Spacecraft Transformer and Inductor Design

```
(NASA-CR-154104) SPACECRAFT TRANSTORMEB AND
N77-28392
INDUCTOR DESIGN (Jet Eropulsicn Lab.) nN" %
HC A $3/ME AO1

\author{
National Aeronautics and
}

Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

\title{
Spacecraft Transformer and Inductor Design
}

\author{
Colonel W. T. McLyman
}

August 15, 1977

National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

\section*{PREFACE}

The work described in this report was performed by the Concrol and Energy Conversion Division of the Jet Propulsion Laboratory.

\section*{ACKNOWLEDGMENT}

The author is grateful to Dr. G. W. Wester, S. Nagano, E, L. Sheldon and Mary Fran Buehler for their assistance and suggestions in preparation of this report.

\begin{abstract}
The conversion process in spacecraft power electronics requires the use of magnetic components which frequently are the heaviest and bulkiest items in the conversion circuit. They also have a significant effect upon the performance, weight, cost, and efficiency of the power system.

This handbook contains eight chapters, which pertain to magnetic material selection, transformer and inductor design tradeoffs, transformer design, iron core de inductor design, toroidal powder core inductor design, window utilization factors, regulation, and temperature rise. Relationships are given which simplify and standardize the design of transformers and the analysis of the circuits in which they are used.

The interactions of the various design parameters are also presented in simplified form so that tradeoffs and optimizations may easily be made.
\end{abstract}

\section*{CONTENTS}
CHAPTER I MAGNETIC MATERIALS SELECTION FOR STATIC INVERTER AND CONVERTER TRANSFORMERS ..... 1-1
A Introduction ..... 1-2
B Typical Operation ..... 1-2
C Material Characteristics ..... 1-3
D Core Saturation Definition ..... 1-5
E The Test Setup ..... 1-9
F Core Saturation Theory ..... 1-15
GAir Gap.1-16
H Effect of Gapping ..... 1-16
The New Core Configuration ..... 1-25ISummary1-30
Bibliography ..... 1-31
Tables
1-1 Magnetic core material characteristics ..... 1-4
1-2 Materills and constraints ..... 1-9
1-3 Comparing \(B_{r} / B_{m}\) on uncut and cut cores ..... 1-21
1-4 Cornparing \(\Delta \mathrm{H}-\Delta \mathrm{H}_{\mathrm{OP}}\) on uncut and cut cores ..... 1-22
1-5 Composite cores ..... 1-28
Figures
1-1 Typical driven transistor inverter ..... 1-2
1-2 Ideal square \(B-H\) loop ..... 1-3
1-3 The typical B-H loops of magnetic materials ..... 1-4
1-4 Defining the \(B-H\) loop ..... 1-6
1-5 Excitation current ..... 1-7
1-6 B-H loop with dc bias ..... 1-8
1-7 Typical square loop material with ac excitation ..... 1-8
1-8 Dynamic B-H loop test fixture ..... 1-9
1-9 Implementing dc unbalance ..... 1-10
1-10 Magnesil (K) B-H loop ..... 1-10
1-11 Orthonal (A) B-H loop ..... 1-11
1-12 48 Alloy (H) B-H loop ..... 1-11

\section*{CONTENTS (contd)}

1-13 Sq. permailoy (P) B-H loop. .................. 1-11
1-14 Supermalloy (F) B-H loop . . . . . . . . . . . . . . . . . . . . 1-12

1-15

1-16
1-17
1.18

1-19
1-20
1-2.
\(1-22\)
1-23

1-24
1-25
1-26
1-27
\(1-28\)

1-29

1-30

1-31

1-32
1-33
1-34
1-35

1-36
1-37

1-38

Composite 52029 (2K), (A), (H), (P), and ( F ) \(\mathrm{B}-\mathrm{H}\) loops 1-12

Magnesil (K) B-H loop with and without dc . . . . . . . . 1-13
Orthonol (A) B-H loop with and without de 1-13
48 Alloy (H) B-H loop with and without dc ..... 1-14
Sq. Permalloy (P) B-H loop with and without dc ..... 1-14
Supermalloy (F) B-H loop with and without de ..... 1-14
Unmagnetized material ..... 1-15
Magnetized material ..... 1-15
Air gap increases the effective length of the magnetic path ..... 1-17
Implementing dc unbalance ..... 1-17
Typical cut toroid ..... 1-18
Typical cut "C" core ..... 1-19
Magnesil 52029 (2K) B-H loop, (a) uncut and (b) cut ..... 1-19
Orthonol 52029 (2A) B-H loop, (a) uncut and (b) cut ..... I-20
48 Alloy 52029 (2H) B-H loop, (a) uncut and (b) cut ..... 1-20
Sq. Permalloy (2D) B-H loop, (a) uncut and (b) cut ..... \(1-20\)
Supermalloy 52029 (2F) B-H loop, (a) uncut and (b) cut ..... 1-21
Defining \(\Delta H\) and \(\Delta H_{O P}\) ..... 1-21
Inverter inrush current measurement ..... 1-22
Typical inrush of an uncut core in a driven inverter ..... 1-23
Typical inrush current of a cut core in a driven inverter ..... 1-23
T-R supply current measurement ..... 1-24
Typical inrush current of an uncut core operating from an ac source ..... 1-24
Typical inrush current of a cut core in a \(T-R\) ..... 1-24

\section*{CONTENTS (contd)}
\begin{tabular}{|c|c|c|}
\hline 1-39 & The uncut core excited at \(0.2 \mathrm{~T} / \mathrm{cm} . . . . . . . .\). & 1-26 \\
\hline 1-40 & Both cores cut and uncut excited at \(0.2 \mathrm{~T} / \mathrm{cm}\). & 1-26 \\
\hline 1.41 & Cores before assembly . . . . . . . . . . . . . . . . . . . . & 1-27 \\
\hline 1-42 & Cores after assembly. & 1-27 \\
\hline 1-43 & Stack 1 x 1 . . & 1-29 \\
\hline 1-44 & Stack one half \(1 \times 1\) and one half butt stack. & 1-29 \\
\hline CHAPIER II & TRANSFORMER DESIGN TRADEOFFS & 2-1 \\
\hline A & Introduction & 2-3 \\
\hline B & The Area Product \(A_{p}\) and Its Relationships & 2-4 \\
\hline C & Transformer Volume . . & 2-18 \\
\hline D & Transformer Weight. . . . . . . . . . . . . . . . . . . . & 2-24 \\
\hline E & Transformer Surface Area . . & 2-28 \\
\hline F & Transformer Current Density . . . . & 2-34 \\
\hline
\end{tabular}

\section*{Tables}

2-1 Core configuration constants . . . . . . . . . . . . . . . . . 2-4
2-2
Powder core characteristics 2-7

2-3 Pot core characteristics.................... 2-9
2-4 Lamination characteristics................. 2-11
2-5
2-6
C-core characteristics
2-13

2-7
2-8
2-9
Single=coil C-core characteristics 2-15

Tape-wound core characteristics 2-17

Constant \(K_{V}\)
2-20

2-11

2-1
2-2
2-3
2-4

Figures2-1

Constant \(\mathrm{K}_{\mathrm{w}}\)2-28
Constant \(K_{s}\) ..... 2-31Constant \(K_{j}\)2-37C-core2-5
2-2 EI lamination ..... 2-5
Pot core ..... 2-5
Tape-wound toroidal core ..... 2-5

\section*{CONTENTS (contd)}
2-5 Powder core ..... 2-5
2-6 Tape-wound core, powder core, and pot core volume ..... 2-19
2-7 EI lamination volume ..... 2-19
2-8 C-core volume ..... 2-19
2-9 Single-coil C-core volume ..... 2-19Volume versus area product \(A_{p}\) for pot cores2-21
Volume versus area product \(A_{p}\) for powder cores ..... 2-21
Volume versus area product \(A_{p}\) for laminations ..... 2-222-142-15
2-16
2-13 Volume versus a rea product \(A_{p}\) for C-cores ..... 2-222-14
2-17 Total weight versus area prodnct \(A_{p}\) for powder cores ..... 2-262-182-192-202-212-222-232-242-252.-26
\(2-27\)\(2-28\)
2-29 Surface area versus area product \(A_{p}\) for C-cores ..... 2-33Volume versus area product \(A\) for single-coilC-cores2-23
Volume versus area product \(A\) for tape-wound to roids ..... 2-23
Total weight versus area product \(A_{p}\) for pot cores. ..... 2-25
Total weight versus area product \(A p\) for ..... 2-26
Total weight versus area product \(A_{p}\) for \(C\)-cores ..... 2-27
 ..... 2-27
Total weight versus area product \(A\) for tape-wound toroids ..... 2-28
Tapenwound core, powder core, and pot core surface area \(A_{t}\) ..... 2-29
Lamination surface area \(A_{t}\) ..... 2-29
\(C\)-core surface area \(A_{t}\). ..... 2-29
Single-coil C-core surface area \(A_{t}\) ..... 2-29
Surface area versus area product \(A_{p}\) for pot cores ..... 2-31
Surface area versus arca product \(A\) for powder cores ..... 2-32
Surface area versus area product \(A_{p}\) for laminations ..... 2-32

\section*{CONTENTS (contd)}
2-30
Surface area versus area proáuct \(A_{p}\) for single-coil C-cores ..... 2-33
2-31 Surface area versus area product for tape-wound toroids ..... 2-34
2-32 Current density versus area product \(A_{p}\) for a \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for pot cores ..... 2-37
2-33 Current density versus area product \(A_{p}\) for a \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for powder cores ..... 2-38
2-34 Current density versus area product \(A_{p}\) for \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for laminations ..... 2-38
2-35 Current density versus area product \(A\) for \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for \(\mathrm{C}-\mathrm{cores}\) ..... 2-39
2-36 Current density versus area product \(A\) for a \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for single-coil C -cores P . ..... 2-39
2-37 Current density versus area product \(A_{p}\) for \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for tape-wound toroids ..... 2-40
CHAPTER III POWER.TRANSFORMER DESIGN ..... 3-1
A Introduction ..... 3-3
B The Design Problem Generally ..... 3-3
C Relationship of \(A\) to Transformei Power Handling Capability ..... 3-5
D Output Power vs Input Power vs Apparent Power Capability ..... 3-5
E A 2. 5 k kHz Transformer Design Problem As An Example ..... 3-9
F A \(10-\mathrm{kHz}\) Transformer Design Problem As An Example ..... 3-20
REFERENCES ..... 3-28
APPENDIX 3, A Transformer Power Handling Capability ..... 3-29
Tables
3-1 C-core characteristics ..... 3-11
Figures
3-1 Transformer design factors flow chart ..... 3.4
3-2 Full-wave bridge circuit ..... 3-7
3-3 Full-wave, center-tapped circuit ..... 3-7

\section*{CONTENTS (contr)}
\begin{tabular}{ll} 
3-4 & Push-pull, full-wave, center-tapped circuit...... \\
\(3-5\) & Magnetic matorial comparison at a constant
\end{tabular}

3-5 Magnetic matorial comparison at a constant frequency 3-12
CHAPTER IV SIMPLIFIED CUT CORE INDUCTOR DESIGN ..... 4-1
A Introduction ..... 4-2
B Core Material ..... 4-2
C Relationship of \(A_{p}\) to Inductor Energy Handling Capability ..... 4-3
D Fundamental Consideration ..... 4-4
E Design Example ..... 4-10
REFERENCES ..... 4-44
APPENDIX 4. A Linear Reactor Design With an Iron Core ..... 4-17
APPENDIX 4, B C cole and Bobbin Magnetic and Dimensional Specification ..... 4-21
Tables
4-1 Magnetic material ..... 4-5
4, B-1 "C" Core AL-2 ..... 4-22
4. \(\mathrm{B}-2\) "C" Core AL-3 ..... 4-23
4. B-3 "C" Core AL-5 ..... 4-24
4, B-4 "C" Core AL-6 ..... 4-25
4. B-5 "C"' Core AL-12A ..... \(4-26\)
4. B-6 " \({ }^{C}\) " Core AL-8 ..... 4-27
4.B-7 "C"' Core AL-9 ..... 4-28
4. B-8 "C" Core AL-10 ..... 4-29
4. B-9 "C" Core AL-12 ..... 4-30
4. \(\mathrm{B}-10\) "C" Core AL- 135 ..... 4-31
4.B-11 "C" Core AL-78 ..... 4-32
4.B-12 "C" Core AL- 18 ..... 4-33
4. B-13 "C" Core AL-15 ..... 4-34
4.B-14 "C" Core AL. 16 ..... 4-35
4. B-15 "C" Core AL-17 ..... 4-36
4. B-16 "C" Core AL-19 ..... 4-37
4. B-17 "C" Core AL-20 ..... 4-38

\section*{CONTENTS (contd)}
4.B-18 "C" Core AL-22 ..... 4-39
4. B-19 "C" Core AL-23 ..... 4-40
4.B-20 "C" Core AL-24 ..... 4-4i
Figures
4-1 Inductance ve dc bias ..... 4-3
4-2 Flux density versus \(I_{\text {dc }}+\Delta I\) ..... 4-5
4-3 Increase of reactor inductance with flux fringing at the gap ..... 4-7
4-4 Effective permeability of cut core vs permeability of the riaterial ..... 4-8
4-5Minimum design permeability4-9
4-6 4-6 Design curves showing maximum core losa for 2 mil silicon "C" cores ..... 4-16
4. B-1 Wiregraph for "C" wre AL-2 ..... 4-22
4. B-2 Wiregraph for "C" ure \(\therefore\) L-3 ..... 4-23
4. B-3 Wiregraph for • cure AL-5 ..... 4-24
4, B-4 Wiregrari \(r, r\) core \(A L-6\) ..... 4-25
4. B-5 Wiregrathtor \(C^{\prime \prime}\) core \(A L-124\) ..... 4-26
4. B-6 Wiregraph for " \(C\) " core \(A L-8\) ..... 4-27
4.B-7 Wiregraph for " \(C\) " core AL-9 ..... 4-28
4. B-8 Wiregraph for "C" core \(A L=10\) ..... 4-29
4. B-9 Wiregraph for "C" core AL-12 ..... 4-30
4. B- 10 Wiregraph for " \(C\) " core AL-135 ..... 4.31
4. B-11 Wiregraph for "C" core AL-TE ..... 4-32
4.B-12 Wiregraph for " \(C\) " core \(A L-18\) ..... 4-33
4. B-13 Wiregraph for " \(C\) " core AL-15 ..... 4-34
4. B-14 Wiregraph for " \(C\) " core AL- 16 ..... 4-35
4. B-15 Wiregraph for " \(C\) " core \(A L-17\) ..... 4-36
4. B-16 Wiregraph for " \(C\) " core \(A L-19\) ..... 4-37
4. B-17 Wiregraph for " \({ }^{\prime \prime}\) " core \(A L-20\) ..... 4-38
4. B-18 Wiregraph for " \(C\) " core AL-22 ..... 4-39
4. B-19 Wiregraph for " C " core \(A \mathrm{~L}-23\) ..... 4-40
4, B-20 Wiregraph for " \(C\) " core \(A L-24\) ..... 4-41

\section*{CONTENTS (contd)}
\begin{tabular}{|c|c|c|}
\hline 4. 5-21 & Graph for inductance, catacitance, and -tactarce. & 4-42 \\
\hline 4. B-22 & Area product vs energy \(\frac{L_{1}{ }^{2}}{2} \ldots \ldots\). & 4-43 \\
\hline CHAPTER V & TOROIDAL POWDER CORE SELECTION WITH DC ©URRENT. & 5-1 \\
\hline A & Introduction & 5-2 \\
\hline B & Relationship of Ap to Inducto:'s Energy Handling Capability & 5-2 \\
\hline C & Fundamental Considerations & 5-3 \\
\hline D & A Specified Design Problem As An Example & j-6 \\
\hline & Bibilography . . . & 5-11 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
APPENDIY 5. A Toroid Powder Core Selection \(N\) ith DC Curre \\
APPENDIX 5. B Magnetic and Dimensional Specifications for 13 Commonly Used Moly- '3ernalloy Cores
\end{tabular}}} & 5-12 \\
\hline & & 5-16 \\
\hline
\end{tabular}

\section*{Tables}
5-1 Different powder core permeabilities . . . . . . . . 5-3
\begin{tabular}{ll} 
5. B-1 & Dimensional specifications for Magnetic Inc \\
& \(55051-\mathrm{A} 2\), Arnold Engineering \(A-051027-2 \ldots\)
\end{tabular}
5.B-2 \begin{tabular}{l} 
Dimensional specifications for Magnetic Inc 55121-A2, \\
\(\quad\) Arnold Engineering A-266036-2 ........... \(5-18\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline 5. B-3 & Dimensioral specifications for Magnetic Inc 55848-A2, \\
\hline & A rnold Engineering A-818032-2 . . . . . . . . . . \\
\hline
\end{tabular}
5. B-4 \begin{tabular}{ll} 
Dimensional specifications for Magnetic Inc 55059-A2, \\
& Arnold Engineering A-059043-2 ...........
\end{tabular}
\begin{tabular}{ll} 
5. B-5 & Dimensional specifications for Magnetic Inc \\
& \(55894 m\) A2, Arnold Engineering A-89075-2 .....
\end{tabular}
\begin{tabular}{ll} 
5. B-6 & Dimensional specifications for Magnetic Inc \\
& \(55071-A 2\), Arnold Engineering A-291061-2 \(\ldots\)
\end{tabular}
\begin{tabular}{ll} 
5. B-7 Dimensional specifications for Magnetic Inc \\
& 55586-A2, is rnold Engineering A-345038-2 ....
\end{tabular}
\begin{tabular}{ll} 
5.B-8 & \begin{tabular}{l} 
Dimensional specifications for Magnetic Inc \\
\(55076-A 2, ~ A r n o l d ~ E n g i n e e r i n g ~ A-076056-2 ~\)
\end{tabular}\(..\).
\end{tabular}
\begin{tabular}{ll} 
5. B-9 & Dimensional specificntions for Magnetic Inc \\
& 55083-A2, A rnold Engineering A-083081-2 . . . .
\end{tabular}


\section*{CONTENTS (contd)}
\begin{tabular}{|c|c|c|}
\hline 5. B-11 & Dimensional specifications for Magnetic Inc 55110-A2, Arnold Engineering A-488075-2. & 5-27 \\
\hline 5. B-12 & Dimensional specifications for Magnetic Inc 55716-A2, Arnold Engineering A-106073-2 & 5-28 \\
\hline 5. B-13 & Dimensional specifications for Magnetic Inc 55090-A2, Arnold Engineering A-090086-2 . & 5-29 \\
\hline \multicolumn{3}{|l|}{Fiures} \\
\hline 5-1 & Flux density versus \(I_{\text {dc }}+\Delta I\) & 5-5 \\
\hline 5-2 & Inductance versus de bias & 5-6 \\
\hline 5. B. 1 & Wire and inductance graph for Core 55051-A2 & 5-17 \\
\hline 5. B-2 & Wire and inductance graph for Core 55121-A2 & 5-18 \\
\hline 5. B-3 & Wire and inductance graph for Core 55848-A2 & 5-19 \\
\hline 5. B-4 & Wire and inductance graph for Core 55059-A2 & 5-20 \\
\hline 5. B-5 & Wire and inductance graph for Core 55894-A2 & 5-21 \\
\hline 5. \(\mathrm{B}-6\) & Wire and inductance graph for Core 55071-A2 & 5-22 \\
\hline 5. B-7 & Wire and inductance graph for Core 55586-A2 & 5-23 \\
\hline 5. B-8 & Wire and inductance graph for Core 55076-A2 & 5-24 \\
\hline 5. B-9 & Wire and inductance graph for Core 55083-A2 & 5-25 \\
\hline 5. B-10 & Wire and inductance graph for Core 55439-A2 & 5-26 \\
\hline 5. B-11 & Wire and inductance graph for Core 55110-A2 & 5-27 \\
\hline 5. \(\mathrm{Ba}_{\sim} 12\) & Wire and inductance graph for Core 55716-A2 & 5-28 \\
\hline 5. B-13 & Wire and inductance graph for Core 55090-A2 & 5-29 \\
\hline CHAPTER VI & WINDOW UTILIZATION FACTOR \(K_{u}\) & 6-1 \\
\hline A & Introduction & 6-2 \\
\hline B & Window Utilization Factor & 6-2 \\
\hline C & Conversion Data for Wire Sizes From No. 10 No. 44 & 6.4 \\
\hline D & Temperature Correction Fostors & 6-7 \\
\hline E & Window Utilization Factor for a Toroid & 6-7 \\
\hline
\end{tabular}

\section*{CONTENTS (contd)}

\section*{Tables}



6-4 A.I.E.E. preferred tape-wound cores . . . . . . . . 6-15

\section*{Figures}
\(\begin{array}{ll}\text { 6-1 } & \text { Resistance Correction Factor (5) for wire resistance } \\ \text { at temperatures between }-50^{\circ} \mathrm{C} \text { and } 100^{\circ} \mathrm{C} \ldots . . . .6\end{array}\)
6-2 Computation of mean turn length ...................... 6-8

6-4 Toroid inside diameter versus turns ........... 6-11
6-5 Effective winding area of a toroid . ............ 6-12
6-6 Wrap toroid.............. ............. .... 6-12
6-7 Periphery insulation . . ................... . . . . . . . . . . . . . .
6-8 Minimizing toroidal inside build.............. 0-13
\(\begin{array}{ll}\text { CHAPTER VII } & \text { TRANSFORMER-INDUCTOR EFFICIENCY, } \\ & \text { REGULATION, AND TEMPERATURE RISE . . . . . . } 7-1\end{array}\)
A
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
B Transformer Efficiency . . . . . . . . . . . . . . . . . . . 7-2
C Relationship of \(A_{p}\) to Control of Temperature Rise . . 7-4
1. Temperature Rise..... . . . . . . . . . . . . . . . . 7-4
2. Calculation of Temperature Rise . . . . . . . . . . 7-5
3. Temperature Rise Versus Surface Area
Dissipation. . . . . . . . . . . . . . . . . . .
4. Surface Area Required for Heat Dissipation . . . . 7-8

D Regulation as a Function of Efficiency . . . . . . . . . . 7-10
E Designing for a Given Regulation . . . . . . . . . . . . 7-14
1. Transformers....................... 7-14
2. Inductors . . . . . . . . . . . . . . . . . . . . . . . . 7 7-16
3. Transformer Design Example I . . . . . . . . . . . 7-17
4. Transformer Design Example II . . . . . . . . . . . . 7-21
5. Inductor Design Example ................. 7-26

\section*{CONTENTS (contd)}
F Magnetic Core Material Tradeoff ..... 7-32
G Skin Effect ..... 7-43
Reference ..... 7-47
APPENDIX 7. A Transformers Designed for a Given Regulation ..... 7-48
APPENDIX 7. B Inductors Designed for a Given Regulation ..... 7-53
APPENDIX 7. C Transformer Area Product and Geometry ..... 7-63
Tables
7-1 Magnetic core material characteristics ..... 7-33
7. B-1 Coefficient \(\mathrm{K}_{\mathrm{g}}\) for C cores ..... 7-58
7. B-2 Coefficient \(\mathrm{K}_{\mathrm{g}}\) for laminations ..... 7-597. B-3Coefficient \(\mathrm{K}_{\mathrm{g}}\) for pot cores7-60
7. \(\mathrm{B}-4\) Coefficient \(K_{g}\) for powder cores ..... 7-61
7. B-5 Coefficient \(K_{g}\) for tape-wound toroids ..... 7-62
7. C-1 Constayt \(\mathrm{K}_{\mathrm{g}}\) relationship ..... 7-64
Figures
7-1 Transformer loss veraus output load current ..... 7-3
7-2 Temperature rise versus surface dissipation ..... 7-8
7-3 Surface area versus area product \(A\) ..... 7-9
7-4 Surface area versus total watt loss for a \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise ..... 7-10
7-5 Transformer circuit diagram ..... 7-10
7-6 Transformer analytical equivalent ..... 7-11
7-7 Area product versus regulation ..... \(7-15\)
7-8 Weight versus regulation ..... 7-16
7-9 The typical dc B-H loops of magnetic material ..... 7-34
7-10 Design curves showing maximum core loss for 2 mil silicon. ..... 7-35
\(7-11\) Design curves showing maximum core loss for 12 mil silicon ..... 7-36
7-12 Design curves
supermendor ..... 7-377-13
Design curves showing maximum core loss for 4 mil supermendor ..... 7-38

\section*{CONTENTS (contd)}
7-14 Design curves showing maximum core loss for \(2 \mathrm{mil} 50 \% \mathrm{Ni}, 50 \% \mathrm{Fe}\) ..... 7-39
\(7-15\) Design curves showing maximum core loss for \(2 \mathrm{mil} 48 \% \mathrm{Ni}, 52 \% \mathrm{Fe}\) ..... 7-40
7-16 Design curves showing maximum core loss for \(2 \mathrm{mil} 80 \% \mathrm{Ni}, 20 \% \mathrm{Fe}\) ..... 7-41
\(7-17\) Design curves showing maximum core loss for ferrite ..... 7-42
7-18 Skin depth versus frequency ..... 7-44
7-19 Skin depth equal to \(A W G\) radius versus frequency ..... 7-45
7-20 Common waveshapes, RMS values ..... 7-46
7. A-1 Isolation transformer ..... 7-49
7. \(\mathrm{B}=1\) Output inductor ..... 7-53
7. C-1 Area product versus core geometry for pot cores ..... 7-65
7.C-2 Area product versus core geometry for powder cores ..... 7-65
7.C-3 Area product versus core geometry for Cores ..... 7-66
7. C-4 Area product versus core geometry for laminations ..... 7-66
7.C-5 Area product ve. qus core geometry for tape-wound toroids ..... \(7-67\)
CHAPTER VIII INDUCTOR DESIGN WITH NO DC FLUX ..... 8-1
A Introduction ..... 8-2
\(B \quad\) Relationship of \(A_{p}\) to Inductor Volt-Ampere Capability ..... 8-2
C Fundamental Considerations ..... 8-3
D Design Example ..... 8-6
Reference ..... 8-12
Figures ..... 8-1
Fringing flux a round the gap of an inductor designed with lamination ..... 8-5

\section*{LIST OF SYMBOLS}
\begin{tabular}{|c|c|}
\hline \(\alpha\) & regulation, \% \\
\hline \(A_{c}\) & effective iron area, \(\mathrm{cm}^{2}\) \\
\hline \({ }^{\text {A }} \mathrm{P}\) & area product, \(W_{a} \times A_{c}, \mathrm{~cm}^{4}\) \\
\hline \(A_{t}\) & surface area of a transformer, \(\mathrm{cm}^{2}\) \\
\hline \({ }^{\text {A }}\) w & wire area, \(\mathrm{cm}^{2}\) \\
\hline \(A_{w(B)}\) & bare wire area, \(\mathrm{cm}^{2}\) \\
\hline AWG & American Wire Gauge \\
\hline \(\mathrm{B}_{\mathrm{ac}}\) & alternating current flux density, teslas \\
\hline \({ }^{\text {B }} \mathrm{dc}\) & direct current flux density, teslas \\
\hline \(\mathrm{B}_{\mathrm{m}}\) & flux density, teslas \\
\hline \(\mathrm{B}_{5}\) & flux density to saturate \\
\hline cir-mil & area of a circle whose diameter \(=0.001\) inches \\
\hline D & lamination tongue width, cm \\
\hline \(E\) & voltage \\
\hline Eng & energy, watt seconds \\
\hline \(\eta\) & efficiency \\
\hline \(f\) & frequency, Hz \\
\hline F & fringing flux factor \\
\hline G & window height, cm \\
\hline H & magnetizing force ampturns/cm \\
\hline \(\mathrm{H}_{5}\) & magnetizing force to saturate \\
\hline I & current, amps \\
\hline \(I_{0}\) & load current, amps \\
\hline \(I_{p}\) & primary current, amps \\
\hline
\end{tabular}

\section*{LIST OF SYMBOLS (contd)}
\begin{tabular}{|c|c|}
\hline I

\(J\) & \begin{tabular}{l}
secondary current, amps \\
current density, amps \(/ \mathrm{cm}^{2}\)
\end{tabular} \\
\hline \(\mathrm{J}_{\mathrm{p}}\) & primary current density, amps \(/ \mathrm{cm}^{2}\) \\
\hline \(\mathrm{J}_{s}\) & secondary current density, amps/cm \({ }^{2}\) \\
\hline K & constant \\
\hline \(\mathrm{K}_{\mathrm{e}}\) & electrical coefficient \\
\hline \(\mathrm{K}_{\mathrm{g}}\) & geometry coefficient \\
\hline \(\mathrm{K}_{\mathrm{i}}\) & gap losa coefficient \\
\hline \(\mathrm{K}_{\mathrm{j}}\) & current density coefficient \\
\hline \(\mathrm{K}_{\mathrm{p}}\) & area product coefficient \\
\hline \(\mathrm{K}_{s}\) & surface area coefficient \\
\hline \(\mathrm{K}_{\mathrm{u}}\) & window utilization factor \\
\hline \(\mathrm{K}_{\mathrm{v}}\) & volume coefficient \\
\hline \(\mathrm{K}_{\mathrm{w}}\) & weight coefficient \\
\hline L & inductance, henry \\
\hline \(1_{\mathrm{g}}\) & gap, cm \\
\hline \(1{ }_{\mathrm{m}}\) & magnetic path, cm \\
\hline \(\ell\) & linear dimension, cm \\
\hline m & meter \\
\hline MLT & mean length turn, cm \\
\hline \({ }^{\mu}{ }_{\Delta}\) & effective permeability \\
\hline \(\mu_{m}\) & core material permeability \\
\hline \({ }^{\prime}\) 。 & absolute permeakility \\
\hline \(\mu_{r}\) & relative permeability \\
\hline
\end{tabular}

\section*{LIST OF SYMBOLS (contd)}
\begin{tabular}{|c|c|}
\hline N & turns \\
\hline P & power, watts \\
\hline ф & flux webers \\
\hline \(\mathrm{P}_{\mathrm{cu}}\) & copper loss, watts \\
\hline \(P_{\text {fe }}\) & core loss, watts \\
\hline \(P_{\text {in }}\) & input power, watts \\
\hline \(\mathrm{P}_{0}\) & output power, watts \\
\hline \(\pm\) & heat flux density, watts/ \(\mathrm{cm}^{2}\) \\
\hline \(\mathrm{P}_{\mathrm{p}}\) & primary loss, watts \\
\hline \(\mathrm{P}_{\mathrm{s}}\) & secondary loss, watts \\
\hline \(\mathrm{P}_{\Sigma}\) & total lose (core and copper), watts \\
\hline \(\mathrm{P}_{\mathrm{t}}\) & apparent power, watts \\
\hline R & resistance, ohms \\
\hline \(\rho\) & resistivity \\
\hline \(\mathrm{R}_{\mathrm{E}}\) & equivalent core-loss (shunt) resistance, ohms \\
\hline \(\mathrm{R}_{\mathrm{cu}}\) & copper resistance, ohms \\
\hline \(\mathrm{R}_{0}\) & load resistance, ohms \\
\hline \(\mathrm{R}_{\mathrm{p}}\) & primary resistance, ohms \\
\hline \(\mathrm{R}_{s}\) & secondary resistance, ohms \\
\hline \(\mathrm{R}_{\mathrm{t}}\) & total resistance, ohms \\
\hline \(S_{1}\) & conductor area/wire area \\
\hline \(\mathrm{S}_{2}\) & wound area/usable window \\
\hline \(S_{3}\) & usable window area/window area \\
\hline
\end{tabular}
\begin{tabular}{cl}
\(S_{4}\) & usable window area/usable window area + insulation area \\
\(T\) & flux density, teslas \\
\(V_{0}\) & load voltage, volts \\
Vol & volume, \(\mathrm{cm}^{3}\) \\
\(W_{a}\) & window area, \(\mathrm{cm}^{2}\) \\
\(W_{t}\) & weight, grams \\
\(\zeta\) & zetaresistance correction factor for temperature
\end{tabular}

\section*{77-35}

\section*{CHAPTER I}

MAGNETIC MATERIALS SELECTION FOR STATIC
INVERTER AND CONVERTER TRANSFORMERS

\section*{A. INTRODUCTION}

Transformers used in static inverters, converters and transformerrectifier ( \(T-R\) ) supplics intended for spacecraft power applications are usually of square loop tape toroidal design. The design of reliable, effieient, and lightweight devices for this use has been serionsly hampered by the lack of engineering data describing the behavior of both the commonly used and the more exotic core materials with higher frequency square wave excitation.

A program has been carried out at JPL to develop this data from measurements of the dynamic \(\mathrm{B}-\mathrm{H}\) loop characteristics of the different tape core materials presently available from various industry sources. Cores were procured in both toroidal and "C" forms and were tested in both upgapped (uncut) and gapped (cut) configurations. The following describes the results of this investigation.

\section*{B. TYPICAL OPERATION}

Transformers used for inverters, converters, and T-R supplies operate from the spacecraft power bus, which could be dc or ac. In some power applications, a commonly used circuit is a driven transistor switch arrangement such as that shown in Fig. 1-1.


ORTMNAL RMES IS
or poon pidistay

Fig. 1-1. Typical driven transistor inverter

One important consideration affecting the design of suitable transformers is that care must be taken to ensure that operation involves balanced drive to the transformer primary. In the absence of balanced drive, a net de current will flow in the transformer primary, which causes the core to saturate easily during alternate half-cycles. A saturated core cannot support the applled voltage, and, because of lowered transformer impedance, the current flowing in a switching transistor is limited mainly by Lts beta. The resulting high current, in conjunction with the transformer leakage inductance, resuits in a high voltage spike during the switching sequence that could be destructive to the transistors. To provide balanced drive, it is necessary to exactly match the transistors for \(V_{C E}(S A T)\) and beta, and thic is not always sufficiently effective. Also, exact matching of the transistors is a major problem in the practical sense.
```

C. MATERIAL CHARACTERISTICS

```

Many available core materials approximate the ideal square loop characteristic illustrated by the \(\mathrm{B}-\mathrm{H}\) curve shown in Fig. 1-2.


\section*{ OP PCOR PUALITY}

Fig. 1-2. Ideal square B-H loop

Representative dc B-H loops for commonly available core materials are shown in Fig. 1-3. Other characteristics are tabulated in Table 1-1.

Many articles have been written about inverter and converter transformer design. Jsually, the author's recommendation represents a compromise among material characteristics such as those tabulated in


Fig. 1-3. The typical dc B-H loops of magnetic materials

Table 1-1. Magnetic core material characteristics
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Trade namen & Composition & Saturated flux densty, \({ }^{2}\) (tesla) & DC coercive force. amp-turn/ cm & Squarenes: ratio & Material denaity, \(\mathrm{g} / \mathrm{cm}^{3}\) & Lose factor at 3 kHz and \(0.5 \mathrm{~T}, \mathrm{~W} / \mathrm{kg}\) \\
\hline Magnesil Silectron Microsil Suporatl & \[
\begin{array}{r}
3 \% \mathrm{Si} \\
97 \% \mathrm{Fe}
\end{array}
\] & 1,5-1.8 & 0, 5-0. 75 & 0.85-1.0 & 7.63 & 33.1 \\
\hline \begin{tabular}{l}
Deltamax \\
Orthonal \\
49 Sq. Mu
\end{tabular} & \[
\begin{aligned}
& 50 \% \mathrm{Ni} \\
& 50 \% \mathrm{Fe}
\end{aligned}
\] & 1.4-1.6 & 0.125-0.25 & 0.94 .1 .0 & 8. 24 & 17.66 \\
\hline Allegheny 4750 48 Alloy Tarpenter 49 & \[
\begin{aligned}
& \text { 48\% Ni } \\
& 52 \% \mathrm{Fe}
\end{aligned}
\] & 1.15-1.4 & 0.062-0.187 & 0.80-0.92 & 8. 19 & 11.03 \\
\hline 4-79 Permalloy Sq. Permalloy 80 Sq. Mu 79 & \[
\begin{aligned}
& 79 \% \mathrm{Ni} \\
& 17 \% \mathrm{Fe} \\
& 4 \% \mathrm{Mo}
\end{aligned}
\] & 0.66-0.82 & 0.025-0.05 & \(0.80-1.0\) & 8, 73 & 5. 51 \\
\hline Suparmalloy & \[
\begin{array}{r}
78 \% \mathrm{Ni} \\
17 \% \mathrm{Fe} \\
5 \% \mathrm{Mo}
\end{array}
\] & 0.65-0.82 & 0,0037-0,01 & 0.40-0.70 & 8.76 & 3.75 \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 1_{1} T=10^{4} \text { Gausa } \\
& { }^{2_{1 g} / \mathrm{cm}^{3}=0.0361 b / \mathrm{in}^{3}}
\end{aligned}
\]}} \\
\hline & & & & & & \\
\hline
\end{tabular}

Table l-i and displayed in Fig. l-3. These data are typical of commercially available core materials that are autable for the particular application.

As can be seen, the material that provides the highest flux density (silicon) would result in smallest component size, and this would inflaence the cholce, if size were the most important \(c\) neideration. The type 78 mate rial (see the \(78 \%\) curve in Fig. 1-3) has the lowest flux density. This results in the largest size transformer, but, on the other hand, this material has the lowest coercive force and the lowest corc loss of any core material avallable.

Usually, inverter transformer design is aimed at the smallest size, with the highest efficiency, and adequate performance under the widest range of environmental conditions. Unfortunately, the core material that can produce the smallest size has the lowest efficiency. The highest efficiency mateqials result in the largest size. Thus the transformer designer must make tradeoffs between allowabif transformer size and the minimum efficiency that can be tolerated. The choice of core material will then be based upon achieving the best characteriatic on the most critical or important design parameter, and acceptable compromises on this other parameters.

Based upon analysis of a number of designs, most engineers select size rather than efficiency as the most important criteria and select an inter mediate loss factor core material for their transformers. Consequently, square loop 50-50 nickel-iron has become the most popular inaterial.

\section*{D. CORE SATURATION DEFINITION}

To standardize the definition of saturatior several unique points on the B-H loop are defined as shown in Fig. 1-4.

The straight line through \(\left(H_{o}, 0\right)\) and \(\left(H_{s}, B_{s}\right)\) may be written as:
\[
\begin{equation*}
B=\left(\frac{d B}{d H}\right)\left(H-H_{o}\right) \tag{1-1}
\end{equation*}
\]


Fig. 1-4. Defining the B-H loop

The line through ( \(0, \mathrm{~B}_{\mathrm{g}}\) ) and ( \(\mathrm{H}_{\mathrm{s}}, \mathrm{B}_{\mathrm{s}}\) ) has essentially zero slope and may be written as:
\[
\begin{equation*}
\mathrm{B}=\mathrm{B}_{2} \approx \mathrm{~B}_{\mathrm{s}} \tag{1-2}
\end{equation*}
\]

Equations (1) and (2) together defined "saturation" conditions as follows:
\[
\begin{equation*}
B_{s}=\left(\frac{d B}{d H}\right)\left(H_{s}-H_{o}\right) \tag{1-3}
\end{equation*}
\]

Solving Eq. (1-3) for \(\mathrm{H}_{\mathrm{s}}\),
\[
\begin{equation*}
H_{s}=H_{0}+\frac{B_{s}}{\mu_{0}} \tag{1-4}
\end{equation*}
\]
where
\[
H_{0}=\frac{d B}{d H}
\]
by definition.


SATURATION OCCURS WHEN \(8=2 A\)

Fig. 1-5. Excitation current

Saturation occurs by aefinition is when the peak exciting current is twice the average exciting current as shown in Fig. l-5. Analytically this means that:
\[
\begin{equation*}
\mathrm{H}_{\mathrm{pk}}=2 \mathrm{H}_{\mathrm{B}} \tag{1-5}
\end{equation*}
\]

Solving Eq. (1-1) for \(H_{1}\), we obtain
\[
\begin{equation*}
H_{1}=H_{0}+\frac{B_{1}}{\mu_{0}} \tag{1-6}
\end{equation*}
\]

To obtain the presaturation de margin ( \(\Delta H\) ), Eq. (1-4) is subtracted from Eq. (1-3):
\[
\begin{equation*}
\Delta \mathrm{H}=\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{1}=\frac{\mathrm{B}_{\mathrm{s}}-\mathrm{B}_{1}}{\mu_{\mathrm{o}}} \tag{1-7}
\end{equation*}
\]

The actual unbalanced dc current must be limited to
\[
\begin{equation*}
\mathrm{I}_{\mathrm{de}} \leqq \frac{\Delta \mathrm{Hl}_{\mathrm{m}}}{\mathrm{~N}} \text { (amperes) } \tag{1-8}
\end{equation*}
\]
where
\[
\begin{aligned}
N & =\text { TURNS } \\
1_{m} & =\text { mean magnetic length }
\end{aligned}
\]

Combining Eqs. (1-7) and (1-8) gives
\[
\begin{equation*}
{ }^{1} d c \leqq \frac{\left(B_{d}-B_{1}\right)_{m}}{\mu_{0} N} \tag{1-9}
\end{equation*}
\]

As mentioned earlier, in an effort to prevent core saturation, the awitching tranaistors are matched for beta and \(V_{C E}(S A T)\) characteristics. The effect of core saturation using an uncut or ungapped core is shown in Fig. 1-6, which Hluatratea the effect on the B-H loop when traveraed with a dc bias. Figure 1-7 showe typical B-H loops of \(50-50\) nickel-iron exclted from an ac source with progressively reduced excitation; the vertical scale is \(0.4 \mathrm{~T} / \mathrm{cm}\). It can be noted that the minor loop remains at one extreme position within the B-H major loop after reduction of excitation. The unfortunate effect of this random minor loop positioning is that when conduction again begins in the transformer winding after shutdown, the flux swing could begin from the extreme, and not from the normal zero axis. The effect of this ls to drive the core into saturation with the production of spikes that can deatroy tranalstors.


\section*{E. ThE TEST SETUP}

A test fixture, schematically indicated in Fig. l-8, was built to effect comparison of dynamic B-H loop characteristics of various core materials. Cores were fabricated from various core materials in the basic core configuration designated No. 52029 for toroidal cores manufactured by Magnetics, Inc. The materials used were those most likely to be of interest to designers of inverter or converter transformers, Test conditions are listed in Table \(1-2\).


Fig. 1-8. Dynamic B-H loop test fixture

Table 1-2. Materials and test conditions
\begin{tabular}{|l|l|c|c|c|c|}
\hline Core type & \multicolumn{1}{|c|}{ Material } & \(\mathrm{B}_{\mathrm{m}}, \mathrm{T}\) & \(\mathrm{N}_{\mathrm{T}}\) & \begin{tabular}{c} 
Frequency, \\
kHz
\end{tabular} & \(\mathrm{l}_{\mathrm{m}}, \mathrm{cm}\) \\
\hline \(52029(2 \mathrm{~A})\) & Orthonol & 1.45 & 54 & 2.4 & 9.47 \\
\(52029(2 \mathrm{D})\) & Sq. Permalloy & 0.75 & 54 & 2.4 & 9.47 \\
\(52029(2 \mathrm{~F})\) & Supermalloy & 0.75 & 54 & 2.4 & 9.47 \\
\(52029(2 \mathrm{H})\) & 48 -Alloy & 1.15 & 54 & 2.4 & 9.47 \\
\(52029(2 \mathrm{H})\) & Magnesil & 1.6 & 54 & 2.4 & 9.47 \\
\hline
\end{tabular}

Winding data was derived from the following:
\[
\begin{equation*}
N=\frac{V \cdot 10^{4}}{4.0 \cdot B_{m} \cdot \mathrm{f} \cdot \mathrm{~A}} \tag{1-10}
\end{equation*}
\]

The teat tranaformer represented in Fig. 1-9 consiets of 54-turn ptimary and secondary windinga, with square wave excitation on the primary. Normally awltch 51 is open. With switch 51 closed, the aec* ondary current ls rectilled by the diode to produce a de biak in the secondary winding.


Fig. 1-9. Implementing de unbalance

Cores were fabricated from each of the materlals by winding a ribbon of the ame thickness on a mandrel of a given diameter. Ribbon termination was effected by welding in the conventional manner. The cores were vacuum impregnated, baked, and linished as usual.

Figures 1-10 through 1-14 show the dynamic B-11 loops obtained for the different core materials designated therein.


VERT \(=0.5 T / \mathrm{cm}\) \(H O R I Z=100 \mathrm{~mA} / \mathrm{cm}\)

ORETHGAL Page is OF PWOH GWAMITY

Fig. 1-10. Magnesil (K) B-H loop


Fig. 1-11. Orthonol (A) B-H loop


Fig. 1-12, 48 Alloy (H) B-H loop


VERT \(=0.2 \mathrm{~T} / \mathrm{cm}\) HORIZ \(=10 \mathrm{~mA} / \mathrm{cm}\)

CRTGTHL Page 5
op prone gemity
Fig. 1-13. Sq. Permalloy (P) B-1H loop
\[
77-55
\]


Fig. 1-14. Supermalloy (F) B-H loop


VERT \(=0.5 \mathrm{~T} / \mathrm{cm}\) HORIZ \(=50 \mathrm{~mA} / \mathrm{cm}\)

Fig, 1-15. Composite 52029 (2K), (A), (H), (P), and (F) B-H loops

Figure 1-15 shows a composite of all the B-H loops. In each of these, Lwitch SI was in the open position so that there was no dc bias applied to the core and windings.

The photographs designated Figures 1-16 through 1-20 show the dynamic B-H loop patterns obtained for the designated core materials when the test conditions included a sequence in which switch SI was open, then closed, and then opened. It is apparent from this data that with a small amount of dc bias, the minor dynamic B-H loop can traverse the major B-H loop from saturation to saturation. In Figs. 1-16 to 1-20, note that after the dc bias had been removed, the minor B-H loops remained shifted to one side or the other. Because of the ac coupling of the integrator to
the oscilloscope, the photographs do not present a complete picture of what really happens during the flux swing.


VERT \(=0.3 \mathrm{~T} / \mathrm{cm}\) HORIZ \(=200 \mathrm{~mA} / \mathrm{cm}\)

Fig. 1-16. Magnesil (K) B-H loop with and without de bias


Fig. 1-17. Orthonol (A) B-H loop with and without de bias

\section*{Preceding page waikiki}


YERT \(=0.2 \mathrm{~T} / \mathrm{cm}\) HORIZ \(=50 \mathrm{~mA} / \mathrm{cm}\)

Fig. 1-18: 48 Alley (H) D M loop with and without de bias


VERT \(=0.1 \mathrm{~T} / \mathrm{cm}\) HORIZ \(=20 \mathrm{~mA} / \mathrm{cm}\)

Fig. 1-19. Sq. Perrmalloy (P) B-H loop with and without de bias


> VERT \(=0,1 \mathrm{~T} / \mathrm{cm}\)
> \(H O R I Z=20 \mathrm{~mA} / \mathrm{cm}\)

Fis. 1-20. Sqpermalloy (F) B-11 loop with and without de bias

\section*{'F. CORE SATURATION THEORY}

The domain theory of the nature of magnetism is based on the assumption that all magnetic materials consist of individual molecular magnets. These minute magnets are capable of movement within the material. When a magnetic material is in its unmagnetized state, the individual magnetic particles are arranged at random, and effectively neutralize each other. An example of this is shown in Fig. 1-21, where the tiny magnetic particles are arranged in a disorganized manner. The north poles are represented by the darkened ends of the magnetic particles. When a material is magnetized, the individual particles are aligned or oriented in a definite direction (Fig. 1-22).


Fig. 1-21. Unmagnetized material


Fig. 1-22. Magnetized material

The degree of magnetization of a material depends on the degree of alignment of the particles. The external magnetizing force can continue up to the point of saturation, that is, the point at which essentially all of the domains are lined up in the same direction.

In a typical toroid core, the effective air gap is less than \(10^{-6} \mathrm{~cm}\). Such a gap is negligible in comparison to the ratio of mean length to permeability. If the toroid were subjected to a strong magnetic field (enough to saturate), essentially all of the domains would line up in the same direction.

If suddenly the field were removed at \(\mathrm{B}_{\mathrm{m}}\), the domains would remain lined up and be magnetized along that axis. The amount of flux density that remains is called residual flux or \(B_{r}\). The result of this effect was shown earlier in Figs, 1-16 to 1-20.

\section*{G. AIR GAP}

An air gap introduced into the core has a powerful demagnetizing effect, resulting in "shearing over" of the hysteresis loop and a considerable decrease in permeability of high-permeability materials. The dc excitation follows the same pattern. However, the core blas is considerably less affected by the introduction of a small air gap than the magnetization characteristics. The magnitude of the air gap effect also depends on the length of the mean magnetic path and on the characteristics of the uncut core. For the same air gap, the decrease in permeability will be less with a greater magnetic flux path but more pronounced in a low coercive force, high-permeability core.

\section*{H. EFFECT OF GAPPING}

Figure 1-23 shows a comparison of a typical toroid core B-H loop without and with a gap. The gap increases the effective length of the magnetic path. When voltage \(E\) is impressed across primary winding \(N_{1}\) of a transformer, the resulting current \(i_{m}\) will be small because of the highly inductive circuit shown in Fig. 1-24. For a particular size core, maximum inductance occurs when the air gap is minimum.

When Slis closed, an unbalanced de current flows in the \(\mathrm{N}_{2}\) turns and the core is subjected to a dc magnetizing force, resulting in a flux density that may be expressed as
\[
\begin{equation*}
\mathrm{B}_{\mathrm{dc}}=\frac{0.4 \pi \mathrm{~N} \mathrm{I}_{\mathrm{dc}} \times 10^{-4}}{\mathrm{l}_{\mathrm{g}}+\frac{l_{\mathrm{m}}}{\mu_{\mathrm{r}}}} \quad \text { [teslas] } \tag{1-11}
\end{equation*}
\]


Fig. 1-23. Air gap increases the effective length of the magnetic path


Fig. 1-24. Implementing dc unbalance

In converter and inverter design, this is augmented by the ac flux swing, which is:
\[
\mathrm{B}_{\mathrm{ac}}=\frac{\mathrm{E} \cdot 10^{4}}{\mathrm{~K} \cdot \mathrm{f} \cdot \mathrm{~A}_{\mathrm{c}} \cdot \mathrm{~N}}
\]
[teslas] (1-12)

If the sum of \(\mathrm{B}_{\mathrm{dc}}\) and \(\mathrm{B}_{\mathrm{ac}}\) shifts operation above the maximum operating flux density of the core material, the incremental permeability ( \(\mu \mathrm{ac}\) ) is reduced. This lowers the impedance and increases the flow of magnetizing
curront 'm" This can be remedied by introctucing an atr gap into the core assembly, which elfects a decrease in de magnetization in the core. Howcver, the amount of air gap that can le Incorporated has a practicat limita* tion since the air sap lowers impedance, which results in incsensed magnetizing current (im) which la inductive. The resultami voltage spikes produced by such currents apply a high stress to the switching transistors, and may cause fallure. This can be minimized by tight control of lapping and etching of the gap to keep the gap to a ninimum.

From Fin. 1-23, it can be seen that the \(13-11\) curves depiet maximum Clux densty \({ }^{3}\) m and restdual flux \(B_{r}\) for ungapped and gapped cores, and that the useful flux swine is designated \(\Delta B\). which is the differenee between them, It will be noted in Flg, I-23a that \(H_{\mathrm{r}}\) approaches \(\mathrm{B}_{\mathrm{m}}\), but that in Fig. 1 - 236 there is a much greater Al beqween them. In cither case, when excitation voltage is removed at the peak of the excursion of the B-H losp, flux falls to the \(B_{\text {, }}\) point. It is apparent that introducing an atr may then retuces \(\mathbb{B}_{\text {g }}\) to a lower level, and increnaes the useful fixx density. Thus Insertion of an air gay in the core oliminates, or reduces markedly, the voltage spikes produced by the leakage lndtetance due to the transformer aturation.

Two lypes of core configurations were Investigated in the unyapped and gapped statcs. Figure \(1-25\) shows the type of coroldal core that was cut


Fis. 1-25. Typical cut toroid
orvank paze
of peon guaurd
\[
77-1
\]
 4 mevent conally fabricated are virtually gapless. To inc rease the gap, the wres were plivelcally cut, hall ame tbe cot releses were lapped, acld etched to remove cut ifebrls, and banded to farm the cores. A minmume atr sap on the order of lese than 25 pth was established.


\section*{Carmit paye b of poon gusurt}

Fis. 1-26. Typical cut "C" core
As will be noted from Fige. 1.27 to 1-31, which show the B-H Loops of the uncut and cut cores. the results obtatned indicated that the offect of eapping was the same for both the C-cores and the toroldal cores subjected to testing. It will be noted however, that gapping of the toroldal cores produced a lowered squareness characteristic for the B-11 loop as shown In Table 1-3; this data was obtained from Flgs. 1-27 to 1-31. Also, from Figs, 1-27 to 1-31, 4ll was extracted as a 3wn in Fig. 1-32 and tabulated in Table 1-4.


Fig. 1-27. Magnesil s2029 (2k) B-11 loop, (a) urcut and (b) cut


HORIZ \(=50 \mathrm{~mA} / \mathrm{cm} \quad\) VERT \(=0.5 \mathrm{~T} / \mathrm{cm}\)


HORIZ \(=100 \mathrm{~mA} / \mathrm{cm}\) VERT \(=0.5 \mathrm{~V} / \mathrm{cm}\)

Flg. 1-28, Orthonol 52029 (2A) B H loop, (a) uncut and (b) cut

\(H \cup R I Z=100 \mathrm{~mA} / \mathrm{cm} \quad V E R *=0.3 \mathrm{I} / \mathrm{cm}\)


HORIZ \(=200 \mathrm{~mA} / \mathrm{cm}\) VERT \(=0.3 \mathrm{~T} / \mathrm{cm}\)

Fig. \(1-29\). 48 Alloy 52029 (2H) B-H loop, (a) uncut and (b) cut



HORIZ \(=10 \mathrm{~mA} / \mathrm{cm}\)
VERT \(=0.2 \mathrm{~V} / \mathrm{cm}\)


HORIZ \(=50 \mathrm{~mA} / \mathrm{cm}\)
\(\operatorname{VERT}=0.21 / \mathrm{cm}\)

Fig. 1-31. Supermalloy \(52029(25)\) B-M loop, (a) uncut and (b) cut


Grtownt. pack is of Peon quauty

Table 1-3. Comparing \(B_{r} / B_{m}\) on uncut and cut cores
\begin{tabular}{|c|c|c|c|}
\hline Code & Material & Uncut \(B_{r} /{ }^{4} \mathrm{~m}\) & \(\operatorname{Cut} \mathrm{B}_{r} / \mathrm{B}_{\mathrm{m}}\) \\
\hline (A) & Orthonol & 0. 96 & 0.62 \\
\hline (D) & Mo-Permalloy & 0. 86 & 0, 21 \\
\hline (k) & Magnes 11 & 0. 93 & 0. 22 \\
\hline (F) & Supermalloy & 0.81 & 0. 24 \\
\hline (H) & 48 Alloy & 0. 83 & 0.30 \\
\hline
\end{tabular}

Table 1-4. Comparing \(\Delta H-\Delta H_{O P}\) on uncut and cut cores
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Material} & \multirow{3}{*}{\(\mathrm{B}_{\mathrm{m}}{ }^{\prime}\) (tesla)} & \multirow{3}{*}{\[
\begin{gathered}
\mathrm{Bac}_{\mathrm{ac}} \\
(\text { tesla) }
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
\mathrm{B}_{\mathrm{dc}} \\
(\text { tesla })
\end{gathered}
\]} & \multicolumn{4}{|c|}{amp-turn/cm} \\
\hline & & & & \multicolumn{2}{|c|}{Uncut} & \multicolumn{2}{|c|}{Cut} \\
\hline & & & & \({ }^{\Delta H} \mathrm{OP}\) & \(\Delta \mathrm{H}\) & \(\triangle \mathrm{H}_{\mathrm{OP}}\) & \(\Delta \mathrm{H}\) \\
\hline Orthonal & 1.44 & 1.15 & 0.288 & 0.0125 & 0.0 & 0.895 & 0.178 \\
\hline 48 Alloy & 1.12 & 0.89 & 0.224 & 0.0250 & 0.0 & 1.60 & 0.350 \\
\hline Sq. Permalloy & 0.73 & 0.58 & 0.146 & 0.01 & 0.005 & 0.983 & 0.178 \\
\hline Supermalloy & 0.68 & 0.58 & 0.136 & 0.0175 & 0.005 & \(0.49!\) & 0.224 \\
\hline Magnesil & 1. 54 & 1.23 & 0.31 & 0.075 & 0.025 & 7.15 & 1.78 \\
\hline
\end{tabular}

A direct comparison of cut and uncut cores was made electrically by means of two different test circuits. The magnetic material used in this branch of the test was Orthonol. The operating frequency was 2.4 kHz , and the flux dengity was 0.6 T . The first teat circuit, shown in Fig. 1-33, was a driven inverter operating into a 30 W load, with the transistors operating into and out of saturation, Drive was applied continuously. SI controls the supply voltage to \(Q 1\) and \(Q 2\).


Fig. 1-33. Inverter inrush current measurement

Wit switch Si closed, translator Ql was turned on and allowed to saturate: This applied E.V \(\mathrm{C}^{(S A I)}\) across the transformer winding. Switch SI was then opened. The flux in transformer T2 then dropped to the residual flux density \({ }^{B}\) r. Switch Si was closed again. This was done several times in succession to catch the flux in an additive direction. Figures \(1-34\) and \(1-35\) show the inrush current measured at the center tap of T2.


Fig. 1-34. Typical inrush of an uncut core in a driven inverter
chink of 5002


Fig. 1-35. Typical inrush current of a cut core in a driven inverter

It will be noted in Fig, 1-34 that the uncut core saturated and that inrush current was limited only by circuit resistance and transistor beta, It can be noted in Fig. 1-35 that saturation did not occur in the case of the cut core. The high inrush current and transistor stress was thus virtually eliminated.

The second test circuit arrangement is shown in Fig. 1-36. The purpose of this test was to excite a wansformer and measure the inrush curront using a current probe. A square wave power cosclllator was used to excite transformer T2. Switch S 1 was opened and closed several times to catch the flux In an addilive direction. Figures \(1-37\) and \(1-38\) shew inrush current for a cut and uncut core respectively.


Fig. 1-36. T-R supply current measurement


Fig. 1-38. Typical inrush current of a cut core in a T-R

A small amount of air gap, less than \(25 \mu \mathrm{~m}\), has a powerful effect on the demagnetizing force and this gap has little effect on core loss. This small amount of air gap decreases the residual magnetism by "shearing over" the hysteresis loop. This eliminated the problem of the core tending to remain saturated.

A typical example showing the merit of the cut core was in the checkout of a Mariner spacecraft. During the checkout of a prototype science package, a large ( \(8 \mathrm{~A}, 200 \mu \mathrm{~s}\) ) turn-on transient was observed. The normal running current was 0.06 A , and was fused with a parallel-redundant \(1 / 8-\mathrm{A}\) fuse as required by the Mariner Mars 1971 design philosophy. With this 8-A inrush current, the \(1 / 8\) - A fuses were easily blown. This did not happen on every turn-on, but only when the core would "latch up" in the wrong direction for turn-on. Upon inspection, the transformer turned out to be a \(50-50 \mathrm{Ni}-\mathrm{Fe}\) toroid. The design was changed from a toroidal core to a cut-core with a \(25-\mu \mathrm{m}\) air gap. The new design was completely successful in eliminating the \(8-\mathrm{A}\) turn-on transient.

\section*{I. A NEW CORE CONFIGURATION}

A new configuration has been developed for transformers which combines the protective feature of a gapped core with the much lower magnetizing current requirement of an uncut core. The uncut core functions under normal operating conditions, and the cut core takes over during abnormal conditions to prevent high switching transients and their potentially destructive effect on the transistors.

This configuration is a composite of cut and uncut cores assembled together in concentric relationship, with the uncut core nested within the cut core. The uncut core has high permeability and thus requires a very small magnetizing current. On the other hand, the cut core has a low permeability and thus requires a much higher magnetization current.

The uncut core is designed to operate at a flux density which is sufficient for normal operation of the converter. The uncut core may saturate under the abnormal conditions previously described. The cut core then takes over and supports the applied voltage so that excessive current does not flow. In a
sense it acts like a ballast resistor in some circuits to limit current dow to a rafo level.

The photographs designated Figures 1-39 and 1-40 show the magnetization curves for a composite core of the same material, at wo different fux densitics. The much lower \(\mathrm{B}_{\mathrm{x}}\) characteristics of the composite as compared to the uncut core is readily apparent.

The desired features of the composite core can be obtained more economically by utilizing different materials for the eut and uncut portions of the core, It was found that when the design required high nickel (4/79) the cut portion could be low nickel (50/50) and because low nickel has twice the flux density as high nickel the core was made 66 percent high nickel and 33 percent low nickel.


Fis. 1-39. The uncut core excited at \(0.2 \mathrm{~T} / \mathrm{cm}\)


Fig. 1-40. Roth cores cut and uncut excited at \(0.2 \mathrm{~T} / \mathrm{cm}\)

The photograph designated Figure 1-41 shows a cut core at the right and an uncut core at the left. Both have been impregnated to bond the ritbon layers together. The photograph designated Figure 1-42 shows in the lower portion, a cut core assembled by banding together with a smaller uncut core. The O.D. of the latter has been trimmed to fit within the 1. D. of the cut core by peeling a wrap or two of the ribbon steel. The upper view shows an assembly of the nested cores.

In order to provide uniformity of characteristics for the gapped cores, a gap dimension of \(50 \mu \mathrm{~m}\) is recommended so that variations produced by thermal cycling will not affect this gap greatly. This is now cbtained by inserting a sheet of paper or film naterial between the core ends during banding. Then the composite core is placed in the aluminum box and sealed.


Fig. 1-41. Cores before assembly


Fig. 1-42. Cores after assembly

This same protective feature can be accomplished in transformers with laminationed cores. When laminations are stacked by interleaving them one by one, the result will be minimum air gap as shown in Figure \(1-43\) by the squareness of the B-H loop. Shearing over of the B-H loop or decreasing the residual flux is shown in the next Figure 1-44 and is accomplished by butt stacking half of lamination in the core cross section which introduces a small amount of air gap.

Table 1-5 compiles a list of composite cores manufactured by Magnetics Inc., alongside their standard dimensional equivalent cores. Also included in Table 1-5 is the cores' area product \(A^{\prime} p^{\prime}\) which is described in Chapter 2.

Table 1-5. Composite cores
\begin{tabular}{|c|c|c|}
\hline Composite & Standard & \(A_{p}, \mathrm{~cm}^{4}\) \\
\hline 01605-2D & 52000 & 0.0728 \\
\hline 01754-2D & 52002 & 0.144 \\
\hline 01755-2D & 52076 & 0.285 \\
\hline 01609-2D & 52061 & 0.389 \\
\hline 01756-2D & 52106 & 0.439 \\
\hline 01606-2D & 52094 & 0.603 \\
\hline 01757-2D & 52029 & 1.090 \\
\hline 01758-2D & 52032 & 1.455 \\
\hline 01607-2D & 52026 & 2.180 \\
\hline 01759-2D & 52038 & 2.910 \\
\hline 01608-2D & 52035 & 4.676 \\
\hline 01623-2D & 52425 & 5.255 \\
\hline 01624-2D & 52169 & 7.13 \\
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& A_{c}=66 \% \text { Square Permalloy } 4 / 79 \\
& A_{c}=33 \% \text { Orthonol } 50 / 50 \\
& l_{g}=2 \text { mil Kaption. }
\end{aligned}
\]} \\
\hline
\end{tabular}


Fig. 1-43. Stack 1 x 1


Fig. 1-44. Stack one half
1 \(\times 1\) and one half butt stack

\section*{J. SUMMARY}

Low-loss tapewound toroidal core materials that have a very square hysteresis characteristic ( \(\mathrm{B}-\mathrm{H}\) loop) have been used extensively in the design of spacecraft transformers. Due to the squareness of the B-H loops of these materials, tralisformers designed with them tend to saturate quite easily. As a result, large voltage and current spikes, which cause undue stress on the electronic circuitry, can uccur. Saturation occurs when there is any unbalance in the ac drive to the transformer, or when any dc excitation exists. Also, due to the square characteristic, a high residual flux state \(\left(B_{r}\right)\) may remain when excitation is removed. Reapplication of excitation in the same direction may cause deep saturation and an extremely large current spike, limited only by source impedance and transformer winding resistance, can result. This can produce catastrophic failure.

By introducing a small (less than \(25-\mu \mathrm{m}\) ) air gap into the core, the problems described above can be avoided and, at the same time, the lowloss properties of the materials retained. The air gap has the effect of "shearing over" the B-H loop of the material such that the residual flux state is low and the margin between operating flux density and saturation flux density is high. The air gap thus has a powerful demagnetizing effect upon the square loop materials. Properly designed transformers using "cut" toroid or "C-core" square loop materials will not saturate dpon turn-on and can tolerate a certain amount of unbalanced drive or dc excitation.

It should be emphasized, however, that because of the nature of the material and the small size of the gap, extreme care and control must be taken in performing the gapping operation, otherwise the desired shearing effect will not be achieved and the low-loss properties will be lost. The cores must be very carefully cut, lapped, and etched to provide smooth, residue-free surfaces. Reassembly must be performed with equal care.

\section*{BIBLIOGRAPHY}

Brown, A. A., et al, Cyclic and Constant Temperature Aging Effects on Magnetic Materials for Inverters and Converters, NASA CR-(L-80001). National Aeronautics and Space Administration, Washington, June 1969.

Design Manual Featuring Tape Wound Cores, TWC-300. Magnetic Inc, , Butler, Pa., 1962.

Frost, R. M., et al. Evaluation of Magnetic Materials for Static Inverters and Converters, NASA CR-1226. National Aeronautics and Space Administration, Washington, February 1969.

Lee, R, Electronic Transformers and Circuits, Second Edition, John Wiley \& Sons, New York, 1958.

Nordenberg, H. M. Electronic Transformers. Reinhold Publishing Co, , New York, 1964.

Platt, S. , Magnetic Amplifiers: Theory and Application. Pientice-Hall. Englewood Cliffs. N. J., 1958.

Flight Projects, Space Programs Summary 37-64, Vol, I, p. 17. Jet Propulsion Laboratory, Pasadena, Calif., Tuly 31, 1970.

Technical Data on Arnold Tape-Wound Cores, TC-101A. Arnold Engineering, Marengo, Ill., 1960.

\section*{CHAPTER IL}

TRANSFORMER DESIGN TRADEOFFS

\section*{A. INTRODUCTION}

Manufacturers have for years assigned numeric codes to their cores; these codes represent the power-handling ability. This method assigns to each core a number which is the product of its window area ( \(\mathrm{W}_{\mathrm{a}}\) ) and core cross section area ( \(A_{c}\) ) and is called "Area Product, " Ap"

These numbers are used by core suppliers to summarize dimensional and electrical properties in their catalogs. They are available fcr laminations, C-cores, pot cores, powder cores, and toroidal tape-wound cores,

The author has developed additional relationships between the Ap numbers and current demsity \(J\) for a given regulation and temperature rise. The area product \(A_{p}\) is a dimension to the fourth power \(\ell^{4}\), whereas volume is a dimension to the third power \(\ell^{3}\) and surface area \(A_{t}\) is a dimension to the second power \(t^{2}\). Straight-line relationships have been developed for \(A_{p}\) and volume, \(A_{P}\) and surface area \(A_{t}\), and \(A_{p}\) and weight.

These relationships can now be used as new tools to simplify and standardize the process of transformer design. They make it possible to design transformers of lighter weight and smaller volume or to optimize efficiency without going through a cut and try design procedure. While developed specifically for aerospace applications, the information has wider utility and can be used for the design of non-aerospace transformers as well.

Because of its significance, th area product \(A_{p}\) is treated extensively. A great deal of other information 's also presented for the convenience of the designer. Much of the material is in graphical or tabular form to assist the designer in making the tradeoffs best suited for his particular application in a minimum amount of time.

\section*{B. THE AREA PRODUCT Ap AND ITS RELATIONSHIPS}

The \(A_{p}\) of a core is the product of the available window area \(W_{a}\) of the core in square centimeters ( \(\mathrm{cm}^{2}\) ) multiplied by the effective cross-sectional area \(A_{c}\) in square centimeters \(\left(\mathrm{cm}^{2}\right)\) which may be stated as
\[
A_{p}=W_{a} A_{c} \quad\left[\mathrm{~cm}^{4}\right]
\]

Figures 2-1-2-5 show in outline form five transformer core types that are typical of those shown in the catalogs of suppliers.

There is a unique relationship between the arca proderct \(A_{p}\) characteristic number for transformer cores and several other important parameters which must be considered in transformer design.

Table 2-1 was developed using the least-squares curve fit from the data obtained in Tables \(2-2\) through 2-7. The area product \(A_{p}\) relationships with volume, surface area, current density, and weight for pot cores, powder cores, laminations, C-cores, and tape-wound cores will be presentec in detail in the following paragraphs.

Table 2-1. Core configuration constants
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Core & Losses & \[
\begin{gathered}
K_{j} \\
\left(25^{\circ} \mathrm{C}\right)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{K}_{j} \\
\left(50^{\circ} \mathrm{C}\right)
\end{gathered}
\] & (x) & \(\mathrm{K}_{\mathrm{s}}\) & \(\mathrm{K}_{w}\) & \(K_{v}\) \\
\hline Pot core & \(\mathrm{P}_{\mathrm{cu}}=\mathrm{P}_{\text {fe }}\) & 433 & 632 & -0.17 & 33.8 & 48.0 & 14.5 \\
\hline Powder core & \(\mathrm{P}_{\mathrm{cu}} \gg \mathrm{P}_{\mathrm{fe}}\) & 403 & 590 & -0.12 & 32.5 & 58.8 & 13.1 \\
\hline Lamination & \(P_{c u}=P_{f e}\) & 366 & 534 & -0.12 & 41.3 & 68.2 & 19.7 \\
\hline C-core & \(P_{c u}=P_{\text {fe }}\) & 323 & 468 & -0.14 & 39.2 & 66.6 & 17.9 \\
\hline Single-coil & \(\mathrm{P}_{\mathrm{cu}} \gg \mathrm{P}_{\mathrm{fe}}\) & 395 & 569 & -0.14 & 44.5 & 76.6 & 25.6 \\
\hline Tape-wound core & \(\mathrm{P}_{\mathrm{cu}}=\mathrm{P}_{\text {fe }}\) & 250 & 365 & -0.13 & 50.9 & 82.3 & 25.0 \\
\hline \multicolumn{8}{|c|}{\[
\begin{aligned}
J & =K_{j} A_{p}^{(x)} \\
W_{t} & =K_{w} A_{p}^{0.75}
\end{aligned}
\]} \\
\hline
\end{tabular}


Fig. 2-1. C-core


Fig. 2-2. EI lamination


Fig. 2-3. Pot core


Fig. 2-4. Tape-wound toroidal core


Fig. 2-5. Powder core

\section*{Definitions for Table 2-2}

\section*{Information given is listed by column as:}
1. Manufacturer part number
2. Surface area calculated from Figure 2-22
3. Area product effective iron area times window area
4. Mean length turn
5. Total number of turns and wire size using a window utilization factor \(K_{u}=0.40\)
6. Resistance of the wire at \(50^{\circ} \mathrm{C}\)
7. Watts loss is based on Figure \(7-2\) for a \(\Delta T\) of \(25^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transicimer surface area, total loss is \(P_{c u}\)
8. Current calculated from column 6 and 7
9. Current density calculated from column 5 and 8
10. Resistance or the wire at \(75^{\circ} \mathrm{C}\)
11. Watts loss is based on Figure \(7-2\) for a \(\Delta T\) of \(50^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is \(P_{c u}\)
12. Current calculated from column 10 and 11
13. Current density calculated from column 5 and 12
14. Effective crre weight for silicon plus copper weight in grams
15. Transformer volume calculated from Figure 2-6
16. C. 'fective cross-section

Table 2-2. Powder core characteristics
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline & & Core & \(s_{\mathrm{E}} \mathrm{crx}^{2}\) &  & S12T cm & * A*G & \(28850^{\circ} \mathrm{C}\) & \(\mathbf{P}_{\Sigma}\) & \(I=\sqrt{\frac{W}{\square}}\) & \[
\begin{array}{r}
\Delta I 25^{\circ} \mathrm{C} \\
\mathrm{I}=\mathrm{I} / \mathrm{cm}^{2}
\end{array}
\] & 26*5* & \(\mathrm{P}_{2}\) & \(1=\sqrt{\frac{w}{2}}\) & \[
\begin{aligned}
& \Delta T 50^{\circ} \mathrm{C} \\
& J=1 / \mathrm{cm}^{2}
\end{aligned}
\] & \[
{ }_{i_{e}}^{W} \quad C_{11}
\] & \[
\begin{gathered}
\text { Yolume } \\
\mathrm{cm}^{3}
\end{gathered}
\] & \(A_{e} \mathrm{~cm}^{2}\) \\
\hline & 1 & 55051 & 7.19 & 0.0437 & 2.12 & 16 & 0.215 & 0.216 & 1.co & 617 & 0.236 & 0. 503 & 1.46 & E¢9 & 3.12 .71 & 1.39 & 0.113 \\
\hline & 2 & 55121 & 12.3 & 0.137 & 2.71 & 185) 25 & 0.513 & 0.369 & 0.848 & 522 & 0.563 & 0.186 & 1.23 & 762 & \(\therefore .86 .3\) & 3.14 & 0.196 \\
\hline & 3 & 55248 & 17.3 & 0.259 & 2.95 & 25725 & 0.897 & 0.519 & 0.761 & 469 & 0. 385 & 1.211 & 1.11 & 683 & 10812.3 & 5.07 & 0.232 \\
\hline 1 & ; & 55059 & 21.4 & 0. 2.64 & 3.77 & \({ }^{336} 25\) & 1.27 & 0.657 & 0.719 & 443 & 1.39 & 1. 533 & 1.05 & 647 & \(16 \quad 16.3\) & 7.28 & 0.327 \\
\hline & 5 & 5583: & 30. & 1.021 & - 51 & \(3^{351} 25\) & 1.87 & 0.924 & 0.703 & 433 & 2.65 & 2.16 & 1.62 & 63: &  & 12.4 & 0.639 \\
\hline & 6 & 55536 & 48.6 & 1.821 & 4.39 & 90225 & 4.69 & 1.46 & 0.553 & 334 & 5.15 & 3.40 & 0.812 & 500 & \(35 \quad 54.9\) & 23.3 & 0.45 B \\
\hline & 7 & 55071 & 44.7 & 1.968 & 4.77 & 656 & 5.70 & 1.34 & 0.692 & 371 & 4.07 & 3.13 & 0.887 & 540 & 4: 42.i & 21.0 & 0.EE6 \\
\hline & 3 & 55076 & 31.6 & 2.46 & 4.88 & 81525 & 4.71 & 1. 55 & 0.574 & 353 & 5.17 & 3.61 & 0.814 & 518 & \(52 \quad 61.0\) & 25.7 & 0.670 \\
\hline & '\% & 55083 & 66.3 & 4.57 & 6.02 & 95. 25 & 5.54 & 2.00 & 0.541 & 333 & 7. \(=0\) & 4.68 & 0.790 & -97 & 72860 & 39.1 & 1.06 \\
\hline & 10 & 55990 & B9.4 & \(8.1{ }^{-}\) & 6.65 & 137225 & 10.8 & 2.68 & 0.498 & 307 & 11. B & 6.26 & 0.728 & 449 & 134140 & 59.5 & 1.32 \\
\hline & 11 & 55439 & 86.9 & 8.48 & 7.48 & 95925 & B. 49 & 2.60 & 2. 533 & 341 & 9.32 & 6.08 & 0.897 & 497 & \(182 \quad 104\) & 59.1 & 1.95 \\
\hline & 12 & 55716 & 100.0 & 9. 38 & 6.54 & 168425 & 13.0 & 3.00 & 0.480 & 296 & 14.3 & 7.00 & 0.699 & 431 & 133878 & 69.0 & 1.24 \\
\hline & 13 & 55119 & 124.0 & 13.66 & 7.09 & \(2125 \quad 25\) & 17.8 & 3.72 & 0.457 & 282 & 19.6 & 8.68 & 0.665 & 410 & \(176 \quad 226\) & 93.4 & 1.44 \\
\hline & \multicolumn{17}{|l|}{copper lusasoifan losa} \\
\hline
\end{tabular}

\section*{Definitions for Table 2-3}

Information given is listed by column as:
1. Manufacturer part number
2. Surface area calculated from Figure 2-22
3. Area product effective iron area times window area
4. Mean length turn
5. Total number of turns and wire size using a window utilization factor \(K_{u}=0.40\)
6. Resistance of the wire at \(50^{\circ} \mathrm{C}\)
7. Watts loss is based on Figure \(7-2\) for a \(\Delta T\) of \(25^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is equal to \(2 P_{c u}\)
8. Current calculated from column 6 and 7
9. Current density calculated from column 5 and 8
10. Resistance of the wire at \(75^{\circ} \mathrm{C}\)
11. Watts loss is based on Figure \(7-2\) for a \(\Delta T\) of \(50^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is equal to \(2 P_{c u}\)
12. Current calculated from column 10 and 11
13. Current density calculated from column 5 and 12
14. Effective core weight for silicon plus copper weight in grams
15. Transformer volume calculated from Figure 2-6
16. Core effective cross-section

Table 2-3. Pot core characteristics
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline & & Core & \(\mathrm{A}_{\mathrm{t}} \mathrm{tm}^{2}\) & \(A_{p} \mathrm{~cm}^{4}\) & MIT cm & AW & \(20^{8} 50^{\circ} \mathrm{C}\) & \(\mathrm{P}_{\boldsymbol{\Sigma}}\) & \(I=\sqrt{\frac{w}{2}}\) & \(\Delta T 25^{\circ} \mathrm{C}\)
\(\mathrm{J}=\mathrm{I} / \mathrm{cm}^{2}\) & ת@75*5 & \(P_{\text {r }}\) & \(I=\sqrt{\frac{W}{\square}}\) & \[
\begin{aligned}
& \Delta T 50^{\circ} \mathrm{C} \\
& \mathrm{~J}=1 / \mathrm{cm}^{2}
\end{aligned}
\] & \[
f_{e}^{f_{e i g}}{ }_{C_{x}}
\] & \[
\begin{gathered}
\text { Volurre } \\
\mathrm{cm}^{3}
\end{gathered}
\] & \(A_{c} \mathrm{~cm}^{2}\) \\
\hline & 1 & \(9 \times 5\) & 2.93 & 0.0065 & 1.85 & 2530 & 0.175 & 0.098 & 0.529 & 1034 & 0. 192 & 0.230 & 0.774 & 1527 & 0.80 .32 & 0.367 & 9.10 \\
\hline 0 & 2 & \(11 \times 7\) & 4.35 & 0.0152 & 2.2 & 3730 & 0. 369 & 0.130 & 0.458 & 904 & 0. 339 & 0.304 & 0.670 & 1327 & 1.70 .38 & 0.652 & 0.36 \\
\hline \(\bigcirc\) & 3 & \(14 \times 8\) & 6.96 & 0.0393 & 2.8 & 7430 & 0.787 & 0. 208 & 0.363 & 736 & O. 864 & 0.487 & 0.531 & 10,4 & \(3.2 \begin{array}{ll}1.7 & 0.98\end{array}\) & 1.35 & 0.25 \\
\hline & 4 & \(18 \times 11\) & 11.3 & 0.114 & 3.56 & 14330 & 1.934 & 0.339 & 0.296 & 584 & 2.12 & 0.791 & 0.432 & 853 & \(\begin{array}{lll}6.0 & 2.37\end{array}\) & 2.78 & 0.43 \\
\hline & 5 & \(22 \times 13\) & 17.0 & 0.246 & 4.4 & 20730 & 3. 46 & 0.510 & 0.273 & 535 & 3.80 & 1.190 & 0.396 & 782 & \(13 \quad 4+30\) & 5.17 & 0.63 \\
\hline & 6 & \(26 \times 16\) & 23.9 & 0.498 & 5.2 & 4625 & 0.592 & 0.717 & 0.778 & 479 & 0.650 & 1.67 & 2.13 & 696 & 21.7 .5 & 8. 65 & 0.94 \\
\hline & 7 & \(30 \times 19\) & 32.8 & 1.016 & 6.0 & 14425 & 1.024 & 0. 984 & 0.693 & 427 & 1.12 & 2.30 & 1.01 & 622 & \(36 \quad 12.9\) & 13.9 & 1. 36 \\
\hline & 8 & \(36 \times 22\) & 44.8 & 2.01 & 7.3 & \({ }^{189} 25\) & 1.636 & 1.34 & 0,639 & 394 & 1.79 & 3.14 & 0.937 & 577 & \(5{ }^{-} 20.8\) & 22.0 & \(2.0 \pm\) \\
\hline & 9 & \(47 \times 28\) & 76.0 & 5.62 & 9.3 & \(345 \quad 25\) & 3. 81 & 2.28 & 0.547 & 337 & 4.18 & 5.32 & 0.798 & 492 & \(125 \quad 48.0\) & 48.6 & 3.12 \\
\hline & 10 & \(59 \times 36\) & 122.0 & 13.4 & 12.0 & \({ }^{608} \quad 25\) & 8.65 & 3.66 & a. 459 & 283 & 9.50 & 8. 54 & 0.670 & 413 & 270109 & 98.3 & 4.85 \\
\hline & \multicolumn{17}{|l|}{copper loss \(=\) irom loss} \\
\hline
\end{tabular}

\section*{Definiticns for Table 2-4}

Information given is listed by column as:
1. Manufacturer part number
2. Surface area calculated from Figure 2-23
3. Area product effective iron area times window area
4. Mean length turn on one bobbin
5. Total number of turns and wire size for one bobbin using a window utilization factor \(K_{u}=0.40\)
6. Resistance of the wire at \(50^{\circ} \mathrm{C}\)
7. Watts loss is based on Figure \(7-2\) for a \(\Delta T\) of \(25^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is equal to \(2 \mathrm{P}_{\mathrm{cu}}\)
8. Current calculated from column 6 and 7
9. Current density calculated from column 5 and 8
10. Resistance of the wire at \(75^{\circ} \mathrm{C}\)
11. Watts loss is based on Figure \(7-2\) for a \(\Delta T\) of \(50^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is equal to \(2 \mathbf{P}_{\mathrm{cu}}\)
12. Current calculateả from column 10 and 11
13. Current density calculated from column 5 and 12
14. Effective core weight for silicon plus copper weight in grams
15. Transformer volume calculated from Figure 2-7
16. Core effective cross-section (thickness, 0.014 ) square stack

Table 2-4. Lamination characteristics
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline & Core & \(A_{t} \mathrm{~cm}^{2}\) & \(A_{P} \mathrm{cms}^{4}\) & MLT cm & N AwG & RG50*C & \(\mathrm{P}_{\mathbf{x}}\) & \(f=\sqrt{\frac{W}{\square}}\) & \[
\begin{aligned}
& \Delta T 25^{\circ} \mathrm{C} \\
& \mathrm{~J}=1 / \mathrm{cm}^{2}
\end{aligned}
\] & ת. \(7{ }^{\text {a }} 75^{\circ} \mathrm{C}\) & \(\mathrm{F}_{2}\) & \(1=\sqrt{\frac{\text { E }}{5}}\) & \[
\begin{aligned}
& \Delta \mathrm{T} 50^{\circ} \mathrm{C} \\
& \mathrm{I}=\mathrm{I} / \mathrm{cm}^{2}
\end{aligned}
\] & \[
\underset{f_{x}}{W_{\text {sight }}}
\] & \[
\begin{gathered}
\text { Volume } \\
\mathrm{cm}^{3}
\end{gathered}
\] & \(\mathrm{A}_{\mathrm{c}} \mathrm{cm}^{2}\) \\
\hline 1 & EE-3031 & 4.11 & 0.0088 & 1.72 & 9030 & 0. 58 & 0.123 & 0. 323 & \({ }^{6} 38\) & 0.645 & 0.288 & 0.472 & 932 & 1.021 .02 & 0.651 & 0.0502 \\
\hline 2 & EE-2829 & 6.63 & 0.0228 & 2.33 & 14730 & 1. 30 & 0. 199 & 0.276 & 546 & 1.43 & 0.464 & 0.403 & 795 & 2.14 1.59 & 1.35 & 0.0907 \\
\hline 3 & E1-187 & 14.4 & 0.108 & 3.20 & 31430 & 3.82 & 0.432 & 0.237 & 469 & 4.19 & 1.01 & 0.347 & 685 & 7.093 .08 & 4.34 & 0.204 \\
\hline 4 & EE-2425 & 23.8 & 0.293 & 5.08 & +9830 & 9.61 & 0. 714 & 0.192 & 3 BO & 10.5 & 1.67 & 0.281 & 555 & 15.59 .06 & 9.22 & 0.363 \\
\hline 5 & EE-2627 & 40.6 & 0.906 & 5.79 & \(2: 5\) & 1.68 & 1.22 & 0.602 & 371 & 1.85 & 2.84 & 0.876 & 530 & 45.815 .5 & 19.1 & 0.816 \\
\hline 6 & E1-375 & 47.7 & 1.23 & 6.30 & \({ }^{350} \quad 25\) & 2.62 & 1.43 & 0.522 & 322 & 2.87 & 3.34 & 0.762 & 470 & +', 7 24.7 & 25.3 & 0.816 \\
\hline 7 & E1-50 & 57.3 & 1.75 & 7.09 & \({ }^{263} 25\) & 2.21 & 1.73 & 0.625 & 385 & 2.43 & 4.04 & 0.912 & 562 & 90.6831 .7 & 36.8 & 1.45 \\
\hline 8 & E1-21 & 66.0 & 2.36 & 7.57 & 37225 & 3.34 & 1.98 & 0. 5.44 & 335 & 3.66 & 4.62 & c. 793 & 489 & 47.3 41.0 & 39.2 & 1.45 \\
\hline 9 & E1-625 & 90.0 & 4.29 & 8.84 & \(503 \quad 25\) & 5.27 & 2.70 & 0. 505 & 312 & 5.74 & 6.30 & 0.737 & 455 & 17484.4 & 60.0 & 2.27 \\
\hline 10 & E1-75 & 130.0 & 8.89 & 10.6 & 21120 & 0.826 & 3.90 & 1. 54 & 296 & 0.906 & 9.10 & 2.24 & 432 & \(132 \quad 105\) & 104.0 & 3.27 \\
\hline 11 & E1-87 & 176.0 & 16.5 & 12.3 & 29620 & 1.34 & 5.28 & 1.40 & 270 & 1.78 & 12.3 & 2.04 & 393 & +61 135 & 164.0 & 4.45 \\
\hline 12 & El-100 & 230.0 & 28.1 & 14.5 & 386 & 2.07 & 6.90 & 1.29 & 249 & 2.27 & 16.1 & 1.98 & 363 & 712 241 & 246.0 & 5.81 \\
\hline 13 & Et-112 & 292.0 & \$4.9 & 16.0 & 49220 & 2.91 & 8.76 & 1.23 & 237 & 3.19 & 20.4 & 1.79 & \(3 ¢ 4\) & \(1020{ }^{3} 842\) & 350.0 & 7.34 \\
\hline 14 & E1-125 & 361.0 & 68.7 & 17.7 & 62520 & 4.09 & 10.8 & 1, 15 & 222 & 4.79 & 25.3 & 1.68 & 324 & 1714 460 & 481.0 & 9.07 \\
\hline 15 & E1-138 & \$32.0 & 107.0 & 19.5 & 74020 & 5.33 & 13.0 & 1,10 & 213 & 5.85 & 30.2 & 1.61 & 310 & 1630 680 & 629.0 & 11.6 \\
\hline 16 & E1-150 & 518.0 & 143.0 & 21.2 & 89320 & 6.99 & 15.5 & 1.05 & 203 & 7.67 & 36.3 & 1.54 & 296 & 2457706 & 829.0 & 13.1 \\
\hline 17 & E1-175 & 704.0 & 263.0 & 24.7 & \({ }^{1080} 20\) & 9.85 & 21.1 & 3. 034 & 199 & 10.8 & 49.3 & 1.51 & 291 & 35752355 & 1312.0 & 17.8 \\
\hline 13 & E1-36 & 779.0 & 324.0 & 26.5 & 170120 & 16.6 & 23.3 & 0. 836 & 161 & 19.3 & 54.5 & 1.22 & 235 & 39061273 & 1654.0 & 15.3 \\
\hline 19 & El-19 & 1093.0 & 601.0 & 31.7 & \({ }^{2886}\) 20 & 33.8 & 32.8 & 0.696 & 134 & 37.1 & 76.5 & 1. 0.5 & 196 & +889 3805 & 28:5.0 & 17.8 \\
\hline \multicolumn{17}{|l|}{copper lowa = iran loss} \\
\hline
\end{tabular}

\section*{Definitions for Table 2-5}

Information given is listed by column as:
1. Manufacturer part number
2. Surface area calculated from Figure 2-24
3. Area product effective iron area times window area
4. Mean length turn on one bobbin
5. Total number of turns and wire size for two bobbins using a window utilization factor \(K_{u}=0.40\)
6. Resistance of the wire at \(50^{\circ} \mathrm{C}\)
7. Watts loss is based on Figure \(7-2\) for a \(\Delta T\) of \(25^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is equal to \(2 P_{c u}\)
8. Current calculated from column 6 and 7
9. Current density calculated from column 5 and 8
10. Resistance of the wire at \(75^{\circ} \mathrm{C}\)
11. Watts loss is based on Figure \(7-2\) for a \(\Delta \mathrm{T}\) of \(50^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is equal to \(2 \mathrm{P}_{\mathrm{cu}}\)
12. Current calculated from column 10 and 11
13. Current density calculated from column 5 and 12
14. Effective core'weight for silicon plus copper weight in grams
15. Transformer volume calculated from Figure 2-8
16. Core effective cross-section

Table 2-5. C-core characteristics
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 1.6 \\
\hline & Core & \(A_{\mathrm{E}} \mathrm{cm}^{2}\) & \(A_{p} \mathrm{cra}^{4}\) & MLT cm & N - atwe & 9esinc & \({ }^{P} \mathrm{~s}\) & \(1 . \sqrt{\frac{1}{4}}\) & \[
\begin{aligned}
& \Delta T 25^{\circ} \mathrm{C} \\
& J-\frac{\text { amps }}{\mathrm{cm}^{2}}
\end{aligned}
\] & He \(5^{\circ} \mathrm{C}\) & \({ }^{\text {P }}\) & \(1-\sqrt{\frac{w}{x}}\) & \[
\begin{aligned}
& \Delta T 50^{\circ} \mathrm{C} \\
& \mathrm{I}=\frac{2 \mathrm{mps}}{\mathrm{~cm}^{2}}
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { Volumsu } \\
& \mathrm{cm}^{3}
\end{aligned}
\] & \(\hat{A c m s}^{2}\) \\
\hline 1 & AL-2 & 20.9 & 0.205 & 3.53 & 66230 & 8.93 & 0.627 & 0.187 & 370 & 9.81 & 1.46 & 0.273 & 538 & 12.2111 .1 & 7.14 & 0.265 \\
\hline 2 & AL- 3 & 23.9 & 0.4:0 & 4.15 & 66.230 & 10.5 & 0.717 & 0.185 & 365 & 11.5 & 1.67 & 0. 269 & 531 & 2in. \(1 \quad 13.1\) & \$. 92 & 0.410 \\
\hline 3 & AL-5 & 33.6 & 0.767 & 4. 59 & 94830 & 16.5 & 1.01 & 0.174 & 345 & 18.7 & 2.35 & 0.255 & 503 & \(31.3 \begin{array}{ll}30.5\end{array}\) & 14.06 & 0.537 \\
\hline 4 & AL- \({ }^{\text {ch }}\) & 37.5 & 1.021 & 5.23 & 97630 & 18.8 & 1.13 & 0.172 & 341 & 20.6 & 2.63 & 0.253 & 490 & 41.7123 .4 & 154. 89 & 0.716 \\
\hline 5 & AL-12\% & 45.3 & 1.44 & 5. 59 & 131730 & 27.3 & 1.36 & 0.157 & 310 & 50.2 & 2.17 & 0.229 & 452 & \(46.6 \quad 34.2\) & 23. 50 & 0.716 \\
\hline 6 & AL-8 & 63.4 & 2.31 & 5.74 & 22120 & 0.782 & 1.90 & 1. 404 & 271 & 0.529 & 4.44 & 2.05 & 375 & 67.960 .0 & 35. 66 & 0.806 \\
\hline 7 & AL-9 & 09.0 & 3.78 & 6.38 & 22120 & 0.535 & 2.07 & 1. 39 & 268 & 0.587 & 4.83 & 2.03 & 391 & 89.266 .6 & 41, 62 & 1,077 \\
\hline 3 & AL-10 & 74.5 & 3.85 & 7.01 & 22120 & 0. 588 & 2.27 & 1.38 & 266 & 0.676 & 5.22 & 2.01 & 387 & 10.0 83.2 & 47.55 & 1. 342 \\
\hline 9 & AL-12 & 87.0 & 4.57 & 8.07 & 27830 & 0.748 & 2.61 & 1.32 & 255 & 0.821 & 6.09 & 1.93 & 371 & 111.093 .2 & 61. 38 & 1.26 \\
\hline 10 & AL-135 & 93.7 & 5.14 & 7.36 & \({ }^{325} 20\) & 0.908 & 2.81 & 1.24 & 230 & \(0.99 \%\) & 6.55 & 1.81 & 345 & 117.0113 .0 & 69.63 & 1.26 \\
\hline 11 & AL-78 & 98.1 & 6.07 & 701 & 31220 & 0.838 & 2.94 & 1.3: & 256 & 0.912 & 0.87 & 1.94 & 374 & 155.0103 .0 & 62.83 & 1.34 \\
\hline 12 & Al-: 8 & 118 & 7. 92 & 7.60 & 31020 & 1.47 & 3.55 & 1.10 & 211 & 1.61 & 8.26 & 1.60 & 309 & 13868153.0 & 94.79 & 1.25 \\
\hline 13 & AL-15 & 120 & 9.07 & 8.05 & 38620 & 1.18 & 3.58 & 1.23 & 237 & 1.30 & 8.40 & 1.79 & 346 & 205-0 147.0 & 94.43 & 1.80 \\
\hline 14 & ALI-16 & 127 & 10.8 & 8. \(\mathrm{Ea}^{\text {a }}\) & 38627 & 1.30 & 3.80 & 1.20 & 233 & 1.43 & 8. 89 & 1.76 & अо & 235.01620 & 104. 95 & 2.15 \\
\hline 15 & AL-1; & 142 & & 10.3 & 386 & 1.51 & 4.25 & 1.185 & 228 & 1,66 & 9.94 & 1.73 & 333 & 317.0 188.0 & 125.97 & 2.87 \\
\hline 16 & AL-19 & 159 & 18.0 & 10.8 & 51120 & 2.10 & 4.77 & 1.06. & 205 & 2.31 & 11.1 & 2.55 & 299 & \(328.0 \quad 261.0\) & 155.44 & 2.87 \\
\hline 17 & A1-20 & 182 & 22.6 & 11.5 & 51 z 20 & 2.23 & 5.46 & 1 inf & & 2.75 & 12.7 & :-61 & 310 & \(437.0 \quad 278.0\) & 187.08 & 3.59 \\
\hline 18 & AL. 22 & 202 & 28.0 & 11.5 & \({ }^{637} 20\) & 2. 78 & 6.15 & 1.0 & 20 & 3.05 & & :. 52 & 293 & \(489.0 \quad 3 \div 6.0\) & 212.04 & 3. 58 \\
\hline 19 & AL-23 & 220 & 34.9 & 12.7 & \({ }_{6}^{637} 20\) & 3.07 & 6.60 & : 836 & 200 & 3.37 & 15.4 & 8. 51 & 291 & \(612.0 \quad 382.0\) & 244.67 & 4.48 \\
\hline 20 & AL-24 & 243 & in. 0 & 12.0 & \({ }^{948} 20\) & 4. 32 & T.35 & c. 922 & 179 & i. 34 & 17.1 & 1.25 & 259 & 552.0 53c.0] & 255.91 & 3.58 \\
\hline
\end{tabular}

Information given is listed by column as:
1. Manufacturer part number
2. Surface area calculated from Figere 2-25
3. Area product effective iron area times window area
4. Mean length turn on one bobbin
5. Total number of turns and wire size for a single bobbin using a window utilization factor \(K_{u}=0.40\)
6. Resistance of the wire at \(50^{\circ} \mathrm{C}\)
7. Watts loss is based on Figure \(7-2\) for a \(\Delta T\) of \(25^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is \(P_{c u}\)
8. Current calculated from column 6 and 7
9. Current density calculated from column 5 and 8
10. Resistance of the wire at \(75^{\circ} \mathrm{C}\)
11. Watts loss is besed on Figure \(7-2\) for a \(\Delta T\) of \(50^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the inductor surface area, total loss is \(P_{c u}\)
12. Current calculated from column 10 and 11
13. Current density calculated from column 5 and 12
14. Effective core weight plus copper weight in grams
15. Inductor volume calculated from Figure 2-9
16. Core effective cross-section

Table 2-6. Single-coil C-core characteristics

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline & Core & \(\mathrm{A}_{2} \mathrm{~cm}^{2}\) & \(A_{p} \mathrm{~cm}^{4}\) & \(\mathrm{MLT}_{\mathrm{cm}}\) & \({ }^{\mathrm{N}}{ }_{\text {awg }}\) & \(2 \mathrm{ec} 50^{\circ} \mathrm{c}\) & \(\mathrm{P}_{5}\) & \(1=\sqrt{\frac{W}{\Omega}}\) & \(\Delta T 25 * C\)
\(1=t / \mathrm{cm}^{2}\) & \(5875^{\circ} \mathrm{C}\) & \({ }^{P}\) 玉 & \(1=\sqrt{\frac{W}{2}}\) & \[
\begin{gathered}
\Delta T 50^{\circ} \mathrm{C} \\
J=\mathrm{I} / \mathrm{cm}^{2}
\end{gathered}
\] & \({ }_{\text {f }}{ }^{\text {Weight }} \mathrm{Cu}\) & \({ }^{\text {Volume }}\) & \(\mathrm{A}_{\mathrm{c}} \mathrm{cm}^{2}\) \\
\hline 1 & AL-z & 24.6 & 0. 265 & 4.47 & \[
{ }^{83}{ }_{20}
\] & 0. 138 & 0.737 & 2.31 & 445 & 0. 151 & 1. 72 & 3.37 & 651 & 12.216 .9 & 10.7 & 0.264 \\
\hline 2 & AL-3 & 27.6 & 0.410 & 5.10 & \[
{ }^{83}
\] & 0.158 & 0.828 & 2.28 & 441 & 0. 173 & 1.93 & 3.34 & 644 & 18.119 .3 & 12.5 & 0.406 \\
\hline 3 & AL-5 & 38.1 & 0. 767 & 5.42 & \[
{ }^{119}
\] & 0.238 & 1.14 & 2.18 & 422 & 0.26 ? & 2.67 & 3.19 & 615 & 32.3 29.2 & 19.7 & 0.539 \\
\hline 4 & AL-6 & 41.9 & 1.011 & 6.06 & \[
{ }^{119} 26
\] & 0. 266 & 1.26 & 2.17 & 420 & 0. 292 & 2.93 & 3.16 & 611 & 41.732 .6 & F. 9 & 0. 716 \\
\hline 5 & AL-124 & 51.8 & 1.44 & 5.56 & \[
{ }^{175} 20
\] & 0.426 & 1.55 & 1.90 & 368 & 0.468 & 3.63 & 2.78 & 537 & \(46.6 \quad 52.1\) & 30.8 & 0. 716 \\
\hline 6 & AL-8 & 72.8 & 2.31 & 7.06 & \[
255
\] & 0.669 & 2.18 & 1.80 & 348 & 0. 734 & 5.10 & 2.63 & 5cg & 67.981 .7 & 53.5 & 0.806 \\
\hline 7 & AL-9 & 78.4 & 3.09 & 7.69 & \[
255
\] & 0.728 & 2.35 & 1.79 & \(3 \div 6\) & 0.799 & 5.49 & 2.62 & 505 & 89.2 89.0 & 59.5 & 1.08 \\
\hline B & AL- 10 & 83.9 & 3. 85 & 8. 33 & \[
{ }^{253}
\] & 0.788 & 2.52 & 1. 78 & 345 & 0. 866 & 5.87 & 2.60 & 502 & 110.0 \%-4 & 65.4 & 1.34 \\
\hline 9 & al-12 & 101.0 & 4.57 & 9.00 & \[
{ }^{327_{20}}
\] & 1.09 & 3.03 & 1.66 & 321 & 1.20 & 7.67 & 2.42 & 46B & 111.0134 .4 & 92.1 & 1. 26 \\
\hline to & AL-135 & 110.0 & 5.14 & 9.50 & \[
370
\] & 1.31 & 3.30 & 1.58 & 306 & 1.43 & 7.70 & 2.32 & 457 & 144.0159 .0 & 107.0 & 1.26 \\
\hline 11 & AL-78 & 110.0 & 6.08 & 8. 15 & \[
406
\] & 1.23 & 3.30 & 1.63 & 316 & 1.35 & 7.75 & 2.38 & 460 & 155-0 150.0 & 81.3 & 1.34 \\
\hline 12 & AL-18 & 142.0 & 7.87 & 7.51 & \[
56420
\] & 2.14 & 4.26 & 1.41 & 272 & 2. 35 & 9.94 & 2.05 & 396 & 138.0260 .0 & 147.0 & 1.25 \\
\hline 13 & AL-15 & 136.0 & 9.07 & 10. 1 & \[
\begin{array}{r}
44 \\
20
\end{array}
\] & 1. 66 & 4.08 & 1.56 & 302 & 1. 83 & 9.52 & 2.28 & 440 & 205.0203 .0 & 136.0 & :. 80 \\
\hline 14 & AL-16 & 143.0 & 10.8 & 10.7 & \[
{ }^{4.4}{ }_{20}
\] & 1,77 & 4. 29 & 1.55 & 309 & 1.94 & 10.0 & 2.27 & 438 & 235.0 216.0 & 147.0 & 215 \\
\hline 15 & AL-17 & 158.0 & 14.4 & 12.0 & \[
{ }_{20}^{444}
\] & 1.97 & 4. 74 & 1.55 & 299 & 2.20 & 11.1 & 2.24 & 433 & 314.0241 .0 & 168.0 & 2.87 \\
\hline 16 & AL-19 & 182.0 & 18.1 & 13.0 & \[
{ }^{563}{ }_{20}
\] & 2. 71 & 5.46 & 1.41 & 274 & 2.97 & 12.7 & 2.06 & 399 & 328.0 322.0 & 212.0 & 2. 67 \\
\hline 17 & AL-20 & 205.0 & 22.6 & 13.6 & \[
5_{26}{ }_{20}
\] & 2.81 & 6.15 & 1.47 & 284 & 3.12 & 14.4 & 2.14 & 414 & \$37.0 348.0 & 259.0 & 3.58 \\
\hline 18 & AL-22 & 228.0 & 23.0 & 13.6 & \[
{ }_{20}^{704}
\] & 3.56 & 6.84 & 1. 38 & 267 & 3.91 & 16.0 & 2.02 & 390 & \(489.0 \quad 435.0\) & 294.9 & 3. 58 \\
\hline 19 & AL-23 & 246.0 & 35.0 & 15.9 & \[
{ }_{20}^{704}
\] & 3.89 & 7.38 & 1.37 & 265 & 4.27 & 17.2 & 2.00 & 387 & 612.0479 .0 & 326.0 & 4.48 \\
\hline 20 & AL-24 & 282.0 & i0.0 & 14.6 & 1026 & 5.77 & 8.46 & 1.23 & 238 & 6.11 & 19.7 & 1.79 & 346 & 552.0680 .0 & 431.0 & 3.58 \\
\hline
\end{tabular}

\section*{Definitions for Table 2-7}

Information given is listed by column as:
1. Manufacturer part number
2. Surface area calculated from Figure 2-22
3. Area product effective iron area times window area
4. Mean length turn
5. Total number of turns and wire size using a window utilization factor \(K_{u}=0.40\)
6. Resistance of the wire at \(50^{\circ} \mathrm{C}\)
7. Watts loss is based on Figure \(7-2\) for a \(\Delta T\) of \(25^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is equal to \(2 \mathrm{P}_{\mathrm{cu}}\)
8. Current calculated from column 6 and 7

N 9. Current density calculated from column 5 and 8
10. Resistance of the wire at \(75^{\circ} \mathrm{C}\)
11. Watts loss is based on Figure \(7-2\) for a \(\Delta T\) of \(50^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is equal to \(2 P_{c u}\)
12. Current calculated from column 10 and 11
13. Current density calculated from column 5 and 12
14. Effective core weight plus copper weight in grams
15. Transformer volume calculated from Figure 2-6
16. Core effective cross-section

Table 2-7. Tape-wound core characteristics


\section*{C. TRANSFORMER VOLUME}

The volume of a transformer can be related to the area product \(A_{p}\) of a transformer, treating the volume as shown in Figures \(2-6\) through \(2-9\) below as solid quantity without subtraction of anything for the core window. Derivation of the relationship is according to the following: volume varies in accordance with the cube of any linear dimension \(\ell\) (designated \(\ell^{3}\) below), where area product \(A_{p}\) varies as the fourth power:
\[
\begin{align*}
& V \text { ol }=K_{1} \ell^{3} \\
& A_{p}=K_{2} \ell^{4} \\
& \ell^{4}=\frac{A_{p}}{K_{2}}  \tag{2-3}\\
& \ell=\left(\frac{A_{p}}{R_{2}}\right)^{0.25} \tag{2-4}
\end{align*}
\]
\[
\begin{equation*}
\ell^{3}=\left[\left(\frac{A}{p}\right)^{0.25}\right]^{3}=\left(\frac{A}{R_{2}}\right)^{0.75} \tag{2-5}
\end{equation*}
\]
\[
\begin{equation*}
\text { Vol }=K_{1}\left(\frac{A_{p}}{K_{2}}\right)^{0.75} \tag{2-6}
\end{equation*}
\]


Fig. 2-7. EI Lamination core volume


Fig. 2-9. Single-coil C-core volume
\[
\begin{align*}
K_{v} & =\frac{K_{1}}{K_{2}^{0.75}}  \tag{2-7}\\
V_{\text {ol }} & =K_{v} A_{p}^{0.75}
\end{align*}
\]

The volume, area product relationship is
\[
\mathrm{Vol}=\mathrm{K}_{\mathrm{v}} \mathrm{~A}_{\mathrm{p}}^{0.75}
\]
in which \(K_{V}\) is a constant related to core configuration, these values are given in Table 2-8. This constant was obtained by averaging the values in Tables 2-2 through 2-7, column 15.

The relationshif between volume and area product \(A_{p}\) for various core types is given in Figures \(\mathrm{t}-10\) through 2-15. It was obtained from the reata shown in Tables 2-2 through 2-7, in which the Vol and \(A_{p}\) values are shown in columns 15 for volume, and column 3 for area product.

Table 2-8. Constant \(K\)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Core type } & \(\mathrm{K}_{\mathrm{r}}\) \\
\hline Pot core & 14.5 \\
Powder core & 13.1 \\
Lamination & 19.7 \\
C-core & 17.9 \\
Single-coil C-core & 25.6 \\
Tape-wound core & 25.0 \\
\hline
\end{tabular}


Fig. 2-10. Volume versus area product \(A_{p}\) for pot cores


Fig. 2-11. Volume versus area product \(A\) for powder cores


Fig. 2-12. Volume versus area product \(A_{p}\) for laminations


Fig. 2-13. Volume versus area product \(A\) for \(C\)-cores


Fig. 2-14. Volume versus area product \(A_{p}\) for single-coil C-cores


Fig. 2-15. Volume versus area product \(A_{p}\) for tape-wound toroids

\section*{IV. TRANSEORMER WE』GHT}

The total weight \(W_{t}\) of a transformer can be related to the area product \(A_{p}\). Derivation of the relationship is according to the iollowing: weight \(W_{t}\) varies in accordance with the cube of any linear dimension \(\ell\) (designated \(\ell^{3}\) below), whereas area product \(A_{p}\) varies as the fourth power:
\[
\begin{gather*}
w_{t}=K_{3} \ell^{3}  \tag{2-9}\\
A_{p}=K_{2} \ell^{4}  \tag{2-10}\\
\ell^{4}=\frac{A_{p}}{K_{2}}  \tag{2-11}\\
\ell=\left(\frac{A_{p}}{K_{2}}\right)^{0.25} \\
{\left[\left(\frac{A_{p}}{K_{2}}\right)^{0.25}\right]^{3}=\left(\frac{A_{1}}{K_{2}}\right)^{0.75}} \\
W_{t}=K_{3}\left(\frac{A_{p}}{K_{2}}\right)^{0.75} \\
K_{w}=\frac{K_{3}}{K_{2}^{0.75}} \\
W_{t}=K_{w} A_{p}^{0.75}
\end{gather*}
\]
relationship
\[
w_{t}=K_{w} A_{p}^{0.75}
\]
in which \(K_{w}\) is a constant related to core configuration, is shown in Tible 2-9, which has been derived by averaging the values in Tables 2-2 through 2-7, column 14.

The relationship between weight and area product \(A_{p}\) for various core types is given in Figures 2-16 through 2-21. It was obtained from the data shown in Tables 2-2 through 2-7, in which the \(W_{t}\) and \(A_{p}\) values are shown in column 14 for weight, and column 3 for area product.

Table 2-9. Constant \(K_{w}\)
\begin{tabular}{|l|c|}
\hline Core type & \(\mathrm{K}_{\mathrm{w}}\) \\
\hline Pot core & 48.0 \\
Powder core & 58.8 \\
Lamination & 68.2 \\
C-core & 66.6 \\
Single-coil C-core & 76.6 \\
Tape-wound core & 82.3 \\
\hline
\end{tabular}


Fig. 2-16. Total weight versus area product \(A\) for pot cores


Fig, 2-17. Total weight versus area product \(A_{p}\) for powder cores


Fig. 2-18. Total weight versus area product \(A_{p}\) for laminations


Fig. 2-19. Total weight versus area product \(A_{p}\) for C-cores


Fig. 2-20. Total weight versus area product \(A_{p}\) for single-coil C-cores


Fig. 2-21, Total weight versus area product \(A_{p}\) for tape-wound toroids

\section*{E. TRANSFORMER SURFACE AREA}

The surface area \(A_{t}\) of a transformer can be related to the area product \(A_{p}\) of a transformer treating the surface area as shown in Figures 2-22 through 2-25. Derivation of the relationships is in accordance with the square of any linear dimension \(\ell\) (designated \(\ell^{2}\) below), where area product varies as the fourth power:
\[
\begin{equation*}
\mathrm{A}_{\mathrm{t}}=\mathrm{K}_{4} \ell^{2} \tag{2-17}
\end{equation*}
\]


Fig. 2-22. Tape-wound core, powder core, and pot core surface area \(A_{t}\)

\(A_{t}\) - Surface area
\(A_{f}=4 E(2 E+F)+(E D) A+2(D+F)(G)+2(2 F+2 E)(G)+2(D+F)(2 F+2 E)\)
Fig. 2-24. C-core surface area \(A_{t}\)

\(S\) - BUILD
\(A_{t}=\frac{\pi(2 C+A)^{2}}{2}+D r(2 C+A)+2(F E+S F+S E-D A-2 D C\)
Fig. 2-23. EI lamination surface area \(A_{t}\)

\(\left.A_{t}-2\{2(E+F) \mid(D+2 F)+(G+2 E)\}+(G+2 E)(D+2 F)-8 E F\right\}\)

Fig. 2-25. Single-coil C-core surface area \(A_{t}\)
\[
\begin{align*}
A_{p} & =K_{2} \ell^{4}  \tag{2-18}\\
\ell^{4} & =\frac{A_{p}}{K_{2}}  \tag{2-19}\\
\ell & =\left(\frac{A_{p}}{K_{2}}\right)^{0.25}  \tag{2-20}\\
\ell^{2} & =\left[\left(\frac{A_{p}}{K_{2}}\right)^{0.25}\right]^{2}  \tag{2-21}\\
\ell^{2} & =\left(\frac{A_{p}}{K_{2}}\right)^{0.5}  \tag{2-22}\\
A_{t} & =K_{4}\left(\frac{A_{p}}{K_{2}}\right)^{0.5}  \tag{2-23}\\
K_{s} & =\frac{K_{4}}{K_{2}^{0.5}}  \tag{2-24}\\
A_{t} & =K_{s} A_{p}^{0.5}
\end{align*}
\]

The surface area/area product relationship
\[
A_{t}=K_{s} A_{p}^{0.5}
\]
in which \(\mathrm{K}_{\mathrm{s}}\) is a constant related to core configuration is shown in Tahle 2-10, which has been derived by averaging the values in Tables 2-2 through 2-7, column 2.

Table 2-10. Constant \(K_{s}\)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Core type } & \(\mathrm{K}_{\mathrm{s}}\) \\
\hline Pot core & 33.8 \\
Powder core & 32.5 \\
Lamination & 41.3 \\
C-core & 39.2 \\
Single-coil ©-core & 44.5 \\
Tape-wound core & 50.9 \\
\hline
\end{tabular}

The relationship between surface area and area product \(A_{p}\) for various core types is given in Figures 2-26 through 2-31. It was obtained from the data shown in Tables 2-2 through 2-7, in which the \(A_{t}\) and \(A_{p}\) values are shown in columns 2 for surface area, and column 3 for area product.


Fig. 2-26. Surface area versus area product \(A_{p}\) for pot coree


Fig. 2-27. Surface area versus area product \(A_{p}\) for powder cores


Fig. 2-28. Surface area versus area product \(A_{p}\) for laminations


Fig. 2-29. Surface area versus area product \(A_{p}\) for C-cores


AL CORES
Fig. 2-30. Surface area versus area product \(A_{p}\) for singit-coil C-cores


Fig. 2-31. Surface area versus area product \(A_{p}\) for tape-wound toroids

\section*{F. TRANSFORMER CURRENT DENSITY}

Current density \(J\) of a transformer can be related to the area product \(A_{P}\) of a transiormer for a given tempevature rise.

The relationship of current density \(J\) to the ared product \(A_{p}\) for a given temperat.re rise can be derived as follows;
\[
\begin{align*}
A_{t} & =K_{s} A_{p}^{0.5}  \tag{2-26}\\
P_{c u} & =I^{2} R  \tag{2-27}\\
I & =A_{w} J \tag{2-28}
\end{align*}
\]
\[
\begin{gather*}
\therefore P_{c u}=A_{w}^{2} J^{2} R  \tag{2-29}\\
R=\frac{M L T}{A_{w}} N \rho  \tag{2-30}\\
\therefore P_{c u} \quad A_{w}^{2} J^{2} \frac{M L T}{A_{w}} N \rho  \tag{2-31}\\
r_{c u}=A_{w} J^{2} M L T N \rho \tag{2-32}
\end{gather*}
\]

Since MLT has a dimension of Length
\[
\begin{gather*}
M L T=K_{5} A_{p}^{0.25}  \tag{2-33}\\
P_{c u}=A_{w} J^{2} K_{6} A_{p}^{0.25} N p  \tag{2-3.4}\\
A_{w} N=K_{6} W_{a} K_{3} A_{p}^{0.5}  \tag{2-35}\\
P_{c u}=K_{6} A_{p}^{0.5} K_{5} A_{p}^{0.25} J_{p}^{2}  \tag{2-36}\\
K_{7}=K_{6} K_{5} p \tag{2-37}
\end{gather*}
\]

Assuming the core loss is the same as the copper loss for optimized transformer operation (Sce Chapter 7).
\[
\begin{gather*}
P_{\mathrm{su}} \mathrm{~K}_{7} A_{\mathrm{p}}^{0.75} \mathrm{~J}^{2} \cdots \mathrm{P}_{\mathrm{fe}}  \tag{2-38}\\
\mathrm{P}_{\mathrm{S}}=\mathrm{P}_{\mathrm{cu}}+\mathrm{P}_{\mathrm{fc}}  \tag{2-39}\\
\Delta T=K_{8} \frac{P_{\mathrm{E}}}{A_{t}} \tag{2-40}
\end{gather*}
\]
\[
\begin{align*}
& \Delta T=\frac{2 K_{8} K_{7} J^{2} A_{p}^{0.75}}{K_{8} A_{p}^{0.5}}  \tag{2-41}\\
& K_{9}=\frac{2 K_{8} K_{7}}{K_{s}}  \tag{2-42}\\
& \Delta T=K_{9} J^{2} A_{p}^{0.25}  \tag{2-43}\\
& J^{2}=\frac{\Delta T}{K_{9} A_{p}^{0.25}}  \tag{2-44}\\
& K_{10}=\frac{\Delta T}{K_{9}}  \tag{2-45}\\
& J^{2}=K_{10^{2}} A_{p}^{-0.25}  \tag{2-46}\\
& J=K_{;} A_{p}^{-0.125} \tag{2-47}
\end{align*}
\]

The current density/area product relationship*
\[
J=K_{j} A_{p}^{-0.125}
\]
in which \(K_{j}\) is a constant related to core configuration, is shown in Table 2-11, which has been derived by averaging the values in Tables 2-2 through 2-7, columans 9 and 13.

\footnotetext{
*This is the theorfical value for current density/area product relationship. The empirical values for different core configuration are found in Table 2-1.
}

Table 2-11. Constant \(\mathrm{K}_{\mathrm{j}}\)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Core type } & \(\mathrm{K}_{\mathrm{j}}\left(\Delta 25^{\circ}\right)\) & \(\mathrm{K}_{\mathrm{j}}\left(\Delta 50^{\circ}\right)\) \\
\hline Pot core & 433 & 632 \\
Powder core & 403 & 590 \\
Lamination & 366 & 534 \\
C-type core & 322 & 468 \\
Single-coil C-core & 395 & 569 \\
Tape-wound core & 250 & 365 \\
\hline
\end{tabular}

The relationship between current density and area product \(A_{p}\) for a temperature rise of \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) is given in Figures \(2-32\) through \(2-37\). It was obtained from the data shown in Tables 2-2 through 2-7, in which the \(J\) and \(A_{p}\) values are shown in columns 9 and 13 for curient density, and column 3 for area product.


Fig. 2-32. Current density versus area product \(A_{p}\) for a \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for pot cores


Fig. 2-33. Current density versus area product A.p for a \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for powder cores


Fig. 2-34. Current density versus area product \(A_{p}\) for \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for laminations


Fig. 2-35. Current density versus area product \(A_{p}\) for \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for C -cores


Fig. 2-36. Current density versus area product \(A\) for a \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for single-coil C -cores


Fig, 2-37. Current density versus area product \(A_{p}\) for \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise for tape-wound toroids

\section*{77-35}

\section*{CHAPTER III}

POWER TRANSFORMER DESIGN

\section*{A. INTPODUCTION}

The conversion process in power electronics requires the use of transformers, components which frequently are the heaviest and bulkiest item in the conversion circuits. They also have a significant effect upon the overall performance and efficiency of the system. Accordingly, the design of such transformers has an important influence on overall systen weight, power conversion efficiency and cost. Because of the interdependence and interactio of parameters, judicious tradeoffs are necessary to achieve design optimization.

\section*{B. THE DESIGN PROBLEM GENERALLY}

The designer is faced with a set of constraints which must be observed in the design of any transformer. One of these is the output power, \(P_{o}\), (operating voltage muitiplied by maximum current derrand) which the secondary winding must be capable of delivering to the load within specified regulation limits. Another relates to minimum efficiency of operation which is dependent upon the maximum power loss which can be allowed in the transformer. Still another defines the maximum permissible temperature rise for the transformer when used in a specified temperature environment.

Other constraints relate to volume occupied by the transforn er and particularly in aerospace applications, weight, since weight minimization is an important goal in the design of space flight electronics. Lastly, cost effectiveness is always an important consideration.

Depending upon application, certain of the se constraints will dominate. Parameters affecting others may then be traded off as necessary to achieve the most desirable design. It is not possible to optimize all perameters in a single design because of the interaction and inte: dependenc: of parameters. For example, if volume and weight are of great significance, reductions in both often can be effected by operating the transformer at a higher frequency but at a penalty in efficiency. When the frequeis \(/\) cannot be raised, reduction in weight and volume may still be possible by selecting a more afficient core
material, but at a penalty of increased cost. Judicious tradeoffs thus must be effected to achieve the design goals.

A flow chart showing the interrelation and interaction of the various design factors which must be taken into consideration is shown in Figure 3-1.


TRAN SFORMER FLOW CHART
Fig. 3-1. Transformer design factors flow chart

Various transformer designers have used different approaches in arriving at suitable designs. For example, in many cases a rule of thumb is used for dealing with current density. Typically, an assumption is made that a good working level is 1000 circular mils per ampere. This will work in many instances but the wire size needed to meet this requirement may produce a heavier and bulkier transformer than desired or required. The information presented herein makes it possible to avoid the use of this and other rules of thumb and to develop a more economical design with great accuracy.

\section*{C. RELATIONSHIP OF A TO TRANSFORMER POWLR HANDLING CAPABILITY}

According to the newly developed approach, the power handling capability of a core is related to its area product by an equation which may be stated as:
\[
\begin{equation*}
A_{p}=\left(\frac{P_{t} \times 10^{4}}{K B_{m} \mathrm{fl}_{\mathrm{u}} K_{j}}\right)^{1.16} \quad 1 \mathrm{~cm}^{4} 1 \tag{3-1}
\end{equation*}
\]
where
\(K=\) waveform coefficient
4.0 square wave
4.44 sine wave
\(B_{m}=f l u x\) density, tesla
\(f=\) frequency, Hz
\(K_{u}=\) window utilization factor (see Chapter 6)
\(K_{j}=\) current density coefficient (see Chapter 2 )
\(P_{t}=\) apparent power, prinary plus secondary

From the above it can be seen that factors such as flux density, frequency of operation, window utilization factor \(\mathrm{K}_{\mathrm{u}^{+}}\)which defines the maximum space which may be occupied by the copper in the window, and the constant \(K_{j}\), which is related to temperature rise, all have an influence on the transformer area product. The constant \(K_{j}\) is a new parameter that gives the designer control of the copper loss. Derivisinn is set forth in detail in Chapter 2. The derivation for area product \(A_{p}\) is set forth in detail at the end of this chapter Appendix 3. A.

\section*{D. OUTPUT POWER VS LNPUT POWER VS APPARENT POWER CAPABILITY}

Output fower ( \(\mathrm{P}_{\mathrm{o}}\) ) is of greatest interest to the user. To the transformer designer it is the apparent power ( \(P_{t}\) ) which is associated with the geometry of the transformer that is of greater importance. Assume, for the sake of simplicity, the core of an isolation transformer has but two windings in the window area ( \(W_{a}\) ), a primary and a secondary. Also assume that the window
area ( \(W_{a}\) ) is divided up in pro, ortion to the power handling capability of the windings using equal current density. The primary winding handles \(P_{i n}\) and the secondary handles \(P_{o}\) to the load. Since the power transformer has to be designed to accommodate the primary \(P_{i n}\) and secondary \(P_{o}\) then:
\[
\begin{gather*}
P_{t}=P_{i n}+P_{0}  \tag{3-2}\\
P_{i n}=\frac{P_{0}}{\eta}  \tag{3-3}\\
P_{t}=\frac{P_{0}}{\eta}+P_{0}  \tag{3-4}\\
P_{:}=P_{o}\left(\frac{1}{\eta}+1\right) \tag{3-5}
\end{gather*}
\]

The designer must be concerned with the apparent power handling capability, \(P_{t}\), of the transformet core and windings. \(P_{t}\) may vary by a factor ranging from 2 to 2.828 times the input power, \(P_{\text {in' }}\) depending upon the type of circuit in which the transformer is used. If the current in the rectifier transformer becomes interrupted, its effective RMS value changes. Transformer size, thus, is not only determined by the load demand but, also, by application because of the different copper loseses meurred due to curtent waveform (sec Chapter 7, Fig. 7-20).

For example, for a load of one watt, compare the power handing capabilities required for each winding (neglecting transformer and diode lo:ses so that \(P_{i n}=P_{o}\) for the full-wave bridge circuit of Fig. 3-2, the full-wave centertapped secondary circuit of Fig. 3-3, and the push-pull center-tapped full-wave circuit in Fig. 3-4, where ail windings have the same number of turns (N).


Fig. 3-2, Full-wave bridge circuit

The total apparent powiv \(P_{t}\) for the circuit shown in Fig. 3-2 is 2 watts. This is shown in the following equation:
\[
\begin{gather*}
P_{t}=\frac{P_{i n}}{\left\langle I_{N 1} E_{N 1}\right\rangle}+\frac{P_{0}}{\left(I_{N 2} E_{N 2}\right)}  \tag{3-6}\\
P_{t}=2 P_{i n} \tag{3-7}
\end{gather*}
\]
in which \(I_{N}\) ! and \(I_{N 2}\) are the currents associated with the primary and secondary windings, respectively, and \(E_{N 1}\) and \(E_{N 2}\) are the voltages across the primary and secondary windings, respectively.


Fig. 3-3. Fu'l-wave, center-tapped circuit
\[
3-7
\]

The total power \(P_{t}\) for the circuit shown in Fig. 3-3 increased 20.7\% due to the distorted wave form of the interrupted current flowing in the secondary winding. This is shown in the following equation:
\[
\begin{align*}
& P_{t}=\left(I_{N 1} E_{N 1}\right)+\left[\left(0.707 I_{N 2} E_{N 2}\right)+\left(0.707 I_{i, 3} E_{N 3}\right)\right]  \tag{3-8}\\
& P_{t}=P_{i n}+0.707 P_{i n}+0.707 P_{i n}=2.414 P_{i n} \tag{3-9}
\end{align*}
\]

Rewriting equation 3-5 to incorporate the RMS rating,
\[
\begin{equation*}
P_{t}=P_{o}\left(\frac{1}{\eta}+\sqrt{2}\right) \tag{3-10}
\end{equation*}
\]


Fig. 3-4. Push-pull, full-wave, center-tapped circuit

The total power \(P_{t}\) for the circuit shown in Figure 3-4, which is typical of a dc to dc converter, increases to 2.828 times \(P_{\text {in }}\) because of the interrupted current flowing in both the primary and secondary windings since
\[
\begin{gather*}
N_{1}=N_{2}=N_{3}=N_{4}, \\
P_{t}=\left[\left(0.707 \mathrm{I}_{\mathrm{N} 1} E_{N 1}\right)+\left(0.707 \mathrm{I}_{\mathrm{N} 2} \mathrm{E}_{\mathrm{N} 2}\right)\right]+\left[\left(0.707 \mathrm{I}_{\mathrm{N} 3} \mathrm{E}_{\mathrm{N} 3}\right)\right. \\
\left.+\left(0.707 \mathrm{I}_{\mathrm{N} 4} \mathrm{E}_{\mathrm{N} 4}\right)\right]  \tag{3-11}\\
\mathrm{P}_{\mathrm{t}}=0.707 \mathrm{P}_{\mathrm{in}}+0.707 \mathrm{P}_{\mathrm{in}}+0.707 \mathrm{P}_{\mathrm{in}}+\mathrm{C} .707 \mathrm{P}_{\mathrm{in}}=2.828 \mathrm{P}_{\mathrm{in}} \tag{3-12}
\end{gather*}
\]
A.gain,
\[
\begin{equation*}
P_{t}=P_{o}\left(\frac{\sqrt{2}}{\eta}+\sqrt{2}\right) \tag{3-13}
\end{equation*}
\]

Thus the circuit configuration in which the tranaformer is to be used must be considered by the designer when sizing the transformer.

Rather than discuss the various methods used by transformer designers, the author believes it will be more useful to consider typical design problems and to work out solutions using the approach based upon the newly formulated relationships.
E. A 2. 5-kHz TRANSFORMER DESIGN PROBL. ~ AN AN EXAMPLE

Assume a spesification for a transformer design as shown in Fig, 3-2, requiring the following;
(1) Ero 10 volts
(2) \(I_{0}, 2,0\) amperes
(3) \(\mathrm{E}_{\mathrm{in},} 50\) volts
(4) \(f, 2500 \mathrm{~Hz}\) (square wave)

ORIGNAL FAGHE Ib
(5) Maximum temperature rise, \(25^{\circ} \mathrm{C}\) OF PEOR QUALITY
(6) Transformer efficiency, \(95 \%\)

Assuming the bridge rectifier of Fig. 3-2 and using the efficiency const ", int of 95\%:

\section*{Detinitions for Table 3-1}

Information given is listed by column as:
1. Manufacturer part number
2. Surface area calculated from Chapter 2, Fig. 2-24
3. Area product effective iron area times window area
4. Mean length turn on one bobbin
5. Total number of turns and wire size for two bobbins using a window utilization factor \(K_{u}=0.40\)
6. Resistance of the wire at \(50^{\circ} \mathrm{C}\)
7. Watts loss is based on Fig. \(7-2\) for a \(\Delta T\) of \(25^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is equal to \(2 \mathrm{P}_{\mathrm{cu}}\)
8. Gurrent calculated from column 6 and 7
9. Current density calculated from column 5 and 8
\begin{tabular}{ccc}
\(w\) & 9. Current density calculated from \\
\(\stackrel{1}{\circ}\) & 10. & \(R e s i s t a n c e ~ o f ~ t h e ~ w i r e ~ a t ~\) \\
\hline
\end{tabular}
11. Watts loss is based on Fig. 7-2 for a \(\Delta \mathrm{T}\) of \(50^{\circ} \mathrm{C}\) with a room ambient of \(25^{\circ} \mathrm{C}\) surface dissipation times the transformer surface area, total loss is equal to \(2 \mathrm{P}_{\mathrm{cu}}\)
12. Current calculated from column 10 and 11
13. Current density calculated from column 5 and 12
14. Effective core weight in grams
15. Copper weight in grams
16. Transformer volume calculated from Chapter 2, Fig. 2-8
17. Core effertive cross-section

Table 3-1. C-core characteristics


FLUX DENSITY. TESLA


Fig. 3-5. Magnetic material comparison at a constant frequency

Step No. 1. Calculate the apparent power \(P_{t}\) from equation 3-5, allowing for 1.0 volt diode drop ( \(\mathrm{V}_{\mathrm{d}}\) ) assumed:
\[
\begin{aligned}
& P_{t}=P_{0}\left(\frac{1}{\eta}+1\right) \\
& P_{t}=I_{0}\left(E_{0}+V_{d}\right) \times\left(\frac{1}{\eta}+1\right) \\
& P_{t}=2(10+2) \times\left(\frac{1}{0.95}+1\right) \\
& P_{t}=49.3
\end{aligned}
\]
\[
[\text { watts }]
\]

Step No. 2. Calculate the area product \(A\) from equation 3-1:
\[
\begin{equation*}
A_{p}=\left(\frac{P_{t} \times 10^{4}}{K B m_{u}{ }_{u} K_{j}}\right)^{1.16} \tag{4}
\end{equation*}
\]

Assuming
\[
\begin{aligned}
\mathrm{K} & =4.0 \\
\mathrm{~B}_{\mathrm{m}} & =0.3 \\
\mathrm{~K}_{\mathrm{u}} & =0.4 \text { (Chapter } 6) \\
\mathrm{K}_{\mathrm{j}} & =323 \text { (Chapter } 2) \\
& \quad \mathrm{A}_{\mathrm{p}}=\left(\frac{(49.3) \times 10^{4}}{(4.0)(0.3)(2500)(0.4)(323)}\right)^{1.16}
\end{aligned}
\]
\[
\lceil\text { tesla }\rceil
\]
or
\[
A_{p}=1.32
\]

After the Ap has been determined, the geometry of the transformer can be evaluated as described in Chapter 2 for weight, for surface area, and for volume, and appropriate changes made, if required. Having established the
configuration, it is then necessary to determine the core material to complete core selection.

Step No. 3. Belect a C-core from 'rable \(3-1\) with a value of \(A\) plosest to the one calculated,
\[
A L-124 \text { with an } A_{p}=1.44
\]

Step No. 4, Calculate the total transformer losses \(P_{5}\) :
\[
\begin{array}{ll}
P_{\Sigma}=\frac{P_{0}}{7}-P_{0} & {[\text { watts }]} \\
P_{\Sigma}=\frac{24}{0.95}-24 & \\
P_{\Sigma}=1.35 & \text { watts }]
\end{array}
\]

Maximum efficiency is realized when the copper (winding) losses are equal to the iron (core) Sosses (see Chapter 7):
\[
P_{\mathrm{cu}}=P_{\mathrm{fe}}
\]
and therefore
\[
P_{c u}=\frac{P_{\Sigma}}{2}
\]
and thus
\[
\begin{aligned}
& P_{\mathrm{cu}}=\frac{1.26}{2} \\
& P_{\mathrm{cu}}=0.63=P_{\mathrm{fe}}
\end{aligned}
\]

Step No. 5. Select the core weight from Table 3-1, column 14, then calculate the cote loss in milliwatts per gram:
\[
\begin{aligned}
& \text { AL-124 } W_{t}=46.6 \mathrm{grams} \\
& \frac{\mathrm{P}}{\mathrm{H}_{\mathrm{t}}} \times 10^{3}=\text { milliwatts } / \mathrm{g} \\
& \frac{0.63}{46.6} \times 10^{3}=\text { milliwatts } / \mathrm{g} \\
& 13.5 \text { milliwatts } / \mathrm{g}
\end{aligned}
\]

Step No. 6. Select the proper magnetic material in Fig. 3-5, rading from the 2.5 kltz freque zey curve for a flux density of 0.3 tesla. The magnetic material that cones closest to 13.5 milliwatts per gram is silicon steel, with approximately 12 milliwatts per gram. With a weight of 46.6 grams , the lotal core loss is 560 milliwatts, which meets the requirement of the dosign,

Step No. 7. Calculate the number of primary turns using Faraday \({ }^{\prime}\) (ew, equation 3.A-1.
\[
N_{p}=\frac{E_{p} \times 10^{4}}{4 B_{m} A_{c}{ }^{f}}
\]

The iron cross section \(A_{c}\) is found in Table 3-1, column 17:
\[
\mathrm{A}_{\mathrm{c}}=0.716
\]

Thus
\[
N_{p}=\frac{(50) \times 10^{4}}{(4)(0.3)(0.716)(2500)}
\]

\footnotetext{
*See Appendix 3. A, at the end of Chapter 3.
}
or
\[
N_{p}=233 \text { turne (primary) }
\]

Step No. 8. Calculate the current density J from eruation 3, A-17:
\[
J=K_{j} A_{p}^{-0.14}
\]
(The value for \(\mathrm{K}_{\mathrm{j}}\) is found in Table 2-1.)
\[
\begin{array}{ll}
J=(323)(1.32)^{-0.14} & \\
J=307 & {\left[A / \mathrm{cm}^{2}\right]}
\end{array}
\]

Step No. 9. Caiculate the primary current \(I_{p}\) and wire size \(A_{w}\) :
\[
\begin{array}{ll}
I_{p}=\frac{P_{t}}{2 E_{p}} & {[A]} \\
I_{p}=\frac{(49.3)}{(2)(50)} \\
I_{p}=0.493 & {[A]}
\end{array}
\]

The bare wire size \(A_{w(B)}\) for the primary is
\[
\begin{aligned}
& A_{w(B)}=\frac{I_{p}}{J} \\
& A_{w(B)}=\frac{0.493}{307} \\
& A_{w(B)}=0.001606
\end{aligned}
\]
\[
\left[\mathrm{cm}^{2}\right.
\]
wire \(\frac{\text { Step No. 10. Select the wire area } A_{w}}{}\) in Table 6-1 for equivalent (AWG)

AWG No, \(25=0.001623\)

The rule is that when the calculated wire size does not fall close to those listed in the table, the next smaller size should be selected.

Step No. 11. Calculate the resistance of the primary winding, using Table 6-1, column \(C\), and Table 3-1, column 4, for the MLT:
\[
\begin{align*}
& R_{p}=M L T \times N \times(\text { column } C) \times 5 \times 10^{-6} \\
& R_{p}=(5.5)(2.33)(1062)(1.098) \times 10^{-6} \\
& R_{p}=1.49
\end{align*}
\]

Step No. 12. Calculate the primary copper loss \(\mathrm{P}_{\mathrm{cu}}\) :
\[
\begin{aligned}
& P_{c u}=I_{p}^{2} R_{p} \\
& P_{c u}=(0.493)^{2}(1.49) \\
& P_{c u}=0.362
\end{aligned}
\]
\[
[\text { watts }]
\]
\[
[\text { watts }]
\]

Step No. 13. Calculate the secondary turns:
\[
\begin{aligned}
& N_{s}=\frac{N_{p}}{E_{p}}\left(E_{s}\right) \\
& E_{s}=10+2 V_{d} \\
& N_{s}=\frac{(233)}{(50)}(12) \\
& N_{s}=56
\end{aligned}
\]

Step No. 14. Calculate the wire size \(A_{w(B)}\) for the secondary winding:
\[
\begin{aligned}
& A_{w(B)}=\frac{I_{s}}{J} \\
& A_{w(B)}=\frac{(2)}{(307)} \\
& A_{w(B)}=0.00651
\end{aligned}
\]
\[
\left[\mathrm{cm}^{2}\right]
\]

Step No. 15. Select the wire area \(A_{w}\) in Table 6-1 for equivalent (AWG) wire size, column A:

AWG No. \(19=0.00653\)
\[
\left[\mathrm{cm}^{2}\right]
\]

The rule is that when the calculated wire size does not fall close to those listed in the table, the next smaller size should be selected.

Step No. 16. Calculate the resistance of the secondary winding, using Table 6-1, column \(C\), and Table 3-1, column 4, for the MLT.
\[
\begin{array}{ll}
\mathbf{R}_{\mathrm{s}}=\operatorname{MLT} \times \mathrm{N} \times(\text { column } \mathrm{C}) \times 5 \times 10^{-6} & {[\Omega]} \\
\mathbf{R}_{\mathrm{s}}=(5.5)(56)(264)(1.098) \times 10^{-6} & \\
\mathbf{R}_{\mathrm{s}}=0.0893 & {[\Omega]}
\end{array}
\]

Step No. 17. Calculate the secondary copper loss \(P_{c u}\) :
\[
\begin{aligned}
& P_{c u}=I_{s}^{2} R_{s} \\
& P_{c u}=(2.0)^{2}(0.0813) \\
& P_{c u}=0.357
\end{aligned}
\]
\[
[\text { watts }]
\]

Step No. 18. Summarize the losses and compare with the total losses \(\mathrm{P}_{5}:\)
\begin{tabular}{lll} 
Primary \(P_{c u}=0.362\) & {\([\) watts \(]\)} \\
Secondary \(P_{c u}=0.357\) & {\([\) watts \(]\)} \\
Core \(P_{f e}=0.560\) & {\([\) watts \(]\)} \\
Total \(\quad P_{\Sigma}=1.279\) & {\([\) watts \(]\)}
\end{tabular}

The total power loss in the transformer is 1.279 watts, which will effectively meet the required \(95 \%\) efficiency.

From Chapter 7 , the surface arer \(A_{t}\) required to dissipate waste heat (expressed as watts loss per unit area) A
\[
\rho_{t}=\frac{P_{\Sigma}}{\psi}
\]
where
\[
\psi=0.03 \mathrm{~W} / \mathrm{cm}^{2} \text { at } 25^{\circ} \mathrm{C} \text { rise }
\]

Referring to Table \(3-1\), column 1, for the AL-124 size core, the surface area \(A_{t}\) is \(45.3 \mathrm{~cm}^{2}\) :
\[
\psi=\frac{P_{\Sigma}}{A_{t}}
\]
and thus
\[
\psi=\frac{1.279}{45.3}
\]
or
\[
\psi=0.0282
\]
which will produce the required temperature rise.

\section*{F. A \(10-\mathrm{kHz}\) TRANSFORMER DESICM PROBIEM AS AN EXAMPLE}

Assume a spectication for a transformer design, as shown in Fig. 3-3, requiring the following:
(1) \(E_{0}, 56\) volts
(2) Jo' 1.79 amperes
(3) \(\mathrm{E}_{\mathrm{in}}, 200\) volts
(4) \(\mathrm{f}, 10 \mathrm{kHz}\) (squara wave)
(5) Maximum temperature rise, \(25^{\circ} \mathrm{C}\)
(6) Transformer efficiency, \(98 \%\)
assuming the full-wave, center-taped rectifier of Fig. 3-3 and using the efficiency constraint of \(98 \%\),

Step No. 1. Calculate the apparent power \(P_{t}\) from equation 3-10, allowing for 1.0 volt diode drop ( \(\mathrm{V}_{\mathrm{d}}\) ) assumed:
\[
\begin{aligned}
& F_{v} \quad\left(\frac{1}{\eta}+\sqrt{2}\right) \\
& P_{t}=I_{0}\left(E_{o}+V_{d}\right) \times\left(\frac{1}{\eta}+\sqrt{2}\right) \\
& P_{t}=1.79(56+1) \times\left(\frac{1}{0.98}+1.41\right) \\
& P_{t}=248
\end{aligned}
\]
\[
[\text { watts }]
\]

Step No. 2. Calculate the area product \(A_{p}\) from equation 3-1:
\[
\begin{equation*}
A_{p}=\left(\frac{P_{t} \times 10^{4}}{K B_{\cdot n} f K_{u} K_{j}}\right)^{1.16} \tag{4}
\end{equation*}
\]
assuming
\[
\begin{aligned}
\mathrm{K} & =4.0 \\
\mathrm{~B}_{\mathrm{m}} & =0.3 \\
\mathrm{~K}_{\mathrm{u}} & =0.4(\text { Chapter } 6) \\
\mathrm{K}_{j} & =323(\text { Chapter } 2) \\
A_{\mathrm{p}} & =\left(\frac{248 \times 10^{4}}{(4.0)(0.3)\left(10^{4}\right)(0.4)(323)}\right)^{1.16}
\end{aligned}
\]
\[
[\text { tesla }]
\]

Or
\[
A_{p}=1.72
\]
after the \(A_{p}\) has been determined, the geometry of the transformer can be evaluated as described in Chapter 2 for weight, for surface area, and for volume, and appropriate changes made, if required. Having established the configuration. it is then necessary to determine the core material to complete core selection.

Step No. 3. Select a C-core from Table j-1 with a value of \(A_{p}\) closest to the one calculated:
\[
A L-8 \text { with an } A_{p}=2.31
\]
\[
\left[\mathrm{cm}^{4}\right.
\]

Step No. 4, Calculate the total transformer losses \(P_{\Sigma}\);
\[
\begin{array}{ll}
P_{\Sigma}=\frac{P_{0}}{\eta}-P_{0} & \text { [watts ] } \\
P_{\Sigma}=\left(\frac{102}{0.98}\right)-(102) & \\
P_{\Sigma}=2.08 & \text { [watts }]
\end{array}
\]

Maximum efficiency is realized when the copper (winding) losses are equal to the iron (core) losses (see Chapter 7) which is expressed as
\[
P_{\mathrm{cu}}=P_{\mathfrak{f e}}
\]
and therefore
\[
P_{c u}=\frac{P_{\Sigma}}{2}
\]
and thus
\[
\begin{aligned}
& P_{c u}=\frac{2.08}{2} \\
& P_{c u}=1.04
\end{aligned}
\]
[ watts]

Step No. 5. Select the core weight from Table 3-1, Column 14, then calculate the core loss in milliwatts per gram:
\[
\begin{aligned}
& \text { AL-8 } W_{t}=66.6 \text { grams } \\
& \frac{P_{f e}}{W_{t}} \times 10^{3}=\text { milliwatts } / \mathrm{g}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1,04}{66.6} \times 10^{3}=\text { milliwatts } / \mathrm{g} \\
& 15.6 \text { milliwatts } / \mathrm{g}
\end{aligned}
\]

Step No. 6. Select the proper magnetic material in Fig. 3.5, reading from the 10 kHz frequency curve with a density of 0.3 tesla. The magnetic material that comes closest tS 15.6 milliwatts per gram is Permalloy 80 , with approximately 12 milliwatte per gram. When nickel steel is used, Table 7-1 provides a weight correction factor.

The weight from Table \(3-1\) is multiplied by the weight correction factor:
\[
66.6 \times 1.144=76.2
\]
[grams |

With a weight of 76.2 gran s the total core loss is
\[
12 \times 76.2 \times 10^{-3}=0.914 \quad[\text { watts }]
\]

Step No. 7. Calculate the rumber of primary turns using Faraday's law, equation 3 , A-1:
\[
N_{p}=\frac{E_{p} \times 10^{4}}{4 B_{m} A_{c}}
\]

The iron cross section \(A_{c}\) is found in Table 3-1, column 17:
\[
\begin{gathered}
A_{c}=0.006 \\
N_{p}=\frac{(200) \times 10^{4}}{(4)(0.5)(0.806)\left(10^{4}\right)} \\
N_{p}=207 \text { turns (primary) }
\end{gathered}
\]

Step No. 8. Calculate the current density from equation 3. A-17:
\[
J=K_{j} A^{-0.14}
\]

The value for \(\mathrm{K}_{\mathrm{j}}\) is found in Table 2-1:
\[
\begin{array}{ll}
J=(323)(2.31)^{-0.14} \\
J & =287
\end{array} \quad\left[A / \mathrm{cm}^{2}\right]
\]

Step No. 9. Calculate the primary current \(I_{p}\) and wire size \(A_{w}\);
\[
\begin{align*}
& I_{p}=\frac{I_{o}\left(E_{o}+V_{d}\right)}{E_{p} 7}  \tag{A}\\
& I_{p}=\frac{1.79(56+1)}{(200)(0.98)} \\
& I_{p}=0.520 \tag{A}
\end{align*}
\]

The bare wire size for the primary is
\[
\begin{array}{ll}
A_{w(B)}=\frac{I_{p}}{J} & {\left[\mathrm{~cm}^{2}\right]} \\
A_{w(B)}=\frac{0.520}{287} & \\
A_{w(B)}=0.00181 & {\left[\mathrm{~cm}^{2}\right]}
\end{array}
\]

Step No, 10. Select the wire area \(A_{w(B)}\) in Table \(6-1\) for equivalent (AWG) wire size, column \(A\) :

AWG No. \(25=0.001623\)
\[
\left[\mathrm{cm}^{2}\right]
\]

The rule is that when the calculated wire size does not fall close to those listed in the table, the next smaller size should be selected.

Step No. 11. Calculate the resistance of the primary winding, using Table 6-1, column \(C\), and Table 3-1, column 4, for the MLT:
\[
\begin{aligned}
& R_{p}=M L T \times N \times(\text { column } C) \times 5 \times 10^{-6} \\
& R_{p}=(5.74)(207)(1062)(1.098) \times 10^{-6} \\
& R_{p}=1.38
\end{aligned}
\]

Step No. 12. Calculate the primary copper loss \(P_{c u}\);
\[
\begin{aligned}
& P_{c u}=I_{p}^{2} R_{p} \\
& P_{c u}=(0.520)^{2}(1.38) \\
& P_{c u}=0.373
\end{aligned}
\]

Step No. 13. Calculate the secondary turns:
\[
\begin{aligned}
& N_{s}=\frac{N_{p}}{E_{p}}\left(E_{s}\right) \\
& E_{s}=56+1 V_{d} \\
& N_{s}=\frac{(207)}{(200)}(57) \\
& N_{s}=59 \text { turns secondary }
\end{aligned}
\]
(see equation 3-8): \(\frac{\text { Step No. 14. }}{}\) Calculate the wire size \(A_{w(B)}\) for the secondary winding
\[
\begin{array}{ll}
A_{w(B)}=\frac{I_{0}(0.707)}{J} & {\left[\mathrm{~cm}^{2}\right]} \\
A_{w(B)}=\frac{1.79(0.707)}{287} & \\
A_{w(B)}=0.0044 & {\left[\mathrm{~cm}^{2}\right]}
\end{array}
\]

Step No. 15. Select the bare wire area \(A_{w(B)}\) in Table 6-1 for equivalent (AWG) wire size, column A:

AWG No. \(21=0.00411\)
\[
\left[\mathrm{cm}^{2}\right]
\]

The rule is that when the calculated wire size does not fall close to those listed in the table, the next smaller size should be selected.

Step No. 16. Calculate the resistance of the secondary winding, using Table 6-1, column C, and Table 3-1, column 4, for the MLT:
\[
\begin{aligned}
& R_{B}=M L T \times N \times(\text { column } C) \times 5 \times 10^{-6} \\
& R_{s}=(5.74)(59)(419)(1.098) \times 10^{-6} \\
& \\
& R_{s}=0.156
\end{aligned} \quad \begin{array}{ll} 
\\
\text { ORIGNAL RAGLI TH }
\end{array}
\]

Step No. 17. Calculate the total secondary copper loss \(P_{c u}, N_{2}\) plus \(N_{3}\) (see Fig. 3-3):
\[
P_{c u}=\left(I_{o} \times 0.707\right)^{2} R_{s}+\left(I_{o} \times 0.707\right)^{2} R_{s} \quad[\text { watts }]
\]
\[
\begin{aligned}
& P_{c u}=2(1.79 \times 0.707)^{2} 0.156 \\
& P_{c u}=0.499
\end{aligned}
\]
[ watts]

Step No. 18. Summarize the lossee and compare with the total losses \(\mathrm{P}_{2}\) :
\begin{tabular}{lll} 
Primary & \(P_{c u}=0.373\) & \{ watts ] \\
Sccondary \(P_{c u}=0.499\) & [watts ] \\
Core & \(P_{f 0}=1.07\) & [watts ] \\
Total & \(P_{Y}=1.942\) & [watts ]
\end{tabular}

The total power loss in the transformer is 1.942 watts, which will meet the required \(98 \%\) efficiency.

From Chapter 7, the surface area \(A_{t}\) required to dissipate waste heat (expressed as watts loss per unit area) is
\[
A_{t}=\frac{P_{\Sigma}}{\psi}
\]
where
\[
\psi=0.03 \mathrm{~W} / \mathrm{cm}^{2} \text { at } 25^{\circ} \mathrm{C} \text { rise }
\]

Referring to Table \(3-1\), column 1 , for the \(A L-8\) size core, the surface arca \(A_{t}\) is \(63.4 \mathrm{~cm}^{2}\) :
\[
\begin{aligned}
& \psi=\frac{P_{\Sigma}}{A_{t}} \\
& \psi=\frac{1.942}{63.4}
\end{aligned}
\]
\[
\psi=0,0306
\]
\[
\left[\mathrm{W} / \mathrm{cm}^{2}\right]
\]
which will produce the required temperature rise.

\section*{REFERENCES}
1. McLyman, C., Design Parameters of Toroidal and Bobbin Magnetics, Technical Memorandum 33-651, pages 12-15, Jet Propulsion Laboratory, Pasadena, Calif.
2. Blume, L. F., Transformer Engineering, John Wiley \& Sons Inc., New York, N. Y. 1938. Pages 272-282.
3. Termar, F.E., Radio Engineers Handbook, McGraw-Hill Book Co.. Inc., New York 1943. Pages 28-37.

\section*{APFENDIX 3.A}

\section*{TRANSFORMER POWER HANDLING CAPABILITY}

The power handling capability of a transformer can be related to \(A_{p}{ }^{\text {a }}\) quantity (which is the \(W_{a} A_{c}\) product where \(W_{a}\) is the available core window area in \(\mathrm{cm}^{2}\) and \(A_{c}\) is the effective cross-sectional area of the core in \(\mathrm{cm}^{2}\) ), as follows.

A form of the Fiaraday law of electromagnetic induction much used by transformer designers states:
\[
\begin{equation*}
E=K B_{m} A_{c} N f \times 10^{-4} \tag{+}
\end{equation*}
\]
(The constant K is taken at 4 for square wave and at 4,44 for sine wave operation.)

It is convenient to restate this expression as:
\[
\begin{equation*}
\mathrm{NA}_{\mathrm{c}}=\frac{\mathrm{E} \times 10^{4}}{4 \mathrm{~B}_{\mathrm{m}} \mathrm{f}} \tag{3.A-2}
\end{equation*}
\]
for the following manipulation.
By definition the window utilization factor is:
\[
\begin{equation*}
K_{u}=\frac{\mathrm{NA}_{W}}{W_{a}} \tag{3,A-3}
\end{equation*}
\]
and this may be restated as:
\[
\begin{equation*}
\mathrm{N}=\frac{\mathrm{K}_{\mathrm{u}} \mathrm{~W}_{\mathrm{a}}}{\mathrm{~A}_{\mathrm{w}}} \tag{3.A-4}
\end{equation*}
\]

If both sides of the equation are multiplied by \(A_{c}\), then:
\[
\begin{equation*}
N A_{c}=\frac{K_{u} W_{a} A_{c}}{A_{w}} \tag{3,A-5}
\end{equation*}
\]

From equation 3.A-2:
\[
\begin{equation*}
\frac{K_{u} w_{r} A_{c}}{A_{w}}=\frac{E \times 10^{4}}{4 B_{m}{ }^{f}} \tag{3.A-6}
\end{equation*}
\]

Solving for \(W_{a}{ }^{A_{c}}\) :
\[
\begin{equation*}
W_{a} A_{c}=\frac{E A_{w} \times 10^{4}}{4 B_{m} f K_{u}} \tag{3.A-7}
\end{equation*}
\]

By definition, current density \(J=a \mathrm{mp} / \mathrm{cm}^{2}\) which may also be stated:
\[
\begin{equation*}
J=\frac{I}{A_{w}} \tag{3.A-8}
\end{equation*}
\]
which may also be stated as:
\[
\begin{equation*}
A_{w}=\frac{I}{J} \tag{3,A-9}
\end{equation*}
\]

It will be remembered that transformer efficiency is defined as:
\[
\eta=\frac{P_{o}}{P_{i n}} \text { and } P_{i n}=E I
\]

Kewriting equation 3. A-7 as:
\[
E A_{w}=4 B_{m} f K_{u} W_{a} A_{c} 10^{-4}=\frac{E I}{J}
\]
and since:
\[
\begin{equation*}
\frac{E I}{J}=\frac{P_{i n}}{J}=\frac{P_{o}}{J \eta} \tag{3,A-12}
\end{equation*}
\]
then:
\[
\begin{aligned}
& \left.W_{a} A_{c}\right|_{\text {total }}=\left.W_{a} A_{c}\right|_{\text {Prisuary }}+\left.W_{a} A_{c}\right|_{\text {Secondary }} \\
& W_{a} A_{c}^{\text {total }}=\frac{P_{0} \times 10^{4}}{\eta^{J} 4 B_{m}{ }^{f} K_{u}}+\frac{P_{0} \times 10^{4}}{4 B_{m}{ }^{£} K_{u}{ }^{J}}=\frac{P_{0} \times 10^{4}}{4 B_{m}{ }^{£ K_{u}}{ }^{J}(1 / \eta+1)(3 . A-13)}
\end{aligned}
\]
and since
\[
\begin{equation*}
P_{t}=\frac{P_{0}}{\eta}+P_{0} \tag{3,A-14}
\end{equation*}
\]
then
\[
\begin{align*}
& W_{a} A_{c}=\frac{P_{t} \times 10^{4}}{4 B_{m} \mathrm{fK}_{u} J}  \tag{3,A-15}\\
& A_{p}=\frac{P_{t} \times 10^{4}}{4 B_{m} f J K_{u}} \tag{3,A.-16}
\end{align*}
\]

Combining the equation from Table 2-1,
\[
\begin{equation*}
J=K_{j} A_{p}^{-0.14} \tag{3.A-17}
\end{equation*}
\]
yielding
\[
\begin{align*}
& \left.A_{p}=\frac{P_{t} \times 10^{4}}{4 B_{m} \mathrm{FK}_{u}\left(K_{j} A_{P}-0.14\right.}\right) \\
& A_{p}^{0.86}=\frac{P_{t} \times 10^{4}}{4 B_{m} f K_{u} K_{j}} \\
& A_{p}=\left(\frac{P_{t} \times 10^{4}}{4 B_{m_{1}} \mathrm{fK}_{\mathrm{u}} K_{j}}\right)^{1.16} \tag{3.A-20}
\end{align*}
\]

\section*{CHAPTERIV}

SIMPLIFIED CUT CORE ENDUCTOR DESIGN

\section*{A. INTRODUCTION}

Designers have used various approaches in arriving at suitable inductor designs. For example, in many cases a rule of thumb used for dealing with current density is that a good working level is 1000 circular mils per ampere. This is satisfactory in many instances; however, the wire size used to meet this requirement may produce a heavier and bulkier inductor than desired or required. The information presented herein will make it possible to avoid the use of this and other rules of thumb and to develop a more economical and a better design.

\section*{B. CORE MATERIAL}

Designers have routinely tended to specify moly permalloy powder core materials for filter inductors used in high frequency power converters and pulse-vidth madulated (PWM) switched regulators because of the availability of manufacturers' literature containing tables, graphs and examples which simplify the design task. Use of these cores may not result in an inductor design optimized for size and weight. For exarnple as shown in Figure 4-1, moly permalloy powder cores operating with a de bias of 0.3 tesla have only about \(80 \%\) of original inductance with very rapid falloff at higher densities. In contrast, the steel core has approximately four times the useful flux density capability while retaining \(90 \%\) of the original inductance at 1,2 tesla.

There are significant advantages to be gained by the use of C cores and cat toroids fabricated from grain-oriented silicon steel, despite such disadvantages as the need for banding and gapping materials, banding tools, mounting brackets and winding mandrels.

\footnotetext{
*See Reference 1 .
}


Fig. 4-1. Inductance vs de bia e for suoly permalloy cores.

Grain-oriented silicon steels provide greater flexibility in the design of high frequency inductors because the air gap can be adjusted to any desired length and because the relative permeability is high even at high d: dux density. Such steels can develop flux densities of 1.6 tesla, with useful linearity to 1.2 tesla. Moly permalloy \({ }^{*}\) cores carrying de current on the other hand have useful flux density capabilities to only about 0.3 tesla.

\section*{C. \(\underset{\text { RELATIONSHIP }}{\text { CAPATIT }}\) OF \(A\) TO INDUCTOR ENERGY HANDLING}

According to the newly developed approach the energy handling capability of a core is related to its area product \(A_{p}\) by a equation which may be stated as follows:
\[
\left.\begin{array}{rl}
A_{p}^{*}= & \left(\frac{2(\operatorname{Eng}) \times 10^{4}}{B_{m} K_{u} K_{j}}\right)^{1.16}  \tag{4}\\
K_{j}= & \text { current density coefficient } \\
\text { (Sec Chapter } 2,
\end{array}\right)
\]

From the above it can be seen that factors such as flux density, window utilization factor \(K_{U}\) (which defines the maximum wace which may be occupied by the copper in the window) and the constant \(K_{j}\) (which is related to temperature rise), all have an influence on the inductor area product. The constant \(K_{j}\) is a new parameter that gives the designer control of the copper loss. Derivation is set forth in detail in Chapter 2 .

\section*{D. FUNDAMENTAL CONSIDERATIONS}

The design of a linear reactor depends upon four related factors.
1. Desired inductance
2. Direct current
3. Alternating current \(\Delta I\)
4. Power loss and temperature rise

With these requirements established, the designer must determine the maximum values for \(B_{d c}\) and for \(B_{a c}\) which will not produce magnetic saturation, and must make tradeoffs which will yield the highest inductance for a given volume. The core material which is chosen dictates the maximum flux density which can be tolerated for a given design. Magnetic saturation values for different core materials are shown in Table 4-1 as follows.

\footnotetext{
*Deviation is set forth in detail in Appendix 4. A at the end of this chapter.
}

Table 4-1. Magnetic material
\begin{tabular}{|ll|c|}
\hline & Material Type & \begin{tabular}{c} 
Flux Density \\
(tesla)
\end{tabular} \\
\hline Magnesil & \(3 \% \mathrm{Si}, 97 \% \mathrm{Fe}\) & 1.6 \\
Orthonol & \(50 \% \mathrm{Ni}, 50 \% \mathrm{Fe}\) & 1.5 \\
48 Alloy & \(48 \% \mathrm{Ni}, 50 \% \mathrm{Fe}\) & 1.2 \\
Permalloy & \(79 \% \mathrm{Ni}, 17 \% \mathrm{Fe}, 4 \% \mathrm{Mo}\) & 0.75 \\
\hline
\end{tabular}

It should be remembered that maximum flux density depends upon \(\mathrm{B}_{\mathrm{dc}}+\mathrm{B}_{\mathrm{ac}}\) in manner shown in Figure 4-2.


Fig. 4-2. Flux density versus \(I_{\text {dc }}+\Delta I\)
\[
\begin{align*}
& \mathrm{B}_{1 \sim \mathrm{ax}}=\mathrm{B}_{\mathrm{dc}}+\mathrm{B}_{\mathrm{ac}} \\
& \mathrm{~B}_{\mathrm{dc}}=\frac{0.4 \pi \mathrm{NI}{ }_{\mathrm{dc}} \times 10^{-4}}{1_{\mathrm{g}}+\frac{1_{\mathrm{m}}}{\mu_{\mathrm{r}}}} \quad \text { [tesla] }  \tag{tesla}\\
& \mathrm{B}_{\mathrm{ac}}=\frac{0.4 \pi \mathrm{~N} \frac{\Delta \mathrm{I}}{2} \times 10^{-4}}{1_{\mathrm{g}}+\frac{I_{\mathrm{m}}}{\mu_{\mathrm{r}}}} \quad \text { [tesla] } \tag{tesla}
\end{align*}
\]

Comoining Eqs. (4-2) and (4-3),
\[
\mathrm{B}_{\max }=\frac{0.4 \pi \mathrm{NI}_{\mathrm{dc}} \times 10^{-4}}{\mathrm{l}_{\mathrm{g}}+\frac{\mathrm{m}}{\mu_{\mathrm{r}}}}+\frac{0.4 \pi \mathrm{~N} \frac{\Delta \mathrm{I}}{2} \times 10^{-4}}{\mathrm{l}_{\mathrm{g}}+\frac{\mathrm{m}_{\mathrm{m}}}{\mu_{\mathrm{r}}}} \quad \text { [tesla] (4-4) }
\]

The inductance of an iron-core inductor carrying de and having an air gap may be expressed as:
\[
\begin{equation*}
L=\frac{0.4 \pi N^{2} A_{c} \times 10^{-8}}{l_{g}+\frac{l_{m}}{\mu_{r}}} \tag{henry}
\end{equation*}
\]

Inductance is dependent on the effective length of the magnetic path which is the sum of the air gap length ( \(l_{g}\) ) and the ratio of the core mean length to relative permeability ( \(l_{\mathrm{m}} / \mu_{r}\) ).

When the core air gap ( \(l_{g}\) ) is large compared to relative permeability \(\left(l_{m} / \mu_{r}\right)\), because of the high relative permeability ( \(\mu_{r}\) ) variations in \(\mu_{r}\) do net substantially effect the total effective magnetic path length or the inductance. The inductance equation then reduces to:
\[
\begin{equation*}
L=\frac{0.4 \pi N^{2} A_{c} \times 10^{-8}}{\mathrm{~L}_{\mathrm{g}}} \tag{henry}
\end{equation*}
\]

Final determination of the air gap size requires consideration of the effect of fringing flux which is a function of gap dimension, the shape of the pole faces, and the shape, stze and location of the winding. Its net effect is to shorten the air gap.

Fringing flux decreases the total reluctance of the magnetic path and therefore increases the inductance by a factor \(F\) to a value greater than that
calculated from equation 4-6. Fringing flux \({ }^{\prime \prime}\) is a larger percentage of the total for larger gaps. The fringing flux factor is:
\[
\begin{equation*}
F=\left(1+\frac{l_{g}}{\sqrt{A_{c}}} \log e \frac{2 G}{g}\right) \tag{4-7}
\end{equation*}
\]
where \(G\) is a dimension defined in Chapter 2. (This equation is also valid for laminations.)

Equation (4-7) is plotted in Figure 4-3 below.


Fig. 4-3. Increase of reactor inductance with flux fringing at the gap.

Inductance \(L\) computed in equation (4-6) does not include the effect of fringing flux. The value of inductance \(L^{\prime}\) corrected for fringing flux is:
\[
\begin{equation*}
L^{\prime}=\frac{0.4 \pi N^{2} A_{c} F \times 10^{-8}}{l_{g}} \tag{henry}
\end{equation*}
\]

\footnotetext{
*See Reference 2.
}

Effective permeability may be calculated from the following expresaion:
\[
\begin{gather*}
\mu_{\Delta}=\frac{\mu_{m}}{1+\frac{l_{\mathrm{g}}}{l_{\mathrm{m}}} \mu_{\mathrm{m}}}  \tag{.-9}\\
\mu_{m}=\text { core material permeability }
\end{gather*}
\]

Curves which have been plotted for values of \(\mathrm{l}_{\mathrm{g}} / \mathrm{l}_{\mathrm{m}}\) from 0 to 0.005 are shown in Figure 4-4.


The effective design permeability for a butt core joint structure for material permeabilities ranging from 100 to \(1,000,000\) are shown. Effective permeability variation as a function of core geometry is shown in the curves plotted in Figure 4-5.

After establishing the required inductance and the dc bias current which will be encountered, dimensions can be determined. This requires
consideration of the energy handling capability which is controlled by the area product \(A_{p}\). The energy handling capability of a core is derived from
\[
\begin{equation*}
\frac{\mathrm{LI} \mathrm{I}^{2}}{2}=\text { Energy [ watt second } \mathrm{s} \text { ] } \tag{4-10}
\end{equation*}
\]


Fig. 4-5. Minimum design permeability
and
\[
\begin{equation*}
A_{P}=\left(\frac{2(\mathrm{Eng}) \times 10^{4}}{B_{m} K_{u} K_{j}}\right)^{1.16} \tag{4}
\end{equation*}
\]
in which:
\[
\begin{aligned}
\mathrm{B}_{\mathrm{m}} & =\text { maximum flux density }\left(\mathrm{B}_{\mathrm{dc}}+\mathrm{B}_{\mathrm{ac}}\right) \\
\mathrm{K}_{\mathrm{u}} & =0.4\{\text { Chapter } 6\rangle \\
\mathrm{K}_{\mathrm{j}} & =\text { (See Chapter } 2)
\end{aligned}
\]
\[
\text { Eng }=\text { energy, watt seconds }
\]

\section*{E. DESIGN EXAMPLE}

For a typical design example, assume:
1. Inductance 0,015 henrys
2. de current 2 amp
3. ac current 0.1 amp
4. \(\quad 25^{\circ} \mathrm{C}\) rise
5. Frequency 20 KHz

The procedure would then be as follows:
Step No, 1. Calculate the energy involved from equation (4-10):
\[
\begin{align*}
& \text { Eng }=\frac{L I^{2}}{2}  \tag{4-12}\\
& \text { Eng }=\frac{0.015(2.0)^{2}}{2} \\
& \text { Eng }=0.030 \quad \text { [watt seconds] }
\end{align*}
\]

Step No. 2. Calculate the area product \(A_{p}\) from equation (4-1):
\[
\begin{array}{ll}
A_{p}=\left(\frac{2(\text { Eng }) \times 10^{4}}{B_{m}^{K_{u} K_{j}}}\right)^{1.16} \\
A_{p}=\left(\frac{2(0.03) \times 10^{4}}{(1.2)(0.4)(395)}\right)^{1.16}=3.80 & {\left[\mathrm{~cm}^{4}\right]}
\end{array}
\]

A core which has an area product closest to the calculated value is the \(A L-10\) which is described in Table 2-6, Chapter 2, and Appendix 4 . That size core has an area product \(A\), of \(3.85 \mathrm{~cm}^{4}\left(A_{c}=1.34 \mathrm{eff}. \mathrm{~cm}^{2}\right.\) and \(\left.W_{a}=2.87 \mathrm{~cm}^{2}\right)\).

After the \(A_{p}\) has been determined, the geometry of the inductor can be evaluated as described in Chapter 2 for weight, surface area, volume, and appropriate changes made, if required.

Step No. 3. Determine the current density from:
\[
\begin{align*}
& J=K_{j} A_{p}^{-0.14}  \tag{4-13}\\
& J=395(3.80)^{-0.14}=328 \mathrm{amps} / \mathrm{cm}^{2}
\end{align*}
\]

Step No. 4. Determine the wire size from:
\[
\begin{aligned}
& \text { Wire size }=\frac{I_{\mathrm{dc}}}{\mathrm{amp} / \mathrm{cm}^{2}} \\
& \text { Wire size }=\frac{2}{328}=0.00609
\end{aligned}
\]

Select the wire size from Table \(6-1\), column \(A\), Chapter 6 . The rule is that when the calculated wire size does not fall close to those listed in the table, the next smallest size should be selected.

The closest wire size to 0.00609 is AWG No. 20
\[
\begin{equation*}
\text { Area }=0.005188 \text { (bare) } \tag{2}
\end{equation*}
\]

Step No. 5. Calculate the number of turns.
The number of turns per square em for No. 20 wirc is 98.9 based on \(60 \%\) wire fill factor data taken from Table 6-1, Chapter 6, column J.
\[
\begin{aligned}
& \text { effective window } \times \text { turns } / \mathrm{cm}^{2} \\
& \qquad 2.58 \times 98.9=255 \\
& \text { Total number of turns }=255
\end{aligned}
\]

\footnotetext{
Derivation of equation \((4-13)\) is shown in Chapter 2.
}

Step No. 6. The air gap dimension is determined from equation (4-6) by solving for \(\mathrm{l}_{\mathrm{g}}\) as follows:
\[
\begin{align*}
& 1_{g}=\frac{0.4 \pi N^{2} A_{c} \times 10^{-8}}{L}  \tag{4-14}\\
& I_{g}=\frac{1.26(255)^{2}(1.342) \times 10^{-8}}{(0.015)} \\
& 1_{g}=0.0733 \tag{cm}
\end{align*}
\]

Gap spacing is usually maintained by inserting Kraft paper. However this paper is available only in mil thicknesses. Since \(l_{g}\) has been determined in cm , it is necessary to convert as follows:
\[
\mathrm{cm} \times 393.7=\text { mils }(\text { inch system })
\]

Substituting values:
\[
0.0733 \times 393.7=28.8
\]
[mils]

An available size of paperis 15 mil sheet. Two thicknesses would therefore be used, giving equal gaps in both legs.

The effect of fringing flux upon inductance can now be considered. As mentioned, the data shown in Figure 4-3 were developed to show graphically the effect of gap length \(l_{g}\) variation on fringing flux. In order to use this data, the ratio of \(l_{g}\) to window length \(G\) must be determined. For the AL- 10 size, Table 4. B-8 shows a \(G\) value of 3.015 cm . Therefore:
\[
\begin{equation*}
\frac{\mathrm{l}_{\mathrm{g}}}{\mathrm{G}}=\frac{0.0733}{3.015}=0.0243 \tag{cm}
\end{equation*}
\]
and accordingly
\[
\frac{G}{\sqrt{A_{c}}}=\frac{3.015}{1.16}=2.60
\]

The fringing flux factor \(F\) from Figure 4-3 may be stated:
\[
F=1.28
\]

The recalculated number of turns can be determined by rewriting equation 4-8:

and by inserting the known values
\[
N=\sqrt{\frac{(0.0733)(0.015)}{(1.26)(1.342)(1.28) \times 10^{-8}}}=226
\]

Step No. 7. Calculate the ac and dc flux density from equation (4-4)
\[
\begin{array}{ll}
B_{\max }=\frac{0.4 \pi N\left(I_{d c}+\frac{\Delta I}{2}\right) 10^{-4}}{I_{g}} \\
B_{\max }=\frac{(1.26)(226)(2+0.05) \times 10^{-4}}{(0.0733)} & \text { [tesla] } \\
B_{\max }=0.793 & \text { [tesla] }
\end{array}
\]

Step No. 8. Calculate core loss. This may be determined from Figure 4-6, in conjunction with the equation below:
\[
\begin{equation*}
\mathrm{B}_{\mathrm{ac}}=\frac{0.4 \pi \mathrm{~N} \frac{\Delta \mathrm{I}}{2} \times 10^{-4}}{l_{\mathrm{g}}} \tag{tesla}
\end{equation*}
\]
\[
\begin{array}{ll}
\mathrm{B}_{\mathrm{ac}}=\frac{(1.26)(226)(0.05) \times 10^{-4}}{(0.0733)} & {[\text { tesla }]} \\
\mathrm{B}_{\mathrm{ac}}=0.0194 & {[\text { tesla }]}
\end{array}
\]

The ac core los for this value can be found by reference to the graph shown in Figure 4-6 which is based upon solutions of the following expression for various operating frequencies:
\[
P_{f e}=\frac{\text { milliwatts }}{\text { gram }} \times W_{t}
\]

Referring to Table 4.B-8 for the AL-10 size core, the weight of the core is 110 grams. The core loss in milliwatts per gram is obtained from:
\[
P_{\mathrm{fe}}=(2,1)(110)=230
\]

Step No. 9. Calculate copper loss and temperature rise.
The resistance of a winding is the mean length turn in cm multiplied by the resistance in micro ohms per cm and the total number of turns. Referring to Table 4.B-8 for the AL-10 size core for the mean length per turn (MLT) and the wire table (Chapter 6) for the resistance of No. 20 wire then:
\[
\begin{align*}
& \mathrm{R}=\mathrm{MLT} \times \mathrm{N} \times(\text { Column } \mathrm{C}) \times 5 \times 10^{-6} \\
& \mathrm{R}=8.33 \times 226 \times 332 \times 1.098 \times 10^{.6} \\
& \mathrm{R}=0.686
\end{align*}
\]

Since power loss is \(P_{c u}=I^{2} R\),
\[
\begin{array}{ll}
P_{\mathrm{cu}}=(2)^{2}(0.625)=2.75 & \text { [watts] } \\
P_{\Sigma}=P_{\mathrm{cu}}+P_{\mathrm{fe}} & \text { ORIGNAL PAGY is } \\
4-14 & \text { OF, POOR QUALITY }
\end{array}
\]
\[
\begin{aligned}
& P_{\Sigma}=2.74+0.165 \\
& P_{\Sigma}=2.90
\end{aligned}
\]
[watte]

From Chapter 7 the suriace area \(A_{t}\) required to dissipate waste heat (expressed as watts loss per unit area) is:
\[
\begin{gathered}
A_{t}=\frac{P_{\Sigma}}{\Psi} \\
\Psi=0.03 \mathrm{~W} / \mathrm{cm}^{2} \text { at } 25^{\circ} \mathrm{C} \mathrm{rise}
\end{gathered}
\]

Referring to Table 4, B-8 for the AL-10 size core, the surface area \(A_{t}\) is \(79.39 \mathrm{~cm}^{2}\).
\[
\begin{aligned}
& \Psi=\frac{P_{\Sigma}}{A_{t}} \\
& \Psi=\frac{2.90}{79.39}=0.0365
\end{aligned}
\]
[ \(\mathrm{W} / \mathrm{cm}^{2}\) ]
which will produce the required temperature rise.
(In a test sample made to prove out this example, the measured inductance was found to be 0.0159 hy with a resistance of 0.600 ohms at \(25^{\circ} \mathrm{C}\) and a resistance of \(0.647 \Omega\) at \(45^{\circ} \mathrm{C}\).)

With the reduction in turns resulting from consideration of fringing flux in some cases the designer may be able to increase the wire size and reduce the copper loss.

This completes the explanation of the example.
Much of the information which the designer needs can only be found in a scattered variety of texts and other literature. To make this information more conveniently available, helpful data has been gathered together and reproduced in Appendix 4.B which contains 20 tables and 22 figures. The index has been prepared to make it possible for the designer to readily locate specific information.


Fig. 4-6. Design curves showing maximum core loss for 2 mil silicon " C " cores

\section*{APPENDIX 4-A}

\section*{LINEAR REACTOR DESIGN WITH AN IRON CORE}

After calculating the inductance and dc current, select the proper size core with a given \(\mathrm{LI}^{2} / 2\). The energy handing capability of an inductor can be determined by its area product \(A_{p}\) of which, \(W_{a}\) is the available core window area in \(\mathrm{cm}^{2}\) and \(A_{c}\) is the core effective cross sectional area \(\mathrm{cm}^{2}\). The \(W_{a} A_{c}\) or area product \(A_{p}\) relationship is obtained by sulving \(E=L d I / d t\) as follows:
\[
\begin{align*}
& E=L \frac{d I}{d t}=N \frac{d \phi}{d t}  \tag{4,A-1}\\
& L=N \frac{d \phi}{d I}  \tag{4.A-2}\\
& \phi=B_{m} A_{c}{ }^{\prime}  \tag{4.A-3}\\
& B_{m}=\frac{H_{o}^{\prime N I}}{1_{g}^{\prime}+\frac{1_{m}^{\prime}}{\mu_{r}}}  \tag{4,A-4}\\
& \phi=\frac{\mu_{0} \text { NI } A_{c}{ }^{\prime}}{1_{g}{ }^{\prime}+\frac{I_{m}}{\mu_{r}}}  \tag{4,A-5}\\
& \frac{d \phi}{d I}=\frac{\mu_{0} N_{A_{c}}{ }^{\prime}}{1_{g}{ }^{\prime}+\frac{1_{m}}{\mu_{r}}}  \tag{4,A-6}\\
& L=N \frac{d \phi}{d I}=\frac{\mu_{0} N^{2} A_{c}{ }^{\prime}}{l_{g}{ }^{\prime}+\frac{l_{m}}{\mu_{r}}} \tag{4.A-7}
\end{align*}
\]

\footnotetext{
"Symbols marked with a prime (such as \(\mathrm{H}^{\prime}\) ) are mks (meter kilog ram second) units.
}
\[
\begin{equation*}
\text { Energy }=\frac{1}{2} L I^{2}=\frac{\mu_{0} N^{2} A_{c^{\prime}}^{\prime} I^{2}}{2\left(I_{B}^{\prime}+\frac{I_{m}}{\mu_{r}}\right)} \tag{4,A-8}
\end{equation*}
\]

If \(\mathrm{B}_{\mathrm{m}}\) is specified,
\[
\begin{align*}
& I=\frac{B_{m}\left(L_{g}^{\prime}+\frac{l_{m}{ }^{\prime}}{\mu_{r}}\right)}{\mu_{0} N}  \tag{4,A-9}\\
& \text { Eng }=\frac{\mu_{c} N^{2} A_{c}^{\prime}}{2\left(1_{g}^{\prime}+\frac{I_{m}}{\mu_{r}}\right.}\left(\frac{B_{m}\left(1_{g}{ }^{\prime}+\frac{{ }^{\prime} m^{\prime}}{\mu_{r}}\right)}{\mu_{o} N}\right)^{2}  \tag{4,A-10}\\
& \text { Eng }=\frac{B_{m}{ }^{2}\left(l_{g}{ }^{\prime}+\frac{l_{m}{ }^{\prime}}{\mu_{r}}\right) A_{c}{ }^{\prime}}{2 \mu_{0}}  \tag{4.A-11}\\
& I=\frac{K_{u} W_{a}{ }^{\prime} J^{\prime}}{N}=\frac{\left(B_{m}\left(1_{g}{ }^{\prime}+\frac{1_{m^{\prime}}}{\mu_{r}}\right)\right)}{\mu_{o^{\prime}} N} \tag{4,~A-12}
\end{align*}
\]

Solving for \(\left(1_{g}^{\prime}+1_{m}{ }^{\prime} / \mu_{r}\right)\)
\[
\begin{equation*}
\left(l_{g}^{\prime}+\frac{l_{m}^{\prime}}{\mu_{r}}\right)=\frac{\mu_{0} K_{u} W_{a}^{\prime} J \prime}{B_{m}} \tag{1.A-13}
\end{equation*}
\]

Substituting into the energy equation
\[
\begin{align*}
& \text { Eng }=\frac{B_{m}^{2}\left(\frac{\mu_{0} K_{u} W_{a}^{\prime} J^{\prime}}{B_{m}}\right) A_{c}^{\prime}}{2 \mu_{0}}  \tag{4,A-14}\\
& \text { Eng }=\frac{B_{m}^{2} A_{c}^{\prime}}{2 \mu_{0}} \times \frac{\mu_{0} K_{u} W_{a}^{\prime} J^{\prime}}{B_{m}} \\
& \text { Eng }=\frac{B_{m} K_{u} W_{a}^{\prime} A_{c}^{\prime} J^{\prime}}{2}
\end{align*}
\]
(4. A-16)
let
\[
\begin{aligned}
W_{\mathrm{a}} & =\text { window aret, } \mathrm{em}^{2} \\
\mathrm{~A}_{\mathrm{c}} & =\text { core area, cm } \\
\mathrm{J} & =\text { current density, amps } / \mathrm{cm}^{2} \\
\mathrm{H} & =\text { magnetizing force, amp turn/cm } \\
\mathrm{l}_{\mathrm{g}} & =\text { air bap, cm } \\
\mathrm{l}_{\mathrm{m}} & =\text { magnetic path length, } \mathrm{cm} \\
\mathrm{~W}_{\mathrm{a}^{\prime}} & =\mathrm{W}_{\mathrm{a}} \times 10^{-4} \\
\mathrm{~A}_{\mathrm{c}}^{\prime} & =\mathrm{A}_{\mathrm{c}} \times 10^{-4} \\
\mathrm{~J}^{\prime} & =\mathrm{J} \times 10^{4} \\
\mathrm{l}_{\mathrm{m}}^{\prime} & =1_{\mathrm{m}} \times 10^{-2} \\
\mathrm{I}_{\mathrm{g}}^{\prime} & =1_{\mathrm{g}} \times 10^{-2} \\
\mathrm{H}^{\prime} & =\mathrm{H} \times 10^{2}
\end{aligned}
\]

Substituting into the energy equation
\[
\begin{equation*}
\text { Eng }=\frac{W_{a} A_{c} B_{m} J K_{u}}{2} \times 10^{-4} \tag{4.A-17}
\end{equation*}
\]

Solving for \(A_{p}=W_{a} A_{c}\)
\[
\begin{equation*}
A_{p}=\frac{2\left(E_{n g}\right)}{B_{m} J K_{u}} \times 10^{4} \tag{4,A-18}
\end{equation*}
\]

Combining equation from Table 2-1.
\[
\begin{equation*}
J=K_{j} A_{p}^{-0.14} \tag{4.A-19}
\end{equation*}
\]
yielding:
\[
\begin{align*}
& A_{p}=\frac{2(E n g) \times 10^{4}}{K_{u} B_{m}\left(K_{j} A_{p}^{-0.14}\right)}  \tag{4,A-20}\\
& A_{p}{ }^{0.86}=\frac{2\left(L_{n} g\right) \times 10^{4}}{K_{u} B_{m} K_{j}} \\
& A_{p}=\left(\frac{2(E n g) \times 10^{4}}{K_{u} B_{m} K_{j}}\right) 1.16\left[\mathrm{~cm}^{4}\right]
\end{align*}
\]

\section*{APPENDIX 4.B}

\section*{C CORE AND BOBBIN MAGNETIC AND DIMENSIONAL SPECIFICATION}
A. Definitions for Tables 4. B-1 through 4.B-20

Tablos \(4.13-1\) through 4. B-20\% show magnetic and dimensional spocifications for twenty C cores, The information is listed by line as:

1 Manufacture and part number
2 Units
3 Ratio of the window arca over the iron area
4 Product of the window area times the iron area
5 Window area \(W_{a}\) gross
6 Iron area \(A_{c}\) effoctive
7 Mean magnetic path length 1 m
8 Core weight of silicon steel multiplied by the stacking factor
9 Copper weight single bobbin
10 Moan length surn
11 Ratio of \(G\) dimension divided by the square root of the iron area (Ac)
12 Ratio of the \(W_{a}(e f f) / W_{a}\)
13 Inductor overall surface area \(A_{t}\)
14-17 "C" core dimensions
18 Bobbin manufacturer and part number \(\%\)
19 Bobbin inside winding length \(\dagger\)
20 Bobbin inside build \({ }^{\dagger}\)
21 Bobbin winding area length times build \({ }^{\dagger}\)
22 Bracket manufacturer and part number't \(\dagger\)
B. Nomographs for 20 C core sizes

Figures 4.B-1 through 4.B-20 are graphs for 20 different \({ }^{11} \mathrm{C}^{\prime \prime}\) cores. The nomographs display resistance, number of turns, and wire size at a fill factor of \(K_{2}=0.60\). Thesc graphs are included to provide a close approximation for breadboarding purposes.

\footnotetext{
*References 3, 4.
:* The first number in front of the part number indicates the number of bobbins.
Dorco Electronics, 15533 Vermont Ave., Paramount, Calif. 90723.
ttHallmark Metals, 610 West Foothill Blvd., Glendora, Calif. 91740.
}

Table 4.B-1. "C" core AL-2
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{COR1 - AL?} \\
\hline & |nctis) & ME THIC \\
\hline Wa/Rr & & 332 \\
\hline Wran & 00073 & \(0.265 \quad \mathrm{~cm}^{4}\) \\
\hline W: & \(0166-11^{2}\) & 1006 \\
\hline Ac (ellective) & 0.041 & 0.264 - \(\mathrm{can}^{2}\) \\
\hline 1 m & 2233 it & 6.671 cal \\
\hline cone wr & 0.021 lin & 12.27 - 17.10 mb \\
\hline copber wi & 1371 & 15.87 grams \\
\hline * mlit rulwauno & 176 & \(4.47 \quad \mathrm{~cm}\) \\
\hline \(\mathrm{G}+\sqrt{\mathrm{M}}\) & & 3.18 \\
\hline \(\mathrm{Wa}_{3}\) filliectivel Ma & & \(0,0.15\) \\
\hline \({ }^{\text {AI }}\) & 380 & 24.56 \\
\hline 0 & 0.250 in & 0.635 Cris \\
\hline E & 0.181 & \(0.474 \quad \mathrm{tr1}\) \\
\hline F & 0.260 ill & 0.615 \\
\hline G & 0625 in & \(1.587-\mathrm{cm}\) \\
\hline babain & \multicolumn{2}{|l|}{Dorco [lectionics * il. 2} \\
\hline LENGIII & 0.680 & \(1.473 \quad 671\) \\
\hline BuLL & 0.225 & 0.571 \\
\hline \({ }^{2}\) Wa tuftective) & \(0130 \mathrm{~m}^{2}\) & \(0.841 \quad \operatorname{cin}^{2}\) \\
\hline [ancket & \multicolumn{2}{|l|}{MALLMMEX METALS 04.01003} \\
\hline
\end{tabular}


Fig. 4. B-1. Wiregraph for "C" core AL-2

Table 4.B-2. "C" core AL-3




Fig. 4.B-2. Wiregraph for \({ }^{11} C^{\prime \prime}\) core AL-3

Table 4.B-3. "C" core AL-5
\begin{tabular}{|c|c|c|c|}
\hline Hecm cone & AL. \({ }^{\text {a }}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{METAIC}} \\
\hline & ENCLSH & & \\
\hline Wh/ac & & 2.33 & \\
\hline Wa ame & \(0.014 \quad 10^{4}\) & 0.15 & \(\mathrm{cm}^{4}\) \\
\hline W: & \(0.210-\mathrm{in}^{2}\) & 142 & \(\mathrm{cm}^{2}\) \\
\hline Ae (alfratug) & 0.0n9 \({ }^{1}\) &  & \(\mathrm{cm}^{2}\) \\
\hline Im & 2.933 _in & 1.4. 5 & cm \\
\hline COME WT & 0.167 lb & 30.4 & Prems \\
\hline COPPER WT & 0.0043 ib & 28.2 & ¢09min \\
\hline - MLT FULLWOUND & 2.13 & 6.42 & cm \\
\hline G( \(\sqrt{4 c}\) & & 3028 & \\
\hline Whalalmetivel AW & & 0.443 & \\
\hline \({ }_{\text {A }}\) & \(8.90 \quad \mathrm{in}^{2}\) & 31.1 & \(\operatorname{cin}^{2}\) \\
\hline 0 & 0.316 in & 0.952 & tm \\
\hline E & 0.250 th & 0.635 & em \\
\hline \(F\) & \(0.250 \ldots 1 m\) & 0.038 & cm \\
\hline 0 & 0.015 in & 2.22 & cm \\
\hline 70BBIM & DORCO ELECTAON & 1.65 & \\
\hline LEMGTH & 0.80 im & 111 & cm \\
\hline Bullo & \(0.125 \ldots \mathrm{im}\) & 0.511 & em \\
\hline - Wa calfectivel & \(0.18 \mathrm{~S}^{1} \mathrm{n}^{2}\) & 1.20 & \(\mathrm{cm}^{2}\) \\
\hline BRACKET & \multicolumn{3}{|l|}{HALLMARK METALS DEPO2.94} \\
\hline
\end{tabular}



Fig. 4.B-3. Wiregraph for "C" core AL-5

Table 4. B-4. "C" core AL-6
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{"C" CORE} \\
\hline & ENGLISH & \multicolumn{2}{|l|}{METRIC} \\
\hline Wo Ac & & \multicolumn{2}{|l|}{t. 15} \\
\hline Warat & 0.024 & 1.011 & \(\mathrm{cm}^{4}\) \\
\hline Wa & \(0219 \ldots \mathrm{~m}^{2}\) & 1,413 & Cm9 \({ }^{2}\) \\
\hline Mc (effective) & 0.11 & 9.715 & \(\mathrm{cm}^{2}\) \\
\hline Im & 2.033 118 & 7.45 & cm \\
\hline Canc twr & 0.091 lts & 41.2 & 4 ramy \\
\hline COPPER WT & 0.0714 & 32.8 & grams \\
\hline - MLT FULLWOUND & \(238 \quad 17\) & 000 & CH \\
\hline G \(/ \sqrt{\text { A }}\) & & 2.03 & \\
\hline Wa tufacilval Ma & & 0.843 & \\
\hline AT & 6.50 & 41.0 & \(\mathrm{cm}^{2}\) \\
\hline D & 0.500 in & 1.27 & cm \\
\hline E & 0.250 In & 0.635 & cin \\
\hline F & 1.250 In & 0.035 & 2 Fl \\
\hline G & 0.815 in & 2.22 & cm \\
\hline BOBBIN & \multicolumn{3}{|l|}{DOACE ELCCTRONICS - 1.6} \\
\hline LENGTH & 0.830 in & 2.11 & tm \\
\hline BUILD & 0.225 in & 0.671 & cm \\
\hline *Wa (nilective) & \(0.180 \quad 11^{2}\) & 1.20 & \(\mathrm{cm}^{2}\) \\
\hline BPACXE 5 & \multicolumn{3}{|l|}{HALLMARK METALS \(=08.112 .04\)} \\
\hline
\end{tabular}


Fig. 4.B-4. Wiregraph for "C" core AL-6

Table 4.B-5. "C" core AL-124
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{COhE \({ }^{\text {AL. } 121}\)} \\
\hline & ENOLFH & Methic \\
\hline Whathe & & 2.00 \\
\hline Wande & 0.0547 14 \({ }^{4}\) & 1.44 \\
\hline Wh & 0.314 \({ }^{3}\) & 202 -2 \\
\hline Ae (aflealvil & 0111 & A) \(1_{1}\) \\
\hline 1m & 9,501 In & 840 em \\
\hline COAE WT & 0.103 -16 & 48.7 Pran \\
\hline COPPER WT & 0118 & 52.43 crant \\
\hline - WLI FULLWOUMO & 25 in & 6.E. \({ }^{\text {ch }}\) \\
\hline 6/VIt & & 3.90 \\
\hline  & & 0.67 \\
\hline \(\mathrm{Al}_{1}\) & (1) \(\mathrm{ln}^{2}\) &  \\
\hline 0 & amo in & 1.27 , min \\
\hline E & 0.160 In & 0.35 cm \\
\hline F & Q 313 in & \(0.74{ }^{\text {a }}\) \\
\hline \(\underline{G}\) & 1.00 In & 2.4 \\
\hline 60pain & \multicolumn{2}{|l|}{DORCO ELECTHONTCS} \\
\hline LENTIH & 0956 in & 2025 en \\
\hline BUILO & 0.11 - in & 0 Al \\
\hline * Weralfeetive) & 021- \(\mathrm{ln}^{2}\) & 1.11 . \({ }^{2}{ }^{2}\) \\
\hline  & \multicolumn{2}{|l|}{HALEMARK METALS - 0eploba} \\
\hline
\end{tabular}


Fig. 4.B-5. Wiregraph for "C" core AL- 124

Table 4. B-6. "C" core AL-8
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{"C" CARE} & AL. \({ }^{\text {d }}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{METRIC}} \\
\hline & CNGLISH & & \\
\hline Wa/Ac & & 3.18 & \\
\hline Wax \(\mathrm{Ac}^{\text {c }}\) &  & 231 & \\
\hline Wa & 0.445 & 2.82 & \(\mathrm{cm}^{2}\) \\
\hline As \{ellecilva) & \(0.125 \ldots \mathrm{ln}^{2}\) & 0.8 .01 & \(\mathrm{CH}^{2}\) \\
\hline Im & 4.198 in & 10.66 & \(\mathrm{cm}_{1}\) \\
\hline CORE WT & 0.147 & 88,59 & yrams \\
\hline COPFER WT & 0.180 th & 0.1 .1 & grams \\
\hline \% MLT FULLWOUND & \(2.71 \quad 111\) & 1.06 & cm. \\
\hline \(0 / \sqrt{A_{t}}\) & & 3.35 & \\
\hline Wa (plfoctive) AMS & & 0.898 & \\
\hline AI & \(11.29 \quad 31^{2}\) & 12.1 & \(\mathrm{cm}^{2}\) \\
\hline 0 & 0.375 in & 0.852 & cm \\
\hline E & 0.376 in & 0.852 & cm \\
\hline F & 0.375 in & 0.952 & tm \\
\hline G & 1.187 in & 3.015 & Cm \\
\hline BOBBIN & \multicolumn{3}{|l|}{OORCO ELECTRONICS 1. 1.8} \\
\hline LEHGTH & 1.142 ln & 2.8 & cm \\
\hline BULLO & 0.350 in &  & cm \\
\hline *Wa (elfetlivel & 0.1989 & 2.518 & \(\mathrm{Crim}^{2}\) \\
\hline ERACKET & \multicolumn{3}{|l|}{HALLMARK METALS 0610208} \\
\hline
\end{tabular}


ORIGNAL RAME IS OF PGOR QUALITY


Fig. 4.B-6. Wiregraph for " C " core AL-8

Table 4, B-7. "C" core AL-9
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Al. \({ }^{\text {a }}\)} \\
\hline & CHOLISH & MEPRIC \\
\hline Wa/he & & 2.37 \\
\hline WanAs & 0.014 in \({ }^{4}\) & \(3.04{ }^{2} \mathrm{~cm}^{4}\) \\
\hline Wi & \(0.445-\mathrm{in}^{2}\) & 2 Ala \\
\hline Ae (aflective) & \(0.161 \quad 10^{2}\) & 1 ntz \\
\hline Im & 4.18 m & 10.86 cm \\
\hline COAE WT & 0.197 16 & 89.2 yeams \\
\hline COPPER WT & 0.188 to & -10 quatis \\
\hline * MLT FULHWOUND & 302 ln & 1.69 cm \\
\hline \(\mathrm{c} / \sqrt{ } \mathrm{A}_{5}{ }^{\text {c }}\) & & 2.80 \\
\hline Wh (riteclivel/ Na & & 0.89\% \\
\hline AT & 12.15 \(\mathrm{Cl}^{2}\) & 1819 \(\mathrm{cm}^{2}\) \\
\hline D & 0.5001 ln & \(1.27 \quad \mathrm{~cm}\) \\
\hline E & 0.315 in & 0.952 \\
\hline F & 0.375 in & 0.052 cm \\
\hline 6 & \(1.187 \quad \ln\) & 3.015 cm \\
\hline DODEIM & \multicolumn{2}{|l|}{DPRCO ELECTHONICS * 1.L9} \\
\hline L.ENGTH & 1.142 lm & 2.80 cm \\
\hline [14110 & 0360 in & 0.068 \\
\hline Wateflectivol & \(0389 \quad i 0^{2}\) & 3578 \\
\hline CPACKET & \multicolumn{2}{|l|}{HALLMARK METALS \({ }^{\text {a }}\)-10200} \\
\hline
\end{tabular}


Fig. 4.B.7. Wiregraph for " C " core AL-9

Table 4.B-8. "C" core AL-10
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{" CQRE AL. 10} \\
\hline & ENCLISIt & METRIC \\
\hline WAAct & & 160 \\
\hline Wa \(\times 1 \times\) & \(0.092 \ldots{ }^{4}\) & 3.85 \\
\hline Wa & 0.445 & 2870 cm \({ }^{2}\) \\
\hline \(\mathrm{Ad}(\mathrm{ellative})\) & 0.298 & \(1342 \ldots \mathrm{~cm}^{2}\) \\
\hline Im & 4.198 & 1060 \\
\hline CORE WT & 0.243 & 110 9ramy \\
\hline COPPER WI & 0.713 It & 064 9, 9n4 \\
\hline * MLT FULLwound & \(3.27 \quad \mathrm{in}\) & 833 cm \\
\hline \(0 / \sqrt{\text { a }}\) & & 2693 \\
\hline Wa dilecilvel \(\mathrm{W}_{\text {a }}\) & & 0.808 \\
\hline \(\mathrm{AH}^{+}\) & 13.01 & 33 O \\
\hline 0 & 0. 625 th & 4.587 em \\
\hline t & 0.375 & 0.952 cm \\
\hline F & 0375 & 0.952 cm \\
\hline 9 & 1.187 in & 3015 \\
\hline bobrim & \multicolumn{2}{|l|}{DORCO ELECTROMICS * 16.10} \\
\hline LEWCTH & 1,142 \(\ldots 11\) & 2.90 \\
\hline QU1L & 0.350 in & 日889 cm \\
\hline *Was teflective) & \(0.382 \mathrm{ln}^{2}\) & 2578 \\
\hline BRACKE \(T\) & \multicolumn{2}{|l|}{HALLMARK METALS * 010 102.09} \\
\hline
\end{tabular}


Fig. 4.B-8. Wiregraph for "C" core AL-10

Table 4.B-9. "C" core AL- 12




Fig. 4.B-9. Wiregraph for " C " core AL-12

Table 4.B-10. "C" core AL- 135
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{CORE AL 135} \\
\hline & [H0LISI] & ME TRIC \\
\hline Wa/de & & 2.89 \\
\hline Wa \(\times \overrightarrow{A a}\) & \(0.123 \quad i n^{4}\) & 5.14 \\
\hline W & \(0833,12^{2}\) & 4.089 \\
\hline \(A \mathrm{taflectyp}\) ) & 4. \(1985 . .10^{2}\) & \(1.26 \ldots \mathrm{~cm}^{2}\) \\
\hline Im & \(4.048 \quad 17\) & 11.8 m \\
\hline COAE WT & 0.251 il & 114 grams \\
\hline COPPER 1; & 0.312 If & 159 grams \\
\hline * MLI FULLWOUND & 3.74 & 9.60 cm \\
\hline G/ \(/ \sqrt{A c}\) & & 2.55 \\
\hline Wa [atleative] \(\mathrm{AN}^{\text {N }}\) & & 0,015 \\
\hline Af & \(17.04{ }^{10}\) & 110 - \(\mathrm{cm}^{2}\) \\
\hline 0 & 11.500 in & 1.27 cm \\
\hline E & 0.437 in & 1.11 _Cil \\
\hline F & 0.562 In & \(143 \ldots \mathrm{~cm}\) \\
\hline 0 & 1.125 & 7.857 \\
\hline BCOBIN & \multicolumn{2}{|l|}{DORCOELECTRONICS * 1L-135} \\
\hline LENGTII & 1.08 _- & 2.74 \\
\hline BUILO & 0.537 & 1.36 cm \\
\hline A Wareffective & 0.578 - \(\mathrm{in}^{2}\) & 3.74 - \(\mathrm{cm}^{2}\) \\
\hline BAACKE & \multicolumn{2}{|l|}{HALLMMARK METALS* 08.10707} \\
\hline
\end{tabular}


TUANS


Fig. 4.B-10. Wiregraph for "C" core AL-135

Table 4.B-11. "C" core AL-78
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{"C" CORE AL-70} \\
\hline & ENCLISH & & \multicolumn{2}{|l|}{METRIC} \\
\hline Wa/he & & & \multicolumn{2}{|l|}{3.00} \\
\hline Waxac & 0.146 & & 8.07 & \(\mathrm{cm}^{4}\) \\
\hline \(\mathrm{W}_{1}\) & 0.703 & \(10^{2}\) & 4.53 & \(6^{2}\) \\
\hline As elfifeclive) & 0,208 & \(10^{2}\) & 1.34 & \(\mathrm{cm}^{2}\) \\
\hline Im & 6.691 & In & 14.08 & ctil \\
\hline CORE WT & 0.342 & lb & 164 & prams \\
\hline COPPER WT & 0.331 & 15 & 160 & gram \\
\hline - MLT FULLWOUND & 3.21 & in & 8.15 & cm \\
\hline \(\mathrm{g} / \sqrt{\text { Ac }}\) & & & 4.93 & \\
\hline Whatiflectivt) Ma & & & 0.805 & \\
\hline \(A^{\prime}\) & 18.89 & \(1 \mathrm{n}^{2}\) & 1098 & \(\mathrm{cm}^{2}\) \\
\hline 0 & 0.760 & 1 m & 1.81 & cm \\
\hline E & 0.313 & In & 0.785 & cm \\
\hline F & 0.313 & In & 0.795 & cm \\
\hline 0 & 2,260 & In & 5.716 & cm. \\
\hline Bobsin & \multicolumn{4}{|l|}{DORCO ELECTRONICS * 1.L.78} \\
\hline LENGTH & 2.205 & In & 6.60 & cm \\
\hline BULLD & 0.288 & 1 m & 0.731 & cm \\
\hline *Wa (eflective) & 0.635 & \(1 \mathrm{~m}^{2}\) & 4.10 & \(\mathrm{cm}^{2}\) \\
\hline BRACKET & \multicolumn{4}{|l|}{HALLMARK METALS * 012016.05} \\
\hline
\end{tabular}



Fig. 4.B-11. Wiregraph for "C" cors AL-78

Table 4.B-12. "C" core AL- 18
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{"C" CORE AL.18} \\
\hline & ENGLIS! & & \multicolumn{2}{|l|}{METRIC} \\
\hline Wh/nc & & & \multicolumn{2}{|l|}{6.08} \\
\hline Wha Ac & 0.103 & \(4{ }^{4}\) & 7,67 & \(\mathrm{cm}^{4}\) \\
\hline W: & 0, 172 & \(11^{2}\) & 6. \({ }^{\text {d }}\) & \(4_{4}{ }^{2}\) \\
\hline At (edective) & 0.104 & \(1 \mathrm{~m}^{2}\) & 1.257 & \(\mathrm{cm}^{2}\) \\
\hline 1 m & 5648 & in & 14.34 & cm \\
\hline CORE WT & 0.305 & H/ & 138 & glathit \\
\hline COPPER WT & 0.575 & 14 & 2 HO & grams \\
\hline * MLT FULLWOUND & 295 & 111 & \multicolumn{2}{|l|}{7.51 cin} \\
\hline \(\underline{G / \sqrt{A}}\) & & & \multicolumn{2}{|l|}{3.502} \\
\hline Wa felfective) / No. & & & \multicolumn{2}{|l|}{0,800} \\
\hline Ar & 21.93 & \({ }_{11}{ }^{2}\) & 141.60 & \(\mathrm{cm}^{2}\) \\
\hline D & 0.600 & 19 & 1.27 & cm \\
\hline F & 0.437 & 111 & 1.111 & cm \\
\hline \(F\) & 0.625 & in & 1.587 & Cill \\
\hline \(G\) & 1.562 & in & \multicolumn{2}{|l|}{3.921 cm} \\
\hline BOPBIN & \multicolumn{2}{|l|}{DOACO CLECTAOMSS * 1.6 .16} & \multicolumn{2}{|l|}{1.6 .16} \\
\hline EENCTH & 1.487 & in & J. 802 & cп7 \\
\hline BUILL & 0.598 & 111 & 1.4998 & cm \\
\hline Wha (cllective) & 0, 080 & \(1 \mathrm{mi}^{2}\) & \multicolumn{2}{|l|}{5.597} \\
\hline BPACKET & \multicolumn{4}{|l|}{IIALLMARK METALS * 08.108.07} \\
\hline
\end{tabular}



Fig. 4.B-12. Wiregraph for "C" core AL-18

Table 4.B-13. "C" core AL- 15
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{"C" CORE} & \multicolumn{2}{|l|}{AL-15} & \multicolumn{2}{|l|}{} \\
\hline & ENGLISH & & ME Thic & \\
\hline Wa/Ac & & & 2.50 & \\
\hline Wax \({ }^{\text {ac }}\) & 0.218 & \(1 \mathrm{~m}^{4}\) & 2.01 & \(\mathrm{cm}^{4}\) \\
\hline Wa & 0.181 & \(\mathrm{ln}^{2}\) & 6.037 & \(\mathrm{cm}^{2}\) \\
\hline Ac felfeellve) & 0.219 & \(1 n^{2}\) & 1.80 & \(\mathrm{cm}^{2}\) \\
\hline m & 8.598. & In & 14.2 & cm \\
\hline CORE WTI & 0,436 & lb & 197 & qrami \\
\hline COPPER WT & 0.448 & 16 & 203 & grams \\
\hline MLI F FULWOUND & 3.97 & In & 10.08 & cm \\
\hline \(\mathrm{G} / \sqrt{\text { Ac }}\) & & & 288 & \\
\hline Wa feftectival/ \(\mathrm{Na}^{\text {a }}\) & & & 0,808 & \\
\hline \({ }^{\text {A }}\) & 21.07 & \(1 \mathrm{l}^{2}\) & 135.2 & \(\mathrm{cm}^{2}\) \\
\hline 0 & 0.695 & in & 1.687 & cm \\
\hline t & 0.500 & In & 1.27 & \(c_{\text {cm }}\) \\
\hline F & 0.500 & In & 1.27 & cm \\
\hline 0 & 1.562 & In & 3,867 & cm \\
\hline B08日in & \multicolumn{2}{|l|}{DORCO ELECTROMICS} & \multicolumn{2}{|l|}{1.L.15} \\
\hline LENGTH & 1.497 & In & 3.80 & cm \\
\hline Bullo & 0.485 & in & 1.18 & ¢ \\
\hline * Wh (eflicelive) & 0.686 & \(\mathrm{ln}^{2}\) & 4.49 & \(\mathrm{cm}^{2}\) \\
\hline 日RACKET & \multicolumn{2}{|l|}{HALLMARK METALS} & \multicolumn{2}{|l|}{010.108 .09} \\
\hline
\end{tabular}


Fig. 4.B-13. Wiregraph for "C" core AL-15

Table 4.B-14. "C" core AL-16
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{"C" CORE} & \multicolumn{2}{|l|}{AL. 18} & & \\
\hline & EMGLIS & & \multicolumn{2}{|l|}{METAIC} \\
\hline Wa/Ac & & & \multicolumn{2}{|l|}{2.08} \\
\hline Waxat & 0.26 & \(\mathrm{in}^{4}\) & 10.8 & cm \({ }^{4}\) \\
\hline Wa & 7. 781 & \(\mathrm{m}^{2}\) & 5.037 & \(\mathrm{cm}^{2}\) \\
\hline Ac (elfecllys) & 0.334 & \(1 n^{2}\) & 215 & an \({ }^{2}\) \\
\hline tim. & 5.5 喑 & in & 14.2 & cm \\
\hline CORE WT & 0.519 & 16 & 235 & grimit \\
\hline COPPER WT & 0.476 & 1 b & 216 & grami \\
\hline * MLT FULLWVOLNO & 4.12 & In & 10.72 & cm \\
\hline G/ \(\sqrt{\text { Ac }}\) & & & 2.70 & \\
\hline We loflectivol \(\mathrm{NH}_{4}\) & & & 0,601 & \\
\hline AT & 22.21 & \(\mathrm{in}^{2}\) & 1433 & \(\mathrm{cm}^{2}\) \\
\hline D & 0.750 & In & 1.905 & cm \\
\hline E & 0.500 & In & 1.27 & CM1 \\
\hline F & 0.600 & In & 1.27 & cm \\
\hline 6 & 1.562 & In & 3.967 & cm \\
\hline BOBEIN & \multicolumn{4}{|l|}{OORCO ELECTRONICS * \(1 \cdot 1 \cdot 1 \mathrm{~B}\)} \\
\hline LENGTH & 1.497 & in & 3.80 & cm \\
\hline BUILD & 0.485 & tin & 1.18 & cm \\
\hline * Wa (clicetive) & 0.696 & \(11^{2}\) & 4.48 & \(\mathrm{cos}^{2}\) \\
\hline QRACKET & \multicolumn{2}{|l|}{HALLMARK METALS*} & \multicolumn{2}{|l|}{012.100.08} \\
\hline
\end{tabular}



Fig. 4.B-14. Wiregraph for "C" core AL-16

Table 4.B-15. "C" core AL-1"




Fig. 4.B-15. Wiregraph for "C" core AL• 17

Table 4. B-16. "C" core AL-19
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{"C" CORE AL-18} \\
\hline & ENGLISH & \multicolumn{2}{|l|}{METRIC} \\
\hline Wa/Ae & & \multicolumn{2}{|l|}{1.85} \\
\hline WamAc & \(0.435 \quad 14^{4}\) & 18.1 & \(\mathrm{cm}^{4}\) \\
\hline Wa & \(0.712-10^{2}\) & 830 & \(\mathrm{cm}^{2}\) \\
\hline Ac (ellective) & \(0.945 \quad \mathrm{in}^{2}\) & 2.97 & \(\mathrm{cm}^{2}\) \\
\hline 1 m & 6.838 in & 14.1 & cm \\
\hline Cone wT & 0.724 & 328 & qrams \\
\hline COPPEA WT & 0.731 16 & 332 & grams \\
\hline ML.T FULLWOUNO & 5.11 & 12.98 & cm \\
\hline \(0 / \sqrt{\text { Ac }}\) & & 234 & \\
\hline  & & 0.903 & \\
\hline \(\mathrm{AI}^{-}\) & 28.2 [ \(\mathrm{m}^{2}\) & 182 & \(\mathrm{cm}^{2}\) \\
\hline 0 & 1.000 lm & 2.54 & cm \\
\hline E & \(0.500 \ldots \mathrm{ln}\) & 1.77 & C.7 \\
\hline F & 0.625 in & 1.567 & 6 m \\
\hline G & 1.5 但 2 In & 3.967 & cm \\
\hline gorain & \multicolumn{3}{|l|}{OORCO ELECTRDNICS * EL. 19} \\
\hline LENGTH & 1.497 in & 3.80 & CH \\
\hline BULLD & 0.590 in & 1.488 & cm \\
\hline A wa leflective) & \(0.883 \quad \mathrm{~m}^{2}\) & 5 59 & \(\mathrm{cm}^{2}\) \\
\hline BRACKET & \multicolumn{3}{|l|}{HALLMARK METALS* 10.110.08} \\
\hline
\end{tabular}



Fig. 4.B-16. Wiregraph for "C" core AL-19

Table 4.B-17. "C" core AL-20
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{"C" CORE} \\
\hline & ENGLIS & & \multicolumn{2}{|l|}{METRIC} \\
\hline Wa/Ae & & & \multicolumn{2}{|l|}{1.66} \\
\hline Whaxe & 0.543 & & \multicolumn{2}{|l|}{22.8} \\
\hline Wa & 0.971 & \(1 \mathrm{in}^{2}\) & \multicolumn{2}{|l|}{\(8.30{ }^{\text {c }} \mathrm{cm}^{2}\)} \\
\hline Ae tellective) & 0.566 & \(\mathrm{m}^{2}\) & 3.58 & \(\mathrm{cm}^{2}\) \\
\hline 1 m & 6.228 & 1 m & 16.0 & tm \\
\hline COAE WT & 0.965 & Ib & 437 & yrams \\
\hline COPPER WT & 0.767 & 16 & 34. & grams \\
\hline * mlit fullyound & 5.36 & In & \multicolumn{2}{|l|}{13.62 cm} \\
\hline \(0 / \sqrt{\text { A }}\) & & & \multicolumn{2}{|l|}{209} \\
\hline Wa afliectivel \(\mathrm{Wa}_{4}\) & & & \multicolumn{2}{|l|}{0.003} \\
\hline \(A_{1}\) & 31.7 & \(1{ }^{2}\) & 206 & \(\mathrm{cm}^{2}\) \\
\hline D & 1.000 & in & 2.54 & cm \\
\hline E & 0.625 & 1 m & 1.587 & cm \\
\hline F & 0.625 & In & 1.587 & cmi \\
\hline 0 & 1.662 & In & \multicolumn{2}{|l|}{3.907 cm} \\
\hline BOBBIM & \multicolumn{4}{|l|}{OORCO EIECTROMICS * 1.L.20} \\
\hline LEMGTH & 1.497 & in & \multicolumn{2}{|l|}{3.87 cm} \\
\hline BULL & 0.690 & m & 1.498 & an \\
\hline *Wa mellecivel & 0.883 & \(1{ }^{2}\) & 5.69 & \(\mathrm{cm}^{2}\) \\
\hline BRACKE \({ }^{\text {I }}\) & \multicolumn{4}{|l|}{HALLMMARK METALS - 10.114 .010} \\
\hline
\end{tabular}



Fig. 4.B-17. Wiregraph for "C" core AL-20
\(77-05\)

Table 4.B-18. "C" core AL-22
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{"C** CORE AL.22} \\
\hline & CNGLISU & \multicolumn{2}{|l|}{METRIC} \\
\hline Wa/he & & \multicolumn{2}{|l|}{1.84} \\
\hline Wa \(\times\) Ac & 0.692 114 & 20.0 & \(\mathrm{cm}^{4}\) \\
\hline Wil & \(121-1^{2}\) & \multicolumn{2}{|l|}{1814} \\
\hline Ac (ellective) & 0.656 - \(112^{2}\) & 3.6 & Enn \({ }^{2}\) \\
\hline fm & 0.978 & 112 & CH \\
\hline CORE WT & 108 . 16 & 488 & 4 yran \\
\hline COPPER WT & 0.861 16 & 435 & grams \\
\hline * ML T FULL WOUND & 5.30 _ \(\quad\) I! & \multicolumn{2}{|l|}{13.62 ell} \\
\hline \(\mathrm{G} / \mathrm{VAC}\) & & \multicolumn{2}{|l|}{2.598} \\
\hline Wa folfoctivel \(\mathrm{ma}^{\text {a }}\) & & \multicolumn{2}{|l|}{0.012} \\
\hline Ar & \(36.3-\mathrm{in}^{2}\) & 228 & \(\mathrm{cm}^{2}\) \\
\hline 0 & 1.000 O & 2.54 & cin \\
\hline E & 0.625 in & 1.587 & cm \\
\hline F & 0.625 in & 1.697 & \(\underline{\square}\) \\
\hline G & 1.037 in & 4.92 & c, \\
\hline Bobain & \multicolumn{3}{|l|}{DORCO LECTRONICS * 1422} \\
\hline LENGTH & \(1.812 \quad 4\) & 4.75 & cni \\
\hline BUILD & 0,590 & \multicolumn{2}{|l|}{1.498} \\
\hline *Wateffecivel & \(1.110 \ln ^{2}\) & \multicolumn{2}{|l|}{\[
7.12
\]} \\
\hline ERACKET & \multicolumn{3}{|l|}{UMLLMARK METALS* 10114.010} \\
\hline
\end{tabular}


Fig. 4.B-18. Wiregraph for "C" core AL-22

Table 4.B-19. " \(C\) '" core AL-23
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{C. COHt AL 23} \\
\hline & ONGLISM & MLTRIC \\
\hline Wate & & 1.55 \\
\hline Wn \(\times\) Ac &  & 34.96 \\
\hline Wa & 121 & 2.804 \(+\mathrm{cm}^{2}\) \\
\hline ne teftetivet & Q195 \({ }^{1 \prime 2}\) & 448 k \({ }^{2}\) \\
\hline 1 m & 4.878 & 172 \\
\hline Conit wi & 1.352 & \(612 \ldots\) \\
\hline COPPERW & 1.090 & 479....-. qrams \\
\hline M. T FULLWOUSD & 5.86 & 14.83 \\
\hline \(\mathrm{G} / \mathrm{VAC}\) & & 237 \\
\hline Wa tollectival Na & & 0,012 \\
\hline \({ }_{\text {A }}\) & 38.1 & \(248 \times \mathrm{cin}^{2}\) \\
\hline 0 & 1250 . 111 & 3.175 \\
\hline t & 0.625 III & 1.681 cth \\
\hline F & 0625 & 1.581 \\
\hline 6 & 1312 & 487 - em \\
\hline BOBCIN & Gomion enctuo & 16.23 \\
\hline LCNGH & 1812 & 475 \\
\hline BULD & \(00_{10}\) & 1498 \\
\hline *Wa culfectivel & \(1.10 \quad 10^{2}\) & \(112-\mathrm{cm}^{2}\) \\
\hline URACKEI & \multicolumn{2}{|l|}{HALLMAMK WETALS: 14.114 .010} \\
\hline
\end{tabular}



RESISIANCE, otm,

Fig. 4. B-19. Wiregraph for "C" core AL-23

Table 4.B-20. "C" core AL-24
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{CORL AL 24} \\
\hline & CNGLISH & ME THI & \\
\hline Wa.he & & \multicolumn{2}{|l|}{2.71} \\
\hline Whac & \(0.962 \quad 11^{11}\) & 40.0 & \\
\hline W/ & 173 & \multicolumn{2}{|l|}{\(11.10-43^{2}\)} \\
\hline Ac Caltegive) & 0.510 & 2.58 & \(\mathrm{cm}^{2}\) \\
\hline 114 & 7.871 & 200 & cin \\
\hline COHL CHT & 1.220 - 8 & 55, \({ }^{2}\) & qrams \\
\hline coprer wi & 1.501 & 88 &  \\
\hline * MiLT rullwouno & 576 & \multicolumn{2}{|l|}{1, 12} \\
\hline G/VAE & & \multicolumn{2}{|l|}{\(\cdots 10\)} \\
\hline Wb lallectivel \({ }^{\text {Na }}\) & & \multicolumn{2}{|l|}{0.820} \\
\hline \(\mathrm{A}_{1}\) & 43.6 & 2916 & \(\varepsilon^{4}{ }^{2}\) \\
\hline D & 1000 III & 2.54 & cm \\
\hline [ & \(0.625 \quad 11\) & 1.697 & cm \\
\hline \(F\) & 0.150 it & 1095 & cmi \\
\hline G & 2313 in & 5.875 & GIII \\
\hline H0BL14 & \multicolumn{3}{|l|}{DORCO ELECTRONICS 4 1L. 24} \\
\hline Lentit & 2.248 in & 5709 & cm \\
\hline Ely & 0.715 & 1.1810 & em \\
\hline *Wa telleetwet & 1.601 H11 & 1032 & \(\mathrm{cm}^{2}\) \\
\hline bracket & \multicolumn{3}{|l|}{MALLMARK METALL +10.200010} \\
\hline
\end{tabular}


Fig. 4.B-20. Wiregraph for \({ }^{\prime \prime} C^{\prime \prime}\) core AL-24


Fig. 4.B-21. Graph for inductance, capacitance, and reactance


Fig. 4.B-22. Area product vs energy \(\frac{\mathrm{LI}^{2}}{2}\)
\(B_{m}=1.2\) (tesla)
\(\mathrm{K}_{\mathrm{u}}=0.4\)
\(K_{j}=395\)

\section*{REFERENCES}
1. Molypermalloy Powder Cores. Catalog MPP-3035, Magnetic, Inc., Butler, Pa.
2. Lee, R., Electronic Iransformer and Circuits, Second Edition. John Wiley \& Sons, New Yorle, N. Y. 1958.
3. Silectron Cores Bulletin SC-107B, Arnold Engineering, Marengo, Ill., undated.
4. Orthosil Wound Coress Catalog No. W102-C, Thomas \& Skinner, Inc., Indianapolis, Ind., undated.

\section*{CHAPTER V}

TOROIDAL POWDER CORE SELECTION WITH de CURRENT

ORIGNAL PACE IS OF POOR QUALITY

\section*{A. INTRODUCTION}

Inductors which carry direct current are used frequently in a wide variety of ground, air, and space applications. Selection of the best magnetic core for an inductor frequently involves a trial-and-error type of calculation.

The design of an inductor also frequently involves consideration of the effect of its magatic field on other devices near where it is placed. This is especially true in the design of high-current inductors for convertars and switching regulators used in spacecraft, which may also employ sensitive magnetic field detectors. For this type of design problem it is frequently imperative that a toroidal core be used. The magnetic flux in a moly-fermalloy toroid (core) can be contained inside the cor. more readily than in a lamination or C type core, as the winding covers the core along the whole magnetic path length.

The author has devi'rped a simplified method of designing optimum de carrying inductors with moly-permalloy.powdercores. This method allows the correct core permeability to be determined without rely \({ }^{\ddagger}\). trial and error.

\section*{B. RELATIONSHIP OF Ap TO INDUCTOR'S ENERGY HANDLING CAPABILITY}

According to the newly developed approach, the energy-handling capability of a core is related to its area product \(A_{p}\) :
\[
\begin{equation*}
A_{p}=\left(\frac{2(E n g) \times 10^{4}}{B_{m} K_{u} K_{j}}\right)^{1.14} \tag{4}
\end{equation*}
\]
where:
\[
\begin{aligned}
\mathrm{K}_{\mathrm{j}} & =\text { cu:-ent density coefficier } 4 \text { (see Chapter } 2 \text { ) } \\
\mathrm{K}_{\mathrm{u}} & =\text { window utilization factor (see Chapter } 6 \text { ) } \\
\mathrm{B}_{\mathrm{m}} & =\text { flux density, tesla } \\
\text { Eng } & =\text { energy, watt seconds }
\end{aligned}
\]

From the above, it can be seen that factors such as flux density, window utilization factor \(K_{u}\) (which defines the maximum space that may be occupied by the copper in the window), and the constant \(K_{j}\) (which is related to temperature rise) all have an influence on the inductor area product. The constant \(K_{j}\) is a new parameter that gives the designer control of the copper losses. Derivation is set forth in detail in Chapter 2. The energy-handling capability of a core is derived from
\[
\mathrm{Eng}=\frac{\mathrm{LI}^{2}}{2}
\]
[watt second] (5-2)

\section*{III. FUNDAMENTAL CONSIDERATIONS}

The design of a linear reactor depends upon four related factors:
1. Desired inductance
2. Direct current
3. Alternating current \(\Delta I\)
4. Power loss and temperature rise

With these requirements established, the designer must determine the maximum values for \(\mathrm{B}_{\mathrm{dc}}\) and for \(\mathrm{B}_{\mathrm{ac}}\) which will not produce magnetic saturation, and must make tradeoffs which will yield the highest inductance for a given volume. The core permeability chosen dictates the maximum de flux density which can be tolerated for a given design. Permeability values for different powder cores are shown in Table 5-1.

Table 5-1. Different powder core permeabilities
\begin{tabular}{|c|c|}
\hline Permeability & Amp turn/cm with de bias \\
\(\mathrm{L}<80 \%\) \\
\hline 14 & 253 \\
66 & 140 \\
60 & 56 \\
125 & ORIGNAL PACE IS 28 \\
147 & 23 \\
160 & OF POOR QUALITL \\
173 & 19 \\
200 & 16 \\
300 & 11 \\
555 & 4 \\
\hline
\end{tabular}

If an inductance is to be constant with increasing direct current, there must be a negligible drop in inductance over the operating current range. The maximum H , then, is an indication of a core's capability. In terms of ampere-turns and mean magnetic path length \(1 m\),
\[
\begin{array}{rr}
\mathrm{H}=\frac{\mathrm{NI}}{1_{\mathrm{m}}} & \text { [amp turn/cm] (5-3) } \\
\mathrm{NI}=0.8 \mathrm{Ht}_{\mathrm{m}} & {[\text { amp turn ] (5-4) }}
\end{array}
\]

Inductance decreases with increasing flux density and magnetizing force for various materials of different values of permeability \(\mu_{\Delta}\). The selection of the correct permeability for a given design is made using equation 5-4 after solving for the area product \(A_{p}\) : \({ }^{*}\)
\[
\begin{equation*}
\mu_{\Delta}=\frac{B_{m^{1} m} \times 10^{4}}{0.4 \pi W_{a}^{J K}} \tag{5-5}
\end{equation*}
\]

It should be remembered that maximum flux density depends upon \(\mathrm{B}_{\mathrm{dc}}+\mathrm{B}_{\mathrm{ac}}\) in the manner shown in Fig. 5-1.
\[
\begin{gathered}
\mathrm{B}_{\mathrm{m}}=\mathrm{B}_{\mathrm{dc}}+\mathrm{B}_{\mathrm{ac}} \\
\mathrm{~B}_{\mathrm{dc}}=\frac{0.4 \pi \mathrm{NI}_{\mathrm{dc}} \times 10^{-4}}{\frac{\mathrm{I}_{\mathrm{m}}}{\mu_{\Delta}}} \quad[\text { tesla }](5-6) \\
\end{gathered}
\]

\footnotetext{
"Derivation is set forth in detail in Appendix 5. A at the end of this Chapter.
}
\[
\begin{equation*}
\mathrm{B}_{\mathrm{ac}}=\frac{0.4 \pi \mathrm{~N} \frac{\Delta \mathrm{I}}{2} \times 10^{-4}}{\frac{l_{\mathrm{m}}}{\mu_{\Delta}}} \tag{tesla}
\end{equation*}
\]

Combining Eqs. (5-7) and (5-8),
\[
\mathrm{B}_{\mathrm{m}}=\frac{0.4 \pi \mathrm{NI}_{\mathrm{dc}} \times 10^{-4}}{\frac{0.4 \pi \mathrm{~N} \frac{\Delta \mathrm{I}}{2} \times 10^{-4}}{\frac{1_{\mathrm{m}}}{\mu_{\Delta}}}+\frac{0}{\mu_{\Delta}}} \text { [tesla] (5-9) }
\]

Fig. 5-1. Flux density versus \(I_{d c}+\Delta I\)
Moly-permalloy powder cores operating with a de bias of 0.3 tesla have only about \(80 \%\) of their original inductance, with very rapid falloff at higher densities as shown in Fig. 5-2.

The flux density for the initial design for moly-permalloy powder cores should be limited to 0.2 tesla maximum for \(B_{d c}\) plus \(B_{a c}\).

The losses in a moly-permalloy inductor due to ac flux density are very low compared to the steady state dc copper loss. It is then assumed that the majority of the losses are copper:
\[
\begin{gather*}
P_{\mathrm{cu}} \gg P_{\mathrm{fe}}  \tag{5-10}\\
5-5
\end{gather*}
\]


Fig. 5-2. Inductance versus dc bias
D. A SPECIFIED TaHGN PROBLEM AS AN EXAMPLE

For a typical design example, assume the following:
(1) Inductance 0.0015 henry
(2) dc current 2 amperes
(3) \(25^{\circ} \mathrm{C}\) rise

The procedure would be as shown below.

Step No. 1. Calculate the energy-handing capability from equation 5-2:
\[
\begin{array}{ll}
\text { Energy }=\frac{L \mathrm{I}^{2}}{2} & {[\text { watt second }]} \\
\text { Energy }=\frac{(0.0015)(2)^{2}}{2} & \\
\text { Energy }=0.003 & \text { [watt second] }
\end{array}
\]

Step No. 2. Calculate the area product \(A_{p}\) from equation 5-1:
\[
\begin{array}{cc}
A_{p}=\left(\frac{2(\text { Energy }) \times 10^{4}}{B_{m} K_{u} K_{j}}\right)^{1.14} & {\left[\mathrm{~cm}^{4}\right]} \\
B_{m}=0.2 & {[\text { tesla }]} \\
K_{u}=0.4 & \\
K_{j}=403 & {\left[\mathrm{~cm}^{4}\right]}
\end{array}
\]
or
\[
A_{p}=2.03
\]
\[
\left[\mathrm{cm}^{4}\right]
\]

After the \(A_{p}\) has been determined, the geometry of the inductor can be evaluated as described in Chapter 2 for weight, for surface area, and for volume, and appropriate changes made, if required.

Step No. 3. Select a powder core from Table 2-2 with a value of \(A_{p}\) closest to the one calculated:
\[
55071 \text { with an } A_{p}=1.966
\]

For more information, see Table 5. B-6.

Step No. 4. Calculate the current density frorn equation 5. A-19:
\[
J=K_{j} A_{p}^{-0.12} \quad[A / \mathrm{cm}]
\]

The value for \(K_{j}\) is found in Table 2-1:
\[
\begin{array}{ll}
J=(403)(1.966)^{-0.12} & \\
J=372 & {[\mathrm{~A} / \mathrm{cm}]}
\end{array}
\]

Step No. 5. Calculate the permeability of the core required from equation 5.A-24:
\[
\mu_{\Delta}=\frac{B_{m} l_{m} \times 10^{4}}{0.4 \pi W_{a} \mathrm{~K}_{u}}
\]
(see Table 5. B-6.)
\[
\begin{aligned}
& \mu_{\Delta}=\frac{(0.2)(8.15) \times 10^{4}}{(1.25)(2.93)(372)(0.4)} \\
& \mu_{\Delta}=38
\end{aligned}
\]

From the manufacturer's catalog, the core that has the same size but has a permeability closer to the one calculated is the core 55550 , with a permeability of 26 . This particular core has 28 millihenry per 1000 turns.

Step No. 6. Calculate the number of turns required for 1.5 millihenry.
\[
\begin{aligned}
\mathrm{N} & =1000 \sqrt{\frac{\mathrm{~L}}{\mathrm{~L}_{1000}}} \\
\mathrm{~L} & =\text { inductance } \\
\mathrm{L}_{1000} & =\text { inductance at } 1000 \text { turns } \\
\mathrm{N} & =1000 \sqrt{\frac{1.5}{28}} \\
\mathrm{~N} & =231
\end{aligned}
\]

Step No. 7. Calculate the bare wire size \(A_{w(B)}\);
\[
\begin{array}{ll}
A_{w(B)}=1 / J & {\left[\mathrm{~cm}^{2}\right]} \\
A_{w(B)}=2.0 / 372 & \\
A_{w(B)}=0.00537 & {\left[\mathrm{~cm}^{2}\right]}
\end{array}
\]

Step No, 8. Select the wire area \(A_{w}\) in Table 6-1 for equivalent (AWG) wire size, column A:

AFC NO. \(20=0.005188\)

Step No. 9. Calculate the resistance of the winding, using Table, 1, column C, and Table 2-2, column 4, for the MLT:
\[
\begin{array}{ll}
\mathrm{R}=\mathrm{MLT} \times \mathrm{N} \times(\text { column } C) \times 5 \times 10^{-6} & {[\Omega]} \\
\mathrm{R}=(4.77)(231)(332)(1.098) \times 10^{-6} \\
\mathrm{R}=0.402 & {[\Omega]}
\end{array}
\]

Step No. 10. Calculate the copper loss:
\[
\begin{array}{ll}
P_{c u}=I^{2} \mathrm{R} & \text { [watts] } \\
P_{c u}=(2)^{2}(0.402) & \\
P_{c u}=1.608 & \text { [watts] }
\end{array}
\]

From chapter 7, th_ surface area \(A_{t}\) required to dissipate waste heat (expressed as watts loss per unit area) is:
\[
\begin{gathered}
77-35 \\
A_{t}=\frac{P_{\Sigma}}{\psi} \\
P_{\Sigma}=P_{c u} \\
\psi=0.03 \mathrm{~W} / \mathrm{cm}^{2} \text { at } 25^{\circ} \mathrm{C} \text { rise }
\end{gathered}
\]

Referring to Table 2-2, column 2, for the 55071 size core, the surface area \(A_{t}\) is \(44.7 \mathrm{~cm}^{2}\) :
\[
\begin{aligned}
& \psi=\frac{P}{A_{t}} \\
& \psi=\frac{1.608}{44.7} \\
& \psi=0.036 \quad\left[\mathrm{~W} / \mathrm{cm}^{2}\right]
\end{aligned}
\]
which will produce the required temperature rise.
(In a test sample made to prove out this example, the measured inductance was found to be 0.0015 hy with a resistance of 0.36 ohms at \(25^{\circ} \mathrm{C}\) and 0.388 chms at \(45^{\circ} \mathrm{C}\).)

\section*{BIBLIOGRAPHY}

Stan, P., Toroid Design Analysis, Electro-Technology, August 1966, Pages 85-94.

Smith, G. D., Designing Toroidal Inductors with de Bias. NASA Technical Note D-2320, Goddard Space Flight Center, Greenbelt, Md.

Blinchikoff, H., Toroidal Inductor Design Electro-Technology. November 1964, Page 42-50.

\section*{APPENDIX 5. A}

TOROID POWDER CORE SELECTION WITL d d CURRENT

After calculating the inductance and de current, select the proper permeability and size of powder core with a given \(\mathrm{LI}^{2} / 2\). The energyhandling capability of an inductor can be determined by its \(A_{p}\) preduct, of which \(W_{a}\) is the available core vindow area in \(\mathrm{cm}^{2}\) and \(A_{c}\) is the core effective cross sectional area in \(\mathrm{cm}^{2}\). The \(W_{a} A_{c}\) or area produst \(A_{p}\) relationship is obtained by solving \(E=L d I / d t\) as follows: \({ }^{*}\)
\[
\begin{gather*}
E=L \frac{d I}{d t}=N \frac{d \phi}{d t}  \tag{5,A-1}\\
L=N \frac{d \phi}{d I}  \tag{5.A-2}\\
\phi=B_{m} A_{c}^{\prime}  \tag{5.A-3}\\
B_{m}=\mu_{\Delta} \mu_{0} H=\frac{\mu_{\Delta} \mu_{0} N I}{1_{m}^{\prime}}  \tag{5.A-4}\\
\phi=\frac{\mu_{\Delta} \mu_{o} N I A_{c}^{\prime}}{1_{m}^{\prime}}  \tag{5,A-5}\\
\frac{d \phi}{d I}=\frac{\mu_{\Delta} \mu_{0} N A_{c}^{\prime}}{I_{m}^{\prime}}  \tag{5,A-6}\\
L=N \frac{d \phi}{d I}=\frac{\mu_{\Delta} \mu_{0} N^{2} A_{c}^{\prime}}{I_{m}^{\prime}}  \tag{5.A-7}\\
\text { Energy }=\frac{L I^{2}}{2}=\frac{\mu_{r} \mu_{o} N^{2} A_{c}^{1} I^{2}}{l_{m}^{2}} \tag{5.A-8}
\end{gather*}
\]
*Primis indicate measurements in the mks system.

If \(B_{m}\) is specified,
\[
\begin{gather*}
I=\frac{B_{m} l_{m}^{1}}{\mu_{\Delta} \mu_{0} N}  \tag{5.A-9}\\
\text { Eng }=-\frac{\mu_{\Delta} \mu_{0} N^{2} A_{c}^{\prime}}{l_{m}^{\prime}}\left(\frac{B_{m} l_{m}^{\prime}}{\mu_{\Delta}^{\mu_{0}} N}\right)^{2} \tag{5.A-10}
\end{gather*}
\]

Reducing to
\[
\begin{gather*}
\text { Eng }=\frac{B_{m} 1_{m}^{A_{c}^{\prime}}}{2_{\mu_{\Delta}}^{\mu_{o}}}[\text { watt seconds }]  \tag{5.A-11}\\
I=\frac{K_{u} W_{a}^{\prime} J^{\prime}}{N}=\frac{B_{m}^{\prime} m_{m}^{\prime}}{\mu_{\Delta} \mu_{o}^{N}} \tag{5.A-12}
\end{gather*}
\]

Solving for \(\mu_{\Delta} \mu_{0}\),
\[
\begin{equation*}
\mu_{\Delta} \mu_{0}=\frac{\mathrm{B}_{\mathrm{m}} 1_{\mathrm{m}}^{1}}{\mathrm{~K}_{\mathrm{u}} \mathrm{~W}_{\mathrm{a}}^{\prime} \mathrm{J}^{\prime}} \tag{5.A-13}
\end{equation*}
\]

Substituting into the energy equation,
ORIGNAL RAER IS OF PQOR QUALITY
\[
\begin{equation*}
\text { Eng }=\frac{B_{m}^{2} 1_{m}^{\prime} A_{c}^{\prime}}{2} \cdot \frac{K_{u} W_{a}^{\prime} J^{\prime}}{B_{m}^{1} I_{m}^{\prime}}=\frac{W_{a}^{\prime} A_{c}^{\prime} B_{m^{\prime}}^{J^{\prime} K_{u}}}{2} \tag{5,A-14}
\end{equation*}
\]
let
\[
\begin{aligned}
& 1_{m}^{\prime}=1_{m} \times 10^{-2} \\
& W_{a}^{\prime}=W_{a} \times 10^{-4} \\
& A_{c}^{\prime}=A_{c} \times 10^{-4} \\
& J^{\prime}=J \times 10^{4}
\end{aligned}
\]

Substituting into the energy equation,
\[
\begin{equation*}
\text { Eng }=\frac{W_{a} A_{c} B_{m} J K_{u}}{2} \times 10^{-4} \tag{5.A-15}
\end{equation*}
\]

Solving for \(W_{a} A_{c}\),
\[
\begin{equation*}
W_{a} A_{c}=\frac{2 \text { Eng } \times 10^{4}}{K_{u} B_{m}^{J}} \tag{5.A-16}
\end{equation*}
\]
and since the a rea product is
\[
A_{p}=W_{a} A_{c}
\]
then
\[
\begin{equation*}
A_{p}=\frac{2(\text { Energy }) \times 10^{4}}{K_{u} B_{m}^{J}} \tag{5,A-18}
\end{equation*}
\]

Combining the equation from Table 2-1,
\[
\begin{equation*}
J=K_{j} A_{p}^{-0.12} \tag{5.A-19}
\end{equation*}
\]
yielding
\[
\begin{aligned}
& A_{p}=\frac{2(\text { Energy }) \times 10^{4}}{K_{u} B_{m}\left(K_{j} A_{p}^{-0.12}\right)} \\
& A_{p}^{0.88}=\frac{2(\text { Energy) }}{K_{u} B_{m} K_{j}} 10^{4} \\
& A_{p}=\left(\frac{2\left(\text { Energy } \times 10^{4}\right.}{K_{u} B_{m} K_{j}}\right)^{1.14} \quad\left[\mathrm{~cm}^{4}\right](5 . A-2.2)
\end{aligned}
\]

After the core size has been determined, the next step is to pick the right permeability for that core size. This is done by solving for \(\mu_{\Delta}\) in equation 5. A-13.
\[
\begin{equation*}
\mu_{\Delta}=\frac{\mathrm{E}_{\mathrm{m}_{1}} \mathrm{~m}_{\mathrm{m}} \times 10^{-2}}{\mu_{0} W_{a}^{J K_{u}}} \tag{5,A-23}
\end{equation*}
\]
for \(\mu_{0}=4 \pi \times 10^{-7}\)
\[
\begin{equation*}
\mu_{\Delta}=\frac{B_{m} 1_{m} \times 10^{4}}{0.4 \pi W_{a} J K_{u}} \tag{5.A-24}
\end{equation*}
\]

\section*{AFPENDIX 5. B}

\section*{MAGNETIC AND DIMENSIONAL SPECIFICATIONS FOR 13 COMMONLY USED MOLY-PERMALLOY CORES}

The following remarks apply to each of Tables 5.B-1 to 5. B-13, the data in which was compiled from manufacturers' data.
(1) Total weight is core weight plus wire weight assuming AWG 20
(2) Maximum \(O D\) of wound core with residual hole \(=1 / 2\) ID
(3) MLT (riean length/turn) full wound toroid
(4) Effective window area \(W_{a(e f f)}=3 \pi r^{2} / 4\)

Graphs (Figs. 5.B-1 to 5.B-13) relate to the 13 different core sizes. The graphs show resistance, number of turns, inductance and wire size for a window utilization factor of 0.40 , and are based on a permeability of 60 , To convert for other permeability values, the appropriate inductance multiplication factors listed should be used. The information appearing in the tables and on the figures will enable the engineer to arrive at a close approximation for breadboarding purposes.

Table 5. B-1. Dimensional specifications for Magnetic Inc 55051-A2, Arnold Engineering A-051027-2
\begin{tabular}{|c|c|c|}
\hline & ENGLISM & ME THIC \\
\hline \(W_{1} A_{2}\) & & 1. 14 \\
\hline \(\mathrm{Wa}_{4} \times \mathrm{Ar}\) & \(0.00104 \mathrm{Im}^{4}\) & 0. \(6.22 \mathrm{~cm}^{4}\) \\
\hline 00 & 0.510 lm & 1. 146 cm \\
\hline 11 & 0.275 m & U. niv cm \\
\hline 17T & \(9.317 \quad 17\) & 0. 511 l cm \\
\hline H. WINDON AREA & \(0.015 \times 10^{16} \mathrm{ClN}=19 \mathrm{~L}\) & 0. \(1818 \mathrm{~cm}^{2}\) \\
\hline Wn EiFECTIVE &  & \(0,288 \quad \mathrm{~cm}^{2}\) \\
\hline Ae cross seciton & 0.111. \(\mathrm{ma}^{2}\) & \(0.111 \mathrm{~cm}^{2}\) \\
\hline lin PATH INGIM & 1.229 & 1.12 cm \\
\hline cone weichit & 0.51460 ib & 1,0 yrams \\
\hline 10 TAL WELGHT & 0. H1thi lo & \(5_{1+175}^{178}\) \\
\hline WOLNU OD MIt & 6, 2.41 111 & 1.775 \\
\hline MLI & 0, \(\mathrm{H}_{3} 411 \mathrm{ll}\) & 2.160 ta \\
\hline A SURFACE AHEA & 1.1188 & (1, 4, + \(\mathrm{cm}^{2}\) \\
\hline PCRMLABILITY & & 60 \\
\hline 4125 & & \(2.00 \times \mathrm{L}-\mu 60\) \\
\hline H 160 & & \(2.67 \times \mathrm{L}\) wn \(\% 60\) \\
\hline \(\mu 200\) & & \(3.33 \times L=\mu 00\) \\
\hline \(\mu 550\) & & \(9,17 \times L \sim 460\) \\
\hline
\end{tabular}

orignat, page ts


Fig. 5. B-1. Wire and inductance graph for Core 55051-A2

Table 5. B-2. Dimensional specifications for Magnetic Inc 55121-A2, Arnold Engineering A-266036-2
\begin{tabular}{|c|c|c|c|}
\hline & ENGLISH & \multicolumn{2}{|l|}{METRIC} \\
\hline \(W_{n} / h_{t}\) & & 1.63 & \\
\hline Wrate & 0, 0.316 \(10^{4}\) & 0.119 & \(\mathrm{cm}^{4}\) \\
\hline 00 & 0.680 in & 1. 750 & CII \\
\hline ID & \(0.1 \%\) kn & 0.953 & cm \\
\hline 14 T & 0.2150 ln & 0.711 & cm \\
\hline W. = WINDOW AREA &  & 0.713 & \(\mathrm{cm}^{2}\) \\
\hline Wa : EFFECTIVE & \(0.0 \mathrm{HaH} \mathrm{mi}^{2}\) & 0, 515 & \(\mathrm{cr}^{2}\) \\
\hline Ac = CROSS SECTION & \(0.0304 \mathrm{in}^{2}\) & 0.1411 & \(\mathrm{cm}^{2}\) \\
\hline Im = PATH LENGTH & 1.4a lm & 4.11 & cill \\
\hline CORE WEIGHT & 0.01+1 16 & 4.50 & brams \\
\hline TOTAL WEIGHT & 0.025 \({ }^{\text {a }}\) l lb & 11, 70 & 4, P 21/15 \\
\hline WOUND OD MIN & 0.751 im & 4.724 & [0\% \\
\hline MLIT & 1.075 in & 2,74 & cin \\
\hline \(A_{1}=\) SURFACE AREA & \(1.7 .12 \mathrm{ln}^{2}\) & 11,2.4 & \(\mathrm{cm}^{2}{ }^{\text {? }}\) \\
\hline PEAMEABILITY & & \multicolumn{2}{|l|}{60} \\
\hline -125 & & \multicolumn{2}{|l|}{2.08 \(\times \mathrm{L}\) (9) \(\mu 60\)} \\
\hline \(\mu 160\) & & \multicolumn{2}{|l|}{\(2,67 \times 1,11060\)} \\
\hline H200 & & \multicolumn{2}{|l|}{\(3.33 \times \mathrm{L} \times \mu \mathrm{H}\)} \\
\hline \(\mu 550\) & & \multicolumn{2}{|l|}{\(9.17 \times \mathrm{L}\) 以 40} \\
\hline  &  & \[
\frac{1}{10}
\] & \\
\hline
\end{tabular}


Fig. 5. B-2, Wire and inductance graph for Core 55121-A2

Table 5. B-3. Dimensional specifications for Magnetic Inc 55848-A2, Arnold Engineering A-848032-2
\begin{tabular}{|c|c|c|}
\hline & ENGLISH & NETRIC \\
\hline Wh. \({ }_{\text {c }}\) & & 1.91 \\
\hline Waxac & \(0.00636 \mathrm{in}^{4}\) & \(0.264 \mathrm{~cm}^{4}\) \\
\hline 00 & 0, 610 mm & a. 11 cm \\
\hline 10 & 0. +75 lm & \(1.21 \quad \mathrm{~cm}\) \\
\hline HT & \(0.380 \quad\) in & 0,711 an \\
\hline Wis WINDOW AREA & B. \(\mathrm{A}: \times 10^{t_{1}}\) CIR-MIL & \(1.1 .1 \mathrm{~cm}^{2}\) \\
\hline W, : EFFECTIVE & \(0.11240 \mathrm{kn}^{2}\) & 0. \(158 \mathrm{~cm} \mathrm{~cm}^{2}\) \\
\hline As - CROS5 SELTION & \(0,014{ }^{11}\) & \(0.232 \mathrm{~cm}^{2}\) \\
\hline Im - PATH LENGTH & 2,01 It1 & 5.09 cos \\
\hline CORE WEIGIIT & (1) 42, 14 & 11.11 ¢railis \\
\hline FOTAL WEIGHT & 0. 0.41 it & 18. fi yrams \\
\hline WOUNO OD MIN & 0, 92 \(0_{1} \ldots\) & 2.15 cm \\
\hline MLT & 1.15 tan & 2. \(97 \quad \mathrm{~cm}\) \\
\hline  & \(2,141 \quad \mathrm{in}^{2}\) & 15, 109 \(\operatorname{tin}^{2}\) \\
\hline PERMEABILITY & & 60 \\
\hline \(\mu 125\) & & \(2.08 \times \mathrm{L} \cdot \mu \mathrm{H}\) \\
\hline 1160 & & \(2.67 \times 1.146\) \\
\hline \(\mu 200\) & & \(3.33 \times L \cdot \mu 30\) \\
\hline H 5.50 & & \(9.17 \times \mathrm{L}\) \\
\hline
\end{tabular}



Fig. 5. B-3. Wire and inductance graph for Core 55848-A2

Table 5. B-4. Dimensional specifications for Magnetic Inc 55594-A2, Arnold Engineering A-059043-2
\begin{tabular}{|c|c|c|}
\hline & ENGLISH & METRIC \\
\hline Wa/Ac & & +, 10 \\
\hline Wax Ac & 0.0713104 & \(0,+60 \mathrm{~cm}^{4}\) \\
\hline OD & 0.930 ln & 2. 16 cm \\
\hline ID & 0. 5278 & \(1.139 \sim\) \\
\hline HT & 0.330 ln &  \\
\hline Wa : WINDOW AREA & \(0.28 \times 10^{6}\) CIP-MIL & \(1.407 \mathrm{~cm}^{2}\) \\
\hline \(W_{1}=E_{5}\) FECTIVE \(^{\text {a }}\) & \(0,164 \quad \mathrm{in}^{2}\) & \(1.056 \mathrm{~cm}^{2}\) \\
\hline AE-CROS5 SECTION & \(0.0507 \mathrm{in}^{2}\) & \(0.127 \quad \mathrm{~cm}^{2}\) \\
\hline In - PATH LENGTH & 2.23 mil & 5.6.7 cm \\
\hline CORE WEIGHT & 0,033 161 & 15,0 trams \\
\hline TOTA WEIGHT & 0.0714 lb & 32,5 grams \\
\hline WOUND OD MIN & 1.035 In & 2.fi3 cmi \\
\hline MLT & 1,356 In & 3.45 cm \\
\hline \(A_{1}=\) SURFACE AREA & \(3.103 \quad \mathrm{ln}^{2}\) & 20,019 \(\mathrm{cm}^{2}\) \\
\hline PERMEABILITY & & 60 \\
\hline \(\mu 123\) & & \(2.08 \times L: \mu 60\) \\
\hline \(\mu 160\) & & \(2,67 \times \mathrm{L}\) (0) \(\mu 60\) \\
\hline H 200 & & \(3.33 \times \mathrm{L}\) ¢ 4.60 \\
\hline \(\mu 550\) & & \(9,17 \times 4\) 和 \(1 / 60\) \\
\hline \multicolumn{3}{|c|}{\(\rightarrow 1\) HT +} \\
\hline Coser &  & \[
\begin{aligned}
& \frac{1}{10} \\
& \frac{1}{1}
\end{aligned}
\] \\
\hline
\end{tabular}

ORIGVAL PAGE IS OF POOR QUALITY


Fig. 5. B-4. Wire and inductance graph for Core 55059-A2

Table 5. B-5. Dimensional specifications for Magnetic Inc 55059-A.2, Arnold Engineering A-894075-2
\begin{tabular}{|c|c|c|}
\hline & ENGLISH & METRIC \\
\hline Wr Ac & & 2, +1-1 \\
\hline Wa A Ac & 0.0219 ln & \(0.947 \mathrm{~cm}^{4}\) \\
\hline 00 & 1,090 in & 2.77 cm \\
\hline ID & 0. 555 ln & 1.11 cin \\
\hline HT & 0.474 III & 1.20 cm \\
\hline W, WINDOW AREA & \(0.31 \times 10^{6 / 2}\) CLR-MIL & \(1.561 \mathrm{~cm}^{2}\) \\
\hline \(\mathrm{W}_{3}\) - EFFECTIVE & \(0.1814 \mathrm{in}^{2}\) & \(1.17 \mathrm{~cm}^{2}\) \\
\hline Ac : CROSS SECTION & 0.0978 & \(0.634 \mathrm{~cm}{ }^{2}\) \\
\hline Im P PATH LENGTH & 2,50 in & 6. 15 cit \\
\hline COHE WEIGAT & \(0.077 \quad 16\) & 55 grams \\
\hline TUTAL WEIGHT & 0.132 lb & 49, 7 yrams \\
\hline WOUND OD MIN & 1.191 in & 1, 03 cma \\
\hline ML, T & 1. HI In & 4,61 ctil \\
\hline \(A_{t}=\) SURFACE AREA & 4.18 in \({ }^{2}\) & 28.12 \\
\hline PEAHEADILITY & & 60 \\
\hline \(\mu 125\) & & \(2,08 \times L / 460\) \\
\hline \(\mu 160\) & & \(2,67 \times \mathrm{L}\) ¢ \(\mu 60\) \\
\hline \(\mu 200\) & & 3,33 \(\times \mathrm{L}\) (m \(\mu \mathrm{m} 0\) \\
\hline \(\mu 550\) & & \(7.17 \times 4+\mu 60\) \\
\hline
\end{tabular}


Fig. 5. B-5. Wire and inductance graph for Core 55894-A2

Table 5. B-6. Dimensional specifications for Magnetic Inc 55071-A2, Arnold Engineering A-291061-2
\begin{tabular}{|c|c|c|}
\hline & ENCLISH & NETKIC \\
\hline Wa/Ac & & 4. 14 \\
\hline W. \(\times\) A Ac & \(0.046818^{4}\) & \(1.125 \mathrm{~cm}^{4}\) \\
\hline 0 O & 1.332 ln & 1. 18 cm \\
\hline 10 & 4,700 in & 1.93 cil \\
\hline H9 & \(0.157 \quad 17\) & 1.36 5 \% \\
\hline WM - WINDOW AREA & 0, \(58 . \times 10^{6}\) CIR -M1L & \(2.93 \quad \mathrm{~cm}^{2}\) \\
\hline \(W_{n}=\) EFFECTIVE & \(0.340 \quad 10^{2}\) & 2. \(1741 \mathrm{~cm}{ }^{2}\) \\
\hline Ac: CROSS SECTION & 0. \(1012 \mathrm{ln}^{2}\) & \(0,664 \mathrm{~cm}{ }^{2}\) \\
\hline Im PATH LENGTH & 3.21 lir & H. \(15 \quad \mathrm{~cm}\) \\
\hline CORE WEIGIT & 0, 101 &  \\
\hline TO1AL WEIGHT & 0.178 16 & 90 gitarls \\
\hline WOUND OD AIN & 1.486 & 3.77 CIII \\
\hline MLT & 1, 8 n III & 4.80 cma \\
\hline \(A_{1}\) - SUAFACE AREA & \(1.189 \quad 1 n^{2}\) & 40.68 c \\
\hline PERMEABILITY & & 60 \\
\hline \(\mu 125\) & & \(2,08 \times L \sim 40\) \\
\hline \(\mu 160\) & & \(2,67 \times \mathrm{L}\) in \(\mu 60\) \\
\hline \(\boldsymbol{\mu} 200\) & & \(3.33 \times \mathrm{L} 4.480\) \\
\hline \(\boldsymbol{\mu} 550\) & & \(9.17 \times \mathrm{L}\) 碞 \({ }^{60}\) \\
\hline
\end{tabular}


Fig. 5.B-6. Wire and inductance graph for Core 55071-A2

Table 5. B-7. Dimensional specifications for Magnetic Inc 55586-A2, A rnold Engineering A-345038-2



Fig. 5. B-7. Wire and inductance graph for Core 55586-A2

Table 5. B-8. Dimensional specifications for Magnetic 55076-A2, Arnold Engineering A-076056-2
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Wa/Ae} & EHGLISH & \multicolumn{2}{|l|}{METRIC} \\
\hline & & \multicolumn{2}{|l|}{5,43} \\
\hline Wax A : & 0,0580 in \({ }^{4}\) & 2.44 & \(\mathrm{cm}^{4}\) \\
\hline 0 D & 1.44 In & 1. 64 & cm \\
\hline 10 & 0.848 in & 2.15 & Cim \\
\hline HT & \(0.4+4\) in & 1.118 & cm \\
\hline \(W_{\text {a }}=\) WINDOW AREA & \(0.73 \times 10^{5} \mathrm{CIR}-\mathrm{MIL}\) & 3.64 & \(\mathrm{c}^{2}\) \\
\hline Wa = EFFECTIVE & \(0.424 \quad \mathrm{ln}^{2}\) & 2. 723 & \(\mathrm{cm}^{2}\) \\
\hline Ac \% CROSS GECTION & \(0.1019 \mathrm{ll}^{2}\) & 0,670 & \(\mathrm{cm}^{2}\) \\
\hline Int P PATH LENGTH & 3, 54 lm & 8.9 9 & Cith \\
\hline CORE WEIGMT & 0,112 lh & 51 & qrams \\
\hline TOTAL WEIGIT & \(0.239 \quad 16\) & 108.4 & grams \\
\hline WOUND OD MIN & 1.62 in & 4.11 & cmin \\
\hline MLT & 1.91 lm & 4. 8 B & cm \\
\hline \(A_{t}=\) SUAFACE AREA & 7.271 & 46.91 & \(\mathrm{cm}^{2}\) \\
\hline PERMEABILITY & & 60 & \\
\hline \(\mu 125\) & & \(2,08 \times \mathrm{L}\). \({ }^{\text {an }}\) & \\
\hline H 160 & & \(2.67 \times 1.6\) & \\
\hline 1200 & & \(3.33 \times \mathrm{Ec}\) & \\
\hline 1 550 & & \(9.17 \times \mathrm{L} \cdot \mathrm{n}\) & \\
\hline
\end{tabular}


ORIGTNAL PAGE IS OF POOR QUAIITY


Fig. 5. B-8. Wire and inductance graph for Core 55076-A2

Table 5. B-9. Dimensional specifications for Magnetic Inc 55083-A2, Arnold Engineering A-083081-2
\begin{tabular}{|c|c|c|c|}
\hline & ENGL, 1511 & \multicolumn{2}{|l|}{MF TAIC} \\
\hline Whase & \multicolumn{3}{|c|}{4.03} \\
\hline Wa M AC & \(0.108 \quad 10^{4}\) & 4.4 & \(\mathrm{cm}^{4}\) \\
\hline 00 & 1.60] in & +. 07 & cm \\
\hline 10 & 0.918 in & 2, 3: & cnt \\
\hline HT & 0, 605 m & 1.51 & cin \\
\hline Wo WINDOW AREA & 0, \(84 \times 10^{6,} \mathrm{CIR}+\mathrm{MIL}\) & 4.27 & \(\mathrm{Cm}^{2}\) \\
\hline Wh - EFFECTIVE & \(0 .+96+\cdots{ }^{10}\) & 3.198 & \(\mathrm{cin}^{2}\) \\
\hline Ae CROSS SECTION & O, 16.4 in \({ }^{2}\) & \multicolumn{2}{|l|}{1.01.} \\
\hline lms = PATH LENGTH & 3, 8 H & \multicolumn{2}{|l|}{4. \(\mathrm{H}_{4}\) cm} \\
\hline CORE WLIGHT & \(0.198 \quad l t\) & 10 & grams \\
\hline TOTAL WEIGHt & 0.188 Al & 176 & yramb \\
\hline WOUND OD MIN & 1.74 in & \multicolumn{2}{|l|}{+1, 4 cticm} \\
\hline MLT & 2. 110 in & \multicolumn{2}{|l|}{6.07 cm} \\
\hline \(A_{1}\) SURFACE AHEA & 4.46 & \multicolumn{2}{|l|}{0.14 .05} \\
\hline PERMEABILITY & & \multicolumn{2}{|l|}{60} \\
\hline \(\mu 125\) & & \multicolumn{2}{|l|}{\(2.08 \times \mathrm{L}\) - 4.60} \\
\hline \(\mu 160\) & & \multicolumn{2}{|l|}{\(2,67 \times 1 . \mu 60\)} \\
\hline \(\mu 200\) & & \multicolumn{2}{|l|}{\(3.33 \times 4 . \mu 60\)} \\
\hline H 550 & & \multicolumn{2}{|l|}{\(9.17 \times L \sim \mu 60\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 1 \\
& 10 \\
& 7
\end{aligned}
\]} \\
\hline
\end{tabular}


Fig. 5. B-9. Wire and inductance g:aph for Core 55083-A2

Table 5, B-10. Dimensional specifications for Magnetic Inc 55439-A2, Arrold Engineering A-759135-2
\begin{tabular}{|c|c|c|}
\hline & ENGLISH & ME TIIC \\
\hline Wh:Ac & & 2.19 \\
\hline Whe Ac & \(0.200 \quad \mathrm{~lm}^{4}\) & \(\mathrm{H}, 13 \quad \mathrm{~cm}^{4}\) \\
\hline OD & 1, 1785 & +176 cm \\
\hline 10 & 0.916 lm & 1, 13 C11 \\
\hline HT & 0, \(7+4 \mathrm{~cm}\) & 1.89 ell \\
\hline Wa WINDOW AREA & \(0.8 .1 \times 10^{6} \mathrm{CIR}\)-MIL & 4.47 \\
\hline Wa = EFFECTIVE & \(0,47 \mathrm{~m} \quad 11^{2}\) & 3.148 \\
\hline Ae: CROSS SECTION & 0.102 ln & 1.95 \\
\hline \(1 \mathrm{ra}^{+}\)PATH LENGTH & 1.21 & 10.74 CTP \\
\hline CORE WEIGHT & 0, 3N6 lb & \(180 \quad\) gramis \\
\hline TOTAL WEIGHT & 0.1 .41 It & 271 \\
\hline WOUND OD MIN & \(2.04 \quad 17\) & 5.17 17 cmt \\
\hline MLT & 1.00 ill & 7.42 cmin \\
\hline A SURFACE AREA & 12.30 \(11^{2}\) & 74. 17 (17) \({ }^{2}\) \\
\hline PERMEABLLITY & & 60 \\
\hline \(\boldsymbol{\mu} 125\) & & \(2.08 \times L 4060\) \\
\hline \(\mu 160\) & & \(2.67 \times L\) w \(\mu 60\) \\
\hline \(\mu 200\) & & \(3,33 \times \mathrm{L}\) w \(\mu 60\) \\
\hline \(\mu 550\) & & \(9.17 \times \mathrm{L}\) - \(p 60\) \\
\hline
\end{tabular}
\(\rightarrow+\)


Fig. 5. B-10. Wire and inductance graph for Core 55439-A2

Table 5. B-11. Dimensional specifications for Magnetic Inc 55110-A2, Arnold Frineering \(A=488075-2\)



ORIGNAL FOGE IS OF PONR QUALITY

Fig, 5. B-11. Wire and inductance graph for Core 55110-A2

Table 5, B-12. Dimensional opecifications for Magnetic Inc 55716-A2, Arnold Engineering A-106073-2
\begin{tabular}{|c|c|c|c|}
\hline & ENGLI5 H & \multicolumn{2}{|l|}{METRIC} \\
\hline Wa/Ae & & 6, 06 & \\
\hline Wa \(\times A_{4}\) & \(0.224 \quad 11^{4}\) & 9. 12 & \(\mathrm{cmi}^{4}\) \\
\hline OD & 2,035 In & 5.17 & rm \\
\hline 10 & 1.218 in & 1. 09 & CH \\
\hline HT & 0, 565 in & 1.435 & ctim \\
\hline Wo WINDOW AREA & 1,48 \(\times 10^{6}\) CIR-MIL & 7.52 & \(\mathrm{cm}^{2}\) \\
\hline Ws .. EFFECTIVE & 0.87 .10 & 5, 6.2 & \(\mathrm{cm}^{2}\) \\
\hline Ar CROSS SECIION & \(0.102 \mathrm{in}^{2}\) & 1.2才 & \(\mathrm{cm}^{2}\) \\
\hline IT P PAFH LENGTII & 5,02 lit & 11. 71 & cm \\
\hline COHE WEIGHT & 0.290 lb & 115 & qrams \\
\hline TTAL YE1GHT & 0.652 lb & \(23^{14}\) & yrams \\
\hline WGity 00 MMH & 2.24 in & 5, 82 & cm \\
\hline Pr & 2. 55 10 & 6. 50 & ent \\
\hline \(A_{1}\) SURFACE AREA & \(14.15 \quad \mathrm{in}^{2}\) & 91.32 & \(\mathrm{cm}^{2}\) \\
\hline PERMEABILITY & & 60 & \\
\hline \(\mu 125\) & & \(2,08 \times \mathrm{L}\) & \\
\hline \(\mu 160\) & & 2.67 3 : & \\
\hline \(\mu 200\) & & \(3.33 \times \mathrm{L}\) & \\
\hline H 550 & & 9.17 LL & \\
\hline
\end{tabular}



Fig. 5. B-12. Wire and inductance graph for Core 55716-A2

Table 5. B-13. Dimensional specifications for Magnetic Inc 55090-A2, Arnold Engineering A-090086-2
\begin{tabular}{|c|c|c|c|}
\hline & ENGLISH & \multicolumn{2}{|c|}{METRIC} \\
\hline Wi/Ac & & \multicolumn{2}{|l|}{1.63} \\
\hline Wax Ac & \(0.194 \quad \mathrm{in}^{4}\) & 8, Du & \(\mathrm{cm}^{4}\) \\
\hline 0 D & 1,875 in & 4, 76 & cm \\
\hline 10 & 1.098 in & 2. 79 & cm \\
\hline HT & 6. 6375 in & 1.61 & cm \\
\hline W/ F WIHDOW AREA & \(1.21 \times 10^{6}\) CIR-MIL & 6.11 & \(\mathrm{cm}^{2}\) \\
\hline \(W_{a}=\) EFFECTIVE & \(0.710 \quad 10^{2}\) & 4.58 & \(\mathrm{cm}^{2}\) \\
\hline \(A C=\) CROSS SECTION & \(0.205 \mathrm{in}^{2}\) & 1,32 & \(\mathrm{cm}^{2}\) \\
\hline \(1 \mathrm{~m}=\mathrm{PATH}\) L.EMGTH & 4. 58 B in & 11.62 & cm \\
\hline CORE WEIGHT & 0.286 lb & 130 & grams \\
\hline TOTAL WEIGHT & 0, 5888 lb & 467 & grams \\
\hline WOUND OD MIN & \(2+10 \quad 111\) & 5. 34 & cinl \\
\hline MLT & 2, 4, 2 in & 4.66 & cm \\
\hline \(A_{1}=\) SURFACE AREA & \(12.64 .4 \mathrm{ln}^{2}\) & 81.58 & \(\mathrm{cm}^{2}\) \\
\hline PERMEABILITY & & \multicolumn{2}{|l|}{60} \\
\hline \(\mu 125\) & & \multicolumn{2}{|l|}{\(2.08 \times \mathrm{L}\) in \(\mu 60\)} \\
\hline \(\mu 160\) & & \multicolumn{2}{|l|}{2.67 kL (0) 60} \\
\hline \(\mu 200\) & & \multicolumn{2}{|l|}{\(3.33 \times 1.4000\)} \\
\hline \(\mu 550\) & & \multicolumn{2}{|l|}{\(9.17 \times L * \mu 60\)} \\
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\[
\frac{1}{10}
\]} \\
\hline
\end{tabular}


Fig. 5. B-13. Wire and inductance graph for Core 55090-A2

\section*{CHAPTER VI}

WINDOW UTIIIZATION FACTOR K \({ }_{u}\)

\section*{A. IN TRODUC TION}

The window utilization factor is the amount of copper that appears in the window area of the transformer or inductor. The window utllization factor is influenced by 4 different factors: (1) wire insulation, (2) wire lay (fill factor), (3) bobbin area (or, when using a toroid, the clearance hole for passage of the shuttle), and (4) insulation required for multilayer windings or between windings. In the design of high-current or low-current transformers, the ratio of conductor area over total wire area can vary from 0.941 to 0.673 , depending on the wire size. The wire lay or fill factor can vary from 0.7 to 0.55 , depending on the winding technique. The amount and the type of insulation are dependent on the voltage.

\section*{B. WINDOW UTILIZA TION FACTOR}

The fraction \(K_{u}\) of the available core window space which will be occupied by the winding (copper) is calculated from areas \(S_{1}, S_{2}, S_{3}\), and \(S_{4}\) :
\[
\begin{equation*}
K_{u}=s_{1} \times s_{2} \times s_{3} \times s_{4} \tag{6-1}
\end{equation*}
\]
where
\[
\begin{aligned}
& S_{1}=\frac{\text { conductor area }}{\text { wire area }} \\
& S_{2}=\frac{\text { wound area }}{\text { usable window area }} \\
& S_{3}=\frac{\text { usable window area }}{\text { window area }} \\
& S_{4}=\frac{\text { usable window area }}{\text { usable window area }+ \text { insulation area }}
\end{aligned}
\]
in which
```

conductor area = copper area
wire area = copper area + insulation area
wound area = number of turns x wire area of one tirrr

```
usable window area \(=\) available window area minus residual area which results from the particular winding technique used
window area \(=\) available window area
insulation area \(=\) area usable for winding insulation
\(S_{1}\) is dependent upon wire size. Colamns \(A\) and \(D\) of Table 6-1 may be used for calculating some typicel values such as for AWG 10, AWG 20, AWG 30 and AWG 40.

Thus:
\[
\begin{aligned}
& \text { AWG } 10=\frac{52.61 \mathrm{~cm}^{2}}{55.90 \mathrm{~cm}^{2}}=0.941 \\
& \text { AWG } 20=\frac{5.188 \mathrm{~cm}^{2}}{6.065 \mathrm{~cm}^{2}}=0.855 \\
& \text { AWG } 30=\frac{0.5067 \mathrm{~cm}^{2}}{0.6785 \mathrm{~cm}^{2}}=0.747 ; \text { and } \\
& \text { AWG } 40=\frac{0.048 .3 \mathrm{~cm}^{2}}{0.0723 \mathrm{~cm}^{2}}=0.673
\end{aligned}
\]

When designing low-current transformers, it is advisable to reevaluate \(S_{1}\) because of the increased amount of insulation.
\(S_{2}\) is the fill factor for the usable window area. It can be shown that for circular cross-section wire wound on a flat form the ratio of wire area to the area required for the turns can never be greater than 0.91 . In practice, the actual maximum value is dependent upon the tightness of winding, variations in insulation thickness, and wire lay. Consequently, the fill factor is always less than the theoretical maximum.

As a typical working value for copper wire with a heavy synthetic film insulation, a ratio of 0.60 may be safely used.

The te: \(n S_{3}\) defines how much of the available window space may actually be used for the winding. The winding area available to the designer depends on the bobbin configuration. A single bohbin design offers an effective area \(\mathrm{W}_{\mathrm{a}}\) between 0.835 to 0.929 while a two bobbin configuration offers an effective area \(W_{a}\) between 0.687 to 0.872 . A good value to use for both configurations is 0.75 .

When designing with a pot core, \(S_{3}\) has to be reduced because the effective \(W_{a}\) varies between 0.55 and 0.71 .

The term \(\mathrm{S}_{4}\) defines how much of the usable window space is actually being used for insulation. If the transformer has multiple secondaries having significant amounts of insulation \(\mathrm{S}_{4}\) should be reduced by \(10 \%\) for each additional secondary winding because of the added space occupied by insulation and partly due to poorer space factor,

A typical value for the copper fraction in the window area is about 0.40 , For example, for AWG 20 wire, \(S_{1} \times S_{2} \times S_{3} \times S_{4}=0.855 \times 0.60 \times 0.75 \times\) \(1.0=0.385\), which is very close to 0.4 .

This may be stated somewhat differently as:


\section*{C. CONVERSION DATA FOR WIRE SIZES FROM \#10 to \#44}

Columns \(A\) and \(B\) in Table 6-1 give the bare area in the commonly used circular mils notation and in the metric equivalent for each wire size. Column \(C\) gives the equivalent resistance in microhms/centimeter ( \(\mu \Omega / \mathrm{cm}\) or \(10^{-6} \Omega /\) cm .) in wire length for each wire size. Columns \(D\) to \(L\) relate to coated wires showing the effect of insulation on size and the number of turns and the total weight in grams/centimeter.

The total resistance for a given winding may be claculated by multiplying the MLT (mean length/turn) of the winding in centimeters, by the microhms cm for the appropriate wire size (Column C), and the total number of turns. Thus
\[
R=(\mathrm{MLT}) \times(\mathrm{N}) \times(\text { Column } \mathrm{C}) \times 5 \times 10^{-6}
\]
[ohms]

For resistance correction factor \(\zeta\) (Zeta) for higher and lower temperature, see Figure 6-1.

Table 6-1. Wire table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Aw: } \\
& \text { Wirt } \\
& \text { Slize }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Hare Arge} & \multirow[t]{3}{*}{} & \multicolumn{9}{|c|}{Heayy Syntictis:} \\
\hline & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\operatorname{em}^{2} 10^{-3} \\
\left(\log ^{-3}\right. \\
\hline
\end{gathered}\right.
\]} & \multirow[b]{2}{*}{CIR - MIL*} & & \multicolumn{2}{|c|}{Area} & \multicolumn{2}{|l|}{Dlamelar} & \multicolumn{2}{|l|}{Turna-por} & \multicolumn{2}{|r|}{Turna-Par} & \multirow[t]{2}{*}{\[
\frac{\text { Weitht }}{\text { um/sm }}
\]} \\
\hline & & & & \(\operatorname{cm}^{2} 60^{-3}\) & CIR.mu. \({ }^{\text {a }}\) & cm & Inch \({ }^{\text {® }}\) & rm & tnch \({ }^{\text {a }}\) & \(\mathrm{cm}^{2}\) & \(\mathrm{Inch}^{2}\) & \\
\hline 10 & 52, \(\mathbf{H}^{\text {1 }}\) & 103日4 & 32.70 & 55, 9 & 11046 & 0, 26.7 & 0.1051 & 3.87 & 4.5 & 10.71 & 4.9, 20 & 0.46. \\
\hline 11 & 41.68 & 82.6 & 41,34 & 44.5 & 8798 & 0.2311 & 0,0938 & 4, 36 & 10.7 & 11.48 & 87, 73 & 13, 1750 \\
\hline 12 & 33,08 & \$529 & 52.07 & 13,64 & 7022 & 0.213 & 0, 063 \({ }^{\text {a }}\) & 4.85 & 11.9 & 16, A1 & 108. 4 & 0,2777 \\
\hline 13 & 24. 26 & 5184 & 65.64 & 28.10 & \$460 & 0. 190 & 0,0747 & 5.47 & 11.4 & 21.15 & 114.4 & 0, 2167 \\
\hline 14 & 20. 82 & 4109 & B2, H0 & 22.95 & 4586 & 0, 171 & 0.0675 & 6, 4.4 & 14. \({ }^{\text {H }}\) & 26.14 & 168.6 & 0.147) \\
\hline 15 & 16.51 & 1260 & 104,1 & 18. 37 & 3624 & 0.153 & 0, 0602 & f. 17 & 11.0 .1 & 12.64 & 210,4 & 0.1492 \\
\hline 16 & 13, 07 & 2381 & 131.8 & 14.73 & 2905 & 0.137 & 0,0537 & 7.12 & 14, \({ }^{\text {d }}\) & 40,73 & 26.2 .7 & n. 1184 \\
\hline 17 & 10, 39 & 2052 & 165.8 & 11,6H & 2323 & 0.122 & 0.0482 & \(4_{4} 15\) & 20, 5 & 31. & 331.2 & 0.0941 \\
\hline 18 & A. 228 & 1624 & 209.5 & 9. 326 & [857 & 0.104 & 0.0431 & 9.15 & 23.2 & 144, 13 & 41:4 4 & 0.07472 \\
\hline 19 & 6. 531 & 1289 & 26.9 & 7.539 & 1490 & 0.0980 & 0.0366 & 10, 9 & 25.9 & 79, 45 & \$13.0 & 0,05940 \\
\hline 20 & 5. 148 & 1024 & 132.1 & 6.065 & 1197 & 0.0879 & 0.034 & 11.37 & 2H. 9 & 94.71 & 63.4. 1 & 0, 0472h \\
\hline 21 & 4, 116 & A12, 3 & 418.9 & 4. 837 & 954. 18 & 0.0785 & 0, 0309 & 12.75 & 12,4 & 124,0 & 790. 8 & 0.03757 \\
\hline 22 & 3.243 & 640.1 & 531.4 & 3.857 & 761.7 & 0.0701 & 0,0276 & 14.25 & 36,2 & 155.5 & 1009 & 0, 02965 \\
\hline 23 & 2.588 & 510.8 & 666.0 & 3.135 & 620.0 & D. 0632 & 0, 0249 & 15, 22 & 40.2 & 171.3 & 1214 & 0.02972 \\
\hline 24 & 2. 047 & 404.0 & 842.1 & 2.514 & 497, 3 & 0.0566 & 0.0223 & 17.43 & 44.8 & 238.6 & 1539 & 0.01894 \\
\hline 25 & 1.623 & 320.4 & +362.0 & 2.002 & 396.0 & 0.0505 & 0.019 & 19,80 & 50.3 & 299.7 & 1931 & 0.01498 \\
\hline 26 & 1.280 & 252.8 & 1345.0 & 1.603 & 516.8 & 0.0452 & 0.0178 & 22.12 & 36.2 & 374.2 & 2414 & 0.01295 \\
\hline 27 & 1.021 & 201.6 & 1687.6 & 1,313 & 259.2 & 0.0409 & 0.0161 & 24.44 & 12.1 & 466.7 & 2947 & 0.00945 \\
\hline 2 H & 0.8046 & 158.8 & 2142.7 & 1.0515 & 207.1 & 0.0366 & 0,0144 & 87.32 &  & 570.6 & 3680 & 0. 00074 \\
\hline 29 & 0.6470 & 127, 7 & 2664, \({ }^{\text {3 }}\) & 0. 8548 & 169.0 & 0.0310 & 0.0130 & 30,27 & 76. 9 & 701.9 & 4527 & 0,00602 \\
\hline 30 & 0, 5067 & \(10 n_{4} 0\) & 3402. 2 & 0,6785 & 134.5 & 0.0294 & 0, 0116 & 13.93 & 86.2 & 884.3 & 5703 & 0, 00472 \\
\hline 31 & 0.4013 & 79, 21 & 4274.6 & 0. 5596 & 110.2 & 0.0267 & 0, 0105 & 37.48 & 43,2 & 1072 & 4.914 & 0.0 .0172 \\
\hline 32 & 0, 3242 & 64.00 & 5314.9 & 0,4559 & 90.23 & 0.024 & 0.0095 & 41.45 & 105.3 & 1316 & \({ }^{84} 88\) & 0.001 n 3 \\
\hline 13 & 0. 2554 & 50.41 & 6748, 6 & 0,3662 & 72, 25 & 0.0216 & 0.0085 & 46,33 & 117.7 & 1638 & 10565 & 0.00241 \\
\hline 14 & 0.2031 & 39.69 & 8572.8 & 0.2863 & 56.25 & 0, 0191 & 0. 0675 & 52,4A & 131, 3 & 2095 & 13512 & 0, 00189 \\
\hline 35 & 0, 1589 & 11.36 & 10849 & 0.2268 & 14.89 & 0,0170 & 0, 0667 & 58.77 & 149.3 & 26.45 & 17060 & 0.00150 \\
\hline 36 & 0. 1266 & 25,00 & 13606 & 0,1813 & 36,00 & 0. 0152 & 0. 0060 & 65.62 & 166. 7 & 3307 & 21341 & 0.00119 \\
\hline 37 & 0, 1026 & 20.25 & 16808 & 0.1538 & 30,25 & 0.0140 & 0.0055 & 71.57 & 181.8 & 3904 & 25161 & 0.000977 \\
\hline \({ }^{38}\) & 0.08107 & 16.00 & 21266 & 0.1207 & 24,01 & 0.0124 & 0. 0049 & 80, 35 & 204.1 & 4971 & 32062 & 0, 000773 \\
\hline 37 & 0.06207 & 12.25 & 27775 & 0.0912 & 18.47 & 0.0109 & 0.0043 & 91.57 & 232, 6 & 6437 & 41518 & 0.000593 \\
\hline 40 & 0. 14869 & 9.61 & 35400 & 0.0723 & 14,44 & 0.0096 & 0.0038 & 103.6 & 263, 2 & \({ }^{8298}\) & 53522 & 0.000464 \\
\hline 41 & 0.0 .0972 & 7. 84 & 43405 & 0.0584 & 11.36 & 0.00863 & 0.0034 & 115.7 & 244.1 & 1027 & 66260 & 0.000379 \\
\hline 42 & 0,03166 & 6.25 & 34429 & 0.04558 & 9,00 & 0.00762 & 0.0030 & 131.2 & 133.3 & 13163 & 84901 & 0.000299 \\
\hline 43 & 0, 02452 & 4.84 & 70308 & 0,03683 & 7.29 & 0.00685 & 0, 0027 & 145, 8 & -370.4 & 162\% & 105076 & 0.000233 \\
\hline 44 & 0, 0202 & 4.00 & 45072 & 0.03165 & 6.25 & 0.00639 & 0, 0025 & 151.4 & 400.0 & 18957 & 122272 & 0.000195 \\
\hline & \(\wedge\) & B & c & D & E & \(\dot{\boldsymbol{F}}\) & 0 & H & 1 & J & K & \(L\) \\
\hline
\end{tabular}




Fig. 6-1. Resistance Correction Factor \(\zeta\), (Zeta) for wire resistance at temperatures between \(-50^{\circ}\) and \(100^{\circ} \mathrm{C}\)

The weight of the copper in a given winding may be calculated by multiplying the MLT by the grams/cm (Column L) and by the total number of turns, Thus
\[
W_{t}=(\text { MLT }) \times(N) \times(\text { Column } L)
\]

Turns per square inch and turns per square cm are based on \(60 \%\) wire fill factor. Mean length/turn for a given winding may be calculated with the aid of Fig. 6-2. Figure 6-3 shows a transformer being constructed using layer insulation. When a transformer is being built in this way, Table \(6-2\) and \(6-3\) will help the designer find the correct insulation thickness and margin for the appropriate wire size.

\section*{D. TEMPERATURE CORRECTION FACTORS}

The resistance values given in Table \(6-1\) are based upon a ternperature of \(20^{\circ} \mathrm{C}\). For other temperatures the effect upon wire resistance can be calculated by multiplying the resistance value for the wire size shown in column \(C\) of Table 6-1 by the appropriate correction factor shown on the graph. Thus, Corrected Resistance \(=\mu \Omega / \mathrm{cm}\left(\right.\) at \(\left.20^{\circ} \mathrm{C}\right) \times \zeta\).

\section*{E. WINDOW UTILIZATION FACTOR FOR A TOROID}

The toroidal magnetic component has found wide use in industry and aerom space because of its high frequency capability. The high frequency capability of the toroid is due to its high ratio of window area over core cross section and its ability to cecommodate different strip thickness in its boxed configuration. Tape strip thickness is an important consideration in selecting cores. Eddycurrent losses in the core can be reduced at higher frequencies by use of thinner strip stock. The high ratio of window area over core cross section insures the minimum of iron and large winding area to minimize the flux density and core Loss.

The magnetic flux in the tape wound toroid can be contained inside the core more readily than in lamination or \(C\) type core as the winding covers the core along the whole magnetics path length which gives lower electromagnetic interference.

The toroid does not give a smooth \(A_{p}\) relationship as lamination, \(C\) core, powder cores and pot cores with respect to volume, weight, surface area and current density as can be seen in Chapter 2. This is because the actual core is always embedded in a case having a wall thickness which has no fixed relation to the actual core and befomes relatively large the smaller the actual core ORIGINAL PAGPI IS OF POOR Qualty

\[
\begin{aligned}
& (M L T)_{1}=2(r+2 J)+2(s+2 J)+\pi a_{1} \\
& (M L T)_{2}=2(r+2 J)+2(s+2 J)+\pi\left(2 a_{1}+a_{2}\right) \\
& \quad \text { OR } \\
& (M L T)_{2}=(M L T)_{1}+\left(a_{1}+a_{2}+2 c\right) \\
& \text { OR } \\
& (\text { MLT })_{n}=2(r+2 J)+2(s+2 J)+\pi\left[2\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)+a_{n}\right] \\
& \text { WHERE: } \\
& a_{1}=\text { BUILD OF WINDING "1 } \\
& a_{2}=\text { BUILD OF WINDING \#2 } \\
& a_{n}=\text { BUILD OF WINDING \#n } \\
& c=\text { THICKNESS OF INSULATION BETWEEN } a_{1} \& a_{2}
\end{aligned}
\]

Fig. 6-2. Computation of mean turn length


Fig. 6-3. Layer insulated coil

Table 6-2. Layer insulation vs AWG
\begin{tabular}{ccl}
\hline & \multicolumn{2}{c}{ Insulation thickness } \\
\cline { 2 - 3 } AWG & cm & inch \\
\hline \(10-16\) & 0.0254 & 0.01 \\
\(17-19\) & 0.0178 & 0.007 \\
\(20-21\) & 0.0127 & 0.005 \\
\(22-23\) & 0.0076 & 0.003 \\
\(24-27\) & 0.0051 & 0.002 \\
\(28-33\) & 0.00381 & 0.0015 \\
\(34-41\) & 0.00254 & 0.001 \\
\(42-46\) & 0.0 .127 & 0.0005 \\
\hline
\end{tabular}

Table 6-3. Margin ve AWG
\begin{tabular}{ccc}
\hline & \multicolumn{3}{c}{ Margin } \\
\hline AWC & cm & inch \\
\hline 10.15 & 0.635 & 0.250 \\
\(16-18\) & 0.475 & 0.187 \\
19.21 & 0.396 & 0.156 \\
22.31 & 0.318 & 0.125 \\
\(32-37\) & 0.236 & 0.093 \\
\(38 \rightarrow\) & 0.157 & 0.062 \\
\hline
\end{tabular}
cross section is, The available window area inside the case, therefore, is not a fixed percentage of the window area of the uncased core,

Design Manual TWC-300 of MAGNETICS, Inc. indicates that random wound cores can be produced with fill factors as high as 0.7 , but that progressive sector wound cores can be produced with fill factors of only up to 0.55 . As a typical working value for copper wire with a heavy synthetic film insula tion, a ratio of 0.60 may be used safely. Figure \(6-4\) is based upon a fill factor ratio of 0.60 for wire sizes 14 through 42 with 0.5 I . D. remaining.

The term usable window \(\mathrm{cm}^{2}\) /window \(\mathrm{cm}^{2}\left(\mathrm{E}_{3}\right)\) defines how much of the available window space may actually be used for the winding. Figure 6-5 is based on the assumption that the inside diameter (ID) of the wound core is onehalf that of the bare core, i.e., \(S_{3}=0.75\) (to allow free passage of the shuttle).

Insulation factor (54) in Figure 6-4 is 1,0; this does not take into account any insulation. The window utilization factor ( \(\mathrm{K}_{\mathrm{u}}\) ) is highly influenced by the insulation factor \(\left(S_{4}\right)\) because of the rapid build-up of insulation in a toroid as shown in Figure 6-6.

It can be seen in Figure 6-6 the insulation builc up is greater on the inside than on the outside. For an example in Figure \(6-6\) if 1.27 cm wide tape was to be used with an overlap of 0.32 cm on the \(O\). D. the overlap thickness


Figure 6-4. Toroid inside diameter versus turns


Figure 6-5. Effective winding area of a toroid


Figure 6-6. Wrap toroid
would be four times the thickness of the tape. It will be noted that the amount of overlap will depend greatly on the size of the toroid. As the toroid window gets smaller the over-lap increases. There is a way to minimize the build on a wrapped toroid and that is to use periphery insulation as shown in Figure 6-7. The use of periphery insulation minimizes the inside diameter overlay as shown - \(n\) Figure 6-8.


Figure 6-7. Periphery insulation


Figure 5-8. Minimizing toroidal inside build

When a design requires a multitude of windings, all of which have to be insulated, then the insulation factor \(\left(S_{4}\right)\) becomes very important in the window utilization factor ( \(\mathrm{K}_{\mathrm{u}}\) ). For example, a low current toroidal transformer with insulation has a significant influence on the window utilization factor as \(; \cdot n=\mathrm{m}\) below:
\[
\begin{aligned}
& S_{1}=\# 40 \wedge W G \quad K_{u} \\
& S_{1} \times S_{2} \times S_{3} \times S_{4} \\
& K_{u}=0.673 \times 0.60 \times 0.75 \times 0.80 \\
& K_{u}=0.242
\end{aligned}
\]

Table 6.4 was generated as an aid for the engincer; it is a listing of 29 A. I. E. E. preferred tapenwound toroida. neres with metric dimension. The power handling capability is listed in the last column under Ap are, ,roduct.

Table 6-4. A.I. E.E. preferred tape-wound toroidal cores
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Mag Inc & Arnold & \[
\frac{(1)}{\Lambda_{\mathrm{c}^{2}}\left(\mathrm{~cm}^{2}\right)}
\] & \(W_{i s}\left(\mathrm{~cm}^{2}\right)\) & (2) ID(cm) & OD(cm) & [tu|cml & \(1 m(6 m)\) & \begin{tabular}{l}
(3) \\
Core Wt \\
(Granas)
\end{tabular} & \(A_{p}\left(\mathrm{~cm}^{4}\right)\) \\
\hline 52056 & 8780.13 & 0.043 & 0.915 & 1.079 & 1.778 & 0.559 & 1.99 & 1.67 & 0.0393 \\
\hline 52000 & 8553.10 & 0.086 & 0.715 & 1.079 & 2.095 & 0.559 &  & 3.73 & 0.0787 \\
\hline 52076 & 8T5958 & 0.113 & 1.478 & 1.372 & 2.756 & 0.711 & 6.418 & 10.17 & 0.285 \\
\hline 52007 & 895651 & 0.457 & 1.178 & 1.372 & 2.150 & 0.876 & 6.19 & 14,5 & 0.380 \\
\hline 54002 & HT5 515 & 0, 186 & 1,674 & 1.150 & 2,176 & 0.559 & 6.9 H & 1. 612 & 0.144 \\
\hline 34061 & 8159302 & 0.171 & 2,274 & 1.702 & 2.713 & 0.876 & 7. 4 H & 10.1 & 0.389 \\
\hline \(5<106\) & 815504 & 0.193 & 2.274 & 1.702 & 3.051 & 0.711 & 8.98 & 12,6 & 0.437 \\
\hline 52011 & 8 Cl 168 & 0.086 & 4.242 & 2,324 & 3,391 & 0.559 & \(\mathrm{H}, \mathrm{OH}\) & 6.71 & 0345 \\
\hline 52001 & 8 5 7699 & 0.171 & 4.242 & 2.324 & 3.391 & 0.876 & \(4,+3\) & 13.1 & 0,745 \\
\hline 52029 & 874635 & 0.257 & 4.24: & 2.32 .4 & 3.70: & 0.876 & 9 7 & 21, & 1,090 \\
\hline 52012 & 8'75400 & \(0.3+3\) & 4.242 & 2.364 & 4.026 & 0.876 & ワ, \(\square_{1}\) & 29.8 & 1.435 \\
\hline 52046 & 895233 & 0.514 & 4.242 & 2.364 & 4.02 .6 & 1.194 & 9.97 & 14. \(\overrightarrow{1}\) & 2.180 \\
\hline 52034 & 8T6H4 & 0.686 & 4.242 & 2.324 & 4.026 & 1.537 & 11.96 & 51.6 & 2.910 \\
\hline 52030 & 415384 & 0, 34, 3 & 6.816 & 2.916 & 4.674 & 0, 989 & 11.143 & 35,8 & 2.379 \\
\hline 52035 & K174+11 & 0.686 & 6.816 & 2,946 & 4.674 & 1. 54.9 & 11.06 & 65.6 & 4.671 \\
\hline 52425 & 9'15772 & 0.771 & 6.816 & 2.916 & 5. 308 & 1.219 & 12.96 & Hi.d & 5,255 \\
\hline 52001 & 815320 & 1.371 & 9.648 & 3.505 & 6.629 & 1.575 & 15.95 & |11] & 13.23 \\
\hline \(520: 18\) & H14179 & 0.257 & 11.55 & 3.835 & 5.372 & 0,876 & 1.4.46 & 32.4 & 2.958 \\
\hline 52017 & 81.1178 & 0.686 & 18.19 & 4.813 & 6.617 & 1.575 & 13.95 & 107 & 12.48 \\
\hline 52103 & H16110 & 1. 371 & 17.91 & 4.775 & 7.725 & 1,587 & 19.91 & 238 & 24.55 \\
\hline 52082 & 8980, 7 & 2. 712 & 17.91 & 4.775 & 7.925 & 2,845 & 17.94 & 477 & 49.11 \\
\hline 54011 & 474140 & 0.686 & 28.22 & 5.991 & 7.899 & 1.575 & 21.93 & 131 & 19,36 \\
\hline 59128 & 896100 & 1.371 & 28.22 & 5.971 & 9.193 & 1.613 & 23.93 & 286 & 38,68 \\
\hline 22014 & 815+68 & 2.712 & 28.22 & 5.994 & 9.195 & 2,883 & 23.93 & 574 & 77.38 \\
\hline 5:100 & 8'5690 & \(5.1 \cdot 12\) & 28.22 & 5.994 & 9.881 & 4.216 & 24.03 & 1117 & 145,0 \\
\hline 52081 & सT5737 & 5.142 & 48.69 & 7.874 & 11.811 & 4.642 & 30.91 & 1386 & 250.3 \\
\hline 52427 & 8 T 925 & 7.198 & 48.37 & 7.849 & 13.105 & 4.305 & 32.90 & 8065 & 348.1 \\
\hline 52112 & \(8{ }^{8} \mathrm{~T}_{5} \mathrm{~S}_{1} 11\) & 6.855 & 75,52 & 9.741 & 13.754 & 5.601 & 36.85 & 2205 & 517.7 \\
\hline \(52+26\) & 8 T 9460 & 10, 068 & 74,14 & 9.716 & 15.680 & 5.601 & 39.88 & \(381+\) & \(8: 3.2\) \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
(1) Cross-sectional area calculated for 2 mil 10,002 in, ) material
(2) Dimensions listed are sizes of almmam boxed cores inot conted
(3) 0. 002 mil thickness and high mokel material

\section*{CHAPTER VII}

TRANSFORMER - INDUCTOR
EFFICIENCY, REGULATION, AND TEMPERATURE RISE

\section*{A. INTRODUCTION}

Transformer efficiency, regulation, and temperature rise are all interrelated. Not all of the input power to the transformer is delivered to the load. The difference between the input power and output power is converted into heat. This power loss can be broken down into two components: core loss and copper loss. The core loss is a fixed loss, and the copper loss is a variable loss which in related to the current demand of the load. Copper lose goes up by the square of the current and is termed quadratic loss. Maximum efficiency is achieved when the fixed loss is equal to the quadratic at rated load. Transformer regulation is the copper loss \(P_{\text {cu }}\) divided by the output power \(P_{0}\).

\section*{B. TRANSFORMER EFFICIENCY}

The efficiency of a transformer is a good way to measure the effectiveness of the design. Efficiency is defined as the ratio of the output power \(P_{0}\) to the input power \(P_{i n}\). The difference between the \(P_{o}\) and the \(P_{\text {in }}\) is due to losses. The total power loss in a transformer is determined by the fixed losses in the core and the quadratic losses in the windings or copper. Thus
\[
\begin{equation*}
P_{\Sigma}=P_{f e}+P_{c u} \tag{7-1}
\end{equation*}
\]
where \(P_{f e}\) represents the core loss and \(P_{c u}\) represents the copper loss.

Maximum efficiency is achieved when the fixed loss is made equal to the quadratic loss as shown by equation 7-11. Transformer loss versus output load current is shown in Figure 7-1.

The copper loss increases as the square of the output power multiplied by a constant K which is thus:
\[
\begin{equation*}
P_{\mathrm{cu}}=K P_{\mathrm{o}}^{2} \tag{7-2}
\end{equation*}
\]


Fig, 7-1. Transformer loss versus output load current
which may be rewritten as
\[
\begin{equation*}
P_{\Sigma}=P_{f e}+K P_{o}^{2} \tag{7-3}
\end{equation*}
\]

Since
\[
\begin{equation*}
P_{i n}=P_{0}+P_{\Sigma} \tag{7-4}
\end{equation*}
\]
and the efficiency is
\[
\begin{equation*}
\eta=\frac{P_{0}}{P_{0}+P_{\Sigma}} \tag{7-5}
\end{equation*}
\]
then
\[
\begin{equation*}
\eta=\frac{P_{o}}{P_{o}+P_{f e}+K P_{o}^{2}}=\frac{P_{0}}{P_{f e}}+P_{o}+K P_{o}^{2} \tag{7-6}
\end{equation*}
\]
and, differentiating with respect to \(P_{0}\) :
\[
\begin{gather*}
\frac{d \eta}{d P_{0}}=-P_{0}\left[P_{f e}+P_{0}+K P_{o}^{2}\right]^{-2}\left(1+2 K P_{0}\right)  \tag{7-7}\\
+\left[P_{f e}+P_{o}+K P_{o}^{2}\right]=0 \text { for } \max \eta  \tag{7-8}\\
-P_{0}\left(1+2 K P_{o}\right)+\left(P_{f e}+P_{0}+K P_{o}^{2}\right)=0  \tag{7-9}\\
-P_{0}-2 K P_{o}^{2}+P_{f e}+P_{o}+K P_{o}^{2}=0  \tag{7-10}\\
\therefore P_{f e}=K P_{0}^{2}=P_{c u} \tag{7-11}
\end{gather*}
\]

\section*{C. RELATIONSHIP OF A \(\mathrm{p}_{\mathrm{p}}\) TO CONTROL OF TEMPERATURE RISE}

\section*{1. Temperature Rise}

Not all of the \(P_{\text {in }}\) input power to the transformer is delivered to the load as the \(P_{0}\). Some of the input power is converted to heat by hysteresis and eddy currents induced in the core material, and by the resistance of the windings. The first is a fixed loss arising from core excitation and is termed "core loss." The second is a variable loss in the windings which is related to the current demand of the load and thus varies as \(I^{2} R\). This is termed the quadratic or copper loss.

The heat generated produces a temperature rise which must be controlled to prevent damage to or failure of the windings by breakdown of the wire insulation at elevated temperatures. This heat is dissipated from the exposed surfaces of the transformer by a combination of radiation and convection. The dissipation is therefore dependent upon the total exposed surface area of the core and windings.

Ideally, maximum efficiency is achieved when the fixed and quadratic Losses are equal. Thus:
\[
\begin{equation*}
P_{\Sigma}=P_{f e}+P_{c u} \tag{7-12}
\end{equation*}
\]
and
\[
\begin{equation*}
P_{c u}=\frac{P_{\Sigma}}{2} \tag{7-13}
\end{equation*}
\]

When the copper loss in the primary winding is equal to the coppsr loss in the secondary, the current density in the primary is the same as the current density in the secondary:
\[
\begin{equation*}
\frac{P_{p}}{R_{p}}=\frac{P_{s}}{R_{s}} \tag{7-14}
\end{equation*}
\]
and
\[
\begin{equation*}
\frac{P_{\Sigma}}{R_{t}}=\frac{2 P_{p}}{R_{p} / 2}=\frac{4 P_{p}}{R_{p}}=\left(2 I_{p}\right)^{2} \tag{7-15}
\end{equation*}
\]

Then
\[
\begin{equation*}
J_{p}=\frac{I_{p}}{W_{a} / 2}=\frac{2 I_{p}}{W_{a}}=J_{s}=J \tag{7-16}
\end{equation*}
\]

\section*{2. Calculation of Temperature Rise}

Temperature rise in a transformer winding cannot be predicted with complete precision, despite the fact that many different techniques are described in the literature for its calculation. One reasonably accurate
method for open core and winding construction is based upon the assumption that core and winding losses may be lumped together as:
\[
\begin{equation*}
P_{\Sigma}=P_{f e}+P_{c u} \tag{7-17}
\end{equation*}
\]
and the assumption is made that thermal energy is dissipated uniformly throughout the surface area of the core and winding assembly.

Transfer of heat by thermal radiation occurs when a body is raised to a temperature above its surroundings and emits radiant energy in the form of waves. In accordance with the Stefan-Boltzmann law, * this may be expressed as:
\[
\begin{equation*}
W_{r}=K_{r} \epsilon\left(T 2^{4}-T 1^{4}\right) \tag{7-18}
\end{equation*}
\]
in which
\(W_{r}=\) watts per square centimeter of surface
\(\mathrm{K}_{\mathrm{r}}=5.70 \times 10^{-12} \mathrm{~W} \mathrm{~cm}^{-2}\left({ }^{\circ} \mathrm{K}\right)^{-4}\)
\(\epsilon=\) emissivity factor
T2 = hot body temperature in degrees kelvin
T1 = ambient or surrounding temperature in degrees kelvin
Transfer of heat by convection occurs when a body is hotter than the surrounding medium, which usually is air. The layer of air in contact with the hot body which is heated by conduction expands, and rises, taking the absorbed heat with it. The next layer, being colder, replaces the risen layer, and in turn on being heated also rises. This continues as long as the air or medium surrounding the body is at a lower temperature. The transfer of heat by convection is stated mathematically as;
\[
\begin{equation*}
W_{c}=K_{c} F \theta^{\eta} \sqrt{\mathrm{P}} \tag{7-19}
\end{equation*}
\]

\footnotetext{
*Reference 2, Chapter 3.
}
in which:
```

$W_{c}=$ watts loss per square centimeter
$K_{c}=2.17 \times 10^{-4}$
$F=$ air friction factor (unity for a vertifal surface)
$\theta=$ temperature rise, degrees C
$p=r e l a t i v e ~ b a r o m e t r i c ~ p r e s s u r e ~(u n i t y ~ a t ~ s e a ~ l e v e l) ~$
$\eta=$ exponential value ranging from 1.0 to 1.25 , depending on the shape
and position of the surface being cooled.

```

The total heat dissipated from a plane vertical surface is expressed by the sum of equations \(7-18\) and \(7-19\) :
\[
\begin{equation*}
\mathrm{W}=5.70 \times 10^{-12} \mathrm{E}\left(\mathrm{~T}^{4}-\mathrm{T} 1^{4}\right)+1.4 \times 10^{-3} \mathrm{Fe}^{\mathrm{l} .25} \sqrt{\mathrm{p}} \tag{7-20}
\end{equation*}
\]

\section*{3. Temperature Rise Versus Surface Area Dissipation}

The temperature rise which may be expected for various levels of power loss is shown in the monograph of Figure 7-2 below. It is based on equation \(7-20\) relying on data obtained from Reference 2 * for heat transfer effected by a combination of \(55 \%\) radiation and \(45 \%\) convection, from surfaces having an emissivity of 0.95 , in an ambient temperature of \(25^{\circ} \mathrm{C}\), at sea level. Power loss (heat dissipation) is expressed in watts \(/ \mathrm{cm}^{2}\) of total surface area. Heat dissipation by convection from the upper side of a horizontal flat surface is on the order of 15 to \(20 \%\) more than from vertical surfaces. Heat dissipation from the underside of a horizontal Dat surface depends upon surface area and conductivity.

\footnotetext{
*See References in Chapter 3.
}


Fig. 7-2. Temperature rise versus surface dissipation
4. Surface Area Required for Heat Dissipation

The effective surface area \(A_{t}\) required to dissipate heat (expressed as watts dissipated per unit area) is:
\[
A_{t}=\frac{P_{\Sigma}}{\Psi} \quad \begin{align*}
& \text { ORIGGNAL PAGU IS }  \tag{7-21}\\
& \text { OF POOR QHALITY }
\end{align*}
\]
in which \(\Psi\) is the power density or the average power dissipated per unit area from the surface of the transformer and \(P_{\Sigma}\) is the total power lost or dissipated.

Surface area \(A_{t}\) of a transformer can be related to the area product \(A_{p}\) of a transformer. The straightline logarithmic relationship shown in Figure 7-3 below has been plotted from the data shown in Table 2-5, Chapter 2.


Fig. 7-3. Surface area versus area product \(A_{p}\)
From this, the following relationship evolves:
\[
\begin{equation*}
A_{t}=K_{s}\left(A_{p}\right)^{0.5}=\frac{P_{\Sigma}}{\Psi} \tag{7-22}
\end{equation*}
\]
and (from Fig. 7-2)
\[
\begin{align*}
& \Psi=0.03 \mathrm{~W} / \mathrm{cm}^{2} \text { at } 25^{\circ} \mathrm{C} \text { rise }  \tag{7-23}\\
& \Psi=0.07 \mathrm{~W} / \mathrm{cm}^{2} \text { at } 50^{\circ} \mathrm{C} \text { rise } \tag{7-24}
\end{align*}
\]

Figure 7-4 utilizes the efficiency rating in watts dissipated in terms of two different, but commonly allowable temperature rises for the transformer ovor ambient temperature. The data presented are used as bases for determining the needed transformer surface area \(A_{t}\) (in \(\mathrm{cm}^{2}\) ).


Fig. 7-4. Surface area vernus total watt loss for a \(25^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) rise

\section*{D. REGULATION AS A FUNCTION OF EFFICIENCY}

The minimum size of a transformer is usually determined either by a temperature rise limit, or by allowable voltage regulation, assuming that size and weight are to be minimized.

Figure 7-5 shows the circuit diagram of a transformer with one secondary. Note that \(\alpha=\) regulation (\%).


Fig. 7-5. Transformer circuit diagram

The analytical equivalent is shown in Figure 7-6.


Fig. 7-6. Transformer analytical equivalent

This assumes that distributed capacitance in the secondary can be neglected because the frequency and secondary voltage are not excessive high. Also the winding geometry is cesigned to limit the leakage inductance to a level low enough to be neglected under most operating conditions.

Transformer voltage regulation can now be expressed as:
\[
\begin{equation*}
\alpha=\frac{V_{0}\left(\mathrm{~N}_{0} L_{*}\right)-V_{0}\left(F_{0} L_{0}\right)}{V_{0}\left(\mathrm{~N}_{1} L_{*}\right)} \times 100 \tag{7-25}
\end{equation*}
\]
in which \(V_{0}(N, L\),\() is the no load voltage and V_{0}(F, L\).\() is the full load voltage.\)
The output voltage computed using Figure \(7-5\) is:
\[
\begin{equation*}
V_{0}=\frac{R_{o}}{R_{0}+R_{s}} \frac{\left(N^{2} R_{p}\right)\left\|\left(N^{2} R_{E}\right)\right\|\left(R_{o}+R_{g}\right)}{N^{2} R_{p}} N E \tag{7-26}
\end{equation*}
\]

For the usual condition of
\[
N^{2} R_{E} \gg N^{2} R_{p} \|\left(R_{o}+R_{g}\right),
\]
\(\mathrm{V}_{\mathrm{o}}\) simplifies to
\[
\begin{equation*}
v_{0}=v_{0}\left(F \cdot L_{0}\right)=\frac{R_{0}}{R_{0}+\left(N^{2} R_{p}+R_{B}\right)} N E \tag{7-27}
\end{equation*}
\]

For equal window araas allocated for the primary and secondary windinge, it can be shown that \(N^{2} R_{p}=R_{s}\).

For simplicity, let
\[
R_{c u} \equiv N^{2} R_{p}+R_{s}=2 R_{s}
\]

At no load (N.L.) Ropproaches infinity, therefore:
\[
\begin{align*}
& V_{0}\left(N, L_{0}\right)=N E  \tag{7-28}\\
& \alpha=\frac{N E-\frac{R_{0}}{R_{0}+R_{c u}} N E}{N E} \times 100  \tag{7-29}\\
&=\left(1-\frac{R_{0}}{R_{0}+R_{c u}}\right) \times 100  \tag{7-30}\\
&=\frac{R_{c u}}{R_{0}+R_{c u}} \times 100 \tag{7-31}
\end{align*}
\]

This shows that regulation is independent of the transformer turns ratio.
For regulation as a function of copper loss, multiply equation \(7-31\) by \(I_{0}^{2}\) :
\[
\begin{equation*}
\alpha=\frac{I_{o}^{2} R_{c u}}{I_{o}^{2}\left(R_{o}+R_{c u}\right)} \times 100 \tag{7-32}
\end{equation*}
\]
then
\[
\begin{gather*}
\alpha=\frac{P_{c u}}{P_{o}+P_{c u}} \times 100  \tag{7-33}\\
P_{i n}=P_{c u}+P_{f e}+P_{o} \tag{7-34}
\end{gather*}
\]

For regulation as a function of efficiency,
\[
\begin{equation*}
\frac{P_{o}}{P_{i n}}=\frac{P_{o}}{P_{c i n}}+P_{f e}+P_{o}=\eta \tag{7-35}
\end{equation*}
\]

By definition
\[
\begin{equation*}
P_{\mathrm{cu}}=P_{\mathrm{fe}} \tag{7-36}
\end{equation*}
\]

Solving for \(\mathrm{P}_{\mathrm{cu}}+\mathrm{P}_{\mathrm{fe}}\)
\[
\begin{gather*}
\frac{P_{0}(1-\eta)}{\eta}=P_{o}\left(\frac{1}{\eta}-1\right)=P_{\cdot \mathrm{cu}}+P_{f e}=2 P_{\mathrm{cu}}  \tag{7-37}\\
\frac{\alpha}{100}=\frac{1}{1+\frac{1}{P_{\mathrm{o}}}}=\frac{1}{1+\frac{2}{1 / \eta-1}}=\frac{1-\eta}{1+\eta}  \tag{7-38}\\
\alpha=\frac{1-\eta}{1+\eta} \times 100 \tag{7-39}
\end{gather*}
\]

For efficiency as a function of regulation, multiply both sides of the equation by \((1+\eta)\) :
\[
\begin{equation*}
\alpha+\eta \alpha=100-\eta 100 \tag{7-40}
\end{equation*}
\]
\[
77-35
\]

Solve for \(\eta\)
\[
\begin{gather*}
\eta 100+\eta \alpha=100-\alpha  \tag{7-41}\\
\eta(100+\alpha)=100-\alpha  \tag{7-42}\\
\eta=\frac{100-\alpha}{100+\alpha} \tag{7-43}
\end{gather*}
\]

\section*{E. DESIGNING FOR A GIVEN REGULATION}

\section*{1. Transformers}

Although most transformers are designed for a given temperature rise, they can also be designed for a given regulation. \({ }^{2 k}\) The regulation and powerhandling ability of a core is related to two constanta:
\[
\begin{gather*}
V A=K_{g} K_{e} \alpha  \tag{7-44}\\
\alpha=\text { Regulation (\%) }
\end{gather*}
\]

The constant \(K_{g}\) is determined by the core geometry which may be related by the following equation:
\[
\begin{equation*}
K_{g}=\frac{W_{a} A_{c}^{2} K_{u}}{M L T} \tag{7-45}
\end{equation*}
\]

The constant \(K_{e}\) is determined by the magnetic and electric operating conditions which may be related by the following equation:
\[
\begin{equation*}
\mathrm{K}_{\mathrm{e}}=0.145 \mathrm{~K}^{2} \mathrm{f}^{2} \mathrm{~B}_{\mathrm{m}}^{2} \times 10^{-4} \tag{7-46}
\end{equation*}
\]

The derivation of the relationship for \(K_{g}\) and \(K_{e}\) is given at the end of this chapter.

\footnotetext{
Reference
}

The area product \(A_{p}\) can be related to the core geometry \(K_{g}\) in the following equation:
\[
\begin{equation*}
A_{p}=K_{p} K_{g}^{0,8} \tag{7-47}
\end{equation*}
\]

The derivation is given in detail at the end of this chapter.

Rewriting equation 7-44,
\[
\begin{gather*}
K_{g}=\frac{V A}{K_{e}{ }^{\alpha}}  \tag{7-48}\\
A_{p}=K_{p}\left(\frac{V A}{K_{e}{ }^{\alpha}}\right)^{0.8} \tag{7-49}
\end{gather*}
\]

Figure 7-7 shows how area product \(A_{p}\) varies as a function of regulation, in percent.


Fig. 7-7. Area product versus regulation
\[
7-15
\]

Figure 7-8 shows how weight \(W_{t}\) varies as a function of regulation, in percent.


Fig. 7-8. Weight versus regulation

\section*{2. Inductors}

Inductors, like transformers, are designed for a given temperature rise. They can also be designed for a given regulation. The regulation and energy handling ability of a core is related to two constants:
\[
\begin{gathered}
(\text { Energy })^{2}=K_{g} K_{e}^{\alpha} \\
\alpha=\text { Regulation (\%) }
\end{gathered}
\]

The constant \(\mathrm{K}_{\mathrm{g}}\) is determined by the core geometry:
\[
\begin{equation*}
K_{g}=\frac{W_{a} A_{L}^{2} K_{u}}{M L T} \tag{7-51}
\end{equation*}
\]

The constant \(K_{e}\) is determined by the magnetic and electric operating conditions:
\[
\begin{equation*}
K_{e}=0.145 P_{o} B_{d c}^{2} \times 10^{-4} \tag{7-52}
\end{equation*}
\]

The derivation of the specific functions for \(K_{g}\) and \(K_{e}\) is given at the end of this chapter.

\section*{3. Transformer Design Example I}

For a typical design example, assume an isolation transformer with the following specifications:
(1) 115 volts
(2) 1.0 amperes
(3) Sine wave
(4) Frequency 60 Hz
(5) Regulation \(\alpha 2 \%\)

The procedure would then be as follows:

Step No. 1. Calculate the output power:
\[
\begin{aligned}
& P_{0}=V A \\
& P_{0}=(115)(1.0) \\
& P_{0}=115
\end{aligned}
\]

Step No. 2. Calculate the electrical conditions from equation 7-46:
\[
\begin{aligned}
& \mathrm{K}_{\mathrm{e}}=0.145 \mathrm{~K}^{2} \mathrm{f}^{2} \mathrm{~B}_{\mathrm{m}}^{2} \times 10^{-4} \\
& \mathrm{~K}=4.44 \\
& \mathrm{f}=60 \\
& \mathrm{~B}=1.2 \\
& \mathrm{~K}_{\mathrm{e}}=0.145(4.44)^{2}(60)^{2}(1.2)^{2} \times 10^{-4} \\
& \mathrm{~K}_{\mathrm{e}}=1.53
\end{aligned} \quad \text { [Hz] } \quad \text { [tesla] }
\]

Step No. 3. Calculate the core geometry from equation 7-44:
\[
\begin{aligned}
& \mathrm{K}_{\mathrm{g}}=\frac{\mathrm{VA}}{\mathrm{~K}_{e^{\alpha}}} \\
& \mathrm{K}_{\mathrm{g}}=\frac{115}{(1.53)(2.0)} \\
& \mathrm{K}_{\mathrm{g}}=37.6
\end{aligned}
\]

Step No. 4. Select a lamination from Table 7. B-2 with a value \(\mathrm{K}_{\mathrm{g}}\) closest to the one calculated:
\[
\text { EI- } 150 \text { with a } K_{g}=35.3
\]

Step No. 5. Calculate the number of primary turns using Faraday's law, equation 3.A-1:
\[
N=\frac{E_{p} \times 10^{4}}{4.44 A_{c} B_{m}{ }^{f}}
\]

ORIGINAL RAGE IS OF POOR QUALITY

The iron cross section \(A_{c}\) is found in Table 7.B-2:
\[
\begin{gathered}
A_{c}=13.1 \\
N=\frac{115 \times 10^{4}}{4.44(13.1)(1.2)(60)} \\
N=275 \text { turns }
\end{gathered}
\]

Step No. 6. Calculate the effective window area \(W_{a(e f f)}\) :
\[
w_{a(e f f)}=w_{a} s_{3}
\]

A typical value for \(S_{3}\) is 0.75 , as shown in Chapter 6 .
Select the window area \(W_{a}\) from Table 7.B-2 for EI 150;
\[
\begin{aligned}
& \mathrm{w}_{\mathrm{a}(\mathrm{eff})}=(10.9(0.75) \\
& \mathrm{w}_{\mathrm{a}(\mathrm{eff})}=8.175
\end{aligned}
\]
\[
\left[\mathrm{cm}^{2}\right]
\]

Step No. 7. Calculate the primary winding area:

Primary winding area \(=\) Secondary winding area
\[
\begin{aligned}
& \text { Primary winding area }=\frac{W_{a(e f f)}}{2} \\
& \text { Primary winding area }=\frac{8_{1}, 175}{2} \\
& \text { Primary winding area }=4.09 \quad\left[\mathrm{~cm}^{2}\right]
\end{aligned}
\]

Step No. 8. Calculate the wire area \(A_{w}\) with insulation, using a fill factor \(S_{2}\) of 0.6 :
\[
\begin{aligned}
& A_{w}=\frac{W_{a(p r i)}}{N} \times S_{2} \\
& A_{w}=\frac{(\dot{4} .09)(0.6)}{275} \\
& A_{w}=0.00892
\end{aligned}
\]
\[
\left[\mathrm{cm}^{2}\right]
\]

Step No. 9. Select the wire area \(A_{w}\) with insulation in Table 6-1 for equivalent (AWG) wire size column D:
\[
\text { AWG No. } 18=0.009326
\]

The rule is that when the calculated wire size does not fall close to those listed in the table, the next smaller size should be selected.

Step No. 10. Calculate the resistance of the winding using Table 6-1, column C, and Table 7.B-2 for the MLT:
\[
\begin{align*}
& R=M L T \times N \times(\text { column } C) \times 10^{-6} \\
& R_{p}=(21.2)(275)(209.5) \times 10^{-6} \\
& R_{p}=1.22 \\
& R_{p}=R_{s} \\
& R_{t}=2 R_{p} \\
& R_{t}=2(1.22) \\
& R_{t}=2.44
\end{align*}
\]

Step No. 11. Calculate the copper los: \(P_{c u}\) and the regulation:
\[
\begin{aligned}
P_{c u} & =I^{2} R_{t} \\
P_{c u} & =(1)^{2}(2.44) \\
P_{c u} & =2.44 \\
\alpha & =\frac{P_{c u}}{P_{0}} \times 100 \\
\alpha & =\frac{2.44}{115} \times 100 \\
\alpha & =2.12
\end{aligned}
\]
4. Transformer Design Example II

For a typical design example, assume a filament transformer using a C core:
(1) 120 volt input
(2) 400 Hz
(3) Sine wave
(4) 6.3 volt output
(5) 5.0 ampere output
(6) Regulation \(\alpha 1.0 \%\)

The procedure would then be as follows:

Step No. 1. Calculate the output power:
\[
\begin{aligned}
& P_{0}=V A \\
& P_{0}=(6.3)(5) \\
& P_{0}=31.5
\end{aligned}
\]

Step No. 2. Calculate the electrical conditions from equation 7-46:
\[
\begin{aligned}
& K_{e}=0.145 \mathrm{~K}^{2} f^{2} \mathrm{~B}_{\mathrm{m}}^{2} \times 10^{-4} \\
& \mathrm{~K}=4.44 \\
& \mathrm{f}=400 \\
& \mathrm{~B}=1.2 \\
& \mathrm{~K}_{e}=(0.145)(4.44)^{2}(400)^{2}(1.2)^{2} \times 10^{-4} \\
& \mathrm{~K}_{e}=65.8
\end{aligned}
\]

Step No. 3. Calculate the core geometry from equation 7-44:
\[
\begin{aligned}
\mathrm{K}_{\mathrm{g}} & =\frac{\mathrm{VA}}{\mathrm{~K}_{\mathrm{e}}{ }^{\alpha}} \\
\mathrm{K}_{\mathrm{g}} & =\frac{31,5}{(65.8)(1)} \\
\mathrm{K}_{\mathrm{g}} & =0.479
\end{aligned}
\]

Step No. 4. Select a C core from Table 7. B-1 with a value \(K_{g}\) closest to the one calculated:
\[
\text { AL-18 with a } K_{g}=0.530
\]

Step No. 5. Calculate the number of primary turns using Faraday's law, equation 3.A-1,
\[
N=\frac{E_{p} \times 10^{4}}{4.44 A_{c} B_{m}^{f}}
\]

The iron cross section \(A_{c}\) is found in Table 7.B-1:
\[
A_{c}=1.257
\]
\[
\left[\mathrm{cm}^{2}\right]
\]
\[
\begin{aligned}
& N_{p}=\frac{120 \times 10^{4}}{4.44(1.257)(1.2)(400)} \\
& N_{p}=448
\end{aligned}
\]

Step No. 6. Calculate the effective window area \(W_{a(e f f)}\) :
\[
w_{a(e f f)}=w_{a} s_{3}
\]

A typical value for \(S_{3}\) ts 0.75 as shown in Chapter 6. Select the window area \(W_{a}\) from Table 7.B-1 for AL-18:
\[
\begin{array}{ll}
\mathrm{W}_{\mathrm{a}(e f f)}=(6.3)(0.75) \\
\mathrm{W}_{\mathrm{a}(\in \mathrm{ff})}=4.72 & {\left[\mathrm{~cm}^{2}\right]}
\end{array}
\]

Step No. 7. Calculate primary winding area:
\[
\text { Primary winding area }=\text { Secondary winding area }
\]
\[
\begin{aligned}
& \text { Primary winding area }=\frac{W_{a(e f f)}}{2} \\
& \text { Primary winding area }=\frac{4.72}{2} \\
& \text { Primary winding area }=2.36 \quad\left[\mathrm{~cm}^{2}\right]
\end{aligned}
\]

Step No. 8. Calculate the wire area \(A_{w}\) with ingulation using a fill factor \(S_{2}\) of 0.6 :
\[
\begin{aligned}
& A_{w}=\frac{W_{a(p r i)} S_{2}}{N} \\
& A_{w}=\frac{(2.36)(0.6)}{448} \\
& A_{w}=0.00316
\end{aligned}
\]
\[
\left[\mathrm{cm}^{2}\right]
\]

Step No. 9. Select the wire area \(A_{w}\) with insulation in Table 6-1 for equivalent (AWG) wire size, column \(D\) :
\[
\text { AWG No. } 23=0.003135
\]

The rule is that when the calculated wire size does not fall close to those listed in the table, the next smaller size should be selected.

Step No. 10. Calculate the resistance of the primary winding, using Table 6-1, column \(C\), and Table 7.B-1 for the MLT:
\[
\begin{align*}
& R_{p}=M L T \times N \times(\text { column } C) \times 10^{-6} \\
& R_{P}=(7.51)(448)(666) \times 10^{-6} \\
& R_{p}=2.24
\end{align*}
\]

Step No. 11. Calculate the primary copper loss \(\mathrm{P}_{\mathrm{cu}}\) '
\[
\begin{align*}
I_{p} & =\frac{V L_{i}}{E_{p}} \\
I_{p} & =\frac{3 ., 5}{120}=0.263  \tag{A}\\
P_{c u} & =I_{p}^{2} R_{p} \\
P_{c u} & =(0.263)^{2}(2.24) \\
P_{c u} & =0.155
\end{align*}
\]

Step No. 12. Calculate the mecondary turns:
\[
\begin{aligned}
& N_{s}=\frac{N_{p}}{E_{p}}\left(E_{B}\right) \\
& N_{B}=\frac{448}{120}(6.3) \\
& N_{s}=24
\end{aligned}
\]

Step No. 13. Calculate the secondary wire area \(A_{w}\) with insulation using a fill factor \(S_{2}\) of 0.6 :
\[
\begin{aligned}
& A_{w}=\frac{W_{a(\mathrm{sec})} S_{2}}{N} \\
& A_{w}=\frac{(2.36)(0.6)}{24} \\
& A_{w}=0.059
\end{aligned}
\]
\[
\left[\mathrm{cm}^{2}\right]
\]

Step No. 14. Sclect the secondary wire area \(A_{w}\) with insulation in Table \(6-1\) for equivalent (AWG) wire size, column D:
\[
\text { AWG No. } 10=0.0559
\]
\[
\left[\mathrm{cm}^{2}\right]
\]

The rule is that when the calculated wire size does not fall close to those listed in the table, the next smaller size should be selected.

Step No, 15. Calculate the resistance of the secondary winding using Table 6-1, column \(C\), and Table 7.B-1 for the MLT:
\[
\begin{aligned}
& R_{s}=M L T \times N \times(\text { column } C) \times 10^{-6} \\
& R_{s}=(7.51)(24)(32.7) \times 10^{-6} \\
& R_{s}=0.0059
\end{aligned}
\]

Step No. 16. Calculate the copper loss \(P_{c u}\) :
\[
\begin{aligned}
& P_{c u}=I_{s}^{2} R_{s} \\
& P_{c u}=(5)^{2}(0.0059) \\
& P_{c u}=0.1 .48
\end{aligned}
\]
[watts]

Step No. 17. Calculate the regulation:
\[
\begin{aligned}
& \alpha=\frac{P_{p}+P_{B}}{P_{o}} \times 100 \\
& \alpha=\frac{(0.155)+(0.148)}{31.5} \times 100 \\
& \alpha=0.962
\end{aligned}
\]

\section*{5. Inductor Design Example}

For a typical design example, assume:
(1) Inductance \(=0.05\) henry
(2) Cotput power \(P_{0}=200\) watts
(3) Output current \(I_{0}=2.0\) amperes
(4) Regulation \(\alpha=1 \%\)

\section*{The procedure would then be as follows:}

Step No. 1. Calculate the energy involved from equation 7. B-16:
\[
\begin{aligned}
& \text { Energy }=\frac{L I_{o}^{2}}{2} \\
& \text { Energy }=\frac{0.05(2.0)^{2}}{2} \\
& \text { Energy }=0.10
\end{aligned}
\]

Step No. 2. Calculate the electrical conditions from equation 7.52;
\[
\begin{array}{ll}
K_{e} & =0.145 P_{o} B_{d c}^{2} \times 10^{-4} \\
P_{o} & =200 \\
B_{d c} & =1.2 \\
K_{e} & =0.145(200)(1.2)^{2} \times 10^{-4} \\
K_{e} & =0.00418
\end{array} \quad \text { [watts] }
\]

Step No. 3. Calculate the core geometry from equations 7-50:
\[
\begin{aligned}
& K_{g}=\frac{(\text { Energy })^{2}}{K_{e^{\alpha}}} \\
& K_{g}=\frac{(0.1)^{2}}{(0.00418)(1)} \\
& K_{g}=2.39
\end{aligned}
\]

Step No. 4. Select a C core from Table 7. B-1 with a value \(K_{g}\) closest to the one calculated:
\[
\text { AL-20 with a } K_{\mathrm{g}}=2.32
\]

Also select the area product \(A_{p}\) for this \(C\) core from Table 2-6:
\[
A_{p}=22.6
\]
\[
\left[\mathrm{cm}^{4}\right]
\]

Step No. 5. Calculate the current density from area product equation 4.A-18:
\[
J=\frac{2(\text { Energy }) \times 10^{4}}{B_{\mathrm{m}}^{K_{u} A_{p}}}
\]

Insert values, \(K_{u}=0.4\),
\[
\left.\begin{array}{ll}
J & =\frac{2(0.1) \times 10^{4}}{(1.2)(0.4)(22.6)} \\
J & =184
\end{array}\left[\mathrm{~A} / \mathrm{cm}^{2}\right]\right]
\]

Step No. 6. Determine the bare wire size A. :
\[
\begin{aligned}
& A_{w(B)}=\frac{I_{o}}{J}=\frac{2.0}{184} \\
& A_{w(B)}=0.0108
\end{aligned}
\]
\[
\left[\mathrm{cm}^{2}\right]
\]

Step No. 7. Select an AWG wire size from Table 6-1, column A. The rule is that when the calculated wire size does not fall close to those listed in the table, the next smaller size should be selected.
\[
\text { AWG } 17=0.01038
\]

Step No. 8. Calculate the effective window area \(W_{a(e f f)}\) :
\[
W_{a(e f f)}=W_{a} S_{3}
\]

A typical value for \(S_{3}\) is 0.75 , as shown in Chapter 6.
Select the window area \(W_{\tilde{a}}\) from Table 7.B-1 for an AL-20:
\[
\begin{array}{ll}
\mathrm{w}_{\mathrm{a}(\mathrm{eff})}=(6.30)(0.75) \\
\mathrm{w}_{\mathrm{a}(\text { eff })}=4.72 & {\left[\mathrm{~cm}^{2}\right]}
\end{array}
\]

Step No. 9. Select the wire area with insulation for a No. 17 in Table 6-1, column D:
\[
A_{w} \text { with insulation }=0.01168
\]
\[
\left[\mathrm{cm}^{2}\right]
\]

Step No. 10. Calculate the number of turns using a fill factor \(S_{2}\) of 0.6 :
\[
\begin{aligned}
& \mathrm{N}=\frac{\mathrm{w}_{\mathrm{a}(\mathrm{eff})} S_{2}}{A_{\mathrm{w}}} \\
& \mathrm{~N}=\frac{(4.72)(0.6)}{(0.01 .68)} \\
& \mathrm{N}=242
\end{aligned}
\]

Step No. 11. Calculate the gap from the inductance equation 4-6:
\[
1_{g}=\frac{0.4 \pi N^{2} A_{c} \times 10^{-8}}{L}
\]

The iron cross section \(A_{c}\) is found in Table 7. B-1:
\[
\begin{aligned}
& A_{c}=3.58 \\
& 1_{g}=\frac{1.26(242)^{2}(3.58) \times 10^{-8}}{(0.05)} \\
& 1_{g}=0.0528
\end{aligned}
\]

Step No, 12. Calculate the amount of fringing flux from equation 4-7 (the value for \(G\) is found in Table 4.B-17):
\[
\begin{aligned}
& F=\left(1+\frac{1_{g}}{\sqrt{A_{c}}} \log _{e} \frac{2 G}{1_{g}}\right) \\
& F=\left(1+\frac{(0.0528)}{\sqrt{3.58}} \log _{e} \frac{2(3.967)}{(0.0528)}\right) \\
& F=1.14
\end{aligned}
\]

\section*{77-35}

After finding the fringing flux \(F\), insert it into equation 4-8, rearrange, and solve for the correct number of turns:
\[
\begin{aligned}
& N=\sqrt{\frac{1_{\mathrm{g}} \mathrm{~L}}{0.4 \pi \mathrm{~A}_{\mathrm{c}} F \times 10^{-8}}} \\
& N=\sqrt{\frac{(0.0528)(0.05)}{(1.26)(3.58)(1.14) \times 10^{-8}}} \\
& N=226
\end{aligned}
\]

Step No. 13. Calculate the resistance of the winding, using wire Table 6-1, column C and Table 7.B-1 for the MLT:
\[
\begin{aligned}
& R=M L T \times N \times(\text { column } C) \times 10^{-6} \\
& R=(13.62)(226)(165.8) \times 10^{-6} \\
& R=0.51
\end{aligned}
\]

Step No. 14. Calculate the power loss in the winding:
\[
\begin{aligned}
& P_{c u}=I_{o}^{2} R \\
& P_{c u}=(2)^{2}(0.51) \\
& P_{c u}=2.04
\end{aligned}
\]

Step No. 15. Calculate the regulation from equation 7.B-23:
\[
\begin{align*}
& \alpha=\frac{P_{c u}}{P_{0}} \times 100 \\
& \alpha=\frac{2.04}{200} \times 100 \\
& \alpha=1.02
\end{align*}
\]

Step No. 16. Calculate the flux density for \(\mathrm{B}_{\mathrm{dc}}\) from equation 7.B-7:
\[
\begin{aligned}
& \mathrm{B}_{\mathrm{dc}}=\frac{0.4 \pi \mathrm{NI}_{\mathrm{dc}} \times 10^{-4}}{1_{\mathrm{g}}} \\
& \mathrm{~B}_{\mathrm{dc}}=\frac{(1.26)(226)(2.0) \times 10^{-4}}{(0.0528)} \\
& \mathrm{B}_{\mathrm{dc}}=1.08
\end{aligned}
\]
(In a test sample made to verify this example, the measured inductance was found to be 0.047 henry and the resistance was 0.45 ohms.)

\section*{F. MAGNETIC CORE MATERIAL TRADEOFF}

The relationships between area product \(A_{p}\) and \(c e r t a i n\) parameters are associated only with such geometric properties as surface area and volume, weight, and the factors affecting temperature rise such as current density. \(A_{p}\) has no relevance to the magnetic core materials used, however the designer often must make tradeoffs between such goals as efficiency and size which are influenced by core material selection.

Usually in articles written about inverter and converter transformer design, recommendations with respect to choice of core material are a compromise of material characteristics such as those tabulated in Table 7-1, and graphically displayed in Figure 7-9. The characteristics shown here are those typical of commercially available core materials. As can be seen, the core material which provides the highest flux density is supermendor. It also produces the smallest component size. If size is the most important consideration, this should determine the choice of materials. On the other hand, the type 78 Supermalloy material (see the 5/78 curve in Figure 7-9), has the lowest flux density and this material would result in the largest size transformer. However, this material has the lowest coercive force and lowest core loss of any of the available materials. These factors might well be decisive in other applications.

Table 7-1. Magnetic core material characteristics
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TRADE NAMES & COMPOSITION & \begin{tabular}{l}
\# \\
SATURATED FLUX DENSITY. testa
\end{tabular} & \begin{tabular}{l}
DC COERCTVE FORCE, \\
AMP-TURN/ ctr
\end{tabular} & SQUARENESS RATLO & \begin{tabular}{l}
+新 \\
MATERIAL DENSITY. \(\mathrm{g} / \mathrm{cm}^{3}\)
\end{tabular} & \begin{tabular}{l}
CURIE \\
TEMPERATURE \({ }^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{l}
WEIGHT \\
FACTOR
\end{tabular} \\
\hline Supermondur
Permendur & \[
\begin{gathered}
49 \% \mathrm{Co} \\
49 \% \mathrm{Fe} \\
2 \% \mathrm{~V}
\end{gathered}
\] & 1.9-2,2 & 0.18-0.44 & 0.90 .1 .0 & B. 15 & 930 & 1, 06.6 \\
\hline \begin{tabular}{l}
Magnesill \\
Sllectron \\
Microsil \\
Superalt
\end{tabular} & \[
\begin{gathered}
3 \% \\
97 \% \\
\mathrm{FI}
\end{gathered}
\] & 1.5-1.8 & 0.5-0.75 & \(0.85=0.75\) & 7.63 & 750 & 1.00 \\
\hline Deltames: Orthonol 49 Sq Mu & \[
\begin{aligned}
& 50 \% \mathrm{Ni} \\
& 50 \% \mathrm{Fe}
\end{aligned}
\] & 1.4-1.6 & 0.125-0.25 & 0.94-1.0 & 8. 24 & 500 & 1,079 \\
\hline Allegheny 4750 48 Alloy Carpenter 49 & \[
\begin{aligned}
& 48 \% \mathrm{Ni} \\
& 52 \% \mathrm{Fe}
\end{aligned}
\] & 1. 15-1,4 & \(0.062-0.187\) & 0.80-0.92 & 8,19 & 480 & 1,073 \\
\hline 4-79 Permalloy Sp Permalloy 80 Sq Mat 79 & \[
\begin{aligned}
& 79 \% \mathrm{Ni} \\
& 17 \% \mathrm{Fo}
\end{aligned}
\] & \(0.66 \% 0.82\) & \(0.025-0.82\) & 0.80-1.0 & B. 73 & 460 & 1, 144 \\
\hline Supermalloy & 78\% Ni 17\% Fe 5\% Mo & \(0.65-0,82\) & 0,0037-0,01 & \(0.40-0.70\) & 8.76 & 400 & 1. 148 \\
\hline \[
\begin{aligned}
& \text { Forritos } \\
& \mathrm{F} \\
& \mathrm{~N} 27 \\
& 3 \mathrm{CB}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{An}_{n} \\
& \mathrm{Zn}
\end{aligned}
\] & \(0.45-0.50\) & 0.25 & 0.30-0.5 & \(4+8\) & 250 & 0.629 \\
\hline \[
\begin{aligned}
& 4 \text { tesle }=10^{4} \mathrm{Gau} \\
& \mathrm{trg}_{\mathrm{g}} / \mathrm{cm}^{3}=0.036
\end{aligned}
\] & & & & & & & \\
\hline
\end{tabular}


Fig. 7 -9. The trpical de B-H loops of magnetic material

Choice of core material is thus based upon achieving the best characteristic for the mest critical or important design parameter, with acceptable compromises on all other parameters. Figures \(7-10\) through \(7-17\) compare the core loss of dif:erent magnetic materials as a function of flux density, frequency and material thickness.


Fig. 7-10. Design curves showing maximum core loss for 2 mil silicon


Fig. 7-11. Design curves showing maximum core loss for 12 mil silicon


ORIGINAL RAGE IS OF POOR EUALITY

Fig. 7-12. Design curves showing maximum core loss for 2 mil supermendor


Fig. 7-13. Design curves showing maximum core loss for 4 mil supermendor


Fig. 7-14. Design curves showing maximum core loss for \(2 \mathrm{mll} 50 \% \mathrm{Ni}, 50 \% \mathrm{Fe}\)


ORIGINAL PAGE L OF POOR GUALITY

Fig. 7-15. Design curves showing maximum core loss for \(2 \mathrm{mil} 48 \% \mathrm{Ni}, 52 \% \mathrm{Fe}\)


Fig. 7-16. Design curves showing maximum cox : for \(2 \mathrm{mill} 30 \% \mathrm{Ni}, 20 \% \mathrm{Fe}\)


Fig. 7-17. Design curves showing maximum core loss for ferrite

Fortunately, there is such a large choice of core sizes available (Tables 2-2 through 2-7 list only a few of the different cores that are commer cially available), that relative proportions of iron and copper can be varied over a wide range without changing the \(A_{p}\) area product. *

\section*{G. SKIN EFFECT}

It is now common practice to operate dc-to-dc converters at frequencies up to 50 kHz . At the higher irequencies, skin effect alters the predicted efficlency since the current carried by a conductor is distributed uniformly across the conductor cross-section only at dc and at low frequencies. The concentration of current near the wire surface at higher frequencies is termed the skin effect. This is the result of magnetic flux lines which circle only part of the conductor. Those portions of the cross section which are circled by the largest number of flux lines exhibit greater reactance.

Skin effect accounts for the fact that the effective alternating current resistance to direct current ratio is greater than unity. The magnitudes of these effects at high frequency on conductivity, magnetic permeability and inductance are sufficient to require further evaluation of conductor size during design. The depih of the skin effect is expressed by:
\[
\begin{equation*}
\operatorname{depth}(\mathrm{cm})=\left(6.61 / \mathrm{f}^{1 / 2}\right) \mathrm{K} \tag{7-53}
\end{equation*}
\]
in which K is a constant according to the relationship:
\[
\begin{equation*}
K=[(1 / \mu r) \rho / \rho c]^{1 / 2} \tag{7-54}
\end{equation*}
\]

\footnotetext{
*However, at frequencies above about 20 kHz , sddy current losses are so much greater than hysteresis losses that it is necessary to use very thin ( 1 and \(2 \mathrm{mil}) \mathrm{strip}\) cores.
}
in which:
```

\mur = relative permeability of conductor material (}\mu\textrm{r}=1\mathrm{ for copper and
other nonmagnetic materials)
\rho= resistivity of conductor material at any temperature
c = resistivity of copper at 20 ' C = 1.724 microhm-centimeter
K = unity for copper

```

Figures 7-18 and 7-19 below show respectively, skin depth as a function of frequency according to equation \(7-53\) above, and as related to the AWG radius, or as \(R_{a c} / R_{d c}=1\) versus frequency.*


Fig. 7-18. Skin depth versus frequency

ORIGTNAL PAGE IS OF PONR QUALITY
*The data presented is for sine wave excitation. The author could not find any data for square wave excitation.


Fig. 7-19. Skin depth equal to AWG radius versus frequency

Figure 7-20 shows how the RMS values change with different waveshaps.


ORIGINAL PAGES IS OF POOR QUALITY
Fig. 7-20. Common waveshapes, RMS values

\section*{77-35}

\section*{REFERENCE}
1. Technical Data on Arnold Tape - Wound Cover, TC-101B, Page 39, Arnold Engineer, Marengo, Ill.

\section*{APPENDIX 7.A}

\section*{TRANSFORMERS DESIGNED FOR A GIVEN REGULA'TION}

Although most transformers are designed for a given temperature rise, they can also be designed for a given regulation. The regulation and powerhandling ability of a core is related to two constants:
\[
\begin{aligned}
\mathrm{VA} & =\mathrm{K}_{\mathrm{g}} \mathrm{~K}_{\mathrm{e}} \alpha \\
\alpha & =\text { Regulation (\%) }
\end{aligned}
\]

The constant \(\mathrm{K}_{\mathrm{g}}\) is determined by the core geometry:
\[
\begin{equation*}
K_{g}=f\left(A_{c}, W_{a}, M L T\right) \tag{7.A-2}
\end{equation*}
\]

The constant \(K_{e}\) is determined by the magnetic and alectric operating conditions:
\[
\begin{equation*}
\mathrm{K}_{\mathrm{e}}^{\prime}=\mathrm{f}\left(\mathrm{f}, \mathrm{~B}_{\mathrm{m}}\right) \tag{7.A-3}
\end{equation*}
\]

The derivation of the specific functions for \(K_{g}\) and \(K_{e}\) is as follows: first assume two-winding transformers with equal primary and secondary regulation, schematically shown in Figure 7.A-1. The primary winding has a resistance \(R_{p}\) ohms, and the secondary winding has a resistance \(R_{s}\) ohms:
\[
\begin{gather*}
\left.\alpha=\frac{\Delta E_{p}}{E_{p}}(100)+\frac{\Delta E_{s}}{E_{s}}: 100\right)  \tag{7.A-4}\\
\Delta E_{p}=R_{p} I_{p}  \tag{7.A-5}\\
\Delta E_{s}=R_{s} I_{s} \tag{7.A-6}
\end{gather*}
\]


Fig. 7.A-1. Isolation tranaformer
\[
\begin{equation*}
\alpha=2 \frac{E_{p} I_{p}}{E_{p}}(100) \tag{7.A-7}
\end{equation*}
\]

Multiply the numerator and denominator by \(E_{p}\) :
\[
\begin{gather*}
\alpha=200 \frac{R_{p} I_{p}}{E_{p}}\left(\frac{E_{p}}{E_{p}}\right)  \tag{7.A-8}\\
\alpha=200 \frac{R_{p} V A}{E_{p}^{2}} \tag{7.A-9}
\end{gather*}
\]

From the resistivity formula, it is easily shown that
\[
\begin{gather*}
R_{p}=\frac{M L T N_{p}^{2}}{W_{a} R_{p}} p  \tag{7,A-10}\\
\rho=1.724 \times 10^{-6} \text { ohms } \cdot \mathrm{cm} \\
K_{p}=\text { window utilization factor (primary) }
\end{gather*}
\]

Faraday's law expressed in metric units in
\[
\begin{equation*}
E_{p}=\operatorname{KiNA}_{c} B_{m} \times 10^{-4} \tag{7.A-11}
\end{equation*}
\]
where
\[
\begin{aligned}
& K=4.0 \text { square wave } \\
& K=4.44 \text { tine wave }
\end{aligned}
\]

Substituting equation 7,4-10 and 7.A-11 for \(R_{p}\) and \(E_{p}\) in equation 7.A-12,
\[
\begin{gather*}
V A=\frac{E_{p}^{2}}{200 R_{p}} \times \alpha  \tag{7,A-12}\\
V A=\frac{\left(K f N_{p} A_{c}{ }^{B}{ }_{m} \times 10^{-4}\right)\left(K_{N N_{p}} A_{c} B_{m} \times 10^{-4}\right)}{200 \times \frac{(M L T) N_{p}^{2}}{W_{\mathrm{a}}} K_{p}} \times \alpha  \tag{7.A-13}\\
V A=\frac{K^{2} f^{2} A_{c}^{2} B_{m}^{2} W_{a} K_{p} \rho \times 10^{-10}}{M L T} \times \alpha \tag{7.A-14}
\end{gather*}
\]

Inserting \(1.724 \times 10^{-6}\) for \(\rho\)
\[
\begin{equation*}
\mathrm{VA}=\frac{0.29 \mathrm{~K}_{\mathrm{f}}^{2} \mathrm{~A}_{\mathrm{c}}^{2} \mathrm{~B}_{\mathrm{m}}^{2} \mathrm{~W}_{\mathrm{a}} \mathrm{~K}_{\mathrm{p}} \times 10^{-4}}{\mathrm{MLT}} \times \alpha \tag{7.A-15}
\end{equation*}
\]

Let
\[
\begin{equation*}
K_{e}=0.29 \mathrm{~K}_{\mathrm{f}}^{2} \mathrm{~B}_{\mathrm{m}}^{2} \times 10^{-4} \tag{7.A-16}
\end{equation*}
\]
and
\[
\begin{equation*}
K_{g}=\frac{W_{a} K_{p} A_{c}^{2}}{M L T} \quad\left[\mathrm{~cm}^{5}\right] \tag{7.A-17}
\end{equation*}
\]

The total transformer window utlization factor is then
\[
\begin{equation*}
K_{p}+K_{p}=K_{u} \tag{7.A-18}
\end{equation*}
\]
and equations 7.A-15 and 7. A-16 change to
\[
\begin{equation*}
\mathrm{K}_{\mathrm{e}}=0.145 \mathrm{~K}_{\mathrm{f}}^{2} \mathrm{~B}_{\mathrm{m}}^{2} \times 10^{-4} \tag{7.A-19}
\end{equation*}
\]
and
\[
\begin{equation*}
K_{g}=\frac{W_{\mathrm{a}} K_{\mathrm{u}} A_{c}^{2}}{M L T} \quad\left[\mathrm{~cm}^{5}\right] \tag{7.A-20}
\end{equation*}
\]

Coefficient \(K_{g}\) values for \(C\) cores, lamination, pot cores, powder cores, and tape wound cores are shown in Tables 7.B-1 through 7.B-5.

Regulation of a transformer is related to the copper loss as shown in equation 7.A-21:
\[
\begin{equation*}
a=\frac{P_{c u}}{P_{0}} \times 100 \tag{7.A-21}
\end{equation*}
\]

The copper loss in a transformer is related to the RMS current (see Chapter 3, Power Transformer Design; also see Fig. 7-20).

Many transformers such as those used in DC-AC and DC-AC power supplys and for full wave rectifiers do not have \(100 \%\) duty cycles in all windinga. Proper selection of wire size based on duty cycle is, of course, necessary The following multipliers will convert these types to a VA rating based on \(100 \%\) duty cycle in all windinge.

PRIMARY DUTY CYCLE
\begin{tabular}{rrr}
\(100 \%\) & \(50 \%\) & 1.41 \\
\(50 \%\) & \(100 \%\) & 1.41 \\
\(50 \%\) & \(50 \%\) & 1.82
\end{tabular}

SEC.
DUTYCYRLE
\(50 \%\)
\(50 \%\)

MULTIPLY REQUIRED VA BY

\section*{APPENDIX 7. B INDUCTORS DESIGNED FOR A GIVEN REGULATION}

Inductors, like transformers, are designed for a given temperature rise. They can also be designed for a given regulation. The regulation and energyhandling ability of a core is related to two constants:
\[
\begin{align*}
\text { (Energy) }^{2} & =\mathrm{K}_{\mathrm{g}} \mathrm{~K}_{\mathrm{e}} \alpha \\
\alpha & =\text { Regulation (\%) } \tag{7.B-1}
\end{align*}
\]

The constant \(\mathrm{K}_{\mathrm{g}}\) is determined by the core geometry:
\[
\begin{equation*}
K_{g}=f\left(A_{c}, W_{a}, \quad M L T\right) \tag{7,8-2}
\end{equation*}
\]

The constant \(K_{e}\) is determined by the magnetic and electric operating conditions:
\[
\begin{equation*}
K_{e}=f\left(P_{o}, B_{m}\right) \tag{7.B-3}
\end{equation*}
\]

The derivation of the specific functions for \(K_{g}\) and \(K_{e}\) is as follows for the circuit shown in Fig. 7. B-1:


Fig. 7. B-1, Output inductor
\[
\begin{aligned}
& P_{0}=I_{d c} V_{0} \\
& \alpha=\frac{I_{d c} R}{V_{0}} 100
\end{aligned}
\]
[watts] (7. B-4)
\([\%](7, B-5)\)

Inductance is equal to
\[
L=\frac{0.4 \pi N^{2} A_{c} \times 10^{-8}}{l_{g}}
\]
[henry] (7. B-6)

Flux density is equal to
\[
\mathrm{B}_{\mathrm{dc}}=\frac{0.4 \pi \mathrm{~N} \mathrm{I}}{\mathrm{dc}} \mathrm{I}_{\mathrm{g}} \times 10.4
\]
[tesla] (7. B-7)

Combining the two equations,
\[
\begin{equation*}
\frac{L}{B_{d c}}=\frac{\mathrm{NA}_{c} \times 10^{-4}}{I_{d c}} \tag{7,B-8}
\end{equation*}
\]

Solving for \(\mathrm{N}_{\text {, }}\)
\[
\begin{equation*}
N=\frac{L I_{\mathrm{dc}} \times 10^{4}}{\mathrm{~B}_{\mathrm{dc}} \mathrm{~A}_{\mathrm{c}}} \tag{7,B-9}
\end{equation*}
\]

Since the resistance squation is
\[
R=\frac{\rho N^{2} M L T}{\bar{K}_{u} W_{a}}
\]
and the regulation equation is
\[
\begin{equation*}
\alpha=\frac{I_{d c} R}{V_{0}} \times 10^{2} \tag{7,B-11}
\end{equation*}
\]

Inserting the resistance equation (7. B-11) gives
\[
\begin{aligned}
& \alpha=\frac{\mathrm{I}_{\mathrm{dc}}}{\mathrm{~V}_{\mathrm{o}}} \times \frac{\frac{\mathrm{NN}}{}{ }^{2} \mathrm{MLT}}{\mathrm{~K}_{\mathrm{u}} \mathrm{~W}_{\mathrm{a}}} \times 10^{2} \\
& N^{2}=\left(\frac{L_{1} I_{d c}}{B_{d c} A_{c}}\right)^{2} \times 10^{8} \\
& \alpha=\frac{I_{d c}}{V_{o} I_{u} W_{a}} \times\left(\frac{L I_{d c}}{P_{d c} A_{c}}\right)^{2} \times 10^{10} \\
& \alpha=\frac{I_{d c} M L T \rho\left(L I_{d c}\right)^{2}}{V_{o} K_{u} W_{a} B_{d c}^{2} A_{c}^{2}} \times 10^{10} \\
& \text { Energy }=\frac{L I_{d c}^{2}}{2} \\
& \text { [watts seconds] } \\
& \text { (7. B-16) }
\end{aligned}
\]

Multiplying the equation by \(I_{d c} / I_{d c}\) and combining,
\[
\begin{equation*}
\alpha=\frac{\left(I I_{d c}^{2}\right)^{2} P M L T \times 10^{10}}{V_{o} I_{d c} K_{u} W_{a} A_{c}^{2} B_{d c}^{2}} \tag{7.B-17}
\end{equation*}
\]
which reduces to
\[
\begin{gather*}
\alpha=\frac{(2 \text { Energy })^{2}}{P_{0} B_{d c}^{2}} \times \frac{\rho M L T}{K_{u} W_{a} \wedge_{c}^{2}} \times 10^{10}  \tag{7.B-18}\\
\rho=1.724 \times 10^{-6} o h m s \cdot \mathrm{~cm} \\
\alpha=\frac{6.89(\text { Energy })^{2}}{P_{v} B_{d c}^{2}} \times \frac{M L T}{K_{u} W_{a} A_{c}^{2}} \times 10^{4} \tag{7.B-19}
\end{gather*}
\]

Solving for nergy,
\[
\begin{gather*}
(\text { Energy })^{2}=0.145 P_{o} B_{d c}^{2} \times \frac{K_{u} W_{a} A_{c}^{2}}{M L T} \times 10^{-4} \alpha  \tag{7.B-20}\\
K_{g}=\frac{K_{u} W_{a} A_{c}^{2}}{M L T} \quad\left[\mathrm{~cm}^{5}\right] \tag{7.B-21}
\end{gather*}
\]

Ccefficient \(\mathrm{K}_{\mathrm{g}}\) values for C cores, lamination, pot cores, powder cores, and tape-wound cores are shown in Tables 7.B. 1 through 7, B. 5.
\[
\begin{gather*}
\mathrm{K}_{\mathrm{e}}=0.145 \mathrm{P}_{\mathrm{o}} \mathrm{~B}_{\mathrm{dc}}^{2} \times 10^{-4}  \tag{7.B-22}\\
\alpha_{0}=\frac{P_{\mathrm{cu}}}{P_{\mathrm{o}}} \times 100 \tag{7.B-23}
\end{gather*}
\]

The regulation of an inductor is related to the copper loss, as shown in equation 7. B-24:
\[
\begin{equation*}
\alpha=\frac{\mathrm{P}_{c u}}{\mathrm{P}_{\mathrm{o}}} \times 100 \tag{7,B-24}
\end{equation*}
\]

The copper loss in an inductor is related to the RMS current. The RMS current in a down regulator, as shown in Figure 7.B-1, is always equal to or less than \(I_{0}\) :
\[
I_{R M S} \leq I_{0}
\]
\[
(7, B-25)
\]

Table 7. B-1. Cocfficient \(\mathrm{K}_{\mathrm{g}}\) for C corea \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Core & \(10^{-3} \mathrm{~K}_{\mathrm{g}}\) & \(\mathrm{W}_{\mathrm{a}}, \mathrm{cm}^{2}\) & \(\mathrm{A}_{\mathrm{c}}{ }^{\prime} \mathrm{cm}^{2}\) & MLT, cm & \(\mathrm{G}, \mathrm{cm}\) & D, cm \\
\hline AL-2 & 6.27 & 1.006 & 0.264 & 4.47 & 1.587 & 0.635 \\
\hline AL-3 & 14.4 & 1.006 & 0.406 & 5. 10 & 1.587 & 0.952 \\
\hline AL-5 & 30.5 & 1.423 & 0.539 & 5.42 & 2.22 & 0.952 \\
\hline AL-6 & 47.8 & 1.413 & 0.716 & 6.06 & 2.22 & 1. 27 \\
\hline AL-124 & 63.1 & 2.02 & 0.716 & 6.56 & 2.54 & 1.27 \\
\hline AL-8 & 106 & 2.87 & 0.806 & 7.06 & 3.015 & 0.952 \\
\hline AL-9 & 173 & 2.87 & 1.077 & 7.69 & 3.015 & 1.27 \\
\hline AL-10 & 248 & 2.87 & 1.342 & 8.33 & 3.015 & 1.587 \\
\hline AL-12 & 256 & 3.63 & 1. 260 & 9.00 & 2.857 & 1.27 \\
\hline AL. 135 & 273 & 4.083 & 1. 260 & 9.50 & 2.857 & 1.27 \\
\hline AL-78 & 399 & 4. 53 & 1.340 & 8.15 & 5.715 & 1.91 \\
\hline AL. 18 & 530 & 6. 3 C & 1.257 & 7.51 & 3.927 & 1. 27 \\
\hline AL-15 & 648 & 5. 037 & 1.80 & 10.08 & 3.967 & 1.587 \\
\hline A.L-16 & 869 & 5.037 & 2. 15 & 10.72 & 3.967 & 1.905 \\
\hline AL-17 & 1380 & 5.037 & 2.87 & 11.99 & 3.967 & 2.54 \\
\hline AL-19 & 1600 & 6.30 & 2.87 & 12.98 & 3.967 & 2.54 \\
\hline AL-20 & 2370 & 6.30 & 3.58 & 13.62 & 3.967 & 2. 54 \\
\hline AL-22 & 2940 & 7.804 & 3.58 & 13.62 & 4.92 & 2. 54 \\
\hline AL-23 & 4210 & 7.804 & 4. 48 & 14.98 & 4.92 & 3.175 \\
\hline AL-24 & 3910 & 11.16 & 3. 58 & 14.62 & 5.875 & 2. 54 \\
\hline \multicolumn{7}{|l|}{\[
{ }^{a_{\text {Where }} K_{u}}=0.4
\]} \\
\hline
\end{tabular}

Table 7. B-2. Coefficient \(K_{g}\) for laminations \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Core & \(10^{-3} \mathrm{~K}_{\mathrm{g}}\) & \(\mathrm{W}_{\mathrm{a}}, \mathrm{cm}^{2}\) & \(A_{c}, \mathrm{~cm}^{2}\) & MLT, cm & G, cm & D, crn \\
\hline EE 3031 & 0.103 & 0.176 & 0.0502 & 1.72 & 0.714 & 0.239 \\
\hline EE 2829 & 0.356 & 0.252 & 0.0907 & 2.33 & 0.792 & 0.318 \\
\hline ET. 187 & 2.75 & 0.530 & 0.204 & 3.20 & 1. 113 & 0.478 \\
\hline EE 2425 & 8.37 & 0.807 & 0.363 & 5.08 & 1. 27 & 0.635 \\
\hline EE 2627 & 51.1 & 1.11 & 0.816 & 5.79 & 1.748 & 0.953 \\
\hline EI 375 & 63.8 & 1.51 & 0.816 & 6.30 & 1.905 & 0.953 \\
\hline EI 50 & 144 & 1.21 & 1.45 & 7.09 & 1.91 & 1.27 \\
\hline EI 21 & 181 & 1.63 & 1.45 & 7.57 & 2.06 & 1.27 \\
\hline EI 625 & 441 & 1.89 & 2.27 & 8.84 & 2.38 & 1.59 \\
\hline EI 75 & 1100 & 2.72 & 3.27 & 10.6 & 2.86 & 1.91 \\
\hline EI 87 & 2390 & 3.71 & 4.45 & 12.3 & 3.33 & 2.22 \\
\hline EI 100 & 4500 & 4.83 & 5.81 & 14.5 & 3.81 & 2.54 \\
\hline EI 112 & 8i40 & 6.12 & 7.34 & 16.0 & 4. 28 & 2.86 \\
\hline EI 125 & 14100 & 7.57 & 9.07 & 17.7 & 4.76 & 3.18 \\
\hline EI 138 & 25400 & 9.20 & 11.6 & 19.5 & 5. 24 & 3.49 \\
\hline EI 150 & 35300 & 10.9 & 13.1 & 21.8 & 5.72 & 3.81 \\
\hline EI 175 & 75900 & 14.8 & 17.8 & 24.7 & 6.67 & 4.45 \\
\hline EI 36 & 74900 & 21. 2 & 15.3 & 26.5 & 6.67 & 4.13 \\
\hline EI 19 & 135000 & 33.8 & 17.8 & 31.7 & 7.62 & 4.45 \\
\hline \multicolumn{7}{|l|}{\({ }^{\text {W Where }} \mathrm{K}_{\mathrm{U}}=0.4=\)} \\
\hline
\end{tabular}

Table 7. B-3. Coefficient \(\mathrm{K}_{\mathrm{g}}\) for pot cores \({ }^{\mathrm{a}}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Core & \(10^{-3} \mathrm{~K}_{\mathrm{g}}\) & \(\mathrm{W}_{\mathrm{a}}, \mathrm{cm}^{2}\) & \(\mathrm{~A}_{\mathrm{c}^{\prime}, \mathrm{cm}^{2}}\) & \(\mathrm{MLT}, \mathrm{cm}\) \\
\hline \(9 \times 5\) & 0.109 & 0.065 & 0.10 & 1.85 \\
\(11 \times 7\) & 0.343 & 0.095 & 0.16 & 2.2 \\
\(14 \times 8\) & 1.09 & 0.157 & 0.25 & 2.8 \\
\(18 \times 11\) & 4.28 & 0.266 & 0.43 & 3.56 \\
\(22 \times 13\) & 10.9 & 0.390 & 0.63 & 4.4 \\
\(26 \times 16\) & 27.9 & 0.530 & 0.94 & 5.2 \\
\(30 \times 19\) & 71.6 & 0.747 & 1.9 & 6.0 \\
\(36 \times 22\) & 171 & 1.00 & 2.13 & 7.3 \\
\(47 \times 28\) & 584 & 1.80 & 3.12 & 9.3 \\
\(59 \times 36\) & 1683 & 2.77 & 4.85 & 12.0 \\
\hline
\end{tabular}

Table 7. B-4. Coefficient \(K_{g}\) for powder \(\operatorname{cors}^{2}\)
\begin{tabular}{|l|l|l|l|l|}
\hline Core & \(10^{-3} \mathrm{~K}_{\mathrm{g}}\) & \(\mathrm{W}_{\mathrm{a}}, \mathrm{cm}^{2}\) & \(A_{c^{\prime}} \mathrm{cm}^{2}\) & \(M \mathrm{ML}, \mathrm{cm}\) \\
\hline 55051 & 0.901 & 0.381 & 0.113 & 2.16 \\
55121 & 4.00 & 0.713 & 0.196 & 2.74 \\
55848 & 8.26 & 1.14 & 0.232 & 2.97 \\
55059 & 17.4 & 1.407 & 0.327 & 3.45 \\
55894 & 55.3 & 1.561 & 0.639 & 4.61 \\
55586 & 77.7 & 4.00 & 0.458 & 4.32 \\
55071 & 108 & 2.93 & 0.666 & 4.80 \\
55076 & 134 & 3.64 & 0.670 & 4.88 \\
55083 & 316 & 4.27 & 1.060 & 6.07 \\
55090 & 639 & 6.11 & 1.32 & 6.66 \\
55439 & 852 & 4.27 & 1.95 & 7.62 \\
55716 & 712 & 7.52 & 1.24 & 6.50 \\
55110 & 1123 & 9.48 & 1.44 & 7.00 \\
\hline
\end{tabular}
\({ }^{a}\) Where \(K_{u}=0.4\).

Table 7. B-5. Coefficient \(K_{g}\) for tape-wound toroids \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Core & \(10^{3} \mathrm{Kg}\) & \(\mathrm{Wa}_{\mathrm{a}}, \mathrm{cm}^{2}\) & \(A_{c}, \mathrm{~cm}^{2}\) & MLT, cm \\
\hline 52402 & 0.0472 & 0.502 & 0.022 & 2.06 \\
\hline 52153 & 0.254 & 0.502 & 0.053 & 2.22 \\
\hline 52107 & 0.0860 & 0.982 & 0.022 & 2.21 \\
\hline 52403 & 0.107 & 1.28 & 0.022 & 2.30 \\
\hline 52057 & 0.456 & 1.56 & 0.043 & 2.53 \\
\hline 52000 & 1.07 & 0.982 & 0.0136 & 2.70 \\
\hline 52063 & 1.62 & 1.56 & 0.086 & 2.85 \\
\hline 52002 & 1.81 & 1.76 & 0.086 & 2.88 \\
\hline 52007 & 10.6 & 1.56 & 0.257 & 3.87 \\
\hline 52167 & 17.4 & 1.56 & 0.343 & . 23 \\
\hline 52094 & 20.8 & 1.56 & 0.386 & 4. 47 \\
\hline 52004 & 12.7 & 4.38 & 0.171 & 4.02 \\
\hline 52032 & 44.3 & 4,38 & 0.343 & 4.65 \\
\hline 52026 & 87.7 & 4.38 & 0.514 & 5.28 \\
\hline 52038 & 138 & 4.38 & 0.686 & 5.97 \\
\hline 52035 & 203 & 6.816 & 0.686 & 6.33 \\
\hline 52055 & 276 & 9.93 & 0.686 & 6.76 \\
\hline 52012 & 587 & 6.94 & 1.371 & 8.88 \\
\hline 52017 & 459 & 18.3 & 0.686 & 7.51 \\
\hline 52031 & 668 & 29.2 & 0.686 & 8.23 \\
\hline 52.103 & 1570 & 18.3 & 1.371 & 8.77 \\
\hline 52128 & 2220 & 28.0 & 1.371 & 9.49 \\
\hline 52022 & 4870 & 18.3 & 2.742 & 11.30 \\
\hline 52042 & 6790 & 27.1 & 2.742 & 12.0 \\
\hline 52100 & 18600 & 27.1 & 5.142 & 15.4 \\
\hline 52112 & 68100 & 73.6 & 6.855 & 20.3 \\
\hline 52426 & 159000 & 73.6 & 10.968 & 22.2 \\
\hline \multicolumn{5}{|l|}{\({ }^{\text {a }}\) Where \(K_{u}=0.4\).} \\
\hline
\end{tabular}

\section*{APPENDIX 7.C}

TRANSFORMER AREA PRODUCT AND GEOMETRY

The geometiy \(\mathrm{K}_{\mathrm{g}}\) of a transformer, which can be related to the area product \(A_{p}\), is derived in Chapter 7 and is shown here in equation 7. C-1. Derivation of the relationship is according to the following: Geometry \(\mathrm{K}_{\mathrm{g}}\) varies in accordance with the fifth power of any linear dimension \(n\) (denignated \(\ell^{5}\) below), whereas area product \(A_{p}\) varies as the fourth power:
\[
\begin{align*}
& K_{g}=\frac{w_{a} A_{c}^{2} K_{u}}{M L T} \\
& K_{g}=K_{10} \ell^{5} \\
& A_{p}=K_{2} \ell^{4} \\
& \ell=\left(\frac{K_{g}}{K_{10}}\right)^{0.20} \\
& \ell^{4}=\left[\left(\frac{K_{g}}{K_{i 0}}\right)^{0.20}\right]^{4}=\left(\frac{K_{g}}{K_{10}}\right)^{0.8} \\
& A_{p}=K_{2}\left(\frac{K_{g}}{K_{10}}\right)^{0.8}  \tag{7.C-6}\\
& K_{p}=\frac{K_{2}}{K_{10}^{0.8}}  \tag{7.C-7}\\
& A_{p}=K_{p} K_{g}^{0.8} \tag{7.C-8}
\end{align*}
\]

The area product/geometry relationship is
\[
A_{p}=K_{p} K_{g}^{0.8}
\]
in which \(K_{p}\) is a constant related to core configuration, shown in Table 7. C-1, which has been derived by averaging the values in Tables \(2-2\) through 2-7 (see Chapter 2) and Tables 7. B-1 through 7. B-5.

The relationship between area product \(A_{p}\) and core geometry is given in Figures \(7, \mathrm{C}-1\) through 7.C-5. It was obtained frorn the data shown in Tables 2-2 through 2-7 for area product \(A_{p}\) and Tables 7. B-1 through 7 B-5 for \(K_{g}\).

Table 7.C-1, Constant \(K_{p}\) relationship
\begin{tabular}{|c|c|}
\hline Core type & \(\mathrm{K}_{\mathrm{p}}\) \\
\hline Pot cover & 8.87 \\
\hline Powder cores & 11.8 \\
\hline Lamination & 8.3 \\
\hline C cores & 12.5 \\
\hline Tape-wound cores & \\
\hline
\end{tabular}


Fig. 7. C-1. Area product versus core geometry for pot cores


Fig. 7. C-2. Area product versus core geometry for powder cores


Fig. 7. C-3. Area product versus core geometry for C cores


Fig. 7. C-4. Area product versus core gecmetry for laminations


Fig. 7. C-5. Area product versus core geometry for tape-wound toroids

INDUCTOR DESIGN WTTH NO DC FLUX

\section*{77-35}

\section*{A. INTRODUC TION}

The design of an ac inductor is quite similar to designing a transformer. If there is no de flux in the core the design calculations are straightforward.

The apparent power \(P_{t}\) of an inductor is the VA of the inductor; that is, the excitation voltage and the current through the inductor:
\[
\begin{equation*}
P_{t}=V A \tag{8-1}
\end{equation*}
\]

\section*{B. RELAIIONSHIP OF Ap IO INDUCTOR VOLT-AMPERE CAPABILITY}

According to the newly developed approach, the volt-ampere capability of a core ie related to its area product \(A_{p}\) by an equation which may be stated as follows:
\[
\begin{equation*}
A_{p}=\left(\frac{V A \times 10^{4}}{4.44 B_{m^{f ~ K}}^{U} K_{j}}\right)^{1.14} \tag{8-2}
\end{equation*}
\]
\(K_{j}=\) current des sity coefficient (see Chapter 2)
\(i_{u}=\) window utilization factor (see Chaptex 6)
\(f=\mathrm{frequency}, \mathrm{Hz}\)
\(B_{m}=\) flux density, tesla
From the above it can be seen that factors such as flux density, window utilization factor \(K_{u}\) (which defines the maximum space which may be occupierl by the copper in the window), and the constant \(K_{j}\) (which is related to temperatuse : ise), all have an influence on the inductor area product. The constant \(K_{j}\) is a new parameter that gives the designer control of the copper loss. Derivation is set forth in detail in Chapter 2.

\section*{B. FUNDAMLNTAL CONSIDERATIONS}

The design of a linear inductor depends upon four retated factors:
(1) Desired inductance
(2) Applied Voltage
(3) Froquoney
(•) Oporating flux density
With these requirements established, the designer mast determine the maximum values for \(\mathrm{Ba}_{\mathrm{a}}\) which will not produce magnetic saturation, and make tradeoffs which will yield the highest inductance for a given volume. The core material selected determines tho maximum flus density that can be tolerated for a given design. Magnetic saturation values for different core materials are given in lable \(4-1\).
'The number of turns is calcu' fit from the Faraday law, which states;
\[
\begin{equation*}
N=\frac{E \times 10^{4}}{4.44 \mathrm{~B}_{\mathrm{m}} \mathrm{fA} \mathrm{c}} \tag{8-3}
\end{equation*}
\]

The inductance of an iron-core inductor having an air gap may be expressed \(a s\)
\[
\begin{equation*}
L=\frac{0.4 \mathrm{mN}^{2} \mathrm{~A}_{\mathrm{c}} \times 10^{-8}}{1_{\mathrm{g}}+\frac{\mathrm{m}}{\mu_{\mathrm{r}}}} \tag{henry}
\end{equation*}
\]

Inductance is dependent on the effective longth of the magnetic path which is the sum of the air pap length ( \(l_{g}\) ) and the ratio of the core mean length to relative permeability ( \(\mathrm{lm}_{\mathrm{m}} / \mu_{\mathrm{k}}\) ).

When the core air gap ( \(l_{g}\) ) is large compared to relative permeability
 substantially effect the total effective magnetic path length or the inductance.

The inductance equation then reduces to:
\[
\mathrm{L}=\frac{0.4 \pi \mathrm{~N}^{2} \mathrm{~A}_{\mathrm{c}} \times 10^{-8}}{\mathrm{l}_{\mathrm{g}}}
\]
henry (8-5)

Final determin: ztion of the air gap requires consideration of the effect of fringing flux, which is a function of gap dimension, the shape of the pole faces and the shape, size and location of the winding. Its net effect is to make the effective air gap shorter than its physical dimension.

Fringing flux decreases the total reluctance of the magnetic path and therefore increases the inductance by a factor \(F\) io a value greater than that calculated from equation (8-5). Fringing flux is a larger percentage of the total for larger gaps. The fringing flux factor is:
\[
\begin{equation*}
F=\left(1+\frac{l_{g}}{\sqrt{A_{c}}} \log _{e} \frac{2 G}{l_{g}}\right) \tag{8-6}
\end{equation*}
\]
where \(G\) is a dimension defined in Chapter 2. (Equation \(8-6\) is also valid for laminations; this equation is plotted in Figure 4-3).

Inductance \(L\) computed in equation (8-5) does not include the effect of fringing flux. The value of inductance \(L^{\prime}\) corrected for fringing flux is:
\[
L^{\prime}=\frac{0.4 \pi N^{2} A_{c} F \times 10^{-8}}{l_{g}}
\]
[henry' (8-7)

The losses in an ac inductor are made up of three components:
(1) Copper loss, \(\mathrm{P}_{\mathrm{cu}}\)
(2) Iron loss, \(\mathrm{P}_{\mathrm{fe}}\)
(3) Gap loss, \(P_{g}\)

The copper loss and iron loss have been previously discussed. Gap loss* is independert of core strip thickness and permeability. Maximum efficiency

\footnotetext{
Reference
}
is reached in an inductor, as in a transformer, when the copper loss \(P_{c u}\) and the iron loss \(P_{\text {fe }}\) are equal but only when the core gap is zero. The loss does not occur in the air gap itself, but is caused by magnetic flux fringing around the gap and re-entering the core in a direction of high loss. As the air gap increases, the flux across it fringes more and more, and some of the fringing flux strikes the core perpendicular to the laminations and sets up eddy currents which cause additional loss. Distribution of fringing flux is also affected by other aspects of core geometry, the proximity of coil turns to the core, and whether there are turns on both legs. Accurate prediction of gap loss depends on the amount of fringing flux. For laminated cores it can be estimated from
\[
P_{g}=K_{i} 2 D l_{g} f B_{m}^{2}
\]
[watts] (8-8)
\[
\begin{aligned}
\mathrm{K}_{\mathrm{L}} & =0.0388 \\
\mathrm{D} & =\text { lamination tongue width, } \mathrm{cm} \\
\mathrm{I}_{\mathrm{g}} & =\text { gap length, cm } \\
\mathrm{f} & =\text { frequency, } \mathrm{Hz} \\
\mathrm{~B}_{\mathrm{m}} & =\text { flux density, tesla }
\end{aligned}
\]

The fringing flux is around the gap and re-entering the core in a direction of high loss as shown in Figure 8-1.


Fig. 8-1. Fringing flux around the gap of an inductor designed with lamination

\section*{D. DESIGN EXAMPLE}

For a typical design example, assurne:
(1) Constructed with laminations
(2) Applied voltage, 115 V
(3) Frequency, 60 Hz
(4) Alternating current, 0.5 amps
(5) \(25^{\circ} \mathrm{Crise}\)

The design procedure would then be as follows:
Step No. 1. Calculate the apparent power \(P_{t}\) from equation 8-1:
\[
\begin{aligned}
& P_{t}=V A \\
& P_{t}=(115)(0.5) \\
& P_{t}=57.5
\end{aligned}
\]

Step No, 2. Calculate the area protiori Ap frum equation 8-2:
\[
A_{p}=\left(\frac{V A \times 10^{4}}{4.44 B_{\mathrm{m}^{\mathrm{fK}}}^{\mathrm{u}} \mathrm{~K}_{\mathrm{j}}}\right)^{1.14}
\]
\(\mathrm{B}_{\mathrm{m}}=1.2\) tes.la
\(K_{u}=0.4\) (see Chapter 6 )
\(K_{j}=366\) (see Chapter 2)
\[
\begin{aligned}
& A_{p}=\left(\frac{57.5 \times 10^{4}}{4.44(1.2)(60)(0.4)(366)}\right)^{1.14} \\
& A_{p}=17.4
\end{aligned}
\]

Step No. 3. Selecta size of lamination from Table \(2-4\) with a value \(A_{p}\) closest to the one calculated.
\[
\text { El-87 with an } A_{p}=16.5
\]

Step No. 4. Calculate the number of turns using Faraday's law, equation 8-3:
\[
\mathrm{N}=\frac{\mathrm{E} \times 10^{4}}{4.44 \mathrm{~B}_{\mathrm{m}} \mathrm{fA}_{\mathrm{c}}}
\]
'The iron cross-section \(A_{c}\) is found 7 Table 2-4:
§
\[
A_{c}=4.45
\]
\[
\left[\mathrm{cm}^{2}\right]
\]
\(\mathrm{N}=\frac{115 \times 10^{4}}{(4.44)(1.2)(60)(4.45)}\)
\[
N=808
\]
[turns]

Step No. 5. Calculate the impedance:
\[
\begin{align*}
& X_{L}=\frac{E}{\bar{I}} \\
& X_{L}=\frac{115}{0.5} \\
& X_{L}=230
\end{align*}
\]

Step No. 6. Calculate the inductance:
\[
\begin{aligned}
& L=\frac{x_{L}}{2 \pi f} \\
& L=\frac{230}{(6.28)(60)} \\
& L=0.610
\end{aligned}
\]

Step No. 7. Calculate the air gap from the inductance, equation 8-5:
\[
\begin{aligned}
& I_{g}=\frac{0.4 \pi N^{2} A_{c} \times 10^{-8}}{L} \\
& 1_{g}=\frac{(1.26)(808)^{2}(4.45)\left(10^{-8}\right)}{0.610} \\
& I_{g}=0.060
\end{aligned} \quad[\mathrm{~cm}]
\]

Gap spacing is usually maintained by inserting Kraft paper. However this paper is only available in mil thicknesses. Since \(1_{g}\) has been determined in cm , it is necessary to convert as follows:
\[
\mathrm{cn} \times 393.7=\text { mils (inch system) }
\]

Substitucing values:
\[
0.060 \times 393.7=23.6
\]

When designing inductors using lamination, it is common to place the gapping material along the mating surface between the E and \(I\). When this method of gapping is used, only half of the material is required. In this case a 10 mil and a 2 mil thickness were used.

Step No. 8. Calculate the amount of fringing flux from equation 8-6; the value for \(G\) is found in Table 7-B2;
\[
\begin{aligned}
& F=\left(1+\frac{l_{g}}{\sqrt{A_{c}}} \log _{e} \frac{2 G}{l_{g}}\right) \\
& F=\left(1+\frac{0.060}{\sqrt{4.4!}} \log _{e} \frac{2(3.33)}{0.060}\right) \\
& F=1.13
\end{aligned}
\]

After finding the fringing flux \(F\), insert it into equation \(8-7\), rearrange and solve for the orrect number of turns:
\[
\begin{aligned}
& N=\sqrt{\frac{l_{g} L}{0.4 \pi A_{c} F \times 10^{-8}}} \\
& N=\sqrt{\frac{(0.060)(0.610)}{(1.26)(4.45)(1.13) \times 10^{-8}}} \\
& N=760
\end{aligned}
\]

The design should be checked to verify that the reduction in turns does not cause saturation of the core.

Step No. 9. Calculate the current density using Table 2-1:
\[
\begin{array}{lr}
J=K_{j} A_{p}^{-0.12} & \text { ORTGNOR } \\
J=(366)(16.5)^{-0.12} & \\
J=261 & \\
J & {\left[\mathrm{amps} / \mathrm{cm}^{2}\right]}
\end{array}
\]

Step No. 10. Determine the bare wire size \(A_{w}(E)\)
\[
\begin{aligned}
& A_{w(B)}=\frac{I}{J} \\
& A_{w(B)}=\frac{0.5}{26!} \\
& A_{w(B)}=0.00192 \quad\left[\mathrm{~cm}^{2}\right]
\end{aligned}
\]

Step No. 11. Select an AWG wire size from Table 6-1, column A.
\[
\text { AWG No. } 24=0.00205 \quad\left[\mathrm{~cm}^{2}\right]
\]

The rule is that when the calculated wire size does not fall close to those listed in the table, the next smaller size should be selected.

Step No. 12. Calculate the resistance of the winding using Table 6-1, column C , and Table 2-4 for the MLT:
\[
\begin{aligned}
& \mathrm{R}=M L T \times \mathrm{N} \times(\text { column } \mathrm{C}) \times 5 \times 10^{-6} \\
& \mathrm{R}=(12.3)(760)(842.1)(1.098) \times 10^{-6} \\
& \mathrm{R}=8.64
\end{aligned}
\]
\[
[\Omega]
\]

Step No. 13. Calculate the power loss in the winding:
\[
\begin{aligned}
& P_{c u}=I^{2} R \\
& P_{c u}=(0.5)^{2}(8.54) \\
& P_{c u}=2.16
\end{aligned}
\]
[watts]

From the core loss curves (Figure 7-10), 12 mil silicon at a flux density of 1.2 tesla has a core loss of approximately 1.0 milliwatts per gram. The lamination El-87 has a weight of 481 grams:
\[
\begin{aligned}
& P_{f e}=(0.001)(481) \\
& P_{f e}=0.481
\end{aligned}
\]

Step No, 14. Calculate the gap loss from equation 8-8; the value of \(D\) is found in Table 7-B-2;
\[
\begin{align*}
& P_{g}=K_{i} 2 D I_{g} f B_{m}^{2}  \tag{watts}\\
& P_{g}=(0.0388)(4.44)(0.060)(60)(1.2)^{2} \\
& P_{g}=0.894
\end{align*}
\]

Step No. 15. Calculate the combined losses, copper, iron, and gap:
\[
\begin{aligned}
& P_{\Sigma}=P_{\mathrm{cu}}+P_{\mathrm{fe}}+P_{\mathrm{g}} \\
& P_{\Sigma}=2.16: 0.481+0.894 \\
& P_{\Sigma}=3.53 \quad \text { [watts] }
\end{aligned}
\]

In a test sample made to verify these example calculations, the measured inductance was found to be 0.592 henry with a current 0.515 ampere at 115 volt, 60 Hz , and the inductor had a coil resistance of 8.08 ohms.

\section*{77-35}

\section*{REFERENCES}
1. Ruben, L., and Stephens, D. Gap Loss in Current-Limiting Transformers. Electromechanical Design, April 1973, Pages 24-26.```

