JPL PUBLICATION 77-37

VICAR Image Processmg System
Gmde to System Use .

{NRSB—CB—15H102) VICAR IHMAGE PRUCESSIRG
SYSTEN GUIDE TO SYSTEM USE {Jet Propulsion
Lab.) 59 p

CSCL 08B

N77-28829

Unclas
G3/61 39280

SR Ty
National Aeronautrcs and
Space Admlnlstratlon

- Jet Propulsmn Laboratory

California Institute of Technology
Pasadena, Cahforma 91 103

JPL PUBLICATION 77-37

VICAR Image Processing System
Guide to System Use

Joel B. Seidman

May 1, 1977

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Prepared Under Coniract No NAS 7-100
National Aeronaufics and Space Admunistration

77-37

PREFACE

The work described in this report was performed by the Earth and Space
Sciences Division of the Jet Propulsion Laboratory.

This document is a major revision of the original issued on October 1, 1968
as an internal document and subsequently revised by H. Freiden in July 1971.
This revision describes the 0S5 version of VICAR and incorporates the descriptions
of the pre-processor (EVIL) and the functions of the post-processor (VICARDSN).

77-37

ABSTRACT

This document describes the functional characteristics and operating
requirements of the VICAR (Video Image Communication and Retrieval) system.

The information contained herein is appliicable to the version of the VICAR
system operating in conjunction with the IBM 0S and VS operating systems.

Section 1 contains an introduction to the system describing the functional
Characteristics and the basic theory of operation. A brief description of
the data flow as well as tape and disk formats is also presented.

Section 2 is a formal presentation of the control statement formats. This
section is intended to serve as a reference guide for the programmer.

Section 3 1is organized as a guide to the usage of the system. It provides
a step-by-step reference to the creation of a VICAR control card deck.
Simple exampies are employed to illustrate the various options and the
system response thereto.

iv

77-37

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0

3.0

.

—_ e b]) o —d —d
L]

. . .

.
O~ WM —

Purpose

Pre-requisite Publications
Functional Characteristics
Task Characteristics

VYTRAN Functions

VMAST and VMJC

Standard Tape Format

Standard Disk Data Set Format

LANGUAGE

.
.2
3

NN

Mo N
01

2.6

USAGE

3.1
3.2
3.3

Control Statement Format
Control Statement Functions
Control Statement Specifications

RESERVE ,BLOCK,A,B
SAVE

FIND
RELEASE
READ
WRITE,TAPE
EXEC,E
PARAMS ,P
LABEL, L
RELABEL ,R
NOTE

END

TIME
REGION

. . * . =
- » . L] - .

. . .

-
PRV S I R I S Ve W o« I [S L JN N, Q|

Ja MO

.

PPN MNMMNMNMMRINON NN
- - . - L) »
W WwWwwwWwWwWwwlwwwww

-

Restrictions
Pre-Processor Statements (EVIL)

2.5.1 DEFINE,D
2.5.2 END
2.5.3 CALL,C
2.5.4 GET,G

Post-Processor Statement

VICAR Job Set-Up
RESERVE Control Statement, The
SAVE Control Statement, The

—

R WMNMN - —

30

30
31
32

77-37

3.4 FIND Control Statement, The 33
3.5 RELEASE Control Statement, The 33
3.6 READ Control Statement, The 33
3.7 WRITE Control Statement, The 34
3.8 EXEC Control Statement, The 35
3.9 PARAMS Control Statement, The 38
3.10 LABEL Control Statement, The a0
3.11 RELABEL Control Statement, The 41
3.12 NOTE Control Statement, The 4]
3.13 END Control Statement, The a1
3.14 TIME Control Statement, The 42
3.15 REGION Control Statement, The 42
32.16 DEFINE Control Statement, The 42
3.17 CALL Control Statement, The 43
3.18 GET Control Statement, The 44
4,0 EXAMPLE JOBS 47
4.1 Example 1 a7
4,2 Example 2 47
5.0 ERRORS 48
5.1 VTRAN Errors {(First Job) 48
5.2 Execution Errors (Second Job) 4
APPENDICES
A. EVILZLIB Procedure Library 51
Maintenance Program
B. JCL Insertions in Second VICAR Job h2
TABLE

2.3.5 Tape Format Codes 14

vi

77-37

1.0 INTRODUCTION

1.1

1.2

1.3

Purpose

The VICAR system is designed to facilitate the acquisition,
digital processing and recording of image data. System
objectives include ease of operation by personnel who may

not be expert programmers as well as simplification of future
programming effort. The system was originally designed for
operation with the IBM 360/44 Programming System (44PS). This
document describes a version subsequently adapted to the IBM
0S Operating System; the version also runs properly under
0S/VS systems. It provides the necessary routines to comple-
ment the operating system and adapt it to meet the needs of
image processing.

Pre-requisite Publications

VICAR is designed so that the user needs very 1ittle knowledge
of the operating system. However, it would be helpful if the
user had available for reference the following IBM pubiications.

1.2.1 GC28-6534 “IBM System/360 Operating System: Introduction”

1.2.2 GC28-6704 “IBM System/360 Operating System: Job
Control Language Reference"

1.2.3 GC28-6631 "IBM System/360 Operating System: Messages
and Codes"

In addition, the reader will require user guides which describe
the characteristics and requirements for the various problem
programs to be executed. .

Functional Characteristics

Operation of the VICAR system is very similar ?0 that of a
standard utility program. The programmer provides a card

deck containing VICAR control statements which define the
attributes of the job including the processing @asks. A

system program VTRAN, which may be considered either as a
utility program or as a simple compiler, uses these control
statements to generate any required job control statements
as well as a system task queue. This system task queue contains
all of the data needed to execute the specified tasks.

The job control statements and system task queue are submitted
as a separate job to the operating system's internal reader.
In the second job, another system program VMAST is loaded and
remains in main storage throughout the job. VMAST, in turn,

77-37

loads a transient routine YMIC which reads the system task
queue and initiates the first task. Upon task completion,
VMJC is reloaded and the next task is initiated. When the
last task has been completed, control is returned to the
operating system for job termination.

VICAR processing is initiated by an 0S job control language
statement which invokes the VICAR cataloged procedure. This
procedure in turn executes three 0S job steps. The first
step invokes a preprocessor which scans the control statements
for preprocessor commands and translates them to one or more
non-preprocessor commands. Non-preprocessor commands are
unchanged by the preprocessor. Output from the preprocessor
is passed to the second job step which invokes the main VICAR
translator program VIRAN which generates the JCL and task
queue for the second job as described previously. The final
Jjob step of the VICAR procedure passes the JCL and task queue
to the operating system internal reader.

A separate procedure, VICARDSN, may be executed instead of
VICAR. Its function is identical to VICAR, except it adds a
post-processing step which allows VICAR to use data set names
up to 44 characters in length.

Task Characteristics

A VICAR job consists of a sequence of processing tasks. Each
task involves the execution of a program which must exist in

the VICAR program library. The processing programs communicate
with the supervisor through the system routine VMAST. This
routine supervises all of the processing program's I/0 operations.
The programs may be written in any desired programming language,
typically either Assembler Language or Fortran IV. VMAST
supports up to fourteen simultaneous I/0 files and the processing
of any tape or direct access data file may be either sequential
or random.

A processing program is required to open data sets prior to
use. In certain cases, the program may close its data sets.

If not, VICAR will automatically close any open data sets at
the end of the task. A task may unintentionally terminate
abnormally, causing the operating system to cancel the job and
provide a dump if requested. On the other hand, a task may
elect to intentionally terminate abrormally. VICAR may proceed
to the next task and continue the job, or may cance] the job,
depending on control statements.

VTRAN Functions

As mentioned, VTRAN generates any required job control state-
ments. VTRAN also generates the requisite task, parameter,
label and relabel statements which make up the task queue. 1In
addition, VTRAN prints a list of the VICAR control statements
on the system printer.

1.6

77-37

The user specifies disk data set allocation requirements

with simple RESERVE control statements, and VTRAN generates
the requisite "DD" job control statements.

The user specifies the characteristics of input and output
tapes with simple READ and WRITE control statements. VTRAN
generates the required "DD" job control statements.

The user specifies the number and order of the tasks which
are to be performed with simple EXEC control statements,
and VTRAN generates all of the necessary task statements in
the system task queue.

Parameters for the above tasks may be specified by the user,
gither with simple PARAMS control statements and free-form
parameter cards or in the EXEC control statements themselves.
In either case, VTRAN generates all of the necessary parameter
statements required in the system task queue.

In addition, where possible, VTRAN provides diagnostic
messages upon detecting errors or possible errors in the
VICAR control statements.

VMAST and VMJC

YMAST contains system service routines, and is resident in
main storage throughout the execution of all tasks. When
YMAST is initially Toaded, and at the end of subsequent
tasks, YMIC is loaded, overlaying the current processing
program. VMJC reads task, parameter, label and retabel
statements from the system task queue.

VMJC initializes control blocks (MCB's} in VMAST for each
task. Processing programs are written using data set refer-
ence numbers (1-14}. 1In initializing the MCB's, VYMJIC
establishes the linkage between these data set reference
numbers and a specific data set or device.

The processing programs, in general, expect a standard data
format for all input and output data sets. This format
consists of a set of label records followed by a number of
data records. Normaily, VMIC copies the labels from the
primary input data set to any specified output data sets. The
system label record (to be described) is updated. If the user
has specified optional user labels to be added, VMJC adds
these to the label set on the output data sets. This auto-
matic label processing may optionaily be suppressed.

1.7

77-37

" In addition, VMIC positions all input and output data sets

to a point just prior to the first data record; that is, just
following the last label record.

Parameters for a task are submitted in free-form format and
may be in one of several types (Integer, Real, Alphameric,
Hexadecimal, Literal). The parameters are stored in the

task queue in their original EBCDIC form. VMJC translates
all parameters to an internal computer representation which
the processing programs can utilize. The translated param-
eters are written temporarily into a disk data set. Process-
ing programs obtain these parameters by issuing a PARAM call
to VMAST.

After VYMJC has finished its processing, it Toads tbe process-
ing program specified for the task. This program is loaded

overlaying VMJC.

At the conclusion of a processing program task, the task
returns to VMAST. VMAST performs some minor end-of-task
processing and reloads VMIC to continue.

Standard Tape Format

A standard format has been established for both tape and disk
data sets. All of the standard VICAR processing programs are
designed to operate with this standard data set format.

Video samples are normally represented as eight-bit data

bytes. With the Data Converter Feature of the IBM 360 tape-
controlier, both seven and nine track tapes may be logically
equivalent. Each reel of tape may contain up to 99 files,
determined only by the size of the files. Each file contains
one video frame, or image, and is followed by a trailing file
mark. The last file on a reel must be followed by two trailing
file marks. .

A1l Tabels and data are recorded in an eight-bit mode, com-
patible with that specified in IBM SRL A22-6866. - Label
characters are recorded in EBCDIC. When written on 7 track
tape, the eight-bit data samples are written in a mode where
three eight-bit data bytes are recorded on tape as four
six-bit characters.

Each file consists of a VICAR label set followed by data
records. The label set consists of one or more 360-byte
records. The 360-byte Tabel records are subdivided inte
five 72-byte logical labels. The first 72-byte logical
Tabel in the label set is reserved for system use and must
contain certain specified data. Al11 subsequent logical
labels may contain variable I-D information (text) as
required.

1.8

717-37

Byte 72 of each logical label is used as a continuation. .
character and contains a 'C' to indicate the presence of
additional logical labels or an 'L' if it is the Tast such
label. Likewise, a 'C' in byte 360 indicates an additional
360-byte label record. Variabie data may be recorded’

in bytes 1 through 68. Bytes 69 through 71 are reserved for
other system indicators.

Standard Disk Data Set Format

The format of the standard disk data set is logically identi--
cal to the standard tape format described above. All records

in a direct access data set are the same length. To contain the
label records, the minimum size of the records in a disk data
set 7s 360 bytes. The maximum record size is the track size
for the storage device. The programmer may specify a record
size equal to the number of bytes in a video line or a greater
amount.

77-37

2.0 LANGUAGE

Due primarily to the implementation of the VICAR system, there are
two broad classes of VICAR control statements: standard statements
and pre-processor statements. These statements may be freely
intermixed as described subsequently. However, it will be
convenient to describe them separately. Therefore, sections 2.1-2.4
describe the standard statements, while section 2.5 describes the
preprocessor statements. In addition, there is an optional
post-processor which may be used when data set names longer than
g characters are needed. The post-processor is described in section
.6.

2.1 Control Statement Format

VICAR control statements are designed for an 80-column
punched card format. Statements may start in colummn 1 and
cannot extend past column 77,

Fach statement contains from one to ten fields. Fields are
separated by commas. A field consists of one to ten sub-
fields. Sub-fields are also separated by commas. If a field
includes more than one sub-field, the field must be enciosed
in parentheses.

Parentheses may be used 1f the field consists of only a single
sub-field. Fields and sub-fields may be surrounded by blanks.
Except where explicitly specified, sub-fields are Timited to
eight characters.

Certain statements permit a field or fields to be defaulted
(not coded). If there are additional fields, the defaulted
field must be indicated by coding a comma.

The following conventions are observed in this document.
Parameters presented in upper case characters are required
and must be coded exactly as shown.

Braces{ } indicate that a choice must be made from among the
optional parameters indicated.

Brackets[] indicate that the field or sub-field is optional.
Default parameters are indicated in the text.

An ell1psis. . . indicates that additional parameters (sub-
fields) may be coded.

2.2 Control Statement Functions

A 1ist of the control statements and a brief description of
their function follows,

1. RESERVE, BLOCK, A, B Reserve temporary direct
access storage (data sets)

77-37

2. SAVE Reserve permanent data
sets for use in a sub-
sequent job

3. FIND Access data sets created

in a previous job

4, RELEASE Delete data sets created
in a previous job

- 5. READ Specify device and data

format for an input tape

6. WRITE, TAPE Specify device and data
format for an output
tape

7. EXEC, E Specify task, input and

output data sets and
required parameters

8. PARAMS, P Define a symbolic name
for a set of parameters

9. LABEL, L Specify a Tabel to be
added to an output data
set

10. RELABEL, R Delete existing labels

and add a Tabel to an
output data set

11. NOTE Print a message on the
output Tlisting, and control
certain VICAR functions

12. END Indicate the last control
statement

13. TIME Set a Timit on job CPU
time

14. REGION Set a Timit on job main

storage utilization

Control Statement Specifications

The following specifications define control statement field
and sub-field requirements.

77-37

2.3.1 RESERVE, BLOCK, A, B

The RESERVE control statement is used to allocate
temporary disk storage space (data sets).

. No. of No. of
Operation Data Sets Length Records Volume ID
Field 1 Field 2 Field 3 Field 4 Field 5
RESERVE
BLECK s J(r1 [Lb1]) | ,nr ,[volid]
B
Data Set Names
Field 6
[, (namel.name2, . . .)]
Field Content

1 RESERVE or BLOCK or A or B

2 ﬁ_is an integer from 1 to 9 specifying the
number of data sets to be allocated.

3 r] is the record Tength (bytes per 1line).
BT is the block length. bl may be omitted in
which case VICAR will use the largest multiple
of rl not exceeding 6447. (The maximum
block Tength for a 2314 disk is 7294 bytes,
and for a 3330 disk is 13030 bytes.) -

4 nr is the number of records to be allocated
in each data set, Sufficient records for
labels should be included.

5 volid is the volume serial number of a disk

pack, for example IPLSYS. Alternatively, an
asterisk or null field may be coded, in which
case the system will be allowed to assign a
volume from the public SYSDA device pool.

77-37

Field Content

6 namel ,name2, . . . are names to be assigned
to the allocated data sets. The names may be
from one to eight characters in length. The
first character must be alphabetic. Names may
be omitted for any or all data sets. Unnamed
data sets will be used by VICAR when undefined
names appear in subsequent EXEC statements.

In this version of VICAR, BLOCK, A, and B are equivalent to
RESERVE .

2.3.2 SAVE

The SAVE cecntrol statement is used to aliocate permanent disk
storage space (data sets).

. No. of No. of
Operation Data Sets Length Records Volume ID
Field 1 Field 2 Field 3 Field 4 Field 5
SAVE oN .(r1{,b1]) ,nr s[volid]
Data Set Names
Field 6
[,(namel,name2, . . . Ll
Field Content
1 SAVE
2 n is an integer from 1 to 9 specifying the
number of data sets to be allocated.
3 rl is the record length (bytes per line).

Field

2.3.3 FIND

77-37

Content

nr is the number of records to be allocated
in each data set. Sufficient records for
Tabels must be included.

volid is the volume serial number of a disk pack,
for example IPLSYS. Alternatively the field

may be an asterisk or empty, in which case the
system will be allowed to assign a volume from
the storage SYSDA pool, and the data set will

be entered in the operating system catalog.

namel ,name?2, . . . are names to be assigned to the
allocated data sets. The names may be from

one to eight characters in length. {Names
exceeding eight characters may be employed

using the post-processor.) The first character
must be alphabetic. Although VICAR will assign
names if they are defaulted by the programmer,

it is recommended that the programmer always
assign his own names.

The FIND control statement is used to access a disk
data set created in a previous job. Its appearance is required
in order to refer to the data set in an EXEC statement.

Operation Data Set Names and Volume ID's
Field 1 Field 2
FIND »(namel,vo11,name2,v0l2, . . .)
Field Contents
1 FIND
2 namel,voll,name2,vol2, . . . are up to 5 pairs

of data set names and volume serial numbers.

The name is identical to the name specified when
the data set was allocated. The volume serial
number is that of the disk containing the data
set. Alternatively, the volume id may be entered
as an asterisk or omitted if the data set is
entered in the operating system catalog.

10

77-37

2.3.4 RELEASE

The RELEASE control statement is used to find and delete a
direct access data set created in a previous job. The
function of this statement is identical with that of the FIND
statement, except that the data set is deleted at the end

of the job.
Operation Data Set Names and Volume ID's
Field 1 Field 2
RELEASE ,(namel,voll,name2,voi2, . . .)
Field Contents
1 RELEASE
2 namel,voll,name2,vol2, . . . are up to 5 pairs

of data set names and voTume serial numbers.
The name specified is identical to the name
specified when the data set was allocated.
The volume serial number is that of the disk
containing the data set. Alternatively, the
volume jid may be an asterisk or omitted if
the data set is entered in the operating
system catalog. (Caution: if the volume serial
number is specified for a cataloged data set,
the catalog entry will not be deleted even
though the data set is.)

11

2.3.5 READ

717-37

The READ control statement is used to define the device
and data format for an input tape. It may also be used
to assign a symbolic name to the tape.

Operation Symbolic Name Tape 1D
Field 1 Field 2 Field 3
READ .dev svolser
Tape Blocking
Name Format Code Data
Fieid 4 Field 5 Field 6
,tname JNX [(r1{sb1])]
Field Contents
1 READ
2 dev should normally be an asterisk or omitted,
causing a unique tape drive to be assigned to
the tape. By. entering a symbolic name of up
to 8 characters for two or more such statements,
the same physical tape drive can be assigned
to several tapes.
3 volser is the volume serial number of the
magnetic tape reel desired. It can be up to
6 alphanumeric characters. This name will
appear in a message to the computer operator
instructing him to mount the tape.
4 tname is a symbolic name assigned to the input

tape. It may be from one to six characters in
length and the first character must be alpha-
betic. This name is used in EXEC statements to
refer to the tape.

VICAR may append a two-digit file sequence

number to the symbolic tape name to form a sym-

bolic tape file name. The resultant tape file

name will be from three to eight characters in

length depending on the Tength of the tape name.
7

If Fleld 4 is defauTted, the system will assign the tape name

INP to the input tape. WUhen using more than one READ controi

statement, caution should be observed to prevent dual specifi-
cation of the system assigned name INP.

12

Field

77-37

Contents

nx is a one- or two-character format code which
specifies the data format of the input tape.
The valid codes are listed in table 2.3.5.

If Field 5 is defaulted, the system will assign a format code

equal to 8.
b

This field is used for blocked tapes.

rl is the record length and bl is the block
length, specified in bytes. If bl is omitted,
it is assumed equal to r1. If both are omitted,
a default value of 7200 is assumed for both.

If the assumed or specified values of rl1 and

bl are equal, they need not be exact, but will

usually be treated as upper limits for the
actual sizes. In this case the actual
record/block size will usually be equal to
the number of bytes per data record as
specified in the VICAR system label, if
there is one. (Some application programs
may be written to ignore the values in this
field.)

13

77-37

Table 2.3.5
TAPE FORMAT CODES

Comments

Format Gode Description
9 These formats are logically identical, VICAR
8 Formats 9 and 6 representing nine-track tape Standard
at 800 and 1600 bpi respectively, and Formats
5 Formats 8 and 5 representing seven-track tape at
6 800 bpi and 556 bpi respectively.
8A This format is a seven-track, 800 bpi, 8-bit Used for film
data, unlabelled* tape. recorder 8-bit
data tapes.
8F These formats are all logically identical, with Used for film
5F 8F, 5F, and 2F representing seven track 800 bpi, {recorder 6-bit
556- bpij and 200 bpi respectively. The data format [data tapes.
2F is 6-bit, unlabelled.*
8L These formats are all logically identical Used for
5L 8L, 5L and 2L representing seven-track 800 bpi, obsolete
556, and 200 bpi, respectively. The data format Surveyor
2L is 6-bit with 80 character Tabels.* 6-bit data
tapes.

Further information about the tape formats is contained in the Introduction

(Section 1).

*Throughout this document, "label" means VICAR label.
It should not be confused with operating system standard labels,
which are not supported by the VICAR system.

14

2.3.6 WRITE, TAPE

77-37

. The WRITE control statement is used to define the device
and data format for an output tape. It may also be used
to assign a symbolic name to the tape. In addition, the
WRITE control statement may be used to specify symbolic
names for data sets which are to be copied to the output

tape.
Device Tape ID and

Operation Address Data Set Names

Field 1 Field 2 Field 3
!#géEE ,CuU » (volser,namel,name2, . . . }
Tape Name | Format Code Blocking
Field 4 Field 5 Field 6
» Lname » NX » {ri, b1)
Field Contents

17 WRITE or TAPE

2 cuu is the device address of a tape unit.

3 volser is the volume serial number of the
magnetic tape reel desired.' It can be up
to 6 alphanumeric characters. - This name
will appear in a message to the computer
operator instructing him to mount the tape.
namel, name2, ... are names of data sets
which are specified in Field 4 of EXEC
control statements, and are copied to the
output tape following execution of the program
named in the EXEC statement. .

4 tname is a symbolic name assigned to the output

tape. It may be from one to six characters in
length. The first character must be alphabetic.

15

2.3.7

77-37

If Field 4 is defaulted, the system will assign the tape
name QUT to the output tape. When using one or more WRITE
control statements, caution should be observed to prevent
dual specification of the system assigned name OUT.

5-6 Same as READ card.

The TAPE control statement may be used for tapes that are
both cutput and input. Its format is the same as the WRITE

control statement.

EXEC, E

The EXEC control statement is used to specify a task or a
sequence of tasks. It is also used to specify the input and
output data sets as well as the parameters required for the
specified tasks.

Program

Operation Name

Field 1 Field 2

E*]’EEECI ,pname

INPUT DATA SETS

Field 3

*

. {namel, name2, . . .)
(tname/nl-n2,n3, . . .)
(tname/nl-n2,n3,namel,name2, . . .)
(*tname/nl-n2,n3,namel,.name2, . . .)

OUTPUT DATA SETS

Field 4

*

(namel,name2, . . .)

16

77-37

QUTPUT SIZE PARAMETERS

Field 5

Ll

(s1, ss, nl, ns)
(SL=s1, SS=ss, NL=nl, NS=ns)

OPTIONAL PARAMETERS

Field &

k)

[(parami, param?, . . .)]

Fieid

Contents

EXEC or E or *EXEC or *E.

The optional asterisk (*) in this field
indicates that the task specified is one of
a sequence of tasks in a "DO group”, and is
not the last task in the sequence. See
paragraph 3.8 for a discussion of VICAR DO
groups.

pname is the name of the program to be executed.
The name is 1 to 8 alphanumeric characters,
beginning with an alphabeti¢. The program must
exist in the VICAR program library. If the
first character in the program name is the
character 'V', automatic label processing 1is
suppresseds and the system will not write a system
or user labels on any of the output data sets.

In this case, the program itself must write

any required system or user Tabels. Such programs
are normally used to process data sets or tapes
which are not in any of the standard formats.

As shown, there are several optional combina-
tions which may be used to define the input
data set field. The number and function of
the input data sets is program-dependent.

* A single asterisk is used to indicate that
the task has no input data sets.

17

Field

Note:

77-37
Contents

namel,nameZ, . . . are names of data sets and/
or tape files to be used as parallel input data
sets for the task. If a tape name is used
without a file number, VICAR will assume the
next sequential file following the Tast one
processed on that tape.

tname/nl-n2,n3, . . . A tape name followed by

a stash '/' and a set of file sequence numbers,
is used to specify multiple tasks, one for
each tape file.

tname/nl-n2,n3,namel,name2, . . . When muitiple
tasks are specified, Field 3 may also contain
one or more data set names. For each task
generated, the named data sets will be used

as parallel 1inputs.

For the preceding Field 3 formats, specification of a
tape file name (with the file number included) wiil cause
VICAR to generate a utility task which will copy the tape
file to direct access storage, performing any required
format conversion. An un-named disk data set of adequate
size must be allocated using a RESERVE or equivalent
statement, or the job will faii.

*tname/nl-n2,n3,namel,name2, . . . An asterisk
may precede a tape name or a tape file name.
This will cause the system to position the
tape at the specified file and allow the task
to read the tape directly.

Since most VICAR programs are designed to read only the standard
VICAR format, a prerequisite for the use of the direct tape
option is that the tape format is logically equivalent to the
format used for disk data sets (5, 6, 8 or 9). A

maximum of 10 input data sets/tape files may be specified.

4

* A single asterisk is used to indicate that
the task has no output data sets.

namel,name2, . . . Up to four output data sets
or tape names may be specified for a task.

The number and function of the data sets is
program-dependent.

(s1, ss, nl, ns) The output size parameters
are optional. 1If required, all four parameters
must be coded as shown, FEach parameter is a
positive integer from 1 to 9999.

18

77-37

Field Contents

(SL=s1, $S=ss, NL=nl, NS=ns) Any or all of
the size parameters may also be specified in
keyword format as shown. When keywords are
used, any or all four parameters may be coded,
and the order is of no significance.

nl and ns (number of lines and number of
samp1e57_ére the number of data records
Tpicture 1ines) and the number of bytes/record
to be processed from the input data set. s1
and ss (starting 1ine and starting sample)
are the starting data record and starting
byte in the input picture at which processing
is to begin. These parameters allow the user
to specify that a rectangular sub-segment of
the input picture is to be processed. The
exact interpretation of these parameters is
determined by the application program, and
can differ from that given here.

If field 5 is defaulted, the system will assign values of 1
to SL and SS. Values for nl and ns will be assigned equal

to the values of these parameters in the primary input data
set system label record. In this way, the output data set

will be equal in size to the input data set.

Note that tape files which do not have a VICAR Tabel are
copied to disk storage and that all input data sets processed
by a standard program have the required VICAR label.

6 (paraml,param2, . . .) are names of parameter
sets as defined in PARAMS control statements.
Optionaily, all of the types of parameters
permitted on parameter cards may be coded
providing that each individual parameter is
equal to or less than eight characters.

Note that the maximum number of subfields within a field

is limited to 10. Thus, a maximum of 10 parameters may

be coded in field 6. If the number of parameters is greater
than 10, one or more parameter sets delimited by a PARAMS
control statement must be used.

19

77-37

2.3.8 PARAMS, P

The PARAMS control statement is used to define a symbolic
name for a set of parameter cards.

Parameter

Operation Set Name

Field 1 Field 2

IPARAMSl spsname

P

Field Contents

1 PARAMS or P

2 psname is a symbolic name of from one to eight

characters.

Parameter Cards

Parameters may start in column 1 and cannot extend past
column 71. Blanks or commas are used as separators between
parameters. Blanks and commas may be used in literal
parameters which are enclosed between apostrophes.

Parameters may be continued on as wany cards as required.
No continuation character should be used in column 72. A
parameter cannot be split between cards. Parameters may

be integer, real, alphanumeric, hexadecimal, or literal,

as listed:

2.3.8.1 Integer Parameters--Positive and negative integer

parameters may consist of an optional sign digit
and up to seven decimal digits.

2.3.8.2 Real Parameters--Positive and negative real
parameters may be represented in the format
+ nl n2 ———nm.np———an + MM, (M] and M,

are both required)

or
+nln2 ---n_.n_ ---n
—~ mp r

2.3.8.3 Alphanumeric Parameters--A parameter containing

one or more alphabetic characters is padded with
blanks on the right, or truncated, to exactly
8 characters.

20

77-37

2.3.8.4 Hexadecimal Parameters--are represented by an
X and one to eight hexadecimal digits enclosed
within apostrophes. The parameter is stored
in a four-byte field padded with zeros on the
left if less than eight digits.

2.3.8.5 Literal Parameters--A character string of any
Tength up to 69, including numbers, blanks,
and special characters, may be enclosed within
apostrophes. The character string, Tess
apostrophes, will be padded on the right if
necessary to a length which is a multiple of 4.

2.3.9 LABEL, L

The LABEL control statement is used to add a Tabel of arbitrary
text up to 68 characters to an output data set of an EXEC
statement. It follows the EXEC statement to which it applies.

Data Set

Operation Name Text

Field 1 Field 2 Field 3

|LABEL| ,{]namel] stext

L L*

Field Contents

1 LABEL or L

2 name is a one to eight character symbolic

name which is used to add more than one label
record to a specific data set.

* A single asterisk is used to indicate that
the label record is to be added to the output
data sets for each task where multiple tasks
are specified.

Further information on the use of the LABEL control statement
is contained in Section 3.

3 text may consist of from one to 68 characters.

Text may not extend beyond column 71. LABEL
contrel statements cannot be continued.

21

77-37

2.3.10 RELABEL, R

The RELABEL control statement is used to delete all existing
labels and add a new Tabel record to an output data set.

] Data Set
Operation Name Text
Field 1 Field 2 Field 3
lRELABEL! ,[‘namel] ,text
R *
Field Contents
1 RELABEL or R
2 This field is identical to Field 2 in the

LABEL control statement.

3 text ‘may consist of from one to 68 characters.
Text may not extend beyond column 71. RELABEL
control statements cannot be continued.

2.3.11 NOTE

The NOTE control statement is used to print a message on
the output listing. It is also used to control certain
VICAR functions.

Operation Text
Field 1 Field 2
NOTE stext
Field Contents
1 NOTE
2 text may consist of one to 64 characters.

Certain text strings are significant to the VICAR system,
as follows:

NOTE, CONTINUE causes the system to continue executing tasks,
even if a subsequent task terminates abnormally.

22

2.3.12

77-37

NOTE, ABORT causes the job to be terminated if a subsequent
task terminates abnormally.

NOTE, ABORT and NOTE, CONTINUE may be inserted
anywhere and repeatedly as necessary in the sequence of
EXEC statements to control VICAR response to abnormal task

terminations. At the beginning of the job ABORT is 1n effect.

NOTE, WTO causes a message to be displayed to the computer
operator at the beginning of each task. The message
includes the program and job names. This feature allows a
user to follow the progress of a VICAR job in execution if
he has access to a system console.

END

The END control statement is used as a delimiter to
indicate that all control statements have been read.

Operation
Field 1
END

Field Cantents

1 END
(No additional fields are required.)

The END statement is optional.

23

2.3.13

2.3.14

77-37

TIME

The TIME control statement is used to set the maximum CPU
time allowed for the.second of the pair of VICAR jobs.
This statement has meaning only for systems with job step
timing. If no TIME statement appears, VICAR assumes
'"TIME,1439' was specified.

Maximum
Operation Time
Field 1 Field 2
TIME ,time
Fieid fontents
1 TIME
2 time is an integer giving the number of minutes
set as the time limit for the second VICAR job.
In systems with job step timing the job will
be aborted (ABEND code $322) after this interval.
REGION

The REGION control statement is used to set the size of the
region of main ‘storage to be used by the second of the pair
of VICAR jobs. The effect of exceeding the specified region
depends on the version of the operating system in use. In
MVT systems, the job will be aborted. If no REGION statement
appears, a region size of 150K is assumed by VICAR.

Maximum
Operation Storage
Field 1 Field 2
REGION »size
Field Contents
1 REGION
2 size is the requested region size in units

of 1024 bytes, specified as an integer followed
by the letter K.

24

77-37

2.4 PRestrictions

Based upon the 1imits of available main storage, there are
certain "implementation” restrictions which must be observed,

Number of Parameter Sets

The total number of parameter sets delimited by PARAMS control
statements is limited to 200.

Number of Parameter Cards

The total number of parameter cards contained in all parameter
sets delimited by PARAMS control statements is Timited to 500.

Number of Control Statements within a DO-GROUP

A pseudo DO-LCOP, herein referred to as a DO-GROUP may be used
to specify the application of several programs to a number of
files without repeating the EXEC control statements. Use of
the DO-GROUP is described in paragraph 3.8.

The total number of cards, both EXEC and LABEL control statements,
contained within a DO-GROUP is Timited to 40.

Number of System Units

The total number of disk data sets and tape units which may

be referenced within a single job is Timited to 32 or less.

If the total number of such system units, as specified by a

combination of RESERVE, SAVE, READ, WRITE, RELEASE, and FIND
control statements, is greater than 32, a diagnostic message
will be printed and the job will be-terminated.

2.5 Pre-Processor Statements (EVIL)

Pre-processor statements are those which are detected and
processed by the preprocessor step of the VICAR procedure.
There is 1ittle significance to the separate processing
except that implementation was simplified. However, the
general syntax rules of the pre-processor statements are
not always the same as for standard statements so they are
described separately.

For historical reasons, the pre-~processor is sometimes called
EVIL, and pre-processor statements are called EVIL statements.

The preprocessor statements constitute a general macro capabil-
ity within VICAR. It has found a great deal of use in
repetitive processing of large amounts of data using similar
or identical algorithms.

25

77-37

2.5.1 DEFINE, D

The DEFINE control statement introduces a body of VICAR
control statements which are to constitute a procedure

or macro. The statement names the procedure, and defines
Zero or more substitutabie character-string parameters.
The body of the procedure consists of any number of VICAR
statements following the DEFINE statement. The procedure
definition is terminated by an END statement or another
DEFINE statement. Therefore, END or DEFINE statements
may not appear in the procedure body. Except for the
search for DEFINE or END statement, the procedure body is
not scanned for validity at the time it is defined. Thus,
text which would not constitute a valid VICAR statement
may appear in a procedure.

Operation { Procedure Name Argument Argument
Field 1 Field 2 Field 3 Field 4
‘DEFINE‘ ,procname [,argument 1} | [;argument 2]

D
Field Contents
1 DEFINE or D
2 procname is the name of the procedure being

defined. Any character string is valid.

3,4,""° argument 1, argument 2, " are any number of
character string arguments. The arguments
should appear in the body of the procedure,
and will be replaced by a character string
parameter in a subsequent CALL statement.

26

2.5.2

2.5.3

77-37

END

The END control statement is used as a delimiter to terminate
a procedure definition.

Operation
Field 1
END
Field Contents
1 END

This statement is syntactically identical with the END
statement {2.3.12) which terminates a VICAR job definition.
The effect of the END statement depends on whether a
procedure is being defined.

CALL, C

The CALL statement is used to invoke a procedure which has
been previously defined using the DEFINE statement. All
statements from the procedure body will be copied into the
job stream, and substitutions of character-string parameters
will be made. CALL statements may be nested and recursive.

Operation | Procedure Parameter Parameter T
Field 1 Field 2 Field 3 Field 4
{CALL' ,procname | [;parameter 1] | [,parameter 2]
C
Field Contents
1 CALL or C
2 procname is the name of a procedure which must

be previously defined. However, the effect of
invoking an undefined procedure is specifically
defined to be null. No error messages are given
in this event,

27

77-37

Field Contents

3,4°°° parameter 1, parameter 2,°°" are character
string parameters which are to be substituted
for corresponding arguments in the DEFINE
statement. That is parameter 1 is substituted
for argument 1, parameter 2 is substituted for
argument 2, etc. If the number of parameters
does not match the number of arguments, excess
parameters will be ignored, while insufficient
parameters will be assumed to have null value.
Virtually any character string not containing a
comma is a valid parameter. Parameter strings
are delimited by the surrounding commas, and may
therefore contain leading, trailing or embedded
blanks, except that the last one may not have
trailing blanks. Null strings are valid parameters.

2.5.4 GET, G

The GET control statement is used to access one or more
sequences of statements stored on the VICAR procedure

library. These stored sequences normally, but need not,
consist of one or more procedures headed by DEFINE statements.
1t is important to understand that the GET statement does not
invoke a procedure; it merely retrieves text from the library.
A subsequent CALL statement must be used to jnvoke a procedure
which is retrieved by a GET statement. It is alsc important
to understand that the name under which the text is stored

in the library is normally, but need not be, the same as

the name of the procedure which the text defines.

Operation Text Name Text Name
Field 1 | Field 2 Field 3
iGETl stextname 1 | [,textname 2] .
Field Contents
1 GET or G
2.3,""" textname 1, textname 2,°"* are names of text

files in the VICAR procedure library.

Normally the text name is the same as the name
of procedure defined in the text. Each textname
must have been previously stored in the library.

28

77-37

2.6 Post-Processor Statement

In a large scale computer environment, the VICAR restriction
on 8-character names may become a severe burden. The optional
post-processor allows data set names up to the length Timited
by the operating system (44 characters). Within the VICAR
control statements the user employs a "dummy" name conforming
to the VICAR restriction of 8 characters. Post-processor
control statements allow the dummy name to be changed to the
actual name desired. The syntax of the post-processor control
statement is:

oldname = newname

where oldname is the dummy name conforming to the VICAR 8-character
restriction, and appearing on a SAVE, FIND or RELEASE VICAR
statement, and newname is the desired name conforming to

operating system restrictions. The equal sign is required, and

all blanks will be ignored. Post-processor control statements

can not be mixed with standard VICAR statements. They must be
proceded by special job control statements as shown in Section 3.

29

77-37

3.0 USAGE

3.1

VICAR Job Set-Up

A VICAR job is normally initiated by submitting to the
computer a card deck containing the VICAR control .statements,
and the job controil statements which cause the operating
system to give control to VICAR. The VICAR job has the
following form.

//jobname JOB . .

VICAR .
/! EXEC | y1canpsy | DISP=SHR]

#<EVIL2>

VICAR control statements (including EVIL)

//VTR2.SYSIN bD *

post-processor statements

An optional job termination card with // in columns 1-2
and blanks in columns 3-72 may be used at the end. The
"//VTRZ...." card and post-processor statements may be
included only if VICARDSN is used. The optional parameter
DISP=SHR, if used, allows permanently allocated data sets
to be processed by two or more VICAR jobs concurrently.
Normally only reading of those data sets should be done

in such jobs.

The JCL statements are processed by the operating system
job control processor and invoke a cataloged procedure,
VICAR or VICARDSN. These procedures contain job control
statements which define necessary data sets and execute
the VICAR system programs.

The cataloged procedure first invokes the TTM program which
reads the #<EVIL2> statement. This statement accesses a
TTM procedure from the TTM Tibrary which in turn performs
the pre-processor scan, processing the specific pre-
processor statements, and copying the others unchanged.

30

3.2

77-37

VTRAN will then proceed to read the VICAR control
statements in the job deck. A1l VICAR control statements
are listed as well as written into a direct access data
set. VTRAN will then read the VICAR control statements
from direct access storage and generate the needed job
control and task queue statements.

The RESERVE Control Statement

The user must incTude one or more RESERVE control
statements if it is necessary to allocate direct access
storage space. BLOCK, B, and A are all synonyms for
RESERVE. A formal description of the fields in the
RESERVE control statement is presented in paragraph
2.3.1. The number and attributes of the disk data sets
which are to be reserved will depend upon the specific
requirements of the job.

A data set is thought of as a place where a picture
can be stored. When first allocated, the data set
is "empty". A picture is stored in the data set
by an appliication program as the resuit of an

EXEC statement. When a picture is stored in a

data set which already contained a picture, the
new picture replaces the old picture; the old
picture is lost. The user's main concern when
allocating a data set is its size (number of
records, and number of bytes/record). The user
must know the sizes, or at least an upper bound

on the sizes, of the pictures with which he is
working. Any picture which is stored in a data
set should not exceed the size of the data set.

If the user tries to store a picture in a data set
which is too small, the job will usually be aborted.
(If only the number of records is too small, the
operating system will attempt to allocate additional
disk space for the data set equal to 20% of the
original number of records. If the attempt is
successful, the job will continue, but may be using
disk space wastefully.)

Normally the user will not specify the data set
block size, but will allow VICAR to calculate it.
However, he should be aware that, usually, the
larger the block size, the more main storage the
programs which process the data set reguire.

31

3.3

77-37

Some'examples follow. >
RESERVE 5 5, 1024 , 500 , SPOOL1

Th1s statement will reserve five data sets on disk volume
SPOOLT. Each data set will consist of five-hundred records
of 1024 bytes each. Optional names have not been specified
and the system will therefore assume that these data sets
are scratch and available for assignment by VICAR if
required.

RESERVE , 3 , (600 , 7200) , 700 , * , (A, B, C)}

This statement will reservé three data sets on disk volumes
assigned by the operating system. Each data set will consist
of 700 records of 600 bytes each. The records will be
grouped into blocks of 7200 bytes each. The data sets will
be named A, B and C. The explicit assignment of optional
names will cause the system to treat these data sets
differently than-the scratch data sets in the previous
example. To modify a named data set, the programmer must
specify the ‘data ‘set name in the output data set f1e1d

(field 4) of an EXEC control statement.

RESERVE , 2 , 1024 , 1024 , IPL304 , (X04 ', Y07)

This statement will reserve -two data sets on disk volume
IPL304: The data sets will be named X04 and YO7. The names
consist of the tape names X and Y with a two-digit file
sequence number appended thereto. Again, the system will
treat these data sets differently than scratch data sets.

IT a-tape-file hame' is specified in the input data set
field (field 3) of -an EXEC control statement, the system

will generate a utility task to copy the spec1f1ed tape-

file into 'the reserved data set, where it will remain for
the remainder of the JOb

The SAVE -Control Statement'

The user may include one or more SAVE control statements
to preserve disk data sets created in this job for a
subsequent job. ‘An’ example’ follows:

SAVE ; 3-, 600, 700 , IPL302 , (A, B, C)

The above statement will reserve three ‘data sets), named

A, B and C, on disk volume IPL302. A1l three data sets will
be preserved for use in a subsequent job. A second example is:

SAVE , 1, (1000, 7000) , 800 , * , JMS.GI

32

3.4

3.5

3.6

77-37

The above statement will allocate a permanent data set
named JMS.G1 on a storage disk in the SYSDA pool. The
data set will be cataloged in the operating system
catalog. The data set will have 800 records of 1000 bytes
each. There will be 7 records per physical block.

The FIND Control Statement

The user may include one or more FIND control state-
ments to access disk data sets created in a previous job.

An example follows:.
FIND , { A , IPLSYS, JNS.G1 , *)

Data set A on disk vaolume IPLSYS and cataloged data set
JMS.G1 are assumed to have been created in a previous job.
The above statement will cause the system to access these
data sets and will enable the user to reference the data
sets in EXEC statements by their symbolic names.

The RELEASE Control Statement

The user may include one or more RELEASE control
statements to delete disk data sets created in a previous
job. An example follows:

RELEASE , (A , IPLSYS , C , IPLSYS)

The above statement will cause the system to access data
sets A and C on disk volume IPLSYS and will enable the
user to reference the data sets in EXEC statements

by their symbolic names. The data sets will be deleted at
the end of the job.

The READ Control Statement

The user must include a READ control statement for each
input tape. The READ control statement is used to define
the device, data format, and to assign a symbolic name to
the tape. An example follows:

READ , * , SCROOT1 , X , 8F

The above statement will cause VICAR to access tape SCROO1
and assign the symbolic name X to this tape. In addition,
VICAR will record the format of this tape as 8F. A second
example follows:

READ , 71 , SAVE1 , Y , 8

READ , 71 , SAVE2 , Y , 5A , (510, 10400)

33

3.7

77-37

The first statement will cause VICAR to access tape SAVEI]
and assign the symbolic name Y to this tape. VICAR will
record the format of this tape as 8 (the default format).
The second statement will cause VICAR to access tape SAVE2
and assign the symbolic name Z to this tape. 1In addition,
VICAR will record the format of this tape as 5A and will
record a record length of 510 bytes and a block size of
10400 bytes. Since the same symbolic device name was used
in field 2 of both statements, the same physical tape drive
will be used for both tapes. This of course implies both
tapes are not needed simultaneously for the same task.

(The YICAR program VMOUNT provides an alternate method of
sharing a tape drive among several tapes if the tape formats
are identical.)

The WRITE Control Statement

The user must include a WRITE control statement for each
output tape. The WRITE control statement is used to define
the device, data format, and to assign a symbolic name to
the tape. In addition, the WRITE control statement may be
used to specify symbolic names for disk data sets which are
to ﬁe copied to the tape. The keyword TAPE is equivalent
to WRITE.

An example follows:
WRITE , * , (IPsZ81,C,D,E,F), Z , 8F

This statement will cause VICAR to access tape IPSZ81 to
assign the symbolic name Z to this tape. The system will
record the format of this tape as 8F. In addition, the
data set names C, D, E and F will cause VICAR to create a
utility task to copy each of these data sets to the output
tape. These utility tasks will be created each and every
time that any of the above symbolic names are specified in
the output data set field of an EXEC control statement.

A second example follows:

WRITE , * , { JBSO05, AA, DD) , Z , 8F

EXEC , FILTER , { X/ 1-10) , AA , , P1

The above EXEC control statement will create 10 tasks, each
of which will filter one frame. The output of each task

will be written in disk data set AA. Specification of the
data set name AA in the WRITE control statement will cause

34

3.8

77-37

the system to_create a utility task immediately after each
of the filter tasKs, copying data set AA to tape JBS005 in
format 8F. The format of the disk data set AA is equivalent
to format 8 (the standard format }. The utility task,
therefore, will perform the necessary conversion to produce
an output tape file with format 8F.

The EXEC Control Statement

The user must include EXEC control statements to define the
image processing tasks desired. ‘

A single EXEC control statement may be used to define one
task or a sequence of tasks. In addition, the EXEC control
statement is also used to specify input and output data sets,
size parameters, and other variable parameters required for
the specified tasks. The following paragraphs will explain
the effect of the various options available with the EXEC
contral statement.

A formal description of the fields in the EXEC control state-
ment is presented in paragraph 2.3.7.

The EXEC control statement has a variety of options. The
following paragraphs illustrate the use of these options and
defines the system response thereto. An example follows:

EXEC, GEN, * , AA , (NL=300 , NS=400)

This statement will generate a single task using the program
GEN. The asterisk in the input data set field (field 3)
specifies that the task has no input data sets. The output
data set is named AA and the size is specified as 400 sampies
by 300 Tines.

If the first character in the program name is the character
'V', automatic label processing is suppressed. The system
will not write a system or user labels on any of the output
data sets. In this case, the program itself must write any
required system or user labels.

Another example follows:

EXEC , LIST , AA, * ,, PLIST

This statement again will generate a single task using the
program LIST. The asterisk in the output data set field

(field 4) specifies that the task has no tape or disk output
data sets.

35

77-37

Another example follows:
EXEC,PICAVE,(A,B,C),AA

This statement will also generate a single task using the
program PICAVE. The task will have three paraliel input
data sets, A, B, and C. The output data set is AA.

Data set A (the first data set in the input data set field)
is the primary input data set. The system will copy the
Tabels from the primary input data set to A to the output
data set AA, while adding a "history 1abel" containing the
program name, PICAVE.

Another example follows:

READ , * , XYZABC , X , 8F
A,T1, 1000, 1000 , *
EXEC , FILTER , (X/1-5,7-10,12) , A, , WEIGHTS

The ahbove statements will generate ten tasks using the program
FILTER. The input data sets for each task will be X01--X05,
X07--X10, and X12. These input data seis may be direct access
data sets or they may be tape files. Note, the system appends
a two-digit sequence number to the name (X). In general,
the above configuration is employed with tape files. As
shown, a READ control statement with the tape name X is re-
quired. VICAR will also automatically generate a utility

task prior to each FILTER task. This utility task will copy
the specified tape file to disk, performing the necessary
format conversion.

The programmer must reserve disk data sets which the system
can use. For the above example, the programmer has reserved
one scratch (unnamed) data set which will be reused by the
system. Another alternative would be to reserve named data
sets with names matching the above files { je. X01, X02, X03,
etc.). The system will always direct the utility task out-
put to an appropriately named data set, if available.

Another examplie follows:
READ , * , SCROO1 , X
READ , * , SCROO2 , Y

B, 2,500, 1000, *, A
EXEC , ICOR , (*Y / 1-20 , X03) , A, , ICORPAR

36

77-37

The above statements will generate 20 tasks using the program
ICOR. The asterisk preceding the tapename Y indicates the
direct tape input option. VICAR will Tink the primary input
data set for the ICOR program to tape SCRO02. On the other
hand, the secondary input data set (tape file X03) is not
preceded by an asterisk. The system will, therefore, generate
a utility task to copy file 3 from tape SCROOT into a disk
data set using one of the data sets allocated in the "B"
statement. Once this file is on disk, it will then be
available for each of the 20 ICOR tasks.

To use a tape file directly, without copying it to disk, its
format must be exactly equivalent to that of a disk file, As
shown above, the formats on the READ control statements have
been defaulted indicating Format 8. Since both tapes are
Format 8, it would have been possible to include an asterisk
prior to X03 in the input data set field. However, considering
tape rewind time, it might be preferable to have the secondary
input file X03 on disk, since it is used in each of the 20

ICOR executions,

Another example follows:

EXEC , STRETCH , A , B, , { LINEAR , 98 , 371)

The above statement shows how the user may include parameters

in field 6 of the EXEC control statement. In this case,

the restriction is that the field may contain up to 10 subfields
separated by commas, and each subf1e1d may contain a maximum

of eight characters.

Alternative1y, one or more symbolic parameter set names may

be included in field 6 of the EXEC control statement. In this
case, the symbolic name must be specified in a PARAMS control
statement followed by one or more parameter cards. (See

paragraph 3.9.) The system will incorporate the specified
parameter sets into the task queue.

An example follows:

PARAMS , P2

555 666 777 989.05

PARAMS , P4

' THIS IS A SPECIAL TITLE FOR A SPECIAL TASK '
EXEC , PROGA , A , B , , (P2, P4)

37

3.9

77-37

As shown, two parameter sets, P2 and P4 are specified in the
above EXEC control statement. The parameters will be presented
to the program in the order specified, P2 followed by P4.

Remember that each program has unique requirements for the
parameters which may or must be specified, as well as the number
of input and output data sets and their data content. Programs
may have restrictions on the sjze of pictures which can be
processed., This information must be obtained from the user
guide for the individual program.

The EXEC control statement is normally used to specify one
task, or a sequence of tasks where the same program is applied
to a number of files. It is sometimes necessary to apply a
sequence of programs to each of a number of files. To
accomplish this, the programmer must code an asterisk prior
to the keyword EXEC in the first EXEC control statement of a
pseudo-D0O LOOP. This statement must specify a set of files
in its primary input data set field. A1l subsequent tasks
in the DO group except the last must also have an asterisk
coded prior to the EXEC keyword. The Tast task in the DO
group is indicated by the absence of the asterisk.

An example follows:

*EXEC , ICOR , (Y/1-14 , X01)', A, . Pl
*EXEC , FILTER , A , B

*EXEC , LIST , B , *, , P 2

EXEC , MASK , B , Z , , P 3

The above example illustrates the EXEC control statements
required to sequence fourteen selected files through 4
programs. As shown, each ICOR task has a secondary input
data set X01, the calibration input. Also, the output of
ICOR, data set A is the input to the FILTER tasks. The
output of FILTER, data set B is the input to both LIST and
MASK.

The PARAMS Control Statement

The user may include PARAMS control statements to define
symbolic names for sets of parameter cards.

An example follows:

38

77-37

PARAMS , P1

b55 666 777 888

21 22 23 24 25 26

PARAMS , P2

222 333 444 555

31 32 33 34 35 36

EXEC , PROGA , A, B, , P1

EXEC , PROGA , A , B , , P2

In the above example, the first EXEC control statement
includes the symbolic name Pl in the parameter field, while
the second EXEC control statement contains P2.

The system, upon recognizing that P1 and P2 have been
specified 1in PARAMS control statements, will incorporate the
proper parameter set for each task.

Parameter cards are described in paragraph 2.3.8. In general,
parameters are free-form and blanks or commas may be used as

separators between parameters. Blanks and commas may be used
in 1iteral parameters which are enclosed between apostrophes.

Note the slight difference in parameter format from those

in EXEC statements, which allows a maximum of 10 parameters,
each of 8 characters or less, and separated by commas.

Some examples of valid parameters are as follows<?

Integer: -47 385 25 +377 -2880

Real: +244.07 -377.002 -980.0E-02

Alphanumeric: ADD999 A4725 888ABC COPY

Hexadecimal: X'FF040402' X'07'

Literal: ' THIS MAY BE ANY CHARACTER STRING 123456789,$%%, '

A set of parameters is terminated by any statement which
VICAR recognizes as a VICAR statement. There is an inherent
ambiguity in this situation, which can cause trouble if the
first parameter on a card is the same as a Tegal VICAR verb.

39

3.10

77-37

Users should avoid having the first parameter on a card
match a Tegal VICAR verb; since many keyword parameters
are order independent, this can usually be accomplished.
(Application programmers should avoid designing programs
with 1§ga1 parameters that can be mistaken for VICAR
verbs.

The LABEL Control Statement

The user may include LABEL control statements to add
outfggEiabe1 records to the output data sets. L is equivalent
to L.

In general, LABEL control statements foliow the EXEC control
statement with which they are associated. However, in the
case where several tasks are generated by a single EXEC
control statement, certain restrictions must be observed.
An example follows:

EXEC , PROGA, A , B , , P1

LABEL , B , THIS IS LABEL RECORD NUMBER ONE

LABEL , B , THIS IS LABEL RECORD NUMBER TWO

LABEL , B , THIS IS LABEL RECORD NUMBER THRELE

Since the above EXEC control statement specifies only a
single task, all of the above label records are added to
the label set of data set B.

Another exampie foilows:

EXEC , PROGA , { TX / 1-15) , A, , P1

LABEL , * , LABEL RECORD FOR ALL 15 FILES

The asterisk in the second field of the Tabel statement
causes VICAR to add the same label to the image written on
data set A by each of the 15 tasks. In the case where an

. EXEC control statement specifies several tasks, LABEL control

statements may be included to add a unique Tabel record to
each specified file. The LABEL control statements in a DO
group must follow the first EXEC control statement in the
DO-group.” For example: '

40

3.1

3.13

77-37

*EXEC , PROGA , (TX / 2-5) , A

LABEL,, THIS IS THE LABEL RECORD FOR FILE 2
LABEL,, THIS IS THE LABEL RECORD FOR FILE 3
LABEL,, THIS IS THE LABEL RECORD FOR FILE 4
LABEL,, THIS IS THE LABEL RECORD FOR FILE 5
*EXEC , PROGB , A , B

*EXEC , PROGC , B , C

*EXEC , PROGD , C , D

*EXEC , PROGE , D , E

EXEC , PROGF , E , Y

As shown, the above label statements will generate a label
for each file. Note that the LABEL control statements
within the DO-group foliow the first EXEC control statement,
In the present version of VICAR, LABEL control statements
may not be used after subsequent EXEC control statements
within a DO-group,

The RELABEL Control Statement

The user may include RELABEL control statements to
add a Tabel to the output data sets while deleting all
the existing labels.

Use and placement of the RELABEL control statements is
exactly the same as for the LABEL control statement
described in paragraph 3.10.

The NOTE Control Statement

The user may include NOTE control statements to print a
message on the output listing.

In addition, the NOTE control statement with certain keywords
will cause specific system actions. For example, ABORT will
cause VICAR to respond to a deliberate abnormal end by a
subsequent task with job termination and a dump if requested.
Two examples follow:

NOTE , ABORT

NOTE, THIS IS A MESSAGE FOR THE OUTPUT LISTING.

The END Control Statement

The user may include an END control statement to indicate
that all control statements have been read. The END
statement is optional.

41

77-37

3.14 The TIME Control Statement

-

3.15

3.16

The user may include a TIME control statement to Timit

the CPU time which will be used in the second VICAR job. 1In
systems with job step timing the job wiil be aborted if the time
is exceeded. At most one TIME statement may appear in a

VICAR job. If none appears, a time 1imit of 1439 minutes is
used by VICAR.

An example follows:
TIME , 30

In this exampie, the job will be aborted when it has used more
than 30 minutes of CPU time.

The REGION Control Statement

The programmer may include a REGION control statement to
Timit the size of the main storage region which will be used
by the second VICAR job. The job may be aborted when it
attempts to use more than this amount of storage, depending
on the version of the operating system. At most one REGION
statement may appear in a VICAR job. If none appears, a size
of 150K is assumed.

An example follows:
REGION , 200K
In this example, a region size of 200K is being requested.

It is extremely difficult to predict the region size which wiltl
be needed for a given execution of a given VICAR program. It
depends on many variables, some of which are beyond the control
of the programmer, such as data set block sizes and operating
system resident routines. As a rule of thumb, 150K will usually
be adequate. An increased region size is indicated if a VICAR
job abends with a user code of 69 or a system code indicating
insufficient storage.

4

The DEFINE Control Statement

The user may include DEFINE control statements to

introduce and name a procedure, or macro, consisting of

any VICAR statements except DEFINE and END. The DEFINE
statement may also Tist character string parameters which

are to be replaced when the procedure is invoked by a sub-
sequent CALL statement. Procedure definjtions must precede
procedure invocation. Once defined, the procedure definition
is effective until re-definition of the same procedure name
in another DEFINE statement, or until the end of the job.

42

3.17

77-37

An example follows:

D,STRCLIP,FILE,BITS

E,SAR, (*X/FILE),A

E,STRETCH,A,B,, (CLIP,BITS)
D,STRLIN,LOWDN ,HIDN ,NLX,NSC
E,STRETCH,A,B,, (LINEAR,LOWDN,HIGHDN)
L, ,LINEAR{LOWDN~HIGHDN)
E,BOXFLT,B,C,, (NLW,NLX,NSW,NSX)

L,, LOW PASS FILTER (NLX BY NSX)

END

Two procedures are defined, one called STRCLIP, and the other
called STRLIN. The first is terminated by the DEFINE statement
introducing the second. STRCLIP has two arguments, FILE and
BITS, and STRLIN has four arguments, LOWDN, HIDN, NLX, and NSC.
STRCLIP consists of two EXEC statements wh1ch w11] have the
effect of executing the two appiication programs SAR and

STRETCH. The syntax of the "E,SAR,..." is not valid in that

the characters following the "/" should be a one or two character
number. Also, the STRETCH user guide would show that the parameter
following the keyword "CLIP" should be a number. These apparent
errors are acceptable provided that when the procedure STRCLIP

is invoked by a CALL statement, the arguments FILE and BITS are
replaced by numbers.

The CALL Control Statement

The user may include CALL statements that invoke a procedure
and specify its arguments. The procedure must have been
previously defined, either by its appearance in the sequence
of VICAR control statements, or by being obtained from the
procedure Tibrary using the GET statement. The effect of the
CALL statement is similar to invoking a macro in assembly
language. The arguments provided in the CALL statement

are substituted for the corresponding (positional) arguments
in the procedure definition. The expanded procedure text

is then substituted for the CALL statement in the sequence
of VICAR statements. Of course the original procedure

definition is unchanged and is.available for repeated CALLing
with different arguments.

If the name of the procedure in the CALL statement has not
been previously defined, the effect is to ignore the statement.
Even though there is a procedure 1ibrary, there is no
automatic searching of the library. The situation is not
considered an error and no diagnostic message is produced.

For this reason speliing errors in procedure names can

have startiing effects which may be hard to diagnose. The
user must keep this feature of procedure usage in mind and

use appropriate care.

43

77-37

As an example, suppose the example in Section 3.16 has
appeared in the VICAR job. The following statements
then appear.

CALL ,STRCLIP,1,3
C,STRLIN,50,150,3,3

The effect of these statements is the same as if the
following sequence had appeared in their place.

E,SAR, {*X/1).A
E,STRETCH,A,B,,(CLIP,3)
E,STRETCH,A,B, ,{LINEAR,50,150)
L,,LINEAR(50-150)
E,BOXFLT,B,C,,(NLW,3,NSH,3)
{.,LOWPASS FILTER (3 BY 3}

The GET Control Statement

The user may include GET controi statements to retrieve

sets of VICAR statements which have previously been saved

on the VICAR (EVIL) procedure library. (The process of
storing text on the procedure 1ibrary is not done by VICAR
control statements, but by a TTM procedure. It is described
in Appendix A.) Because the CALL statement does not

cause automatic searching of the library, each procedure
CALLed, but not defined in the job, must be explicitly
retrieved from the procedure Tibrary by means of the GET
statement.

Although the procedure 1ibrary stores arbitrary sets of
statements, normal practice is that each set of text
constitutes one procedure, beginning with a DEFINE
statement and ending with an END statement. Each set of
statements stored in the EVIL 1ibrary is stored under a
unique name by which it js retrieved, the name specified in
the GET statement. Normal practice is to have the name

by which a set of statements is stored equal to the name of
the procedure that is defined by that set of statements.
Thus to CALL the procedure STRCLIP and STRLIN which have
been pgevious1y stored on the library, the following statement
is used.

GET,STRCLIP,STRLIN

It is not unreasonable nor uncommon to store under a single
name the definitions of two or more procedures which are
commonly used together. This simplifies usage by requiring
the user to GET only one set of text from the 1ibrary,

even though a number of procedures are to be used.

a4

2.18.1

77-37

The DO Library Procedure

The DO procedure provides an iterative
capability which is much more powerful than the
simple DO-group described in Section 3.8.

The 50 procedure allows the user to repeatedly
invoke any other defined procedure, while the
first argument to the other procedure takes on,
in sequence, each of a set of values specified.
The DO procedure is on the procedure 1ibrary and
may be invoked after it has been retrieved with
a GET statement.

The general form of the DO procedure usage is
as follows:

CALL, DO, procname, arglist, arg2, arg3, ...

procname is the name of a previously defined

procedure. arg2, arg3, etc are arbitrary

character strings not containing commas, arglist

is a specification of a 1ist of arguments of the form:
argl/argl */argl''/...

If the argument 1ist consists of positive integers
in ascending numerical sequence, then

argl/arai+]/argi+2/argt+3/.../argl’
may alsoc be written
argl - argl!'

The alternative forms may be mixed to produce a 1ist
of the following or similar form:

argl/argl' - argl''...
The effect of the DO procedure is to invoke the
procedure with name procname a number of times equal
to the number of items specified by arglist.

CALL ,procname,argl,arg2,arg3,...

CALL ,procname,argl’ ,arg2,arg3,...
CALL ,procname,argl”,arg2,arg3,...

or

45

77-37

CALL,procname,argl ,arg2,arg3,...
CALL ,procname,argl+],arg2,arg3,...
CALL ,procname,argi+2,arg2,arg3,...

The second and subsequent arguments to the

specified procedure are always the same, and

are arg2, arg3, etc. The first time the specified
procedure is CALLed, its first argument is the first
item in the 1ist specified by arglist. The second
time it is CALLed, its first argument is the

second item in the Tist, and so on until the last
item in the Tist has been used.

As an example, suppose the procedure STRCLIP has
been defined as in Section 3.16, and the following
statements then appear.

G, DO
CALL, DO, STRCLIP, 3-5/7, 3

The effect of these statements is as if the
following had appeared.

E,SAR,{*X/3) ,A
E,STRETCH,A,B,,(CLIP,3)
E,SAR, (*X/4) ,A
E,STRETCH,A.B,,{CLIP,3)
E,SAR, (*X/5) ,A
E,STRETCH,A,B, ,(CLIP,3)
E.SAR, (*X/7),A
E.STRETCH,A,B, ,{CLIP,3)

In this case the same result may also be obtained
using the DO-group.

*E,SAR,(*X/3-5,7) ,A
E,STRETCH,A,B,,(CLIP,3)

Consider another example.

G,DO

D,STRF,LO

E,STRETCH,A,B,, (LINEAR,LO,150)
E,FOTO,B,*

END

CALL,DO, STRF, 90/100/110

46

77-37. «-

These Statements-are equivalent-to the
following. ’

E,STRETCH,A,B, .(LINEAR,90,150)
E,FOTO,B,*

E,STRETCH,A,B, ,(LINEAR,100,150)
E,FOTO,B,*
E,STRETCH,A,B,,{LINEAR,110,150)
E,FOTO,B ,*

4.0 EXAMPLE JOBS

This section consists of 1istings of actual VICAR job decks.
4.1 Exampie 1

//FILTER J0B (JBS51,41)
// EXEC VICAR

#<EVIL2>

READ,*,T-125,X,8
WRITE,*,SCRXYZ,VFC,8F
BLOCK,2,1000,1000,*%,(A,B)
PARAMS,LPAR

NPHIST 101,101,30,30
*E,SAR, (*X/1-3) ,A
-*E,LIST,A,*,,LPAR
*E,FILTER,A,B
E,LIST,B,,,LPAR
E,MASK,B,VFC, ,COMP

Three files on tape T-125 are to be filtered and masked
(formatted for film recording). In addition, a portion
of each picture is to be listed before and after
filtering. The SAR program is used to copy each file
from tape to a disk data set.

4.2 Example 2

-
m

B (JUBS51,41)+* TEST VMAST?

o
=l
L T,

e pd QOO == MmN

W Tedee ow ow NV SN

o 4 PO W =ATNVINDN ey
N et VDI
(g lvnlufele]
NOOULIS O

MIT* £Q « =~ONNMNOO
0 [g et ™

O W DSOS -
e -
Dree « « DT

NN

® e e e v N OO DONNIN -
“
n
-

OUTIMMIM T e DTN I I B e e 30,
TR TR e

L4 BE B BB B B N R BB B A A A

OO T T T et "D) ik o ot i ot ot [T
O === D Z U D DU St S

T MM DNMe - » 49 o M
) e 22O DA M NN e Ny

oy
-

5.0

5.1

77-37

ERRORS

In a system as complex to use as VICAR, error situations occur
frequently. This section gives some guidance on what to do if
a problem occurs.

Errors may be categorized as occurring during the first job
or the second job. Errors which occur during the first job
are almost invariably due te incorrect syntax in one or more
VICAR statements. These are caught by the program VTRAN
during its execution, and a helpful message is printed.
Normally the second job is suppressed. Ervrors which occur
during the second job usually result in abnormal termination
of the job, accompanied by a user or system "completion code,®
A user code means the error was detected by the VICAR system,
while a system code means the error was detected by the operating
system.

VTRAN Errors (First Job)

The most common kinds of errors occurring during the first VICAR
Jjob are given below, along with some suggested actions to take.

PARENTHESIS ERROR
Parentheses are unbalanced.

TOO MANY FIELDS
The maximum number of fields in a VICAR statement is 8. Look

for an extra comma.

TOO MANY SUB-FIELDS

The maximum number of sub-fields within any one field is 10.
Sub-field delimiters are comma and slash. Look for an extra
comma.

ILLEGAL VTRAN CARD
There is an un-classifiable syntax error.

PARAMETER CARD PUNCHED IN COLUMN 72
Column 72 of a parameter card must be blank.

LABEL AT END OF BO-GROUP

LABEL IN MIDDLE OF DO-GROUP

Only the first task of a DO-group may be labeled. Use of
preprocessor features may allow the desired processing without
using a DO-group.

ILLEGAL SIZE FIELD
Look for an extra oy missing comma if the size field Tooks correct.

NUMBER FIELD ON RESERVE CARD NOT BETWEEN 1 and 9

The field referred to js the second field on a RESERVE A, B,
BLOCK or SAVE statement

48

5.2

77-37

MORE THAN 8 TAPE DATA SETS REQUESTED
The total number of READ, WRITE and TAPE statements may not
exceed 8. (Implementation restriction)

TOO MANY PARAMETER SETS SPECIFIED
The total number of PARAMS and P statements may not exceed 200.
(Implementation restriction.)

NO DATA SET AVAILABLE FOR QUTPUT

A "*" may have been unintentionally omitted from a tape name

in an EXEC statement. The use of the "tape-file no." form of a
data set name without a "*" requires the definition of a suitable
data set with a RESERVE-type statement.

LABEL CARD ENCOUNTERED UNEXPECTEDLY
The data set name field may have been omitted from a LABEL or
RELABEL statement.

Executior Errors (Second Job)

Errors resulting in abnormal termination during the second job
may be either user errors or program errors. Program errors
usually must be soived by the application programmer responsibie
for the program which terminated. User errors can be corrected
by changes to VICAR statements in the user's job. Distinguishing
between user errors and program errors can be quite difficult,
and may ultimately depend on the intentions of the programmer as
to how his program should work.

The most common ABEND completion codes associated with VICAR jobs
are given below, along with possible user errors. (Since this

is not a programmer's guide, the associated possible program
errors are not given.)

USER 69
There was insufficient main storage available for buffers. Try
a larger region size.

USER 71

An attempt was made to write a record larger than the allocated
record size. Be sure the data set record size specified is
large enough to accommodate the picture being processed.

USER 72
End of extent on output. Not normally a user error. (This code
has not been observed with this version of VICAR.)

USER 73
Write error under unusual conditions. Not normally a user error.
(This code has not been observed with this version of VICAR.)

A9

77-37

USER 240

This code is produced when the ABEND is intercepted by the
Fortran run-time routine. The actual ABEND code is found
in another printed message.

USER 324

The application program intentionally terminated abnormally, and
"NOTE, ABORT" was in effect. There should be an associated
explanatory message produced by the program. Thé predominant
reason is an error in parameters specified for the program. Be
sure the spelling of names of parameter sets on the EXEC
statement matches the spelling on the PARAMS statement.

USER 999
The requested program was not in the program library or was not
executable. Check correct spelling.

USER 1111

The op code in PS44 SYC simulation routine is illegal. This is
not a user error. (This code has not been observed with this
version of VICAR.)

USER 1112
The VICAR system index for a data set. Be sure all the required
data sets have been specified for the program.

USER 1200

The SYSOUT system file cannot be opened. This is not a user
error. (This code has not been observed with this version of
VICAR.)

USER 1492
The VICAR data set reference number is illegal. This is not
normally a user error.

USER 1970

There 1is an error in the task 1list passed to the second VICAR
job. This would occur if an error occurred in the first job

but the second job was not suppressed. Look for a syntax or

usage error in the VICAR control statements.

USER 1980

The VICAR system encountered an i/o error in processing parameters
or data set Tabels. Be sure the correct data sets and tapes are
specified as input files, that the correct tape format is specified
and that the tape does not have a permanent i/o error in the label
data.

USER 2400

The maximum number of tape units requested exceeds the implementation
Timit of 8. This error is normally caught in the first job.

50

77-37.

Appendix

A. EVILZLIB Procedure Library Maintenance Program

To Be Supplied

51

77-37

Appendix

B. JCL Insertions in Second VICAR Job

It is occasionally necessary to modify JCL statements generated
by the VICAR system. JCL procedure statements may be overridden
using standard operating system methods; see Ref. 1.2.2. These
methods cannot be applied to the second VICAR job because the
JCL is generated by a program, VIRAN. However, JCL statements
can be inserted in the second job in either of two locations,
just before and just after the "..EXEC PGM=VMAST" statement.
This is accomplished by supplying the statements to be

inserted as either of two data sets processed by the first job.

To insert statements before the EXEC statement, the following
sequence is used.

//VTR.FTO8F001 DD DATA

JCL stateﬁents to be inserted

/*

To insert statements after the EXEC statement, the foliowing
sequence is used

//YTR,FTI0F00T DD DATA —

JCL stateﬁents to be inserted

/*

Either of the above sequences is placed in the job deck following
the VICAR control statements, and preceding the "// VTR2,SYSIN"
statement if any. If both sequences are used, the "FT08" sequence
precedes the "FT10" sequence.

As an example, JCL insertions may be used to obtain a core dump
after a job ABEND. The following sequence inserted after the
VICAR control statements provides a dump.

//VTR.FTTOF00T DD DATA
//SYSUDUMP DD SYSOUT=A

/*

52

77-37

Similarly, a private program library will be searched ahead
of the standard library if the following sequence is included.

//VTR.FT10F0C0T DD DATA

//STEPLIB DD DSN=privatelibrary,DISP=SHR
/! DD DSN=IPL1.SDSRUN,DISP=SHR
/*

K3 NASA—JPL—Coml LA Calif

