Gaparekken # 1974 ETHIOPIAN RIFT GEODIMETER SURVEY ## P. MOHR (NASA-CR-153261) THE 1974 ETHIOPIAN RIFT N77-25706 GEODIMETER SURVEY (Smithsonian Astrophysical Observatory) 159 p HC A08/MF A01 CSCL 08G Unclas G3/46 31768 Smithsonian Astrophysical Observatory SPECIAL REPORT 376 # Research in Space Science SAO Special Report No. 376 ### 1974 ETHIOPIAN RIFT GEODIMETER SURVEY Paul Mohr March 24, 1977 Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 02138 # TABLE OF CONTENTS | | | <u>P</u> | age | |----|---|----------|-----| | | ABSTRACT | | ix | | 1 | INTRODUCTION | | 1 | | 2 | THE PROGRAM | | 7 | | 3 | REDUCTION OF THE DATA | | 11 | | | 3.1 Station Elevations and Tripod Height Correction | | 11 | | | 3.2 Line-Length Precision | | 11 | | | 3.3 Line-Length Means | | 14 | | | 3.4 More on the Ground Radiation Correction | | 15 | | 4 | INSTRUMENT CALIBRATION AND INTERADJUSTMENT OF ALL ETHIOPIAN SURVEYS | | 21 | | | • | | | | 5 | NETWORK ADJUSTMENT | | 31 | | | 5.1 Weighting and Revision of Line Lengths | | 31 | | ٠. | 5.2 Adjustment Techniques | | | | | 5.3 Station-Coordinate Errors | | | | 6. | RESULTS | | 39 | | | 6.1 The Adama Graben, Northern Network | | | | | 6.1.1 Background | | 39 | | | 6.1.2 Network adjustment | | 42 | | | 6.1.3 Apparent station vectors | | 47 | | | 6.2 The Wolenchiti Quadrilateral, Northern Network | | 51 | | | 6.2.1 Background | | 51 | | | 6.2.2 Network adjustment | | 51 | | | 6.2.3 Apparent station vectors | | 53 | | ٠ | 6.3 The South Wolenchiti Valley, Northern Network | ••• | 56 | | | 6.4 The Sodere Triangle, Northern Network | | 57· | | | 6.5 The Kaletta Valley, Northern Network | | 58 | | | 6.6 The Adama-Mojjo Traverse, Northern Network | | 60 | # TABLE OF CONTENTS (Cont.) | | 6.7 The Central (Mirrga) Network | • | 61 | |-----|--|---|-----| | | 6.7.1 Background | • | 61 | | | 6.7.2 Network adjustment | ••••• | 62 | | | 6.7.3 Apparent station vectors | • | 68 | | | 6.8 The Eastern Afar Networks | • | 72 | | 7 | • | | 75 | | | 7.1 Geology of the Northern Network Region | | 75 | | | 7.1.1 General discussion | • | 75 | | | 7.1.2 The Wolenchiti valley | • | 77 | | | 7.1.3 The Adama graben | | 83 | | | 7.2 Geology of the Central Network Region | • | 86 | | | 7.2.1 Southern Mirrga region | | 88 | | | 7.2.2 Northern Mirrga region | | 91 | | | 7.2.3 Age, rate, and episodicity of fau | ting | 93 | | 8 | | | 95 | | | 8.1 Northern Network | - | 95 | | | 8.2 Central Network | | 98 | | | ACKNOWLEDGMENTS | | 101 | | | POSTSCRIPT | | 103 | | | REFERENCES | | 105 | | Арр | Appendix | | | | Λ | A STATION ABBREVIATIONS, REVISED ELEVATIONS, AND | ·
NATN_AHVTLTADV | | | Α, | POINT PARAMETERS | | A-1 | | В | B GEODIS 1969 GEODIMETER OBSERVATIONS | , | B-1 | | С | C LASER8 1970 GEODIMÉTER OBSÉRVATIONS | | C-1 | | D | D PAPAYA 1971 GEODIMETER OBSERVATIONS | | D-1 | | E | E 'AWARRA 1973 RANGER OBSERVATIONS | | E-1 | | F | F AWARRA 1973 GEODIMETER OBSERVATIONS | • | F-1 | | G | G TIKDEM 1974 GEODIMETER OBSERVATIONS | ••••• | G-1 | | Н | H SHALLA 1976 GEODIMETER OBSERVATIONS | | H_1 | # LIST OF ILLUSTRATIONS | | <u> </u> | 'age | |----|---|------| | 1 | The four Ethiopian rift—Afar geodimeter network areas and their regional structural setting | 4 | | 2 | The northern (Adama) network | . 8 | | 3 | The central (Mirrga) network | 10 | | 4 | Tectonic map of the northern network region between Mojjo and the rift-plateau escarpment at Siré | 40 | | 5 | The geodimeter links comprising the Adama graben network | 41 | | 6 | Adama graben network: apparent station vectors for 1969 to 1974, classical solution | 48 | | 7 | Adama graben network: apparent station vectors for 1969 to 1974, partial free-net solution | 49 | | 8 | Adama graben network; Figure 7 modified to include only the three more reliable surveys of 1969, 1971, and 1974 | 50 | | 9 | Apparent station vectors in the Wolenchiti quadrilateral, 1970 to 1974. | 54 | | 10 | Southern Mirrga fault map and geodimeter stations | 63 | | 11 | The geodimeter links comprising the southern Mirrga network | 64 | | 12 | O'itu Bay fault map and geodimeter stations | 65 | | 13 | Southern Mirrga: apparent station vectors, EUTE reference frame | 69 | | 14 | Southern Mirrga: apparent station vectors, free-net reference frame | 70 | | 15 | Southern Mirrga: apparent station vectors, TEHO reference frame | 71 | | 16 | The Dobi and Guma graben geodimeter networks, shown on a structural base map from Mohr (1971a) | 73 | | 17 | Structural map of the Wolenchiti region | 79 | | 18 | Structural map of the Adama graben region | 80 | # LIST OF TABLES | | <u>Pa</u> | ige- | |---|--|------| | 1 | Personnel and statistics for the Ethiopian geodimeter surveys | · 2 | | 2 | Statistics on stations and links in the Ethiopian geodimeter networks at the end of 1974 | 3 | | 3 | Standard deviations for line-length means for each of the five Ethiopian geodimeter surveys | 13 | | 4 | 1974 survey lines showing progressive drift of apparent length with time | 17 | | 5 | Project GEODIS, comparison of post-midnight and pre-midnight measurements of given lines | 19 | | 6 | Final line-length means for all remeasured lines of the Ethiopian rift surveys | 26 | | 7 | Revised line lengths for the northern network | 33 | | 8 | Best-fit relative elevations derived from least-squares adjustments for the Adama graben network | 44 | "The use of statistics in argument is essentially deduction from insufficient premises" — Hilaire Belloc. "In explaining obscure matters, imaginary things should never be postulated as existing" — William of Occam (version of S. E. Morison) #### **ABSTRACT** The field techniques and methods of data reduction for five successive geodimeter surveys in the Ethiopian rift valley are enlarged upon, with the considered conclusion that there is progressive accumulation of upper crustal strain, consonant with on-going rift extension. The extension is restricted to the Quaternary volcanotectonic axis of the rift, namely the Wonji fault belt, and is occurring at rates of 3 to 6 mm/yr in the northern sector of the rift valley. Although this concurs with the predictions of plate-tectonic analysis of the Afar triple junction, it is considered premature to endorse such a concurrence on the basis of only 5 years of observations. This is underlined by the detection of local tectonic contractions and expansions associated with geothermal and gravity anomalies in the central sector of the rift valley. There is a hint of a component of dextral slip along some of the rift-floor fault zones, both from geological evidence and from the strain patterns detected in the present geodetic surveys. FRECEDING PAGE BLANK NOT HIMED. #### 1974 ETHIOPIAN RIFT GEODIMETER SURVEY #### Paul Mohr #### INTRODUCTION A resurvey of the Ethiopian geodimeter networks was undertaken in late 1974, during the same October through December season as for the 1969, 1970, and 1971 surveys; the 1973 survey was singular in being carried out during March and April. Thus, the oldest of the Ethiopian geodimeter lines have been observed over a period of 5 years, perilously short in terms of geodetic studies of crustal deformation. However, with five surveys now complete (see Tables 1 and 2 for some summary information), a great deal has been learned about the behavior, precision, and accuracy of the instruments and the influence of weather conditions on the correction for atmospheric refraction — not to mention the practical experience of organizing and carrying out such surveys both fluently and cheaply, followed by the reduction of the field observations and a never-ending refinement of the least-squares adjustment computations. Yet all this has led to the bonus that we dared hope for at the outset, the detection of progressive motions between stations and new insights into the tectonics of the rift valley in Ethiopia. The pre-1974 surveys have already been described (Mohr, 1973a, 1974a). This report concentrates on the results and implications of the 1974 survey, designated Project TIKDEM (after the current political slogan of that time and aptly signifying "first" or "best"). During the 1974 survey, the northern and central networks (Figure 1) in the rift valley were remeasured and braced with several new lines between existing stations to improve network geometry. The southern network was not remeasured, as the 1973 survey had This work was supported in part by Grant NGR 09-015-002 from the National Aeronautics and Space Administration and Grants SRF 427220, 450128, and 71702113 from the Smithsonian Research Foundation. Table 1. Personnel and statistics for the Ethiopian geodimeter surveys. | Year | Survey | Instrument | Personnel* | Networks
measured | Number of lines
measured [†] | |------|---------------------|--|--|-----------------------------------|--| | 1969 | GEODIS
(LELLIT) | Mk6 geodimeter
6756 | P. Mohr
G. Veis
E. Kazakopoulos
(Ato Gabreu) | Northern | 160 | | 1970 | LASER8
(CRACKS) | Mk8 geodimeter
80037 | P. Mohr
J. Rolff
(Ato Girum Mikru)
(Ato Gebreberhan
Ogubazghi)
(Ato Gabreu) | Northern,
Central |
155 | | 1971 | PAPAYA | Mk8 geodimeter
80061 | P. Mohr
J. Wohn
C. Heindel
R. Thrall
(Ato Girum Mikru) | Northern,
Central,
Southern | 365 | | 1973 | AWARRA | Mk8 geodimeter
81006
Ranger 07B 3042 | P. Mohr
J. Rolff
J. Wohn
C. Heindel
R. Thrall
Girum Mikru | Northern,
Central,
Southern | 278 | | 1974 | TIKDEM | Mk8 geodimeter
81006 | P. Mohr
J. Rolff
R. Plumb
Girum Mikru
(Ato Tamrat) | Northern,
Central,
Afar | 514 | | 1976 | SHALLA [‡] | Mk8 geodimeter
81006 | P. Mohr R. Raynolds (Ato Mikael Tesfaye) (Ato Wondemu) | Northern,
Central | 176 | ^{*}Assistant observers' names are in parentheses. $^{^{\}dagger}\mathrm{Out}$ of modesty, the statistics on the number of papayas consumed are not included. ^{*}See Postscript, p. 103. Table 2. Statistics on stations and links in the Ethiopian geodimeter networks at the end of 1974. | | Project T | | Total ne | twork | |--------------------------|---|-------------|--------------------|-----------------| | Network | New stations | New links | Number of stations | Number of links | | Northern (Adama) | 1 | 17 | 45 | 111 | | Central (Mirrga) | 2 | 4 | . 11 | . 20 | | Southern
(Tosa Sucha) | | _ | 7 | 7 | | Afar | _8_ | <u>10</u> | _8 | 10 | | Total | 1 1 | 31 | 71 . | 148 | | | 514 line mea
9 main—main li
ain—auxiliary | nes measure | | | ^{*}As defined by Mohr (1974a, p. 27), a link is the general connection between two stations whose specific points (main, auxiliary, etc.) are connected by the actual geodimeter lines. Figure 1. The four Ethiopian rift-Afar geodimeter network areas (outlined in thick trace) and their regional structural setting (Mohr, 1974b). shown it to be stable since its 1971 inception. Instead, the time was used to install two small nets in central Afar, the well-sung triple junction where the Ethiopian rift, the Red Sea, and the Gulf of Aden spreading lines meet (Figure 1) and where first-order crustal deformation is expected to be an order of magnitude greater than in the Ethiopian rift itself (McKenzie et al., 1970; Mohr, 1972; Gouin, 1977). #### 2. THE PROGRAM Following the problems encountered with the Smithsonian Astrophysical Observatory's (SAO) geodimeter 81006 during Project AWARRA in spring 1973 (Mohr, 1974a), the instrument was refurbished with a new photomultiplier and control by AGA (Lidingö), and a frequency-monitoring loop was installed by AGA (New Jersey). At the commencement of the 1974 survey, short taped baselines were established for the northern (Adama) and central (Mirrga) networks. Throughout Project TIKDEM, the geodimeter was repeatedly checked by measuring these baselines. This provided only a partial control on instrument consistency; for example, not sought were possible errors due to any varying characteristics across the photomultiplier tube according to the angle of the returning beam, dependent, in turn, on the distance to the retroreflector. It is also regretted that the crystal frequencies were not monitored, lacking a suitable portable frequency counter. The entire northern (Adama) network was resurveyed in 1974, excepting only the long lines in the southeastern, Sire region (Figure 2), where deteriorating track conditions and the final demise of the Italian bridge over the Kaletta River promised too many bumps for the geodimeter. Several important lines bracing the northern network were installed. These notably included BOKU-WONJI and BOKU-PYLON, requiring vigorous but ecologically localized deforestation on the summit of Gara Boku, GANTI-CINDER, GANTI-AYGU, WONJI-MIETCHI, and THORNS-WONJI. WONJI-RIDGE unfortunately just lacks line of sight, but YELLEM-THORNS and YELLEM-PYLON still look possible with the aid of an axe. The line GALILA-KOKA is now irremediably obscured by luxurious tree growth around the Galila Palace hotel. Lines in the Wolenchiti quadrilateral, forming the northeastern part of the northern network, were repeatmeasured at different times of the day during Project TIKDEM to investigate the ground radiation effect in more detail (see Section 3.4). A new station, TCHEESA, was established at the northern end of this quadrilateral (Figure 2), Figure 2. The northern (Adama) network. on a rholite dome sliced by the young faults of the Wonji fault belt: it has exceptionally fine visibility to the north, where the Ethiopian rift declines into the Afar depression. The central (Mirrga) network, at latitude 7.5°N, was thoroughly resurveyed in November 1974, most of the lines being repeat-measured on different days. All links interconnecting the seven stations of the southern Mirrga polygon now exist (Figure 3), except GALLA—LANGANA, where acacia trees currently intervene (the alarming rate of local charcoal operations will soon clear this final line of trees). A traverse involving two new stations was made from ARJO, at the southern apex of the Mirrga polygon, west along the Shala caldera's northern rim that forms the land neck between Hora O'a (Lake Shala) and Hora Kunni (Lake Abjata). The southern Mirrga polygon was linked to the northern end of Hora Mirrga (Lake Langano) by two 17-km lines extending the length of the lake. Early in December 1974, the safari moved down to Afar and warmer climes to establish quadrilaterals across the Guma and Dobi graben (see Section 6.8 and Mohr, 1971a). Under the prevailing conditions, only narrow, singly braced quadrilaterals could be made, and the number of repeat measurements was restricted because we had no means to recharge the geodimeter batteries. Throughout Project TIKDEM, accurate and consistent geodimeter measurements of the taped baselines were obtained, indicating that the vagaries of the 1973 survey were not being repeated. In 1974, the nulling of geodimeter 81006 was straightforward, except during high winds experienced on Gara Boku and on two occasions of calm conditions when nulling was sluggish and erratic on frequency 3 of the instrument. The weather was much superior to that of spring 1973, with only occasional dust storms sweeping station FULCRUM and its unfortunate occupants (happily, recent social changes in Ethiopia have removed the threat to this station noted by Mohr, 1974a). In Afar, premonitions for this terra calidissima (Tazieff, 1970) were fortunately not fulfilled, a magnificent desert view of the 29 November eclipse of the moon following a shivering 13°C bivouac. Figure 3. The central (Mirrga) network. ### 3. REDUCTION OF THE DATA ### 3.1 <u>Station Elevations and Tripod Height Correction</u> Elevations of stations in the Adama (Nazret) region of the northern network, derived from the 1969 triangulation survey of E. Kazakopoulos and Mohr, have been adjusted to fit the new Directorate of Overseas Surveys (London) values for Gara Ganti and Gara Mietchi. The adjustment is -8 m at Gara Mietchi for station MIETCHI, and linear interpolation has been made for height adjustments to intervening stations northwestward to DUKAM (Figure 2), where the elevation is held fixed (United States Coast & Geodetic Survey, 1963). T-2 theodolite measurements by J. Rolff, for stations added to the northern network since 1969 and also for the central network, have revealed some important revisions to elevations previously known only from altimeter observations. Station elevations have also been revised from the program of least-squares adjustments of network line lengths. All these revisions are incorporated in the list of station elevations given in Appendix A. The revised elevations affect the tripod height correction as applied to the geodimeter line lengths. Furthermore, belated account has now been taken of the number of prisms-used at the retroreflector station to obtain the height of the optic axis there. These two factors necessitated a recomputation of all the Ethiopian geodimeter line-length observations; the changes rarely exceeded 1 mm, but a maximum of 5 mm was required for a short, steep line at Hora Mirrga. The recomputed data, plus the new data of the 1974 survey, are presented in Appendices B through G. ### 3.2 <u>Line-Length Precision</u> Repeated line measurements at single setups, for 147 lines during the 1974 survey, yield a mean standard deviation of ± 3.6 mm. When only those lines measured at two or more setups are considered, thereby involving re-erection of the tripods and changed atmospheric conditions, the precision degrades to ± 4.8 mm. Statistics on the mean precision of line lengths for all five Ethiopian surveys are listed in Table 3. These statistics divide into 1) precision for all relevant observations during a given survey, and 2) precision restricted to observations for lines longer than 4 km, where atmospheric correction problems begin to loom large. For replicate measurements at single setups, the order of decreasing precision is for surveys 1971, 1974, 1973 (geodimeter), 1970, and 1973 (Ranger), the limits being ± 3.0 and ± 5.9 mm, respectively. For lines longer than 4 km, the precision limits degrade to ± 3.3 mm (1971) and ± 6.0 mm (1973, Ranger). These figures are chiefly indicative of instrument consistency over a period of an hour or so. The totality of errors resulting from the estimation of atmospheric refractivity and the setting up of the tripods, in addition to instrumental factors, is expressed in the standard deviations for multiple setups. The order of decreasing precision, including now the 1969 survey, which lacked repeated observations at single setups, is for 1974, 1969, 1971, 1970, 1973 (geodimeter), and 1973 (Ranger), with limits of ±4.8 and ±7.7 mm, respectively. The precision obtained during the 1974 survey compares well with similar surveys carried out in other parts of the world (see, e.g., Hofmann, 1968; Decker et al., 1971; Cook and Murphy, 1974) and is in part a tribute to the stability of atmospheric conditions in the Ethiopian rift valley. For
highest precision work on the San Andreas fault zone of California, a geodolite instrument (slightly more precise than a geodimeter and also much heavier), used in conjunction with sophisticated aircraft monitoring of atmospheric refractivity, yields an overall precision of ±3.1 mm for a 4-km line and ±3.6 mm for a 10-km line (Sayage and Prescott, 1973). One of the interesting features of Table 3 is that, for the three best surveys (1969, 1971, 1974), there is an improvement in precision when only lines longer than 4 km are considered. This reflects the fact that some of the largest standard deviations are for lines shorter than 2.5 km, particularly | | | Singl | e setups | | | | le setups,
correction included | |------|------------------------|----------------------|---------------------|--------------------|---------------------|---------------------|---| | Year | Survey | All lines | Lines > 4.0 km | All lines | Lines > 4.0 km | , All lines | | | 1969 | GEODIS | | | 5.95 ± 4.4
(44) | 5.38 ± 3.8
(31) | 5.80 ± 4.6
(45) | 5.09 ± 3.7
(32) | | 1970 | LASER8 | 4.71 ± 3.9
(56) | 5.35 ± 4.4
(34) | 8.83 ± 4.5
(23) | 9.92 ± 4.3
(13) | 6.50 ± 5.2 (22) | 7.43 ± 6.2
(14) | | 1971 | PAPAYA | 2.96 ± 2.2
(128) | 3.09 ± 2.3
(77) | 7.24 ± 3.7
(17) | 7.00 ± 4.0 (11) | 6.11 ± 2.3
(18) | 6.00 ± 1.9
(12) | | 1973 | AWARRA
(Geodimeter) | 4.38 ± 2.8
· (56) | 5.00 ± 3.2 (31) | 4.83 ± 2.9
(6) | ·
— | 7.00 ± 5.0 (6) | - | | 1973 | AWARRA
(Ranger) | 5.87 ± 2.8
(83) | 5.98 ± 2.6
(41) | 8.00 ± 4.2
(9) | - | 7.67 ± 4.3 (9) | _ | | 1974 | TIKDEM | 3.54 ± 2.2
(147) | 3.41 ± 2.2
(81) | 6.24 ± 3.8
(29) | 6.92 ± 4.2 (13) | 4.80 ± 2.8
(29) | $\begin{array}{c} 4.16 \pm 2.2 \\ (13) \end{array}$ | ^{*}Although some of the sample/population ratios are too low to be strictly valid in statistical terms, the data well reflect the relative precisions of all the Ethiopian surveys. evident in the central network data (Mohr et al., 1975a) and in the data of Cook and Murphy (1974). In many cases, these short lines are also steep, but although errors in the atmospheric correction tend to be larger for steep lines (Savage and Prescott, 1973), the short lengths of the lines, less than 1 km in some instances, make it impossible to explain the deterioration of precision on this basis. We consider (Mohr et al., 1975a) that unequal illumination of a multiprism reflector is contributing to this problem. Serious errors can arise therefrom, not only on steep lines, but on any lines where the prism configuration to a narrow beam is not precisely perpendicular to that beam about either the vertical or the horizontal (perpendicular) axis. The use of a single prism for short steep lines during the 1974 survey of the central network improved precision for these lines by a factor of 2, although observations remain too few to be statistically significant. Future surveys will pay more attention to this matter. In summary, the mean precision for all the Ethiopian geodimeter surveys, involving line lengths ranging from 0.5 to 25 km, is about ± 6 mm. But for the first (1969) and last (1974) surveys, this lowers to about ± 5 and ± 4 m, respectively. ### 3.3 Line-Length Means In obtaining line-length means for a given survey, the individual observations have been weighted according to instrumental "spread," which is the maximum difference between the distances derived from each of the three frequencies of the geodimeter. The smaller the spread is, the better the quality of the observation, and we have derived an empirical formula (Mohr, 1973a) to express this quantitatively: $$w = 10^{-0.015S}$$ where w is the weighting factor and S is the instrumental spread. In fact, although this weighting formula applies satisfactorily to the 1970, 1971, and 1973 (geodimeter) surveys, it applies less well to the Mk6 geodimeter measurements made during the 1969 survey and notably less well to the 1974 survey, where a few clearly aberrant observations yet have a small instrumental spread. For the sake of overall unity of treatment, we have retained the weighting scheme and deleted the aberrant observations. ### 3.4 More on the Ground Radiation Correction Precision is sensitive to the application of the ground radiation correction (GRC), as the data of Table 3 show. This correction attempts to nullify any difference between the mean air temperature along the line path and the averaged air temperature as measured 2 m above the ground at the two ends of the line. The former is the desired quantity, while the latter is the only practicable source available in Ethiopia. The derivation and applicability of the GRC have been discussed by Mohr (1973a, 1974a), and an extended treatment of the problem has recently been given by Maier (1974). For measurements with a single setup, the GRC effects a very slight or no improvement in precision. This, of course, relates to the short (<1 hour) time scale involved, the GRC being time dependent. It is very important to note, however, that the mean line lengths themselves <u>are</u> significantly changed by applying the GRC,—in-direct proportion to their length. Therefore, for intersurvey comparisons of line lengths involving measurements made at various times within a 24-hour cycle, a correct evaluation of the GRC is imperative. This evaluation can be made by measuring given lines throughout several diurnal cycles (Mohr, 1973a); it has not yet been possible to do this in Ethiopia, but multiple-setup measurements of given lines offer us partial information. The improvement in precision resulting from application of the GRC to the multiple-setup line lengths of the five Ethiopian surveys is appreciable (Table 3). The exception of the 1973 geodimeter data, with only six multiple setups and a poorly performing geodimeter, is of dubious significance. For all the Ethiopian surveys, the average precision before application of the GRC is ± 1.0 ppm for a mean line length of 7.5 km. With application of the GRC, this figure reduces to ± 0.8 ppm, and for the best (1974) survey, to ± 0.55 ppm. A closer examination of the 1974 data shows that the daytime GRC currently used is capable of further, small refinements, which, however, will require the introduction of line configuration (topography) as a variable, in addition to the present single variable, time. For the 20-km line WONJI—MIETCHI, measured from 1715 to 1800 Local Time (LT) on 23 November 1974 (Black Saturday), there was a progressive decrease of 21 mm in apparent line length during four observations. This would be consistent with a more rapid cooling of the surface layer of the atmosphere compared with the mean temperature of the line path, and works contrary to the applied GRC formula, which presumes a more belated onset of such cooling under average Ethiopian rift conditions (Mohr, 1973a). For the immediately preceding measurements of line WONJI—MIETCHI AUX., during the period 1645 to 1710 LT, the apparent line lengths remained essentially constant, which would place the onset of surface air cooling across the Wonji plains near 1715 LT during November and December. The same phenomenon is witnessed in the 17-km-long lines traversing Hora Mirrga. For line EUPHORBIA-OOMAY, measured between 1520 and 1615 LT on 13 November 1974, the GRC-corrected line lengths show an erratic possible shortening with time; but for GALLA-OOMAY, measured between 1710 and 1800 LT on the same day, the same progressive trend as for WONJI-MIETCHI is observed (Table 4). Again this indicates an onset of surface air cooling at some time near 1700 LT, and in both instances, we are dealing with long lines that traverse close above a flat surface, one land and the other water. Examination of repeat-measured lines for Project TIKDEM shows that instrumental drift may be contributing to some of the apparent progressive changes in line length. Table 4 lists all the 1974 lines where such change is discernible: to keep this in proportion, note that only 15 out of a Table 4. 1974 survey lines showing progressive drift of apparent length with time, during single setups with three or more consecutive measurements. | Line* | Number of observations | Time period (LT) | (lm/hm) | Approximate line length (km) | Drift (mm) | |---------|------------------------|------------------------|--------------|------------------------------|------------------| | RY—MAA | .4 | 15501640 | 10–15 | 3.9 | 19 ^{†.} | | GE-MA | 3 | 0940-1030 | 10-15 | 7.3 | -25. | | RI-GE | 3 · | 0830-0920 | 15—25 | 2.5 | · - 27 | | AD-RI | 3 | 1145—1230 | 3 0 · | 2.9 | -8 | | AD—RI | 3 | 15501635 | 15–25 ' | 2.9 | -9. | | BHCI | 4 · | 0830-0920 | 10: | 7.2 | · · <u>1</u> 5 | | BR-CI | 3 | 1720-1800 | 10 | 8. 9 | 9 | | BBCI | 3 · | 1535—1625 | 10-15 | 8.9 | · - 11. | | BOPY | 3 | 0820-0900 | 5–15 | 11.5 | 5. | | B0-W0 | 3 | 0945—1025 | 10–25 | 8.3 | -13 | | WOMI | 4 | 1715—1800 | <u>0∸</u> 5 | 20.5 | -21 | | GN-MI | 3, | · 08350920 | 15? | 16.7 | 13 | | TA—AY · | 4 . | 0815-0905 | 5-10 | 7.7 | . 7 | | TA-AY | 4 | 16551740 | 30-40 | 7.7 | ≟9 √ | | LA-TE | . 3 . | 1630 - 1700 | 5? | 2.4 | · ´-10 | | GL-OY | 3· | 1710 - 1800 | 05 | 16.7 | -20°· | | EU-OY | 3 | 1520—1620 | 0–5 | 17.6 | -13? | ^{*}For station abbreviations, see Appendix A. total of 147 setups are implicated. The largest drift, -27 mm in 50 min, was observed for the 2.5-km line RIDGE-GEORGE at the kickoff of Project TIKDEM. This cannot possibly be explained by deficiencies in the GRC, and must be instrumental drift whose cause may have been related to operator "rustiness." [As in previous surveys, it was found important to null the geodimeter in the same part of the "green" on the signal-strength dial in order to obtain consistent and accurate results: higher in the green, phototube saturation became evident.]
[†]This apparent drift ceased in the ensuing four measurements of line RY—MA during 1650 to 1720 LT. Lines of intermediate length (~4 to 10 km) show no consistency between drift sign and time of day, nor of drift magnitude to line length. Only for the longest lines (WONJI-MIETCHI, GALLA-OOMAY, and GANTI-MIETCHI) is a deficiency in the GRC indicated, with apparent drift rates of 1.0 to 1.4 ppm/hr being of negative sense for afternoon measurements and positive sense for morning. For all three long lines, wind speed during measurement was very low; for other lines where wind speed was relatively high (e.g., TABLE-AYGU), no apparent line-length drift was manifest. This suggests that the wind-speed factor incorporated in the GRC (Mohr, 1974a, p. 12) should have a wider spectrum in its effect on the GRC, but until a field experiment is performed that establishes at what point accuracy is highest on the drift curve, this cannot be quantified. Certainly it now appears that surface air temperatures can change more rapidly in Ethiopia than at the GRC test site in Arizona (Mohr, 1973a). At present, there is no clear warrant for a firm general revision of the daytime GRC as applied to Ethiopian rift trilateration, lacking a datum for line-length accuracy. Further research into this problem is proceeding, by using network adjustments to seek the most accurate line lengths in relation to well-established short lines; but a program specifically devoted to GRC problems in Ethiopia is what is most desirable and, unfortunately, least likely to materialize. Further enquiry into the intriguing question of when the strongly positive GRC of the early night turns to the negative GRC of the late night and early morning in Ethiopia has led to a re-examination of the post-midnight measurements made during Project GEODIS in 1969. Although the observations are insufficient in number and scattered in locale (Table 5), they suggest that the Ethiopian night-time factor previously applied to the Arizonaderived GRC (Mohr, 1973a, pp. 40-41), based on sparse data from Project PAPAYA in 1971, is too strongly positive from about 2245 LT on. For the interval 2245 to 0130 LT, the previously accepted value for this factor of 0.65T (where T is the local time in hours and integer increments continue beyond 24) was revised to 0.40T in obtaining the data in Appendix B. Table 5. Project GEODIS, comparison of post-midnight and pre-midnight measurements of given lines (unrevised GRC included). | Line | Time
(LT) | Time of
pre-midnight
comparison (LT) | Approximate
line length
(km) | Mean line-length
difference
(mm) | ppm | ppm/hr* | |--------|--------------|--|------------------------------------|--|------|--------------------| | GI—ROA | 0130 | 2345 | 5.9 | 6 | 1.0 | 0.57 | | RO-RY | 0015 | 2230 | 5.8 | 0 | 0 | 0 ; | | RY-ROA | 0045 | 2300 | 5.7 | 0 | 0 | 0 : | | MAA-RY | 0015 | 2115 | 3.9 | 33 | 8.4 | 2.8 | | RI-GE | 0015 | 2315 | 2.5 | 19 | 7.5 | 7.5 ^{† ^} | | RIEP | 0100 | 2000 | 6.6 | 16 | 2.4 | 0.48 | | RI—EPA | 0015 | 2030 | 6.6 | 8 | 1.2 | 0.32 | | RIFU | 0115 | 2000 | 5.3 | 6 | 1.1 | 0.21 | | GR—CI | 0100 | 2400 | 5.9 | . 0 | 0 | 0 : | | GRA-CI | 0030 | 2330 | 5.9 | 3 | 0.5 | 0.50 | | DUT0 | 0120 | 2315 | 1.7 | 8 | -4.7 | -2.2 [†] | ^{*}The mean post-midnight rate of drift is 0.25 ppm/hr. [†]These cases involved instrumental drift and are excluded from the mean rate of 0.25 ppm/hr expressed in the previous footnote. From 0130 LT on, this figure then probably declines precipitously and reverses sign somewhere between 0300 and 0400 LT, a period for which we lack any data. It further appears that surface flow of cold air at night can exacerbate the station factor (Mohr, 1974a, p. 11) in the GRC, but the occasions of this phenomenon during Project GEODIS were usually easily recognized and the affected observations have been omitted in obtaining the mean line lengths. #### 4. INSTRUMENT CALIBRATION AND INTERADJUSTMENT OF ALL ETHIOPIAN SURVEYS Calibration of SAO geodimeter 81006 by AGA (New Jersey), done immediately before we left for Ethiopia in October 1974, gave a geodimeter constant of 0.215 m, established from ∿2-km baselines of known length. Because of the instrumental gremlins encountered during Project AWARRA in 1973, taped baselines were installed at the start of the 1974 survey at Nazret (Adama) and at Hora Mirrga, against which the instrument was checked every few days (Appendix G). The summary results of this checking were as follows: | | <u>Nazret</u> | Mirrga | |------------------------------|-----------------|----------------| | Number of tapings . | 4 . | 2 | | Mean taped distance (m) | 111.984 . | 41.852 | | Number of setups | 8 | 2 | | Number of measurements | 33 | 7 | | Mean geodimeter distance (m) | 111.982 ± 0.004 | 41.849 ± 0.002 | The geodimeter distances incorporate an instrumental constant of 0.215 m and a retroreflector constant for a plastic cycle reflector of 0.050 m. The latter figure is not accurate to more than ± 2 mm, and on the basis of these data alone, it is not possible to say whether it is the geodimeter constant or the retroreflector constant that is 2 mm short. The taped distances are considered accurate to ± 0.001 m. The geodimeter constant was independently determined at Hora Mirrga according to the method recommended by AGA. This involved measuring a known distance where the digital output numbers of the retroreflector (R) line and the internal calibration (C) line were almost the same; i.e., the out-of-phaseness of incoming and outgoing modulation waves was very similar. Over a taped distance of 35.249 m, R - C for frequency 1 was measured 15 times and yielded a mean value of 0.015 ± 0.004 m, giving a geodimeter constant of 0.214 m, which is in essential agreement with the factory-supplied value. Thus, we have much greater confidence in the long-term stability of precision for the 1974 survey compared with the 1973 survey, despite the evidence for occasional instrumental drift. We return to the question of how to link the different Ethiopjan surveys to each other, for purposes of line-length comparison, and to determine which survey(s) is the most accurate. At the outset, we note that a survey bias — that is, an offset of consistency from accuracy (Mohr, 1974a, p. 13) — will affect comparisons for individual lines and station coordinates between one survey and another, but it will not significantly affect network adjustment within a particular survey. Furthermore, bias differs from the scale factor in being independent of the distance between any two points. Bias can, of course, be determined from measurements of stable calibration lines at every survey (Decker et al., 1971), preferably of long lines in zones where crustal deformation is absent, but, vita brevis, we have not been able to seek such zones in Ethiopia. By using the revised line lengths given in Appendices B through G, the mean difference between 21 lines measured with a Mk6 geodimeter during 1969 Project GEODIS and the same 21 lines measured with a Mk8 geodimeter during 1971 Project PAPAYA is -14 ± 6 mm. This is similar to a -18 ± 4-mm difference for five calibration lines in Iceland (Decker et al., 1971), derived by comparing measurements from a Mk6 geodimeter in 1967 with those from a Mk8 geodimeter in 1970 (the same Mk8, 80037, was used in the 1970 survey in Ethiopia). In Ethiopia, the bias has been slightly degraded by some line-length changes. A bias of approximately -13 mm for earlier Mk2 geodimeter measurements in California compared with later Mk8 measurements has recently been described by Savage (1975). It seems that a systematic calibration error may have been made by the manufacturers during the early geodimeter days in the United States. The 1970 and 1971 Ethiopian surveys are mutually consistent within 2 mm, (Mohr, 1974a, p. 21), and the same figure embraces the 1971 and 1974 surveys. In fact, the signs of these statistically insignificant differences are positive both for 1971 relative to 1970 and for 1974 relative to 1971, in concordance with any overall horizontal ground extension in the rift valley. It is with the 1973 survey that serious problems arise from a gross and time-stepped bias: the following discussion is an extension of that given by Mohr (1974a). For the southern (Arba Minch) network, the mean line-length difference for 1973 relative to 1971 (Δd_{71-73}) is 13.3 \pm 4 mm (seven lines). For the central (Mirrga) network, the difference is 15.6 ± 8 mm (18 lines). On the basis of these data, Mohr (1974a) assumed a mean $\Delta d_{71-73} = 14$ mm for the line-length observations in the southern and central networks, and this increment is held to here. However, a possible relationship of Δd_{71-73} to ambient temperature has been discovered for the central network (Mohr et al., 1975b). If the relationship is real, it is puzzling that it did not apply to the preceding survey of the northern network and the subsequent survey of the southern network. During Project AWARRA, the nulling of the geodimeter suffered from a faulty regulator and interference from cycling of the crystal oven thermostat. Perhaps at Hora Mirrga there was a temporary imperfect thermostatic balance in one of the ovens, allowing an influence from ambient temperature, although it seems unlikely. For the northern network, the nature of the 1973 survey bias is more complex and uncertain. A study of the Δd_{71-73} values reveals no relationship with ambient temperature, line length, or date. The mean line-length difference for any year relative to 1973, excluding aberrant data (e.g., line PYLON-RIDGE for 1973 and BOKU-ADAMA for 1971), turns out to be 24 \pm 8 mm for 22 lines, most of which are common with 1971 and some with 1970 or 1969 only. This compares with a previously derived value of 28 mm (Mohr, 1974a) based
on Δd_{71-73} for only 11 lines, including the aberrant BOKU-ADAMA. A positive correction of 24 mm has therefore been applied to all the 1973 geodimeter data for the northern network, except for the Wolenchiti quadrilateral, where the correction is 29 mm (see Section 6.2), and the southeastern Sire sector of the network, where a correction of 34 mm seems required. The indirect derivation of these corrections from intersurvey comparisons, rather than from on-the-spot calibration, impels less confidence in the 1973 survey than in the others. Likewise, a comparison of the 1973 Ranger data for the northern network against the corresponding 1971 geodimeter data reveals a mean bias of $\Delta d_{71-73}=11\pm10$ mm. A positive correction of 9 mm, applied by Mohr (1974a) to all the 1973 Ranger distances, has been retained. Again, the Δd_{71-73} values fail to show any relationship to ambient temperature, line length, or date. Not only does the 1973 Ranger program show the poorest precision of any of the Ethiopian surveys (Table 3), but some inconsistent Ranger observations can be demonstrated. One of the clearest examples concerns the near-flat triangle linking stations QUILL, OOLAGA, and SODERE, in the center of the northern network: | <u>Line</u> | Δd_{73-71} (mm) | Δd 74-73 (mm) | |---------------|-------------------------|-----------------------| | QUILL-OOLAGA | 8 | -3 | | OOLAGA-SODERE | -2 | 12 | | QUILL—SODERE | -3 | 22 | The 1973 Ranger line lengths bear the 9-mm correction. The geometry of the triangle QUILL—OOLAGA—SODERE demands that any line-length changes for the triangle "base" QUILL—SODERE should equal the sum of the changes to QUILL—OOLAGA and OOLAGA—SODERE. This sum is 6 mm for Δd_{73-71} and 9 mm for Δd_{74-73} , values seen to be quite inconsistent with the listed QUILL—SODERE changes. On the other hand, the Δd_{74-71} value of 15 mm for lines QUILL—OOLAGA plus OOLAGA—SODERE agrees quite well with 19 mm for QUILL—SODERE. A further, extraordinary element in the 1973 geodimeter saga emerges from the Icelandic survey made immediately after that in Ethiopia. We note first that 3 years earlier, in September 1970, geodimeter 80037 was used in Iceland and then was taken to Ethiopia for Project LASER8. The 1970 surveys in both countries gave line lengths agreeing well with preceding and subsequent surveys (allowing for the bias of the Mk6 geodimeter distances). In April 1973, geodimeter 81006 was used in Ethiopia; then it was shipped to Iceland via AGA (Lidingö). AGA found the geodimeter constant to agree with that determined by AGA (New Jersey) before the Ethiopian survey — leaving the Ethiopian distances 14 to 34 mm too short, as we have seen. In Iceland, geodimeter 81006 was run concurrently with U.S. Geological Survey geodimeter 80058, and excellent agreement was obtained, both giving line lengths consonant with the 1970 values. Thus, it was only in Ethiopia that 81006 was misbehaving itself; both before in the United States and afterward in Iceland, it was dinkum. There is an old Ethiopian saying: "blame it on the altitude," but I can see no explanation for the AWARRA aberration. Which survey should we take as the most accurate, thus providing a reference for the absolute lengths of the Ethiopian rift lines? I mutedly apologize for reverting to the original reference of the 1970 and 1971 surveys (Mohr, 1973a), now that the biases that misled me (Mohr, 1974a) are so evident. The 1974 survey, with the best precision of any of the Ethiopian surveys and with checks against taped baslines, shows no bias when compared with those of 1970 and 1971. Thus, the observed line lengths for the surveys of 1970, 1971, and 1974 stand (Appendices C, D, and G); the 1969 survey distances are incremented by 14 mm, the 1973 Ranger distances by 9 mm, and the 1973 geodimeter distances by 14 mm for the central and southern networks and 24 mm for the northern network (with some exceptions mentioned elsewhere). Table 6 lists the final line-length means for all remeasured lines of the Ethiopian rift surveys. Table 6. Final line-length means (in meters) for all remeasured lines of the Ethiopian rift surveys. Standard deviations, except for single measurements, are given in parentheses in millimeters. G and R suffixes for the 1973 measurements indicate geodimeter and Ranger results, respectively. | Line | 1969 | 1970 | 1971 | 1973 | 1974 | |--|--|------------------|--|--|--| | RY-MA
RY-MAA
MA-GE
MA-GEA
MAA-GE
MAA-GEA
MA-RI | 3929.203 (11)
3937.595 (23)
7262.541 (10)
7259.088 (11)
7257.210 (11)
7253.749
9759. | .387 (2) | .552 (2)
.097 (3) | .230 (15) R
.615 (6) R
.552 (3) R
.103 (3) R
.229 (11) R
.764 (9) R | .219 (4)
.597 (8)
.561 (4)
.109 (1)
.240
.763 | | GE—RI
GE—RIA
GEA—RI
GE—AD.
GE—ADA | 2529.968 (15)
2540.198 (12)
2530.732
4461.186 (4)
4470.829 | .176 | .970 (1)
.187 (2)
.736
.186 (1)
.830 (1) | .969 (13) R
.740 (5) R
.189 (4) R | .973 (4)
.203 (4)
.731
.176 (2)
.823 | | GE—FUA
GE B 0 | 7281.
9430. | .850 (1) | .176 (3)
.844 (9) | | .169 (4) | | RI—AD | 2865.573 (4) | .568 | .569 (6) | .575 (5) G
.581 (5) R | .572 (5) | | RI—ADA
RIA—AD
RI—FA | 2874.402
2878.010
3022.259 (4) | .261 (5) | .401 (12)
.259 (4) | | .401
.022 (1)
.250 (4) | | RI—FAB
RIA—FA
RI—EPA
RI—GN
RI—GNA
RI—FU | 3011.
3026.085
6631.497
6673.
6672.
5339.768 (4) | .490
.767 (8) | .202 (2)
.088 (3)
.506 (3)
.497 (4) | .191 (6) R
.493 (5) R
.498 (10) R
.906 (5) R | .195
.081 (12)
.506 (8)
.505 (4)
.914 | | RI—FUA
RI—FUB
RI—BO
RIA—BO | 5335.163
5337.
6998.
6983. | .188 (2) | .164 (6)
.060 (9)
.224
.096 (4) | .176 (2) R
.067 (2) R
.229 (7) R
.074 (7) R | .160 (1)
.234 (6) | | AD-FA
AD-FAB
ADA-FA
AD-EPA
AD-GN
AD-GNA | 1400.898 (3)
1407.
1398.030
6153.628
6100.
6101. | .894 (4) | .901 (0)
.494 (6)
.032 (3)
.623 (6)
.378 (4) | .904 (13) R
.492 (7) R
.047 (3) R
.609 (7) R
.385 (8) R
.606 (8) R | .901 (4)
.482
.022 (1)
.625 (2)
.389
.610 | | AD-BO | 7427. | .068 (7) | .120 | .100 (6) G | .115 | Table 6. (Cont.) | Line | 1969 | 1970 | 1971 | 1973 | 1974 | |------------------------------------|--|----------------------------------|--|--|--| | FA-EPA
FA-GN
FA-GNA | 4757.497
4709.
4711. | .502 (3) | .492 (4)
.989 (3) | .486 (8) R
.001 (3) R
.104 (3) R | | | FAFU
FAFUA
FAFUB
FAFUD | 2365.997 (3)
2358.172
2359.
2372. | .180 (9) | .170 | .180 (14) R
.600 (6) R
.340 (4) R | .167 (5)
.579 (6)
.322 | | FA—B0 | 6066. | .407 (5) | | .414 (5) G
.402 (9) R | .433 (5) | | BO-EPA
BO-GN
BO-GNA | 2307.
2519.
2515. | .079 (8) | .091
.669 (6) | .086 (5) R
.671 (6) R
.540 (3) R | .667 (8)
.532 | | BOFUA
FUAGN
FUAGNA | | .084 | .095
.651 (4) | .101 (3) G
.648 (4) R
.552 (5) R | | | RO-MI
ROA-MI
RO-BO
ROA-BO | 6260.920 (2)
6236.818
9845.
9857. | .908 (6)
.813 (6)
.339 (6) | .970 (1) | .921 G
.813 (5) G | .816 (6)
.346
.985 | | DU-MI
TO-MI
TO-DU
TO-DUA | 5511.386 (1)
5566.639 (5)
1709.705 (5)
1684.656 | | .570 (17 | .636 (11) G
.709 (4) G
.659 | .385 (3) | | SE-DU
SE-DUA
SE-TO | 8686.894 (9)
8660.086
7489.415 (2) | | | .059 | .917 (4)
.108
.406 (4) | | QL—SO
QL—OL
OL—SO
OL—MI | 3856.
2357.
1581.
7578. | | .840 (3)
.713 (3)
.713 (3)
.947 (2) | .837 (7) R
.721 (9) R
.711 (6) R
.956 (4) G | .859 (1)
.718 (5)
.723 (4)
.951 (5) | | WO-GE | 6566. | | .789 (4) | | .794 | | PY—GE
PY—GEA | 6642.
6628. | | .851 (1) | .856 (3) G
.250 G | .846 (4)
.227 | | PY-RI
PY-RIA | 7612.
7602. | | .220 (3) | .250 (10) G
.898 G | .226 (0)
.902
.653 (1) | | PYWQ
PYKO
KOWO | 3402.
3079.
5336. | | .653 (2)
.988 (6) | .643 (5) G
.982 (5) G
.862 (7) G | .991 (10)
.860 (2) | | GA-YE
GA-TH | 2248.
4608. | .293 (0)
.480 (1) | .867 (5)
.298 (2)
.482 (3) | .862 (7) G | .297 (2)
.483 (2) | | KOTH | 2871.
4444. | .875 (4)
.656 (2) | .462 (3)
.893 (2)
.666 (2) | | .463 (2)
.884 (5)
.663 (1) | Table 6. (Cont.) | Line | 1969 | 1970 | 1971 | 1973 | 1974 | |---|--|--|--|--|--| | GR-FU
GR-FUA
GRA-FU
GRA-FUA
FUA-CI
GR-CI
GR-CIA | 7339.315 (6) -
7341.
12089.
5866.835 (2) | .770 (25)
.024
.321 (5) | .014 (9) .669 (1) .215 (6) .830 (4) .140 (1) | .015 (3) R
.664 (3) R
.819 (7) R
.111 (6) R | .666 (3)
.213 (5) | | GRA-CI
BH-CI
BH-CIA
BH-BR
BH-BB | 5876.689 (2)
7233.
7223. | .679 (1)
.358
(5)
.525 (4) | .697 (6)
.352 (3) | .357 (8) R
.532 (6) R
.386 (11) G
.934 (4) G | .368 (6)
.540 (1) | | TA-AY TA-MEA TA-RA TAA-RA AY-ME AYA-ME AYA-RA AYA-RA ME-RA ME-RA | 7223. | .141 (9)
.863 (6)
.265 (6)
.052 (10)
.499 (2)
.799 (1) | .508 (7) | .141 (11) G
.866 (4) G
.788 G
.285 (8) G
.816 G
.055 (10) G
.338 G
.502 G
.246 G
.807 (2) G
.638 G | .875 (3)
.813
.287 (2)
.805
.058 (3)
.335
.513 (4)
.269 | | BN-BC
BC-KU
BC-TS
BC-TSA
BP-SH
BN-SH
KU-TS | 1206.
3599.
7277.
7276.
2331.
2937. | | .708 (6)
.172 (7)
.608 (1)
.511 (3)
.651 (2)
.672 (3)
.926 (5) | .709 (4) G
.172 (3) G
.609 (1) G
.516 G
.648 (3) G
.667 (2) G
.928 G | • | | HO—TE
HO—GL
HO—EUA
HO—LA
TE—GL
TE—EU
TE—EUA
TE—LA
TE—AR | 1022.
764.
3517.
3524.
3394.
746.
3358.
3372.
2434.
7257. | .595 (6)
.061 (6)
.937 (5)
.762
.050 (2)
.123 (5)
.624 | .598 (1)
.052 (3)
.926 (3)
.769 (5)
.055 (1)
.044 (4)
.127 (2)
.628 (1)
.176 (3) | .591 (4) G
.062 (1) G
.920 (2) G
.754 G
.058 (4) G
.043 (3) G
.134 (2) G
.628 G
.165 (4) G
.954 (7) G | .586 (1)
.045 (4)
.919 (3)
.047 (3)
.037 (2)
.127 (2)
.165 (5)
.985 (4) | Table 6. (Cont.) | Line | 1969 | 1970 | 1971 | 1973 | | 1974 | |--------------------|-------|----------|----------|----------|---|----------| | GL—EU | 2852. | .132 (6) | .142 (3) | .133 (3) | G | .130 (7) | | GL-EUA | 2862. | .166 (3) | .172 (4) | .164 | G | .169 | | GL-EUB | 2852. | | (-) | .410 (4) | G | .416 | | GL-AR | 7435. | | .784 (3) | .803 | G | .815 (4) | | GL ARA | 7439. | | | .594 | G | .593 | | LA-EU | 3232. | | .699 (1) | .707 (3) | G | .713 (5) | | LA-EUA | 3259. | | .854 (0) | .860 | G | .849 | | LA-EUB | 3232. | | | .904 (1) | G | .899 | | LA-AR | 4851. | | .699 (1) | .699 (1) | Ģ | .699 (4) | | ar-Eu | 6206. | | .139 (1) | .139 (1) | G | .150 (9) | | AR—EUA | 6229. | , | .371 | .369 (0) | G | .376 | | AR-EUB | 6206. | | | .101 (2) | G | .122 | | 0I -A L | 4629. | .081 (1) | .089 (3) | .097 (0) | G | .101 (4) | | 0I0Y | 5303. | | .659 (3) | .648 (4) | G | .667 (2) | #### NETWORK ADJUSTMENT ## 5.1 Weighting and Revision of Line Lengths Weighting of the line-length means entered into the network leastsquares adjustments follows the simple relation $$w = n' sc/\sigma^2$$, where w is the applied weight; n' is related to n, the number of observations of a given line in a given survey, by n' = (1/1 + 1/2 + 1/3 + ... + 1/n); s is the number of setups for a line during a particular survey; c is a consistency factor; and σ is the standard deviation of the observations about the mean line length (a minimum of ± 4 mm is accepted; for single observations, the value is taken from Table 3, column 7). Consistency is a measure of the smoothness of the trend of changes (or stability) in length of a given line throughout several surveys. A consistency factor is applied to the variance (i.e., to the reciprocal of weight) according to the deviation of line lengths from a best-fit line covering a number of years, as follows: | Consistency factor | Maximum deviation (mm) | |--------------------|------------------------| | 0.5 | ± 0 to 3 | | 1.0 | ±3 to 7 | | 2.0 | ±>7 | This scheme admittedly anticipates regular line-length changes of the same sign from one year to the next, but it must be emphasized that it is too weak to obscure moderate "oscillations," as the results will show. Rather, the consistency factor is a device to deweight some manifestly poorer observations, or observations of mixed quality in which the better quality data cannot be identified. To maintain a complete network for each survey, lengths for any omitted lines of a particular survey have been introduced from the preceding survey, except for the 1969 survey, where gaps are filled from the 1970 survey, and for cases of evidently poor data. These indirect observations were originally deweighted by a factor of 100 for a 1-year gap and 200 for a 2-year gap, but in view of the small rates of crustal deformation in Ethiopia, this is now considered excessive, resulting in such "observations" taking up an undue proportion of the adjustment errors. We now weaken weightings by a factor of 8/yr. Line lengths fitting least well in a network adjustment have been reexamined from the points of view of 1) any large differences in line lengths at separate setups, 2) abnormal weather conditions that could have modified the temperature gradient of the surface air layer, and thus make a straight application of the GRC inappropriate, 3) first-of-the-day geodimeter measurements when insufficient warmup time for the instrument may have occurred, or 4) observer bias, due to the nulling technique. Line-length revisions considered justified from this process have been discussed and listed for the Mirrga network by Mohr et al. (1975b); for the northern network, the revisions are listed in Table 7. It is important to emphasize that no changes have been made for which a preadjustment reason cannot be found, even though the need for such a change may seem overwhelming: to underline this, erroneous elevations put into the network adjustments can distort and apparently disparage some line lengths whose observations are sound; without ruthless objectivity, the revision process leads to chaotic revisionism. The magnitude of the average revision of line lengths is about 5 mm, or a little less than 1 ppm in relation to the mean 7-km-long Ethiopian line. Less than 5% of all the observations have been subjected to revision. Where line lengths are considered to be in error but the error cannot be quantified, we have deweighted these lengths, usually by a factor of 2: this process involves less than 1% of the observations. When any line-length revisions are incorporated, and weightings changed, the overall dimensionless sigma (S) should move closer to unity, where Table 7. Revised line lengths for the northern network. | Survey | Line | Correction (mm) | Reason | |--------|--------------------|-----------------|---| | 1969 | GE-RIA | - 5 | From comparison with GE-RI at same setup. | | | AD-RIA | - 5 | From comparison with AD-RI at same setup. | | 1970 | GE RI | (erroneous) | Measured in "strong wind"; discard. | | • | GE—FUA | -6 | GRC underestimated on calm morning. | | | AD-EPA | 11 | From comparison with AD-FA and AD-RIB. | | | RI—BO | 3 | "Excellent measurements"; ignore D-spread. | | 1971 | RIFUB | -4 | From comparison with RI—FUA at same setup. | | | BO-EPA | -8 | From comparison with afternoon BO-RI measurement. | | 1973 | RI—FAB | 4 | From comparison with RI—FA at same setup. | | | FA-EPA | -2 | GRC underestimated on calm, hot day. | | - | FA-FUA,-FUB | (uncertain) | Measured in "dust storm," like that of 1970. | | | AD-GN,-GNA | 5 | From comparison with AD-EPA of same day. | | • | BO-RIA | (erroneous) | Incompatible Ranger observation. | | 1974 | GE-RI,-RIA | 2,-2 | Double weight for observer P relative to R. | | | EPA-GN | 2 | Double weight for observer P relative to R. | | | FA-GN,-GNA | 4 | From comparison with FA-EPA on same day. | | • | RI-GN | -3 | Omit aberrant first-of-day observation. | | | BO -F A | -3 | D-spread weightings unrealistic. | Table 7. (Cont.) | Survey | Line | Correction (mm) | Reason | |--------|-----------------|-----------------|--| | | BO-GN | 1 | D-spread weightings unrealistic. | | | BO-GNA | - 6 | From comparison with P observation of BO-GN. | | | GE-EPA,-GN,-GN/ | -3 | 29 October main; GRC halved. | | | RIA-AD,—ADA | -1 | 29 October rain; GRC omitted. | | | RIA-FA | - 2 | 29 October rain; GRC omitted. | | | RIA—FAB | -3 | 29 October rain; GRC omitted. | $$S = \sqrt{\frac{\sum[(0 - C)/\sigma]^2}{f}}$$ and 0 - C is the residual of the observed minus the computed line length, σ is the <u>a priori</u> standard deviation about the line-length mean, and f is the number of degrees of freedom in the network (i.e., the number of observations in excess of that required to determine the network geometry). Thus, S is a measure of the mutual compatibility of line-length observations, the reality of their ascribed <u>a priori</u> standard deviations, and the realism of their relative weightings. ## 5.2 Adjustment Techniques The method of adjustment most commonly used in the Ethiopian work is the so-called classical method (Mohr $\underline{\text{et al.}}$, 1975a,b). In this method, one station is held fixed as the origin of the coordinate system, and a second station is used to define the x (and thus y) axis along which that station is constrained to move in the adjustment. Station elevations are held fixed, even when known only from altimeter observations, to provide sufficient degrees of freedom for a unique solution without sacrificing accuracy. Excepting lines ELPASO AUX.—GANTI and EPLASO AUX.—GANTI AUX., none of the Ethiopian geodimeter lines slopes more than 4^g from horizontal, and more than half slope at less than 2^g . Thus, line lengths will not be significantly changed by vertical movements short of a meter. The origin station for a given network is chosen 1) for its bedrock stability, so that it is least likely to be affected by atectonic ground motions, and 2) for its geological situation, often selected at the margin of a graben, basin, or other tectonic unit. This then aids in the interpretation of relative motions of the remaining stations. The second station is usually selected so that the x axis connecting it with the origin station runs either perpendicular or parallel to the regional geological structures, depending on whether normal crustal extension or longitudinal shear is expected to be
occurring. At most of the Ethiopian stations, the main point is accompanied by one or more auxiliary points, all separated by a few or tens of meters. The auxiliary points were originally - and, as it has since been proved, wisely installed as a security measure against vandalism. They are now included in the survey observations and network adjustments because they add a further test on the precision of the field techniques under the assumption, generally justified, that there are no relative motions between main and auxiliary points at a given station. The treatment of main—auxiliary pairs (or triads) in the network adjustments has been discussed in some detail by Mohr et al., 1975b). Unfortunately, the introduction of auxiliary points into the adjustments also introduces a deficiency, in that although the main—auxiliary distances are known from taped measurements, the azimuths and declinations have not yet been observed.* We currently fix the main-auxiliary distances in the adjustments and leave the azimuths free to vary, even though this is geologically unrealistic. Declinations are held fixed, but at values derived from best fits in the adjustments. As a check on the precision of the line-length observations, additional network computations have been made with the mainauxiliary distances free to vary: the best-fit distances thus computed differ from the taped distances within about ± 2 mm (Mohr et al., 1975b). The Ethiopian geodetic data have also been subjected to free-net adjustment techniques (Mohr et al., 1975b). No station is fixed as origin, nor is a second station constrained along the x axis. Instead, all stations are adjusted to a position of "least strain" with respect to the interstation distance observations. Station z values remain fixed, however. It is necessary to remove net rotations from the solutions before intersurvey comparisons are made. Although free-net adjustment provides a more rational way of distributing errors among all the stations of a network, geological interpretation of apparent station vectors is more difficult in the absence of a reference frame. We have also applied compromise free-net-classical techniques to some of the Ethiopian networks: for example, a selected origin station is held fixed, but no second station is constrained to the x axis. ^{*}Since rectified in the 1976 survey. A study of a posteriori line lengths resulting from the network adjustments can be useful when it is desired to concentrate attention on specific lines, perhaps those crossing geological structures of interest or those that can assist in resolving ambiguities in our interpretation of apparent station motions. Computed a posteriori line-length sigmas give a useful indication of the compatibility of the line-length observations: they can also be combined for any given line through $\sigma = (\sigma_1^2 + \sigma_2^2)^{1/2}$ to determine the standard deviation for the change in the best-fit line length from one survey to another. The final results presented in Section 6 have not been reaped from a single sowing of least-squares-adjustment computations. Dizens (decimal "dozens") of steps have been laboriously executed, following revision of weightings, line lengths, and station elevations, plus the addition or exclusion of an auxiliary point, etc. One lesson we have learned is to build in single steps from the simplest and most reliable elements of the network, so that erroneous or less precise data can be identified and handled. Put them all in the stew at the start, and you're in there with them. ## 5.3 Station-Coordinate Errors Although we deal here with the statistical errors deriving from the variance-covariance matrix of the least-squares adjustment, we again (see Mohr et al., 1976) reiterate the premise of Sclater et al. (1976, p. 1865) that "stated error [from statistical adjustment can be] unreasonably small and an underestimation of the actual errors in the original [observations]." The stated errors are as comprehensive as the data put into their derivation, and no more. Standard error curves (Bjerhammar, 1973) are used to express the network-derived uncertainties in the coordinates of each station. An error curve has an advantage over an error ellipse in that the envelope represents a confidence limit at azimuths other than those parallel to the ellipse axes. The error curves presented in this work are based on a two-dimensional combination of linear standard deviations, and thus present about a 45% confidence envelope. This confidence limit is the one most generally used in geodesy, but it can be argued that in work of our attempted precision and resolution, it would be more useful to double the parameters of the error curve to yield a confidence envelope of about 85%. Whilst it would be most useful to show error curves for each survey at each station in assessing the statistical likelihood that apparent station motions are real, in Ethiopia where any motions are close to the limit of resolution, the superpositioning of detail becomes obfuscating. Practicable alternatives include a pairing of error curves, such that each indicated curve sums the errors of time-adjacent surveys for each station (but this still superposes many lines). Or there is the simplified method of marking only the intercept of the error curve on the individual vector (or its projection, where the error is larger than the vector). Or, following Mohr et al. (1975b), a list can be made showing the computed confidence limit to which each station vector penetrates for each time-pair of surveys (but this loses the benefit of graphical impression). The method chosen here is a compromise. It combines the error curves of the beginning and end surveys and ignores the errors of the intervening surveys. This method shows the confidence to be placed in the overall station vector, but gives no information on the confidence to be placed in the intervening progression of motions. We justify this approach by the argument that the motions are small enough that the maximum available duration is required to ascertain them with any confidence: secular variations of motion are generally beyond the resolution of our present methods. In combining error curves, we thus far simplify our computations by taking a mean azimuth for the ellipse long axis: we also assume that there is no correlation between successive surveys — any correlation will, of course, reduce the summated errors. #### 6. RESULTS ## 6.1 The Adama Graben, Northern Network ## 6.1.1 Background The Adama graben is situated near the geographical axis of the Ethiopian rift valley at latitude 8°35'N. It is a 5-km-wide depression forming the eastern margin of the northernmost part of the Gadamsa sector of the Wonji fault belt (WFB) (Mohr and Wood, 1976). The graben is bordered east by the narrow Dalecha horst (Figure 4) and west by the broader zone of faulting comprising the Mojjo-Adama horst, imposed on the Mukie volcanic massif (Mohr, 1973b). The geology is described more fully in a later section. The important town of Nazret (Adama) is situated on the floor of the graben, and residents report having felt minor earthquakes in the past. The geodimeter network here, covering the southern sector of the Adama graben, illustrates some of the problems of network design that have beset the Ethiopian rift work. In 1969, when the initial traverse of the rift valley was instigated, the value of networks in elucidating two-dimensional as opposed to one-dimensional strain fields was underestimated. Nevertheless, the geology and topography of the Adama graben were attractive enough to deviate our attention in 1969 from making a single traverse to constructing a simple network (see Figure 3 in Mohr, 1973a). The geometry of this network, where we established a station on each fault block (Figure 4), was dictated by the distribution of topographic eminences and access tracks. Furthermore, some hills, notably cinder cones, lacked a solid bedrock in which to install station-marker bolts. In 1970, the construction of a track up Gara Boku, to service the new television relay station thereon, enabled us to put a point near the summit ('station BOKU'), which greatly improved the geometry of the Adama graben Figure 4. Tectonic map of the northern network region between Mojjo (some 70 km southeast of Addis Ababa) and the rift-plateau escarpment at Siré. network (see Figure 9 in Mohr, 1973a). The high and exposed nature of this station, however, has already been noted in regard to its detrimental effect on the performance of the geodimeter, buffeting winds causing excessive vibration. In 1971, further improvement in network geometry came from the installation of a station on the summit of Gara Ganti (GANTI), immediately above ELPASO but with visibility to FULCRUM on the same, eastern margin of the graben. The present geometry of the Adama graben network (Figure 5) is still far from ideal, lacking a station southwest of the RIDGE—BOKU line: the measurement of the new line BOKU—WONJI in 1974 helped alleviate this defect, and lines from WONJI to other graben stations will be established in a later survey. Figure 5. The geodimeter links comprising the Adama graben network. It is perhaps not amiss, in view of possible criticism of the Ethiopian geodimeter network designs, to point out that our surveys have been accomplished on slender budgets. We have not had the assistance of helicopters or aircraft, we have had the use of only one four-wheeled-drive vehicle, and "we" has comprised two, occasionally as many as four, personnel for both geodimeter and retroreflector parties. ## 6.1.2 Network adjustment At present, the Adama graben network incorporates eight stations, all of which have at least one auxiliary point additional to the main point. All the main-main lines have been measured, excepting ADAMA-FULCRUM (where huts intervene) and ELPASO-FULCRUM and GEORGE-FARENJI (where hillsides intervene).
From the basic observations listed in Table 6, the Adama graben network was first adjusted by means of the classical technique, in which station RIDGE was chosen as the origin and station FULCRUM as defining the x axis. RIDGE lies on the western rim of the graben, and FULCRUM on the eastern rim (Figure 4). The x axis is thus oriented at about 70^g to the graben faults, or 085^g from true North. Initial attempts to adjust a network of 11 points (seven main plus four auxiliary) were unsuccessful, owing to the inextricable interplay of several sources of error. Therefore, we restarted with a reasonable mimimum of eight points: RIDGE, FULCRUM AUX., ELPASO AUX., FARENJI, GEORGE, and ADAMA, plus the two most precisely determined auxiliary points RIDGE AUX. and ADAMA AUX. [Note: The main points at ELPASO and FULCRUM were found destroyed in 1969 and 1970, respectively, so that ELPASO AUX. and FULCRUM AUX. have become the "main" points in both cases.] Station elevations were obtained from the 1969 triangulation survey of Kazakopoulos (see Mohr, 1974a, Appendix B) and were held fixed in the least-squares adjustment of station coordinates. In the first, eight-point adjustment, mean <u>a posteriori</u> line-length sigmas ranged from ± 2.7 mm (1969 survey) to ± 6.5 mm (1970 survey). However, the 1970 survey lacked observations for several of the network lines, and weakly weighted "observations" from other surveys were perforce introduced to obtain redundancy. The resulting large error curves reflected the poor geometrical configuration at this stage. Throughout the ensuing, station-by-station buildup of the Adama network scheme, ill-fitting observations were identified from a comparison of 0 - C line-length residuals with the ascribed <u>a priori</u> variances. These identifications incidentally led to the discovery of a few errors in transposing and punching of the field data. Further, instances were found of an ill-fitting observation in the adjustment coinciding with abnormal weather conditions, justifying a modification of the GRC applied to the field data. In other instances, instrumentally aberrant measurements could be identified in multisetup observations. This combing process was continued through the adjustment program. <u>A posteriori</u> line-length revisions, and reasons for the revisions, are listed in Table 7; no revisions were made unless an <u>a priori</u> reason could be adduced, despite any compelling need for revision. It quickly became apparent that the Adama graben network was sensitive to strain in the vertical dimension and that the triangulated elevations could be improved.* So, by holding the elevations of RIDGE, FULCRUM AUX., and GEORGE fixed at the observed values, the elevations of the other five points were freed for each of the surveys, and thus averaged best-fit elevations were determined (Table 8). The substitution of these best-fit elevations in the network adjustments greatly improved the <u>a posteriori</u> line-length sigmas for all surveys except that of 1969, where the triangulated values fit well. The mean sigmas now range from ± 1.4 mm (1971) to ± 4.5 mm (1969). The geometry The vertical-angle measurements made in 1969 were not reversed, and therefore an atmospheric refraction coefficient of 0.08 was assumed. Table 8. Best-fit relative elevations (in meters) derived from least-squares adjustments for the Adama graben network (RI-FUA reference frame). | Station | Triangulated elevation | 8-point
network | | 11-point
network | |---------|------------------------|--------------------|-------|---------------------| | RI | 0* | <u> </u> | | , , | | GE | 50.1 | (held fixed) | | | | FUA | -82.3 | (held fixed) | | | | EPA | 10.9 | 7.1 | 5.9 | 6.2 | | FA | -95.6 | -93.2 | -93.2 | -0-93.2 | | AD | -94.1 | - 94.0 | -93.8 | -93.8 | | RIA | 1.4 | 0.6 | 0.6 | 0.6 | | ADA | -94.2 | -94.1 | -93.8 | -93.9 | | В0 | 144.3 | | 141.0 | 142.0 | | GN | 48.5 | _ | 47.4 | 47.6 | | GNA | 49.1 | _ | _ | 48.2 | ^{*} Reference station. of the Adama network is such that strain from ill-fitting elevations shows particularly in the FARENJI—FULCRUM AUX. link. The eight-point network adjustment, incorporating the revised best-fit elevations, shows interesting features. First, a similarity of the 1969 and 1971 station coordinates strongly suggests that the 1970 coordinates, displaced by as much as 30 mm from the others, were more weakly determined than their standard error curves would indicate. The eight-point network evidently does not have sufficient redundancy to overcome the influence of poor observations. Second, for the 1971 and 1974 surveys, despite essentially unchanged line lengths for the excellently observed ELPASO AUX.—FARENJI, ELPASO AUX.—ADAMA, and FARENJI—ADAMA links, changes for the links from these stations to RIDGE and GEORGE have the effect of pulling stations ADAMA and FARENJI (1974) about 20 mm to the northwest. The very high correlation coefficient for this apparent motion again indicates that spurious or exaggerated effects can arise from adjusting too small a network: lacking any buildup of the network, there is need to go beyond the vector diagram and its error curves, to the original observations themselves in interpreting apparent station motions. The addition of station BOKU to the Adama network in 1970, to form a nine-point network, has given a greatly improved geometry. Nevertheless, as already emphasized (Mohr, 1973a, 1974a), BOKU is an exposed hilltop station uncongenial to the geodimeter. Winds of 60 kph or stronger tend to be the rule, and as a result, instrumental nulling is very sluggish; even when the system is set to calibrate, it "hunts" for a unique phase offset. [A diary entry for 7 April 1973 reads "Tremendous dust clouds crossing FULCRUM and MIETCHI... When will we ever learn, that geodimeter on BOKU n.b.g."] Yet the unmatched visibility and BOKU's geometric position in the network have prevailed for its retention as a retroreflector station. Mean a posteriori line-length sigmas in the nine-point adjustment range between ±2.1 mm (1971) and ±6.7 mm (1970). The relative poverty of the 1970 observations is revealed in the fact that, if only the better fitting RIDGE-BOKU observations are put into the adjustment, station coordinates change by as much as 4 mm. The apparent northwest motions of stations ADAMA and FARENJI through 1974, discussed above, are now matched by that of ELPASO AUX. in the RIDGE-FULCRUM AUX. reference frame. Station GANTI was added to the Adama graben network in 1973; it has proved to be an excellent observing station, combining all-round visibility with a stable observing platform for the geodimeter except in unusually high winds. Again, average best-fit elevations were obtained from adjusting the now 10-point network (Table 8). Mean a posteriori line-length sigmas for this network ranged between ± 2.3 mm (1971) and ± 5.9 mm (1970). In the 1974 survey adjustment, sigmas for lines involving station BOKU were appreciably higher than for the other lines: the 1974 survey desires a BOKU elevation about 2 m higher than for the other surveys and is thus strained by the mean BOKU elevation fixed on the basis of all the surveys. In the 10-point adjustment, the error curves for the station coordinates are appreciably reduced from the eight- and nine-point adjustments, owing to the tightening of the geometry. The aberrancy of the 1970 coordinates is also notably reduced, except for stations GEORGE and FULCRUM AUX. Finally, the addition of point GANTI AUX. completes the present 11-point Adama graben network. This point is identical with the Directorate of Overseas Surveys (London) trigonometric point on the summit of Gara Ganti and is well tied to the main point GANTI. After again obtaining and substituting best-fit elevations (Table 8), where a progressive increase in the elevations of BOKU and GANTI of 1.0 ± 0.7 m/yr from 1970 to 1974 is not regarded as real(!), a posteriori sigmas are ± 2.7 mm for 1971 and ± 4.2 mm for 1974: errors for the 1973 and 1974 surveys are appreciably reduced compared with the 10-point analysis. The station-vector analysis of the Adama graben network was made on the basis of an 11-point adjustment for the 1971, 1973, and 1974 surveys (for 1971, the GANTI AUX. observations are those of 1973 deweighted by a factor of 12), a 10-point adjustment for the 1970 survey (the GANTI observations of 1971 were added, deweighted by a factor of 8), and a nine-point adjustment for the 1969 survey (the 1970 BOKU observations were added, deweighted by a factor of 8). The analysis of the Adama graben network was then repeated, using a modified free-net adjustment in which station FULCRUM AUX. was freed from constraint along the x axis. Net rotation for each survey, relative to 1974 as a reference (lacking any astronomical azimuth observations), was removed graphically, although SAO has a computer program for this purpose. A posteriori line-length sigmas are marginally reduced, as expected, compared with the classical analysis: ± 2.7 mm for the 1971 survey and ± 4.1 mm for the 1974 survey. ### 6.1.3 Apparent station vectors Station vectors from the classical solution (Figure 6) and partial free-net solution (Figure 7) are presented for the successive surveys of 1969, 1970, 1971, 1973, and 1974. The data of Figure 7 are reproduced in Figure 8, but with the less satisfactory station coordinates of 1970 and 1973 omitted. Annual scale changes for the Adama graben network are less than 5×10^{-7} , excluding an apparent 1970 scale change of 12×10^{-7} relative to both 1969 and 1971. [Note: In the Wolenchiti quadrilateral, discussed below, the 1970 scale is smaller than that of 1971.] As the vectors and error curves of Figures 6, 7, and 8 indicate, no significant extension nor compression acted perpendicular to the normal faults of the Adama graben during 1969 through 1974. There
has, however, been possible longitudinal motion of stations GANTI and BOKU, dextral with respect to the graben western margin, at rates of 4 and 5 mm/yr, respectively, along the 220^{9} rift azimuth. Although these data conflict with the apparent motion of station ELPASO AUX., situated on the western shoulder of Gara Ganti, in fact the 1969 coordinates of ELPASO AUX. were less well established at the apex of a minimally redundant network. The postulated dextral slip along the eastern margin of the Adama graben does not include the most northerly station on this margin, FULCRUM, which shows a nonsignificant sinistral motion. Although intervening transverse tectonics exist (Figure 4) that could accommodate this discrepancy, there is also the possibility that removal of rotation from the Adama network has hidden a dextral motion of station FULCRUM as well. Improvement of the geometry of the network through incorporation of station WONJI in the southwest is required to resolve this problem. However, dextral slip east of the Adama graben is rendered even more probable by the observation that lines BOKU—ROGGI and BOKU—ROGGI AUX., projecting southeast from the Adama graben network (Figure 2), show a regular extension during the period 1970 to 1974 of 3 \pm 2 mm/yr along an azimuth of 157^{9} . Figure 6. Adama graben network: apparent station vectors for 1969 to 1974, classical solution. Station RIDGE is fixed as the origin, and station FULCRUM is constrained to define the x axis. The error curves mark the 1σ (\sim 45%) confidence envelope. Vectors start from the station in the sequence 1969-1970, 1970-1971, 1971-1973, and 1973-1974. Figure 7. Adama graben network: apparent station vectors for 1969 to 1974, partial free-net solution. Station RIDGE is fixed as the origin. The error curves mark the 10 (~45%) confidence envelope. Figure 8. Adama graben network; Figure 7 modified to include only the three more reliable surveys of 1969, 1971, and 1974. Station vectors proceed from the station with the 1969-1971 vector, except for BOKU and GANTI, where there is only the one vector of 1971-1974. Discussion of the geological significance of the station vectors and linelength changes in the Adama graben and other Ethiopian rift networks is given in Section 8. ### 6.2 The Wolenchiti Quadrilateral, Northern Network ### 6.2.1 Background The Wolenchiti quadrilateral forms the northeastern part of the northern network, at latitude 8°40'N, near the axis of the rift valley. The quadrilateral straddles the Wolenchiti valley, a broad, flat depression bounded by the imposing volcanic massif of Boseti Gudda on the east and by the narrow Dalecha horst that separates the valley from the Adama graben farther to the west (Figure 4). The doubly braced quadrilateral comprises six links, the lengths of which range from 7 to 14 km. The four stations TABLE, MERKO,* AYGU, and RABBIT were installed as single (main) points in 1970 (Mohr, 1973a). Auxiliary points were added in 1973, one at each station, but not all the main—auxiliary lines have yet been measured.† The quadrilateral has been surveyed four times, starting with 1970. The greatest apparent station motions in any part of the Ethiopian rift geodimeter networks have previously been ascribed to the Wolenchiti quadrilateral (Mohr, 1973a, 1974a; Mohr et al., 1975a), so a re-evaluation in the light of the new, 1974 survey is appropriate. ## 6.2.2 Network adjustment Using the classical least-squares adjustment technique on a doubly braced quadrilateral — whereby one station is fixed as the origin, a second is constrained to define the x axis, and all the station z values (elevations) are held fixed — we have an excess of observations over unknowns of 1. This network design is thus the simplest with which redundancy can be obtained. ^{*} Renamed from the too light-hearted MENDENO. [†] Completed in 1976. Correspondingly, it is more susceptible to distortion from any poor or erroneous observations than are more complex polygons, such as the Adama graben or Mirrga networks. No statistically significant biases in line lengths exist between the 1970, 1971, and 1974 surveys, but for the 1973 data, an empirical increment of 29 mm has been applied to all the lines of the Wolenchiti quadrilateral to bring them to the same scale as for the other three surveys. This problem, as well as its instrumental causes, has been discussed by Mohr (1974a, pp. 14-21). Station TABLE, on the eastern side of the valley, has been chosen as: the origin in the adjustments, and station MERKO, on the Western margin of the valley, defines the x axis to which it is constrained. Line TABLE-MERKO has a geographical azimuth of 348^g (Figure 2), fairly close to being perpendicular to the 015 to 025^g trend of the Quaternary faulting of the rift floor. The two long sides of the quadrilateral, MERKO-AYGU and TABLE-RABBIT, run nearly parallel to the regional fault trend. The mutual fit of the observations is expressed in the mean <u>a posteriori</u> line-length sigmas, which are ± 2.5 mm (1970), ± 0.8 mm (1971), ± 3.2 mm (1973), and ± 4.6 mm (1974). These figures are critically influenced by the fixing of the station z values. These were observed by Rolff in 1974 using a T-2 theodolite, but more precise values can be derived by freeing RABBIT - z in making the adjustment. The mean elevation of RABBIT perpendicular to the TABLE-MERKO-AYGU plane is 124.483 ± 0.005 m for the 1970, 1971, and 1973 surveys, while for 1974, the figure is 124.590 m. Since there is no geological reason for believing that station RABBIT rose by 10 cm relative to the other stations during the 1973 to 1974 interval, all four surveys have been adjusted with RABBIT - z = 124.50 m, which introduces a correspondingly greater strain in the 1974 adjustment. For RABBIT - z = 124.59, the 1974 mean <u>a posteriori</u> sigma reduces to ± 2.6 mm: at RABBIT - z = 124.50, the adjustment applies positive corrections to the observed 1974 lengths of the diagonals RABBIT-MERKO and TABLE-AYGU, in a manner that cannot be reconciled with the excellent observations of these lines. ## 6.2.3 Apparent station vectors The apparent station vectors for the Wolenchiti quadrilateral from 1970 to 1974 are shown in Figure 9. Relative to station TABLE, station AYGU shows no significant motion during this period. Station MERKO, constrained nearly perpendicular to the rift fault trend, shows an x-component motion of 3 ± 2 mm/yr away from TABLE, or 3 ± 1 mm/yr if the lower quality 1973 survey data are excluded. The <u>a posteriori</u> sigmas for the TABLE-MERKO line lengths are ± 2.5 mm (1970), ± 0.7 mm (1971), ± 0.7 mm (1973), and ± 4.4 mm (1974), which combine for the intersurvey pairs as follows: | <u>Period</u> | TABLE-MERKO line-length change (mm) | |---------------|-------------------------------------| | 1970–1971 | 4 ± 2.6 | | 1971–1973 | -2 ± 1.0 | | 1973-1974 | 8 ± 4.5 | If the problem-beset 1973 survey is deweighted, the apparent extension of line TABLE-MERKO becomes regular and is significant at the 80% confidence level. Note that the apparent extension of this line can be eliminated if all the 1970 line lengths are scaled up by $\frac{5 \text{ mm}}{\text{mm}}$ (double what is required to match the 1970 and 1971 scales for lines not involving station RABBIT), but this is then detrimental to the otherwise stable position of station AYGU from 1970 to 1974. Previous studies of the Wolenchiti quadrilateral have shown that the greatest apparent motions affect station RABBIT, south of TABLE, on the Boseti Gudda lava apron. Mohr <u>et al</u>. (1975a) obtained vectors of 22 \pm 2 mm at 206^g between 1970 and 1971 and 23 \pm 10 mm at 320^g between 1971 and 1973. The apportioning of weights in the least-squares adjustment does not critically affect these data. More important is the evaluation of the GRC (Section 3.4): if this correction is omitted, then the vectors for RABBIT become 14 \pm 5 mm at Figure 9. Apparent station vectors in the Wolenchiti quadrilateral, 1970 to 1974. Error curves show the 1σ ($\sim 45\%$) confidence envelope. Vectors start from the station in the sequence 1970-1971, 1971-1973, and 1973-1974. 215^g between 1970 and 1971 and 3 \pm 2 mm at 385^g between 1971 and 1973. However, experience with the GRC in other parts of the northern network gives confidence in its general validity, and indeed both <u>a priori</u> and <u>a posteriori</u> sigmas increase, in some instances dramatically, if this correction is omitted. The results of the latest survey are revealed in the apparent station vectors shown in Figure 9. The 1974 station coordinates for RABBIT do not differ significantly from those of 1971, strongly suggesting that those of 1973 are spurious. One of the biggest problems discussed in previous accounts of the Wolenchiti quadrilateral was the violent change in the apparent vector of RABBIT from 1970—1971 to 1971—1973. In now discounting such a change, the lower reliability of the 1973 survey data is further emphasized; even more, it shows that a doubly braced quadrilateral, with its minimal redundancy, can yield overly optimistic error curves. The 1973 error ellipse for RABBIT has axial lengths of 6.5 and 1.7 mm, the long axis oriented close to east—west. If the increment to the observed line-length means for 1973 is altered from the accepted value of 29 mm (Δd_{71-73} = 29 ± 2 mm for the Wolenchiti lines, excluding RABBIT—AYGU and RABBIT—MERKO, one or both of which is suspected to be erroneous in the 1973 survey) to 24 and 34 mm, for example, the resulting station coordinates for RABBIT and MERKO, respectively, become more consistent with the other surveys; but in both cases, the consistency is obtained at the drastic expense of the stability or smoothness of motion of the other two stations (TABLE being held fixed as origin). The 1973 line-length data are not correctable
through a simple increment, and yet, before we condemn them, we recall that RABBIT - z for 1973 precisely matches that for 1970 and 1971, with 1974 being the misfit. Further resurveys and the incorporation of the auxiliary points are required to clarify these problems. Significant motion of station RABBIT apparently occurred only during the interval 1970 to 1971. This immediately raises the question of whether the 1970 data are reliable. The 1970 line lengths for the TABLE-MERKO-AYGU triangle fit excellently with the later surveys, and although the precision of the 1970 Ethiopian rift lines is poorer than that for 1971 (see Section 3; an earlier model of the Mk8 geodimeter was employed in 1970), there seems no reason to dismiss the 1970 RABBIT data. Using the revised station elevations and line lengths, the 1970 to 1971 vector for RABBIT is 19 mm at 209^g, which yields a component of 13-mm extension along the AYGU-RABBIT azimuth. From 1971 to 1974, line AYGU-RABBIT apparently extended at the nonsignificant rate of 1.5 mm/yr. ## 6.3 The South Wolenchiti Valley, Northern Network A traverse of the southern end of the Wolenchiti valley comprises, from west to east, stations FULCRUM, GRAVES, CINDER, and BOHALLA. Although there are links between the first three of these stations and AYGU and RABBIT in the Wolenchiti quadrilateral, they have been observed only once and therefore cannot be used in an analysis for crustal strain accumulation. The traverse is considered in isolation here, noting that it is virtually perpendicular to the faulting of the rift floor (Figures 2 and 4). The FULCRUM-GRAVES link was considered by Mohr (1973a, 1974a) to show no significant line-length changes from 1969 to 1973, suppressing an anomalously 15 ± 6-mm greater length of the three lines of this link in 1970 compared with 1969 and 1971. Despite the unfortunate demise of the main point at FULCRUM and damage to GRAVES AUX., the results of the 1974 survey show conclusively that indeed there were no significant line-length changes in the FULCRUM-GRAVES link from 1969 to 1974. Recomputation of the data for the pre-1974 surveys, incorporating revisions discussed earlier, also largely removes the anomaly in the 1970 line lengths (see Table 6). Therefore, it can be said that the 1970 ground cracking near AYGU was not associated with any long-term strain change in the rift floor 9 km to the south-southwest. The progressive line-length shortening for the GRAVES-CINDER link between 1969 and 1973 (Mohr, 1974a) did not continue into 1974. Indeed, the evidence for this apparent shortening now appears insupportable, given the similarity of the 1971 and 1974 line lengths (the latter are possibly longer than the former), pointing further to the unreliability of the 1973 Ranger measurements, in this case about 2 cm short. Because of the stability of the FULCRUM—GRAVES link, the data for both the FULCRUM—CINDER and the GRAVES—CINDER links intimate the stability of the last-named also from 1969 to 1974, although line-length errors are peculiarly large for this grazing traverse. East of the Gara Bolalo basalt fissure line, which was active during the late Pliocene (Mohr, 1974a) and upon which station CINDER is located, the geodimeter traverse to BOHALLA encounters the Boseti segment of the WFB (Mohr and Wood, 1976). The BOHALLA—CINDER link was previously considered stable (Mohr, 1974a), but the results of the 1974 survey hint at a progressive extension of about 3 mm/yr from 1970 to 1974, or 5 mm/yr from 1971 to 1974 (Table 6). Though yet barely significant statistically, the consistency for the lines BOHALLA—CINDER and BOHALLA—CINDER AUX. (inclusive of the 1973 Ranger observations!) warrants the careful attention of future surveys for it is very similar to the extension rate tentatively determined for the northern sector of the Wolenchiti valley. This would require that the line or zone of extension jumps laterally within the Wonji fault belt. The freshest faulting at the southern end of the Boseti segment of the WFB is traversed by the lines BOHALLA—BORI and BOHALLA—BABOON (Figures 2 and 4; line BORI—BABOON has not yet been measured). As these lines were established only in 1973, it is premature to interpret the apparent shortening of BOHALLA—BABOON by ∿1 cm between 1973 and 1974 as due to sinistral. movement associated with the intervening graben faults. # 6.4 The Sodere Triangle, Northern Network The Sodere triangle comprises stations SODERE, OOLAGA, and QUILL, which form a very flat triangle oriented ESE-WNW perpendicular to the WFB faults, some 10 km south of the CINDER-BOHALLA traverse discussed above. Quaternary basalts have issued from aligned cones and buried fissures immediately north of the triangle, covering some of the WFB faults, but even the youngest lavas have themselves been cut by later faulting. The Sodere area is renowned for its prolific hot springs, fountaining from a very young fault that cuts a rhyolite dome (United Nations, 1973). The Sodere triangle was installed in 1971 and remeasured in 1973 and 1974. We have already shown (Section 4) that the 1973 Ranger observations are mutually inconsistent, from a comparison of the triangle base QUILL—SODERE with the summed changes of lines QUILL—OOLAGA and OOLAGA—SODERE. However, the 1971 and 1974 observations pass this test with flying colors; they reveal a significant component of crustal extension, perpendicular to the WFB, of 6 mm/yr for this 4-km wide zone (Table 6). The greater part of this extension appears to be occurring between OOLAGA and SODERE, rather than between QUILL and OOLAGA, suggesting that it is the Sodere fault itself that is active. Although the Sodere triangle is linked north to the BOHALLA—CINDER traverse and south to stations MIETCHI and SIRI, the only remeasured line is OOLAGA—MIETCHI. This line reveals no significant change in length from 1971 to 1974, implying that if the zone of extension at Sodere continues farther south, it passes east of Gara Mietchi (Figures 2 and 4). The lack of significant length change in line ROGGI—MIETCHI between 1969 and 1974 confirms this. ## 6.5 The Kaletta Valley, Northern Network The west-east geodimeter traverse across the Kaletta valley, at the eastern margin of the rift valley floor, is from station MIETCHI via DUST and TOPLESS to station SELASSIE (Figures 2 and 4). The Kaletta gorge is excavated in 5-m.y.-old welded tuffs (Morbidelli et al., 1975) and declines north-northeast, parallel to the rift margin faults immediately to the east. Station SELASSIE is situated on the top of the first of four large fault blocks, which are stepped up to form the 850-m-high eastern margin of the rift there. The SELASSIE block is capped by late Pliocene basalts (Mohr and Potter, 1976). Between Gara Mietchi and the Kaletta gorge, faults are few and small in throw and have appreciably denuded scarps. Stations DUST and TOPLESS are located on the rim of the biggest of these east-facing scarps. The Kaletta valley was once about 4 km wide and merely entrenched with meanders a few tens of meters deep, but an intervening episode of uplift resulted in the present dramatic and continuing entrenchment. Gara Mietchi is composed of rhyolite domes that have been intensely altered by hydrothermal activity along faults projecting south from the Sodere region, but without signs of any late Quaternary movements. Stations MIETCHI and SELASSIE are about 13 km apart; DUST and TOPLESS form a closely spaced, south—north pair some 8 km west of SELASSIE and a little south of the MIETCHI—SELASSIE link. The 1973 observations (Table 6) were too short, not by the general 24-mm value applied to the geodimeter measurements in the northern network, but by about 34 mm. Unfortunately, the Kaletta valley lines have not been measured in all the surveys, and the expected stability of line DUST—TOPLESS, parallel to the faulting, rests on an acceptance of this revision to the 1973 observations. Then, lines MIETCHI—DUST and MIETCHI—TOPLESS differ surprisingly in showing no significant change in the former case, but an increment of 14 mm in the latter during the period 1969 to 1974. Accepting the revised 1973 values, the apparent extension of line MIETCHI—TOPLESS occurred during the 1973 to 1974 interval. Lines SELASSIE—DUST and SELASSIE—TOPLESS offer a clue to understanding this disparity. SELASSIE—TOPLESS apparently <u>shortened</u> by 9 mm from 1969 to 1974, and the uncertainties in this observation and that of MIETCHI—TOPLESS are such that both could be explained by an eastward movement of point TOPLESS by ~1 cm. Whether this could be local ground movement or tectonic displacement cannot be ascertained from the existing data, but the former is not unfeasible, given that the TOPLESS bolt is installed in the travertine pavement on Gara Talicha. The interpretation of apparent TOPLESS motion is not so simple, however. Lines SELASSIE—DUST and SELASSIE—DUST AUX. show a consistent and clearly significant extension perpendicular to the regional faulting of 4.5 mm/yr during the period 1969 to 1974. Even if it were local ground movement that shifted TOPLESS eastward, line SELASSIE—TOPLESS should still show an extension of 8 (22 - 14) mm over the 1969 to 1974 interval, instead of the observed 9-mm shortening. If likely tectonic extension has occurred between stations SELASSIE and DUST, it must be amazingly localized not to have affected line SELASSIE—TOPLESS (Figure 2) or, indirectly, line DUST—TOPLESS. In spite of these severe limitations, it can still be proposed that the Sodere zone of crustal extension transposes left into the Kaletta gorge region. ## 6.6 The Adama-Mojjo Traverse, Northern Network Geodimeter links connecting Adama west with Mojjo traverse the Gadamsa segment of the WFB (Figures 2 and 4). It is a region of faulting and uplift superimposed on the southern shoulder of Gara Mukie, a denuded Pliocene volcanic center that erupted the silicic tuffs now forming the bedrock of
the region. The traverse proceeds west-northwest from station GEORGE, via MARIAM on an obsidian dome immediately south of the village of Tedi, to RAILWAY, east of Mojjo. Six to seven major faults are crossed between GEORGE and MARIAM, all except one being upthrown west. West of MARIAM, only a few small denuded fault scarps are crossed until reaching the basalt fissure line on which RAILWAY is located. The GEORGE-MARIAM and MARIAM-RAILWAY links are essentially perpendicular to the rift-floor faulting. Link GEORGE—MARIAM comprises the four lines GEORGE—MARIAM, GEORGE—MARIAM AUX., GEORGE AUX.—MARIAM, and GEORGE AUX.—MARIAM AUX. All four were measured in 1969, 1973, and 1974, and two of them in 1971. The 1969 observations were unfortunately subject to large uncertainties (the 7-km distance is near the limit of operation of a Mk6 geodimeter), but there remains a consistent suggestion of a progressive extension for link GEORGE—MARIAM between 1969 and 1974 (Table 6). The total extension is 19 ± 3 mm, or a mean rate of 4 mm/yr. Link MARIAM RAILWAY is composed of the two lines MARIAM—RAILWAY and MARIAM AUX.—RAILWAY. The 1969 observations of these lines, were subject to peculiarly large errors, perhaps due to unequal illumination of multiprism reflectors on this steep line path. Although there is a hint of a slight extension of the MARIAM—RAILWAY link, it is not statistically significant (Table 6). The reduction of the Koka network, comprising stations PYLON, WONJI, KOKA, GALILA, THORNS, and YELLEM and well tied to the main northern network, is not given here, as no significant line-length changes are evident, at least for the interval 1971 to 1974. The network is situated immediately north of Gadamsa caldera (Thrall, 1975), straddling a sector of the WFB where the faulting is strongly and freshly developed (Figures 2 and 4). However, the progressive annual extension detected farther north at the GEORGE—MARIAM link is not found at Koka, indicating that extensional activity either is longitudinally limited or else is concentrated at the western fringe of the WFB. The Koka network does not cross the Koka Dam fault itself, which passes immediately west of the network. # 6.7 The Central (Mirrga) Network ## 6.7.1 Background A detailed account of the Mirrga network, its establishment, remeasurements, geology, and analysis has been given by Mohr et al. (1975b). The salient points are presented here, together with a modified interpretation of the apparent station vectors. The Mirrga network comprises a polyhedral net at the southern end of Hora Mirrga (Lake Langano), connected along the length of the lake with two lines traversing a circular collapse structure at the northern end of Hora Mirrga (Figure 3). The southern polyhedron was begun with four stations in 1970: HOTEL, TERMITE, GALLA, and EUPHORBIA. All six interconnecting lines were measured, plus the lines to an auxiliary point 28 m east of the main point EUPHORBIA. The geometry of the network conformed to an expectation of crustal extension perpendicular to the prominent rift faulting of this region (Figure 10), but was severely constrained by station intervisibility requirements on the flat floor of the rift. In 1971, two more stations, LANGANA and ARJO, were added south of the 1970 net. All interconnecting lines were measured except for GALLA—LANGANA, where acacia tress intervened. In 1973, auxiliary points were added at LANGANA AUX. and ARJO AUX., and by the end of the 1974 survey, these were connected to all other station main points (except for HOTEL and TERMITE) but not to EUPHORBIA AUX. nor to each other.* At EUPHORBIA, a second auxiliary point, EUPHORBIA AUX. B, was added close to the main point because of suspected corrosion of the latter. The southern Mirrga polygon was thoroughly remeasured in 1974, with multiple setups of the instrumentation for most of the lines (Figure 11). Two new stations, SHALA and HARORESA, were added west from ARJO, along the northern rim of O'a (Shala) caldera. At the northern end of Hora Mirrga, a single line was installed across 0'itu Bay in 1970, between stations 0'ITU and ALUTU. In 1971, a second station, 00MAY, was established on the Basuma Peninsula (Figure 12), but it lacks intervisibility with ALUTU. To set up a network here requires the use of a boat to put new stations on the Laki Peninsula. Also in 1974, the southern Mirrga polyhedron was connected from GALLA and EUPHORBIA, the length of the lake to 00MAY. #### 6.7.2 Network adjustment There is no significant scale difference among the 1970, 1971, and 1974 surveys, but the 1973 geodimeter survey is aberrant in showing line lengths to average 15.6 ± 8 mm shorter than for the 1971 survey and 18 ± 13 mm shorter than for the 1974 survey. In discussing the nature of the 1973 deviancy, Mohr (1974a) concluded that the application of a 14-mm correction to the 1973 observations was the best solution to a nigh-intractable problem. As mentioned in Section 4, however, further investigation has revealed the possible influence ^{*} Interconnections were completed in 1976. Figure 10. Southern Mirrga fault map and geodimeter stations. Figure 11. The geodimeter links comprising the southern Mirrga network. Figure 12. O'itu Bay fault map and geodimeter stations. of ambient temperature in effecting the 1973 bias. Two sets of 1973 data were therefore used in the initial adjustments: 1973I, where the final line-length means are incremented by 14 mm, and 1973II, where the final lengths are subject to the empirically derived increment of (62 - 1.85T) mm, where T is the recorded air temperature (°C) at the geodimeter. The 1973II values give slightly superior fits in the adjustment of the Mirrga polygon, as well as a more regular progression of apparent line-length changes with time, and have been used in the analysis that follows. The mean precision of the Mirrga line lengths, obtained from multiple-setup observations, is ± 5.8 mm, being worst for 1973 (± 6.9 mm) and best for 1974 (± 4.6 mm). For 1974, this mean precision is an improvement over ± 6.1 mm before application of the GRC. Adjustment of the southern Mirrga polyhedron has exposed line-length observations that fit poorly with the bulk of the observations. Rescrutiny of these observations and of field notes has in some instances justified a revision of certain line lengths, listed in Mohr et al. (1975b, Table 3). It must once again be emphasized that no revision has been applied where independent support for such a revision is lacking, however pressing the need of the least-squares adjustment. A large proportion of the line-length revisions concerns point ARJO AUX., on an apex of the polyhedron and weakly linked to the rest of the network. The first analyses of the southern Mirrga polyhedron employed station EUPHORBIA as the origin and TERMITE on the x axis to which it was constrained. The choice of this EUTE coordinate system was guided by an expectation of crustal extension perpendicular to the faulting (Figure 10). Three adjustment schemes were investigated: 1) the main—auxiliary pairs at EUPHORBIA, LANGANA, and ARJO were allowed to adjust with virtual independence within each pair; 2) the main—auxiliary distances were fixed at their 1974 taped values, but the azimuths remained virtually free; and 3) both distances and azimuths were held fixed, the latter extracted from best fits in scheme 2 [azimuth and declination observations were made during the 1976 survey]. The results of adjustments in this EUTE coordinate system showed that, compared with a completely relaxed relationship within each of the main—auxiliary pairs, fixing the main—auxiliary distance improved the adjustment (expressed in the dimensionless sigma and in the <u>a posteriori</u> line-length sigmas), but that the additional fixing of the main—auxiliary azimuths tended to degrade the adjustment again (see Mohr <u>et al.</u>, 1975b, for details). We have here an interplay between an increase in the number of "observations," and thus the degrees of freedom, which leads to a smaller sigma other conditions remaining equal, and a misfit resulting from inclusion of these merely estimated azimuth "observations." There is, of course, the real possibility of relative motion between a main and an auxiliary point, especially when the fierce solar insolation during the Ethiopian day is considered, but the installation of the steel-bolt markers in solid bedrock renders motion over such short distances unlikely.* With the realization from the results of the EUTE system analysis, verified from further investigations using free-net adjustments, that apparent station motions in the southern Mirrga region had components along the direction of the rift faulting, the coordinate system was changed to check this out. Station TERMITE was chosen as the origin, and HOTEL, situated 1 km farther north along the shared rim of the West Langano fault, was used to define a y axis almost coincident with the EUTE system y axis. A disadvantage of this TEHO system reference frame is the short length of line TERMITE-HOTEL itself. Not only will inaccuracies in the measurement of this line proportionately affect the network solutions for the other stations, but any actual motion of HOTEL perpendicular to the y axis will cause a marked apparent rotation of the other stations. Until additional stations are established on the same fault rim as for TERMITE and HOTEL, or line TERMITE-HOTEL is given an astronomical azimuth, we are left with the arbitrary removal of any net rotational vector of the Mirrga polyhedron about the origin at TERMITE. That removal was not completed by Mohr et al. (1975b) and results in the modified strain-field interpretation given below. ^{*} This unlikelihood is confirmed from 1976 survey observations. ### 6.7.3 Apparent station vectors Apparent station vectors are presented here for the EUTE, free-net, and TEHO reference frames (see Figures 13, 14, and 15).
The motion of station HOTEL, previously considered to mark a gradual outward tilting of the rim of the West Langano fault eastward (Mohr, 1973a, 1974a), is now seen to be part of an equidimensional contraction of the HOTEL-TERMITE—GALLA triangle (Figures 13 and 14). The apparent rate of shrinkage of the triangle averages 3 mm/yr at the apices, or a strain rate of $10^{-5.2}$ /yr for this area. The revised TEHO system vectors (Figure 15) make the concept of progressive dextral shear along the West Langano fault less attractive (cf. Mohr et al., 1975b). The mean south-southwest component of motion of stations GALLA, LANGANA, and ARJO relative to TERMITE and HOTEL is revised from 4 ± 1 to 7 ± 5 mm/yr, clearly much closer to the limits of significance. Indeed, station EUPHORBIA is now seen not to be participating in such dextral motion relative to the West Langano fault, and the apparent motion of GALLA may be restricted to the shrinkage mentioned above. We are therefore left with a westerly motion of station LANGANA at 8 mm/yr, perpendicular to the rift faults and best expressed independently of the HOTEL—TERMITE—GALLA triangle shrinkage in the free-net analysis (Figure 14), and with a southeast motion of station ARJO at a mean rate of 11 mm/yr, again for the interval 1971 to 1974, although the ARJO error curve suggests that only the southerly directed component of this motion may be significant. At the northern end of Hora Mirrga, the two lines O'ITU-ALUTU and O'ITU-OOMAY traverse O'itu Bay and the East Basuma fault (Figure 12) at azimuths of 082 and 062^g , respectively, oblique to the 020^g trend of the Wonji fault belt in this region. The geodimeter data show a regular annual lengthening of line O'ITU-ALUTU, at a rate of 5 ± 2 mm/yr from 1970 to 1974. Ignoring what may be a spurious 1973 observation, line O'ITU-OOMAY shows a lengthening of 3 mm/yr during the period 1971 to 1974. Figure 13. Southern Mirrga: apparent station vectors (directed <u>into</u> the stations), EUTE reference frame. The vectors are successively for the periods 1970-1971, 1971-1973, and 1973-1974 (only the last two at stations LANGANA and ARJO and the last one for LANGANO AUX. and ARJO AUX.). Figure 14. Southern Mirrga: apparent station vectors (directed into the stations), free-net reference frame. The error curves are double the size used elsewhere in this report and represent the 2σ ($\sim 85\%$) confidence envelope. Time intervals are the same as for Figure 13. Figure 15. Southern Mirrga: apparent station vectors (directed out from the stations), TEHO reference frame. The error curves show the 1σ (\sim 45%) confidence envelope. Time intervals are the same as for Figure 13. ### 6.8 The Eastern Afar Networks During Project TIKDEM, two simple nets were established in eastern Afar, traversing the Dobi and Guma gräben (Figure 16). In both instances, the nets are singly braced quadrilaterals (the second brace has no line of sight), providing an undue gap between the ideal and the possible configuration; it was the best that could be done with the equipment and time available. It is hoped that we can remeasure and expand the Afar networks in the not too distant future. The Dobi and Guma gräben are situated amidst the tectonic complexities of eastern Afar, but it can be remarked that the regional northwest-southeast alignment of the Dobi graben is offset 30 km west from the northwest-projected axis of the actively spreading Asal graben in T.F.A.I. (Centre d'Etudes Geologiques et de Developpement, 1974; Needham et al., 1976). The Dobi and Guma gräben both show very sharply preserved fault scarps along their margins, and some reactivation may have occurred in association with the large 1969 Sardo earthquakes, centered 25 km west of central Dobi (Dakin et al., 1971; Gouin, 1975). Gulf of Tajura earthquakes have been reported to be felt in the Dobi-Guma area. Although the graben faults are essentially normal in character, Mohr (1971a), in analyzing the fracture pattern of the Dobi graben, concluded that it implied a minor component of sinistral longitudinal shear, afterwards borne out by the observed fault-plane slips in the Sardo earthquakes (Dakin et al., 1971). Despite the limitations of our network geometry, the resolution of the proportion of longitudinal and extensional components in future ground motions should be feasible. Figure 16. The Dobi and Guma graben geodimeter networks, shown on a structural base map from Mohr (1971a, Figure 3). #### 7. GEOLOGY ## 7.1 Geology of the Northern Network Region ### 7.1.1 General discussion The Geological Survey of Ethiopia is currently preparing a 1:250,000 geological sheet map of the Nazareth (Adama) sector of the rift valley. Until this official sheet is complete, there remains much redundant terminology in the stratigraphic and tectonic ascriptions of different authors recently writing on rift geology. Here we shall concentrate on the structures and rock units themselves, briefly noting the multiplicity of terminology. Although volcanism on the plateau began between 28 and 22 m.y. ago, both east of the present rift valley (Morbidelli et al., 1975; Kunz et al., 1975) and to the west (Zanettin et al., 1974; Jones and Rex, 1974; McDougall et al., 1975), the oldest rocks found exposed inside the rift margins in the Adama region are welded ash-flow tuffs dated at around 5.3 m.y. (Mohr, 1974a; Morbidelli et al., 1975). Such rocks are exposed, for example, at the lowest level in the Kaletta valley along the eastern side of the rift floor, and on the southern slopes of Mt. Mukie, between Mojjo and Adama. These rocks would be ascribed to the Balchi Series of Justin-Visentin et al. (1974), the Nazareth or Pre-Wonji Series of Pilger and Rösler (1974), and the Twit Series of Mohr (Mohr and Gouin, 1967). The Mukie ash-flow tuffs extend east at least as far as the Wolenchiti region; the subsequent development of the Wolenchiti basin and Boseti Gudda volcano has hidden the easterly limit of their extent. The source of the old ash-flow tuffs in the Kaletta and Awash (Sodere) valleys is not known but probably was on the present plateau rim, most likely from an early, pre-rift eruptive phase of Chilalo volcano. Silicic centers initiated later than Mukie were active in many parts of the present rift floor, prior to the faulting of the Wonji fault belt. The WFB was formed, according to Pilger and Rösler, between 1.8 and 1.6 m.y. during the "Nazareth taphrogenetic phase." These silicic centers include the Gadamsa and Boku calderas (Thrall, 1975), the Bishotfu caldera (Dakin, 1977), and perhaps the now partly buried caldera on Boseti Gudda (Brotzu et al., 1974), all on the rift floor. Although no radiometric ages are yet available, an age range of 5 to 2 m.y. is presumed. The Chilalo and Badda centers continued to be active on the eastern margin of the proto-rift throughout this time (Kunz et al., 1975; Mohr and Potter, 1976), erupting both basalt and trachyte in company with Wachacha and Yerer trachytes on the western margin (Miller and Mohr, 1966; Morton and Rex, 1975). Thus, before the rift valley graben had been formed, there was widespread silicic volcanism across the entire region, between latitudes 7° and 9°N, during the late Pliocene-early Pleistocene. Restricted basaltic volcanism during this time formed, for example, small lava fields immediately southwest of Adama and in the Bofa region. These "Welenkiti basalts" of Pilger and Rösler (1974) are ascribed by these authors to the post-WFB Wonji Series, but a single radiometric analysis has given an age of 3.5 ± 0.9 m.y. (Mohr, 1974a). The basalts are certainly cut by the youngest WFB faults. The margin faults of the rift valley at Sire, on the eastern side of the rift, must have formed later than 1.9 m.y. ago according to radiometric ages of the faulted volcanics (Morbidelli et al., 1975). Although this may date only the final episode of the awesome rift-margin faulting, nevertheless it indicates contemporaneity with the initiation of the WFB (Pilger and Rösler, 1974; Barberi et al., 1975). After the formation of the WFB, volcanism continued but with a strong tendency to localization upon the fault belt itself. Both flood alkali basalt-mugearite and trachyte-pantellerite lavas (Brotzu et al., 1974) have been erupted since 1.6 m.y. on the southern terminus of the Boseti segment of the WFB and on the Gadamsa segment south of Gadamsa caldera (Di Paola, 1973; Mohr and Wood, 1976). Clastic lacustrine sediments with accumulations in excess of 50 m (the maximum exposed) were deposited in tectonic troughs to the east and west of the fault-sliced southern shoulder of Mt. Mukie, and more thinly on the shoulder itself. The precise age of these <code>?Pliocene—Quaternary</code> sediments is not well known (Taieb, 1974), but must be essentially older than the youngest, weakly welded ash-flow tuffs and basalts-mugearites and yet, in part at least, younger than the WFB whose faults they blanket. Faults that cut Holocene sediments are distinctly rare, even along the WFB axis, where such displacements are seldom in excess of a meter. The faulting of the rift floor is therefore revealed to have been episodic: whether this is the result of episodic short-term or of continuous long-term strain accumulation is not yet known. ## 7.1.2 The Wolenchiti valley The Wolenchiti quadrilateral covers a near-planar valley, termed here the Wolenchiti valley or basin. The valley is bounded by the Boseti volcanic massif to the east and the Dalecha horst to the west, which in turn forms the eastern boundary of the Adama graben (Figure 4). It is a NNE—SSW elongated, saucer-shaped depression of internal surface drainage. Wolenchiti town lies on the northeastern rim of the basin, whence there is a rapid topographic decline northeastward down into the Tabo valley, presaging approach to the Afar depression. On the eastern side of the Wolenchiti basin, the volcanoes of
Boseti Gudda and Boseti Baricha rise to about 1000 m above plains level. Baricha is situated 7 km north-northeast of Gudda, and both are located on a major, north-northeast-trending line of fracturing that obliquely traverses the rift floor (Brotzu et al., 1974; Mohr, 1974b). Brotzu et al. recognize two episodes in the evolution of the volcanic complex: an earlier, stratovolcanic cone with a 4-km-diameter summit caldera has had superimposed on its eastern flank a pile of younger lavas and subordinate pyroclastic rocks. In each episode, there has been a petrochemical evolution from less to more silicic pantellerites with time (see also Dakin and Gibson, 1971). Brotzu et al. (1974) consider that the first episode was associated with a northeast-trending tectonism and the second, with a north-northeast trending tectonism, although they do not exclude contemporaneous interplay at Boseti Baricha. The same authors obtained a K-Ar age from a near-summit lava on Boseti Gudda of 1.6 \pm 0.3 m.y., suggesting the upper time limit to the second volcanotectonic episode. Associated with the earlier episode of Boseti silicic volcanism is the appearance of the Jinjimma cone, on the outer northern slopes of the caldera. Alkali basalts of transitional affinity (Brotzu et al., 1974) built up this cone and issued forth as a thick, 1-km-long flow reaching to the edge of the present site of Wolenchiti town. Geodimeter station TABLE is situated on this flow. Jinjimma cone, like the earlier Boseti massif in general, has been sliced by the north-northeast faulting associated with the later volcanic episode. The largest fault cutting the cone is upthrown east by more than 100 m on topographic evidence alone, and the exhumation of the cone on the eastern side of the fault proves at least a further 100-m burial of Jinjimma by the sediments of the Wolenchiti basin (Figure 17). The minimum total throw is therefore 200 m. The youngest volcanism of the Boseti chain postdates the main north-northeast fault episode(s): dark mugearites issued from vents on the saddle between Gudda and Baricha and flowed north around both the eastern and western flanks of Baricha. Similar lavas erupted from fissures in the Tabo valley, north of Boseti Baricha; these lavas are cut by some very fresh faults, and there are native traditions of earthquakes felt here during the last 50 yr. On the western side of the Wolenchiti basin, the Dalecha horst is irregularly developed along its length (Figure 18). The throw of the east-bounding fault varies from a few to about 100 m; where the throw is greatest, a lip or apex is superimposed on the horst rim (Mohr, 1973b). The horst is composed of welded rhyolitic ash-flow tuffs, although in the vicinity of geodimeter station MERKO, they include darker, possibly hybrid rocks that may be intrusive into the tuffs. The welded tuffs comprising the Dalecha horst, and forming the exposed bedrock of the entire Adama region, probably emanated from the Mukie center 15 km due north of Adama. Pilger and Rösler (1974) and Meyer et al. (1975) ascribe these rocks to their Nazareth Series, for which they estimate an age range of 5 to 2 m.y. Figure 17. Structural map of the Wolenchiti region. Figure 18. Structural map of the Adama graben region. The Dalecha horst and Adama graben are situated where the WFB is offset east from the northern termination of the Gadamsa segment into the Boseti segment of that belt (Mohr and Wood, 1976). The offset can be approximately located at the southern end of the Wolenchiti basin, where a low basaltic shield extends east-southeast from near Adama to Bofa (Figure 4; Pilger and Rösler, 1974). The faulting of the Boseti sector of the WFB is complex and includes parallel or subparallel fault units within the belt. Thus, south of Boseti Gudda, two units of faulting 4 km apart trend 025^g via Bofa and the Ghilli plains of the Hera region (Figure 4). But north of Boseti Gudda, an intensely faulted unit, within which geodimeter station TCHEESA is situated, trends 010 to 020^g along the western side of the main Boseti volcanic axis: a map of this faulting is presented in Figure 17. The Tcheesa fault unit, as it can conveniently be termed, runs along the margin between the Mukie volcanic massif to the west and the Tabo valley to the east. The fault density may reach 10/km. Prominent features are a 500- to 1000-m-wide graben along the western side of the unit crossed obliquely by two lozenge-shaped horsts in the north. The horsts are composed of massive flood basalts that remain horizontal; but elsewhere, and particularly along the eastern side of the graben, the faulted blocks are tilted down east. The horsts intersect a zone of very intense slicing, which is offset dextrally at the horsts in possible association with a subset of north-northwest faulting (Figure 17). The detailed stress field that caused this fault pattern has not yet been elucidated. The faulting produced a drastic change in the drainage pattern, but in its turn has now had its scarps appreciably denuded and partially buried by sedimentation. However, some of the faults have evidently been renewed in post-sediment times and even postdate superimposed obsidian-crusted welded-tuff domes, as at Gara Chisa (Tcheesa). The Wolenchiti basin itself is remarkably free from visible fault displacements. Solid-rock exposures in the basin are restricted to the drainage gullies around the fringes of the basin, notably on the western side below the Dalecha horst. There moderately sorted, indurated silts and sands are observed to dip east toward the axis of the basin at 15 to 20^g. This is much steeper than the surface slope of the valley, indicating subsidence of the Wolenchiti basin at some time(s) during the general sedimentation episode. Near geodimeter station MERKO, the tilted silts become strongly bedded and contain layers of coarser, gravelly material and large angular blocks of basalt of possible but unidentified maar origin. The age of the sediments is not yet known but may lie in the 300,000- to 200,000-yr interval (see Gassé, 1975). In the southeastern part of the Wolenchiti basin, thick pumiceous deposits appear to have been derived from Boseti Gudda, carried by the prevailing northeasterly winds. The Wolenchiti basin is subject to episodic local ground cracking and subsidence, to the extent that the Chemin de Fer has sought to reroute the Adama-Metahara sector of the line out of the basin. The penultimate 1970 episode occurred about 3 km southeast of geodimeter station AYGU, precisely on a north-northeast projection of a minor horst on the basin ... floor, 2 km to the south-southwest. The cracks invariably appear near the end of the rainy season (August). They tend to be precisely linear and may exceed 100 m in length. The majority trend north-northeast, parallel to the rift-floor faults, but a second set of cracks may be developed near-perpendicular to these. No large (>1 cm) horizontal displacements are observed across or along the cracks, but vertical subsidence of as much as several meters suggests subsidence into underground drainage tunnels. Gouin and Mohr (1967) consider that any such tunnels are ephemeral — otherwise, subsidence would continue to occur with each successive rainy season — and that their excavation . must follow upon tectonic movement (see also Gouin, 1971). However, Prof. J. R. Underwood (written communication, 1974) states that he has observed polygonal fracture systems in playas of western Texas, where lowering of the water table due to continued drought causes drying and shrinkage at depth. Within a day of severe rain, these Texan fractures develop into fissures along lines of water-seepage erosion. The polygonal pattern is modified near graben margins, to become linear and parallel to the bounding faults. Microseismic and geodetic measurements offer the best means of resolving the problem of whether the Wolenchiti ground cracks are due to dessication alone or whether they have tectonic precursors. Nevertheless, it has to be admitted that the tectonic hypothesis is not favored by the stability of geodimeter station AYGU (Section 6.2.3), situated only 2 km from the 1970 ground cracks. In summary, the geological evolution of the Wolenchiti region proceeded as follows: the eruption of the Balchi/Nazareth rhyolitic welded tuffs from the Mt. Mukie center began about 6 m.y. ago. These rocks now form the basement of the Adama graben, including the Dalecha horst. Early faulting of the rift floor was then accompanied by effusion of flood basalts, comprising the older Wonji Series of Pilger and Rösler (1974) and exposed, for example, in the Bofa region and on the western margin of the Tabo valley. The first stage in the ensuing buildup of Boseti Gudda volcano was terminated by caldera subsidence; it is likely that the buildup of Boseti Baricha started with the second stage of volcanism at Boseti Gudda. Near the time of termination of this silicic volcanism, about 1.6 m.y. ago, there was intense normal faulting along the en-echelon sectors of the Wonji fault belt, including the Boseti volcanic line. Very fluid mugearites have been erupted since the major faulting episode, from the Boseti saddle whence they ran down into the Tabo valley, but the youngest faults displace even these mugearites. The Wolenchiti valley may have originated as a moat due to crustal loading from the growth of Boseti Gudda, since which time it has undergone progressive subsidence and sedimentary infill, possibly in response to . on-going extensional tectonism transferred to this new line of crustal weakness. ### 7.1.3 The Adama graben The stratigraphy of the Adama graben is best elucidated from exposures made in new road cuttings between Tedi and Adama. There is a triparite sequence: - 3. Weakly welded tuff, thicker and more crystal-rich in east. 2 to 4 m. - 2. Massive pumiceous sediments with occasional well-bedded horizons and paleosols. 10 to 20 m
(thickening east, but also thickens to 50 m west beyond Tedi). 1. Strongly welded tuff. 40 m +, base not exposed. Although units 2 and 3 have been eroded off the horsts and higher blocks, all three are presumed to lie beneath the Adama graben. The succession within the graben is complicated by feldspar-phyric basalts that issued from vents on the subsequent western margin of the graben. The basaltic eruptions commenced near the termination of sedimentation of unit 2, but they appear to have continued after deposition of welded-tuff unit 3 to yield a maximum thickness exceeding 50 m. All the volcanic units of the Adama graben predate the faulting that has formed the present topography. Although earlier fault episodes are not yet proved, the distribution of basaltic vents shows that the present fault scarps follow earlier lines of structural weakness. The pre-WFB drainage pattern of the Adama region has been obscured by the subsequent lacustrine sedimentation within the graben and basins, but an ancient meander is preserved on the upfaulted Koka block, some 2 km northeast of Koka Dam. Holocene faulting is not in evidence to the extent found north of Wolenchiti, for example, but the on-going denudation and sedimentation of the Awash drainage system will have rapidly obliterated evidence of such faulting in most of the region. The Adama graben is about 5 km wide and at least 30 km long (Figure 18). It extends from the Awash river plains in the south to the eastern slopes of Mt. Mukie in the north. The graben is perched on the eastern margin of the Gadamsa WFB segment; this segment passes north along an upfaulted zone of the rift floor, via the Mojjo-Adama horst of Mohr (1973b), to the extinct and denuded volcanic center of Mt. Mukie. The western boundary fault of the graben throws 100 to 150 m up to the west; the visible displacement of the eastern boundary fault is about 25 m in the south, increasing to 50 to 70 m in the north, where the narrow Dalecha horst separates the graben from the lower lying Wolenchiti basin. The western boundary of the Adama graben is formed by what is probably the most important and persistent line of faulting in the Gadamsa WFB segment. The line extends from the western rim of Gadamsa caldera, north across the Awash valley, where the river has breached the fault scarp in a deep gorge, and along the western side of the graben to Mt. Mukie. There is a change in the direction of throw at the southern end of the graben: upthrow is to the east in the Awash valley and farther south, and to the west in the north of the graben. The transition is effected via a very interesting fault pattern (Figure 18). This pattern cannot be termed en echelon, because the main fault line, though broken, is not laterally displaced at the transition sector. Instead, the direction of throw is changed between collinear fault termini that have each curved and switched, in this instance to the left, producing a local right offset. In addition, a superimposed horst has been built on the inner, upthrown block of each of the curved termini: geodimeter stations GEORGE and RIDGE are situated, respectively, on the northern and southern terminal horsts. The eastern boundary fault zone of the Adama graben terminates south in the Awash valley, near the western rim of the old Boku caldera. The fault displacements are relatively small in the south, but larger along the margin of the Wolenchiti basin owing to the intervention of the Dalecha horst between the basin and the Adama graben. However, the Dalecha horst has been obliterated by erosion along the northern half of the Wolenchiti basin, and drainage is now able to escape east from the graben into the basin. Farther north still, the horst is resumed at station MERKO and beyond. Some of the smaller scale features of the Adama graben fault zones may be briefly noted. Upwarping of the upthrown side of the largest faults is a general phenomenon, except where a closely parallel fault develops a horst. What can be termed splay or hook faults on the upthrown block are a common feature (Figure 18): their development suggests that the direction of maximum extension (least horizontal compressive stress) was not quite perpendicular to the trend of the major faults; the obliquity has been such as to produce a small component of dextral shear along some larger faults. Dextral displacement is displayed in an intrusive basaltic ring on Gara Boku and the eastern boundary fault of the Adama graben, as well as in a sliced basalt cone farther south in Gadamsa caldera (Di Paola, 1973). Another characteristic feature of the larger faults of the Adama region, noted by Mohr (1973b), is the occurrence of a narrow horst on the rim of the upthrown block: these narrow horsts are typically about 100 m wide. We are not aware of any satisfactory explanation for their existence. The floor of the Adama graben is cut by some small but persistent faults, of which the two most important carry geodimeter stations ADAMA and FARENJI on their upthrown, eastern sides. Preserved throws are between 2 and 10 m. The Farenji fault changes its direction of throw farther south toward the Awash river. ## 7.2 Geology of the Central Network Region Reconnaissance observations on the faulting and volcanic stratigraphy of the Mirrga-O'a (Langano-Shala) region have been published by Mohr (1966) and Lloyd (United Nations, 1973), and both these authors have since made more detailed studies with reference to faulting and to geothermal areas, respectively. Hora Mirrga is situated in the central sector of the main Ethiopian rift valley, immediately north of parallel 7°30'N. The lake lies against the foot of the eastern boundary escarpment of the rift. However, as the Wonji fault belt and its associated volcanoes also run close to the eastern escarpment at this latitude, the Hora Mirrga region straddles the zone of most recent tectonism. The stratigraphy of the Mirrga region is complex, owing to the interdigitation of ash-flow tuffs and lavas from several major volcanic centers both on the rift floor and on the present rim of the eastern plateau. These centers were active during the late Pliocene early Pleistocene, at which time the relief between rift and plateau was much more subdued than now; minor activity on the rift volcanoes continued into the Holocene (United Nations, 1973). The greater part of the Mirrga region comes under the influence of the O'a (Shala) caldera: the stratigraphy of O'a is currently being studied in some detail by R. Raynolds and Mohr, but owing to deep burial by rift sediments, only the uppermost units are exposed by the young faults at Hora Mirrga. A severely welded lower ash-flow unit, in many places crusted with obsidian, is overlain by a weakly welded unit that forms the exposed bedrock west and south of Hora Mirrga. At the northern end of Hora Mirrga, at O'itu Bay, ash-flow tuffs grading up into trachytes may have been derived from plateau centers or from an early Alutu center: these rocks are overlain by ?mid-Pleistocene sediments, all of which are cut by the Wonji belt faults. The faulting was penecontemporaneous with localized basalt eruptions. Basalts are not found south or west of Hora Mirrga, but late Pleistocene-Holocene basalts and maars occur on the southwestern flanks of O'a caldera. The major faults of the rift margins are essentially of early-mid-Pleistocene age (Meyer et al., 1975), and taking the rift as a whole, they form a gently curving envelope convex to the west. A slight disparity between the western and the eastern margins causes the rift to widen from 75 km at latitude 8½°N to 80 or 85 km near latitude 8°N, before narrowing to about 65 km at latitude 6°N. Focusing more precisely, there is a distinct structural "knee" just south of 8°N (Mohr, 1974b). South of the knee, the Pleistocene margin faults and the Holocene faults of the rift floor trend north-northeast, parallel to each other; north of the knee, the young floor faults continue north-northeast, via right en-echelon offsets, but the margin faults swing to a northeast trend (Figure 1). The knee occurs where a southward projection of the western Afar margin faulting, crossing the rift floor along a pronounced line of young faults and Holocene lavas (Mohr and Potter, 1976), intercepts the southwest-trending eastern margin of the rift and turns it to south-southwest. The knee inflects in the vicinity of the Alutu volcanic center, between Lake Zway and Hora Mirrga, where a complex interaction of northwest and northeast fault trends, east of O'itu Bay, forms a mosaic of west-tilted blocks facing the eastern margin of the rift. The Mirrga area is therefore close to an important structural node in the Ethiopian rift: the significance of this node is not yet known, but it might possibly reflect the transition from a structural regime dominated by the exigencies of the Afar triple-plate junction to a regime dominated by a pre-existing anisotropy in the continental crust of southern Ethiopia. Whatever the cause of the knee in the plan of the Pleistocene rift margin faults, the Holocene tectonism of the rift floor traverses it without apparent change of style. It is this youngest tectonism that we expect to find reflected in the on-going strain field being analyzed by our geodetic method. The Holocene faulting of the rift floor is concentrated into the 5- to 15-km-wide WFB (Mohr, 1960). The Mirrga geodimeter network has been installed across this belt, whose nature can now be described in more detail. ## 7.2.1 Southern Mirrga region The Wonji fault belt, at the southern end of Hora Mirrga, is some 8 km wide. A typical figure for the number of faults comprising the belt here is 13 (Figure 10). The faults trend north-northeast and have throws commonly in the range 25 to 50 m. West upthrows tend to be larger than east upthrows, a fact related to the gentle westward tilting of the faulted blocks. In the vicinity of the geodimeter
network, the WFB comprises the following units, from west to east: - 1. The 4-km-wide Katlo block, bounded west by the Kunni fault and east by the West Langano fault (Mohr, 1966). Stations HOTEL and TERMITE lie on the eastern rim of this block. - 2. The 1-km-wide Galla block, associated with the most intense faulting of this section of the WFB. Stations GALLA and LANGANA lie in the middle of this block. - 3. The 2-km-wide Mirrga graben, upon the floor of which earlier, higher lake shore lines are preserved, the sediments of which may be obscuring older faulting. - 4. The 1-km-wide Godda Goja horst, forming the promontory running north into Hora Mirrga. Station EUPHORBIA lies on this horst. East from this horst to the rift margin, less abundant faults occur, which are distinctly more denuded than those of the WFB. On the opposite side of the WFB, west of the Katlo block, fresh faults are rare, only the Haroresa horst being notable on the Kunni-O'a land bridge (Figure 10). Immediately south of the geodimeter network, the WFB intercepts the eastern margin of the O'a (Shala) caldera, which Di Paola (1973) considers to be of Pliocene age. Despite the size and volcanological importance of the caldera, the Holocene faults transect it undeflected and undiminished, precisely as observed also at the extinct Gadamsa caldera, north of Lake Zway (Thrall, 1975). The WFB is offset 20 km in a dextral sense at O'a caldera, before continuing from the southern side of this caldera south to Corbetti caldera (Di Paola, 1973). The faults of the Mirrga sector of the belt tend to peter out southward, and those that persist become increasingly denuded in the Neghelle and Shashamanne regions (United Nations, 1973, Figure 39). Strong geomorphic evidence suggests that some of the Wonji belt faults are impressed on pre-existing faults: trench cuts across sediments lying against the downthrown side of such a fault could quickly determine the truth of the matter and could give valuable information on the frequency and relative magnitudes of earthquake displacements (Allen, 1975). The crustal blocks formed by the WFB in the southern Mirrga region have a westerly tilt, whether they be horst or graben. The Katlo block has a planar surface tilted down west at 0.8^g . The Galla block is tilted in the same direction but more steeply, at about 1^g on the east side of the block, increasing to over 2^g approaching the West Langano fault. The tilting requires, as is evident in the field, that greater throws tend to be found on east-facing than on the west-facing fault scarps. West-upthrown faults predominate between the WFB and the eastern margin of the rift, attesting to antithetic structure of a type commonly found associated with the Ethiopian rift and Afar margins (Mohr, 1971b; Black, 1976). The close spacing of the WFB faults, and the tilting of the faulted blocks, is consonant with the crustal thinning indicated from gravity data (Searle and Gouin, 1972). The density contrast used by these authors results in a crustal model showing a narrow intrusion of more dense material rising through the crust to within about 5 km of the surface, directly beneath the WFB at Hora Mirrga (Searle and Gouin, 1972, Figures 4 and 5). At least part of this dense, axial intrusion into the rift block may be of pre-Holocene age, judging from its apparent prolongation into sectors of older faulting: the axial intrusion of the Kenya rift valley is considered by Baker and Wohlenberg (1971) to be of Miocene mid-Pliocene age. The relative contributions of crustal extension and stoping, in the emplacement of rift-axis intrusions, remain undetermined (Mohr, 1973b), but almost certainly both processes have operated, and caution must be applied to interpreting the width of the intrusion as a direct measure of rift extension. All the faults examined in the southern Mirrga area without exception are normal faults. No cogent evidence for any transcurrent displacements has yet been found, though conditions for its recognition are unfavorable. No indubitable slickensides have been discovered. The curvilinear plan characteristic of normal faults is a common feature of the area: the fault segments are convex to the downthrown side, average about 5 km in length, and often terminate at intersections with one or more other fault segments to form a "chain" of such segments. The biggest fault in the southern Mirrga area is the West Langano fault (WLF). The WLF displaces the uppermost massive, weakly welded 0'a ignimbrite (Mohr, 1966), which displays vertical cooling joints, the resulting individual blocks being 5 to 15 m square with gently curviplanar separating surfaces. Between geodimeter stations HOTEL and TERMITE, both situated on the rim of the WLF (Figure 10), the joint planes trend close to 50^g to the fault strike, producing a saw-toothed plan to the fault and rendering impossible pure transcurrent slip along such a surface. However, E. H. Lloyd (written communication, 1976) considers that post-faulting wave action from the once deeper Galla lakes (Grove et al., 1975) has incised an originally planar WLF fault scarp. We prefer the view that near the surface, the fault originally utilized the rock joints. The WLF, north of station HOTEL, is bordered on its downthrown side by a very narrow horst a mere 10 to 30 m wide and rising some 45 m above the lake at its eastern foot. The escarpment of the WLF rises to 80 m above lake level, and the intervening "chasm" between this fault and the horst is marked by occasional gaping fissures (gjár), further evidence of at least a component of crustal extension acting perpendicular to the faulting. In addition to the characteristic, segmented chain plan of the WLF, the termini of some individual segments pass into flexures that themselves rapidly die out as the next segment develops en echelon alongside. Such en-echelon offsets are quite common among the faults of the Wonji belt and are very predominantly to the left, compatible with a component of dextral shear along the belt. Dextral-shear components on normal faults of the Wonji fault belt have been observed farther north (Di Paola, 1973; see Section 6.1). Regarding the large-scale, right-hand offsets of the Wonji fault belt as a whole, it is less likely that they result from longitudinal sinistral displacement between the Ethiopian and Somalian plateaus (Gibson, 1969; Mohr, 1968) than a sideways "jumping" of the axis of rift extension, as in southwest Iceland (Klein et al., 1973). The offsets are thus considered to have a quasi-transform character (Schaefer, 1975; Mohr and Wood, 1976). # 7.2.2 Northern Mirrga region The West Langano fault dies out northward before reaching the northern shore of Hora Mirrga. The eastward translation of the WFB into the O'itu Bay faulting occurs on the lake bottom and involves a 5-km dextral offset. O'itu Bay occupies a center of circular tectonics (Figure 12) first described by Mohr (1966). A good reconnaissance geological map of the region, including Alutu volcano immediately north of Hora Mirrga (Dakin and Gibson, 1971), has been presented by Lloyd (United Nations, 1973, Figure 43). Lloyd considers O'itu Bay to be part of a small graben that extends north under the Alutu massif to Debra Tsion island in Lake Zway. The graben is "the result of recent rejuvenated movement on a zone of deep tectonic instability" (United Nations, 1973, p. 85). Lloyd also suspects sinistral transcurrent displacements on some of the north-northeast-trending faults, without adducing evidence for this suspicion. Most of the major faults of the O'itu region are upthrown west, notably the East Basuma fault on the western side of the bay and the Bolé fault east of the bay. The entire tract of country between O'itu Bay and the rift margin escarpment farther east is a mosaic of strong antithetic faulting (Mohr, 1966; Di Paola, 1973; United Nations, 1973), the faults being more freshly preserved and of larger displacement than those east of the WFB at the southern end of Hora Mirrga. Nevertheless, they appear more denuded than the freshest Wonji belt faults passing through O'itu Bay itself, though admittedly it is difficult to formulate an eastern limit to the belt here. Alutu volcano, currently dormant according to Dakin and Gibson (1971), has largely buried the O'itu Bay graben to the north and, in this masking of the youngest WFB tectonism, differs from the possibly senescent O'a caldera. The O'itu Bay graben appears to have been the site of circular subsidence, though Lloyd (personal communication, 1976) finds no volcanic products to suggest it is a volcanic center of caldera type. Hot springs and fumaroles are currently active on the northern and eastern (Bolé fault) sides of O'itu Bay (United Nations, 1973) and also at the focus of the tectonic circle, on Geysir Island. According to H. Goetz (quoted in Gouin, 1977), a large geyser was born on this island in conjunction with the 1906 rift-valley earthquake, but it is now (Mohr, 1966) a pathetic remnant of its reputed former glory. O'itu Bay is the site of a small but clear-cut positive gravity anomaly, anomaly #7 of Searle and Gouin (1972). The eastern and western margins of O'itu Bay have a narrow, strongly emphasized horst-like character, a factor weighing on the logistics of geodimeter operations. The north-northeast-trending Basuma horst limits the bay to the west, and the arcuate Bolé horst forms the main eastern limit. These two horsts appear to be tectonic emphases of a pre-existing rim, which is still preserved in its original state, with an outer dip slope, as the Laki Peninsula (Figure 12). ## 7.2.3 Age, rate, and episodicity of faulting We have no quantitative data on these vital topics. Trenching and carbon dating of sediments (see, e.g., Laury and Albritton, 1975) would add an essential dimension for interpretation of our geodimeter data. On the geomorphic evidence, surely the age of the most recent fault
movements in the Mirrga region is to be measured in hundreds rather than thousands of years—for example, the formation of the small horst on the face of the West Langano fault. Miss Alayne Street (written communication, 1976) has identified Holocene WFB faults affecting the eastern wall of 0'a caldera. Molnar et al. (1970) found that microseismic activity along the Wonji fault belt between latitudes 7° and 9°N was at an extremely low level during 800 hours of recording in 1969. These authors confessed surprise at this result, considering the manifold evidence of young faulting and volcanism and comparison with other, microseismically active tectonic zones of the world. They put forward two possible explanations: 1) an episodicity of fault and related seismic activity, with intervening periods of quiescence lasting at least "several decades," and 2) aseismic deformation of the crust, although this seems not to be the case farther south in the rift system (Molnar and Aggarwal, 1971; Rykounov et al., 1972). With the proviso that their data are meager, Molnar et al. (1970) conclude that microseismic activity is low in narrow zones of predominantly normal faulting, in comparison with broad zones such as the Basin and Range Province in the western United States. It is certainly feasible that aseismic creep is being facilitated in the geothermally active crust of the Mirrga region. Nevertheless, an earthquake swarm occurred along the Katlo block of western Mirrga during May 1962 (Gouin, 1977). If the rift crustal strain is only episodic, then no significant line-length changes can be expected from the geodimeter program until such an episode occurs. But if there is progressive strain accumulation or aseismic deformation, then the geodimeter program will come into its own. ### 8. DISCUSSION AND CONCLUSIONS ### 8.1 Northern Network Geodimeter lines perpendicular or near-perpendicular to the rift-trend faults in the northern sector of the rift valley were susceptible to lengthening at or above the threshold value of 3 mm/yr during the interval 1969 to 1974. Other lines have remained stable, and only one dubious instance of line shortening is recorded. The instances of line lengthening are entirely restricted to the Wonji fault belt, which here is offset by 25 km right en echelon from the Gadamsa to the Boseti segment of the belt. Although the present network design is not ideal for a detailed analysis of the pattern of this crustal widening within the WFB, it is quite sufficient to suggest that the zones(s) of active widening in the belt are of the order of 15 km in length and jump laterally from one to the next along the belt. These zones may well prove to be single faults in most instances, but it would require a more focused geodetic technique (e.g., by using strain meters) to determine this. Evidently, the zones of active widening must shift after a certain time interval, much greater than the time of the Ethiopian observing program, such that over an integrated period of perhaps a few millenia the whole width of the WFB is participating in crustal widening. On an even longer time scale, it is probable that the pattern of the WFB itself is evolving, migrating west according to Mohr (1967). When examined in detail, the pattern of active widening at the southern end of the Boseti segment of the WFB is one of left-offset zones, from north to south: Tcheesa fault zone and Wolenchiti valley, Bofa and Sodere fault zones, and Kaletta fault zone. At the northern end of the Gadamsa segment of the WFB, there is a less well-ascertained right offset in the zone of active crustal widening. During the 5-year period of geodimeter observations, crustal widening has been progressive except for a singular instance of stop-go motion in the southern part of the Wolenchiti basin. It must be admitted that this stop-go motion is recognized in part because it matches the progressive motion to the north (and southeast); there may be stop-go motion elsewhere in the northern network that is currently regarded as reflecting only instrumental aberrations, but to discern any such motions will require a longer observing period than the present 5 years. The mean annual rates of widening range between 3 and 6 mm/yr, in excellent agreement with geological estimates for Holocene extension in the rift of 5 mm/yr (Mohr, 1973b) and with 3 to 4 mm/yr across the rift structures of southwestern Afar (Schaefer, 1975). These figures translate into approximate strain rates of 6 to $16 \times 10^{-7}/yr$. The region of offset between the Gadamsa and Boseti segments of the WFB includes the Adama graben, where no significant widening has been detected. However, from the evidence of geology, it is suspected that, on a much longer time scale than our geodetic program, zones of widening are interpolated across the WFB offset. The larger rift-floor faults, in the WFB and in the region of offset, can show evidence of small longitudinal displacements, both as a direct displacement of geological features and from a hook-fault fracture pattern (Section 7.1). These displacements are of the order of a few tens of meters, less than the vertical throw on the same fault plane. They are almost exclusively of dextral sense. The geodetic program has confirmed the likelihood that a small component of longitudinal dextral shear is a feature of the on-going evolution of the rift. Thus, dextral shear at 3 to 5 mm/yr is possibly revealed along the eastern boundary fault zone of the Adama graben, and it is not associated with any contemporaneous crustal widening. In the Wolenchiti valley, geodimeter station RABBIT has apparently shifted south with respect to the three stations to the northwest, again implying dextral longitudinal shear (at \sim 5 mm/yr), although there is no visible fault capable of taking up such shear on the western flanks of Boseti volcano. Perhaps transverse fractures, observed during the 1970 Aygu ground cracking, are playing a role here. It must be emphasized that longitudinal rift displacements must be relatively short-term effects; otherwise, over a million years, they would build up kilometers of horizontal dislocation for which there is currently no firm geological evidence. What is the role of plate tectonics in all this? Despite the abrupt change of scale from continental-sized plates to the fine structure of the Ethiopian rift valley floor, there should be an expression of a common deformation rate if the Nubia-Somali plate boundary can indeed be narrowed to the WFB (McKenzie et al., 1970; Mohr, 1973b). With regrettable irony, the results of 5 years of geodimeter observations at the northern end of the Ethiopian rift concur with the geometrical requirements of plate-tectonic analysis of the Red Sea and Gulf of Aden (Le Pichon et al., 1973), allowing for a quickening of pace during the late Quaternary (Mohr, 1973b, 1975). Regrettable, because I do not wish the geodetic results to be taken as a confirmation of plate tectonics, first because of the limitations on the present precision of the geodetic method, and second because the spatial and temporal patterns of strain accumulation along the Nubia-Somali plate boundary are unknown. Before plate tectonics is introduced into the interpretation of the Ethiopian rift geodimeter data, the period of observation should at least match those for the San Andreas fault of California (Savage and Burford, 1973) and the Alpine fault of New Zealand (Lensen, 1971), and the networks should be multiplied and also enlarged to two or three times their present dimensions to cover the rift margins. I shall not live to see this! I cannot avoid mentioning that a component of dextral shear along the rift conforms further with the plate analysis of Le Pichon et al. (1973), but if the WFB offsets are proto-transform faults (Schaefer, 1975; Mohr and Potter, 1976), then present-day shear can better be regarded as reflecting the jostling of tectonic subunits within the rift. The strain-release pattern in the Ethiopian rift is well presented by Gouin (1977), who shows, however, that despite earthquake records going back a few centuries in parts of Ethiopia, the recurrence period of earthquakes at a given locality is greater even than this (see also Lensen, 1971; cf. Björnsson et al., 1977). We therefore cannot claim, on the basis of the seismic map alone, that any particular sector of the rift or Afar is not now subject to strain accumulation/release. A similar conclusion was reached by Molnar et al. (1970) from observations of microseismicity in the Ethiopian rift. In fact, reports of seismicity felt during the last few decades come from all three rift network areas. Unless some strain is being released by aseismic creep, the geodimeter observations on crustal widening across the WFB indicate that a single fault with a throw of a few meters would be produced by complete release of accumulated strain after an interval of about 1000 years. ## 8.2 Central Network The central network is smaller than the northern network, and so we do not have so satisfactory a picture of regional crustal deformation here. Indeed, the only certain features are some localized contractions and expansions related to geothermal and gravity anomalies around the Hora Mirrga basin. There is no clearly evident pattern of crustal widening across the WFB at this latitude, but the 1962 Mirrga earthquake swarm may still be affecting the resumption of regional strain accumulation. Although the possibility of dextral slip along the faults of the Mirrga segment of the WFB was mooted by Mohr et al. (1975a,b), this concept is now less attractive. Only at the southern end of the network is longitudinal ground motion in evidence, and the tectonic nature of this is not proved. So we are left with two-dimensional crustal contraction affecting an area at the southern end of the West Langano fault, at a maximum strain rate of $10^{-5.2}$ /yr, and with east—west crustal
widening at a regular 5 mm/yr for 4 years across 0'itu Bay, near the Mirrga—Alutu WFB offset. These two changes, respectively, may be related to magmatic withdrawal/cooling and to magmatic intrusion (Mohr et al., 1975b), in which case added weight is given to the prognostication (Mohr, 1974a) that strain-field analysis would be premature for the Ethiopian rift regarding any regional, let alone plate-tectonic, implications. Integrated plate-tectonic motions bear no relationship to crustal strain changes in the central and southern Ethiopian rift networks in the intervals 1970 to 1974 and 1971 to 1973, respectively (Mohr, 1974a). Nevertheless, future surveys and earthquakes are awaited with curiosity. We conclude, prematurely but necessarily, in view of the cosmic brevity of the surveyor's life, either that plate motions and rifting are stop-go beyond the time scale of our work and/or that the Nubia—Somali plate boundary is of finite width, perhaps several tens of kilometers (miles, to you dear old British Empire loyalists!). ### ACKNOWLEDGMENTS The Ethiopian rift geodimeter program was born of an idea of Professor Fred L. Whipple, with much early encouragement and assistance from Dr. C. A. Lundquist, Prof. R. W. Decker, and Prof. George Veis. The gentlemen listed on page 2, who have participated so energetically and selflessly in one or another of the field surveys, know the gratitude I owe them. Their comradeship has been a priceless boon, amidst both setbacks and successes, as has the rejuvenating climate and native hospitality of that immeasurably beautiful rift valley. Behind all these surveys has stood a rock, Prof. Pierre Gouin, who in so many ways large and small has facilitated the authorization of our surveys and their simple but ill-financed logistics, boosting our morale with his own inimitable humor that so many times transmuted disappointments into successful resolve. Back at the Smithsonian Astrophysical Observatory, I owe a particularly warm gratitude to Mr. Antanas Girnius for performing the data reduction and network-adjustment computations with exemplary enthusiasm and efficiency. Mr. J. Latimer has kindly advised on programing of the least-squares adjustments. My wife and children have tolerated my absences in Ethiopia rather beyond the call of duty. † I wish to express my deepest-felt tribute to Dr. W. H. ("Bill") Morton, shot dead on the outskirts of Addis Ababa, 10 March 1977. Bill was one of Ethiopia's best and most promising geologists, perhaps its very best field geologist. He was also a man of the highest principles, straightforward, generous, modest, and always thought-provoking. His loss to Ethiopian science is immeasurable, but a token insight can be gained from a request he made to me after the 1976 geodimeter survey: could I extend the next survey up to the Addis Ababa region, to assist earthquake prediction in that populous area as well as in the scientifically more attractive rift valley. Indeed his thoughts were for the Ethiopian people, the real people, and our loss is also theirs. ## **POSTSCRIPT** In October through December 1976, I organized and led a geological expedition to the Ethiopian rift, during which the opportunity was taken to remeasure some of the geodimeter lines. In the short time allotted to this work, attention was concentrated on lines that the previous surveys had indicated to be susceptible to length changes. The azimuths and declinations of main—auxiliary point pairs were also observed. The results of the 1976 survey will be published elsewhere after they have been reduced and analyzed.* Strain-tensor analysis will be introduced in addition to the conventional displacement-vector analysis. The 1976 survey concludes my Ethiopian rift geodimeter work under the auspices of the Smithsonian Astrophysical Observatory. Valete! ^{*} For the sake of completeness, the raw observational data of the 1976 survey are given in Appendix H. #### REFERENCES - ALLEN, C. R. - 1975. Geological criteria for evaluating seismicity. Bull. Geol. Soc. Amer., vol. 86, pp. 1041-1057. - BAKER, B. H., and WOHLENBERG, J. - 1971. Structure and evolution of the Kenya rift valley. Nature, vol. 229, pp. 538-542. - BARBERI, F., FERRARA, G., SANTACROCE, R., and VARET, J. - 1975. Structural evolution of the Afar triple junction. In <u>Afar Depression</u> of Ethiopia, ed. by A. Pilger and A. Rösler, Schweizerbart, Stuttgart, pp. 38-54. #### BJERHAMMAR, A. - 1973. Theory of Errors and Generalized Matrix Inverses. Elsevier, Amsterdam, 420 pp. - BJÖRNSSON, A., EINARSSON, P., GRÖNVOLD, K., SAEMUNDSSON, K., and TRYGGVASON, E. 1977. Crustal rifting episode in north Iceland. Nature, in press. BLACK, R. - 1976. The Afar: Éxample of an Atlantic-type continental margin in the making. An. Acad. Brasil. Cienc., vol. 48 (Suppl.), pp. 27-36. - BROTZU, P., MORBIDELLI, L., PICCIRILLO, E. M., and TRAVERSA, G. - 1974. Petrological features of the Boseti mountains, a complex volcanic system in the axial portion of the main Ethiopian rift. Bull. Volcan., vol. 38, pp. 206-234. - CENTRE D'ETUDES GEOLOGIQUES ET DE DEVELOPPEMENT - 1974. Carte geologique du Territoire Français des Afars et des Issas, feuille "Asal" (1:100,000). Univ. Bordeaux and Jibuti. - COOK, D. P., and MURPHY, B. A. - 1974. Electromagnetic distance measurement for crustal movement surveys. In <u>Proceedings of the International Symposium on Terrestrial</u> <u>Electromagnetic Distance Measurements</u>, ed. by I. Brook, Stockholm, Sweden, vol. 1, paper 8, 40 pp. - DAKIN, F. - 1977. Geology of the Debra Zeit crater field. In preparation. - DAKIN, F., and GIBSON, I. L. - 1971. A preliminary account of Alutu, a pantelleritic volcano in the main Ethiopian rift. Bull. Geophys. Obs. Addis Ababa, no. 13, pp. 110-114. - DAKIN, F. M., GOUIN, P., and SEARLE, R. C. - 1971. The 1969 earthquakes in Serdo (Ethiopia). Bull. Geophys. Obs. Addis Ababa, no. 13, pp. 19-56. - DECKER, R. W., EINARSSON, P., and MOHR, P. A. - 1971. Rifting in Iceland: New geodetic data. Science, vol. 173, pp. 530-533. - DI PAOLA, G. M. - 1973. The Ethiopian rift valley (between 7°00' and 8°40' lat. North). Bull. Volcan., vol. 36, pp. 517-560. - GASSE, F. - 1975. Fluctuations of the Afar lake levels during the late Quaternary period. In <u>Afar Depression of Ethiopia</u>, ed. by A. Pilger and A. Rösler, Schweizerbart, Stuttgart, pp. 284-288. - GIBSON, I. L. - 1969. The structure and volcanic geology of an axial portion of the main Ethiopian rift. Tectonophys., vol. 8, pp. 561-565. - GOUIN, P. - 1971. Surface cracks and subsidences in Modjio. Haile Selassie I Univ. Geophys. Obs. Rep. TR-011, 5 pp. - 1975. Kara Kore and Serdo epicenters: Relocation and tectonic implications. Bull. Geophys. Obs. Addis Ababa, no. 15, pp. 15-25. - 1977. Earthquake history of Ethiopia. Bull. Geophys. Obs. Addis Ababa, no. 16, in press. - GOUIN, P., and MOHR, P. A. - 1967. Recent effects possibly due to tensional separation in the Ethiopian rift system. Bull. Geophys. Obs. Addis Ababa, no. 10, pp. 69-78. - GROVE, A. T., STREET, F. A., and GOUDIE, A. S. - 1975. Former lake levels and climatic change in the rift valley of southern Ethiopia. Geogr. Journ., vol. 141, pp. 177-202. - HOFMANN, R. B. - 1968. Geodimeter fault movement investigations in California. Calif. Dept. Water Resources, Bull. No. 116-6, 183 pp. - JONES, P. W., and REX, D. C. - 1974. New dates from the Ethiopian plateau volcanics. Nature, vol. 252, pp. 218-219. - JUSTIN-VISENTIN, E., NICOLETTI, M., TOLOMEO, L., and ZANETTIN, B. - 1974. Miocene and Pliocene volcanic rocks of the Addis Ababa-Debra Berhan area (Ethiopia) geo-petrographic and radiometric study. Bull. Volcan., vol. 38, pp. 237-253. - KLEIN, F. W., EINARSSON, P., and WYSS, M. - 1973. Microearthquakes on the mid-Atlantic plate boundary on the Reykjanes Peninsula in Iceland. Journ. Geophys. Res., vol. 78, pp. 5084-5099. - KUNZ, K., KREUZER, H., and MULLER, P. - 1975. Potassium-argon age determinations of the Trap Basalt of the south-eastern part of the Afar rift. In <u>Afar Depression of Ethiopia</u>, ed. by A. Pilger and A. Rösler, Schweizerbart, Stuttgart, pp. 370-374. - LAURY, R. L., and ALBRITTON, C. C. - 1975. Geology of Middle Stone Age archaeological sites in the main Ethiopian rift valley. Bull. Geol. Soc. Amer., vol. 86, pp. 999-1011. - LENSEN. G. J. - 1971. Phases, nature and rates of earth deformation. Bull. Roy. Soc. New Zealand, vol. 9, pp. 97-105. - LE PICHON, X., FRANCHETEAU, J., and BONNIN, J. - 1973. <u>Plate Tectonics</u>. Developments in Geotectonics, vol. 6, Elsevier, Amsterdam, 300 pp. - MAIER, U. - 1974. On estimation of the representative temperature for the reduction of electrooptical distance measurements. In <u>Proceedings of the International Symposium on Terrestrial Electromagnetic Distance Measurements</u>, ed. by I. Brook, Stockholm, Sweden, vol. 1, paper 1, 21 pp. - McDOUGALL, I., MORTON, W. H., and WILLIAMS, M. A. J. - 1975. Age and rates of denudation of Trap Series basalts at Blue Nile gorge, Ethiopia. Nature, vol. 254, pp. 207-209. - McKENZIE, D. P., DAVIES, D., and MOLNAR, P. - 1970. Plate tectonics of the Red Sea and East Africa. Nature, vol. 226, pp. 243-248. - MEYER, W., PILGER, A., RÖSLER, A., and STETS, J. - 1975. Tectonic evolution of the northern part of the main Ethiopian rift in southern Ethiopia. In <u>Afar Depression of Ethiopia</u>, ed. by A. Pilger and A. Rösler, Schweizerbart, Stuttgart, pp. 352-362. MILLER, J. A., and MOHR, P. A. - 1966. Age of Wachacha trachyte-carbonatite volcanic centre. Bull. Geophys. Obs. Addis Ababa, no. 9, pp. 1-5. ### MOHR, P. A. - 1960. Report on a geological excursion through southern Ethiopia. Bull. Geophys. Obs. Addis Ababa, no. 3, pp. 9-20. - 1966. Geological report on the Lake Langano and adjacent plateau regions. Bull. Geophys. Obs. Addis Ababa, no. 9, pp. 59-75. - 1967. The Ethiopian rift system. Bull. Geophys. Obs. Addis Ababa, no. 11, pp. 1-65. - 1968. Transcurrent faulting in the Ethiopian rift system.
Nature, vol. 218, pp. 938-940. - 1971a. Tectonics of the Dobi graben region, central Afar, Ethiopia. Bull. Geophys. Obs. Addis Ababa, no. 13, pp. 73-89. - 1971b. Ethiopian Tertiary dike swarms. Smithsonian Astrophys. Obs. Spec. Rep. No. 339, 53 pp. plus appendices. - 1972. Surface structure and plate tectonics of Afar. Tectonophys., vol. 15, pp. 3-18. - , MOHR, P. A. - 1973a. Ethiopian rift geodimeter surveys. Bull. Geophys. Obs. Addis Ababa, no. 14, pp. 1-91. - 1973b. Crustal deformation rate and the evolution of the Ethiopian rift. In <u>Continental Drift</u>, <u>Sea Floor Spreading and Plate Tectonics:</u> <u>Implications to the Earth Sciences</u>, ed. by D. H. Tarling and S. K. Runcorn, Academic Press, London, vol. II, pp. 767-776. - 1974a. 1973 Ethiopian-rift geodimeter survey. Smithsonian Astrophys. Obs. Spec. Rep. No. 358, 110 pp. - 1974b. Mapping of the major structures of the African rift system. Smithsonian Astrophys. Obs. Spec. Rep. No. 361, 70 pp. and 15 maps. - 1975. Structural setting and evolution of Afar. In <u>Afar Depression of Ethiopia</u>, ed. by A. Pilger and A. Rösler, Schweizerbart, Stuttgart, pp. 27-37. - MOHR, P. A., GIRNIÙS, A., CHERNIACK, J. R., GAPOSCHKIN, E. M., and LATIMER, J. 1975a. Recent crustal deformation in the Ethiopian rift valley. Jectonophys., vol. '29, pp. 461-469. - MOHR, P., GIRNIUS, A., and ROLFF, J. - 1976. Horizontal crustal deformation rates at the northern end of the Ethiopian rift valley. Presented at the 25th International Geological Congress, Sydney, Australia, August. - MOHR, P. A., and GOUIN, P. - 1967. Gravity traverses in Ethiopia (third interim report). Bull. Geophys. Obs. Addis Ababa, no. 10, pp. 15-52. - MOHR, P. A., and POTTER, E. C. - 1976. The Sagatu Ridge dike swarm, Ethiopian rift margin. Journ. Volcan. Geotherm. Res., vol. 1, pp. 55-71. - MOHR, P. A., ROLFF, J., GIRNIUS, A., PLUMB, R., and MIKRU, G. - 1975b. Horizontal crustal deformation in the Ethiopian rift valley: The Mirrga network. Presented at the International Symposium on the Rift Zones of the Earth, Irkutsk, USSR; also in Main Problems of Rifting (in Russian), ed. by N. A. Logatchev, Irkutsk, in press. - MOHR, P. A., and WOOD, C. A. - 1976. Volcano spacings and lithospheric attenuation in the Eastern Rift of Africa. Earth Planet. Sci. Lett., vol. 33, pp. 126-144. - MOLNAR, P., and AGGARWAL, Y. P. - 1971. A microearthquake survey in Kenya. Bull. Seismol. Soc. Amer., vol. 61, pp. 195-201. - MOLNAR, P., FITCH, T., J., and LAIKE MARIAM ASFAW. - 1970. A microearthquake survey in the Ethiopian rift. Earthquake Notes, vol. 41, pp. 37-44. - MORBIDELLI, L., NICOLETTI, M., PETRUCCIANI, C., and PICCIRILLO, E. M. - 1975. Ethiopian south-eastern plateau and related escarpment: K/Ar ages of the main volcanic events (main Ethiopian rjft from 8°10' to 9°00' lat. North). In <u>Afar Depression of Ethiopia</u>, ed. by A. Pilger and A. Rösler, Schweizerbart, Stuttgart, pp. 362-369. - MORTON, W. A., and REX, D. C. - 1975. Age of Mount Yerer. Bull. Geophys. Obs. Addis Ababa, no. 15, p. 156. - NEEDHAM, H. D., 'CHOUKROUNE, P., CHEMINEE, J. L., LE PICHON, X., FRANCHETEAU, J., and TAPPONNIER, P. - 1976. The accreting plate boundary: Ardoukôba rift (northeast Africa) and the oceanic rift valley. Earth Planet. Sci. Lett., vol. 28, pp. 439-453. - PILGER, A., and RÖSLER, A. - 1974. The taphrogenetic phases in the Afar depression of Ethiopia in relationship to other tectonic events of the earth crust. Clausthaler Geol. Abh., vol. 17, pp. 59-85. - RYKOUNOV, L. N., SEDOV, V. V., SAVRINA, L. A., and BOURMIN, V. Yu. - 1972. Study of microearthquakes in the rift zones of East Africa. Tectonophys., vol. 15, pp. 123-130. - SAVAGE, J. C. - 1975. A possible bias in the California state geodimeter data. Journ. Geophys. Res., vol. 80, pp. 4078-4088. - SAVAGE, J. C., and BURFORD, R. O. - 1973. Geodetic determination of relative plate motion in central California. Journ. Geophys. Res., vol. 78, pp. 832-845. - SAVAGE, J. C., and PRESCOTT, W. H. - 1973. Precision of geodolite distance measurements for determining fault movements. Journ. Geophys. Res., vol. 78, pp. 6001-6008. SCHAEFER, H.-U. - 1975. Investigations on crustal spreading in southern and central Afar (Ethiopia). In <u>Afar Depression of Ethiopia</u>, ed. by A. Pilger and A. Rösler, Schweizerbart, Stuttgart, pp. 289-296. - SCLATER, J. G., BOWIN, C., HEY, R., HOSKINS, H., PEIRCE, J., PHILLIPS, J., and TAPSCOTT, C. - 1976. The Bouvet triple junction. Journ. Geophys. Res., vol. 81, pp. 1857-1869. - SEARLE, R. C., and GOUIN, P. - 1972. A gravity survey of the central part of the Ethiopian rift valley. Tectonophys., vol. 15, pp. 41-52. TAIEB, M. 1974. Evolution Quaternaire du bassin de l'Awash (Rift éthiopien et Afar). D.Sc. Thesis, Univ. Paris, 390 pp. TAZIEFF, H. 1970. The Afar triangle. Sci. Amer., vol. 222, pp. 32-40. THRALL, R. 1975. Gadamsa caldera, Ethiopia. Bull. Geophys. Obs. Addis Ababa, no. 15, pp. 71-81. #### UNITED NATIONS 1973. Geology, geochemistry and hydrology of hot springs of the East African rift system within Ethiopia. U.N. Tech. Rep. DP/SF/UN 116, 220 pp. · UNITED STATES COAST & GEODETIC SURVEY - 1963. 1957-1961 Ethiopia Geodetic Survey. U.S. Dept. of Commerce, Washington, D.C., 563 pp. - ZANETTIN, B., GREGNANIN, A., JUSTIN-VISENTIN, E., NICOLETTI, M., PETRUCCIANI, C., PICCIRILLO, E. M., and TOLOMEO, L. - 1974. Migration of the Oligocene-Miocene ignimbritic volcanism in the central Ethiopian plateau. Neues Jahrb. Geol. Palaont., Monatsheft 1974, pp. 567-574. # APPENDIX A STATION ABBREVIATIONS, REVISED ELEVATIONS, AND MAIN-AUXILIARY POINT PARAMETERS ### APPENDIX A ### STATION ABBREVIATIONS, REVISED ELEVATIONS, AND MAIN-AUXILIARY POINT PARAMETERS The elevations of all stations established in 1969 are quoted to the nearest meter, with the U.S. Coast & Geodetic Survey triangulation base at DUKAM used as reference. Adjustment has been made to conform with the results of triangulation and spot-height elevations obtained from the Directorate of Overseas Surveys (London) for their 1:50000 topographic mapping. Additionally, T2 theodolite angles observed by Mr. J. Rolff have been used to obtain elevations of some post-1969 stations, again quoted to the nearest meter. All other stations are quoted to the nearest 5 m (these values are in parentheses), as their elevations are currently known only from altimeter observations. Station elevations in the central and southern geodimeter networks are given relative to lake elevations of 1582 m (Hora Mirrga) and 1169 m (Lake Margherita), respectively. | Station | Local name
(if any) | Abbreviati
and year o
installati | f Elevation | Main point to aux
d (slope)
(m) | iliary
∆h
(m) | point (if any)*
azimuth
(g) | |---------|------------------------|--|---------------------------------------|---------------------------------------|---------------------|-----------------------------------| | | (, , , , , , , | | · · · · · · · · · · · · · · · · · · · | \/\'\\ | , | (3/ | | DUKAM | Dukam | DK 9 [†] | 1937.4 | (This station | is now | extinct.) | | FOKA | Gara Foka | F0 9 | 2013 | • | | | | DULLO | Gara Dullo | DL 9 | 1925 | | | | | SAO | Bishoftu | SA 9 | 1924 | | | | | CRATER | | CR 9 | 1920 | • | | | | CGS | Bishoftu | CG 9 | 1886 | • | | | | GITCHI | Gitchi | GI 9 | 1882 | | | | | ROAD | Keraru | RD 9 | 1806 | (This station | is now | extinct.) | | RAILWAY | Mojjo | RY 9 | 1802 | , | | | ^{*} d = distance; $\Delta h = height difference$. ^{† 9 = 1969, 0 = 1970, 1 = 1971, 3 = 1973, 4 = 1974, 6 = 1976.} | 1 | |---| | 4 | | | Station | Local name
(if any) | Abbreviatio
and year of
installatio | Elevation | Main point to au
d (slope)
(m) | | oint (if any)*
azimuth
(g) | |-----|---|---|--|--|--------------------------------------|--|---| | | MARIAM
GEORGE
RIDGE
ADAMA
FARENJI
ELPASO
GANTI
FULCRUM | Tedi
Kimbibit
Adama
Adama
Gara Ganti
Gara Ganti
Soloki | MA 9 [†] GE 9 RI 9 AD 9 FA 9 EP 9 GN 1 FU 9 | 1945
1776
1726
1631
1632
1733
1774.5
1643 | 4.172
3.722 | 0.46
3.07
-1.36
0.09
0.28
ain point,
-0.63
0.21
int, FU, e | 200
240
205
081
237 (FA-FAB)
EP, extinct)
243
148 (FUA-FUB)
xtinct) | | A-4 | BLOSSOM
GRAVES
CINDER
BOHALLA
BORI
BABOON | Soloki
Wurufa
Gara Bolalo
Bofa
Bori | BL 3
GR 9
CI 9
BH 0
BR 3
BB 3 | (1660)
1471
1557
(1405)
(1425)
(1385) | 42.24
24.443 | 1.11 | 220 | | | BOKU OBSIDIAN ROGGI MIETCHI TOPLESS DUST SELASSIE SIRI | Gara Boko '
Wofi
Chebuti
Gara Mietchi
Gara Talicha
Ghilli
Biet Selassie
Kara | BO 0
OB 9
RO 9
MI 9
TO 9
DU 9
SE 9
SI 1 | 1869
1625
1553
1831
1706
1714
1846
(1900) | 2.306
15.31
5.067 | 0.34 | . 366 | | | QUILL
SODERE
OOLAGA | Sodere
Ulaga | QL 1
SO 1
OL 1 | 1539
1371
1436 | 1.967 | | 173 | | | PYLON
WONJI
KOKA
GALILA
YELLEM
THORNS | Tedecha
Hida
Koka
Tafu
Ati Bora
Emmanuel | PY 1
WO 1
KO 0
GA 0
YE 0
TH 0 | 1661
1609
(1630)
1645
(1610)
(1625) | | | • | . | | | Abbrev ⁻ | iation | | Main point to a | uxiliary | point (if | any)* | |---------|---------------------------|---------------------|----------------|---------------|------------------|-----------|----------------|-------| | Statio | Local name
on (if any) | and yea
install | |
Elevation (m) | d (slope)
(m) | ∆h
(m) | azimuth
(g) | | | TABLE | Jinjimma | TA | 0 [†] | 1520 | 2.408 | -0.32 | 129 | | | AYGU | Gara Egu | ΑŸ | Ö | 1526 | 2.777 | -0.39 | 158 | | | ` MERKO | Marko | ME | Ō | 1590 | 6.023 | 1.33 | 204 | | | RABBIT | Nyeh | RA | 0 | 1598 | 2.972 | -0.46 | 206 | | | TCHEES | | TC | 4 | 1461 | 2.497 | -0.11 | 116 | | | SOGIDO | Sogido | SG | 6 | (1310) | | | | | | KUSULU | Kusulu | KS | 6 | (1265) | 3.800 | 0.59 | 180 | | | HOTEL | Ashalamo | НО | 0 | 1644 | 2.2805 | | | | | TERMITE | | TE | 0 | 1629 | 1.425 | | 395 | | | GALLA | Ashalamo | GL | 0 | 1600 | 2.360 | 0.09 | 314 | | | EUPHORE | | EU | 0 | 1600 . | 28.260 | -0.675 | 067 | | | LANGANA | | LA | 1 | 1635 | 2.246 | -0.10 | 242 | | | ARJ0 | Arjo | AR | 1 | 1714 | 3.934 | -0.38 | 221 | | | SHALLA | Galli | SL | 4 | (1680) | | | | | | HARORES | | HA | 4 | (1775) | | | | | | CHITU | Chitu | CU | 6 | (1630) | | | | | | SHIBIBO | | SB | 6 | (1620) | | | | | | KORKORS | A Korkorsa | KK | 6 | (1625) | | | | | | O'ITU | O'itu | 01 | 0 | (1585) | | | | | | ALUTU | | AL | 0 | (1590) | | -1.53 | 298 | | | OOMAY | Basuma | OY | 1 | (1650) | 8.965 | 1.40 | 243 | | | BMC | Arba Minch | ВС | 1 | (1345) | | | | | | BMP | Arba Minch | `BP | 1 | (1345) | | | | | | BMN | Arba Minch | BN | 1 | (1285) | | | | | | SHECHA | Shecha, | `SH | 1 | (1440) | | | | | | DUBI | | DB | 1 | (1170) | | | | | | KÜLFŐ | Kulufo River | ` KU | 1 | (1145) | | | | | | TOSASUC | | TS | 1 | (1260) | 1.878 | | 009 | | | Station | Local name
.(if any) | Abbreviation
and year of
installation | Elevation (m) | Main point to aux
d (slope)
(m) | iliary
∆h
(m) | <pre>point (if any)* azimuth (g)</pre> | |----------|-------------------------|---|---------------|---------------------------------------|---------------------|--| | PARADISO | Il Paradiso | PAR 4 [†] | 424 | | | | | GUMA W | Guma graben | GUW 4 | 367. | | | | | GUMA SE | Guma graben | GUS 4 | 306 | | | | | GUMA NE | Guma graben | GUN 4 | 415 | • | | | | DOBI XE | Dobi graben | DOX 4 | 279 | | | | | DOBI IE | Dobi graben | DOE 4 | 159 | | | | | DOBI IW | Dobi graben | DOW 4 | 115 | | | | | DOBI MW | Dobi graben | MAW 4 | 307 | | | | # APPENDIX B GEODIS 1969 GEODIMETER OBSERVATIONS | Lode | Geodimeter Sta. | Retroreflector Sta | . Date | Time | Temp. | Spread | Corrected D | Final D | Line Average | |----------------------------------|---|--|--|--|--|---|--|--|--| | AC
AE
AE
AH
AH | (DUKAT)
FOKA
FOKA
(DUKAM)
(DUKAM) | FOKA
(DULAM)
(DUKAM)
FOKA
FOKA | 1969 OCT 11
1969 OCT 13
1969 OCT 13
1969 OCT 14
1969 OCT 14 | 2020
2020
1845 | 12.8
16.9
16.9
15.6
15.6 | 63 49
28 12
20 10
50 34
53 29 | 9394.758
9394.788
9394.780
9394.781
9394.777 | 9394.771 *
9394.798
9394.790
9394.789
9394.785 | 9394.788 .011 | | AI
AI | A KUA HANUD
A KUA HANUD
A KUA HANUD | Fora
Fora
Fora | 1969 DCT 11
1969 DCT 14
1969 DCT 14 | 1938 | 12.6
15.6
15.6 | 40 23
37 9
37 24 | 9396,471
9396,489
9396,493 | 9396.485*
9396.499
9396.503 | 799 .005
9396 .496 .609
500 .003 | | ak
ak
an
gb
gf | FORA
FORA
DULLO
DULLO
DULLO | OULLO
DULLO
FOKA
FOKA
FOKA | 1969 OCT 15
1969 OCT 15
1969 OCT 16
1969 NOV 25
1969 NOV 26 | 2115
1930
1945 | 14.4
14.4
19.2
16.8 | 17 24 | 6400.689
6400.702
6400.886
6400.713
6400.714 | 5400.694
6400.707
5400.689
5400.717
6400.718 | 6400,706 .019 | | AL, | A KUA DIJUG | FOKA | 1969 OCT 16 | 2000 | 19.2 | 25 13 | 6402.905 | 6402.910 | 6402,910 0,000 | | LA | FOKA AUX A | buccò | 1969 OCT 15 | | 14,4 | 23 5 | 6372,959 | 6372.964 | 4372.964 0.000 | | AF
AG | saq
Foka | FOKA
SAO | 1969 OCT 13 | | 15 ₄ 6
16 ₁ 1 | 19 17
39 34 | 3237,860
3237,870 | 3237.865
3237.875 | 3237.868 4007 | | #Z
#Z
#2
. F2 | CRATER
CRATER
CRATEP
CRATER | FOKA
FOKA
FOKA | 1969 NOV 24
1969 NOV 24
1969 NOV 24
1969 NOV 24 | 2100 | 15.6
15.6
15.6 | 24 15
38 14
38 27
32 14. | 2049.220
2049.218
2049.220
2049.216 | 2049.222
2049.220
2049.221
2049.218 | 2049.220 .002 | | GA | CRATES AUX A | FUKA | 1969 NOV 24 | 2130 | 15,6 | 26 16 | | 2043.232 | 2043.232 0.000 | | ∢€
66 | DULLO | CRATER
CRAIER | 1969 HOV 25 | 2015
2130 | 14.7
15.8 | 11 19
6 6 | 7003,345
7003,349 | 7003.351
7003.356 | 7003,354 .004 | | GН | CULLO AUX & | CRATER | 1969 HOV 26 | 2215 | 15.2 | 16 5 | 7003.340 | 7003.348 | 7003.348 0.000 | | AR
AQ
FG | OULLO
QUARRY
OUARRY | QUARRY
BULLD
DULLO | 1989 OCT 16
1989 OCT 17
1989 NOV 22 | 2030 | 17.5
19.4
17.1 | 25 34
21 6
33 31 | 7868,290
7889,286
7888,305 | -7886.299
7886.294
7888.313 | 7888.300 .030 | | ۸¥ | QUARRY AUX A | DULLO | 1969 DCT 17 | 2130 | 19.2 | 31 15 | 7886,402 | 7896.411 | 7886,411 0,000 | | AO | DULLO FUX A | CHARRY | 1969 OCT 16 | 2245 | 17.8 | 6 3 | 7889.210 | 7889.220 | 7889,220 0,000 | | fy
GI
GI
GI
GI | Crater
Crater
Cgs
-Cg5
-Cg5
-Cg5 | -CGS
-CGS
-CRATER
-CRATER
-CRATER
-CRATER | 1969 NOV 24
1969 NOV 24
1969 NOV 27
1969 NOV 27
1969 NOV 27 | 2245
0030
0030
0030 | 15.3
15.3
13.7
13.7
13.7 | 32 13
12 21
36 15
89 28
83 22
13 21 | 513,360
513,360
513,351
513,351
513,350
513,351 | 513.361
513.361
513.352
513.351
513.351
513.352 | 513,356 ,805 | | 46
48
30.
30 | A KUN PETARO
A KUN PETARO
A KUN RETARO
A KUN RETARO | CG5
CG5
CG5
CG5 | 1969 NOV 24
1969 NOV 24
1969 NOV 24
1969 NOV 24 | 2215 | 15.3
15.3
15.3 | 34 13
54 11
54 10
18 14 | 505,960
505,962
505,959
505,964 | 505.961
505.963
505.960
505.965 | 505 . 962 - 2002 | | ÀÆ | QUAPRY | ROAD | 1969 OCT 18 | | | | | | 903 1762 2 002 | | AT | ROAD | QUAKRY | 1969 OCT 18 | 2100 | 20.3 | 26 5
33 19 | 5865 . 774
5865 . 771 | 5865.781
5865.780 | 5865.781 .001 | | ay
ay
az
az | OUARRY
QUARRY
ROAD AUX A
ROAD AUX A | ROAD AUX A
ROAD AUX A
QUARRY
QUARRY | 1969 OCT 22
1969 OCT 21
1969 OCT 21 | 2345 | 13.3
13.3
13.9
13.9 | 6 11
18 24
14 13
17 22 | 5907.212
5907.214
5907.210
5907.208 | 5907.221
5907.223
5907.220
5907.219 | 5907.221 .002 | | AS | QUARRY AUX A | RDAD . | 1969 DCT 18 | | 20.6 | 13 18 | 5865.449 | 5865,456 | 5865.456 0.000 | | AU
AV
BD
BE
BE
BE | Railway
Road
Road
Road
Road
Railway
Railway | ROAU
RAILWAY
RAILWAY
RAILWAY
RAILWAY
ROAU
ROAU | 1989 OCT 20
1989 OCT 20
1989 OCT 20
1989 OCT 23
1989 OCT 22
1989 OCT 22 | 1900
1900
9 1900
9 0015
1 2230 | 19.4
20.0
20.0
16.7
16.7
17.2
17.2 | 16 23
27 24
27 24
21 12
28 18
36 28
35 25 | 5774,464
5774,447
5774,438
5774,431
5774,445
5774,642
5774,642 | 5774,476 * 5774,456 5774,447 5774,448 5774,456 5774,451 | 5774.454 .011 | | AW
AX
BC
BC | ROAD RAILWAY AUX A RAILWAY AUX A RAILWAY AUX A RAILWAY AUX A | RAILWAY AUK A
ROAD
ROAD | 1969 DCT 20
1969 DCT 20
1969 DCT 22
1969 DCT 22 | 2138 | 20.0
19.4
17.2
17.2 | 41 31
50 52
47 37
37 24 | 5774.367
5774.389
5774.358
5774.356 | 5774,377
5774,401 *
5774,372
5774,370 | 5774.378 .014 | STECSDING PAGE BLANK MOT FILMED: | | | - | - | | _ | | | | Lêna Avanasa | |-----------|--|-------------------------------|----------------------------|--------------|----------------------|-----------------------------|--|--|----------------| | Code | Geodimeter Sta. | Retroreflector Sta
RAILWAY | _ | Time | Тепр. | Spread | Corrected D | Final D | Line Average | | BA
BB | ROAD AUX A ~
RAILWAY | ROAD AUX A | 1969 OCT 21
1969 OCT 22 | | 16-1
12-8 | 28 28
16 6 | 5734.986
5734.982 | 5735•000
5734•995 | | | 88
88 | RAILWAY
RAILWAY | ROAD AUX A
ROAD AUX A | 1969 OCT 22
1969 OCT.22 | | 12.8
12.8 | 38 18
23 24 | 5734.984
5734.982 | 5734 . 996
5734 . 994 | | | ьв. | RAILWAY | - ROAD AUX A | 1969 OCT 22 | | 12.8 | 38 24 | 5734.983 | 5734.995 | 5734.996 .002 | | | RAILWAY | MARIAM | 1969 OCT 22 | | 18;9 | 24 24 | 3929.177 | 3929.181 | | | BF
BG | RAILWAY
MARIAM | MARIAM
Railway | 1969 OCT 22
1969 OCT 23 | | 18.9
19.4 | 33 24 ⁻
40 38 | 3929,170
3929,183 | 3929.175
3929.187 | | | BG | MARIAM | RAILWAY -
RAILWAY | 1969 OCT 23 | | 19.4 | 47 36
27 23 | 3929,177 | 3929-181 | | | BU,
BU | MARIAM
MARIAM | RAILWAY | 1969 OCT 28 | | 16.0
16.0 | 27 23
22 13 | 3929.193
3929.194 | 3929.199
3929.200 | 3929.189 .010 | | BI
BT | MARIAM AUX A
MARIAM AU _X A | RAILWAY
RAILWAY | 1969 OCT 23
1969 OCT 29 | | 18.9
16.4 | 15 11
6 21 | 3937 . 559
393 7. 590 | 3937.564
3937.595 | 3937.580 .022 | | BH | RAILWAY AUX A | MARIAM , | 1969 OCT 22 | 2130 | 18.3 | , 32 18 | 3929.874 | 3929.879 | 3929.879 0.000 | | ·BK | MARIAM | GEORGE | 1969 OCT 23 | 2215 | 18.5 | 33 30 | 7262.507 | 7262.513 | | | BY
CA |
MARIAM
GEORGE | GEORGE
MAR1AM | 1969 OCT 28 | | 18.4
18.3 | 16 12
19 14 | 7262 . 526
7262 . 523 | 7262.531
7262.530 | 7262.527 .010 | | | • | | | | | | | | | | вх
вх | MARIAM
MARIAN | GEORGE AUX A
GEORGE AUX A | 1969 OCT 28 | | 17.1
17.1 | 17 22
12 27 | 7259.079
7259.078 | 7259•085
7259•084 | | | Bλ | MARIAM | GEORGE AUX A | 1969 OCT 28 | 2215 | 17.1 | 4 27 | 7259,082 | 7259.088 | | | ex
B2 | NARIAM
GEORGE AUX A | GEORGE AUX A
MARIAM | 1969 OCT 28 | | 17 .1
17.9 | 25 21 ¹
20 13 | 7259,074
7259,061 | 7259.080
7259.068 | | | BZ | GEORGE AUX-A > | MARIAM | 1969 OCT 29 | 2330 | 17.9 | 16 27 | 7259,060 | 7259.066 | | | ÞΖ · | GEORGE AUX A
GEORGE AUX A | MARIAM
MARIAM | 1969 OCT 29 | | 17.9
17.9 | 22 5
16 14 | 7259,063
7259,062 | 7259.069
7259.068 | | | BZ | GEORGE AUX A | MARIAM | 1969 OCT 29 | 2330 | 17.9 | 20 20 | 7259.061 | 7259.067 | | | BZ
BZ | GEORGE AUX A
GEORGE AUX A | MARIAM
MARIAM | 1969 OCT 29 | | 17.9
17.9 | 14 38
22 25 | 7259,060
7259,062 | 7259.067
7259.068 | | | BZ | GEORGE AUX A | MARIAM | 1969 OCT 29 | | 17.9 | 14 38 | 7259,060 | 7259.067 | 7259.073 .008 | | BJ | MARIAN AUX A | GEORGE | 1969 OCT 23 | | 19.1 | 10 17 | 7257.179 | 7257 • 185 | | | BV
BV | MARIAN AUX A
MARIAN AUX A | GEORGE | 1969 OCT 28 | | 17•2
17•8 | 7 16
14 20 | 7257.196
7257.195 | 7257.202
7257.200 | 7257.196 .009 | | bW | MARIAN AUX A | GEORGE AUX A | 1969 OCT 28 | 2130 | 17.1 | 35 7 | 7253,729 | 7253.735 | 7253.735 0.000 | | BR | RIDGF | GEORGE | 1969 OCT 27 | | 19.0 | 18 10 | 2529.936 | 2529-938 | | | CC | GEORGE - | RIDGE
RIDGE | 1969 OCT 29 | | 17.9
17.9 | 20 16
17 19 | 2529,951
2529,954 | 2529•954
2529•957 | | | CS | RIDGE | GEORGE | 1969 NOV 01 | 2215 | 19.6 | 14 11 | 2529.965 | 2529.968 | | | EB
EB | RIDGE . | GEORGE
GEORGE | 1969 NOV 14 | | 17.2
17.2 | 22 10
12 13 | 2529,961
2529,964 | 2529•964
2529•967 | | | EC
EC | RIDGE
RIDGE | GEORGE
GEORGE | 1969 NOV 13 | 2315 | 17.3
17.3 | 31 21
25 21 | 2529,933
2529,936 | 2529.936
2529.939 | 2529.954 .013 | | 85 | RIDGE AUX A | GECKGE | 1969 OCT 27 | | 18.5 | 20 25 | 2540.182 | 2540 • 184 | | | CT | RIDGE AUX A | GEORGE | 1969 NOV 1 | | 19.6 | 21 25 | 2540.198 | 2540 • 201 | 2540.192 .012 | | CB
CB | GEORGE AUX A
GEORGE AUX A | RIDGE | 1969 OCT 29 | | 19•1
19•1 | 26 26
15 17 | 2530.716
2530.715 | 2530-718
2530-718 | 2530.718 0.000 | | ĊE | GEORGF | ADAMA | 1969 OCT 29 | | 21.1 | 24 21 | 4461.164 | 4461.169 | | | CA | GEORGE
ADAMA | ADAMA
George | 1969 OCT 29 | 1930
2115 | 21 .1
20.3 | 36 21
15 15 | 4461.161
4461.169 | 4461.167
4461.175 | | | ĊΫ | ADAMA | GEORGE | | 2115 | 20.3 | 33 14 | 4461.168 | 4461-175 | 4461.172 .004 | | CU
CU | A XUA ANADA
A XUA AHADA | GEORGE
GEORGE | 1969 NOV 1
1969 NOV 1 | | 20.3
20.3 | 5 13
9 32 | 4470.809
4470.808 | 4470.815
4470.814 | 4470.815 .001 | | CD
CD | GEORGE AUX A
GEORGE AUX A | ADAMA
ADAMA | 1969 OCT 29 | | 20.2
20.2 | 3 7
17 9 | 4470.534
4470.531 | 4470±540
4470±537 | 4470.539 +002 | | | | | | | | | | | | | CX
I2 | RIDGE
ADA _l A | ADAMA
RIDGE | 1969 OCT 30 | 2115
1900 | 20.0
21.6 | 32 20
5 17 | 2665.559
2865.557 | 2865•564
2865•560 | | | čx | ADAMA | RIDGE | 1969 NOV | | 21.6 | 9 16 | 2865,553 | 2865.556 | 2865.559 .004 | | CM | A XUA AMADA | RIDGE | 1969 NOV | . 1930 | 21•2 | 14 15 | 2874.385 | 2874.388 | 2874.388 0.000 | | CH | RIDGE AUX A
RIDGE AUX A | ADAMA
ADAMA | 1969 OCT 30
1969 OCT 30 | | 19.4
19.4 | 22 26
12 13 | 2877.997
2877.996 | 2878.001
2878.001 | 2878.001 0.000 | | (V | 2100- | .m. p.ee. | 1040 MAT - | | | 20 10 | 442E 220 | 643F 3/F | | | CK
GZ | RIDGE
(EL PASO) | (EL PASO)
Ridge | 1969 OCT 30 | | 21.0
16.9 | 23 10
22 26 | 6625.339
6625.349 | 6625•345
6625•356 | | | CZ | (EL PASO) | RIDGE | | 0100 | 17.5 | 17 12 | 6625.353 | 6625.360 | 6625.354 .008 | | C.Y. | RIDGE
EL PASC AUX A | , EL PASO AUX A
RIDGE | 1969 OCT 30 | 2030 | 20.3
17.6 | 12 6
13 15 | 6631.474
6631.479 | 6631.480
6631.486 | 6631.483 .004 | | | | | | - | • • | _ | • | - | | | Code | Geodimeter Sta. | Retroreflector Sta | Date - | Time | Temp. | Spread . | Corrected D | Final D | Line Avera | ge | |---|--|---|--|--|--|---|--|--|------------------|-------| | CL
CL | RIDGE AUX A
RIDGE AUX A | (EL PASO)
(EL PASO) | 1969 OCT 30
1969 OCT 30 | | 21.2
21.1 | 15 13
15 17 | 6615.419
6615.413 | 6615•424
6615•418 | 6615.421 | •004 | | BQ
CG
EZ
EZ
FA
FA | FARENJI
RIDGE
FARENJI
FARENJI
FARENJI
FARENJI | RIDGE
FARENJI
RIDGE
RIDGE
RIDGE
RIDGE | 1969 OCT 25
1969 OCT 30
1969 NOV 17
1969 NOV 17
1969 NOV 17
1969 NOV 17 | 2315
2140
2140
2110 | 18.1
17.9
16.7
16.7
16.7 | 23 10
13 11
29 15
29 6
15 17
15 9 | 3022.220
3022.235
3022.242
3022.245
3022.235
3022.235 | 3022.225 * 3022.241 3022.247 3022.250 3022.240 3022.245 | 3022.241 | •009 | | ВP | (FARENJI AUX.) | RIDGE | 1969 OCT 25 | | 18.1 | 32 10 | 3015.089 | 3015.095 | .245
3015.095 | .00+ | | CF
, | RIDGE AUX A | -FARENĴI | 1969 OCT 30 | 2230 | 18.6 | 37 30 | 3026.065 | 3026.071 | 3026.071 | 0.000 | | DX
DX
EA
EA | (FULCRUM)
(FULCRUM)
RIDGE
RIDGE | RIDGÉ
RIDGE
(FULCRUM)
(FULCRUM) | 1969 NOV 10
1969 NOV 10
1969 NOV 14
1969 NOV 14 | 2000
0115 | 18.7
18.7
15.0
15.0 | . 18 19
18 20
36 19
27 19 | 5339.746
5339.749
5339.751
5339.751 | 5339.750
5339.753
5339.755
5339.755 | 5339.753 | •002 | | DY
DY | FULCPUM AUX A
FULCRUI, AUX A | RIDGE
RIDGE | 1969 NOV 10
1969 NOV 10 | | 19.2
19.2 | 9 13
17 28 | 5335.146
5335.146 | 5335.149
5335.149 | 5335+149 | 0.000 | | CR
DB | ADAHA
(EL PASO) | (EL PASO)
ADAMA | 1969 OCT 31
1969 NOV 3 | | 21.4
18.1 | 5 .18
11 24 | 6145.048
6145.062 | 6145.058
6145.073 | 6145.065 | •011 | | DA. | EL PASO AUX A > | ADAMA | 1969 NOV 3 | 2330 | 18,2 | 24 29 | 6153.603 | 6153.614 | 6153.614 | 0.000 | | Co | ADAMA AUX A | (EL PASO) . | 1969 OCT 31 | 2100 | 21.2 | 2 30 | 6141.502 | 6141.511 | 6141.511 | 0.000 | | BN
BN
CP
-CP
EW
EX
EY
EY | FARFNJI
FARENJI
ADANA
ADAMA
FARENJI
FARENJI
FARENJI
FARENJI | ADAMA
ADAMA
FARENJI
FARENJI
ADAMA
ADAMA
ADAMA
ADAMA
ADAMA | 1969 OCT 25
1969 OCT 25
1969 OCT 31
1969 OCT 31
1969 NOV 17
1969 NOV 17
1969 NOV 17
1969 NOV 17 | 2145
1930
1930
2310
2255
2225 | 19.0
19.0
22.8
22.8
15.6
15.8
16.1 | 42 10
42 3
28 14
28 30
20 23
36 6
30 14
33 22 | 1400.877
1400.876
1400.880
1400.882
1400.880
1400.880
1400.887
1400.884 | 1400.880
1400.879
1400.882
1400.884
1400.884
1400.884
1400.884 | 1400.884 | •004 | | 80
80 | (FARENJI AUX.)
(FARENJI AUX.), | ADAMA
-ADAMA | 1969 OCT 25
1969 OCT 25 | | 19•4
19•4 | 26 15
31 6 | 1406.448
1406.442 | 1406.451
1406.445 | 1406.448 | •004 | | CO
CO | ADAMA AUX A
ADAMA AUX A | FARENJI
FARENJI | 1969 OCT 31
1969 OCT 31 | | 22.5
22.5 | 13 16
18 27 | 1398.015
1398.011 | 1398.017
1398.014 | 1398.016 | •002 | | BM
DD
DD
FD
FD
FD
FD | FARENJI
FARENJI
(EL PASO)
(EL PASO)
FARENJI
FARENJI
FARENJI
FARENJI | (EL PASO)
(EL PASO)
FARENJI
FARENJI
(EL PASO)
(EL PASO)
(EL PASO) | 1969 OCT 25
1969 OCT 25
1969 NOV 3
1969 NOV 17
1969 NOV 17
1969 NOV 17
1969 NOV 17 | 1900
2200
2200
1820
1820
1820 | 20.9
20.9
17.8
17.8
19.6
19.6
19.6 | 25 22
34 11
26 10
30 16
21 15
16 6
16 6
21 11 | 4749,002
4748,997
4749,016
4749,016
4749,019
4749,023
4749,021
4749,019 | 4749.007 #
4749.002 #
4749.024
4749.024
4749.024
4749.028
4749.023 | 4749•021 | .010 | | BL | (FARENJI AUX.) | (EL PASO) | 1969 OCT 25 | 1945 | 20.7 | 42 32 | 4744.391 | 4744.397 | .025 | .002 | | BL
DC | (FARENJI AUX.) EL PASO AUX A | (EL PASO) FARENJI | 1969 OCT 25 | 2115 | 20.7
17.6 | 21 15
8 10 | 4744,394
4757,472 | 4744.400
4757.480 | 4744•399 | •002 | | DC | EL PASC AUX A | FARENJI | 1969 NOV 3 | 2115. | 17.6 | 12 3 | 4757.479 | 4757.486 | 4757.483 | •004 | | ĐÌ | (EL PASO)
OBSIDIAN | OBSIDIAN
(EL PASO) | 1969 NOV 3
1969 NOV 5 | | 19.2
21.0 | 21 12
12 7 | 4725.827
4725.832 | 4725.833
4725.838 | 4725.836 | •004 | | DK
DK | OBSIDIAN AUX A
OBSIDIAN AUX A | (EL PASO)
(EL PASO) | 1969 NOV 05
1969 NOV 05 | | 20.4
20.4 | 14 11
21 21 | 4739.131
4739.126 | 4739.138
4739.133 | 4739.136 | •004 | | DF
DF | EL PASO AUX A
EL PASO AUX A | OBSIDIAN
OBSIDIAN | 1969 NOV 3
1969 NOV 3 | 2015
2015 | 17.9
17.9 | 19 9
19 4 | 4716.767
4716.770 | 4716.773
4716.776 | 4716.775 | •002 | | DW
DW
DW
FB
FB
FB | (FULCRUM) (FULCRUM) (FULCRUM) (FULCRUM) FARENJI FARENJI FARENJI FARENJI | FARENJI
FARENJI
FARENJI
(FULCRUM)
(FULCRUM)
(FULCRUM)
(FULCRUM) | 1969 NOV 10
1969 NOV
10
1969 NOV 10
1969 NOV 17
1969 NOV 17
1969 NOV 17
1969 NOV 17 | 2045
2045
2045
2025
2025
2025 | 18.1
18.1
18.1
18.1
18.1
18.1
18.1 | 24 11
17 14
29 25
35 14
29 15
13 18
29 6
13 18 | 2365,984
2365,981
2365,983
2365,979
2365,978
2365,977
2365,977
2365,980 | 2365.987
2365.984
2365.986
2365.982
2365.980
2365.980
2365.980
2365.980 | 2365,983 | •003 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | :
Final D | Line Average | |--|--|--|--|--|--|--|--|--|----------------| | DV
DV | FULCRUM AUX A | FARENJI
FARENJI | 1969 NOV 1
1969 NOV 1 | | 18.1
18.1 | 23 25
23 2 | 2358.156
2358.154 | 2358•159
2358•157 | 2358.158 .001 | | FC
FC | (FARENJI AUX.)
(FARENJI AUX.) | (FULCRUM)
(FULCRUM) | 1969 NOV-1
1969 NOV 1 | | 18.4
18.4 | 23 15
23 19 | 2375.145
2375.148 | 2375.147
2375.150 | 2375.148 .002 | | FF
FG | GRAVES (FULCRUM) | (FULCRUM)
GRAVES | 1969 NOV 1
1969 NOV 2 | | 17.8
21.1 | 3 20
4 21 | 7315.756
7315.761 | 7315.762
7315.765 | 7315.763 .002 | | FE
FM
FM | GRAVES AUX A
GRAVES AUX A
.(FULCRUM)
(FULCRUM) | (FULCRUM)
(FULCRUM)
- GRAVES AUX A
GRAVES AUX A | 1969 NOV 1
1969 NOV 1
1969 NOV 2
1969 NOV 2 | 8 2235
1 2100 | 18.3
18.3
16.6
16.6 | 17 24
17 13
22 19
23 9 | - 7339.298
7339.300
7339.289
7339.273 | 7339.304
7339.307
7339.295
7339.298 | 7339.301 .005 | | · FN | FULCRUP AUX A | GRAVES | 1969 NOV 2 | 1 2000 | 16.7 | 17 10 | 7318.002 | 7318.007 | 7318.007 0.000 | | FI
FI
FK
FK | GRAVES
GRAVES
GRAVES
GRAVES | CINDER
CINDER
CINDER
CINDER | 1969 NOV 2
1969 NOV 2
1969 NOV 2
1969 NOV 2 | 2 0100
1 2400 | 16.8
16.8
16.5
16.5 | 24 18
27 22
21 15
21 17 | 5866.813
5866.814
5866.815
5866.818 | 5866.819
5866.821
5866.821
5866.824 | 5866,821 .002 | | FJ ·
FJ
FL
FL | GRÁVES AUX A
GRAVES AUX A
GRAVES AUX A
GRAVES AUX A | CINDER
CINDER
CINDER
CINDER | 1969 NOV 2
1969 NOV 2
1969 NOV 2
1969 NOV 2 | 2 0030
1 2330 | 16.8
16.8
16.8
16.8 | 37 28
37 28
27 22
27 19 | 5876.668
5876.670
5876.666
5876.669 | 5876.674
5876.677
5876.673
5876.676 | 5876, 675 .002 | | DI
DI
DI
DR
DR
DR
DR | OBSIDIAN OBSIDIAN OBSIDIAN OBSIDIAN OBSIDIAN ROGGI ROGGI ROGGI ROGGI ROGGI | ROGGI
ROGGI
ROGGI
ROGGI
OBSIDIAN
OBSIDIAN
OBSIDIAN
OBSIDIAN | 1969 NOV | 7 2315
7 2315
7 2315 | 17.6
17.6
17.6
17.6
16.7
16.7
16.7 | 47 30
30 17
35 29
43 17
21 15
3 12
22 25
3 25 | 6074,160
6074,170
6074,170
6074,163
6074,162
6074,168
6074,163
6074,163 | 6074.174
6074.183
6074.177
6074.177
6074.173
6074.178
6074.175 | 6074+177 +004 | | DH
DH
DS
DS | OBSIDIAN
OBSIDIAN
ROGGI AUX A
ROGGI AUX A | ROGGI AUX A
ROGGI AUX A
OBSIDIAN
OBSIDIAN | 1969 NOV
1969 NOV
1969 NOV (| 5 2230
7 2300 | 18.6
18.6
17.4
17.4 | 7 14
26 5
6 14
22 5 | 6089,909
6089,908
6089,908
6089,906 | 6089.923
6089.923
6089.923
6089.921 | 6089.923 .001 | | DG | OBSIDIAN R.M. | ROGGI | 1969 NOV (| 0045 | 17.2 | 35 24 | 6081.086 | 6081.099 | 6081.099 0.000 | | DU
EE | ROGGI
ROGGI | MIETCHI
MIETCHI | 1969 NOV 0 | | 19.2
17.7 | 14 19
20 18 | 6260,901
6260,897 | 6260+907
6260+904 | 6260.906 .002 | | ΕĐ | ROGGI | MIETCHI AUX A | 1969 NOV | 3 2100 | 17.3 | 11 6 | 6254.943 | 6254.950 | 6254,950 0.000 | | DT
DT
DT | ROGGI AUX A
ROGGI AUX A
ROGGI AUX A
ROGGI AUX A | MIETCHI
MIETCHI
MIETCHI
MIETCHI | 1969 NOV (
1969 NOV (
1969 NOV (
1969 NOV (| 7 2015
7 2015 | 18.6
18.6
18.6 | 14 22
11 16
14 22
14 12 | 6236.794
6236.797
6236.795
6236.800 | 6236.801
6236.804
6236.802
6236.807 | 6236.804 .003 | | DZ
DZ
EH
EH
-EJ
EJ | MIETCHI
MIETCHI
TOPLESS
TOPLESS
TOPLESS
TOPLESS | TOPLESS TOPLESS MIETCHI MIETCHI MIETCHI MIETCHI | 1969 NOV
1969 NOV
1969 NOV
1969 NOV
1969 NOV | 12 2015
14 2045
14 2045
14 1900 | 19.0
19.0
17.9
17.9
19.4
19.4 | 26 45
21 18
14 8
14 16
26 6
13 15 | 5566.620
5566.621
5566.622
5566.625
5566.611 | 5566.626
5566.627
5566.629
5566.631
5566.617
5566.623 | 5560.625 .005 | | EG
EI
EI | TOPLESS AUX A
TOPLESS AUX A
TOPLESS AUX A
TOPLESS AUX A | MIETCHI
MIETCHI
MIETCHI | 1969 NOV :
1969 NOV :
1969 NOV
1969 NOV | 24 2130
14 1945 | 17.3
17.3
18.9
18.9 | 23 12
29 16
15 4
30 17 | 5576.984
5576.988
5576.992
5576.993 | 5576.991
-5576.995
5576.998
5576.999 | 5576.996 .004 | | EF
EF
FX
FX | DUST
DUST
DUST
DUST | MIETCHI
MIETCHI
MIETCHI
MIETCHI | 1969 NOV
1969 NOV
1969 NOV
1969 NOV | 14 2315
14 2345 | 14.6
14.6
13.7
13.7 | 30 3
2 21
37 24
22 25 | 5511.364
5511.362
5511.364
5511.365 | 5511.373
5511.371
5511.371
5511.373 | 5511.372 .001 | | FW | DUST AUX A | MIETCHI | 1969 NOV | 15 0030 | 13.6 | 9 23 | 5521.135 | 5521,142 | 5521.142 0.000 | | EP
EV
EV | DUST
DUST
TOPLESS
TOPLESS | TOPLESS
TOPLESS
DUST
DUST | 1969 NOV
1969 NOV
1969 NOV
1969 NOV | 16 0120
16 2315 | 13.6
13.6
15.4
15.4 | 32 29
19 12
36 33
13 7 | 1709.682
1709.684
1709.692
1709.690 | 1709.686
1709.688
1709.696
1709.694 | 1709,691 .005 | | EO
EO
EO | DUST AUX A
DUST AUX A
DUST AUX A
DUST AUX A | TOPLESS
TOPLESS
TOPLESS
TOPLESS | 1969 NOV
1969 NOV
1969 NOV
1969 NOV | 16 0150
16 0150 | 12.4
12.4
12.4
12.4 | 34 26
16 2
34 13
29 26 | 1684.639
1684.639
1684.637
1684.642 | 1684.643
1684.642
1684.640
1684.646 | 1684.642 .003 | | | | | | | | | - | | | | | |------|--------------------------------|---------------------|-----------|-----|------|--------|-----|------|-------------|----------|----------------| | Code | Geodimeter Sta. | Retroreflector Sta. | Date | | Time | Temp. | Spr | read | Corrected D | Final D | Line Average | | Eυ | TOPLESS AUX A | DUST | 1969 NOV | 16 | 2345 | 15.8 | 47 | 36 | 1739.338 | 1739.342 | | | ĒŬ | TOPLESS AUX A | DUST | 1969 NOV | | | 15.8 | 43 | 41 | 1739.343 | 1739.347 | | | ΕŪ | TOPLESS AUX A | DUST | 1969 NOV | | | 15.8 | 56 | 41 | 1739.340 | 1739.344 | | | ĒŪ | TOPLESS AUX A | DUST | 1969 NOV | | | 15.8 | 34 | 36 | - 1739.341 | 1739.345 | 1739.345 .002 | | 60 | TOPESS NON N | 0031 | 1909 1104 | 10 | 2545 | 15.0 | 24 | 36 | . 1139.341 | 11394343 | 1757,6545 -002 | | EL | TOPLESS . | SELASSIE | 1969 NOV | 1 = | 1040 | 18.3 | 16 | 22 | 7489.385 | 7489.397 | | | ĔĹ | TOPLESS | SELASSIE | 1969 NOV | | | 18.3 | 24 | 19 | 7489.386 | 7489.399 | | | ĒŤ | SELASSIE | TOPLESS | 1969 NOV | | | 18.9 | 17 | 22 | 7489.391 | 7489.402 | | | ĒŤ | SELASSIE | TOPLESS | 1969 NOV | | | 18.9 | 20 | 12 | 7489.394 | 7489 405 | 7489.401 .003 | | Er | | TOBI CCC | 10/0 NoV | ٠. | 1040 | | | | | • • | | | ES | SELASSIE AUX A | TOPLESS | 1969 NOV | 10 | 1940 | 18.6 | 17 | 11 | 7469,987 | 7469.999 | 7469.999 0.000 | | EK | TOPLESS AUX A | SELASSIE | 1969 NOV | 15 | 2015 | 17.9 | 33 | 16 | 7466.233 | 7466.246 | | | EΚ | TOPLESS AUX A | SELASSIE | 1969 NOV | 15 | 2015 | 17.9 - | 13 | 15 | 7466.232 . | 7466.245 | | | ΕK | TOPLESS AUX A | SELASSIE | 1969 NOV | 15 | 2015 | 17.9 | 33 | 7 | 7466.231 | 7466.245 | | | EΚ | TOPLESS AUX A | 5ELASSIE | 1969 NOV | 15 | 2015 | 17.9 | 22 | 28 | 7466.232 | 7466.246 | 7466.245 .001 | | | • | | | | | | • | | | | | | EN | DUST . | SELASSIE . | 1969 NOV | 15 | 2220 | 16.0 | 17 | 27 | 8686.851 | 8686.872 | | | EN | DUST | SELASSIE | 1969 NOV | | | 16.0 | 16 | 18 | 8686.853 | 8686 874 | | | FG | SELASSIE | DUST | 1969 NOV | | | 17.8 | 31 | 29 | 8686.870 | 8686.887 | | | EQ | SELASSIE | DUST | 1969 NOV | | | 17.8 | 24 | 29 | 8686.874 | 8686.891 | 8686.880 .009 | | | 022.10012 | | 1909 1101 | •• | 2100 | 1140 | 44 | -7 | 80005014 | 00001031 | 00004000 1007 | | ER | SELASSIE AUX A | DUST | 1969 NOV | | | 18.2 | 28 | 32- | 8662.805 | 8662.820 | | | ER | SELASSIE AUX A | DUST | 1969 NOV | 16 | 2020 | 18.2 | 11 | 12 | 8662.805 | 8662.821 | 8662,821 .001 | | EM | DUST AUX A | SELASSIE | 1969 NOV | 15 | 2250 | 15.5 | 19 | 15 | 8660.051 | 8660.072 | 8660.072 0.000 | | | • | , | • | | | | | | | | | | Ρo | · NORTHWEST (X) | SDUTHEAST (0) | 1969 NOV | 06 | 1000 | 16.1 | 22 | 15 | 198,525 | 198.525 | | | DP | NORTHWEST (X) | | 1969 NOV | | | 15.6 | 30 | 37 | 198.525 | 198,525 | | | DO | NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | | | 15.3 | 21 | 20 | 198.525 | 198.525 | | | DO | NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | | | 15.3 | 21 | 9 | 198.523 | 198.524 | • | | DQ | NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | | | 15.3 | 21 | 29 | 198.524 | 198.525 | | | DQ | NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | | | 15.3 | | | 198.524 | | | | FS | NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | | | | 21 | 16 | | 198.524 | | | FS | | SOUTHEAST (0) | | | | 16.1 | 13 | 28 | 198,526 | 198.526 | | | FS | NORTHWEST (X)
NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | | | 16.1 | 16 | 12 | 198,520 | 198.521 | | | FS | | | 1969
NOV | | | 16.1 | 16 | 33 | 198.522 | 198.523 | | | | NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | | | 16.1 | 13 | 25 | 198.524 | 198.524 | | | FT | NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | | | 16.1 | 31 | 22 | 198.527 | .198.528 | | | FT | NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | | | 16.1 | 28 | 17 | 198.524 | 198.525 | | | FT | NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | | | 16.1 | 28 | 38 | 198.526 | 198.527 | | | FT | NORTHWEST (X) | SOUTHEAST (0) | 1969 NOV | 23 | 2330 | 16-1 | 31 | 7 | 198,525 | 198.525 | 198.525 .002 | | | | | | | | | | | | | | | AA | NORTHWEST (XV) | SOUTHEAST (0) | 1969 OCT | | | 14.4 | 35 | 34 | 297.822 | 297.823 | | | ΑB | NORTHWEST (XV) | SOUTHEAST(O) | 1969 OCT | | | 14.4 | 26 | 24 | 297.831 | 297.831 | | | PL | NORTHWEST (XV) | SOUTHEAST (O) | 1969 NOV | | | 13.9 | 30 | 32 | 297.830 | 297.831 | | | DM | NORTHWEST (XV) | SOUTHEAST (0) | 1969 NOV | 06 | 2245 | 14.2 | 26 | 29 | 297.832 | 297.832 | | | DN | NORTHWEST (XV) | SOUTHEAST (0) | 1969 NOV | 06 | 2200 | 14.4 | 34 | 3 i | 297.823 | 297.824 | | | ۴U | NORTHWEST (XV) | SOUTHEAST (0) | 1969 NOV | | | 16.1 | 26 | 27 | 297.821 | 297.822 | | | F۷ | NORTHWEST (XV) | SOUTHEAST (0) | 1969 NOV | | | 16.8 | 20 | 21 | 297.818 | 297,819 | 297.826 .005 | | | | | | | | | | | -2.4 | | | ## APPENDIX C LASER8 1970 GEODIMETER OBSERVATIONS | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time 1 | Γemp. | Spread | Corrected D | Final D | Line Average | |------------------|--|---|--|------------------|--------------|-----------------------|------------------------------------|--|----------------------------| | IB
IC | RIDGE
RIDGE | MARIAM
MARIAM | 1970 NOV 03
1970 NOV 03 | | 20.9
20.6 | 4 R
32 R | 9759•383
9759•380 | 9759•387
9759•384 | 9759•387 •002 | | KY.
KZ | воки
воки | MARIAM
MARIAM
- | 1970 NOV 14
1970 NOV 14 | | | 31 M
22 M | 16322.443
16322.428 | 16322.453
16322.438 | 16322.444 .011 | | IA | RIDGE_ | GEORGE | 1970 NOV 03 | 1615 | 24.2 | 16 Ŕ | 2529.949 | 2529.951 | 2529.951 0.000 | | HF
HG | RIDGE R.M.
RIDGE R.M. | GEORGE
GEORGE | 1970 NOV 01
1970 NOV 01 | | 19.9
20.1 | 13 M
8 M | 2532.075
2532.070 | 2532.073
2532.068 | 2532.070 .004 | | но | ADAMA | GEORGE . | 1970 NOV 02 | 1610 | 25.8 | 23 R | 4461.171 | 4461.176 | 4461.176 0.000 | | JF | (FULCRUM) . | GEORGE | 1970 NOV 09 | 1745 2 | 21.5 | 14 R | 7279,910 | 7279,913 | 7279.913 0.000 | | HS
HT | FULCRUM AUX A-
FULCRUM AUX A | GEORGE
GEORGE | 1970 NOV 03
1970 NOV 03 | | | 19 M
24 M | 7281.194
7281.195 | 7281.188
7281.190 | 7281.189 .001 | | JG
JH
- LA | BOKU
BOKU
BOKU | GEORGE
GEORGE
GEORGE | 1970 NOV 10
1970 NOV 10
1970 NOV 14 | 0815 | 19.1 | 19 M
30 M
31 M | 9430.882
9430.857
9430.844 | 9430.873 *
9430.849
9430.851 | 9430•860 •013
.850 .001 | | HZ | RIDGE | , ADAMA | 1970 NOV 03 | 1150 2 | 24.7 | 9 M | 2865,567 | 2865.568 | 2865,568 0,000 | | HH
HI
HP | RIDGE R.M.
RIDGE R.M.
ADAMA | ADAMA
ADAMA
RIDGE R.M. | 1970 NOV 01
1970 NOV 01
1970 NOV 02 | 0940 2 | | 4 M
29 M
26 R | 2866.130
2866.134
2866.101 | 2866.128
2866.133
2866.104 | 2866.123 .016 | | HY | RIDGE | EL PASO AUX A | 1970 NOV 03 | 1105 2 | 23.1 | 20 M | 6631,490 | 6631.490 | 6631.490 0.000 | | HM | RIDGE R.M.
RIDGE R.M. | EL PASO AUX A
EL PASO AUX A | 1970 NOV 01
1970 NOV 01 | | 24.4
24.4 | 7 R
35 R | 6629,400
6629,422 | 6629•404
6629•426 | 6629,410 .016 | | IV
KG
KH | RIDGE
FARENJI
FARENJI | FARENJI
RIDGE
RIDGE | 1970 NOV 07
1970 NOV 12
1970 NOV 12 | 1610 2 | 2.9 | 30 R
18 R
17 R | 3022.266
3022.256
3022.255 | 3022.268
3022.259
3022.259 | 3022.261 .005 | | HJ
HK
HL | RIDGE R.M.
RIDGE R.M.
RIDGE R.M. | FARENJI
FARENJI
FARENJI | 1970 NOV 01
1970 NOV 01
1970 NOV 01 | 1030 2 | | 17 M
36 M
2 R | 3021.619
3021.616
3021.606 | 3021.618
3021.616
3021.607 | 3021.612 .006 | | JD
JE | (FULCRUM)
(FULCRUM) | RIDGE
RIDGE | 1970 NOV 09
1970 NOV 09 | | | 31 R
40 R | 5339.760
5339.771 | 5339.762
5339.773 | 5339.767 .008 | | НV | FULCRUM AUX A
FULCRUM AUX A | RIDGE
RIDGE | 1970 NOV 03
1970 NOV 03 | | 0.2
0.5 | 6 M
8 M | 5335.191
5335.189 | 5335.189
5335.186 | 5335.188 .002 | | JI
LB | BOKU
BOKU
BOKU | RIDGE
RIDGE
-RIDGE- · · · · · | 1970 NOV 10
1970 NOV 10
-1970 NOV-14 | 0910 2 | 0.7 | 11 M
4 M
31 M - | 6998.221
6998.204
6998.222 — | 6998.216
6998.200
6998.227 ~ | 6998;211014- | | HR | ADAMA | EL PASO AUX A | 1970 NOV 02 | 1800 2 | 2.0 | 7 R | 6153.607 | 6153.611 | 6153.611 0.000 | | HQ
IU | ADAMA
ADAMA | FARENJI
FARENJI | 1970 NOV 02
1970 NOV 07 | | | 27 R
15 M | 1400.889
1400.894 | 1400,891
1400,896 | 1400.894 .004 | | JK
JL
KX | BOKU
BOKU
BOKU | ADAMA
ADAMA
ADAMA | 1970 NOV 10
1970 NOV 10
1970 NOV 14 | 1000 2 | 1.5 2 | 23 M
26 M
13 R | 7427.073
7427.080
7427.062 | 7427.069
7427.076
7427.063 | 7427.068 .007 | | ΚΙ | FARENJI
FARENJI | EL PASO AUX A
EL PASO AUX A | 1970 NOV 12
1970 NOV 12 | 1700 2
1715 2 | | 29 R
11 R | 4757,500
4757,497 | 4757 _* 505
4757 _* 501 | 4757.502 .003 | | JO
JP
KT | BOKU
BOKU
BOKU | EL PASO AUX A
EL PASO AUX A
EL PASO AUX A | 1970 NOV 10
1970 NOV 10
1970 NOV 14 | 1130 2 | 3.5 2 | .2 M
RO M
-1 R | 2307,080
.2307,072
2307,088 | 2307.081
2307.072
2307.087 | 2307•079 •008 | | JB
JC | (FULCRUM)
(FULCRUM) | FARENJI
FARENJI | 1970 NOV 09 : | | | 9 R
10 R | 2365,995
2366,007 | 2365.998
2366.009 | 2366.005 .008 | | нх
нм | FULCRUM AUX A
FULCRUM AUX A | FARENJI
FARENJI | 1970 NOV 03 (| | | .2 M
!0 M | 2358.175
2358.188 | 2358.174
2358.187 | 2358.180 .009 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date Time | Temp. | Spread | Corrected D | :
Final D | Line Average | è | |--|--|--|--|--|--|--|--|--------------------|--------------| | JM
JM | BOKU
BOKU
BOKU | FARENJI
FARENJI
FARENJI | 1970 NOV 10 1030
1970 NOV 10 1040
1970 NOV 14 0950 | 22.9
22.9
20.8 | 42 M
4 M
8 R | 6066,401
6066,410
6066,410 | 6066.400
6066.409
6066.407 | 6066,407 | •005 | | IE.
KP | GRAVES .
GRAVES . | (FULCRUM)
(FULCRUM) | 1970 NOV 04 0845
1970 NOV 13 1315 | 21,9
24,4 | 21 M
25 R | 7315.810
7315.767 | 7315.806
7315.770 | 7315.789 | •025 | | IF
KO | GRAVES AUX A
GRAVES AUX A | (FULCRUM)
(FULCRUM) | 1970 NOV 04 0930
1970 NOV 13 1250 | 23.0
24.8 | 32 M
30 R | 7339,330
7339,318 | 7339 . 328
7339 . 321 | 7339.324 | •005 | | ID | GRAVE5 | FULCRUM AUX A | 1970 NOV 04 0830 | 21+3 | 13 M | 7318.046 | 7318•042 | 7318-042 | •000 | | IN
IQ | FULCRUM AUX A
FULCRUM AUX A | CINDER
CINDER | 1970 NOV 06 0830
1970 NOV 06 0845 | 21.8
22.0 | 9 R
15 R | 12089.238
12089.231 | 12089.231
12089.224 | 12089.228 | •005 | | IP
IO
IW
IY | (FULCRUM)
(FULCRUM)
(FULCRUM)
(FULCRUM) | RABBIT
RABBIT
RABBIT
RABBIT | 1970 NOV 07 0850
1970 NOV 07 0905
1970 NOV 08 0820
1970 NOV 08 0900 | 20.5
21.3
19.7
21.3 | 25 M
20 M
46 M
9 M | 12573.427
12573.414
12573.467
12573.413 | 12573.420
12573.409
12573.460 *
12573.407 | 12573•416
-410 | •025
.oo≆ | | IR
IX | FULCRUM R.M.
FULCRUM R.M. | RABBIT | 1970 NOV 07 0925
1970 NOV 08 0840 | 21.7
20.6 | 27 M
. 3 M | 12578.435
12578.464 | 12578•431
12578•457 | 12578-449 | •018 | | J5
JT
KV | BOKU
BOKU - / | (FULCRUM)
(FULCRUM)
(FULCRUM) | 1970 NOV 10 1715
1970 NOV 10 1738
1970 NOV 14 1020 | 22.3
21.9
21.4 | 12 R
7 R
33 R | 6902.400
6902.399
6902.417 | 6902.403
6902.401
6902.416 | 6902•404 | .008 | | KW | воки | FULCRUM AUX A | 1970 NOV 14 1035 | 21.7 | 24 R | 6880.085 | 6880.084 | 6880,084 | 5.000 | | IG
IH | GRAVES AUX A
GRAVES AUX A | CINDER
CINDER | 1970 NOV 04 1125
1970 NOV 04 1150 | 26.5
26.7 | 33 R
16 R | 5876•679
5876•676 | 5876.680
5876.678 | 5876.679 | •001 | | 7A
70 | AYGU
AYGU | CINDER
CINDER | 1970 NOV 11 0825
1970 NOV 11 0840 | 18.3
20.4 | 19 R
26 R | 13466.942
13466.922 | 13466.931*
13466.912 | 13466.923 | •013 | | KK
KL | BOHALLA
BOHALLA | CINDER
CINDER | 1970 NOV 13 1050
1970 NOV 13 1100 | 23.7
23.9 | 16 M
8 M | 7233.362
7233.355 | 7233•362
7233•355 | 7233.358 | •005 | | KM
KN | BOHALLA
BOHALLA | CINDER AUX A
CINDER AUX A | 1970 NOV 13 1110
1970 NOV 13 1118 | 24.3
24.4 | 29 M
11 M | 7223.521
7223.526 | 7223•521
7223•527 | 7223.525 | •004 | | ML
MM | ROGGI
ROGGI | MIETCHI
MIETCHI | 1970 NOV 21 1640
1970 NOV 21 1652 | 24.5
24.4 | 34 R
36 R | 6260.907
6260.897 | 6260.912
6260.903 | 6260.908 | •006 | | MN
MO | ROGGI AUX A
ROGGI AUX A | MIETCHI
MIETCHI | 1970 NOV 21 1710
1970 NOV 21 1720 | 23.9
23.5 | 18 R
30 R | .6236 ₊ 804
6236 ₊ 813 | 6236.810
6236.818 | 6236.813 | •006 | | JQ
JR
KQ | BOKU
BOKU
BOKU | ROGGI
ROGGI
ROGGI |
1970 NOV 10 1610
1970 NOV 10 1635
1970 NOV 14 0815 | 24.0
23.8
15.6 | 38 R
27 R
48 R | 9845.333
9845.324
9845.396 | 9845.344
9845.336
9845.383* | 9845 • 349
33 q | •025
•006 | | KR
KS | BOKU
BOKU | ROGGI AUX A
ROGGI AUX A | 1970 NOV 14 0835
1970 NOV 14 0845 | 16.3
16.8 | 53 R
10 R | 9857 . 993
9857 . 973 | 9857.982
9857.963 | 9857.967 | •013 | | HC
HD
JY
JZ
KC
KD
MJ
MK | TABLE
TABLE
AYGU
AYGU
AYGU
AYGU
AYGU
AYGU | AYGU
AYGU
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE | 1970 OCT 30 1112
1970 OCT 30 1146
1970 NOV 11 1130
1970 NOV 11 1150
1970 NOV 12 1023
1970 NOV 12 1030
1970 NOV 21 1010
1970 NOV 21 1010 | 25.2
25.6
23.9
23.6
24.7
25.1
24.0 | 9 M
6 M
12 R
23 R
18 M
21 M
14 M | 7678.142
7678.132
7678.146
7678.131
7678.179
7678.174
7678.158 | 7678.143
7678.135
7678.148
7678.134
7678.178 **
7678.172 **
7678.156
7678.152 | 7678•151
.1+1 | •016
•009 | | HA
HB
IM
JA | TABLE
TABLE
MERKO
TABLE | MERKO
MERKO
TABLE
MERKO | 1970 OCT 30 0915
1970 OCT 30 0920
1970 NOV 05 1325
1970 NOV 08 1240 | 23.0
23.5
27.7
26.1 | 4 M
3 M
8 M
15 R | 6858.870
6858.877
6858.851
6858.849 | 6858.863
6858.870
6858.859
6858.855 | 6858.863 | •006 | | IS
IT
IZ | TABLE
TABLE
TABLE | RABBIT
RABBIT
RABBIT | 1970 NOV 07 1037
1970 NOV 07 1050
1970 NOV 08 1005 | 23.1
23.4
22.8 | 23 M
21 M
16 M | 9418,263
9418,261
9418,276 | 9418.262
9418.261
9418.272 | 9418.265 | •006 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | Final D | Line Avera | ıne. | |------------|--|------------------------|-----------------------------|--------------|--------------|--------------|------------------------|--|-------------|-------| | 11 | MERKO - | | - | | • | • | | rmar b | Fille Watto | ige | | IJ | HERKO | AYGU
AYGU | 1970 NOV 05
1970 NOV 05 | | 24.8
24.8 | 14 M
22 M | 7829.049
7829.045 | 7829.045
7829.042 | | | | KA
KB | AYGU
AYGU | MERKO
MERKO | 1970 NOV 12
1970 NOV 12 | | 21.0 | 25 M | 7829.069 | 7829.062 | 7000 000 | | | | | | 2310 1101 12 | 0700 | 21.4 | 18 M | 7829.067 | 7829.060 | 7829+052 | •010 | | JW. | AYGU ' | RABBIT | 1970 'NOV 11 | 0955 | 21.4 | 9 R | 7220,500 | 7220.497 | | | | JX
KE | AYGU
AYGU | RABBIT | 1970 NOV 11 | | 22.0 | 25 R | 7220,482 | 7220.481 1 | | | | KF | AYGU - | RABBIT | 1970 NOV 12
1970 NOV 12 | 1220 | 23.0
23.4 | 19 M
35 M | 7220,498
7220,497 | 7220,500
7220,500 | | | | MH
Mi | AYGU
AYGU | RABBIT | 1970 NOV 21 | 0835 | 19.0 | 17 M | 7220,517 | 7220.512 * | | | | *14 | AIGO | RABBIT | 1970 NOV 21 | 0847 | 19.4 | 20 M | 7220.506 | 7220.501 | 7220.499 | | | IK | MERKO | RABBIT | LAZO NOV AE | 1205 | 24.1 | , | | | -499 | .002 | | 11 | MERKO | RABUIT. | 1970 NOV 05
1970 NOV 05 | | 26.1
26.4 | 13 M
11 M | 13687,791
13687,791 | 13687.798
13687.800 | 13687.799 | •001 | | | - 10 - 1 | | | | | | | | | | | LC
LD | GALLA .
GALLA - | HOTEL | 1970 NOV 17 | | 16.3 | 24 R | 764.074 | 764.073 * | | | | ĹŠ | HOTEL | HOTEL
Galla | 1970, NOV 17
1970 NOV 18 | | 16.8
19.4 | 8 R
8 M | 764.067 | 764.066 | | | | LT | HOTEL | GALLA | 1970 NOV 18 | | 19.3 | 13 M | 764.061
764.054 | 764.061
764.054 | 764,063 | •008 | | | | - | | | | | | | .061 | .00% | | LE
, LF | GALLA
GALLA | TERMITE
TERMITE | 1970 NOV 17 | | 18.2 | 3 R | 746.049 | 746.048 | | | | LW | TERMITE | GALLA | 1970 NOV 17
1970 NOV 18 | 0850
1720 | 18.6
23.1 | 26 R
18 M | 746.049
746.052 | 746.048
746.053 | | | | LX | TERMITE | GALLA | 1970 NOV 18 | | 22.7 | 6 M | 746.050 | 746.051 | 746.050 | •002 | | ٠٠٠ | | | | | | | | | | | | LG
LH | GALLA
GALLA | EUPHORBIA
EUPHORBIA | 1970 NOV 17 | 0935 | 21.2 | 20 R | 2852.126 | 2852.124 | | | | LO | EUPHORBIA | GALLA | 1970 NOV 17
1970 NOV 17 | 1815 | 21.2
22.2 | 28 R
17 M | 2852,131
2852,136 | 2852.129
2852.140 | | | | LP
MC | EUPHORBIA
EUPHORBIA | GALLA
Galla | 1970 NOV 17 | 1822 | 22.0 | 13 M | 2852,131 | 2852.134 | | | | | | • | 1970 NOV 19 | | 19.7 | 13 R | 2852.133 | 2852,131 | 2852.132 | •006 | | MD
HE | EUPHORBIA AUX A | GALLA
Galla | 1970 NOV 19
1970 NOV 19 | 1010 | 20.9 | 16 R | 2862,170 | 2862.168 | **** | | | | The state of s | | 1970 114 19 | 1022 | 21.1 | 6 R | 2862,165 | 2862.164 | 2862.166 | •003 | | LQ | HOTEL | TERMITE | 1970 NOV 18 | 0830 | 18.6 | 15 M | 1022.596 | 1022.594 | | | | LR
LU | HOTEL
TERMITE | TERMITE | 1970 NOV 18 | 0845 | 19.1 | 4 M | 1022,599 | 1022.598 | | | | ĹÝ | TERMITE | HOTEL
HOTEL | 1970 NOV 18
1970 NOV 18 | | 24.7
24.5 | 18 M
38 M | 1022.593
1022.583 | 1022.595 | 1022 505 | 004 | | | | | | 20.75 | | 20 M | 1022.503 | 1022.584 | 1022,595 | 4006 | | LI | EUPHORBIA | HOTEL | 1970 NOV 17 | 1627 | 25.4 | 27 M | 3517.927 | 3517.932 | | | | LJ
LY | EUPHORBIA
EUPHORBIA | HOTEL
HOTEL | 1970 NOV 17
1970 NOV 19 | | 25.1 | 7 M | 3517.928 | 3517.932 | | | | LZ | EUPHORBIA | HOTEL | 1970 NOV 19 | | 17.8
18.1 | 12 R
15 Ř | 3517.943
3517.947 | 3517 . 939
3517 . 943 | 3517.937 | -005 | | LK | EUPHORBIA AUX A | HOTEL | 1970 NOV 17 | 1645 | 24.8 | 14 M | 3524.758 | | 3524.762 | | | | | | - 2,7 - 1,101 - 01 | 10,13 | | 17 (1) | 27244120 | 3524.762 | 3324.102 | 0.000 | | LM | EUPHORBIA | TERMITE | 1970 NOV 17 | 1735 | 23.3 | 20 M | 3358.114 | 3358.118 | | | | LN
-MA | EUPHORBIA
EUPHORBIA | TERMITE
TERMITE | 1970 NOV 17 | 1742 | 23.0 | 13 M | 3358.116 | 3358.120 | | | | MB | EUPHORBIA | TERMITE | 1970 NOV 19
1970 NOV 19 | 0900 | 18.9
19.3 | 10 R
18 R | 3358.132
3358.130 | 3358.128
3358.126 | 3358.123 | •005 | | LL | EUPHORBIA AUX A | TERMITE | 1970 NOV 17 | | | | | | | | | | - · · · · · · · · · · · · · · · · · · · | | 1910 1107 17 | 1122 | 23.7 | 12 M | 3372,620 | 3372.624 | 3372,624 | 0.000 | | MF | ALUTU | OITU | 1970 NOV 19 | 1700 | 25.1 | 19 M | 4629.079 | 4629.082 | | | | MG | ALUTU | UTIO | 1970 NOV 19 | | 24.6 | 8 M | 4629.079 | 4629.081 | 4629.081 | •001 | | | | | | | | | | | | | | MP
MO | GALILA
GALILA | YELLEM . | 1970 NOV 22 | | 21.8 | 47 R | 2248.294 | 2248.293 | | | | _ | | , ceeping | 1970 NOV 22 | 1015 | 22.6 | 12 R | 2248,294 | 2248,293 | 2248.293 | 0.000 | | MR | GALILA | THORNS | 1970 NOV 22 | 1110 | 23.6 | 45.0 | 4400 430 | 440- 450 | | | | M5 | GALILA | THORNS | 1970 NOV 22 | | 23.9 | 45 R
14 R | 4608.478
4608.479 | 4608.479
4608.480 | 4608,480 | •001 | | | | | | | | | - | <u> </u> | | | | MT
MU | GALILA
GALILA | KOKA | 1970 NOV 22 | 1240 | 26.2 | 22 M | 1664.013 | 1664.014 | | | | | SPELLER | KOKA | 1970 NOV 22 | 1250 | 26.7 | 13 M | 1664,003 | 1664.004 | 1664.008 | •007 | | ΜV | KOKA | YELLEM | 1070 802 65 | 1416 | | | | | | | | MW | KOKA | YELLEM | 1970 NOV 22
1970 NOV 22 | 1610
1620 | 26.0
25.8 | 30 M
36 M | 2871.874
2871.869 | 2871.877
2871.872 | 2871.875 | •004 | | | | | | • | ·- • • | | | -0.4.012 | _0,14015 | •004 | | MX
MY | KOKA | THORNS | 1970 NOV 22 | | 24.5 | 5 M | 4444.650 | 4444.655 | | | | , (41 | KOKA | THORNS | 1970 NOV 22 | 1715 | 24.1 | 11 M | 4444.654 | 4444.658 | 4444,656 | •002 | | | | | | | | | | | | | ## APPENDIX D PAPAYA 1971 GEODIMETER OBSERVATIONS | Code | Geodineter Sta. | Retroreflector Sta. | Date Time | Temp. Sp | oread | Corrected D | Final D | Line Average | |--|--|---
--|---|--|--|--|-----------------------| | DH
DG | Mariam
Mariam
Mariam | George
George
George | 1971 NOV 07 1710
1971 NOV 07 1720
1971 NOV 07 1730 | 23.9 1 | l W | 7262,550
7262,548
7262,552 | 7262.553
7262.550
7262.554 | 7262,552 .082 | | DK
D'1 | HARIAM
MARIAM | GEORGE AUX A
GEORGE AUX A | 1971 NOV 07 1745
1971 NOV 07 1800 | 22.9 | 3 W
6 N | 7759,096
7259,093 | 7259.059
7259.095 | 7259.097 .003 | | ØL
ØM | MARIAM
MARIAN | RIDGE
RIDGE | 1971 MDV 87 1830
1971 MOV 87 1840 | | 8 M
4 W | 97594374
97594374 ' | 975g.376
975g.376 | 9759.376 0.868 | | VR
VS | rioge
Rioge | GEOKGE
GEOKGE | 1971 OCT 16 1600
1971 OCT 18 1610 | | 5 M
6 H | 2529.969
2529.965 | 2529.971
2529.969 | 2529,970 .001 | | 46
GV | RIDGE AUX A
RIDGE AUX A | George
George | 1971 OCT 18 1520
1971 OCT 18 1535 | | 5 M
3 M | 2540.182
2540.186 | 2540.185
2540.188 | 2540,187 .002 | | VŤ | RIDGE | GEORGE AUX A | 1971 OCT 18 1625 | 25.7 30 | 6 M | 2530.734 | 2530.736 | 2530.736 0.000 | | 40
44 | adaha
Adaha | GEORGE
GEORGE | 1971 OCT 25 1650
1971 OCT 25 1780 | | 9 Т
2 Н | 4461,161
4461,183 . | 4461,186
4461,187 | 4461,186 4001 | | YO
YP | A XUA AHADA
A XUA AHADA | GEORGE
GEORGE | 1971 OCT 25 1715
1971 OCT 25 1730 | | 7 T
2 H | 4470,825
4470,825 | 4470.830
4470.829 | 4470±830 .001 | | ХK | FULCRUM AUX A FULCRUM AUX A | george
George | 1971 OCT 22 0755
1971 OCT 22 0805 | 18.4 | 5 t
7 t | 7281.180
7281.184 | 7281.174
7281.178 | 7281,176 ,003 | | er
eg
eh | PYLON
PYLON
PYLON | GEORGE
GEORGE
GEORGE | 1971 NOV 08 1900
1971 NOV 08 1910
1971 NOV 08 1925 | 21,3 | \$ #
\$ ¥
? # | 6642.843
6642.843 | 6642.851
6642.851
6642.852 | 6642.851 .001 | | FA
FB
FC
FO | George
George
George
George | MONJI
MONJI
MONJI
MONJI | 1971 NOV 10 1715
1971 NOV 10 1725
1971 NOV 10 1740
1971 NOV 10 1750 | 24.3 | 5 M
6 W
6 K | 6566.788
6546.789
6566.781
6566.783 | 6546.792
6566.793
6566.784
6566.786 | 6566.789 .004 | | AR
IA
UA | BOKU
BOKU
BOKU | George
George
George | 1971 NOV 01 0800
1971 NOV 01 0810
1971 NOV 01 0825 | 19.5 | 8 H
7 H
9 N | 9430,849
9430,862
9430,843 | 9430.841
94304854
9430.836 | 9436.844 .009 | | 44 A A A A A A A A A A A A A A A A A A | Ridge
Ridge
Ridge
Ridge
Ridge
Ridge
Ridge
Ridge | Adama
Adama
Adama
Adama
Adama
Adama
Adama
Adama
Adama
Adama | 1971 NOV 11 1735
1971 NOV 11 1745
1971 NOV 11 1800
1971 OCT 17 1736
1971 OCT 17 1740
1971 OCT 18 0935
1971 OCT 18 0945
1971 OCT 20 2100
1971 OCT 20 2100 | 22.4
22.2
24.9
24.9
24.9
24.1
124.3
19.1 | 44 M
44 M
42 M
42 M
44 M
47 M | 2865,560
2865,564
2865,564
2865,564
2865,564
2865,564
2865,577
2865,577
2865,581
2865,589 | 2865,565
2865,565
2865,563
2865,564
2865,567
2865,575
2865,575
2865,579
2865,579 | 2865,569 . 006 | | VG
VO | RIDGE
RIDGE | ADAMA AUX A
ADAMA AUX A | 1971 OCT 17 1800
1971 OCT 18 1000 | 23.6 | 4 M | 2874,391
2874,411 | 2874.393
2874.410 | 2874.401 .012 | | ۸۸
۸۳ | ridge
Ridge | EL PASO AUX A
EL PASO AUX A | 1971 OCT IS 1715
1971 OCT IS 1725 | 24.9 | 1 M | 6631,500
6631,505 | 6631.504
6631.508 | 6631.506 .003 | | FIN FOC VO VALUE WAS XB | RIDGE
RIDGE
RIDGE
RIDGE
RIDGE
RIDGE
RIDGE
RIDGE
FARENJI
FARENJI
RIDGE
RIDGE | FARENJI
FARENJI
FARENJI
FARENJI
FARENJI
FARENJI
FARENJI
RIDGE
RIGGE
FARENJI
FARENJI | 1971 NOV 11 1025 1971 NOV 11 1635 1971 NOV 11 1635 1971 NOV 11 1750 1971 OCT 17 1655 1971 OCT 18 0855 1971 OCT 18 0855 1971 OCT 19 1550 1971 OCT 19 1550 1971 OCT 20 2236 | 23.7
23.5
23.6
25.0
25.7
21.7
27.9
4
25.6
16.5 | 77871477147714888 | 3022,265
3022,251
3022,253
3022,255
3022,255
3022,256
3022,263
3022,263
3022,263
3022,263
3022,263
3022,253 | 3022.257
3022.253
3022.254
3022.255
3022.255
3022.259
3022.250
3022.260
3022.266
3022.266
3022.265 | 3022,259 .004 | | WQ
WR | FARENJI AUX S
FARENJI AUX S | ridge
Ridge | 1971 OCT 20 1015 | 23.2 1
23.3 1 | la W | 3011.205
3011.202 | 3011.204
3011.201 | 3011,202 ,002 | | ₩ ፫
₩F | Parenji
Farenji | RIDGE AUX A
RIDGE AUX A | .1971 OCT 19 1620
1971 OCT 19 1630 | 25.6 1 | 12 H | 3026.087
3026,084 | 3026.086
3026.096 | 3026.088 .003 | | Code | Geodimeter Sta. | Retroreflector Sta | Date | Time | Тетр. | Spread | Corrected D | :
Final D | Line Averaç | je | |--|--|---|--|--|--|--|--|--|---------------------|--------------| | VA
VA
VH
VI
XE
XF | RIDGE
RIDGE
RIDGE
RIDGE
RIDGE
RIDGE | FULCRUM AUX A | 1971 OCT 17
1971 OCT 17
1971 OCT 18
1971 OCT 18
1971 OCT 21
1971 OCT 21 | 1550
0740
0755
1510 | 26.9
26.9
18.7
19.6
26.4
26.3 | 18 M
18 M
2 M
4 M · .
8 T
7 M | 5335,159
5335,160
5335,163
5335,164
5335,168
5335,170 | 5335.161
5335.163
5335.158
5335.160
5335.171
5335.173 | 5335•164 | •006 | | XC
XD
XG
XH | RIDGE
RIDGE
RIDGE
RIDGE | FULCRUM AUX B
FULCRUM AUX B
FULCRUM AUX B
FULCRUM AUX B | 1971 OCT 21
1971 OCT 21
1971 OCT 21
1971 OCT 21 | 0005
1530 | 16.1
15.9
26.0
25.9 | 12 M
3 M
14 T
10 M | 5337.054
5337.051
5337.071
5337.072 | 5337.060
5337.057
5337.074
5337.074 | 5337.065 | •009 | | LX
IX
LV
BV | RIDGE
RIDGE
RIDGE
RIDGE | FULCRUM R.M. FULCRUM R.M. FULCRUM R.M. FULCRUM R.M. | 1971 OCT 17
1971 OCT 18
1971 OCT 21
1971 OCT 21 | 9810
1605 | 26.7
20.3
25.4
25.2 | 16 M
3 M
11 T
25 T | 5339.918
5339.916
5339.912
5339.920 | 5339.921
5339.912
5339.913
5339.921 | 5339•916 | •005 | | ED
EE | PYLON .
PYLON | RIDGE
RIDGE | 1971 NOV 08
1971 NOV 08 | | 22.6
22.3 | 9 M
11 W | 7612.214
7612.209 | 7612.222
7612.218 | 7612,220 | •003 | | VW
VX | RIDGE
RIDGE | GANTI
GANTI | 1971 OCT 18
1971 OCT 18 | | 23.7
23.4 | 5 M
7 H | 6673.497
6673.492 | 6673 . 499
6673 . 494 | 6673.497 | •004 | | AK
AL
AZ
BA | BOKU
BOKU
BOKU | RIDGE
RIDGE
RIDGE
RIDGE | 1971 NOV 01
1971 NOV 01
1971 NOV 01
1971 NOV 01 | 0910
1850 | 21.6
21.7
20.1
20.0 | 16 M
47 H
23 T
41 H | 6998,251
6998,207
6998,221
6998,196 | 6998.248 *
6998.203
6998.224
6998.198 | 6998,226 | •023
•013 | | 'AM
AN | BOKU
BOKU | RIDGE AUX A
RIDGE AUX A | 1971 NOV 01
1971 NOV 01 | | 21.9
22.4 | 42 M
36 H | 6983.096
6983.099 | 6983.093
6983.098 | 6983.096 | •004 | | WS
WT | ADAMA
ADAMA | EL PASO AUX A
EL PASO AUX A | 1971 OCT 20
1971 OCT 20 | | 26.7
26.7 | 18 M
39 M | 6153,614
6153,621 | 6153.620
6153.628 | 6153.623 | •006 | |
₩G
₩H | FARENJI
FARENJI | ADAMA
ADAMA | 1971 OCT 19
1971, OCT 19 | | 25.3
24.7 | 1 M
9 T | 1400.899
1400.899 | 1400.901
1400.901 | 1400.901 | 0.000 | | WO
WP | FARENJI AUX B
FARENJI AUX B | ADAMA
ADAMA | 1971 OCT 20
1971 OCT 20 | | 22.9
23.1 | 11 W
6 M | 1407.500
1407.491 | 1407.498
1407.490 | 1407•494 | •006 | | M)
IM | FARENJI
FAREN _J I | ADAMA AUX A
ADAMA AUX A | 1971 OCT 19
1971 OCT 19 | | 24.2
24.0 | 12 M
6 M | 1398.032
1398.028 | 1398.034
1398.030 | 1398.032 | •003 | | #.A
#.O | ADAMA
ADAMA | GANTI
GANTI | 1971 OCT 20
1971 OCT 20 | | 25.8
25.4 | 26 H
5 M | 6100.377
6100.372 | 6100,382
6100,376 | 6100.378 | •004 | | AO
AP | BOKU
BOKU | ADAMA
ADAMA | 1971 NOV 0 | | 23.2
23.2 | 41 M
45 H | 7427.121
7427.132 | 7427.120
7427.132* | 7427.126
.120 | .008 | | WK
WL | FARENJI
FARENJI | EL PASO AUX A
EL PASO AUX A | 1971 OCT 20
1971 OCT 20 | | 18.6
19.6 | 7 M
10 M | 4757,497
4757,503 | 4757.489
4757.495 | 4757.492 | •004 | | AV
AW | BOKU
BOKU | EL PASO AUX A
EL PASO AUX A | 1971 NOV 0
1971 NOV 0 | | 22.6
22.3 | 17 T
15 H | 2307.098
2307.111 | 2307.099
2307.112* | 2307.106 | •009 | | VY
VZ | FARENJI
FARENJI | FULCRUM AUX A
FULCRUM AUX A | 1971 OCT 1
1971 OCT 1 | | 26.5
26.6 | 26 T
13 M | 2358.140
2358.169 | 2358.142 *
2358.170 | 2358 • 159
. 170 | •020 | | WA
WB | FARENJI
FARENJI | FULCRUM R.M. | 1971 OCT 1
1971 OCT 1 | | 26.9
26.6 | 5 M
4 M | 2367.392
2367.389 | 2367 . 393
2367 . 391 | 2367.392 | •001 | | WM
WN | FARENJI
FARENJI |
GANTI
GANTI | 1971 OCT 2
1971 OCT 2 | | 20.0
20.1 | 3 M
14 M | 4709.996
4709.992 | 4709.991
4709.987 | 4709.989 | •003 | | AQ
AR | BOKU
BOKU | FARENJI
FARENJI | 1971 NOV 0
1971 NOV 0 | | 23.5
23.4 | 94 M
37 M | 6066.404
6066.402 | 6066.405
6066.402 | 6066,402 | •002 | | XP
XQ
XX
XY
ZM
ZN
ZO | GRAVES
GRAVES
GRAVES
GRAVES
GRAVES
GRAVES
GRAVES | FULCRUM AUX A | 1971 OCT 2
1971 OCT 2
1971 OCT 2
1971 OCT 2
1971 OCT 2
1971 OCT 2
1971 OCT 2 | 2 1540
3 0800
3 0810
8 2050
8 2100 | 27.3
27.1
19.8
20.3
18.1
16.8
15.4 | 17 M
16 M
7 T
9 H
12 M
10 H
13 M | 7318.025
7318.013
7318.017
7318.024
7318.008
7318.009
7317.992 | 7318.028
7318.016
7318.011
7318.019
7318.014
7318.015
7317.998 | 7318•014 | •009 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date Tim | ne Temp. | Spread | Corrected D | Final D | Line Average | | |----------------------------|---|--|--|------------------------------------|--------------------------------------|---|---|-----------------------------|--------------------------| | XV
XW | GRAVES AUX A | FULCRUM AUX A
FULCRUM AUX A | 1971 OCT 22 16
1971 OCT 22 17 | | 6 M
11 H | 7341.665
7341.668 | 7341•669
7341•670 | 7341.669 | • 001 | | XR
XS | GRAVES
GRAVES | FULCRUM AUX B
FULCRUM AUX B | 1971 OCT 22 15
1971 OCT 22 16 | | 26 H
22 M | 7316,550
7316,553 | 7316.553
7316.556 | 7316.555 | • 002 | | XT
XU | GRAVES AUX A
GRAVES AUX A | FULCRUM AUX B
FULCRUM AUX B | 1971 OCT 22 16
1971 OCT 22 16 | 25 26.7 | 24 M
4 H | 7340.051
7340.046 | 7340.054
7340.050 | 7340.051 | •003 | | YJ
YK
YR
YS
YT | FULCRUM AUX A
FULCRUM AUX A
FULCRUM AUX A
FULCRUM AUX A
FULCRUM AUX A | CINDER
CINDER
CINDER
CINDER
CINDER | 1971 OCT 24 16
1971 OCT 24 17
1971 OCT 26 08
1971 OCT 26 08
1971 OCT 26 08 | 710 23.7
315 20.6
325 21.1 | 18 M
51 T
10 M
9 W
4 M | 12089,221
12089,222
12089,221
12089,220
12089,220 | 12089,223
12089,225
12089,212
12089,212
12089,213 | 12089•215 | . 006 | | YL
YM | FULCRUM AUX B
FULCRUM AUX B | CINDER . | 1971 OCT 24 17
1971 OCT 24 17 | | 40 M
15 T | 12098,829
12098,816 | 12098.831
12098.818 | 12098.822 | + 009 | | WW
XX
XX
XX
XX | FULCRUM AUX A
FULCRUM AUX A
FULCRUM AUX A
FULCRUM AUX A
FULCRUM AUX A | GANTI
GANTI
GANTI
GANTI
GANTI | 1971 OCT 20 16
1971 OCT 20 16
1971 OCT 22 09
1971 OCT 22 09
1971 OCT 22 09 | 555 24.2
900 - 21.3
920 21.8 | 19 M
14 H
34 T
59 W
25 T | 4773.653
4773.669
4773.651
4773.638
4773.647 | 4773.654
4773.670 *
4773.650
4773.637
4773.647 | | •012
-00 4 | | AX
AY | BOKU
BOKU | FULCRUM AUX A
FULCRUM AUX A | 1971 NOV 01 17
1971 NOV 01 18 | | 21 T
33 H | 6880.094
6880.111 | 6880.095
6880.112. | | •012 | | XZ
YA
ZP
ZQ | GRAVES
GRAVES
GRAVES | CINDER
CINDER
CINDER
CINDER
CINDER | 1971 OCT 23 09
1971 OCT 23 09
1971 OCT 28 22
1971 OCT 28 22 | 930 24.3
230 16.9 | 15 T
13 H
8 M
6 H | 5866.831
5866.829
5866.824
5866.826 | 5866.827
5866.826
5866.832
5866.834 | · | • 0 04 | | YB
YC | GRAVES
GRAVES | CINDER AUX A
CINDER AUX A | 1971 OCT 23 09
1971 OCT 23 09 | | 12 T
29 H | 5872,142
5872,143 | 5872•139
5872•141 | 5872.140 | •001 | | YD
YE
ZR
ZS | GRAVES AUX A
GRAVES AUX A
GRAVES AUX A
GRAVES AUX A | CINDER
CINDER
CINDER
CINDER | 1971 OCT 23 10
1971 OCT 23 10
1971 OCT 28 23
1971 OCT 28 23 | 030 26.5
310 17.1 | 26 T
43 H
5 M
23 H | 5876.704
5876.707
5876.684
5876.687 | 5876.703
5876.706
5876.693
5876.696 | 5876•697 | •006 | | YU
YV | GRAVES
GRAVES | AYGU
AYGU | 1971 OCT 26 10
1971 OCT 26 10 | | 2 T
6 H | 9216.859
9216.858 | 9216.857
9216.857 | 9216.857 0 | •000 | | DA
DB
DC | SODERE
SODERE
SODERE | CINDER
CINDER .
CINDER | 1971 NOV 06 16
1971 NOV 06 17
1971 NOV 06 17 | 710 25,9 | 11 M
12 T
3 M | 11778.551
11778.555
11778.555 | 11778.559
11778.562
11778.563 | 11778,561 | •002 | | DD
DE
DF | SODERE
SODERE
SODERE | CINDER AUX A
CINDER AUX A
CINDER AUX A | 1971 NOV 06 17
1971 NOV 06 17
1971 NOV 06 18 | 745 24.9 | 13 T
8 M
6 T | 11756.221
11756.220
11756.223 | 11756+227
11756+225
11756+227 | 11756.226 | •001 | | EX
EY
EZ | SIRI
SIRI
SIRI | CINDER
CINDER
CINDER | 1971 NOV 10 11
1971 NOV 10 11
1971 NOV 10 11 | 120 24.2 | 21 H
36 T
34. H | 24358.245
24358.242
24358.239 | 24358.247
24358.245
24358.244 | ,
24358 _• 246 | •002 | | YF
YG
YG | BOHALLA
BOHALLA
BOHALLA | CINDER
CINDER
CINDER | . 1971 OCT 23 11
1971 OCT 23 11
1971 OCT 23 11 | 150 26.0 | 10 M
20 M
20 M | 7233.352
7233.346
7233.351 | 7233.354
7233.348
7233.353 | 7233.352 | •003 | | YH
Y I | BOHALLA
Bohalla | CINDER AUX A
CINDER AUX A | 1971 OCT 23 12
1971 OCT 23 12 | | 89 W
19 M | 7223.536
7223.522 | 7223.538
7223.524 | 7223,525 | •010 | | CV
CW | SIRI
SIRI
SIRI | ROGGI AUX A
ROGGI AUX A | 1971 NOV 06 16
1971 NOV 06 16
1971 NOV 06 16 | 010 22.8 | 8 M
41 H
16 M | 17400.553
17400.550
17400.551 | 17400.545
17400.543
17400.546 | 17400•545 | •002 | | BH
BH | 80KU
80KU | ROGGI AUX A
ROGGI AUX A | 1971 NOV 02 10 | | 10 T
34 W | 9857,973
9857,970 | 9857.971
9857.969 | 9857.970 | •001 | | BE
BF | BOKU AUX A
BOKU AUX A | ROGGI AUX A
ROGGI AUX A | 1971 NOV 02 00
1971 NOV 02 10 | | 11 W
42 T | 9856.446
9856.451 | 9856•440
9856•447 | 9856.442 | +005 | | ,CO
CP
CQ | SELASSIE
SELASSIE
SELASSIE | MIETCHI
MIETCHI
MIETCHI | 1971 NOV 06 0
1971 NOV 06 0
1971 NOV 06 0 | 800 17.9 | 7 M
11 H
2 M | 12617.135
12617.127
12617.126 | 12617.117
12617.110
12617.110 | 12617•112 | •004 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | Final D | Line Average | ! | |--|---|--|--|---|--|--|--|--|-------------------|--------------| | BQ
BR
BS
BT
BU | OOLAGA
OOLAGA
OOLAGA
OOLAGA
OOLAGA | MIETCHI
MIETCHI
MIETCHI
MIETCHI
MIETCHI | 1971 NOV
1971 NOV
1971 NOV
1971 NOV
1971 NOV | 03 0830
03 0840
03 0850 | 18.7
18.6
18.7
18.9
18.8 | 12 M
18 H
27 H
1 M
18 M | 7578.949
7578.928
7578.927
7578.952
7578.952 | 7578.944
7578.923 *
7578.922 *
7578.948
7578.948 | 7578•940
• 947 | .013 | | CR
C\$
CT
CT | SIRI
SIRI -
SIRI
SIRI | MIETCHI
MIETCHI
MIETCHI
MIETCHI | 1971 NOV
1971 NOV
1971 NOV
1971 NOV | 06 0900
06 0910 | 18.4
18.6
18.6 | 18 M
13 H
11 M
8 M | 14052.186
14052.194
14052.190
14052.189 | 14052.178
14052.187
14052.183
14052.182 | 14052.183 | •004 | | BB
BC
BD | BOKU AUX A
BOKU AUX A | MIETCHI
MIETCHI
MIETCHI . | 1971 NOV
1971 NOV
1971 NOV | 02 0825 | 17.9
18.2
18.6 | 11 T
14 T
6 W | 15203.635
15203.644
15203.635 | 15203.624
15203.634
15203.626 | 15203.628 | .005 | | BI
BJ
8K
BL | BOHALLA
BOHALLA
BOHALLA
BOHALLA | MIETCHI
MIETCHI
MIETCHI
MIETCHI | 1971 NOV
1971 NOV
1971 NOV
1971 NOV | 02 1700
02 1715 | 24.2
23.9
23.6
23.4 | 10 M
13 T
24 T
18 M | 16768.246
16768.244
16768.220
16768.252 | 16768.254
16768.250
16768.226 *
16768.257 | 16768.248
,253 | •014
•004 | | FE
FF
FG
FH | SIRI
SIRI
SIRI
SIRI | SELASSIE
SELASSIE
SELASSIE
SELASSIE | 1971 NOV
1971 NOV
1971 NOV
1971 NOV | 11 0920°
11 0930 | 18.3
18.2
18.4
18.5 | 8 T
10 M
1 M
4 T | 1951.105
1951.108
1951.105
1951.104 | 1951.103
1951.106
1951.104
1951.103 | 1951.104 | •001 | | FI'
FJ
FK | SIRI
SIRI
SIRI | SELASSIÈ AUX A
SELASSIE AUX A
SELASSIE AUX A | 1971 NOV
1971 NOV
1971 NOV | 11 1020 | 20.2
20.5
20.1 | 6 H
4 T
5 H | 1980.152
1980.151
1980.147 | 1980.151
1980.150
1980.146 | 1980+149 | •003 | | EA
EB
EC | PYLON
PYLON
PYLON | ILMOM
ILMOM
ILMOM | 1971 NOV
1971 NOV
1971 NOV | 08 1700 | 25.9
25.5
25.3 | 4 M
10 W
3 M | 3402.648
3402.650
3402.652 | 3402.652
3402.653
3402.655 | 3402.653 | •002 | | DT
DV
DW | KOKA
KOKA
KOKA
KOKA | PYLON -
PYLON
PYLON
PYLON | 1971 NOV
1971 NOV
1971 NOV
1971 NOV | 08 1150
08 1200 | 25.6
25.8
26.2
26.5 | 17 W
21 T
20 W
14 T | 3079.979
3079.985
3079.989
3079.992 | 3079.980
3079.986
3079.991
3079.994 | 3079.988 | •006 | | EO
EP
EQ
ER | GALILA
GALILA
GALILA
GALILA | ICNOM
ICNOM
ICNOM
ICNOM | 1971 NOV
1971
NOV
1971 NOV
1971 NOV | 09 1120
09 1130 | 25.6
25.7
26.0
26.3 | 6 M
11 T
8 M
9 T | 6263.277
6263.276
6263.280
6263.276 | 6263.277
6263.277
6263.282
6263.277 | 6263,278 | •003 | | DX
DY
DZ | KOKA
KOKA
KOKA | 1040M
1040M
1040M | 1971 NOV
1971 NOV
1971 NOV | 08 1320 | 27.4
28.1
28.5 | 12 W
13 T
15 T | 5336.860
5336.862
5336.869 | 5336.863
5336.865
5336.872 | 5 336•867 | •005 | | ZE
ZF | TABLE
TABLE | GANTI
GANTI | 1971 OCT
1971 OCT | | 18.4
18.6 | 8 M
23 M | 22963,107
22963,108 | 22963.073
22963.078 | 22963,075 | •004 | | AS
AT
AU | BOKU
BOKU
BOKU | GANTI
GANTI
GANTI | | 01 1610
01 1625
01 1635 | 22.9
22.8
22.7 | 0 T
12 T
26 H | 2519,672
2519,661
2519,673 | 2519.672
2519.662
2519.674 | 2519,669 | •006 | | CC
CD
CE | GAIFF
GAIFF
GAIFF | SODERE
SODERE
SODERE | 1971 NOV | 04 1720
04 1735
04 1755 | 24.5
24.1
23.5 | 2 W
2 T
5 T | 3856.841
3856.836
3856.838 | 3856.843
3856.838
3856.839 | 3856.840 | •003 | | BV
BW
BX
BY
CF
CG
CH | OOLAGA
OOLAGA
OOLAGA
OOLAGA
OUILL
QUILL
QUILL | GUILL
GUILL
GUILL
GUILL
OOLAGA
OOLAGA
OOLAGA | 1971 NOV
1971 NOV
1971 NOV
1971 NOV | 03 0955
03 1005
03 1020
03 1035
04 1830
04 1840
04 1850 | 22.9
23.3
23.3
23.3
22.1
21.5
21.0 | 6 M
14 H
21 H
17 M
3 T
2 T
5 H | 2357,715
2357,702
2357,711
2357,720
2357,711
2357,712
2357,709 | 2357.714
2357.702 #
2357.710
2357.719
2357.713
2357.714
2357.712 | 2357•712
.≯13 | •005
003 | | CX
CY
CZ | SIRI
SIRI
SIRI | GAILF
GAILF
GAILF | 1971 NOV | 06 1050
06 1100
06 1110 | 23.1
23.3
23.5 | 9 M
11 H
11 M | 16380.135
16380.133
16380.136 | 16380.135
16380.133
16380.137 | 16380.135 | •002 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | Final D | Line Averag | je | |--|--|---|--|--------------------------------------|--|--|--|--|----------------------|------| | BM
BN
BP
CI
CJ | BOHALLA
BOHALLA
BOHALLA
BOHALLA
BOHALLA
BOHALLA | ONITT
ONITT
ONITT
ONITT | 1971 NOV 02
1971 NOV 02
1971 NOV 02
1971 NOV 02
1971 NOV 05
1971 NOV 05 | 1835
1845
1850
1655 | 23.3
23.2
23.0
22.9
25.7
25.4 | 10 M
14 T
15 M
6 T
7 M
9 W | 10605,552
10605,552
10605,555
10605,554
10605,566
10605,567 | 10605,558
10605,558
10605,562
10605,560
10605,572
10605,572 | 10605.564 | •007 | | BZ
CA
CB | OOLAGA
OOLAGA
OOLAGA | SODERE
SODERE
SODERE | 1971 NOV 04
1971 NOV 04
1971 NOV 04 | 1610 | 27.0
26.9
26.7 | 10 W
3 W
9 T | 1581,708
1581,715
1581,709 | 1581.710
1581.716
1581.711 | 1581.713 | •003 | | CK
CM
CN | BOHALLA
BOHALLA
BOHALLA
BOHALLA | OOLAGA
OOLAGA
OOLAGA
OOLAGA | 1971 NOV 05
1971 NOV 05
1971 NOV 05
1971 NOV 05 | 1750
1805 | 24.6
24.1
23.7
23.3 | 7 M
24 W
9 W
5 M | 9274,235
9274,221
9274,233
9274,228 | 9274-242
9274-228
9274-242
9274-238 | 9274•239 | .007 | | ES
ET
EU
EV
EW | SIRI
SIRI
SIRI
SIRI
SIRI | BOHALLA
BOHALLA
BOHALLA
BOHALLA
BOHALLA | 1971 NOV 10
1971 NOV 10
1971 NOV 10
1971 NOV 10
1971 NOV 10 | 0920
0930
0945 | 22.3
22.6
22.7
22.9
23.5 | 14 T
23 H
10 T
7 H
13 T | 18019.117
18019.124
18019.130
18019.127
18019.135 | 18019+105
18019+114
18019+121
18019+120
18019+129 | 18019,118 | •009 | | ZB
ZC
ZD
ZJ
ZK
ZL | TABLE TABLE TABLE TABLE TABLE TABLE TABLE | AYGU
AYGU
`AYGU
AYGU
AYGU
AYGU | 1971 OCT 27
1971 OCT 27
1971 OCT 27
1971 OCT 28
1971 OCT 28
1971 OCT 28 | 1005
1015
1200
1215 | 23.3
23.5
23.3
26.3
26.4
26.1 | 5 M '
27 H
13 M
16 W
12 T
10 W | 7678.142
7678.143
7678.144
7678.132
7678.141
7678.135 | 7678.139
7678.140
7678.142
7678.134
7678.133
7678.137 | 7678 . 139 | •003 | | AF
AG
YW
YX
YY
YZ
ZA | MERKO
MERKO
TABLE
TABLE
TABLE
TABLE
TABLE | TABLE TABLE MERKO MERKO MERKO MERKO MERKO MERKO MERKO | 1971 OCT 31
1971 OCT 31
1971 OCT 26
1971 OCT 26
1971 OCT 27
1971 OCT 27 | 1820
1650
1705
1725
0815 | 23.7
23.4
25.9
25.5
25.1
21.4
21.6 | 1 T
1 M
6 T
7 W
17 T
10 M
10 T | 6858.857
6858.859
6858.866
6858.876
6858.876
6858.870
6858.881 | 6858.866
6858.869
6858.876
6858.884 4
6858.869
6858.857
6858.858 | 6858 . 870 | •008 | | ZG
ZH
ZI | TABLE
TABLE
TABLE | RABBIT
RABBIT
RABBIT | 1971 OCT 28
1971 OCT 28
1971 OCT 28 | 1025 | 23.6
24.1
24.2 | | 9418.289
9418.285
9418.286 | 9418.286
9418.283
9418.285 | .868

9418,285 | •002 | | AB
AC
AD
AE | MERKO
MERKO
MERKO
MERKO | AYGU
AYGU
AYGU
AYGU | 1971 OCT 31
1971 OCT 31
1971 OCT 31
1971 OCT 31 | 1700
1710 | 25.5
25.3
25.1
24.9 | 6 M
23 T
4 M
11 T | 7829.053
7829.050
7829.049
7829.045 | 7829.061
7829.058
7829.057
7829.053 | 7829.057 | .003 | | ZT
ZT
ZU
ZV
ZW
ZX | RABBIT
RABBIT
RABBIT
RABBIT
RABBIT
RABBIT | AYGU
AYGU
AYGU
AYGU
AYGU | 1971 OCT 29
1971 OCT 29
1971 OCT 29
1971 OCT 29
1971 OCT 29
1971 OCT 29 | 1545
1605
1630
1645 | 26.7
26.7
26.4
26.0
25.9
25.7 | 45 M
47 M
21 W
15 W
6 M
6 M | 7220.492
7220.494
7220.469
7220.498
7220.508
7220.509 | 7220,497 7220,499 7220,474 ** 7220,501 7220,511 7220,512 | 7220.502 | | | AA
ZY
ZZ | MERKO
MERKO
MERKO | RABBIT
RABBIT
RABBIT | 1971 OCT 31
1971 OCT 31
1971 OCT 31 | 1505 | 26.5
26.5
26.5 | 16 T
16 T
19 M | 13687.810
13687.796
13687.803 | 13687.826
13687.813
13687.819 | .508
13687.819 | .007 | | НА
НВ
НС | GALLA
GALLA
GALLA | HOTEL
HOTEL
HOTEL | 1971 NOV 18
1971 NOV 18
1971 NOV 18 | 1710 | 25+6
25+6
25+6 | 8 T
18 W
14 T | 764.053
764.047
764.053 | 764•054
764•048
764 _• 054 | 764+052 | •003 | | HD
HE
HF | GALLA
GALLA
GALLA | TERMITE
TERMITE
TERMITE | 1971 NOV 18
1971 NOV 18
1971 NOV 18 | 1810 | 25.3
24.9
24.7 | 12 W
13 T
7 W | 746.040
746.047
746.042 | 746+041
746+048
746+043 | 746.044 | •004 | | FZ
GA
GB | EUPHORBIA
EUPHORBIA
EUPHORBIA | GALLA
GALLA
GALLA | 1971 NOV 17
1971 NOV 17
1971 NOV 17 | 1005 | 20.4
20.3
20.4 | 9 M
3 H
3 M | 2852.143
2852.142
2852.146 | 2852.141
2852.140
2852.145 | 2852+142 | •003 | | GK
GJ
GI | EUPHORBIA AUX A
EUPHORBIA AUX A
EUPHORBIA AUX A | GALLA | 1971 NOV 17
1971 NOV 17
1971 NOV 17 | 1800 | 25.1
24.5
24.3 | 5 W
5 T
3 W | 2862.170
2862.173
2862.164 | 2862.173
2862.176
2862.168 | 2862•172 | •004 | | HH
HG | ARJO
ARJO
ARJO | GALLA
GALLA
GALLA | 1971 NOV 19
1971 NOV 19
.1971 NOV 19 | 0800 | 18.1
18.5
19.0 | 5 M
5 H
4 M | 7435.800
7435.797
7435.803 | 7435.783
7435.782
7435.788 | ,7435 .7 84 | •003 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | Final D | Line Average | |----------------------|---|--|--|------------------|------------------------------|--------------------------|--|--|----------------| | GW
GX
GY
GZ | HOTEL
HOTEL
HOTEL
HOTEL | TERMITE
TERMITE
TERMITE
TERMITE | 1971 NOV 1:
1971 NOV 1:
1971 NOV 1:
1971 NOV 1: | B 1545
B 1600 | 25.7
25.6
25.5
25.5 | 7 T
4 W
8 T
7 W | 1022,597
1022,597
1022,598 | 1022.598
1022.598
1022.599
1022.597 | | | FS
FT
FU
FV | EUPHORBÍA
EUPHORBÍA
EUPHORBÍA
EUPHORBÍA | HOTEL
HOTEL
HOTEL | 1971 NOV 1
1971 NOV 1
1971 NOV 1
1971 NOV 1 | 7 0805
7 0815 | 17.8
18.3
18.6
18.5 | 4 M
7 H
5 M
7 H | 3517.930
3517.929
3517.933
3517.936 | 3517.924
3517.924
3517.927
3517.931 | 3517•926 •003 | | GC
GD
GE | EUPHORBIA AUX A
EUPHORBIA AUX A
EUPHORBIA AUX A | HOTEL | 1971 NOV 1
1971 NOV 1
1971 NOV 1 | 7 1550 | 25.2
25.0
25.0 | 2 T
5 W
11 W | 3524.764
3524.762
3524.771 | 3524.768
3524.766
3524.775 | 3524.769 .005 | | GQ
GR
GS | LANGANA
LANGANA
LANGANA , | HOTEL
HOTEL
HOTEL | 1971 NOV 1
1971 NOV 1
1971 NOV 1 | 8 0925 | 21.6
22.0
21.8 | 1 M
4 H
1 M | 3394.057
3394.057
3394.058 | 3394.055
3394.055
3394.056 | 3394.055 .001 | | FW
FX
FY | EUPHORBIA
EUPHORBIA
EUPHORBIA | TERMITE
TERMITE
TERMITE | 1971 NOV 1
1971 NOV 1
1971 NOV 1 | 7 0915 | 20.1
20.3
20.4 | 3 M
5 H
10 M | 3358.133
3358.130
3358.129 | 3358.129
3358.127
3358.126 | 3358.127 .002 | | GF
GG
GH | EUPHORBIA AUX
A
EUPHORBIA AUX A
EUPHORBIA AUX A | TERMITE | 1971 NOV 1
1971 NOV 1
1971 NOV 1 | 7 1700 | 25.2
24.4
25.4 | 1 T
12 T
6 W | 3372.622
3372.622
3372.622 | 3372.628
3372.628
3372.627 | 3372•628 •001 | | GT
GU
GY | LANGANA
LANGANA
LANGANA | TERMITE
TERMITE
TERMITE | 1971 NOV 1
1971 NOV 1
1971 NOV 1 | 8 1010 | 21.6
21.6
21.9 | 10 M
13 H
2 M | 2434.180
2434.175
2434.176 | 2434.179
2434.174
2434.175 | 2434•176 •003 | | GL
GM
GN | LANGANA
LANGANA
LANGANA | EUPHORBIA
EUPHORBIA
EUPHORBIA | 1971 NOV 1
1971 NOV 1
1971 NOV 1 | 8 0755 | 17.6
17.9
18.0 | 4 M
8 H
4 M | 3232,705
3232,706
3232,703 | 3232.699
3232.700
3232.698 | 3232+699 +001 | | GO
GP | LANGANA
LANGANA | EUPHORBIA AUX A
EUPHORBIA AUX A | | | 18.4
19.1 | 11 H
11 M | 3259 _• 859
3259 _• 858 | 3259.854
3259.854 | 3259.854 0.000 | | HN
HO | ARJO
ARJO
ARJO | EUPHORBIA
EUPHORBIA
EUPHORBIA | 1971 NOV 1
1971 NOV 1
1971 NOV 1 | 9 0945 | 20.6
20.8
21.0 | 8 H
6 M
8 H | 6206.146
6206.143
6206.144 | 6206.140
6206.138
6206.139 | 6206.139 .001 | | HP | ARJO | EUPHORBIA AUX A | 1971 NOV 1 | 9 1010 | 21.4 | з М | 6229,374 | 6229.371 | 6229.371 0.000 | | IV
IW
IX | OITU
OITU
OITU | ALUTU
ALUTU
ALUTU | 1971 NOV 2
1971 NOV 2
1971 NOV 2 | 5 0900 | 18.2
18.9
19.5 | 1 M
1 T
3 M | 4629,090
4629,095
4629,089 | 4629.087
4629.092
4629.087 | 4629.089 .003 | | IY
IZ
JA | UTIO
UTIO
UTIO | OOMAY
OOMAY | 1971 NOV 2
1971 NOV 2
1971 NOV 2 | 5 1040 | 21.9
23.0
23.6 | 5 T
6 M
13 T | 5303,658
5303,660
5303,663 | 5303.657
5303.659
5303.663 | 5303.659 .003 | | EY
EJ
EI | GALILA
GALILA
GALILA | YELLEM
YELLEM
YELLEM | 1971 NOV 0
1971 NOV 0
1971 NOV 0 | 9 0820 | 19.2
19.3
19.4 | 2 M
3 H
2 M | 2248.301
2248.300
2248.303 | 2248.298
2248.297
2248.300 | 2248,298 .002 | | EL
EM
EN | GALILA
GALILA
GALILA | THORNS
THORNS
THORNS | 1971 NOV 0
1971 NOV 0
1971 NOV 0 | 9 0920 | 20.5
21.2
21.8 | 4 M
20 H
9 M | 4608.483
4608.489
4608.488 | 4608.479
4608.485
4608.484 | 4608,482 .003 | | DN
DO
DP | KOKA
KOKA
KOKA | YELLEM
YELLEM
YELLEM | 1971 NOV 0
1971 NOV 0
1971 NOV 0 | 8 0900 | 21.5
21.7
22.4 | 9 H
6 T
4 H | 2871.894
2871.897
2871.898 | 2871.891
2871.894
2871.895 | 2871.893 .002 | | DQ
DR
DS | KOKA
KOKA
KOKA | THORNS
THORNS
THORNS | 1971 NOV 0
1971 NOV 0
1971 NOV 0 | 8 1005 | 23.0
23.4
23.9 | 9 T
6 H
5 T | 4444,667
4444,666
4444,669 | 4444.665
4444.664
4444.668 | 4444,666 .002 | | HJ
HK
HL | ARJO
ARJO
ARJO | LANGANA
LANGANA
LANGANA | 1971 NOV 1
1971 NOV 1
1971 NOV 1 | 9 0845 | 19.6
19.8
20.1 | 2 M
6 H
7 M | 4851.705
4851.703
4851.706 | 4851.699
4851.698
4851.700 | 4851,699 .001 | | HQ
HR
HS | BMN
BMN
BMN | SHECHA
SHECHA
SHECHA | 1971 NOV 2
1971 NOV 2
1971 NOV 2 | 1 0925 | 24.4
24.4
24.6 | 2 M
3 H
5 M | 2937.678
2937.673
2937.673 | 2937.675
2937.670
2937.670 | 2937.672 .003 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | Final D | Line Average | 2 | |----------------------------------|--|---|--|------------------------------|--|---|--|--|--------------|------| | TH
VH
HI
II
IJ | BMN
BMN
BMN
BMC
BMC
BMC | BMC
BMC
BMC
BMN
BMN
BMN | 1971 NOV 21
1971 NOV 21
1971 NOV 21
1971 NOV 22
1971 NOV 22 | 1040
1050
1835
1845 | 26.7
27.9
27.9
23.5
23.5
23.5 | 17 T
13 H
13 T
1 H
4 T
0 H | 1206.716
1206.715
1206.711
1206.705
1206.700
1206.700 | 1206.715
1206.715
1206.711
1206.707
1206.702
1206.702 | 1206.708 | •006 | | IE
IF
IG | BMP
BMP
BMP | SHECHA
SHECHA
SHECHA | 1971 NOV 22
1971 NOV 22
1971 NOV 22 | 1710
1715 | 25.3
24.7
24.0 | 8 T
7 H
6 T | 2331.648
2331.648
2331.645 | 2331.652
2331.652
2331.648 | 2331.651 | .002 | | HW
HX
HY | BMC -
BMC
BMC | DUBI - | 1971 NOV 21
1971 NOV 21
1971 NOV 21 | 1735 | 25.7
25.3
24.5 | 17 M
12 M
6 M | 6490.017
6490.015
6490.017 | 6490.024
6490.021
6490.023 | 6490.023 | •002 | | HZ
IA
IB
IC
ID
IU | KULFO
KULFO
KULFO
KULFO
KULFO
BMC | BMC 'BMC BMC BMC BMC BMC BMC BMC BMC KULFO | 1971 NOV 22
1971 NOV 22
1971 NOV 22
1971 NOV 22
1971 NOV 22
1971 NOV 23 | 0935
0950
1000
1010 | 23.3
23.5
24.0
24.7
25.0
23.3 | 13 M
14 W
11 M
13 W
11 M
4 M | 3599.171
3599.174
3599.173
3599.184
3599.182
3599.160 | 3599.167
3599.171
3599.170
3599.182
3599.180
3599.166 | 3599•172 | •007 | | IP
IQ
. IR | BMC
BMC
BMC | TOSASUCHA
TOSASUCHA
TOSASUCHA | 1971 NOV 23
1971 NOV 23
1971 NOV 23 | 1645
1700 | 24.8
24.7
24.7 | 2 M
2 H
4 M | 7277.600
7277.599
7277.601 | 7277.608
7277.607
7277.609 | 7277.608 | | | IS
IT | BMC
BMC | TOSASUCHA AUX A
TOSASUCHA AUX A | | | 24.7
24.5 | 3 H
4 M | 7276.505
7276.502 | 7276.513
7276.509 | 7276.511 | •003 | | IK
IL
IM
IN
IO | KULFO
KULFO
KULFO
KULFO
KULFO | TOSASUCHA
TOSASUCHA
TOSASUCHA
TOSASUCHA
TOSASUCHA | 1971 NOV 23
1971 NOV 23
1971 NOV 23
1971 NOV 23
1971 NOV 23 | 0950
1005
1020 | 22.3
21.9
21.8
22.0
22.5 | 5 W
8 H
5 W
2 H
8 W | 3772.922
3772.926
3772.933
3772.925
3772.932 | 3772.920
3772.924
3772.932
3772.924
3772.931 | 3772.926 | •005 | # · APPEŅDIX E AWARRA 1973 RANGER OBSERVATIONS | | | | | | | | | • | | | |---------|-----------------|---------------------|-----------|----|---------|--------|-------------|----------------------|----------------|------| | Code | Ranger III Sta. | Retroreflector Sta. | Date | | Time | Temp. | Corrected D | Final D | S.D. | No. | | CQ. | MARIAN | RAILWAY | 1973 MAR | 30 | 1610 | 30.1 | 3929.218 | 3929.221
3929.221 | .017 H
.015 | (30) | | CR . | MARIAM AUX A | RAILWAY | 1973 MAP | 30 | 1645 | 29.5, | 3937.603 | 3937.605
3937.606 | .009 W | (20) | | Cy ` | MARIAN
: | GEORGE | 1973 MAR | 30 | 1820 | 27.9 | 7262.541 | 7262.543
7262.543 | .004 W | (21) | | сņ | MARIAN | GEORGE AUX A | 1973 MAR | 30 | 1810 | 28+2 | 7259.091 | 7259.094
7259.094 | .004 M | (20) | | CS
, | MARIAM AUX A | GEORGE | 1973 MAR | 30 | 1750 | 28.9 | 7257.219 | 7257.221
7257.220 | .010 W
.011 | (20) | | CT
· | MARIAM AUX A | GEORGE AUX A | 1973 MAR | 30 | 1,755 | 28.6 , | 7253•754 | 7253.756
7253.755 | .010 M
.009 | (20) | | AA | RIDGE | GEORGE | 1973` MAR | 25 | 1545 | 29.9 | 2529.970 | 2529,971 | .016 R | (20) | | AR | RIDGE | GEORGE . | 1973 MAR | 27 | 0815 | 22.3 . | 2529.954 | 2529.971
2529.952 | .013
.008 W | (20) | | - | | - | | | | | | 2529,952 | •006 | | | AB | RIDGE | GEORGE AUX A | 1973 MAR | 25 | 1610 | 30.1 | 2530.727 | 2530.728
2530.728 | .008 | (20) | | A5
 | RIDGE | GEORGE AUX A | 1973 MAR | 27 | 0830 | 22.6 | 2530.736 | 2530,734
2530,735 | .010 K | (20) | | BĢ | APANA | GEORGE . | 1973 MAR | 28 | 0850 | 23.8 | 4461.185 | 4461.180
4461.180 | .005 H | (20) | | AC | RIDGE | ADAMA . | 1973 MAR | 25 | 1635 | 30+1 | 2865+574 | 2865.576 | •004 ₩ | (20) | | AT | RIDGE | ADAMA | 1973 MAR | 27 | 1000 | 26.8 | 2865.575 | 2865.576
2865.574 | .003 | (20) | | BE | ADAMA | RIDGE | 1973 MAR | | | 21.4 | 2865.571 | 2865.574
2865.567 | .006
.004 H | | | OL. | OVANA | **1000 | 1715 HAN | | 5050 | 2144 | 2003431- | 2865.567 | .003 | | | AD | RIDGE | ADAMA AUX A | 1973 MAR | 25 | 1700 | 29•9 . | 2874.405 | 2874.408
2874.408 | .004 R | (20) | | AU | RIDGE | A XUA AMADA | 1973 MAR | 27 | 1009 | 27.3 | 2874,411 | 2874.410
2874.409 | .012 M | (20) | | BF | ADAMA | RIDGE AUX A | 1973 MAR | 28 | 0810 | 22.3 | 2878.020 | 2878,016
2878,016 | .005 M | (21) | | | | | 1 | | . = = = | , | | | 642 U | .001 | | AE | RIDGE | FARENJI | 1973 MAR | | | 29•6 | 3022.251 | 3022.253
3022.252 | .002 H | | | AV | RIDGE | FARENJI | 1973 MAR | 27 | 1030 | 26.4 | 3022,247 | 3022,246
3022,247 | .005 W | (20) | | AW
 | RIDGE | FARENJI AUX B | 1973 MAR | 27 | 1045 | 26+5 | 3011.182 | 3011.182
3011.182 | •006
•006 | (20) | | AF | RIDGE . | FARENJI AUX C | 1973 MAR | 25 | 1725 | 29•3 | 3012+008 | 3012.010
3012.010 | .003 W
.002 | (20) | | AZ | RIDGE | EL PASO AUX A | 1973 MAR | 27 | 1155 | 27.7 | 6631.483 | 6631.484
6631.484 | .006 W | (20) | | AX | RIDGE | GANTI | 1973 MAR | 27 | 1120 | 27.5 | 6673,488 | 6673.489
6673.489 | •012 M
•010 | (20) | | AY | RIDGE | GANTI AUX A | 1973 MAR | 27 | 1135 | 27.5 | 6672.896 | 6672.897
6672.897 | .007 G | (20) | | AG | RIDGE | , FULCRUM AUX A | 1973 MAR | 25 | 1805 | 28+6 | 5335•165 | 5335.167
5335.167 | •002 W | (20) | | AH | RIDGE | FULCRUM AUX B | 1973 MAR | 25 | 1820 | 28.3 | 5337.056 | 5337.058
5337.058 | .002 G | (20) | | BC | RIDGE | FULCRUM AUX C | 1973 MAR | 27 | 1650 | 29.3 | 5334.033 | 5334.034
5334.033 | .013 R | (20) | | ₿D | RIDGE | FULCRUM AUX D | 1973 MAR | 27 | 1715 | 29.2 | 5335.403 | 5335.404
5335.404 | .013 W | (20) | | • | | | | | | | - | | | |------|-----------------|---------------------|-------------|----------------------|-------
-------------|----------------------------------|-------------------------|------| | Code | Ranger III Sta. | Retroreflector Sta. | Date . | Time | Temp. | Corrected D | Final D | S.D. , | No. | | ВА | RIDGE | BLO550M | 1973 MAR 27 | 7 1605 | 29.9 | 6366-189 | 6366.192
6366.191 | .009 W | (20) | | вв | RIDGE . | BLGSSOM AUX A | 1973 MAR 27 | 7 1620 | 29.8 | 6367.781 | 6367.784
6367.784 | .008 W
.007 | (20) | | ВҮ | воки: | RIDGE . | 1973 MAR 29 | 9 1030 | 28.1 | 6998,221 | 6998,221
6998,220 | .008 N | (20) | | BŽ | BOKU | RIDGE AUX A | 1973 MAR 29 | 9 1040 | 28.4 | 6983.066 | 6983.065
6983.065 | .008 R
.007 | (14) | | AN | FARENJI | ADAMA: , | 1973 MAR 26 | 5 1745 | 30,3 | 1400.903 | 1400.904 | .004 H | (20) | | вн | ADAMA . | FARENJI ' | 1973 NAR 28 | 3 0922 | 25.8 | 1400.886 | 1400.904
1400.885
1400.885 | .004
.008 M
.007 | (20) | | BI | ADAMA | FARENJI AUX B | 1973 MAR 28 | 3 043 ⁰ 0 | 26.0 | 1407.485 | 1407.483
1407.483 | .010 H | (22) | | AC 1 | FARENJI | ADAMA AUX A | 1973 MAR 26 | 1755 | 29.7 | 1398.037 | 1398.038
1398.038 | •003 G
•003 | (20) | | BL | ADAMA | EL PASO AUX A | 1973 MAR 28 | 3 1045 | 28.1 | 6153.593 | 6153.592 | .004 M | (3) | | DC. | ADAMA | EL PASO AUX A | 1973 APR 0 | 1 0940 | 27.4 | 6153.609 | 6153.595
6153.605
6153.605 | .007
.010 ii
.009 | (20) | | DD | ADAMA AUX A | EL PASO AUX A | 1973 APR 01 | 1 0955 | 28.1 | 6150.073. | 6150.071
6150.070 | .009 R
.008 | (20) | | ลา | ADAMA. | GANT I | 1973 MAR 28 | 3 1004 | 26.9 | 6100.373 | 6100.371
6100.371 | .009 h | (23) | | BK | ADAHA | GANTI AUX A | 1973 MAR 2 | 8 1015 | 27•0 | 6101.593 | 6101.591
6101.592 | .009 H | (20) | | DA | FARENJI | EL PASO AUX A | 1973 APR 0 | 1 0855 | 25.1 | 4757.483 | 4757•477
4757•477 | .010 M | (20) | | DB | FARENJI AUX B | EL PASO AUX A | 1973 APR 0 | 1 0907 | 25.3 | 4752.318 | 4752.314
4752.314 | .008 R
.007 | (20) | | ΑP | FARENJI | GANTI | 1973 MAR 2 | 6 1830 | 27.7 | 4709+990 | 4709.991
4709.992 | .003 R
.003 | (20) | | AQ | FARENJ1 | GANTI AUX A | 1973 MAR 2 | 6 1840 | 27.4 | 4711.092 | 4711.095
4711.095 | .003 R
.003 | (20) | | AI | FARENJI | FULCRUM AUX A | 1973 MAR 2 | 6 1540 | 31.1 | 2358+169 | 2358•171
2358•171 | .015 R
.014 | (14) | | LA | FARENJI | FULCRUM AUX 8 | 1973 MAR 2 | 6 1600 | 30,9 | 2359.590 | 2359.591
2359.591 | .007 K | (10) | | AK | FAREIIJI | FULCRUM AUX C | 1973 MAR 2 | 6 1615 | 31.1 | 2370•994 | 2370•994
2370•995 | .007 H | (20) | | AL | FARENJI | FULCRUM AUX D | 1973 MAR 2 | 6 1625 | 30,9 | 2372.330 | 2372.331
2372.331 | .005 G
.004 | (20) | | АМ | FARENJI | BLOSSOM | 1973 HAR 2 | 6 1710 | 30.8 | 3520.700 | 3520.702
3520.702 | .005 R
.004 | (20) | | Bh. | воки . | FARENJI | 1973 MAR 2 | 9 0935 | 26.3 | 6066.396 | 6066•392
6066•393 | .010 M | (20) | | вх | воки | FARENJI AUX B | 1973 MAR 2 | 9 0950 | 27.0 | 6056.446 | 6056.443
6056.442 | .010 R
.009 | (10) | | Code | Ranger III Sta. | Retroreflector Sta. | ,
Date | Time | Temp. | Corrected D | Final D | S.D. No. | |---------------|-----------------|---------------------|-------------|---------|--------------|-------------|------------------------|---------------------| | BV | • | ELIPASO AUX A | | 0825 | 22.2 | 2307,080 | 2307.078
2307.077 | .006 G (20) | | CW | FULCRUM AUX A | | 1973 APR 01 | l 0745 | 21,2 | 4773•642 | 4773.639
4773.639 | .004 R (20) ' | | ,
CZ | FULCRUM AUX B | GANTI | 1973 APR 01 | L 0815 | 23.0 | 4770.750 | 4770.747
4770.747 | .005 R (20) | | . c ,x | FULCRUM AUX A | . GANTI AUX'A | 1973 APR 0 | 1 0750 | 22.2 | 4776.546 | 4776.543
4776.543 | .005 G (20) | | CY | FULCRUM AUX B | GANTI AUX A | 1973 APR 0 | 1 0808 | 22.5 | 4773.627 | 4773.625
4773.625 | .006 M (20) | | • | : , , | , 48 - 5 | | • | • | ٠٠, | • • | | | BŢ | воки | GANT I | 1973 MAR 2 | 9 0800 | 22.0 | 2519.664 | 2519+662
2519+662 | .007 M (21) | | ₿Ù | воки | GANTI ĀUX A | 1973 MAR 2 | 9 0810 | 22.0 | 2515•532 | 2515.530
2515.531 | .004 R (20) | | СВ | BLOSSOM | FULCRUM AUX A | 1973 MAR 2 | 9 1605 | 31.4 | 1305,416 | 1305.416
1305.416 | .008 H (20) | | CH, | BLOSSON AUX A | FULCRUM AUX A | 1973 MAR 2 | 9 1650 | 30,5 | 1310,519 | 1310.519
1310.519 | .004 H (20) | | CA | BLOSSO! | FULCRUM AUX 8 | 1973 MAR 2 | 9 1555 | 30.8 | 1306.134 | 1306•134
1306•135 | .011 W (29) | | ce. | BLOSSON AUX A | FULCRUM AUX B | 1973 MAR 2 | 9 1645 | 30∙ 7 | 1311.261 | 1311.262
1311.261 | .006 W (20)
.004 | | cc | BLOSSOM | FULCRUM AUX C | 1973 MÅR 2 | 9 1615 | 30.9 | 1248.604 | - 1248.604
1248.604 | .007 W (20) | | CF | BLOSSOM AUX A | FULCRUM AUX C | 1973 MAR 2 | 9 1635 | 30.8 | 1253.421 | 1253.421
1253.421 | .004 H (24) | | CD | BLOSSON | FULCRUM AUX D | 1973 MAR 2 | 9 1625 | 30.7 | 1247.536 | 1247.536
1247.536 | .006 G (20) | | CE | BLOSSOM AUX A | FULCRUM AUX D | 1973 MAR 2 | 9 1630 | 30.7 | 1252.350 | 1252•350
1252•350 | .004 W (20)
.003 | | CL | FULCRUN AUX A | GRAVES | 1973 MAR 2 | 9 1820 | 29.1 | 7318.004 | 7318.006
7318.006 | .003 H (20) | | CK | FULCRUM AUX A | GRAVES AUX A | 1973 MAR 2 | 9 1815 | 29.1 | 7341.653 | 7341.655
7341.655 | .004 W (20)
.003 | | CM | FULCRUN AUX 8 | GRAVES | 1973 MAR 2 | 9 1830 | 28•4 | 7315.785 | 7315.788
7315.788 | •004 \ (20)
•003 | | CN | FULCRUM AUX B | GRAVES AUX A | 1973 MAR 2 | 29 1838 | 27.8 | 7339.431 | 7339•433
7339•433 | .006 w (20)
.005 | | , c I | BLOSSOM AUX A | GRAVES | 1973 MAR 2 | 29 1735 | 30.7 | 6514.655 | 6514•656
6514•656 | .005 H (20) | | ca | BLOSSÓN AUX A | GRAVES AUX A | 1973 MAR : | 29 1745 | 30.3 | 6532.841 | 6532•843
6532•843 | .002 H (20) | | DE | GRAVES | CINDER | 1973 APR (| 01 1605 | 33.0 | 5866.806 | 5866.810
5866.810 | .009 W (20) | | DF | GRAVES | CINDER AUX A | 1973 APR (| 01 1620 | 32,6 | 5872.099 | 5872.102
5872.102 | .007 R (12) | | co | BOHALLA | CINDER | 1973 MAR | 30 0945 | 28.9 | 7233,350 | 7233,347
7233,348 | .010 R (20) | | СР
 | BOHALLA | CINDER AUX A | 1973 MAR | 30 1010 | 29.3 | 7223,525 | 7223°523
7223°523 | .008 W (19) | REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR OUR THE REPRODUCIPIENTY OF THE REPRODUCIPIENTY OF THE | Code | Ranger III Sta. | Retroreflector Sta. | Date | Time | Temp. | Corrected D | Final D | S.D. | No. | |------|--------------------|---------------------|-------------|------|-------|-------------|----------------------------------|------------------------|------| | Е0 | UNIFF | SODERE | 1973 MAR 28 | 1625 | 33.1 | 3856.824 | 3856.828
3856.828 | .008 W | (20) | | BM. | QUILL . | OOLAGA | 1973 MAR 28 | 1545 | 32.7 | 2357,703 | 2357.704 | .010 R | (30) | | BS | OOLAGA | OUILL | 1973 MAR 28 | 1755 | 31.0 | 2357.717 | 2357.705
2357.718
2357.718 | .008
.004 R
.004 | (20) | | . BN | Ծ _Ո լՐՐ | OOLAGA AUX A | 1973 MAR 28 | 1600 | 32.5 | 2359.108 | 2359,110 | .006 R | (20) | | BR | ODLAGA AUX A | Gnirr | 1973 MAR 28 | 1745 | 31.4 | 2359.126 | 2359.110
2359.127
2359.127 | .005
.005 W
.004 | (20) | | ВР | OOLAGA | SODERE | 1973 MAR 28 | 1655 | 33,1 | 1581.700 . | 1581,702
1581,702 | .007 W | (20) | ## APPENDIX F AWARRA 1973 GEODIMETER OBSERVATIONS | Code | Geodimeter Sta. | Retroreflector Sta. | Date Time | Temp. Spread | Corrected D | Final D | Line Average | |----------------------|-------------------------------|--|--|--|--|--|-----------------------------| | FU | PYLON | GEORGE | 1973 APR 10 1045 | 27.5 5 T | . 6642.831 | 6642.831 | 6642.832 .003 | | FV | PYLON | GEORGE | 1973 APR 10 1105 | 27.8 18 T | 6642.830 | 6642.830 | | | FW | PYLON | GEORGE | 1973 APR 10 1120 | 28.3 9 R | 6642.835 | 6642.836 | | | FX | PYLON | GEORGE AUX A | 1973 APR 10 1140 | 28•9 6 R | 6628.225 | 6628.226 | 6628.226 0.000 | | EA | RIDGE | ADAMA | 1973 APR 06 0745 | 22.5 4 M | 2865.596 | 2865.551 | 2865.551 .005 | | EB | RIDGE | - ADAMA | 1973 APR 06 0800 | 23.3 '19 W | 2865.549 | 2865.545 | | | EC | RIDGE | ADAMA | 1973 APR 06 0815 | 23.8 4 M | 2865.558 | 2865.554 | | | ED | RIDGE | FARENJI | 1973 APR 06 0845 | 24.9 16 W | 3022.241 | 3022.238 | 3022+238 +004 | | EE | RIDGE | FARENJI | 1973 APR 06 0905 | 25.7 15 M | 3022.243 | 3022.241 | | | EF | RIDGE | FARENJI | 1973 APR 06 0920 | 26.0 31 M | 3022.235 | 3022.233 | | | EG | RIDGE | FULCRUM AUX C | 1973 APR 06 0955 | 27.4 · Z2 M | 5334.026 | 5334.025 | 5334.027 .003 | | EH | RIDGE | FULCRUM AUX C | 1973 APR 06 1010 | 27.5 8 W | 5334.029 | 5334.029 | | | EJ | RIDGE
RIDGE | FULCRUM AUX D
FULCRUM AUX D | 1973 APR 06 1030
1973 APR 06 1045 | 27.6 20 M
27.7 9 W | 5335.395
5335.388 | 5335.394
5335.388 | 5335.390 .004 | | FY | PYLON | RIDGE | 1973 APR 10 1225 | 29.0 133 T | 7612.227 | 7612.231 | 7612.226 .010 | | FZ | PYLON | RIDGE | 1973 APR 10 1240 | 29.1 240 T | 7612.207 | 7612.211 | | | GA | PYLON | RIDGE | 1973 APR 10 1255 | 29.2 102 R | 7612.218 | 7612.224 | | | GB | PYLON | RIDGE AUX A | 1973 APR 10 1315 | 29•3 3 R | 7602.868 | 7602.874 | 7602-874 0-000 | | EY | BOKU | ADAMA | 1973 APR 07 1605 | 30.2 46 M | 7427.059 | 7427.067 | 7427.073 .006 | | EZ | BOKU | ADAMA | 1973 APR 07 1620 | 30.1 18 R | 7427.068 | 7427.075 | | | FA | BOKU | FARENJI | 1973 APR 07 1645 | 29.3 34 R | 6066.382 | 6066.386 | 6066•390 •005 | | FB | BOKU | FARENJI | 1973 APR 07 1700 | 29.1 30 M | 6066.391 | 6066.393 | | | HK | GRAVES | FULCRUM AUX C | 1973 APR 14 0840 | 23.6 6 T | 7329.598 | 7329.593 | 7329.588 .004 | | HL | GRAVES | FULCRUM AUX C | 1973 APR 14 0855 | 24.6 5 R | 7329.590 | 7329.586 | | | HM | GRAVES | FULCRUM AUX C | 1973 APR 14 0910 | 25.4 15 T | 7329.588 | 7329.585 | | | HN | GRAVES | FULCRUM AUX D | 1973 APR 14 0940 | 25•8 25 R | 7328.223 | 7328.221 | 7328.221 0.000 | | FC | 80KU | FULCRUM AUX A | 1973 APR 07 1735 | 28.0 26 M |
6880.078 | 6880.079 | 6880.077 .003 | | FD | 80KU . | FULCRUM AUX A | 1973 APR 07 1745 | (27.9 30 R | 6880.075 | 6880.075 | | | HO | GRAVES | BLOSSOM AUX A | 1973 APR 14 1020 | 27.7 23 T | 6514.638 | 6514.637 | 6514-639 -007 | | HP | GRAVES | BLOSSOM AUX A | 1973 APR 14 1040 | 28.0 26 R | 6514.632 | 6514.632 | | | HQ | GRAVES | BLOSSOM AUX A | 1973 APR 14 1055 | 28.2 18 T | 6514.646 | 6514.646 | | | HR | BOHALLA | BORI | 1973 APR 15 1035 | 30.4 21 H | 1666,350 | 1666.350 | 1666.362 .011 | | HS | BOHALLA | BORI | 1973 APR 15 1045 | 30.7 10 W | 1666,363 | 1666.363 | | | HT | BOHALLA | BORI | 1973 APR 15 1100 | 30.8 18 H | 1666,372 | 1666.372 | | | Η Ν
Ηψ | BOHALLA
BOHALLA
BOHALLA | BABOON
BABOON
BABOON | 1973 APR 15 1145
1973 APR 15 1200
1973 APR 15 1210 | 31.5 10 W
31.4 3 H
32.0 4 W | 2016,905
2016,909
2016,913 | 2016•906
2016•909
2016•914 | 2016.910 .004 | | Gχ | ROGGI | MIETCHI | 1973 APR 13 1000 | 19•8 4 R | 6260.900 | 6260.897 | 6260,897 0.000 | | -GT | ROGGI AUX A | MIETCHI | 1973 APR 13 0840 | 18.2 2 R | 6236.791 | 6236.785 | 6236.789 .005 | | GU | ROGGI AUX A | MIETCHI | 1973 APR 13 0855 | 18.8 12 W | 6236.793 | 6236.788 | | | GV | ROGGI AUX A | MIETCHI | 1973 APR 13 0910 | 19.3 10 R | 6236.800 | 6236.795 | | | GW | ROGGI AUX A | MIETCHI R.M. | 1973 APR 13 0935 | 19•7 18 W | 6234,553 | 6234.549 | 6234.549 0.000 | | FM | TOPLESS | MIETCHI | 1973 APR 09 1215 | 27.8 22 T | 5566.589 | 5566.590 | 5566.602 .011 | | FN | TOPLESS | MIETCHI | 1973 APR 09 1225 | 28.0 14 W | 5566.610 | 5566.611 | | | FO | TOPLESS | MIETCHI | 1973 APR 09 1245 | 28.0 67 T | 5566.598 | 5566.598 | | | FP | TOPLESS | MIETCHI R.M. | 1973 APR 09 1305 | 28.0 23 W | 5566,227 | 5566.228 | 5566.228 0.000 | | GY
GZ
HA
HC | OOLAGA
OOLAGA | MIETCHI
MIETCHI
MIETCHI
MIETCHI | 1973 APR 13 1052
1973 APR 13 1105
1973 APR 13 1130
1973 APR 13 1205 | 21.0 14 W
21.5 35 R
23.0 98 W
25.4 19 W | 7578.929
7578.936
7578.963
7578.911 | 7578.929
7578.936
7578.964*
7578.913* | 7578.926 .021 | | нв | | MIETCHI R.M. | 1973 APR 13 1150 | 24.5 5 R | 7575.710 | 7575.711 | .932 .004
7575•711 0•000 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Тетр. | Spread | Corrected D | Final D | Line Average | |------------------|--------------------|---------------------|----------------------------|------|-------------------|---------------|---|------------------------|-----------------| | FI | TOPLESS | DUST | 1973 APR 09 | | 26.0 | 20 W | 1709.675 | 1709.674 | | | FJ
FK | TOPLESS
TOPLESS | DUST
DUST | 1973 APR 09 | | 26.0 | 6 T | 1709,679 | 1709.679 | 1709.675 .004 | | 1 15 | 10/1533 | D031 | 1973 APR 09 | 1015 | 26.2 | 6 W | 1709,673 | 1709.672 | 1709.675 .004 | | FL | TOPLESS . | DUST AUX A | 1973 APR 09 | 1030 | 26.9 | 9 W | 1684.625 | 1684.625 | 1684.625 0.000 | | FQ | PYLON | WONJI | 1973 APR 10 | 0810 | 23.6 | 9 T | 3402.626 | 3402.621 | _ | | FR | PYLON | ILNOM | 1973 APR 10 | | 23.7 | 15 T | 3402.618 | 3402.614 | | | F\$ | PYLON | MONJI | 1973 APR 10 | 0900 | 24.5 | 26 R | 3402.627 | 3402,624 | 3402.619 .005 | | FT | PYLON | WONJI AUX A | 1973 APR 10 | 0915 | 25.8 | 73 R | 3400.159 | 3400.157 | 3400.157 0.000 | | кн | KOKA | PYLON | 1973 APR 13 | 1835 | 24.4 | 14 T | 3079.961 | 3079.963 | | | HI | KOKA | PYLON | 1973 APR 13 | 1850 | 24.0 | 20 H | 3079.957 | 3079.960 | | | ΗĴ | KOKA | PYLON | 1973 APR 13 | 1905 | 23.8 | , 5 T | 3079.951 | 3079.954 | 3079.958 .005 | | | | | : | | . | | **** | | | | HD
HE | KOKA
KOKA | ILNOW
ILNOW | 1973 APR 13
1973 APR 13 | | 28+4
28+0 | 25 T
18 H | 5336.841
5336.835 | 5336.845
5336.838 | | | HF | KOKA | WONJI | 1973 APR 13 | | 27.5 | 23 T | 5336.830 | 5336.832 | 5336.838 .007 | | HG | NUA T | LIMI IT ALLY A | 1072 400 12 | 17/5 | 27 2 | 2 H | 5335.236 | 5325 33B | 5335.238 0.000 | | nu | KOKA | A XUA ILMOM | 1973 APR 13 | 1/42 | 27.3 | 2 N | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 5335,238 | , | | EN | TABLE | AYGU ' | 1973 APR 06 | | 30.2 | 12 W | 7678.101 | 7678-106 | • | | E0
EP | TABLE
TABLE | AYGU
AYGU | 1973 APR 06 | | 29-8 | 44 R
28 W | 7678.121
7678.109 | 7678.127
7678.114 | 7678.112 .011 | | ٠. | I ADLE | Aido | 1973 APR 06 | 1840 | 29.7 | 20 N | 1919*103 | 10194114 | 70704111 0000 | | EK | TABLE | MERKO | 1973 APR 06 | 1400 | 32.1 | 25 W | 6858.833 | 6858.842 | | | EL | TABLE | MERKO | 1973 APR 06 | | 31.6 | 10 R | 6858.843 | 6858.852 | | | EM | TABLE | MERKO | 1973 APR 06 | 1645 | 31.5 | 19 R | 6858,831 | 6858.839 | | | EQ | TABLE | MERKO | 1973 APR 07 | | 26.8 | 21 W | 6858.838 | 6858.827 | | | ER
ES | TABLE · | MERKO
MERKO | 1973 APR 07
1973 APR-07 | | 27.2
27.7 | 22 M
-17 W | 6858.834
6858.839 ~ ·· | 6858.824
6858.830 | 6858,837 .011- | | ET | TABLE | MERKO AUX A | 1973 APR 07 | 0920 | 27.7 | 24 M | 6854.767 | 6854.759 | 6854.759 0.000 | | F1. | | | | | | " | | -11- 017 | | | EU
EV | TABLE
TABLE | RABBIT
RABBIT | 1973 APR 07
1973 APR 07 | | 30.5
30.2 | 37 M
20 W | 9418.240
9418.265 | 9418.242
9418.267 | | | EW | TABLE | RABBIT | 1973 APR 07 | | 30.4 | 22 M | 9418.251 | 9418.254 | | | GG | RABBIT | TABLE | 1973 APR 12 | | 27.4 | 32 T | 9418,263 | 9418,261 | | | GH
GI | RABBIT | TABLE | 1973 APR 12 | | 27.6 | 43 M | 9418.250 | 9418,249 | | | GK | RABBIT
RABBIT | TABLE
TABLE | 1973 APR 12
1973 APR 12 | | 28.1
28.7 | 14 H
24 H | 9418.252
9418.259 | 9418.252
9418.261 | 9418.256 .008 | | EX | TABLE | RABBIT AUX A | 1973 APR 07 | 1215 | 30.3 | 14 W | 9421.121 | 9421.125 | 9421.125 0.000 | | GJ | RABBIT | TABLE AUX A | 1973 APR 12 | 1105 | 28.5 | 37 T | 9417.787 | 9417.787 | 9417.787 0.000 | | | | | | | | | | | | | FE | MERKO | AYGU | 1973 APR 08 | | 31.8 | 21 W | 7829.031 | 7829.037 | | | FF
FG | MERKO
MERKO | AYGU
AYGU | 1973 APR 08
1973 APR 08 | | 31.5
31.1 | 17 H
6 W | 7829,002
7829,022 | 7829.008 *
7829.028 | | | GĽ | MERKO | AYGU | 1973 APR 12 | | 30-8 | 9 T | 7829.020 | 7829.026 | | | GM | MERKO | AYGU | 1973 APR 12 | 1645 | 30.7 | 23 T | 7829.027 | 7829,033 | 7000 00/ 010 | | GN | MERKO | AYGU | 1973 APR 12 | 1705 | 30.1 | 17 R | 7829.020 | 7829,026 | 7829.026 .010 | | FH | MERKO | AYGU AUX A | 1973 APR 08 | | 30.6 | 10 W | 7827.304 | 7827.309 | 7827,309 0,000 | | GO | MERKO | AYGU AUX A | 1973 APR 12 | 1725 | 29.6 | g R | 7827.303 | 7827,309 | 1821,309 0,000 | | GC | RABBIT | AYGU | 1973 APR 12 | 0820 | 25.4 | 12 T | 7220.467 | 7220.462 | | | GD | RABBIT | AYGU | 1973 APR 12 | | 25.9 | 15 H | 7220,462 | 7220.457 * | | | GE | RABBIT | AYGU | 1973 APR 12 | 0855 | 25.9 | 73 H | 7220.475 | 7220.472 | 7220.460 .008 | | GF | RABBIT | AYGU AUX A | 1973 APR 12 | 0910 | 26+4 | 24 T | 7223.221 | 7223.217 | 7223.217 0.000 | | GD. | MEDICO | DARUTT | 1-7 | | n | | 12409 774 | 12407 770 | | | GP
GQ | MERKO
MERKO | RABBIT
RABBIT | 1973 APR 12
1973 APR 12 | | 26.8
26.3 | 12 T
14 T | 13687.774
13687.773 | 13687.779
13687.779 | | | GR | MERKO | RABBIT | 1973 APR 12 | | 25 _e 9 | 15 R | 13687.766 | 13687.775 | 13687.778 .002 | | GS | MERKO | BABRIT AUX A | 1973 APR 12 | 2000 | 25-3 | 23 R | 13690.597 | 13690,609 | 13690,609 0.000 | | | | | | | | | | | | | HX | TERMITE | HOTEL | 1973 APR 18 | | 26.5 | 15 W | 1022.572 | 1022.574 | | | HY
H <u>Z</u> | TERMITE
TERMITE | HOTEL
HOTEL | 1973 APR 18 | | 25.0
25.0 | 8 H
9 W | 1022,581
1022,573 | 1022,582
1022,575 | 1022.577 .004 | | | CRITIE | UNITE | 1973 APR 18 | 1040 | 25.0 | Αu | ********** | 10554313 | ******** | | JC | HOTEL | GALLA | 1973 APR 20 | 1050 | 27.2 | 9 H | 764.047 | 764.047 | | | JD | HOTEL | GALLA | 1973 APR 20 | | 26.8 | 8 W | 764,048 | 764.048 | | | JE | HOTEL | GALLA | 1973 APR 20 | | 26.4 | 7 G | 764.048 | 764.048 | 764.048 .001 | | | | | | | | | | | | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | t
Final D | Line Average | |----------------------|--|---|---|----------------------|--------------------------------------|--------------------------------------|--|--|----------------------------| | 15 | HOTEL | EUPHORBIA | 1973 APR 20 | | 22.1 | 8 W | 3517.912 | 3517.906 | | | IT
IU | HOTEL
HOTEL | EUPHORBIA
EUPHORBIA | 1973 APR 20
1973 APR 20 | 0815 | 22.8 | 7 H
12 W | 3517.909
3517.913 | 3517.904
3517.908 | 3517.906 .002 | | IV | HOTEL | EUPHORBIA AUX A | 1973 APR 20 | 0840 | 23.0 | 17 H | 3524.745 | 3524.740 | 3524.740 0.000 | | IW -
IX
IY | HOTEL - 'HOTEL HOTEL | EUPHORBIA AUX B
EUPHORBIA AUX B
EUPHORBIA AUX B | 1973 APR 20 | 0900 | 23.3
23.4
23.4 | 4 W
6 H
7 W | 3518.199
3518.197
3518.200 | 3518.195
3518.194
3518.196 | 3518.195 .001 | | IZ
JA
JB | HOTEL
HOTEL
HOTEL | LANGANA
LANGANA
LANGANA | 1973 APR 20
1973 APR 20
1973 APR 20 | 1000 | 25.6
26.0
25.9 | 10 H
5 W
34 G. | 3394.041
3394.046
3394.049 | 3394.040
3394.045
3394.048 | 3394.044 .004 | | IE
IF
IG | TERMITE .
TERMITE .
TERMITE . | GALLA
GALLA
GALLA | 1973 APR 19
1973 APR 19
1973 APR 19 | 0950 | 21.9
22.7
23.5 | 24 W
2 T
4 W | 746.028
746.027
746.033 | 746.027
746.027
746.032 | 746.029 .003 | | 1H
11
1J | TERMITE
TERMITE
TERMITE | EUPHORBIA
EUPHORBIA
EUPHORBIA | 1973 APR 19
1973 APR 19
1973 APR 19 | 1135 | 25.6
26.1
26.5 | 14 T
8 W
17 G | 3358.119
3358.117
3358.120 | 3358.120
3358.118
3358.122 | 3358.120 .002 | | IK | TERMITE | EUPHORBIA AUX A | 1973 APR 19 | 1210 | 26.5 | 19 T | 3372.611 | 3372.614 | 3372.614 0.000 | | KK
KK |
TERMITE
TERMITE
TERMITE | EUPHORBIA AUX B
EUPHORBIA AUX B
EUPHORBIA AUX B | 1973 APR 22 | 0935 | 24.8
25.3
25.9 | 14 R
11 H
10 G | 3358,402
3358,399
3358,405 | 3358.399
3358.396
3358.402 | 3358.399 .003 | | IA
IB
IC
ID | TERMITE
TERMITE
TERMITE
TERMITE | LANGANA
LANGANA
LANGANA
LANGANA | 1973 APR 18
1973 APR 19
1973 APR 19
1973 APR 19 | 0755
0810 | 25.5
18.9
19.4
19.6 | 28 H
4 W
10 T
6 G | 2434.155
2434.151
2434.153
2434.157 | 2434.157
2434.147
2434.150
2434.154 | 2434.151 .004 | | LI
LJ
LK
LL | OLRA
OLRA
OLRA
OLRA | TERMITE .
TERMITE
TERMITE
,TERMITE | 1973 APR 27
1973 APR 27
1973 APR 27
1973 APR 27 | 0810
0825 | 22.0
22.5
22.8
23.1 | 11 W
10 R
6 H
22 W | 7257.933
7257.956
7257.952
7257.941 | 7257.917 *
7257.942
7257.939
7257.928 | 7257.932011
937 .004 | | IL
IM
IN | GALLA
GALLA
GALLA | EUPHORBIA
EUPHORBIA
EUPHORBIA | 1973 APR 19
1973 APR 19
1973 APR 19 | 1700 | 25.6
25.9
26.8 | 21. T
9 W.
5 G | 2852.114
2852.119
2852.113 | 2852.117
2852.123
2852.117 | 2852.119 .003 | | Io | GALLA | EUPHORBIA AUX A | 1973 APR 19 | 1735 | 26.6 | 13 T | 2862.147 | 2862.150 | 2862.150 0.000 | | IP
IQ
IR | GALLA
GALLA
GALLA | EUPHORBIA AUX E
EUPHORBIA AUX E
EUPHORBIA AUX E | 1973 APR 19 | 1805 | 26.5
26.1
25.5 | 4 W
19 G
14 T | 2852,395
2852,394
2852,387 | 2852.398
2852.398
2852.391 | 2852,396 .004 | | JX
KG
KH
KI | ARJO
ARJO
GALLA
GALLA
GALLA | GALLA
GALLA
ARJO
ARJO
ARJO | 1973 APR 21
1973 APR 21
1973 APR 22
1973 APR 22
1973 APR 22 | 1015
0730
0745 | 26.4
26.6
19.2
20.1
21.2 | 38 W
104 T
6 H
22 R
18 H | 7435,793
7435,792
7435,790
7435,778
7435,779 | 7435.788
7435.789
7435.771
7435.761
7435.763 | 7435.769 .013 | | KJ | GALLA | ARJO AUX A | 1973 APR 22 | 0820 | 22.4 | 12 R | 7439.571 | 7439.557 | 7439.557 0.000 | | 76
76
74 | LANGANA
LANGANA
LANGANA | EUPHORBIA
EUPHORBIA
EUPHORBIA | 1973 APR 20
1973 APR 20
1973 APR 20 | 1545 | 30.1
30.8
30.9 | 2 W
3 R
19 W | 3232.691
3232.687
3232.715 | 3232.695
3232.691
3232.719* | 3232.699 .015
693 .003 | | JI | LANGANA | EUPHORBIA AUX A | 4 1973 APR 20 | 1625 | 29.6 | 28 R′ | 3259.842 | 3259.846 | 3259.846 0.000 | | JF
JK | LANGANA
LANGANA
LANGANA | EUPHORBIA AUX E
EUPHORBIA AUX E
EUPHORBIA AUX E | B 1973 APR 20 | 1700 | 28.7
29.1
29.2 | 13 G
21 R
18 W | 3232.885
3232.884
3232.884 | 3232.888
3232.888
3232.887 | 3232.888 -001 | | JQ
JR
JS | OLRA
OLRA
OLRA | EUPHORBIA
EUPHORBIA
EUPHORBIA | 1973 APR 21
1973 APR 21
1973 APR 21 | 0750 | 20.6
21.4
21.9 | 7 W
17 R
6 T | 6206.128
6206.138
6206.138 | 6206.113*
6206.124
6206.125 | 6206.120 .007 | | JŦ | ARJO | EUPHORBIA AUX | A 1973 APR 21 | 0825 | 22 6 2 | - 15 W - | 6229;366 - | 6229:355 | -6229.355.0.000 | | 7A
70
70 | ARJO
ARJO
' ARJO | EUPHORBIA AUX EUPHORBIA AUX EUPHORBIA AUX E | B 1973 APR 21 | 0900 | 22.9
23.6
24.3 | 3 T
40 R
13 W | 6206.107
6206.093
6206.096 | 6206.096 *
6206.085
6206.088 | 6206.092 .006
.087 .002 | | | | | | | | | | • | | |------|-----------------|---------------------|-------------|--------|-------|--------|-----------------|------------|---| | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | Final D | Line Average | | ML | LANGANA | ARJO | 1973 APR 20 | 1756 | 27.9 | 25 R | 4851.684 | 4851.687 | | | | LANGANA | ARJO | 1973 APR 20 | | 26.6 | 2 W | 4851.681 | 4851.685 | | | JN | LANGANA | ARJO | 1973 APR 20 | | | 5 G | 4851.697 | 4851.701* | 4851.692 .009 | | JO | PANGAIA | ARGO | 1913 NEW 5 | 1875 | 26.0 | 9 0 | 40210031 | 40010 | P82 001 | | | | | | | | | | 4855,276 | 4855,276 0,000 | | JP | LANGANA | ARJO AUX A | 1973 APR 2 | 1840 | 25•8 | 25 W | 4855.270 | 45556510 | 10334210 | | KD. | OITU | ALUTU | 1973 APR 2 | 1 1745 | 27.2 | 13 W . | 4629:080 | 4629.083 | | | KE | OITU | ALUTU | 1973 APR 2 | | 27.4 | 5 R | 4629.082 | 4629.083 | | | | OITU | | | | | 7 T | 4629.080 | 4629.083 | 4629.083 .000 | | KF | 0110 | ALUTU | 1973 APR 2 | 1 1810 | 27.1 | 7 1 | 4029.000 | 40244002 | | | JZ | UTIO | OOMAY | 1973 APR 2 | 1 1605 | 30.2 | 9 T | 5303.627 | 5303.630 | | | KA | ÖİTÜ | OOMAY | 1973 APR 2 | | 29.7 | ŹŴ | 5303.636 | 5303.637 | | | KB | οιτύ | OOMAY | 1973 APR 2 | | | 22 R | 5303.633 | 5303.636 | 5303.634 .004 | | ND | 0110 | Other | 1913 WLK 5 | 1 1940 | 29.2 | 22 N | 22428042 | 35034022 | | | 'KC | OITU | OOMAY AUX A | 1973 APR 2 | 1 1700 | 28.9 | · 10 T | 5312.157 | 5312,160 | 5312.160 0.000 | | | | | | | 2007 | | * - · • • • · · | | | | κU | BMN | BMC. | 1973 APR 2 | 2 1050 | 25.9 | 21 R | 1206.696 | 1206.696 | | | | BMN | | | | | 20 H | 1206.698 | 1206.698 | | | ΚV | | BMC | 1973 APR 2 | | 27.0 | | 1206.690 | 1206.691 | 1206.695 .004 | | KW | BMN | ВМС | 1973 APR 2 | 3 1120 | 27.6 | 15 G | 1500*030 | 14004037 | 200-70- | | LB | вмс | KULFO | 1973 APR 2 | 2 1005 | 25.1 | 8 R | 3599,156 | 3599.161 | | | | | | | | | | 3599.152 | 3599.158 | | | rc | BMC | KULFO | 1973 APR 2 | | 24.8 | 19 T | | | 3599.158 .003 | | LD | BMC | KULFO | 1973 APR 2 | 3 1935 | 24.8 | 7 G | 3599.148 | 3599.155 | 33,7,230 1010 | | ~~ | | /
TACACHCUA | 1000 400 0 | 2 1/26 | 27.7 | 27.7 | 7272 647 | 7277.595 | | | KX | BMC | TOSASUCHA | 1973 APR 2 | | 27.7 | 27 T | 7277,587 | | | | KY | BMC | TOSASUCHA | 1973 APR 2 | | 26.6 | 17 R | 7277.588 | 7277.596 | 7277.595 .001 | | KZ | ВМС | TOSASUCHA | 1973 APR 2 | 3 1710 | 26.0 | 11 G | 7277.587 | 7277.594 | • | | LA | вмс | TOSASUCHA AUX A | 1973 APR 2 | 3 1725 | 26.0 | 19 T | 7276.495 | 7276.502 | 7276,502 0.000 | | | | | | | | | | | • | | KN | ВМР | SHECHA | 1973 APR 2 | 3 0805 | 22.1 | 26 H | 2331.642 | 2331.637 | | | KO | ВМР | SHECHA | 1973 APR 2 | | 22.1 | 3 R | 2331.639 | 2331.634 | | | KP | BMP | SHECHA | 1973 APR 2 | | 22.1 | 24 Ĝ | 2331.639 | 2331.635 | | | KQ | ВМР | SHECHA | 1973 APR 2 | | 22 (| 25 H | 2331,633 | 2331.629 | 2331.634 .003 | | NW | OFF | SHEYRA | 19/3 MPR 2 | 3 0849 | 22.4 | 29 N | 53316033 | , 22214027 | | | KR | BMN | SHECHA | 1973 APR 2 | 2 0040 | 25.5 | 10 R | 2937.654 | 2937,652 | | | K\$ | BMN | | | | | | 2937.656 | 2937.654 | | | | | SHECHA | 1973 APR 2 | | 25.4 | 16 G | 2937.657 | 2937.655 | 2937.653 .002 | | KŢ | BMN | SHECHA | 1973 APR 2 | 2 1005 | 25.9 | 27 H | 7421*031 | 27318033 | | | LE | KULFO | TOSASTICUA | 1072 400 3 | 4 1/10 | 27 0 | 21 R | 3772.906 | 3772.911 | | | LF | | TOSASUCHA | 1973 APR 2 | | 27.8 | | | 3772.915 | | | | KULFO | TOSASUCHA | 1973 APR 2 | | 27.1 | 7 H | 3772.911 | | 3772.914 .002 | | LG | KULFO | TOSASUCHA | 1973 APR 2 | 4 1635 | 26.8 | 38 R | 3772.910 | 3772.915 | | | LH | KULF0 | TOSASUCHA AUX A | 1973 APR 2 | 4 1650 | 25.0 | 53 H | 3772.063 | 3772.067 | 3772.067 0.000 | | | | | | | | | | | | ## APPENDIX G TIKDEM 1974 GEODIMETER OBSERVATIONS | 0-1- | Condimeton Sta | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | Final D | Line Average | |----------------------------------|---|--|--|--|--|--|--|---|--| | Code | Geodimeter Sta. | | 1974 NOV | | • | 40 R | 15531.209 | 15531.201 | | | PQ
PR
PS | MARIAM
MARIAM
MARIAM | GITCHI
GITCHI
GITCHI . | 1974 NOV
1974 NOV
1974 NOV | 22 0840 | 15.6
16.3
16.5 | 56 G
77 R | 15531.204
15531.209, | 15531.197
15531.204 | 15531.200 .003 | | PX
PY.
PZ
QA | RAILWAY
RAILWAY
RAILWAY
RAILWAY | MARIAM
MARIAM
MARIAM
MARIAM | 1974 NOV
1974 NOV
1974 NOV
1974 NOV | 22 1658
22 1710 | 20.7
20.3
19.9
19.5 | 11 P
15 M
14 P
11 M | 3929.222
3929.216
3929.213
3929.215 | 3929.225
3929.219
3929.216
3929.217 | 3929,219 .004 | | PT
PU
PV
PW | RAILWAY
RAILWAY
RAILWAY
RAILWAY | MARIAM AUX A
MARIAM AUX A
MARIAM AUX A
MARIAM AUX A | 1974 NOV
1974 NOV
1974 NOV
1974 NOV | 22 1603
22 1619 | 21.4
21.3
21.1
21.0 | 11 P
6 M
24 P
19 M | 3937.585
3937.595
3937.597
3937.604 | 3937.588
3937.598
3937.600
3937.607 | 3937.597 .008 | | AY
Az
Ba | GEORGE
GEORGE
GEORGE | MARIAM
MARIAM
MARIAM | 1974 OCT
1974 OCT
1974 OCT | 24 0950 | 22.1
22.2
22.6 | 30 P
11 R
13 P | 7262•585
7262•564
7262•569 | 7262.583 *
7262.563
7262.558 | 7262•565 •013
.541 .004 | | AV
AW | GEORGE AUX A
GEORGE AUX A
GEORGE AUX A | MARIAM
MARIAM
MARIAM | 1974 OCT
1974 OCT
1974 OCT | 24 0825 | 18.4
19.2
20.2 | 11 P
25 R
4 P | 7259.115
7259.114
7259.112 | 7259.110
7259.109
7259.109 | 7259.109 .001 | | 88 | GEORGE | MARIAM AUX A | 1974 OCT | 24 1035 | 23.3 | 6 R | 7257.240 | 7257,240 | 7257.240 0.000 | | AX | GEORGE AUX A | MARIAM AUX A | 1974 OCT | 24 0900 | 20.9 | 18 R | 7253.765 | 7253.763 | 7253.763 0.000 | | AA
AB
AC
BC
BD
BE | RIDGE
RIDGE
RIDGE
GEORGE
GEORGE
GEORGE | GEORGE
GEORGE
GEORGE
RIDGE
RIDGE
RIDGE | 1974 OCT
1974 OCT
1974 OCT
1974 OCT
1974 OCT
1974 OCT | 23 0845
23 0907
24 1545
24 1600 | 20.5
21.1
22.0
25.7
25.5
25.4 | 14 R
25 P
7 R
9 M
19 G
11 M |
2529.991
2529.974
2529.962
2529.968
2529.978
2529.969 | 2529.989 * 2529.972 2529.961 * 2529.970 2529.980 2529.970 | 2529.973 .010
.9 ⁺³ .00+ | | DW
DX | RIDGE AUX A
RIDGE AUX A | GEORGE
GEOPGE | 1974 OCT
1974 OCT | | 17.4
17.9 | 12 G
8 R | 2540.203
2540.208 | 2540.202
2540.208 | 2540.205 .004 | | BF | GEORGE | RIDGE R.M.Z | 1974 OCT | 24 1625 | 25.2 | 26 G | 2533.934 | 2533.936 | 2533.936 0.000 | | AD | RIDGE | GEORĞE AUX A | 1974 OCT | 23 0940 | 22.7 | 14 P | 2530,732 | 2530.731 | 2530.731 0.000 | | DY | RIDGE AUX A | GEORGE AUX A | 1974 OCT | 29 1055 | 19.1 | 37 G | 2540,862 | 2540.862 | 2540.862 0.000 | | 86
81
81 | GEORGE
GEORGE
GEORGE | ADAMA
ADAMA
ADAMA | 1974 OCT | 24 1710
24 1720
24 1730 | 25.0
24.8
24.8 | 12 M
36 G
12 M | 4461,173
4461,173
4461,171 | 4461.177
4461.178
4461.175 | 4461.176 .002 | | BJ | GEORGE | ADAMA AUX A | 1974 OCT | 24 1740 | 24.3 | 7 G | 4470.819 | 4470.823 | 4470.823 0.000 | | EI | GEORGE
GEORGE | EL PASO AUX A
EL PASO AUX A | | 29 1645
29 1655 | 19.4
19.1 | 24 M
20 P | 9160,895
9160,901 | 9160.902
9160.908 | 9160.905 .004
-902 (± 68C) | | EF
EG | GEORGE
GEORGE | GANTI
GANTI | | 29 1550
29 1600 | 19•9
19•7 | 11 P
19 M | 9200,898
9200,898 | 9200 . 903
9200 . 902 | 9200.903 (158c) | | EĤ | GEORGE | GANTI AUX A | 1974 OCT | 29 1620 | 19.5 | 19 P | 9200,350 | 9200•355 | 9200.355 0.000
.352 (* 680) | | BK
BL
BM | GEORGE
GEORGE
GEORGE | . FULCRUM AUX A
FULCRUM AUX A
FULCRUM AUX A | 1974 OCT | 24 1810
24 1820
24 1830 | 22.6
22.2
21.6 | 13 M
24 G
13 M | 7281,168
7281,161
7281,165 | 7281.172
7281.165
7281.170 | 7281.169 .004 | | BN | GEORGE, | FULCRUM AUX D | 1974 001 | 24 1845 | 21.2 | 11 G | 7257,990 | 7257•994 | 7257,994 0,000 | | EK
EM | GEORGE | BOKU AUX A
BOKU AUX A
BOKU AUX A | 1974 001 | 7 29 1740
7 29 1750
7 29 1800 | 17.5
17.4
17.4 | 9 M
12 P
18 M | 9432,477
9432,480
9432,476 | 9432.482
9432.485
9432.481 | 9432.483 .002
.448 (no erc) | | HX | | GEORGE
GEORGE | | / 03 1750
/ 03 1805 | 20.4
20.1 | 10 M
6 P | 6642.838
6642.841 | 6642.843
6642.848 | 6642.846 .004 | | HL | PYLON | GEORGE AUX A | 1974 NO | / 03 1815 | 19•7 | 8 M | 6628,220 | 6628•227 | 6628.227 0.000 | | JR
J5 | | GEORGE
GEORGE | | / 08 1705
/ 08 1730 | 22.0
21.3 | 21 R
16 P | 6566,794
6566,785 | 6566.799
6566.789 | 6566.794 .007 | | JT | ICNOM | GEORGE AUX A | 1974 NO | V 08 1750 | 20.5 | 14 R | 6552.819 | 6552.823 | 6552.823 0.000 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Тапе | Temp. | Spread | Corrected D | Final D | Line Average | |----------------|----------------------------|--------------------------------|----------------------|---------|--------------|------------------|------------------------|--|---| | GQ
GR
GS | KOKA
KOKA
KOKA | GEORGE
GEORGE | 1974 NOV
1974 NOV | 02 1150 | 24.5
24.9 | 25 R
16 G | 9716.095
9716.103 | 9716-096
9716-104 | 9716.099 .005 | | _ | | GEORGE | 1974 NOV | 02 1200 | 25.0 | 26 R | 9716+092 | 9716.094 | 9716.099 .005 | | AI | RIDGE
RIDGE · | ADAMA | 1974 OCT | | 24.8 | .6 P | 2865.572 | 2865-573 | | | A.J.
AK | RIDGE | ADAMA
ADAMA | 1974 OCT
1974 OCT | | 25.0
25.2 | 15 R
31 P | 2865,567
2865,563 | 2865 ₀ 568
2865 ₀ 565 | | | AM | ADAMA | RIDGE | 1974 OCT | | 26.0 | 84 G | 2865.580 | 2865.582 * | | | AN | ADAMA | RIDGE | 1974 OCT | | 25.9 | 21 M | 2865.576 | 2865.578 | 004 | | AO | ADAMA | RIDGE | 1974 OCT | | 25.6 | 10 M | 2865.571 | 2865,573 | 2865.572 .006 | | AL | RIDGE | ADAMA AUX A | 1974 OCT | | 25.3 | 8 R | 2874,400 | 2874.401 | 2874.401 0.000 | | DZ
EA | RIDGE AUX A
RIDGE AUX A | ADAMA
ADAMA | 1974 OCT
1974 OCT | | 19•7
20•0 | 27 R
29 G | 2878,022
2878,021 | 2878±023
2878•022 | 2878.023 .001
.022 (nº 6-8c) | | EB | RIDGE AUX A | ADAMA AUX A | 1974 OCT | 29 1215 | 19•9 | 35 R | 2886.830 | 2886.831 | 2886.831 0.000
.830 (nr GRC) | | AP | ADAMA - | RIDGE R.M.2 | 1974 OCT | 23 1640 | 25.3 | 9 M | 2880.126 | 2880.129 | 2880.129 0.000 | | AE
AF | RIDGE
RIDGE | FARENJI
FARENJI | 1974 OCT
1974 OCT | | 23.4 | 21 P
15 R | 3022.252 | 3022.251
3022.245 | | | AG | RIDGE | FARENJI | 1974 OCT | | 23.6
23.6 | 16 P | 3022,245
3022,253 | 3022-253 | | | BS | FARENJI | RIDGE | 1974 OCT | | 25.5 | 25 R | 3022.249 | 3022,252 | | | 87 | FARENJI | RIDGE | 1974 OCT | | 25.5 | 29 G | 3022,243 | 3022.247 | 2002 200 201 | | BU | FARENJI | RIDGE | 1974 OCT | | 25.4 | 38 R | 3022,250 | 3022.254 | 3022.250 .004
3011.195 0.000 | | AH
BV | RIDGE | FARENJI AUX B | 1974 OCT | | 23.6 | 13 R | 3011+195 | 3011-195 | 3011-173 0-000 | | EC | FARENJI
RIDGE AUX A | RIDGE AUX A
Farenji | 1974 OCT
1974 OCT | | 25.3
19.1 | 47 R
14 G | 3026.094
3026.073 | 3026.097
3026.075 | | | EĐ | RIDGE AUX A | FARENJI | 1974 OCT | | 18.9 | .16 R | 3026.076 | 3026-078 | 3026.079 .012 | | EE | RIDGE AUX A | FARENJI AUX B | 1974 OCT | 29 1320 | 18.9 | 7 G _. | 3014.954 | 3014.957 | .ot1
3014.957 0.000
.q54 (nr 6Rc) | | e. | 0100- | | | | | | | =15 | | | GX
GY | -RIDGE
RIDGE | EL PASO AUX A
EL PASO AUX A | 1974-NOV
1974 NOV | | 23.9
23.8 | 22 P | 6631,508 -
6631,497 | 6631.501 | 6631.506 .008 | | GŢ | RIDGE | GANT I | 1974 NOV | 02 1545 | 24.2 | 11 P | 6673.507 | 6673,510 | | | GU | RIDGE | GANT I | 1974 NOV | 02 1600 | 24.2 | 11 G | 6673.500 | 6673.503 | | | GV | RIDGE | GANTI | 1974 NOV | 02 1610 | 24.1 | 6 P | 6673,499 | 6673,502 | 6673.505 .004 | | GW | RIDGE | GANTI AUX A | 1974 NOV | 02 1630 | 23.9 | 29 G | 6672,911 | 6672.914 | 6672.914 0.000 | | TQ | FULCRUM AUX A | RIDGE | 1974 DEC | 05 0825 | 14.9 | 30 R | 5335.163 | 5335,160 | | | ŢŖ | FULCRUM AUX A | RIDGE | 1974 DEC | 05 0850 | 16.4 | 17 R | 5335.163 | 5335.160 | 5005 140 001 | | TS | FULCRUM AUX A | RIDGE | 1974 DEC | 05 0905 | 17.7 | 19 R | 5335.162 | 5335.159 | 5335.160 .001 | | T | FULCRUM AUX A | RIDGE AUX A | 1974 DEC | 05 0930 | 19.8 | 23 R | 5341.155 | 5341.153 | 5341.153 0.000 | | GZ | RIDGE | BOKU | 1974 NOV | 02 1760 | 21.9 | 16 P | 6998.237 | 6998.240 | | | HĀ | RIDGE | BOKU | 1974 NOV | | 21.5 | 7 G | 6998.226 | 6998.228 | | | НВ | RIDGE | BOKU | 1974 NOV | | 21.3 | 17 P | 6998.233 | 6998.236 | 6998,234 .006 | | нс | RIDGE | BOKU AUX A | 1974 NOV | 02 1822 | 20,9 | 21 G | 6999,723 | 6999•727 | 6999.727 0.000 | | HG
HH | PYLON
PYLON | RIDGE
Ridge | 1974 NOV | | 22.2 | 16 P | 7612.220 | 7612.226 | 7612,226 0.000 | | ні | PYLON | RIDGE AUX A | 1974 NOV | | 22.0 | 18 M
11 P | 7612,220
7602,896 | 7612.226
7602.902 | 7602.902 0.000 | | | • | RIDGE NON A | 1914 NUV | 05 1720 | 21.7 | 11 P | 1002 \$ 0 3 0 | | 1000000 | | AQ | ADAMA | FARENJI | 1974 OCT | | 24.4 | 21 P | 1400,902 | 1400.903 | | | AR
AS | ADAMA
ADAMA | FARENJI
FARENJI | 1974 OCT | | 24.2 | 5 M | 1400.894
1400.899 | 1400.896
1400.900 | | | CA | FARENJI | ADAMA | 1974 OCT
1974 OCT | | 23.8
23.0 | 17 P
19 G | 1400.899 | 1400.908 | | | CB | FARENJI . | ADAMA | 1974 OCT | 25 1900 | 22.7 | 15 R | 1400.905 | 1400.907 | | | KB
KC | FARENJI
FARENJI | ADAMA
ADAMA | 1974 NOV | 09 0912 | 19.8 | 19 M | 1400.900 | 1400.899
1400.899 | | | KD | FARENJI | ADAMA
ADAMA | 1974 NOV
1974 NOV | | 20.2
20.5 | 10 P
37 M | 1400.901
1400.907 | 1400,899 | 1400.901 .004 | | AT | ADAMA | FARENJI AUX B | 1974 OCT | 23 1815 | 23.5 | 34 M | 1407.480 | 1407-482 | 1407.482 0.000 | | ÇC | FARENJI | ADAMA AUX A | 1974 OCT | 25 1920 | 22.1 | 28 R | 1398.021 | 1398.023 | | | KE | FARENJI | ADAMA AUX A | 1974 NOV | | 20.6 | 27 P | 1398.023 | 1398.022 | 1398,022 .001 | | R₩ | ADAMA | EL PASO AUX A | 1974 NOV | | 21.6 | 16 R | 6153.625 | 6153.623 | | | RX
RY | ADAMA | EL PASO AUX A | 1974 NOV | 25 1032 | 22.0 | 18 P | 6153.628 | 6153,627 | 6153.625 .002 | | R.T | ADAMA | EL PASO AUX A | 1974 NOV | 25 1045 | 22.5 | 26 R | 6153.627 | 6153,627 | 6153.625 .002 | | | | | | _ | | | | | |----------------|---|---|--|------------------|----------------------|-------------------------------------|--|--| | Code | Geodimeter Sta. | Retroreflector Sta. | Date Time | Temp. | Spread | Corrected D | final D | Line Average | | RŢ
RŲ | ADAMA
ADAMA | GANTI
GANTI | 1974 NOV 25 0928
1974 NOV 25 0940 | | 22 P
70 R | 6100.392
6100.365 | 6100.389
6100.362# | 6100.385 .019 | | R¥ | ADAMA | GANTI AUX A | 1974 NOV 25 0955 | 20.9 | 9 P | 6101-612 | 6101.610 | 6101.610 0.000 | | IG
IH | BOKU
BOKU | ADAMA
ADAMA | 1974 NOV 05 1115
1974 NOV 05 1140 | | 33 P
152 R | 7427.115
7427.083 | 7427•115
7427•084 + | 7427.114 .022 | | JY
JZ
KA | FARENJI
FARENJI
FARENJI | EL PASO AUX A
EL PASO AUX A
EL PASO AUX A | 1974 NOV 09 0820
1974 NOV 09 0830
1974 NOV 09 0840 | 17.4 | 12 P
2 M
21 P | 4757,500
4757,497
4757,507 | 4757 ,494
4757,491
4757,501 | 4757.494 .005 | | JU
JV | FARENJI
FARENJI | GANTI
GANTI | 1974 NOV 09 0725
1974 NOV 09 0734 | 14.5 | 10 P
. 10 M | 4709.992
4709.989 | 4709.984
4709.982 | 4709.983 .001 | | JX | FARENJI - | GANTI
GANTI AUX A | 1974 NOV 09 0745 | | 10 P
12 M | 4709.991
4711.102 | 4709.984
4711.095 | .987 (± 680) 4711.095 0.000 .099 (± 640) | | BW
BX
KF | FARENJI
FARENJI
FARENJI | FULCRUM AUX A
FULCRUM AUX A
FULCRUM AUX A | 1974 OCT 25 1710
1974 OCT 25 1725
1974 NOV 09 1015 | 24.9 | 15 G
4 R
20 M | 2358.142
2358.144
2358.162 | 2358.144 *
2358.145 *
2358.162 | - | | KG
| FARENJI | FULCRUM AUX A | 1974 NOV 09 1022 | 22.0 | 6 P | 2358.169 | 2358.169 | 2358.155 .012
.164 .005 | | KH
KI | FARENJI
FARENJI
FARENJI | FULCRUM AUX B
FULCRUM AUX B
FULCRUM AUX B | 1974 OCT 25 1740
1974 NOV 09 1033
1974 NOV 09 1042 | 22.1 | 9 G
10 M
9 P | 2359.561
2359.575
2359.583 | 2359.575
2359.583 | 2359.574 .010
.5¥4 .00b | | BZ | FARENJI | FULCRUM AUX D | 1974 OCT 25 1809 | 23.2 | 12 R | 2372,321 | 2372•322 | 2372.322 0.000 | | IN
IO
IP | BOKU
BOKU
BOKU | FARENJI
FARENJI
FARENJI | 1974 NOV 05 172
1974 NOV 05 173
1974 NOV 05 175 | 20.7 | 34 R
8 P
30 R | 6066,426
6066,437
6066,429 | 6066.430
6066.440
6066.432 | 6066.436 .005
433 (unweghtek) | | RE
RF
RG | EL PASO AUX A
EL PASO AUX A
EL PASO AUX A | GANTI | 1974 NOV 24 120
1974 NOV 24 121
1974 NOV 24 122 | 23.5 | 29 R
17 P
8 R | 221,452
221,463
221,452 | 221.452
221.463
221.452 | 221.456 .006 | | RC
RD | EL PASO AUX A
EL PASO AUX A | | 1974 NOV 24 113
1974 NOV 24 114 | | 15 R
5 P | 217.517
217.522 | 217•517
217•522 | 217.520 .004 | | RO
RR | FULCRUM AUX A
FULCRUM AUX A | | 1974 NOV 25 080
1974 NOV 25 082 | | 6 R
3 P | 4773.663
4773.665 | 4773.661
4773.663 | 4773.662 .001 | | R5 | FULCRUM AUX A | GANTI AUX A | 1974 NOV 25 083 | 18.3 | 4 R | 4776.551 | 4776.549 | 4776.549 0.000 | | RN
RO
RP | GANTI
GANTI
GANTI | CINDER
CINDER
CINDER | 1974 NOV 24 174
1974 NOV 24 175
1974 NOV 24 180 | 5 23.0 | 13 M
25 G
15 M | 11447.045
11447.050
11447.046 | 11447.049
11447.053
11447.050 | 11447.050 .002 | | RL
RM | GANTI
GANTI | CINDER AUX A
CINDER AUX A | 1974 NOV 24 172
1974 NOV 24 173 | | 13 M
18 G | 11432.363
11432.355 | 11432.367
11432.360 | 11432.364 .005 | | IÍ
IJ | BOKU
BOKU | GANTI
GANTI | 1974 NOV 05 150
1974 NOV 05 151 | | 12 P
6 R | 2519.672
2519.659 | 2519.673
2519.661 | 2519.666 .008 | | IK | воки | GANTI AUX A | 1974 NOV 05 154 | 0 21.7 | 18 P | 2515.537 | 2515.538 | 2515.538 0.000 | | RB | GANTI | ROGGI | 1974 NOV 24 103 | 7 22.7 | 28 P | 10840,841 | 10840-840 | 10840.840 0.000 | | QZ
RA | | ROGGI AUX A
ROGGI AUX A | 1974.NOV 24 101
1974 NOV 24 101 | | 20 P
22 R | 10858.193
10858.189 | 10858.190
10858.186 | 10858.188 .003 | | WQ
XQ
YQ | GANTI | MIETCHI
MIETCHI
MIETCHI | 1974 NOV 24 083
1974 NOV 24 085
1974 NOV 24 090 | 5 16.5 | 13 R
8 P
4 R | 16672,522
16672,526
16672,533 | 16672,516 x
16672,521
16672,529 | ,
16672•523 •007
525 .006 | | RH
RI
RJ | GANTI | AYGU
AYGU
AYGU | 1974 NOV 24 152
1974 NOV 24 153
1974 NOV 24 154 | 5 25.6
5 25.5 | 18 M | 16692.031
16692.021
16692.028 | 16692.040
16692.029
16692.037 | 16692.034 .006 | | RK | GANTI | AYGU AUX A | 1974 NOV 24 155 | 6 25.5 | 29 G | 16693.289 | 16693.298 | 16693.298 0.000 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | Final D | Line Average | |----------------------------------|--|---|--|--|--|--|--|--|-----------------| | KJ
KK
KH
PJ
PK
PL | FULCRUM AUX A FULCRUM AUX A FULCRUM AUX A FULCRUM AUX A GRAVES GRAVES GRAVES GRAVES GRAVES | GRAVES GRAVES GRAVES GRAVES FULCRUM AUX A FULCRUM AUX A FULCRUM AUX A FULCRUM AUX A | 1974 NOV
1974 NOV
1974 NOV
1974 NOV
1974 NOV
1974 NOV
1974 NOV | 09 1545
09 1555
09 1615
21 1610
21 1620
21 1630 | 25.4
25.2
25.1
24.9
24.3
24.1
24.0
23.7 | 22 R
29 G
41 R
26 G
33 P
31 P
48 M | 7318.030
7318.010
7318.028
7318.009
7318.023
7318.021
7318.021
7318.023 | 7318.034
7318.014
7318.032
7318.012
7318.026
7318.026
7318.024
7318.024 | 7318•024 •008 | | KN
PF
PG
PH | FULCRUM AUX A
GRAVES AUX A
GRAVES AUX A
GRAVES AUX A | GRAVES AUX A
FULCRUM AUX A
FULCRUM AUX A
FULCRUM AUX A | 1974 NOV
1974 NOV
1974 NOV
1974 NOV | 21 1530
21 1540 | 24.6
24.6
24.4
24.4 | 32 R
20 M
11 P
19 M | 7341.659
7341.666
7341.662
7341.663 | 7341.662
7341.669
7341.665
7341.666 | 7341.666 .003 | | KO
KP
KQ | FULCRUM AUX A
FULCRUM AUX A
FULCRUM AUX A | CINDER
CINDER
CINDER | 1974 NOV
1974 NOV
1974 NOV | 09 1740 | 23.1
22.5
21.8 | 17 G
17 R
21 G | 12089,213
12089,206
12089,207 | 12089.218
12089.210
12089.210 | 12089.213 .005 | | KR | FULCRUM AUX À | CINDER AUX A | 1974 NOV | 09 1810 | 21.1 | 20 R | 12083.367 | 12083.372 | 12083,372 0.000 | | PM
PN | GRAVES
GRAVES | CINDER
CINDER | 1974 NOV
1974 NOV | | 22.0
21.4 | 7 P
5 M | 5866.834
5866.836 | 5866.837
5866.840 | 5866-839 -002 | | PO
PP | GRAVES
GRAVES | CINDER AUX A
CINDER AUX A | 1974 NOV
1974 NOV | | 21.1
21.1 | 18 P
9 M | 5872.141
5872.142 | 5872.145
5872.147 | 5872.146 .001 | | CD
CE
CF
CG | BOHALLA
BOHALLA
BOHALLA
BOHALLA | -CINDER
CINDER
CINDER
CINDER | 1974 OCT
1974 OCT
1974 OCT
1974 OCT | 26 0840
26 0855 | 21.7
22.4
23.9
24.5 | 31 P
8 M
11 P
7 M | 7233.364
7233.372
7233.373
7233.377 | 7233.358
7233.367
7233.368
7233.373 | 7233.368 .006 | | CI | BOHALLA
BOHALLA | CINDER AUX A
CINDER AUX A | 1974 OCT
1974 OCT | | 23.9
24.5 | 17 P
6 M | 7223•543
7223•543 | 7223.539
7223.540 | 7223.540 .001 | | CS
CT
CU | BORI
BORI
BORI | CINDER
CINDER
CINDER | 1974 OCT
1974 OCT
1974 OCT | 26 1730 | 27•7
27•4
26•9 | 24 P
12 R
18 G | 8886.128
8886.135
8886.138 | 8886+134
8886+140
8886+143 | 8886.139 .005 | | CP
CQ
CR | BABOON
BABOON
BABOON | CINDER
CINDER
CINDER | 1974 OCT
1974 OCT
1974 OCT | 26 1600 | 29•4
29•4
29•0 | 13 R
6 P
11 R | 8914 ₀ 654
8914 ₀ 648
8914 ₀ 644 | 8914-662
8914-656
8914-651 | 8914,656 .006 | | CM
CN
CO | BOHALLA
BOHALLA
BOHALLA | BORI
BORI
BORI | 1974 OCT
1974 OCT
1974 OCT | 26 1250 | 29.0
29.4
29.6 | 16 M
20 P
7 M | 1666.382
1666.383
1666.380 | 1666.382
1666.384
1666.381 | 1666.382 .002 | | CK
CL | BOHALLA
BOHALLA
BOHALLA | BABOON
BABOON
BABOON | 1974 OCT
1974 OCT
1974 OCT | 26 1125 | 27 .1
27.4
27.4 | 11 M
20 P
4 M | 2016.917
2016.919
2016.922 | 2016.917
2016.919
2016.923 | 2016.920 .003 | | IM | BOKU | ROGGI | 1974 NOV | 05 1635 | 22.1 | 13 P | 9845,340 | 9845.346 | 9845.346 0.000 | | IL | BOKU | ROGGI AUX A | 1974 NOV | 05 1615 | 22.5 | 18 R | 9857.975 | 9857•985 | 9857.985 0.000 | | IA
IB
IC | BOKU
BOKU
BOKU | PYLON
PYLON
PYLON | 1974 NOV
1974 NOV
1974 NOV | 05 0835 | 17.2
17.5
18.1 | 31 P
20 R
20 P | 11460,248
11460,244
11460,240 | 11460.232
11460.230
11460.227 | 11460+229 +003 | | ID
IE
IF | BOKU
BOKU
BOKU | ICNOM
ICNOM
1CNOM | 1974 NOV
1974 NOV
1974 NOV | 05 1000 | 19.7
19.9
19.9 | 10 R
20 P
9 R | 8305.184
8305.180
8305.170 | 8305.181
8305.177
8305.168 | 8305.175 .007 | | JF
JG
JF | ROGGI AUX A
ROGGI AUX A
ROGGI AUX A | MIETCHI
MIETCHI
MIETCHI | 1974 NOV
1974 NOV
1974 NOV | 06 1730 | 21.6
21.3
20.9 | 12 M
12 G
9 M | 6236.809
6236.820
6236.811 | 6236.812
6236.823
6236.814 | 6236.816 .006 | | IZ
JA
JB | TOPLESS
TOPLESS
TOPLESS | MIETCHI
MIETCHI
MIETCHI | | 06 1435
06 1445
06 1500 | 22.7
22.6
22.7 | 7 M
21 G
-23 M | 5566,650
5566,648
5566,650 | 5566.654
5566.652
5566.654 | 5566,653 .001 | | JE
JC | DUST
DUST
DUST | MIETCHI
MIETCHI
MIETCHI | | 06 1545
06 1555
06 1610 | 22.3
22.2
22.1 | 4 G
8 M
7 G | 5511.385
5511.382
5511.379 | 5511.388
5511.385
5511.382 | 5511.385 .003 | | | | | | | • | | | | | |----------------------------|--|--|---|----------------------|--------------------------------------|-----------------------------------|--|--|-------------------| | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Tıme | Тетр. | Spread | Corrected D | Final D | Line Average | | TM
TN
TO | ONITE
ONITE
ONITE | MIETCHI
MIETCHI
MIETCHI | 1974 DEC 04
1974 DEC 04
1974 DEC 04 | 1705 | 24.9
24.4
24.0 | 26 G
21 G
21 G | 7230,953
7230,954
7230,959 | 7230.957
7230.958
7230.962 | 7230.959 .003 | | TP | GNIFF | MIETCHI AUX A | 1974 DEC 04 | 1745 | 22.9 | 19 G | 7221.234 | 7221.237 | 7221.237 0.000 | | 08
0C
0D
0E | OOLAGA
OOLAGA
OOLAGA
OOLAGA | ·MIĒTCHI
MIETCHI
MIETCHI
MIETCHI
MIETCHI | 1974 NOV 23
1974 NOV 23
1974 NOV 23
1974 NOV 23 | 0815
0827 | 15.0
15.3
15.9
16.8 | 7 P
29 R
7 P
3 R | 7578.953
7578.963
7578.954
7578.959 | 7578.947
7578.958
7578.949
7578.954 | 7578.951 .005 | | QF | OOLAGA | MIETCHI AUX A | 1974 NOV 23 | 0852 | 17.4 | 18 P | 7566.131 | 7566.127 | 7566.127 0.000 |
 0 S
0 T
0 U
0 V | ICNOM
ICNOM
ICNOM
ICNOM | WIETCHI
WIETCHI
WIETCHI | 1974 NOV 23
1974 NOV 23
1974 NOV 23
1974 NOV 23 | 1725
1735 | 23.2
22.8
22.3
21.7 | 19 M
17 G
· 25 M
21 G | 20474.602
20474.597
20474.591
20474.584 | 20474.613
20474.607
20474.600
20474.592 | 20474•603 •009 | | QP
QQ
QR | ILNOW | MIETCHI AUX A
MIETCHI AUX A
MIETCHI AUX A | 1974 NOV 23
1974 NOV 23
1974 NOV 23 | 1655 | 24.3
23.8
23.5 | 7 G
16 M
17 G | 20480.199
20480.200
20480.200 | 20480.211
20480.212
20480.212 | 20480.212 .001 | | IQ
IR
IS
IT
IU | SELASSIE
SELASSIE
SELASSIE
SELASSIE | TOPLESS
TOPLESS
TOPLESS
TOPLESS
TOPLESS | 1974 NOV 06
1974 NOV 06
1974 NOV 06
1974 NOV 06
1974 NOV 06 | 0930
0945
0957 | 18.3
18.5
13.9
19.6
20.1 | 6 M
30 M
9 M
14 M
8 M | 7489.416
7489.406
7489.413
7489.408
7489.412 | 7489.408
7489.399
7489.408
7489.403
7489.409 | 7489•406 •004 | | IV
IW
IX | SELASSIE
SELASSIE
SELASSIE | DUST
DUST
DUST | 1974 NOV 06
1974 NOV 06
1974 NOV 06 | 1105 | 20.9
21.0
21.2 | 19 M 14 M 37 M | 8686,913
8686,919
8686,918 | 8686.913
8686.920
8686.919 | 8686.917 .004 | | IY | SELASSIE | DUST AUX A | 1974 NOV 06 | 1140 | 21.0 | 19 M | 8660.106 | 8660.108 | 8660.108 0.000 | | 0N
00 - | Oniff. | SODERE .
SODERE | 1974 NOV 23
1974 NOV 23 | | 26.5
26.4 | 3 P
- 11-R | 3856 _* 856
3856 _* 855 - | 3856.859
3856.858 | - 3856.859- 400i- | | 99
10
10
10 | OOLAGA
OOLAGA
OOLAGA
OOLAGA | GAILF
GAILF
GAILF
GAILF | 1974 NOV 23
1974 NOV 23
1974 NOV 23
1974 NOV 23 | 1008
1022 | 20.9
21.9
22.3
22.0 | 7 R
4 P
5 R
21 P | 2357.714
2357.723
2357.715
2357.721 | 2357.713
2357.723
2357.715
2357.721 | 2357.718 .005 | | OW
OT
OK | OOLAGA
OOLAGA
OOLAGA | SODERE
SODERE
SODERE | 1974 NOV 23
1974 NOV 23
1974 NOV 23 | 1120 | 24.6
24.4
24.9 | 29 R
5 P
22 R | 1581,717
1581,725
1581,723 | 1581.717
1581.725
1581.724 | 1581.723 .004 | | HD
HE
HF | PYLON
PYLON
PYLON | ICNOM
ICNOM
ICNOM | 1974 NOV 03
1974 NOV 03
1974 NOV 03 | 1550 | 24.6
24.5
24.5 | 8 M
5 P
10 M | 3402.648
3402.649
3402.649 | 3402.652
3402.654
3402.653 | 3402,653 .001 | | GN
GO
GP | KOKA
KOKA
KOKA | PYLON
PYLON
PYLON | 1974 NOV 02
1974 NOV 02
1974 NOV 02 | 1045 | 24.6
24.5
24.7 | 13 G
27 R
3 G | 3080,001
3079,981
3079,989 | 3080.001
3079.981
3079.989 | 3079.991 .010 | | FR
FS
FT | THORNS
THORNS
THORNS | PYLON
PYLON
PYLON | 1974 NOV 01
1974 NOV 01
1974 NOV 01 | 1030 | 23.9
24.2
24.9 | 23 P
6 M
14 P | 4371,625
4371,606
4371,630 | 4371.623
4371.605?
4371.629 | 4371.617 .012 | | GK
GL
GM | KOKA
KOKA
KOKA | 1 CNOM
1 LNOM
1 LNOM | 1974 NOV 02
1974 NOV 02
1974 NOV 02 | 0935 | 23.1
23.5
23.9 | 22 R
10 G
16 R | 5336.862
5336.861
5336.864 | 5336.860
5336.858
5336.862 | 5336.860 .002 | | EJ
19
H9 | GALILA
GALILA
GALILA | ICNOM
ICNOM
ICNOM | 1974 NOV 02
1974 NOV 02
1974 NOV 02 | 0810 | 18.5
19.7
20.5 | 21 R
20 G
14 R | 6263,274
6263,272
6263,269 | 6263.267
6263.266
6263.263 | 6263,265 ,002 | | FO
FP
FQ | THORNS
THORNS
THORNS | 1000A
1000A
1000A | 1974 NOV 01
1974 NOV 01
1974 NOV 01 | 0905 | 20.9
21.1
21.9 | 17 M
8 P
2 M | 2804,589
2804,586
2804,596 | 2804.586
2804.583
2804.593 | 2804.588 .005 | | FK
FL
FM | YELLEM
YELLEM
YELLEM - | KOKA
KOKA
KOKA | 1974 OCT 31
1974 OCT 31
1974 OCT 31 | 1145 | 25.4
25.2
25.5 | 19 R
4 P
16 R | 2871,883
2871,887
2871,879 | 2871.883
2871.888
2871.879 | 2871.884 .005 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | Final D | Line Average | |--|---|--|--|--|--|--|--|--|----------------------------| | FN | YELLEM - | KOKA AUX A | 1974 OCT 31 | 1220 | 25.9 | 13 P | 2878.464 | 2878.465 | 2878.465 0.000 | | FU
FY
FW
FX | THORNS
THORNS
THORNS
THORNS | KOKA
KOKA
KOKA
KOKA | 1974 NOV 01
1974 NOV 01
1974 NOV 01
1974 NOV 01 | 1140
1155 | 25.7
25.7
25.7
25.9 | 44 M · 2 P 24 M 15 P | 4444,663
4444,673
4444,660
4444,660 | 4444.664
4444.675 *
4444.662
4444.662 | 4444.668 .006
,663 .001 | | FH
FJ | AELLEW
AELLEW
AELLEW | GALILA
GALILA
GALILA | 1974 OCT 31
1974 OCT 31
1974 OCT 31 | 1030 | 23.6
23.6
23.9 | 15 P
6 R
6 P | 2248,297
2248,300
2248,295 | 2248.296
2248.299
2248.295 | 2248.297 .002 | | FY
FZ
GA | THORNS
THORNS
THORNS | GALILA
GALILA
GALILA | 1974 NOV 01
1974 NOV 01
1974 NOV 01 | 1305 | 27.0
27.4
27.2 | 17 M
4 P
10 M | 4608,478
4608,480
4608,479 | 4608.481
4608.484
4608.483 | 4608.483 .002 | | CY
CZ
DA
DB
FC
FD
FE
FF | TABLE TABLE TABLE TABLE AYGU AYGU AYGU AYGU | AYGÜ
AYGU
AYGU
AYGU
TABLE
TABLE
TABLE
TABLE | 1974 OCT 28
1974 OCT 28
1974 OCT 28
1974 OCT 28
1974 OCT 30
1974 OCT 30
1974 OCT 30
1974 OCT 30 | 0830
0840
0850
1655
1700
1712 | 21.7
21.9
22.9
23.0
25.7
25.5
25.4
24.9 | 15 M
11 G
9 M
10 G
4 G
12 P
18 G
14 P | 7678.139
7678.137
7678.141
7678.142
7678.140
7678.134
7678.134
7678.131 | 7678.128
7678.127
7678.133
7678.135
7678.143
7678.143
7678.137
7678.137 | 7678•135 •005 | | DC
DD
DE
DF | TABLE
• TABLE
TABLE
TABLE | AYGU AUX A
AYGU AUX A
AYGU AUX A
AYGU AUX A | 1974 OCT 28
1974 OCT 28
1974 OCT 28
1974 OCT 28 | 0920
0930 | 23+1
23+1
23+4
23+9 | 11 M
15 G
7 M
8 G | 7678.815
7678.805
7678.801
7678.808 | 7678.807
7678.800
7678.796
7678.804 | 7678.802 .005 | | FG | AYGU | TABLE AUX A | 1974 OCT 30 | 1745 | . 24•2 | 10 G | 7679.563 | 7679.565 | 7679.565 0.000 | | DG
DH
DI
DJ
HQ
HR
HS | TABLE TABLE TABLE TABLE TABLE MERKO MERKO MERKO | MERKO
MERKO
MERKO
MERKO
TABLE
TABLE
TABLE | 1974 OCT 28
1974 OCT 28
1974 OCT 28
1974 OCT 28
1974 NOV 04
1974 NOV 04
1974 NOV 04 | 1135
1145
1200
1115
1135 | 25.1
25.4
25.4
25.5
23.1
23.4
23.4 | 9 M
22 M
21 M
17 G
28 G
36 R
13 G | 6858.874
6858.873
6858.872
6858.865
6858.881
6858.881 | 6858.875
6858.876
6858.876
6858.869
6858.872
6858.883 #
6858.887 | 6858,875 .004 | | DK | TABLE | MERKO AUX A | 1974 OCT 28 | 1235 | 26.1 | 5 M | 6854.807 | 6854,813 | .003
6854.813 0.000 | | ES
ET
EV
EV
HY | RABBIT
RABBIT
RABBIT
RABBIT
TABLE
TABLE | TABLE
TABLE
TABLE
TABLE
RABBIT
RABBIT | 1974 OCT 30
1974 OCT 30
1974 OCT 30
1974 OCT 30
1974 NOV 04
1974 NOV 04 | 1100
1115
1130
1835 | 23.2
22.9
23.4
23.9
20.9
20.5 | 4 R
19 M
21 R
14 M
10 P
3 M | 9418.289
9418.282
9418.286
9418.285
9418.277
9418.276 | 9418.289
9418.282
9418.287
9418.287
9418.287
9418.286 | 9418.287 .002 | | EW | RABBIT | TABLE AUX A | 1974 OCT 30 | 1145 | 23.9 | 21 R | 9417.802 | 9417+805 | 9417.805 0.000 | | HT
HU
HV
HW | TABLE
TABLE
TABLE
TABLE | TCHEESA
TCHEESA
TCHEESA
TCHEESA | 1974 NOV 04
1974 NOV 04
1974 NOV 04
1974 NOV 04 | 1625
1637 | 24.7
24.5
24.4
24.2 | 5 M
56 P
7 M
7 P | 7767.132
7767.147
7767.128
7767.125 | 7767•139
7767•154 *
7767•135
7767•132 | 7767.136 .010
.004 | | НХ | TABLE | TCHEESA AUX A | 1974 NOV 04 | 1700 | 23.9 | 3 M | 7768.822 | 7768.828 | 7768.828 0.000 | | DL
DM
DN
EX
EY
EZ
FA | MERKO
MERKO
MERKO
AYGU
AYGU
AYGU
AYGU | AYGU
AYGU
AYGU
MERKO
MERKO
MERKO
MERKO | 1974 OCT 28
1974 OCT 28
1974 OCT 28
1974 OCT 30
1974 OCT 30
1974 OCT 30
1974 OCT 30 | 1555
1615
1450
1510
1525 | 26.4
26.0
25.6
26.9
26.6
26.4
26.4 | 7 P
9 R
10 P
6 P
17 G
24 P
8 G | 7829.053
7829.048
7829.051
7829.051
7829.052
7829.052
7829.053 | 7829.060
7829.053
7829.056
7829.060
7829.061
7829.060
7829.059 | 7829.058 .003 | | FB | AYGU | MERKO AUX A | 1974 OCT 30 | 1550 | 26.3 | 12 P | 7823.417 | 7823.424 | 7823.424 0.000 | | D0 | MERKO | AYGU AUX A | 1974 OCT 28 | 1640 | 25+0 | 10 R | 7827.332 | 7827.335 | 7827.335 0.000 | | EN
EP
EQ
ER | RABBIT
RABBIT
RABBIT
RABBIT | AYGU
AYGU
AYGU
AYGU | 1974 OCT 30
1974 OCT 30
1974 OCT 30
1974 OCT 30 | 0910
0920 | 21.0
21.5
21.9
22.1 | 18 R
5 M
16 R
13 M | 7220,526
7220,514
7220,517
7220,514 | 7220.519
7220.510
7220.513
7220.511 | 7220,513 .004 | | Eo | RABBIT | AYGU AUX A | 1974 OCT 30 | 0855 | 21.0 | 18 M | 7223.274 | 7223.269 | 7223.269 0.000 | | | | | <i>:</i> . | T \$ | Tamp | beamer | Corrected D | :
Final D | Line Average | |----------
------------------------|---------------------|---|------------------------|---------------|--------------|--|--|-----------------| | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | COLLECTED D | | -3 | | DP
DQ | MERKO
MERKO | RARBIT
RABBIT | 1974 OCT
1974 OCT | | 22.4
22.2 | 6 R
5 P | 13687.808
13687.803 | 13687.821
13687.817 | | | PR | MERKO | RABBIT | 1974 OCT | 26 1820 | 22.1 | 9 R | 13687.799 | 13687.814 | - | | HM
HN | MERKO
Merko | RABUIT
RABUIT | 1974 NOV | | 18.1
18.6 | 24 R
4 G | 13687.835
13687.834 | 13687.816
13687.819 | | | HD
HP | MERKO
MERKO | RABBIT
RABBIT | 1974 NOV
1974 NOV | | 19.0
,19.5 | 16 R
5 G | 13687.828
,13687.826 | 13687.817
13687.818 | 13687.818 .002 | | DS | MERKO | RABBIT AUX A | 1974 OCT | 28 1900 | 22.0 | 21 P | 13690+647 | 13690,662 | 13690.662 0.000 | | MĻ | HERKO | TCHEESA | 1974 NOV | 08 0805 | 19.1 | 21 M | 11475.937 | 11475.922 | | | JO
Nr | MERKO
MERKO | TCHEESA
TCHEESA | 1974 NOV
1974 NOV | | 19.3
19.4 | 28 G
19 M | 11475.935
11475.936 | 11475.921
11475.923 | | | JP | MERKO | TCHCESA | 1974 NOV | | 19.3 | 14 G | 11475,930 | 11475,919 | 11475.921 .002 | | 70 | MERKO . | TCHEESA AUX A | 1974 NOV | 08 0855 | 19.7 | , 9 M | 11478.379 | 11478.368 | 11478.368 0.000 | | L\$ | HOTEL | TERMITE | 1974 NOV | 12 1525 | 26.6 | 3 P | 1022.585 | 1022,587 | | | LT
LU | HOTEL
HOTEL | TERMITE
TERMITE | 1974 NOV
1974 NOV | 12 1537 | 26.4
26.4 | 18 R
12 P | 1022,583
1022,585 | 1022,585
1022,586 | 1022.586 .001 | | | | | | | | | | | | | KS
KT | GALLA
GALLA | HOTEL
HOTEL | 1974 NOV
1974 NOV | | 16.8
16.6 | 16 P
3 R | 764,048
764,048 | 764.047
764.046 | | | KU | GALLA | HOTEL | 1974 NOV | 11 0755 | 17.0 | 29 P | 764,042 | 764.041 | | | OQ
OR | GALLA
GALLA | HOTEL HOTEL | 1974 NOV
1974 NOV | | 27.0
27.1 | 11 M
11 R | 764,050
764,039 | 764.051
764.040 | | | 05 | GALLA | HOTEL | 1974 NOV | | 27.0 | 10 M | 764.044 | 764.045 | 764.045 .004 | | LG | EUPHORBIA | HOTEL | 1974 NOV | 12 0805 | 16.2 | 15 G | 3517,926 | 3517.920 | | | LH
LI | EUPHORBIA
EUPHORBIA | HOTEL
Hotel | 1974 NOV
1974 NOV | | 16.6
17.2 | 7 M
7 G | 3517,927
3517,921 | 3517.922
3517.916 | 3517.919 .003 | | | • | | | | | | | | | | LV
LV | HOTEL
Hotel | LANGANA
LANGANA | | 12 1625
12 1637 | 25.8
25.5 | 17 R
8 P | 3394,040
3394,046 | 3394.043
3394.049 | | | LX | HOTEL | . LANGANA " | 1974 NOV | 12 1547 | 25.0 | 11 R | 3394,047 | 3394,050 | | | NF
NG | LANGANA
LANGANA | HOTEL
HOTEL | | 14 1530
14 1550 | 25.8
25.9 | 24 R
8 M | 3394,040
3394,045 | 3394.043
3394.048 | | | NH | LANGANA | HOTEL | | 14 1600 | 25.6 | 11 R | 3394.042 | 3394,045 | 3394.047 .003 | | LY | HOTEL | ARJO | 1974 NOV | 12 1720 | 23.5 | 30 P | 8150,994 | 8151.003 | | | LZ
MA | HOTEL
HOTEL | ARJO
ARJU | 1974 NOV | 12 1732
12 1745 | 22.9
22.3 | 18 R
27 P | 8150,997
8150,993 | 8151.005
8151.000 | 8151.003 .003 | | | 110122 | 7.1.0-2 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 12 11 13 | 2005 | -, . | | | | | KV | GALLA | TERMITE | | 11 0834 | 18.3 | 18 R | 746.042 | 746.040
746.040 | • | | KW
KX | GALLA
GALLA | TERMITE
TERMITE | | 11 0845 | 18•7
19•5 | 24 P
11 R | 746.041
746.037 | 746.036 | | | QT
QU | GALLA
GALLA | TERMITE
TERMITE | | 17 1612 | 26.9
26.9 | 7 R
29 M | 746.035
746.038 | 746.036
746.040 | | | ον | GALLA | TERMITE | | 17 1635 | 26.8 | 20 R | 746,018 | 746.019 * | 746.035 .008 | | Ł.J | EUPHOR81A | TERMITE | 1974 NOV | 12 0900 | 18.4 | 8 M | 3358,129 | 3358.125 | | | LK | EUPHORBIA | TERMITE | 1974 NOV | 12 0910 | 19.6 | 7 G | 3358.131 | 3358.127
3358.128 | 3358.127 .002 | | LL | EnhHOKRIA | I EKWI I E | 1974 NOV | 12 0920 | 20.1 | 7 M | 3358,132 | 22204154 | 4000000 | | NI | LANGANA | TERMITE | | 14 1630 | 25.7 | 12 M - | 2434,167 | 2434.171 | | | NK
NJ | langana
Langana | TERMITE
TERMITE | | / 14 1640
/ 14 1650 | 25.5
25.5 | 5 R
5 G | 2434,160
2434,158 | 2434.163
2434.161 | 2434.165 .005 | | | | | | | | | | ggs01 | | | NC
ND | ARJO
ARJO | TERMITE
TERMITE | | / 14 1055
/ 14 1105 | 22.0
22.9 | 5 M
17 P | 7257 . 981
7257 . 987 | 7257 . 981
7257 . 988 | | | NE | ARJO | TERMITE | | / 14 1115 | 23.2 | 13 M | 7257.985 | 7257,987 | 7257.985 .004 | | KY | GALLA | EUPHORBIA | 1974 NO | / 11 1005 | 21.3 | 4 P | 2852,137 | 2852.136 | | | KZ
LA | GALLA | EUPHORBIA ', | 1974 NO | / 11 1020
/ 11 1031 | 21.2 | 7 R
29 P | 2852.132
2852.139 | 2852.130
2852.139 | | | LP | GALLA
EUPHORBIA | EUPHORBIA
GALLA | 1974 NO | / 12 1130 | 21•4
22•2 | 9 M | 2852,134 | 2852.135 | | | LQ
LR | EUPHORBIA
EUPHORBIA | GALLA
Galla | | / 12 1137
/ 12 1150 | 22•8
23•3 | 23 G
5 M | 2852,121
2852,134 | 2852.122
2852.136 | | | NU | EUPHORBIA | GALLA ' | 1974 NO | V 16 0800 | 18.1 | 11 P | 2852.136 | 2852.130 | | | - NV | EUPHORBIA
EUPHORBIA | GALLA
GALLA | | V 16 0815
V 16 0825 | 18•2
18•5 | 8 R
8 P | 2852,125
2852,126 | 2852 . 120
2852 . 121 | 2852.130 .007 | | LC | GALLA | EUPHORBIA AUX | A 1974 NO | V 11 1105 | 22.9 | 17 P | 2862,169 | 2862.169 | 2862.169 0.000 | | LB | GALLA | EUPHORBIA AUX | B 1974 NO | V 11 1050 | 22.0 | 7 R | 2852,416 | 2852.416 | 2852.416 0.000 | | | • | | | | | | | | | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | :
Final D | Line Average | |----------|----------------------|---------------------|----------------------|---------|--------------|--------------|----------------------|-------------------------------|-----------------------------| | MZ | ARJD - | GALLA | 1974 NOV | 16 1000 | 20.9 | 32 P | 7435.820 | 7435.816 | | | ΝĀ | ARJO | GALLA | 1974 NOV | | 21.2 | 28 M | 7435.824 | 7435.820 | | | NB | ARJO | GALLA | 1974 NOV | | 21,3 | 33 P | 7435,820 | 7435.817 | | | OW | GALLA | ARJO | 1974 NOV | | 25.9 | 20 M | 7435.804 | 7435.815 | - | | OX | GALLA | ARJO | 1974 NOV | | 25.4 | 19 R | 7435.801 | 7435.811 | | | OY | GALLA | ARJO | 1974 NOV | | 25.1 | 21 M | 7435,801 | 7435.811 | 7435.815 .004 | | οz | GALLA | ARJO AUX A | 1974 NOV | 17 1744 | 24.5 | 19 R | 7439.584 | 7439.593 | 7439.593 0.000 | | MN | GALLA | OOMAY | 1974 NOV | 13 1710 | 25.2 | 15 G | 16716.000 | 16716.024 | | | MO | GALLA | OOMAY | 1974 NOV | | 24.3 | 18 R | 16715.993 | 16716.014 | | | MP | GALLA | · YAMOO · | 1974 NOV | 13 1745 | 23.6 | 22 G | 16715.984 | 16716.004 | 16716.015 .010 | | | | | | | • | | | | | | · LM | EUPHORBIA | LANGANA | 1974 NOV | | 21.1 | 10 G | 3232.716 | 3232.715 | | | LN | EUPHORBIA | LANGANA | 1974 NOV | | 21.1 | 12 M | 3232,720 | 3232.719 | | | LO | EUPHORBIA | LANGANA | 1974 NOV | | 21.1 | 16 G | 3232.714 | 3232.714 | | | NL | LANGANA | EUPHORBIA | 1974 NOV | | 24.4 | 7 R | 3232,703 | 3232.706 | | | MM | LANGANA - | EUPHORBIA . | 1974 NOV | | 23.8 | 13 M | 3232.703 | 3232.706 | | | NN
NX | LANGANA
EUPHORBIA | EUPHORBIA | 1974 NOV
1974 NOV | | 23.1 | 26 R
4 R | 3232.698
3232.717 | 3232.700 *
3232.714 | | | NÝ | EUPHORBIA | LANGANA
LANGANA | 1974 NOV | | 19.9
20.2 | 9 P | 3232.719 | 3232.716 | | | NZ - | EUPHORBIA | LANGANA | 1974 NOV | | 20.2 | 41 R | 3232.722 | 3232.720 | 3232.712 .007 | | OA | EUPHORBIA | LANGANA AUX A | 1974 NOV | 16 0050 | 20.4 | 1 P | 3234,444 | 3234.442 | .¥13 .005
3234.442 0.000 | | | | | | | | | | | | | ИP | LANGANA | EUPHORBIA AUX A | 1974 NOV | 14 1820 | 22.6 | 12 G | 3259.846 | 3259.849 | 3259.849 0.000 | | NO | LANGANA | EUPHORBIA AUX B | 1974 NOV | 14 1805 | 22.6 | 10 R | 3232,895 | 3232.899 | 3232.899 0.000 | | MQ | ÅRJ0 | EUPHORB I A | 1974 NOV | 14 0740 | 15.2 | 20 M | 6206.158 | 6206.143 | | | MR 1 | ARJO | EUPHORBIA | 1974 NOV | | 15.6 | 12 P | 6206,158 | 6206.143 | | | MS | ARJO | EUPHORBIA | 1974 NOV | | 16.2 | э́м | 6206.156 | 6206.143 | | | OB | EUPHORBIA | ARJO | 1974 NOV | | 22.5 | 41 R | 6206.156 | 6206.155 | | | OC | EUPHORBIA | ARJO | 1974 NOV | 16 1040 | 22.7 | ŠΡ | 6206,173 | 6206.172 * | | | OD | EUPHORBIA | ARJO | 1974 NOV | 16 1050 | 22.6 | 12 R | 6206,164 | 6206.163 | 6206,154 .012 | | ΦE | EUPHORBIA | ARJO AUX A | 1974 NOV | 16 1108 | 22.7 | 6 P | 6210,055 | 6210.056 | 6210.056 0.000 | | MU | ARJO | EUPHORBIA AUX A | | 14 0823 | 17.0 | 9 M | 6229,387 | 6229.376 | 6229.376 0.000 | | MŢ | ARJO | EUPHORBIA AUX B | | | 16.6 | 10 P | 6206,134 | 6206.122 | 6206.122 0.000 | | MK | EUPHORBIA | OOMAY | 1974 NOV | 12 1520 | 25.5 | 19 R | 17592,209 | 17592.240 | | | ML | EUPHORBIA | COMAY | 1974 NOV | | 25.3 | 23 G | 17592.196 | 17592.227 | | | MM | EUPHORBIA | OOMAY | 1974 NOV | | 25.2 | 16 R | 17592,196 | 17592,227 | 17592.231 .008 | | | | | | | | | | | | | MV | ARJO | L, ANGANA | 1974 NOV | 14 0904 | 18.8 | 14 P | 4851.717 | 4851.713 * | • | | MM | ARJO | LANGANA | 1974 NOV | 14 0916 | 19.5 | 28 M | 4851,709 | 4851.705 | | | MX | ARJO | LANGANA | 1974 NOV | | 19.5 | 19 P | 4851.720 | 4851.716 4 | | | 0J | ARJO | LANGANA | 1974 NOV | | 24.0 | 10 G | 4851,692 | 4851,697 | | | OK | ARJO | LANGANA | 1974 NOV | | 23.5 | 4 M | 4851.691 | 4851.694
4851.700 | | | OL
OM | ARJO | LANGANA | 1974 NOV | | 23.3 | 7 G | 4851.695
4851.692 | 4851.698 | 4851.702 .008 | | UН | ARJO | LANGANA | 1974 NOV | 16 1820 | 23.1 | 11 M | 4071072 | 40318070 | .699 .004 | | MY | ARJO | LANGANA AUX A | 1974 NOV | 14 0935 | 19.4 | 9 M | 4850.052 | 4850.049 | 4850.049 0.000 | | | | | | | | | | | | | OF | ARJO | SHALA | 1974 NOV | | 27.6 | 15 G | 3664.321 | 3664.327 | | | 0G | ARJO | SHALA | 1974 NOV | | 26.9 | 14 M | 3664.320 | 3664.327 | | | OH | ARJO | SHALA | 1974 NOV | | 26.1 | 11 G | 3664.313 | 3664,319 | 3664.324 .004 | | 01 | ARJO | SHALA | 1974 NOV | 16 1650 |
26.0 | 11 M | 3664,318 | 3664.324 | 50010521 1011 | | ON | SHALA | HARORESA | 1074 NOV | 17 1025 | 21 5 | 10 R | 6837.889 | 6837.888 | | | 00 | SHALA | HARORESA | 1974 NOV
1974 NOV | | 21.5
21.6 | 2 G | 6837.890 | 6837.890 | | | OP | SHALA | HARORESA | 1974 NOV | | 21.6 | 11 P | 6837,894 | 6837,894 | 6837.891 .003 | | | • | | | | | | | | | | MB | OITU | ALUTU | 1974 NOV | | 21.0 | 7 P | 4629.098 | 4629.096 | | | MC | OITU | ALUTU | 1974 NOV | | 21.2 | 13 M | 4629,102 | 4629.100 | | | MD | OITU | ALUTU | 1974 NOV | | 21.2 | 7 P | 4629.102 | 4629.100
4629.106 | | | ME
Mi | OITU | ALUTU | 1974 NOV | 13 0943 | 21.6 | 5 M | 4629.107
4629.098 | 4629.100 | | | W)
wi | OITU
OITU | ALUTU
ALUTU ' | 1974 NOV
1974 NOV | | 24.8
24.9 | 16 P
10 M | 4629.198
4629.104 | 4629.105 | 4629.101 .004 | | | | | - · ·-· | | | | | | | | MF | OITU | COMAY | 1974 NOV | | 23.6 | 4 M , | 5303.667 | 5303.667 | | | MG | OITU | OOMAY | 1974 NOV | 13 1100 | 23.8 | 10 P | 5303,669 | 5303.669 | E202 467 - 202 | | MH | OITU | OOMAY | 1974 NOV | 13 1115 | 24,2 | 16 M | 5303,666 | 5303,666 | 5303.667 .002 | | | | | | | | | | | | | SP | GUMA SE | PARADISO | 1974 NOV | | 24.4 | 11 M | 3353.813 | 3353.817 | 2052 010 002 | | . SQ | GUMA SE | PARADISO | 1974 NOV | 30 2230 | 24.1 | 4 R | 3353.817 | 3353,821 | 3353.819 .003 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date Time | Temp. | Spread | Corrected D | Final D | Line Average | |----------------|----------------------|--|--|------------------|---------------------------------|---|----------------------------------|----------------------------| | SF | GUMA NE | PARADISO | 1974 NOV 30 182 | 0 28.5 | 6 M | 4213,613 | 4213.617 | - | | SG
SH | GUMA NË
GUMA NE | PARADISO
PARADISO | 1974 NOV 30 182
1974 NOV 30 183 | 8 28.4 | 9 G | 4213.608
4213.607 | 4213.612
4213.611 | 4213.613 .003 | | 5N
50 - | GUMA SE - | GUMA W
GUMA W | 1974 NOV 30 213
1974 NOV 30 214 | 0 25.4
0 25.2 | 24 G
19 R | 2235.280
2235.277 | 2235•283
2235•279 · | 2235,281 .003 | | SD
SE | GUMA NE
GUMA NE | GUMA W
GUMA W
GUMA W | 1974 NOV 30 084
1974 NOV 30 090 | | | 3581.182 | 3581.178 | | | 5 Î
5 J | GUMA NE
GUMA NE | GUMA W
GUMA W | 1974 NOV 30 192
1974 NOV 30 193 | 0 27.2 | 6 G
20 G
7 M | 3581.186.
3581.174
3581.180 | 3581.183
3581.178
3581.184 | 3581.181 .003 | | 5K | GUMA NE | CIIIIA CO | | | | | | 23010101 | | SL
SM | GUMA NE
GUMA NE | GUMA SE
GUMA SE
GUMA SE | 1974 NOV 30 201
1974 NOV 30 202
1974 NOV 30 203 | 2 26.0 | 16 M
14 G
9 M | 2206.165
2206.167
2206.169 | 2206.168
2206.170 | 2205 170 002 | | 611 | | • | | - | уm | | | 2206.170 .002 | | SU
5V
SW | DOBI XE
DOBI XE | DOBI IE
DOBI IE | 1974 DEC 01 081: | | 18 M
9 G
7 M | 2583.046
2583.031
2583.040 | 2583.043
2583.029 | | | | | , popr 15 | 1974 DEC 01 083 | 26,4 | 7 M | 2583.040 | 2583.038 | 2583,036 .007 | | SX
5Y | DOBI XE | DOBI IW | 1974 DEC 01 090
1974 DEC 01 091 | 26.6 | | 4437.007
4437.010 | 4437.003
4437.006 | | | Sz | DOBI XE | DOBI IW | 1974 DEC 01 092 | 26.6 | | 4437.010
4437.007 | 4437.004 | 4437 _• 005 •002 | | 5R
55 | DOBI XE | DOBI WW . | 1974 DEC 01 0716 | 23.0 | 8 G
5 M | 7286.441 | 7286.431
7286.438 | | | ST
TA | DOBI XE | DOBI MW
DOBI MW | 1974 DEC 01 0729
1974 DEC 01 0739
1974 DEC 01 1809
1974 DEC 01 1819 | 23.6 | 23 G | 7286.441
7286.447
7286.446
7286.430
7286.432 | 7286,437
7286,434 | | | TB | DOBI XE - | DOBI MW | 1974 DEC 01 181 | 30.4 | 9 R | 7286.432 | 7286.436 | 7286.435 .003 | | TF
TG | DOBI IE
DOBI IE | DOBI IW | 1974 DEC 01 2020
1974 DEC 01 2039 | 28.7 | 17 M
18 M | 1975.865
1975.860
1975.864 | 1975.867 | | | TH | DOBI IE | DOBT IM | 1974 DEC 01 204 | 28.2 | ii R | 1975.864 | 1975.862
1975.865 | 1975.865 .003 | | TC
TD | DOBI IE
DOBI IE | DOBI MW | 1974 DEC 01 1915 | 29.5 | 16 G | 4723,583 | 4723,586 | | | TE | DOBI IE | DOBI MW | 1974 DEC 01 1933
1974 DEC 01 1950 | | 11 R
4 M | 4723.590
4723.590 | 4723.593
4723.593 | 4723.591 .004 | | 80
82 | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 OCT 25 0800 | 19.6 | | 111.982
111.986
111.986
111.979
111.977
111.976
111.983
111.983
111.984
111.985
111.982 | 111.982 | | | BQ
BR | NZS BASE
NZS BASE | NZN BASE | 1974 OCT 25 0810
1974 OCT 25 0829 | 20.4 | 14 G | 111.986
111.986 | 111.986 | | | CA | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 OCT 25 0835
1974 OCT 27 0715
1974 OCT 27 0730 | 20.8
18.2 | 14 P
4 R
15 G | 111.979
111.977 | 111.979
111.977 | | | CX
DT | NZS BASE
NZS BASE | NZN BASE | 1974 OCT 27 0750
1974 OCT 29 0805 | | | 111,976 | 111.976
111.976 | | | DU
DV | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 OCT 29 0815
1974 OCT 29 0820 | 19.4 | 5 G
9 R
4 P
5 P
4 P | 111,983 | 111.982
111.980 | | | GB
GC | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 NOV 01 1715
1974 NOV 01 1725 | 24.1 | 5 P | 111.984 | 111.984
111.985 | | | GD
GE | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 NOV 01 1740 | 23.5 | 11 R | | **** | | | GF
GG | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 NOV 01 1750
1974 NOV 01 1810 | 22.9 | 4 M | 111.977
111.982 | 111.977
111.982 | | | JI
JJ | NZS BASE
NZS BASE | NZN BASE | 1974 NOV 01 1820
1974 NOV 07 1415 | 24.0 | 15 M
8 R | 111.974
111.987 | 111.975
111.987 | | | JK | NZS BASE | NZN BASE
NZN BASE | 1974 NOV 07 1430
1974 NOV 07 1440 | 25.0 | 7 P
13 R | 111.984
111.983 | 111.984
111.983 | | | JL
PA | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 NOV 07 1450
1974 NOV 18 1628 | 23.5 | 4 P
4 G | 111.985
111.986 | 111.985
111.986 | | | PB
PC | NZS BASE | NZN BASE
NZN BASE | 1974 NOV 18 1637
1974 NOV 18 1650 | 23.5 | 18 P
8 R | 111.988
111.985 | 111.988
111.985 | | | PD
PE | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 NOV 18 1658
1974 NOV 18 1708 | 23.5 | 7 M
9 G | 111.985
111.975 | 111.985
111.975 | | | RZ
SA | NZS BASE
NZS BASE | NZN BASE *
NZN BASE | 1974 NOV 25 1137
1974 NOV 25 1145 | 25.0 | 3 P
12 R | 111.978
111.981 | 111.978
111.981 | | | SB
SC | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 NOV 25 1155
1974 NOV 25 1205 | 25.0 | 8 P
15 R | 111.984
111.981 | 111.985 | | | TI
TJ | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 DEC 03 1518
1974 DEC 03 1527 | 23.0 | 11 M
4 R | 111.983
111.986 | 111.983 | | | TK
TL | NZS BASE
NZS BASE | NZN BASE
NZN BASE | 1974 DEC 03 1535
1974 DEC 03 1545 | 23.0 | 10 M
3 R | 111.989
111.983 | 111.989
111.983 | 111.982 .004 | | LD | MGN BASE | MG5 BASE | 1974 NOV 11 1553 | 25 4 | 1 0 | | | | | LE
LF | MGN BASE . | MGS BASE | 1974 NOV 11 1603
1974 NOV 11 1603
1974-NOV-11 1615 | 25.4 | 1 P
14 G
- 11-R - | 41.847
41.849
41:850 — - | 41.847
41.849
41.850 | | | NQ
NR | MGN BASE
MGN BASE | MGS BASE | 1974 NOV 15 1740
1974 NOV 15 1750 | 24.9 | 3 M
3 P | 41.852
41.848 | 41.852
41.848 | | | NS
NT | MGN BASE
MGN BASE | MGS BASE | 1974 NOV 15 1800
1974 NOV 15 1307 | 24.8 | 3 G
18 R | 41.848
41.851 | 41.848
41.848
41.851 | 41.849 .002 | | | | | | | | | 170044 | 144011 4446 | ## APPENDIX H SHALLA 1976 GEODIMETER OBSERVATIONS | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time- | Temp. | Spread | Corrected D | :
Final D | Line Average | |------------|--------------------------------|-----------------------------|----------------------|---------|--------------|--------------|--|----------------------|----------------------------------| | | CEODER . | MAGIAM | 1074 NOV 6 | \= 0000 | 20 5 | 70.11 | 7242 541 | 7040 FE4 | | | AH
A I | GEORGE
GEORGE | MARIAM
MARIAM | 1976 NOV 0 | | 18.5
19.1 | 13 M
13 M | 7262 . 561
7262 . 565 | 7262.556
7262.560 | | | ΑJ | GEORGE | MARIAM | 1976 NOV 0 | 7 0845 | 19.6 | 9 M | 7262.567 | 7262.563 | 7262.559 .003 | | AK | GEORGE | MARIAM AUX A | 1976 NOV C | 7 0900 | 20.0 | 15 M | 7257,244 | 7257,240 | 7257.240 0.000 | | ΑĹ | | RIDGE | 1074 NOV (| 17 00EÉ | 23.0 | 29 R. | 2529.971 | 2529.971 | , , , | | AM | GEORGE
GEORGE | RIDGE | 1976 NOV 0 | | 23.0
23.5 | 20 R | 2529.955 | 2529.954 * | | | AN | GEORGE | RIDGE | 1976 NOV 0 | 7 1025 | 24.2. | 16 R | 2529.982 | 2529.982 ⊀ | | | CO
CP | RIDGE | GEORGE . | 1976 NOV 1 | | 18.7 | 14 M
13 M | 2529.973
2529.978 | 2529.970
2529.976 | | | Ca | RIDGE
RIDGE | GEORGE | 1976 NOV 1 | | 19.1
19.2 | 10 M | 2529.971 | 2529.969 | 2529.971 .009
.442 .003 | | | | • • | | | _ | | | 0510 170 | 2540.170 0.000 | | , AO
CR | GEORGE
RIDGE · | RIDGE AUX A
GEORGE AUX A | 1976 NOV 0 | | 24.1
19.3 | 9 R
17 M | 2540.170
2530.731 | 2540.170
2530.730 | 2530.730 0.000 | | • | WIDGE . | dedirect now h | 1710 1101 . | .5 0033 | -745 | , =, ,, | | | | | BG | FULCRUM AUX Á | RIDGE | 1976 NOV | 10 0750 | 17.1 | 13 M | 5335.159 | 5335.154 | | | BH | FULCRUM AUX A | RIDGE | 1976 NOV 3 | 0.080 | 17.5 | 19 M | 5335,157 | 5335,153 | 5335,155 ,002 | | BI | FULCRUM AUX A | RIDGE | 1976 NOV | 10 0810 | 17.8 | 18 M | 5335,161 | 5335.157 | 159 (NO GRC) | | BJ. | FULCRUM AUX A | RIDGE AUX A | 1976 NOV | 10 0820 | 18.3 | 28 M | 5341.147 | 5341.143 | 5341.143 0.000
.147 (no GRC) | | 20 | CHI CDINI AND A | TAREN II | Tama Note: | | 22.0 | | 2250 154 | 2250 156 | | | BD
BD | FULCRUM AUX
A
FULCRUM AUX A | FARENJI
FARENJI | 1976 NOV 1 | | 22.0
22.2 | 1 R
22 R | 2358.156
2358.157 | 2358.156
2358.157 | | | BQ | FULCRUM AUX A | | 1976 NOV | | 22.3 | 15 R | 2358.153 | 2358.153 | 2358.155 .002
(wo GAC) | | BR | FULCRUM AUX A | FARENJI AUX B | 1976 NOV | 10 1155 | 22.1 | 26 R (| 2371.718 | 2371.719 | 2371.719 0.000
.718 (wr 68c) | | | | | | | | | | _ | | | BK | FULCRUM AUX A | GANTI | 1976 NOV | | 19.1 | . 1 R | 4773,662 | 4773.661
4773.650 | | | BL
BM | FULCRUM AUX A | GANTI
GANTI | 1976 NOV 1 | | 19.6
20.1 | 32 R
21 R | 4773.651
4773.660 | 4773.659 | | | BN | FULCRUM AUX A | GANTI | 1976 NOV | | 20.5 | 25 R | 477,3.655 | 4773.655 | 4773.658 .005 | | AT | FULCRUM AUX A | CINDER - | 1976 NOV | 07 1750 | 23.2 | 25 R | 12089.192 | 12089.197 | | | ΑU | FULCRUM AUX A | CINPER | 1976 NOV | 07 1805 | 22.7 | 32 R | 12089.196 | 12089.201 | 12089.200 .002 | | AV | FULCRUM AUX A | CINDER | 1976 NOV | 07 1815 | 22.7 | 12 R | 12089.195 | 12089.201 | 12084-200 -005 | | cs | FULCRUM AUX A | воки | 1976 NOV | 13 0945 | 20.3 | 53 R | 6880.096 | 6880.096 | | | CΤ | FULCRUM AUX A | BOKU | 1976 NOV | 13 1010 | 21.1 | 45 R | 6880.116 | 6880.116 × | 6880.100 .012 | | cu | FULCRUM AUX A | BOKN | 1976 NOV | 13 1040 | 21.6 | 26 R | 6880,094 | 6880.094 | .095 .002 | | CV | FULCRUM AUX A | BOKU AUX A | 1976 NOV | 13 1120 | 22.4 | 84 R | 6879.935 | 6879.935 | 6879.935 0.000 | | AP | BURNIN | CINDER | 1074 MOV | 07 1550 | 27.0 | 1 M | 7233,361 | 7233.366 | | | AO | BOHALLA
BOHALLA | CINDER | 1976 NOV
1976 NOV | | 27.9
27.6 | 3 M | 7233,361 | 7233.366 | | | AR | BOHALLA | CINDER | 1976 NOV | | 27.2 | 13 M | 7233.361 | 7233.366 | 7233.366 .000 | | AS | BOHALLA ' | CINPER AUX A | 1976 NOV | 07 1625 | 27.0 | · 15 M | 7223.536 | 7223.541 | 7223.541 0.000 | | | -11-1 | | | | | | 305. 273 | 205/ 05/ | | | 8A
88 | QUILL - | SODERE | 1976 NOV | 08 1635 | 25.8
25.6 | 13 R
18 R | 3856.850
3856.849 | 3856.854
3856.853 | | | BC | QUILL | SODERE | 1976 NOV
1976 NOV | 08 1705 | 25.5 | 8 R | 3856.846 | 3856.850 | 3856.852 .002 | | AW | QUILL | OOLAGA | 1976 NOV | No 1515 | 28.1 | 28 R | 2357.706 | 2357.706 | | | AX | GOILE | OOLAGA | 1976 NOV | | 28.0 | 22 R | 2357,709 | 2357.709 | | | AY | GUILL | OOLAGA | 1976 NOV | 08 1545 | 27.9 | 13 R | 2357.713 | 2357.714 | 2357.708 .005 | | AZ | ONITE | OOLAGA | 1976 NOV | 08 1605 | 27.1 | 23 R | 2357.700 | 2357.701 | 23574700 4005 | | BD | OOLAGA | SODERE | 1976 NOV | 08 1750 | 26.1 | 7 M | 1581.704 | 1581.705 | | | 8E | DOLAGA | SODERE | 1976 NOV | 08 1800 | 26.0 | 12 M | 1581.705 | 1581.706 | 1581.705 .002 | | BF | OOLAGA | SODERE | 1976 NOV | u8 1810 | 25.6 | 10 M | 1581,702 | 1581.703 | ******** | | BS | TABLE | HENDENO MERKO | 1976 NOV | 11 0020 | 18.6 | 7 M | 6858,866 | 6858.858 | | | BŢ | TABLE | HENDENO " | 1976 NOV | 11 0930 | 18.8 | βМ | 6858.867 | 6858.860 | 6858.860 .002 | | BU | TABLE | HENDENO " | 1976 NOV | 11 0940 | 19.0 | 7 M | 6858.868 | 6858.862 | -864 (no exc) | | ву | TABLE | MENPENO AUX A | 1976 NOV | 11 0955 | 18.6 | 6 M | 6854.802 | 6854.798 | 6854.798 0.000
.802 (ne 69.0) | | ВХ | TABLE AUX A | MENPENO . | 1976 NOV | 11 1030 | 19.8 | 15 M | 6861.201 | 6861.199 | 6861-199 0.000
.201 (nr GRC) | | , BM | TABLE AUX A | MENDENO AUŽ A | 1976 NOV | 11 1010 | 19.4 | 17 M | 6857.132 | 6857.128 | 6857 128 0.000 | | • | | | | | | | | | 134 (M 6KC) | | Code | Geodimeter Sta. | Retroreflector Sta | . Date | Time | Temp. | Spread | Corrected D | t
Final D | Line Average | |----------------------|---|---|---|----------------------|--------------------------------------|--------------------------------------|--|--|----------------| | CA
CB | TABLE
TABLE | TCHEESA
TCHEESA | 1976 NOV 11
1976 NOV 11 | | 20.1
20.6 | 6 R
15 R | 7767.127
7767.121 | 7767.130
7767.125 | 7767.128 .004 | | BY
BZ | TABLE TABLE | TCHEESA AUX A | 1976 NOV 11
1976 NOV 11 | | 20.2
20.0 | 25 R
11 R | 7768.827
7768.819 | 7768.829
7768.822 | 7768.825 .005 | | DA
DB
DC | RABBIT
RABBIT | AYGU
AYGU
AYGU | 1976 NOV 14
1976 NOV 14
1976 NOV 14 | 0855 | 19.4
19.9
20.6 | 21 M .
26 M
15 M | 7220.512
7220.511
7220.510 | 7220.506
7220.506
7220.505 | 7220.506 .001 | | DF | RABBIT AUX A | ĄYGU | 1976 NOV 14 | 0945 | 20.8 | 7 M | 7222.755 | 7222.754 | 7222.754 0.000 | | DG | RABBIT AUX B | AYGU | 1976 NOV 14 | 1005 | 21.3 | 44 M | 7207.989 | 7207.989 | 7207.989 G.000 | | 1DD | RABBIT . | AYGU AUX A | 1976 NOV 14 | 0915 | 21.0 | 9 M | 7223.257 | 7223.255 | 7223.255 0.000 | | DE | RABBIT AUX A | AYGU AUX A | 1976 NOV 14 | 0930 | 20.9 | 19 M | 7225.504 | 7225.502 | 7225.502 0.000 | | DH | RABBIT AUX B - | AYGU AUX A | 1976 NOV 14 | 1020 | 22.1 | 13 M | 7210.723 | 7210.723 | 7210.723 0.000 | | CE
CC | SOGIDO
SOGIDO
SOGIDO | TCHEESA
TCHEESA
TCHEESA | 1976 NOV 11
1976 NOV 11
1976 NOV 11 | 1640 | 22.4
22.2
21.8 | 4 M
8 M
11 M | 1985,469
1985,465
1985,464 | 1985.471
1985.467
1985.465 | 1985.468 .003 | | CF | SOGIDO | TCHEESA AUX A | 1976 NOV 11 | 1700 . | 21.4 | 4 M . | 1983.174 | 1983•176 | 1983.176 0.000 | | CG
CH | KUSULU
KUSULU | TCHEESA
TCHEESA | 1976 NOV 11
1976 NOV 11 | | 20.5
20.4 | 5 M
17 M | 4965.312
4965.309 | 4965.315
4965.312 | 4965.314 .002 | | CI, , | KŪSULU | TCHEESA AUX A | 1976 NOV 11 | 1755 | 20•2 | 6 M | 4963.028 | 4963.030 | 4963.030.0.000 | | CF
CK
C1 | SOGIDO
SOGIDO
SOGIDO | KUSULU
KUSULU
KUSULU | 1976 NOV 12
1976 NOV 12
1976 NOV 12 | 1715 | 23.7
23.6
23.5 | 6 M
9 M ·
4 M | 3906,287
3906,289
3906,284 | 3906.293
3906.295
3906.289 | 3906,292 .003 | | CM
CN | SOGIDO
SOGIDO | KUSULU AUX A
KUSULU AUX A | 1976 NOV 12
1976 NOV 12 | | 23.1
22.7 | 18 M
9 M | 3907.409
3907.412 | 3907.414
3907.416 | 3907.415 .001 | | EQ
ER
E5
ET | HOTEL
HOTEL
HOTEL
HOTEL | TERMITE
TERMITE
TERMITE
TERMITE | 1976 NOV 19
1976 NOV 19
1976 NOV 19
1976 NOV 19 | 1725
1735 | 26.2
25.8
25.5
25.0 | 21 R
5 R
22 R
11 R | 1022.575
1022.577
1022.571
1022.569 | 1022.576
1022.577
1022.572
1022.576 | 1022.574 .003 | | DI
DK
DL | GALLA
GALLA
GALLA
GALLA | HOTEL
HOTEL
HOTEL
HOTEL | 1976 NOV 17
1976 NOV 17
1976 NOV 17
1976 NOV 17 | 1515
1525 | 26.7
26.9
27.1
27.1 | 6 M
9 M
17 M
11 M | 764.047
764.048
764.045
764.044 | 764.049
764.049
764.046
764.045 | 764•047 •002 | | FA
FB
FC | EUPHORBIA
EUPHORBIA
EUPHORBIA | HOTEL
HOTEL
HOTEL | 1976 NOV 21
1976 NOV 21
1976 NOV 21 | 1545 | 26.4
26.3
26.5 | 16 M
4 M
9 M | 3517.920
3517.916
3517.919 | 3517.925
3517.921
3517.923 | 3517.923 .002 | | FD | EUPHORBIA AUX A | HOTEL | 1976 NOV 21 | 1610 | 26.8 | 22 M | 3524.757 | 3524.762 | 3524.762 0.000 | | ED
EE
EJ
EK | LANGANA
LANGANA
LANGANA
HOTEL
HOTEL | HOTEL
HOTEL
HOTEL
LANGANA
LANGANA | 1976 NOV 18
1976 NOV 18
1976 NOV 18
1976 NOV 19
1976 NOV 19 | 1705
1715
1520 | 26.4
26.2
26.3
27.6
27.4 | 17 R
15 R
16 R
18 M
13 M | 3394.036
3394.029
3394.044
3394.041
3394.038 | 3394.039
3394.032
3394.047
3394.044
3394.041 | 3394.041 .006 | | EL | HOTEL | LANGANA AUX A | 1976 NOV 19 | - | 27.1 | 11 M | 3396.094 | 3396.097 | 3396.097 0.000 | | EM
EN
EO | HOTEL
HOTEL
HOTEL | ARJO
ARJO
ARJO | 1976 NOV 19
1976 NOV 19
1976 NOV 19 | 1615 | 26.8
26.8
26.8 | 23 M
12 M
11 M | 8151.001
8151.010
8151.004 | 8151.010
8151.019
8151.014 | 8151.015 .005 | | EP | HOTEL | ARJO AUX A | 1976 NOV 19 | 1630 | 26.4 | 6 M | 8154.758 | 8154.767 | 8154.767 0.000 | | DM
DN
DO | GALLA
GALLA
GALLA | TERMITE
TERMITE
TERMITE | 1976 NOV 17
1976 NOV 17
1976 NOV 17 | 1615 | 27.4
27.6
27.8 | 14 M
7 M
12 M | 746.031
746.038
746.032 | 746.033
746.039
746.033 | 746.035 .003 | | Code | Geodinater Sta. | Retroreflector Sta. | Date | Time | [emp. | Spread | Corrected D | Final D | Line Average | |----------------------------|---|---|--|------------------------------|--|---|--|--|----------------| | FF
FG
FH | EUPHORBIA
EUPHORBIA
EUPHORPIA | TERMITE
TEPMITS
TERMITE | 1974 NOV 21
1976 NOV 21
1976 NOV 21 | 1710 | 26.7
24.7
26.4 | 16 4
10 M
17 M | 3358,107
3358,105
3358,103 | 3358.112
3358.110
3358.107 | 3358.110 .003 | | FE | EUPHORBIA AUX A | | 1976 NOV 21 | | 26.9 | 51 M | 3372,627 | 3372.633 | 3372.633 0.000 | | EG
EH
EI | LANGANA
LANGANA
LANGANA | TERMITE
TERMITE
TERMITE | 1976 NOV 18
1975 NOV 18
1976 NO/ 10 | 1755 | 25.7
25.0
24.6 | 5 P
32 R
17 R | 2434,157
2434,158
2434,158 | 2434.159
2434.160
2434.161 | 2434.160 .001 | | EX
EY
EZ | ARJO
ARJO
ARJO | TERMITE
TERMITE
TERMITE | 1976 NOV 20
1976 NOV 20
1976 NOV 20 | 1730 | 26.1
25.5
25.1 | 9 R
10 R
9 R | 7257,947
7257,943
7257,939 | 7257.957
7757.952
7257.948 | 7257.952 .005 | | FI
FK | EUPHORBIA
EUPHORBIA
EUPHORBIA | GALLA
GALLA
GALLA | 1976 NOV 21
1976 NOV 21
1976
NOV 21 | 1800 | 25.1
24.8
24.6 | 16 M
6 M
14 M | 2852,120
2852,118
2852,121 | 2852.123
2852.121
2852.125 | 2852.123 .002 | | DP
DQ
DR
DS | GALLA
GALLA
GALLA
GALLA | ARJO
ARJO
ARJO
ARJO | 1976 NOV 17
1976 NOV 17
1976 HOV 17
1976 NOV 17 | 1715
1730 | 25.8
25.8
25.8
25.5 | 26 R
20 R
26 R
18 R | 7435,786
7435,788
7435,788
7435,790 | 7435.797
7435.797
7435.795
7435.797 | 7435•797 •001 | | FR
FS.
FT | EUPHORBIA
EUPHORBIA
EUPHORBIA | LANGANA
LANGANA
LANGANA | 1976 NOV 22
1976 NOV 22
1976 NOV 22 | 1615 | 27.1
27.3
27.2 | 18 R
7 R
14 R | 3232,701
3232,708
3232,703 | 3232.705
3232.713
3232.707 | 3232•709 •004 | | FU | EUPHORBIA | LANGANA AUX A | 1976 NOV 22 | 1640 | 26.6 | 12 R | 3234,425 | 3234.429 | 3234.429 0.000 | | EU
EV
EW
FW
FW | ARJO
ARJO
ARJO
EUPHORBIA
EUPHORBIA
EUPHORBIA | EUPHORBIA
EUPHORBIA
EUPHORBIA
ARJO
ARJO
ARJO | 1976 NOV 20
1976 NOV 20
1976 NOV 20
1976 NOV 22
1976 NOV 22
1976 NOV 22 | 1610
1625
1705
1720 | 27.6
27.6
27.6
26.4
26.2
25.8 | 65 R
21 R
15 R
12 R
22 R
2 R | 6206.147
6206.155
6206.151
6206.148
6206.139
6206.144 | 6206.158
6206.166
6206.162
6206.158
6206.148 | 6206,157 .007 | | FY | EUPHORBIA | AR-IO AUX A | 1976 NOV 22 | | 24.9 | 6 R | 6210,028 | 6210.035 | 6210.035 0.000 | | DZ
EA
EB | LANGANA
LANGANA
LANGANA | ARJO
ARJO
ARJO | 1976 NOV 18
1976 NOV 18
1976 NOV 18 | 1555 | 27,9
27,9
27,7 | 15 M
18 M /
17 M | 4851,702
4851,698
4851,696 | 4851.709
4851.704
4851.703 | 4851.705 .003 | | EC | LANGANA | ARJO AUX A | 1976 NOV 18 | 1615 | 27.1 | 9 M | 4855,292 | 4855.298 | 4855.298 0.000 | | ĐΥ | LANGANA AUX A | ARJO | 1976 NOV 18 | 1530 | 27.5 | 19 M | 4850+033 | 4850.040 | 4850.040 0.000 | | DΧ | LANĞANA AUX ^ | ARJO AUX A | 1976 NOV 18 | 1520 | 27.3 | 4 M | 4853,629 | 4853.636 | 4853,636 0,000 | | GK
GI
GH | OITU
OITU
OITU | ALUTU
ALUTU
ALUTU
ALUTU | 1976 NOV 24
1976 NOV 24
1976 NOV 24
1976 NOV 24 | 1720
1730 | 23.8
23.9
23.8
23.8 | 7 M
13 M
17 M
6 M | .4629.093
4629.093
4629.097
4629.095 | 4629.096
4629.095
4629.099
4629.097 | 4629•097 •002 | | GD
GE
GF | 011U
011U
011U | OGMAY
OGMAY
OGMAY | 1976 NOV 24
1976 NOV 24
1976 NOV 24 | 1555 | 25.7
25.6
25.2 | 14 M
12 M
17 M | 5303,650
5303,644
5303,643 | 5303.656
5303.649
5303.648 | 5303,651 .004 | | GG | OITU | A KUA YAMOO | 1976 NOV 24 | 1615 | 25.0 | io m | 5312,166 | 5312.170 | 5312.170 0.000 | | GL
GM
GN
GO | CHITU
CHITU
CHITU
CHITU | SHIRIBO
SHIRIBO
SHIRIBO
SHIRIBO | 1976 DEC 02
1976 DEC 02
1976 DEC 02
1976 DEC 02 | 0820
0840 | 18.4
18.7
19.0
19.2 | 35 R
34 R
22 R
28 R | 5082,017
5082,015
5082,018
5082,020 | 5082.013
5082.011
5082.015
5082.019 | 5082.015 .003 | | GP
GO | CHITU
CHITU | KORKORSA
KORKORSA | 1976 DEC 02 | | 25.6
25.5 | 19 M
16 M | 4403,260
4403,264 | 4403.264
4403.268 | 4403.266 .003 | | GR
GS
GT | CHITU
CHITU
CHITU | KORKORSA AUX A
KORKORSA AUX A
KORKORSA AUX A | 1976 DEC 02
1976 DEC 02
1976 DEC 02 | 1645 | 25.4
25.2
25.1 | 3 M
20 M
8 M | 4403,422
4403,415
4403,413 | 4403.427
4403.419
4403.416 | 4403.421 .006 | | Code | Geodimeter Sta. | Retroreflector Sta. | Date | Time | Temp. | Spread | Corrected D | Final D | Line Average | |------|-----------------|---------------------|--------------|----------|-------|--------|-------------|---------|--------------| | AA | NZN BASE | NZS BASE | 1976 NOV 06 | 0840 | 20.4 | 33 M | 25.572 | 25.572 | | | AB | NZN BASE | NZS BASE | 1976 NOV 06 | 0900 | 20.8 | 6 R | 25,567 | 25.567 | | | AC | NZN BASE | NZS BASE | 1976 NOV 06 | 0920 | 21.2 | 20 M | 25.570 | 25.570 | | | AD | NZN BASE | NZS BASE | 1976 NOV 06 | 0936 | 21.8 | 32 M | 25,558 | 25.558 | | | ΑE | NZN BASE | NZS BASE | 1976 NOV 06 | 2015 | 19.2 | 28 R | 25,558 | 25.558 | | | AF | NZN BASE | NZS BASE | 1976 NOV 06 | 2030 | 19.2 | 10 M | 25.556 | 25.557 | | | AG | NZN BASE | NZS BASE | 1976 NOV 06 | 2040 | 19.0 | 18 R | 25.561 | 25.561 | | | CW | 'NZN BASE | NZS BASE | 1976 NOV 13 | 2045 | 21.0 | 21 M | 25,556 | 25.556 | | | CX | NZN BASE | NZS BASE | 1976 NOV 13 | 2050 | 20.0 | 34. R | 25,555 | 25.555 | | | CY | NZN BASE | NZS BASE | 1976 NOV 13 | 2100 | 20.0 | 8 M | 25,566 | 25.566 | _ | | CZ | NZN BASE | NZS BASE | 1976 NOV 13 | 2110 | 19.0 | 20 R | 25,569 | 25.569 | 25,563 •00 | | | | | | | | | | | • | | DT | MGN BASE | MGS BASE | 1976 NOV 18 | | 18.2 | 2 R | 37.183 | 37.183 | | | DU | MGN BASE | MGS BASE | 1976 NOV 18 | | 18.3 | 43 M | 37.178 | 37.178 | | | DV | MGN BASE | - MGS BASE | 1976 NOV 18 | | 18.8 | 6 R | 37,191 | 37.191 | | | DM | MGN BASE | MGS BASE | 1976 NOV 18 | | 19.4 | , 7 M | 37,184 | 37.184 | | | FL | MGN BASE . | MGS BASE | 1976 NOV 22 | | 18.7 | 15 R | 37.188 | 37+187 | | | FM | MGN BASE | MGS BASE | 1976 NOV 22 | | 18.8 | 12 M | 37.177 | 37.177 | | | FN | MGN BASE | MGS BASE | 1976 NOV 22 | | 19.2 | 8 R | 37.181 | 37.181 | | | FO- | MGN BASE | | -1976 NOV 22 | | 19.3 | 4 M | 37.175 | 37.175 | | | FP | MGN BASE | MGS BASE | 1976 NOV 22 | | 19.7 | 15 R | 37,184 | 37.184 | | | FQ | HGN BASE | MGS BASE | 1976 NOV 22 | | 20.0 | 7 M | 37.178 | 37.178 | | | FΖ | MGN BASE | MGS BASE | 1976 NOV 23 | | 18.0 | 6 M | 37.186 | 37.186 | | | GΑ | MGN BASE | MGS BASE | 1976 NOV 23 | | 18.6 | 10 R | 37.186 | 37.186 | | | ĢΒ | MGN BASE | MGS BASE | 1976 NOV 23 | | 18.7 | 9 M | 37.192 | 37.192 | -7 00 | | GC | MGN BASE | MGS BASE | 1976 NOV 23 | ኒ በደነፍ - | 18.9 | 12 R | 37,183 | 37.183 | 37,183 .00 |