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ABSTRACT 

, 
The equutions of motion for turbulent two-d~ensional 

t magnetohydrodyna.mic flows are solved in the presence of finite 

viscosity and resistivity, for th~ case in which external forces 

(mechanical and/or magnetic) act on the fluid. The goal is t.o 

verify the existence of a magnetohydrod~~amic dynamo effect which 

is represented mathematically by a substantial back-transfer of 

mean square vector potentia: to the longest al.lCT.'Ted Fourier 

wavelengths. External forces consisting of a random part plus a 

fraction of the value at the previoas time step are employed, after 

the manner of Lilly for the Navier-Stokcs case. The regime explored 

is that for which the mechenical ~d magnetic Reynolds numbers are 

in the region of 100 to 1000. The conclusions are that mechanical 

forcing terms alone cannot lead to (/flamo action, but tbat dynamo 

action can result from eithe~ magnetic forcing terms or trom both 

mechanical and magnetic fo~cing terms simul taneous1lr. Most real 

physical cases seem most accurately modelled by the third situation. 

The spatial resolution of the 32 X 32 calculation is not adequate 

to test accurately the predictions of the spectral power laws 

previously ar:rived at on the basis of the assumption of simultaneous 

cascades of enerlr.Y and vector potential. Some speculations are offered 

concerning poosible relations between turbulent cascades and thp. 

"disruptive irwtabil1ty." 
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1. INTROalTION 

This is intended as the final paper in a series of three 

dealing with incompressible two-dimensional magn~tollydro~ynamdc 

t.urbulence. (A more exhaustive bibliography has been given in the 

first two of these: Fyfe and Montgome:ry 1975; Fyfe, JOJ"ce, and 

Montgomery 19,6.) In tile firet two papers, non-dissipative 

equilibrium predictions were algebraically derived and n~~erically 

tested, and an inverse vector potential cascade was predicted for 

the case of finite dissipation and external forcing. ~ purpose 

here is to present the results of a numerical investigation of 

driven MIlD turbulence for two-dimensional incompressible flow in the 

pres~nce of finite conductivity and viscosity. 

Considerable interes·i. in two-dimensional Navier-Stokes 

turbulence has been in evidence over the last several years. Much 

of the motivation has been meteorological, and stems from the 

prediction (Kraichnan 1967; Leith 1968; Batchelor 1969) of dual 

cascades: a simultaneous energy cascade to long wavelengths 

together with an enstrophy caGcade to short wavelengths, both 

proceeding away from a source of localized excitation in wave number 

~ace. KOlmogoToff dimensional arguments lead to an omni-dircctional 

energy spectrum '" k-3 in the cm:trophy-cascading inertial subrange, 

above which enstrophy is dissipated by 'viscosity at the same rate 

.... '., .... ... ,. _,. ...... _,rrRil ......... ~-'Io;,. •• ,h<li., .. ·.·u • ..,..'r;,..:"'Iiu..r-H ... o. ~ .. ' .. ~II,~., ...... ,_~ ..... \, •. ~_I,"" ................. 'l._ .. ~~....a..-~,. ... ~ .~ ... I..t. .. ,.~.w~ .. ~"'·.~ ... ·· •• ~"-,'.".~\.,.,."., .. ~ .. 'f,.~,.~.,. .... fI.I' ... ~._ .... -.;.. ... ~ .. ~.~>,,~ --~ .. <I .... "'" 
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at which it is being supplied to the fluid. '!he same Kollnogoroff 

nrgument5 applied to the inverse e'1ergy-cat~cadinc; inertial subre.nge 

lead to an orn!li-directional energy spectrum '" k-5/ 3, and an eventual 

accumUlation of energy in the longt>st wavelengths allowed by the 

boundary conditions. Considerable meteorological support for this 

idea exists, anc! a nu.'1lber of numerical investigations of the 

viscous-decay initial-v&.lue problem have sought the k-3 subrange. 

However, to oar knowledge, the only forced two-dimensional 

turbulence which has been simulated numerically, and for which it 

has been reasonable to expect an inverse cascade, is in the work of 

Lilly (1969, 19'1l). 

Lilly's approach to the problem has been followed rather 

closely in our generalizations to MHO. Lilly's work has recently 

been criticized by Herring ~ ~ (1974) as spanning an insufficient 

range in wave number space to draw firm conclusions about values of 

spectral exponents in the two inertial subrar~es. We must concede 

the validity of this criticism. But while there is perhaps too 

much scatter in the computed ~;pectra to draw firm conclusions about 

exponents, the existence of two different regions of the spectrum, 

the low.:r one of which shows substantial back-transfer of energy in 

wave number spe,ce, seems to be beyond dispute in Lilly's 1969 paper. 

The two regions are also wholly compatible with the k-5/ 3 and k-3 

laws. In our opinion, the back transfer is the most physically 

signil'icant effect in the entire problem. 3incc the analogou& 
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back-transfer of vector potential .IS what we most want to study in 

the MUD ca~e, the inability to draw sharp cunclu~ions about power 

law spectra seems a reasonable price to pay for its observation • 

Finally, Lilly's work is at this point still "the only game in 

town," and extending the range of allowed wave num.b~rs to the point 

where the criticism of Herring et 0.1. no longer applies would require 

a greater investment of computing capacity than anyone has as yet 

been willing to make. 

The essence of the criticism may be parap~rased as follows. 

Suppose the maximum allowed wave number is kmax and the minimum 

wave number is kmin• Suppose the forcing terms added to the right 

hand side of the Navier-Stokes equation are centered in the 

wave number space at a forcing wave number~. Call the ens trophy 

, 1/6 
dissipation wave number k rk = (~/~) ,where ~ = the average 

~ . ~ 

enstrophy per unit time supplied to the fluid, and ~ -= the kinematic 

viscosity]. Then in order to have enough space between the various 

wave number ranges for both inertial subranges to be seen clearly, 

we require the following chain of inequalities: 

k
mi 

esc k..... «k «1: n --F ~ max 
(I) 

If each of these inequalities represents at least a factor of 10, 

then the desired ratio of k /k i is ~ 10'. For Lilly's Navier-max m n 

Stokes code (1969), this ratio was 32, and for our slower-running 

MHO code (a single run occupies about an hour of CDC 7600 time), 

k /k_~ is only 16. Numerical solutions for MHD turbulence in 
max IIUon 
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which the bade crid has 

capacity. Nav.i.cr-St.okes 

G 

k /k. - 1000 lie beyond our presr:nt max nl:lll 

computations with k /k. ~ 1000 are 
max m:ln 

presently at the threshold of numerical (!apabili ty (Herring and 

Orszae, private corr.municat:i on), but no compntations have a~ yet 

been reported. 

It should be kept in mind throughout the following that in 

the MHD s:il4ul&.tions under consideration, with two energy dissipation 

wave numbers (one constructed fran ViSCOSity, one fran resistivity, 

in general unequal), no such chain of inequali···.ies as (1; is 

possible either. Inevitably, the small size of our k will 
max 

affect the upper end of the calculated spectra in unphysical ways, 

and will prohibit our observing a proper dissipation range. 

In f 2, we describe the general numerical procedure. In 

}3, we address first the N&.vier-Stokes case (Lilly's problem); 

the bulk of the Mf!D results are presented in j 4. Sane speculations 

on possl.ble relations between MHO cascades and the "disruptive 

instabili tv" are offered in ~f 5. A general discussion of the 

results appears in t 6. 

It is well to stress the differences between these 

simulations and the earlier ones we have performed for the non­

dissipati ve ini tinl-value problem. Though ·.:hose are an essential 

preliminary to these, these are the realiRtic ones. For the non-

dissipative equilibria, there is no energy transfer between 

different ranges of k at all, and t,he spectral levels never become 

independcnt of the finite kmnx , for which there is no physical 

determination. In the prct~cncc of forcing and diosipa"t1on, ~nergy 

--~--,----------------- .. _ ... --. 
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transfer bct~een various k values is the most central physical 

process, and though the system is continually trying to go towards 

an equilibrium state, it never succeeds. The interesting part of 

the problem is the balance struck bet~een: (1) the input of 

excitations; (2) their dissipation; and (;) their th~arted attempt 

to reach equilibrium • 
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2. FORCF.D MAGNETOHYDRODYNAMICS 

As in our previous work, we employ periodic boundary conditions 

in the xy plane. 'lbe MHD field variables have the following 

gcometr:ot: 

l = veloCity field = (vx' v
y

' 0) 

~ = magnetic field = (Bx~ By' 0) = V X ~ 

~ = vector potential = (0, 0, a
z

) 

i = electric current density = (0, 0, j ) = V X B 
" z '" 
w = vorticity density ~ (0, 0, w ) = V X v "" z _ 

All quantities are expressed in terms of the appropriate dimension-

less variables (Fyfe and Montgomery 1975). All quantities are 

independent of z, but are flmctions of x, y, and the time t. 

Supplement~ry constraints are that the v and B fields be solenoidal ... '" 

(V • l = 0 and V • ~ = 0); these constraints are automatic when the 

equations of motion are written in the c1\rrent-vorticity (J, w) 

representation. 

Assuming periodic boundary conditions in x and y, the Fourier-

transformed MHO equations reduce to 

~w(~, t) . ( ) 
~t :: r. 1\ t, ~ 

- Vk
2
w(k, t) + t(k, t) ... ... (2) 

.~ 
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and 

In Eqs. (2) and (3), all quanti ties have been Fourier-analyzed over 

a square box, so that, e.g., 

Wz = Ik w(~, t) exp (i~ • ~) ... 

: = ~_ j(k, t) exp (ik • x) . z AS. "" ,.... "'It# 

ibe Sl:IDlS are over a large but finite set of k - values of the form 
'" 

It = 2n (n , n )/L and L is tl.,~ box dimension. n and n are integers, 
'" x y x y 

not both zero. 6(~ + t - ~) is a Kronecker delta function of its 

argument. v is a dimensionless viscosity and ~ is a dimensionless 

resistivity. .,./v is sanetimes called the "magnetic Prandtl 

-1 -1 number." v , ~ are essentially Reynolds numbers: mechanical and 

magnetic, respectively. 

On the right hand sides ot (2) and (3), f(~, t) and 

g(Js, t) are the "forcing terms," mechanical IUld magnetic, 

respectively. They are regarded ~e the sources of the turbulent 

excitations Wllich are dissipated by the viscosity and resistivity 

at the large values of k, after the excitations are shuttled through 

.... ~~ ________ ~ _____ ~ __ '_. __ 11_. ____ _ , ______ .. _~_. ____ '" _ _ _. pW~""""'----~.~_"';"" ... _._ ...... ~n~ ..... ~ "~' ~'''~ 
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!-space by the nonlinear terms on the right hand sides of (2) and 

(:~ ). The coupling coefficients Ml and ~ a l't:: 

(4 ) 

The forcing terms f = f(k, t) and g = g(k, t) are regarded .... .... 

as given functions of ~ and t which ~ physical processes which 

may excite the MHD fluid. The range of physical processes which f 

and g may model is quite wide. For instance, they may be 

associated 'lith a micro-instability of a non-MHO character which 

couples to the M!ID motions as it grows. Al.so, f and g could 

represent stirring of an;MHD fluid by a rigid conducting object or 

boundary_ Or, f and g' could be the result of an electric current 
'-. 

driven in the fluid by ~ external transfonner or capacitor bank • 
. ' ','.' 

In the case of Navier-Stoke~fluids, f can represent such different 

sources as a' scre~n i~ a Willd tunnel or the "baroclinic instabill ty" 

(redlosky .1971) i-If-meteorology. - ~ -~ - - .' :-

In any particular .. application, the'-functional form of f and 

g can be obviou,sly quite comp1i~ated. ~owever,: in the spirit of 
- ,. . "" ~'-~ .' ~ 

homogeneous ·tllI'bulence, t.heory, ye are~eekingphysiCal processes 

which are not specl!iC:'to a unique situation but which are camnon 

to many different. _f1 s and gl n. It is in tliis. cl'irit that Lilly (1969) 

.J~\'-' ••• ;.::....--..-... ........... _, ________ ...:..... __ , 
.• __ ~u_L_.·_.,_ 
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gave a Iecipt! for provid:iu\". :).n f as a. random function of time that 

iil relatively non-commital, and we follow hi~ example for the MHD 

case. 

f(k, t) and g(k, t) arc set identically zero outside a fixed 
.... .... 

circular annulus ("forcing bandit). in kx' ky space. Let Hk. be the 
'" 

rcal or tmaginary part of f or g for one of the allowed values of 

~ in this band. The Hk at time step n + 1 is related to Hk. at ttme 

- ~ 

step n by 

~ (n + 1) = R ~ (n) +Vl - R2 Jk (n) , (5) 

.... .... ,., 

where R is a fixed real number between 0 and 1, and Jk (n) is chosen 
.... 

by a Gaussian random number generator with expectation value zero 

and variance such that the 1kP.ll..'l <{> remains constant. In ot.her 

'" 

words, the Fourier canponents are composed of a part which is a 

traction of their value at the previous time step pJ:I1S a random 

part ~hosen so that thc expectation value of the magnitude of the 

forcing term is a constant. The evolution of thc forcing field 

can be graphically portrayed as random waL't over the surface of a 

hypersphere in the space of Fourier coeffjcients. The forcing term 

is programmed so that f and S can be chosen to be separJ.tely zero, 

to be uncorrelated, or to be iden~ical. The limit R = 1 corresponds 
; 

to a temporally constant forcing field, and the limit R = 0 to a t 

i 
1 

&s.~,-~~!~:,~:::=.-.I .. 
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wholly random (a.nd highly discontinuous) white noise field. The 

typical rwming value of R has b<:c:n 0.95. 

'!be rest of the numerical 3cheme is very similar to that used 

by loy-fe, Joyce, and Montgomery (1916). It is a spectral-method code 

utilizing the Fast Fourier Transform, along the lines of Orszag 

(1971) and Patterson and Or~za ': (1971). The main accuracy checks 

have been tests of the conzervatlon of the three non-dissipative 

invariants (Fyfe et ale 19'(6) ,d th the dissipation and forcing tenns 

turned off. To gain additional confidence in the program, we have 

chosen first to re-investigate the pure Navier-Stokes case 

[obtained by setti~ j = 0 and g = 0 in (2) and (3)] in crdcr to 

compare our results with those of Lilly {19(9). This worl .. is 

described in J 3. 

A final remark is in order concerning the 'w-a.y the nUDleI-ical 

ini,.:gration is carried out. Though the sYJt1l1etry of Eqs. (2) and 

(3) renders th(>J%l easiest to manipulate from a formal pC'int ::.'f: view, 

numerical ca.lculations turn out to be easiest to perform on the 

equivalent pair of equations (Fouril'r-transfoT1ted) 

• VI1l + D • Vj + vV2 + F z ~ z Wz (6) 

" , , .. , .. " .... -.... ~---

'-' 
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where F, G are now the random forcing fllf!ctic.)llr.. Because the 

equation for a , rather than j , is used, the Fourier transform o~ z z 
2 G is not g (~, t), but rather g (!s, t) /k. Th~ implicatIon is thv.t 

if the forcing terms are to supply kinetic and magnetic energy at 

approximately the same rate, F and G are not to be canparable in 

magnitude, but rather the r~tio of the Fourier transfo~ of G to the 

Fourier transform of F must be of the order of the reciprocal of the 

square of the forcing wave number~. Unless specifically stated 

othelYise, it may be assumed in what follows that this has been 

taken into accoWlt Wld that when f and g 8.l'e bc.th ne"n-zero, they are 

of the same order of magnitude. 

The typical magnitude chosen for the forcing field is 

t <If(!, t)\2) = 16, where t.l-te summation is over those values of k2 

between 55 and 70. A canparable value of 1: <l g (~, t>t 2) is chosen 

when magnetic forcing is present. Experiments have also been 

carried out with E <tf(~, t)t
2
) = 6~.0 and 4.0; the net effect seems 

to be to accelerate or decelerate the processes, and to raise or 

lower the limiting modal enel'gles, but not to alter them 

qualitatively. 

'.' 
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I 
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1 
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3. FOR~ED NAVIF.R-STOKES TURBULENCE IN '!WO DlMENSIONS 

1bree ::i.TUlovations not employed by Lilly (1969) have made it 

possible to improve same details of his computation. (1) We use the 

Orszag-Patterson sp~, tral method, not yet operative in 1969. 

(2) \Ie average modal energies over all· k-vaJ.ues corresponding to the ... 
2 

same k , instead of a·Y"eraging around the perimeters of squares in 

!-space, as Lilly did. (3) We ~ average the modal energies once 

the total enstrophy has become ~pprox1mately constant and once the 

rate of absorption of total energy has became approximately constant. 

All three improvements may reasonably be expected to reduce the 

errors in the spectrum Slightly. 

Results for a typical Wavier-Stokes run are shown in Figs. 1 

and 2. These refer to a forced, 1 urely Navier-Stokes run, starting 

with an empty spectrun.. lhis run, as all others, is carried out on 

a 32 X 32 grid with k!tn = 1, k!ax = 226, and a box size L = 2rr. 

These parameters characterize all runs. The t~e step 6t is (128)-1, 

and this value characterizes all runs unlese it is explicitly 

stated to the contrary. Some runs were carried out vith 

6t = (256) -1, and there are some exp1ici t comparisons described 

later for the MUD case. Fig. 1 sh~~s the total computed ens trophy 

n = i Ik IW(k, t)1
2 

and computed energy 
... 222 

€ = i Ek Iw(!, t)l k- = t Ik ,~(!, t)l versus time. 
~ -

(, 
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The behavior of energy would be a linear incr~ase with time and the 

behavior of enstrophy would be an approach to a constant, if the 

Y.raichnan conJecture (1967) were given its most straightforward 

interpretation. 

The forcing wave number is approximately ~ = 8. More 

specifj cally, the forcing wave numbers {'l.re confined. to a band 

2 2 extencUng from k = 55 to k = 70. Figs. 2a, 2b are time averaged 

modal energy plots. Figure 2a. showl" the time average of 

I!(!, t)12, averaged for given values of k
2

, for 320 time steps 

2 2 
ending at t = 37.5. EV'ery value of k is plotted for 1 ~ k !! 30, 

every other point is plotted for 30 ~ k
2 ~ 100, and every fourth 

point is plotted for k2 ~ 100. The allowed values of k
2 

get very 

dense at the higher values, and the above plot1.:tng convention is 

follow~d throughout the paper in order to keep the high-k modal 

energy plots from 'oecaning unmanageably cluttered. Fig. 2b is a 

similar modal energy plot for an &overage of 1200 time steps ending 

with t '" 75. o. The straight lines drawn on the graph above and 

below the forcing wave numoers have slopes -4 and -8/3, ree~ectively, 

corresponding to amni-directional energy spectra 2n k <1!(~)12) ~ k-3 

and k-5/ 3• (Since the locations of the k , k points are far fram x y 

isotropic at the lowest values of k, 1t seems mislead1ng to convert 

the modal energy plots into plots ot amni-d1rectional spectra.) 

422 
Figure 2c is a plot of k I ~(~) I vs. k , time averaged. 

Theoretically, this quantity should be flat in the enstrophy-cnscading 

, 
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subrange, and be proportional to k4/3 in the energy-cascading 

Eubrange. The strai~ht lines have these slopes. 

1hoagh it is apparent that the results are not inconsistent 

with the -3 and -5/3 .i~redictions, "the data do not permit the 

inference that these are the values. A least-squares f'it of the 

expression Ak -n to) k<} !(k)( 2) for the data gives 1: !!! 1.49 for k2 

2 below 55 and n ~ 2.07 for k :&! 70. It has not been possible toO observe 

the ~redicted build-up of the k2 = 1 excitations above the predicted 

level obtained from the k -5/3 law. Though at the end of the run, 

the k2 = 1 modes are still growing, the 9500 tb\e steps represented 

in F"lLS. 1 and 2 are already about 5~ beyond the time over which 

the code will conserve energy and ens~rophy below the 5~ level for 

the inviscid unforced case. We believe that running longer would 

produce an arbitrarily large k
2 = 1 build-up, but the accuracy of 

the solution would have been lost. 

The ens trophy dissipation can be estimated as 

~ ~ 2vO~ ~ ~ X [the energy dissipation] ~ 2.4, tor the last 

1200 time steps. This gives a dissipation wave number 

k !!! (2.4/10-9)1/6 ~ 40, actually above k . This makes the v max 
consistency of all but the highest-k points 01" Fig. 2b with the 

k-5/', k-3 prediction quite remarkable, and sungests that perhaps 

the inequali .. ies (1) are too stringent. 

In looking at modal energy plots such as Fig. 2 .. one should 

not be m1s1ed, by the logarithmic shrinkage of k space and by the 

.~ 
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plotting conventions, into underestimating the numb~r of mo~ies in 

the upper reaches of the wave number ~pace. For cxample, there are 

almost four times as many different ~ mode~ above kF : 8 as there 

are below it. We have chosen to plot k
2 

logarithmically, because 

in this particular application we are most interested in the back 

transfer to the lower values of k. It is the small-k part of the 

Fourier space that is emphasized by the log-log plots. 
2 

One should also keep in mind that each value of k ha~ a 

multiplicity of 2 to 8. That is, for each k
2

, there are 2 to a 
independent ~ values, and these degenerate ~ modes are always 

averaged over. 
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4. FORCED MIlD WRBULENCE IN TWO DIMENSIONS 

It is well to remark at the out~~t the main qualitative 

difference that has been consistently observed between the MHD runs 

and the Naner-Stokes runs illustrated in t 3. This 1s that the 

MHD case seems to be unavoidably "noisier'- than the Navier-Stokes 

case. As already noted (Fyt'e, Joyce, and l>iontganery lW6) for the 

non-dissipative initial value problem, there is a slowing-d~ of 

magnetic energy transfer among the lower k's which makes time 

averaging less effective at smoothing out spectral fluctuations. 

Most of the MHD spectra are less smooth than those shawn in Figs. 2. 

A. ~ne Case g = 0 (Mechanical Forcing) 

The first case we consider is the case g(k, t} = O. There is ... 
no signii'icant amount of back t.ransfer of vector potential for th:is 

case. The mean square vector potential can onl,y decay. It is 

uncertain whether there is any physically realistic process Which 

is satisfactorily modelled by setting g(k, t) = O. Far instance, ... 
mechanically stirring the fluid by constraining the velocity field 

to n:l.ve a specified value at a solid suri'ace also constrains the 

magnetic field at the same boundary (part1cul&.rly if the solid has a 

finite conductivity) and DO cannot be properly modelled without a 

magnetiC for~ing term. Nevertheless, we cannot entirely rule out 

l 
1 
~ 
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processes for whic1l g ;;: 0, and we now present a few results for 

that case. 

Fig. 3 shows the enstrophy and energy vs. time for a run with 

g(!, t} E 0, \i = .... = 10-3, with a small initial "seed" magnetic 

field. Wi thout magnetic field amplification, one might expect this 

case to yield something close to Navier-Stokes behavior, and it 

does. Ener3Y increases l.i..llearl.y with time and ens~~.t~l.uctuates . . 

about a constant value. The corresponding modal. energy.plot (time 
'--.....--..:: . 

averaged over l.2OO time steps ending at t = 75.0) is shown in Fig. 4; 

this is to be compared with Fig. 2b. 
-

One interesting and not yet quantitatively explained feature 

of this case is shown in Fio • 5, a magnetic modal. energy spectrum 

averaged over 1200 time steps ending at t = 75.0. (111is spectrum 

-6 
was flat, with al.l values = 10 at t = o. Fran t = 0.0 to 

t = 75.0, the magnetic energy has deCayed by a factor of 2 x 105.) 

'lhis steeply rising character for the very low level of in! t1al 

magnetic excitations has appeared in all the purely mechanically 

forced runs we have done, including same with still smaller seed 

fields. ('lhe final. ratio of magnetic to mechanical. energy for this 

run is - 10-9, so that the errors il~ the computation of the 

velocity field are surely larger. t.han the sizes of the magnetic 

components; but this is no reason to doubt the accuracy of the 

magnetic field calculation, assuming the velocity field to be given.) 

A Elimplc arE,'UJIlent predj.cto cl'-uui"tati vely the grOWing 

IB(~)1 '2 vs. k2 behavior. nUT,ponc 'tiC regllI'd the magnetic field Q.S flO 



" - , . ' , 

. . ( 

'\.. ."" - '- , .... \.' " - . 

\ 
" 

• 

20 

weak that it does not af:fect the velocity field v(x, t). Then the ... "" 

equation for the vector potential (omitting dissipation) 

aa 
-..!. + v • Va :: 0 at z 

shows that a is effectively convected like a passive scalar in a z 

given turbulent velocity field, the e:ffect of which will be to 

scramble the a field into progressively higher k modes. Batchelor z 

(1959) has argued that under some circumstances, the anni.-directional 

-1 spectrum :for such a passive scalar should approach ... k behavior. 

This would imply an omni-directional magnetic :field spectrum 

... k+l. The actual rates of increase in such curves as Fig. 5 are 

typically higher than that, increasing more like k2•5• 1b:ts 

discussion ignores the AlfVen effect (discussed in Appendix A), 

which would predict a more rapid rise with k than that for a 

passively-convected a. But we have no quantitative argument for z 

the k2• 5 behavior shown in Fig. 5. The relation of the non. 

dissipative MHD and Navier-Stokes cases is discussed in Appendix B. 

B. The Case :f = 0 (Magnetic FOrcing) 

i11e next case to be considered is the case of wholly 

lI'agnetic forcing, l' so O. We are again uncertain as to the degee 

of realism to be aSSigned to such a model, but for the sake of 

completeness, we discuss it before passing on to the case where 

neithc:-r f nor n vanishes. Again, v == I.L = 10.3• 

4 t '" ... ~_~.-:~--~ .. -:-==-:..=.~~~~===-.::: .. _-=r:::=::.;.-OI.I:p ... i'-.... o\i .... _1M ................. --..--. ............,-........................ ----------------
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We begin from a completely empty spectrum 

• 

Fig. 6a shows the instantaneous magnetic r.odal energics at t = 75.0. 

Fig. 6a reveals considerable scatter in the spectrum, but also 

significant back-transfer of magnetic energy to the longest wave 

length modes (recall that the forcing wave numbers are from 
2 2 k = 55 to k = 70). Fig. 6b shows the time-averaged (1200 time 

steps ending at t = 75.0) magnetic modal. energies for the same run. 

The tinle averaging eliminates some of the fluctuations, but not as 

much as for the Navier-Stokes case. lbe broken line has slope 

k-2/~ corresponding to an omni-directional energy spectrum - k-i , 

though in no sense is it implied that the slope can be inferred from 

the points. The corresponding kinetic modal energies are shOW":). in 

Fig. 6c, time averaged over 1200 time steps ending at t = 15.0. 

Fig. 1 is a plot of total energy and vector potential vs. timE' for 

this l'Wl, and the cross-helici ty P is shown also. As can ..:asily 

be seen, vector potential 1s added at a constant rate, while the 

energy reaches a limiting value rather quickly and executes 

t~ fluctuations about that value. This is essentially what one 

expects for the dual-cascade behavior, and Fig. 7 should be campared 

with Fig. 3. The cross-helicity is not identically zero, and 

flUctuates about zero with an nmpl1 tude of the order of .01. 'n,t: 

M~"." ~,~ "., ~"." ,~,~ •. " ... , ...... ~,' "'-:'~"', 
I 
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ratio of magnctic encrgy to kinetic cncrgy et t = 75.0 is 1.74, so 

that the conversion of m&.r;net).c .into mech~.nical energy has been 

substantial. 

By noting the rate of addition of s'luared vector '9Otential 

(dA/dt ~ 5 x 10-
4 

from Fig. 1a) 'We may estimate the rate of addition 

of magnetic energy, which, since the energy adclcd is only !!I8.gl1ctic, 

enables us to estimate the rate of addition of energy, 

P'rom this we may estimate thc dissipation wave number 

k = k 
" ~ 

above k • 
max 

, 

- [;(t)/,,3] 4 ~ (.32)t x 102 ~ 75, 

Another feature to be noted in Fig. 6a and Fig. 6b is the 

relative enhanc(''Dlent of the spectrum in the forcing band; the 

diSSipation of energy away fran the forcing wave numbers 1s sanewhat 

greater than it is for the Navier-Stokes case. 

A tentative explanation of this last-named effect is the:! 

following. Thf!' forCing wa.ve numbers lie within a relatively narrow 

band, and the first step in the exc1 tation of the turbulence 1s the 

direct excitation of thesc wave numbers with k = t, by the forcing 

te1'llls. 1be next step iR thp. transfer of energy out ot the forCing 
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band by the nOnlinear interactions measur<>d by the COUlllillS 

coefficients 1\, r.~ [Eq. (4)] • Now the ratio of the magHeti~ 

coupling coe1'fici('ut to mechanical coupling ~Qett'icie~t for the 

interaction of two wave numbers ~> ~ is 

~(t, ~) 
~(r, ~) = 2 2 

P - r 

For p, r abt;)\.,.t the same Size, this ratio is in general quite large. 

ihus for a narrowly forced band of eXCitations, magnetic excitations 

get out into the main body of the distribution faster than 

mechanical excitations. Since the excitations arriving at the 

higher values of k are dissipated first, the overall dissipation is 

expected to be higher for th~ case l' = 0 than it is for the case 

g = O. 

c. Mecha'lical and Magnetic Forcing (1' f 0, g t 0) 

One surprise has occurred repeatedly, in the approximately 

12 runs (9600 time steps ef!t:h) we have made tor whicb we have used 

simultaneous magnetic and mechanical torcing: namely, a nearl1 flat 

~ectrum of magnetic modal energies at all except the lowest values 

of k. '!bis eftect has persisted for different values 01' v, ~; for 

correlated and uncorrelated f ang gj for variations in the 

IIf&gI11tudc of f and 8; and. tor variation. in the aizc 01' the t1llle 

Dt~. '!be effect i~ so pronounced a8 to be identifiable &8 a 
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qua.l-itative: difference fran th€' Navicr-Stokesresults -(Figs. 2a, 2b, 
_,,~), from the me(!hanic~lrYC::f'or~ed MHD:.~&se (Figs. ,!;, !}), and fran the 

- magnet~cally forced~ MHD"'casc (Fig:;'o6a, b, _ c). tie are not confident 
~ -

tha:twe ha'!f_& correct pxplanation 'for the pheriaiiencn, but we 

att:Ciltpt onc:~ at the end of th:is s cicti on . 
. - .--
Figs. 8 8.t!.d' 9 arenotdissllld.l.a.r, to the cases preV1.ously 

.. ~ -

discussed. Fig~{ 8 and 9 ret';,!r to the case of equal and uncorrelated - - -- - ~ -;- -) '--:;:1 f-and g, i'or 1.1. = v = 10 , and ~t = (128) • The forcing wave numbers 
- 2' 

are again k = 55 to 70. Fig. 8 is a plot of total energy I total 

~ross heliei ty, and total mean square vector potentialvs. time. It 

sbows the enerpy E saturating and fluctuating about a saturated value, 
the cross helicity P executing small fluctuations about zero, and the 

mean square vector potential A increasing monotonically with time, 

much as in Figs. 7&, 71>. Fig. 9 shows the mechanical energy, the 

magnetic energy and their ratioR = [magnetic energy/kinetic energy] 

vs. time. Both energies saturate, and their ratio fluctuates about 

a value slightly larger than unity. 

This behavior is so far consistent with the picture of the 

dual vector potential and total energy casc~~ we have been proposing. 

BIlt a considerably more cClllplex situation JY..·esents itself when we 

turn to the spectral plots. Figs. lOa, lOb are time averaced modal 

enera1es vs. k2 tor the magnetic field and velocity tield • 

• bstMtial dynQllO action (back transter of mqnetic enerBY) bas 

1 
i 
1 
J , 
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obviously occurred, but except for the lowest magnetic modes, there 

is little structure of any kind, and compari~ons with spectral 

indices cannot mean very cuch. 

Figs. lla, b show exactly the same run, with the difference 

-2 that now 'v '" IJ. = 10 • Incl"easing the dissipation by an order of 

magnitude is seen to have selectively dissipated the velocity field 

(there is no tendency for back transfer for 1!(~)12), and to have 

substantially inhibited the back transfer of magnetic energy. The 

dynamo effect can, not surprisingly, be wiped out by making the 

viscosity and resistivity high enough. Neither € nor A show any 

systematic growth, for the situation depicted in Figs. 11, after 

about t = ,.0. 
In Figs. (11), the modal energies for the forcing wave 

numbers are off scale, at the level of > 1. 4 x 10-:5. 'Ibis implies .... 

;hat by far the strongest nonlinear interaction is among the forcing 

band wave numbers, and these give the largest single contribution to 

the flux of energy into the high-k parts of the speetrum. We have 

previously noted tho.t the ratio of the magnetic coupling coefficient 

to the mechanical coupling coeffiCient, 

~(t, ti 
~(!> ~) :. 

is in gen(!:ral very large for aimilar"maenitude wave vectors £1 to 
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This implies that the highly exci~ed forcing band modes in Fig. 11 

are more effective at driving r.l6.gnetic excita~ions outside the 

forcing band than mechanical ones. 'l'he effect is stl'ong enough to 

overcome the "Alfven effect" (Appendix A) a.'1d separate the magnetic 

and mechanical spectra as shown at the upper k values in Fig. 11. 

We have also done run::: wi t.h wlcorrelated f, g of equ&.l. 

-2 -3 -3 ma.en1tude and transport coeffj.cients lAo, 'V = 10 , 10 and 10 , 

10-2• Perhap~ ullsurprisingly, the spectrum aS50ciated with the 

larger transport coefficient was depressed relative to the other, 

even at high k, by as much as an order of magnitude. By varying 

the Vo/'V ratio, the excitation/:) can be made daninantly mechanical or 

dominantly magnetic. 

Examples ot' the kind of behavior exhibited in Figs. 8, 9, 

10 could be multiplied, but it seems redundant here to do so. We 

h~ve a partial explanation to suggect for the behavior, though its 

confirmation will a.wait simulations capable of considerably high4~r 

spatial resolution than kmax/kmin = 16. 

( 2 )-1 time" for wave number k by .,. D;:; k 'V 

We !!lay estimate the "del~ay 

( 2 )-1 or k J.L ,wh1 chever J. s 

shorter. TD at the forcing wa.ve number is about 15, and ~~ the 

2 maximum wave number (kmax = 226), is abclut ,. We do not llave an 

accurate expr.~ss1on for the rate of transfer of enerf3 8I·o~:r, 

dU'ferent k values, but it may be faster than the ed~ turnover 

time, "x -= (kiI(~)! ,-1, in any given region of k space. l~om 

Fig. 10, 1 k ie auout 4 for the forcing WlI.vr. numbers and about 2.5 

~ 

! 
I~ 
I, 

,i 
\1 
I', 

" 
'I 

J 
,I 
(' 

~ 
1i 
~ 

"-1 



for kmax" We have the situation, theil, that T l~ !II: T D for aJ 1 k betwt .. ·en 

~ and kmax" T k may reasonably be ex!)ected to measu:re th -,ime in 

whiCh the non-dissipative equilibria are locally attained (Fyfe, 

Joyce, and Montgomery 1.9""6). The fact tha.t the energy transfer 

among the allowed wave numbers may occur more rapidly than the 

maximum time of dissipation of any "'''ave nUIUber could ~ly tha.t for 

these simulations, the thermal. equil.ibrium spectra (Fyfe and 

Montgomery 1975) are more relevant than the cascade spectra. What 

is being e~visioned is a stea~v-state process in which energy is 

being added at a rate which is the same as the rate at which it is 

being diSSipated, but that it rests in what is near to a quasi­

stationary thermal equillbrium state. ~is picture is somewhat 

substantiated by.the dissipation spectra qw{~>l2, I.H!)1 2 ) plotted 

in Fig. 12. These are seen not to have the characteristic behavior 

~ected for cascade processes in their classical Kolmogoroff­

Kraichnan form: a maximum, then decay near the upper end of the 

appreciably excited wave n~bers. 

What the foregoing argument fails to explain are the 

differences in the MHO and Navier-Stokes dynamics. At the same rate 

of injection of energy, the Navier-Stokes fluid with identical 

tr~l~rt coeffiCients is simply more efficient at disposing of the 

excitations at high k than the MElD fluid. 1.be only explanation for 

this effect that we have been able to arrive at ie the already 

noted more rapid high-k ~aenptic_energy ~~~sfer. If correct 

... __ J 
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the imp1ic!a.tion of this for the accurate numerical. simulation of 

ful1-b1own dual cascades in MHD is somewhat ?-epressing: namely, 

even a larger k /k_.:. is required than for the liaviel'-Stokes case. max uun 
1he current value of a.ttainable k /k_A for the Ilavier-Stokes max IILLn 
case of 1024 (HelTing and Orszag, private communication) is already 

on the threshold of present computational. capacity. The MHO case 

may await the advent of the fifth-generation machines before it can 

b~ exhaustively studied. The morE'! aware rea.der will have perceived 
that these considerations raise same questions about the adequacy 

of the spatia.l resolution of very nearly every l-mD simulation that 

has as yet been performed. 

We clone this section with some remarks on the effects of 

doubling the magnitudes of the i'orcing terms f, g. Figs. 13 show 

modal energies for f, g twice as large. as in Figs. 10. There is 

li ttle change in the overall character oi' the plots, except for the 
2 enhancement of the k = 1 magnetic excitation by a significant 

amount. ibis is the strongest "~ effect" we have observed in 

any single run. 

Other runs were carried out for ~~e same parameters as 

Figs. 10 involve, but with a time step At = (~56rl. No qualitative 

differences were observed in the spectra, though ot course the 

spectra will not be identical since in general, different sets ot 
randaD nurubers will be involved. in the forcirl!l t.erms • 

.. -----,-----------'-.~-.-~ ........ . 
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5. mmCISE: A ruRBULENT MHO CASCADE MODEL 

OF A "mSRUPrIVE n~STABIM'l'Ytt 

Under conditions of too high current or number density, 

tokama..1t discharges exhibit a. behavior that has acquired the name 

"disruptive ir.stability." (For an encyclopaedic survey of the 

subject up to 1974, see Furth 1974; for recent experimental results, 

s~e, e.g., HUtchinson 1976 or Morton 1976; for recent theoretical 

approaches, see, e.g., Finn 1975 or Stix 1976). Essentially what 

bappens is that the current channel in a cylindrical plasma column 

suddenly expands to fill the charmel in a highly disordered way, 

in effect termina.ting the confinement (we ignore the toroidal aspects 

of the problem in this qualitative discussion). 

We wish to suggest here, without the extraordinary numerical 

effort that would be required in order to follow through on the 

detaUs, a model. of this behavior which starts from a turbulent 

MUD cascade framework. Previously the phenomenon has been 

approached from a non-statistical MHO framework, usually (and not 

wholly :::uccessfully) from the point of view of linear MHO stability. 

!he computational effort required to implement the program now to be 

outlined is not to be underest1matedj numerical techniques would be 

rt'quired that cannot be described as "off the sbelf" at present. 
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For computational convenience, \~rtually all the basic 

theoretical. and computational studies of either Navier-Stokes or 

MlID turbulence have been carried out in rect~.ngul.ar gean~try. 

The turbulent fields have been expanded, assuming periodic boundary 

condi tions, in the appropriate orthogonal functions, exp i ! . !. 

1hough expanding in same other set of eigenf'JIlctions of the Laplacie...'l 

would have increased the cOJn?utational labor cc,nsiderably, there is 

nothing fundamental about the restriction to rectangular geometry. 

For example, ~ad we been interested in doing the present MHO 

calculation in the presence of rigid, perfectly-conducting circular 

boundaries instead of :.:ectangular boundaries, an appropriate set of 

orthogonal functi ons in which to expand j and w might have been . z z 
J (n r) exp(~), instead of exp ik • x [here (r, ~) are polar m n ..... ... . 

coordinates, m is any integer, and k a is the nth zero or node 
n 

of the Bessel function J]. In fact, such a se-t; of orthogor...3l. m 

functions would have had the advantage of permitting a non-zero 

value of the t01 al current, SS dx dy jz' which in the case of 

periodic boundary conditions on the vector potential is constrai~ed 

to be zero. (A non-zero value of this integral i$ a central 

cauponent of tokamak confinement.) The disadvantages would have 

been the loss of the utility of the fast Fourier transfo~ and 

the Qr~zag-Patterson spectral method: both severe losses. 

If the MHO equ~tions, in the presence of uther boundar,y 

cond1tion~, are expanded in terms of another &et of eigenfunctions, I 
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their for~~ structure may be r~presented a3 

dXi t C"
k 

X. ~ - v. X. + F. en; = jk 1J J -K 1 1 1 
(8) 

Eq. (8) spedalized to rectangular geometry and pariodic boundary 

conditions, is just Eqs. (2) and (3). X. is the ith element of a 
1 

(possibly very long) column vector composed of all the independent 

expansion coefficients of all the necessary ~nID variables. [In the 

problem considered In this paper, Xi represents symbolically all the 

wOS) and j (~) for the allowed range of !.] The Cijk are the c\)upling 

coefficients, given by Eqs. (4) for rectangular geometry; but in more 

complicated cases they would probably require numerical evaluation and 

storage. The F. is an external forcing tel'~ (possibly random, 
1 

possibly not). Fi might represent, e.g., the electric field of the 

external transformer in the tokamak discharge; in that case, all but 

a few of the :f'. would vanish. Finally I v. is the viscous or 
1 1 

resistive decay coefficient, the negative of the viscosity or 

resistivity times the corresponding eigenvalue of the Laplacian, in 

the present case. 

On the basis of the formal system (8), a scenario can be 

outlined which would lead to the qualitative behavior of the 

"disruptive instabiUty." (A not totally diMimilar scenario can 

be imagined for the onset of turbulent flow of water down a pipe.) 

SUppose that the electric field Fi 1s confined to one of the 
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low-lying values of i, say i.:) By low-lying, we !:lean, cOrreSl)OnJing 

to one of the smallest values of vi' A solution of &]3. (8) is theH 

with all the other Xi ~ O. In realit~, the vi will naVl ~ teMperature 

dependence, and are expected to be gradually reduced by the ongoing 

disSipation implied by Eq. (9). 

be the reduction. 

ibe bigger F. is, the faster will 
~o 

We have seen in the preceding pages that a turbulent cascade 

can be effiCiently i~~ibited by increasing th~ dissipation rates. 

It may reoa:::onabl;,- be inferred that a cascade may be laWlched, for a 

given forcing term ,,"" io' ¥ben the Vi fall b~low critical values. 

(Antecedents of this ~I!"a appear in Kadantsev 1975 and Sykes and 

Wesson 1976.) 

For i # io' the initial stage of tha developing turbulent 

cascade might be described by discarding e..U the terms in the sum 

in Eq. (8) except those involving X
io

' X
io 

and Vi could be 

consi~ered to a first approximation to be st~tionary in ttme. ibe 

growth of the other Xi (in this phase and this phase only) would 

appear as a linear instability, for which the existence of a positive 

growth rate would involve a tlll'eshold condition involving Fiol X
io

' 

and the vi' As sO(.rn as the other Xi had grown out of the linear 

range, all the terms in Eq. (8) would have to be considered, Nld a 

full-blown turbult:nt cascade would be under w~y. Its accurate 

numerical descri~t1on woul~ b~ r.ubject to all the stringent 

.~ 
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requir~'!Ilent.& en spf.Ltial resolution that (l.ll' present simulation bas 

been afflicted with, and without the shor l : -cuts a.fforded by the fast 

Fourier. tl'3nsfol'm and the Orszag spectral lJI",,+.ho(l: It is no 

exaggerp'tion to say thr t no MID> simulation fN' any probli:m has yet 

becn pert'orm<,d with spf.tial resolution S!l'all enough to avoid serious 

unphysical gl'id effects in a turbulent cascade. Wbethp.r this 

program, or its even more demanding three-dimcnsi?nal analog\1e, coulci 

or show.d be carried out requi!"es consideration of issues beyond the 

scope or this article. 

However, it is apparent ~h2.t the above scenario does lead to 

~ qualitatively correct behavior: excitation ot the Xi corresponding 

to c')efficients of Bessel functions of higher index .... ill manifest 

itself a~ a spreading of the j distribution over the whole cross­z 

section. The enhal'lced transport that would surely result from the 

excitation of the vorticity coefficients would tzply a transport 

of the MHD fluid to the valls at the same time. No obvious solution 

to the problem posed by the "disruptive inr.tabil1ty" is susgested 

by the abovc considerations. The way to get rid of a turbulent 

MHD cascade is to make the plasma more resistive: cool it ott or 

add more impurities. Nel ther message is particularly exhilarating 

in the context of controlled fusion research. 

Finally we remark that a somewhat more strained int.erpretation 

ot the "disrul)tive instabil1ty" as an inverse cascade can be given. 

It tbe curr~nt distribution prior to the onset ot the disruptive 

-,' 

~ 
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instability is not as smoothly centered as has been assumed, but 

rather is either clo::ely confined to the c~nter or is I'il8.!%lt'!!1ted 

(and tile :.;patia1 resolution of' the measurements 01' Hutchinson 1976, 

ror example, do not ~eem to preclude this possibility, though they 

do not suggest it either), then the source of the excitations might 

be far out jn J!-space (or m, n space). '!ben when a certain 

threshold was crossed, an inverse vector potentia! cascade to long 

wavelength~ might rc::ult, or ~l inverse ~ascade or magnetic helicity 

ror thr~c-dimensional excitations (e.g., Pouquet!!. a! 1975). 
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It is considered tbat in tbe previous pages, it has been 

numerically establisbed that ~lamo action, in the form of 

substantial b~ck-transfer of ~e~tor potential, ca~ occur for a two-

d1mensional magnetohydrodynamic 1'l.ew with mech:mical and magnetic 

Reynolds numbers l.arge canparable to Wli ty. Present c'AIlputer 

capacity does not permit simulations on a large enough grid to be 

able to draw shar,J:l conclus:.ons about conjectur(:;d exponential 

power laws. The presence of external agencies, microscopic or 

macroscopic, has been modelled by the presence or forcing terms on 

the right hand sides of the equa.tions of motion for tbe velocity 

field and magnetic field. It has been concluded tbat magnetic 

forcing terms must be present for the dynamo action to occur. Most 

processes which one might imagine as a source of turbulent 

excitations in an MHO fluid (such as friction with a solid surface 

of finite conductivity) seem best modelled by a forcing function 

involving both magnetic and mechanical components. 

~e translation of the above results into an experimentally 

testable format may be a slow and painful proc'.!ss. First of all, 

tl'.e diagnoctll;! techniques for measuril:g fluetu:.;.tlng magm:tlc fields 

and ,velocity 1'i(~lds in even lBborat.ory IJlasma~ are primit!ve 

caapared to tholle wldch have evolved tor dio.cnodng Navior-Stokes 



fluids (e.g., Grant~ ~tewa.rt, and Moilliet 196~!; h"cnkiel dond 

lUebanofr 1967; Wiin-NiclsClO 1961). For example, at precent it 

appears to be difficult to measure the magnetic field interior 

to a tokamak discharge ~t all, let alone resolve it spatially over 

several orders of magni tudc. Secondly, there are formidable 

psychological obstacles to the incorporation into plasma physics of 

the insights and techniques that have been achieved in the last 

fifteen years of fluid turbulcnce theory. "Plasma turbulence," as 

a subject, has evolved with a great deal of emphasis on linear 

instabilities and dispersion relations for normal modes of 

oscillation which are supposed to be a central canponent in t.he 

description of the turbulent field. None of these concepts plays any 

significant role in the modern theory of fully developed tluid 

tcrbulence. Readjusting the emphasis away tram the preoccupation 

with linear apparatus (a tventy-five year enterprise that, in t'ur 

opinion, has produced much of debatable scientific worth) 

_y be slow indeed. Few industrial fluids, with the exception of 

those under storage in tanks or reservoirs, are stable in the sense 

which has been intended by plasma physicists; virtuallJ all are 

turbulent. Fortunately, ~t is not necessary to have a good basic 

understanding or the turbulent flows involved in order tc'. design 

fluid machinery. A proper and respectful distance has developed 

between the basic and engineering aspects of fl14id mechanics. 

Wben a 81milt'r <l:t.vision or platlJn& phydcs is perceived to be natural and 

desirable, the :lubjecl mny b~~ approachlug IIlIlturlty. 
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and ha~ been invoked recently t.:: Pouquet ~ !!:.. (1975) in eddJ'-

damped qua:,i··normal model co%Uputations for three dimen:-ioru;J. MHD 

turbulent flows witb helicit.y. The effect CWl be describe:d more 

simp17 than has been done prcviou~ly, and the description Is 

relevant to some of the oth~r effects we have observed. 

The eft'ect concerns the very high-It CatpOnents of a 

turbulent MHD field. The lowt'r-k Caaponents are apprOX1lllated by 

spatlally-unifor.m velocity field and masn~tic field to,!c. The 

The bigher-k v{k), B(k) are treated as 8111&1l-8IDpll tude perturbations "'W ...... -v ..... 

on this sratlally-uniform state. All possible hish-k tluctuat1o~s 

can then b~ =h~~ to be a linear superposition of normal modes for 

whicb th~ t~e-averag~d values of II(h)1 2 and 1~(h}12 are equal. 

In this ftf'proxlmation, one should see dIeh)' 2) :.. d~(!) 12) 

at bleb k, or equipartt tion of maenetlc and kinetic energy. Ttds 

baa In tact been a predlction ot the 1Dviscld, perfectly-con~uctins 

equll1brhm. theory (F,yfe and t.br.tSOIIlery 1975), end hal been 

numerically verifIed for t.'lat case (P,vfe, Joyce, and Mont.gOlllcry 

1976). 'l'th' e:quj rart1t1on at Meb wave numberai 13 • feature- of 

Pi88· 6, 10, GIld l' of the present paper, a.'1d the fluid .P}I(:vs to 

be .t~1vini for tbe cqulpartition, even thou~~ it nev.r .ehi~~c~ 

t . uri 



it, in Fig. 5. However, we cn.n ::::~e in Fig. 11 t.hat the effl"ct. 1: 

not absolute, anti the symmetry can be l:>rokcH by in~rca::;ing tl,~; 

dissipation, sYDIIletrically or un::::'1Ir.::trically, between the ~ ,~-ll'l 

v fields • ... 
A second conclusion has been dram about the Alf'ven effect: 

that the linear de-coupling of the fields! + ~ and ! - ~ in the 

above approximation inhibits high-It energy transfer between wave 

numbers an1 thus flattens the energy cascadc (an omni-directional 

spectrum k-! is supposed to replace the k-~ behavior). About this 

conclusion we are less sure. A tr~lsfer between the fields v + B ... '" 

and v - B m&¥ become m~re difficult, but a general uncorrelated ... -
non-helical forcing term supplies both fields at an approximately 

equal rate, and there seems to be no reason to !Iuspect a decrease 

in the rate of tr-ansfer amons different ls's for either field. Some 

01' the present e"V'idence tavors an enhanced magnE!tic transfer. '!be 

conjecture must be left unresolved at present. It should be 

remarked that in SUCll model calculations e.s the eddy-damped 

quasi-normal moicl (Pouquet ~~, 1975), a raJll~e of exponents 

can be achi~ved by the choice of ~ampinc rate for the three-

coefticicnt auto-correlationc. Tne lluestion of the 1mplic:at~ons 

01' the Alfven effect for spectral laws must be decided on physical 

srounds outside the framework of models, since tbis choicc js 

eBs~tiL1ly arbitrary. 



API'i:rmIX 13: !':QUILl'BRIUM THEORY A'r LCl'l A 

It was mentioned jn F,yre and Montgomery (1975) that the limit 

of the inviccid equillbri.um theory as the magnetic: exci tatiO~l level 

approached ZE:ro (A ... 0) '''';is different from the in'{iEcid Haner-

Stokes equilibrium theory,. even thoug:~ the dyual!':j.c~1 equations 

approa.ch each other in that 1iJni t. Here we digress from tht.~ mai.n 

thrust of this paper to describe'! nU:llerlcal \~'''1leriment which 

drmnatically illustrates thh subtlety involvc.d in the limits. 

The experiment consistr. of finding the long-time moc1al E!n~giE-3 

for the velocity field for' two invis(:id, zero-resistivity initial-

value problemc. The ve:i.oci ty-f:' eld coefficients are the S814e 

initially for the two runs. The o~, difference in the initial 

values for tlie tw~ runs is the low level initial magnetic f"-xcitations 

in the second rlUl; in the first run they are ident.ically zero. 

For both runs, the initially non-vanishing velocity ~oeffif.'i'E.'nts 

arc for k ~ (3, 1), (3, 2), (2, 3), (3, -1), (3, -2), (2, -3), (1, 3), ... 
(1, -3). The initially non-vanishing vector potential coefficients 

for the second run correspond to k = (2, 2), (3, 0), (0, 3), (2, -2). 

nle initial kinetic energy is i tk 1!(~)12 = 2.94 for both runB, 
'" 

and the initial ,·a.gnetic fieJ.d energy for the second run is 

! 'it '!(~) I ~ := 0.085, 2. 89'~ of the kinetic eoer,zy. The prp.diet~.on 
'" 
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fica the 1967 Kraichnan theoJ'",f for the modal energy spectrum for 

the first velocity field is <1!(!>\2} = (a + ~2)-1 with a = -10.22 

and P = 11.17. The equilibrium tlleory for the second case predicts 

<\!(!>12) = a- l
, with a = 166.5. 

The numerically measured time averaged spectra at the ends 

of the runs aloe shown in ~'igs. l4a and 14 b. 'lbe theoretical 

curves are the solid lines. It is to us extraordinary that this 

SI4&ll addition of magnetic energy can, by destroying the constancy 

of the enstro:phy, so al.ter the qualitative behavior of the 

velocity field. Indicatio~s are that any magnetic excitation, 

however small, can makf: this qualitative modification given 

surri~ient time • 

. -:" " 
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• .._ .. ~t~'·~'~ •• ",-_·",!",J. , .. ' 

~ . 
, . 



I:" 

Fig. 1 

Fig. 2 

Fig. 3 

42 

FIGURE CAPrIONS 

Enstrophy net) and energy E (t) vs. time for pure Navier­

Stokes case. A saturated constant net) and a linearly 

increasing € (t) would characterize a perfect dual cascade. 

-3 v = 10 • 

MOdal energies, 1!(~)12 vs. k2, corresponding to the 

Navier-Stokes run· shOlm in Fig. 1. - Fig. 2a shows the 

average modal kinetic energies, averaged over 320. time 

steps ending with t :: 31. 5. Fig. 2b shows modal kinetic 

energies averaged over 1200 time steps (~t = (128)-1) 

ending at t = 15.0. '!he forcing band is indicated by 

arrows drawn "at k
2 

= 55 and k
2 = 70. 'lhe slopes of the 

broken lines correspond to omni-directional energy spectra 

.., k-~ and k -3, respectively. Fig. 2c is a plot of the 

"di.ssipation spectrum" k 4 I !(!) 12. The broken lines 

correspond to "slopes for omni-directional energy spectra 

_kJt and k-3, respectively. 

Enstrophy net) and energy £(t) vs. time for MHD run with 

mechanical forCing only (g EO). Note the qualitative 

similarity to the pure Havier-Stokes case shown in Fig. 1. 

v = J.I. = 10-'. 
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• 0 

Fig. 4 

Fig. 5 

Modal energies I !(!) 12 vs. k
2 

for all MHD run with 

mechanical forcing only (came situation as Fig. 3). ~e 

lines have slopes cor~esponding to omni-directional energy 

spectra'" k -I IUld k-3, resp£-ctively. ~e modal energies 

have been averaged over 1200 time steps ending at t = 75. o. 

~ote the similarities to the F~e Navier-Stokes run 

(Fig. 2). 

Modal energies I~(!s>t 2 vs. k
2 

for an MHO run with 

meCbanical forcing only (same run as Figs. 3 and 4) and a 

small illitial seed field 1~(~>l2 = 10-
6, all k. The 

modal energies bave been time averB6ed over 1200 time steps 

eIlllng at t == 75. o. This evolution to a sharply ric>1ng 

magnetic spectrum is characteristic of all runs of this 

type. 

Fig. 6(0.) Modal ene.rgieR 1~(~>l2 vs. k
2 

for a ~ = \I == 10-
3 MIlD run 

witbmagnetic forcing only (f :: 0). 'lhese values are 

instantaneous values at t ~ 75.0, &ld their comparison 

with the time averages in Fig. 6(b) shows a typicll level 

of fluctuation~reduction achieved by the time ev~raging. 

The bro..ten line drawn below the forcing band has a slope 

corresponding to an omn1-d1rection~l magnetic energy 

spectrum .., k-i. 

'-. • ~. ,~ •• ,~ ,_ • _ L'.,... .... ~ *.'~' ~ _L.' ............ c- ........... _ L_';<'" ..... _ ••• _"-..... ~~ ........ _. _ .... ~_.~ ............ ~--. ............. __ ....... __ ......... &-.4.),. 
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(b) 1-lotw.l enereies I ~ (!) 12 vs. k,2 for the same MHD run shown 

in F~g. 6(a), but time averaged over 1200 time stcps 

endine at t = 15.0 1be broken line correspond!) to an 

aroni-directional magnetic energy spectrum - k,-t. 

(c)~'al energien 1!(!)1 2 vs. k,2 corresponding to Fig. 6(b), 

again time averaged over 1200 time steps ending at 

t = 15.0. 

Fig. 1(a) Total energy €(t) V~. time for the MHD run (f = 0) 

Fig. 8 

shown in Fig. 6. For al'l ecergy cascade, this number would 

saturate and become approximately constant in time. 

(b) Cross-helicity P versus time. 

(c) Mean square vector potential A(t) vs. time corresponding to 

the MIlD run (f = 0) shown in Fig. 6. A pure inverse 

vector potential cascade would appear as a monotonic 

increase of A with time. 

Total energy €(t), cross helicity pet), and mean square 

vector potential A(t) vs. time for an MHD run with 

uncorrelated mechanical and magnetiC forcing 

(f '# 0, g .,. 0) of approximately equal magnitude. For a 

dual-cascade situation in which no cross-helicity was 

being added, €(t) would saturate, pet) would fluctuate 

c',ose to zero, and A(t) would increase linearly. 

~ = v = 10-'. 
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Fig. 9 Total mechanical energ)', magnet.ic energ)' am\ ru.ti.o R vs. 

time for the forced MIlD run shown in Figs. 8 and 10. 

Fig. 10(0) r.todEJ.l t'nergies I ~(!)\ 2 and (b) modal enf:rgie~ It(!)\ 2 

for the forced (1' # 0, g # 0) MHD run s~ow". in Figs. 8 and 

9. Subgtantial back-transfer of magnetic excitation into 

tbe 10ll£est wavelength modes has occurred, but the 

fluctuations are larger than for either the l' : 0 or . 
g = 0 cases. Both (a) and (b) represent time averages 

over 720 time steps ending at t = 71.0. 
2 2 

Fig. ll(a»)bial energies l~Os>l and (b) modal energies t!(!>1 va. 

k2 for a forced (1' # 0, g ~ 0) MID> run which is the same 

as Figs. 8, 9, 10, except that the dissipation has been 

-2 increased to ~ = v = 10 • Averages have been taken over 

l200 time steps ending at t = 62.25. '!he forcing band 

modal energies are off sca:e, being> 1.4 x 10-'. 'lhe ,.. 

most Wlusual feature of Fig. II is the separation of the 

mechanical and magnetic energies at the higl".est k values. 

(Neither £ nor A increases for this case after about 

t = ,.0.) 

Fig. 12 Dissipation spectra, (a) k
2 l!(!)\2 and (b) k

2 l~(~)l2, 
for the MHO run (1' 1-0, g # 0) shown in Figs. 8, 9, 10. 

The pure double-cascade theory would predict tlW ctrais,ht 

lines for l~(!)\ 2 va. )(.2, the onu 'below the fOl'Cing band 

wi th a r.lope of .~ and. the one ahov'c the forcing WQV~ rn.UDbcr 

with a slope ot either 1/6 or 1/1" on Q tn k
2 ll!(Js'l2 vI. 

I 
• .....4 
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~ 
tn k plot. !tei thar region is fit very well by thesf! 

straight 111)(,:':. If k /k_~ were much larger, thi~ 
max »""n 

spectrum should (;vcntually rt"ach ft l'l8XiJDum Uld d~crease 

sharply with increa~ing k~. 

Fig. 13(a) Mar-netic modal en(:rgies, a .. 1 (b) kinetic IIOdal ener&!e:: 

vs. k
2 

for a forced MHD run (t I 0, g ~ C) Sbdh.l' to 

Figs. 8, 9, 10, except that the ~tudes ot r ~ g 

have been doubled. Both (a) and (b) &1 time averaaes 

over 1200 time steps ending at t ~ 75.0. Fi,. (l'a) 

sh~~s the greatest back-transter 0: magnetic enerp,y to 
2 

the k = 1 modes of any of the runs. 

Fig. 14(a) Modal energies, time averaged O'Ier 1200 time st~ps end1n& 

at t = 37.5 tor pure Ravier-Stotes initial-value proble. 

with zero viscosity. The theoretical prediction is the 

solid line. !he tractional variation over the durati," ot 

the run was 0.4~ lor the energy and 5.4~ tor the enstrophy. 

(b) Modal energies for the velocity field tor the same 

situation as Fig. (14a), but with an approximately 3~ 

addition ot magnetic excitation (~ = v = 0). The run 

is time averaged over 1024 time steps end11l1 at t = 40.0. 

The theoretical c~e is the solid line (flat, in this 

case). 
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