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LOW SPEED AERODYNAMIC CHARACTERISTICS
OF A VECTORED THRUST V/STOL TRANSPORT
WITH TWO LIFT/CRUISE FANS

By Dirk J. Renselaer

SUMMARY

A wind tumel test was conducted to obtain lnw speed characteristics
in and out of ground cffect of a twin fan vectored thrust V/STOL transport.
Hover, STOL and conventional flight modes were investigated using a 10%
scale model with thrust nozzles vectored to various angles. Primarily
longitudinal data were obtained, as well as some lateral-directional data.

In hover, only minor interference lift losses were encountered in
ground effect with wings level. Larger losses were encountered in a banked
condition both with and without roll control application.

Lift characteristics at forward speed were found to be essentially
those of the power-off characteristics plus the direct thrust contribution
with only minor negative interference. The negative interference was found
to be much less than that of a previously tested VIOL model with twin
exhausts (ref. 4).

Various means to improve the lift were investigated. In hover, simple
exhaust nozzle wall extensions, strakes, and a strake box proved beneficial.
At forward speed strakes were also beneficial, and rotating the nozzles
fully aft for flap blowing may be advantageous below Ct = 2. However, a
hybrid configuration with half the nozzles deflected downward and half
deflected aft was not promising to improve lift.

INTRODUCTION

Considerable interest exists in the design of a small transport
aircraft with V/STOL capability for application in t . 1980's. A viable
propulsion concept for such an aircraft consists of using two lift fans the
exhaust of which can be vectored aft for cruise, and downward for VIOL and
STOL operation. Such a concept is proposed in reference 1.
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The design of such an aircraft requires detailed knowledge of propulsion
induced aerodynamic interference effec:s in hover and in the low speed
regime in and out of ground effect. The nature of the interference is such
that heavy reliance on empirical data is required.

The present report includes test data for hover and transition of a
ten percent scale wind tumnel model. Primarily longitudinal data were
acquired, but some lateral and directional data were also obtained with
emphasis on obtaining power effects. The tests were conducted in the V/STOL
tunnel of the Langley Research Center of the National Aeronautics and Space
Administration.
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SYMBOLS

Total nozzle exit area

Nozzle exit area of one fan (i.e., exit area of two
swivel nozzles)

Aerodynamic Center

Distance from center of fan inlet to the c.g. (of each
fan), see figure 75a

Aspect ratio

Moment arm of ram drag with respect to c.g., in pitch,
a =0 (fig. 49a)

Moment arm of thrust vector with respect to c.g. in pitch
(fig. 49a)

Wing span

MAC of wing

MAC of horizontal tail

MAC of vertical tail

Drag coefficient, D/qS

Coefficient of aerodynamic forces in drag

Center of gravity (assumed to be located at 25% C)
Coefficient of total drag, identical to Cp

Lift coefficient, L/gS

Lift coefficient of circulation 1lift

Coefficient of total 1lift, identical to Cj,

Rolling momront coefficient, MR/qSb

Pitching mument coefficient ( .bout 25% &), M/qSb
Coefficient of aerodynamic portion of pitching moment
Pitching moment due to ram drag

Total pitching moment coefficient, identical to Cp
Yawing moment coefficient. N/qSb

Thrust coefficient, T/qS

Side force coefficient, Y/qS

Drag force

Interference drag, i.e. aerodynamic drag with power, minus
aerodynamic drag without power

Diameter of equivalert circular exhaust area of one fan
Inlet momentum drag

Externally blown flaps

Ratio of inlet mass flow/exhaust mass flow

Fuseiage reference plane

Force ir x-direction in body axis system

Force in z-direction in body axis system
Gravitational constant, 9.81 m/sec2 (32.2 ft/secz)
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ng;t"

Distance between ground and center of exhaust plane of
nozzles when §y = 90°. At other nozzle angles the nozzle
height is defined as if th. nozzles were at 90°. In banked
conditions h is the average between left and right hand
fan nozzles.

Horizontal tail incidence with respect to FRP; positive
trailing edge down

In ground effect

Total 1ift (stability axis system)

Leading edge

Interference 1lift due to power

Longitudinal distance between nacelle inlets ar‘ moment
reference point

Lateral moment arm of left hand ram drag with respect to
c.g. (fig. 75a)

Lateral moment arm of right hand ram drag with respect to
c.g. (fig. 75a)

Same distance as £} or £2, except that B = 0

Vertical distance of ram drag vector above c.g. (fig. 49a)
Pitching moment

Mean aerodynamic chord

Rolling moment (fig. 1)

Inlet mass flow per second

Yawing moment

Nacelle station. (Stations ure called out in incaes)

Out of ground eifect

Overhang of flap shroud

Subscript denoting zero power

Subscript denoting a total effect due to power

Total pressure

PT at location of fan exit (figure 4)

Free stream static pressure

Free stream dynamic pressure

Revolutions per minute

Longitudinal displacement of nozzle thrust with respect to
nozzle center (fig. 49a)

Wing area of reference wing

Short takeoff and landing

Total nozzle exhaust thrust (both rans)

Nozzle exhaust thrust of one fan. Also nozzle exhaust
thrust of left fan

Nozzle exhaust thrust of right fan
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VT1P
VTOL

(v/vj)e

<D
(o

"s& ©

X 3 &

Free stream velocity

Exhaust velocity

Fan tip velocity based on radius 7.63 am (3.0 in)
Vertical takeotf and landing

Effective velucity ratio

Width of swivel nozzle exhaust

Vertical downwash velocity in stability axis system
Wing chord plane

Wing reference plane

Wing station, lateral d: ‘ance frcm plane of symmetry
(called out in inches)

Forward direction in body axis system (fig. 1)

Fuselage station, positive aft (called out in inches from
fuselage nose)

Side force (fig. 1)

Lateral dimensicns in body axis system

Lateral distance between the centers of the exits of the
two nozzles of one nacelle (fig. 6b)

Upward direction in body axis system (fig. 1). Also
distance downstream behind nozzle exit

Vertical distance above FRP (called out in inches)

Angle of attack of FRP

Sideslip angle (fig. 1)

Angle of inclination of nozzle side wall (fig. 6b)

Ratic of atmospheric pressure/pressure at sea level
standard day

Flz_ angle

Nozzle wngle (0° full aft, 9C° full down in body axis
system®

Downwa.i: angle with respect to free stream direction
Ratio of absolute temperatures at actual atmespheric
condition/sea level standard condition. Also pitch angle,
positive nose up

Exhaust flow angle with respect to FRP

Atmospheric der.:ity

Density of jet exhaust

Bank angle {fig. 1)

Inlet weight flow per secona

Tip speed ratio, wyrp/v
Turning efficiency Esee sketch on page 10)
Angle, defined in fig. 75a
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MODEL AND APPARATUS

The model represents a 10% scaling of a twin lift/cruise fan aircraft
with fans located in wing nacelles. Photographs of the model are presented
in figure 2 and a three-view is given in figure 3.

Each of the two model nacelles carries a tip turbine powered TD-457 fan
from the Tech Development Company as shown in figure 4. The exit diameter
of the fan including the tip turbine exhaust is 15.25 cm (6.0 in). The
drive air is supplied internally. The fan axis of rocation is drooped 5.5°
with respect to the fuselage reference plane.

Each nacelle carries two independently rotatable exhaust nozzles (fig.S).
The nozzles can be rotated fram a fu'l aft cruise position to a forward posi-
tion for braking. The axis of rotation of the nozzles is inclined with a
double angle. Viewed along the fan axis, the axis of rotation is laterally
inclined 21° from horizontal, lying in plane A-A of figure 6a and within the
plane A-A the axis of rotation is rotated aft by 19°.

In order to louate the nozzle exhaust with respect to the model more
conveniently, the nozzle angles were measured in front and side view, and the
locations of the exnaust centers were measured longitudinally, vertically,
and laterally using the definitions given in figure 6b. Results are:

Inclination of Outer !

Nominal | Actual Nozzle Angle
Nozzle . in Side View (With Nozzle Wall in Front View, y
Angle, &y Pespect to FRP*, Deg) (With Respect to Plane of

(Deg) Symmetry**, Dcg)

0 (full aft) 0.2 Not measured (approx. 0)
23 22.6 Not measured (approx. 0)
62 61.8 +9.3
80 80.5 +3.7
90 (full down) 90.1 +0.2
103 103.5 -5.5
120 (braking) 119.9 -15.7

*measured from photographs, positive with exhaust directed downward.
* ‘measured from photographs, positive where flow is directed inward towards
the nacelle plane of symmetry.



' Nominal Nozzle Fuselage Station Vertical Station Dlstance by Between

Angle, &N Xo Zo ' the two Nozzle Centers

(Deg) of one Nacelle

(cm) (in)

0 (27.7) (+0.40) 15.75 (6.20)

23 (27.4) (-0.80) 14.15 (5.57)

62 (26.0) (-2.29) 14.35 (5.65)

80 (24.9) (-2.66) 16.10 (6.34)

90 (24.5) (-2.67) 16.57 (6.52)

103 (24.0) (-2.57) 18.24 (7.18)

120 (23.6) (-2.50) 18.72 (7.37)

The exhaust shape of each nozzle is rectangular (fig.5). The width is
6.22 cu (2.45 in), height 12.45 e (4.9 in), and the exhaust area is 77.4 cu’
(12.0 in ) The upper and lower walls of each nozzle are parallel. The
side walls have a converging angle of 88.33° as indicated in figure 7.

The figure also illustrates the internal duct shape of the nacelles.
Fillets are used to eliminate sharp corners. The duct opening at the plane
of rotation is circular and has a diameter of 12.45 cm (4.9 in).

The reference planfonm is trapezoidal (fig. 3). The reference wing
has an area of 0.387 m¢ (4.17 £t2 ) and a mean aerodynamic chord of 22.75 cm
(8.96 in). The true wing planform includes an umswept portion with a
constant chord between the fuselage and the nacelle, up to 32% semispan. The
chord length of this section is 35.1 am (13.82 in) and the airfoil is a
NACA 64A412 section extending from the true leading edge to the true trailing
edge. Outboard of the nacelles, from 43.3% to 97.5% semispan, a 17% thick
supercritical airfoil is used with a camber of 3.15% and a leading-edge
radius of 4.5% chord. Between the 32% and 43.3% semispan stations a transi-
tion exists between the conventional inboard wing panel and the supercritical
outboard panel. The transition is made using straight lines between points
of equal percent chord station.

The incidence of the airfoil reference line on tHe inboard panel with
respect to the fuselage is 5.3°, constant up to a lateral wing station of
43.3% semispan. The outboard wing panel has a twist and thickness such
that all constant percent chord stations fall laterally on a straight line.
The incidence at 97.5% is 2.4°. The incidence is obtained by rotating the
airfoil at the 97.5% semispan station about its 50% chord s+ation; no dihedral
is used at this chord station. Due to the twist, the quarter chord element
lies below the wing reference plane and has a slight negative dihedral.



The model has a double slotted flap over 70% of the wing span. The
flap chord inboard of 43.3% semispan is constant in absolute value, whereas
a constant percentage wing chord is uscd between 43.3 and 70.0% semispan.
Outboard of the. 43.3% semispan station the detail flap dimensions are as shown
in figure 8. A photograph of the flap near the nacelle afterbody is prescnted

in figure 9.

Drooped and extended ailerons, from 70% to about 100% semispan, are used
for one run. Geometric details are given in figure 10. The upper surface
inclination of the extension is 20° with respect to the airfoil chord.

Slotted Krueger flaps are installed inboard of the nacelles with chord-
wise dimensions as given in figure 11. The span is 9.9 cm (3.9 in) for each.
No lateral gap exists between the flaps and the fuselage sidewall, however
a gap exists between the flap and the sidewall of the nacelle because of the
curved wing-nacelle fairings. The flap deflection is 60 degrees with respect
to the wing chord.

Plain Krueger flaps are attached to the wing leading edge outboard of
the nacelle fairings, figure 11. Flap chord is 15% of the wing chord, and
the average deflection is 65 degrees with respect to the wing chord.

Nacelle strakes for the outboard sides of the nacelles are located as
shown in figure 12. They were used on only a few test rums.

A few runs were made with exhaust vanes installed at the nozzle exits.
A geometric description is given in figure 13.

Fuselage lower surface strakes are shown in figure 14a. The fuselage
strakes consist of two walls parallel to the fuselage center line, and, in
case of the "strake box', a laterally connecting wall in the front and rear
of the two parallel walls.

Nozzle exhaust fences, consisting of an extension of the side wall of
the nozzle so as to shield the nacelles from the exhaust flow, are shown in
figure 14b.

Landing gear geometry is presented in figure 15. No associated gear
doors were simulated.

Fan inlet covers (plugs) are illustrated in figure 16. Their shape is
such that the forward portion of the nacelle represents a smooth streamline

body.



External exhaust rake geometries and their location with respect t9
the left hand nacelle are presented in figure 17.

Each nacelle contains a built-in internal total pressure rake just aft of
the fan stator (fig. 4). Six total pressure probes are manifolded together
to produce oné avérage total pressure for each nacelle. Two static pressure
orificies are located in the nacelle wall in the same plane as the leading
edge of the total pressure probes. The two static pressures were also
manifolded together to produce one average static pressure for each nacelle.

Unless specifically noted otherwise, the configuration tested was
equipped with slotted inboard and plain outboard Krueger flaps, but had no
aileron droop or extensions, no fences or strakes, no landing gear, no inlet
covers, and no external pressure rakes installed.

A boundary layer trip was applied 3.2 cm (1.25 in) behind the wing and
tail leading edges and behind the fuselage and nacelle nose. Number 60 grit
was applied 1.6 mmn (1/16 in) wioe.

The model was tested in the V/STOL facility of the National Aeronautics
and Space Administration's Langley Research Center (tests 148, 149, and 152).
Wall corrections were applied to all data at forward speed out of ground
effect, based on H. Heyson's methods. In ground effect no wall corrections
were applied because they were very small.

Calibration tests were made in the wind tunnel as well as in the
adjacent static test facility to determine static thrust by mod iorce
measurements. Most of the calibration tests were made with the .acelles and
the fuselage shielded against the exhaust flow (reference 2). Shielding is
necessary so that the forces of the model to be measured are ideally only
those of the exhaust thrust. Without shields, entraimment flow and the exhaust
plume generate interference forces on the mcdel.

The shielding used is schematically shown in figure 18a. The wing and
other surfaces were deleted or substituted for by minimm structure to
minimize forces on the model from interference. The fans were not operated
simultaneously to avoid the generation of a "fountain' flow. Also, some
calibration tests were made with the nacelle shields removed, but with the
fuselage still shielded; see figure 18b. Additianal details of the
calibration setup are found in reference 2.

The inlet flow rate was calibrated under static conditions. For this
calibration, the model inlet was removed and a bellmouth inlet was attached to
the front of the fan. Total pressure in front of the bellmouth entrance
(equal to room ambient pressure) and the static pressure in the bellmouth
throat were measured.



CALIBRATION RESULTS

The thrust of each of the two nozzles of each nacelle has a component
in the axial and normal direction, as well as a small component in the
lateral direction because of the inclinations of the axes of rotation of the
nozzles (fig. 6a). The calibrated thrust of the exhaust nozzles, however,
is defined as being only the resultant force in the X-Z plane (parallel to
plane of symmetry), leaving out any lateral components that may exist at each
swivel nozzle position in this definition; see fig. 6b. The calibrated thrust
so defined is presented as the sum of the thrusts of both nozzles per fan.

The calibrated thrust of the right hand fan, corrected for temperature
and pressure, is presented in figure 19. The data are presented versus the
square of RPM. Such a presentation facilitates detection of deviations from
a first order linear theory that treats the fan as if it were a propeller.
The figure pertains to conditions out of ground effect. Similar data are
given in figure 20 in ground effect, with and without bank angle. Results
show that the fan thrust decreases somewhat with closer proximity to the
ground. Maximum scatter at high RPM values is in the order of 8N (approxi-
mately 2 1bs.).

The calibrated thrust of the left hand fan is similar except that the
ground effect is not as pronounced. Thrust data for this fan are presented
in refevence 2.

Comparison of the data with shields (as in figure 18a) and without
shields (as in figure 18b) yields the exhaust interference on the nacelle.
Results are given in figure 21. It is seen that, out of ground effect, the
nacelle generates a "suck down" of about 5% at a nozzle angle of 90°. In
ground effect this loss is increased to about 10%

Extaust flow turning angles are shown in figure 22 a and b for the fans
with calibration shields. It is seen that the turning angles almost coincide
vii . the nozzle rotation angles. Average turning angles of the right and
«oft hand fan together are listed in the following table:

Nozzle angle, &y (deg) O 23 62 80 20 103 120

Jet dellection angle, 85 (deg) 3.0 26.8 62.5 81.9 91.5 105.1 122.7



An assessment of the location of the exhaust thrust vector is made
using moment data from the fz.s with calibration shields. Pitching moment
data about ¢/4 are plotted in figure 23 for various RPM's in and out of
ground effect. Computed moments of thrust times moment arm to the geometric
center of the exhaust are also indicated for comparison. The measured
moments out of ground effect show more negative values except at &N = 120°,
indicating that the thrust is generally located bch.ad the center line. The
average distance r behind the center is for the left and right hand fan:

&  80° 90°  103°  120°

v/ 0.0828 0.0727 0.0247 -0.0388

In ground effect the measured moments are more negative, indicating that the
center of thrust is located further behind the geometric nozzle center.

Lateral flow angularities are measured from rake surveys of the out-
board nozzle of the left hand fan at distances of 0.40 de and 1.12 d,
downstream of the nozzle. On one occasion measurements were also taken at
0.03 de distance from the outboard nozzle of the right hand fan. Data are
presented in figure 24, indicating only a slight lateral inclination of the
exhaust flow.

Additional exit flow characteristics are given in figure 25 where the
pressure ratio at the fan exit is given as a function of thrust. The
pressures are based on averages of six total pressure rakes and two static
orifices, each manifolded together. The data are given only for nozzle
angles of 90 and 103 degrees; at other angles oil was suspected to have
acamulated in the pressure lines. Results are used in an assessment of
*%o thrust increasc with forward speed during the discussion of transition
characteristics.

Inlet flow data are presented in figure 26 with correction factors
for temperature, 6, and pressure, §, which are unity for standard atmosphere.
By first approximation, the inlet flow follows a linear variation with the
square root of the thrust. Theoretically this is seen as follows. Assuming
a uniform distribution of the flow across the fan exit area:

A,v)v, =T
“’313)3 1

z_



Herein, the mass flow leaving the fan is equal to (PBAlv-) and consists of
the iniet mass flow and the mass added to the system by the fan turbine
supply air. A factor f is now defined to exclude the supply air, so that the

inlet mass flow of one fan is

m=f .« (PAV, |
1 (’3 1 J) 2

and thus the weight flow per fan becomes
o= (fe JPAD VT,

In the present case, figure 26 yields

_o, ~ Ms;es(= Qﬁes)
7 (fg‘/lgAl) 1.11 i 0.524 ==

and thus

fg ‘/P.Al

f=( i ) = 0.815 [P

gPA Pj P;
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HOVER DATA AND STATIC TURNING CHARACTERTSTICS

Tail-off longitudinal forces and mements in hover are shown in figure
27a for various distances of the model above the ground. The distance, h,
is the height of the exit center of the nozzle if it were deflected to an
angle of 90° even though the actual nozzle angle may be different. The
quantity de is the diameter of an equivalent circular exhaust area equal to
the exhaust areas of the two swivel nozzles fed by one fan. The graphs
cover a range of h/de values up to 6. Numerical values for out of ground
effect, where h/dg = =, are included in the upper right hand comner of
each graph.

The 1lift characteristics are given in this figure in terms of the 1lift/
thrust ratio, L/T, where T is the total calibrated exhaust thrust of both
fans. A high RPM case (100%T) and a lower RPM case (803%T) are shewn. The
lift loss due to aerodynamic interfercnce is 5 to 6.7% out of ground effect
and 10 to 14% in ground effect. The larger lift loss pertains to the lower
RPM case. An almost identical 1ift loss for high RPM was found in figure 21
for the nacelle alone which suggests, at this nozzle angle, that the nacclle
is primavrily responsible for most of the lift loss for the whole model.



Similar data are given in figure 27b at various nozzle angles, &y, but
all at high RPM. The data show that L/T decreases from 0.98 to 0.88 in
going fram &y = 80° to &y = 100°, out of ground effect, and that ground
effect decreases L/T further by approximately 6% at h/de = 1.0. These are
readings at zero pitch angle; in ground effect a decrease in L/T is found
with increasing pitch angle (fig. 27c, 27d).

In an effort to reduce the lift loss due to ground effect , a strake box
was tested on the bottom of the fuselage. The box consisted of sidewalls and
a front and rear wall (see fig. 14a), and is designed to capture a ''fountain"
flow between the two fans. The box changed the ground effect by 17% from a
lift loss to a 1lift gain at h/de = 1.0. The chaige was less at greater
ground distances (fig. 28a).

Another sidewall which is formed by an extension of nozzle walls as
illustrated in figure 14b, also helps reduce the loss due to ground effect
by at least 5% throughout the range of h/d values (fig. 28b). This may
be caused by moving the region of flow mixing between the exhaust and
surrounding air further downstream, thereby reducing the velocity o{ entrained
air at the lower surface of the nacelle which, in turn, decreases the suction
forces at that surface. Application of these sidewalls reduces the lift loss
due to interference to only 5% of the nozzle thrust at h/de = 1.0.

A sumary of minimum values of L/T encountered at a nozzle angle of 90
degrees is included in the following table (in addition to asymmetric
conditions which will be discussed further below):

Minimum L/T at &y = 90°, IGE

No control input With control input
No bank 1 10° bank 10° bank
T/Tpax=10'T/Tpax=0.8 T/Tpax=0.8 | T/Tpax=0.8 + 0.2
Without strakes 0.90 0.86 0.80 ; 0.72
With strake box 0.92 : 0.84 . 0.78
With nozzle side- ‘ :
wall extension 0.95

Pitching moment characteristics are also presented in the figures. The
data show a pitch-up due to ground effect. Interference effects in ground
proximity were analyzed in figure 27c, showing that the interference effects
increase the stability in pitch. In this figure the computed curves without
interference effects are based on 8; = 90° and on a varying value of r/¢ as
a function of nozzle attitude as derived from figure 23 for close ground
proximity.



The effect of tre horizontal tail on pitching moment in hover, in or out
of ground ¢ffect, is negligible; see figure 29.

The discussion of the above hover data pertains to symmetric flow
conditions. However, with the aircraft banked 10° (no strake box, 80%
thrust setting) a minimum value of L/T = 0.80 is reached as compared to
0.86 without bank (see fig. 30a and 27a) indicating that the lift loss in
bank is larger. It is believed that the fountain existing between
the exhausts of the two fans is oblique; it escapes the fuselage bottom
somewhat, thereby generating less positive pressure which, in turn, cannot
overcome the suckdown, see sketch:

/\/b\ -

’/’/////////////////\”f////////////7/7T/
Fountain

Using the strake box to capture the fountain increases the 1ift to L/T =
0.84 in the banked condition, as compared to 0.80 without strake box, see
figure 30a.

Application of roll control in the banked condition, in the direction
against the bank, reduces L/T to 0.72 at h/de = 1.0 without the strake box
(fig. 30b ). This may be due to an increased obliqueness of the fountain when
control is applied. The amount of control is based on an approximate 20% fan
thrust increase on one side and about 20% decrease on the other. The strake
box limits the 1ift loss to L/T = 0.78 as shown in the same figure. Results
are included in above table.

This trend of the above 1ift characteristics has also been shown in
previous tests of a twin fan VTOL model, using water as a test medium rather
than air (see ref. 3). Results of this previous test were used in selecting
test runs for the present test.



Roll control characteristics are also affected by ground effect. Basic
data for wings level, without strakes are given in figure 30c, and are
analyzed in figure 30d. The control effectiveness is reduced to 81% at the
critical distance of h/de = 1.6. This is with respect to the rolling moment
computed from the thrust differential. Use of strakes changes the effective-
ness to 72% as shown in the same figure. In the banked condition at a height
of h/de = 1.0 the roll control moment remaining is about 61%, as compared
to 81% wings level, and is roughly unaffected by the strake box (fig. 30b, d).
The percentage improves rapidly with increasing ground distance.

The effect of the landing gear on hover characteristics is presented
in figure 31. The effect is negligible.

Static turning characteristics are given in figure 32, based on data
obtained at the highest RPM values tested, and pertain to conditions out
of ground effect with the landing flap deflected and no strakes or nozzle
wall extensions. The thrust efficiency and turning angle are defined in
the following sketch, where Fx and F; are measured model forces with
interference effects, and where T is the total calibrated fan thrust.

~._ I

-

R o

"FXZ + FZZ

T

Turning angle

Turning efficiency = 9=

The thrust efficiency decreases by 4% while increasing the nozzle angle
from 90° to 123°, and increases 6% in going from 90° to 23°. The turning
angles are essentially equal to those of the calibration data with shields
installed (fig. 22), i.e., interference effects do not change the turning
angles significantly.

Included in figure 32 is a case with zero nozzle deflection where the
exhaust impinges on the flap (without EBF deflector). As expected, the
thrust efficiency is considerably lower, and the turning angle significantly
different from zero.
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LONGITUDINAI. POWER-OFF DATA

Power-off data were measured in conjunction with power-on data so that it
is possible to isolate power effects. The power-off data are given in figures
33 and 34 for flaps up and down, with and without fan inlets covered, all
without ground effect. The data are pres-nted in the stability axis system.

Flaps up, without leading edge devices and with the landing gear
retracted, a tail-off Cimax of 1.32 is obtained (fig. 33, fans windmilling).
The increase in the maximm 1ift coefficient due to flap deflection and full
snan leading-edge devices is ACpyax = 1.24, bringing the Cpyax to 2.56 (see
sumnary in figure 35). Ehe tunnel dynamic pressure in this condition was
q = 2769 N/m2 (60 1b/ft%).

Inlet covers produced, in all cases, a decrease of Ciypy (fig. 34 and
35). In a number of rumns, covers were used for drag investigations, showing a
reduction in drag.

Flaps-up, the tail-off aerodynwmic center for low positive angles of
attack is located at 12% MAC, and tail-on at 49% (fig. 33a). The stall is
stable with tail on and off, although a destabilizing trend exists at high
angles of attack. Flaps-down, the tail-off aderodynamic center is located
at about 14% MAC, and tcil-on at 36% (fig. 33c). Addition of the flaps
made the model stall unstable with and without tail.

Additional power-off characteristics, such as downwash and tail
effectiveness are included in summary plots in the subsequent section.

LONGITUDINAL DATA FOR TRANSITION OUT OF GROUND EFFECT

In the present report, transition is defined as the speed regime
between hover and conventional wing-borne flight.

Reference Thrust

Either the thrust coefficient Cr = T/(qS), or its inverse qS/T, is used
in the present report to describe the power effects. Herein, the static value
of the thrust, T, is used and was computed from calibration data using
measured RPM values and applying appropriate corrections for atmospheric
temperature and pressure,

11



The static thrust, rather than the exhaust thrust existing at forward
speed, is used because the change of this thrust with speed is small. An in-
dication of the change with speed may be obtained from figure 36. The figure
shows the increase of the pressure ratio at the fan exit when RPM is held
constant while the tunnel dynamic pressure is increased. This pressure ratio
increase can be compared with the static exhaust thrust increase with pressure
ratio obtained during calibration, see figure 25. Such a comparison (not
explicitly shown here) indicates that a speed increase between the static con-
dition and CT = 2 results in an exhaust thrust increase of approximately Zz%.

Inlet Effects

Inlet effects are included in the power-on test data given. However,
the ram drag portion of the inlet effects can be isolated using the inlet
mass flow information given in figure 26 and using a procedure discussed in
the drag section of this report. The remainder of the inlet effects are
considered here as part of aerodynamic interference effects. Also the
analysis plots include the ram drag effects unless it is specifically stated
that they are excluded.

Lift

Test data for swivel nozzle deflections of 0°, 23°, 62°, 80°, 90°,
103°, and 120° are given in figures 37 through 44 for conditions out of
ground effect.

A discussion of the maximum 1ift is given in the following. Cpqax is
defined as the lift coefficient where the first reversal in the lift curve
slope occurs, even though a higher value in C, may be reached at higher
angles of attack.

Maximum 1ift information for zero nozzle angle is correlated in figures
45a and 45b, showing that the CLypx increment due to power in the flaps-up
case consists primarily of the vertical component of the thrust vector. How-
ever, flaps-down, an additional maximum lift increment exists beyond this
vector component because an externally blown flap (EBF) principle is involved,
rather than a vectored thrust principle. With this principle the exhaust
jet impinges on the flap and leaves the flap trailing edge similar to a jet
sheet. This generates supercirculation analogous to a jet flap, and is
respon.ible for the additional increase of Cpyy with Cr.

The figure also shows the effect of leading.edge devices on the

maximm 1ift at this nozzle angle. The increase in Cpypy from these davices
is only slightly affected by Cr,

12



Maximun 1ift information for other nozzle angles, flaps down, is
sureqrized in figure 45c. A strong rise of the maxiram 1lift coefficient
with CT is shown in all cases. For these larger nozzle angles this is
prim-rily caused by the direct thrust contribution to lift.

* more detailed discussion of the lift characteristics now follows.
First, the direct thrust contribution is subtracted to i-olate the aerodynamic
circulatien lift, Cpgeyo. This is carried out for various mozz'-. angles and
as a function of angle of attack in figures 46a through 46g, 1sing

CL = CL - CT sin (0j + a)
aero

Herein, Cp is the coefficient of the total measured . and 63 is the
jet deflection angle.

Results show that ClLgero decreases as Cy increases when the
angle of attack is low, except for &y = 0 where the flap is externally blown.
The difference between CT = 0 (fans windmilling) and finite CT values
represents the interference effect of power on the circulation lift. Thus,
except for §y = 0, the interference 1ift coefficient is negative at low a's.

For a further discussion of the data it may be helpful to introduce a
different form of presentation since the significance of thLe 1lift loss is not
easy to assess immediately from above curves. For example, a laree drop in Cf,
may ve relatively insignificant when multiplied by a very low dynamic
pressure. To obtain a proper assessiment of a change in 1lift the actual 1lift
value, vather than Cj,, should be compared with a tangible quantity such as
aircraft weight or nozzle thrust.

In the present report the static thrust is used for comparison, being
always relatively high at low transition speeds:

Al _ ACl‘qS AC
’ T

T

L

CT
The data are now also presented as a function of the inverse of Cr, i.e.
qS/T, so that conditions for zero velocity can be shown graphically. A
schematic of such a presentation is given in the f~llowing sketch for the
total aircraft lift:
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Graphs of this type give a clear visibility of the magnitude of 1lift
change with speed during takeof{f, a characteristic which cannot be found in
presenting Cp versus CT because of the large changes in C], encountered when
q is increased at low speed. For example, when speed is increased from zero
the large associated drop in Cp, does not even give an immediate impression as
to whether L actually increases or decreases. However, when the data are
expressed i. terms of L/T a change in q giv : a clear impression of the
magnitude and sign of the 1lift change. Also, for a known thrust and given
aircraft weight W = L, the dynamic pressure needed for flight equilibrium can
immediately be determi A in the latter format.

One reason for the selection of qS/T as the abscissa is to preservc a
ready determination of conventional coefficients from these graphs based on
the following equation:

c =L _ /M
L g5~ (qS/T

For example, in a graph showing ' /T versus qS/T, the C|, valie can he
determined by dividing the ordinate L/T by the abscissa qS/T as is
illustrated in the above sketch (note also that Cj, = (L/T)Ct).

14



Furthermore, the abscissa qS/T can easily be related to the often
quoted physically important velocity ratio (v/vJ-)e. This is shown as
follows: The thrust is

T= (v.PA)v.
)] ) J

where A is the total nozzle exhaust area when T is the total nozzle thrust.
Thus

12
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The desired relation becomes
( l) . Es ’ZA
V. TVS
W e

With the geometric property of A/S = 0.080 for the present model the
relation reduces to

This yields the following numerical comparison between qS/T and (V/Vj)e:

Cr 0 0.5 1 2 4 8 16 50 ®
aS/T o 2 1 0.5  0.25 0.125 0.0625 0.020 0

(V/Vi)e % 0.565 0.400 0,283 0.200 0.1415 0.100 L0565 0

Applying the above rela.1  hips the increase in maximun 1lift in terms
of IMAX/T versus qS/T is presented in figure 47a, showing that with an
increase in freestream dynamic pressure ‘" wim Tift capability of the



present aircr. ft increases immediately while keeping the thrust constant.
Also, the lift at low angle of attack increases immediately with increase in
forward speed (fig. 47b). An angle of attack of four degrees was chosen
because at a lesser angle of attack the lift decreases significantly at very
low speeds (fig. 42b). The 1lift presented is the total lift which includes
the aerodynamic 1lift as affected by power, and the direct 1lift component
from the exhaust thrust.

The above form of presentation leads to a different analysis procedure
than before. The lift is broken up into various components. The various
components are illustrated in figure 47c, describing the case of &y = 90°
from figure 47b. In general, the total 1lift consists of the following three
contributions:

L= CLopqS + T sm(0j +a) +ALin

t
or
Al.
Lo @, int
T-q@.r+mM%+®+ T

Herein, Cio, is the 1lift coefficient at zero power. It is seen that, given
a certain thust, the power-off -1ift/thrust ratio (first term on the right

in the equation) is proportional to qS/T because of the dynamic pressure
variation. The second term is a constant (assuming a constant angle of
attack). In the figure the two terms together are represented as a straight
line. An increase above this line indicates positive interference lift,
ALint, and a drop below this line represents a negative interference lift. In
the case of figure 47c, the negative interference lift amounts to only about
7% of the thrust. The loss occurs at speeds where sufficient lift is
generatea to enable the aircraft to lift weights in excess of those at hover.
In this figure, the power-off 1ift used was that for fans windmilling (Ct = O,
a=4°, C, = 2.00, fig. 42a).

In figure 47d this interference lift is isolated and summarized for
various nozzle angles and for various angles of attack.

The above results reveal that the interference 1ift loss of the present
model is significantly less than a previously tested model with twin exhausts
(ref. 4). In that test, losses in excess of 25% T were encountered for a
nozzle location slightly forward of 25% MAC (8N = 90°, flaps down). It is
surmised that in the present test the nacelle afterbody shape is such that
not as much flow separation exists behind the exhaust pipes at forward speeds.

16



Drag

Similarly to the lift, the drag can also be broken up into various
components. The total drag is

= +C. - cos (a + §.)
thot CDaero . “r J
Hc_erein, Cdp is the ram drag, and the last term on the right hand side is the
direct nozzle thrust component. In figures 48a through 48g the aerodynamic
drag, CDyepp» is presented by subtracting the ram drag and the thrust
component from the total measured drag.

The ram drag was computed using

.—_é:é
R g8 g\p

where, for two fans (see before):
® =2(fg ‘/ijl)\/'q

and where the subscript 1 denotes one fan. This yields for two fans:

and because 2T; = T:

Dp ) Z(fg \/T)E , \/é'g‘
T gvrP—S_ T
Note that conversions between the forms of presentation can be carried
out using:
= Elsl 3 ?2{% =(%)-CT
so that
D (D Z!fg ~/P—.A_1)
“ "3 " (T) Cp = Ve,
R A gV/Ps T

in which, from calibration results:

17



fgVPA = 1.11 M5 (=0.524 lb/sec)
! N b

The above figure 48 gives the aerodynamic drag for Cr = 0 (fan wind-
milling), as well as for finite Cy values. An aerodynamic interference drag,
ADint, is defined as the difference between the aerodynamic drag a. C = 0
and Ct > 0 while the angle of attack is held constant. This drag, in
terms of

ADint S
= AC ®©

T D. T
int

is plotted separately in figure 48h. When this drag is cambined with the
direct thrust term the sum represents the total power effect:

ADP =ADint + T cos (o + 0j)

This quantity, non-dimensionalized by T, is presented in figure 48i, along
with the associated 1ift change due to power, all for zero angle of attack.
The data show the 1ift and drag increment due to power as being relatively
constant with speed over a fairly large speed range (a fact that could not
have been visible if the data were plotted in customary coefficient form
sincc constants divided by qS show large variations).

Pitching Moment

The aerodynamic contribution in the tail-off pitching moment
has been isolated according to equation

C =C -C - = -—
Mero Mot "™ B ¢
Herein, ay is the moment amm of the thrust with respect to the center of
gravity as illustrated in figure 49a. The coefficient (jpg is defined as
the ram drag contribution to the pitching moment coetficient, i.e.

c = 'z ) DR

o @

The distance g, is the height of the center of the inlet above the center
of gravity, and is (see fig. 49a for the definition of aT and ¢):

= 1
lz a aR
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Because Z(fsw/PFl

the pitching moment coefficient contribution from the ram drag becomes
)bl g
C ={—a-—— =
"R \C ¢ g /Ps as

Results of Gpgero are presented in figures 49b through d for various nozzle
angles and Cr values.

C

Similar to the presentation of aerodynamic lift and drag, the difference
between the values for Cr = 0 and Cr > 0 is due to the power effect on the
aerodynamic moment, and is presented separately in figure 49f, non-
dimensionalized , using the form

aero aero Maero
Tc Tc Cr
In the numerical treatment , the following geometric quantities have
been used:
R

é= 1.32 g—— = 0.39
C C

¢y 80 90 103 120

- et

ar 0.227 0,157 0.077 -0.058
[

The values for aT/c were detemmined using thrust inclinations 6 (as opposed
to &N) and using thrust displacements r/c, both as tabulated in the
calibration section.

Stability

Longitudinal tail-on stability characteristics as a function of the in-
verse of the thrust coefficient are preseated in figure 50a, showing a forward
shift of the aerodynamic center when speed is decreased (given a constant
thrust level). For comparison, tail-off aerodynamic center locations are
presented in figure 50b, revealing a much lesser AC shift. The tail contribu-
tion in stability is given in figure Sla showing a large decrease of its
effectiveness whick is responsible for the forward shift in the tail-on case.
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In general the pitching moment curves are quite nonlinear. The
nonlinearity is probably due to early local wing upper surface flow
separations at positive angles of attack, and early wing lower surface flow
separations at negative angles_- This may be caused by large flow non-
uniformity due to power effects and by low Reynolds mmbers. In many
instances it appeared impossible to read reliable slopes and corresponding
points have been deleted from figure 50. Examples of cases where slopes
have been read or where it was possible to isolate the tail contribution in
stability are presented in figures 51b, c, and d. These figures cover
nozzle angles of zero and 90 degrees, and Cy values of zero to about 8. The
slopes were consistently read at a = 2 degrees, and care was taken to exclude
conditions where the tail was stalled.

Stability changes with power were also computed for comparison with
test data. The computations were made for the tail -off case for selected
nozzle angles, and results are included in figure 50b. The camputation is
based on the assumption that the AC shift is caused only by inlet momentum
effects. The equations are derived as follows: From

Te - — N
bs  VaS¢

. %y, (‘8/e4))
L"'.zz(: ER) g s

it follows that

where T is the total exhaust thrust of two fans. The lift curve slope
without interference is

dc d[T sin(g. +a) + C qS]
L. J Lop” ] - ¢ . L cos(ﬁ}j + a)

da qs * darad L"‘op as

so that the aerodynamic center shift becomes (positive for a forward
shift):
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In figure 50b this shift was added to experimentally obtained power-off
locations. (The power-off locations are indicated at qS/T =*«).

The large difference between the above computed AC locations and the
experimentally obtained locations shown in this figure for §y = 90° may
result from a positive pressure field just ahead of the nozzle exhaust; see
sketch below. However, no pressure measurements were made that could verify
this.

Positive pressures (+)

Note that moment charac’eristics presented in the form M/(TC) can be
converted to regular coefficient form using

. k) &)

Tc
M
di—=
=—'I:S-.
Cm o CT
a
&
ad\= M
T d_—)
L e e "G \rc
dCL CLQ d‘L' .CT d%
da
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Downwash and Tail Effectiveness

A downwash correlation is presented in figure 52a for various noz:zle
angles and CT values. They are generally obtained at intersections of tail-
off and tail-on pitching moments to avoid inaccuracies due to interpulaticns
of nonlinear data.

The theoretical downwash shown in this figure is based on a
jet flap theory with full span blowing and with the downwash located at apn
infinite distance behind the wing. Calling wj the vertical velocity at
infinity of a stream tube with diameter b representing the virtual mass,
the following is obtained:

b2
wip\m—4— + Tsine = L

_ 2
%(%pvzﬂ’b—s-° s)+ 2T sin € = 2L

or

where € is the downwash with respect to the free stream direction.
Substituting for small angles:

—wl=tane=e
\'
sine = €

the above relation becomes
ZCL
€ —————
7AR + ZC,r

or, in non-conventional form:
2L/T

5,? AR + 2
Considerable scatter of experimental data points exists about this
theoretical relation. However, the theory is a simplification and is not
really applicatle for vectored thrusts at discrete points along the span.
Aiso, the average value of the downwash is somewhat larger than the theory
indicates which may be due to the wing twist.
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Perhaps a better correlation is obtained by removing the direct thrust
contribution T.sin (8N + o) from the correlation, see figure 52b. This
curve leads to a downwash due to circulation lift, plus a downwash increment
Ag due to interaction of the jet exhaust with the surrounding flow, figure
S2c, i.e.

de

€=——'C +A€
(' L) Laero

aero

Herein, the circulation lift CLaeyo includes power effects on the
circulation.

The tail effectiveness @tn/@iy is given in figure 53 showing an
increase with CT as may be expected from an increased velocity due to
entrainments into the exhaust flow.

Adrcraft Modifications

Modifications to the basic vectored thrust aircraft configuration were
tested as part of this investigation. These modifications were an
externally blown flap (EBF) with flaps extended but with 8N = 0, a hybrid
configuration (asymmetric nozzle deflections), a configuration using nozzle
exhaust vanes, and a configuration having a fuselage strake box. The EBF
and hybrid are illustrated in figure %4 along with the vectored thrust con-
cept. Detail information of the vanes and the strake box are given in
figures 13 and 14a respectively. Basic data are in figures 383, 55, 56 and 57.

Test data pertaining to externally blown flaps (EBF) from figure 38a
are analyzed in terms of the lifting capability L/T versus nozzle angle for
conditions where a net forward thrust or zero thrust exists, see figure 58a.
This is done to i-vestigate only conditions of interest for takeoff. At low
nozzle angles, th 'ift is limited by s3%all while D/T < 0. At high nozzle
angles the 1lift i. Llimited by D/T = 0. Results are plotted in figure 58b.
At each point a different angle of attack exists. Without making a complete
analysis it appears from figure 58b that at CT = 4 the vectored thrust
concept (8N > 20°) yields better lifting capabilities, whereas at = 2 the
externally blown flap (EBF, &y < 20°) shows promise (a complete analysis
would require ‘the application of flight safety margins not considered here).
In selecting the points for zero or forward acceleration the ram drag was
included in the drag.

Application of thrust deflectors for the EBF configuration did not
increase the maximum 1lift (fig. 58¢c). The deflectors used were considered
to be formed by double fold-out landing gear doors and may not have had the
optimum shape, size, or location.
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The hybrid configuration is defined as having half the nozzles deflected
downward for lift and half deflected aft for external blowing and thrust. It
yields an L/T value of 1.33 at Cr = 3.19 (D/T = 0), but does not have enough
thrust at CT = 1.57 to achieve D/T € 0, see figure 55. Comparison with the
EBF concept in figure 58b shows the hybrid configuration to be inferior.

The effect of exhaust vanes as compared to regular nozzles without
vanes is presented in figure 59 for flow angles of about 60° and for flow
angles of 90° to 100°. The data are obtained from figure 56. Only a
negligible affect on CL is shown for about 60°, but for about 100° a decrease
n lift is shown with vanes at low u, and an increase at high y. However,
the comparison is made at equal fan operating conditions using the speed ratio
p = vr/v rather than on the basis of equal Cr values. This is done because
it was not possible to calibrate the thrust with vanes because of their
physical interference with calibration shields. In this way it is not
necessary to know the accurate thrust for the presentation of the data.

Strake box effects are presented in figure g7, showing an increase in
maximum lift, as well as an increase of lift at zero angle of attack. An
increase in lift is even found for conditions of equal drag.

LONGITUDINAL DATA FOR TRANSITION IN GROUND EFFECT

Longitudinal forces and moments in ground effect and as a function of
power are presented in figures 60 through 65 for nozzle angles of 0° throuch
103°. In addition, data for fuselage strakes are given in figure 66. All
data pertain to wings level conditions.

Lift coefficients are presented in figures 67a, and b for h/de = 1.0
and o = 0, and in figure 67¢ for a = 4°. Comparison with figure 47b for
o = 4° shows the lift in ground effect to be lower than out of ground effect.

The addition of parallel strakes shows an increase in 1lift in all cases
tested (fig. 66a, b, and c). A larger increase in lift is obtained using the
strake box in close proximity to the ground, as indicated in the same figure.

The tail-off aerodynamic enter for &y = 62° is shifted aft by the ground
(fig. 68). At &N = 90° the effect is difficult to determine at low speeds
because of the small 1ift change involved when the aircraft is rotated.

Downwash data are summarized in figure 69, showing that € is reduced

when' the nozzle angle is increased from 0° to 90°. The quanties AM and AGy
in this figure pertain to the difference in pitching moment due to the tail.
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LATERAL-DIRECTIONAL DATA AT FORWARD SPEEDS

Lateral -directional data were acquired on a limited basis using
a relatively small range of sideslip angles. Larger sideslip angles required
a different model support sting which was outside the scope of the present
investigation. All data pertain to zero bank angle conditions.

Basic lateral-directional test data are presented in figure 70 for
power-off conditions with zero nozzle angle, and in figure 71 with power
and various nozzle angles (0°, 62°, and 90°). They pertain to tail on and
off conditions, all out of ground effect. Figure 72, however, contains basic
data with ground effect. All data are given in the stability axis system.

The data are given in the customary coefficient form for Cr = 0 to
about 4, as well as in the form non-dimensionalized by T or Tb for CT = 2
to about 50. Conversion between the two forms is readily accomplished by
using:

__B

CnB—Tb'CT
/d

“ =dM§bB'CT
B

Y

. B
c. =L£.¢
YB T T
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Analysis plots of directional stability, out of ground effect, are
presented in figures 73 and 74. Tail-on as well as tail-off data are shown.
In the case of the tail-off data both the horizontal and vertical tails are
removed.

Generally, power decreases the directional stability when changing &N
from 0° to 62°. At 62° even the tail-on aircraft becomes unstable. At this
angle Cp, can even become relatively large in the unstable direction when
Cr is high (fig. 74a, top). However, this value is large not so much because
of a large instability, but because of the low dynamic pressure used for
reference at the high (T values. To obtain a true impression of the magnitude
of instability the value of CnBshould be multiplied by a term containing that

dynamic pressure:

Ng =(§s£i>) %

When non-dimensionalized by thrust (which is always high at low speed),
this becomes:

9

ﬂu(ﬁ&)s@:c ,
To nB T/S

1) qSb

It is seen in figure 74a, pottom, t.at at Cp = 9 the value of Ng is only
about -0.0001 (Tb) per deg, which represents only a slight instability in
this tail-on case.

Contrary to the above characteristics for &y = 62°, at &N = 90° the
aircraft is generally directionally stable, tail-on, and even stable at
CT = 4 with the tail off ; see figure 74b. Tests were repeated and verified
these characteristics. It is surmised that the model exhausts act, in this
case, as a wall in front of which a positive pressure may build up. This
build-up may be greater at the windward side than at the lee side, which
then contributes to a positive .tability ; see sketch below. However, no
pressure measurements were made in this area of the model, nor were flow
visualizations attempted that may have substantiated this pattern.

When the exhaust flow is bent backwards due to higher free stream
dynamic pressure, such as at Cr = 2, this phenomenon disappears. Similarly,
when the flow is bent backwards due to ground proximity, this characteristic
also disappears; see figure 74c.
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1he above variation with Cr, out of ground effect, is relatively un-
affected by the tail except for a general shift in stable direction. The tail
contributions in directional stability are about the same for §N = 90° as “or
6N = 62°. The tail effectiveness increases moderately with Cr; see figure 74d.

A component breakdown, tail-off, for directional stability with power
is now given for 8y = 62° for analysis purposes, The stability can be broken
down into a power-off portion, inlet momentum effects, and interference
effects. 'The power-ofi portion is obtained directly from test data for Cr = C
(fans windmilling). Expressed in coefficient form it was found that
C_ = -0.0006 deg'1
8
op

Thus, for any given thrust, the actual power-off yawing moment increases
with q according to

N
B

O ¢ .o = -0.0006 nts
™ - C“,Bop 75 = 00000 g

The inlet momentum effect is derived theoretically. This is carried
out as follows, using the geometric definitions of figure 75a.

The moment arm of the center of the inlet of the left fan engine is:

2) = ay cos (x + B)
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Calling DR the total inlet momentum Arag of both fans, then the contribution
of the left engine only is:

R ? )R
AN, ==k =5~ a cos (x+g)
Similarly, for the right hand fan:
L, = ay cos (x-8)

D D

Ry, _ __R _
ANZ— "3 'Z 5 a\00s (X-8)

The total moment increment /N due to ram drag becomes:

D
AN = ZR ay [cos (x+8) - cos (x-8)1]

so that (per radian):

D
Ay’ﬁ:%% =-§33N [- sin (x+8) - sin(x-@]

For B = 0, this yields

ANB=—Da siny = -D_ 2

R °N R
Substituting
Dy = =\ T
g Vps

the increment in stability due to inlet momentum effects becomes then

ePh)

ANB
o = - rad *

T g\/ﬁs‘ b VT/S

Herein is to be used:

- Msec [ 1b/sec

The power-off portion as well as the inlet momzntum effect is plotted
in figure 75b, both labeled "computed'. Comparison of the sum of these
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two portions with power-on test data shows that no significant difference
exists between test and computation at that nozzle angle, indicating that
interference effects on yawing moment are negligible in this tail-off case.

Similar analyses were made for the side force derivative with respect
to 8 and for the dihedral effect. The side force characteristics are shown
in figure 75c. It is seen that the total derivative is larger than the
sum of the power-off portion and the computed inlet momentum effect . This
indicates the existence of a power-on interference effect in side forc-

Herein, the computation of the power-off portion is made using

—Z.c P.c onogz(l)
T T yﬁ \f_) C;

The dihedral effect ls presented in figure 75d for zero nozzle angle,
nd in figure 75e for nozzle angles of 62° and 90°. It is seen that the

ram drag contribution is relatively small, and that also the interference
effects are small ¢ompared to the basic power-off dihedral effect.

Herein, the power-off portion is computed from (assuming the thrust is
finite and given)

C
. {, qsb
(,,.R/dﬁ) N (_1_)
BRI S e S

while the inlet momentum effect is based on

f \/PA
Ad/dp A L, (_) B2 & )\/ED rad”
™ b B \T b g‘/PS

Herein, 2; is the location of the center of the inlets above thc center of
gravity. In the present case 17/b is equal to -0.0476 (at zero angle of
attack).




CONCLUSIONS

A powered wind tumel model of » V/STOL transport aircraft with two
fans for vectored thrust was tested. The major conclusions of the data
analysis are:

Interference lift losses in hover near the ground are about 10%
of the nozzle thrust. This loss can be reduced to only 5% when the nozzle
exhaust walls are extended Somewhat so as to shield the nacelles from
exhaust flow interference.

The 1ift losses increase when the aircraft is banked, as well as
when roll control is applied (in the direction against the bank) by increas-
ing the nozzle thrust on one side and decreasing it on the other.

In the transition speed range interferemce lift losses of only 7%
of the nozzle thrust were encountered (6N = 90°, a = 4°, no strakes) which
is significantly less than was found with a previously tested twin-jet VIOL
model (ref. 4). The loss can be further reduced by employing a strake box.

The 1ift characteristics can be enhanced by rotiting all nozzles fully
aft for external flap blowing, provided that the speed is high enough so that
CT is less than approximately 2. However, a hybrid configuration with
half the nozzles deflected downward and half deflected aft was not as
promising.

Power effects decreased the directional stability at a nozzle angle of
62°, but showed an increase in directional stability at 90°.

The twin fan vectored thrust concept is a feasible concept for a V/STOL
‘ransport aircraft in terms of 1lift and pitching moment characteristics,
vovided that the 1ift losses in hover during momentary banked conditions
-an be accommodated.

The reduction of the lateral control effectiveness due to ground effect
in hover is an important consideration; additional roll control tests with
nozzle shielas and using flow visualization are recommended to investigate
the prssibility of improving the roll control.

The adequacy of lateral-directional characteristics at forward speeds
camnot be fully assessed from the data due to the limited sideslip angles
imposed on the test. At low sideslip angles unknown flow phenomena were
encountered at high nozzle angles, but the forces and moments were
controllable.
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Anal;tical methods for the determination of the inlet momentum effects
on the lorgitudinal and directional stability appeared to adequately describe
the whole power effect for tail-off conditions at low nozzle angles. At high
nozzle argles, however, additional power effects exist.
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Figure 5. - Photograph of nacelle details.
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Figure 32. - Static turping unaracterisiics OGE.
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Figure 33.- Longitudinal power-cff forces and moments out of
ground effect. N = 0.
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Figure 37.- Flaps-up longitudinal forces and moments during
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(b) Flaps down, &N = 0.

Figure 45, - 1 int
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N | 8 | off
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(c) Flaps down, various nozzle angles,

Figure 15, - Concluded.
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(@) Crgero for &y = 0°.

Figure 46. - Tail-off acrodynamic 1ift in coefficient form. Flaps down, OGE.
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23°.

(d) CLzero for oy

a, deg

62°.

(c) CLaero for oN

- Continued.
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(d) CLgero N = 8C°.

(e)

- Continued.

Figure 46.
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() CLaero for (SN = 120°,

Figure 46. - Concluded
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Figure 47, - Tail-off lift characteristics in temms of L/,I, flaps down, OGE.
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(b) Total 1lift at o = 4°.

Figure 47 ,-Continued.
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ej = Exhaust angle with respect to FRP

C = Lift coeff at zero power
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(c) Lift components for 6N = 90°, o = 4°,

Figure 47. - Continued.
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(d) Interference lift at various values of a and ¢y.

Figure 47. - Concluded.
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(8) Cpyerp at oN = 0°.
éigure 48, - Tail-off drag components, flaps down, transition OGE.
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(c) CDgero for oN = 62°.

Figure 48. - Continued.
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Figure 48.- Continucd.

124



i

!
.

I

i

-~ ] S S S
; CD } : i D 3.73 .- i . :
asro T SR T A - .
~ Qs
f ; : P

(e) CDaero for 6N = 90°.

Figure 48, Cont inued.



CT ‘

Oo
) * - 0812’
_(2 16.54

aero

(f) CDgeyo for SN = 1037

Figure 48. - Continued.

126



20

(8) CDgero for oy = 120°.

- Continued.
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Figure 48. - Continued.
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(i) Lift and drag increment due to power, a = 0.

Figure 48. - Concluded.
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(a) Moment arms of thrust and ram drag.

Figure 49. - Analysis of pitching moments, Tail off, OGE.
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(b) Aerodynamic pitching moment in
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Figure 49. - Continued.
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(c) Aerodynamic pitching moment in
coefficient form, &y = 90°.

Figure 49. - Continued.
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(d) Aerodynamic pitching moment in
coefficient form, 6y = 103°.

Figure 49. - Continued.
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(e) Aerodynamic pitching moment in
coefficient form, 6N = 120°.

Figure 49. - Continued.
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(f) Interference pitching moment in ratio form.

Figure 49.- Concluded.
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Figure 50.- Concluded.
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(a) A.C. shift at a = 2°.

Figure 51.- Effect of horizontal tail on longitudinal stability, OGE.
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Figure 52. - Downwash correlation, OGE.
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Figure 52. - Concluded.

143



Sym |8, deg
0 0
O 62
O 90
0 120
-0.06
- o - 6 O
0
-0.04
E_)_E_m_ deg-l
'H
-0.02
' I
% — 3
.

Figure 53. - Power-on tail effcctiveness.
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Vectored thrust concept:

Hybrid concept:

Outboard nozzle

Inboard nozzle

Figure 54. - Schematics of the EBF, vectored thrust, and hvbrid
lift/propulsion concepts.
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L/T

Max 1ift for which
D/T< 0O

Low nozzle angle

Max lift for which D/T = 0

High nozzle
angle

o/T

Excess thrust <e—— ——= Excess drag

(a) Conditions for comparison.

Figure 58, - Lift comparison between vectored thrust end EBF concepts.
tail off, OGE.
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’//,Exhaust imﬁinging on flap.
]

Exhaust not impinging on flap.

' 3

Solid symbols: With flap blowing

Open symbols: Without flap blowing

0 | J ] ]

0 Lo 80

5N,deg

(b} Maximm 1ift with zero or forward acceleration.

Figure 58,  Continued,
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O Without deflector

D With deflector
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Flaps down
I tail off

/ 0GE

'c) .ifect of EBF deflector on maximum lift.

Figure 58. - Concluded.
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Figure 59. - Lffect of exbuust vanes on Lift at @ = ..
Transition OGL, tail off,
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(a) Tail off, ¢ = 0%

Figure 60.- Flaps-down longitudinal f..ces and moments during transition

in ground effect. &y = 0°.
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(c) Effect of angle of attack, tail off.

Figure 64.- Concluded.
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(a) Description of moment arms and angles.

Figure 75. - Computation of lateral-directional derivatives. Flaps down,
tail off, transition OGE, a=0.
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