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ABSTRACT

A hyperpure vitreous silica material is being developed for use as a reflec-

tive and ablative heat shield for planetary entry. Various purity grades and

forms of raw materials were evaluated along with various processing methods. All

are critically important to the success of this concept. Slip casting of high

purity grain was selected as the best processing method, resulting in a highly

reflective material in the wavelength bands of interest (the visible and ultra-

violet regions).

The selected material was characterized with respect to optical, mechanical

and physical properties using a limited number of specimr. , ns. The process has

been scaled up to produce a one-half scale heat shield (18 in. dia.) (45.72 cm)

for a Jupiter entry vehicle.

This work is now being extended to improve the structural safety factor of the

heat shield by making the hyperpure silica material tougher through the addition

of silica fibers.
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INTRODUCTION

Probes entering the atmospheres of the oui.er planets such as Jupiter will

require heat shielding capable of withstanding convective and radiative heating

environments much more severe than current experience. The radiative heating

arises from the bow shock wave accompanying the probe during entry. The high

entry velocity of probes into the atmospheres of the massive outer planets leads

to extremely high temperatures of the gases in the bow shock wave. The heating

mode shifts from entirely convective to predominantly radiative as the entry

velocity increases. These extremely high radiative heat loads lead to high heat

i,	 shield mass fractions. As much as 30 to 50 percent of the probe weight is the heat

`	 shield for conventional ablative heat shield materials such as carbon-phenolic.

The predomii-lance of radiative heating during entry suggests a different

approach to heat shield design. A heat shield that reflects the radiation to

prevent it from being absorbed would result in an appreciably lighter heat shield.

A program to develop a reflective heat shield as an alternate to the carbon-

phenolic heat shield was initiated at Ames Research Center in 1971 (1) . The current

choice of material for the reflective i._^at shield is slip cast fused silica. The

background and review of the multitude of requirements leading to this choice is

too long to be included in the introduction and is included in a separate section.

Suffice it to say at this point that the ceramic structure must be free of

impurities to avoid absorption of thermal radiation, it must be thermal shocv.

resistant, and it should accommodate strain sufficient to be compatible with light-

weight supporting substructure during aerodynamic loading. Specifically, the

scope of the current development effort described in this paper deals with the

approach to materials developn-.ent, evaluation of test specimens, and a description

of the current effort to develop a tougher material, i.e., a material with a

higher strain at failure.

L 1 K SO,?
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BACKGROUND

Radiation-dominated heat shield environments can be anticipated for entry

into the atmospheres of some of the outer planets. Even for a shallow entry

angle, preliminary calculations of the heat shield environment for Jupiter entry

indicate peak radiative heating rates on the order of 15 kW/sq cm. To contrast

this level of heating with previous experience, it should be pointed out that

the combined radiative and convective heating for the Apollo spacecraft upon

lunar return attains levels of 0.2 to 0.3 kW/sq cm. Typical heating rotes for

entry into several planetary atmospheres are shown in Figure 1, and compared with

earth entry heating rates.

20	 JUPITER : ,`

15

HEATING RATE
kW/cm 2 	SATURN

10

VENUS

5	 r//
/	 APOLLO k^,

"SHUTTLE
0	 5	 To-'--0

_ 
15

TIME FROM ENTRY — sec

FIGURE 1. ATMOSPHERIC ENTRY HEATING

The heating for the Jupiter entry presents a new heating regime where

radiative heating is significant, and where a different type of heat shield design

than that employed for the Apollo heat shield would be advantageous. The Apollo

heat shield is an efficient lightweight insulator that forms a carbonaceous char

when exposed to the hot gases during reentry. The radiation of energy from this

cigar, termed reradiation, is the principal means of energy dissipation for the

relatively efficient Apollo heat shield. An upper limit for the amount of radia-

tion from a carbonaceous char is about 1.3 kW/sq c m.	 (This amount estimated by

regarding the material as a black body and calculating the radiation for the

5	 FAGS BTLANK, N01 
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temperature of 4200°K, the temperature of carbon near its triple point.) The

imposed heating for the Apollo is well below the -adiation lirait, whereas that

for a Jupiter probe is well above this limit as shown in Figure 2. Consequently,

reradiation from a carbonaceous heat shield for Jupiter entry is not necessarily

the most efficient means of accommodating the energy imposed on the heat shield.

Since the radiation limit for carbon is well below the level of the imposed

heating during planetary entry, other mechanisms of energy accommodation must be

considered. For environments like the Jupiter entry, Allen 
(2) 

indicated that the

radiative heating should dictate the philosophy of heat shield design. lie

suggested a heat shield that would act like a mirror and reflect the gas cap

radiation away from the space vehicle. Specifically, the scheme consisted of

introducing small flakes of highly reflective metallic material into a base

material of high transmissivity.

102
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FIGURE 2. RADIATIVE ENVIRONMENTS FOR PLANETARY ENTRY

The concept described herein differs from that of Allen in that a dielPrr.-;c

material is used to reflect the radiant energy diffusely rather than a metallic

material to specularly reflect it.

The process of reflectance in a dielectric body is best described by reviewing

the familiar process of reflection in paints. An opaque white paint consists of

a base liquid, "vehicle" or "binder," usually linseed oil which is quite colorless

and transparent, and a pigment, which is suspended in the binder. For a white

paint, the pigment particles are also colorless and transparent; oxides of zinc,

6



lead, and titanium are fre quently used as pigments. The index of refraction of

the pigment must be substantially different from that of the vehicle to meet the

requirement of high reflectance which is achieved through internal refractions and

reflections. Some light is reflected at the surface of the paint but the remain-

der opnetrates and strikes a boundary between binder and pigment where a portion

is reflected and a portion is refracted. The reflected part returns through the

surface. The part refracted penetrates farther, a portion being reflected and

refracted at each boundary surface where it crosses. Since reflection occurs for

all wavelengths of the incident light, the paint reflects uniformly throughout

the visible spectrum (i.e., it is white). The white color is not due to suspended

white particles in the binder, but simply to a difference in index of refraction

between pigment and binder, both of which are very transparent throughout the

visible spectrum. Occurrences of this principle are quite common. This principle

explains, for example, why tiny particles of salt, sugar, and snow, all of which

are colorless and transparent, appear white. Air acts as the "vehicle" in these

examples.

The key requirement of the reflecting heat shield for planetary entry probes

is that reflection still must occur even though the front surface is melting or

vaporizing. The convection heating is sufficiently intense to cause the surface

to ablate durin g the entry. This concept was demonstrated in the laboratory

utilizing Teflon in 1971.

The ability of Teflon to reflect light can best be explained by considering

its composition. Teflon is a partially crystalline material in which the

arorphous and crystalline zones are uniformly distributed, and the degree of

crystallinity varies between 50 and 70 percent depending on the manufacturing

process. The difference in index of refraction of the adjacent amorphous and

crystalline zones evidently enables reflections and refractions to occur at the

boundaries of these zones. This explains the white appearance of Teflon under

normal conditions.

The following tests were conducted to determine if Teflon would remain white

while undergoing ablation. Surface recession rates were obtained in convective

heating alone, radiative heating alone, and combined convective and radiative

heating on ablation models. The ablation tests were nerfor,ed in the H ynes Advanced

I
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Entry Heating Simulator. This facility is capable of subjecting test samples to an

intense independent radiative flux such that a simultaneous convective free jet can

be superimposed over the model. The test models were sequentially inserted one at

a time into the heating environment for different lengths of time. Four models were

usually tested. The thickness of the ablation specimens was measured at the

stagnation point after the test and compared to the prerun measurement to deter-

mine the surface recession. For each model the surface recession measurement was

plotted against time. The slope of these linear curves gave the surface recession

velocity. White Teflon was compared to black Teflon (35 percent graphite pigmented)

under nearly identical heating environments. While the recession rate for both

white and black Teflon under convective-only conditions was nearly the same

(Figure 3), the recession rates of combined heating were considerably different.

White Teflon displays the characteristic feature of reflectance with no change in

surface recession, whereas the black Teflon recedes at nearly five times the con-

vective-only rate. Obviously, abso rption, of the incident radiation seriously
degrades the performance of the black Teflon. Also shown on this figure is the

recession of white Teflon under radiation-only testing in which very little

recession occurs because thn majority of the radiation is being backscattered out

of the material.

RN = 7.6 mm

8
BLACK	 WHITE

7

6
E
E 5

W/cm2
2 4	 1630 — CONVECTIVE
0	 11180 — RADIATIVE	 660 W/cm 2 CONV

w 3	 630 — CONVECTIVE
U	 660 Wlcm 2 CONV
LU 2	 1060 W/cm 2 RAD
W

11020 

W/

cm2 RAD

0	 1	 2	 3	 4	 5	 0	 1	 2	 3	 4	 5	 6	 7
EXPOSURE TIME — SEC

FIGURE 3. COMPARISON OF BLACK AND WHITE TEFLON UNDER CONVECTIVE
AND RADIATIV E HEATING CONDITIONS
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The low heat of vaporization of Teflon rules it out as a heat shield material

for outer planet entry. This shortcoming of Teflon, along with other considerations,

led to the selection of consolidated particles of amorrhous silica with its high

heat of vaporization as the material for an outer planetary probe heat shield. In

this application the void space around the particles act as the "vehicle" or matrix

providing the required differing index of refraction. The thermal shock resistance

property of silica makes it stand out above all other possible refractory materials

that would also possess the required dielectric reflectance property. Substantial

development effort devoted to silica was motivated by a desire to obtain the

reflectance and low absorption qualities of Teflon.

To be effective as a reflective heat shield, the spectral characteristics

of the incident energy and the spectral absorption of the heat shield material

must be considered. For most outer planet atmospheres at typical entry angles and

velocities, the radiant energy consists of a continuum source in the wavelength

region of about 1.0 um down to about 0.2 -m (near IR - visible - near UV), upon

which is superimposed emission bards at various wavelengths (see Figure 4). As

NOMINAL JUPITER ATMOSPHERE
NO BLOWING

a

HYPERPURE SLIP CAST
FUSED SILICA

Z >
O (D
N

40	 U

Q
cc `,b

20 Q
c
H
U X

I CON 	 iIIIi^IIICONTINUUM	 0 ^ LL

3-D WOVEN
SILICA — SILICA
MATRIX

0	 2	 4	 6	 8	 10	 12
PHOTON ENERGY eV

1.0 0.5	 0.3	 0.2	 0.15	 0.12	 0.10

WAVELENGTH — µm

FIGURE 4. REFLECTANCE OF CANDIDATE REFLECTIVE MATERIALS
NOMINAL JUPITER ATMOSPHERE NO BLOWING
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the emission bands are associated with the quantum changes in the energy levels

of rotation and interatomic variation of the atmospheric gas molecules, the

specific emission bands will be a function of the composition of the planetary

atmosphere. For the outer planets the emission bands (and they contribute a very

significant fraction of the total radiant energy) are in the visible and ultra-

violet regions. Therefore, the reflective heat shield material must have a high.

intrinsic transmissivity in this wavelength region to be an effective backscatter-

ing reflector.

Silica, in addition to its high temperature capabilities and high hd3t of

ablation, is highly transparent from about 2 pm down to about 0.18 pm where an

absorption edge occurs. However, the presence of impurities in the silica can

greatly increase the absorption in the UV region and reduce the effectiveness of

the backscattering. Consequently, a major interest in this program was to use the

purest of raw materials, and the avoidance of any contamination throughout the

processing. For an example of purity effects, Figure 4 shows the reflectance of

pure slip cast material (24 ppm Dotal metallic impurities) compared to a less pure

3-D woven silica composite with a colloidal silica binder (above 4000 ppm total

metallic impurities).
`i
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DEVELOPMENT APPROACHES AND RESULTS (3)

A small clean area was dedicated exclusively to the processing of silica for

this program since it was known that purity would be very important. A recently

expanded and improved clean area, also dedicated to the processing of silica, is

shown in Figure 5.

FIGURE 5. DEDICATED CLEAN ROOM FOR HYPERPURE SLIP CAST FUSED SILICA

A survey was conducted of all available high purity forms of silica and small

quantities of the various types available were obtained. We obtained cloth, yarn,

wool, powders, grains, and even precursor materials such as silicone resin, from

which silica was made by burning it in air.

Laminated Cloth and Yarn Composites

Laminated silica cloth, Astroquartz and Refrasil were reinforced with

Astroquartz yarn "nails" and bonded with colloidal silica. These samples were

fabricated by installing the layers of silica cloth between plywood platens having

a hole pattern through which Astroquartz yarn "nails" were manually installed on

3/8 inch centers, (.95 cm) through the thickness. These parts were then vacuum

impregnated with Syton colloidal silica binder. Density could be controlled from

70 to ln2 lbs /ft3 (1120 to 1632 Kg/in 3 ) by this vacuum impregnation process.
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In another approach to producing a silica cloth laminate, we used the highly 	 AI

reflective powder produced by the air pyrolysis of Dow Corning 184 silicone resin

as a binder. This particulate material had reflectance values of no lower than 95%

of any wavelength between 0.22 and 1.5 um. 	 The method of utilizing this binder in

2-D laminates was to pyrolyze the resin "in place." However, the pyrolyzed part had

poor interlaminar strength, and this binder provided little or no improvement in

the reflectance of the Refrasil cloth.

The 2-D laminating approach to fabrication of silica-silica heat shield

material was deemphasized primarily due to poor reflectance of the candidate raw

materials.

Felted Fibrous Materials

The felting of fibrous structures was considered as a candidate method of

fabricating a reflective heat shield. This fabrication technique involved the

felting of fibers with colloidal silica or ethyl silicate binder. The felted

structure then would be pressed to a given density, fired, and reimpregnated and

refired a n m ber of times to achieve a suitable density. This processing method

was abandoned because the available colloidal silicas were determined to contain

sufficient impurities to preclude their use as a binder material. Also, the use

of ehtyl silicate as a binder would involve using an acid hydrolyzing agent which

would present processing as well as contamination problems. The felting,

pressing, reimpregnating procedure was also deemed unattractive because of the

numerous processing steps involved resulting in more chances for foreign

contamination to be introduced.

Molded Fibrous Material s

Two approaches were taken in an attempt to fabricate molded fibrous silica

structures having a particulate silica binder. The first approach was to densify

a low density flexible fibrous silica matt by molding it under pressure and then

reimpregnating it with a colloidal silica binder. The second approach involved

the use of the particulate silica pyrolysis product of silicone resin as a binder

for high purity silica fibers.

12
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The first approach was started before the time that colloidal silica binders

were virtually ruled out as a binder candidate because of their high impurity

level. This first approach involved the use of low density (ti3.5 lb/ft 3)

(56 Kg/m3 ) Microquartz felt which was impregnated with colloidal silica binder

and molded under pressure before or during the microwave Curing of the binder.

The molded parts were then reimpregnated a number of times with colloidal silica

in order to increase their density.

Four samples were prepared by this method. The results of the densification

process are as follows: after one impregnation the bulk densities varied from 25

to 115 lb/ft3 (400 to 720 Kg/m 3 ), depending on molding pressure which varied bet-

ween 0.17 and 27.8 psi;(1.17 and 191.68 KPa) after 9 impregnations all four speci-

mens had densities between 80 and 90 lb/ft3 (1280 and 1440 Kg/m3 ). These specimens

were evaluated for density, shrinkage in two directions, and strength after firing

from 800 to 2300°F (700 Lo 1533 0 K). Density increased from 83 to 117 lb/ft3

(1328 to 1872 Kg/m3 ) as the firing temperature increased. Shrinkage was highly

anisotropic as would be expected due to the orientation of the fibers, the highest

being through the thickness (8% at 2300°F) (1533°K). The highest flexural strength

obtained was 4830 psi (33.7 MPa) after firing at 2100°F (1422°K) for 3 hours.

The 2300°F (1533°K.) firing resulted in a lower strength, indicating the start of

devitrification.

The second basic approach toward fabricating molded fibrous structures having

a particulate silica binder was adapted .i an effort to take advantage of the very

high reflectance observed for the silica powder resulting from air pyrolysis of

Dow Corning 184 silicone resin. The ultimate goal was to use this as a binder for

the very high purity silica fibers.

Several preliminary molded fibrous samples of this type were prepared using

Microquartz and +99/ pure Astroquartz fibers. The fibers were mixed with the cata-

lyzed liquid resin, after which the resin was cured by heating the sample to N190°F

(361°K) for 2 hours or more under pressure. After molding/curing, the samples were

pyrolyzed to convert the silicone resin to particulate silica binder. The typical

pyrolysis schedule was to place a slight pressure in the thickness direction during

pyrolysis by means of a simple dead weight to prevent expansion cracking as the

resin was converted to silica.

13
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A major problem with the silicone bonded, molded fiber approach was contamina-

tion which appeared as a discoloration. This contaminant was assumed to be

1

	

	 entrapped carbon from the decomposition of UC-1II4 silicone binder. Unsuccessful

attempts were made to solve this problem, including reducing the pyrolysis heating

j	 rate for sample MF-10 to 20°F/hour (266°K/hour) Pnd prolonging the air heating

4

	

	 of pyrolyzed parts in an effort to oxidize residual carbon and organic compounds

The discoloration could not be removed.

f Another problem associated with this approach was that uhe .s-pyrolyzed parts

4l	

had a rather low density (40 to 50% of theoretical). Although this fabricated

f(

	

	 density could probably be increased, it was concluded that parts fabricated by this

method would need to be reimpregnated with additional binder material of some sort

in order to obtain sufficient mechanical strength. The requirement of several

reimpregnations would present additional contamination and processing problems.

In view of the above considerations, this approach was deemphasized in order

to concentrate on more attractive fabrication techniques.

Dry Pressing

The dry pressing approach to the fabrication of a silica heat shield involves

the use of primarily very high purity silica powders and very small amounts of

water and a temporary organic binder and lubricant. Basically, powders of appro-

priate particle sizes are combined with the binder, dry pressed to a desired shape,

and then sintered at high temperature.

L

	

	
Ultra high purity (under 10 ppm total metal impurities) or "hyperpure" silica

powder is not available in powder form. Therefore, methods were developed for

preparing and qualifyi„g hyperpure silica grains. The starting material used for

this preparation was transparent high purity silica rods purchased from two different

suppliers, Dynasil Corp. of America, and Amersil Inc. The hyperpure powder prepared

from the material from either vendor, appeared to be identical.

The as-received rods were in various lengths of 4 inches (10.16 cm) or more

and in various diameters up to 3/4 inches (1.9 cm). The as-received rods were cut

to smaller lengths and each individual piece was subjected to a cleaning process

and was carefully examined. Crushing and ball milling processes were used to

1
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reduce the silica material to hyperpure powder without introducing contamination.

The product from ball milling of hyperpure silica powder was separated into

coarse grain for use in the next mill batch and finer grain for dry pressing.

The procedure developed for the dry pressing and sintering of hyperpure silica

grains was as follows:

The silica powders were mixed with an aqueous solution of polyvinyl alcohol

(PVA) by ball milling. The PVA was the temporary binder which burns out during

sintering. The consistency of the slurry formed was adjusted by adding PVA solutior.

When the slurry reached the proper consistency (thickly flowing) it was poured in a

thin layer on absorbent paper which was held in a plaster mold. The slurry was

dried to a cake of the proper jater content and then granulated. The granules were

sealed in a polypropylene bottle and stored (usually overnight) to allow the mois-

ture content to equalize throughout the material. The material was then pressed

to the desired shape using conventional molds and a hydraulic press, completely

dried, and fired. The firing cycle was started at room temperature, increased to

peak temperature and held at peak temperature 5 hours at which time the sample was

removed from the furnace and allowed to cool rapidly.

Polyvinyl alcohol (PVA) was used exclusively as the binder for preparing

material for dry pressing until a burnout test was conducted on the PVA alone

showing that it has a residue of 0.67% after 5 hours at 2000°F (1366°K) in air.

If this residue is presumed to consist entirely of oxides of metal impurities,

an introduction of 67 PPM impurities into a fired dry pressed part would result

from the use of 1% PVA binder. Therefore, an effort was made to find a less con-

taminating binder.

A sample pressed without binder had no green strength, showing that some

binder was necessary. Burnout tests were performed on several candidate materials,

the two most promising of which (from the standpoint of low residue) were sugar

and hydroxypropylcellulose, a product used in the food industry having the trade

name of Klucel. Samples made using these materials as binders had little or

no green strength. A sample made using 3% sugar as binder exhibited barely accept-

able green strength and poor fired strength.
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PVA was thus established as the best binder available at that time. A study

was run varying the amount of binder used and a minimum of 0.5% PVA, based on total

solids, was required. This amount of binder will introduce approximately 35 PPM

impurities, including oxygen, into the fired sample.

The silica used for dry pressing high purit, vitreous silica bodies included

the hyperpure silica powders prepared by ball milling and the very fine (0.2 to

0.3um) silica powder produced by the air pyrolysis of Dow Corning 184 silicone

resin.

The approach taken toward the study of dry pressed bodies was to mix 2 or 3

different particle size distributions of powders, (sedimentation technique per

ASTM D422-63) followed by pressing and sintering, while studying the processing

data and the optical properties of the samples resulting from each combination of

particle size distributions. A mixture of 2 or more particle size distributions

produces a higher density part than a single particle size distribution due to

more efficient packing of particles.

The most promising dry pressed bodies were fabricated using a bimodal and a

trimodal distribution. The bimodal consisted of 70% hyperpure powder of 7 um

average diameter and 30% hyperpure powder of 4 um average diameter, and the trimodal

system consisted of 50% hyperpure powder of 7 um average diameter, 25% hyperpure

powder of 4 pm average diameter, and 25% DC184 powder of 0.2 to 0.3 um average

diameter. The binder for these bodies was polyvinyl alcohol. Using a molding

pressure of 8000 psi (55.16 MPa), the bimodal system of powders resulted in a

pressed "green" density of 90 lb/ft 3 (1440 Kg/m3 ), while the trimodal system con-

taining the very fine grains pressed to a green density of 80 lb/ft 3 (1280 Kg/m3).

The highest reflectance values resulted from lower density material in the case

of both the bimodal and trimodal distributions. Desirable densities can be achieved

by firing the bimodal material at 2050°F (1394°K) or lower. The lower shrinkage

of the materials without the very fine grains is an advantage from the standpoint

of processing and scale-up to full size heat shields. The optical properties of the

bimodal and trimodal distributions appear to be very similar when both are fired

at their optimum temperature for maximum reflectance.
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Dry pressing is considered to be a viable approach to fabricating a high

purity silica reflective heat shield. It has been calculated that to fabricate 4

full size 36 inch (91 cm) diameter heat shield, a molding force of 4,000 tons

(3630 metric tons) would be required. This is based on a molding pressure of

8,000 psi (55.16 MPa). Presses of this size and much larger are available.

The scope of the work on dry pressing was limited in order to concentrate

on slip casting, which is now considered to be the most promising approach to

silica heat shield fabrication.

Slip Casting

Of the various fabrication methods evaluated in this program, slip casting is

the most practical and produces the most reflective silica heat shield. The slip

casting effort performed in this program was in two major areas:

o Casting development of hyperpure silica, and,

o Slip casting of miniature heat shields.

Both of these areas are described in this section.

The purest fused silica casting slips, commercially available, are too impure

(3000 to 4000 parts per million metallic impurities) for use in making a reflective

heat shield. Therefore, a method was developed for preparing hyperpure fused silica

slip from the same material, Dynasil, which was discussed previously, as the raw

material for hyperpure powder for dry pressing. The material was received in the

form of rods four inches long or longer which were cut into short lengths of one

inch or less. Each individual piece of silica was then cleaned and examined

visually. The silica was then reduced to a coarse grit by crushing. The coarse

grit was next combined with high purity water and processed into hyperpure

casting slip by ball milling.

The hyperpure slip was characterized for solids content, viscosity, pH, and

particle size distribution. All of these properties are interrelated, with the

viscosity, pH and particle size distribution for slip of a given solids content

being dependent on the milling time. We have determined that a casting slip of

roughly 80% solids was optimum. The desired pH of typical casting slip was from

17
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3.5 to 4.0, with t ,, pH decreasing with increasing milling time. The viscosity of
slip suitable for casting was roughly 110 centipoises, (.11 Pa-S), as measured

wit ► , a Brooktield Viscometer, and the slip was typically thixotropic.

`he most i-portant characteristic of the casting slip was the particle size

distribution of t l^,,e solids. The particle size distribution (ASTM D422-63) of a
typical hyperpure casting slip is shown in Figure 6. The particle size distribu-

tion of ,i commercial silica casting sli p is comparable to our distribution over
the ^ •ange of sizes measureable by this method. Other work indicates that the
hyperpure matrrial contains less fine grains below 2 aim in diameter.

PARTICLE DIAMETER (D)- MICROMETERS

FIGURE 6. PARTICLE SIZE DISTRIBUTION OF A TYPICAL HYPERPURE
SILICA SLIP

Slip cast specimens were cast in plaster of paris molds according to standard

ceramic processing methods. It was determined that vibration of the mold during

casting has the desirable effect of increasing the green density of the cast parts.

The vibration employed was 60 Hz with an amplitude of 0.010 inch (25.4 mm) which

resulted in an increase in the green density of rougly 3.0% over parts cast without

vibration.

18



After removing the hyperpure parts from the mold, specimens were dried very

slowly to prevent cracks due to drying shrinkage. Parts were humidity dryed in a

closed container, followed by air drying and then oven drying at 220°F (3780K).

The completely dried hyperpure slip cast specimens were fired by inserting

them directly into a furnace, preheated to the desired firing temperature. The

soak time at peak temperature used for firing all of the hyperpure slip cast

samples prepared for this program was five hours.

!1
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SLIP CASTING MINIATURE HEAT SHIELDS

To obtain casting experience on a shape which is representative of a reflec-

tive heat shield, a series of subscale heat shields was made using commercial high

purity silica slip. These samples were approximately 6 inches (15.24 cm) in dia-
a

meter x 1 inch thick (2.54 cm) having a radius of curvature of 7 inches (17.78 cm)

The casting mold was fabricated from plaster of paris in four pieces using a

polished wood master mold. The mold had a four inch (10.16 cm) deep riser so

that excess slip could be held in position assuring a complete casting as the slip

volume shrink during casting.

A total of five miniature heat shield shapes were fabricated. The first

shield cracked in the mold because it was mistakenly allowed to dry overnight in

the mold. The shield cracked radially because it was not permitted to shrink

by the plaster male displacement portion of the mold.
	 I

F A

The second miniature heat shield was removed from the mold soon after casting.

It was dried overnight at room temperature, followed by drying in an air-circulating

oven. The shield was then quench fired at 2100°F (1422 0 K). After firing it was

observed to have severe shrinkage cracks.

The third heat shield was cast and dried in a manner similar to shield 2.

After the drying cycle was completed, this shield was observed to have severe

shrinkage cracks. The cracking problem was, therefore, concluded to be associated

with drying shrinkage.

Therefore, when heat shield sample 4 was cast, steps were taken to insure

uniform drying, which resulted in no shrinkage cracks. The shield was removed

from the mold within 30 minutes of casting and placed in a plastic container with

a sealed lid for a period of three days. The drying chamber lid was then unsealed,

but the sample was maintained in the loosely covered container for a period of

seven days, during which time it dried very slowly and uniformly. The sample was

then removed from the container and allowed to dry at room temperature for one

day. This was followed by an air-circulating oven dry for 4 hours at 120°F, (322 0Y.)
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200°F (366°K) and 350°F (450°K). The weight loss of the sample was monitored through-

out the drying cycle. On a larger sample, measurements could be taken during the

drying cycle to determine the point at which no further drying shrinkage takes place.

The above drying cycle resulted in no drying shrinkage cracks of heat shield

4, as confirmed by radiographic inspection. The radiography did, however, reveal

several small gas voids. These voids were in the range of 0.010 to 0.040 inches

j	 (.0254 to .102 cm) in diameter and all were determined to be near the interior

curved surface of the shield. The voids were removed by carefully sanding this sur-

face with coarse silicon carbide abrasive paper. The excess riser was removed with

a diamond blade band saw. All of the surfaces were then cleaned and the sharp edges

were rounded with fine silicon carbide paper.

I

Shield 4 was quench fired at 2100°F (1422°K). After firing, the sample was

observed to have cracks which were visible on the interior curved surface. Since

it is virtually impossible to thermal shock slip cast fused silica in a furnace fir-

ing, we concluded that the cracks resulted from differential firing shrinkage.
I
I

j	 Accordingly, a fifth 6 inch diameter heat shield was cast, dried, and prepared

1	
for firing in a manner similar to that described above for shield 4. Radiographic

inspection revealed the shield to be crack free before firing. The shield was fired

by installing it in a cold furnace and heating slowly to 2100°F (1422°K). Upon

completion of firing, the shield had no visible cracks.

With the processing technique established using commercial purity slip, a sixth

miniature heat shield was prepared using the hyperpure silica slip. The casting

drying and firing techniques were identical to the fifth heat shield, and it was

successfully completed with no evidence of cracks.
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FIGURE 1. OUTER PLANETS ENTRY PROBE
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CASTING HALF SCALE HEAT SHIELDS

A similar development effort was conducted to develop necessary processes for

making a half-scale heat shield, approximately 18 in. (45.72 cm) diameter.

Two changes were made in the process as part of the scale-up effort. The

first was the change of the male displacement mandrel from porous plaster to a

nonporous material. This was done so that water extraction would be accomplicbed

all from one side so that no internal nonuniformity would be present, as would be

the case when water extraction is from two sides.

The other significant change in the process was the addition of minus 40 mesh

silica grains to the casting slip. This so called aggregate slip was selected for

use over the standard slip because drying and firing shrinka g e are reduced and

f	 the casting rate is greatly increased. Our major concern regarding aggregate

casting was whether the large grains would degrade the reflectance. Accordingly,

(	 a series of specimens was made with various screen sizes and concentrations of

grains. The optimum concentration of minus 40 mesh grain for our use was found to

i

	 be 15 percent.

{	 The completed 112 scale heat shield is shown in Figure 7. This shield is 17.5

inches (44.5 cm) in diameter, 6.1 inches (15 cm) high, and approximately one inch

(2.54 cm) thick.
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CHARACTERIZATION OF SLIP CAST SILICA

This section contains representative results of testing and studies on

selected, finished high purity slip cast silica materials. Characterization of

selected silica materials includes optical, physical and mechanical properties.

Data on the hyperpure material is compared, where possible, to commercial high

puJ ty, slip cast vitreous silica materials.

O ptical Characterization

Reflectance measurements were made at wavelengths from 0.15 to 2.3 l,m if)

order to characterize the performance of the reflective slip cast heat shield

materials. A Beckman DK-2A Integrating Sphere Reflectometer was employed to

measure diffuse spectral reflectance and transmittance from 0.23 to 2.3 j,m. A

specially designed vacuum ultraviolet (VUV) integrating sphere reflectometer built

into a high vacuum chamber was used to measure diffuse spectral reflectance from

0.15 to 0.3 j,m. The results of this specially designed reflectometer are shown in

Figure 8.

1.00

0 L-
0.10	 0.20	 0.30	 0.40

WAVELENGTH — MICROMETERS

FIGURE 8. SPECIAL INSTRUMENTS DEVELOPED FOR

REFLECTANCE MEASUREMENTS

To compare the reflectance with other high purity materials, several commercial

slip cast materials were obtained and measured and one such representative compari-

son is shown in Figure 9. The Brunswick material is a strong material with a fine

grain structure (see Figure 10), but evidently contains a higher impurity content
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as indicated by Fiyure 9. Similar reflectance results were obtained with other

high purity materials.

MDC'S HYPERPURE

BRUNSWICK'S
1	 SAM-D RADOME1

i

a
LL

c	 • DENSI--7 122 LBS/FT3 FOR
BOTH MATERIALS

0.5	 --
q	 1.0

WAVELENGTH pm

FIGURE 9. COMPARISON OF TWO HIGH PURITY SLIP CAST SILICAS
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• DENSITY OF BOTH 122 LBS/FT 3 11.95 Ky/m3)
(89% OF THEORETICAL DENSITY)

• SEM PHOTOGRAPHS
MAGNIFICATION -_! 0.0005

IN.
BRUNSWICK	 112.7 pm)	 MDC HYPERPURE

4 0,01^4— -.*am

FIGURE 10. MICROSTRUCTURE OF TWO SLIP CAST SILICA MATERIALS
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Reflectance was also characterized as a function of process temperature for

the hyperpure silica. As shown in Figure 11, reflectance is maximized (depending

on desired wavelength) by firing between 2100 and 2300°F (1472 and 2760°K). Note

that the strength of the material is just beginning to increase rapidly as a

function of process temperature as the reflectance is peaking out.
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FIGURE 11. STRENGTH & REFLECTANCE ARE A FUNCTION OF

FIRING TEMPERATURE

One portion of this program has just been completed, where reflectance of the

hyperpure slip cast silica was measured as a function of temperature. As can be

seen in Figure 12, no change in reflectance was noted from room temperature up to

the process temperature (about 2250°F) (1505°K). This data will be utilized in con-

structing the thermal analysis model and still should be extended higher to the

vaporization temperature of silica, to further assist in the thermal analysis of

the ablating zone of the heat shield. Details of this work are being documented

in a final report which is almost completed.

Another optical property which is attainable with this hyperpure slip cast

material is transparency. This property of the bulk material has no use as a

reflective heat shield material but may have other industrial uses. Figure 13

shows the relative transparency of three different slip cast parts. The first

on the left, is as cast and is quite nontransparent, while the other two specimens
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FIGURE 12. SMALL CHANGES IN REFLECTANCE AS A FUNCTION OF
TEMPERATURE UP TO SINTERING TEMPERATURE

CONDITION

	

(1700'K)	 (1811 K)
THICKNESS (IN.)-	 0.100	 0.210	 0.260

	

(0.254 cm)	 (0.533 cm)	 (0.660 cm)

FIGURE 13. TRANSPARENT SLIP CAST SILICA

fired at 2600 and 2800"F (1700 and 1811°K) show considerable transparency. These

high firing temperatures are possible, without devitrification, because of the

extreme purity which has been maintained in this hyperpure fused silica. Another

side-by-side comparison of the purity affects on devitrificat i on is shown in Figure

14. Here a pure slip case material, supplied by the University of Missouri, was

fired in the same furnace run as was the hyperpure silica. The McDonnell Douglas

hyperpure silica on the -left in Figure 14 came out clear and strong, while the other

material was opaque and very weak indicating that a good deal of devitrification

has taken place.
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• BOTH SINTERED SAME RUN
. SPECIMENS APPROXIMATELY '/a INCH (0.64 cm) THICK
. BOTH SPECIMENS ARE SLIP CAST FUSED SILICA

MDC	 UNIV. OF MO., ROLLA
HYPERPURE	 HIGH PURITY

FIGURE 14. PURITY AFFECTS DEVITRIFICATION

Physical Properties

Most of the important physical properties of the hyperpure slip cast fused

silica can be varied by process temperature. Since the purity level is so high

in this material, our process temperature is not limited by devitrification as

are other slip cast fused silicas. Examples of how firing temperature can affect

physical properties are shown in Figures 15 and 16. 	 In Figure 15, open and total

• SOAK TIME IS 5 HOURS AT ALL
TEMPERATURES

• GREEN DENSITY OF MATERIAL
35 ---- I	 100 LB / FT3 (1600 Kg/m3 135 2160

f-	 30 -_ OPEN __	 _-	 _	 _ __	 — 130	 - 2080
w POROSITY	 TOTAL POROSITY
cc	 25 -	 - 125 2000

a	 20 — _	 120 LB 1920 Kg z

15 — --- 115FT3 1840m30
Y

110 1760	 DO	 10
cc co
0	 5 — -- - - -	 105 1680a

0	 _ 100 1000
2100	 21,90	 2200	 2250	 2300	 2350	 2400
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L

1422	 1450	 1478	 1505	 1533	 1561	 1589
OK

FIRING TEMPERATURE

FIGURE 15. POROSITY AND BULK DENSITY OF HYPERPURE SLIP CAST FL.SED
SILICA AS A FUNCTION OF SINTERING TEMPERATURES
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porosity are shown as a function of firing temperature. Note that a non-water-

absorbing product can be obtained by firing five hours at just slightly over 24UU°F

1589°K.	 In Figure 16 linear shirnkage is shown as a function of process temperature

for three different kinds of products; a material which has been optimized for

reflectance for a Jupiter atmospheric entry, a zero water absorbing material but

still opaque because of closed pores, and third, a high clarity, clear fused silica

glass. Processing times and furnace atmospheres were also varied to produce these

three different products.
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FIGURE 16. VARIOUS FORMS AND PROCESSING CHARACTERISTICS OF
HYPERPURE SLIP CAST FUSED SILICA

Mecha nica l Propert ies

Average flexural strengths of as high as 7,000 psi (48.27 )•9Pa) have been measdr96

as shown in Figure 17. Again, firin g temperature is the processing variaoleinch

results in the greatest variation in mechanical properties. These room temperature

strengt measurements are conservative Since the specimen size is small (surface

grinding defects are an appreciable part of the cross-sectional area). We have not

yet optimized the strength of the hyperpure slip cast material by using such tech-

niques as optimum particle packing. One example of the improvement possible using

various sized particles, is shown in Figure 18 where appreciable improvements have

been made in the "green" strength of two of our hyperpure silicas. The concentra-

tion of "fines" (under 2 um) is the major factor which can improve the unfired

strength of the material.
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CURRENT EFFORT

Recent findings have caused a minor redirection of the program toward increas-

ing the toughness of our hyperpure silica heat shield material. Detailed stress

analyses show that for a Jupiter entr y a safety factor of only 1.25 is obtained

using the latest Iaterial properties which is marginal for a brittle material.

Stress Analysis

Several detailed stress analyses have been conducted recently using the best

available properties of the hyperpure material. Figure 19 shows where large

tensile stresses occur in a silica heat shield during maximum aerodynamic decelera-

tion during a Jupiter atmospheric entry. The predicted ultimate stresses (factor of

safety = 1.25) result from applied inertial and aerodynamic pressure loads com-

bined with loads induced by an appropriate temperature gradient through the

thickness of the heat shield. The largest stress (1413 psi) (9.743 MPa) results

primarily from mechanical flexure of the heat shield and structure under the aero-

dynamic pressure loading. The stresses at the aft edge (1179 psi) (8.129 MPa) and

near the nose (1180 psi) (8.136 MPa) result primarily from the temperature gradient.

• JUPITER NOMINAL ENTRY — MAXIMUM DECELERATION
• LOADS AND STRESSES ARE ULTIMATE
• TYPICAL STRUCTURAL SUPPORT SYSTEM

q5 a t = 1179 PSI
8.129 MPa

MERIDIONAL CROSS
SECTION SHOWN

L	 STRUCTURAL

SUPPORT

q3

q2

q1

-	 i

1 i.

(7 t =1180 PSI	 SURFACE

 8.136 MPa	 TEMPERATURE	 4800"1
2922"

RONDLINE
TEMPERATURE — 70°F

294-K

P1

SILICA
HEAT SHIELD

APPLIED LOADS
P O =	 109.6 PSI 0.7557 MPa
P 1	= 25 0 PSI 0 172	 MPa
q 1 704 LB/RAD 319 Kg'RAD
q 2 961 LB/RAD 436 Kg%RAD
q 3	 = 5317 LB/RAD 2412 Kg: RAD
q 4 2434 LB/RAD 1104 KgiRAD
q5 = 3395 LB/RAD 1540 Kg/RAD

PLUS HEAT SHIELD
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(7 t = 1413 PSI
9.743 MP

FIGURE 19. PREDICTED TENSILE STRESSES IN A SILICA HEAT SHIELD
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Improved mechanical property results will become available since we

are also measuring properties of the hyper pure slip cast material as

a function of temperature. This property determination work is about one-

half completed.

Tougher Material Develo ment

We are currently developing a tougher (toughness being the area under the

tensile stress-strain curve) silica material, by incorporating silica fibers into

the formulation. Figure 20 shows our preliminary test results showing higher

mechanical strains at failure with increasing silica fiber concentration. These

are various types of silica materials and are therefore not directly comparable,

but we feel it is a valid trend. Fiber concentrations of 25 percent have been

obtained to date and we expect that 50 percent concentrations are possible using

the casting approach. Two other approaches are also being worked to incorporate

fibers into the heat shield material but these are just beginning and there is no

progress to report.

0.20

0.15

STRAIN AT
FAILURE -- %

0.10

0.05

0
PRESENT	 5%	 15%
BASELINE	 FIBERS	 FIBERS
MATERIAL;	 (COLLOIDAL
NO FIBERS	 SILICA BINDER)

FIGURE 20. PRELIMINARY COMPARISON OF TOUGHER FUSED SILICA MATERIALS
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CONCLUSIONS

Probes entering the atmospheres of the outer planets, such as Jupiter, will

require heat shielding capable of withstanding convective and radiative heating

environments much more severe than current experience. With radiative heating

being predominant over convective heating in some cases, a different approach to

heat shielding was suggested by NASA Ames in 1971. A heat shield that reflects

the radiation, to prevent it from being absorbed, would result in an appreciably

lighter heat shield compared to a non-reflecting heat shield. This concept was

proven by arc jet/radiant lamp testing using white and black Teflon.

As an extension of this work with Teflon, silica was chosen for use as the

reflecting heat shield material for planetary probe vehicles. Many different
Z
orms of silica were evaluated, and only one form of silica was available with the

purity level (1 ppm total metals) required for maximum reflectance. This form is

the synthetic type such as is manufactured by Dynasil Corporation and others.

Various forms of silica were also evaluated as candidate heat shield materials

along with appropriate processing methods. These forms included cloth, yarns, loose

fibers, grains, and binders. Very tough and strong composites were made, compared

to all granular formulations, using high fiber concentrations and colloidal silica

binders, however, neither fibers or cc.iloids are available with the high purity

levels required for maximum reflectance.

Slip casting was selected as the fabrication method which would yield a hyper-

pure reflective heat shield, consistent with processing methods which could be

scaled up to full size (35 inch) (88.90 cm) diameter heat shields. A half scale

shield was built which, after completion, has a reflectance of 0.99 from wave-

lengths of 0.4 to 1.2 um. A very critical processing step in producing a crack-

Free cast shield is drying, and this problem is eliminated by slow humidity

drying and the addition of large grains of silica to the slip. This and other

key processing steps were verified by successfully producing both 1/6 scale and

1/2 scale heat shields.

Both mechanical and optical properties are now being measured as a function of

35



i^
temperature on the reflectance optimized slip cast material. Preliminary stress

analyses, using limited data now available, have revealed that the heat shield can

survive a Jupiter entry with a safety factor of 1.5. It is desirable to have a

higher safety factor considering the brittleness of this material. The desirability

of having a shield with a higher safety factor has slightly redirected the program

to produce a highly reflective material, having a higher strain-at-failure (or a

l
tougher material). The results of this effort to date have been encouraging. The

tougher material is produced by the incorporation of hyperpure silica fibers into
tj

the slip formulation.
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