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CHAPTER I

INTRODUCTION

It has been recognized for some time that proper calculation of
supersonic internal and external flows requires consideration of the
mutual: interaction between the highly viscous region near the surface
and the weakly viscous region away from the surface. For supersonic
internal flows such as in mixed compression inlets or in exit nozzles
it is furthermore desirable to be able to track the shock structure
even into the boundary layer to properly incorporate design features
such as for example boundary layer control.

Over the past decade much interest and effort have been devoted
to viscous-inviscid interaction analyses. However, most of these
methods have failed adequately to predict experimental data on con-
figurations with significant curvatures or in situations such as at
high Mach numbers where the boundary layer is relatively thick.
Generally there are two reasons for this failure: a) The interaction
procedure between the inviscid supersonic region and the highly
viscous layer near the wall may have some impropriety, and b) the
description of the viscous layer in the classical boundary layer manner
is inadequate when curvature effects are important.

There are several appéuaches for attacking the viscous-inviscid
interaction problem in supersonic flow. The ultimate approach would

be to solve the time dependenthNavier—Stokes equations for the whole




flow field thus eliminating the patching procedure between the viscous
region near the surface and the inviscid region away from the wall.
However since the Navier-Stokes equations are spatially elliptic it
is unfeasible and impractical from the points of view of both com-
puter storage and running time. The objective of the present work
is to develop a viscous-inviscid interactive procedure in supersonic
flow that represents an intermediate development between past treat-
ments and exact solution of the Navier—Stokes‘equations. The inter-
active flow analysis developed herein is based on dividing the flow
field into regionswhere in one region the flow is supersonic with

a dominant inviscid character and is treated by a hyperbolic system
of equations, while the second region where the flow is highly vis-
cous is treated by a parabolic set of equations. In both regions
forward marching techniques can be used thus considerably reducing
storage and time requirements. However when replacing the Navier-
Stokes equations that are elliptic with sets of equations that are
hyperbolic and parabolic‘in character, there is no capability of
directly dealing with upstream inflﬁence effeéts. Hence the present
procedure cannot handle flow separation or strong shock interactions

where the elliptic behavior is important.

A. Applicable Earlier Work

The interaction methods that have been developed for supersonic
flow all consider the flow field to consist of two regions. Generally
these regions are a boundary layer or equivalent viscous layer and

an external supersonic region. The methods however differ in the




complexity of the modeling assumptions for each of the regions and
in the coupling procedures for effecting interaction.

An early but most significant formulation of an interaction
procedure for supersonic flows was by Crocco and Lees (reference 1).

In their work they related the pressure distribution of the external
supersonic flow to the local slope of the displacement thickness of

the viscous region using the Prandtl-Meyer relation which is a one-
family characteristics procedure. The viscous layer in the Crocco-
Lees procedure is based on the classical boundary layer approximation
but was treated as a mixing layer using a specially~developed momentum
integral procedure. Lees and Reeves (reference 2) extended the Crocco-
Lees method by additionally employing a moment of momentum integral
equation to improve the treatment of entrainment. The extension of

the Lees~Reeves integral interaction procedure to include consideration
of heat transfer was by Klineberg and Lees (reference 3).

Reyhner and Flugge-Lotz (reference 4) improved the treatment of
the viscous portion of the interaction analysis by applying a full
finite difference technique to solution of the compressible laminar
boundary layer equations in the physical plane. The boundary layer
is treated in the classical limit with the normal pressure gradient
taken as zero. As with the earlier described procedures, the coupling
between pressure and local streamline deflection at the edge of the
boundary layer is through the Prandtl-Meyer relation.

Miller (reference 5) argues however that the inviscid flow must

be calculated by a two-family characteristics method in order to



obtain a mathematically well-posed supersonic interactive problem,
and thus eliminate the saddle point type singularity that is intro-
duced by using the Prandtl-Meyer relation which is a one-family
characteristics solution.

Ferri and Dash (reference 6) improved the treatment of viscous-
inviscid interactions in supersonic flow in two ways: first, by
applying a higher‘approximation for the boundary layer that includes
normal pressure gradient and longitudinal curvature effects, and
second, by using a two-family rotational characteristics scheme in
the outer region that allows for entropy changes due to viscous effects.
The pressure distribution across the viscous region was assumed to
be a polynomial of fourth degree uncoupled from the rest of the system.
The coefficients were determined by assuming that the first and
second normal derivatives of the pressure at the wall are zerc and
that the remaining terms are dependent on the longitudinal curvature
effects. The system of equatioﬁs obtained were solved numerically.

In the viscous region the x-momentum and the energyequations were
expressed in finite difference form and solved simultaneously for u
and T. The normal velocity distribution was obtained by integration
of the continuity equation and the process repeated iteratively until

convergence was obtained for u, v, T and p.

B. The Present Method
The present work is an extension of the idea of Ferri and Dash
(reference 6) wherein the flow field is divided into two regions:

a) an inner region which is highly viscous and mostly subsonic and




b) an outer region where the flow is supersonic and in which viscous
effects are small but not negligible.

The inner region is treated by a system of equations of the
boundary layer type. This system is obtained by réexamining the
Navier-Stokes equations for steady compressible two-dimensional or
axisymmetric flow in curvilinear coordinates and through an ordering
procedure retaining terms of order unity and (8§/L). In addition to
the classical boundary layer equations the system of equations so
obtained includes in a consistent way the second order effects of
longitudinal and transverse curvature as well as normal pressure
gradient.

In this system the normal momentum equation is retained. The
equations are a coupled parabolic set in the longitudinal velocity, u,
the normal velocity component, v, and the static temperature, T. By
incorporating a suitable effective viscosity hypothesis, the system
can be used to calculate both laminar and turbulent boundary layers.
The system of equations obtained is solved simultaneously in the
physical coordinate plane using an implicit finite difference technique.
This procedure provides an exact and stable numerical solution to the
viscous flow equations in the inner region.

The numerical solutions for the outer region are obtained by
applying the method of characteristics to a system of equations
which includes viscous and conductive transport terms normal to

streamlines. In this streamline-normal coordinate system, terms

of order unity and (8/L) are retained for the viscous and heat flux
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terms added, whereas curvature effects are kept fully. By introducirg
the transport terms as corrections, the equations retain their hyper-
bolic character. Thgse correction terms include additional second
order terms, over and above those retained by Ferri and Dash (reference
6). The solution of the characteristic equations have been structured
as an inverse grid scheme in a streamline-normal network. In this
reverse scheme both characteristic Mach lines are extended back until
they intersect the known data region on a normal to the streamlines.
The streamline condition has been replaced by a streamfunction con-
dition thereby preserving mass flow within a stream tube. This allows
for a very equitable mesh distribution which always maintains itself
in the downstream direction Withoqp redistribution of the grid points.
The resulting system of equations in both the outer and the inner
regions are consistent to order (§/L).

In the interactive mode following the suggestion of Ferri and
Dash (reference 6), the inner and the outer regions are matched
along a line where the Mach number is approximately 1.2. The match-
ing conditions are continuity of the flow variables u, v, T and p at
the interface. The detailed algorithm of the interactive procedure
for the interaction mode is given.

Each of the portions of this analysis will be discussed separately.
The development of equations and numerical solution prdcedure for the
outer region together with some illustrative examples is presented
in Chapter II. This is followed in Chapter ILI by an equivalent

presentation for the inner region. The interaction procedure between




the two regions is described in Chapter IV. Discussion and summary

of the major portion of the present work is given in Chapter V.



CHAPTER I1

OUTER REGION

A. Equations of Motion
The equations of motion for the outer region are written for
steady viscous compressible two-dimensional or axisymmetric flow.

These equations for the coordinate system shown in figure 1 are:

Continuity

a_ (D*u*y* ) (pHyry#Y)
xk t oy ay* =0 L

Longitudinal momentum

Ju* ou* ap* _1 OBU
gk 22 4 opmyk 29 o L 2PT S %y
PRUT xRV ok ax*  y*9 ay* (w By*)
9 ou¥*
——— o
t+ AxX* ( ax* (2)

Normal-momentum

p*u*%g‘{-p*vk—:!;: '%;%Jr—l_o_afr? (u* *og_;r_;)
o a2 3
Energy
p*u*C; %i— + p *v‘Cg %%% - (u* gﬁ% + vk %3%)
= ;%6.53; (Y*Gk* %%zj + ai* (k* Zi:)
e 20T o B+ ) @)
8
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Equation of State”

p* =p *RAT*
In these equations
6 = 1 for axisymmetric flow

0 for two—-dimensional flow.

Q
I

The equations of motions (1) to (5) are made

the following manner:

(5)

dimensionless in

* v % % T* *
u=T s v=T—yp =2 0= P T = k=T
YREF REF PREF PREF REF Lpgr
* * C% k* .
y=:£R T N e B (6)
EF REF PREF REF
The resulting dimensionless equations are:
Continuity
o o
3 f(puy™) 3 (pvy ) _
9x +8y =0 7

Longitudinal-momentum

9y 8x 909X

pu_a_ll+pv?,‘l=____.l___82+_._];__ {lc_a._( O_B_u_) +.3_.(u.§_‘.1_)}
9x y 2 9x Re yo oy
YMREF REF

Normal-momentum

3)

v v 1 23p 1 1 3 o dv d v
= 4 ——= e —— + — [ =2y 4 = -
pu 90X ov 3y 2 3y ReREF {Y By(uy By) ax(USE)}

MpgEr

> 9
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Energy

oT aT (1‘12 ap op
— ——— . +
puCp ™ + vap 5y . (u e TV By)

1 9 aT
- P lRe ;%'%—(yckigl) * Pr Re 3;(k 3;
TREF CREF y° 7 y REF  REF
2 2
(yv-1)M 2 9 2
b @8 3 4 o(gD + 6D )] (10)
®REF y
Equation of state
p = pT (11)
where:
u
MR = REF - Reference Mach number
EF (YRT )l/ 2
YA REF
p u L
Re = —REF REF REF _ Reference Reynolds number
REF u
REF
“REFCPREF
PrREF E e - Reference Prandtl number

KREF

The equations of motions (7) to (11) are now transformed from cartesian

coordinates (X,y) to curvilinear coordinates (s,n) where: s and n are

respectively the distance along a streamline and the distance normal

to a streamline. Transport effects such as viscous shear and heat

flux are retained only normal to the streamline. This is because from
. 32 32 2

an ordering procedure, terms such as~§§2/552 are of order of (&/L)

that can be neglected in the present analysis.
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The governing equations (7) to (11) when transformed and simplified

(details given in Appendix A) are:

Continuity
9 0 29 .
+ —— T e
aS(pq) pa o o sin@

s-momentum

3q +—3— 4B = Q

2 9s 1
Pd 3s YMEEF
n-momentum )
2 38 1 3p
——— + e ——————— =
Y 2 - Y
Mpgp

Energy equation

ﬁl__l. qR <Y—1)MREFQ

pa EE"

Equation of state

p = pT

(12)

(13)

(14)

(15)

(16)

where q is the velocity in the streamline direction, 6 is the stream-

line direction and Ql’ Q2, Q3 are correction terms due to viscous

shear and heat flux. The detailed expressions for the correction

terms are rewritten here:

2
1 3., 0 - -
o = g ol 4 o aeh 20 -hy
REF y
Q, = Rel {U%S'%g + I qcos36 8,9
‘ REF noon Yy n
2 2
1 2,30
Q = o @Y + 2u° D) + 3
REF

Sy Sinze éﬂ}
y oan

Pr,__(y- l)MgEF

@an

(18)
3 3T
8 E;;]}

(19)
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By considering these terms as known source terms the systems of

equations (12) to (16) retains its hyperbolic character.

B. Method of Characteristics .
The characteristics derived from the system of equations (12)

to (16) are defined by two ordinary first order differential equations

where the independent variables are the static pressure, p and the

streamline direction, 6. The detailed derivation of the characteristics

relations is given in Appendix B.

The characteristics equation is:

dn

—= = + A

ds tan (20)
where A = sin i is the Mach angle. These characteristic directions

M

are the same as for inviscid flow. The compatability relation is

given by:
2 2
- M inA
dp, _d8 __ cosing 9 & l)MREFQ . UMegpsint dx o
yP ~ sinicosA y pq2 Pq 37 P ‘coshcos (B+))

(21)
. + - . .
The + and - signs correspond to C and C characteristic¢ lines res-
pectively. The quantities Ql’ QZ’ Q3 are functions of the local normal
gradients of velocity and temperature and have the same role as the
entropy terms in equivalent equations for inviscid rotational flows.
The variations of entropy, S, and stagnation temperature along

the streamline as derived in Appendix B are:

2
ds _ Mrgr Q
ds pq 3

(22)
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2 2
daT - -
s DMy Q) (=DM
T ===, + ——— (23)
ds Pq 3 o
The oblique shock wave relation required in dealing with shock

points in the characteristic net is obtained from Reference (7) and is

given by:
in® + b si 4 + csi 2 +d=20 (24)
sin BSH in BSH in BSH
where

B is the shock angle

SH
M2+2 . 2
b = -~ 5 ~ ysin $
M
Pl | L 2 (1), 2
C=___4_+[(2)+ 2]Sin6
M
cosz6
d=""4
M

In these equations, M is the Mach number upstream of shock wave and
§ is the local streamline deflection angle.
In order to establish a well-posed problem, the following boundary
conditions must be given:
(a) data for all quantities must be prescribed along
an initial datum line. In the absence of the
correction terms Q,,Q, and Q,, only p, 6 and M peed
be specified to allow the characteristics calculation
to proceed. However, upon including Q., Q2 and Q
the velocity and temperature information is needea'as

well.

(b) the shape of the boundary surface or bounding stream-
line, y = yB(x).

C. Numerical Procedure

The conditions at each grid point (%,y) in the physical plane
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are determined by the characteristic equation (20) and the compatibility
condition (21). A non~uniform grid point distribution on the normal to
the streamline is chosen to allow a fine mesh spacing in the inner
portion of the outer region and coarse spacing at the outer portion

of the outer region. The computational procedure divides itself into
the following four basic elements:

. Conical flow field calculation (for axisymmetric flow)
Boundary point calculation

Field point calculation
Shock point calculation

N

Conical Flow Fielid Calculation - The flow past an infinite cone

with attached shock front is described by the Taylor-Maccoll equations
which are solved numerically by means of Runge-Kutta integration (see

Appendix C). The conical shock angle, B is calculated by an iterative

SH
procedure beginning with a first guess of the shock angle for the given
freestream conditions. The integration is continued to the cone sur-
face and the resultant cone angle compared with the specified cone angle.
A new estimate of the shock angle BSH is made based on the error and

the process is repeated until convergence is obtained. The converged

solution gives complete information on the conical flow field.

Boundary Point Calculation - Calculation of a boundary point

(Fig. 2) requires that the normal velocity at the boundary point be
zero. The boundary point A can be either on a solid boundary or a
point on a prescribed streamline whose deflection is known. The
pressure at the boundary point A is calculated in an iterative way.
Using a reverse scﬁeme the C- characteristic is extended from point A

in the upstream direction until it intersects the normal to the
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streamlines at point B. The flow variables at point B are determined
by interpolation. Using average values of points A and B the com-
patibility condition for the C- characteristic curve will give new
flow variables for point A in terms of the known values at point B.
Iteration is continued until convergence is obtained for point A.

Field Point Calculation - Calculation of point D (Fig. 3) is

done using the reverse scheme, that is both the C+ characteristic

and the C- characteristic lines are extended from point D in the up-
stream direction where they intersect’the upstream datum line at points
A and B respectively. Point D is located on the normal to the stream-
line through point E [x(2,J-1), y(2,J-1)].

The compatibility equations at point D determine the flow
variables and the streamline slope for point D in terms of the flow
variables at points A and B. Integrating the mass flow between point
D and the previously calculated point E [x(2,J-1), y(2,J-1)] the
stream function at point D is:

Vp = U+ By (25)

In order to preserve mass, the new location of point D on the normal
to the streamline, is corrected with respect to the difference de-

fined by:
6 = vy = ¥() (26)

Normally convergence is obtained in a few iterations.

Shock~Point Calculation - Shock point calculations are basically

different than the field point calculations. Since conditions upstream
of the shock wave are known, the oblique shock relations must be in-—

corporated into the calculation procedure.
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Point B (Fig. 4) is located just downstream of the shock wave
and on the normal to the streamline from point C[x(2,J-1), y(2,J-1)].
An initial guess is required for the flow variables and streamline
deflection at point B. Then point A can be determined by the inter-
section of the C+ characteristic through point B and the upstream normal
to the streamlines. The shock wave angle is calculated using equation
{24). This determines the flow variables at point B from oblique
shock wave relations. The coefficients of the compatibility equation
are updated using averages of the flow variables at points A and B.
The streamline deflection is recalculated and thus a new shock wave
angle is calculated. Again in an iterative way, convergence is

obtained.

D. Numerical Results

To test and illustrate the procedure developed for the outer
region, two sets of calculations were performed. The first of these
is for the waisted body tested by Winter, Smith and Rotta (reference
8) while the second set is for a Mach number 3.5 mixed compression
inlet for which characteristics calculations were performed by
Syberg and Hickcox (reference 9) using a different scheme than
developed herein.

The geometry of the waisted body of revolution is described
(figure 5) by a set of five polynomial functions each pertaining to
only a section of the body. Calculations were performed for a
series of supersonic Mach numbers for which experimental data are

available. The correction terms Ql’ Q2 and Q3 have been excluded
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in these calculations.

Figure 6 shows the oblique shock waves for M = 1.7, 2.0, 2.4
and 2.8. The wall Mach number distributions along the body are shown
in figure 7 for the same free stream Mach numbers. A comparison of
the calculated Mach number distribution on the surface and the measured
Mach number distribution at the edge of the boundary layer (reference 8)
shown in figure 7 shows very good agreement except perhaps at M = 2.8
in the vicinity of X =~ 0.4. Examination of the experimental

LREF

velocity profile at this Mach number and location (figure 9 of reference

8) shows that the velocity is still slowly increasing beyond the nominal
"edge" of the boundary layer as chosen by Winter et al (reference 8).
The calculated wall static pressure distributions for the same
free stream Mach numbers are shown in figure 8. It is seen that the
pressure minimum occurs consistently in the vicinity of the inflection
point of the body GEEL- 22 0.42). Unfortunately, experimental wall
pressure data are noiEzvailable in reference 8 for comparison with
these results.
The streamline patterns as calculated for the waisted body at
M = 1.7 and M_ = 2.8 are shown in figures 9 and 10 respectively. Of
particdiﬁr interest is the appearance at M_= 2.8 of a noticeable
second shock wave in the flow field emanating from,x/LREFﬂf 0.75.
This wave for the same Mach 2.8 test of Winter, Smith and Rotta was

also identified in the "smooth shock-capturing" calculation of

reference 10.
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Figure 11 shows the pressure distribution along normals to the

streamlines emanating from a number of stations on the body. The

‘presentation for M_ = 1.7 (figure 1la) is a composite of the pressures

along the normals to the streamlines labeled A through N in figure 9.
The ordinate in figure lla is (y—yﬁ)/(ysﬁij) for the points on the
aforementioned normal lines. From the pressure distributions for
xB/LREF > 0.787, a mild shock wave seems to appear in the pressure
distribution although there is no apparent corresponding streamline
deflection in figure 9.

Figure 11b gives a similar portrayal for M, = 2,8. The shock
wave appearing in the pressure distribution for xB/LREF > 0.787 is
readily identified with the locus of streamline deflections in figure
10 and is coincident with the shock location as calculated in ref-
erence 10,

Numerical calculations were also done for the Mach number 3.5
mixed compression inlet sketched in figure 12. Geometrical data for
this inlet are given in reference 9. The pressure distribution
calculated with the inlet by both the present streamline-normal
procedure excluding the correction terms Ql’ Q2 and Q3 and by.the
more conveﬁtional characteristics scheme of reference 9 are compared
in figure 13 for the center body surface and in figure 14 for the
cowl surface. The excellent agreement between the two computational
schemes indicates that little if any accuracy is lost by neglecting

Mach wave intersections between the datum planes that is characteristic

of inverse scheme methods.

et
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In order to investigate the effects of the correction terms in
the outer region, a power law velocity profile (n=11l) of suitable
thickness has been imposed in the initial datum line where the wall
Mach number was chosen as Mw = 1.9. The wave pattern for the mixed
compression inlet is calculated both with and without the correction
terms. For the purposes of this exercise, the correction terms
are evaluated using Sutherland viscosity and Pr = 0.72. The
numerical results shown in figure 15 indicate a shift of the wave
location and curving of the wave refléction due to the viscous and
conduction termsg. This partial simulation of the presence of a
boundary layer gives some indication of what might be expected in an

interactive calculation.



CHAPTER IIX

INNER REGION

The various methods for dealing with the viscous region differ
in the order of the terms kept in the system of governing equations.

In past work on interactions the tendency has been to use classical
boundary layer equations (with %5 = 0) or else such equations augmented
by a centrifugal correction for normal pressure gradients. The pre-
sent interaction procedure depends however on having accurate re-
presentations of the normal velocity distributions at the matching
location in the boundary layer even in situations with longitudinal

and transverse curvature. Hence it is desirable herein to employ a

set of equations that are consistent to order (8/L) relative tb the
leading or classical boundary layer equations. In that way the sets

of equations for the inner and outer regions are consistent to order
(6/L). Within this second order approximation, the normal momentum
equation appears as a coupled member of the set of inner layer equations.
Before proceeding into the details, a brief review of pertinent second-
order effects is appropriate.

The Boﬁndarywlayer concept introduced by Prandtl has been
successful in yielding solutions for viscous flows at high Reynolds
numbers, as long as the boundary layer remains attached to the surface
and remains thin enough so that it does not noticably affect the

external flow. A general discussion of higher-order approximation

20
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for boundary layers has been given by Van Dyke (reference-11). 1In
that review article, Van Dyke classified the second-order corrections
into two categories according to whether the additional terms appear
in the differential equation through the curvatures or through inter-
action with the external flow. Van Dyke further subdivided each
category giving some analytical details and physical interpertation
for the described effects.

Maslen (reference 12) has presented a set of equations that is
complete with respect to the inclusion of second order boundary-
layer effects. This set of equations is the starting set for the
developments in this chapter. Maslen himself in réference 12 went
on to study some weak interaction questions by means of similarity
solutions. Seginer (reference 13) solved a system of equations

1 1/2

retaining terms to order (EE——*—) where ReL is the reference
LREF REF

length Reynolds number. In his system the normal momentum equation

is a coupled member of the parabolic set of governing equations.

Seginer then went on using the Stewartson transformation and

similarity arguments to obtain ordinary differential equations for

the second order boundary layer system. He obtained solutions for

a two-dimensional flat plate at Mach number 4 to illustrate the

very slight effect even for that case of the normal pressure gradient.
The present system draws on both of the above works in its

development of the second order system of equations but the solution

procedure is'developed in physical coordinstes for later interactive f

matching with the outer solution. Similarity arguments are not invoked.
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A. Equations of Motion for the Inner Region - Laminar Flow

The highly viscous flow in the inner region is assumed to be
steady, compressible, laminar or turbulent, two dimensional or axisymmetric
flow over an adiabatic or non-adiabatic surface. The appropriate
system of equations in dimensional form is given in reference 11.
Expressed in curvilinear coordinates (£,z) in which £ is measured,
along the surface and g norﬁal to the surface (figure 16) and where

u, v are the corresponding velocities, these equations are:

Continuity

srerurcs’) + *[p*v*(l +E91 -0 (27)

£* - momentum

du* ¥ ukv* Ip*
Kk *yk uve . - 2o
pruk Fox + p*v az;*(l+ %)t e SER
dv*
R¥ =7 - u
+ > a FLuFr® (R*+c*)2(§ui Rigi )1
r*OR* (R*+C*) Z c
ou
R I TP Gl T I )
r*o 9E* (R* + ¢¥%)
_ 2u*g¢ R¥* + Tk *
%2 ( RF ) (u s1n9 + v*cosf )31n6w

uF
%
8 R* 35* + v* P

aex VTR + x) | ack

(RN

+ g;(u*sine + v*cosd )1}
T w W

(28)
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C*~momentum
R* ov* dv* % *2 Ip*
T pkuk S 4 pkyx O QTUE_ OPF
(R*+C*) E* oT* R*+r* or*
du*
)7 R¥* -~ + v*
, * *
+ — 2 32* [p#ra® (R¥4+r*) gz*] - (Rii;*> Riiz* ]
r*" (R¥+C%)
av* o
—= - u® 2u* " cos 8
R* 2 o du* aE* .
+ [u*r*™( )] - (u*sin®
* * htrk
(R¥+ga)zs 0% ort B — w
R Qux _
2 3 9E* dvk
* B - = — *
+ v¥* cos w) BBCJ ( RFCH Y + u ar%
u*sinf + v*cos9
+ p¥g ( - ]
r*
(29)
energy
R* %% OD¥ xok ODF R* 5 OD* 4 Op%
e BT Tl e S Tl yeed
I RS L NS RN T U x 2%
T k080 Pr o ar¥ T (R®HZR)  9Ek (RATR)Pr M dEk
oh* Suk
on® % 9U” *
+ p* _8LF + u*{ZCEXfﬁz + 2(}1"—§§3'c----{;}:-+'——‘1 (u*sin® +v*cosH )2
Pr (R*+r%) ag* R*+C* r*Z W w
R*av=k_u*2 R*_a_u_,}:-'-v
du* 9E* 2 9E* av* o .
+ - + —(u* *
(BC* RAFLH ) 3[ REFLE + acF r*(u sing +v cosew)]}

(30)
In these equations r#* is” the lateral radius of curvature of the point
(E*,z%), R* is the loqgitudinal radius of curvature of the surface, and
is positive for convex surfaces (reference 11) while

0 for two dimensional flow

Il

g

and

Q
it

1 for axisymmetric flow.
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The angle ew is the local slope of the axisymmetric body relative to

the normal to the axis. Thus

dr*
cos® = -——
w

dg*

Reexamining the equations of motion using dimensional analysis

(see Appendix D), a set of equations is obtained constituting a higher

approximation than the classical boundary layer for the inner region,

since terms of order unity and of order (8/L ) are retained. The

REF

non-dimensional equations of motion obtained to this order expressed

in terms of reference Reynolds number ReREF become:
continuity
3 o1 4 2o 1o
8E[pur 1+ BC[pvr 1+ el/z R)] =0 (31)
REF
g-—momentum
3 1 puv , 9p
== +
uge Tov e 1/2 R) Y AR Y:
®REF ®REF
1 3 1 1z, 3u 1 1l uo o
- 2. - =Lt 2
o3 [“r A +—73 rel/? ® ) rel/2 O R agHr ) (32)
REF ®REF
;—momentum
A pu 1/2
| - 1/2[pu ag T vl + - 1/2 R Cne eprr(l ¥ 1/2 R
:i REF ®REF ®REF
; 2 1 o v 1 13, 03u
i B 1/2 O Bc(ur ) + el/2 O ag(“r 82;)
; RepEF REF
_ e 1/2 » 2 Bu s v N UUSlnew ,
3 ®REF 3z' "3E T B T
(33)
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energy
3T 1 9p 1z, 3p
== + (1 +
pugy + ov(l + ——= 1/2 R 3C - (v-1) MREF[u (1 el/z A 3€]
REF REF
o
- r 9T, , L b 3T
= Q+—773 Re 1/2 R) rc c[ PTopE a;] + 1/2 PrREF R 3L
REF CREF
2
1 2 udu
Re REF Re REF
equation of state
D = _pT
2 (35)
YMper

B. Equations of Motion for the Inner Region - Turbulent Flow

When the equations of motion are written in terms of mean quantities

(velocities, pressure, density, temperature, etc.) and fluctuations

about the mean, and then averaged with respect to time, the resulting

set for turbulent flow (a detailed development is given in Appendix E)

keeping only the leading correlations u'v' and v'T' is:

continuity:

9_ c 9 g 1 -
8E[pur 1+ az;[pvr 1+ Rellz R)] 0
REF
E-moment um
~— du 1 au 1_ puv . 3p
pu 3z + pv(l + 7 D e 2R TaE
CREF ®REF
13 o Zy du 13
= L 4+ —— —_—
o ac[“r @ 1/2 R) ac] o 9C
r Re REF
1 4L~i-3—(ur°> 1 5 u'v'
1/2 o R 3C T 1/2 R
ReREF r ReREF

(36)
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C-momentum

- _2 -
— Bv - Ty v pu 1/2 1 1z, 9p
— __.____.+ P e
- 1/2{ e TPV . 1/2 R or - r T Repgp O 12 R oz
REF CREF CREF
_ 2 13, 03v,,_ 1 1 3 . o3u
wel/2 o Sz T el el/2 O SELMT o)
REF CREF -
- osinf u
v w - 1 1 3 g-
- 2 Bu+ o+ 1- = —zlr pu'v']
rel/? a;[“ 5E oz r Re;ég 2 %
CREF
(38)
energg
== 3T  -= 1 g, dT 2 =9 .z 1z,
pug +ov( + 2R ag T (DMppplu 55 + v + =375 ) 5]
®REF CREF
el miow” SR w1 13
1/2 R" o 3¢ Pr 9T 1/2 Pr R 3z
exgr T REF Reppe = REF
-2
2 1 2 u du
- + -
+ (D, v 1/2 R)(a;) /2R o)
eREF CREF
1 3 1 pury (39)
CRL (@ + al/2 D% VT
CREF
equation of state
- cF ‘
P = "EET‘" (40)
Mg

C. Viscosity Laws

The equations are formulated to accommodate any variation of
viscosity that may be required in properly implementing a boundary
layer calculation. For the examples presented in the work the dynamic
or absolute viscosity is represented by the Sutherland viscosity

relation which in dimensionless form is
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Ita, 3/2
) T 41)

where:

For turbulent boundary layers, the momentum and energy transfer

»

correlations u'v' and v'T' are included in the equations of motion and
are evaluated using Boussinesq scalar eddy viscosity and eddy con-
ductivity coefficients through which these transport terms are in

turn related to local mean velocity and temperature gradients. Thus

the turbulent transport coefficients are defined:

oo = U
u 9L
- E —
ry=ry oT u_ 9
v € o¢ Pr, 0z (42)

where € 1is the scalar eddy viscosity and Prt is the turbulent Prandtl
u

number.

Eddy Viscosity Model: Experimental data with equilibrium tur-

bulent boundary layers indicates that the scalar eddy viscosity
function can be simulated by a two-layer model (reference 14). The
inner layer in the vicinity of the wall is characterized by increasing
turbulence with distance from the wall namely €4 varies almost
linearly* with distance from the wall. In the outer layer the scalar
eddy viscosity function is nearly constant except for the intermittency

factor. Cebeci and Smith (reference 15) have extended the Van-driest

*
In the very near neighborhood of the wall €4 n yz.
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formulation of the law—of-the-wall (reference 16) in order to include
effects of pressure gradient and heat and mass transfer at the wall.
The Cebeci-Smith model for effective eddy viscosity will be used in
the present calculations for turbulent flow. While these are other
suggested models for the eddy viscosity (reference 17 for example),
the Cebeci-Smith formulation has been shown to be adequate for engineer-
ing calculations.

The Cebeci~Smith model (reference 15) written for axisymmetric

flow* is as follows:

Inner Layer

2 r,; du
e, =17 1 5l 0<t st
i w
Outer Layer
= . *

[Cu]o T OLUeG z;c <z < Fy (43)

where:
xr rW r
L = 0.40r_1n ;; {1.0 - exp[- 4~ In (_;;)]}

A-is a function of pressure gradient, mass transfer at the wall and

viscous shear stress at the wall and is given by:

T -1/2 - 1/2

+
A=A S EH D (44)
N o p
w
where
¥, o . . x 5
The two-dimensional version can be extracted by settlng';— =1+

T
w w
and evaluating the expressions in the limit as r. > o,

ok
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A = 26
2 + U H
P
N = —E28) Pty L oexp(11-8- 2 vN)} + expai-s £ oH
He pw V+ U w H w
w
p+ - Veue due
g3 €
T
+ vw
v =T
w uT
T 1/2 .
u = CE“)
w
4
o = )
o = 0.0168
[e)
T = .55
(o]
1/2
T = 0.55 {1 - exp[—0.243zl - 0.29821]}
R
b4 = _ 1
1 425

Rg = Reynolds number based on momentum thickness
The intermittency factor is given by:

1

[ = ———
1+5-56§)

(45)

The condition of continuity of the eddy viscosity function determines

the values of Cc, i.e.:

e, (& ) =¢e¢ () ' (46)
. Cc u c

1 [a]

The two—-layer representation of the eddy viscosity function is

sketched in figure 17.
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Substituting the expressions (42) for the turbulent transport

terms into equations (37) to (39) the system of equations becomes:

continuity
3 w1 + et + 5H1=0 (47)
aEP oz P 1/2 R
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§—momentum
== du  -= 1z 3u .__1_5—_'4,_5_
pu gy T v+ W l2% 3 T 12 R g
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I N 1 1 Pfuau
CREF €REF
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equation of state

- __pT
P=""
Mppr

Equations (31) to (35) for the laminar case or equations (47) to

(51)

(51) for the turbulent case are a coupled parabolic system in the
variables u, v, and T, hence two poini boundary conditions for u, v,
and T and one boundary condition for the pressure are required. For

convenience in computation the pressure is split as follows:

P(€,8) = Ppyn(8) + p(E,2) (52)

where pEXT(g) is the external pressure (presumably known), and

pI(E,C) is an induced pressure due to normal momentum consideration.

D. Boundary Conditions

The boundary conditions at the wall (g = 0) are:

u(g,0) =0 .
v(E,0) = {0 - for impermeable walls
Vi for suction or blowing
T(£,0) = T (&)
or
A - (53)
A,

The outer boundary conditions depend on the use made of the inner-
region equations. Those presented here are the outer conditions for
boundary layer calculations. The outer boundary conditions employed

in the interaction proéédhre are described in Chapter IV. For com-



32

putational purposes, the outer edge of the boundary layer is taken to
be well outside the conventionally defined thicknesses. In practice
this turns out to be three to four times §* for the laminar boundary
layer and of the order 108%* for the turbulent boundary layers. At

this location: (z=& §)

PI(g,‘S) = 0
2oy +Zpevta =15 01 =0
£=6 Repry r=8
dug _ dppyr (E)
Psls at de
dT dpEXT(E)

2
PsUs gz - (rIMppp Us e
(54)

Initial Profile: TFor starting the finite difference calculation,

profiles for the unknowns, u, v, T and p at a specified initial
station Eo are needed. For laminar boundary layers, similarity
solutions have been incorporated to start the finite difference flow
field calculation. For incompressible turbulent boundary layers the

starting profile has been constructed from the law-of-the-wall.

E. Numerical Sclution of the Inner—Region Equations

For solution of the non~linear partial differential system,
equations (31) to (35) for laminar flow or equations (47) to (51)
for turbulent flow are linearized and then replaced by a system of
linear algebraic equations using a modified Crank-Nicolson implicit
finite difference scheme. Since because of the nonlinearity of the basic

system the flow variables in the coefficient matrix depend on the
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solution vector, an iterative procedure is applied until the differences
between the flow variables for successive iterations is as small as
desired.

A primary objective in the development of a numerical procedure
is to get it to yield a stable and convergent solution for the system
of finite difference equations. Stability and convergence of
numerical solutions of partial differential equations is discussed by
Roache (reference 18). Basically, instability results from un-
avoidable small perturbations in the flow field due for example to
round-off error,truncation error, etc. If in marching downstream
the errors diminish then the method is stable; if the errors grow in
marching downstreanm the method is unstable.

It was decided to apply an implicit difference scheme rather than
an explicit one. A broad discussion of the two schemes is given in
reference 18. Generally it is expected that implicit difference
schemes are far more stable than explicit difference schemes. On
the other hand implicit schemes involve a system of algebraic
equations that must be solved simultaneously since the equations
are coupled.

Other investigators have attempted solving the flow equations in
the physical plane using implicit difference schemes. Reyhner and
Flugge-Lotz (reference 4) solved the system of classical boundary
layer equations simultaneously in the physical plane for u, v and T.
Their numerical results indicated an oscillation in the normal

velocity at the edge of the boundary layer. Such oscillations are
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undesirable if the method is to be used as part of an interaction
calculation. Since their system of equations includes only continuity,
x-momentum and energy equations the normal pressure gradient is
assumed to be zero.

Ferri and Dash (reference 6) have included an uncoupled normal
momentum equation in their mathematical model. Their numerical
solution was also done in the physical plane. Although they used an
implicit difference scheme, their procedure is quite different than
that of Reyhner and Flugge-Lotz (reference 4). They assumed the
pressure distribution across the boundary layer to be a polynomial
of fourth order uncoupled from the rest of the system. The co-
efficients were determined by assuming that first and second normal
derivatives of the pressure at the wall are zero and that the re-
maining terms are dependent on the longitudinal curvature effects.
The system of equations i.e., continuity, x-momentum and the energy
equations were expressed in finite difference form. Solution of the
finite difference equations was done successively; that is they
first solved simultaneously for u and T using the x-momentum and
energy equations, then the normal velocity distribution was ob-
tained by integration of the continuity equation. The process
was repeated iteratively until convergence was obtained for u, v
and T. The converged solution was then used to determine the variation

of p across the boundary layer.
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The objective in the present work is to solve the second order
system of equations for the viscous region in the physical plane and
by extending the Reyhner-Flugge-Lotz method (reference 4) and

solving the coupled parabolic system of equations simultaneously.

Difference Scheme and Quotients — The grid scheme on which the

expressions for the difference quotients are based is shown in
figure 18. A grid with variable mesh size in the normal Z directicn
and a uniform mesh size in the longitudinal £ direction has been
chosen. In order to obtain a fine mesh near the surface where the
gradients are large and a coarse mesh away from the su;face, a
geometric series has been chosen to locate the grid points in the

¢ direction.

r_ = DK- (Kn::ll(‘)o) n=1,2...N-1,N (55)
where:

DK = first interval

K = ratio between two consecutive intervals

Cn = ¢ coordinate of the nth grid point

The truncation errors of the difference quotients are based on
a Taylor series expansion of a function with two independent vari-
ables about a point where the function and its derivatives are known.
The validity of the expansion depends on the existence and continuity
of all derivatives of the function f(x,y) which here represents any

of the unknown functions u, v, T and p. The value of f(xth,y+2)
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can be expressed as follows:

2
9 )
£(xth,y+) = £(x,y) + (h 3o+ 2 g)f(x,y)+ (h D < ~—) £(x,y)
3
+ ——(h <+ m-——) f(x,y) + ...
2 2 2
= f(x,y) +h—~+2ﬁ+—]’—(h2-———8 L yong &£ 4 2 2f
X oy 2! 2 X0y 2
9x 9y
(56)

For any of the unknown functions u, v, T and p represented here either
by f(x,y) or g(x,y) the expressions for first and second derivatives
of the above mentioned functions at the point A (figure 18) located

at (£m+1/2’c ) depend on the differencing scheme. The expressions

for centered differences, backward differences and forward differences

are given below:

Centered Differences

1) First derivative in £E-direction:

2 3 3
B3E, AL . 1 8%f, AE.2 1 97fF, AE
£ = f + =] + == G+ 6D+ ..
wHl,n  ml/2,n 0 9L 2 21 .20 2 31 43 2
(57)
; ; af) 5, 127 ae? 1o’ ael,
mn  wHl/2,n 0 3E), 2 0 20 .20 2 31 g3 2
(58)
subtracting (58) from (57) yields
£ -f )
3f;  (Cmtl,n m,n 2
o€ = AT + 016" (59)
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2) First derivative in {-direction:

The derivative in f-direction is obtained as a weighted average

of the derivatives in the f~direction at station m and station mtl.

2
of, AL 1 9 f 2
£ = f + =] Trntl + | (g )Y + ...
!
m+1l,n+1l mtl,n 14 ol,n 2! 352 ml,n n+l
(60)
2
of 1 3°f 2
£ = f - = AL+ o= | (A Y + ...
- '
m+l,n-1 mtl,n aCnﬂi,n n 2! acznﬁi,n n
(61)
Since Acn+l = ACnK, the resulting expression is
2f fr1,nt1 ~ fmbl,n-1 i 2
3zl = + Utz M1 (62)
9C mtl,n Agn(l+K) n
Similarly for station m
Qil - fm,n+l " fm,n--l)
9L m,n Acn(LHK) (63)
Finally we obtain:
(64)

af| of of
= = A D] + (1-2) D) |
0 m1/2,m T %% ml,n 1778t

1/2, the Crank-Nicolson centered difference expression is

m,n

T =
or Al

obtained.

Second Derivative - Second derivatives appear in the flow

equations only in the z-direction. For centered differences:

2
of 1 3%f 2
= f + 2= += 2L
fol,ntl - ToHi,n 3C|m+1,n AL T 3Kzlml][1 (B )+
(65)
2
5f 1 5°f 2
= f - = =2z - ...
fm+1,n—l mHl,n acn&i 0 A n 2! Bcznﬁl n (Acn)
] b}
(66)
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Multiplying equation (65) by (Agn) and equation (66) by (A§n+l) and

adding the resulting equations yields

2 f + - +
9 fl = 2 ( mtl,nt+l K fm+1,n—-l (1 K)fm+l,n)

9 m+l,n K (14K) (Acn)2

(67)
For flexibility a weighted average has been used to obtain the second

derivative at point A:

2 2 2

"l =, g + a1y 5 >

9z m+l/2,n 9z m+l,n 9z m,n (68)
Again for Az =‘% the equal-weighted Crank-Nicolson result is obtained.

Other Derivatives

(_ag)zl et T o) oo~ fman-1?
oz’ 'mkl/2,n 2 2
<" mk1/2,n w00 ) 69
Aiﬁg| - (fm-i-l.n+l _ fm+1,n—1)(i“mﬂwl - gm,n—l)
3z oL 2 2
m+l/2,n 2(8g ) (14K)
N (841,041 ™ Bprl,n-1) Fmont1 ~ foon-1?
2(ag )2 (141) °
n (70)

To be noted is the linearity of these expressions in the quantities

evaluated at station mtl.

Backward Differences

First Derivative

2

of 1 97 f 2

£ = f - = AL+ = (AT )7 ...
- 1

mtl,n-1 mtl,n AL 1,n n 2! 3C2 1,0 n

(71)
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2
1l 2 F 2
(ag__ o + Ag ) + o5 —5 [(ag__)+(Az )]
+1,n n—-1 n 2! 8;2 1,n n-1 n

- _ of
fm+1,n—2 - fm+1,n ac|

(72)
Multiply equation (71) by (AL;n + A?;n_l)2 and equation (72) by (ACD)Z.

Then subtraction of (72) from (71) yields:

%% = £ Q) CEolN 2
mtl,n (R AL whl,n-1 AC m+l,n-2 ?i;%Szﬁiz

+ Otac )’
(73)

Hence the first derivative for point A (figure 18) using backward

differencing and weighted averaging becomes:

of of
_é§| = A3-§E| + (-2 5 (74)
mtl/2,n m+l,n m,n
Forward Differences
First Derivative
of 1 3% 2
= == 4+ = = + ...
Ert,otl = Tmin T oac . nACn+l 20 2 n(ACn+l)
b ]
(75)
2
of 1 9°fF 2
= + L + == +A ;
fr1,ne2 = fmin 3§L+1 n(ACnfz be ) T Bcztﬁq_th%&i St T
(76)

Multiplying equation (75) by (Az;n+ + AT )2 and equation (76) by

1 n+2

(Az )2 then subtracting equation (76) from equation (75) and ex-

n+l

pressing in terms of Acn>we obtain:
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- = - f (24+K) (14+K) 1
BC' mtl,n + f - f —
2 +
mtl, (l+K)KA?;n K ACn mtl,n+1l mtl, n+2 K2(1+KﬁCn
(77)

Then as for backward differencing, the expression for the first de-

rivative at point A is:

of 3
Z’-m+l/2,n 3 3Ic:lrr*-l,n

+ (l—AS) (78)

ch,n

Difference Equations

Following the suggestion of Reyhner and Flugge-Lotz(reference 4)
the system of non linear partial differential equations has been

linearized in the following way:

continuity
3 .0 9 .0 1 vy _n (79)
ag[r pul + a(:[r pv(l + Re1/2 R)] = 0
REF
g—momentum
. (1) 1
(ou) D) %g + (o -2-9) @+ 172 RV
5 ©REF
2
—C) ) 1 _z pe, (1) 37u
REF
13 o l_z DPEVy 4 (1) 3u
+ [ o ac(r 1+ 172 R)u(l + , )] 5T
r CREY
(1)
- =15 e
Re Rr
REF
} 195/&) u _o@® oy
1/2_ ot 1/2 R (80)
ReREFR eREF
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C—-momentum

(1)
__(pu) """ 3v 1t (i) _1  3v _ 1/2,,, 1 &\dp
NSV T + @+ 172 R PV 172t Reppy (1 172 R 5C
®REF REF REF REF
2
2 (i) 3°v 1 dv g
+ [u + ——(ur )1
Rell{}/E%‘ 8:2 rc 9z (43
+—i (@ + 250 Lu
re 1/2 3EJT
CREF
(1) (i) (i)
pe du,*"7 8T u du 3 pE.
A+ G Cap @ =)x71)
(1) (i) . 2 (1) (1)
2w et ar @) 87w, auyY dvyt AT
3Rel/2 {&H) (3g) 57 + U SCoE + (BT) (BC) 5T
REF
LW D
2 (i) usiné ., sin®
(1) v au aT (1) W 3du
2c2 toED D ptonT ) il
(i) €9) (i)
(pu) 2 oy or ,
4+ Y= uy - T —CD u (81)
R 3 Re%'{é%,rz 3%
energg
( ) _ ey ER
(ou) (1) 22 et @+ 1/2 R)v(p ) (v- DMREF[
CREF
(1) €D)
ra+r—toh VW 21+ (- D¥gp v
Reprr
(i) (i) (i)
z ou Bu ou
[A+ Re 1/25 ) (a;) 9z Re 1/2 14
CREFN eREFN
pE (i) .2
LA+ ) gy PREFM —
Rep oo~ 'REF t ac
(1)
PR S —L L b yes RED,; 2
° 9z Re 1/2 R Prrpp u Prg 3L
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Terms with superscript (i) are linearized terms and are updated after
each iteration.

Following reference 4, to enhance stability, the continuity
equation is written for point B (figure 18) and the two momentum
equations and the energy equation are written for point A. The
resulting system of algebraic linear finite difference equations

which is derived in detail in Appendix F is:
+ + G + +
Ainum-l-l,n--l Binum+l,n inum+l,n+l Dinvm+l,n—l Einvm+l,n

F +G +H T +I.T
VL, o+l ¢ Cinmtl,n-1 ¢ inTmtl,n | VintmHl,ntl

+ + = 5,
Jinpm+1,n—l + Kinpm+l,n Linpm+l,n+l in

(83)

A centered differencing has been used for the variables u, v, and T

in which the truncation error is of order [(AC)Z], while for the
pressure a forward two-point differencing has been applied. Though

it is accurate only up to (AZ) it gives a more stable solution than

a centered differencing which is accurate up to (Ac)z. This numerical
instability associated with including the normal pressure gradient

has been noted also by other investigators (reference 19).
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In matrix notation the system of equations (83) can be written
in a more compact form:

MX =g (84)

where M is a block tridiagonal matrix defined:

MZ E2 0 0 0
D3 M3 E3 0
0 D4 M& E4

=i
]

DN—Z Mﬁ-Z EN—Z

M
DN—l N-1

(85)
Each element in M is a 4x4 matrix incorporating the coefficients of the

system of the finite difference equations:

B
B Puie e Fne C e T Pik
_ Bo B Hye  Kyp _ S Fae o T
M = B =
Ba Ene By Ky Cac T e Ia
Bae  Ba M Kk S Fae Tae Tux
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(86)

in equations (84) X is the unknown column vector. Each element of X

is itself a 4-element column vector defined:

u

v

T

g in equation

fined by:

Slk
S

_ 2k

BT
3k
S
4k

mtl, k
m+l,k
ml, k

Pt k

(87)

(84) is a known column vector whose elements are de-

(88)

Writing the equations for 2 < n < N-1 (see Appendix G) 4N-8 equations

in 4N-1 unknowns are obtained, i.e.,

£
Untl,n’ Vml,n’ ‘mbl,n T°F
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1 <n<N and Pm+l,n for 2 <n < N. After applying the three boundary
conditions at the wall (n=1) and the four conditions at the edge of
the boundary layer (n=N), an additional calculation for the pressure
at the wall is needed in order to obtain the density at the wall
through the equation of state. The induced pressure at the wall is
calculated by applying the r-momentum equation at the wall to obtain
the pressure gradient and using a two-point differencing scheme the
wall pressure can be determined and hence also the density at the

wall, A detailed derivation of the expressions for calculating the

pressure at the wall is given in Appendix H.

Method of Solution

Using the technique for block tridiagonal systems the block
tridiagonal matrix M in equation (84) is decomposed into:
M= LU (89)

where L is the lower block diagonal matrix, and U is the upper block

diagonal matrix. L and U are defined by:

‘A2 0 0 0
133 K3 0
) 0 '154 34
L =
0
51\1-2 KN—Z 0
0 BN—l KN-l (90)
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and
I N
9 9 0 0 0
0 13 N3
U =
Ina M3 O
Ino Myo
(91)

By comparison of the corresponding elements from both sides of
equation (89) the following relationships are obtained:

by =M,y

. _ _.l -

Ny =47 By (92)
and:

A =M -DN 3<n<¥-1

n n n n-1 - -

- - =1 =

N =A E 2 <n < N-2

n n n - -
The method for solving equation (84) is then to write it as

X =g (93)
or letting UX = W (94)

Equation (93) becomes:

v =g {(95)
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The unknown vectors ﬁn are solved as follows:

- ....1..

W, =4, ¢

W o= Zf'l(' -DW ) for 3<mn < N-1

n n gn n n-1 or o=z (96)

After solving for ﬁn’ the required unknown §n vectors can be obtained

using the following procedure:

X-1 7 My
o T T Nfan N-2 >n > 2 (97)

By underrelaxing the solution vectors the coefficients of the linear
difference equations are updated and thus the iteration procedure

is continued until convergence of the solution vector is obtained.
The equation for the underrelaxation procedure is:

X =X +0 X - X ) (98)
n oLp ONEW 1oLD

where @ is a positive number that is less than one. Most calculations

were performed with % 0.75.

F. Numerical Results

Numerical solutions using the second-order inner region pro-
cedure have been obtained for a) the compressible laminar boundary
layer on a flat plate over the Mach number range from O to 4, b)
the compressible laminar boundary layer on a 20 degree half-angle
cone at a free steam Mach number of 2.8, ¢} the compressible laminar
boundary layer over the waisted body of reference 8 also at M_= 2.8,
and d) the turbulent boundary layer on a flat plate at M_ = 0.

The laminar cases were computed for Pr = 0.72 and Sutherland viscosity.
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To get the inner region solution started on its march down-
stream, data are required along an initial station in addition to
the specification of boundary conditions. 1In the present system of
equations, profiles for u, v, T and p must be given. For the pre-
sented laminar cases which all begin with nearly zero pressure
gradient, the Blasius solution corrected for compressibility through
the Howarth-Dorodintsyn transformation and adjusted when necessary
for axial symmetry by the Mangler transformation has been used. The
temperature profile has been obtained from the velocity profile
using the Crocco integral and the induced pressure had been assumed
to be zero across the boundary layer. Once the u, T and p profiles
are known, the initial v profile is obtained by integration of the
continuity equation. Sometimes, particularly at high Mach number,
iteration of these approximate initial profiles is required in order
to proceed downstream in a stable and convergent manner.

a) Laminar Flat Plate: The results obtained for the flat plate

are in excellent agreement with classical boundary layer solutions.
This is quite understandable since curvature effects are unimportant
in this case. Nonetheless the present program is in physical co-
ordinates and also gives direct calculation of the normal velocity
distribution. In figures 19 and 20 the longitudinal and normal
velocity distributions at M = Q0 are seen to be essentially in-
distinguishable from their Blas%us counterparts. Similarly for the
variation of the normal velocity at the edge of the boundary layer

at M = 0 (figure 21), except for a small blip at the beginning

e TR TR TR
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indicating an initial datum line defect which however is damped out
immediately. With increase in Mach number the calculation procedure
yields convergent, smooth normal velocity distributioms. The vari-
ation of their edge values with distance along the plate at different
Mach numbers is shown in figure 22. The induced pressure distribution
is very small in this case as expected.

The skin friction coefficient, form factor and displacement
thickness distributions along the plate are shown in figure 23 for
M_= 0 for a range of unit Reynolds numbers and are seen to be
indistinguishable from the similarity solutions. The very very
slight differences are attributable to the different viscosity laws
used, i.e. a linear viscosity temperature assumption in the Howarth-
Dorodnitsyn stretching of the similarity solution as compared to the
Sutherland viscosity relation in the finite difference solution. The
same information at a Reynolds number of 1.5 x lO6 but at
Mach numbers up to 4 is shown in figure 24. These results again
show good agreement with the similarity solutions.

b) Cone: As a first axisymmetric example, numerical solutions
for the compressible laminar boundary layer over a 20 degree half-
angle cone, were obtained for a free stream Mach number of 2.8. The
normal velocity at the edge of the boundary layer is given in figure
25 which indicates that a stable and convergent solution has been
achieved. - As shown in the normal velocity has a negative sign for

this cone angle indicating that the streamlines are directed into

the surface whereas in the case of the flat plate or more slender cones
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the edge streamlines are directed away from the surface. The skin
friction coefficient along the surface is given in figure 26 in-
dicating that a stable and convergent solution has been achieved.

c) Laminar Flow over Waisted Body: The compressible laminar

boundary layer over the waisted body of revolution of Winter, Smith
and Rotta (reference 8 ) has been calculated for M= 2.799.
Curvature effects, lateral as well as longitudinal are pronounced
in this case.

Variation of displacement thickness along the surface of M = 2.799
is shown in figure 27. The relatively large incréase of the dis-
placement thickness is mainly due to longitudinal curvature effect.
In figure 28 the wall skin friction distribution is given and is seen
to drop quite rapidly after X/LREFQL 0.30. The normal velocity dis-
tribution at the edge of the boundary layer is shown in figure 29.
On the conical part of the waisted body the normal velocity is negative
while further downstream the normal velocity at the edge changes
sign due to curvature effects.

The pressure distribution across the boundary layer is shown

in figure 30 at three stations: X/LR = 0.1125 on the conical part,

EF

X/L =0.325 near the maximum diameter and at X/L

REF RE

after the inflection point of the surface. As shown the normal

F = 0.450

pressure gradient in the conical part is quite small whereas near
the peak where curvature is pronounced the difference in wall press-
ure can be of the order of 57 of the inviscid wall pressure. Down-

stream at X/LRE = 0.450 the pressure distribution across the boundary

F
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layer changes due to curvature and differs noticeably from the

inviscid value.

d. Incompressible Turbulent Flow Over Flat Plate

Numerical solutions have been obtained for the incompressible
turbulent boundary layer over a flat plate using the two layer model
for eddy viscosity. 1Initial profiles were generated using the law of
the wall as formulated by Walz (reference 20) in terms of the follow-
ing three algebraic relations corresponding respectively to the
laminar sublayer for y+ < 4, a transition region for 4 < y+ < 26,

and the logarithmic law for y+ > 26.

—ay+
ut &y

cg In(l +y+) +c, + [(1 - c, - cz'a)y+ - c2] e

2 1

4 < y+ < 26 (100)

ut

clﬂn v+ + ¢ y+ > 26 (101)

2

In these expressions

ar = &
Ur
= gk
y+ =y uT/v
u_ = /TW/p

The constants c.,

1’ S and o in equation (100) are taken as 2.50, 5.10

and 0.3 respectively.
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All the following results are for a reference Reynolds
number of 1.588 x lO5 . In figure 31 are shown distributions of
skin friction coefficient, displacement and momentum thicknesses as
well as edge normal velocity. The skin friction coefficience compare
well with the Karman-Schoenherr relation as given in reference 21.
Some oscillations are seen in the beginning of the edge normal velocity
distribution but these rapidly die out. Obviously the initial
datum line has some inconsistencies with the difference equations.
Any such deviations in the initial data show up immediately in the
normal velocity and induced pressure profiles. The displacement and
momentum thickness distributions generally behave as expected.
Figure 32 displays the u and v velocity profiles along the plate.
The u-profiles that were calculated are as expected while for the
normal velocity profiles a slight oscillatory character can be

seen in the first three stations.

G. Convergence and Stability

The objective of this section is to list some of the major
difficulties that have been met while trying to solve the non-linear
partial differential equations that were replaced for solution by a
system of linear algebraic equations using an implicit finite
difference scheme.

It seems that in a complex system of non~linear partial diff-
erential equations such as developed herein for the inner layer, it

is quite difficult to estimate stability criteria in closed form
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by applying the VonNeumann method or some equivalent numerical sta-
bility analysis. Also when the solution becomes unstable it is
difficult to trace the cause for that instability. Therefore only
by trying different grid sizing and different weighting coefficients
AC, Au’ AV, AT and Ap’ have regions of stable calculation been found.
The accuracy of the numerical solution has been checked with cases

for which exact solutions exist.

Continuity Equation: It has been recognized that the continuity

equation written as a central differencing in the ¢ direction may
lead to strong oscillations or even to divergence because of the
boundary condition at the wall for the density or pressure (reference
22). One way to overcome this oscillatory behavior is to add amn
artificial eddy viscosity term into the continuity equation. In

the present analysis however, a weighting factor of Kc = 0,85 gives
well behaved results (see Appendix F). Figures 33, 34, and 35 shows
the normal velocity at the edge of the incompressible laminar
boundary layer along a flat plate for A% = 0.50; AC = 0.85 and

Ac = 1,20 respectively. For AC = 0.5, the solution is clearly
oscillatory and with increasing amplitude of oscillation. The
solution for AC = 1.20 (figure 35) is overdamped. A value of

AC = 0.85 is nearly optimal since only slight overdamping is seen
for the first two stations and further downstream the results are
the same as for the exact solution. The oscillatory behavior for

A = 0.5 is also maintained for the compressible boundary layers.

Cc

A representative result at Mc0 = 0.5 is seen in figure 36. All inner
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layer calculations other than these stability and convergence tests
were performed with Ac = 0.85.

The solutions of Reyhner and Flugge-Lotz (reference 4) which
utilize central differencing (Xc = 0.5) display the same oscillatory
behavior as seen in figures 33 and 36. For the purposes of inter-
active calculation their edge normal velocity distribution was taken
as the average of the peak-to-peak oscillations. They did not succeed

in obtaining a smooth longitudinal variation of edge normal velocity.

Pressure

It has been recognized and reported (references 19 and 23) that
departures from the proper solution can occur as a result of the
(5p/%E) terms in the & momentum and the energy equations. Besides
in the present system there is an additional pressure gradient term (3p/3%)
in the z-momentum equations and in the energy equation. It is found
that these departures can be controlled by splitting the pressure
as follows:

p(E,0) = pEXT(g) + PI(E,C) (102)
where PEXT(E) is the external pressure imposed on the viscous layer
by some outer region solution and pI(g,g) is the induced pressure
which is generally small compared to pEXT(E).

Basically two options are used for calculating the pressure
gradient in the £ direction. They are:

a) a centered difference for point A (see figure 18)

2p -
2(5,0) = 5

+ (p -p )/A<Sm+l
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EEE.XT(E)

]2

is the unknown induced pressure.

where: is a presumably known function and Pt mlon
5 3

b) The induced pressure gradient is taken as the gradient of
average induced pressure across the boundary layer as follows:

§

By g 1f
3 BELS . PIm+l n(P;,?;)dl;] ‘

In this option the induced pressure gradient is a known function
which depends on the updated induced pressure distribution across

the boundary layer. Both of these options have been used successfully
in the present calculations. There is no clear preference among

them at this time.

ap
For each of the above-mentioned options for *—l, the -

9F
derivative of induced pressure was treated in several ways:

a) a centered-difference scheme accurate to order of
(A%1$ and for which a stable solution could not be achieved. In
marching downstream a growing oscillatory behavior developed that
could not be controlled.

b) a backward difference scheme which includes two-point differ-
encing accurate to order of (Acn). With this option stable
solutions have been obtained.

¢) a forward difference-scheme which includes two-point differ-
encing accurate to order of (Acn). Also here stable solutions
have been obtained. Tﬁe forward differencing is preferred since it

is most convenient for matching when the inner region solution pro-

cedure is used in interactive calculations.
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Grid Size: From experience with the program, it has been

realized that careful selection of Ag

Y and Acn must be made in

order to obtain stable and convergent solutions. The choice has an
upper bound as well as a lower bound. Roughly speaking taking

A€m+l of the order of 4 to 5 times ACN will give stable solutions.



CHAPTER IV

INTERACTION PROCEDURE

In the interactive mode, following the suggestion of Ferri and
Dash (reference 6), the inner and outer regions are matched at
grid points where the Mach number is approximately 1.2 (figure 37).
The matching procedure is however differently structured.

In order that the computer programs for each region interact
properly, the two programs have been restructured and written in an
overlay mode. Namely the computer program is divided into segments,
a main segment and other segments of lesser heirarchy comnected to
the main segment like branches of a tree. Thus when the main segment
calls for a program in a particular segment of iesser hierarchy all
other segments of equivalent lesser hierarchy are ignored and only
this segment is in the operating mode for use. Overlay operation
is needed mainly for three reasons: a) to reduce the need for
storage capacity b) to eliminate the rewriting of the program
because of the similar name variables in the two programs, and c)
for convenience, while calculating one of the regions, the computer
program for the other region is not needed, and therefore can be
stored in a scratch file.

A general flow diagram for the interactive mode is given in
figure 38. Flow diagrams for the component outer region and inner

region programs are shown in figures 39 and 40 respectively.

57
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A, Initial Datum Line

In order to start the numerical calculation in the interactive

mode, an initial datum line is required which must be consistent in

an interactive sense between the inner and outer regions. For con-

venience the initial datum line has been fixed in a region where

the cone flow solution is still valid. Accordingly the procedure

for creating the initial datum line for axisymmetric flow is as

follows:

The procedure

station.

Calculate the "inviscid" flow field using the outer
region program.

Solve the inner region flow field using edge
boundary conditions taken from the outer region
solution of step 1.

At a station sufficiently downstream of the apex such
that the inner region solution is well behaved,

the Mach number 1.2 location is determined within

the inner region and the slope of the local
streamline (tanb ='§) is obtained.

At the station chosen in step 3, the outer region
is recalculated using the Taylor-Maccoll equations
with the slope of the streamline at the inter-
face of the two regions (from step 3) taken as a
boundary condition in place of the usual surface
slope. Thus the shock angle and the flow field
variables are changed slightly doe to the inter-
action.

The portion of the outer region profile from
Mach number 1.2 to the edge of the boundary
layer was scaled in order to get continuous pro-
files of the flow variables for this portion

of the outer region. This was done simply by
multipiying the outer region profile by a
dimensionless form of the inner profile.

then gives complete information al the initial datum
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B. Matching Procedure

The matching between the inner and outer regions requires an
iterative procedure. The matching conditions are continuity of the
flow variables u, v, T and p. Discontinuities in the derivatives with
respect fo ¢ of the flow variables about the matching grid points are
due to the use of different numerical procedures on either side of the
match points and to inconsistencies of order (6/LREF)2 or higher in
the systems of equations describing the two regions. The numerical
results indicate that these discontinuities are very minor. Referring
to figure 37, the matching grid points A and B are in the transonic
regime where the Mach number is of the order of 1.2.

Point B is chosen at the intersection of an extended streamline
through point A and a normal to the wall at station (m+1l). The
slope SB of the streamline at point B (station mtl) is assumed
initially to be equal to the streamline slope BA at point A
(station m), where the flow variables are all known. The flow vari-
ables Up, Vp» TB and pp can be determined from information at point
C (station m) using the boundary point procedure of the outer region
program,

The inner region can now be calculated for station m+l using

the following converged data for point B as "edge condition":

% (m+1,N)
T (w+1,N)

P (mt1,N)




Using the normal velocity gradient at the edge of the inner region
as determined through the continuity equation, a new normal velocity
VaI for point B is obtained from the inner region solution. The
new normal velocity is used to correct the slope at B to:

Y
-1 BT
eB = tan T (103)
NEW Up

with the new stream slope for point B the entire process is repeated
until convergence is obtained for the flow variables at point B.
Following this, the flow field in the outer region at station mtl
can be solved using the outer region system thus completing the
calculation for station mtl.
C. Numerical Results

The interactive program has been applied to two examples: a)
a supersonic flow over a 20 degree half angle cone at M = 2.80 and
b) supersonic flow over the waisted body described in reference 8 also

at M_ = 2.80. Both cases were for compressible laminar flow.

a. Cone: Numerical results for the wall static pressure are
very slightly different than the inviscid flow field results as ex-
pected for this weakly interactive caée. The difference of the shock
angle between the interactive solution and the outer region solution
is shown in figure 41. A slight oscillation is noticed at about
x/LREF“‘ 0.3.

b. Waisted Body: Variation of static pressure difference

relative to the inviscid static pressure is shown in figure 42 for the

interactive and inner region solutions. The inner region solution

e S o



61

shows the reduction in surface pressure due to longitudinal curvature
effects. This reduction is restored by the displacement effects in
the interaction solution.

In Figure 43 the Mach number profile from the interactive
calculation is compared with the separately calculated inviscid and
boundary layer profiles. The interactive profile is reasonably
continuous in slope at the matching line between the inner and
outer regions. The interactive calculation indicates a larger skin
friction than the boundary layer calculation and the approach to the
inviscid Mach number distribution is slower than one would expect
from comparison with the non-interactive boundary layer profile.

It is suspected that this solution is not fully converged to the
weak interaction solution.

Nevertheless, the interactive program does work and the
indication from these results is that more experience is required
in starting procedure, choice of matching location and convergence

criteria to make the program fully useful as a design tool.




CHAPTER V

SUMMARY

A method has been developed for analysis of viscous-inviscid
interactions in supersonic flows. The outer supersonic region of the
flow field is represented by a two-family method of characteristics.
In the present scheme, inclusion of viscous and conductive terms in
the formulation allows calculation of the supersonic portion of
boundary layers and the tracing of wave reflection within those
supersonic regions. It has been ghown that shock wave patterns can
be altered by inclusion of the correction terms. The inner region
is handled by a second order boundary layer system that includes
longitudinal and transverse curvature effects and a normal momentum
equation. This nonlinear partial differential system of equations
of parabolic type have been solved numerically in the physical plane
by replacing them by a system of linear algebraic equations using a
modified Crank-Nicolson implicit finite difference scheme. The
nonlinearity of inner region equations was taken into account by an
iterative procedure until the difference between the flow variables
for successive iterations is as small as desired. Generally 4 to 10
iterations are needed to get a convergent solution. This depends:

however on the accuracy of information on the initial datum line.
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An interesting and useful byproduct of the present work is the
experience gained in overcoming the difficulties of obtaining a stable
and convergent solution for the coupled parabolic non-linear partial
differential set in the inner region. Other investigators have
encountered these difficulties even for less complicated systems of
equations. They overcame the difficulties either by decoupling the
equations, i.e., solving the equations successively or by arbitrarily
smoothing the oscillatory results. It has been recognized by other
investigators that the terms involving the pressure gradient (3p/3&)
lead to instabilities in the numerical results. Besides in the present
procedure an additional pressure gradient (3p/d3z) appearing in the
r-momentum equation and energy equation is another source for causing
numerical instabilities. It is found in the present work that the
numerical instabilities can be controlled by splitting the pressure
into PEXT(E) and an induced pressure PI(g,g), where PEXT(g)’ the
"external" pressure is obtained from the outer layer solution pro-
cedure. The ¥ derivative of the induced preséure was treated by a
two-point backward or forward difference scheme that leads to a
stable and convergent solution. A centered difference scheme would
lead to an unstable solution. Also it has been recognized here that
the continuity equation which is a first order differential
equation when written as a central differencing in the Z direction
leads to strong oscillation and divergence of the numerical solution.
In the present work a weighted differencing scheme has been used.

The oscillatory behavior that was particularly pronounced in the normal
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velocity has been damped out by choosing a proper weighting factor.

Numerical results obtained herein for compressible laminar
boundary layers agree very well with exact solutions. Numerical
results for the waisted body where longitudinal curvature is important
leads to pressure variation in the normal direction across the boundary
layer. The wall static pressures differ by as much as 5% f~om PEXT'

In the interactive mode the matching between the inner and the
outer regions requires an iterative procedure. The normal velocity
is the key parameter for matching the two solutions in the transonic
region where the Mach number is of the order of 1.2. Thus it is
important to get a stable and convergent inner solution for the normal
velocity. It is interesting to note that the innmer region solution
converges at a faster rate in an interactive mode compared to the
solution of the inner region in the non-interactive mode. The
matching procedure works satisfactorily and numerical results for a
20 degree half angle cone and for the waisted body of Winter, Smith
and Rotta at Moo= 2.8 have been obtained.

Supersonic viscous-inviscid interactive analysis is an important
area that has received only limited attention to date. The inter-
active procedure developed-herein should be quite useful in dealing
with supersonic flow fields where separation and strong-shock inter-
action effects are absent. Further work is required in order to make
interaction procedures such as the present one more encompassing and

versatile.




10.

11.

REFERENCES

Crocco, L., and L. Lees, "A Mixing Theory for the Interaction
Between Dissipative Flows and Nearly Isentropic Streams',
J. Aerospace Sci., 19, 649-676 (1952).

Lees, L. and Reeves, B. L., "Supersonic Separated and Reattach-

ing Laminar Flows: I. General Theory and Application to Adiabatic
Boundary Layer/Shock Wave Interaction', AIAA Journal, Vol. 2,

No. 11, Nov. 1964, pp. 1907-1920.

Klineberg, J. M. and Lees, L., "Theory of Laminar Viscous-
Inviscid Interaction in Supersonic Flow'", ATAA J., 7, 1969,
pp. 2211-2221.

Reyhner, T.A., and Flugge-Lotz, I., "The:Interaction of a Shock
Wave with Laminar Boundary Layer', Tech. Rep. 163, Div. Engin.
Mech., Stanford University, Nov. 1966.

Miller, G., "Mathematical Formulation of Viscous-Inviscid
Interaction Problems in Supersonic Flow', ATAA J., Nov. 1973,
pp. 938-942,

Ferri, A. and Dash, S., "Viscous Flow at High Mach Numbers with
Pressure Gradients', Viscous—Interaction Phenomena in Super
Sonic and Hypersonic Flow, University of Dayton, Ohio, 1969.

Ames Research Staff: Equations, Tables and Charts for Compressible
Flow, NACA Rep. 1135 (1953).

Winter, R.G., Smith, K.G., and Rotta, J.C., "Turbulent Boundary
Layer Studies on a Waisted Body of Revolution in Subsonic and
Supersonic Flow", AGARDograph 97, 993-962, 1962.

Syberg, J. and Hickcox, T.E., "Design of Bleed System for a
Mach 3.5 Inlet', NASA CR-2187, January 1973.

Walkden, F., Laws, G.T., and Caine, P., "Shock Capturing
Numerical Method for Calculating Supersonic Flows', AIAA J.
Vol. 12, No. 5, pp. 642-647, May 1964.

Van-Dyke, M.D., "Higher Order Boundary Layer Theory", Annual

Review of Fluid Mechanics Vol. 1, Annual Reviews, Inc.,
Palo-Alto, Calif., 1969, pp. 265-292.

65



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

66

Maslen, H.S., "Second Order Effects in Laminar Boundary Layers',
AIAA Journal, Vol. 1, No. 1, January 1963, pp. 33-40.

Seginer, A., '"Compressible Boundary Layer with Normal Pressure
Gradients. Quasi-Similarity Equations - Their Properties at
the Wall and at Sharp and Blunt Leading Edges', AIAA paper
No. 72-696 (June 1972).

Clauser, F.H., "The Turbulent Boundary Layer', Advances in
Applied Mechanics, Vol. IV, Academic Press, New York, 1956,
pp. 1-51.

Cebeci, T. and Smith, A.M.O., "Analysis of Turbulent Boundary
Layers', Applied Mathematics and Mechanics, Academic Press,

New York, 1974, pp. 215-217.

Van Driest, E.R., '"On Turbulent Flow Near a Wall", Jour. Aero.
Sci., Vol. 23, No. 11, Nov. 1956, pp. 1007-1011, 1036.

Bradshaw, P., Ferris, D. H., and Atwell, N.P., "Calculation of

Boundary Layer Development Using the Turbulent Energy Equation",

Journal of Fluid Mechanics, Vol. 28, Part 3, May 1967,
pp. 593-616.

Roache, Patrick, J., "Computational Fluid Dynamics', Hermosa
Publishers, 1972.

Lin, T.C. and Rubin, S.G., "Viscous Flow Over a Cone at
Incidence I-Hypersonic Tip Region", Computers and Fluids,
1, 1, pp. 37-57, 1972.

Walz, A., "Boundary Layers of Flow and Temperature', MIT
Press, 1969, pp. 115.

Schlichting, H., "Boundary Layer Theory'", Sixth Edition,
McGraw-Hill, 1968.

Peyret, R. and Viviand, H., '"Computation of Viscous Compress
Flows Based on the Navier-Stokes Equations', AGARD-AG-212,
Sept. 1975.

Lubard, S.C., and Helliwell, W.S., "Calculation of Flow on a
Cone at High Angle of Attach", ATAA Journal, July 1974.

Courant, R., and Friedrichs, K.0., "Supersonic Flow and Shock
Waves', Interscience Publishers, Inc., New York, 1948.



APPENDIX A

TRANSFORMATION TO STREAMLINE-NORMAL COORDINATES

The non~dimensional system of equations (7) to (11) written in
cartesian coordinates (X,y) is transformed to a curvilinear coordinate
system (s,n) where s and n are respectively the distance along a
streamline and the distance normal to the streamline. In this form
it is easy and straightforward to identify and retain the transport
effects such as viscous,;hear and heat flux only normal to the stream-

lines.

Transformation Relation: The transformation relations from cartesian

coordinates (x,y) to the curvilinear coordinates (s,n) are (see

figure 1):
. _ L
Yl cosB S sind ™
B gl 3 (a-1)
3y = ginb Py + cos6 o

Also the velocity components (u,v) in cartesian coordinates expressed
in terms of the velocity vector magnitude q, and flow direction, 6,

are:

[=]
il

q cosb

q sinf (A-2)

<
i
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After substitution of relations (A-1) and (A-2), the governing
equations (7) to (11) when simplified and expressed in curvilinear
system (s,n) are:

Continuity
9 o 3 o 3 o]
— - : —— + . - :
cosH as(pq cosB y ) sinf an(pq cosby ) sinb as(pq sinfy )

+ cosB %H(pq sineyo) =0 (A-3)

Expanding and rearranging the terms, the resulting equation is:

) 30 opqsind
— + —
. (pq) + pq o ¥ (A=4)

Longitudinal momentum

9 - aing S
pq cosO[cosb as(qcose) sinb an(qcose)]

) L)
+ T " ——— + s
pq sin®[sinb aS(qcose) cosb ; (gcosB) ]

= - 1 [cos® 3p _ sine'ga] +.K6 (A-5)
2 3s on 1
Y¥ReF
R . 9% 3% | 2
Considering an ordering procedure, ngfggf is of the order of (§/L)",

therefore terms of this order are neglected in the present analysis.
The resulting expression is:

20, = =L cose —2uy’eose
AQl - ReREF{yO cosb Bn[uy cosf an(qcose)]

s O riaing O . -
+ sinb an[u51n6 an(qcosB)]] (A-6)

Expanding equation (A-5) and rearranging terms yields:

pq %g(qcose) = - % cosb %§~+-——l-— sin® %§-+ AQl (A-7)

2
YMppr MpEr
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Normal momentum

9 . R B
pq cosBcosH as(qs:Lne) sin® Bn(q51n0)]

+ pqsinB{sind %;(qsine) + cosH %;(qsine)]

1 . ap 8p _—
= - + -
> [sinb < cosb an] + AQ2 (A-8)

YMppw

where:

-— 1 ) )
AQ2 = {l;'cose Eg[uyccose S;(qsine)]

Repgr v°

I T _
+ sinb anlu51n6 an(qsn'le)]} (A-9)

Expanding and rearranging yields:

pq g—(qsine) = - sin6 op _ 1 cosbH §E~+'K6 (A-10)
9s YMﬁE 2s YMé on 2
F EF

Energy

For the simplified thermodynamic assumptions used herein, namely

Pr k
«©
CP
PREF _ 1, -k
C
P

o)

the energy equation becomes:

oT oT 9T T
—— ] Phudivaty + * 1 Pooviady + —
pqcos6 (cosH Y sinb an) pgsinb (sinbd Y cosb an)

=1 3B _ 2106 PPy 4 geind(sind 2P 4+ cosp 2B
5 [qcosB (cos® oS sin® Bn) qsinb (sinb oS cos an)]

= AQ, (A-11)

where:
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- 1 1 ] o oT 9 9T
AQ, = ————{= cos8 [y ncosd —] + sin® —[usin® —I]}
3 PrREFReREF 3O an on on an
2
(y-1)
)
+'§“-——§ggg{u[cose —(qcosf) - sin® g--(qsiné))]z
e on on
REF
+ 2u[sin26(gg(qcose))2 + coszﬁfgg(qsine))z]} (A-12)

Expansion and rearrangement yields:

BT _ (y=1) _ 3p , 5= -
T s T A (A-13)

Upon multiplication of equation (A-7) by ¢os6 and (4-10) by sin®

and then adding the equations, the following is obtained:

0 1 9
Pt T e = A
MeEw
where:
Ql = AQl cos® + AQ2 sinb (A-15)

Multiplication of equation (A-7) by (-sin6) and (A-10) by cos® and

then adding the equations yields the following:

2096 , 1 3p_ _ _
e B ) (A-16)
M Ew
where:
Q2 = ginb AQl - cosb AQ2 (A-17)

The energy equation becomes:

ST  (y-1)  3p _

2
P9 s y  Yos T DMpgpQy (4-18)

where:

— 2
Q3 = AQy/ (y=DiMp,
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terms

The correction terms Ql’ Q2 and Q3 dué to viscous shear and heat flux

which are

considered as source terms in the method of characteristics

solution of the system of equatiomns (A-4), (A-7), (A-10) and (A-13)

can be simplified in the following way:

Ql - term

Q =

Expansion

cose<K6i + sinB‘Kaé

cos® 1 3 r g 3.
{ 0cosS an[uy cosb an(qcose)]

Reppr v :
in6 —[ysind <= (qcos8)]}
sin an Hsin an QCOS

sinb cosb 9 o ) 3 3

B R S fqad . o _ . .

Re { o an[“y cos® an\q31n9)] + sin® an[uslne 3;(q51n9)]}

REF y
(A-19)

and cancellation of terms reduces the expression for Ql to:

2
1 .3 , 89y ,ocosbu 39 _ . 88 oudq . 2
ReREF{ E)n(l'I 8n> + v an “q(an) y 9n sin"8}

(A-20)

sinG;Kal - cose-zaé

sinb {l_

Re a

cos? %H[uyccose %—(qcose)]
REF ¥ n

cosb cosB 9 g ) .
—e s s — e
o { 5 Bn[uy cosH 5 (gsind)]

sin® g—{usine %—(qcose)} -
n n REF ¥

R S R _
sin® 3n[u81n9 an(qs1n6)]} (A-21)
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Expanding and rearranging the terms yields:

3
___1 . 29230 3 . 38 _ guqcos’6 36 _
Q =~ Re tu 9n dn + an(“q on’) T y Bn} (4-22)
REF
Q3 - temm
1 cosf 9 o 3T .9 oT
E_Q, = { —[uy cos® =] + sinf —([usind —]}
REF 3 PrREFReREF yc on on an on
2
-1)M
-QX—EZ¥EEEE{[cose-9—< cos8) - sin “—(qsind)]>
et ReREF 3n q 3n gsin
+ 2[sin26€§;(qcose))2 + coszeégz(qsine))z]} (2-23)
Expansion and rearrangement yields:
2 - 3
(Y—l)MREFQB TP lR {§—<u %io + SR : gI}
rREF eREF n n y n
2
(le)MRE 2 2
F, 9g 2,360
(D) + 20 ()}
ReREF on on

(A-24)

The Ql’ Q2 and Q3 are correct to order (§/L).




APPENDIX B

METHOD OF CHARACTERISTICS

The characteristic equations are derived here for steady viscous
compressible rotational two~dimensional or axisymmetric configurations
in supersonic flow. The independent variables chosen are the static
pressure, p and the streamline direction, 6.

For convenience equations (12) to (16) are repeated here as

(B-1) through (B-5).

Continuity
8 98 fodel}
+ = - i -
P (pq) Pq o - sin® (B-1)

S—momentum

2q

op _ \
Pd g ¥ 2%~ 1 | (B-2)

I
2
Meer

n—momentum

290 , 1  3p_

Pa 5o M2 o ~Q2 (B-3)
YMREFR
Eneraz
(v-1)
oT _ BP _ (ve1)MP
P4 s T 9 5e = DM, (B-4)
Equation of state
p = pT (-5)
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Equation (B-1) can be written as follows:

ap +_l_§g +_§g _ _ Osinb

1
p os q oS on y (B-6)
Equation (B-2) upon dividing through by pq2 becomes:
. Q
_1_'_ .8j~ = l — l l _B_R (B"'7)
q 98 2 2 2 3s
The equation of state in differential form is:
109 _ 13 13T .
p oS pos T 9s (8-8)
and upon dividing through by pqT the energy equation becomes:
2
187 _ (r-L)Mppp q 4+ =D 1 %p (3-9)
T 9s pqT 3 vy pT 9s
Substitution of (B-7), (B-8) and (B-9) into (B-6) yields:
2
Lap O s 1) (+-1) 1 3p, , 1 1 1 3p
L2 Q, + } + L5 -
p ds pqT 3 Y pT 9s 2 2 2 3s
Mrer P9
+_Q§'= _ osin
an y
or 2
. (y-1) Q
1 ap (Mz—l) +._g - _ Osin® MRE]LQ _ (B-10)
v 2 0 2 38 on y pqT 3 2
MREF q pq

In order to obtain the characteristics the following system con~
sisting of equations (B-10), (B-3) and identities for the differentials

dp and d6 must be solved:
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2
a’-1) s + 28 osing , ("DMppp Y
2 2 3s dn y pqT jQ3 2
MREF Pq
1 9 2 38
2+ pg” £ = -0
2 an s 2
MEF
P g +22 4y = dp
d d
36 30 _
™ ds + o dn = db
(B-11)

The characteristic curves must satisfy the following relations:

2
_(.M_z_"_l)._z 0 0 1
1 2
0 5 pq 0
M Er _
=0
ds dn 0 0
0 0 ds dn
(B-12)
|2 (-1)M2_ Q
(-1) 0 0 (osind "Rerds Ql]
2 q2 y pqT 2
Mo EF |
1 2
0 > pq -Q2
MrEr
ds dn 0 dp
0 0 ds doe

(B-13)
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Upon expanding equation (B-12) the equation of characteristics is

obtained:

dn y
—_—= —
s *tani (B-14)

where:

A= sin—l-% is the Mach angle.

The compatibility condition is obtained by solving equation

(B-13):
2
dp do + [csine + Ql _ (Y_l)MREF Q
vp ~ sinlcos) y pqz pqT 3
2 .
g MREF81HA] dx .
2 p cosAicos (6f1) (B-15)

The + and - signs correspond to C+ and C- characteristic lines res-
pectively.
The non-dimensional form of the entropy relation in terms of

temperature, T and the pressure, p is:

__Y 4T _dp _
ds D T . (B-16)

where:

The viscous shear and heat flux lead to entropy changes along a

streamline. Using the energy equation (B-4):

2
I (v-1) 1 3p

8s 0q Y p 3s
. Thus:
>
(Y—l)M2
a5 _ vy 9T _138p _ [ REF Q +.£1212__£.§E]_ 139p
ds (y=1) T 3s p 3s (y-1) pTa 3 Yy pT 3s” p 3s
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or upon further reduction

2
as _ CTMMewr | e (B-17)
ds Pq 3 pqa 3

The variation of stagnation temperature, ’I'S along a streamline

as derived from the energy equation (B-4) and s-momentum (B-2) is:

2 2
dT (\(—l)VLR (Y—l)M'RE
s _ " REF — " REF -
ds pq Q3 + Ql P (B-18)




APPENDIX C

CONXCAL FLOWFIELD

The conical flowfield is derived for steady, isentropic, and
irrotational flow with cylindrical symmetry about the x-axis
(reference 24). TFor the mathematical construction of the comical
flow pattern, since there is no length scale, all flow variables
depend only on the ray angle from the apex or on the ratio:

- X -
w - (C-1)

The differential equations used for this potential flow are:

dv _ 3du ] ) _
2% - dy (irrotational flow) (C-2)
u2 ou uv ov v2 v v
Cc C c
and
Y-1y, 2, 2 2 2 _ 2 _
(Y+l)(u +v7) +(Y+1) c Cy (C-4)

where u is the velocity component in the x-direction, v is the
velocity component in the y-direction, c is the local speed of sound
and c, is the critical sound speed.

Expressing the equation in terms of w equatioms (C-2) and (C-3)

become respectively:
v Ju
w Yo T 0 (c-5)

and
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2 2. 3u V.2 20 v 2
(c u) W™ 2uv e (¢ v) w o +cv=0

(C-6)

Clearly this pair is equivalent to one equation of second order for

one function only. Equation (C-6) assumes a particularly useful
form when v is introduced as a function of u. Thus from (C-5):

v
ow _ 9V -
w—~_a_g~ ™ c-7)
ow
Differentiating (C-7) with respect to w
_ _ 9 ,Ovy _ _ 09 ,dvy 3u
1= ow (Bu) Bu(au) W
or
ou - - 1 (c-8)
oW a2
o v
auz
Substituting (C-8) into (C-5) yields the relation:
3v
§_Y.=_._3_u_ (C-9)
® 2
9V

Introducing (C-7), (C-8) and (C-9) into equation (C-6) leads to the

following particularly simple form of the Taylor-Maccoll equation:
dv

2 ——
v _ 8vy"_(utv 3u) -
AT 1+ (Bu) > (c-10)
c
2
Eliminating ¢~ by means of equation (C~4) yields:
2
Y41 v
du _ 5V ) Cutv )
v =1+ (=) -
ov du 2 =1, 2 2
C, = ¢ +l) (' +v) (c-11)
14

Along the cone surface the flow has the direction of tne ray

traced by the cone in the %,y plane and thus:

< e
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= - 4 -
i (C-12)

The conditions to be satisfied along the conical shock (reference 24)

are given by:

2
c
= (1 - =L 2 = -
u (1 Y+l) q, cos BSH + a, (C-13)
and
v = (qo - u) cothSH (C-14)

where q0 is the dimensionless free stream velocity and BSH is

the conical shock-angle. In addition the initial slope along the

shock is given by:

3 u-q (C-15)



APPENDIX D

DIMENSIONAL ANALYSIS OF INNER REGION EQUATIONS

The highly viscous flow in the inner region is assumed to be
steady, compressible, laminar or turbulent, two-dimensional or
axisymmetric flow over an adiabatic or non-adiabatic surface. The
gas is assumed to be perfect. The system of equations is that pre-
sented by Maslen (reference 12) consisting of continuity, com
pressible Navier-Stokes and energy equations. The equations are put
into curvilinear coordinates (&*,z*) in which £* measured along the
surface and * is measured normal to the surface. The equations

in dimensional form are:

continuity

) ) *
SE;(p*u*r*o) +'52;[p*v*r*c(l +'§;)} = Q (D-1)

g—-momentum

p*u* —aa‘lg‘i + p*v*(l + éz) du* + p*u*v* + ap*

oC* R* 0EF

. ov¥

2ur T ogr
9c* R*+r*

1 3 o)
= .0 RF(RECE) pprl T (REF 0F)
Tr

du*
2 3 ] 9E* 2u*g R¥*+r*
+ — -——[u*r* ( )] - £M70 (———-C

) (u*sin® +v*cosH )sinbd
w W W

r*o aL* R*+z* r*2 R*
Ju¥*
R* — + v*
2 3 AE* dvd | opk .
= * 4 pk ——— 4 (% 6 +v* (5]
3 BE*[ ( REAL )+ BTk G(u sinb +v*cos w)]

r*
(D-2)
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Z*—momentum

2
R* dv* v p*u¥* op* 2 9 o ov*
prU* o R DER Rk T RAGLR *x F ke (REr)—
R*+TH BE OLK T RMTE T BTK 0 py ey 08 oL
Ju¥ v
% SU% * x VT _
_ 2ux (R gew v g4 R D_p s (20X R* Sex )1
R*4TH " REHC (R¥+T¥) 40 9% Lk | RE4ZH :
du¥*
R¥ — + v
2ukg Feas 2 3 9E* avE
- + vk - £ + %
r*z cos%ﬁu s1n6W v cos6w) 3 BC*[ ¢ R*FCR ) arF
(u*sinew + V*cosew)
+ u*g - ] (D-3)
energy
p*u*R*  9h* + pkyk oh* _ (¢ R¥u* [p* vk @Pf_)
(R¥+c%) pex P70 gk S (RMHCE) JEX ar*
x9,% oh* 50y % 20%
S Rl TN B . — BE%,
- ar* Pr* - (R¥+L*) g% Pr¥(R*+r¥)
2
* *
, 3h% I YL
S aer e, Mee T
Pr¥ (R¥+C*) ack R¥+CH
vk
R*% —— -u
20 . 2 Jdu¥ oE*
£0 ok %
+ r*z(u 51n6w + v cosew) + (BC* Ré4CF )
ou*
R 225 4
2, QE* Av¥® o) . 2
- — + —(u* + v* D~
3¢ RA+TH STk r*(u 81n6w v cosew)) ] (D-4)
Equation of state
% = A*RT*

In these equations, the angle ew is the local slope of the axisymmetric

body relative to the normal to the axis coseW =

dr#

= arx and R*

is the longi-

tudinal rzdius of curvature taken as positive for convex surfaces (ref. 11).

Dimensionless Equations

Reexamining the equations of motion using dimensional analysis,

a set of equations is obtained constituting a higher approximation
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than the classical boundary layer for the inner region, since terms of

order unity and of order (§/L__..) are retained.

REF

The non-dimensional wvariables are defined as follows:

* * * * *
R e I R e IR e e B
REF REF REF REF REF
% * T% % *
P = ?—E.L.‘_z__; p= EQ__.; T = -I]-:———; h = h 3 U :—_U_._
REF REF REF REF EF MREF
(D-6)
The transformation relations are:
9 _ 3388 _ 1 38
* *
& & 3L LREF 9E
9 .9 9t _ 13
gk 3 ag* § 3¢ -7)

using the non-dimensional variables and the transformation relation,

the dimensionless equations are then obtained.

continuity
3 o, . 'REF “REF 3 5
Felpur®] + S5 AR fove¥(1 + 2= BT = 0 (D-8)
REF REF
By setting
VREF REF _ L
uErd

it is established that in conserving mass, the normal velocity is of

the following mangitude compared to the longitudinal velocity:

s
= ) (D-9)
VREF = “REF Lepr

Thus equation (D-8) becomes:

i)“ﬁpurcy] + L[pvrc(l + 2 5] = 0 (D-10)
9f 3z LREF R
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The remaining equations are:

£-momentum

pugg”rpvu +——-——L A) + G : ) p;v+3%
REF REF
1 1 1 z
= 2 —[ur R 1+ — )(
: 2
= 8y Reppp (14 ——-—L‘S %) R BC LREF
REF REF
._.___6 - § %lg. _-1%) 6 v
Lrer LrEp 2 REF
+ N e T <—§————-—>1
(1+——-6———5) REF r (1+L )
L R REF
REF
- -Iz——z—— 9—;—(l + EL —1%) (usine + T § vecosH )sinew
®REF r REF ¥ REF v
v
( — )
o2 b ag Legr R
R
3Reper %6 (1 + 8 ECE)
REF
v
+ u — 5 +——(u51n6 + veosd )] (p-11)
t T REF w
Z—momentum .
' 5 (1 + ii——- '.é)
0 F
[p“%‘g’““ pv( 1+ ° 2 SZ] L - x +§% (5/LRE
REF REF REF)
_ 2 1 _ [urR(l+L6 5) av-
_ §_ Re ..t R REF

REF



energy

oh
pu 9E

o— + ———
2w ®®  lpppR 1 CE
RaREF R 1+ - § %) (LG ) ReREFrG 2E 2Z
REF REF
) v 8 u
p( ) — - —— uo
Legp 36 Lpgp R 2 I c6 (using
+ 3 1 — Re 2 w W
z REF
L+
REF
+ vcosf )(l +T—£)
REF REF R
3 8
A+ Get TR
2 REF 3—[11 REF s
5
’ ) Reppy ° @+ ig—) %
REF REF
(using + I g veos8 )] -12)
REF
42
-i-pv(l+L(S ;) 2h hREF[UE%+V(l+L—6——— )—-P-]
REF REF REF
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5 2
+ %(usinew + 7= veost )) ) (D-13)
REF w
where:
P u_ L
Re = —REF REF REF is the reference Reynolds number
REF u
REF
and u e
REF pREF
PrREF = —— is the reference Prandtl number.
KREF
In order that viscous forces be of same order as inertia forces;
2
1 S
S A (D-14)
REF REF

The non-dimensional equations of motion obtained by retaining
terms of order unity and terms of order (G/LREF) are now presented.

By using the Taylor series expansion for:
8 2
1 z $
—_—_— = - —— e e P—— —
- 1-7— -2+ 012 1 (D-15)

equations (D-10) to (D-13) become:

continuity
£ S
Sg[puro] +‘%Z[pur0(l +'£—“— 'ﬁ)] =0 (D-16)
REF
£—momen tum
ou -g-‘g‘ + vl + T 8 —I%) %‘é + -L——-S L—;V + %%
REF ‘REF

2
1 3 5 3
= 5 3 —a‘g[urch((l T 7&) g‘é
1+ = Drr? REF
REF
s 5
- AT ) (b-17)
REF REF
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Z-momentum , (14 .La____ _1%)
[pu—g% + pv(l 4+ 8 -I%) gz LG -2y gEF %P—
REF REF — &
“REF
8
- 2 e s T b B e 2
R “REF REF REF T
—‘%Cf—g‘) g—{u :2 + oy BV +-E— u81n6 ] (D-18)
REF
energg 2
pu %% +ov( + = -5 2 ah hREF[u —1§~ +v(1 +————L‘S 5)%1;-]
REF REF REF
§ r. 193 .ur’  oh § 1  uoh
- A+ g Ay, 84 uh
Lpgr R O 8% Prppp 387 Lppyp Prppp R 92
2
2
S UREF P 8 d 1
+ 1+ & p{(a—‘;)-2£~—~—§-‘§ }
REF REF REF 1+ —>— L -—)
REF

(D-19)

The energy equation in terms of temperature using perfect gas relation:

dh = cpdT . (D-20)
becomes:
g 2 S8z __P_ S & 3p
— 4+ pv(l1 + ) — - (y-1) + v(1 + ) ]
Y Lpgr R a; MREF Legp R 9T
13 T § 1 u3aT
-as-pHLier a8 1 war
LREF o 3L PrREF °z LREF PrREF R 3z
2 § u Ju
1y 8 T Ay’ -2 =22 (poa1)
DMy w{(@ - R Gp) Lper R 92

Rewriting equations (D-16) to (D-21) in terms of ReREF using relation

(D-14) yields:
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continuity
g-[ uro] +‘§~[ vrc(l + )] = 0 (D-22)
aE P sz P 1/2 R
REF
E-momentum
Qu 1 puv , 3p
pu 3 + pv(l + 1/2 R) - —i73 R + aE
®REF ®REF
_ 13 [ o Qu, 1 1 u3d
= oaglhr (¥ 1/2 ® 7] ~1/Z GR 3 sg0ur) (0-23)
CREF ®REF
C-momentum
2 1/2 1z, 3
1 T, 9v pu_ + Re___(1 + )
R1/2[°“3g+ pv(L+ 177 %) 3] - R REF Rll{ééR ]
CREF REF
2 3 . 03dv 1 2 Ju
= —Rel/z ro_ ac[ur dC] + Rel/z ro. qg[ ac]
REF REF
) 3 0u81n6
1/2 ac[ ‘ra_é Y —"] (D-24)
3ReREF
energg
3T 1 aT a2 3p 1z, 3p
pu 3E + pv(l + —F75 1/2 R) - (v l)MREF[u 3E + (1 + ;—I7§ R)v 5
CREF eREF
ur. 3T 1 n AT
= @1+ 1/2 D rc ac[PrREF 3zl * w1/, KaC
®REF REF REF
Fo(DME u{ @+ )(—-—) 2_ 4 Bu,
Y=L Mpgp ¥ R1/2R rel/2 R BT
EREF CREF
(D~25)
equation of state
p= —21— (D-26)
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APPENDIX E

TURBULENT INNER LAYER

The dimensionless time-dependent second-grder boundary layer

equations are:

continuity
0 0p 1 ¢
2 +—— F e 2)] = i
LI, + (pur ) [pvr (1 Rel/2 R)] 0 (E-1)
REF
£-momentum
du Ju 1 S Bu _ 1L puv , 2p
P e az+ pv(l + 1/2R) oC R1/2 R o
RecEr “CREF
_.J»_-_“ S S .,._____l_,_l.ll_@__ o -
SFREF REF
g;-momentum
1 ov v . T, v
N 17z pp T oPuge v v AT R ol
eREF REF
2
gy 1/2 1 __2 1 93 . C3v
r T Regpp(l + Rl/ZR) ar wl/? g AT o
CREF ®RreF T
1 13 £ %2
+ Re 1/2 L0 8 5[ ]
REF
usiné
2?2 & W
T e 1/23;(”ag+“ag+” ) (E-3)
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energy
3T T ap 1
— + [oniomiy
P e pu SE + pv(l + 1/2 R) - (y- l)MREF[u + v(l + —5= 1/2 R)
CREF Repr
[0}
3
- R T arlrey sl * 172 e R 3t
e Rer T CREF
F oM @+ 7 )(—) - L2y |
MREF Re 1/2 R Re 1/2 R 3¢ (E-4)
CREF CREF

Derivation of the second-order turbulent boundary layer equations
follows by using the Reynolds procedure of representing each quantity
by the sum of its time average and its departure or fluctuation from
the time average; namely

u=1u+u'

v=v+v
T=T+T
p=p+p
p=0p+p (E-5)

where the barred quantities are time-averaged and the primed quantities
are the fluctuations. Viscosity fluctuations are neglected herein

as they do not contribute to the leading turbulent tréﬁsport effects.
The time average of any of the quantities in equation (E-5) is

defined by:

_ 1 t + 7T

£ == ° £(t + x')dt’ (E-6)
t :

T
(o]

]
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Also by definition:
t+ T

f':'%}/, © ' (t + t")dr' =0 (E-7)
t

where T is a time period large enough to give a stationary character-
ization to the turbulence.

The indicated time averaging is best carried out on transport
forms of equations (E-2), (E-3) and (E-4) obtained by using the
continuity equation (E-1).
£-momentum

Multiplying equation (E-2) by r° and equation (E~-1) by u and

adding the resulting equations yields:

1

o
(p %) + 2 [ou ] + E[puvr 1+ 172 R)]
®REF
puvrCI o9op _ 3 o 1 z
2 T e Tt O AR B
CREF" . REF
T < ur®) (E-8)
1/2 R a; Hr
®REF

C—momentum

Multiplying equation (E-1) by 1/2 and equation (E-3) by £

Re
and adding the equations yields: REF
1 .39 o} 3 o 8. 2c
- i/ { ggove™) + sElPuve 1+ ofpvir (1 + - 1/2 R)]}
REF REF
2a :
_pu’r 9x 1/2
R l/2 *rReppp(l+—773 Re 1/2 R)
®REF €REF
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2 3 2 e 0 av] 1 _Q_[ 2 Qg]
el/2 9L rel/2 96 B
REF REF
2 0 P du Bv cusinew
REF

energy

Similarly following the same procedure multiply equation (E-4)

by T and add them to obtain:

3 o 9 g, 9 g
at(pTr ) + ag[pur ] + ag[pvr a1+ - 1/2 R)T]
CREF

(Y—l)MREFr [u-—R + v(l + — 1/2 R) 5%1

RepEF

15 [‘“’0 Ay, L uol
Re 1/2 R/ sz'p REF °C Re
REF REF REF

1t

1+

O(Y'l)MREF pi@+ 1/2 R)( ) 1/2 R g }
Re Re
CREF CREF (E-10)

+

The following substitutions are introduced into equations (E-1),
(E-8), (E-9) and (E-10):
pu = EG + (pu)’

pv = pv + (pv)' (E-11)

The time average of the above mentioned equations yields:

continuity
LISt ps RS SRR BN Sl e L 5.9 =
yel(pu + pTul)m ] 4 omlev + o'V A+ =375 Pr ] = 0
; ~ ®REF (E-12)
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E-momentum

({Ju‘i"pu)—----i-(pv-*-pv)(fl.-i---—-i----l;“)ﬂ

3E 1/2 R’ B¢
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1 —— = == _ _ 9
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13 .0 1 _
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g—-momentum
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Bu
+ ol/2 Pr R ag T - l)MREF W@+ =7 1/2 R)( )
€REF ®REF
2 _udw, 13 e 1
w172 R -] o arl (L F R 1/2 R)r p viT] (E-15)
CREF CREF

An ordering procedure shows that the le

ading apparent transport terms

®REF

are the correlations u'v' and v'T'. Within this ordering the equations
reduce to:
continuity
8 ;——. ¢ 9 == 1Lz, 0, _ B
agleur 1+ zlev(@ + 17 RT l1=0 (E-16)
REF
E~momentum
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(‘;-momentum
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1 1l 3 g - ——
- ;;jf7§'—g'sg[r p u'v'] (E-18)
eREF r
—— 1 BT _ _R 1 _E
+ oev(@ s 172 D O m’ﬁm}.«*[“ vl + = 172 R) =
CREF Reppy
3T o 1 9T
-1 4L ur’ W 1aT
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CREF CREF" "REF
—_ 2 - —_
_1yM? z au 2__u3du
®REF CREF
- __l__.__. v'T!
o a‘:[(l + - 1/2 R) o T'] (E-19)

®REF

are the equations used for the finite difference solution

of the turbulent inner region consistent to second order in effects

of curvature.




APPENDIX F

COEFFICIENTS OF THE FINITE DIFFERENCE EQUATIONS

A detailed derivation of the coefficients for the finite difference
equations is herein given. The linearized equations (79) to (82) are
written in difference form and have been multiplied by‘A£m+1 in
order that magnitude of the coefficients be less sensitive to step
size.

continuity

The continuity equation is

%g[rcou] + %E[pvrc(l + 1 =0 (F-1)

Following the suggestion of Reyhner and Flugge-Lotz (reference 4)

the continuity equation is written for point B (figure 18) as follows:

g (e} (o2 o
- + -
oW g g - oW epw) g (ew)

2AEm+l

1 ¢ o _ 1 _z o
172 RPVE ]m+l,n [+ rel/2 RIPVT ]m+l,n—l
REF CREF
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rcll (1 + }
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1
i@+ l/z‘ﬁ) pvrc]m,n -[qa+ 1/2 ﬁ)pvro]m’n_l}

e e
+ (1-Xc) REE AT REF =0
n

(F-2)
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The ¢ derivative has been taken as a weighted

weighting factor. Ac =-% corresponds to a c

average with ic as the

entered differencing

scheme. Expanding equation (F-2) and multiplying by Agﬁﬁﬂ yields:

g (i) o (1) o
3 -
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(F-3)
Written in coefficient form:
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+ + = S
T 0Pl n-1 T *1nPmri,n T MoPmil,ne1 T Cln
(F-4)
the coefficients for the continuity equation (F-3) are:
= 7 (i)
An T Tmil,n-1PuHl,n-1
_ .0 (1)
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1 1 z (i) O
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The linearized E-momentum is:
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The difference equation for point A is written (figure 18) as follows:
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Rearranging terms and multiplying all the equation by A€m+1 yields:
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Equation (F-8) in coefficient form becomes
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The linearized z-momentum equation is:
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Expanding equation (F-12) and multiplying by A€m+1 yields:
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Equation (F-13) in coefficient form is:
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The linearized energy equation is:
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The difference form of equation (F-16) for point A (figure 18)

is:
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Equation (F-18) in coefficient form is:
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APPENDIX G

BOUNDARY CONDITIONS IN MATRIX FORM

For solving the system of equations, the boundary conditions
must be incorporated in difference form in order to have a closed
system. As an example a detailed description is given here for the

adiabatic case. Writing equation (84) for m = 2 the following is

obtained:

MX +EX =g

My, T E%3 7 8 €1
Expressing Tm+l,l in terms of Tm+l,2 and Tm+1,3 using three point

forward differencing yields:

1 \
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' -
12 = %12 7 P19Vmi1,1

are adjusted values of the matrix elements due to the three-point
evaluation of wall temperature in the adiabatic case. Similarly for

the other elements H' , T' , 8' (n = 2,3,4).
For 2 < n < N-1 equation (84) can be written as:
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For n = N-1 equation (84) is:

Dyor¥e2 * My 1¥e1 T By1 (6-4)
Incorporating the boundary conditions at the edge of the boundary layer
n = N it can be shown that DN—l and MN—l do not change and 8y~1 ©an

be written as follows:
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Here Voel.N Vas calculated using three point backward differencing using
b4

%% calculated from the continuity at the edge of the boundary layer.
N

Thus we get:
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APPENDIX H

CALCULATION OF THE PRESSURE AT THE WALL

Some investigators that include the normal momentum equation
tend to assume a zero pressure gradient in the Z direction at the wall.
Upon looking at the Z-momentum equation and satisfying the equation
at the wall i.e., applying the boundary conditions it can be shown
that the normal pressure gradient at the wall is not zero. Apply

the boundary condition to equation (F-11) the following equation is

obtained:
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Solving for Re and condensing somewhat
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Using two-pointdifferencing the pressure at the wall is obtained by:

ap
p(mkl, 1) = p(ml,2) - 7| A (H-4)
w
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