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". ABSTRACT

Experimental studies of a two and a three-dimensional low speed

turbulent boundary layer were conducted on the side wall of the University

f
r'

of Maryland Boundary Layer Wind Tunnel. 	 The 20 ft. long test section, with

i `t	 P' a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. r
^.

thick turbulent boundary layer at. a free stream Reynolds number of 3.15

x 105 /ft.	 The three-dimensional turbulent boundary layer was produced by

a 300 swept wing-like model faired into the side wall of the test section.

Preliminary studies in the two-dimensional boundary layer indicated

that the flow was nonuniform on the 46 in. wide test wall.	 The nonuniform b
` s

boundary layer is characterized by transverse variations in the wall

shear stress and is primarily caused by nonuniformities in the inlet damping

screens.

- Over the 15 in. span of a special transverse device, the local skin

friction coefficient varied (at discrete locations) +9% about a mean. 	 Trans-
tJ

verse variations in the flow velocity, yaw, pitch and turbulence intensity

$

x

were also measured in the boundary layer at set distances above the wall.

_'	 a

Measurements with a pitch probe revealed the presence of a vortex-like flow
a^

to exist above the edge of the boundary layer at two locations along the 15 in.

traverse line.	 This structure occurred above both test walls and appeared

to be symmetrical about the center plane of the test section. 	 The apparent

origin of the vortex-like flow was traced to imperfections in the next to the

last of five inlet damping screens where the weave was very slightly closer

:. together.	 These imperfections existed in two small "bands", each about 0.4

r in. wide, that extended across the entire width of the inlet screen. 	 An

a ; analysis of the data suggests that the wakes produced by these imperfections_ 7
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"bands" tend to roll up into trailing vortices which occur on both sides

of the center plane of the test section.

A second traverse device was used to make surveys through the boundary

layer at select stations along the transverse survey line.	 Surveys made

with a yaw probe and pitch probe indicated the presence of a definite type

of directional structure in the nonuniform turbulent boundary layer.

5
The transverse traverse device was also used to survey the three-dimen-

sional flow field downstream of the wing-like model.	 These measurements

indicated that the presence of the wing model tended to amplify the nonuniformi-

ties in the boundary layer.

Only one representative set of boundary layer surveys were made in the

three-dimensional flow at a station 0.5 in. behind the trailing edge of the
E_

wing model.	 Surveys with a yaw probe indicated a maximum cross flow of 22.40r

to occur in the nominally 4.0 in. thick boundary layer.	 Measurements with

` the pitch probe showed the flow to be pitched toward the wall by over 4.70

in the boundary Layer at about 1 in. above the wall. 	 Static pressure measure-

ments indicated a decrease in the static pressure of 5.50 of the free stream

dynamic pressure in going from the surface 	 to a point 6 in. off the wall.

}
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f NOMENCLATURE

I

=i B

J

= barometric pressure in mm Hg, constant in King's law 	 1

C = calibration constant for angular response of pitch and
`

a
3-tube probes

C£ skin friction coefficient

Ck = calibration constant for static disk probe,_	
...;,

t, C
P -P

=	 s	 ref = static pressure coefficient 
w

p q 

ref
CRe = Reynolds number correction coefficient

D external diameter
}

e _ external width of rectangular pitot tube

i

H = external height of rectangular pitot probe

g h = speed setting in inches of DC-200 silicon oil, internal
height of rectangular pitot probe

y K = correction factor to dynamic pressure measured by side
tubes of pitch probe (K = 0.54)

Q = distance measured along tunnel CL from start of test section

- P = pressure

:. AP = differential pressure i

AP
sides = differential pressure measured across the side tubes

,. of the 3-tube probes or pitch probes

APuncorrected =pressure differential of pitot 	 robe uncorrected' for.	 p	 p
viscous effects

Pd = pressure measured by static disk probe
i

Pref = reference static pressure

" Ps static pressure

t	 =' PT = total, pressure

Ŷ q = I U	 = dynamic pressure

^'
G

xi,
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aref
= reference dynamic pressure

q. = local free stream dynamic pressure

L
dy

= gradient of q through boundary layer

Re = unit Reynolds number (ft -1 )	 ,

s.g. = specific gravity

Td = dry bulb temperature
^-

Tn = temperature of monometer fluid

Tw = wet bulb temperature

U = total velocity

Ue = velocity at edge of boundary layer

Uref
= reference velocity measured by reference pitot-static probe

Us = streamwi.se component of velocity in the 3-DTBL

UCO = local free stream velocity

k	 u+ = U/uT = velocity in wall coordinates

u^ _ 3p/T`Y = friction velocity
x

Au = wall proximity correction

W = cross flow velocity component, specific humidity-

x _ longitudinal (strearmvise) coordinate, coordinate parallel
to centerline of. 'test wall, distance measured (parallel
to test wall centerline) from diagonal line passing
through pressure taps no. 22 and 5 on aluminum wall

y = coordinate normal to test wall, distance measured
from test wall outward through boundary layer

Yc
= effective center of pi.tot tube

y+ = 
y uT	

= distance in wall coordinates
V

z transverse coordinate normal to x-y plane, distance 	 $`
measured from center line of test wall

z = distance measured from centerline of test wall along a'
e line parallel to the trailing (leading) edge of wing model

xii
z ^.

r
:.. 

RJ	 --	 ^. ... -^..^_..:F ^..^Tdr=	 ^..^siSC...-Y•” -
^ '^^^4+li.-:^wsi	 -:'- .cSntr..u§c:.'x itlZU/

. ' S.:	 ...a .:.- -.^:..slwit. s.. e... m__....	 __	 ._...



3u2-U	 = longitudinal turbulence intensity
a	 cross flow angle measured relative to centerline

of test wall

= pitch angle

t	 d	 = boundary layer thickness

u	 = viscosity of dry air
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I. INTRODUCTION

This report presents the results of an experimental study of a two

and a three-dimensional low speed turbulent boundary layer. In the way

of introduction, a short description of the three-dimensional turbulent

boundary layer (3-DTBL) will first be given. 	 Following this, a brief

t review of past studies of 3-DTBLs will be made. Finally the scope of the

present study will be indicated.

A.	 The Three-Dimensional Turbulent Boundary Layer 	 -

E
The three-dimensional turbulent boundary layer represents a general

r'

class of viscous flows that include the two-dimensional turbulent boundary

layer (2-DTBL) as a special case.	 The 2-DTBL has been studied in far

- greater detail than the general 3-DTBL because of the reduced number of

variables required for the 2-D case. 	 Fortunately, many practical engineering
a
} problems can be solved by applying the well developed 2-D techniques.

However, many problems remain which must be treated by a 3-D analysis. 	 Some

of the techniques recently developed for 3-D flows will be noted in the next

section. First, however, the 3-DTBL will be described in more detail.

	

r	 ,,

The 3-DTBL is characterized as a boundary layer flow which has both

streamwise and cross-flow mean velocity components. Three-dimensional boundary

layers can either be skewed or collateral. The direction of flow varies

through the skewed boundary layer and the velocity profile is contained in a

twisted plane (fig. lb ). By contrast, the velocity profile of the 3-D colla-

teral boundary layer lies in a plane normal to the surface.. This type of boundary	 J

layer occurs for example in the diverging flow on a cone at zero angle of attack.
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^	

2	
tt

The two-dimensional boundary layer i; at times also referred to as a 	 t

collateral flow, but the velocity components in this case arealigned in	 3

the s treamwi.se direction (fig. la ) .

rB.	 Past Studies of the 3-DTBL

In recent years, a number of computational and experimental studies

Of three-dimensional turbulent boundary layers have been completed. 	 Compu-

tational methods for 3-DTBLs have in general been extensions of the well

developed techniques for 2-D flows.	 As in the two-dimensional methods,

two basic techniques exist: 	 i.)	 momentum integral techniques and ii.)

differential techniques. 	 A review of these methods as well as the deriva-

tions of the basic equations can be found in references 1 - S.

Common to both the momentum integral technique and the differential

technique is the need for experimental data to help develop closure schemes.

  
q	 qIntegral techniques require data on mean quantities such as velocity profiles h

and wall shear stress. 	 The differential techniques require additional infor-

mation on the turbulence structure of the boundary layer. 	 A proper evaluation
ia	 .

of the various computational techniques depends in part on the type of 3-DTBL

under consideration.

_ The majority of experimental studies of 3-DTBLs have been conducted in

low speed flows.	 Classified according to flow geometry (as done in ref.

6), these include: 	 i.)	 curved channel flows (e.g. ref. 6 - 11, ref. 12

(supersonic)), ii) flows on swept wings or plates (e.g. ref. 13 - 25),	 iii).

stagnation point flows in 2-DTBLs (e.g. ref. 26 - 31), 	 iv),	 flows on rotating

bodies	 (e.g. ref.	 32 - 40), v.) corner flows (e.g. ref. 41 - 43), vi.)

(supersonic) flows on yawed cones (e. g, ref, 44) and vii.) two-dimensional

r
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.,	 diffuser flows (e.g. ref. 45). The first six geometries produce skewed
}

boundary layers while the last geometry produces a collateral boundary layer. ;s

For a review of past experimental work in 3-DTBLs, the reader is referred

f	 to survey articles by Johnston (ref. 46), Horlock, et. al. (ref. 47), }

Fernholz (ref. 48), Nash and Patel (ref. 5) and Joubert, et. al. (ref. 3). .k

The experimental studies to date have largely concentrated on obtaining

:,,can velocity profiles and wall shear stress data. Only a few recent studies.	 Y P	 Y	 .^

(eg. ref, 20, 21, 31 and 37) have obtained turbulence data suitable for use

in checking the assumptions made in the differential techniques. With this

in.mind, an experimental study of 3-DTBLs was initiated at the University of

Maryland. In the next section, the scope of the first stage of this study
a

will be indicated.	 -

N	 C. Scope of the Present Study

S
The motivation for the experimental study presented in this report was 	 -^

to obtain data for use in evaluating the various closure schemes used in

3-DTBL computational techniques. In selecting a flow geometry to produce

the 3-DTBL, it was desired that: i.) the boundary layer should be relatively

thick to assure spatial resolution of the measurements and ii.) the boundary

layer should be predominately shear driven in order to be a good test case

for evaluating the various closure schemes. The geometry which was selected	 -

consisted of a 300 swept wing-like model faired into the side wall of a boundary

layer wind tunnel. The relatively thick two-dimensional turbulent boundary

layer which developed on the wall upstream of the medel was pressure driven

(by the model) into-a 3-D flow. Downstream of the model, the 3-DTBL relaxed

under a small pressure gradient and eventually returned to a 2-D flow. The

relaxing boundary layer was considered to be influenced by both shear and

x
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pressure .forces. In the present study, the 3-D boundary layer measurments 	 _	 s

were made in this relaxing region.

While conducting preliminary studies of the 3-DTBL produced by a proto-

type of the wing model, the boundary layer in the wind tunnel was discovered

to be nonuniform. The nonuniform boundary layer is characterized by trans-

verse variations in the wall shear stress and is primarily caused by nonuni-

formities in the inlet damping screens. An effort was made to improve the
i	 a

k`

	

	 flow, but this was not successful._ Following this, an extensive_ study of the

nonuniform turbulent boundary -layer (both two and three-dimensional) was

conducted.

To study the nonuniformities, a special traverse device was developed

that allowed one to survey the boundary layer in a direction transverse: to

a the mean flow at at set distances, .off the wall.	 Transverse surveys were
^ S

` made using several different probes which included a 3-tube probe (combined

total pressure and yaw probe), Preston tubes, a pitch probe and a hot-wire

s probe.	 A second traverse device was developed to make surveys through the

boundary layer at select stations using the same types of probes. 	 A number

of boundary layer surveys were conducted in the 2-1)TBL (on the side wall

without the model installed) to gather data on the nonuniformities as well =y

as to check out the probes and measuring techniques.	 However, because of
r C.

time limitations, only one representative boundary layer survey was completed 4

in the 3-D flow field downstream of the wing model.
x

f In the following chapter a detailed description is given of the boundary

layer wind tunnel and the wing-like model, followed by a description of the

instrumentation used in the study. 	 Next, an outline of the test procedure and }

data reduction is presented. 	 The third chapter contains a discussion of the

results. <Finally the conclusions, of the study and recommendations for further u
t

r

.i

f

r	 s

f
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work are given in the last two chapters.	 A more extensive discussion of the

work completed for this report is presented in a Ph.D. dissertation by the

senior author (ref. 49).
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II. EXPERIMENTAL PROGRAM

The experimental program carried out in this study will be outlined

below. A detailed description of the test facility and the instrumentation w_.

t,
will be given first, followed by a discussion of the experimental procedure

and data reduction.	 Finally an assessment of the accuracy of the measurements

will be made.0

r

A.	 Test Facility

The description of the test facility will be presented in two parts:

general description of wind tunnel; 3-D model and instrumented wall.
4

P	 1.	 General Description of Wind Tunnel

The experimental studies carried out for this report were conducted =

Fin the low speed indraft boundary layer tunnel of the University of Maryland

(figs. 2 and 3). The original facility, from which the boundary layer tunnel i
If

evolved, had a 4 ft. long test section. 	 In order to convert the facility

Y	 to a boundary layer tunnel, the length of the test section was extended to

20 ft.
t ^^

3	 _ During a series of preliminary studies (to select a model for producing,'

the 3-DTBL) (see reference 49 	 it was discovered that the two-dimensional`

.!	 turbulent boundary layer which developed on the side wall of the test section

was nonuniform in nature.	 This meant that there were transverse variations

in the wall shear stress at any given station along the test section. 	 According

to the available literature (e.g. ref. 50, 51), the problem is caused primarily

by intake damping screens that have an open-area ratio of less than about 0.57.

The two screens that were in the original inlet had an open-area ratio of only

0.44.	 Hence, it was decided to try to improve the boundary layer flow by

^;,;-•	 ^ svnp	 .,^	 u.^nc	 sus,	 ...,	 :
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making a number of alterations to the wind tunnel. _ Details of these altera-

tions, as well as a description of each component of the wind tunnel system,

are given below.

The filter system shown in figures 2 and 3 was added to the existing

facility in order to reduce the intake of dust. After the air has been drawn

through the filter, it enters the rectangular inlet (60 in. wide, 88.5 in.

high) to the tunnel and passes through a honeycomb and damping screen assembly.
R

At the start of the present study it was thought that a more effective

honeycomb might help to reduce the nonuniformity problems observed in the

boundary layer. Hence the original honeycomb (1.50 in. O.D. x 1.38 in. I.D.

paper tubes, 7.5 in. long) was replaced (upon the advise of references 52 and

53) by ordinary plastic drinking straws (0.234 in. O,D., 0.007 in. wall, 8.25

in long:) •

As noted earlier, the original facility had two stainless steel screens
E
}

	

	 with an open-area ratio of 0.436 (20 mesh, 0.017 in. diam wire). Based on

recommendations of the available literature, it was decided to replace the

old screens with a set of new ones w i th an open-area ratio of 0.57 or more.

Since it was not possible to purchase 'off the shelf" stainless steel screens

of sufficient width (67 in. with frames), a polyester screening with an open

area ration of 0.59 (15 mesh, 0.0157 in. diam filament) and 80 in. width was

selected (manufactured by TET/Kressilk). Four screen assemblies were made by
i	 a

nailing the tightly stretched screen to frames of 2 x 4's glued together. A

remnant piece of stainless steel screening with an open-area ratio of 0.64

(20 mesh, 0.010 in. diam wire) was later obtained and a fifth screen assembly

was constructed. The stainless steel screen was located directl y behind the

honeycomb in order to withstand the large loads that were expected from the

i.; i



$..'

straws (since a large pressure drop was calculated to occur across the 	 a

honeycomb). In the final assembly, the screens were 3 in. apart, whereas

the two screens in the original inlet were only 1.5 in. apart. 7

The design of the original inlet contraction section was based on calcu-

lations of an axisymmetric contraction cone (ref. 54). Contours for the

side walls of the three-dimensional rectangular contraction section were

selected by fairing in curves to the plotted results of these calculations.

The original shape (18 in. x 46.5 in. at the exit plane) was modified slightly

to match in with the inlet of the new test section (17 in. x 45.5 in.).

With an entrance of 60 in. x 88.5 in., the 69 in. long contraction section had

a contraction ratio of 6.9. a

In order to obtain a nominally zero pressure gradient along the test

section, all four walls were diverged 0.5 in.. _ The new test section had a

cross section measuring 17 in. x 45.5 in. at the entrance 'and 18 in. x 46.S

f	 in. at the exit. To assure that the turbulent boundary layer- developed train

the same location in every test, a tripping device consisting of a 0.065 in.

thick, 0.25 in. wide aluminum strip was epoxied to all four sides of the test

section at the entrance.

The test section was constructed in three parts; one 4 ft. long section

and two 8 ft. long sections. The sections were bolted together and a wide
j,

plastic tape was used to seal the joints and blend in the surfaces. The wall

sections could be adjusted in or out and could be removed completely for

modification. Access to the test section was through three doors on one

side of the test section and three doors in the floor. A special segmented

access door for use with the boundary layer traverse device was constructed

in several interchangeable parts that allowed the traverse to be located any

place over the area of the door. No doors or openings were put on the test

wall in order to avoid flow disturbances from any door -wall mismatches.
it

4
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The test section was originally supported on 2 x 6 planks which were exten-

sions of the wall reinforcements. However, additional heavy bracing off an

'	 1	 d d	 h ld th t t	 t'	 ta	 d to
s^

adj acent concrete wa 1 was nee a 	 to	 o	 e	 es	 sec ion s	 de y an

reduce the vibrations of the walls.

The test wall was instrumented with a series of 0.047 in. diameter static

taps located nominally every 16 in. along the entire length. 	 The location

of these taps is given in table 1. y

u
To monitor the speed of the wind tunnel, a United Sensors pitot-static

probe (PAC-12-KL) was mounted on the side wall (with the access doors) at a

station 60 in. downstream of the entrance to the test section. 	 The tip of

i the probe was located 6.25 in. off the wall and 9.38 in. above the centerline

of the tunnel in order to keep the wake of the probe well clear of the area s
a

„. to be studied downstream. 	 A micromanometer described in a later section was

' used to measure the pressure differential of the probe.

R The diffuser, which was constructed of 0.25 in. thick steel, provided

a transition from the rectangular test section to the 48 in. diameter
t

circular inlet of the blower.	 To reduce the mechanical transmission of
r

9
vibration, the diffuser was physically separated from the test 'section and

the blower.	 The 0.13 in. wide gap at the end of the test section was sealed 1'a

over with a wide plastic tape to prevent leakage.

Pitot rake surveys made in the original test section indicated that the
s

variations of free stream velocity distribution were within 0.5% of the mean.

Similar results were obtained in the present study with surveys taken in the

new test section.	 The operating speed could generally be set to well within

0.2% at speeds between 45 ft/sec and 55 ft/sec. 	 Judging from the random{

variations of the miniscus in the micromanometer, the operating speed

fluctuated on the order of + 0.1% about the mean. 	 For wind tunnel tests

lasting several hours, the mean position of the miniscus remained virtually
p3



generally varied slightly during this time. The free stream turbulence level

of the tunnel was measured as 0.2% at a free stream velocity of 50 ft/sec.

2. 3-D Model and Instrumented Wall

The three-dimensional turbulent boundary layer that was studied for this

report was produced by a 30 0 swept wing-like model that was faired -into the

side wall of the test section (figs. 3-4). The model produces the 3-D flow

by pressure driving the relatively thick two-dimensional turbulent boundary

layer that develops over the first 11 ft. of the test wall. Downstream of

the model the boundary layer relaxes under a small pressure gradient and even-

tually returns to a two-dimensional state. It was in this downstream region.

f

10	 C, I

r	 .

fixed, although the ambient test conditions (and hence the operating speed)

3

where the 3-D boundary layer measurements for this report were made.

A 0.250 in. thick aluminum plate was laminated (epoxied) onto the rear

8 ft. section of the test wall to provide a smooth working surface and to
r	 >

assure the accurate location of static taps. The aluminum plate also

allowed the wall contact of boundary layer probes to be monitored with an

ohmmeter. The plate was given a mirror-like finish so that a special tech-

nique (to be described later) could be used to align the probe tips. A

total of 67 static taps (0.029 in. diameter, depth of 0.125 in.) were drilled

in the aluminum plate (prior to lamination) downstream of the intended !oca-

tion of the 3-D model (fig. 4). In addition, ten 0.750 in. dimater instrurneit-

tation ports (used in ref. 55) were also located on the plate. When not in

use, each port was closed with a flush fitting dummy plug which had a 0.029

in. diameter static tap located on the center. The location of the static taps

and ports is given in table 2. 	 '
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The model configuration shown in figure 4 was selected after a long
w1

series of prototype studies summarized in reference 49. 	 The model itself

°i consisted of a frame work of wooden ribs over which 0.125 in. thick masonite

sheet was glued. 	 The location of the 35 static pressure taps (0.047 in. dia.)

installed on the model is given in table 3.	 After the model was secured
j^

to the test wall, an epoxy filler material was used to make a 20 in. radius

i
fairing at both the leading and trailing edges. 	 With special care, it was

a t ' possible to "feather in" the trailing edge 	 to the aluminum wall with a step

of less than 0.001 inch.

B.	 Instrumentation

Two traverse devices were used to survey the flow field in the boundary

layer tunnel; a transverse traverse device and a boundary layer traverse

device.	 Most of the measurements were made using pressure probes together

(
r with manometers and pressure transducers. 	 Some limited surveys were also

-t
E^

made using a hot-wire anemometer system.
a

.1.	 Transverse Traverse Device -

A special transverse traverse device was designed and constructed to

obtain surveys of the wind tunnel boundary layer in a direction transverse
tir

I

I; to the mean flow and at set distances above the wall (figs. S and 6). 	 In .'

order to reduce disturbance effects on the flow field, the device was mounted, k

on the wall opposite the test wall (fig. 6). 	 Various probes could'be mounted

}in the probe holder that extended across to the test	 wall.

The traverse device consists essentially of a carriage that rides on two

0.438 in. diameter steel drill rods. 	 A small variable speed reversible do
c

{ motor is used to drive the carriage by means of _a threaded rod.	 With this

ttt

wi.
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combination, surveys could be conducted with sweep rates ranging from 0.4

in./min to 2.7 in./min. The motion of the carriage was monitored by a 10

turn potentiometer (AQ) which was connected to the carriage by a pulley-

-spool-fishing line combination. The transverse distance was limited to 1S

in. so that the surveys could be recorded full scale on a Hewlett-Packard

Moseley 7004A X-Y recorder.

A second carriage-drill rod combination (fig. 5) was mounted on the

main traverse carriage and allowed the height of the probe to be adjusted

at 'the end of each pass.	 This was done by inserting a screw driver through .:

a hole in the wall. and turning on a 40 threads per inch threaded rod that
a

moved the probe carriage in or out. 	 From initial wall contact the probes

could be adjusted up to 6 in. off the surface. 	 Further distances off the

wall could be obtained by changing the probe holder.

To help reduce the effects of flow field interference caused by the

r	 traverse device, the probe tips were located 4.5 in. ahead of the probe

holder	 3.5 in. ahead of the projection of the traverse device). 	 This

appeared to be aboutpp	 the practical limit from the standpoint of probe vibra-

tion and deflection due to aerodynamic loading.	 Mechanical deflections of

the probes, which occurred when the carriages were traversed back and forth,

were generally small.	 For the main.transverse carriage, the variation. in

l•	 yaw (yaw defined in a plane parallel to the test wall) over the 15 in. travel

was within 2 minutes (as determined by a small precision bubble level). 	 Over

'	 this same distance, the probe underwent a pitching motion (pitch defined

in a plane normal to the wall and parallel to the mean flow direction) of

about 10 minutes.	 The smaller probe carriage indicated a change of 0.4 0
 in

r	 _
yaw when traversed over its 6 in. span. 	 The variation of pitch over this

•	 'distance was on the order of 15 minutes. 	 The relative change in height of

the probe off the wall to a slight bow in the main traverse drill rods was

r
i
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about 0.003 in. for the 15 in. travel of the main carriage (as determined

by a set-up on a milling machine).	 Finally, with the combination of wall

vibrations, probe vibrations and variations in the wall flatness itself,

the accuracy of the lcoation.of the probe above the wall was estimated

to be between 0.005 in. and 0.010 in..

2.	 Boundary Layer Traverse Device

A second traverse device was designed and constructed for use in making

accurate surveys through a three-dimensional turbulent boundary layer (fig. 7).

In addition to a translational motion, the traverse device also provided a

yawing motion so that the probe could be aligned with the local flow direc-

tion throughout the boundary layer (fig. 8).	 The traverse device was mounted

on a heavy theodolite camera stand and made no direct contact with the tunnel.

walls in order to avoid the transmission of wall vibrations to the probe.

The translational motion of the traverse was provided by a carriage

riding on two I in. diameter stainless steel guide rods and moved in and out

by means of a brass lead screw. 	 A 6 in. Brown and Sharpe dial indicator

calipers accurate to 0.001 in. was used to directly measure 	 the relative

location of the carriage. 	 A Starrett dial indicator with a range of 0.5 in.

and 0.0005 in./division -was temporarily clamped to the base of the traverse

device and provided increased accuracy for measurements made very close to the

test wall.

Yawing motion to the probes -was provided by a rotating assembly mounted

on the carriage (fig. 7).	 A graduated angle ring and vernier accurate to I

s used to measure the relative angular position of the probe. 	 A

combination magnifying glass and prism assembly was used to conveniently

read the scale.



A 0.375 in. O.D. x 0.250 in. I.D. stainless steel traverse shaft was

mounted in the rotation assembly and extended into the test section to serve

as a mounting for the boundary layer probes (figs. 8 and 9). Additional sup-

port for the traverse shaft was provided by a 0.375 in. thick aluminum plate

that extended about 3 in. into the flow (fig. 9). The opening in the wall

for the aluminum extension was sealed over using plastic food wrap that pro-

vided an air tight seal but transmitted a negligibleamount of wall vibration.

A Clineometer placed on the carriage indicated an angular run out of

about 3 minutes over the 6 in. motion. Possible twisting of the traverse

shaft due to drag in the oilite bushings was estimated to be less than I

minute. Machine blocks and a 0.0001 in./division dial indicator were

used to check the motion of the carriage and found it accurate to the smallest

division of the 6 in. calipers (0.001 in.) and the 0.5 in. dial indicator

(0.0005 in.).

3. Pressure Probes

Five different types of pressure probes were used in the present study:

i) pitot tubes (circular and rectangular), ii) yaw probes (Conrad and 3-tube),

iii) pitch probe, iv.) static pressure probes (static tube and static disk),

v.) Preston tubes. A photograph of the boundary layer pitot probe is shoim

in figure 10. The offset stem design of this probe was required for measure-

ments made in the 3-IfrBL. With the probe mounted in the traverse device

" , as sketched,in figure 8, the probe tip could be aligned with the local flow

direction in tne boundary layer while remaining tixed in location ^coincident

with the axis of the traverse probe shift). Since the -remaining boundary layer

probes were all of similar design, only the bottom portion of each probe is

shown in figure 11, along with some details of the probe tip. Similar types

of probes were constructed for use urith the transverse traverse device and-are

I
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15	 11	 ';

shown in figure 12. Details on the design and construction of the pressure

probes are given in reference 49.

Two pitot tubes were used to measure the total pressure profiles through

.4
the boundary layer (which were used to determine the velocity profiles when

combined with the local static pressure). 	 The overall profiles were obtained

using the circular flat faced probe shown in figures 10 and lla. 	 In order

^.' to obtain data closer to the wall than was possible with the circular tube,

a rectangular pitot probe shown in figure llb was constructed.	 At wall

contact, the center of the probe tip was 0.0043 in. off the wall compared

to 0.014 in. for the circular tube probe. 	 A microphoto of the rectangular ,<

probe tip is shown in figure llc.

r The yaw probe (generally called a Conrad probe) and the pitch probe

differ only in the orientation of the plane passing through the probe tips.

The Conrad probe (fig. lld) was used to measure flow angularity (yaw) in. a

x plane parallel to the wall by nulling the probe at each location through x

ry	 y	 (i.e.(' 	 the probe in yaw so that the pressurethe boundary layer 	 aligning
r	

{

Q difference between the two sides of the probe is zero). 	 The flow angle

profile determined with the Conrad probe was used to align all other boundary

layer probes with the local flow direction. 	 The pitch probe (fig. 11e)

was fixed in position (although aligned in yaw) and the differential pressure f'
K

measured between the tubes was used together with a 	 calibration to the

determine the pitch.

Some boundary layer measurements were made using a 3-tube probe consisting

' of a total tube and a tube to each side beveled off at S5
0
 -- essentially

-a

f
a combined pitot and Conrad probe.	 However, because of the very poor response k

time of the particular probe constructed here, its use was discontinued in favor
ry

of the two individual probes.	 For surveys made with the transverse traverse

device, the 3-tube probe was required since no nulling capability existed and
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a simulataneous measurement of the total tube pressure and the side tube

differential pressure was needed.

Static pressure surveys were made using a conventional static tube

k (United Sensors probe PSB-12) and a s-'Latic pressure disk suggested in reference

f
E 56 (fig. llf).	 The static tube is rather sensitive to flow angularity while

the static disk (according to reference S6) is virtually insensitive to +200

of yaw (defined in the plane of the disk) and +5 0 in pitch.	 The static tube

was mounted in a holder such that the static holes were in line with the axis

of'the traverse shaft. 	 The static disk does not read the static pressure

directly and a small correction of about 0.08 times the local dynamic pressure

is required.

Four Preston tubes (fig. llg) with dimensions:

3
O.D. inches	 I.D. inches

0.0591	 x	 0.041

0.6426	 x	 0.027

0.0283	 x	 0.016
a

0.0183	 x	 0.010

were used to measure the local skin friction (using a calibration for each

z

probe) at each boundary layer survey station. 	 These probes had a common probe

` body and had to be interchanged and aligned at each station. 	 The four sizes

of probes were used to check on the existence of near wall similarity in the

3-DTBL.

The tips used on the pressure probes for the transverse traverse device

(fig. 12) were similar to the tips used with the boundary layer probes and

only_the -dimensions will be summarized here:_
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3-tube tubing used: 0.032 in. O.D. x 0.020 in. I.D.

pitch tubing used: 0.0283 in. O.D. x 0.016 in. I.D.

3-tube Preston -tubing used: 0.0283 in. O.D. x 0.016 in. I.D.

Preston tubing used: 0.0591 in. O.D. x 0.041 in. I.D.

static disk same as .fig. llf

1 4. Pressure Measuring Systems

The primary pressure measuring instrument and standard used in this

study was the differential liquid manometer. In addition, pressure trans-

ducers were used with the transverse traverse probes.

Two micromanometers were designed and constructed based on a paper by

Smith and Murphy (ref. 57). 	 The calibration micromanometer (fig. 13a) was

" used as a pressure standard for calibration purposes and to measure pressures

from the various boundary layer probes. 	 The second micromanometer was used

E.
mainly to set the wind tunnel operating speed.

The calibration micromanometer consisted of a small volume brass resex`voxr

mounted on the adjustable arm of a 6 in. vernier calipers and connected by a

flexible polyurethane tube to a fixed glass tube inclined at 10°. 	 A Dow

Corning, 1 centistoke DC-200; silicon oil was used as the manometer fluid.
!+

i

Mounting a dial indicator under the reservoir (fig. 13a) gave added accuracy

and reading convenience over a limited range (0.5 in. by 0.0001 in./division).

The miniscus was viewed with the aid of a homemade microscope that gave

about a 65X magnification._ A mirror mounted under the glass tube was used to

reflect light from the overhead flourescent lamps and provided adequate illumi-

nation. 	 Initially a cross-hair reticle was used in the mircoscope eyepiece to

serve as a reference line for the miniscus.	 However, a considerable amount

J of time was required to obtain a single reading because the reservior had to r
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-	 be' adjusted several tinx.s in order to return the mean position of the miniscus

to the hair line (reference position).	 The cross-h,Lir reticle was later

replaced with a second reticle which had a 10 nun scale divided into 100 parts.

A calibration of the reticle scale against the vertical motion of the reservoir

was found to be linear, with each division of the scale being equivalent to

0.000187 vertical inches of manometer fluid. 	 The use of this reticle greatly

reduced the time required to obtain a reading because it was no longer necessary

W return the miniscus to the zero position. 	 Instead, once the miniscus
,

was in the field of view and had stablized, the number of divisions between

the zero line and the miniscus could be counted and a correction made to the
t

- reading on the dial indicator or calipers to obtain the true reading.

The manometer fluid (DC-200 silicon oil) was calibrated in a water bath

against temperature using two different precision hydrometers (accurate to

specific gravity of 0.001) and a precision thermometer (accuare to 0.10C).
i

As shown in figure 14, the calibrations varied from the least squares fit

by about 0.00065 slugs/ft. 3 at 340 C (variation in s.g. of 0.0005), but agreed

quite well at the lower temperatures.

The micromanometers were found to be quite sensitive to temperature

r	 variations since a temperature change of 1°C would cause a shift in the zero

.	 reading of over 0.001 in.. 	 After trying a number of ways to pack insulation
_,	 3

i	
around the manometer tubes, the best thermal protection was provided by placing

a Paste-board box over the entire instrument. 	 A precision thermometer
a

(accurate to 0.1°C) was mounted inside the box to monitor the temperature.

With the use of the paste-board box and by checking the zero repeatedly through -

out a test, the zero shift was generally within 0.0002 in. of DC-200 silicon

oil.
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In addition to the two micromanometers described above, a second type

of micromanometer was constructed specifically for use with the boundary

layer yaw probes (fig. 13b). The manometer was used only in nulling the

yaw probes and could not be used to measure pressure differentials. It

consisted simply of a U-tube mounted on an aluminum plate inclined at 7.50

to the horizon (fig. 13b). A microscope was used to sight the miniscus in

one of the tubes. In use, the yaw probe was rotated until the miniscus returned

to the initial zero - i.e. zero pressure differential existed between the two

tubes of the probe and the probe was then aligned with the local flow direction.

The differential pressures from the probes used with the transverse

traverse device was monitored by pressure transducers (Pace Wiancko model

P90D + 0.03PSID together with a Dynasciences Corp. transducer indicator model

!
	

CD25). The output from the transducer indicators were recorded on X-Y plotters.

The transducers were calibrated against the calibration micromanometer.

J '	 S. Hot-Wire Probe and Equipment

Hot-wire anemometer measurements were made using a DISA model 55F31 single

wire probe mounted in a 55A21 probe holder (fig. 12). With the probe mounted

on a special stem, it was used with the boundary layer traverse device to

measure the free stream turbulence level of the wind tunnel. The probe was

also used with the transverse traverse device to obtain surveys in the boundary

layer.

The constant temperature hot-wire anemometer system used with the trans-

verse traverse device is shown in figure 15. The hot-wire probe was powered

by a DISA 55D05 CTA which was run off a 12 volt car battery. The nonlinear
1

signal of the CTA was linearized using a DISA 5SD10 linearizes and the output

was filtered at 10K Hz using TSI . model, 1057 unit. The signal was then fed

to a DISA SSD35 rms voltmeter, a DISA S5D30 do voltmeter and a TSI model 1047
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averging circuit.	 Finally the outly it from the nns voltmeter and the averag-

ing	 circuit were recorded on X-Y plotters. 	 The hot-wire probe was calibra-

ted in a small free-jet facility before and after each test.

-

C. 	 Experimental Procedure
^	

1

'.
r

The experimental procedure followed in the present study will be described

in this section under the headings of: static pressure measurements, trans-

verse traverse surveys and boundary layer surveys. 	 The procedures used for

the 2-D studies (i.e. without the wing model in the test section) and the 3-D

studies (with the wing model in the test section) we •e basically the same.

All wind tunnel tests were conducted at a constant reference free strewn

a Reynolds number Re = 3,15E + 05*ft
-1
 (Re	 3.OQE + 05 ft -1 for an early series

of measurements).	 Because of daily changes in ambient conditions, the reference r

1.

free stream velocity Uref (measured by the reference pitot-static probe)

varied over a range of 50 ft/sec < Ur
e
£ < 55 ft/sec.	 Tests were only conducted

when moderate temperatures (150C < T < 30°C) and relatively dust free conditions
i

existed in the laboratory building.	 The usual proceddre in conducting a test ='

r was to first run the tunnel about 45 minutes to assure proper air circulation

and temperature stabilization before the speed was set. 	 the proper speed

a setting in inches of DC-200 manometer fluid (fora constant Re) was calculated

with the use of several computer generated tables and the values of the test

conditions consisting of the dry bulb temperature T, the wet bulb t&iperature

w,	 the barometric pressure P and the temperature of the speed micromanometer

T 	 (usually Ta = T ). 	 A further description of the procedure for calculating

the speed setting is given in reference 49.	 The test conditions were taken

a

E + 05 is conventional computer notation for l x 10
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A

t every hour during a long run and the speed was reset when conditions had

a

drifted too far from the original readings (typically if T d had changed

y

more than 1.5°Q Q.
t

i

1.	 Static Pressure Measurements r'

Static pressure measurements were made on the wind tunnel test wall aA

and on the 3-D wing model.	 The location and description of the static taps

has been given in the previous section together with tables 1-3. 	 Prior- to

any measurements, each tap was cleaned with high pressure air and reinspected

with a hand held 50X microscope. a

The static pressure measurements made in a series of 2-D studies were

referenced to static tap no. 5 (table 2) located on the aluminum insert.
^ s

This tap was chosen since it was found to be sufficiently far away from the

intended location of the transverse traverse and boundary layer surveys

to be free of any significant interference problems.	 For the 3-D studies,

a reference tap was installed upstream of the wing model (table 3). 	 The

pressure differential between a given static tap and the reference tap was

measured with the calibration micromanometer.

Early tests indicated that the reading precision of the manometer

system was limited because of small oscillations in the static pressure

distribution.	 To improve the readability of the system, damping lines

consisting of lengths of 0.027 in. I.D. stainless steel tubing were added

to the plastic tubing	 that was used to connect the static taps to the mano-

meter.	 The length of the damping lines varied between 9 in. and 18 in..

With damping lines, the unsteadiness of the miniscus was generally reduced r

to +l division (+ 0.0002 in. DC-200) and these variations were slow enough

^4

to permit an averaging by eye to be done.
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I

a In making the actual static pressure measurements, more than sufficient

time	 was given for	 each pressure tap to fully respond. 	 The zero reading

was recorded after each pressure tap measurement in order to assure the great-

;. est accuracy	 and to minimize errors due to the temperature drifting problem

of the manometer noted in a previous section.
i

t

2.	 Transverse Traverse Surveys

The location of transverse traverse surveys made in this study are shown

+ in figure 16.	 Two stations at Q = 34 in. and 	 z	 18 ft (Q = distance measured.

from the start, of the test section) were selected for the 2-D studies. 	 Both

stations were centered on the centerline of the test wall. 	 Three survey stations
d

were chosen for the tests downstream of the wing model; one being the "old"

18 ft. 2-D station, a second along a line which was nomvinally 0,5 in. behind

the trailing edge and-passed through pressure taps 5-19 (table 2)(also centered

on the side wall centerline), a third was on the centerline and ran from the
r

4 trailing edge, 15 in. downstream.

As previously noted, the transverse traverse de-vi,--e was mounted on the

wall opposite the test wall to reduce aerodynamic disturbances (fig. 6). i
s

Because the walls of the test section were not exactly parallel, small shims

had to be placed under one end of the traverse base to assure that a probe ,f?

would remain at a fixed distance above the wall over the 15 in. survey line.'

To accurately locate a probe in the probe stem, a sheet of graph paper

(tracing paper quality) was first taped to the aluminum wall, over the region

to be surveyed.	 Several lights were placed on the outside of the test wall

such that the light shining through the 'pressure taps created a "star field"

on the paper.	 By using this "star field", the paper was positioned so that one

axis of the graph was parallel to the centerline of the test wall. (essentially
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A fine point Rapidograph pen was used to mark the

location of each tap under the paper and to draw in the location of the
a

survey line. A probe was then installed such that its tip extended to the

survey line (approximately 4.5 in. ahead of the probem stem), and was parallel'

to lines on the graph sheet (hence parallel to the centerline of the test

wall). With careful adjustments, the probe tip could be located to within 	 y

43

0.025 in. of the intended survey line. 	 7
s

Because each probe was interchangeable with a common probe stern, it	 a

was necessary to check the alignment of the probe tip each time a different

probe was installed. To accomplish this, a special probe sighting device
r	

,;

(fig. 17), based on a technique in use at NBS (ref. 58), was designed and
R

constructed. In principle, the technique involves using a microscope mirror

combination to sight along the surface of the wall and view the approach of

the probe tip to the wall. With a polished aluminum surface, the probe tip

and its mirror image can be seen in the microscope, hence effectively doubling

the magnification power of the microscope. The 5mm, 100 divisions reticle was
A

calibrated against a second 0.1 in., 100 division reticle. Each division of

the microscope reticle corresponded to 0.00063 in.. Since the sighting device

was hand held and focused, the magnification of the microscope used here

(u50X) appeared to be about the maximum practical. 	 r'`

Using the probe sighting device, each probe was aligned everytime it was

reinstalled in. the probe stem. The 3-tube probe (fig. 12) was adjusted so

that the side tubes were at the same distance off the walls (the best adjust-

ment, possible resulted in one side being at most 0.00030 in. further off y

the wall than the other) This was critical to reduce errors in flow
i	

a

angularity measurements which are introduced because of gradients in the

Ak
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t

total pressure through the boundary layer. Similar techniques were used

t -align the Preston probe, the 3-tube Preston probe, the static disk probe,
k

the pitch probe and the hot-wire probe. The initial distance off the wall

of thehot-wire element (electrical contact made with the probe holder) was

also determined with the probe sighting device. The Preston probes were

t

F

"driven into the wall" (i.e. the probe tips were slightly "spring loaded" :.

against the wall) several counts (ti 0.0075 in.) beyond initial electrical

contact to assure that the tips remained on the surface over the 15 in.

traverse.	 The axis of the Preston probe was brought in at about 20 to

' the wall in order to prevent the tip from lifting off due to a possible 	 -

ti bending effect if the probe body made contact at a point behind the tip.

The pressure probes were connected to pressure transducers by lengths ,.	 a

of plastic tubing and damping lines (typically 30 in. lengths of 0.020 in.

I.D. stainless steel tubing).	 The side tubes of the 3-tube probe and the pitch

r
probe were connected to opposite sides of a single transducer which monitored

the differential pressures of the probes. 	 'Me total tube of the 3-tube and

Preston probes and the static disk probe were coruiected to one side of a trans-

ducer while the other side was connected to a reference static pressure tap.

The procedures followed in making surveys with the transverse traverse ^a

. device were similar for all probes and will only be briefly outlined here.

At the start of each test, the x-axis of the X-Y plotter was carefully adjustcrd
q

to match the 15 in. span of the traverse carriage.	 Mien the operating speed

was properly set, the probe was advanced to the wall until electrical contact

was made.	 The probe (and the walls) were noted to deflect with wind on such

that contact was about 0.010 in 	 earlier than noted: with wind off.	 For the

.
r

a
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3-tube probe, after wall contact was established, the probe tip was tra-

versed (always in the same direction to reduce backlash) to the first survey

line above the wall. The transverse traverse was then made at a slow rate

(,v1 in. /min) to assure proper probe response when surveying through regions

in , which relatively large transverse gradients occurred. A reverse scan was

made to average out any hysteresis effects due to probe lag or backlash in

the carriage-potentiometer connection. At the end of a survey, the distance

of the probe off the wall was readjusted and another transverse scan was made.

In this way surveys at 0.063, 0.125, 0.250, 0.50, 1, 2, 3, 6 in. off the

wall were made in a typical test with the 3-tube probe to obtain transverse
_

measurements of the total pressure and flow angularity (yaw). 	 Similar surveys
g

were made using the pitch probe, the static disk probe and the hot-wire probe

(to obtain transverse measurements of pitch, static pressure, velocity and

longitudinal turbulence intensity respectively).	 The Preston tubes (for

transverse measurements of the skin friction) were traversed at a slower rate

(0.75 in. /min) and wall contact was continuously monitored on an ohmmeter.

The pressure transducers were calibrated after each test using the calibration
5

micromanometer.	 The hot-wise probe was calibrated (mean voltage output

versus mean velocity) before and after each testa

3.	 Boundary Layer Surveys

The location of boundary layer surveys made in this study are shown in

figure 16.	 These stations were selected on the basis of data obtained with

the transverse traverse device.	 For the 2-D studies, a number of surveys

were made along the k = 18 ft. station to assess the variations produced by

m the nonuniform boundary layer.	 Because of time limitations, only one repro-

sentatve boundary layer survey made in the 3-D flow (on the centerline of the

test wall, 0.5 in. downstream of the trailing edge of the wing model).

I
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The .first step in setting up the boundary layer traverse device was to

adjust the various sections of the segmented access door, so that a 6.75

in!. wide vertical opening was provided for insertion of the traverse stem

and shaft (figs. 7-9). 	 Once the traverse was positioned and the theodolite j
1

stand lowered onto wooden blocks and braced, the 6.75 in. wide opening was

filled with plexiglas window inserts., 	 The remaining small gap that remained
E S

between the door and the traverse stem was sealed using masking tape and

d plastic food wrapping (fig. 9).	 Final alignment of the traverse device,

a as outlined below, was provided by adjustment screws on the mounting base

8	 F (fig.	 7),
^	 x

5
By placing a sheet of accurate graph paper on the test wall (as done_

for the transverse traverse surveys) the location of a survey station relative r

to the adjacent static taps could easily be determined. 	 With careful adjust-

V
ments, the probe tip could be positioned to within 0.01 in. of the intended

survey station.	 Alignment of the traverse shaft normal to the test wall was

estimated to be within 2 minutes of 900.

Each time a boundary layer probe was mounted in the traverse shaft, the

probe sighting device was used to check on the aligivnent;of the probe tip

relative to the test wall. 	 The probe tip was "leveled" to the horizon by

placing a small line level on the upper part of the probe (i.e. on the portion

of the 0.250 in. diameter tubing that is essentially parallel to the bottom

t of the probe (fig. 10)) and adjusting the rotating assembly of the traverse

device.	 In this way,: the probe tips were always positioned paralled to the

centerline of the test wall at the start of each test. 	 To assure greater

leveling accuracy for the Conrad probe, a smallp recision bubble level was

made by epoxying_ two-sensitive wiles (75 sec viles available from a surveying
r

equipment repair shop) onto a glass microscope slide. 	 With the precision
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..n	 level, the relative "leveling" of the Conrad probe was considered to be within

2 minutes from one station to another. The remaining boundary layer probes

were leveled with the line level to within 0.25
0

.
i

Pressure connections to the micrometers were made with plastic tubing

that was taken out through the hollow traverse shaft.	 Damping lines (9 in.

to 18 in. lengths of '0.027 in.-I.D. stainless steel tubing) were selected

to give a relatively steady manometer response with a reasonably fast time

response.	 The Conrad probe was nulled (i.e. aligned to the local flow

direction) at each point through the boundary layer by using the nulling

micromanometer (fig. 13b).	 The outputs from the pitot probes, Preston tubes

and static disk probe were monitored on the calibration micromanometer along

with a reference static pressure.	 The differential pressure from the pitch

probe was also monitored on the calibration micromanometer.

` Electrical contact (using a ohmmeter set at R x 10 KQ) between the probe

and the aluminum wall was _ used to "locate" the probe tip relative to the

surface.	 Because of the combination of wall and probe vibration, this techinque w

`
t.

was limited in accuracy to about 0,001 in..	 Although the wall could be "located"

quite accurately, the actual location of the wall relative to the traverse device

f (and hence the probe) was noted to change slightly (typically < 0.001 in.)

during the course of a run.	 A machinist's dial indicator (0.0005 in./div) was

mounted on a heavy stand and used to monitor the wall motion. 	 The shifting of
F	 ;

t
the side wall (which was braced to the side of the lab building) was apparently

, expansion/contraction	 gassociated withthermal e 	 ansion/contracti.on of the building and the side wall' .:_

braces.	 The wall motion (dial indicator reading) was recorded throughout a }

run and the probes were brought back to "relocate" the walla several times during

the test.
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After the wall was located, a typical boundary layer survey consisted

of taking data at a series of points starting from wall contact to 6 in. off

the surface. Data points through the boundary layer (i.e. a series of y

values ) where _y is distance above the surface) were selected to be approximately

equal distances apart on a plot of logl0y/6 vs U/U. (where Uc. = local free stream 	
I

velocity).

At each station, a boundary layer survey using the Conrad probe (fig.'lld)

was completed first to provide a profile of the flow angularity (yaw) through

the boundary layer. This )aw profile was later used to align the other

boundary layer probe tips parallel. to the local flow direction through the

boundary layer. The two tubes of the Conrad probe were monitored on the nulling

manometer, and the probe was rotated by trial and error at each point until

the tip was aligned to the local flow direction. For locations very near to

the wall, this procedure required nearly 10 minutes per point because of slow

}	 p	 p	 g'	 ty of the probe-manometer systemrobe response. In this region, the senstl.vi

was estimated to be on the order of 0.10
0
. At points above y 2 in., the sensi-

tivity was on the order of 1 minute and proper alignment took less than S minutes

per data point. The zero of the null manometer was repeatedily checked and reset

throughout a rim to assure the greatest accuracy.

Following the Conrad probe survey, the circular pitot probe (figs. 10 and

11a) was used to obtain the total pressure profile through the boundary layer.

q	 p	 y	 pA technique was developed to more accurately locate the robe tip relative

to the wall: The probe was first traversed to the wall and then ''driven into

the surface about 0.002 in. beyond the point where electrical contact.was
y

R
first established. After the probe-calibration micxomanometer system had

responded, the probe was advanced away from the wall in steps of 0.0005 in.,
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each time allowing 30 sec for the manometer system to react to any changes in

pressure.	 When the probe tip just left the surface, a change in the manometer

reading (on the order of 0.003 in. of DC-200 for the 2-D studies) was readily

F apparent.

t

The rectangular pitot probe (figs. llb and llc) was used to obtain total

pressure measurements in the region 0.0043 in. < y < 0.5 in..	 For a limited

region (0.050 in. < y) near the wall, the probe tip was located to within

0.00025 in. by a more careful application of the above technique —together

with repeated checks of the wall location throughout a test.
F;	 L

Preston tube surveys, to obtain the local skin friction coefficient,

were made using four sizes of probe tips (fig. llg). The probe tips were

located using the graph sheet and checked using the sighting device. To assure

that the tips made continuous contact with the wall during a test, the probe
F;

was "driven in" about 0.005 in. beyond electrical contact.

Surveys with the pitch probe (fig. lle) were taken at each station to
4

measure the relative change in pitch through the boundary layer. 	 As noted

earlier, the pressure differential between the two tubes of the probe x

(produced by pitch and/or total pressure gradient) were monitored on the

calibration micromanometer.	 The alignment (pitch) of the probe relative t'

to the wall was noted for each test by using the probe sighting device.

t A static disk probe (fig. llf) was used to survey the boundary layer,

for the static pressure profile. 	 The distance off the wall of the center

I plane of the static disk was determined using the probe sighting device.

t Additional measurements of the static pressure through the boundary layer

^'

were made using the static tube probe (United Sensors PSB-12):

r

r`
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i D. Data Reduction

The procedures used to reduce the data obtained from the static pressure

measurements, the transverse traverse surveys and the boundary layer surveys

will be outlined in this section. As noted in the previous section on test

procedures, the test conditions tended to drift slightly during the course of

a long run. Using the input data (Td, W, etc.) taken at the start and finish

of each run (a long run was broken into two or three shorter runs), the averaged

values of the test variables were calculated for use in reducing the data obtained

during that run. A discussion of typical variations in the test variables is

presented in the next section on the accuracy of the measurements. The various

corrections and calibrations required in reducing the data are described in

detail in reference 49

j

P	
1. Static Pressure Measurements

J

The data obtained from the static pressure measurements on the test wall

f
and wing model were reduced to a static pressure coefficient

is

I7s 	 ref
C =_

E	 p	 gref
i

The reference static pressure tap for the 2 -D studies was tap no. 5 on
t.

the aluminum insert (table 2), while 'a special reference tap upstream of the

wing model (table 1) was used in the 3-D studies.

2. Transverse Traverse Surveys

Most of the surveys obtained with the transverse traverse device have

been presented as Xerox reproductions of the original X-Y plotter graph

sheets. Information on test variables, calibrations, etc.,' pertaining to

these tests have been included on these sheets or in separate tables. Only

f	
a portion of the data obtained in these surveys was reduced for this report.
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The data which was reduced was first read off the graph sheets using

a special machine which produced punched computer cards. These cards, to-

gether with additional information on test conditions and calibrations were

run in a computer program to obtain the final results.

Surveys obtained using the 3-tube probe were reduced to the form of

U/Ue vs z and a vs z, where U  (essentially U00) is the velocity at y = 6

in. above the test wall, z is the transverse location relative to the center

line of the test wall and a is the flow angle relative to the centerline.

Since the local static pressure was slightly different from that at the

reference tap used for the surveys, a small correction (0 C p n 0.22E - 02,
^r

based on the wall static pressure measurements) was applied to the data obtained

with the center (total) tube of the probe. As will be noted later, this

correction also allowed for a small interference effect that the transverse

{ traverse device had on the upstream reference tap. The required pressure

differential for the calculation of the local velocity U (using Bernoulli's

equation) is given by:

,

OP = PT
	 Pref - ACp gref (2)

x

The local flow angle a measured by the 3-tube probe was calculated as

follows:
.. Qp

a	 Ca	 sades	 degrees (3)

Ca -= calibration constant for the angular response of the

probe (Ca	18.69 for the data reduced in this report)
1

Data obtained with the 0.0591 in. O.D. Preston tube were reduced to

obtain a local skin friction coefficient C f .	 The pressure differential- l

^h
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measured by the Preston tube was corrected for AC  as given by equation _(2)

and then used in a calibration of the tube (see reference 49) to determine

T
W

Additional calculations were made to determine the velocity at the effec-

tive center of the Preston tube. Because the tube was resting on the wall,
,J

three corrections were applied to the data to account for shear displacement,

Reynolds number effects and wall proximity effects.

The procedures used to reduce the data obtained with the 3-tube Preston

probe are similar to those described for the 3-tube probe and the single tube

(0.0591 in. O.D.) Preston probe. The local skin friction T was calculated
w

using a calibration obtained for a single tube Preston probe with D = 0.0283 in..
	 J

A value of 23.05 was', used as the cal.i.bration constant C a for the side tubes

in equation (3). Corrections for shear displacement, Reynolds number effects 	
J

and wall proximity effects (based on the corrections for a circular picot

tube) were also made.

The data obtained with the hot -wire probe was reduced to obtain U/Ue vs.

z and. /Ue vs z, whereUe is the longitudinal turbulence intensity;.

Data from the X-Y plotter traces, along with calibrations of the hot-wire 	 a

probe and before and after each test were fed into the computer. The program

was written to least squares fit the calibration data, interpolate between

the calibrations to allow for a small drift during a test, and calculate the
a

values listed above,

None of the data obtained with the pitch probe was reduced for this

report. However, a scale has been included on each. graph sheet showing
9

the approximate pitch measured during the test. A few early trial tests

using: the static disk probe indicated that the transverse traverse device

was producing relatively large disturbance effects on the measured static
{
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pressure distribution (to be discussed in the next chapter). Further work

with this probe was discontinued.

3. Boundary Layer Surveys

The procedures followed in reducing the data obtained from the boundary

layer surveys were similar to those used for the transverse traverse surveys.

i,	
The velocity U at each point through the boundary layer was calculated

by using Bernoulli's equation. Although the probe was aligned in yaw to

the local flow throughout the 3-D boundary layer, it was subject to over

4.0
0
 of pitched flow in the outer region of the boundary layer. Since a

calibration of the pitot probe showed less than 0.250 change in the measured

dynamic pressure at a yaw angle of 4.0 0 no corrections (calibrations) were

R; made for the pitched flow.

Three corrections were applied to the pitot tube data to account for

f shear displacement, Reynolds number effects and wall proximity effects.

The shear displacement correction suggested by MacMillan (ref. 59) was

applied to the present data. 	 This correction locates the effective center
4

of the probe at 0.15D further away from the wall than the geometric center, where z

` D is the external diameter of the circular pitot tube. 	 This correction

was applied to all data points obtained in the boundary layer. r'

The Reynolds number correction applied to the present data was also due
t,

to MacMillan (ref. 60). 	 His results were expressed as a correction coefficient

CRe:

f
AP
uncorrected_	

(4)URe

ry

Q

Y

tt
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The largest correction coefficient ta le for the present data (when

the pitot probe was resting on the wall) was on the order of 1.006.

This produces a 0.3% decrease in the uncorrected velocity (i.e. the
F	

.

velocity which would otherwise be calculated using LAP	 )
uncorrected

'

Pitot tube data obtained very close to the wall requires a further f

correction (the wall proximity correction) to account for the effects of

the probe -wall flow field interaction.	 MacMillan (ref.' 59) gives this_ f

correction as a small increase in the velocity Au for data obtained: in
f

the range 0.5 < y/D < 2.0, where y is the distance from the wall. to the

geometric center of the pitot tube. 	 The maximum value of Au equals 0.015

U when the probe is resting on the wall (y = 0.51)).

The procedures used to reduce the data obtained with the rectangular

pitot tube were identical to those for the circular pitot. 	 However, the

values used for the corrections were different (because of the differences

r	 in geometry).	 The shear displacement correction of Quaxmby and Das (ref.
a

61) was applied to the present data. 	 This correction locates the effective

center of the probe at 0.191­1 further from the wall than the geometric

center plane of the probe tip, where H is the external height of the probe

'	 tip.	 As for the circular pitot tube, this correction. was applied for all. _
F	

data points in, the boundary layer. 	 The Reynolds number correction was

based on a study of the viscous effects on rectangular pitots by MacMillan

(ref. 62).	 The largest correction coefficient GRe was on the order of 1.01

(producing a 0.5% decrease of the "uncorrected" velocity). 	 Tile wall proximity

correction was based on MacMillan's results for circular pitots (ref. 61),

but with the external pitot tube diameter 1) replaced with the external width

e of the rectangular probe tip.	 This was suggested by Quarmby and Das (ref.

61) who also found the wall proximity correction to be function of the Reynolds

L7 - _ _.	 _ 
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;. number.	 No corrections were available for data obtained in the range

0!12 < y/e < 0.5 (the aspect ratio of the probe used in this study was

e/H = 4.0, fig. (llc)). 	 However, an estimate of the wall proximity effect ,;q

at y/e = 0.12 (when the probe tip is on the wall) was obtained from the

position of effective centers of flat surface tubes given in reference 63

(for the present data this gave ou ti 0.19U at y/e = 0.12).	 Using this,

together with MacMillan's results, a wall proximity correction curve for

., the range 0.12 < y/e < 2.0 was constructed.	 Further details have been given

in reference 49.

Since no detailed boundary layer surveys were made to obtain the turbu-

lence distribution, no corrections for turbulence have been made in the ,

pitot tube data.

Data from the pitot surveys were plotted on. an  enlarged graph to locate

y the boundary layer edge where U = 0.995 U00 .	The local free stream velocity

(dynamic pressure) measured by the pitot tube was fed into these programs

asi, U^/U
ref (a./aref	 Tile skin friction coefficient Cf (from Preston tube i

surveys to be described below) was used in the pitot tube program to calculate

the variables for the universal velocity plots, u + vs y+.

The data obtained from the Conrad probe surveys were reduced to the yaw

angle a vs y and a vs y+ (using Cf from the Preston tube surveys). 	 n correction`

for shear displacement of 0.15D (where D = diameter of one of the Conrad side

tubes) was applied to the data. 	 however, this correction may not be appro-

priate because of the difference in geometry between the Conrad Probe tip

and the circular pitot tube.	 No corrections for Reynolds number effects,

wall proximity effects, turbulence or pitched flow (in the 3-Ti boundary layer

survey) have been made to the data.

Measurements obtained with the four different sizes of Preston tubes

were reduced to obtain an average shin friction coefficient Cf.'
r
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The pressure differentials measured by the Preston tubes were corrected for

AC  as given by equation (2) and then used in a. calibration (one calibration

for each tube) to determine the skin friction T.W. The calibrations, given

in reference 49 were fed into the computer program as a third. order polynomial.

The data taken with the pitch probe were reduced to obtain the variation

of the pitch angle S through the boundary layer. Since the probe was fixed

in orientation with respect to pitch, the differential pressure AP sides measured

across the two sides of the probe was used with a calibration to determine

The account for the effects of a velocity gradient across the probe tip

(since one side of the probe is closer to the wall than the other), a correction

must be made to AP sidesbefore ^ can be calculated. The equation used to

determine s has been derived in reference 49 as:

_ ^	 ^^sides	 KDdq	 (5)a	 q	 a dy

where R

K = correction factor which accounts for the fact that each tube

(Beveled off at 550) reads a smaller pressure than the total.

pressure (K = 0.54, see reference 49).

The calibration constant Ca was found to vary with `velocity (see reference
;t;

49)

	

Ca
	 24.48 - 0.0'1.5U	 (6)

This was used to calculate C a , with the velocity being determined from q.

The dynamic pressure q vs y and the gradient dq/dy vs y were obtained

from the pitot tube surveys. The gradient was determined by hand after

plotting an enlarged rah of, vs y . Both quantities tiff=ere fed into thep	 g	 r,g graph
	

q	 Q

pitch tube program on computer cards:

µ

c,y

Y
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The effective center of the probe was assumed to be 0.15D further away

from the wall than the geometric center.	 This "correction for shear" was

made as a matter of convenience so that direct use of computer generated

cards (q vs y) from the pitot tube program could be made. 	 This "correction"

may not be appropriate here because of the difference in geometry between

the pitch probe and circular pitot tube.

Measurements of the static pressure distribution through the boundary

layer were reduced to a static pressure coefficient C p vs y.	 The pressure

coefficient was given previously as:

p~-pref
C	 = -	 (1)
p	 ` ref Y

3
In the present case, ps	is the local static pressure at a; given point in

the boundary layer. 	 For surveys-conducted.in the 2-DTBL, the static pressure

was assumed constant through the boundary layer and equal to the value

measured on the wall. 	 Surveys conducted in the 2-D flow were used to calibrate

' the static pressure probes for use in the 3-DTBL.

Static tube data obtained in the 2-D flow indicated that the probe was

reading 	 slightly different pressure than the wall static	 ressure.	 Sinceg	 g	 7'	 p	 p

these differences generally amounted to a variation in CP of less than +0.001,

no corrections were made when using the probe in the 3-DTBL. 	 The static tube t^

was aligned in pitchto within 1.7 0 over most of the 3-D flow (where pitch

angles of over 4.7
0
 were measured).	 Hence no corrections for the small. amount

of pitch were made to the static tube data.

The static disk probe requires a calibration which relates the pressures

measured by the disk to the local static pressure. 	 This is expressed by:

Ps	 Pd =Ck q(7) =-

,v
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From the surveys conducted in the 2-DTBL, values of Ck ranged from

0.08 at the edge of the boundary layer to 0.094 at y = 0.5 in. above the

wall. This variation (Ck vs y) was used in the data reduction program for

the 3-DTBL (see reference 49 for details). For the present case, the varia-

tion of C  vs y was used in the pitot tube program to calculate U vs y.

Using this profile as a starting point, a profile of q vs y was fed into the

data reduction program for the static disk probe.

In the,3-DTBL, the static disk probe was subject to over 4.7° of pitched

flow. No corrections were made for this since calibrations indicated that

the probe was nearly insentive to pitch over a + 4.0o rLmge (changes to C 

were less than 0.005).

t
f

i

z

i

a

a
E.	 Accurary-of Measurements >

r`	 In this section, an assessment will be made of the errors involved in
E

f	 the various types of measurements obtained for this report. 	 For convenience,

these have been listed in Tables 4a-4c.

Table 4a lists the variations of test conditions and test variables during
s

a typical, boundary layer survey.:	 The variations given in the table were based

`	 on the average of variations noted in sixteen pitot tube runs.

The estimated errors LZvolved in the static pressure measurements and the ;'±

transverse traverse surveys are given in table 4b.	 For the transverse traverse

data, the estimated er..rors have been given at several locations through the

boundary layer.	 The measurements on the wall of U/Ue and a contain the maxi-

mumn errors"while those at y Pd d, the minimum errors.	 The errors in the trans

verse traverse data are associated largely with the inability to accurately

read the somewhat scratchy output traces that were recorded on the X-Y
Y

plotters.	 A further discussion of the determination of these errors is given

in the next chapter.



Table 4c contains an estimate of the errors associated with the data

obtained from the boundary layer surveys. 	 As for the transverse traverse

I
data, the errors for several locations in the boundary layer have been

given.	 Further details on the calculation of these errors are given in

the next chapter.

y p

y
C
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The results of this study have been divided into two parts; two-

-dimensional studies (i.e. without the wing model in the tunnel) and

three-dimensional studies (with. the wing model in the tunnel). 	 Some early

2'-D studies, concerned with the general operating characteristics of the

tunnel and some attempts at improving the nonuniform 2-DTBL, are discussed

w in reference 49.	 In addition, reference 49 contains the results of a

series of prototype studies which were made in selecting a model to produce

" the 3-DTBL.

4 A.	 Two-Dimensional Studies

F	 -, The results of the two-dimensional studies will be discussed under the

headings of	 static pressure measurements, transverse traverse surveys and

boundary layer surveys.

1.	 Static Pressure Measurements

The results of the static pressure surveys completed during the 2-D

studies are presented in figures 18-20.	 The static pressure coefficient

P is based on measurements relative to a reference pressure 11 ref , monitoredk ,

at tap no. 5 of the aluminum insert (table 2). 	 The reference dynamic pressure

g
ref is calculated from the grind tunnel operating speed as measured by the

reference pitot-static probe in the upstream portion of the test section.

The pressure distribution measured along the length of the test section

is shown in Figure.18. 	 Results from three separate runs are shown;	 i)	 an

x' early test made before the boundary layer trip was installed, at a free
4

-stream Reynolds number of Re = 3.-00F + 05, ii.) 'a later test made at Re

`. 3.15E + 05 (and with the trip) and iii.) a partial survey made with the
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transverse traverse device installed at the 18 ft. station (see fig. 16). The

general trend of the data indicates that a weak favorable pressure gradient was

present along the test wall. In comparing the data taken with and without

the boundary layer trip, it is noted that the C  for the untripped boundary

layer is larger (except for the first point) than the p for the tripped

flow over the first 5 ft of the test wall, but is consistently lower between

k = 6 £t and k = 11 ft.

Results from the third test indicate the disturbance effect produced by

the presence of the transverse traverse device mounted at the 18 ft station.

Although the traverse was mounted on the wall opposite the test wall (see

fig. 6) and about 2 ft downstream of reference tap no. 5, a slight distur-

bance effect was still noted at tap no. S. This can be seen in figure 18

as a slight (constant) upward shift in the data between k ti 8.5 and 9. v

F1

11.3 ft.	 The static taps at k = 12.6 .ft and k = 14.5 ft. are increasingly

influenced by the presence of the traverse device. 	 The upward shift in the data i

r, is caused when tap no. 5 experiences a small drop in pressure (ti 0.002 vertical

inches of DC-200 silicon oil) due to an accelerated flow past the traverse

device.	 Since the upstream pressures P remain unaffected, a small decrease

in Pref' 
produces a small increase in C	 The static pressure at tap no. 32p

(k	 17.9 ft, about 6 in. upstream of the traverse device) undergoes a relatively

r large drop off due to the accelerated flow.

a The pressure distribution on the aluminum insert (k > 15 ft) has been

presented in more detail in figures 19 and 20.	 The expanded C	 scale (fig.
p

19) shows the degree- to which the data can be repeated in a single run and

how repeatable the data is from one run to another (solid symbols) (repeatability	
g

within 0.0005 in. DC-200 during a single run and within '0.001. in. DC- 200 from

one run to another).	 In figure 19, all of the data has been plotted relative
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to a transverse line passing through tap no. S. Data from taps no. 5-17

and no. 22-23 agree quite well and indicate a relatively fast drop in pressure

at x % 3 in.. Following a relatively flat region, the pressure increases

until abour x ti 23 in. and then falls off on approach to the exit of the test

section. The data from taps no. 60-71 is shifted upward from the other two 	 i

rows, but it follows the same general trend. The decreasing static pressure

gradient would generally be expected. 771e exact cause of the favorable pressure

gradient over the last portion of the test wall was not readily apparent.

Presumably, because of the particular geometry involved and the development

of the boundary layer, the flow experiences an acceleration over the last

A	 1 t d t	 d decrensinportion (x > 36 In.) of the test section. 	 genera	 ren	 owar s

' pressure appears to already start with the drop off from k'u 14.5 ft. to the

first	 pressure taps on the aluminum insert (fig. 18). 3

In fig-are 20, the static pressure along several diagonal rows of static

taps has been plotted versus z e , the distance measured along the diagonal

(see tables 2 and 3).	 The data along diagonal rows of taps nos. 1-76 and

nos. 5-60 indicates_a relatively flat pressure distribution. 	 However, data

along the row tivith taps no. 2-77 indicate an increase of pressure in going

to ',the bottom portion of the test wall. 	 A comparison of data taken along

taps no. 16-71 and taps no. 17-72 shows the effect of the diffuser on the static

pressure distribution.	 The data plotted in this manner was used to obtain

(by interpolation) the static pressures at the location of boundary layer

survyes made on the test wall (see fig. 16).

AI

2.	 Transverse Traverse Surveys

The surveys made with, the transverse traverse device were primarily

conducted to give a qualitative indication of the flow field in the 2-D and

,.'. 3-D boundary layers.	 For this reason, most of the results obtained in these

surveys will be presented as Xerox reproductions of the original X-Y plotter

x
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traces.	 Information on test variables, calibrations, etc. for the tests !

shown in the reproductions have been included on the figures or in a

separate table.	 Since some of the traces did not reproduce well, they

have been enhanced with a broken line in several of the .figures. 	 Only

a portion of the surveys obtained in the 2-D studies have been reduced.

The results of a number of preliminary studies using the transverse

traverse device have been summarized in reference 49. 	 These tests were mostly
LL

concerned with attempts to reduce the nonuniformities in the boundary layer

by the use of various thicknesses of tripping devices, corner fillets, etc.

These "preliminary" studies were concluded when it was realized that further
a3

inprovements in the boundary layer flow could only be obtained by still

-
further modifictions of the inlet of the wind tunnel.	 It was then decided

to go ahead with the planned 3-D studies under the assumption (as stated in

reference SO) that the slight nonuni.formities in the boundary layer would not

cause serious problems in the interpretation of the data. 	 Prior to the 3-D

studies, a number of transverse traverse surveys were conducted in the 2-D 'y

test section (i.e. without the wing model installed) to obtain further data

on the nonuniform_ boundary layer. 	 The results of these tests will be presented

below, pI. _A

Transverse surveys in the 2-D testsection were obtained at two stream-

wise locations; the first at Q = 34 in. (where k = distance measured from
r

the start of the test section) and a second at Z = 18 ft.	 (see fig. 16).	 Both

st,°:dons were nominally centered on the centerline of the test wall. 	 The

bulk of the surveys were made at the 18 ft. station, while tests at the 34 in.

station were made near the conclusion of the 2-D studies in order to trace

the origins of a peculiar flow pattern observed at R = 18 ft.

f.	 '
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Surveys obtained at the 18 ft. station using the 3-tube probe are

{

shown in figures 21a and 21b. 	 This test was conducted at a reference
5

free stream Reynolds number Re = 3.15E + 05 ft -1 and with the boundary layer

trip in place.	 The vertical scale in figure 21a is the output from the

pressure transducer used to monitor the center (total) tube of the 3-tube
4

probe.	 With one side of the transducer connected to the reference static

tap, the output is essentially PT 	 Pref'	
The calibration for the transducer

r	 has been listed in table 5, along with the test variables (Uref' 
Re, etc.)

a

for the run.	 Because of a problem with reversed polarity when hooking up

the X-Y plotters, the calibrations were slightly nonlinear in some of the

runs.	 Hence, the calibration has been given in the tables in two or three

parts, each for a given range of the plotter output. 	 The distances above the

v	wall at which surveys were obtained are listed on the right side of the

figures.	 The x axis of the graph is the transverse location (in true scale)

of the 15 in. survey. 	 Because of the large number of graphs to be presented.,

only the centerline of the test wall will be shown in each figure along with

an indication of the scale.	 In addition, some transverse locations (z locations)

that are commonly referred to in the text will be indicated on the various

graph sheets.	 The numbered arrows at the top edge of some of the figures

refer to boundary layer surveys to be discussed in the next section. As

shown in the sketch on figure 21a, the portion of the graph to the left

of centerline shows the survey obtained below the centerlineof the test wall,

while +z refers to the portion obtained above centerline. The orientation A

of all other transverse traverse surveys shown in this report is the same.

The centerline of the test section indicated on the graphs is generally
s

shifted to one side of the centerline of the graph sheet. This occurs

because it was difficult to center the 15 in- span of the traverse device

exactly on the centerline of the test wall. Instead, care was taken to adjust
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the limits of the traverse device to within 0.05 in. of the 15 in. span so

that the trace on the plotter was full (true) scale.

The output in figure 21a clearly indicates the existence of nonuniformities

in the 2-D turbulent boundary layer on the test wall. For example, the

variation in velocity U (the output PT - Pref is proportional to U2) at

y = 0.5 in.is on the order of 90 (where y is the distance above the wall in

inches). The survey taken at y = 3 in. indicates the variation of the boundary

layer thickness 6 over the 15 in. span. At z = -4.5 in., the boundary layer

is relatively thick while at z = +6.5 in. the thickness is near the minimum

over the survey. Boundary layer surveys (to be discussed in the next section)
G=

indicated that S varied from 3.1 to 3.9 in. over the 15 in. span at select

stations. The transverse variations in figure 21a appear to have a "wave-like"

structure. The "wave length" of the variations is on the order of 26.

Similar data showing the variations of velocity (dynamic pressure)

have been obtained in a number of other wind tunnel facilities. Most notable

are reports by Fernholz (ref. 64), Bradshaw (ref. 50) and de Bray (ref. 51).

Perkins (ref. 43) has suggested that the nonuniform 2-D turbulent boundary

layer may contain weak longitudinal vortices which alternatirely "pump"

fluid into and out of the inner portion of the boundary layer. In figure
F.

22, a sketch of Perkin's model is given for the transverse variations seen

in the present PT Pref data. The regions of low PT - Pref output correspond

to those 'areas where low momentum flow from the inner portion of the boundary

layer is transferred outward. Also shown in figure 22 are the expected outputs

of probes used to measure the transverse variations in total pressure, yaw and

pitch through the lower portion of the imbedded vortices. Surveys through

the outer portions of the vortices would have the sign of the yaw angle a reversed,

LLA.u.. ^.t.. 	 ,..
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The differential output of the sides tubes of the 3-tube probe AP sides

are shown in figure 21b. As for the 3-tube total tube, the calibration for

the transducer has been given in table S. The output shown here is indica-

tive of the. apparent yaw angle a of the flow and can be calculated using i

equation (3) (p. 31).	 In order to separate the traces taken at different
C

values of y, the zeroes of each trace (i.e. where the plotter pen was located

,when there was no pressure differential across the transducer) have been

shifted on the graph. 	 These have been given as "zeroes" along the right side

of the sheet.	 An output that is above the "zero" indicated a yawed flow that

is directed towards the floor of the test section (a > 	 0) while an output

below zero is a flow towards the test section roof (a <	 0).	 The sign

convention on a was chosen so that the flow angle observed behind the 3-D

wing model (where the yawed flow was directed towards the floor) was considered >

as positive.	 In the data obtained with the 3-tube probe, the actual (absolute)

flow angle depends on the original alignment of the probe. Hence,) the output
t

on the X-Y plotter must be interpreted as a relative change in a.	 The variations

in IW sides through the boundary layer is in part due to the variations in PT -

Pref seen in figure 21a, since the calibration of the side tubes is dependent

on the local dynamic pressure. 	 The trace at y = 6 1/8 in. was first thought

to indicate swirl in the test section. 	 A honeycomb was placed in the diffuser

in an attempt to remove this "swirl" (see fig. 3).	 The honeycomb had no

apparent effect on the trace at 6 1/8 in.	 Later studies of the possible disturbance

effects of the traverse device suggested that the "swirl" was due to the dis-

turbing effect of the traverse itself. 	 _As sketch below, the flow which

approaches the traverse device must diverge off to either side of the centerline.
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This affect is most pronounced on the wall upon which the traverse is mounted.

However, the effects will still be felt at points across the test section

and above the test wall. The data in figure 21b at y = 6 1/8 in. shows that

the relative flow angle goes from a > 0 at z = -7.5 in. to a < 0 at z = +7.5 in.-

This change is also suggested by the flow deflections in the sketch above.

The total variation in a at y = 6 1/8 in. was less than t o over the 15 in.

span.

A comparison of the yaw data in figure 21b with the flow model in figure

22 is not directly possible because AP sidesin 
figure 21b undergoes variations

due to the variations in PT - Pref shown in figure 21a.

The accuracy of the measurements obtained with the 3-tube probe (as well

as the other transverse traverse probes to be discussed below) is mainly depen.

dent on the accuracy with which the somewhat scratchy traces can be read. For

the data obtained with the 3 -tube probe, the accuracies were estimated as

follows; for U/Ue, +4 on the wall (i.e. survey completed with the single

ir
...	 _	 it
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Preston tube), +1.5% at y = .5 in. and +0.5% at y = S, for a, 0.2
0
 on the wall

(3-tube Preston), 0.1° at y = 5 in, and. 0.05° at y =	 d.

About a year before the tests in figure 21 were conducted, an earlier series

of transverse traverse surveys were completed at the 18 ft station. These

tests were conducted at Re = 3.00E + 05 ft -1 and with the boundary layer
	

i

trap installed (the Reynolds number was increased to Re = 3.15E + 05 ft -1 in

the second series of tests (fig. 21) in order to get more response from the t.
-

pressure probes).	 The surveys obtained in the first series of tests were

reduced and are plotted in figures 23a. and 23b._ The vertical axis in figure

23aives U/U	 where U	 is the velocity$ Y at Y =G in..	 The traces are shiftede	 e

slightly because the 15 in. span of the traverse was not quite centered on the

test wall.	 Also sliown in figure 23a are the results of a hot-wire anemometer

survey.	 The data from both tests agree to within 2 10 over most of the 15 in. span.

In comparing the traces; obtained in the two series of tests, some variations

in the nonuniformities were apparent. 	 The wave like pattern in figure 21a

appears to be shifted about 1 in. to the left of the original traces shown in

figure 23a.	 These changes might occur if the inlet damping screens and honeycomb

had changed slightly during the year (i.e. the polyester screens may have sagged

Y

due to long term creep effects or the screens may have become slightly dirty).
t

Measurements obtained from four boundary layer surveys (to be discussed in

the next section) are also shown in figure 23a.	 The agreement between the

boundary layer and transverse surveys is good. (within 20) over most of the

boundary layer:

Figure 23b shows the variations in the yaw angle a measured by the side

tubes of the 3-tube probe. 	 An additional trace obtained by the 3-tube Freston

survey on the wall is also included (effective center of Preston probe is at

y = 0.018 in.),	 As noted earlier, a > 	 0 implies a. downward :Flow directed toward
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the floor, of the test section. Portions of the data might appear to be in agree-

ment with the flow model shown in figure 22.	 For example, at the far left of

t; figure 23b (z = -7 in.), the yaw angle is seen to be decreasing to a minimum

A;
point (in traversing to the right) in the same way as the idealized. trace in

figure 22.	 Returning to figures 21a and 21b, a similar behavior can be seen

in the original X-Y plotter output.	 In traversing to the right, the minimum

point in AP	 (at(at z = -6.5 in.)	 occurs before the minimum in P7
, - Pref

at z = -4.S in. (the same way that the minimum in the idealized a curve occurs

before the minimum in PT 	 Pref of the same area in figure 22). Another portion

Is of the output showing some agreement with the model occurs at z = +4.5 in.

in figure 23b.	 In this region the maximum in a occurs before the maximum in

U/Ue when traversing to the right (which is in agreement with the patterns

shown in figure 22).	 Four data points from boundary layer surveys (to be dis-

cussed in the next section) are shown on the left half of figure 23b. 	 `nie

free stream flow angles measured by these probes showed no apparent "swirl"

in the flow.

The longitudinal turbulence intensity measured by the hot-wire probe

is shown in figure 24.	 The accuracy of these measurements were estimated

to be: 6% at y = 0.5 in. and 8% at y = 6. 	 Data from reference 65 is shown

for comparison at the boundary layer survey stations completed in the first

series of tests.	 The agreement is generally good for points closer to the

wall (within 3% at y = 0.2S in.) and in the freestream. However, the present

surveys ar cons' t tl h' h th th	 It f f r	 65 f the	 ss en y rg ex an e resu s o re.e ence	 or e

surveys in between (at y = 3 in., the present results are over 50% higher).

The large variations in the outer part of the flow represent variations of the

intermittency of the turbulence in the boundary layer. Similar variations

in the intermittancy of a turbulent boundary layer (in the transverse direction:)

were observed by Kiben and Kovasnay (ref. 66). Extensive (transverse)
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measurements of the turbulence stru--ture in a nonuniform boundary layer are

presented in reference 67.

The transverse variations in the skin friction along the 1.5 in. span are

shown in figure 2S.	 The X-Y plotter trace obtained with the single tube

(0.0591 in. O.D.) Preston tube is shown at the top of the figure.	 The data

obtained in the two surveys separated by about one year, show an apparent change

in the flow structure as previously_ noted, in the 3 -tube probe data. 	 These

variations were presumably caused by changes in the inlet damping screens

and honeycomb.	 The small change in. Reynolds number between the two seri.e	 of i

tests would be expected to produce a'small decrease in C	 for the second1
series of tests (Re = 3.15E + 05 ft 	 ).	 For example, based on a 1/7th power

I law velocity profile, the change in C	 at k = 18 ft would be on the order of
r

1%.	 This decrease for the C 	 in the second series of tests may explain some

`	 a of the changes on the left side of figure 25, but cannot account for the largo

difference on the right of the figure. 	 The data taken with the 3-tube Preston,

i probe are on the order of 8% lower than the single tube data over the 15 in.

}	 =` span. ' The variations are believed to be caused by the use of a somewhat }

' inappropriate calibration (the 3-tube Preston probe was not itself calibrated

' the calibration of an 0.0283 in.`O.D. circular Preston probe was used). 	 A

comparison with data obtained in the boundary layer surveys has also been

included and shows agreement to within 7% for all points.	 The accuracy of the 1

Preston tube measurements was estimated to be on the order of 5% (based on !

tho Peadin 	 accuracy- of the traces) .

Transverse surveys using the pitch probe wore only ohtai.mod duffing <_

socond' so ries (Re	 3.15r + OS ft 
1) 

of tests.	 The c	 fScYro ft .	 t	 =9 w: '

weasured by the side tubes of the pitch probe at X = 18 it arc, bhol-m ill 1	 .

"'6.	 A	 output w-Wi ch is above tUho -- ro for a givc!n trace indit,.aVO ;.s. 	 ¥i:x'.. 1tsP{.s

,; pitched _ awiii r from the wal I	 $rel.at ivo to the surrnluld hll_' i-low° _	 °< '%.A :'

u
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present tests, the accuracies of the measurements were estimated to be:

0.2
0
 at y = 1 in. and 0.050 at y = S.	 The interpretation of the results in

the boundary layer are complicated by the fact that the pressure differenital

for a given pitch angle f3 is a function of the local dynamic pressure and is

affected by the variation in dynamic pressure through the boundary layer.

'The local Pitch angle 0 could be calculated using equation (9) if the required

information (q and dq/dy) were obtained from the data.	 For the present tests,

the accuracies of the measurements were estimated to be: 0.2 	 at y = 1 in.

and 0.05
0
 at y = 8,	 The following discussion will be limited to the results

obtained at the outer portions of the boundary layer and above, where q%

constant and	 dq/dy r, 0.	 Of particular interest are the relatively large

variations in pitch noted at z n, -4.0 in, and z	 +5.5 in.. According to the M

scale (which applies only for freestream data), these variations are as large'

as 0.4
0 and indicate a local flow that is pitched away from the wall relative

is

to the flow to either side.	 Moreover, the variations at z = -4.0 in. indicate

r
that the flow goes 	 through a type of reversal in pitch with a small dip down-

ward at z = -4.75 in. followed by a large upward shift at z 	 -4.0 in..	 The

traces at z = -4.0 in. appear to skew slightly to the right in going from

= 4,to	 9	 whereas the traces at z = +5.5 in. show a definite shift to- y	 y=

the right in going away from the wall. 	 In addition, the maximum variations

in the pitch decrease in goingtowards the centerplane of the test section

(at y = 8.95 in.).	 The surveys at y = 8 in. and 9 in. show that these varia-

tions change sign in crossing over the centerplane of the tunnel.	 Returning

to figure 21b, there are also indications in the output from the side tubes

of the 3-tube probe that small variations in yaw occur at z 	 -4.0 in.	 and

z = +S.0 in.. In particular, the trace taken at y = 4 in.	 (in figure 21b)

shows small variations (<0.2°) at z = -4.0 in. and z _ +5.0 i.n., suggesting

;. a small local upwardly yawed flow.

E	
x	 ^
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When the nonaniformities in the pitch probe output were observed, a careful

check of the inlet damping screens and honeycomb were made. The expected loca-

tion of the origins of these variations were estimated by scaling the distance

on the X-Y plotter traces relative to the centerline of the test section (i.e.

with the test section height = 46 in. and the inlet height = 88.5 in., the non-

uniformities would then appear to possibly come from the screens at z = -7.7 in.

and z _ +10.6 in. above the centerline of the inlet wall). A marking pen was

used to mark these locations on the inlet wall. When the screens were inspected

from inside the inlet using a flas}Zlite, no apparent cause for the nonuniform-

ities could be seen. To inspect the honeycomb, several lights were placed out-

side in front of the inlet and the honeycomb was viewed from the inside of the

(now dark) inlet contraction section. The photograph in figure 27a shows the

light diffraction patterns (Moir6 patterns) that were produced by the honeycomb

and screens. Running across these patterns were two narrow interference bands

which lined up closely with the locations of the pen marks (the pen mark for

the variation in pitch at z = -4.0 in. was within 1. in. of the bottom band

while the mark for the variation at z = +5.5 in. was about 2 in. higher than

the topband). A closer inspection with a flashlite showed, that the second to

the last screen had a slightly closer weave in the region of the light diffrac-

tion band. The photograph in .figure 27b shows that this nonuniform weave was

limited to only about 6 openings of the screen (approximately 0.4 in. in

width). Apparently, the flow field (wake) developed by this nonuniform weave

traveled down the test section and affected the pitch probe output at P. = 18 ft

(nearly 24 ft. from the last screen)

After the wing model was installed in the test section, a further study

of the developing 2-D boundary ,layer at an Upstream station was made. These

surveys were made at 9 = 34 in._ and were primarily conducted to obtain more

information on the nonuniformities coming off the screens in the location of
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the nonuniform weave. The surveys taken with the 3-tube probe are shown

in figures 28a and 28b. The surveys in figure 28a indicate the boundary layer'

was about 1 in. thick. The traces obtained with the side tubes above the

edge of the boundary layer show an interesting local variation in the yaw

angle at z = +4.50 in. and y = 2 in. amounting to nearly 0.4 0 of upwardly
	 i

yawed flow (i.e. to the top of the test section). Similar changes (though

smaller and shifted in z) can be seen at y = 1 in. and y = 3 in. The variation

also appears to skew off to the upper right corner of the graph sheet.

-A comparison of the Preston tube (0.0591 in. O.D.) surveys at Q = 34

in. and Z= 18 ft is shown in figure 29. The variations in C  at k = 34 in.

were on the order of +5o compared to the variations of +90 at z = 18 ft. More-

over, the patterns of nonuniformites are different for the two stations.

Although the wing model was in the tunnel for the surveys conducted at Q = 34

-in., this was not thought to significantly affect the Preston tube measurements.

Figure 30 shows the pitch probe surveys conducted at Q = 34 in.. In comparing

with the results from figure 26 for the survey at e = 18 ft, it is seen that
G	 z

the relatively large changes in pitch above the edge of the boundary layer
a

occur in the same z locations for both. tests. 	 The plotter gain on the survey

in figure 26 was set at twice the gain of figure 30, so the scales for the
J

' approximate	 itch angle are different in the two cases. 	 The regions of non-PP	 p	 g. ^	 g ^	 .

uniform pitch appear to occur at and above the edges of the boundary layer

' for both stations.	 Although the variations in pitch are accompanied by

variations in yaw at y = 2 in. and z = +4.50 in. (comparing figs. 28b and{

30), no apparent variations in yaw occur at y = 2 in. and z = -3.5 in. in

figure 28b.
1

The pitch probe was neat mounted on an extended bent probe holder that

r ; allowed surveys to be made 10 in. ahead of the surveys shown in figure 30

f and also allowed surveys to be made across the centerline and above the wall
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i
on which the traverse was mounted. 	 The probe was extended forward to reduce

disturbance effects from the traverse device.	 Pitch probe surveys obtained

with this arrangement. are shown in figure 31. 	 The probe was traversed along

two y locations to each side of the centerline. 	 These results show that

the maximum variations in pitch decrease to zero on the centerplane of the
r

test section and then show a reversed sign above the opposite wall. 	 The

'i
pitch probe survey at y = 2 in. above the transverse traverse wall shows a -

relatively large pitch away from the wall at z = -3.5 in., flanked on both
s

sides with small, pitch towards the 'wall. 	 The same extended probe holder

was used to make several surveys above the traverse wall using the 3-tube

fprobe. The traces shown in figure 32 now show variations in yaw at z = -3.5

in.	 (y = 1.17 in., the closest the probe could get to the wall) and a variationL

in yaw at y = 2 :in. and z = +5.0 in. that was smaller but similar (i.e. indi- ^

cating upward flow) to the variation seen at y = 2 in. and z = +5.0 in. above

the test wall.	 These tests indicated that the flow structure coming from

the bands of nonuniform weave was symmetric to both sides of the centerplane

of the test section.

The results of the transverse surveys at t = 34 in. and t = 18 ft suggest

that a type of vortex like flow may be produced by the bands of nonuniform t

weave.	 The wake flow that these bands produce develops into a vortex structure

that extends down the length of the test section and occurs to both sides of t

the centerplane of the tunnel. 	 The flow structure that one of the bands may

produce is sketched in figure 33.	 The cross sectional rear view shows a

vortex pair occuring to each side of the vertical centerplane of the 	 tunnel.

Both pairs of vortices are producing a flow component that is directed away

from the wall.	 Consideration was also given to only one vortex existing to each

side of the centerplane. 	 In figure 34, the expected outputs from the pitch

probe and the 3-tube probe are given for the t-wo possible vortex models; 	 the
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first in which only one vortex is present on each side of the centerplane and, r

a secondalread	 shown in fig. 33	 where there is a vortex	 air on each side.second(already	 g•	 )	 p

` The output from a total tube would be unaffected to the resolution of the

{ present measurements because of the weak vorticesiinvolved. 	 Surveys conducted

' through various regions of the vortex flows (numbered as 1, 2, 3) would produce

f	 ' the output traces shown as 1, 2 and 3. 	 The data from the pitch probe, in

a particular, the survey made at 2 in. above the traverse wall (see fig. 30),

'	
u

appears to support the vortex pair model.	 On the other hand, the surveys

J	
;i obtained using the 3-tube probe indicated little or no evidence of any comparable

I
yawed flow (associated with the possible vortex flow). 	 The output that was noted

in figure 21b (at y = 2 in	 z = +5.0 in. and z = -4.0 in.) and in figuz?e 28b$,

a! (y = 2 in. and z = +4.50 in.) could appear to support either vortex model.

E`
The 3-tube yaw survey shown at z = +4.5 in. and y = 1, 2 and 3 in. in figure

;C
` 28b suggested that one may simply be missing the large components of yawed

flow at z =	 3.5 in. (where the large peaks in pitch were noted) by making
e

Ii

[

1

surveys in..l in. intervals in y.	 Hence an additional test using the 3-tube

j
probe was- made to survey the flow field over the range of -7.5 in.<

	 z < -1.5

F' in. in increments of y = 0.25 in.	 The results of this test are shown in

1	 - figure 35 where surveys from y = O.S in. to y = 4 in. were completed. 	 No j
{ -

evidence could be found for any large component of yawed flow in the same
1

f
location '(z = -4 in.) as the relatively large variations of. pitch.- However,

some small-variations in yaw were noted at z = - 3.75 in. and y`= 2 3/8 in. to
.

y = 2 3/4 in.	 Several surveys were extended to z	 +7.5 in. to show_the varia-

tions of yaw above and below the maximum variation at z 	 +4.5 in., y = 2 in..

.Finally, the 3-tube probe was rolled icy 90
0 to serve as a pitch probe. 	 The m

survey shown at the top of figure 35 shows that both the pitch, probe and

3-tube probe were nearly equal in sensitivity and both indicated a relatively

large 'change in pitch at z _ -3.75 in..



i
To stimulate a wake flow coming from the screens, a piece of plastic

t

G	 ;
tape O.OS in. wide was placed across the entire .Screen. The tape was

located nominally on the horizontal cen.terplane of the tunnel and was

located approximately midway between the two bands of the nonuniform weave

j:	 The results of several different surveys are shown in figure 0. The output 	
r

f	 of the Preston probe at A, =  34 in, were virtually unaffected by the presence 	 j;
I	

_

!	 of the tape on the screen. A similar result was obtained atx 	 18 ft
E

The 3-tube (total) output at y = 2 7n. was also Unaffected to the? accuracy

I	 of the X-Y' plotter. However, the output of the side tubes of the pi°oI)e

I	 i.e. yaw) show a sharp change slightly to one side of the centerline,
t

In addition, the output signal was qu to noisy through this region as is
I
k.	 apparent in figure 36. The pitch probe at both k = 34 in. and != 18 ft

-	 showed a large change in pitch (indicating; pitch ;away from the wall;) clue to a
^	 ,	 a

the tape, although: the pitch at Q = 34 in. is again shifted slightly to one

side of the centerline. The output from both the yaw and pitch probes at

k= 34 in. appears tq support the vortex pair model shown in fib;. 34b

j	 Unfortunately, no additional surveys with the tape on the screens were coDdected
i

to further help clarify the flow field. structure and to confirm the model

in figure 34b.

The exact affect that the two vortex flows have on the born daTy layer is not

clear ;from the present data. Certainly the Stern ction between these vortices

and the weak longitudinal vortices shown in figure 22 is quite complex.

3. Boundary Layer Surveys

As noted in the previous section, the trra sverse travorse surveys were

conducted primarily to obtain a qualitative understanding of the boundary layer

flow on the test wall. Based on these studies, a number of boundary layer

surveys were completed at select stations along the transverse traverse surrey

Line. Two series of boundary layer surveys '(accompanying the two series of

_	 a--
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transverse traverse surveys) separated by about a years time were made:

The first at Re = 3.00E + 05 ft -1 and the second at Re = 3.15E + 05 ft 1.

rThe Reynolds number was increased for the second series of tests (as

previously noted) in order to get a larger output (pressure differential)' '

from the various pressure probes that were used.

For the first series of tests, boundary layer surveys were conducted

I
at four stations along the transverse traverse line.	 These are shown ing x^

1 figure 16 as stations 1-4. 	 Surveys at the remaining stations 5-7 were completed

during the second series of tests. 	 The location of these stations have been

indicated by small arrows on the upper edge of several of the figures showing r

the transverse traverse data (figs. 21-29).	 These particular stations were

selected in hopes of measuring the pitch and yaw of the weak longitudinal '.

vortices that may.exist in the nonuniform boundary layer (see figure 22).

The 3-tube probe was used during the first series of tests to obtain

s profiles of both the velocity and yaw variations through the boundary layer.
r	

P.	
,.Y ;

Because of the poor time response of this probe, it was replaced during the
{

second series of tests by separate pitot tubes (circular and rectangular)
r

and a`Conrad probe. 	 Preston tube and pitch probe measurements were obtained

during both series of tests.	 The static tube and static pressure disk were z
r

used only during the second series of tests. 	 A listing of the data obtained
tP

in both series of boundary layer surveys is given in table 6. 	 The average ^=

a  F
values of the test variables for each survey is also included in the same tables.

_ The 'velocity profiles obtained in these tests are shown in figures 37-39. Z

The results from each series of tests were plotted separately since the Reynolds' ,x
t

number was slightly changed and there appeared to have been changes in the

nonuniform boundary layer over the one year interval. 	 Figures 37a and 37b=
.	 t

show the velocity ratio U/U. vs y, where y has been plotted on a logarithmic

Y
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scale to expand (in y) the inner portion of the boundary layer. 	 This was
3

done to show the variations due to.the nonuniformities that occur near

to the wall.	 In figure 37a, the variations are largest between stations

1 and 3 (5% at y = 0.05 in., 6% at y = 0.5 in.) . 	 As shoe: in figure 23a

station 3 corresponds to a "dip" in the output of P T - Pref recorded from

the 3-tube probe of the transverse traverse device. 	 As previously noted,

the transverse traverse surveys agree to within 2% of -the boundary layer

surveys (fig. 23a).	 The surveys from the second series of tests (fig. 37b)

show large variations to occur between a maximtmi and minimum point on the

transverse output shown in figure 21a. 	 The variations between stations 5

and 7 (where 7 is at a minimum point) are: 	 9% at y = 0.05 in. and 7% at

y = 0.5 in.	 The survey taken at station 6 shows an even lower value of
a

U/U at a given y location than. station 7.	 On the otherhand, the transverse

traverse survey in figure 21a shows the velocity to be slightly higher at

station 6 than at station 7. 	 The reason for this discrepancy was not apparentr	 _

from the present data.	 When the two sets of profiles are compared, the data

'	 from the first series of tests is seen to fall entirely' within the spread of

data shown in figure 37b.

Data obtained with the rectangular pi.tot tube has also been plotted in

'	 figure 37b as the solid symbols. 	 The agreement with the circular pitot data

is very close (within 0.5%) over most of the profile, with a number of the

points coinciding. -Slight deviations were apparent in the range of 0.0184 in.

< y_< 0.030.	 These` differences were attributed to near wall effects on the

output from the circular .pitot tube. 	 This would suggest that the corrections

applied to the circular picot tube data were not entirely adequate.
s

The velocity data has been replotted as UU vs y/6 in figures 38a and

38b.	 The boundary layer thickness & (defined here as the point where U = 0.995

U) was determined by plotting U vs y on an enlarged graph. 	 Based on the



scatter in the data, 6 could be determined to within 0.025 in.. The values

of 6 at each station are listed in table 6. 	 The variations between stations

for the data in figures 38a and 38b are still quite apparent even for the

normalized data.	 The 1/7th power law velocity profile has been shown in

each figure and is not in good agreement for the surveys obtained on or below

the centerline of the test wall,	 ,	 )(no. 1	 2	 3	 4	 6 and 7	 The power law

does appear in good agreement with the survey at station S.	 Assuming that

the turbulent boundary layer starts at the boundary layer trip (Q= 0), the zr	 k

boundary layer thickness at R = 18 ft (for Re = 3.15E + 05 ft -1 ) was 6 = 3.56

in.. The boundary layer thicknesses measured at stations 5, 6, 7 (with Re

3.15E + 05 ft -l) were 3.14 in., 3.85 in. and 3.72 in. respectively. 	 For clarity,

. none of the rectangular pitot tube data has been shown in these plots.

g	 velocityFigures 39a and 39b show the velocit 	 lotted in the wall coordinates

+ and y+u	 .	 The data are now seen to collapse very closely along a single

curve over most of the profile. 	 The data over the range 30 < y+ < 500 is

r
seen to fall along a straight line given by:

`
u+ = 5.58 log Y 

+ + 5.5
	 (12)

In the literature, other values for the two constants (5.58, 5.5) have been

given.	 These include:	 (5.6, 4.9) according to Clauser (ref. 68),	 (S.57,

5.10) from Coles (ref: 69) and (5.5, 5.45) from Patel (ref. 70).	 Below	 --

y+ = 30, the data from the 3-tube probe deviates further from the straight

line than the circular pitot tube. 	 This may be due to the use of the circu-

lar pitot tube corrections for the 3-tube probe. 	 As noted earlier, the use

of the circular pitot corrections for the 3-tube probe may not be entirely

appropriate.

f	 ,h
'



The rectangular pitot tube data in figure 39b is seen to follow the

surve u+ = y+ over a limited range and then deviates below y + = 7. FigureI
40 shows the data replotted as U vs y. The straight lines are the slopes

of the velocity profile determined from the measured skin friction on the

Wall (in the linear sublayer Tw = udU/dy). In the linear sublayer (below

approximately y = O.00S in. in the present case) the data for each survey

should fall along its straight line. Above y = 0.005 in., the data should

i

k

a

approach the line from above (i.e. the velocity gradient is steadily increasing

up to the value in the sublayer). The results in figure 40 show this to be .a

the case for points beyond about y = 0,010 in.. 	 However, the data below this

level is seen to indicate velocities that are too high.	 This shows that the

corrections for shear and wall proximity were not appropriate in the region

close to the surface. 	 The present data indicates that the effective center
a

°	 of the probe yc
 when resting on the surface is at y

c
/H = 0.67, where H is the

external height of the probe.

Based on * reading accuracies of the micromanometer probe systems, an

estimate of the accuracy of the circular pitot tube data was calculated at

three points in the boundary layer.	 These were: +0.2S% at y = 6,,+ 0.6% at

y = 0.5 in. and +3% for the probe on the wall with effective center at yc

0.0184 in., It should be noted 	 however 	 that the data obtained near the wall

'	 is subject to several corrections whose accuracy determines the final accuracyis

of the plotted results.	 This is particularly true for the rectangular pitot
}

tube data. j

The data obtained with the Preston tubes were used in the pitot tube data

red..oction to obtain u+ and y+ .	 The values of the skin friction coefficient

Cf at each measuring station have been listed in table 6 	 The measurements have

also been compared to the transverse traverse measurements (fig. 2S) and were
f
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seen to agree to within 60. 	 An estimate of the accuracy of the Preston tube

measurements was based on the scatter seen in the data obtained with four

different sized tubes.	 For the present data, all measurements at a given

station agreed to within 3%. j

Figures 41a and 41b show the measured profiles of the yaw angle a vs y I'

through the boundary layer. 	 The data must be compared on a relative 'basis

since the absolute yaw angle relative to the horizon is not known. 	 In the

present case, a = 00 is the angular position at which the probe was initially

"leveled" (as described in a previous section). 	 The geometric axis of both

the 3-tube probe and the Conrad probe were within 10 minutes (0.17°) of align-

ment to this "leveled" position.	 For the purposes of discussion, a positive
I

m i a denotes a flow directed (relative) upwards towards the roof of the test

f section.	 The data taken at station 4 in figure 41a appears to agree qualita-

tively with the trend seen in the transverse traverse data shown in figure
xt

23b (i.e. the yaw angle becomes less negative with increasing y). 	 The survey

` taken at station l appaears to pass close to a region of downswelling since in

figure 23a it is located near the center of the top of the "wave". 	 As noted in
-x

the previous section, the pattern of the nonuniformities appears to have shifted

about l in. to the left on the graph sheet during the one year interval between,;
Ar;

` the tests. ` Hence, one must shift the same distance in comparing the survey

at station ` 1 with the model..	 The survey indicates a relative upward yawing

of the flow with increasing y whereas the model predicts the opposite trend. r

A comparison of the data at station 5 in figure 41b with the model.:in figure
a

22 appears to show the correct trend. 	 The variation in yaw at station 6 is

very small over most of the bouundary layer and would seem to suggest that the

survey was obtained in a region between two vortices - i..e. along the adjacent

upswelling	 - 	 22.	 The survey at station 7, which wasswel.lin	 shown in the model in figure^^
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f

a

_ I

originally selected to be in a region of upswelling (based onthe proposed

 c

model') would then be shifted to the right in figure 22. 	 The trend of the

data would then agree with the model.

, The accuracy of the yaw probe measurements were estimated on the basis

of!the sensitivity of the nulling manometer system during an actual survey.

S

xy
1

These were:	 0.025° at y = S, 0.06
0
 at y = 0.5'in. and 0.1

0
 at points very

1
E nearar to the surface.	 The alimnent from one survey station to another was

considered to be within 2 minutes (0.03
0
).	 For the second series of tests,

the alignment of the Conrad probe was checked between runs at a location e

in'the upstream portion of the test section. 	 The mounting device used for

the hot-wire calibrations was located on the test wall 3 ft. from the inlet. 9

The Conrad probe was installed, leveled and then aerodynamically aligned with
g	

every 	completed,	 aerodynamicthe local flow during a short test.	 For eve	 test co	 leted	 the aerod	 amic

^ gnment of the	 robe agreed to within l minute	 0.017 °) of the first testalignment	 p	 g	 ( a

r
that preceeded the first Conrad probe survey. a

r

Surveys obtained with the pitch probe are shown in figures 42a and 42b.
_

As in the case of the 3-tube and Conrad probe measurements, the pitch angle 5

0 must be compared on a relative basis from one station to another. 	 In the

f present figures, the results from the data reduction-have been plotted directly

r and 	 00 has no special (absolute) meaning. 	 The geometric axis of the probe

was estimated to be pitched downward toward the wall by less than O.S°. 	 This

angle was checked before each test (using the probe sighting device) and found

to, vary less than 0.1
0
 from one station to another. 	 The scatter in the data A

is very large below y = 0.2S in. with a number of the points lying well off

the graphs.	 This was caused by inaccuracies in determining the gradient of

dynamic pressure near the surface. 	 The gradient of q is used in equation (9)

r
to correct for the effects of the dynamic pressure gradient over the tip of

k. the probe.
s

LAU
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A comparison of the pitch probe surveys and the model in figure 22 is

more difficult than for the yaw probe surveys because at any given station {'

the pitch will always generally be in the same direction (according to the

model).	 The survey taken at station l (which is near to a downswell according

to the proposed model) shows a pitching toward the wall with decreasing y.
E

The survey at station 3 was located near an upswelling and appears to indicate

a pitching toward the wall with decreasing y. 	 The survey at station 3 was

located near an upswelling and appears to indicate a pitching affray from the-

wall with decreasing y.	 However, 'the survey it station 4, also Located near

to an upswell shows a relative pitching towards the wall with: decreasing y.
t

Obviously, any interpretation of these surveys in. regards to `the model in

figure 22 depends on the relative location of 0 = 0° in figures 42a and 42b.

The surveys in figure 42b are of interest in connection with the vortex
t

-like flow patterns that were caused by the bands of nonuniform weave in the

inlet screens.	 In particular, the survey , at station G was selected to pass

through the location of a local peak in the pitch probe data obtained with
•.	 3

the transverse traverse device (see fig. 26). 	 'Mis survey indicates an area

at y = 4.75 in. where the :flow is shmt n to locally pitch away from the wall

relative to the rest of the survey. 	 Tn regards to the vortex pair model, this S

u	 location may be taken as the center of the vortex pai.r,	 'I1ic survey	 at station "A

7 also indicates a similar pattern wdth the nzaximum'pitch occurring at y
V

in.. However, according to the vortex model, station 7 should have been in 8,

region of flow pitched toward the wall (see fig. Z6).

The accuracy of the pitch probe surveys depend.,,; on the accuracy of ''the

calibration :for the probe and also on the accuracy of the corrections poi- the

gradient in dynamic pressure.	 As shown in figure 42b, the correction for the r

F	 dynamic pressure gradient is quite Large. For y < 1 in. 	 Based on the accuracies

of the calibration and the determination of dgjdy, the 0.5tima 0d OCCUrac es of

`f
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; the data are;	 0.10 at y = 1 in., O.OS° at y = s.
x

z
The attempts to compare the yaw probe and pitch probe surveys with the

t proposed model in figure 22 have been somewhat speculative. 	 The inter-

s pretations depend in a number of cases by what is meant by yawing downward

a or upward and what is meant by pitching away from or toward the wall. 	 More-

over, the flow field structure may be more complex than the simple side
5

` by side vortex model shown in figure 22.	 For exajnple,'in a study of the flow

on a concave wall (where Gortler type vortices are produced) So and Mellor

(ref. 71) speculated that a double system of longitudinal vortices may exist.

Further comparisons of the present data with other models is certainly required.
o

The pitch and yaw probe data do appear to show some type of directional
i

ria structure in thenonuniform boundary layer. 	 However, more detailed and s

closely spaced surveys are required to further understand the ,flow field.

^. Static tube measurements in the 2-D turbulent boundary Layer were limited

=i
to "spot checks" through the flow.	 The static tube reading indicated a

slightly higher pressure than the local wall _static for points taken over the
4

`!	 4 outer half of theboundary layer and above.	 The differences in C	 were on the A
F

p

order of 0.0007.	 Closer to the wall the static tube read increasingly lower

epressures relative to the measurements in the outer half of the boundary layer.°
i

At y_- 0.25 in., the static tube was reading a lower pressure than the local

wall static, with the difference in Cp 's amounting to 0.0013.	 17he decrease

in the static tube reading was presumably caused by wall interference problems
:a

' which would produce an accelerated flow around the static tube.	 The result

of these tests showed that t}ie static tube could be usedto measure the static

pressure through most of the boundary layer with an error in Cp of about
>a

+0.001.

L^A _ ___:
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Three static disk probe surveys were completed during -the second series of

tests.	 Two of the surveys were made at station. 5 and 7 whilo the third was

located above static tap no. 32 on the aluminun insert (see table 2).	 A partial

i
velocity survey (not discussed. above) was also obtained at the station above

tap no. 32,	 Assuming a constant static pressure through the 2-D turbulenti ;
boundary layer, the calibration coefficient C 	 for the static disk probe was

calculated using equation (I1) from a previous section.	 In figure 43, C 	 has F

been plotted vs y.	 At the edge of the boundary layer and above, C 	 a con-

stunt value of about 0.0805.	 The value for C	 increases nearly linearly to the

wall where Ck = 0.095.	 Similar variations were noted. by Johnston. (ref. 21) for

a static disk used in a 3-D turbulent boundary layer. 	 According to a calibration

presented in reference 56, the value of Ch does not vary greatly with velocity. -'1

Hence, in the present case, the data would. suggest that the variations are caused

by the effects of wall interference.	 This does not appear to be entirely correct

`
f

because the variations noted here are seen -to occur first at y	 (y = 3.5 -in.)

and are virtually constant for y -? 6.	 UhfortLuiaLcly no separate calibration

for the present, probe vs. velocity was completed.

B.	 Three-Dinensional'Studies

As for the 2-D studies	 the results of the three-dimensional studies will

' be discussed under the headings of: 	 static pressure measurements, -transverse

traverse surveys and boundary layer surveys.

1.	 Static Pressure Me.asurements
i

The static pressure measurements that irere obtained on the. test wall and

3-D wing-like model, will be presented in this soction. 	 All of these measure-

ments were referenced: to a reference static tap located about 16 in. upstream

of the wing model, (tilde 3). 	 Only a limited set of measurements were obtained

f"



t downstream of the model on the aluminum wall.	 '}'hese were primarily intended
i

for use in reducing the data obtained with the transverse traverse and boundary

z

y
i

+
layer probes.	 A complete set of static pressure measurements on the aluminum

' wall were completed by Hebbar and are reported in reference 55. "`£ r

. r
j The pressure distribution measured along the test wall and wing model is

shown in figure 44.	 The measurements along the first 11 ft of the test wall

e made using taps no, 1-8 (table 1) that were 6 in. above the centerlinewere k s

of the plywood wall. 	 The pressure distribution shown on theiwing was measured 3

by wing taps no. 7-29 (table 3) and on the aluminum wall by taps 22-34 (table 2).

The line of taps on the wing model and aluminum wall were 1.125 in. above the

^•r centerline of the test wall.	 The wing model, is seen to produce a'pressure

1.0coefficient of over	 at its point of maximum thickness. 	 The pressure dis-

tribution over the first 8 ft of the test wall is virtually unaffected by the
€ u

. presence of the wing model (compare figure 44 with figure 18) .	 Beyond 2 = 8 s§

ft (where z is the distance from the start of the test section) the pressure

r^ gradient is slightly adverse up to the start of the wing. 	 The pressures measured

at the .first two taps nearest the leading edge of the model (taps no. 7 and 8 rr

in table s) were noticeably unste ady compared to the measurements at taps no. 9

and 10 further downstream on the.model. Ihi.s was apparent in the macromanometer t^

as a very jittery miniscus for measurements at taps no. 7 and 8. 	 To'^ethex withry 7	 ry	 p '	 g i

' the adverse pressure gradient noted between k _ 8 ft and the L. p ., this behavior

may 1suggest that an early stage of a separation bubble existed at the very

start of the wing.
-a

The pressure distribution over the wing appears quite symmetric except

for points approaching the leading and trailing edges. 	 Figure 45 shows the

` pressure distribution over the wing in more detail where x is measured relative

to the first diagonal row of static taps behind the wing (in this case to tap
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no. 22). The pressure distribution downstream of the wing model (on the

aluminum wall) is seen to be weakly ;Favorable. On approach to the diffuser,

the pressure distribution again shows a. drop off as was seen in the 2-D

measurements (figs. 18 and 19). 	 In figure 46, the pressures measured at taps
1

no. 43-47 and taps no. 35-36 are shown for comparison with pressures along
I

taps 22-34.	 This grouping of taps near the trailing edge was used to obtain
1

(by interpolation) the static pressure coefficient at the location of the 3-D

boundary layer survey discussed in a latter section.

Figures 47a shows the static pressure distribution along the two diagonal

lines of static taps' on the foreward and rearward surfaces o1- the wing model

(see sketch in fig. 47b).	 The coordinate ze is measured from the centerline

of the test wall along a line that is parallel to the trailing (or leading) edge

of the wing.	 The pressure distributions on the wing are virtually linear for

both the I'oreward and rearward surfaces. 	 Data obtained along pressure taps

r no. 1-76 on the aluminum hall are also shown i.n figure 47a. 	 111is line of

taps is 0.50 in.. downstream of the trailing, edge of the wing or at x 	 0.375

in., where, as before, x is the distance measur4 from the first diagonal

G
row of pressure taps behind the trailing edge (taps no. 5-60 in table 2).

h The distribution along this line of taps is also nearly linear. 	 The scatterS

about the straight line through the data. is several times larger than the

reading accuracy of the micromanometer (a Cp equivalent to 0.004 in.. of DC-200

manometer :Fluid is shown in figure 47a - the reading accuracy of the manometer

for the static pressure mea-surements was on the order of 0.0004 in.. DC-200). r	 '

Between ze = - 4 in. and z	 _ -24 in., the distribution appears to have a`slight

curvaturo.	 Pressure distributions further downstream of the trailing edge

of the wing are shown in figure 47b.	 The data along the line at x = 0.37S in.

(from figure 47a.) has also been replotted for comparison with the other data.

I`he remaining surveys at x-= 0.000 in. 12 in., 16 in. and'26 in. were used
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4 R to map out the pressure disbribution_for the transverse travei'De_surveys made

in the 3-D flow at the original (2-D) k = 18 ft station.

i
2.	 Transverse Traverse Surveys

Transverse traverse surveys were conducted at three stations behind the

(Y
ff

wing model (as shown in fig. 16):	 i.)	 the first was at the original R = 18

ft station usP	 in the 2-D studies, ii.) the second was along a line that was 	 ! t:
z

!. parallel to the trailing edge of the model, 0.5 in. downstream of the trailing }

I;
edge and centered on the side wall centerline, and iii). a third station that

'
' 8s

was along and parallel to the test wall centerline and which extended 15 in.

downstream of the trailing edge.	 At each station, surveys were completed using

l	
:5

t the 3-tube probe, the single tube Preston probe, the 3-tube Preston probe and
a

' the pitch probe.	 Xerox reproductions of the data obtained at all three

t{	 ` stations arepresented in reference 49. 	 For the present report, only the

3-tube survey taken along the T.E. of the wing model will be discussed.'

The 3-tube surveys obtained along the trailing edge of the wing model

' # are shown in figure 48. 	 The distanced measured: along the 15 in. survey line

are designated as ze , where ze is measured along	 a line parallel to the trailing

edge of the model.	 The 3-tube total surveys in figure 48a show an apparent

amplification of the nonuniformities and a slight shift to the right when

compared with figure 21a. 	 When comparing the 2-D surveys withjthe surveys
•81'8

x

in f i
, r

gu e 48 it must be remembered that the surveys at the T.E. are along a

diagonal .line.	 The surveys made at y = 1/16, 1/8, 1/4 and 1/2 in. indicates

that the boundary layer velocity profiles immediately behind the trailing

edge lack "fullness" (i.e. low velocities 'exist for some distance off the

wall whereas in the zero pressure gradient boundary layer, the velocities

increase very quickly just above the surface). 	 As noted earlier, these

''retarded' velocity profiles are the result of the region of adverse pressure -'
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.x

.. gradient on the rearward side of the wing model. 	 T'he yaw probe surveys at

y = 5 in. and 6 in. in figure 48b now show the output due to the non-

. uniformities at z = -3.5 :gin. to ; have the same shape as the expected output s
a

for the vortex pair model in figure 34b (trace 1 for the survey at y = 5

in., trace 2 for the survey at y = 6 in.).

3.	 Bounda	 Layer Surveys^'	 y	 Y ^

Boundary layer surveys were made at only one station behind the 3-1)

wing model.	 This station was located on the centerline of the test wall,

0.5 in. downstream of the trailing edge of the model.	 The results of these

` su^°veys will be presented in this section.

Surveys were first completed using the Conrad probe to obtain the profile s

' of the cross flow angle a vs. y.	 This data was then used to align the remaining

probes to the local flow direction 	 at each point in the boundary layer. 	 higure

49 shows the variation of a from the wall (y = 0.0148 in	 toy = b in..

An enlargement of the near wall: region shows that the maximum cross flow angle

does not occur at the wall, but rather at about y = 0.070 in. 	 A similar j

type of behavior was observed by Flebbar (ref. 55) who conducted hot-wire
u

anemometry studies at the adjacent instrumentation ports (see fig. 4). 	 By

a performing a sublayer analysis on his data, he was able to relate the decrease,

in flow angle in going from the maximum a point to the wall, to the pressure

gradient	 existing at the T.E. of the wing model.	 In figure 49, the crossflow

'y angle at y-= 6 in. is about 0.690 and appears to be-decreasing to a = 0  at

F y = 9-in.	 (the center plane of the test section at this station was at y,= 8.92

in.).	 The boundary layer on the wall opposite the wing model is also weakly

.:	 IS three-dimensional and this flow wi.l1 have a small influence on the free strewn

:Clow ;angle 'above the test wall.
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The cross flow angle a has been replotted in wall coordinates in figure

50.	 The maximum angle a is not apparent at y+ = 45.	 The last few points

from y+	 11.6 to y+ = 13.6 appear to indicate a constant crossflow angle of

a	 22.05°.	 Measurements obtained by Hebbar (ref. 55) for points as close

to the surface as y _ 3.2, showed that,the flow angle remained constant for

all points less than y+ = 10.	 In the literature, the region near the wall
I'

where the crossflow angle is constant is generally referred to as a region of

near wall collateral flow.	 This effect has been observed in a number of other

` studies which include work by Johnston (ref: 72), Lewkowicz (ref. 7), Francis

and Pierce (ref. 8) and Hornung and J'oubert (ref. 26). 	 On the other hand, a

nwerical study by Pierce and East (ref. 73) suggested that the flow angle

through the linear sublayer continues to change right down to the wall and no

region of collateral flow actually exists. 	 Instead, the flow merely appears

t
to be collateral flow actually exists.	 Instead, the flow merely appears to

be collateral because of low probe sensitivity close to the wall - in particu-

lar for directionally sensitive pressure probes such as the Conrad probe or

3-tube probe (in the present experiment the sensitivity of the Conrad probe

near the wall was on the order of ` 0.1°).	 An experimental study by Rogers and

' Head (ref. 74), using a special near-wall traverse device with a. hot-wire probe,

has shown that the crossflow angle in a 3-DTBL can change continuous right

1 down to the wall. 	 The existence of collateral or noncolla.teral flow in the

k
near wall -region of a 3-DTBL may well depend on the type of 3-DTBL which is

^`. being studied.	 The experimental measurement of the changes in the flow angles

through the sublayer'depends finally on the sensitivity of the probe being

' used.

Since the calculation of the velocity through. the boundary layer requires
i.

the value of the local static pressure, the results: of the static tube and

static disk surveys will be presented next.	 The pressure coefficient Cp vs



1
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y for both surveys is shown in figure 51.	 The static pressure coefficient

for the disk probe was calculated using equation (7) ( P. 37) together

with the local dynamic pressure (which was calculated using the local static

pressure as measured by the static tube).	 For points beyond y	 2 in. the

agreement in Cp between the two surveys is generally within 0.00075. 	 More-

'.. over, the pressure distribution above y = 2.0 in. varies linearly out to

y = 6.0 in.. Below y = 2.0 in. both surveys indicate widely differing

pressures.	 While the static tube indicates a nearly constant C p between

y = 1.75 in. and y _ 1.0 in., the Cp from the disk probe continues to 4

change.	 The extrapolation of both sets of data to the surface appear to

be in good agreement with the wall static pressure coefficient (Cp = +0.001

_ on the wall at this station).
	

This result may be somewhat fortuitous since

y both probes ^Lre subject to interference problems when used close to the

surface.	 The extrapolation to the wall of the linear variation noted above

y _ 2.0 in., would give P wall static pressure coefficient of 
P	

+0.008.

'	 - Hence the variations in C	 below y = 2.0 in. do appear to be real.	 Sincep
a greater confidence was placed in the C 's measured by the static tube (the

-	 p
disk probe used a correction Ck which could easily vary ± 0.005 in the inner

region of the boundary layer), the velocity profile through the boundary

layer was calculated by using the Cp profile determined by the static tube.

. Moreover, as will be seen in the discussion of the pitch probe results, the

static disk probe may have been in error for points below y + 2.0 in. because

of the effects of pitched. flow.

As shown in figure 1, the total velocity U in a 3-D velocity profile a
i

can be projected onto orthogonal planes to form a. streamwise velocity

component Us and a. crossflow component W.	 For the present survey, the

direction of the streamline at y + 5.0 in.. was used as the "streamwi.se

direction".	 As seen in figure 49, the flow angle above the edge of the



boundary layer is continuously changing and the correct choice for

the streamwise direction is not entirely clear.	 Hence with U
.0 

= velocity

at5.0 in.	 the normalizedy =	 ,,	 streamwise and crossflow velocities Us/U^,

and W/U	 are plotted vs y in figure 52.	 Again the choice of a free

stream velocity is not clear since in Figure 52, the velocity is seen to

vary continuously even up'to y + 6.0 in.. 	 Because of this varying."free

'	 stream" velocity, a definable boundary layer thickness 6 (e.g. where U-

0.995 U	 cannot be determined.	 If the velocity at y + 5-.0 in. were assumed
i

a

to be the "free stream velocity", then the boundary layer thickness would

be on the order of 6 = 4.0 in..

'	 The streamwise velocity profiel U /U 	 in figure 52 shows the effects
s	 °°

y	 of the extended adverse pressure gradient that exists over the rearward

surface of the wing model.	 The adverse pressure gradient tends to make the

rvelocity profile less "full", with low speeds (Us/U. < 05) existing

nearly up to y = 0.7 in..	 In comparison, the 2-D velocity profile 'U/U 
CO

in figure 38a shows U/UCO < 0.5 for y < 0.2 in..

.
The total velocity U for the 3-D flow has been plotted in wall

4	 coordinates in figure S3 (where u+ _ U/U ).	 For a limited range of 25 < y+ < 170,
T e@

the data can be fit to a straight line given by:

u+ = 5.07 log y+' + 5.76	 (13) a

The constants (5.07, 5.76) diff=er from the set determined for the 2-D

velocity surveys (from equation (12), the constants for the 2-D flow were

(5.58, 5.5)).	 In the literature (e.g. ref. 21 and 28), the velocity profiles

obtained in 3-DTBLs do tend to show agreement with the 2-D log laws such as

given by equation (12). 	 In the present case, the line from equation (12)
i

f

_	
t
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was shifted above the data. This difference may be associated in part with

is	
an error in the skin friction coefficient C f . As discussed below, the four

i
	 sizes of Preston tubes used in the surveys gave values of C  which differed

!r

	

	
by 100. The data obtained with the rectangular pitot probe is seen to agree

poorly with the curve u+ = y. This suggests that the corrections used for

the 2-DTBL are not appropriate for use in the 3-DTBL of the present study.

Since the corrections are likely to be a function of C f , then the factor'

of two difference in C  between the 2-D and 3-D tests probably explains

why the 2-D corrections cannotbe applied to the present 3-D data.

Figure 54 shows the crossflow velocity W/U^ plotted against Us/U00.
i

This plot is generally referred to as the "polar plot" and was first extensively
n

used by Johnston (ref. 72) to analyze data obtained in a 3-DTBL.. When
s

straight lines are faired through the data, a characteristic triangular

outline is formed. For the present data, the vertex of the triangle occurs

at about U /U	 0.345. The line running'off to the lower left has beenS

'	 drawn in at an_ angle _equal to the angle measured by the Conrad probe at the
i,

last few points above the wall (from fig. 49, the limiting angle a o = 22.050).

I The data (mainly from the rectangular pitot probe) is seen. to fall slightly

'i

	

	 below this line. The location of the vertex of the triangle is of interest 

in certain analysis of the data. In the present case, the vertex is

i

	

	 located at y+ 88. Hornung and Joubert (ref. 26), working with a 3-D flow

produced by a right circular cylinder mounted on a flat plate, measured.

the vertex to be as high as y+ = 150. On the otherhand, Johnston (ref. 72),

working in a 3-DTBL developed by flow impinging on a back wall, measured y+

no higher than y+ = 16.
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The data obtained with the four sizes of Preston tubes is plotted

in figure 55 as skin friction coefficient vs D, where D is the external

diameter of the Preston tube. In addition, the data obtained at stations 5,
r

6 and 7 in the 2-D tests have been included.	 A scale indicating the

variation of the measured C  at a given station is shown along the right
1

of the graph. A line is drawn through each set of data to designate the
s

average value for all four Preston tubes. For the 2-D tests, the variations

in the data obtained with the four sizes of Preston tubes are well within

30. The 0.0183 in. O.D. Preston tube appears to read high for two of the

three tests in the 2-D flow.' The data from the 3-D flow show an increase in ;C 

with decreasing diameter D-(the total variations are now about 10%). In 	
i

data obtained by Prahlad (ref. 28), a similar trend was noted. Fie concluded

from his results that the larger diameter_ Preston tubes were outside of the

region of wall similarity. On the other ;hand, smaller diameter Preston tubes

were seen to measure the same values of Cf , hence indicating that the

smaller tubes were within the region of wall similarity. In the data shown in

figure 55, the C  measured by the 0.0183 in'. O.D'.. tube in the 3-D flow is

reading higher than the C  from the 0.0283 in. O.D. tube. However, this trend

was also noted in the 2-D surveys at ;stations 5 and 6 !-fence, the Cf's

measured by the two smaller tubes may be in the same relative agreement

in the 3-D flow as they were in the 2 flow. For the purposes of reducing

the data taken in the 3-D flow, the Cf measured by the 0.0283 in. O.D.

Preston tube was used.

The results of the pitch probe survey conducted in the 3-D
x

flow are shown in figure 56. A negative pitch angle 0 indicats flow that is

^r
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f

pitched towards the wall. -The pitch angle a is seen to increase as one goes	 s

from y 6 in. down to y = 1.0 in.. The pitch angle then _decreases in going

from y = 1.0 in. to the wall. 	 The presence of the wall apparently reduces the

pitch over the inner 1 in, of the boundary layer. 	 Returning to figure 51, the

deviations in Cp below y = 2 in. are'seen to occur in the same region where
l!

the pitch angle exceeds -4.0 0 .	 Since the static tube was already pitched

at -3° to the wall, the maximum relative pitch angle over the probe was 1.75 0
.

No corrections for the effects of this relative pitched :Clow were made to the

static tube data (as noted in reference 75 a static tube aligned to within -

o4	 of the local flow has an error of less than 0.5% of the local dynamic pressure).

The disk probe was aligned to be parallel to the wall and hence was subject

_ to a pitched flow of S = -4.75° at y = 1.0 in.. Although a check calibration

showed that the static disk output (or equivalently the calibration constant

Ck) was nearly unaffected when pitched to 4°, this may not be the case at

4.75
0
 (unfortunately no angles larger than 40 were checked in the present

tests).	 As shown in a calibration of a static disk probe given in reference

56, the calibration constant Ck was unaffected (Ckk = 0:1.2) up to flows angles

of 5°.	 At 7° the value of the calibration constant had risen to C 	 = 0.23.

In the present case, a similar error may have occurred in the value of Ck;

used -to reduce the static disk data. 	 The static disk probe in this tests

should have been rolled by 9O° so that it would have been insensitive to the
S'

pitch.	 Alignment in yaw would have been provided by the boundary layer

traverse device.	 Or alternately, the plane of the disk could have been

pitched down by 3° so that the pitch angles would not have exceeded 1.75°.

i



IV. SUMMARY AND CONCLUSIONS

Experimental studies of a two and a three-dimensional

low speed turbulent boundary layer were conducted on the side wall of the

University of Maryland Boundary Layer Wind Tunnel.	 The 20 ft. test section, with

a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in.

thick turbulent boundary layer at a free stream Reynolds number of 3-.lS

x 10
5
 /ft.	 The three-dimensional turbulent boundary layer was produced by a

30
0
 swept wing-like model faired	 into the side wall of the test section.

Preliminary studies in the two-dimensional boundary layer indicated

that the flow was nonuniform on the 46 in. wide test wall. 	 The nonuniform

boundary layer is characterized by transverse variations in the wall. shear

_	 stress and is primarily caused by nonuniformities in the inlet damping j

screens.	 An effort was made to improve the flow by changing the existing, '.

screens, but this was not successful.	 Following this, an extensive study of

the nonuniform boundary layer was conducted.

To study the nonuniformities, a special tranverse device was

developed to allow one to survey the boundary layer in a direction transverse
4

F	 to the mean flow and at set distances off the wall.	 Transverse surveys were

made using 'several different probes which included a 3-tube probe (combined

yaw and pitot probe), Preston tubes, a pitch probe and a. hot -wire probe.
Y	 ^^

Over the 15 in. span of the transverse device, the local skin friction

coefficient varied (at discrete locations) ± 9Q about a mean. 	 Transverse

variations in the flow velocity, yaw, pitch and turbulence intensity were

also measured in the boundary layer at set distances above the wall. 	 The

transverse surveys were compared to a possible model for the nonuniform

turbulent boundary layer proposedby Perkins (ref. 43). 	 In this model,, a

f
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series of counter-rotating longitudinal vortices are thought to exist

`	 me regions of the surveys indicatedin the boundary layer.	 AlthoughY	 g	 so ,

general agreement with the model; comparisons In other regions were inconclusive.

Measurements with the pitch probe revealed the presence of a vortex-

like flow to exist above the edge of the boundary layer at two locations

along the 15 in. traverse line. 	 This structure occurred above both test

walls and appeared to be symmetrical about the center plane of the test

section.	 The apparent origin of the vortex-like flow was traced to

imperfections in the next to the last of five inlet damping screens where

the weave was very slightly closer together.	 These imperfections existed

in two small "bands", each about 0.4 in. wide -, that extended across the entire

width of the inlet screen.	 An analysis of the data Suggests that the wakes

produced by these imperfections "bands" tend to roll up into trailing

vortices which occur on both si.' `i of the center plane of the test section.

Comparisons were made with two possible models for the vortex flow; 	 The
`	 ^ a

first in which only one vortex occurs to each side of the center plane of

the test section and a. second where ,a vortex pair occurs to each side.	 The

pitch probe data appeared to support the secondmo del. 	 Measurements with

- the 3-tube 'yaw probe in regions of the vortex-like flow failed to consistently

indicate any substantial yaw in the flow which would be expected to accompany

the relatively large variations in pitch.

A second traverse device was also developed to make surveys

through the boundary layer at select stations along the transverse survey line.

The probes used with this traverse device included pitot probes (circular

and rectangular), yaw	 robes	 3-tube and Conrad),gu	 p	 (	 ),	 pitch probe, Preston-:

tubes and static probes (static tube and static disk). 	 Velocity profiles'

4 '•	 "!S',."	 ::.	 -:	 3	 =^:.:^,	 f-.: ^.	 b4 r.—	 .^_.:®	 ¢ ,,..	 •s,...ms,..:fw-swY.,kv,.uf^a...erem^Hie.^eS... 	 — -.s..,	 _ . _ ..	 .	 ,- .	 _	 _...^ 	 ,......^__. -.



plotted as U/UC. vs y/a showed relatively large variations in going from one

survey station to another because of the nonuniformities.	 However, when

the data was replotted as u+ vs log y+ , all of data showed very chose agreement

with a logarithmic universal velocity distribution (in the form of u+ = A log y+

+ B).	 The	 velocity profile obtained with the rectangular pitot probe very

-close to the wall showed poor agreement with the sublayer velocity law

(u+ = y+).	 The discrepancies were primarily due to the effects of the near

wall corrections applied to the data. 	 These results point out the need for 	 - ;J

more accurate near wall corrections for the rectangular pitot probe.	 Surveys
„x j

made with the yaw probes and pitch probes indicated the presence of a definite

type of directional	 structure in the nonuniform turbulentYp	y 	boundary layer..

(i.e. the yaw and pitch angles of the flow varied through the boundary layer).

As for the transverse traverse surveys, some of the boundary 'layer surveys

appeared to agreewith the longitudinal vortex model while others suggested a x

more complex flow structure.	 A survey using the pitch probe at the station

where the vortex-like flow occurred (due to the imperfections in the inlet s

screen) showed'a region above the edge of the boundary layer ` where the local

flow was pitched away from the wall as was indicated by the transverse traverse;

surveys. a

The transverse traverse device was also used to survey the three-
t`

;	 dimensional flow field developed downstream of the wing-like model'. 	 These

measurements suggested that the presence of the wing model tended to amplify

the nonuniformties_in the boundary layer.

Only one representative set ofboundary layer surveys were made in

the three-dimensional flow at a station 0.5 in. behind the trailing edge of

Al



turbulent boundary layer.	 Data from the pitot tube surveys, plotted

as u* vs log y+ (where u+ = total velocity/uT} showed a limited range r

over which a logarithmic universal velocity distribution (in the form of u 	 =

A log y * + B) could be fitted to the data. 	 The range in y+ was smaller

than	 for the 2-D boundary layer and the constants (A,B) were slightly different.

The measurements obtained with the rectangular pitot probe very close

to the wall showed very poor agreement with the sublayer velocity law

(u+ = y
+
).	 These results suggest that the near wall corrections used

for the 2-D flow (where the skin friction was over twice as 'large as in the

3-D flow) are not appropriate for the present survey. 	 Measurements with the

pitch probe showed the flow to be pitched toward the wall by over 4.70

`i in 'the boundary layer atabout 1,in. above the wall. 	 Static pressure

measurements indicated a decrease in the static pressure of 5.S°- of the

free strewn dynamic pressure in goring from the surface to a point 6 in. off

the wall.	 Moreover, the variation in the static pressure coefficient C
p

i

was linoar from 2 in. above the wall to 6 in. above the wall. 	 'Below 2 in.

the distribution of C 	 deviated from the linear variation. 	 Measurements ,
i	 p :	

i

with the Preston tubes showed variations of 10-0 between the data obtained
t

with the smallest (0.0133 in. O.D.) and .largest (0.0591 in. O.D.) probes.
T	

wellSince the variations in the 2-D flo^ti were well within 3% this su ggests

that the calibrations for the 2-D _flow cannot, be accur, ately used (for all. :four

Preston tubes) in the 3-D turbulent boundary ` layer in t11.i.5 study.

1

:^_.. gym,..,	
...	 ..	 ,,, ..	 :..,...	 ^..ti.:..,...^..-«.,..rti...... w
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V. RECOMMENDATIONS FOR FUTURE WQRK

Experimental work in three-dimensional turbulent boundary

layers will continue for many years before sufficient information is

' obtained to calculate the variety of 3-DTBLs that occur on a number of

different kinds of geometry. 	 Recommendations for further experimental

work in 3-DTBLs have been well documented in the literature. 	 The

greatest need at the present time is for turbulence data for use in

the differen`ia1 calculation schemes (which appear to have the greatest

chance of eventually predicting the more _general 3-D flows).	 -

..In regards to thepresent study, a number of rccoirmiendations-for
'r

future work can be given:

} i.)	 A .further a more detailed study should be made of the

., peculiar vortex-like flow patterns which were formed by the

impefection "bands" on the inlet screen.	 Additional. probes
a

t
such as a hot-wire X-probe or a .four-wire vortex probe may

help to obtain further insight into the flow structure.

Complete surveys should be completed with a narrow piece of

tae on the last inlet damping screen to see if the wakep	 ^ g ^

flow from the tape produces the same flow patterns as the

imperfection "bands" in the screen.

' ii.)	 Before any additional three-dimensional measurements are a

i made behind the wing model, further attempts should be made

to reduce the nonuniformities in the boundary layer. 	 The

first step would be to remove the second to the last damping

screen (which had the imperfection bands) and see what affect r

5
1

'r

3



a

i

r

this had on the boundary layer flow. 	 Before any further
lit

modifictions were made to the inlet honeycomb and screens, .tJ{

it would be desirable to study the nonuniform turbulent Ej

boundary layer in a smaller, more manageablelfacility.

The effects of honeycomb and screen combinations as well

A

as the shape of the contraction inlet should be investigated.

In addition, the effects of a wall or floor located very close-
µ

to the inlet	 cowling should be considered (in the present

tests the bottom of the inlet was located close to the i

floor.)	 To improve the flow in the present wind tunnel,

` the 0.59 open area ratio polyester screens tivill probably

have to be replaced by high quality stainless steel screens

With an open area ratio of about 0.67. 	 Obviously, the screens

should be very carefully checked for manufacturing imperfections

before permanent installation.	 The plastic drinking straw

.; honeycomb should be discarded and a honeycomb of approximately

3/8 in. diameter cells by 8 in. length should be used.
F

iii.)	 ,s hot-wire probe should be used to make any future velocity

' measurements through the 3-D flow behind the wing model. 	 Tho

use of the hot-wire )robe would eliminate the orrors :catiscd s

u^
by the uncertainty of the static pressure distribution

through the boundary 'layer. 	 Pitch probe and yaw probe

measurements could also be made by using an X-probe.

iv.)	 Further studies should be made to determine the correct
f

' calibrations of Preston tubes to be used in 3-D turbulent

boundary layers.
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Table-1	 Location of Static Pressure Taps on	 Test Wall	 (2-D)

tap	 no. t in z	 in.!

1 7.00 6.00

2 23.00 6.00
3 39.00: 4:50

4 55.00 6.00

5 71.00

6 87.00
. 7 103.00

8 119.00

9	 - 135.00
i

10 151.75

11 173.25

ref. 119.00 -4.00
a

ai

y	 .+

t is meaSUred	 from start of test section

• z	 i s measured	 from test wall	 centerline

^ -
static taps	 over last 5 ft of test wall (i.e.	 the

rf

aluminum	 insert) are	 given	 in	 table	 2.' v'

.' t

I
^

t

Tap	 no.	 1 Tap	 no.	 11

y2 f

#	 ` t {

ref. Tap es. f

Start of aluminum	 insert ----^
t

1

e ._
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Table 2	 Location of Static Pressure Taps
on Aluminum Wall^ ^r' t

to p no.	 x- in. z	 i-n. to	 no.p

x	
i ! n . z;

	

in. ,
1

^

0.375 18.00 -40,
I

15.625 -1.000

^

2' 12:000 18.00 41 23.625
3 0.375 11.94 42 34_.625 t
4 12{.000 11.94 43' 6.000 -3.125
5 0.000 5.875 44 0.375
6
7

0.375
i0,.875

45
46 I

0.875

1.625 s,

8

1.625 47 ^
2-,-5 0 0".

9 2.500 48 3.500
10 3.500 49 5.000
11' 5.000 50, 7.000 i

` 12 7.000 51 9._000
13 '	 9.000 52 12.000 a^,
14 12.000 53 16.000
15 16.000 54 26.000 k

' 16 261,-000 55 36.000
17 36.000 56 0.625 -4.500
18 0.625 5.000 57 0.375 -50500
19 0'.375 3.5,00 58 5.000 .
20 5.000 ii 59 12.000
21 12.000 i' 60 0.000 -7.125
22 0.000 1.125 61 0.375
23 '	 0.375 62 0.875
24 0.875 63 1 .625
25 1.625 _'.64 2.500

4 26 2.500 65 3.500
i

27 3.500 66 5.000
28 5.000" 67 7.000
29 7.000 68 9.000
30 9.000 69 12.000
31 12.000 70 16.000 n

32_ 16000 71 26.000
33 26;000-72 36.000

e 34 36.000 7,3 0.625 -8.000
35 01625 -1.000 7,4 0.375 13.19 _
36 2.625 - 75 12.000 13.;,19
37 5.625, 76 0.375 19.25

. 38 9.625 77 12.000 19.25
39 12.0004

x	 is measured	 relative to	 a	 line parallel to	 T.E. and
. passing tnrou'gh	 tap no.	 22	 (see sketch	 in table	 3)

z	 is measured	 relative to	 centerline of	 test wall

.v r...	 .	 ... '. ,yyT	 ....:., %':Wr3i'uY,.<i. 	 +ib-mvn•TC...v^e ...	 -.. .,.'ttlG.a,f..x,.. 	 .v -.





7

.	 Table -4a	 T-y-pical	 V-a-ria-ti-on—o-f Te-s-t—Conditions and Test Varia bles

Quanti ty _ Readin-g_._Ac;curacy, T_y_pical	 Value --Typical	 Variation % Variation

T d	C 0.2 26.5 +0.5 +0.17.	 -

W 0.0001	 _ 0.0122 +0.0004 +3.3%

B mm Hg 0' 1 760.5. +0.8 +0.11%

0.1Tm °C 26.4	 _ +0.5 +0.17%— —

y	 h	 in.	 DC-200 0.001 0.761 +0.0014 +0.18%

Re ft 3.15E+05 +0.08E+05 +2.5%

U ft/sec 53.42 +0.085 +0.16%

n	 :.

q lbfl t2 3.238 +0.004 +0.12%

p	 slugs/ft 3 2.269E-03 +0.005E-03- +0.22%

u slugs/ft-sec 3,852E-07 +0.005E-06 +0.13%

N

4 $sa	 * * 	 Yap ^-::`	
^;c

Y..t.	 ^ ^"
xxt Y1hx> r	 xa.xry.MV.w	 .:. U.

.^...
x.	 +--w"+ujZ^,..	 `tt'.>hY„^^...fX^	 w"Nt§#a£iWRi;Y=. 	 'aW'.”

ti	 a
-	 X.'F1^ia.

 ..

F%uWY.. r+x

,.... ,	 .	 _^ 	 ''.y-Â ^ .dYYL'w v'r 	 x1^.sSIY^

^+x^+.+^«^'^^_r s
^Ytxsort

-	 ,9^
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Table 4h	 Estimated Errors for Static Pressure
Measurements and Transverse Traverse Surveys

Quanti ty 	 Lacatio.n	 7	 Estimated Error

C	 all	 +0.0005p 

y	 all	 +0.005	 in.

on V& J-1	 ±-4

e
y =	 0..5	 in.	 +1.5%-

y =	 8	 +0.5%

on wall	 0.2°

a	 y	 =	 0.5	 in.	 0.10
s

a '	 y	 8	 0.05°

u.	 -	 1.0	 in .	0,'2°

f
r	 y	 d	 0.050	 '1

f	 ,

fC	 a1'1 5%
d

Y = 0.5	 6%

e ^1I^	 y	 a	 8%

r
t.

r	 ^	
i

r:

z
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4
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1
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Table 4c Estimated E rrors for Boundary Layer
, Su _.ry eys _.

Quantity Location Estimated Error

Y <	 0.5	 in. 0.0005 in.
r

Y
y >	 0.5	 in. 0.001 in. s

s
-	 all	 j

0.025 in.
{

r

on -wall +2%

U/U,, y '=	 0.5	 in. +0.6%

Y = a +0.25

on wall 0. 10

a y	 0.5	 in.- 0.050

G Y ,'	 a 0.0-2 5 °

y	 =	 1.0	 in. 0.1

Y = a 0.030

r

I

C	 -
f

all 2.5%

5

y = 0.5	 in. ,	 . 002

t

+

C
P Y	 a 1001

Y

s
t
"s

{	 I

Art

f 'L." es. e¢5°	 "° . r. r	 w E€ad6@e.^=^^^. a..r„_ s,n...	 .r_	 _



Fig. RexlOb U q ax10b 11xl00 range Cl C2

6 < Y < 10 .0813 -.0530

21a 3.16 52.44 3.162 .2300 .3813
0 < Y < 6 .0746 -.0130 

21b 3.16 52.44 3.162 .2.300 .3813 all .0200 .0000

26 3.15 52.71 3.183 .2291 .3840 all ,0086 .0000

28a 3.16 54.25 3.318 .2255 .3872 all .0725 .0000

28b 3.16 54.25 3.318 .2255 .3872 -all .0236 .0000"

30 3.15 53.76 3.265 .2260 .3854 all .0236 .0000

7 < Y < "10 .0858 -.0770

48a 3.15 53.65 3.258 .2263 .3857 3 <	 Y	 < -7	 '	 - .0764 -.0135

0 < Y	 < 3 .0721 -.0035

y 4,5,6	 in. .0242 .0000

48b 3.15' 53.65' 3,258 .2263 .3857
all	 others .0483 .0000

t

3

F

s

7

b

r
r

s	 =:
r

I Calibrations	 are	 in the form of YY
units: C1*Y+C2,	 where	 YY	 is inches of DC-200
Re [ft_

1
q [1-bf/ft 2 ]	 u [slugs/ft. sect silicon	 oil	 at	 25 0 C and Y refers to

U[ft/sect
3

u[s'lugs/ft	 ] inches	 on	 the graph measured from the
zero of each trace.

U1

4 ^^



Table 6a Boundary Layer Survey Measurements - Station 1

R e = 3,00E+05	 p = .2251E-02	 b = 3,070

U ref = 51,55	 u = ,3871E-06	 c  = .2579E-02

q - 2,991

y	 U	 a	 B	 I	 y	 U	 a	 8

96

,021 21,47 1.05
.024 22.87 1.07
.028 24,04 1.05
,032 25.16 1,05
,037 26.01 1,05 +2.16
.044 26.91 1,05 -	 .63
.052 27.58 ,97
,060 28,12 ,90 -	 .81
,071 28,91 ,90
.084 29.62 ,90 -	 .89
,099 30,18 ,87
.116 30.98 ,E7 -	 .62
.139 31.70 .82
,164 32.41 .85 -	 .52
.194 32,99 ,87
.229 33.10 .82 -	 .37
.269 33.94 .82
.324 35.62 .82 -	 .39
.384 36.35 ,77
.454 37.13 .82 -	 .35
.534 37.88 .75

.634 38.81 .68 -.40

.754 39.81 .70
,904 40.88 .70 -.34

1.054 42,01 ,67
1.254 43.29 ,63 -.26
1.504 44.86 .62
1,804 46.46 ,62 -.12
2.104 47.93 .58
2.504 49.59 .53 -.01
2.754 50.33 .53
3.004 50.82 .43 -.09
3.129 50.95 .43
3.254 51.06 .43
3.504 51.12 .37 -.13
4.004 51.16 .30 -.13
5.004 51.05 .22 -.10
5.971 51.02 .18 -.10

61
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Table 6b Boundary Layer Survey Measurements - Station 2

Re = 3.00E+05 P	 .2255E -02 b =	 3.250

Oref - 51. 45 .3872E.06
Cf

q = 2.984

-
y

U a	 B*
y 0 a *

` ,021 20,89 ,50 .634 38,24 .67
.024 22.47 .50 ,754 39.47 ,65
.028 23.45 45 .904 40.55 ,67

24.15 4.
41 . 40 .63

037 5 48 _1. 25 4 42,89 .58
.044 26.15 .`48 1.504 44.29 .58

-^ ,052 26.99 .43 1 .804 46.06 .50
i .060 27,46 ,53 2.104 47,32 .48

.071 28.41 .43 2.504 49.18 .43
a

.084 28.71 .48 3.004 50.39 .40

.099 29.56 .47 3.129 50.89 .38

.116 30.19 .50 1 3.254 5`0.77 .37

.139 ` 31.18 ._48 3.504 _50.95 .37
{ .164 31,.70 ,53 4.004 51 .03 .30

.194 32.71 .48 5.004 51.29 .22

.229 33.15 ,`55 5.997 50.99 .18
,269 34.2Z .52
.324 34.80 .57
.384 35.88 .55`
4454 36.49 .62

t ,534 37.47 .63 ^1
1

No surveys were completed at	 this station with the	 Preston'
tubes or the pitch pr obe,

a

f%

zr1-_ . 4
H:
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Table 6c Boundary Layer Profile Measurements 	 Station 3

Re_ = 3,00E+05	 P	 .2301 E-02	 6	 3.550
}

_Uref = 49.72 u	 .3818E-06 Cf .2320E-02

q 2.843

y U 8 Y 0 a B

.021 19,25 J03 .904 37.34 .48 +.07

.024 2'.0. 88 .12 1.054 38.31 .50

.028 2.1.88 ,22 1.254 39.60 .50 +.00

.032 22.77 ,10 +2.47 1.504 41.15 .`52

.037 23.38 :03 1.804 42.88 .5,3 -.01
Y;

.044- 24.52 .15 -	 .17 2.104 44.41 .52	 .

.052 25.17 .13 2.504 46.21 .52' +.03
• .060 25.75 .13 -	 .12 3.004 48.06 .50 -.03

071 26.32 :13 3.254 48.63 .47-
.084 26.94 .07 -	 ,21 3.504 49.05 .48 -.14
.099 27,42 .13 3..604 49..13 47 -.09
.116 28.0-2 .20 -	 .16 3.704 49.24 .45
.139 28,.-74 017. 4.004 49.35 ,48 -.14
.165- 29.44 :15 -	 22 5.004 49.35 .43 -.11
.19.4 30.06 ,15 5.979 49.35 _.33, -.07
.229 30.73 .18 -	 .01
.269 , 31.56 122
.324 32'.37 .27 +	 .06

€ .384 33.08 _	 30
.454 33".80 .33 +	 .14
.534
.634

34.50
35.30

.37

.38 +	.16_
.754 36.38 .43

k	 .

F

D

B
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Tattle 6d	 Boundary Layer Survey Measurements -	 Sta-ion 4

Re _ 3.00E+05 p	 ,2308E -02_ 8 = 3.:250

Oref
_ 49.44 ss	 =	 ,3809E-06

Cf =
,2429E-02

2.816

U a 6 Y U

2
1

.021 19.74 -.	 3 .634 36.24 ;.OQ +.;06
,024 20,80 -.25 ,754 37.20 i,95
,028
.032

21.98
23.02

-,30
-.34 +2.61

,904
1.054

38.32
39.42

.07

.10
+.'09

.037 23.86 -.32 1.254 40,76 .15 +,02

.044 24.75 -.32 -	 .83 1.504 42.36 1.20

.052 25.62	 _ -.32 1.804 44.03 i022 +.05,

.060 26.18 -.28 -	 .78 2.104 45.56 .25
,071 26.81 -.30 2.504 47.23 .28 +.10
.084 _;27.49 -.30 -	 .77 3.004 48.74 .32 +,11

, . .099 28.09 -.30 3.129 48.93 .33,f
.116
.13;9

28.61
29.44

-.30
-,30

-	 .55 3.254
3.379

49.00
49.08

.32_

.32
.164 30.12 -.25 -	 ,44 3.504 49.19 .32 +.17
. 1 94 30.73 -.25 4.004 49.23 .35 +.11
.229 31.57 -.25 -	 .33 5.0.04 -4`9.23 .33 ; +.14
.269 32.03 -.22 5.975 49.19 .33 +.14

t .324 32.77 -.17 -	 .23
.384 33,94 -.12
.454 34.53 -.10 -	 .12
.534 35.42 -•08

r;

F i

( i

p<

x

t
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Table 6e - Boundary Layer Profile._ Measurements - Station 5

Re = 3.15E+05 p	 2259E-02 6 3.140

Oref 53.79 _	 .3863E-06 Cf .2640E-02

q = .3.268
a

Y 0 a B y U B'

018 23.29 .75 3,004 53.43 •.07 .22
1019 24.00 .70 3.204 53.59
41 021 24.64 .70 3.254 53.63 -.13 .19 {
.024 25.63 .70 3.304 53.69 r
X028 26.69 .73 3.354 53.75 µ^'
1032 27.45 .75 -2.46 3.404 53.77
037 28..16 .77 -	 .16 3.454 .53.82
J044 28.96 •77 -	 .98 3.504 53.8, 3 -.22 .21
!052 29.15 .75 -1,21 3.554 53.83

• X060 30.35 .77 --1.10 3.604 53.83 , -, 3
.1071 31.10 .77 -	 .90 3.654 53.33 -,
.084 31.72 .75 -	 .85 3.704 53.87
.099 32.46 .77 -	 .71 3.754 53.85
.1116 33.24 .77 -	 .81 3.804 53.87

..139 34.06 .75 -	 .75 4.004 53`.86 =.25 .28
' .164 34.84 .73 -	 .72 5.004 53.84 -.35 .23

.194 35.70 .73 -	 .68 -5.976 53.82 -.45 .27
Y

". .229 36.62 .75 -	 .65
:. .26'9 37.39

73
-66

.32:4 38.28 .72 -	 .65

.384 39.17 72 -	 ,66

.454 4 0.11 .72 -	 .67 =.
_. .534 40.88 68 -	 .68 ;.

.634 41.91 .65 -	 .71

.754 42.96 63 -	 .72

.1904 44.13 .62 -	 .73
1.054 45.11 .58 -	 .11 4
1.254 46.39 53 -	 .68
1 .1454 47,63 .4 8 ..	 63
1.654 48..66 e35 -	 .57 b

1

1 .904 49..79 .28 -	 452
2.154 50.88 -	 .45
2.454 51 ,96 .18` - '.36

' 2.754 52.93 .03 .28
w
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Table 6f Boundary Layer Profile Measurements - Station 6

Re 3.15Et05 p	 =	 .2275E-02 d 3.850

uref
53.36 u =	 .3848E-06 Cf = .2225E-02

q = 3.238 t
M

i

Y
0_

a 6 Y U
I	 a s

.018 20.43 -.07- .634 37.54 1-.12 -.10

.019 21,15 -.07 .754 38.49 -.12 -.10
r '021 21.8-7 -.07 .904 39.53 -.12 -.08 a

;F .024 22.83 -.07 1 .054	 - -40.60 -.10 - . 06: A
.028 23-.,82, -`.08 1.254 41.88 -1-2 -.02` t
032 24.55 -08 +2.67 1.454 43.07 -l12 -.03
.037 25.23 -.05 -	 .11 1.654 44.33 -.10 -.01i
.044 _26.04 -.05 -1.07 1.904 45.73 -.10 -.03 I

3 .052 26.66 -.05 -	 .95 2.154 -47.03 -.10 -.04^r .060 27.22 - .05 -	 .75 2.45-4 48,44 -110 06
.071 27.91 -.05 -	 .62 2.754 49_.83 i-.12 -06
.084 28.64 -08 -	 .57 34004 50.79 -.12 07

W .099 29.30 -..12 -	 ,65 3.254 51.69 -.13 -	 06
t .115 29.92 -.13 -	 .65 3.504 52.38 -.20 -.0
w .139 30.67 -.13 -	 .59 4.004 513-.12 -28 +.04

.1.64 31.37 -.18 -	 .48 4.504 _ +.-12
^ .194 32.09 -.18 -	 .43 5.004 53.34 -.27 +.13 ,8	 .

.229 32.80 -.17 -	 38 5.504 +.06 z

.269 33.60 -.18 -	 .33 5.989 _53.32 -.22 -.03 4

.324 34.45 -.18 -	 .27 s.

.384 35.32 -.18 -	 .24

.454 36.14 -.18 -	 .21
Y^ .534 -36.99 -.15 -	 .15 

j' 1

a

I t'

j

t

s:
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Table 6g	 Boundary Layer Profile Measurements	 - Station 7

Re = 3.15E+05	 p	 =	 .2232,E-02	 a	 3,720

ref	
54.86	 u _	 .3876E-06	 Cf	 .2340E-02

q=3.358	
u,

y	 U	 a	 g	 y	 Us	 y

.1018	 21.64	 -	 .28	 .634	 39.53	 -.27	 .44
,101:9	 22.31	 -	 28 .754	 40.50	 -27	 .41
.02,1	 23.07	 =	 ,27	 .904	 41.62	 -.22	 .37
.024	 24.15	 -	 .28	 1.054	 42.65	 -618	 .32:
.028	 26.14	 -	 30	 1.254	 43.97	 -.15	 .3 01
.032	 25.91	 -	 ,30	 +2.32	 1.454	 45.23	 -.12	 .25
,037	 26.55	 -	 .33	 +	 .01	 1.654	 46.31	 -.08	 •23	 5.044	 27.40	 -	 ,32	 -	 .81	 1.904	 47.71	 -007	 .17
.052	 28.12	 -	 .32	 -	 .77	 2,154	 49.00	 -.103	 .14
.060	 28.75	 -	 ,32	 -	 ,67	 2.454	 50.48	 -,02	 .12
.071	 29.36	 -	 .32	 -	 .57	 2.754	 51.74	 -.02	 .10
.084	 30.14	 -	 .33	 -	 .54	 3.004	 52.76	 -.03	 .07
.099	 30.78-	 .33	 -	 .67	 3.254	 53.54	 -.07	 .05',
.116	 31.50	 .33	 -	 .67	 3.504	 54.20	 -._12.03
139	 32.22	 33	 -	 ► 62	 3.704	 54.5;0 

r	 .164	 32.96	 -'	 .33	 -	 .52	 3.804	 54.61	 f
.194	 33.68	 _}	 .33	 -	 .51	 3.904	 54.70
.229	 34.50	 .33	 -	 .49	 4.004	 54.77	 -.18	 .05
.269	 35.29	 -j	 .33	 -	 .49	 4.129	 54.82
.324	 36.17	 -	 .32	 -	 .47	 4.254	 54.84
.384"	 37.04	 -	 .35	 -	 .49	 4.504	 54.84
.454	 37.81	 -	 ,33	 -;.45	 5.004	 54.81	 -.20-	 .14
.534	 38.66	 -	 .30	 -	 .43	 5.992	 54.78	 -.-18	 .19

F
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Table 6h Boundary Layer Profile Measurements
F' 3-DTBL Survey

Re _	 3,15E+05 p	 ,2321E-02 8*

ref -	 51, 95 _	 , 3829E -06 Cf = .1108E-02

q =	 3,132
i

C y U a' $ y U a ^-

'' .418 12.38 22,05 .754 28.80 11.43 -4.584

'029
12.80 22.02 .904 31.28 9.50

• 13.26 22,02- 1.054 33.70 7,83 -4.75. 1
; i .024 14.14 22,05 1.254 37.09 6.02 -4.69

.028 14,84 22,13 1.45'4 40.16 4,65 -4.54 r

.03?. 15,52 22,30 +4,45 1.654 42.91 3.67 -4.29r .037 16.17 22_.27 t	 .84 1.904 45.48 2,87 =4.10-

.044 16.82_ 22.30 -	 ,98 2.154 47,26 2.43 -3.96
` d 52 17 .32 22.27 -136. 2.4.5.4 48.69 2,08 -3.85

1
: 060
.

17.79 22.40- -1.36 2.754 49.97 1,83 -3.77
{ .071 18.18 22.40 --1 .36 3.004 50.89 1 .65 -3..70'.`084 18.63 22,40 -1,26 3.254 51.58 1448 -3.63 ;^	 zt .099 18.92 - , 22.30 -1.35 3.404 52.02

j .116' 19.33 22.13 -1.54 3.504 52.18 1,3.7 -3.58
«

139
T64^ 19.84 21.90 -1,-65 3.604 52.34

20.34 21.47 -1 .8^^1 _ 3.704 52.48.
f .194 20.79 20.98 -2.13 '3.804 52.60

} .229 21.24 20.42 -2.32 '3.904 52. 72
f .269

,324
21.80 19.72 -2.62 4.004 52.75 1.15 -3.49
22.66 18.78 -2.88 4.504 52.95 -3.41

.384 23.51 17.60 -3.31_ 5.004 53.08 -.93 -3.35

.454 24.54 16.33 -3.61 5.504 53,17 -3.31
r

. .534 25-.59 15.77 -3.96 5.994 53.3--1 .72 -3.20
.634 26.88 13.27 -4.25

*No definable boundary layer thickness was determined from
E the data

3:'s A
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Table 6i Boundaryy Layer Survey Measurements
Rectangular Ptot Probe Data

v

^z
Station 5

Re	 3.15E+05fp	 .2283E-02	 a,= 3,140

Uref = 53,02 u	 .3845E-0'6	 C	 .2640E-02
f _ 

t	 q; = 3.209

1
y	 U	

y	 U	 y	 u'

.0059	 12.31	 ,0214	 24,46	 :2514	 36.10

.0064	 12.58	 ,10254	 25,55	 .3214	 37.34

.0069	 13.180294	 26,23	 .4514	 39.05
i	 .0079	 14.46	 .0344	 27.17	 .6316	 41.00

.0089	 15.91	 0414	 28.00	 .9016	 43.01
k	 .0099	 17.28	 .0494	 28.75	 1.,2516	 45.38

.&109	 18,18	 .0579	 29.41	 1	 1,6516	 41.68.01127	 20.03	 .0684	 30.16	 2.,1'516	 49._99

.0142	 21.15	 ,,0814	 30.93	 2.7516	 51.93r'. .0157	 22.08	 41 0964	 31.68	 3.2516	 52.79

.016.9	 22,84	 .1134	 32.32	 4.9556	 52.96.0182	 23.52	 .1014	 34.00

Station 6

Re = 3.15E+05_ I	 p = .2258E-02	 a	 3.850

Uref	 5 4 . 0 1	 ^, _ .3869E-06	 Cf	 .2225E-02
2.	 .

w
q ! = 3.'29-3	 :.

k

Y,	 U	 y	 U	 Y	
U

I	 .0.059.	 10.71	 .0267	 23.11	 .4509	 :35.35
!	 .0064	 11.41	 .0`309	 24.06	 3.4016	 52.94.0069	 11.62	.0359	 24.84	 3.5016	 53.17.0079	 12.91	 .0417	 25.45	 3.6016	 53.40.0089	 14..50	 .0499	 26.10	 3.7016	 53.5!9a -'	 1	 .00-99	 15.79	.0579	 26.81	 3.8016 53.76I	 .0109	 16.80	 .0689	 27.45	 3`.9016	 53.916.0126	 1.8.02-	 .081!9	 28.09	 4.0016	 54.01

.0142	 18.98	 .0967	 28.78	 4_.1016	 54.08
,0159	 19.59	 .11137	 9.494.2016	 54.14-.	 _
, 01 77 	 20.40	 .1617	 30.93	 3.8516	 53.88 .x

	.2514	 32.80	 5.0016	 54.18t.	 ,0224	 22.08 	 .3212	 33.83	 5.9646	 54,15	
.^.
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Table 61 Boundary, Layer Survey Measurements
Rectangular P tot Probe Data CCont'd)

t} 
j	 Station 7

Re = 3, l SEt06 	 .2242E-G2	 3,720
r Z

1	
Ore	 5431,	 ,3867E,06	 C. _ .2340E-02

a

	

	 F

q - 3.306

U	 U	 y	 U
Z y^l y
	

.Yw+w+.a+wrrrr .r rsfwT`mwwaen+nwt^nw	 Mws.	 a.r.e

;.	 0459	 1 7 a 5^a	 0154	 20., 51	 , 0964	 30.50
s	 .0064	 11.89	 , G169	 21,38	 1134	 31.22'.0069	 1 2.39	 ,0184	 22,01	 .1614	 32.75

x0079	 13.53	 ,0214 	 23.19	 2514	 34.80
.0090	 15.21	 ,0254	 24. 39 	 3214	 35.92I	 .0098	 16.20	 80294	 25,25	 .4514	 37,60.0101	 16.45	 .0344	 26.10	 3.501	 53. 86 	 X
4107	 17.28'	 ,0414	 26.97	 3.601	 54.04
.0111	 17.62	 .0494	 27,70	 3.701	 54.17

.	 .0122	 18.70	 ,0574	 28.31	 3.801	 54.27k	 .`0127	 18.75	 .068 4 	29.02`	 3.901	 54.35.013.E	19.67	 .0814	 29.77	 4.973	 54.45

3 y-01'aL S u r'Y

}	 Re	 3,15E+05	 a = .2304E-02	 &	 3.175

r uref	 52.49	 .3836E-06	 Cf	 0.7108E-02
s	

q = 3.174

Y
	 0	 y	 U	 y	 u

g.t;	 .0059_	 7 .26	 ,0.154	 12,04	 0684	 17,95.0001 1	 7.33	 ,01`66	 12,`66	 .0814	 18.35.0064	 7.41	 ,0184	 13.07	 .0961	 18,75	 7`..	 . 0067	 7 , ^3 	 .02101 13.94	 ;
.0079	 89.101	 ,0254	 14,75	

.1131	 19.18

	

,1511	 20,02
.0.087	 8,59	 ,0289	 15,49	 .2571	 21.36. 0 09 9	 9,25	 ~ 0342 16,G6

	

 .32`1 ]	 22.35'E	 .0107	 9,82	 .0410.	 16,75	 ,4511	 24.140124	 10., 62	 0489	 17,74

	

.5311	 25.33
1	 .0137	 11,,38	 .0574	 17,58	 5.0059	 53.28

Y

A
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Y

U

j	 x	 axis	 designates
streamwise direction ;; a

i

z	
a.)	 2-D	 Velocity Profile x

Y

}
1

r	 Us -	 streamwise
v-elocity

W	 = cross flow
velocity

j	 Oc	 =	 flow angle

W
1 >	 t,

re

^..,. U s

z
b.)	 3-D	 (Skewed) Veloci ty 	Profile A^

F''ig. I	 The Two and Three - Dimensional	 Boundary Layer
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