o	 f (t + x' ) d-c'	 (E-6)
T
it0



91

Also by definition:
_	 t + T

f'= T	 °	 f`(t + T')dT' = 0	 (E-7)ft
0

where T is a time period large enough to give a stationary character-

ization to the turbulence.

The indicated time averaging is best carried out on transport

forms of equations (E-2), (E-3) and (E-4) obtained by using the

continuity equation (E-1).

^-momentum

Multiplying equation (E-2) by r  and equation (E-1) by a and

adding the resulting equations yields:

8t(puro) + a [Pu2ra] + a^[Puvro(1 +	 1/2 R)]
Re 1/2

puvro	 off_) 0	 1	 8u

+ Re1/
2R + r 9^ - a ^[ur (1 +

 Re 1/
2 R) 8C]

REF	 REF

Re 1/2 R aC (uro )	 (E-8)

REF

^-momentum

Multiplying equation (E-1) by 
1v
/2 and equation (E-3) by r 

Reand adding the equations yields: 	 REF

1 { 
8 (

vra ) + a [Puvr6 ] + e [pv2ro (1 + 1P	 )]}Re 1/2 2t	 9^	 8	 Re 1/2 R

REF

	

	 REF

pu r + r
uRel/2 (1 + 

1 3.
1/2	 REF	 1/2 R) 9^

Re 
1/2 	

Re 1/2
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2	 a	 a av	 1	 8	 o au

R

= Rel/2 9^	
a^] + Rel/2 a

C [ur a^]

EF	 REF

csusin6

3Rel/2 
ra a^[ ua^ +U a^ 

+U 
r w]

REF

(E-9)

energy

Similarly following the same procedure multiply equation (E-4)

by T and add them to obtain:

at	
+ a-[P uroT ] + a-[Pvro ( 1 +
t 

	
1/2 R)T]Re 
1/2

(Y-Z) REF
r6[ u ^ + v(1 + Re 1/2 R

) ^
REF

1	 a uro	aT + rq	^s DT

(1 } Re I'2 R) a^[PrREF 
a^]	

kel/2Pr	 R a
REF	 REF REF

2

+ r6(Y-1)NEF u{ (l + Re 1/2 R) (aC)	 Re 1 /2 R 3^
REF	 REF	 (E-10)

The following substitutions are introduced into equations (E-1),

(E-8) , (E-9) and (E-10) :

Pu = Pu + (Pu),

Pv = Pv + (Pv)'	 (E-11)

The time average of the above mentioned equations yields:

continuity

a[(Pu + T)r"] + 
a^ [Pv + 

P Iv I )(1 + 1/2 R)r	 0

ReREF	 (E-12)
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+ 1 1(puv + p u'v + v p'u' + u p'v')
1/2 R	 a

Re 1/2

l a	 a	 ]_	 au	 1	 u	 8	 a
+	 a [ ur (1 + 1/2 R) a^] - 1/2 Rra 9^	 >

r	 Re 1/2
	

Re 1/2

a^[ra (1 + Rel/2 R)p u'v']

REF

^-momentum

Re	 Re
{(P u + P'u') a

Vav + (pv + P'°')(1 + Re1/2 R ) a^

REF	 REF

C-momentum

(Pu + -P au') 
au 

+ (Pv + P' v ')(1 +	 1/ 2 R) au
ReREF

-(pu2 + 2u p'u') + Re
f/2 (1 +	 1	 )

R	 REF	 Re 1/2 R a^
REF

2	 1 a	 a 8v	 1	 a	 a au

Re 
1/2 r  aC[ur act + Re1/2ra DE[ur 9^
REF	 REF

_	 2	 a	 au + av + uasinl 	1
Me 1/2 DC [ u DE	 u d^	 r	

u]
	

Re 1/2
REF	 REF

energy
DT	 3T

(Pu + 7-UT)
8 

+ (Pv + P' v ')( 1 + 1/2 R)a^
ReREF

+ (1 + Re 1/2 R)v ]	
(1 + Re 1/2 

R ) r 3 ^ P

REF	 REF
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-2

+
Re 

1/2 
PrREFR aC + (^

-1) 
REF u[(1 + Re 1/2 R)(ac)

REF	 REF

1/2 R a^	 a DC [(1 +	 1/2 R ) ro P v'T']	 (E-15)
Re 
1/2r
	 Re 1/2

An ordering procedure shows that the leading apparent transport terms

are the correlations u'v' and v'T'. Within this ordering the equations

reduce to:

continuity

a^[puro I + a^[pv(1 + 1/2 ^)ra ] = 0	 (E-16)
Re

REF

E-momentum

--Du -•-	 1 t Du	 1 p uv 8p
pu a + pv(1 + 1/2 R) a^ + 1/2 R + a

Re 
REF
	 Re 

l/

l a	 o1	 au	 l a	 a	 1	 -
= 6
	

[pr (1 +	 1/2 R ) a^ - Q 
a ^:[r (1 +	

1/2 R) u'V'lr	 ReREF	 r	 Re l'

-	 1	 u 8 
(uro)	

1	 p U'V'
0 1/2 R a^	 1/2 R

r Re	 ReReREF	 (E-17)

C-momentum

1	 -- Dv --	 1	 C av	 put	 1/z	 1

Ref/2 {pu 
a + pv(1 + Re 1/2 R) a ^} - R + ReREF(l + Re 1/2 R)DC

REF	 REF	 REF

2	 1 a	 Gav	 1	 a	 o au

Re 1/2 r  aC^ur a^] +
 Re 

1/2 
ro a [ur a^]

REF	 REF

_	 2 a_ au	 av	 6Sine

3Re^F 
ac a + u a + u r

..b- I
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Re 
1/2 

r 

D^	

p u¢v']
REF

energy

pu 8 + pv(1 + Rel/2 R) 9^ - (Y-1) REF[u ^ + v(1 + Ref/2

REF	 REF

1	 t 1 a prQ	8T	 1^	 1 aT

(1 + Re1/2 R)rQ a^[prREF a^, + Ref/2Pr 	 R 8^REF	 REF REF

M _	
-2

+ (Y-1) ^ZEF U [ (1 + Re 
1/2 R) (a )	

Rel/2 R ^ J

	REF	 REF

r a[(1 + Re 1/2 R ) ro p v'T']	 (E-19)
REF

These are the equations used for the finite difference solution

of the turbulent inner region consistent to second order in effects

of curvature.

b



APPENDIX F

COEFFICIENTS OF THE FINITE DIFFERENCE EQUATIONS

A detailed derivation of the coefficients for the finite difference

equations is herein given. The linearized equations (79) to (82) are

written in difference form and have been multiplied by A^M+1 in

order that magnitude of the coefficients be less sensitive to step

size.

continuity

The continuity equation is

a [rapu] + a^[ pvra (1 + 1/2 R ] = 0	 (F-1)
Re REF

Following the suggestion of Reyhner and Flugge-Lotz (reference 4)

the continuity equation is written for point B (figure 18) as follows:

(rapu) m+l,n	(rapu)m,n + (rapu) m+l,n-1	 (rapu)m,n-1-	

2AEm+1

Xc{[(1 + 1/2 R)pvra]m+l,n - [(1 + 1/2 R)pvra]m+l,n-1
+	 REF	

}Re	 Re

AC
n

{[(1 + 1/2 R ) pvra ]m ^ n
 - Hi + 1/2 R)pvra]m,n-1}

+ (1 - ac)
Re 

1/2 	 Re 1/2

AC
n

(F-2)
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The 4 derivative has been taken as a weighted average with Xc as the

weighting factor.	 kc = 2 corresponds to a centered differencing

scheme. Expanding equation (F-2) and multiplying by AE_u,rr7 yields:

rm+l,nPm+l,num+l,n - (roPu) m,n + rm+l,n-lrm+l,n-lu 'I,n-1	 (r6pu)m,n-1

+ 2AEm+1	
L(1 + 1 C	 (i) ro

n c
	 Re 1/2 R 

m+l n
Pm+l,n m+l,nIvm+l,n

REF	 '

_	 A ^mi-1	 1	 r	 P (i)	 a2 
Ain 

^ c L(1 + Rel/2 R m+l n-1 m+l,n-lrm+l,n-lIvm+l,n-1
REF	 '

+ 2 ^^1(1-Xc) {L(1 + 1/2 R)Pvr6 ^m,n	 L(1 +
	

1/2 R)Pvro}m,n-1}-0
n	 Re 

1/2 	
Re 1/2

(F-3)

Written in coefficient form:

Alnum+l,n-1 + Blnum+l,n + C lnum+l,n+l + Dlnvm+l,n-1 + ElnVm+l,n

+ F
lnvm+l,n+l, + GlnTm+l,n-1 + H1nTm+l,n + I1nTm+l,n+1

+ 
Jlnpm+l,n-1 + Klnpm+l,n + Llnpm+l,n+l Sln

(F-4)

the coefficients for the continuity equation (F-3) are:

A = r 	 P (1)
In	 m+l,n-1 m+l,n-1

B	 ro(1)
In	 m+1,nPm+l,n

Cln = 0
d^m+1	 1	 (i)	 o

Dln = - Ain 2-acL(1 + Re 1/2 R)m+l n-1Pm+l,n-lrm+l,n-1^
REF	 '

&.6k.

t
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E _
 AC M+1 2

• X [(I + 1/2 R) m+l npm+l,nrm+l,n I
1n	 A^	 cn	 Re 1/2

FIn = 0

G = 0
In

H = 0
In

I = 0
In

JIn = 0

Kln 0

Lln - Q 2A

S In	 (r^pu)m,n + (ropu)m,n-1 - Q^m+l(1-Xc){[l + Re 1/2 R)p°roIm,n.
REF

[(1 + Re1/2 R)p °r6 m,n-1}	
(F-5)

REF

&-momentum

The linearized E-momentum is:

(i) 8u	 8u W 1	ap
(Pu)	 a + (P a^) {1 + 1/2 R)v = - a^

Re 
l/

x	 (i)	 2

+ [(1 +Re1/2 R)u( 1 + a)l	 a 2
REF

+ [ 6 a^(ro (1 + 1/2 R)u(1 + P))^(1) a

r	 Re
REF

6(i)

1 (u)^1^Du)(1)aT -	 1 (	 Dr) u(i)u
-	 1/2	 0 2^Rel/2 R	 8T	 D^ Re	 Rr

REF	 REF
k	

(PE)M 1 8u P  uv

Re 1/2 R 3^ Re 1/2 R	 (F-6)
REF	 REF

The difference equation for point A is written (figure 18) as follows:

MIN

i
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(Pu)(i) (um+l,n	 um, n)

A^M+1

	

[(l ++ R) 	vm+1,n + (1 + 1/2 R ) vm,n ]
+ (P au
	 REF Re 

1/2
m+l,n	 ReREF m,n

D^	 2

dpEXT () _ (pm+l,n pm,n)	dE	
A^m+l

+ [(1 + 1/2 R) (1 + -9)](1) { ^u (um+l,n+ +2

Kum+l,n-1

Re 
1/2

2 ^^n

(l+K)um+l^n) + (1-a ) (um,n+l 
+ Kum ^ n-1 

- (1+K)um,n ) }

p	 K(1+K) ^^2

	

2	 n

	

l a	 o	 1 PE	 (p6	 (i)	 (um+l,n+1 um+l,n-1)
+ ^( -c 5Vr (1 + 1/2 R) (l + P ))) + 1/2g u	 (1+K)A^

r	 Re	 ReReREF

(u	 - u	 )	 (i)	 a (i) (u	 + u	 )
m.n+1	 m n-1 _ u	 8r	 tni71	 m,n,11

	

+ (1-au)	 (1+K)A^n	 }	 Re1/2Rra(ac )
	

2
REF

(i)	 M(T	 - T	 )
M11 1

Rel/2(R)

	
(2-11
aT) { ^T	 (1+K)A^n 

m+l,n-1

REF
(T	 'T

 - Tm.n-1)

	

(1-aT)	
(1+K)A^n	 }

	

)v	 + (v	 v	 )u	 ]
4Re1/2R[(um+l,n 

u 
m,n m,n	 m+l,n 

+ 
m,n m,n

	

REF	 (F-7)

Rearranging terms and multiplying all the equation by A^m+l 
yields:

e (1) 2X UAA m+l
um+1,1171{-[(1 + Rel/2R)u(1 + ^)]	 (1+K)A^2

REF'	 n
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+ [(	
a (

rc (1 +	 1	 ^)u(1 + ^))) + (0E) 
(i)	 d^ 

m+l }

ra a^	 R 1/2 R	 u	 Ref/2R	 u (1+K)ACnRe 	 REF

+ u	 { (pu )(i) + [ (1 + 1 ^^u (1 + 2 6 )]
(i)	 2oCm+1

m+l,n	
Re 1

/2 R	 u	 u K0^2
REF	 n

( i) 0	 e 
W	 (i)+ u	 m+l (ar ) 
+ p	 v

2Re1/2 Rra 
a	

4Re1/2R m,n 
m+l}

REF	 REF

(i) 2a ^^

+ um+l,n+l {-[(1 + Re 1/2 R)u(1
 +—)} K(1+K )A^2

	

REF	 n

(i)
1 a	 n	 1PE	 (p e)	 x 	 A^m+l

- [( 6 a^(r (1 + 1/2 R) (1 + u ))) + 1/2 } (1+K) A^ }r	
Re REF Re REF R	 n

1
au (1) (1 + Re 1/2 

R)m+-1,n
+ v	 {0} + v	 {(P i1m+l,n-1	 m+l,n	 a	 2	 m+l

p 	 }}
+ 4Re1/2R um,n "%,+1 + vm+l,n+l{0}

REF

- T	 { 1 
(u) ( i ) (^)(i) ^`T

A
m+l } + T	 {0}

m+l,n-1 Re 1/2 R	 aT	 (1+K)A7n	 m+l,n
REF

( i )	 (i) a AE
+ 

Tm+l,n+l
{Re

1/2 (R) ( aT )	 (1+K )Ai
n } 

+ Pm+l,n-1{0}
REF

+ Pm+l,n
{l}

 + Pm+l,n+1{0} (pu)M um,n

_	 au (1)	 1 c	 Acm+l _ dPEXTQ)
(P ac ) 	 (1 + 1/2 R)	 vm,n 2	 d^	 ^^m+l+ Pm,nRe 1/m,n

.u.



+ L (l + 1	 -^)u(1 + ^)^W
1/2

2(1--a ) (
u 

m, n+l 
+Ku m, n- 1- (1+K)um,n)A^

Re
R	 u

REF
u	 K(1+K)AC2 m+l

n

+ L( 6 a^(r6 (1 +	 1/2 R)u(1 +^)))
W

+2
(1- XU) 0 m+l(u

m,num,n(l+lc)6^	 +l	 -1).	 r Re 1' Re 
1/ 2

n

• Re1/2Rro(ac

8ro (i) um,n
)	 2	 A^m+l 

,

1/2(R)

Ci)	 (i) (1-a )ACM+1
(8T)	

T	 m+l(T - T	 )- p	 u	 v
Re

REF
(1+K)Ain m,n+1	 m,n-1

2Re1/2R	
m,n m,n

REF
(F-8)

Equation (F-8) in coefficient form becomes

A2num+l,n-1 + B2num+l,n + 
C
2num+l,n+l + D2nvm+l,n-1 + E2nvm+l,n

+ F2nvm+l,n+l + 
G
2nTm+l,n-1 + H2nTm+l,n + I2nTm+l,n+1

+ 
J2npm+l,n-1 + K2npm+l,n + L2npm+l,n+1 - S2n

where

A - XUA^M+l {- 
2 L(1 + 1 C)u(l + Pe)lM2n	 (1+K)ACn AC 	

Re 1/2 R	 u
REF

+ [ ( 1 a (1 + 1 ^)u(l + p6m + ^L 
(i)

^ }
6 a^	 1/2 R	 u	 1/2

r	 Re 1/2
	 Re 1/2

W1	
(i) 2au Agm+1

B2n = (p u)	 + LCl + 1/2 R)u(1 + u )]	 K	 2
Re 

1/2
^^n

m+l 
P(i 

vm,n W ar6 M^._

+	
L	 2	 + ro C

ap )Me 1/2 
REF

(F-9)
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__ _ xuA ^M+l	 2	 1	 M
0	 ^(12n	 (l+K)A^n { KA^n
	

Re 1/2 R)u(1 + ^-))

REF

(i)
+ 6 ac
	

Re
+ 1/2 R)u(1 + E ))) + -	 ) }^.	 .L	 _P E

r	 Re	 u	 Re1/2RREF	 REF

D 
2 = 0

(i)

E2n = m+l (p 
aU)W (1 + 1/2 R)	 + p 

1/2' n R}
ReREF m+l,n 2ReREF

F 2 0

_ _ XTAEM+l	 1 u (i) a M

G2n	 (1+K)A^n Rel/2 (R) (8T)
REF

H 2 = 0

I 2 G 2

i 
2 = 0

K 2 = 1

L 2 = 0

s	 (pu)(i) u	 _ (p 8u) (i) (1 +	 1 1)	 0^ nrhl
2n	 m,n	 D^	 Re 1/2 Rm n m,n 2REF	 '
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dP	 (^)
	

2(1-X u )
_ d^	

D nl+,.. +  Pm, n +	 2 m+l (um,n+1 + Kum,n-1
K(1+K)A^n

W
(1+K)um^n)[(1 + 1/2 R)( 1 + ^)I

Re
REF

+ [(r a (ro
(1 + Re 1/2 R)u(1 + ^)))

REF

( i ) (1-^u)

	+ 

pe

 Re1/2R^	 (1+K)ACn m+l (um,n+l um,n-1)
REF

M 6 Mu
_ ^_ 1 ar	 m,n AE

Re 
1/2 

Rra ac )
	 2	 m+l

REF

1 u i) a u ( i) (1- ;Y 
Ao m+l

1/2 (R) ( aT )	 (1+K) —i>	 (Tm,n+l - Tm,n-1)
Re REF	 n

p(i) u	 v
_	 m,n m,n

2Re1/FR	 (F-10)

C-momentum

The linearized ^-momentum equation is:

	

M

(pu)(1) av	 pv	 1 c M av _	 1/2	 1 c eg—+ [	 (l+	 )J — -- Re (l+	 )
1/2	 a	 1/2	 1/2 R	 7c	 REF	 1/2 R aC

Re 
1/2 	

Re 1/2
	

Re 1/2
	

Re 1/2

4	 M 3 2v	 2 Dv (i) aL W a 

+ 3Rel/2 u	
aC + Re1/2(a^)	

(aT)	
aC

REF	 REF

+ 2 	 u av + 1	 I [ a (ur6 (1 + ^)) l	
au

Re 1/2 ac	
r6	

ac	
Rel/2 rG aE	

u	 a
REF	 REF

//
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(1)	 (i)	 2	 (i)	 asin0	 (i)
+—(1 + ^)	

a u _ 2 ( au ) [ au + av +	 w u^ aT
1/2	 u	 aca^	 1/2 8T	 9^	 DC	 r	 DC

Re REF3ReREF

2	 (i) 9 2u	 2	 (i) sinew) (i) au
1/2 u	 aca^ -	 1/2 

au	 ( r 
3Re

REF 	 3ReREF

+	 2	 aU (i) ( 1 ar)M 
us" + 

(Pu) M u

Me REF	
r2 8C	 w	 R	 (F-11)

REF

The difference equation written for point A (figure 18) is:

pu 
(i) (vm+l,n - vm,n^ +	 1	 {[Pv(1 + 1)](i)

Re 
1/2
	 A^M+l	

Rel/2	 Re1/2 R
REF	 REF	 REF

(i)
2 ( ara )	 u (i) }[X (vm+l,n+l	 vm+l,n-1)
ra @^	 v	 (1+K)AC

(1-av)v 
m,n+l - vm,n-1) ^ _ -	 1/2 (1 + 

1 C)(1)
+	 Re (1+K)AC	 REF	 1/2 R

n	 Re 1/2

(Pm+l,n+l Pm+l,n ) + (l1ap)(Pm,n+1 Pm,n) 1
p	 KA ^	 KA C

4	 (i)	 (vm+l,n+1 + Kvm+l,n-1 - (1+K)vm+l,n)

+ 3Re1/2 u
	 { 2•av	 K(1+K)AC2

REF

2(1-a )(v	 + Kv	 - (1+K)v )+	 v m n+1	 m n-1	 m n ^}
K(1+K)A^

n

(i)	 (i)	 (i)	 usin6 (1) ' a (T	 -T	 )
+	 1 ( au) { 4 ( av) _ 2 [ ( a u) + 

Cr- 	 w) ]	
T m+l zn+l Tn+l,n-1

1/2 DT	 3 a^	 3 a^	 r	 } (l+K)oC
Re	 nREF 

(1-X )(T	
- T m,n-1 )
	 sin8 w (1)2

+	
T m,n+1
(1+K)ACn
	

+ 
1	 (i)

Ref/2 {- 3 au ( r )

a	 pe	 (1) a Dr	
REF

E (i)
+ [ a.(u(1+ u ))] + [r a^ u(1 +)3 -}

x	 u(u 	-	 )	 (1-a (u	 - u
u m+l,n+l	 m+l,n-1	 r m,n+l	 m,n-l)

	

+	 ^
[	 pin{1+K)	 1+K)A^n

I
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+ Spin (um+l,n + um,n ) + 	1 {u(i) (1 + ^)(i)
R	 2	 1/2	 u

Re l/

2 ,(i) ^ um+l,n+l um+l,n-1 - um,n+l + um,n-1^

3
	

AE M+l 
A Cn (l+K)

+ 2	 Q	 (i) 1 2r (i) sinew (um+l,n + um.n)	
__ .	

...,.

3 Re	
11 u	 (r 2 3^	 2	 (F-12)	 i

REF
i
i

	Expanding equation (F-12) and multiplying by A^	 yields-,

sin0 (1)	 (i)

	

um'f-1,n-1{ Rel/2 [ 
3 6u (1) ( r w) + ( a (u ( 1	 ^)) )

REF

0 2r E (1) AuAEM+l
+ (r 8^ u(1 +	 I Acn(1+K)

+ 1	 1	 ^u (1) ( 1 + PE
	

? u (1)^ }Re 1/2 A^n (1+K)	 u	 3
REF

(Pu) (i)	 26	 (i` sing
AE+ 

um+l,n {	 2R	 m+l Mel 2 m+l u (1) (r2 2^)	 2 w}

REF

_	 1 _ 2	 (i) sin6w (i)
um+l,n+1 {Re l/2 [ 3 all( r )

REF

-+' ( 2— (u (1 + p E ))) (l)+ (.912r u (1 +P E )) (1)  ^u^ m+l
2	 u	 r 2C	 U	 A^n (l+K)

(i)

Ref/2^^ (1+K)
REF n

+ 
vm+l n-1{- ^V,^M+1 1 2 [(PV) (1) (1 + l

/
 2 R)1)

(1+K)A^ Re /	 Re n REF	 REF

2 2ro (i) 2X 
Em+1	 4u ^1)

(r6 
8^ u)
	 (1+K)A^2 3Re1/2~}

n	 REF
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m+l,n 
Re 

1/2
	 KA^2	 3Re1/2REF	 n	 REF

+ v	
{^v°^m+l	 W	 1	 (i) 2 are (i>

m+l,n+1 (1+Kb^ Re 1/2L(pv)	 (1 + 1/2 R) - ( cr aZ u)
	nREF	 Re	

r
REF 

2,̂ vA m+l	 4u (1 ) 	 1	 au (1) 4 av (1)—	
2	

1/2 } + 
Tm+l,n-1 {  1/2 DT 	 L3(a^)K(1+K)^^n Me 1/2 	

ReeREF

2 au (1)	
usinew Mx A° M+l

- 3((a ) +6 ( r m (1+K)^ ^ + Tm+l,n{0}

_	 1 au M aT A ^M+l 4 av (i)_ 2 au M+ 
Tm+l,n+1

{ 
Re

l/2 ( aT ) 	(1+K)'^nL3(a^)	 3(E3E
REF

usine 
(i)

+ ar w) ))} + pm+l	
{0}

,n-1

1/2	 1	 (1) xpA^M+l
+ pm+l,n{- ReREF(1 + 1/2 R) K0^	

}
Re 1/2n

1/2	 1	
(1)

ApA^M+l
+ pm+l,n+l{Re

 REF(1 + 1/2 R) KAY	
}

Re 1/2n

v	 - l { L (p v) (1) (1 + 1 ^ W1/2	 m,n	 1/2	 1/2 R
Re 1/2 	

Re 
1/2

	

Re 
1/2

_ 2 ar^'`..(i) M
(1-a ) (v	 - v

	

v m,n+l	 m,n-1)
(- ^ ' u	 ^}	 A^ (1+K)	 ^^cr a	 m+l

.A^• I



-Re 1/2 (1 + 
1 C)(1) (1-xp)(pm,n+l pm,n) AE

REF	 1/2 R	 KAY	 m+l
Re

REF	
n

2(1-a )AE
+ 4	 u(1){	 v m+l(v	 + Kv- (1+K)v	 ]}

Me 
1/2
	 (1+K) Kp 2	 m,n+l,	

m,n-1	 m,n
REF	 ^n

WW(i)	 using (1) (1-a )T	 -T	 )0
+	 1 

(au) 
{ 4 ( av) _ 2 [( au) + 

a(
	 ") ]}	 T m,n+1 m,n- 1 	m+i

Rel/2 8T	 3 0^	 3 8	 r	 (1+K)DCn
REF

sine	 W

+ Rel/2 { 3 ou(1)( r w) + [a(u(1 + ue))]

REF

	

cy Dr	
(i) (1-a )A

+ ^r 8^ U(1 + ^)] } (1+K)^^ m+l (um^n+l um,n-1)
n

+ ( p U) M um•n AE	 + 1 {u (1) (1 + 6)(1)

	

R	 2	 m+l	 1/2	 u
Re 

1/2

_ 2 (i) (um,n- 1 um,n+1)3 u	 }	 0C (1+K)
n

(i) sine u

	

2 0	 W1 8r	 w m,n

+ 3	 2	
aC	 2	 m+lu	 (r2	 )

Rel/REF
(F-13)

Equation (F-13) in coefficient form is:

A3num+l,n-1 + B3num+l,n + 
C
3num+l,n+l + D3ri m+l,n-1 + E3nvm+l,n

+ F	 v
3n m+l,n+1

+ G	 T
3n m+l,n-1

+ H T	 +
3n m+l,n

I	 T
3n m+l,n+l

+ J
3npm+l,n-1 + K3nPm+l,n + L3npm+l,n+1 S3n	

(F-14)

where
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Ain
_	 1	 _ 2	 (i) sine	

W
w

{ ^	 ^^	 (	 )1/2 A^ (1+K)3	 r
Re 1/2n

+ (7 (1 + ^))^ (i)
	 D r+ (6	 u (1 + 

^)) (1) X A
u	 m+lT

DE	 u	 r u

+ [u(1) (1 +	 E:(i)- 
3	

u (i)

u

B
(i)	 (i)

= - AE	 { (Pu)	 +

(i) sinew
ar)	 2	 }

3n m+l	 2R	 3 Ref/2	 r 2
REF

ac

Can =-A3n

D an = - A^M+2 v	 [ (Pv) 
(l) 

(1 +
(1)R)

{
Re 1/2(1+K) 1/2Re 1/2n

cr
,
	

+
(i)	 M

2	 ar	 8u
u)	 )- (^^ a^	 3A^n}

E3n
__	 1	 (i)	 8XvAEM+1

{ (pu)	 +	 2	 u
1/2

(1)
}

Re^F 	3Kp n

F
3n

=	
xvA^M+l	

l 2 { (Pv) M (1 +
1^2 R)(1)

1/2
(1+K) 0 ^nReREF 	Re

2 @r'	 (1) - —8^---}
-	 (ra ac	

u)	 3KACn

(i)

Gan

a AE	 (i)	 W
__	 T	 mf-1 _	 au	 u av

1/2	 - ( DT )	 f3(av)	
-

(i)	 6usine
2 au	 w
3 (a)	 +(	 r	 ) )l

ReREF
(l+K)^^n

Han = 0



I 3 = _G 3n

J3n 0

K = -Re1/2 (1 +	 1	 r (1) ,XPA m+l
3n	 REF	 1/2 R)	 KAY

Re 1/2n

L 3 _K 3n

(Pu) (1) v 	 (1-a W(v	 -v
m,n	 v m+l m,n+l m,n-1) 	 (i)	 1

S3n = Re 1/2	 - Re1/2 (1+K)AC	 Re 
REF	 REF	 n	 R

M(1 a ) (P	 -P )2 _ar_ W - Re l/2	 1	 p min+l m,n AE- (r^ 3^ u) ]	 REF (1 + Re 1/2 R )	 KA^n	 m+l
REF

8(14 )AEm+1	 W+	 u	 [v	 + Kv	 - (1+K)v ]
3Re /2,(1+K)KA^	

m,n+l	 m,n-1	 m,n
RE 	 n

1	 au (i) (1-xT) n^m+l 	 4 av W
+ 1/2 ( aT )	(1+K)A	 (Tm,n+l - Tm,n-1)

{3(a^)

ReREF	 n

usin6 (1)

(1
-Xu 

)AE 
m+l	 2	 (i) 

sinOw W
+	 (u- u	 ){- au	 (	 )
Ref/2(1+K)AC m,n+l
	 m,n-1	 3	 r

REF	
n 

+	 )	 um,nA^m+l + 1/2 ^^ {1+K) 	
{u (1 + u )	 3 u	

}

ReREFn

pu (1)	 (um n-1 m,n+l) (i)	 P6 (1)_ 2 (i)
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(i) sinO u
2	 (i)1 8r	 w m,n

+ 3Re1/2 ou	 (r3 a^ ) 	2	 Am+l
REF

(F-15)

ener

The linearized energy equation is:

(i)	 (i)

	

Ti	
ReREF

	

M M
(Y- 1) REF[u(1) E + (1 + 1 /2 R) v	 a^^

Re REF

M2 	 M 1	(i) 2u (1)	 8u
	+ (Y-1) REF u	 L(l + 1/2 R) 	1/2	 DCRe 1/2 	 Re 1/2

	

Pr	 (1) 2
+ [(1 +	 )	 u (1 +	

REF)	 a T

Ref/2^	
72	

u Pr 	 act
Pr

	

REF	 REF

+ { 1 [ 8_ (r° (1 +	 1) u (l + P EPP F)) ] } 
(1) 8T

	r o 	
Re 1/2 R PrREF	 u t	 a^

REF
(F-16)

The difference form of equation (F-16) for point A (figure 18)

is:

	

(T	 - T )	 (i)	 1	 (i) (Vm+l,ri m n^
(Pu) (i))m +l,n	 m,n + ^P 8T
	 (l + 1/2 R)	 2

	

0^ m+l 	 Re REF
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+ (Y-1) 2 (1 + 1 3)(i)
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Expanding equation (F-17) and multiplying by 
AE 
m+1 yields:
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Equation (F-18) in coefficient form is:

A
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APPENDIX G

BOUNDARY CONDITIONS IN MATRIX FORM

I'

r

For solving the system of equations, the boundary conditions

must be incorporated in difference form in. order to have a closed

system. As an example a detailed description is given here for the

adiabatic case. Writing equation (84) for n = 2 the following is

obtained:

M 
2 
X 2 + E 

3 
X 3 = 92	(G-1)

Expressing 
Tm4.1,1 

in terms of Tm+1,2 and 
Tm+1,3 

using three point

forward differencing yields:

B12 E12 H12 K12	 C12 F12 112 L12

Ni = 
B22 E22 H22 K22	 _ _	 C22 F22 122 L22

2	
B32 E32 T^32 K32	

E2	

X32 F32 132 L32

B43 E42 H43 K42

and

S t

S12

_	 S22

92	 S'
32

S42

where the primed quantities

G12(1+K)2

H12 _ H12 + (1+K) 2 _ 1

11
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_

I12 - I12

_	 G12

(1+K)2-1

S12 - S 12 D12vm+1,1

are adjusted values of the matrix elements due to the three-point

evaluation of wall temperature in the adiabatic case. Similarly for

the other elements Hn ,	 In	 Sn	 (n 	= 2,3,4).
Z

,
2	 2

For 2 < n < N-1 equation (84) can be written as:

DnXn-1 + If X + E n+l -gn
(G-3)

n n

For n = N-1	 equation (84)	 is:

DN-lXN-2 + MN-1 N-1	 gN-1
(G-4)

Incorporating the boundary conditions at the edge of the boundary layer

n = N it can be shown that DN-1 and	 N-1 do not change and gN-1 can

be written as follows:

A1,N-1 D1,N-1 G1,N-1	 J1,N-1

A2,N-1 D2,N-1 G2,N-1	 J2,N-1

DN-1 = A3,N-1 D3,N-1 G3,NJ3,N-1	 -1

A4,N-1 D4,N-1 G4,N-1	 J4,N-1

B1,N-1
r

E1,N-1 H1,N-1	 K1,N-1 S1,N-1

B21N-1 E2,N-1 H2,N-1	 K2,N-1 _ S2,N-1
M

N-1 B3,N-1
^

E3,N-1 H	
K3,N-1	 3,N-1 gN-1 _

S3,N-1

B4,N-1 E4,N-1 H4,N-1	 K4,N-1 S4,N-1

(G-5)
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Here v
m+1 

N was calculated using three point backward differencing using

9v  calculated from the continuity at the edge of the boundary layer.
N

Thus we get:

D"
K2

Di,N-1 Di,N- 1	 (1+2K) Fi,N-1

I	 _	 1+K 2
Ei,N-1 - Ei,N-1 + (1-+-2K) Fi,N-1

_	 _(1+K)	 Dv

Si,N-1 Si,N-1 
C
i, N-lum+l,N	 (1+2K) ACN Fi,N-1 ( 8y)N

Ii,N-1Tm+l,N

abb-
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APPENDIX H

CALCULATION OF THE PRESSURE AT THE WALL

Some investigators that include the normal momentum equation

tend to assume a zero pressure gradient in the C direction at the wall.

Upon looking at the C-momentum equation and satisfying the equation

at the wall i.e., applying the boundary conditions it can be shown

that the normal pressure gradient at the wall is not zero. Apply

the boundary condition to equation (F-11) the following equation is

obtained:

(Av) (1)W av^	 1/2 8g	 4	 Ma2v

	

Re 1/2	
aC w = -
 Re 1/2

3 C1 + Re 1/2 (Uw)	
3C 2

1 W
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+ 2	 av	 au	 aT

(aT w (9^
Re 

1/2 DC 
w 

REF

2o ar	 (1) av
+	 1/2 r a C 1w (uw)	 e^Iw

Re
REF	

W
M2	 ou(i^(sin8w) (au) + (Uw) 	a2ul

Me 1/2 w	 r	
w a ^ w 3Re1/2 

3^2C 
w

	

REF	 REF

2	 911 W @v (i) DT	 1	 1 a	 o (i) au
1/2 (aT) (a^) (a^)^ + l/2 6 a Or>	 a^^

Me 
1/2

w w	
WReREF r	

w	 w

(H-1)

Solving for Re 1/2 @P I and condensing somewhat
REF a^ w

'.h^.
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Re REF {3(uw)	

a^2I + 3
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	 w ac w	 3	 30 w
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_ 3 ouw ( r ww ] acI }
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(H-3)

Using two--pointdifferencing the pressure at the wall is obtained by:

p (m+1 , 1 ) = p(m+1,2) - aP I Ail	(H-4)
w

,

i
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Figure 4 Shock Point Calculation
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Figure 16 Coordinate System for Inner Region
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Figure 41 Shock Angle Difference Distribution for 20 Degree

Half Cone Angle at M = 2.80
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