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ABSTRACT

The equations of motion for turbulent two-dimensional
t magnetohydrodynemic flows are solved in the presence of finite
viscosity and resistivity, for the case in which external fources
(mechanical and/or maegnetic) act on the fluid. The goal is to
verify the existence of a magnetohydrodynamic dynamo effect which
" is represented mathematically ty a substantial back-transfer of
mean square vector potentia’ to the longest allowsed Fourier
wavelengths. External forces consisting of a random part plus a
fraction of the value at the previous time step are employed, after

the manner of Lilly for the Navier-Stokes case. The regime explored

is that for which the mechenical and magnetic Reynolds numbers are
in the region of 100 to 1000. The conclusions are that mechanical
forcing terms alone cannct lead to ¢ymamo action, but that dynamo

action can result from either magnetic forcing terms or from both

mechanical and magnetic forcing terms simultaneously. Most real
physical cases seem most accurately modelled by the third situation.
The spatial resolution of the 32 % 32 calculation is not adequate
to test accurately the predictions of the spectral power laws

previously arrived at on the basis of the assumption of simultaneous

vt N e

cascades of encrgy and vector potential. Some speculations are offered

WIS aenss wr Qe -

concerning possible relations between turbulent cascades and the

"disruptive instability."
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1. INTROLUTION

This ics intended as the final paper in a series of three
dealing with incompressible twc-dimensional magnetohydrodynami ¢
turbulence. (A more exhaustive bibliography has been given in the
first two of these: Fyfe and Montgomcry 19753 Fyfe, Joyce, and
Montgomery 197€.) In the first two papers, non-dissipative
equilibrium predictions were algebraically derived and numerically

tested, and an inverse vector votential cascade was predicted for

the case of finite dissipation and external forcing. Our purpose
here is to present the results of a numerical investigation of
driven MHD turbulence for two-dimensional incompressible flow in the
presence of finite conductivity and viscosity.

Considerable interesi in two-dimensional Navier-Stokes
turbulence has been in evidence over the last several years. Much
of the motivation has been meteorological, and stems from the
prediction (Kraichnan 1967; Leith 1968; Batchelor 1969) of dual
cascades: a simultaneous energy cascade to long wavelengths
together with an enstrophy cascade to short wavelengths, both
proceeding away from a source of localized excitation in wave number
space. Kolmogoroff dimensional arguments lead to an omni-directional

3

energy spectrum ~ k™7 in the onstrophy-cascading inertial subrange,

e s e =

above which enstrophy is dissipated by viscosity at the same rate
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at which it is being supplicd to the fluid. The same Kolmogoroff
arguments applied to the inverse energy-cascading inertial subrange
lcad to an omni-directional energy svectrum ~ k-s/i, and an eventual
accumulation of energy in the longest wavelengths allowed by the
boundary conditions. Considerable meteorological support for this
idea exists, and a number of numerical investigations of the
viscous-decay initial-velue problem have sought the k'3 subrange.
However, to our knowledge, the only forced two-dimensional
turbulence which has been simulated numerically, and for which it
has been reasonable to expect an inverse cascade, is in the work of
Lilly (1969, 1971).

Lilly's approach to the problem has been followed rather
closely in our generalizations to MHD. Lilly's werk has recently
been criticized by Herring et al. (1974) as spanning an insufficient
range in wave number space to draw firm conclusions about values of
spectral exponents in the two inertial subranges. We must concede
the validity of this criticism. But while there is perhaps too
much scatter in the computed spectra to draw firm conclusions sbout
exponents, the existence of two different regions of the spectrum,
the low:r one of which shows substantial back-transfer of energy in
wave number spece, seems to be beyond dispute in 1iily's 1969 paper.
The two regions are also wholly compatible with the x~5/3 and X~

laws. In our opinion, the back transfer is the most physically

signiricant cffect in the entire problem. Since the analogous
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back-transfer of vector potential ‘s what we most want to study in
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the MHD case, the inability to draw sharp cunclusions about power
law spectra seems a reasonable price to pay for its observation.

Finally, Lilly's work is at this point still "the only game in

Y TP WO SRR

town," and extending the range of allowed wave numbars to the point
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where the criticism of Herring et al. no longer applies would require

a greater investment of computing capacity than anyone has as yet
been willing to make.

Te essence of the criticism may be paraphrased as follows.
Suppose the maximum allowed wave number is kmax and the minimum ?
wave number is kmin' Suppose the forcing terms added to the right ;
hand side of the Navier-Stokes equation are centered in the |

wave number space at & forcing wave number kF Call the enstrophy

., 3.1/6
dissipation weve number k Tkv = (N/v7)

, where T| = the average
enstrophy per unit time supplied to the fluid, and v = the kinematic
viscosity]. Then in order to have enough space between the various
wave number ranges for both inertial subranges to be seen clearly,
we require the following chain of inequalities:

Kni
If each of these inequalities represents at least a factor of 10,

R . 3 '
then the desired ratio of kmax/kmin is » 10°. For ILilly's Navier-

n K K<k <<l (1)

Stokes code (1969), this ratio was 32, and for our slower-running

MHD code (a single run occupies about an hour of CDC 7600 time),

k __/k is only 16. Numerical solutions for MHD turbulence in
max’ “min
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which the basic grid has k___/k .~ 1000 lie beyond our present ;
max’ “min B

k # 1000 are

. Cep_St s . .
capacity. Navicr-Stokes computations with kmax/ in

presently at the threshold of numerical capability (Herring and
Orszag, private communicats on), but no computations have as yot
¢ been reported.
It should be kept in mind throughcut the following that in

the MHD simuluations under consideration, with two energy dissipation

Qs 1 il

wave numbers {one constructed from viscosity, one from resistivity,
in general unequal), no such chain of inequali“ies as (1) is
possible either. Inevitably, the small size of our kma.x will
affect the upper end of the calculated spectra in unphysical ways,
and will prohibit our observing a proper dissipation range.

In § 2, we describe the general numerical procedure. In
JS}, we address first the Navier-Stokes case (Iilly's problem);
the bulk of the MFD results are presented in §h. Some speculations
on possjble relations between MHD cascades and the "disruptive
instability" are offered in § 5. A general discussion of the

results appears in § 6.

It is well to stress the differences between these
simulations and the earlier ones we have performed for the non-

dissipative initial-value problem. Though ~hose are an essential

et g v e
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Preliminary to these, these are the realistic ones. For the non-

dissipative equilibria, there is no energy transfer between
different ranges of k at all, and the spectral levels never become
independent of the finite kmn.x’ for which there is no physical

determination. 1In the precsence of forcing and dissipation, cnergy
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3 transfer botween various k values is the most central physical
process, and though the system is continually trying to go towards
an equilibrium state, it never succeeds. The interesting part of
the problem is the balance struck between : (1) the input of

1 excitations; (2) their dissipation; and (3) their thwarted attempt

to reach equilibrium.
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2. FORCED MAGNETOHYDRODYNAMICS

As in our previous work, we employ periodic boundary conditions -

\J in the xy plane. The MHD field variables have the following

geometry:

X = velocity field = (v vy 0)

B = magnetic field = (Bx’ By, 0) = 9 x 8

& = vector potential = (0, 0, az)

J = electric current density = (o, 0, jz) =VUxB

@ = vorticity density = (0, 0, wz) =I9xy .
All quantities aye expressed in terms of the appropriate dimension.
less variables (Fyfe and Montgomery 1975). All quantities are
independent of Z, but are functions of X, ¥, and the time t.
Supplementary constraints are that the Y and B fields be solenoidal
(v-x=0anav. B = 0); these constraints are automatic when the
equations of motion are written in the current-vorticity (J, w)
representation.

Assuming periodic boundary conditions in x and y, the Fourier-

transformed MHD equations reduce to

aw(l‘, t)
ot

=Zu(x, p) s(p+r-k) [w(zo(r) - 3(2)3(p)2

- vk, t) + £k, t) (2)

- N . T T O Sy
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and

dJj(k, t)

st— = EM (. ») §(p +r - k) [i(ro(p) - o(z)3(p)]

- Pk, ©) + gl ) - (3)

In Egs. (2) and (3), all quantities have been Fourier-analyzed over
a square box, so that, e.g.,

w, = zk w(E} t) exp (15 y 5)

~

e
A

i = T-E.‘I(E: t) exp (ik - x
The sums are over a large but finite set of k-values of the form
k=2n (nx, ny)/L and L is tLo box dimension. n_ and ng are integers,
not both zero. &(p +r -k) isa Kronecker delta function of its
argument. v is & dimensionless viscosity and p is a dimensionless
resistivity. u/v is sometimes called the "magnetic Prandtl
number. " v'l, u"L are essentially Reynolds numbers, mechanical and
magnetic, respectively.

On the right hand sides of (2) and (3), f(k, t) end
g(k, t) are the "forcing terms," mechanical and magnetic,
respectively. They are regarded ac the sources of the turbulent

excitations which are dissipated by the viscosity and resistivity

at the large values of k, after the excitations are shuttled through

T T T s T S T P T T S T T ST
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k-space by the nonlinear terms on the right hand sides of (2) and

(3). The coupling coefficients Ml and M2 are:

M G, p) =8 - (expT - r7)

M, (r, p) =88 - (xxplp+rf®p %2 | ()

The forcing terms f = f(}s, t) and g = g(l_s, t) are regarded
as given functions of k and t which model physical processes which
may excite the MHD fluid. The range of physicel processes which f
and g may model is quite wide. For instance, they may be
associated wvith a micro-instability of a non-MHD character which
couples to the MHD motions as it grows. Also, f and g could
represent stirring of an:MHD fluid by a rigid conducting object or
boundary. Or, f and & could be the result of an electric current
driven m the fluid by an externa.l transformer or capacitor bank.

ﬂIn the case. of Nav:.er-Stokes fluids ,» [ can represent such different
sources as a screen in a wiud tunnel or the "baroclinic instability"
(Pedlosky “1971) 1n meteorology.

In any particular applica.tion , the- functional form of £ and

€ can be obviously quite compllcated. However, in the spirlt of

homcgeneou., turbulence theory, We are. seeking physical processes

which are not specific to a umque situation but which are common

' to many different f‘s and g It is ink_vthis\spirit that Lilly (1969)
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gave a recipe for providing an £ as a random function of time that

iz relatively non-commital, and we follow his example for the MHD

f(x, t) and g(k, t) arc set identically zero outside a fixed
cireular annulus ("forcing band") in K, ky space. let }’I'13 Ye the
real or imaginary part of f or g for one of the allowed values of
k in this band. The Hk at time stepn + 1 is related to Hk at time

~

step n by

K (n+1) = RH () N1 ) (5)

~

where R is a fixed real number between 0 and 1, and Jk (n) is chosen

by & Gaussian random number generator with expectation value zero

and variance such that the mean (Hi) remains constant. In other

words, the Fourier camponents are composed of & part which is &

fraction of their value at the previous time step plus & random

part chosen SO that the expectation value of the magnitude of the

forcing term is a constant. The evolution of the forcing field

cen be graphically portrayed as random walk over the surface of a |
hypersphere in the space of Fourier coefficients. The forcing term
is programmed SO that £ and g can be chosen to be separ:ziely zero, ;
{0 be uncorrelated, or to be identical. The limit R = 1 corresponds %

to a temporally constant foreing field, and the limit R = 0 to a

e
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wholly random (and highly discontinuous) white noisc field. The

typical running value of R has been 0.95.

The rest of the numerical zcheme is very similar to that used
by Fyfe, Joyce, and Montgomery (1976). It is a spectral-method code
utilizing the Fast Fourier Transform, along the lines of Orszag
(1971) and Patterson and Orsza~ (1971). The main accuracy checks
have been tests of the conservation of the three non-dissipative
invariants (Fyfe et al. 1976) with the dissipatiocn and forcing terms 5
turned off. To gain additional confidence in the program, ﬁe have
chosen first to re-investigate the pure Navier-Stokes case
[obtained by setting j = O and g = 0 in (2) and (3)] in crder to
compare our results with those of Lilly {1969). This work is

described in ‘5 3.

A final remark is in order concerning the wuy the numerical

; inicgration is carried out. Though the symmetry of Egs. (2) and
(3) renders them easiest to manipulate from a formal point :f view,
numerical calculations turn out to be easiest to perform on the
equivalent pair of equations (Fouri.r-transformed)

f ow o

- 3%?-=-x-vwz+g-v.jz+wwz+r‘ {6)

aaz 2
3T L Ve, v + G, (7)

e
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where ¥, G are now the random forcing functions. Because the
equation for a,, rather than jz » is used, the Fourier transform of
G is not g(k, t), but rather g(k, t)/k2. The implication is thet
if the forcing terms are to supply kinetic and magnetic energy at
approximately the same rate, F and G a;'e not to be comparable in
magnitude, but rather the ratio of the Fourier transform of G to the
Fourier transform of F must be of the order of the reciprocal of the
square of the forcing wave number kF Unless specifically stated
otherwise, it may bte assumed in vwhat follows that this has been
taken into account and that when f and g are both nun-zero, they are
of the same order of magnitude.

The typical magnitude chosen for the forcing field is
b} (if(}s, t)|2) = 16, vhere the sumation is over those values of k2
between 55 and 70. A comparable value of T (}a(k, t)la) is chosen
when magnetic forcing is present. Experiments have also been
carried out with T (|f(k, t)lz) = 64.0 and 4.0; the net effect seems
to be to accelerate or decelerate the processes, and to raise or
lower the limiting modal energies, hut not to alter them

qualitatively.

B Yot T
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3. FORTED NAVIER-STOKES TURBULFNCE IN TWQ DIMENSIONS

Three innovations not employed by Lilly (1969) have made it
possible to improve some details of his computation. (1) We use the
Orszag-Patterson spe. tral method, not yet operative in 1969.

(2) Ve average modal energies over all.k-values corresponding to the
same k2, instead of averaging arcund the perimeters of squares in
k-space, as Lilly did. (3) We time average the modal energies once
the total enstrophy has become spproximately constent and once the
rate of absorption of total energy has became approximately constant.
All three improvements may rcasonably be expected to reduce the
errors in the spectrum slightly.

Results for a typical Navier-Stokes run are shown in Figs. 1
and 2. These refer to a forced, jurely Navier-Stokes run, starting
with an empty spectrun. This run, as all others, is carried out on

2 2

a 32 X 32 grid with kmin =1, kma.x

These parameters charecterize all runs. The time step At is (128)-1,

= 226, and a box size L = 2m.

and this value characterizes all runs unleses it is explicitly
stated to the contrary. Some runs were carried out with

At = (256)'1, and. there are some explicit comparisons described
later for the MHD case. Fig. 1 shows the total computed enstrophy
N=% Z, Jw(k, 1;)]2 and computed energy

€ =% ):: Jolk, 1;)]2 k2 < & DY ek, t)[a versus time.

Al At Bl B S -Tm

TR T Yy TR,




SR T TR Y ETEER T EERLTE TRERT R TSR R TR s e R e S T S T S ST e

The behavior of energy would be a linear increase with time and the
behavior of enstrophy would be an approach to a constant, if the
Kraichnan conjecture (1967) were given its most straightforwerd
interpretation.

The forcing wave number is approximately kF = 8. More
specifically, the forcing wave numbers sre confined to a band
extending from k2 = 55 to k2 = T0. Figs. 2a, 2b are time averaged
modal energy plots. Figure 2a shows the time average of
lx(g, t)le, averaged for given valucs of ke, for 320 tire steps
ending at t = 37.5. Every value of k2 is plotted for 1 < k2 < 30,

every other point is plotted for 30 < k2 < 100, and every fourth

point is plotted for ka 2 100. The allowed values of k2 get very
dense at the higher values, and the above plotuing convention is
followed throughout the paper in order to keep the high-k modal
energy plots from becoming unmanageably cluttered. Fig- Zb is a
similar modal energy plot for an average of 1200 time steps ending
with t = 75.C. The straight lines drawn on the graph above and
below the forcing wave numvers have slopes -4 and -8/3, respectively,
corresponding to omni-directional energy spectra 2m k (|!(5)|2) ~ k"3
and k's/j. (Since the locations of the k, ky points are far from
isotropic at the lowest values of k, it seems misleading to convert
the modal energy plots into plots of omni-directional spectra.)
Figure 2c is a plot of x* |x(§)|2 vs. k°, time averaged.

Theoretically, this quantity should be flat in the enstrophy-cascading
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subrange, and be proportional to kh/3 in the energy-cascading
subrange. The straight lines have these slaopes.

Though it is apparent that the results are not inconsistent
with the -3 and -5/3 sFredictions, the data do not permit the

inference that these are the values. A least-squares fit of the

expression Ak™" 1o k(]x(k)lg) for the data gives r. 1.49 for k2

below 55 and n 2.07 for k2 2 70. It has not been Possible fo observe
the predicted build-up of the k2 =1 excitations above the predicted
level obtained from the k277 law. Though et the end of the run,
the k2 = 1 modes are still growing, the 9500 time steps represented
in Figs. 1 and 2 are already about 50% beyond the time over which
the code will conserve energy and enstrophy below the 5% level for
the inviscid unforced case. We believe that running longer would
Produce an arbitrarily large k2 =1 build-up, but the accurscy of
the solution would have been lost.

The enstrophy dissipation can be estimated as
N ol ¥ K2 x [the encrgy dissipation] ¥ 2.4, for the last
1200 time steps. This gives a dissipation wave number
kv ] (2.h/10'9)1/6 ¥ 40, actually asbove kex This makes the
consistency of all but the highest-k points of Fig. 2b with the
k'5/3, k"3 Prediction quite remarkable, and suggests that perhaps
the inequali.ies (1) are too stringent.

In looking at modal energy plots such as Fig. 2, one should
not be misled, by the logarithmic shrinkage of k space and by the
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plotting conventions, into underestimating the nunber of modes in
the upper reaches of the wave number space. For cxample, there are
almost four times as many different ¥ modes above kF = 8 as there
are below it. We have chosen tc plot k2 logarithmically, because
in this particular application we are most interested in the back
transfer to the lower values of k. Tt is the small-k part of the
Fourier space that is emphasized by the log-log plots.

One should also keep in mind thet each value of k2 has a
multiplicity of 2 to 8. That is, for each k2, there are 2 to 3
independent k values, and these degenerate k modes are always

averaged over.

A - o
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L. FORCED MHD TURBULENCE IN TWO DIMENSIONS

It is well to remark at the outset the main qualitative
difference that has been consistently observed between the MHD runs
and the Navier-Stokes runs illustrated in § 3. This is that the
MHD case seems to be unavoidably "noisier’ than the Navier-Stokes
case. As already noted (Fyfe, Joyce, and Montgomery 1976) for the
non-dissipative initial value problem, there is a slowing-down of
magnetic energy transfer among the lower k's which makes time
averaging less effective at smoothing out spectral fluctuations.

Most of the MHD spectra are less smooth than those shown in Figs. 2.

A. The Case g = 0 (Mechanical Forcing)

The first case we consider is the case g(k, t) = 0. There is
no significant amount of back transfer of vector potential for this
case. The mean square vector potential can only decay. It is
uncertain whether there is any physically realistic process which
is satisfactorily modelled by setting g(k, t) = 0. For instance,
mechanically stirring the fluid by constraining the velocity field
to have a specified value at a solid surface also constrains the
megnetic field at the same boundary (particularly if the solid has a
finite conductivity) and so cannot be Properly modelled without a

magnetic forcing term. Nevertheless, we cannot entirely rule out
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processes for which g = 0, and we now present a few results for
that case.

Fig. 3 shows the enstrophy and energy VS. time for a run with
glk, t) =0,V =p-= 10‘5, with a small initial "seed" magnetic
field. Without magnetic field amplifi.cation, one might expect this
case to yield something close to Navier-Stokes behavior, and it
does. Energy increases linearly with time and en‘sti-d;h'\sg fluctuates
about a constant value. The corresponding modal ensrgg ,i;;lot (time
averaged over 1200 time steps ending at t = 75.0) is ;hown in Fig. b3
this is to be compared with Fig. 2b.

One interesting and not yet qu&ntitatively explained feature
of this case is shown in Fio. 5, & magnetic modal erergy spectrum
averaged over 1200 time steps ending at t = 75.0. (This spectrum
was flat, with all values = 10"6 at t = 0. From t = 0.0 to
t = 75.0, the magnetic energy has decayed by & factor of 2 X 105.)
This steeply rising character for the very low level of initial
magnetic excitations has appeared in all the purely mechanically
forced runs we have done, including some with still smaller seed
fields. (The finel ratio of magnetic to mechanical energy for this
run is ~ 10'9, so that the errors in the camputation of the
velocity field are surely larger than the sizes of the magnetic
components; but this is no reason to doubt the accuracy of the
magnetic field calculation, assuming the velocity field to be given.)

A simple argument predicts qualitatively the growing

|B(§)|a vs. k° behavior. Ourposc we regard the magnetic field as #o




weak that it does not affect the velocity field v(x, t). Then the

equation for the vector potential (omitting dissipation)

B&z
—— « Ya =
at X z o

shows that a, is effectively convected like a passive scalar in a
given turbulent velocity field, the effect of which will be to
scramble the 8, field into progressively higher k modes. Batchelor
(1959) has argued that under some circumstances s the omni-directional
spectrum for such a passive scalar should approach ~ k'l behavior.
This would imply an omni-directional magnetic field spectrum

~ k+l. The actual rates of increase in such curves as Fig. 5 are
typically higher than that, increasing more like k 3, This
discussion ignores the Alfvén effect (discussed in Appendix A) ’
which would predict & more rapid rise with k than that for a

. passively-convected a,. But we have no quantitative argument for
the k°* behavior shown in Fig. 5. The relation of the non-

dissipative MHD and Navier-Stokes cases is discussed in Appendix B.

B. The Case f = O (Magnetic Forcing)

The next case to be considered is the case of wholly

ragnetic forcing, £ = 0. We are again uncertain as to the degree
of reaiism to be assigned to such a model, but for the sake of
completeness, we discuss it before pussing on to the case where

neither f nor g vanishes. Again, v = u = 107,

SRR T e T TR, e RN b BT R e T e e
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We begin from a completely empty spectrum
2 2
(IB®)]° =0, [y®I® =0) .

Fig. 6a shows the instantaneous magnetic rodal energics at t = 75.0.
Fig. 6a reveals considerable scatter in the spectrum, but also
significant back-tra.nsfér of magnetic energy to the longest wave
length modes (recall that the forcing wave numbers are from

k2 = 55 to k2 = 70). Fig. 6b shows the time-averaged (1200 time
steps ending at t = 75.0) magnetic modal energies for the same run.
The time averaging eliminates some of the fluctuations, but not as
much as for the Navier-Stokes case. The broken line has slope
k-a/j: corresponding to an omni-directional energy spectrum ~ k'% »
though in no sense is it implied that the slope can be 1nferred fron
the points. The corresponding kinetic modal energies are showa in
Fig. 6¢c, time averaged over 1200 time steps ending at t = 75.0.

Fig. 7 is a plot of total energy and vector potential vs. time for
this run, and the cross-helicity P is shown also. As can .asily

be seen, vector potential is added at a constant rate, while the
energy reaches a limiting value rather quickly and executes

10% fluctuations about that value. This is essentially what one
expects for the dual-cascade behavior, and Fig. 7 should be compared
with Fig. 3. The cross-helicity is not identically zero, and

fluctuates about zero with an umplitude of the order of .0l. M.
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ralio of magnetic encrgy to kinetic cnergy et t = 75.0 is 1.74, so
that the conversion of megnetic into mechanical energy has been

substantial.

By noting the rate oi addition of sjuared vector votential

(dA/at = 5 x 10'1’

from Fig. 7a) we may estimate the rate of addition
of magnetic énergy, which, since the energy added is only magnectic,
enables us to estimate the rate of addition of encrgy,

e.(t) > klf dA/dt ¥ .032.

From this we may estimate the dissipation wave number

i

K=k - (e (A = (32)F x 102 % 75,

\Y
above kmax'

Another feature to be noted in Fig. 6a and Fig. 6b is the
relative enhancement of the spectrum in the forcing band; the
dissipation of encrgy away from the forcing wave numbers is somewhat
greater than it is for the Navier-Stokes case.

A tentative explanation of this last-named effect is the
following. The forcing wave numbers lie within a relatively narrow
band, and the first step in the excitation of the turbulence is the
direct excitation of these wave numbers with k = kF by the forcing

terms. The next step is the transfer of energy out of the forcing
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band by the nonlinear interactions measured by the coupling

coefficients M;, M, [Eq. (4)]. Now the ratio of the magnetic Lol

coupling coetficient to mechanical coupling coefficient for éhe I

interaction of two wave numbers r, pis

Myt B) g +x|? e S

N, p)~ 22 . 12

For p, r about the same size, this ratio is in general quite large.
Thus for a narrowly forced band of excitations, magnetic excitetions
get out into the main body of the distribution faster than
mechanical excitations. Since the excitations arriving at the
higher values of k are dissipated first, the overall dissipation is
expected to be higher for the case £ = 0 than it is for the case
g=0.

C. Mechanical and Magnetic Foreing (f/£0, g£0)

One surprise has occurred repeatedly, in the approximately

12 runs (9600 time steps ezch) we have made for which we have used
simultaneous magnetic and mechanical forcing: namely, & nearly flat
spectrum of magnetic modal energies at all except the lowest values
of k. This effect has persisted for different values of v, 43 for
correlated and uncorrelated f ang g; for variations in the
magnitude of f and g; and for variations in the size of the time !
gstep. The effect is so pronounced as to be identifiable as a
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qualitatlve difference from the Navier-Stokes results (Figs. 29,, 2,

2c) » from the mecha.mce.lly forced MIH) case (F:.gs. ’4, )) R a.nd from the |
. magnet:.cally forced MHD" caac (Figs. 63, b, c) We are not confident
‘::itha.t we have ‘a correct Pxplanatlon for the phenomencn, but we |
attempt onc at the end of thls sectlon

i hgs. 8 a.nd 9 are. not dissmila.r to ‘the cases previously

d.iscussed. Figs. 8 and 9 refer to the cese of equal a.nd uncorrelated
f ond g, ior p, =v=10" , and it = (128)‘ _ The forcing wave numbers
are again K2 = 55 to 70. Fig. 8isa Plot of total energy, total
cross helicity, and total mean squa.re vector potential VS, time. It
skows the energy ¢ saturating and fluctuatingr about a éaturated value,
the cross helicity P executing smell fluctuations about zero, and the
mean square vector potential A increasing monotonically with time,
much as in Figs. 7a, Tb. Fig. 9 shows the mechanical energy, the
magnetic energy and their ratio R = [magnetic energy/kinetic energy]
vs. tﬁhe. Both ener'gies saturate, and their ratio fluctuates abvout
o-value slightly larger than unity.

. This behavior is so far consistent with the picture of the
- dual vector potential and total energy cascaue we have been proposing.
But a considerably more camplex situation p.esents itself when we
turn to the spectral pPlots. Figs. 10a, 10b are time averaged modal
energies vs. k2 for the magnetic field and velocity field.
Bubstantial dynamo action (back transfer of magnetic energy) has

NIRRT
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obviously occurred, but except for the lowest magnetic modes, there
is 1little structure of any kind, and comparisons with spectral
indices cannot mean very much.

Figs. 1la, b show exactly the same run, with the difference
that now v = 4 = 10'2. Increasing the-dissipation by an order of i
magnitude is seen to have selectively dissipated the velocity field
(there is no tendency for back transfer for |X(E)l2)» and to have
substantially inhibited the back transfer of magnetic energy. The
dynamo effect can, not surprisingly, be wiped out by making the
viscosity and resistivity high enough. Neither € nor A show any
systematic growth, for the situation depicted in Figs. 11, after
about t = 3.0.

In Figs. (11), the modsl energies for the forcing wave
numbers are off scale, at the level of > 1L x 10'3. This implies
shat by far the strongest nonlinear interaction is among the forcing
band wave numbers, and these give the largest single contribution to
the flux of energy into the high-k parts of the spectrum. We have
previously noted that the ratio of the magnetic coupling cocefficient

to the mechanical coupling coefficient,

M(x, z) (p+ 5)2

g R

P -r

is in gerceral very large for similar-magnitude wave vectors By L

mmﬂ*&wﬁnaﬂ .
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This implies that the highly excited forcing band modes in Fig. 11
are more effective at driving magnetic excitations outside the
forcing band than mechanical ones. The effect is strong cnough to )
overcome the "Alff¥en effect” (Appendix A) and separate the magnetic
and mechanical spectra as shown at the upper k values in Fig. 1l.

We have also done runs with uncorrelated f, g of equal

-3 3

magnitude and transport coefficients u, v = 10-2, 10 7 and 10~ s
10'2. Perhaps unsurprisingly, the spectrum associated with the
larger transport coefficient was depressed relative to the other,
even at high k, by as much as an order of magnitude. By varying
the p/v ratio, the excitations can be made dominantly mechanicel or
dominantly magnetic.

Examples of' the kind of behavior exhibited in Figs. 8, 9,
10 could be multiplied, but it seems redundant here to do so. We
have a partial explanation to suggect for the behavior, though its
cbnfirmation will ewait simulations capable of consideratly higher
spatial resolution than kma.x/k nin = 16. We may estimate the "decay
time" for wave number k by D= (kav)'l or (kzu)'l, whichever is
shorter. ™ at the forcing wave number is about 15, ana a¢ the
maximum wave number (kia.x = 226), is about 5. We do not have an
accurate expression for the rate of transfer of energy anons,
different k values, but it may be faster than the eddy turnover
time, Tk E (ki!(l‘.)' )'1, in any given region of k spuce. rom

Fig. 10, T is about 4 for the fo’rcing wave numbers and ebout 2.5



| for k nax” We have the situation, then, that T S TD for all k between
kF and kmax' Ty Mmay reasonably be expected Lo measure th -ime in
which the non-dissipative equilibria are locally attained (Fyfe,
Joyce, and Montgomery 1976). The fact that the energy transfer ;
among the allowed wave numbers may occur more rapidly than the
maxinum time of dissipation of any wave number could imply that for
these simulations, the thermal equilibrium spectra (Fyfe and
Montgomery 1975) are more relevant than the cascade spectra. What
is being envisioned is a steady-state process in which energy is
being added at a rate which is the came as the rete at which it is
being dissipated, but that it rests in what is near to a quasi-
stationary thermal equilibrium state. This picture is scmewhat

substentiated by the dissipation spectra (Jw(k)|Z, |3(k)|?) plotted

in Fig. 12. These are seen not to have the characteristic behavior

expected for cascade processes in their classical Kolmogoroff-

Kraichnan form': & maximum, then decay near the upper end of the

appreciably excited wave nurbers.
What the foregoing argument fails to explein are the ;

differences in the MHD and Navier-Stokes dynamics. At the same rate

of injection of energy, the Navier-Stokes fluid with identical

transport coefficients is simply more efficient at disposing of the i

excitations at high k than the MHD fluid. The only explanation for

this effect that we have been able to arrive at is the already

noted more rapid high-k magnetic _energy vrwnsfer. If correct

SO UNPRIREIE DI
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the implication of this for the accurate numerical simulation of
full-blown dual cascades in MHD is somewhat depressing: namely,
even a larger kmax/k ‘min is required than for the Navier-Stokes case.
The current value of attainable kma.x/k ain for the Navier-Stokes
case of 1024 {Herring and Orszag, private communication) is already
on the threshold of present computational capacity. The MHD case
may await the advent of the fifth-generation machines before it can
be exhaustively studied. The more aware reader will have perceived
that these considerations raise some questions about the adequacy
of the spatial resolution of very nearly every MHD simulation that
has as yet been performed.

We close this section with some remarks on the effects of
doubling the magnitudes of the Torcing terms f, g. Figs. 15 show
modal energies for f, g twice as large as in Figs. 10. There is
little change in the overall character of the plots , except for the
enhancement of the k2 = 1 magnetic excitation by a significant
emcunt. This is the strongest "dynamo effect" we have observed in
any single run.

Other runs were carried out for The same parameters as
Figs. 10 involve, but with a time step At = (256)'1. No qualitative
differences were observed in the spectra, though of course the
spectra will not be identical since in general, different sets of

random nunbers will be involved in the forcing terms.

13
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5. EXERCISE: A TURBULENT MHD CASCADE MODEL

OF A "DISRUPPIVE INSTABILITY"

Uncer conditions of too high current or number density,
tokamak discharges exhibit a behavior +hat has scquired the name
"gisruptive irstability." (For an encyclopaedic survey of the
subject up to 1974, see Furth 1974; for recent experimental results,
see, e.g., Hutchinson 1976 or Morton 1976; for recent theoretical
approaches, see, e.g., Finn 1975 or Stix 1976). Essentially what
heppens is that the current channel in a cylindrical plasma column
suddenly expands to fill the channel in a highly disordered way,
jn effect terminating the confinement (we igncre the toroidal aspects
of the problem in this qualitative discussion).

We wish to suggest here, without the extraordinery numsrical
effort that would be required in order to follow through on the
details, a model of this behavior which starts from a turbulent
MHD cascade framework. Previously the phenomenon has been
approached from & ron-statistical MHD framework, usually (and not
wholly successfully) from the point of view of linear MHD stability.
The computatioﬁa.l effort required to implement the program now to be
outlined is not to be underestimated; numerical techniques would be

required that cannot be described as "off the shelf" at present.

e e L2 enti i
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For computational convenience, virtually all the basic
theoretical. and computational studies of either Navier-Stokes or
MHD turbulence have been carried out in rectangular geometry.
The turbulent fields have been expanded, assuming periodic boundary
conditions, in the appropriate orthogonal functions, exp i k- x
Though expanding in some other set of eigenfunctions of the Laplacian
would have increased the computational labor considerably, there is
nothing fundamental about the restriction to rectangular geometry.
For exempie, had we been intcrested in doing the present MHD
calculation in the presence of rigid, perfectly-conducting cireular
boundaries instead of iectangular boundaries ; &n appropriate set of
orthogona.l_ functions in which to expand Jz and w, might have been
I (Anr) exp(imp), instead of exp ik « x [here (r, ¢) are polar
coordinates, m is any integer, and kna is the nth zero or node
of the Bessel function Jm]- In fact, such a set of orthogonal
functions would have had the advantage of permitting a non-zero
velue of the total current, [[ dx dy J,» which in the case of
periodic boundary conditions on the vector potential is constrairved
to be zero. (A non-zero value of this integral is a central
component of tokamak confinement.) The disadvantages would have
been the loss of the utility of the fast Fourier transform and
the Orszag-Patterson spectral method: both severe losses.

If the MHD equations, in the presence of other boundary

conditions, are expanded in terms of another set of eigenfunctions,
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their formal structure may be represented as

%=jicijkxjxk-vixi+Fi : (8)
Eq. (8) speciulized to rectangular geometry and periodic boundary
conditions, is just Egs. (2) and (3). X, is the ith element of a
(possibly very long) column vector composed of all the independent
expansion cocfficients of all the necessary MHD variables. [In the
problem considered in this paper, X, represents symbolically all the

i

w(k) and j(k) for the allowed range of k.] The C,. are the coupling

ijk
coefficients, given by Eqs. (4) for rectangular geometry; but in more
complicated cases they would probably require numerical evaluation and
storage. The Fi is an external forcing tern: (possibly random,
possibly not). F; might represent, e.g., the electric field of the
external transformer in the tokamak discharge; in that case, all but
8 few of the Fi would vanish. Finally, vy is the viscous or

resistive decay coefficient, the negative of the viscosity or
resistivity times the corresponding eigenvalue of the Laplacian, in
the present case.

On the basis of the formal system (8), a scenario can be
outlined which would lead to the qualitative behavior of the
"aisruptive instability." (A not totally dissimilar scenario can
be imagined for the onset of turbulent flow of water down a pipe.)

Suppose that the electric field Fi is confined to one of the

v o
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low-1lying values of i, say io' By low-lying, we mean, corresponding

to one of the smallest vaiues of vy- A solution of Eqs. (8) is then

Fﬁo = V4o xio (9)
with all the other X, 0. In reality, the vy Will have s temperature
dependence, and are expected to be gradually reduced by the ongoing
dissipation implicd by Eq. (9). The bigger Fio is, the faster will
be the reduction.

We have seen in the rreceding pages that a turbulent cascade
can be efficiently inhibited by increasing the dissipation rates.

It may reasonably be inferred that a cascade may be launched, for a
given forcing term Fio’ when the vy fall below critical values.
(Antecedents of this 1ea appear in Kadomtsev 1975 and Sykes and
Wesson 1976. )

For i # io’ the initial stage of the developing turbulent
cascade might be described by discarding ell the terms in the sum
in Eg. (8) except those involving X0 xio ané v, cculd be
considered to a 1rirst approximation to be stationary in time. The
growth of the other X, (in this phase and this phase only) would
appear as a linear instability, for which the existence of a positive
growth rate would involve a threshold condition involving Fio’ 10’
and the vy As sotn as the other xi had grown out of the linear
range, all the terms in Eq. (8) would have to be considered, and a

full-blown turbulent cascade would be under way. Its accurate

numerical description would be rubject to all the stringent
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requircments cn spatial resolution that our vresent simulation has
been afilicted with, and without the short-cuts afforded by the fast
Fourier transform and the Orszag spectral method: It is no
exaggeration to say thst no MHD simulation {cr any problen has yet
been perrormcd with spetial resolutiox; srall enough to avoid serious
unphysical grid effects in a turbulent cascade. Whether this
program, or its even more demanding three-dimensional analogue, could
or should be carried out requires consideration of issues beyond the
scope of this article.

However, it is apparent that the above scenario does lead to
u qualitatively correct behavior: excitation of the xi corresponcing
to cuefficients of Bessel functions of higher index will manifest
itself as a spreading of the Jz distribution over the whole cross-
section. The enhanced transport that would surely result from the
excitation of the vorticity coefficients would imply a transport
of the MHD fluid to the walls at the same time. No obvious solution
to the problem posed by the "disruptive instability” is suggested
by the above considerations. The way to get rid of a turbulent
MHD cascade is to make the plasma more resistive: cool it off or
add more impurities. Neither message is particularly exhilarating

in the context of controlled fusion research.

Finally ve remark that a somewhat more strained interpretation

of the "disruptive instability" as an inverse cascade cen be given.

If the current distribution prior to the onset of the disruptive
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instability is not as smocthly centered as has been assumed, but
rather is either clocely confined to the center or is iilemented
(and the spatial resolution of the measurements of Hutchinson 1976,
for exam:lc, do not seem to preclude this pPessibility, though they
do not suggest it ¢ither), then the so.u.rce of the excitations might
be far out in k-space (or m, n space). Then when a certain
threshold was crossed, an inverse vector potential cascade to long
wavelengths might recult s Or an inverse ~ascade of magnetic helicity

for threc-dimensional excitations (e.g., Pouquet et. al 1975).



€. DISCUSDION

It is considered that in the previous pages, it has been
numerically established that dynamo ac;c.ion, in the form of
substantial buck-transfer of vector potential, can occur for a two-
dimensional magnetohydrodynamic flcw with mechanical and magnetic
Reynolds numbers large camparable to unity. Present ¢c.mputer
capacity does not permit simulations on a large enough grid to be
able to draw sharp conclusions about conjecturcd exponential
power laws. The presence of external agencics, microscopic or
macroscopic, has been modelled by the presence of forcing terms on
the right hand sides of the equations of motion for the velocity
field and magnetic field. It has been concluded that magnetic
forcing terms must be present for the dynamo action to occur. Most
processes which one might imagine as a source of turbulent
excitations in an MHD fluid (such as friction with a solid surface
of finite conductivity) seem best modelled by a forcing function
involving both magnetic and mechanical components.

The translation of the above results into an experimentally
testable format may be a slow and pauinful process. First of all,
the diagnostin techniques for measuring fluctucting megnetic fields
and velocity fieclds in even lnboratory plasmas are primitive

conpared to those which have evolved for diagnosing Navier-Stokes
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fluids (e.g., Grant, Stewnrt, and Moilliet 1962; lrenkiel and
Klebanoff 1967; Wiin-Nielsen. 1967). For example, at present it
appears to be difficult to measure the magnetic field interior

to a tokamak discharge at all, let alone resolve it spatially over
several orders of magnitudc. Secondly, there are formidéble
psychological obstacles to thc incorporation intc plasma physics of
the insights and technigues that have been achieved in the last
fifteen years of fluid turbulence theory. "Plasma turbulence,” as
a subject, has evolved with a great deal of emphasis on linear
instabilities and dispersion relations for normal modes of
oscillation which are supposed to be a central component in the
description of the turbulent field. None of thece concepts plays any
significant role in the modern theory of fully developed fluid
turbulence. Readjusting the emphasis away from the preoccupation
with linear apparatus (a twenty-five year enterprise that, in our
opinion, has produced much of debatable scientific worth)

may be slow indeed. Few industrial fluids, with the exception of
those under storage in tanks or reservoirs, are stable in the sense
vhich has been intended by plasma physicists; virtually all are
turbulent. Fortunately, .t is not necessary to have a good basic
understanding of the turbulent flows involved in order tc design
fluid machinery. A proper and respectful distance has developed
between the basic and enginecring aspects of fluid mechanics.

When a similer Jivision of plasma physics is perceived to be natural and

desirable, the subject may be approaching maturity.
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APPENDIX A: 1. ALFVEN E¥FECT

e Alfvén effect was first fermuluted by Kraichnen (1e55)
and has been invoked recently b.r Pouquet ¢t al. (1975) in eddy-
damped guasi-normal model ccmputations for tnree dimenrional MHD
turbulcnt flows with helicity. The effect can be described more
simply than hes been done previously, ané the deseription is
relevant to some of the other effects we have observed.

The effect concerns the very high-k coeponents of a
turbulent MHD field. The lower-k components are approximated by
spatially-uniform velocity field and magnctic field Yor Boe The
The higher-x v(k), B(k) are treated as small-amplitude perturbations
on this sratially-uniform state. All possible high-k fluctuations
can then be shown to be a linear superposition of normal modes for
vhich the time-averaged values of |g(§)|2 and |§(5)|2 ere equal.

In this epproximation, one should see (|!(5)|2) = (Ig(g)la)

at high k, or equipartition of magnetic and kinetic energy. This
has in fact becn a pPrediction of the inviseiq, perfectly-conducting
equilibriux theory (Fyfe and Mor.tgomery 1975), snd has been
numerically verified for that casc (Fyfe, Joyce, and Montgomery
1976). ‘™ equipartition at high wave numbers 13 a feature of
Figs. 6, 10, and 13 of the Present paper, and the fluid appears to

be striving for the cquipartition, even though it never achieves



it, in Fig. 5. However, we can see¢ in Fig. 1l that the effect i
not absolute, and the symmciry can be hroken by increasing the
dissipation, symmetrically or un:ojymrmctrically, between the B outd
v fields.

A sccond conclusion has been drasm sbout the Alfven effect:
that the linear de-coupling of the fields vy + B and ¥ - B in the
above approximation inhibits high-k energy transfer between wave
numbers and thus flattens the energy cascade {an omni-directional
spectrum k-'!' is supposed to replace the k.i behavior). About this
conclusion we are less sure. A trausfer between the fields v + B
and ¥ - B may become more difficult, but a general uncorrelated
non-helical roreing term supplies both fields at an approximately
equal rate, and there seems to be no reason to suspect a decreasc
in the rate of transfer among different k's for either field. Some
of the present evidence favors an enhanced magnetic transfer. The
conjecture must be left unresolved at present. It should be
remarked that in such model calculations as the eddy-damped
quasi-normal moicl (Pouquet et al., 1975), & range of exponents
can be achicved by the choice of dJdamping rate for the three-
coefficient auto-correlations. The question of the implications
of the Alfveén cffect for spectral laws must he decided on physical

grounds outside the framework of models, since this choice is

essentially arbitrary.

RIS oot s
3



G SR 2 LSt [ ST o A R T e = 1 4 ) MR T K AL SSEE T

N b n T Y AW e

Yo

APPENDIX B: EQUILJIBRIUM THEORY AT LOW A

It was mentioned in Fyfe and Montgomery (1975) that the limit
of the inviccid equilibrium theory as the magnetic excitation level
approached zero (A + 0) was different from the inviseid Navier-

Stokes equilibrium theory, even though the dynamical equations !
approach eackh other in that limit. Here we digress from the main

thrust of this paper to describe a numerical experiment which

dramatically illustrates this subtlety involved in the limits.

The experiment consists of finding the long-time modal energies
for the velocity field for two inviscid, zero-resistivity initial-
value problems. The veiocity-f‘eld coefficients are the samne
initially for the two runs. The only difference in the initial
velues for the two runs is the low level initial magnetic excitations
in the second run; in the first run they are identically zero.

For both runs, the initially non-vanishing velocity coefficients
are for k = (3, 1), (3, 2), (2, 3), (3, -1), (3, -2), (2, -3), (1, 3),
(1, -3). The initially non-vanishing vector potential coefficients
for the second run correspond to k = (2, 2), (3, 0), (o, 3), (2, -2).
The initial kinetic energy is % o |x(§)]2 = 2.9% for both runs,

"

and the initial 1-agnetic field energy for the second run is

% X% |§(§)|2 = 0,085, 2.8%% of the kinetic enerzy. The predict.on



A

from the 1967 Kraichnan theory for the model energy spectrum for
the first velocity field is (13(5)\2) - (a + pd) ! with @ = -10.22
and p = 11.17. The equilibrium theory for the second case predicts
(13(5)|2> = o”1, with a = 266.5.

The numerically measured time averaged spectra at the ends
of the runs are shown in Figs. lha and 14 b. The theoretical
curves are ithe solid lines. It is to us extraordinary that this
swall addition of magnetic energy can, by destroying the constancy
of the ensffop}w, so alter the qualitative behavior of the
velocity field. Indicatioas are that any nagnetic excitation,
nowever small, can make this qualitative modification given

suffizient time.




Fig. 2

Fig. 3
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FIGURE CAPTIONS

Enstrophy Q(t) and enersy €(t) vs. time for pure Navier-
Stokes case. A saturated constant Q(t) and a linearly
increasing € (t) would charecterize a perfect dual cascade.
v = 1070,

oy 2 2 -
Modal energies, |v(k)]“ vs. k°, corresponding to the

Navier-Stokes run shown in Fig. 1. Fig. 2a shows the

‘average modal kinetic energies, averaged over 320 time

steps ending with t = 37.5. Fig. 2b shows modal kinetic
energies averaged over 1200 time steps (At = (128)'1)
ending at t = 75.0. The forcing band is indicated _by
arrows drawn at k2 = 55 and k2 = 70. The slopes of the
broken lines correspond to omni~directional eﬁér‘gy spectra
~ k-g and k'3, respectively. Fig. 2c is a plot of the
"dissipation spectrum" it | x('l\c')la; The broken lines
correspond to ‘slopes for omni-directional energy spectra
~ ’k"g and k™2 , respectively.

Enstrophy Q(t) and energy €(t) vs. time for MHD run with
mechanical forcing only (g = 0). Note the qualitative
simijarity to the pure Navier-Stokes case shown in Fig. 1.

V== 1072,
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Fig.

Fig.

6(a)

k35

Modal energies |x(5)12 vs. K for an MHD run with

mechanical forcing only (seme situation as Fig. 3). The

lines have slopes corresponding to omni-directional energy

spectra ~ k-s and k'3 , respectively. The modal energies :
have been averaged over 1200 time steps ending at t = 75.0. ‘
Note the similarities to the pure Navier-Stokes run

| (Fig. 2).

) Modal energies !-}3(5)‘2 vs. k° for an MID run with j

mechanical forcing only (ssme run as Figs. 3 and 4) and a
small initial seed field [p(k)|% = 10, all k. e

modgl enérgies have been time averaszed over 1200 time steps
ending at t = 75.0. This evolution to & sharply rising

magnetic spectrum is characteristic of all runs of this

type.

Modal energies ‘§(§)12 vs. k2 for a p=vs= 107

MHD run
with magnetic forcing only (f = 0). These values are

k instantaneous values at t = 75.0, and their comparison
wit_h the time averages in Fig. 6(b) shows a typical level
of fluctuation-reduction achieved by the time averaging.
The brosen line drawn below 'l;he forcing band has a slope
_corresponding to an mni-directi&n_a.l magnetic energy

3

gspectrun ~ k .

At mban o e
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(b) Model energies |B(k)|2 vs. k2 for the same MHD run shown
in Fig. 6(a), but time averaged over 1200 time steps
endinz at t = 75.0 The broken line corresponds to an
omni-directional magnetic energy spectrum ~ k-%.

(c) Modal energies |x(§)|2 vs. k2 corresponding to Fig. 6(b),
again time averaged over 1200 time steps ending at
t = 75.0.

Fig. 7(a) Totul encrgy e(t) ve. time for the MHD run (f = 0)
shown in Fig. 6. For an erergy cascade, this number would
saturate and become approximately constant in time.

(b) Cross-helicity P versus time.

(c) Mean square vector potential A(t) vs. time corresponding to
the MHD run (f = 0) shown in Fig. 6. A pure inverse
vector potential cascade would appear as a monotonic
inerease of A with time.

Fig. 8 Total energy e(t), cross helicity P(t), and mean square
vector potential A(t) vs. time for an MHD run with
uncorrelated mechanical and magnetic forcing
(f # 0, g # 0) of approximately equal magnitude. For a
dual-cascade situation in which no cross-helicity was
being added, ¢(t) would saturate, P(t) would fluctuate
close to zero, and A(t) would increase linearly.

p=vs= 107,
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L5

Total mechanical energy, magnetic energy and ratio R vs.

time for the forced MHD run shown in Figs. 8 and 10.

Fig. 10(s) Modal energies |,13(5)|2 and (b) modal energies ly_(}\g)le

for the forced (f # O, g # 0) MHD run showr in Figs. 8 and
9. Substantial back—transfér of magnetic excitation into
the longest wavelength modes has occurred, but the
fluctuations are larger than for ejither the f = O or

g = O cases. Both (a) and (v) répresent time averages

over 720 time steps ending at t = T71.0.

Fig. 11(a) Modal energies |§(§)‘2 and (b) modal energies ‘x(}s‘)la va.

Fig.

x2 for a forced (f # 0, g # 0) MHD run which is the same
as Figs. 8, 9, 10, except that the dissipation has been
increased to p = v = 1072, Averages have been taken over
1200 time steps ending at t = 62.25. The forcing band
modal energies are off scale, being 2 1.4 x 107, he
most unusual feature of Fig. 11 is the separation of the
mechanical and magnetic energies at the highest k values.
(Neither € nor A increases for this case after about

t = 3.0.)

Dissipation spectra, (a) K2 |x(5)12 and (b) Ke |§(§)|2,
for the MID run (£ £0, g # 0) shown in Figs. 8, 9, 10.
The pure double-cascade theory would predict two straight
lines for |§(g)|2 Vs, ka, the one below the forcing band

with a slope of 2 ané the one ahove the foreing wave number

with a slope of either 1/6 or 1/h, on a gn x? |}g(,15)|2 vs.

e 4
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in k? plot. HNeither region is fit very well by these
straight lines. 1If kmax/k nin Were much larger, this
spectrum should cventually reach a maximum and decrease
sharply with increasing ka.

Fig. 13(a) Magnetic modal encrgies, a..i (b) kinetic modal energiec
vs. k° for a forced MHD run (f # 0, g # ¢) similur tc
Figs. 8, 9, 10, cxcept that the magnitudes of { snd g
have been doubled. Both (a) and (b) ax time aversges
over 1200 time steps ending at t = 75.0. Fig. (13a)
shows the greatest back-tranefer of magnetic energy to
the k2 = 1 moedes <f any of the runs.

Fig. 14(a) Modal energies, time averaged over 1200 time steps ending
at t = 37.5 for pure Navier-Stokes initial-value problem
with zero viscosity. The theoretical prediction is the
solid line. The fractional variation over the duraticn of
the run was 0.4% ror the energy and 5.4% for the enstrophy.

(b) Modal energies for the velocity field for the same
situation as Fig. (llba), but with an approximately 3%
addition of magnetic excitation (» = v = 0). The rua
is time averaged over 1024 time steps ending at t = 40.0.
The theoretical curve is the solid line (flat, in this

case).
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