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AERODYNAMIC CHARACTERISTICS OF WING-BODY CONFIGURATION WITH TWO ADVANCED

GENERAL AVIATION AIRFOIL SECTIONS AND SIMPLE FLAP SYSTEMS

Harry L. Morgan, Jr., and John W. Paulson, Jr.

Langley Research Center

SUMMARY

An investigation was conducted in the Langley V/STOL tunnel to determine

the aerodynamic characteristics of a general aviation wing equipped with NACA

652-415 , NASA GA(W)-I, and NASA GA(PC)-I airfoil sections. The NASA GA(W)-I

wing was equipped with plain, split, and slotted partial- and full-span flaps

and ailerons. The NASA GA(PC)-I wing was equipped with plain, partial- and

full-span flaps. Experimental chordwise static-pressure distribution and wake

drag measurements were obtained for the NASA GA(PC)-I wing at the 22.5-percent

spanwise station. Comparisons were made between the three wing configurations

to evaluate the wing performance, stall, and maximum lift capabilities. The

tests were conducted over an angle-of-attack range of -4 ° to 22 ° and a Reynolds
number range of 1.21 x 106 to 1.92 x 106 based on wing chord.

The results of this investigation indicated that the NASA GA(W)-I wing had

a higher maximum lift capability and almost equivalent drag values compared with

both the NACA 652-415 and NASA GA(PC)-I wings. The NASA GA(W)-I wing had a max-

imum lift coefficient of 1.32 with 0° flap deflection, and 1.78 with 41.6 °

deflection of the partial-span slotted flap. The effectiveness of the NASA

GA(W)-I plain and slotted ailerons with differential deflections were equivalent.

The NASA GA(PC)-I wing with full-span flaps deflected 0° for the design climb

configuration showed improved lift and drag performance over the cruise flap

setting of -10 ° .

INTRODUCTION

Research on advanced aerodynamic technology airfoils for general aviation

applications has been conducted over the last several years at the Langley

Research Center and reported in references I to 4. The first of these airfoils

was developed from a 17-percent-thick supercritical airfoil to provide an air-

foil with improved low-speed characteristics. This airfoil designated NASA

GA(W)-I in reference I showed a 30-percent increase in maximum lift coefficient

and more gradual stall characteristics than a typical older NACA 65 series air-

foil used for comparison.

Wings using this improved low-speed section would be suitable for applica-

tion to light general aviation aircraft. These aircraft usually have limited

payload weights because of low-powered engines and generally have poor ride

quality because of large wing areas. Application of the improved airfoil sec-

tion should increase payload capability because of the lighter wing weight



attainable with thicker sections and should improve ride quality becauseof the
smaller wing areas possible with an increase in lift capability.

This investigation was conducted to determine the longitudinal aerodynamic
characteristics of an aspect-ratio-9 wing with the NASAGA(W)-I airfoil section
equipped with typical simple flaps and ailerons. This wing was attached to a
representative fuselage shape with a fineness ratio of approximately 8. An
additional airfoil section, designated NASAGA(PC)-I, which was designed for
optimum drag coefficient at a climb lift coefficient of 0.9 was also tested dur-
ing this investigation. This additional wing was equipped with a plain flap and
was intended for particular application to single-engine aircraft which, in gen-
eral, hav_ poor lift-drag ratios in climb. A wing with a NACA65-415 airfoil
section was also tested to provide baseline comparison data for the other wings.
The tests were conducted in the Langley V/STOLwind tunnel through an angle-of-
attack range of -4° to 22° and a sideslip range of -5° to 5° . Reynolds number
based on wing chord was also varied from 1.21 × 106 to 1.92 × 106. The chord-
wise pressure distribution and corresponding wake velocity profile were measured

Y
at the _ = 0.225 spanwise station on the NASAGA(PC)-I wing.
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SYMBOLS

Values are given in both SI and U.S. CustomaryUnits. The measurements
and calculations were madein the U.S. CustomaryUnits. The model force and
momentdata are referred to the stability axis system shownin figure I. The
model momentreference center was located at the quarter-chord location of the
wing root chord as shownin figure 2.
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CD

Ch

CL

CLe

CI

Cm

Cn

Cp

Cy

c

wing span, 4.013 m (13.17 ft)

drag coefficient, Drag/qS

aileron hinge-moment coefficient,

lift coefficient, Lift/q S

lift-curve slope per degree

rolling-moment coefficient,

pitching-moment coefficient,

yawing-momentcoefficient,

pressure coefficient, (Ps - P_)/q_

side-force coefficient, Side force/q S

wing chord, 44.7 c_ (17.6 in.)

Hinge moment/qCa2ba

Rolling moment/qSb

Pitching moment/q_Sc

Yawingmoment/qSb



Cd

C n

L/D

Ps

Pt

p_

%

R

S

V

X

Y

Z

section profile drag coefficient determined from wake measurements,

_01 _Pt- Ps I IPt - P_I (_)2 q_ q_ d (see eq. 24.16, ref. 9)

section normal-force coefficient,

lift-drag ratio

wake rake height, 16.76 cm (6.60 in.)

local static pressure, Pa (lbf/ft 2)

total pressure, Pa (lbf/ft 2)

free-stream static pressure, Pa (ibf/ft 2)

free-stream dynamic pressure, kPa (lbf/ft 2)

Reynolds number based on free-stream conditions and airfoil chord

wing area, 1.795 m2 (19.307 ft 2)

free-stream velocity

airfoil abscissa, cm (in.)

vertical distance in wake profile, cm (in.)

airfoil ordinate, cm (in.)

angle of attack, measured vertically between free stream and fuselage

center line (positive direction, nose up), deg

B angle of sideslip, measured laterally between free stream and fuselage

center line (positive direction, nose left), deg

6 control surface deflection, measured vertically between wing chordline

and control surface chordline (positive direction, control surface

down), deg

Subscripts:

a aileron

f flap

max maximum

3



s static

t total

free-stream conditions

Notation:

I lower surface

u upper surface

GA(I)-I airfoil designation, General Aviation (Initial of designer's name) -

Identification number of particular airfoil design

MODELS

The configurations tested during this investigation consisted of three

aspect-ratio-9 rectangular wings mounted on a fineness-ratio-8 tailless fuselage.

The planform details of the wing and fuselage are presented in figure 2 and pho-

tographs of the model installed in the Langley V/STOL tunnel, in figure 3. All

the wings had a span of 4.013 m (13.17 ft), a wing chord of 44.7 cm (17.6 in.),

and a wing area of 1.795 m2 (19.307 ft2). The first wing had a NACA 652-415 air-

foil section; the second, a NASA GA(W)-I [General Aviation (Whitcomb) - Number

One]; and the third, a NASA GA(PC)-I [General Aviation (Peterson and Chen) -

Number One] airfoil section. Plots of these airfoil shapes are presented in fig-

ure 4 and their tabulated coordinates, in tables I, II, and III. The NACA

652-415 and NASA GA(W)-I wings had a positive 2° incidence at the root with 2°
washout at the wing tips. The NASA GA(PC)-I wing had 0° incidence of the root

with 2° washout at the wing tip.

The NACA 652-415 airfoil section is a member of the family of low-drag air-
foils developed by the NACA and are often referred to as the "laminar flow" air-

foils. (See ref. 5.) These airfoils have been used successfully on sailplanes;

however, on general aviation wings laminar boundary-layer conditions are diffi-

cult to maintain because of surface roughness near the leading edge caused either

by wing fabrication techniques or by insect remains gathered during flight. The

NACA 652-415 airfoil section has leading-edge flow separation characteristics at

high angles of attack in two dimensions which results in unfavorable wing stall

characteristics. This airfoil, nevertheless, is used on many current general

aviation aircraft and was tested during this investigation to obtain baseline

comparison data. This wing was not equipped with flaps or ailerons.

The NASA GA(W)-I was designed by Richard T. Whitcomb specifically for low-

speed application. (See ref. I.) This airfoil section was designed for a

cruise lift coefficient of 0.4, for a good lift-drag ratio at a climb lift coef-

ficient of 1.0, and for a maximum lift coefficient of 2.0. The key design fea-

tures of this airfoil are (I) a large upper surface leading-edge radius; (2) an

approximate uniform loading at the cruise lift coefficient; and (3) a blunt



trailing edge. The large upper surface leading-edge radius was used to attenu-
ate the peak negative pressure coefficients and thereby to delay airfoil stall
to a high angle of attack. A blunt trailing edge provided the airfoil with
approximately equal upper and lower surface slopes to moderate the upper surface-
pressure recovery and thus further delay stall. A 17-percent-thick NASAsuper-
critical airfoil was used as a starting geometry for the low-speed airfoil
design because the highly aft-cambered supercritical airfoils had indicated good
low-speed characteristics. The final low-speed airfoil geometry was obtained
by tailoring the supercritical airfoil geometry until the desired cruise, climb,
and maximumlift conditions were satisfied. The computer program of reference 6
was used to predict the design and off-design characteristics of the airfoil
during the tailoring process.

The NASAGA(W)-I wing was equipped with full-span plain, slotted, and split
flap systems as shownin figure 5. The chord of both the plain and slotted flap
was 18 percent of the wing chord, and the chord of the split flap was 24.6 per-
cent of the wing chord. Each flap system was divided at the mid-semispan loca-
tion to allow for independent movementof the inboard and outboard sections.
The inboard section had a range of deflection from 0° to 40° down, and the out-
board, a range of deflection from 0° to 10° down. The outboard section of the
left wing panel of the plain and slotted flap systems could be deflected from
30° up to 20° downand was used as a representative aileron. These aileron sec-
tions were equipped with a push-rod type hinge-momentgage as shownin figure 6
to determine aileron control forces.

The NASAGA(PC)-I was designed by John B. Peterson, Jr., of Langley Research
Center and Allen W. Chen, NRC-NASAResident Research Associate, for optimum drag
at a climb lift coefficient of 0.9. Details of the design procedure used for
this airfoil are given in the appendix. A suitable airfoil shape for cruise
flight was obtained by deflecting a 19-percent-chord simple flap 10° upward
(_f = -10° ) with the center of rotation on the lower surface at the 80.8-percent-
chord location. A representative landing shape was obtained by deflecting the
simple flap down10° (6f = 10° ) as shownin figure 7. This flap system, like
those on the NASAGA(W)-I wing, was divided at the mid-semispan location to allow
for independent movementof the inboard and outboard sections. Partial- and
full-span flap combinations with flap deflections from -10° to 10° were tested.

The left wing panel was equipped with a chordwise row of surface-pressure
orifices at a spanwise location equal to 22.5 percent of the span to determine
the sectional characteristics of the NASAGA(PC)-I airfoil. The pressure ori-
fice locations are given in table IV. The pressure data were integrated to
obtain the section normal-force coefficients. A wake rake was positioned
5.08 cm (2.0 in.) downstreamof the wing trailing edge at the samespanwise
location as that of the pressure orifices to measureprofile drag. The rake
consisted of 41 total and 4 static-pressure probes as shownin figure 8. This
rake was supported by a horizontal strut which was mountedto the model fuse-
lage. A photograph of the rake and horizontal strut are shownin figure 9.
The rake was positioned to keep its center line approximately 5.08 cm (2.0 in.)
downstreamof the wing trailing edge whenthe flap was deflected.



INSTRUMENTATIONANDTESTCONDITIONS

Aerodynamic forces and momentswere measuredwith a six-component, electri-
cal strain-gage balance mounted inside the fuselage as shownin figure 2. Angle
of attack was set by the pitch drive of the model support system and measuredby
an electronic sensor mountedinside the fuselage. Sideslip angle was set by the
yaw drive of the model support system and measuredby an electronic counter
mounted to the yaw drive gearing system. The surface pressures of the NASA
GA(PC)-I wing were obtained through pressure orifices set normal to the local
surface and were measuredby using two 15.44 kPa (2.5 psi) differential pressure
transducers and two 48-port scanning valves. Wakepressures were also measured
using one 15.44 kPa (2.5 psi) differential pressure transducer and one 48-port
scanning valve. Fuselage chamberpressure wasmeasuredby using a 6.17 kPa
(1.0 psi) differential pressure transducer.

This investigation was conducted in the Langley V/STOLtunnel at dynamic
pressures of 0.8576 kPa (20 ib/ft2), 1.4364 kPa (30 ib/ft2), 1.7152 kPa
(40 ib/ft2), and 2.3940 kPa (50 ib/ft 2) which corresp@ndto Reynolds numbers
based on the chord of 1.21, 1.49, 1.72, and 1.92 × 106, respectively. The Mach
numberranged from 0.12 to 0.18. The model was tested through an angle-of-
attack range of -4° to 22° and a sideslip angle range of -5° to 5° . The NASA
GA(W)-I and NASAGA(PC)-I wings were tested with partial- and full-span flap
deflections. The NASAGA(W)-I wing was tested with single and differential
aileron deflections. The fuselage was also tested without a wing and the NASA
GA(W)-I wing was tested without a fuselage.

Boundary-layer transition strips 0.25 cm (0.1 in.) wide were placed on the
upper and lower surface of each wing leading edge. The strips were located
2.3 cm (0.9 in.) or x/c = 0.051 on the upper surface and 4.3 cm (1.7 in.) or
x/c = 0.097 on the lower surface. The roughness was sized according to refer-
ence 7 and required a commercial number60 grit sparsely applied.

Wind-tunnel boundary corrections were determined according to reference 8
and applied to the data. Drag corrections due to model chamberpressure were
also applied to the data.

PRESENTATIONOFRESULTS

The results are presented in the following figures:

Aerodynamic characteristics of fuselage alone ............
Longitudinal aerodynamic characteristics of NASAGA(W)-I

wing alone ............................
Aerodynamic characteristics of NACA652-415 wing ..........
Aerodynamic characteristics of NASAGA(W)-I wing ..........
Effect of flap deflection on longitudinal aerodynamic

characteristics of NASAGA(W)-I wing ...............
Effect of aileron deflection on aerodynamic characteristics of

NASAGA(W)-I wing .........................

Figure

10 and 11

12
13 and 14
15 and 16

17 to 19

20 and 21
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Aerodynamic characteristics of NASA GA(PC)-I wing ..........

Effect of flap deflection on longitudinal aerodynamic

characteristics of NASA GA(PC)-I wing ...............

L/D as a function of CL for the NACA 652-415, NASA GA(W)-I, and

NASA GA(PC)-I wings ........................

Section surface-pressure profiles for NASA GA(PC)-I wing ......

Section drag polars for NASA GA(W)-I and NASA GA(PC)-I airfoils

Final Cp distributions used in developing NASA GA(PC)-I airfoil

Figure

22 and 23

24

25

26

27

28

RESULTS AND DISCUSSION

Fuselage Alone

The effect of Reynolds number on the longitudinal characteristics of the

body alone are presented in figure 10. There are no measurable effects over

this limited Reynolds number range of this investigation.

The aerodynamic characteristics of the body at various sideslip angles are

presented in figure 11. There are no significant effects on CL, CD, Cn, or

CI due to sideslip. Yawing moment is destabilizing over the angle-of-attack

range below 18° and is stabilizing above 18° . Side force steadily increases

with sideslip angle as would be expected.

NASA GA(W)-I Wing Alone

As shown in figure 12, the effect of Reynolds numbers is rather small for

the NASA GA(W)-I wing alone; only small increases in CL are obtained at the

higher angles of attack. Drag values are almost unchanged until the wing nears

stall. The lift-curve slope is about 0.077/deg and is quite linear up to an

angle of attack of about 5° and then becomes nonlinear as flow separation begins

on the aft portion of the wing. The CL,ma x is about 1.31 for the wing alone.

NACA 652-415 Configuration

The baseline comparison data for the NACA 652-415 wing are presented in

figure 13. The variations of the longitudinal aerodynamic characteristics with

Reynolds number are not large and show the expected trend of increasing CL,

especially in the range near CL,max, as Reynolds number increases. The
increased Reynolds number also tends to reduce trailing-edge flow separation as

indicated by the reduction in CD and Cm associated with the increases in

CL. This NACA 652-415 wing-body has a lift-curve slope of 0.090/deg with a

CL max of 1.08 to 1.16 depending on the Reynolds number. At a cruise CL of

0._, this wing has a CD of 0.028 and a Cm of -0.042; whereas, at a climb CL

of 0.9, it has a CD of 0.060 and a Cm of 0.035. These values are compared

with the NASA GA(W)-I and NASA GA(PC)-I configurations to evaluate the perfor-

mance of each wing.



The aerodynamic characteristics of the model at various sideslip angles ar,_
presented in figure 14. As the model is yawed, there is very little effect on
the aerodynamic characteristics until the downwindwing stalls or is blanketed
by the wake of the body at an angle of attack of about 9° . The large rolloff
indicated in the Ct data corresponds to stall breaks in the lift and drag
data. As expected for a tailless configuration, the yawing and pitching moments
generated are destabilizing.

NASAGA(W)-I Configuration

Effect of Reynolds number.- The effects of Reynolds number on the longitu-

dinal characteristic of the wing body are presented in figure 15. Again the

effects are rather small and are limited to the higher angles of attack. It is

interesting to note that the stall characteristics for the lowest Reynolds num-

ber are somewhat different than those at the higher numbers with a rather pro-

nounced peak in the data at stall. Also the angle of attack at stall is only

13° at the lowest Reynolds number and 17° at the higher Reynolds number. The

addition of the body changes the lift-curve slope to 0.086/deg in the linear

part of the data but the nonlinearities still occur at an angle of attack of 5° .

In addition, CL,ma x varies from 1.30 to 1.41, depending on Reynolds number.

These values show a slight reduction in C_ over the NACA 652-415 airfoil

but CL max is increased about 0.22 to 0.25. At the cruise C L the drag is
!

nearly identlcal to that of the NACA 652-415 and the pitching moment is -0.080

and shows the increased nose-down moment due to the aft loading on the NASA

GA(W)-I. At the climb CL of 0.90, the CD is about 0.060 which is the same

as that for the NACA 652-415 , and Cm is -0.015 as compared with 0.035 for the

NACA 652-415. This result would indicate that for trimmed conditions the NACA

652-415 would have a slightly better L/D at cruise and in climb.

The aerodynamic characteristics of the model at various sideslip angles are

presented in figure 16. Although the magnitudes differ somewhat, these data

show the same trends as the NACA 652-415 configuration.

Effect of flap deflections.- The effect of the deflection of an inboard

plain flap is presented in figure 17. The maximu_n lift coefficient is increased

to 1.63 whereas the stall angle of attack is redfaced to 10° at a flap deflection

of 41.5 ° . At maximum Clap deflection, drag is increased by 0.04 at the low angle

of attack, to 0.05 at the higher angles. The pitching moment becomes more nose

down as the flaps are deflected.

The slotted flap data are presented in figure 18 for both partial- and full-

span cases. The partial-span flap increases CL,ma x to 1.78 at a stall angle of
attack of 10.5 ° . There is very little difference in lift between the 30° and 40°

flap settings; therefore, flow separation has occ_r_ed over the flap and reduced

the effectiveness of the flap at the 40 ° deflection. Drag increments for the

slotted flap are 0.005 to 0.008 higher than the p_a_n flap over the angle-of-

attack range of the tests.



Only one deflection of 10° was possible for the full-span slotted flap.
The benefit of using the full-span flap can be seen over the entire angle-of-
attack range as the lift is increasedby 0.11 over the partial-span flap for the
10° deflection.

The split flap data are presented in figure 19 for both the partial- and
full-span flaps. The lift characteristics are similar to the other flap config-
urations with CL,max equal to 1.68 at an angle of attack of 10°; however, the
drag increments are higher than either of the other flap systems over the angle-
of-attack range of the tests.

As for the other flaps, only the 10° flap deflection was possible for the
full-span split flap. Again the benefit of using the full span was very
apparent.

Effect of aileron deflections.- The effects of plain aileron deflection are

presented in figure 20 and the effects of the slotted ailerons are presented in

figure 21. Changes in lift, drag, and pitching-moment coefficients are about

equal for both ailerons, the small differences showing up in the magnitude of the

rolling moments generated with aileron deflections. For up deflections of the

left aileron (figs. 20(b) and 21(b)), the plain and slotted ailerons appeared to

have equal effectiveness at the lower angles of attack, the slotted aileron being

more effective at the higher angles. The plain aileron rolling moments are con-

stant with angle of attack where the slotted aileron rolling moments vary with

angle of attack especially at the higher deflections. In general, the slotted

aileron has lower hinge moments than does the plain aileron. When the left'aile-

ron was deflected down (figs. 20(d) and 21(d)), the slotted aileron was more

effective in showing the benefit of the slot as seen before in the flap data.

Figures 20(f) and 21(f) show the data for differential aileron deflections (left

aileron up and right aileron down). Again it appears that the slotted aileron

is slightly more effective but since the deflections are not equal for each case,

the direct comparison is difficult.

NASA GA(PC)-I Wing Body

The effects of Reynolds number on the longitudinal aerodynamic characteris-

tics of the NASA GA(PC)-I wing in the cruise configuration (6f = -10 ° ) are pre-

sented in figure 22. The only effect of increasing Reynolds number is a slight

increase in CL,ma x which is also observed on the other wings. There was a

reduction in CL,ma x of 0.2 and 0.5, compared with the NACA 652-415 and NASA
GA(W)-I wings, respectively. The aerodynamic characteristics of this wing are

presented in figure 23 and show the expected results. The effects of partial-

and full-span flap deflections are presented in figure 24. These data show the

expected increase in CL with increasing flap deflection. The CL,ma x capa-
bility of this wing is considerably less than that of the NASA GA(W)-I at equiv-

alent flap settings. This wing does, however, exhibit a slightly smoother stall

pattern than the NASA GA(W)-I as exemplified by the gradual increase in CL and

flatness in Cm after the stall angles of attack of about 9° .

The lift/drag polars for the three wings tested are presented in figure 25

The NASA GA(PC)-I wing is presented with both -10 ° and 0° full-span flap deflec-



tions. As stated in the appendix, this wing was designed for an improved L/D
at the climb CL of 0.9 which corresponds to the 0° flap deflection case. The
data shownin this figure clearly demonstrate the lower performance of the NASA
GA(PC)-I wing at the cruise flap setting of -10° comparedwith the design climb
configuration. The climb configuration resulted in an increase in L/D at a
cruise CL of 0.4 and at a climb CL of 0.9 comparedwith the other wings.
However, the NASAGA(PC)-I wing for the design climb configuration is very close
to stall with CL equal to 90 percent of CL,ma×.

The experimental static-pressure distributions measuredat the 22.5-percent-
span station are presented in figure 26 for -10° , 0°, and 10° full-span flap set-
tings. The pressure distribution for the climb configuration (_f = 0°) of fig-
ure 26(b) illustrates that at CL = 0.9, _ = 11.5°, the flow is well attached.
However, at CLmax, _ = 13.6° , the entire surface has separated. The section

!
drag measured wlth the wake rake is presented in figure 27. The section normal-

force coefficients presented in this figure were obtained by simple integration

of the measured static-pressure distributions. The section characteristics of

the NASA GA(W)-I given in reference I are also presented in figure 27 for compar-

ison. The drag levels of both the NASA GA(PC)-I and NgSA GA(W)-I airfoils are

approximately the same. The NASA GA(W)-I has higher drag at the lower values of

Cn and lower drag at the higher values of Cn.

CONCLUSIONS

An investigation has been conducted in the Langley V/STOL tunnel to deter-

mine the aerodynamic characteristics of three aspect-ratio-9, rectangular unswept

wings with a NACA 652-415 , a NASA GA(W)-I, and a NASA GA(PC)-I airfoil section,

respectively. The following conclusions have been made:

I. The NASA GA(W)-I wing had a higher maximum lift coefficient capability

and almost equivalent drag values compared with both the NACA 652-415 and NASA

GA(PC)-I wings.

2. The NASA GA(W)-I equipped with the slotted flap showed the expected

higher performance compared with the plain and split flap configurations.

3. The effectiveness of the plain and slotted ailerons for the NASA GA(W)-I

with differential deflections were almost equal.

4. The NASA GA(PC)-I wing with the flaps deflected 0o for the design climb

configuration showed improved lift and drag performance over the basic cruise,

-10 ° flap setting configuration.

5. The NASA GA(W)-I and NASA GA(PC)-I configurations generally exhibit a

smoother stall than the NACA 652-415 configuration.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

June 15, 1977
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APPENDIX

DESIGNTECHNIQUEFORTHENASAGA(PC)-I AIRFOIL

The NASAGA(PC)-I airfoil was designed for an optimum drag coefficient at
a given lift coefficient. The design lift coefficient for this airfoil was 0.9
which is a commonvalue for the climb lift coefficient of manycurrent single-
engine general aviation circraft. Reducing the airfoil drag at a given climb
lift meansan increase in lift-drag ratio and, therefore, an improvement in the
climb performance capability of the rather low-powered single-engine general
aviation aircraft.

The NASAGA(PC)-I airfoil was designed for low drag in almost fully turbu-
lent flow, since very little laminar flow is found on general aviation airfoils
due to roughness near the wing leading edge which causes transition of the bound-
ary layer. This roughness is a result of either wing fabrication techniques or
insect remains gathered during flight.

During the theoretical analysis of the NASAGA(PC)-I airfoil, the lift coef-
ficient was determined by integrating the pressure distribution around the air-
foil surface. The drag coefficient was determined by calculating the boundary-
layer development and using a modified form of the Betz's (ref. 9) profile drag
formula which is

where cd is the profile drag coefficient, c is the airfoil chord, U is
the free-stream velocity, e is the boundary-layer momentumthickness at the
airfoil trailing edge, v is the flow velocity at the trailing edge, and H
is the boundary-layer shape factor at the trailing edge. The Truckenbrodt tur-
bulent boundary-layer method (ref. 10) was used to compute the momentumthick-
ness e and the shape factor H needed in the drag formula. To determine the
shape of the pressure distribution for lowest drag, a pattern or grid method of
optimization was used in which all combinations of a set of variations used to
define the general shape of the pressure distribution were covered. A computer
program was developed by using the Truckenbrodt boundary-layer method and the
Betz drag formula to rapidly calculate the drag of over 2000 combinations of
these variables and present the results in an easily read form. For each suc-
cessive run, the range of each variable was refined, and after a few runs, a
pressure distribution that gave quite a low drag was obtained.

The airfoil geometry of NASAGA(PC)-I was obtained by using the iterative
inverse design method described in reference 11. This inverse design program
calculates the pressure distribution on the surface of an initial airfoil shape
and then systematically modifies the airfoil shape until the desired pressure
distribution is obtained. In order to avoid both a divergent iterative process
and an unrealistic airfoil geometry, a commonpractice in designing airfoils is

11



APPENDIX

to specify the pressure distribution only on a portion of the airfoil surface.
This allows the designer to select an initial airfoil shape with somedesired
features other than a desired pressure distribution. An airfoil geometry with
the desired pressure distribution can usually be generated with acceptable
accuracy in 10 iterations. This inverse design procedure generates an airfoil
shape in inviscid flow. The airfoil pressure distribution in viscous flow is
computedby using the method described in reference 6 and then comparedwith the
desired pressure distributions. The inclusion of wLscouseffects tend, in gen-
eral, to thicken an inviscid airfoil shape and uncamberits shape near the
trailing edge. Appropriate changesare then madeto the inviscid airfoil geom-
etry which is cycled through the inverse program again. After a few cycles,
highly dependent on user experience, an airfoil shape can be obtained that
includes the viscous effects. The final shape and pressure distribution for
the NASAGA(PC)-I is presented in figure 28.

The initial input geometry for the NASAGA(PC)-I airfoil was the NASA
GA(W)-I airfoil geometry. For a design Reynolds numberof 4 x 106 based on
airfoil chord and for a lift coefficient of 0.9, an optimum drag coefficient
of 0.010 was predicted for the NASAGA(PC)-I airfoil. An airfoil shape for
cruise flight was obtained by deflecting a 19-percent-chord flap 10° upward
with the center of rotation located on the lower surface at 80.8 percent of
the chord.

12
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TABLET NACA652 AIR OILCOORDINATES
Ec447cm1176

x/c (z/c) u x (z/c) I

0.0

.00313

•00542

•01016

•02231

•04697

•07184

•09682

•14697

•19726

.24764

.29807

.34854

.39903

.44953

.50

•55043

.60079

•65106

•70124

•75131

•80126

•85109

•9OO8O

.95040

1.0

0.0

•01208

.01480

.01900

.02680

.03863

.04794

•05578

.06842

.07809

•08550

•09093

•09455

.09639

•09617

.09374

.O891O

•08260

•07462

•06542

•05532

•04447

•03320

•02175

•01058

.0

0.0

•00687

•01 958

•0 484

•ol 769

•0! 303

.0'_816

.11 318

.I! 303

•21 74

•2! 36

.31 193

.3! 146

.41 97

.45047

.51

•5 __57

•5! 21

.6i 94

•69876

.74869

•"79874

.8_ 91

•8c 20

•91 )60

1.0

0.0

-•01008

-•01200

-•01472

-.01936

-•02599

-•O3098

-•03510

-.04150

-.04625

-.04970

-.05205 _

-.05335

-.05355

-.05237

-.04962

-.04530

-•03976

-.03342

-.02654

-.01952

-•01263

-.00628

-•00107

•00206

.0

Leading-edge radius, 0.015c

Slope of radius through leading edge, 0.168
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TABLEII.- NASAGA(W)-I AIRFOIL COORDINATES

[c = 44.7 cm (17.6 in.)]

x/e (z/c) u (z/c)l

0.0

.002

.O05

.0125

.O25

.0375

.05

.075

.100

.125

•150

.175

.20

.25

.30

.35

.40

.45

.50

.55

.575

.60

•625

.65

.675

.700

•725

.75O

•775

•8OO

.825

.85O

.875

.9OO

.925

.95O

.975

I .000

0.0

.01300

.02035

.03069

.04165

.04974

.O56OO

.06561

.073O9

.07909

•08413

.O8848

.09209

•09778

.10169

•10409

.10500

.10456

.10269

.09917

.09674

.09374

•09013

.O86O4

.08144

.07639

.O7O96

.06517

.05913

•05291

.04644

.03983

.03313

.02639

.01965

.01287

.00604

-.OOO74

0.0

-.00974

-.01444

-.02052

-.02691

-.03191

-.03569

-.04209

-.04700

-.O5O87

-.05426

-.O57OO

-.O5926

-.06265

-.06448

-.06517

-.06483

-.06344

-.06091

-.05683

-.05396

-.05061

-.04678

-.04265

-.03830

-.03383

-.02930

-.02461

-.02030

-.O1587

-.01191

-. 00_52

-.00565

-.00352

-.00248

-.00257

-.00396

-.00783
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TABLEIII.- NASAGA(PC)-I AIRFOILCOORDINATESFOR

DESIGNCLIMBCONFIGURATION(6f = 0o)

[c : 44.7 cm (17.6 in.)_

x/c (z/c) u (z/c)1

0 0

0025

OO5

01

02

O3
O4

O5
O8

10

125

15

175

2O

25

3O

35

40

45

5O

55

6O

625

65

675

70

725

.75

•775

.8O8

.828

.848

.8"68

.888

.9o8

.928

.948

.968

.988

I.000

-0 0025

0O98
0160

0245

0360

0448

0521

0583

0726

0796

0863

.0909

.0947

.0970

.0993

.0998

.0983

.0953

.0915

.0861

.0797

.0721

.0683

.0644

.0606

.0564

.0521

.0471

.0420

.0355

.0312

.0269

.0226

.0183

.0141

.OO98

.0055

.0012

-.003O

-.OO56

-0.0025

-.0140

-.O2O8

-.0273

-.0356

-.O4O8

-.0445

-.0469

-.0515

-.0533

-.O545

-.0553

-.O56O

-.O568

-.O583

-.O595

-.0609

-.0625

-.0630

-.0626

-.0615

-.0594

-.0576

-.O556

-.0523

-.0478

-.0433

-.0383

-.0318

-.0235

-.0219

-.0203

-.0187

-.0172

-.0156

-.0140

-.0124

-.0108

-.0092

-.0083
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TABLE IV.- NASA GA(PC)-I AIRFOIL ORIFICE LOCATIONS

[c = 44.7 cm (17.6 in.) 1

Upper surface

x/c z/c

0.0

.oo13

.0066

.0178

.0343

.0531

.O755

.0983

•1238

•1524

•1825

.2149

.2498

.2868

.3246

.3647

.4073

.4499

.4906

.5316

.5763

.6443

.6913

.7337

.7841

.8318

.8836

.938O

.9786

-0.0025

.0056

.0189

.0337

.0481

.0601

.O7O8

.O79O

.0861

•0913

.0953

•0981

.0993

.0999

.0993

.O976

.0948

•0915

.O872

.0822

.O757

.0653

.O579

.0502

.0402

.0304

.0193

.OO77

-.0010

Lower surface

x/c

.0035

.0134

.0293

.0494

.0695

.0906

.1124

.1580

.1826

.2177

.2724

.3396

.3947

.4424

.4915

.5456

.5891

.6289

.666O

.7015

.737O

.7686

.7982

.827O

.8698

.9312

.9779

z/c

-0.0177

-.0306

-.0405

-.0468

-.0503

-.0526

-.0541

-.O556

-.O563

-.0573

-.0589

-.0606

-•0624

-.O63O

-.O627

-.0616

-.0600

-.0577

-.0536

-.0475

-.0411

-.0326

-.O258

-•0218

-.0186

-.0138

-.0100

17



+/3

View A-A

Cr.

Figure I.- Axis system used in presentation of data. Arrows indicate

positive direction of moments, forces, and angles.
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Model momentcenter
\

.225b

Pressure tube location for GA(PC)-I wing_

Outboard flap and/or aileron
/

Inboard flap

b/2

(a) Top view.

Figure 2.- Drawing of model used in investigation.
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z/c

NACA 652-415

I I I I I I I I J

NASA GA(W)-I

zlc
J

I l I i I I i I J

NASA GA(PC)-I

z/c
J

f

l 1 1 I 1 I I I I

0 .I .2 .3

Figure 4.- Airfoil

.4 .5 .6 .7 .8 .9

x/c

sections used in investigation.

1.0
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Plain flap

PiV 
Chord _/_///,/.//.//.//._ (.017c

line L/__- - -_-_r-z4 _1

--.180c

Slotted flap

__7__ _i01__________,, _..... -,_..4 _-.019C

Chord
line

Pivot point

Split flap

Chord _/
line ."'_77"z_._ _ .019c

Pivot point .246c -

Figure 5.- Flap systems used on NASA GA(W)-I wing.
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o.25- t

2.79

16.

5.33

Total- probe_ r=--- 3 • 05-----_ 2.79--_pressure

5. 8

Static-pressure probe

Figure 8.- Drawing of wake rake used in investigation of NASA GA(PC)-I wing.

(All dimensions are in centimeters.)
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i.72x 106
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0

-4 0 4 8 12 16 20 24 28

a, deg

Figure I0.- Effect of Reynolds number on longitudinal aerodynamic

characteristics of fuselage used in investigation.
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Figure 11.- Aerodynamic characteristics of fuselage used in investigation.
(R = 1.49 × 106.)
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Figure 11.- Concluded.

31



0

Cm

-.i

-.2

.3

.2

CD
.I

0

2.0

1.5

1.0

.5

CL

0
-4 0 4 8 12 16

ct, deg

32

Figure 12.- Effect of Reynolds number on longitudinal aerodynamic

characteristics of NASA GA(W)-I wing alone.



R

O 1. 21 x 106
O L49 x l06
<) 1.72x 106
A L 92 x 106

-4 0 4 8 12 16 20 24 28

a, deg

Figure 13.- Effect of Reynolds number on longitudinal aerodynamic

characteristics of NACA 652-415 wing.
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Figure 14.- Aerodynamic characteristics of NACA 652-415 wing.

(R = 1.49 x 106.)
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Figure 14.- Concluded.
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Figure 15.- Effect of Reynolds number on longitudinal aerodynamic

characteristics of NASA GA(W)-_ wing.
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Figure 16.- Aerodynamic characteristics of NASA GA(W)-I wing.
(n : 1.49 x 106 .)
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Figure 16.- Concluded,
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Figure 17.- Effect of deflection of inboard plain flap on longitudinal

aerodynamic characteristics of NASA GA(W)-I wing. (R = 1.72 x 106.)

39



.i

0

Cm

-.

-.2

.3

.2

CD
.i

0

2.0

CL

1.5

1.0

.5

-.5
-8 -4 0 4 8 12 16 20 24

O, deg

(a) Partial-span slotted flap.

Figure 18.- Effect of deflection of partial- and full-span slotted flap

on longitudinal aerodynamic characteristics of NASA GA(W)-I wing.
(R = 1.72 × 106.)
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(b) Full-span slotted flap.

Figure 18.- Concluded.
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(a) Partial-span split flap.

Figure 19.- Effect of deflection of partial- and full-span split flap

on longitudinal aerodynamic characteristics of NASA GA(W)-I wing.
(R = 1.72 x 106.)
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Figure 19.- Concluded.
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(a) Longitudinal characteristics for up deflect£ons of left aileron.

Figure 20.- Effect of deflections of plain aileron on longitudinal and lateral
aerodynamic characteristics and hinge-moment characteristics of NASA GA(W)-I

wing. (R = 1.21 x 106.)
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(b) Lateral and hinge-moment characteristics for up deflections of left aileron.

Figure 20.- Continued.
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(c) Longitudinal characteristics for down deflections of left aileron.

Figure 20.- Continued.
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(d) Lateral and hinge-moment characteristics for down deflections

of left aileron.

Figure 20.- Continued.
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(e) Longitudinal characteristics for differential deflections

of right and left ailerons.

Figure 20.- Continued.
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(f) Lateral and hinge-moment characteristics for differential deflections

of right and left ailerons•

Figure 20.- Concluded.
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(a) Longitudinal characteristics for up deflections of left aileron.

Figure 21.- Effect of deflections of slotted ailerons on longitudinal and

lateral aerodynamic characteristics and hinge-moment characteristics of
NASA GA(W)-I wing. (R = 1.49 × 106.)
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(b) Lateral and hinge-moment characteristics for

up deflections of left aileron.

Figure 21.- Continued.
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(c) Longitudinal characteristics for down deflections of left aileron.

Figure 21.- Continued.
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and hinge-moment characteristics for differential deflections

of right and left ailerons.

Figure 21.- Continued.
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Figure 21.- Continued.
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Figure 21.- Concluded.
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Figure 22.- Effect of Reynolds number on longitudinal aerodynamic

characteristics of NASA GA(PC)-I wing. 6f = -10 ° .
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(R = 1.49 × 106; _f = -10°.)
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Figure 23.- Concluded.
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(a) Partial-span flap.

Figure 24.- Effect of deflection of partial- and full-span flap on longitudinal

aerodynamic characteristics of NASA GA(PC)-I wing. (R = 1.92 x 106.)
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Figure 26.- Section surface-pressure distributions and wake total-

pressure profiles for NASA GA(PC)-I wing with various flap

deflections. (R = 1.72 x 106. )
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