
JPL PUBLICATION 77-37

VICAR Jmage Processing $ystemGuide to System Use,.

(NASA-CR-154102) VICAR IMAGE PROCESSING N77-28829

SYSTEM GUIDE TO SYSTEM USE (Jet Propulsion

Lab.) 59 p CSCL 09B

Uclas
G3/61 39280

SRECEIVED.
'dj-4 -7t '

N ationa Aeronautics-and

,Space Adfinistratibn -

Jet Propulsibn, Laboratory

California Institute 6f-Technolegy

Pasadena, Cahfornia91103

JPL PUBLICATION 77-37

VICAR Image Processing System
Guide to System Use

Joel B. Seidman

May 1, 1977

National Aeronautics and

Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California 91103

Prepared Under Contract No NAS 7-100

National Aeronautics and Space Administration

77-37

PREFACE

The work described inthis report was performed by the Earth and Space

Sciences Division of the Jet Propulsion Laboratory.

This document is a major revision of the original issued on October 1,1968

as an internal document and subsequently revised by H. Freiden in July 1971.

This revision describes the OS version of VICAR and incorporates the descriptions

of the pre-processor (EVIL) and the functions of the post-processor (VICARDSN).

iii

77-37

ABSTRACT

This document describes the functional characteristics and operating

requirements of the VICAR (Video Image Communication and Retrieval) system.

The information contained herein is applicable to the version of the VICAR

system operating in conjunction with the IBM OS and VS operating systems.

Section 1 contains an introduction to the system describing the functional

raIteristics and the basic theory of operation. A brief description of

the data flow as well as tape and disk formats is also presented.

Section 2 is a formal presentation of the control statement formats. This

section is intended to serve as a reference guide for the programmer.

Section 3 is organized as a guide to the usage of the system. It provides

a step-by-step reference to the creation of a VICAR control card deck.

Simple examples are employed to illustrate the various options and the

system response thereto.

iv

77-37

TABLE OF CONTENTS

1.0 INTRODUCTION 1

1.1 Purpose 1

1.2 Pre-requisite Publications 1

1.3 Functional Characteristics 1

1.4 Task Characteristics 2

1.5 VTRAN Functions 2

1.6 VMAST and VMJC 3

1.7 Standard Tape Format 4

1.8 Standard Disk Data Set Format 5

2.0 LANGUAGE 6

2.1 Control Statement Format 6

2.2 Control Statement Functions 6

2.3 Control Statement Specifications 7

2.3.1 RESERVE,BLOCK,A,B 8

2.3.2 SAVE 9

2.3.3 FIND 10

2.3.4 RELEASE 11

2.3.5 READ 12

2.3.6 WRITE,TAPE 15

2.3.7 EXEC,E 16

2.3.8 PARAMS,P 20

2.3.9 LABEL,L 21

2.3.10 RELABEL,R 22

2.3.11 NOTE 22

2.3.12 END 23

2.3.13 TIME 24

2.3.14 REGION 24

2.4 Restrictions 25

2.5 Pre-Processor Statements (EVIL) 25

2.5.1 DEFINE,D 26

2.5.2 END 27

2.5.3 CALL,C 27

2.5.4 GET,G 28

2.6 Post-Processor Statement 29

3.0 USAGE 30

3.1 VICAR Job Set-Up 30

3.2 RESERVE Control Statement, The 31

3.3 SAVE Control Statement, The 32

v

77-37

3.4 FIND Control Statement, The 	 33

3.5 RELEASE Control Statement, The 	 33

3.6 READ Control Statement, The 	 33

3.7 WRITE Control Statement, The 	 34

3.8 EXEC Control Statement, The 	 35

3.9 PARAMS Control Statement, The 	 38

3.10 LABEL Control Statement, The 	 40

3.11 RELABEL Control Statement, The 	 41

3.12 NOTE Control Statement, The 	 41

3.13 END Control Statement, The 	 41

3.14 TIME Control Statement, The 	 42

3.15 REGION Control Statement, The 	 42

3.16 DEFINE Control Statement, The 	 42

3.17 CALL Control Statement, The 	 43

3.18 GET Control Statement, The 	 44

4.0 EXAMPLE JOBS 	 47

4.1 Example 1 	 47

4.2 Example 2 	 47

5.0 ERRORS 	 48

5.1 VTRAN Errors (First Job) 	 48

5.2 Execution Errors (Second Job) 	 49

APPENDICES

A. 	EVIL2LIB Procedure Library 51

Maintenance Program

B. 	JCL Insertions in Second VICAR Job 52

TABLE

2.3.5 Tape Format Codes 	 14

vi

77-37

1.0 INTRODUCTION

1.1 Purpose

The VICAR system is designed to facilitate the acquisition,

digital processing and recording of image data. System

objectives include ease of operation by personnel who may

not be expert programmers as well as simplification of future

programming effort. The system was originally designed for

operation with the IBM 360/44 Programming System (44PS). This

document describes a version subsequently adapted to the IBM

OS Operating System; the version also runs properly under

OS/VS systems. It provides the necessary routines to comple­
ment the operating system and adapt it to meet the needs of

image processing.

1.2 Pre-requisite Publications

VICAR is designed so that the user needs very little knowledge

of the operating system. However, it would be helpful if the

user had available for reference the following IBM publications.

1.2.1 GC28-6534 "IBM System/360 Operating System: Introduction"

1.2.2 	GC28-6704 "IBM System/360 Operating System: Job

Control Language Reference"

1.2.3 	GC28-6631 "IBM System/360 Operating System: Messages

and Codes"

In addition, the reader will require user guides which describe

the characteristics and requirements for the various problem

programs to be executed.

1.3 Functional Characteristics

Operation of the VICAR system is very similar to that of a

standard utility program. The programmer provides a card

deck containing VICAR control statements which define the

attributes of the job including the processing tasks. A

system program VTRAN, which may be considered either as a

utility program or as a simple compiler, uses these control

statements to generate any required job control statements

as well as a system task queue. This system task queue contains

all of the data needed to execute the specified tasks.

The job control statements and system task queue are submitted

as a separate job to the operating system's internal reader.

In the second job, another system program VMAST is loaded and

remains in main storage throughout the job. VMAST, in turn,

77-37

loads a transient routine VMJC which reads the system task

queue and initiates the first task. Upon task completion,

VMJC is reloaded and the next task is initiated. When the

last task has been completed, control is returned to the

operating system for job termination.

VICAR processing is initiated by an OS job control language

statement which invokes the VICAR cataloged procedure. This

procedure in turn executes three OS job steps. The first

step invokes a preprocessor which scans the control statements

for preprocessor commands and translates them to one or more

non-preprocessor commands. Non-preprocessor commands are

unchanged by the preprocessor. Output from the preprocessor

is passed to the second job step which invokes the main VICAR

translator program VTRAN which generates the JCL and task

queue for the second job as described previously. The final

job step of the VICAR procedure passes the JCL and task queue

to the operating system internal reader.

A separate procedure, VICARDSN, may be executed instead of

VICAR. Its function is identical to VICAR, except it adds a

post-processing step which allows VICAR to use data set names

up to 44 characters in length.

1.4 Task Characteristics

A VICAR job consists of a sequence of processing tasks. Each

task involves the execution of a program which must exist in

the VICAR program library. The processing programs communicate

with the supervisor through the system routine VMAST. This

routine supervises all of the processing program's I/0 operations.

The programs may be written in any desired programming language,

typically either Assembler Language or Fortran IV. VMAST

supports up to fourteen simultaneous I/0 files and the processing

of any tape or direct access data file may be either sequential

or random.

A processing program is required to open data sets prior to

use. In certain cases, the program may close its data sets.

If not, VICAR will automatically close any open data sets at

the end of the task. A task may unintentionally terminate

abnormally, causing the operating system to cancel the job and

provide a dump if requested. On the other hand, a task may

elect to intentionally terminate abnormally. VICAR may proceed

to the next task and continue the job, or may cancel the job,

depending on control statements.

1.5 VTRAN Functions

As mentioned, VTRAN generates any required job control state­
ments. VTRAN also generates the requisite task, parameter,

label and relabel statements which make up the task queue. In

addition, VTRAN prints a list of the VICAR control statements

on the system printer.

2

77-37

The user specifies disk data set allocation requirements

with simple RESERVE control statements, and VTRAN generates

the requisite "DD" job control statements.

The user specifies the characteristics of input and output

tapes with simple READ and WRITE control statements. VTRAN

generates the required "DD" job control statements.

The user specifies the number and order of the tasks which

are to be performed with simple EXEC control statements,

and VTRAN generates all of the necessary task statements in

the system task queue.

Parameters for the above tasks may be specified by the user,

either with simple PARAMS control statements and free-form

parameter cards or in the EXEC control statements themselves.

In either case, VTRAN generates all of the necessary parameter

statements required in the system task queue.

In addition, where possible, VTRAN provides diagnostic

messages upon detecting errors or possible errors in the

VICAR control statements.

1.6 VMAST and VMJC

VMAST contains system service routines, and is resident in

main storage throughout the execution of all tasks. When

VMAST is initially loaded, and at the end of subsequent

tasks, VMJC is loaded, overlaying the current processing

program. VMJC reads task, parameter, label and relabel

statements from the system task queue.

VMJC initializes control blocks (MCB's) in VMAST for each

task. Processing programs are written using data set refer­
ence numbers (1-14). In initializing the MCB's, VMJC

establishes the linkage between these data set reference

numbers and a specific data set or device.

The processing programs, in general, expect a standard data

format for all input and output data sets. This format

consists of a set of label records followed by a number of

data records. Normally, VMJC copies the labels from the

primary input data set to any specified output data sets. The

system label record (to be described) isupdated. If the user

has specified optional user labels to be added, VMJC adds

these to the label set on the output data sets. This auto­
matic label processing may optionally be suppressed.

3

77-37

In addition, VMJC positions all input and output data sets

to a point jus't prior to the first data record; that is,just

following the last label record.

Parameters for a task are submitted in free-form format and

may be in one of several types (Integer, Real, Alphameric,

Hexadecimal, Literal). The parameters are stored in the

task queue in their original EBCDIC form. VMJC translates

all parameters to an internal computer representation which

the processing programs can utilize. The translated param­
eters are written temporarily into a disk data set. Process­
ing programs obtain these parameters by issuing a PARAM call

to VMAST.

After VMJC has finished its processing, it loads the process­
ing program specified for the task. This program is loaded

overlaying VMJC.

At the conclusion of a processing program task, the task

returns to VMAST. VMAST performs some minor end-of-task

processing and reloads VMJC to continue.

1.7 Standard Tape Format

A standard format has been established for both tape and disk

data sets. All of the standard VICAR processing programs are

designed to operate with this standard data set format.

Video samples are normally represented as eight-bit data

bytes. With the Data Converter Feature of the IBM 360 tape­
controller, both seven and nine track tapes may be logically

equivalent. Each reel of tape may contain up to 99 files,

determined only by the size of the files. Each file contains

one video frame, or image, and is followed by a trailing file

mark. The last file on a reel must be followed by two trailing

file marks.

All labels and data are recorded in an eight-bit mode, com­
patible with that specified in IBM SRL A22-6866. -Label

characters are recorded in EBCDIC. When written on 7 track

tape, the eight-bit data samples are written in a mode where

three eight-bit data bytes are recorded on tape as four

six-bit characters.

Each file consists of a VICAR label set followed by data

records. The label set consists of one or more 360-byte

records. The 360-byte label records are subdivided into

five 72-byte logical labels. The first 72-byte logical

label in the label set is reserved for system use and must

contain certain specified data. All subsequent logical

labels may contain variable I-D information (text) as

required.

4

77-37

Byte 72 of each logical label is used as a continuation_

character and contains a 'C'to indicate the presence of

additional logical labels or an 'L'if it is the last such

label. Likewise, a rc' in byte 360 indicates an additional

360-byte label record. Variable data may be recorded'

in bytes 1 through 68. Bytes 69 through 71 are reserved for

other system indicators.

1.8 Standard Disk Data Set Format

The format of the standard disk data set is logically identi-.

cal to the standard tape format described above. All records

in a direct access data set are the same length. To contain the

label records, the minimum size of the records in a disk data

set is 360 bytes. The maximum record size is the track size

for the storage device. The programmer may specify a record

size equal to the number of bytes in a video line or a greater

amount.

5

77-37

2.0 LANGUAGE

Due primarily to the implementation of the VICAR system, there are

two broad classes of VICAR control statements: standard statements

and pre-processor statements. These statements may be freely

intermixed as described subsequently. However, it will be

convenient to describe them separately. Therefore, sections 2.1-2.4

describe the standard statements, while section 2.5 describes the

preprocessor statements. In addition, there is an optional

post-processor which may be used when data set names longer than

8 characters are needed. The post-processor is described in section

2.6.

2.1 Control Statement Format

VICAR control statements are designed for an 80-column

punched card format. Statements may start in column 1 and

cannot extend past column 71.

Each statement contains from one to ten fields. Fields are

separated by commas. A field consists of one to ten sub­
fields. Sub-fields are also separated by commas. If a field

includes more than one sub-field, the field must be enclosed

in parentheses.

Parentheses may be used if the field consists of only a single

sub-field. Fields and sub-fields may be surrounded by blanks.

Except where explicitly specified, sub-fields are limited to

eight characters.

Certain statements permit a field or fields to be defaulted

(not coded). If there are additional fields, the defaulted

field must be indicated by coding a comma.

The following conventions are observed in this document.

Parameters presented in upper case characters are required

and must be coded exactly as shown.

Braces{) indicate that a choice must be made from among the

optional parameters indicated.

Brackets[] indicate that the field or sub-field is optional.

Default parameters are indicated in the text.

An ellipsis. . . indicates that additional parameters (sub­
fields) may be coded.

2.2 Control Statement Functions

A list of the control statements and a brief description of

their function follows.

1. RESERVE, BLOCK, A, B Reserve temporary direct

access storage (data sets)

77-37

2. 	SAVE Reserve permanent data

sets for use in a sub­
sequent job

3. 	FIND Access data sets created

in a previous job

4. 	RELEASE Delete data sets created

in a previous job

5. 	READ Specify device and data

format for an input tape

6. WRITE, TAPE 	 Specify device and data

format for an output

tape

7. EXEC, E 	 Specify task, input and

output data sets and

required parameters

8. PARAMS, P Define a symbolic name

for a set of parameters

9. LABEL, L Specify a label to be

added to an output data

set

10. RELABEL, R 	 Delete existing labels

and add a label to an

output data set

11. NOTE 	 Print a message on the

output listing, and control

certain VICAR functions

12. 	 END Indicate the last control

statement

13. 	 TIME Set a limit on job CPU

time

14. 	 REGION Set a limit on job main

storage utilization

2.3 Control Statement Specifications

The following specifications define control statement field

and sub-field requirements.

7

77-37

2.3.1 RESERVE, BLOCK, A, B

The RESERVE control statement is used to allocate

temporary disk storage space (data sets).

Operation No. of Length No. of Volume ID
Data Sets 	 Records

Field 1 Field 2 Field 3 Field 4 Field 5

BLOCK ,n ,(rl [,bl]) ,nr ,[volid]

Data Set Names

Field 6

[,(namel,name2, . . .

Field 	 Content

1 	 RESERVE or BLOCK or A or B

2 	 n is an integer from 1 to 9 specifying the

number of data sets to be allocated.

3 	 rl is the record length (bytes per line).

bT is the block length. bl may be omitted in

wich case VICAR will use-the largest multiple

of rl not exceeding 6447. (The makimum

block length for a 2314 disk is 7294 bytes,

and for a 3330 disk is 13030 bytes,.)

4
 nr is the number of records to be allocated

in each data set. Sufficient records for

labels should be included.

5 	 volid is the volume serial number of a disk

pa-ck, for example IPLSYS. Alternatively, an

asterisk or null field may be coded, in which

case the system will be allowed to assign a

volume from the public SYSDA device pool.

8

77-37

Field 	 Content

6 	 namel,name2, . . . are names to be assigned
to the allocated data sets. The names may be

from one to eight characters in length. The

first character must be alphabetic. Names may

be omitted for any or all data sets. Unnamed

data sets will be used by VICAR when undefined

names appear in subsequent EXEC statements.

In this version of VICAR, BLOCK, A, and B are equivalent to

RESERVE.

2.3.2 SAVE

The SAVE control statement is used to allocate permanent disk

storage space (data sets).

Operation No. of No. of Volume ID

Data Sets Length Records

Field 1 Field 2 Field 3 Field 4 Field 5

SAVE ,n ,(rl[,bl]) ,nr ,[volid]

Data Set Names

Field 6

[,(namel,name2, .. .

Field 	 Content

I 	 SAVE

2 	 n is an integer from 1 to 9 specifying the

number of data sets to be allocated.

3
 rl is the record length (bytes per line).

9

77-37

Field 	 Content

4
 nr is the number of records to be allocated

in each data set. Sufficient records for

labels must be included.

5
 vo-lid is the volume serial number of a disk pack,

for example IPLSYS. Alternatively the field

may be an asterisk or empty, inwhich case the

system will be allowed to assign a volume from

the storage SYSDA pool, and the data set will

be entered in the operating system catalog.

6 	 namel,name2, . . . are names to be assigned to the
allocated data sets. The names may be from
one to eight characters in length. (Names
exceeding eight characters may be employed
using the post-processor.) The first character

must be alphabetic. Although VICAR will assign

names if they are defaulted by the programmer,

it is recommended that the programmer always

assign his own names.

2.3.3 FIND

The FIND control statement is used to access a disk

data set created in a previous job. Its appearance is required

in order to refer to the data set in an EXEC statement.

Operation 	 Data Set Names and Volume ID's

Field 1 Field 2

FIND ,(namel,vol1,name2,vol2, . . .

Field 	 Contents

1 	 FIND

2 	 namel,vollname2,vol2, . . . are up to 5 pairs
of data set names and volume -serial numbers.
The name is identical to the name specified when
the data set was allocated. The volume serial

number is that of the disk containing the data

set. Alternatively, the volume id may be entered

as an asterisk or omitted if the data set is

entered in the operating system catalog.

10

77-37

2.3.4 RELEASE

The RELEASE control statement is used to find and delete a

direct access data set created in a previous job. The

function of this statement is identical with that of the FIND

statement, except that the data set is deleted at the end

of the job.

Operation 	 Data Set Names and Volume ID's

Field 1 	 Field 2

RELEASE ,(namel,voll,name2,vol2, . . .

Field 	 Contents

1 	 RELEASE

2 	 namel,voll,name2,vol2, . . . are up to 5 pairs

of data set names and volume serial numbers.

The name specified is identical to the name

specified when the data set was allocated.

The volume serial number is that of the disk

containing the data set. Alternatively, the

volume id may be an asterisk or omitted if

the data set is entered in the operating

system catalog. (Caution: if the volume serial

number is specified for a cataloged data set,

the catalog entry will not be deleted even

though the data set is.)

11

77-37

2.3.5 READ

The READ control statement is used to define the device

and data format for an input tape. It may also be used

to assign a symbolic name to the tape.

Operation 	 Symbolic Name Tape ID

Field 1 Field 2 Field 3

READ ,dev ,volser

Tape 	 Blocking

Name Format Code Data

Field 4 Field 5 Field 6

,tname ,nx [, (rl[,bll)]

Field 	 Contents

1 	 READ

2 	 dev should normally be an asterisk or omitted,

causing a unique tape drive to be assigned to

the tape. By entering a symbolic name of up

to 8 characters for two or more such statements,

the same physical tape drive can be assigned

to several tapes.

3 	 volser is the volume serial number of the

magnetic tape reel desired. It can be up to

6 alphanumeric characters. This name will

appear in a message to the computer operator

instructing him to mount the tape.

4 	 tname is a symbolic name assigned to the input

tape. It may 	be from one to six characters in

length and the first character must be alpha­
betic. This name is used in EXEC statements to

refer to the tape.

VICAR may append a two-digit file sequence

number to the symbolic tape name to form a sym­
bolic tape file name. The resultant tape file

name will be from three to eight characters in

length depending on the length of the tape name.

/

If Field 4 is defaulted, the system will assign the tape name

INP to the input tape. When using more than one READ control

statement, caution should be observed to prevent dual specifi­
cation of the system assigned name INP.

12

77-37

Field 	 Contents

5 	 nx is a one- or two-character format bode which

specifies the data format of the input tape.

The valid codes are listed in table 2.3.5.

If Field 5 is defaulted, the system will assign a format code

equal to 8.

6 	 This field is used for blocked tapes.

rl is the record length and bl is the block

iength, specified in bytes. Tf bl is omitted,

it is assumed equal to rl. If both are omitted,

a default value of 7200 is assumed for both.

If the assumed or specified values of rl and

bl are equal, 	they need not be exact, but will

usually be treated as upper limits for the

actual sizes. In this case the actual

record/block size will usually be equal to

the number of 	bytes per data record as

specified in the VICAR system label, if

there is one. (Some application programs

may be written to ignore the values in this

field.)

13

77-37

Table 2.3.5

TAPE FORMAT CODES

Format Code Description Comments

9 These formats are logically identical, VICAR

8 Formats 9 and 6 representing nine-track tape Standard

at 800 and 1600 bpi respectively, and Formats

5 Formats 8 and 5 representing seven-track tape at

6 800 bpi and 556 bpi respectively.

8A This format is a seven-track, 800 bpi, 8-bit Used for film

data, unlabelled* tape. recorder 8-bit

data tapes.

8F These formats are all logically identical, with Used for film

5F 8F, 5F, and 2F representing seven track 800 bpi, recorder 6-bit

556-bpi and 200 bpi respectively. The data format data tapes.

2F is 6-bit, unlabelled.*

8L These formats are all logically identical Used for

5L 8L, 5L and 2L representing seven-track 800 bpi, obsolete

556, and 200 bpi, respectively. The data format Surveyor

2L is 6-bit with 80 character labels.* 6-bit data

tapes.

Further information about the tape formats is contained in the Introduction

(Section 1).

*Throughout this document, "label" means VICAR label.

It should not be confused with operating system standard labels,

which are not supported by the VICAR system.

14

77-37

2.3.6 WRITE, 	TAPE

The WRITE control statement is used to define the device

and data format for an output tape. Itmay also be used

to assign a symbolic name to the tape. In addition, the

WRITE control 	statement may be used to specify symbolic

names for data sets which are to be copied to the output

tape.

Device 	 Tape IDand

Operation 	 Address Data Set Names

Field 1 Field 2 	 Field 3

TAPEI 	 ,cuu (volser,namel,name2,

Tape Name Format Code Blocking

Field 4 Field 5 	 Field 6

tname , nx 	 (rl, bl)

Field 	 Contents

1 	 WRITE or TAPE

2 	 cuu isthe device address of a tape unit.

3 	 volser isthe volume serial number of the

magnetic tape reel desired.' It can be up

to 6 alphanumeric characters. This name

will appear in a message to the computer

operator instructing him to mount the tape.

namel, name2, ... are names of data sets

whih are specified in Field 4 of EXEC

control statements, and are copied to the

output tape following execution of the program

named in the EXEC statement.

4
 tname is a symbolic name assigned to the output

tape. Itmay be from one to six characters in

length. The first character must be alphabetic.

15

77-37

If Field 4 is defaulted, the system will assign the tape

name OUT to the output tape. When using one or more WRITE

control statements, caution should be observed to prevent

dual specification of the system assigned name OUT.

Same as READ card.
5-6

The TAPE control statement may be used for tapes that are

both output and input. Its format is the same as the WRITE

control statement.

2.3.7 EXEC, E

The EXEC control statement is used to specify a task or a

sequence of tasks. It is also used to specify the input and

output data sets as well as the parameters required for the

specified tasks.

Operation Program

Name

Field 1 Field 2

[*] IEXECJ ,pname

INPUT DATA SETS

Field 3

(namel,, name2, . .)
(tnamenl-n2,n3, . . .
(tname/nl-n2,n3,namel,name2, . .)
(*tname/nI-n2,n3,namel,name2, .

OUTPUT DATA SETS

Field 4

(namel-,name2, .)

16

[I
L•

Field

2

3

77-37

OUTPUT SIZE PARAMETERS

Field 5

(sl, ss, nl, ns)
(SL=sl, SS=ss, NL=nl, NS=ns)

OPTIONAL PARAMETERS

Field 6

[(paraml, param2, .]

Contents

EXEC or E or *EXEC or *E.

The optional asterisk (*) in this field

indicates that the task specified is one of

a sequence of tasks in a "DO group", and is

not the last task in the sequence. See

paragraph 3.8 for a discussion of VICAR DO

groups.

pname is the name of the program to be executed.

The name is 1 to 8 alphanumeric characters,

beginning with an alphabetic_.The program must

exist in the VICAR program library. If the

first character in the program name is the

character 'V, automatic label processinq is

suppressed and the system will not write a system

or user labels on any of the output data sets.

In this case, the program itself must write

any required system or user labels. Such programs

are normally used to process data sets or tapes

which are not in any of the standard formats.

As shown, there are several optional combina­
tions which may be used to define the input

data set field. The number and function of

the input data sets is program-dependent.

* A single asterisk is used to indicate that
the task has no input data sets.

17

77-37

Field 	 Contents

namel,name2, . . . are names of data sets and/

or tape files to be used as parallel input data

sets for the task. If a tape name is used

without a file number, VICAR will assume the

next sequential file following the last one

processed on that tape.

tname/nl-n2,n3, . . . A tape name followed by

a slash '/'and a set of file sequence numbers,

is used to specify multiple tasks, one for

each tape file.

tname/nl-n2,n3,namel,name2, . . . When multiple

tasks are specified, Field 3 may also contain

one or more data set names. For each task

generated, the named data sets will be used

as parallel inputs.

Note: 	 For the preceding Field 3 formats, specification of a

tape file name (with the file number included) will cause

VICAR to generate a utility task which will copy the tape

file to direct access storage, performing any required

format conversion. An un-named disk data set of adequate

size must be allocated using a RESERVE or equivalent

statement, or the job will fail.

*tname/nl-n2,n3,namel,name2, . An asterisk

may precede a 	tape name or a tape file name.

This will cause the system to position the

tape at the specified file and allow the task

to read'the tape directly.

Since most VICAR programs are designed to read only the standard

VICAR format, a prerequisite for the use of the direct tape

option is that the tape format is logically equivalent to the

format used for disk data sets (5,6, 8 or 9). A

maximum of 10 input data sets/tape files may be specified.

4 	 * A single asterisk is used to indicate that

the task has no output data sets.

namel,name2, . . . Up to four output data sets

or tape names may be specified for a task.

The number and function of the data sets is

program-dependent.

5 (sl, ss, nl, ns) The output size parameters

are optional. If required, all four parameters

must be coded as shown. Each parameter is a

positive integer from 1 to 9999.

18

77-37

Field Contents

(SL=sl, SS=ss', NL=nl, NS=ns) Any or all of

tlWize paramet-ers may also be specified in

keyword format as shown. When keywords are

used, any or all four parameters may be coded,

and the order is of no significance.

nl and ns (number of lines and number of

TamplesT-ar7 the numbir of data-records

Tpicture lines) and the number of bytes/record

to be processed from the input data set. sl

and ss (starting line and starting sample)­
are th-e starting -datarecod and starting

byte in the input picture at which processing

is to begin. These parameters allow the user

to specify that a rectangular sub-segment of

the input picture is to be processed. The

exact interpretation of these parameters is

determined by the application program, and

can differ from that given here.

If field 5 is defaulted, the system will assign values of 1

to SL and SS. Values for nl and ns will be assigned equal

to the values of these pariifetersTn the primary input data

set system label record. In this way, the output data set

will be equal in size to the input data set.

Note that tape files which do not have a VICAR label are

copied to disk storage and that all input data sets processed

by a standard program have the required VICAR label.

6 (paraml,param2, . . .)are names of parameter

sets as defined in PARAMS control statements.

Optionally, all of the types of parameters

permitted on parameter cards may be coded

providing that each individual parameter is

equal to or less than eight characters.

Note that the maximum number of subfields within a field

is limited to 10. Thus, a maximum of 10 parameters may

be coded in figd 6. If the number of parameters is greater

than 10, one or more parameter sets delimited by a PARAMS

control statement must be used.

19

77-37

2.3.8 	PARAMS, P

The PARAMS control statement is used to define a symbolic

name for a set of parameter cards.

Parameter

Operation Set Name

Field 1 Field 2

IPARAMSJ ,psname

Field 	 Contents

I 	 PARAMS or P

2 	 psname is a symbolic name of from one to eight

characters.

Parameter Cards

Parameters may start in column 1 and cannot extend past

column 71. Blanks or commas are used as separators between

parameters. Blanks and commas may be used in literal

parameters which are enclosed between apostrophes.

Parameters may be continued on as many cards as required.

No continuation character should be used in column 72. A

parameter cannot be split between cards. Parameters may

be integer, real, alphanumeric, hexadecimal, or literal,

as listed:

2.3.8.1 	 Integer Parameters--Positive and negative integer

parameters may consist of an optional sign digit

and up 	to seven decimal digits.

2.3.8.2 	 Real Parameters--Positive and negative real

parameters may be represented in the format

+ nl n2 ---nm.np---nrE + M M2 (M1 and M2

are both required)

or

+nl n2 ---n.n ---n

2.3.8.3 	 Alphanumeric Parameters--A parameter containing

one or more alphabetic characters is padded with

blanks on the right, or truncated, to exactly

8 characters.

20

77-37

2.3.8.4 	 Hexadecimal Parameters--are represented by an

X and one to eight hexadecimal digits enclosed

within apostrophes. The parameteY is stored

in a four-byte field padded with zeros on the

left if less than eight digits.

2.3.8.5 	 Literal Parameters--A character string of any

length up to 69, including numbers, blanks,

and special characters, may be enclosed within

apostrophes. The character string, less

apostrophes, will be padded on the right if

necessary to a length which is a multiple of 4.

2.3.9 LABEL, L

The LABEL control statement is used to add a label of arbitrary

text up to 68 characters to an output data set of an EXEC

statement. It follows the EXEC statement to which it applies.

Data Set

Operation 	 Name Text

Field 1 Field 2 Field 3

ILABELI ,[namel] ,text

Field 	 Contents

LABEL or L

2 	 name is a one to eight character symbolic

name which is used to add more than one label

record to a specific data set.

* A single asterisk is used to indicate that

The label record is to be added to the output

data sets for each task where multiple tasks

are specified.

Further information on the use of the LABEL control statement

is contained in Section 3.

text may consist of from one to 68 characters.

Text may not extend beyond column 71. LABEL

control statements cannot be continued.

3

21

77-37

2.3.10 RELABEL, R

The RELABEL control statement is used to delete all existing

labels and add a new label record to an output data set.

Data Set

Operation Name Text

Field 1 Field 2 Field 3

RELABEL1 	 [ame1] ,text

Field 	 Contents

1 	 RELABEL or R

2 	 This field is identical to Field 2 in the

LABEL control statement.

3 	 text-may consist of from one to 68 characters.

Text may not extend beyond column 71. RELABEL

control statements cannot be continued.

2.3.11 NOTE

The NOTE control statement is used to print a message on

the output listing. It is also used to control certain

VICAR functions.

Operation Text

Field 1 Field 2

NOTE ,text

Field 	 Contents

1 	 NOTE

text may consist of one to 64 characters.
2

Certain text strings are significant to the VICAR system,

as follows:

NOTE, CONTINUE causes the system to continue executing tasks,

even if a subsequent task terminates abnormally.

22

77-37

NOTE, ABORT causes the job to be terminated if a subsequent

task terminates abnormally.

NOTE, ABORT and NOTE, CONTINUE may be inserted

anywhere and repeatedly as necessary in the sequence of

EXEC statements to control VICAR response to abnormal task

terminations. At the beginning of the job ABORT is in effect.

NOTE, WTO causes a message to be displayed to the computer

operator at the beginning of each task. The message

includes the program and job names. This feature allows a

user to follow the progress of a VICAR job in execution if

he has access to a system console.

2.3.12 END

The END control statement is used as a delimiter to

indicate that all contrQl' statements have been read.

Operation]

Field 1,

Field Contents

I END

(No additional fields are required.)

The END statement is optional.

23

77-37

2.3.13 TIME

The TIME control statement is used to set the maximum CPU

time allowed for the.second of the pair of VICAR jobs.

This statement has meaning only for systems with job step

timing. If no TIME statement appears, VICAR assumes

'T-IME,1439' was specified.

Maximum

Operation Time

Field 1 Field 2

TIME ,time

Field 	 Contents

1 	 TIME

2 	 time is an integer giving the number of minutes

set as the time limit for the second VICAR job.

In systems with job step timing the job will

be aborted (ABEND code S322) after this interval.

2.3.14 REGION

The REGION control statement is used to set the size of the

region of main 'stoffage to be used by the second of the pair

of VICAR jobs. The effect of exceeding the specified region

depends on the version of the operating system in use. In

MVT systems, the job will be aborted. If no REGION statement

appears, a region size of 150K is assumed by VICAR.

Maximum

Operation Storage

Field 1 Field 2

REGION 	 ,size

Field 	 Contents

1
 REGION

2
 size is the requested region size in units

of 1024 bytes, specified as an integer followed

by the letter 	K.

24

77-37

2.4 Restrictions

Based upon the limits of available main storage, there are

certain "implementation" restrictions which must be observed.

Number of Parameter Sets

The total number of parameter sets delimited by PARAMS control

statements is limited to 200.

Number of Parameter Cards

The total number of parameter cards contained in all parameter

sets delimited by PARAMS control statements is limited to 500.

Number of Control Statements within a DO-GROUP

A pseudo DO-LOOP, herein referred to as a DO-GROUP may be used

to specify the application of several programs to a number of

files without repeating the EXEC control statements. Use of

the DO-GROUP is described in paragraph 3.8.

The total number of cards, both EXEC and LABEL control statements,

contained within a DO-GROUP is limited to 40.

Number of System Units

The total number of disk data sets and tape units which may

be referenced within a single job is limited to 32 or less.

If the total number of such system units, as spe-cTfied by a

combination of RESERVE, SAVE, READ, WRITE, RELEASE, and FIND

control statements, is greater than 32, a diagnostic message

will be printed and the job will be-terminated.

2.5 Pre-Processor Statements (EVIL)

Pre-processor statements are those which are detected and

processed by the preprocessor step of the VICAR procedure.

There is little significance to the separate processing

except that implementation was simplified. However, the

general syntax rules of the pre-processor statements are

not always the same as for standard statements so they are

described separately.

For historical reasons, the pre-processor is sometimes called

EVIL, and pre-processor statements are called EVIL statements.

The preprocessor statements constitute a general macro capabil­
ity within VICAR. It has found a great deal of use in

repetitive processing of large amounts of data using similar

or identical algorithms.

25

77-37

2.5.1 DEFINE, D

The DEFINE control statement introduces a body of VICAR

control statements which are to constitute a procedure

or macro. The statement names the procedure, and defines

zero or more substitutable character-string parameters.

The body of the procedure consists of any number of VICAR

statements following the DEFINE statement. The procedure

definition is terminated by an END statement or another

DEFINE statement. Therefore, END or DEFINE statements

may not appear in the procedure body. Except for the

search for DEFINE or END statement, the procedure body is

not scanned for validity at the time it is defined. Thus,

text which would not constitute a valid VICAR statement

may appear in a 	procedure.

Operetion Procedure Name Argument Argument

Field 1 	 Field 2 Field 3 Field 4

DEFINEI ,procname [,argument i] [,argument 21

Field 	 Contents

I 	 DEFINE or D

2 	 procname is the name of the procedure being

defined. Any character string is valid.

3,4,'" 	 argument 1, argument 2," are any number of

character string arguments. The arguments

should appear in the body of the procedure,

and will be replaced by a character string

parameter in a subsequent CALL statement.

26

77-37

2.5.2 END

The END control statement is used as a delimiter to terminate

a procedure definition.

Operatio

Field 1

Fi'eld Contents

1 END

This statement is syntactically identical with the END

statement (2.3.12) which terminates a VICAR job definition.

The effect of the END statement depends on whether a

procedure is being defined.

2.5.3 CALL, C

The CALL statement is used to invoke a procedure which has

been previously defined using the DEFINE statement. All

statements from the procedure body will be copied into the

job stream, and substitutions of character-string parameters

will be made. CALL statements may be nested and recursive.

Operation Procedure Parameter Parameter

Field 1 Field 2 Field 3 Field 4

[,parameter 2]
Cl ,procname [,parameter 1]
ICALL I

Field Contents

1 CALL or C

2 procname is the name of a procedure which must

be previously defined. However, the effect of

invoking an undefined procedure is specifically

defined to be null. No error messages are given

in this event.

27

77-37

Field 	 Contents

3,4"..	 parameter 1, parameter 2,' are character

string parameters which are to be substituted

for corresponding arguments in the DEFINE

statement. That is parameter 1 is substituted

for argument 1, parameter 2 is substituted for

argument 2, etc. If the number of parameters

does not match the number of arguments, excess

parameters will be ignored, while insufficient

parameters will be assumed to have null value.

Virtually any character string not containing a

comma is a valid parameter. Parameter strings

are delimited by the surrounding commas, and may

therefore contain leading, trailing or embedded

blanks, except that the last one may not have

trailing blanks. Null strings are valid parameters.

2.5.4 GET, G

The GET control statement is used to access one or more

sequences of statements stored on the VICAR procedure

library. These stored sequences normally, but need not,

consist of one or more procedures headed by DEFINE statements.

It is important to understand that the GET statement does not

invoke a procedure; it merely retrieves text from the library.

A subsequent CALL statement must be used to invoke a procedure

which is retrieved by a GET statement. It is also important

to understand that the name under which the text is stored

in the library is normally, but need not be, the same as

the name of the procedure which the text defines.

Operation Text Name Text Name

Field 1 Field 2 Field 3

GET I ,textname 1 [,textname 2]

Field 	 Contents

GET or G

2,3,' 	 textname 1, textname 2,'" are names of text

files in the VICAR procedure library.

Normally the text name is the same as the name

of procedure defined in the text. Each textname

must have been previously stored in the library.

28

1

77-37

2.6 Post-Processor Statement

In a large scale computer environment, the VICAR restriction

on 8-character names may become a severe burden. The optional

post-processor allows data set names up to the length limited

by the operating system (44 characters). Within the VICAR

control statements the user employs a "dummy" name conforming

to the VICAR restriction of 8 characters. Post-processor

control statements allow the dummy name to be changed to the

actual name desired. The syntax of the post-processor control

statement is:

oldname = newname

where oldname is the dummy name conforming to the VICAR 8-character

restriction, and appearing on a SAVE, FIND or RELEASE VICAR

statement, and newname is the desired name conforming to

operating system restrictions. The equal sign is required, and

all blanks will be ignored. Post-processor control statements

can not be mixed with standard VICAR statements. They must be

proceded by special job control statements as shown in Section 3.

29

77-37

3.0 USAGE

-3.1 VICAR Job Set-Up

A VICAR job is normally initiated by submitting to the

computer a card deck containing the VICAR control .statements,

and the job control statements which cause the operating

system to give control to VICAR. The VICAR job has the

following form.

//jobname JOB . . .

// EXEC VICARDSN I LDISP=SHR]

#<EV.IL2>

VICAR control statements (including EVIL)

//VTR2.SYSIN DD *

post-processor statements

An optional job termination card with // in columns 1-2

and blanks in columns 3-72 may be used at the end. The

"//VTR2...." card and post-processor statements may be

included only if VICARDSN is used. The optional parameter

DISP=SHR, if used, allows permanently allocated data sets

to be processed by two or more VICAR jobs concurrently.

Normally only reading of those data sets should be done

in such jobs.

The JCL statements are processed by the operating system

job control processor and invoke a cataloged procedure,

VICAR or VICARDSN. These procedures contain job control

statements which define necessary data sets and execute

the VICAR system programs.

The cataloged procedure first invokes the TTM program which

reads the #<EVIL2> statement. This statement accesses a

TTM procedure from the TTM library which in turn performs

the pre-processor scan, processing the specific pre­
processor statements, and copying the others unchanged.

30

77-37

VTRAN will then proceed to read the VICAR control

statements in the job deck. All VICAR control statements

are listed as well as written into a direct access data

set. VTRAN will then read the VICAR control statements

from direct access storage and generate the needed job

control and task queue statements.

3.2 The RESERVE Control Statement

The user must include one or more RESERVE control

statements if it is necessary to allocate direct access

storage space. BLOCK, B, and A are all synonyms for

RESERVE. A formal description of the fields in the

RESERVE control statement is presented in paragraph

2.3.1. The number and attributes of the disk data sets

which are to be reserved will depend upon the specific

requirements of the job.

A data set is thought of as a place where a picture

can be stored. When first allocated, the data set

is "empty". A picture is stored in the data set

by an application program as the result of an

EXEC statement. When a picture is stored in a

data set which already contained a picture, the

new picture replaces the old picture; the old

picture is lost. The user's main concern when

allocating a data set is its size (number of

records, and number of bytes/record). The user

must know the sizes, or at least an upper bound

on the sizes, of the pictures with which he is

working. Any picture which is stored in a data

set should not exceed the size of the data set.

If the user tries to store a picture in a data set

which is too small, the job will usually be aborted.

(Ifonly the number of records is too small, the

operating system will attempt to allocate additional

disk space for the data set equal to 20% of the

original number of records. If the attempt is

successful, the job will continue, but may be using

disk space wastefully.)

Normally the user will not specify the data set

block size, but will allow VICAR to calculate it.

However, he should be aware that, usually, the

larger the block size, the more main storage the

programs which process the data set require.

31

77-37

Someexamples follow.-

RESERVE ,- 5 , 1024 , 500 , SPOOLl

This statement will reserve five data sets on disk volume

SPOOLl. Each data set will consist of five-hundred records

of 1024 bytes each. Optional names have not been specified

and the system will therefore assume that these data sets

are scratch and available for assignment by VICAR if

required.

RESERVE , 3 , (600 , 7200) , 700 * (A , B , C

This statement will reserve three data sets on disk volumes

assigned by the operating system: Each data set will consist

of 700 records of 600 bytes each. The records will be

grouped into blocks of 7200 bytes each. The data sets will

be named A, B and C. The explicit assignment of optional

names will cause the system to treat these data sets

differently thdrr-the" scratch data sets in the previous

example. To modify a named data set, the programmer must

specify the 'data'set name in the output data set field

(field 4) of an EXEC control statement.

RESERVE , 2 , 1024 , 1024 , IPL304 , (X04 , Y07

This statement Will reserve-two data sets on disk volume

IPL304: The data sets will be named X04 and Y07. The names

consist of the tape names X and Y with a two-digit file

sequence number appended thereto. Again, the system will

treat these 'data sets differently than scratch data sets.

If a-tape-file hame'is specified in the input data set

field (field 3) of-an EXEC control statement, the system

'will generate a utility task to copy the specified tape­
file into 'the reserved data set, where it will remain for

the remainder ifthe job.

3.3 The SAVE-Control Statement

The user may include one or more SAVE control statements

to preserve disk data sets created in this job for a

subsequent jbb. Ainx'ample'follows:

SAVE ; 3-, 600, , 700 , IPL302 , ('A , B,-, C

The above' statement 'Wil resrrvethree 'data sets', named
A, B and C, on disk volume IPL302. All three data sets will

be preserved for use in a subsequent job. A second example is:

SAVE , 1 , (1000, 7000) , 800 , * , JMS.Gl

32

77-37

The above statement will allocate a permanent data set

named JMS.Gl on a storage disk in the SYSDA pool. The

data set will be cataloged in the operating system

catalog. The data set will have 800 records of 1000 bytes

each. There will be 7 records per physical block.

3.4 The FIND Control Statement

The user may include one or more FIND control state­
ments to access disk data sets created in a previous job.

An example follows:.

FIND , (A , IPLSYS, JMS.G , *)

Data set A on disk volume IPLSYS and catalogeddata set

JMS.Gl are assumed to have been created in a previous job.

The above statement will cause the system to access these

data sets and will enable the user to reference the data

sets inEXEC statements by their symbolic names.

3.5 The RELEASE Control Statement

The user may include one or more RELEASE control

statements to delete disk data sets created in a previous

job. An example follows:

RELEASE , (A , IPLSYS , C , IPLSYS

The above statement will cause the system to access data

sets A and C on disk volume IPLSYS and will enable the

user to reference the data sets in EXEC statements

by their symbolic names. The data sets will be deleted at

the end of the job.

3.6 The READ Control Statement

The user must include a READ control statement for each

input tape. The READ control statement is used to define

the device, data format, and to assign a symbolic name to

the tape. An example follows:

READ , * , SCRO01 , X , 8F

The above statement will cause VICAR to access tape SCRO01

and assign the symbolic name X to this tape. In addition,

VICAR will record the format of this tape as 8F. A second

example follows:

READ , 71 , SAVEl , Y , 8

READ , 71 , SAVE2 , Y , 5A , (510, 10400)

33

77-37

The first statement will cause VICAR to access tape SAVEl

and assign the symbolic name Y to this tape. VICAR will

record the format of this tape as 8 (the default format).

The second statement will cause VICAR to access tape SAVE2

and assign the symbolic name Z to this tape. In addition,

VICAR will record the format of this tape as 5A and will

record a record length of 510 bytes and a block size of

10400 bytes. Since the same symbolic device name was used

in field 2 of both statements, the same physical tape drive

will be used for both tapes. This of course implies both

tapes are not needed simultaneously for the same task.

(The VICAR program VMOUNT provides an alternate method of

sharing a tape drive among several tapes if the tape formats

are identical.)

3.7 The WRITE Control Statement

The user must include a WRITE control statement for each

output tape. The WRITE control statement is used to define

the device, data format, and to assign a symbolic name to

the tape. In addition, the WRITE control statement may be

used to specify symbolic names for disk data sets which are

to be copied to the tape. The keyword TAPE is equivalent

to WRITE.

An example follows:

WRITE , * , (IPSZ81, C , D , E , F) ,Z , 8F

This statement will cause VICAR to access tape IPSZ81 to

assign the symbolic name Z to this tape. The system will

record the format of this tape as 8F. In addition, the

data set names C, D, E and F will cause VICAR to create a

utility task to copy each of these data sets to the output

tape. These utility tasks will be created each and every

time that any of the above symbolic names are specified in

the output data set field of an EXEC control statement.

A second example follows:

WRITE , , (JBSO05, AA , DD) ,Z ,8F

EXEC ,FILTER , (X / 1-10) , AA , Pl

The above EXEC control statement will create 10 tasks, each

of which will filter one frame. The output of each task

will be written in disk data set AAX. Specification of the

data set name AA in the WRITE control statement will cause

34

77-37

the system tocreate a utility task immediately after each

of the filter tasks, copying data set AA to tape JBSO05 in

format 8F. The format of the disk data set AA is equivalent

to format 8 (the standard format). The utility task,

therefore, will perform the necessary conversion to produce

an output tape file with format 8F.

3.8 The EXEC Control Statement

The user must include EXEC control statements to define the

image processing tasks desired.

A single EXEC control statement may be used to define one

task or a sequence of tasks. In addition, the EXEC control

statement is also used to specify input and output data sets,

size parameters, and other variable parameters required for

the specified tasks. The following paragraphs will explain

the effect of the various options available with the EXEC

control statement.

A formal description of the fields in the EXEC control state­
ment is presented in paragraph 2.3.7.

The EXEC control statement has a variety of options. The

following paragraphs illustrate the use of these options and

defines the system response thereto. An example follows:

EXEC, GEN, * , AA , (NL=300 , NS=400)

This statement will generate a single task using the program

GEN. The asterisk in the input data set field (field 3)

specifies that the task has no input data sets. The output

data set is named AA and the size is specified as 400 samples

by 300 lines.

If the first character in the program name is the character

V, automatic label processing is suppressed. The system

will not write a system or user labels on any of the output

data sets. In this case, the program itself must write any

required system or user labels.

Another example follows:

EXEC , LIST , AA ,* ,, PLIST

This statement again will generate a single task using the

program LIST. The asterisk in the output data set field

(field 4) specifies that the task has no tape or disk output

data sets.

35

77-37

Another example follows:

EXEC,PICAVE,(A,B,C),AA

This statement will also generate a single task using the

program PICAVE. The task will have three parallel input

data sets, A, B, and C. The output data set is AA.

Data set A (the first data set in the input data set field)

is the primary input data set. The system will copy the

labels from the primary input data set to A to the output

data set AA, while adding a "history label" containing the

program name, PICAVE.

Another example follows:

READ * , XYZABC , X , 8F
A , 1 , 1000 , 1000 , *

EXEC , FILTER , (X/1-5,7-10,12) , A , , WEIGHTS

The above statements will generate ten tasks using the program

FILTER. The input data sets for each task will be XO1--XO5,

X07--XIO, and X12. These input data sets may be direct access

data sets or they may be tape files. Note, the system appends

a two-digit sequence number to the name (X). In general,

the above configuration is employed with tape files. As

shown, a READ control statement with the tape name X is re­
quired. VICAR will also automatically generate a utility

task prior to each FILTER task. This utility task will copy

the specified tape file to disk, performing the necessary

format conversion.

The programmer must reserve disk data sets which the system

can use. For the above example, the programmer has reserved

one scratch (unnamed) data set which will be reused by the

system. Another alternative would be to reserve named data

sets with names matching the above files (ie. X01, X02, X03,

etc.). The system will always direct the utility task out­
put to an appropriately named data set, if available.

Another example follows:

READ , * , SCROO1 , X
READ , * , SCRO02 , Y
B , 2 , 500 , 1000 * A
EXEC , ICOR , (*Y / 1-20 , X03) , A , , ICORPAR

36

77-37

The above statements will generate 20 tasks using the program

ICOR. The asterisk preceding the tapename Y indicates the

direct tape input option. VICAR will link the primary input

data set for the ICOR program to tape SCRO02. On the other

hand, the secondary input data set (tape file X03) is not

preceded by an asterisk. The system will, therefore, generate

a utility task to copy file 3 from tape SCRO01 into a disk

data set using one of the data sets allocated in the "B"

statement. Once this file is on disk, itwill then be

available for each of the 20 ICOR tasks.

To use a tape file directly, without copying it to disk, its

format must be exactly equivalent to that of a disk file. As

shown above, the formats on the READ control statements have

been defaulted indicating Format 8. Since both tapes are

Format 8, it would have been possible to include an asterisk

prior to X03 in the input data set field. However, considering

tape rewind time, it might be preferable to have the secondary

input file X03 on disk, since it is used in each of the 20

ICOR executions.

Another example follows:

EXEC , STRETCH , A , B , , (LINEAR , 98 * 371

The above statement shows how the user may include parameters

in field 6 of the EXEC control statement. In this case,

the restriction is that the field may contain up to 10 subfields

separated by commas, and each subfield may contain a maximum

of eight characters.

Alternatively, one or more symbolic parameter set names may

be included in field 6 of the EXEC control statement. In this

case, the symbolic name must be specified in a PARAMS control

statement followed by one or more parameter cards. (See

paragraph 3.9.) The system will incorporate the specified

parameter sets into the task queue.

An example follows:

PARAMS , P2

555 666 777 989.05

PARAMS , P4

' THIS IS A SPECIAL TITLE FOR A SPECIAL TASK

EXEC , PROGA , A , B , , (P2 , P4)

37

77-37

As shown, two parameter sets, P2 and P4 are specified in the

above EXEC control statement. The parameters will be presented

to the program in the order specified, P2 followed by P4.

Remember that each program has unique requirements for the

parameters which may or must be specified, as well as the number

of input and output data sets and their data content. Programs

may have restrictions on the size of pictures which can be

processed. This information must be obtained from the user

guide for the individual program.

The EXEC control statement is normally used to specify one

task, or a sequence of tasks where the same program is applied

to a number of files. It is sometimes necessary to apply a

sequence of programs to each of a number of files. To

accomplish this, the programmer must code an asterisk prior

to the keyword EXEC in the first EXEC control statement of a

pseudo-DO LOOP. This statement must specify a set of files

in its primary input data set field. All subsequent tasks

in the DO group except the last must also have an asterisk

coded prior to the EXEC keyword. The last task in the DO

group is indicated by the absence of the asterisk.

An example follows:

*EXEC , ICOR , (Y/l-14 , XOl) °, A, , PI

*EXEC , FILTER , A , B

*EXEC LIST , B *, , P 2

EXEC ,MASK, B , Z ,,P 3

The above example illustrates the EXEC control statements

required to sequence fourteen selected files through 4

programs. As shown, each ICOR task has a secondary input

data set XOl, the calibration input. Also, the output of

ICOR, data set A is the input to the FILTER tasks. The

output of FILTER, data set B is the input to both LIST and

MASK.

3.9 The PARAMS Control Statement

The user may include PARAMS control statements to define

symbolic names for sets of parameter cards.

An example follows:

38

7T-37

PARAMS, P1

555 666 777 888

21 22 23 24 25 26

PARAMS , P2

222 333 444 555

31 32 33 34 35 36

EXEC , PROGA , A , B , , P1

EXEC , PROGA , A , B , , P2

In the above example, the first EXEC control statement
includes the symbolic name P1 in the parameter field, while

the second EXEC conttol statement contains P2.

The system, upon recognizing that PI and P2 have been

specified in PARAMS control statements, will incorporate the

proper parameter set for each task.

Parameter cards are described in paragraph 2.3.8. In general,

parameters are free-form,and blanks or commas may be used as

separators between parameters. Blanks and commas may be used

in literal parameters which are enclosed between apostrophes.

Note the slight difference in parameter format from those

in EXEC statements, which allows a-maximum of 10 parameters,

each of 8 characters or less, and separated by commas.

Some examples of valid parameters are as follows:

Integer: -47 385 25 +377 -2880

Real: +244.07 -377.002 -980.OE-02

Alphanumeric: ADD999 A4725 888ABC COPY

Hexadecimal: X'FF040402' X'07'

Literal: ' THIS MAY BE ANY CHARACTER STRING 123456789,$$$,

A set of parameters is terminated by any statement which

VICAR recognizes as a VICAR statement. There is an inherent

ambiguity in this situation, which can cause trouble if the

first parameter on a card is the same as a legal VICAR verb.

39

77-37

Users should avoid having the first parameter on a card

match a legal VICAR verb; since many keyword parameters

are order independent, this can usually be accomplished.

(Application programmers should avoid designing programs

with legal parameters that can be mistaken for VICAR

verbs.)

3.10 The LABEL Control Statement

The user may include LABEL control statements to add

output label records to the output data sets. L is equivalent

to LABEL.

In general, LABEL control statements follow the EXEC control

statement with which they are associated. However, in the

case where several tasks are generated by a single EXEC

control statement, certain restrictions must be observed.

An example follows:

EXEC , PROGA, A , B , , P1

LABEL , B , THIS IS LABEL RECORD NUMBER ONE

LABEL , B , THIS IS LABEL RECORD NUMBER TWO

LABEL , B , THIS IS LABEL RECORD NUMBER THREE

Since the above EXEC control statement specifies only a

single task, all of the above label records are added to

the label set of data set B.

Another example follows:

EXEC , PROGA , (TX / 1-15) , A , , P1

LABEL , * , LABEL RECORD FOR ALL 15 FILES

The asterisk in the second field of the label statement

causes VICAR to add the same label to the image written on

data set A by each of the 15 tasks. In the case where an

EXEC control statement specifies several tasks, LABEL control

statements may be included to add a unique label record to

each specified file. The LABEL control statements in a DO

group must follow the first'EXEC control statement in the

DO-qrouo.' For examplei

40

77-37

*EXEC , PROGA , (TX / 2-5) , A
LABEL,, THIS IS THE LABEL RECORD FOR FILE 2

LABEL,, THIS ISTHE LABEL RECORD FOR FILE 3

LABEL,, THIS IS THE LABEL RECORD FOR FILE 4

LABEL,, THIS IS THE LABEL RECORD FOR FILE 5

*EXEC , PROGB , A , B

*EXEC , PROGC , B , C

*EXEC , PROG , C , D

*EXEC , PROGE , D , E

EXEC , PROGF , E , Y

As shown, the above label statements will generate a label

for each file. Note that the LABEL control statements

within the DO-group follow the first EXEC control statement.

In the present version of VICAR, LABEL control statements

may not be used after subsequent EXEC control- statements

within a DO-group.

3.11 The RELABEL Control Statement

The user may include RELABEL control statements to

add a label to the output data sets while deleting all

the existing labels.

Use and placement of the RELABEL control statements is

exactly the same as for the LABEL control statement

described in paragraph 3.10.

3.12 The NOTE Control Statement

The user may include NOTE control statements to print a

message on the output listing.

In addition, the NOTE control statement with certain keywords

will cause specific system actions. For example, ABORT will

cause VICAR to respond to a deliberate abnormal end by a

subsequent task with job termination and a dump if requested.

Two examples follow:

NOTE , ABORT

NOTE, THIS IS A MESSAGE FOR THE OUTPUT LISTING.

3.13 The END Control Statement

The user may include an END control statement to indicate

that all control statements have been read. The END

statement is optional.

41

77-37

3.14 The TIME Control Statement

The user may include a TIME control statement to limit

the CPU time which will be used in the second VICAR job. In

systems with job step timing the job will be aborted if the time

is exceeded. At most one TIME statement may appear in a

VICAR job. If none appears, a time limit of 1439 minutes is

used by VICAR.

An example follows:

TIME , 30

In this example, the job will be aborted when it has used more

than 30 minutes of CPU time.

3.15 The REGION Control Statement

The programmer may include a REGION control statement to

limit the size of the main storage region which will be used

by the second VICAR job. The job may be aborted when it

attempts to use more than this amount of storage, depending

on the version of the operating system. At most one REGION

statement may appear in a VICAR job. If none appears, a size

of 150K is assumed.

An example follows:

REGION , 200K

In this example, a region size of 200K is being requested.

It is extremely difficult to predict the region size which will

be needed for a given execution of a given VICAR program. It

depends on many variables, some of which are beyond the control

of the programmer, such as data set block sizes and operating

system resident routines. As a rule of thumb, 150K will usually

be adequate. An increased region size is indicated if a VICAR

job abends with a user code of 69 or a system code indicating

insufficient storage.

3.16 The DEFINE Control Statement

The user may include DEFINE control statements to

introduce and name a procedure, or macro, consisting of

any VICAR statements except DEFINE and END. The DEFINE

statement may also list character string parameters which

are to be replaced when the procedure is invoked by a sub­
sequent CALL statement. Procedure definitions must precede

procedure invocation. Once defined, the procedure definition

is effective until re-definition of the same procedure name

in another DEFINE statement, or until the end of the job.

42

77-37

An example follows:

D,STRCLIP,FILE,BITS

E,SAR, (*X/FILE),A

E,STRETCH,A,B,, (CLIP,BITS)

D,STRLIN,LOWDN,HIDN,NLX,NSC

E,STRETCH,A,B,, (LINEAR,LOWDN,HIGHDN)

L,,LINEAR(LOWUN-HIGHDN)

E,BOXFLT,B,C,, (NLW,NLX,NSW,NSX)

L,, LOW PASS FILTER (NLX BY NSX)

END

Two procedures are defined, one called STRCLIP, and the other

called STRLIN. The first is terminated by the DEFINE statement

introducing the second. STRCLIP has two arguments, FILE and

BITS, and STRLIN has four arguments, LOWDN, HIDN, NLX, and NSC.

STRCLIP consists of two EXEC statements which will have the

effect of executing the two application programs SAR and

STRETCH. The syntax of the "E,SAR,..." is not valid in that

the characters following the "/"should be a one or two character

number. Also, the STRETCH user guide would show that the parameter

following the keyword "CLIP" should be a number. These apparent

errors are acceptable provided that when the procedure STRCLIP

is invoked by a CALL statement, the arguments FILE and BITS are

replaced by numbers.

3.17 The CALL Control Statement

The user may include CALL statements that invoke a procedure

and specify its arguments. The procedure must have been

previously defined, either by its appearance in the sequence

of VICAR control statements, or by being obtained from the

procedure library using the GET statement. The effect of the

CALL statement is similar to invoking a macro in assembly

language. The arguments provided in the CALL statement

are substituted for the corresponding (positional) arguments

in the procedure definition. The expanded procedure text

is then substituted for the CALL statement in the sequence

of VICAR statements. Of course the original procedure

definition is unchanged and is.available for repeated CALLing

with different arguments.

Ifthe name of the procedure in the CALL statement has not

been previously defined, the effect is to ignore the statement.

Even though there is a procedure library, there is no

automatic searching of the library. The situation is not

considered an error and no diagnostic message is produced.

For this reason spelling errors in procedure names can

have startling effects which may be hard to diagnose. The

user must keep this feature of procedure usage inmind and

use appropriate care.

43

77-37

As an example, suppose the example in Section 3.16 has

appeared in the VICAR job. The following statements

then appear.

CALL,STRCLIP,1,3

C,STRLIN,50,150,3,3

The effect of these statements is the same as if the

following sequence had appeared in their place.

E,SAR,(*X/1),A

E,STRETCH,A,B,,(CLIP,3)

E,STRETCH,A,B,,(LINEAR,50,l50)

L,,LINEAR(50-150)

E,BOXFLT,B,C,,(NLW,3,NSW,3)

L,,LOWPASS FILTER (3 BY 3)

3.18 The GET Control Statement

The user may include GET control statements to retrieve

sets of VICAR statements which have previously been saved

on the VICAR (EVIL) procedure library. (The process of

storing text on the procedure library is not done by VICAR

control statements, but by a TTM procedure. It is described

in Appendix A.) Because the CALL statement does not

cause automatic searching of the library, each procedure

CALLed, but not defined in the job, must be explicitly

retrieved from the procedure library by means of the GET

statement.

Although the procedure library stores arbitrary sets of

statements, normal practice is that each set of text

constitutes one procedure, beginning with a DEFINE

statement and ending with an END statement. Each set of

statements stored in the EVIL library is stored under a

unique name by which it is retrieved, the name specified in

the GET statement. Normal practice is to have the name

by which a set of statements is stored equal to the name of

the procedure that is defined by that set of statements.

Thus to CALL the procedure STRCLIP and STRLIN which have

been previously stored on the library, the following statement

is used.

GET,STRCLIP,STRLIN

It is not unreasonable nor uncommon to store under a single

name the definitions of two or more procedures which are

commonly used together. This simplifies usage by requiring

the user to GET only one set of text from the library,

even though a number of procedures are to be used.

44

77-37

3.18.1 The DO Library Procedure

The DO procedure provides an iterative

capability which is much more powerful than the

simple DO-group described in Section 3.8.

The DO procedure allows the user to repeatedly

invoke any other defined procedure, while the

first argument to the other procedure takes on,

in sequence, each of a set of values specified.

The DO procedure is on the procedure library and

may be invoked after it has been retrieved with

a GET statement.

The general form of the DO procedure usage is

as follows:

CALL, DO, procname, arglist, arg2, arg3,

procname is the name of a previously defined

procedure. arg2, arg3, etc are arbitrary

character strings not containing commas, arglist

is a specification of a list of arguments of the form:

argl/argl'/argl''/...

If the argument list consists of positive integers

in ascending numerical sequence, then

argl/argl+l/argl+2/argl+3/.../argl'

may also be written

argl - argl'

The alternative forms may be mixed to produce a list

of the following or similar form:

argl/argl' - argl''...

The effect of the DO procedure is to invoke the

procedure with name procname a number of times equal

to the number of items specified by arglist.

CALL,procname,argl,arg2,arg3,...

CALL,procname,argl',arg2,arg3,...

CALL,procname,argl",arg2,arg3,...

or

45

77-37

CALL,procname,argl,arg2,arg3,...

CALL,procname,argl+l,arg2,arg3,...

CALL,procname,argl+2,arg2,arg3,...

The second and subsequent arguments to the

specified procedure are always the same, and

are arq2, arg3, etc. The first time the specified

procedure is CALLed, its first argument is the first

item in the list specified by arglist. The second

time it is CALLed, its first argument is the

second item in the list, and so on until the last

item in the list has been used.

As an example, suppose the procedure STRCLIP has

been defined as in Section 3.16, and the following

statements then appear.

G, DO

CALL, DO, STRCLIP, 3-5/7, 3

The effect of these statements is as if the

following had appeared.

E,SAR,(*X/3),A

E,STRETCH,A,B,,(CLIP,3)

E,SAR,(*X/4),A

E,STRETCH,A,B,,(CLIP,3)

E,SAR,(*X/5),A

E,STRETCH,A,B,,(CLIP,3)

E,SAR,(*X/7),A

E,STRETCH,A,B,,(CLIP,3)

In this case the same result may also be obtained

using the DO-group.

*E,SAR,(*X/3-5,7),A

E,STRETCH,A,B,,(CLIP,3)

Consider another example.

G,DO

D,STRF,LO

E,STRETCH,A,B,, (LINEAR,LO,150)

E,FOTO,B,*

END

CALL,DO, STRF, 90/100/110

46

77-37.

These §tatements-are eguivalent-to the

following.

E,STRETCH,A,B,,(LINEAR,9O,150)

E,FOTO,B,*

E,STRETCH ,A,B,,(LINEAR,1O0,150)

E,FOTO,B,*

E,STRETCH,A,B,,(LINEAR,110,150)

E,FOTO,B,*

4.0 EXAMPLE JOBS

This section consists of listings of actual VICAR job decks.

4.1 Example 1

//FILTER JOB (JBS51,41)

// EXEC VICAR

#<EVIL2>

READ,*,T-125,X,8

WRITE,*,SCRXYZ,VFC,BF

BLOCK,2,1000 ,000,*,(A,B)

PARAMS,LPAR

N0HIST 101,101,30,30

*E,SAR,(*X/I-3),A

.*E,LIST,A,*,,LPAR

*E,FILTER,A,B

E,LIST,B,,,LPAR

E,MASK,B,VFC,,COMP

Three files on tape T-125 are to be filtered and masked

(formatted for film recording). In addition, a portion

of each picture is to be listed before and after

filtering. The SAR program is used to copy each file

from tape to a disk data set.

4.2 Example 2

//FFT2TEST JOB (JBS51,4,'TEST VMAST'

// EXEC VICAR

#<EVIL2>

A,1,512,520,1PL306,A

A,1, 512,520, IPL304,B

Avl,4096,520 ,IPL304,D

A,1,4096,520 ,1PL306.C

A,1,4096,520 .LIBOOI,E

B,I,512,41O0,LIBOOI,FFTI

E,GEN,*,A,(I,I,512,512),(0O,O,

E,QSARA,B,,PQ

PPQ
I,1,5,1O,100

DPROC,NPOW

E,FFT22, {, FFTI),D,,(POWNPCWhI

E,FFT2d(B,E ,C),D,,CFMT,P1WNPOW)

E,FFT2,(B,E ,C),D,.(PCW,NPOW)

END

C,PRCC,9

47

77-37

5.0 ERRORS

In a system as complex to use as VICAR, error situations occur

frequently. This section gives some guidance on what to do if

a problem occurs.

Errors may be categorized as occurring during the first job

or the second job. Errors which occur during the first job

are almost invariably due to incorrect syntax in one or more

VICAR statements. These are caught by the program VTRAN

during its execution, and a helpful message is printed.

Normally the second job is suppressed. Errors which occur

during the second job usually result in abnormal termination

of the job, accompanied by a user or system "completion code."

A user code means the error was detected by the VICAR system,

while a system code means the error was detected by the operating

system.

5.1 VTRAN Errors (First Job)

The most common kinds of errors occurring during the first VICAR

job are given below, along with some suggested actions to take.

PARENTHESIS ERROR

Parentheses are unbalanced.

TOO MANY FIELDS

The maximum number of fields in a VICAR statement is 8. Look

for an extra comma.

TOO MANY SUB-FIELDS

The maximum number of sub-fields within any one field is 10.

Sub-field delimiters are comma and slash. Look for an extra

comma.

ILLEGAL VTRAN CARD

There is an un-classifiable syntax error.

PARAMETER CARD PUNCHED IN COLUMN 72

Column 72 of a parameter card must be blank.

LABEL AT END OF DO-GROUP

LABEL IN MIDDLE OF DO-GROUP

Only the first task of a DO-group may be labeled. Use of

preprocessor features may allow the desired processing without

using a DO-group.

ILLEGAL SIZE FIELD

Look for an extra or missing comma if the size field looks correct.

NUMBER FIELD ON RESERVE CARD NOT BETWEEN 1 and 9

The field referred to is the second field on a RESERVE, A, B,

BLOCK or SAVE-staterment.

48

77-37

MORE THAN 8 TAPE DATA SETS REQUESTED

The total number of READ, WRITE and TAPE statements may not

exceed 8. (Implementation restriction)

TOO MANY PARAMETER SETS SPECIFIED

The total number of PARAMS and P statements may not exceed 200.

(Implementation restriction.)

NO DATA SET AVAILABLE FOR OUTPUT

A "*"may have been unintentionally omitted from a tape name

in an EXEC statement. The use of the "tape-file no." form of a

data set name without a "*" requires the definition of a suitable

data set with a RESERVE-type statement.

LABEL CARD ENCOUNTERED UNEXPECTEDLY

The data set name field may have been omitted from a LABEL or

RELABEL statement.

5.2 Execution Errors (Second Job)

Errors resulting in abnormal termination during the second job

may be either user errors or program errors. Program errors

usually must be solved by the application programmer responsible

for the program which terminated. User errors can be corrected

by changes to VICAR statements in the user's job. Distinguishing

between user errors and program errors can be quite difficult,

and may ultimately depend on the intentions of the programmer as

to how his program should work.

The most common ABEND completion codes associated with VICAR jobs

are given below, along with possible user errors. (Since this

is not a programmer's guide, the associated possible program

errors are not given.)

USER 69

There was insufficient main storage available for buffers. Try

a larger region size.

USER 71

An attempt was made to write a record larger than the allocated

record size. Be sure the data set record size specified is

large enough to accommodate the picture being processed.

USER 72

End of extent on output. Not normally a user error. (This code

has not been observed with this version of VICAR.)

USER 73

Write error under unusual conditions. Not normally a user error.

(This code has not been observed with this version of VICAR.)

49

77-37

USER 240

This code is produced when the ABEND is intercepted by the

Fortran run-time routine. The actual ABEND code is found

in another printed message.

USER 324

The application program intentionally terminated abnormally, and

"NOTE, ABORT" was in effect. There should be an associated

explanatory message produced by the program. Th4 predominant

reason is an error in parameters specified for the program. Be

sure the spellinq of names of parameter sets on the EXEC

statement matches the spelling on the PARAMS statement.

USER 999

The requested program was not in the program library or was not

executable. Check correct spelling.

USER 1111

The op code in PS44 SVC simulation routine is illegal. This is

not a user error. (This code has not been observed with this

version of VICAR.)

USER 1112

The VICAR system index for a data set. Be sure all the required

data sets have been specified for the program.

USER 1200

The SYSOUT system file cannot be opened. This is not a user

error. (This code has not been observed with this version of

VICAR.)

USER 1492

The VICAR data set reference number is illegal. This is not

normally a user error.

USER 1970

There is an error in the task list passed to the second VICAR

job. This would occur if an error occurred in the first job

but the second job was not suppressed. Look for a syntax or

usage error in the VICAR control statements.

USER 1980

The VICAR system encountered an i/o error in processing parameters

or data set labels. Be sure the correct data sets and tapes are

specified as input files, that the correct tape format is specified

and that the tape does not have a permanent i/o error in the label

data.

USER 2400

The maximum number of tape units requested exceeds the implementation

limit of 8. This error is normally caught in the first job.

50

77-37-

Appendix

A. EVIL2LIB Procedure Library Maintenance Program

To Be Supplied

51

77-37

Appendix

B. JCL Insertions in Second VICAR Job

It is occasionally necessary to modify JCL statements generated

by the VICAR system. JCL procedure statements may be overridden

using standard operating system methods; see Ref. 1.2.2. These

methods cannot be applied to the second VICAR job because the

JCL is generated by a program, VTRAN. However, JCL statements

can be inserted in the second job in either of two locations,

just before and just after the "..EXEC PGM=VMAST" statement.

This is accomplished by supplying the statements to be

inserted as either of two data sets processed by the first job.

To insert statements before the EXEC statement, the following

sequence is used.

//VTR.FTO8FOOl DD DATA

JCL statements to be inserted

/*

To insert statements after the EXEC statement, the following

sequence is used

//VTR.FT1OFOOl DD DATA

JCL statements to be inserted

/*

Either of the above sequences is placed in the job deck following
the VICAR control statements, and preceding the "// VTR2.SYSIN"
statement if any. If both sequences are used, the "FT08" sequence
precedes the "FTlO" sequence.

As an example, JCL insertions may be used to obtain a core dump

after a job ABEND. The following sequence inserted after the

VICAR control statements provides a dump.

//VTR.FTIOFOO DD DATA

//SYSUDUMP DD SYSOUT=A

/*

52

77-37

Similarly, a private program library will be searched ahead

of the standard library if the following sequence is included.

//VTR.FTIOFOO1 DD DATA
//STEPLIB DD DSN privatelibrary ,DISP=SHR
// DD DSN=IPLI.SDSRUN,DISP=SHR
/*

53 NA$A-JpL-Col LA. Calif

-JIJ PUBLICATION 77-37

