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VARIATIONAL ALGORI "HMS FOR NONLINFAR SMOOTHING APPLICATTONS
Ralph E. Bacly, Ir.*

Ames Regearch Center
SUMMARY

This report presents a variational approach for solving a nonlinear,
fixed-interval smoothing problem with application to offline processing of
noisy data for trajectory reconstruction and parameter estimation. The non-
linear problem is solved as a sequence of linear two-point boundary-value
problems (TPBVP)., Second-order convergence properties are demonstrated.
Algorithms for hoth continuous and discrete versions of the problem are given,

and example solutions are provided.
I. INTRODUCTION

Smoothing applications generally involve offline vprocessing of noisy data
records for trajectory reconstruction and parameter estimation. The fixed-
interval smoothing problem is conveniently f[ormulated as one of minimizing a
suitable performance measure subject to dynamic constraints. This formulation
is equivalent to a Bolza problem in the calculus of variations (ref. 1).
Bryson and Frazier (ref. 2) first gave a solution for the linear, continuous
rase, in which a "sweep" method was used to solve the resulting two-point
boundary-value problem (TPBVP). Cox (ref. 3) later formulated and solved a

linear, discrete problem (n a simflar wayv.

Solution of the nonlinear smoothing problem requires an iterative pro-
cedure that converges and is computationally feasible., Many techniques have
been proposed (ref. 4), but only a few have been applied In practice. In one

approach, an approximate sweep method Ls used to solve the nonlinear TPBVE of

*R. E. Bach, Jr., i3 with the Departmeont of Electrical Engineering,
Northeastern University, Boston, Mass. 02115. He is a visiting Research
Scientist at Ames Research Center under an Intergovernmental Personnel
Agreement.




the Bolza formulation. The resubtting alporithm consists of an extended
Kalwin (ilter-smocther. A typicat Twplementarfon 1s deseribed in reference 5,
While this algorithm {s commonly uscd, its converpgence properiics are di0ti-

cult to predict because lincarization is about a filtered trajectory.

A sccond-order varial fona]l procedure is applicd here to the nonlinear
snaothing problem. This approach leads to an algorithm that combines a
Newton-Raphson computation of paramcter changes with a stable information
filter-smoother to improve the srate estimates at each iteration. Lineariza-
tion is about a smoothed trajectory, and quadratic convergence to a minimum of
the performance measurec is demonstrated. In the absence of process noise, the
algorithm is shown to be mathematically equivalent to other Newton-Raphson

methods used for parameter estimation (refs. 6 and 7).

The basic analytical approach used to derive the algorithm is not new:
it 18 an example of the "successive sweep' method of MeRevnolds and Bryson
(ref. 8), originally devised to solve a continuous optimal control problem.
Furthermore, Sage and Melsa (ref. 9) outlined the application of this method
in solving the discrete smoothing problem, The development presented here
extends and unifies previous work, and also dirscts attention to an apparently

negle-ted but very useful tool for state and paramcter estimation.
IT. STATEMENT OF PROBLEM

The continuous version of the smeothing problem can be stated as follows:

Given a system of the form
x = 1 (x,w) , x(L,) = x, (2.1)
with a continuous measurement
2= hix) + v (2.2

available over the interval (to,tf), determine % ® = x(t), and w = w(1)

o’
s0 that a performance measure

T

L
;
= (U2)(x, - %) prlex, - 2 )+ (1/2) f (qu"lw + viR-lode (2.
t

(4}




ts mindwlzed, I (his formalationg, = faoan o oprlorl o estimate of the stale

at o= L, and Poo Oy ond Rane e ipinting, e rices, e vietor  w wit}

can be considered i "unknown® input o aan b nften modeled g process neige,

while v = v{t) is the "ervor® in e roacann oment.

The diserete versfon ol the o cteios pe hlem io foranlated in o simila:

manner:  Given a system ol Ghe tar

®(D + LY - aq=Ciy, wlid] . 2(0) - %, (2.4)
with a measurement sequence
2(1) = hix(i}] + v(i) . i=1,2, ..., N (2.5)
determine Xq and sequences [x(i)} and [w{i})] so that a performance measure
. N- - -
J = (1/2)(x0-§0)1P;1(x0—§0) + U/ E [ (DQ7 (i) + v (L4 DRIV + 1))
=0

(2.6)
is minimized.

The reader can consult reference 9 for a Bayesian maximum-likelihood
interpretation of criteria (2.73) and (?.6). For this discussion, a weighted
least~squares interpretation would also be appropriate. The continuous and
discrete versions of the smoothing problew are cach examples of a Bolza
problem, which are solved hcre by use ol a second-order variational procedure,
Note that the smoothing formulation permits the inclusion of constant param-
eters as state variables. Thus, paramncter identification is a special case of

state~variable estimation.
Ti1, CONTERCOLS ALGORETHNM

To develop an algorithm iur solving the cont Inuous smoothing problem,
first adjoin the dynamic constraint (7.1 (o the performance measure (2.3)
with Lagrange multiplicr XA = 3(i) to oblain

f e
T sk o - e (3.1
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where a priori informatfon I inciuded in

= D, -5 G - R (1.2)

i {1 13

and the Hamiltonian is delincd as

A b .
= (/D) (wo v tow o ty) .'ll(x,w) . (5.9

The necessary conditions for a minimam 1 arc determined In the usual way by

requiring that the first variation vanish {ref, 1)
given by (2.1} and

« These conditions are

, .
A=l Mep) =0 (3.4)
0=%" 5 ey = -, D, (3.5)

where the letter subscript indicates a partial derivative operation. Equa-
tions (2.1}, (3.4), and (3.5) definc a nonlinear TPBVP. It is simple enough
to choose an Xgs W(t) and to generate nominal trajectories x(t), A(t) by
solving (2.1) and (3.4). Such trajectories, however, are not likely to yield

a minimum performance measure (neither condition of (3.5) is satisfied).

The algorithm is developed by considering the effect on the augmented
performance measure causcd by changes &x(t), “w(t), and SA(t) from nominal

trajectories. Equation (3.1) iy expanded to sccond order to obtain:
Le
63 = (o + 1) ox + | daw i+ 72ysx T (o..) ox
= (9 0%*o . TytW dt 12)sx, Px) 0® %
O

AN

Ly .
dt -l»f 6}1([\_6.\; + [wﬁw - &x)dt
Sy L B

o (3.6)

* X

tf T XX O nw
+ (l/2)f (8% (‘SwT)
¢ -

: il
0 Mo W,

The objective now is to detormine -‘-x“, ax(t), and Sw(t) so that &1 is

as large a negative number as possible at each [teratlon. Convergence 13

attained when J reaches a minimum. in this "accessory mintmizat fon™ problem,
A = §A(t) act: as a Lagrange multiplicr for a dynamic constraint, cquivalent
to a first~order expansion of (2.1)., The necessary conditions for minimiring

83 in (3.6) are given by

R
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8% 1‘_:r‘)x 1 I\.f"' . ﬁ;.;(['n) ey (3.7
Mom W o, (L) N (5.0
51(1“) E -(@KI L RS (%
LTI L. SRR
T Rt e w T B R

Substituting (3.10) inte (3.7 and (3.8) vieids the Linear, nonhomogencous
TPBVE :

8k = (Fy - FICIC & - 1 G Tsx - e g T | s (mknown)  (2.01)

Woww

Tox vt w13 T

SA = = Qe = HICHO )T - (- F G ) AL

TWoww W
GK(LF) =0 . (3.1
Any one of a number of "sweep' .olubions sy be used for a linear TPBLP.
Here it is convenient to introdoce M = M(t) and m = mit) so that

A = Méx + m : N(tf) =0 ; m(tf) =0 . (5.13)

Now differentiate (3.13) and uwc (3.11) and (1,12) to obtain the difrferentiai

equations:

. K ' ) LT . ,
M= -Ix M - I‘.ix - l(x.‘: + !wawl. (3.1%)
LT - T \ e
m = "tx m 4 lt'(ww(lw m 1('.\1 ) (3.i™)

where
b -“".w + le . {(1.16)

Equations (3.14) and (3.15) comstitute Y"hiwkward informit fon filter," i.e.,
their solutions arc propagated boacikeard trom { te until vt = ¢t . The
change in x, needed to inltialize 1he Torward smoothing pass is determined

by substituting (3.13) into (3.9 and sotving 1or hxuz

X = . [ - el . JEy B !
IEXU = - (I o ! NU) “ o (,.” ,\.U) + (gul (3.1/)
where
p 1 = pl g . . - p . ,
(IH“ )(‘J N P(l (“.\ ‘\()) ’ (r_\;_--‘)” = P“ (3, 18Y




o o 0Ly w{e ) M. Mer ) t4.11%)
4re used,  Hopee o NPW[HH'“JLH.UU

Coaleulaciag vields .
Initial condf tion,

Fo compter,. the Prepyp
information smoother M (7, 7,

winimizing clhiange o)

wolng jon, integ e 1. "Torward
vl g

the forcing fnnvljnu,

tnt ji ¢ - te,
Oh o ey o S0y o IS N B

where (], ehiee o

inopfoeny e
- P I P I
|\\.r EE, ”H 'J‘_( |= m i i{‘. ¥ I, .j.,)‘_)

(1,0,
The fOI‘L'gl.jng pro

Mmeasure (2,3) r

codure o, ST e teratively ang g the performag..
2aches g mingmum, CunVUrgvnro Propertics or the algorithy, can
be demonstratoyg by observing [ the change jn performine measure 4
reduces to a Sum of quadrat lorms,  The derivation jg fneilitated by Luding
the zero value

“roo
~(1/2) f i I'M(fxéx oW~ 3R
t

Y

to (3.6) and substituting

lor Si o irom (3019, areer SOREe manipulation, R
eéxpression for iJ becomes

= N I iy T -
81 = [(x, - St Iox, + r2yox, nl 4 M6

Ly
. [ " g i T. X
- {1/ im N '”w)"m-z“w T -T(w 2dt 3 '
L”
Now, substituting from (3.17) vieTdys
B §J = —(112)",}:O (PSI + M“)ﬁx“ (t/0 (e 4 Mw)H:f(rw m + “w Wt (3,29
e [(]
Thus, convergence of the algorichg o, ISHUPCT whop
< I T ST ST (3..3)

Pravct i L beane e g ion

Some attention hag been given o, the pis bilem ol
convergence of the

Favreasing (e rading o
Algorithn, AN G ey,

LS e SR R e s
-

procedumre, yhic) has beop Veritid
experimenlnlly, 1s to elbminage tEom de. wa. Aand Mww
derivatives invnlving I{

alh Second-nary o
Xaw) and hex;, The-

cesult fg
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it vl . : it T ‘o
X* I':f. ! h:--. : ) ' Wi ' . -

I'm some ecasesy of courne, une ar more of the o lations in § Vo240 rav b oo 0,
Note that ihe costate Y i oo Lenggar needed 1o calealbate :"‘\'X’ ""yw' or il
Fhe ac ossory mindmizat ion oo bon cang oo e sieplitied conniderabliy: 1o

duce g new variable 0 (0} oo et

and use (3,24), (5.29), aud
i, o r Ty (4.26)
TR s':,'_\ h_\:‘r!{"}v (35.27)
in (3.7) and {3.8) to oblaiu an cqiivalent | invar FRBVE:
¢

6 = £~ FOf S~ i w . falty) = &x (3.2%)
. Tooy T T _ _ L.
p = -hx R hx""‘ L + h:_: Rl "(tf) = ) . (3.29)
To solve (3.28) and (3.29), usc the sweep
s MEx Fou g M(l]‘) -0 :l(rf) =0 . (3.30)

Now, differentiate (3.30) and usce (3.78) and (3.29) to obtain the different ia)l

equations:

I ¥, \ T T :

M= —fx I .-]I_ - !1x i llx -+ wa(‘}iw M {3.31)
I (L "\1)']'. FOMIw o+ b TR (3.32)
‘ 4 Wiy ' w b .

which constitute the backward information filter. The lforward information
smoother, determined by subutituting ¢3.130) inte (3.28), i= given by

T . LT -
OX - Cry -t QM) = e # Cly, o) (3.33)

where 6xn, as determined using (2..09) and €34.30) in (3.9), is the same as

(3.17). The change in the unknown tarcing tunetion is found from (3.10) ro be

.
R P S L (5. 3%)

The steps In the alporithm e sqmmar icoa be Tow,

™




{1)  Use s wlt) oblained tvom the proecedioe iteratfon (or o inbial
puess) o ocompute a o swoothod veades by e ) drow (00 vad the pevtorieg

measure from (2, 1),

(2) Solve e "hackward ot et i i CH 80 a8, 80 1o nhieai..

MEE)Y and ()3 store the oboes v 00 sy Ton thee el jra

(3Y Pertorm the Sevton saphec: compatat e (30 cur ds nd o vole
the "torward smoolher' (33 aod 05 5ar ol termine Swird.

{(4) Update %, and wit) and [terate antil  Ax o and Swit) are "aat1g-

clently" small and .0 is minimized,

Some comments concorufay the alporithm presented hore are in order,
First, (3.31) to (3.34) arc rccounized as the usual backward information jl-
ter, forward information smoorher solution of a lincar smoothing problem. o
fact, any once of the classical cclations (rofs. 4 and LY may b dmplemented
for the linear TPBVP of (3.28) and (3.29¥.! The important point here is that
the nonlinear smoothing problem van be svived as a converging sequence ol
linear TPBVP solutions. Alse, note chat the appreximations of (3.25) afreda

only the radius of ronvergence: when convergence is attained, dx(e), ‘wii),

and S§A(t) vanish and « = « = Y, go that ¢3.32), (3.34Y, and {(3.9) reduce to
A=t e ke vt ) = o (3.7353)

= X - 'l}{ Vo ( I) = . 33

T , - - o
wos -QfL L PR U B LN C T 2 T (1.736)

These equalions are cquivabent to €54 and (3.5, the conditions necessary

for a minimum performance meanare,

Finally, note that, il theve is no provess poise associated with the
model, the equations for M) and () are mach siapicr. Storave roguire-
ments are reduced since the torward swoother equations need not be solved,
The algorithm becomes a sccond-ordor procedare for parameter [dentificat fon,

which i3 cquivalenl Lo but casier to dmplement than the mod i7{ed Newtou-

FRefer to appendix € tor cnother (equivalent) alporithey for solution of
the continuwous amoothing problem.
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Raphson method (velw. 6 .nd 7).

Betal b ot thits cquivalence are Present ed

appendix A,

Pinear s
For a linear nvatem Piven 1oy

¥ R I “(1,) o (3.714)

VAR | O I IV (3, 38%)
where u  is a known Forcing tunction, it j
gence to a minkmum performance me:s

e s altained in one iteration of the
algorithm. 1n (3.31) - {(3.5%4), u.e

fy = F L, U hy = 1l (3.39)
and, to eliminate dependence on gl prov
make a change of variahle

“Sx:x-v' o=

o ‘t]' '*' M.—:" . (’5' &”)

The resulting information l{lter-smoother cquations are given by

. o o 4
M= —1"IN - WF - R MI'QI'IM ;

T TEREEaT : e T TR e e R, ]
J . S -

]
T T (3.41)
a] = =(F - QI W= NGU R (2 = Du)
with ﬂ.L(tf:) =0 , M(Li-) =4, anel
. T ] )
x = (F Qi M)« 4 Gy FQur o
’ (3.4
- | ! vo b .
Xg = = (PLY M) o, = PRTXD) 'f
T .
w = -Ql (wl - Mx) J
Y
' 1
' A f

fous (or nominal) solntion (xhs wp),

I'n

Hoeasy Lo demonstrate that convoer-




i 14, DESCRETE ALGORTTEM
Bevivation of the wlpor bt vor ol sing the di-erete smoothing prollem
very clogely parallels the developme nt To e preceding section, Adinln the
constratar (2.049) Lo the poriormanece beanaeae (00} with oo Lapranys mualt iplier
L Lo obriabn
M. -
S D DN AL B E P SRR (4ot
[I]
where ¢ Is as gliven in (3.2 and
. T, my. T, 1 T . . ,
W= (/D) [w (D w(i) + v G DR WO - D+ 3 G+ 1) [x), w(i)] . (h.2)
L what follov s, it sua.eed be understoessd that
_}(x = (i} ¢ ‘i(w TR (4.3)
The usual variational procedure roqguiies that
W =i, =0 (4. 4)
I RV R T (+.9)
W M t‘}c 3] coe
be satisfied at a minfmam J. The diserote algorithe follows from a second-
order expansion of the augmented performance weasure in Lerms of caanges
[6x(4)}], [ow(i)], and [¢XC)] from nominal 0 rjectories generated by solving '
(2.4) and (4.4) 1Tor some %, and sequenee [wlid]o o The expansion is given by
83 = () + MO s, T st 4 (172ex (008
g Tyl y o i Wi Ladex, Uhd 0%,
" =Q
A
'{3? Nel . . . L ox(1)
H + (/) 2n[x(i)‘., m‘:_” | o
1= wx g wii.
N-1 -
+ 20 AN+ Y EEsCid bt - s+ 1)) . (4.0)
i=n
1)




Tl |l|)il'l'1 fwer s s Lo baoe e BRI wli) 1o 1 (r, I, ven 1
Cov mak. S ae daree e catave b s s e o Yoot 1 hal {j )
acts ac o baprapge sl iplicy e o dvnam s o traanl crul atent tooa a0l
order oxpansion o 12, Wh. The Deer cedl sy aaeanid can o o, iz g i n
th,hY are
ry !f L, L R J . ' PR
. . . I .
i it i bt \ R v ),
e f) (h.8)
() = -iviy 1, cfuy i o Yo ovul )
g T w1 -
o= =00 R H oL [
sy werl bas o] = 1) if F n'“_:__ i (i)
Substitueting (4.10) into (2.7) and (4.8) “cids the Linear, nonhe o cneon:
TPRVP :
. —_1- - T
{ - = ; U iy - T L W S O S
dx(1 + 1) U}: 1\1.' ww1 wx" Sai) !\ci(',.-w' v . b
- 3 it v Svo {nnknown) cho1)
WO ow S Vet
A(RY = (T T e TR NI
- W WW W i 5 WowWW Wi
T TSR (4.12)
MWW W * e * o
A backward swecep solution of o) ol O 1Y mar e obtained.  Led
Av(i) = MUPYaxn (i)Y 4+ ki) MY = O u(N) = O Lha )
The restitlt can be wiritten ow
ey A : - )
MOLY = o Med s Myt W [KVIE (a1}
¥ b NN
m{i) = 1 Tm(l + 1) = Lo Tmli 1) BN T] (4. E5)
A ' W N ‘
wvhero
R - 1 .=
= | 1 . S 1 i 1 !
I "xw + Ix MCi l)lw H 0 i“w\ L I Mt ot )I‘.‘,I (1.16)

"1




Now, solve (4.14) and ¢4.1%) backwnd, from @ - N =1 to [ = 0. To initinl-

ree the Forward smoothiing pass, sabstditure (4013 into €4.9) and solve lTor

dr, 1o obraln
SR "'I"UI i M“," I[I"—l!(:r.“ - :-';“) 4] (h.1 )
wiere
Gy ey )t (b ), = ) 1)
T T Y ) ol 8 Yxx’o o te e
EP Y o+ w0y MO = M{0) (4.19)

are used.  The expression lor the change o) initial condition is seen to he a
Newton-Raphson caleulaction.  To obtain the change in the forcing function,
solve (4.7) forward, with

T

dwii) = --l_zlfw]m(i + 1) U+ :,T.sx(i)] . (4.20)

The algorithm can be applivd iteratively until the performance measurc
(2,6) reaches a winimum. Convergence propurties can be demonstrated by obscrv~
ing that &J in (4.6) can be expressed as a sum of quadratic forms. The
derivation Is facilitated by addisg the zero value

N-1
=(1/2) X &xTGoF DM+ 1) ex(1) + Fsw(i) ~ 8x(i + 1]

i=q

to (4,6) and substituting for o (j + 1) trom (4.13). The expression for 5

cventually reduces to

- - T, - T T, . -
&] = | - 1 1 K b+
J L(x0 xo) 10 + T ]6}(0 {1/ )6x0 (P(J Mo)éxo
N-1 " T
L ED M U SR S TR W [T ES TS U D (A I (4.21)

i=0

Note that the gradient of 0 with respect to o x o appears In the first term
of (4.21)3 the hossian (d"':l'.r'-)xn"') is lound fn the scecond term.  Now, substi-
tute the minimizing :an IFrom (4, 17) and obtain

g T | |
o 1Yy S =1 Ly /) i : 3 1o R (e
ST (720 x ST M ek (2 20 G o JORREE TG+ 1) T

] 1
b (4.22)




Convergence of the dlscrotoe algorithm 18 assured for

—

GRS 3 U NN T n -0, (4.23)

3]

Praciical implomentat ion

The radius of convergence can be cffectively incereased and the comput a-
tions simplified by again climinating all sccond-partial derivatives from

Wyxr Hyys and I, . In the discrete case,

T = BORRIE a0 = £ by R E
ﬂ;w = fwTthR-lhwa + Q7 “-20
To obtain a simplified lincar TPBVP, introduce the variable
o(4) = A(i) + 62(1) (4.25)
and use (4,24), (4.25) and
it [+ 1) - h R 1v(i + 1)) (4.26)
L A LY C U D L I PSS ST (4.27)
in (4.7) and (4.8). The result is
B+ 1) = fex(@ - £,00, 00 - re) L sxc0) = 6%, (4.28)
p{i) = fxT{p(i +1) ~ thR“|v(i + 1) - h "x(i + 1)]] y p(N)=0. (4.29)

A sweep solution of (4.28) and (4.29) with
Pl = MUIRG) + ali) H M(N) = 0 ; a(N) = 0 (4.30)
yields the backward informat ion filter,” rveprescoted by a measurement update:
BU + 1) = a(i + 1) - b TR v 4 1)

- (4.31)
PO+ 1) = MG+ 1)+ b R0,

‘Refer to appendix D for another (vquivalent) atgorithm for solution of
the discrete smoct hing prablem.
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and a4 time update:

0= (9! + [NIP(i DY N BE- C(i) - Qrw'v(i + 1) (4.732)

W
(i) = |xT[| - fwﬁ(i)lrlﬂ(i + 1) - PG+ D w(i)]

MCI) = C0 - £ e P g

The change &x, reoquired Lo initiaifze the forward smoother (4.7) is

again given by (4.17), while the change in forcing function can be writien:

fw(i) = ~[1 ~ CAIEIIw(E) + Qf ' p(1 + 1)1 - CODFSx(E) o (4.34)
The steps in the discrete algorithm are summarized below.

(1) Use Xgs [w(i)] obtained from the preceding iteration (or an initial
guess) to compute a smoothed trajectory [x(i)] from (2.4) and the performance

measutre from (2.06).

(2) Solve the "backward information filter" (4.31) arnd (4.33) to obtain

{M(1)] md [a(i)]; store elements necessary for the next step.

(3) Perform the Newton-Raphson computation (4.17) for é&x, and solve

the "forward smoother" (4.7) and (4.34) to determine [Sw(i}].

(4) Update =z, and [w(l)] and iterate until ux [Sw(i}] are "“suffi-

0,
ciently" small and J is minimized.

When the algorithm converges, &x(i), Sw(i), and 6x(i) vanish for all i
and o(i) = p(1) = A(i). It can be shown that (4.31), (4.33), and (4.9)
reduce to

1

M) = £ 4 D - n RG], A =0 (4.35)

w) = =Qf TEI (1) 5 A(0) = ~PM(x, - %) (4.36)

which are equivalent to (4.4) and (4.5), the necessary conditions for a mini-
mum performance measure, Note also that, for no process nolse, the algorithm
simplifies to a sccond~order parvameter identitication method (mathematically

equivalent to the modified Newton-Raphson method - see appendix B for details).

14




V. EXAMPLES

Frample 1

A typteal smoothing application involves estimation of first and sceond
derivatives, given a noisy data record. A continuous model for this problem
is shown in Flg. 1. Note that a weiphted least-squares interpretation of the
performance measure <hould be made in this case slnce the unknown input wi'l
be deterministic in nature. Although this application is a linear problem, it

provides a useful check on the algorithm.

For computer simulation, it is helpful to replace the continuous model

with a discrete formulation given by

x(i 4+ 1) = Fx(i) + Gw(i) x(0) = x, (5.1
z(i) = Hx(i) + v(i) (5.2)
where
1 h 0
T = , ¢ = . H={1 0] (5.3)
0 1 h
for a time step h and
y (1) .
(1) =] . . w(i) = y(1) . (5.4)
y (i)

The data record [z(i)] is assumed tu be available for 1 =1, 2, ..., N. The
problem is to choose y(0), y(0), and w(i) = v(i), 1t =0, 1, ..., N-1, to

minimize

N-1
)= (1/2) 3 WD/ [2(0 + 1) - y(i+ 1)I2/R]) (5.5)

i=0

where no a priori knowledpe of the fnitial conditions is given.

Implementation of the discrete alzorithm (section 1IV) yields the informi-

tion filter




My, (0 - 1) = My (1) + 1/R = 07y, (1) (5.6)
M, (8 = 1) = (/@M. () + Wy G- 1) (5.7)
My, (5 = 1) = (@/Q) [Mpa (1) + M ,(1)] + BMy, (4 - 1) (5.%)
ap(l - 1) = w (i) ~ v(i)/R = BQMy, (D) [ha, (1) + w(i - 1/l (5.9)
a, (1 = 1) = (@/Q)la, (i) - b, (Dw(l = D]+ hay (3 = 1) (5.10)
where -
Q@ = Q/fL + h?QM,. (1)] . (5.11)

Equations (5.6) to (5.10) are solved "hackward," that is, for
{=N,N-1, ..., 1, with

My (M) = M), (N) = My, (N) = a; (N) = o, (N) = 0. (5.12)

Changes in initial conditions are then determined by solving

M,,00) M, (0| ey (0)

§x, = - (5.13)
M, ,(0) M,,(0) a, (0)

and the result is used to initialize the "“forward" smoother, which is given by

sw(1) = ~QLw(i)/Q + ha, (1 + 1) + hM (1 + 1)[6x, (1) + hex,(i)]
+ thz(i + l)ax?(i)l (5.14)
§x (1 + 1) = 82, (1) + héx, (1) (5.15)
8%, (4 + 1) = §%,(1) + héw(i) . (5.16)

A test case was run to simulate an ajrcraft descending from an altitude
of 1100 m to touchdown in 80 scc. The initial vertical velocity was -2.5 m/sece.
Note the "true" vertical acceleration waveform as shown in Fig. 3(b). The
data record (h = 1 sec) was obtained by Integrating the acceleration twlice and
adding random noise of 10 m {rms) to simulate barometric altimeter measure-

ments. An analysis was performed with the starting sequence

16
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w(l) =0, 1§ =0, 1, ..., N~ 1, and several palrs of starting values lor the

initlal conditions, In cach case, convergence to
v(0) = 1103 m , Y(0) = ~2.79 m/scc (v 17)

was essentlally complete after two iterations. The trajectory estimates arc

shown in Figs. 2 and 3.

It should be noted that the scquence (w(i)l was sensitive to the choice

of Q and R. The results presented here were obtained wlth
Q=1.0; R = 100 (5.18)

which were the mean-squared values of the [w(i)], [v(i)] sequences, respec-
tively. An analogous problem exists in applying a "moving-arc" polynomial
smoother (ref. 1l1) for estimating position, velocity, and acceleration from
measurements of position. With that technique, a least-squares fit of a
second~degree polynomial to n consecutive data points is "moved" through the
data; the values of the polynomial and its derivatives at the midpoint of cach
group provide the estimation sequence. Naturally, the choice of n will
influence the smoothed waveforms, and some experimentation may be required to

determine a suitable value,

Example 2

Consider the problem of estimating the parameters Yo and p  for the
system shown in figure 4, where both input and state measurements are cor-
rupted by additive noise. In the estimation model, a = a(t) is a known iuput,
w = w(t) is process noise, and v = v(t) {s mcasurcment noise. Here, it is
appropriate to use a Bayesian maximum-likelihood interpretation of the per-

formance measure (ref. 9).

A discrete version of the model, sultable for Jdigital-computer simula-

tion, 1is given by

y(i + 1) = ¢y (i) + ha(d) + bw(i) , y(0) = Yo (5.19)
p(i + 1) = p(i) Py = p (5.20)
17
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1
and
' z(i1) = y(i) + v(i) W2
: where
$ =1+ hp . 22
The sequences [w(i)], [v(i)] are assumed to be zero-mean and white, with
covariances Q and R, respectively. Now the problem is to choose Yor P» and

AR b T e o Ty m——

w(i), i =0, 1, cvrs N = 1, to minimize

N=-1
= (1/2) 30 [w?(1)/Q + v2(4 + 1)/R] (5.23)
i=p

where, again, no a priori information about Yq and p 1is considered.

A data record was generated with p =-1.0, Yo = 0, h = 0.02, N = 300,
» With each pulse lasting 1/4 of the record.
The covariance of the state measurement noise was chosen to be R = 0.01, and

values of (/R =

and a unit-doublet input sequence

0, 1, 10, 100, and 1000 were used in the simulation.

Smoothing of the data was done by use of the discrete algorithm in section 1V.
Two analyses of each record were performed — in the first, only p and Yo
estimated, with w(i) = 0 for all i.
shown in Table 1.

were
Results for 100 Monte Carlo Tuns are

The second analysis included estimation of [w(i)] (Table 11).

A comparison of the experimental results shown in Tables I and II indi-

cates that some parameter estimates arce

sequence [w(i)] is estimated.

slightly less efficient when the

This behavior was reparted earlier (ref., 12)

and can be explained heuristlcally. The N elements of [w(i)] are additional

degrees of freedom in the minimization procedure, and permit better "fits" to

the data. 1In some cases, however, these N olements may reduce the influcnce

of the other parameters on the performance measure. Note the apparent bias of

the parameter estimates in Table I for large values of Q/R compared with the

corresponding estimates in Table [I.

By using the complete smoothing model, one has the distinct advantage of

obtaining reliable predictions for parameter estimation errors as part of (hoe

18




gsolution. The approximation for the Cramer-Rao lower hound on the error
variance for the Lth parameter estimate is piven by

S DA C S I (5.24)

Note the much lmproved correspondeace hetween values of o™ and o7 {(rms
value for 100 runs) given in Table LI compared to those given in Tahle I.

These results, however, depend on goud a priorl knawlodge of  Q and R,
VI. CONCLUDING REMARKS

Continuous and discrete versions of a nonlinear smoothing algorithm werc
derived. Convergence characteristics wore demunstrated to b: of the second
order. Examples were provided Lo illustrate application of the algorithm for
state and parameter estimation in the presence ol unknown inputs that arc

deterministic and stochastic in nature.

Mention should be made of the effort to increase the radius of conver-
gence of the algorithm. Eliminat ing second-partial derivatives from My s
H,,» and e provides an effective approximation to the hessian matrix. Tor
a system without process noise, convergence properties were shown to be
equivalent to those obtained with the modified Newton-Raphson method. It is
conjectured, however, that the approxination can be used in general, with good

results.

It is too carly to speculat  whether the implementation of the smoothing

algorithm described here will - more eteetive than existing extended Kidlmin
filter~smoother procedurui.  Howeer, application of the algorithm for smooth-
ing aircraft flight-test data i~ mticipat.d, and a comparison of results with

those obtained by use of the filter-smoothet will be Included in the study.
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AVPENDITY A

THE MNR METHOD AND SHOOTHING
(CONTINUOUS CASE)

The modilicd Newton-{taphson (MNR) method (refs. 6 and 7) is widely used
for ollline parameter {dentification., The continuous version of the alporithm
computes a change in initial conditinn

-1

~1 B Tp-1 -1 = H To-1
éx, = —|P, *t S'R™'S dt P {x, - xo) - SR v dt (A1)
Lo t
at each iteration for a system
x = f(x) , Xq (A.2)
2z = h(x) + v (A.3)
until the performance measure
t
3= (1/2)(x, - % )Tp2 % 1/2 F Ty g A.4)
= Xy = xo) o (x0 - xo) + ( ) v v dt (A.
t
o
is minimized. In this formulation,
S = hyd(t,t) 5 b= £,  elt,t) =T . (A.5)

Here it is shown that the MNR method and the nonlinear smoothing algorithm
derived in section III are equivalent for a system without process noise

{w = 0), and with the approximation

- ~ T .=
'Nxx ol hx R hx . {A.6)
First, let
1 oy
o= - § R v dt (A7)
t
and differentiate hoth sides to obtain
B+ pla =88R (A.8)
20




Now, substitute from (A.%) into (A.8). It is easily seen that

= ﬁfxlu + hxrR_lv . (A.9)

Note that backward integration of (A.9) from a boundary conditlon of
u(tf) =0 yields

S
alt)) = —f sTR1v dr (A 10)
t

Q

The development of the information matrix follows in similar fashion. ILct

t
£
o Mo =f sTR-15 dr (A.11)
t

and differentiate both sides to obtain
bMp + ¢ Mo + ¢THp = -sTR"1g | (A.12)
Now, substitute from (A.5) into (A.12). It can be seen that

. Ty - To-1
M= -fo - fx M hx R hx (A.13)

so tnat backward integration from a boundary condition of M(tf) =0 yields

Ly -
M(t) = S'R7IS dr . (A.14)
t

o}

Hence, the MNR method is equivalent to the nonlinear smoothing algorithm pre-

sented here for no process noise and with the aforementioned approximation of

Hix‘
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APPENDIX B

THE MNE METIOD AND SMOOTIING
(DTSCRETE CASE)

The discrete version of thwe modificd Newton-Raphson (MNR) method

(refs, 6 and 7) determines the Initial condition for a system modelled as

1

x(1 + 1) fix¢i)] , ¥ . unknown (.1

[«}

z(1i + 1)

hix(i + 1)] + v(i + 1) (B.2)

such that a performance measure
T oz
I = (/2 (x, = X,) PI1(xy = %) + (1/2) 1Z~:o vi{i+ LR v+ 1) (B.3)

is minimized. In this formulation, io is an a priori estimate and Py R

are weighting matrices. The MNR method computes a change in initial condition
at each iteration of

N-1 -1
Sx, = -[p;l + 3 st RIS+ 1)] [P;‘(xo - %)

1=0
Nl
- 2 S+ DR WE + 1) (B.4)
i=0
where
S(1i + 1) = hyo(d + 1) ; o1 + 1) = £ o(1) , $(0) = 1 (B.S)

and ¢(1i) is the "sensitivity function"

o(1) = ax(i)/ox, . (.6)

It 18 shown here that the MNR method and the nonlinear smoothing algo-
rithm derived in section IV are mathematically equivalent for a system without

process noise and with the approximation

~ e T
I, B o fx hx

x R‘lhxfx . (1.7)
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FMrst, let
T NZL
o (ya(l) = ~ 3o 8 (5 + DRy + 1) (. 8)
i=1
and form the difference
T T T, .
¢ (L)L) - ¢ (1 + Dai +1) = -8 (4 + DRI+ 1) (13.9)

Rearrange terms and substitute from (8.5) to obtain

T

a(t) = £, (a0 + 1) - b R7v( + D] (15.10)

which is equivalent to the relation for the costate variable given in {(4.33).

Notice that (B.8) with {1 = 0 becomes
N-1 T
«(0) = - 2 S (3 + DRIvE+ D) . (B.11)
j=0
The development for the information matrix follows in similar fashien.

Let

T M-l g
SLMIIGM) = 2o S (J + RIS + 1) (B.12)
i=1

and form the difference

T T _ ol -1

¢ (DIML) ) - ¢ (L + DM + D¢ed + 1) =8 (1 + 1R S(i+ L. (B.13)
Rearrange terms and substitute from {B.5) to obtain

M) = £,TMG + 1)+ bR I DE, (8.14)

which is equivalent to the expression for the information matrix given in

(4.33). Notice that (B.13) with 1 = 0 becomes

N-1
M(0) = X ST (1 + DEIS( + 1) (B.15)
j=0
With the substitution of (B.11) and (B.15) into (B.4), the expreasion for

§x, 1s the same as that given in (4.17). Hence, the MNR method 1s equivalent
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to the dlacrete smoothing algorithm presented in scetion 1V, for the case of

no process nofse, and with the aforementioned approximation of LIV
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APPENDIN ¢
A COVARIANCE ALCOREPIM yoR CONTINUOIS SMOOTILING

In this appond Ix, anot her o rorithn tor solut fon ol ¢ cont innou:n. gon--
Linear smoothing problem b presented,  The alporithm providen a "lovward
covarlanee fllter," "backwird covarbtance smoother" sobut fon of (he |inear
TPBVP that results from (he aceessory minimization problem defined (n seee
tion III. There it was shown that the approximations of (3.24) simpliftcd
the algorithm and extended fts radius of convergence, By introducing the

variable

o= 4+ §) ((:.])

an equivalent lincar TPBVP was detcrmined as

. . T .
fx = fxéx - wafw - fww R Gx(to) = Gxn (c,2)
. T.- T T - .
p = ~hy R Mhéx - £ 0 4 b TRy p(t.) =0 . (. 1)
Another solution to (C.2) and {C.3) can be obtalned using the sweep
§x = 8% - Pp (C.4)

where 6% = §x(t) and P = P(t). Tn order to satisfy the bhoundary condition
of (3.9), set

§X(tg) = R, = x5 P(r) = P, . (G.9)

Now, differentiate (C.4) and use (€.2) and (C.3) to obtain the diftferentianl
equations

. _ " " T
- }] ' F - - .
P=rp+ Pr.- + S KRK (.o
§x = fxai - bWt K(v ~ h &%) (C.7)
where
K = Ph'r-t o, (C.R)

Equations (C.6) and (C.7) consuitute a forward covariance f{lter, (hat

is, their solutions are propagated forward from 1 = b, uwntit ¢ = Ly To




N

complete the soelutdion of the TPRBVE, substitute (C.4) into {C.3) and obtaln the

backward smoothoer

o= -(fx - nhx) p ot bR (v - hxﬁx) . p(tf) =0 . (C.9)

While (€.9) is beiny propapated backward from t = lr until ot =1,

{1
the updated walue ol the unknown lorcing function can be determined fronm

w = —waTp . (C.10)
Lquation (C,10) follows directly from (3,10), (3.28), and (C.1). At the con-

clusion of the backward pass, the updated initial condition can be determined

from

X = Xg = Pory, (c.11)
where Py = p(to). This relation is obtained from (C.4) and (C.5).
The steps in the algorithm can now be summarized as follows:

(1) Use xo,w(t) obtained from the preceding iteration (or an initial
guess) to compute a smoothed trajectory =x(t) from (2.1) and the performance

measure from (2.3).

(2) Solve the "forward covariance filter" (C.6) and (C.7) to obtain

K(t) and 6%(t). S8tore the elements necessary for the next step.

(3) Solve the "backward covariance smoother'" (C.9) and evaluate w(t)

from (C.10). Determine the updated initial condition Xg from (Cc.11).

(4) 1iterate until the performance measure has reached a minimum.

The algorithm presented here is, in effect, a linear Kdlmdn filter-
smoother, It has the advautage of not requiring a matrix inversion to deter-
mine 6x, . However, it may be difficult to "start" the filter in the absence
of a priori information. No such difficulty will be experienced using the

algorithm of section IIT,
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Notice that when the algorithm converges, 6x(t), éw(t), and 6x(t) vanish,
so that p(t) = A(t)., It fs casy to show that (¢.3), (¢.10), and (C.11) are
cquivalent to (3.4) and (3.5), the conditlons necessary for a minimum perfor-
mance measure.

For the linear system described by (3.37) to (3.39), the covariance
algorithm also converges in one fteration. To demonstrate this fact, make

a change of variable

6% = X ~ X, ; % = x - X - (C.12)

The resulting covariance filter-smoother equations are given by

b= FP + PP+ IQUT - KRK ;
(C.13)
$ = Fx + Gu + K[z - (Hx + Du)];
To-1 - -
where K = PH' R . P(ty) = Py x(to) = Xy > and
6= -(F - ki)Tp + HE [z - (Hx + DW)];
(C.14)
W= —QFTp

with p(tg) = 0. At the conclusion of the backward pass, the initial con-
dition is obtained from

{C.15)

o
]
it
|
g

0 oo
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APPENDIX B

A COVARIANCE ALCORITHM FOR PISCRETE SMOOTHING

In this appendix, a discrete "forward covarfance filter," "backward
covariance smoother" algorithm for nonlinear smoothing is derived. The deriva-
tion will be done using the approximations of (4.24) to simplify the accessory
minimization problem and extend the convergance interval. The development of
the discrete algorithm is similar to that presented in appendix C for the con-

tinuous case. Recall that in section 1V, introduction of the variable
p(i) = x(1) + 8x(1) (D.1)

led to the equivalent linear TPBVP

§x(1 + 1)

£ 0x(1) - £Qf, £, 0(4) - fu(1) ,  8x(0) = 6, (D.2)

o(1) = £ o + 1) - B, + 1) - hdx(i + DI}, e@=0. (@.3)

To solve (D.2) and (D.3), the sweep
Sx(1) = §x(1) - P(i)p (1) (D.4)
will be used. The boundary condition of (4.9) will be satisfied if
§x(0) = io - X

0 P(0) = P . (B.5)

Now, use (D.4) in (D.2) and (D.3) to effect a separation of solutions. After

some algebraic manipulation, the equations for the forward covarilance filter

are obtained in the form of a time update:

§%(1 + 1) = f 5x(i) - fw(d) ; !
T T (D.6)
M(1 + 1) = £RP()E, + £, ]
and a measurement update:
§%(L 4+ 1) = 6%(4 + 1) + K(1 + 1) [v(d + 1) - hdx(1 + ]
R(1 + 1) = (4 + Db, T[R + b+ Db 1785 0.7
P(1+ 1) = [1 - K(L+ Dh M + 1) .
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In order to complete the solution of the 7

PBVP, it ig ¢
advantageous to make a change of variable

‘mputationally

o) = £ 801+ 1) , (n.8)
l Substitute {(D.4) and (D.8) into (D.3) and make use of the fact that
| K(1) = p(1) h g1 (b.9)
!I
f to express the backward Covariance smoother ag
- T T —1 * T A » -
B(1) = [1 - K(i)hx] p(1) - b, "R™ [v(i) - hy 6x(i)] , p(N) = ¢ ;
T (D.10)
p{i ~ 1) = f o B8(1) .

During the backward pPass, updated v

alues of the forcing function estimate can
be calculated from

- T Y e T e sem—

w(i - 1) = -qf, Tg(1) (D.11)

(D.12)
Equation (D,11) 1ig obtained usin

g (4.24), (4.27),
(4.10),

(4.7), and (D.10) with
while (D.12) follows from (D.4) and (D.5).

The steps in the algorithm are summarized as followg:
(1) Use Xo and {w(1)] obtained from the Preceding iterati

initial guess) to compute a smoothed tr
value of J fropy (2.6),

on {(ur an
ajectory [x(i)}] from (2.4), and the

(2) Solve the

"forward covariance filter"
[K(i)] and [8%(1)].

(D.6) and {D.7) to obtain

Store elementy necessary for the next step.,

(3) 3olve the "backward covariance smootjer" (D.10) and evaluate [w(i)]
from (D.11). Determine the upd

ated initial condit{ion X, from (D.12),

(4) Tterr. e until the performance Measure J 18 minimized,
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g =

TABLE 1.- MONTE-CARLO RESULTS

ESTIMATION OF  p, Y, ONLY

N mc h 7(2 I?( . mc T
R - .
o v P % Yo Yo Yo
0 ~0.997 0.024 ‘"““6?655“”“""6?665“‘"?i?ﬁi?““‘”"?fiﬁii -
1 ~-1.000 0.029 1.025 0.004 0,023 0.022
10 -1,001 0.057 0.025 0.003 0.035 0.022
100 -1.036 0,164 0.026 0.007 0.092 0.022
1000 -1.524 0.648 0.041 0.076 0.245 0.026
TABLE I11.- MONTE~CARLO RESULTS: ESTIMATION OF p, yo, [W(i)]
R Gmc 5 cr 0I‘ﬂ(‘. ¢ crY
o/ P P P %o Yo Yo
0 -0.997 0.024 0.025 0.002 0.023 0.022
1 -1.000 0.029 0.030 0.005 0.024 0.023
10 -0.999 0.057 0.056 0.003 0.031 0.030
100 -0.993 0.116 0.157 0.001 0.054 0.050
1000 -0.978 0.516 0.486 0.001 0.093 0.096
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Figure 3.~ Trajectorics ver derivative castimation problem.
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