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THE  EFFECT OF CONFIGURATION ON STRENGTH, 
DURABILITY, AND HANDLE  OF  KEVLARoi  FABRIC-BASED  MATERIALS 

By L.  L.  Rueter and J.  B. Munson 
Sheltlahl, Inc.  

SUMMARY 

The  purpose   o f   th i s   inves t iga t ion  w a s  t o   d e v e l o p   p r o t o t y p e   h i g h . s t r e n g t h  
composite materials, inco rpora t ing  Kevlar-49.' f a b r i c  as t h e   s t r u c t u r a l   e l e m e n t ,  
f o r   u s e   i n   t h e   f a b r i c a . t i o n   o f   f l e x i b l e   i n f l a t a b l e   s t r u c t u r e s .   O t h e r   o b j e c t i v e s  
were t o   d e t e r m i n e   t h e   e f f e c t  on f l e x i b i l i t y   o f   l o c a t i n g   t h e   f a b r i c   n e a r   t h e  
neu t r a l   p l ane ,   t o   eva lua te   an   open  scrim b i a s   p l y ,  and t o   o b t a i n  a more f l ex -  
i b l e   l a m i n a t e  by inc luding   an   e las tomer ic   f i lm.  

Various handmade lamina te  and coated material conf igu ra t ions  were evalu- 
a t e d   f o r   t e n s i l e   s t r e n g t h ,   p e e l   s t r e n g t h ,  crease e f f e c t s ,  tear r e s i s t a n c e ,  
f l e x i b i l i t y ,   " h a n d l e "  and  puncture   res is tance.  One laminated  and  one  coated 
material wi th  Dacron" f a b r i c  were used as cont ro ls .   Adequate   pee l   s t rength ,  
tear r e s i s t a n c e  and   puncture   res i s tance  were demonstrated.  The geometric  and 
mechan ica l   f ac to r s   i n f luenc ing  tear r e s i s t a n c e  were found t o   b e   t h e  same f o r  
Kevlar and  'Dacron materials. P u n c t u r e   r e s i s t a n c e  w a s  found to   be   i nve r se ly  
r e l a t e d   t o   f a b r i c   s t i f f n e s s   f o r   t h e   l a m i n a t e d  materials and t o   b e   i n v e r s e l y  
r e l a t e d   t o   c o a t   t h i c k n e s s   f o r   c o a t e d  materials. Creasing  of  Kevlar-based 
lamina tes  w a s  found to   s eve re ly   deg rade   t he   s t r eng th .  However, only small t o  
moderate   degradat ion w a s  found for   the   coa ted   Kevlar -based  materials. Af te r  
crease degradation,  coated  Kevlar-49 materials s t i l l  exhibi ted  about  twice 
the   s t r eng th - to -we igh t   r a t io   o f   t he   coa ted  Dacron c o n t r o l  material. The 
s t rength- to-weight   advantages  of   the   uncreased  Kevlar   laminates  were l a r g e l y  
n u l l i f i e d  by creasing.   Creased,   Kevlar   laminate   s t rength- to-weight   ra t ios  
became comparable   to   the  creased  Dacron-control   laminate .  

The coated materials showed s i g n i f i c a n t  improvement  over t he   l amina te s  
i n   f a b r i c   h a n d l e .  By r epos i t i on ing   t he   Kev la r   f ab r i c   f rom  an   ou te r -p l ane   t o  
the  mid-plane  of  the  coated materials the   quan t i t a t ive   hand le   measu re   (hand le  
modulus) w a s  reduced  about 39 percent   and   the   s t rength   loss   caused  by c reas ing  
w a s  reduced  from 9 p e r c e n t   t o  2 percent .   This   demonstrates   the  importance  of  
const i tuent   laminar   arrangement .  

Uniaxia l  coupon tests of materials wi th   d iagonal   fabr ic   e lements  were 
found   t o   deg rade   t ens i l e   s t r eng th  and t o  show u n r e a l i s t i c a l l y   h i g h   v a r i a b i l i t y  
of s t r e n g t h  and elongat ion  with  temperature .  The h i g h   v a r i a b i l i t y  w a s  found 
t o   b e  a r e su l t   o f   t he rmomechan ica l   phase   t r ans i t i ons   i n   t he   adhes ive   i n  con- 
junc t ion   wi th   the   uns t ra ined   edges   which   in f luenced   the   s t ruc tura l   cont r ibu-  
t i o n  of t h e   d i a g o n a l   f i b e r   e l e m e n t s   o f   t h e  coupon  specimens.  For  applications 
t o   b e  packed  and  folded, Kevlar is not   par t icu lar ly   advantageous   un less  crease 
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degradation  can  be  controlled.  However,  the  superior  performance  of  Kevlar 
coated  materials  compared  to  similar  Dacron  coated  materials  was  shown  to be 
practical  for  applications  where  creasing  occurs. 

INTRODUCTION 

Considerable  inter.est  exists  in  both  private  industry  and  government 
relating  to  the  structural  use  of  filamentary  materials.  These  materials 
have  a  direct  application  as  reinforcement  of  memebrane  materials  for 
inflatable  structures.  Such  structures  include  tethered  aerostats,  airships, 
long  duration  superpressure  balloons,  zero-pressure  balloons,  inflatable 
helicopter  floats,  inflatable  boats,  and  pressure  vessels.  Figure 1 shows 
several  of  these  end  uses. 

The  new  organic  high  strength,  high  modulus  aramid  fiber,  Kevlar-49* 
recently  developed  and  marketed  by  DuPont  is  of  special  interest.  This  fiber, 
previously  designated  "PRD-49"  (Preliminary  Research  and  Development  Number 
49),  offers  a  strength-to-weight  ratio 2 to 3 .5  times  that  of  Dacron  and 10 
times  that  of  steel.  The  strength-to-weight  ratio  of  Kevlar  exceeds  that  of 
all  other  materials  which  can  be  fabricated  with  conventional  textile 
technology. 

The  general  objective of this  study  was  to  promote  research  on  applica- 
tions  of  Kevlar  fabrics  for  inflatable  structures.  In  particular,  coated  and 
laminated  Dacron-fabric  materials  successfully  used  in  such  structures  were 
compared  with  coated  and  laminat'ed,  Kevlar-reinforced  counterparts. 

In  Reference 1 the  importance of the  fiber-reinforcement  pattern  and 
geometric  configuration  of  laminated  materials  were  explored  experimentally 
by  bi-axial  cylinder  testing.  It  was  concluded  that  significant  improvement 
in  shear  strength  could  be  made  by  varying  the  pattern of reinforcement. 

Reference 2 presents  an  analytical  approach  for  optimization  of  the 
planar  geometry  of  the  materials  and  reinforcements  studied in Reference 1. 
Good  agreement  was  obtained  between  the  experimental  and  analytical  efforts. 

Reference 3 documents  a  thorough  research  of  Kevlar-reinforced  coated 
and  laminate  materials  compared  with  conventional  Dacron  materials.  These 
materials  were  tested  for  tensile  and  shear  strengths,  crease  degradation, 
tear  strength,  abrasion  resistance,  flex  life,  blocking,  and  permeability. 
The  Kevlar  materials  were  found  to  be  equal  or  superior  to  the  Dacron 
materials  in  all  tests  except  crease  and  tear.  This  research  indicated  that 
Kevlar  fabrics  are  degraded  by  creasing  when  bonded  in  laminates  or 

*DuPont  markets  two  forms  of  Kevlar:  "Kevlar 49" and  "Kevlar 29" (previously 
designated  as  fiber B). Kevlar  29  has  the  same  breaking  strength  as 
Kevlar 49, but  its  modulus  is  about 50 percent  that of Kevlar 49. Only 
Kevlar  49  was  investigated  in  this  study. 
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( a )  7000 m 3 Tethered  Balloon 

( b )  2-Meter  Diameter, 1 Atmosphere 
Pressure vessel 

( c )  1,000,000 m , Free-F1 ight  Balloon 3 

Figure 1. Structures Using Yarn-Reinforced Membrane Materials 
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encapsulated  by  conventional  fabric  coatings. A qualitative  fault  in  the 
Kevlar  materials  was  the  undesirable  stiffness,  or  poor  "handle". 

An additional  objective  of  this  study  was  to  improve  the  handle  properties 
of  materials  described  in  Reference 3. The  selection  of  flexible  materials 
for  inflatable  structures  to  be  packaged  and  deployed is strongly  influenced 
by  the  subjective  quality,  handle.  Soft,  pliable,  easily  folded  materials  are 
said to.have good  ''handle."  The  Kevlar-based  materials  discussed  above  are 
characteristically  stiff  and  resistant  to  hard  creasing.  The  materials  in 
Reference 3 had  the  .fabric  located  near  the  exterior  surface  of  the  laminated 
or  coated  composites.  This  aids  in  obtaining  high  strength  lap  seams  and 
splices,  but  the  external  location  of  high  modulus  fibers  contributes  to  a 
poor  handle  characteristic. 

Laminated  and  coated  material  samples,  about  one  square  meter  in  area, 
were  handmade  to  evaluate  the  effect  of  locating  the  high  modulus  fabric 
near  the  center  plane  of  the  materials.  The  scope  of  the  research  did  not 
permit  sample  manufacture  on  full-scale  production  machinery. 

Strength  testing  was  limited  to  coupon  tensile  specimens.  The  strength 
characteristics  reported  are,  therefore,  primarily  comparative  and  qualitative 
in  value.  Other  material  comparisons  were  based  on  folding,  tear,  peel  and 
puncture  tests,  and  special'handle  tests  provided  by NASA. In  the  following 
sections,  design  and  construction  details,  test  methods,  results,  and  con- 
clusions  are  discussed  in  detail. 

DEFINITION OF TEST MATERIALS 

The  test  materials  investigated  are  shown  in  Figure 2. Throughout  this 
report  individual  test  materials  are  identified  by  row  number  and  column 
letter  (la,  lb,  etc.)  Variations  in  material  constituents  occur  from  left 
to  right  (column  variable),  while  variations  in  material  construction  occur 
from  top  to  bottom  (row  variable).  Materials 1 through 4 are  laminates,  and 
5 and 6 are  coated  fabrics.  Materials  in  column  (a)  are  baseline  materials 
using  Dacron  fabric.  Materials  in  columns (b) and  (c)  have  Kevlar  fabric 
substituted  in  place of the  Dacron.  Materials  in  column  (c)  have  an  addi- 
tional  layer of Kevlar-49  bias yams, as.  shown in Figure  5a.  Variations 
in  material  construction  (3b  and 6b) were  made  to  relocate  the  fabric  nearer 
to the  neutral  plane.  Material  4c  was  configured  to  evaluate  a  Hytrel.  coat- 
ing  and  is  an  exception  to  the  conventions  above.  This  material  is  closely 
related  to  material  2c.  Hytrel  coating  could  not  be  directly  substituted 
for  the  Mylar@  film  since  Hytrel  has  poor  permeability  in  the  thickness 
considered. A layer of Saran  (commercial  Saran  Wrap  film  by  Dow  Chemical) 
was  included  in  4c to obtain  a  laminate  with  permeability  equivalent  to  2c. 

The  basic  mechanical  properties of the  Dacron  and  Kevlar  fabrics  used  are 
given in.TmLEs 1 and  2,  respectively.  Properties of the  membranes  and  coat- 
ings  are  provided  in  TABLE 3. Except  for  variations  from  the  assembly  process, 
total  thickness  was  held  constant  for  all  variants  in  Figure 2. 

'Registered  tradenames,  E.I.  DuPont  de  Nemours,  Inc. 
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pOacron.lOOO d,  13 x 13  'Kevlar-49* 
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Adhes ive   (coa t )  

Ted la r  
Kev la r -49*  
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I 
Coated  Mater ia ls  

Tedl  a r 

Kevlar-49' 
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// 
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F H y t r e l  
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Adhes ive   ( coa t )  
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D Polyure thane 
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D Neoprene ' Dacron- 

. Adhes ive   (coa t )  
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DPolyure thane 

DKev~ar-49-LL 

'Neoprene 

'Dacron B ias**  

Adhes ive   (coa t )  

**48 g /sq  m ( 1 . 4   o z / s q   y d )   p l a i n  weave f a b r i c .  
*61 g /sq  m ( 1 . 8   o z / s q   y d )   p l a i n  weave f a b r i c .  

t t 9 5   g / s q  m ( 2 . 8   o z / s q   y d )   p l a i n  weave f a b r i c .  
tllO g/sq m ( 3 . 2 5   o z / s q   y d )   p l a i n  weave f a b r i c .  

D P e e l   t e s t   i n t e r f a c e   ( a t t e m p t e d ) .  
,Peel t e s t   i n t e r f a c e   ( s u c c e s s f u l ) .  
* 3 8 0   d e n i e r .   k e v l a r   y a r n  60° FTL, equa l l y   spaced  1.1 cm (0.43 in.) a p a r t .  

Hypal on 

f;;;;::hane 

'Kevlar-49ft  

'Polyurethane 

Figure 2. Matrix of Test  Materials. Upper  layer  shown  would be 
the  exterior of an inflatable  structure 
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TABLE 1. - Properties of Dacron-Fabric  Components,  Metric  Units 
(English  units  in  parentheses) 

Weight 

Strength:  Warp 

Fill 

Weave  Type 

Fabric  Finish 

Yarn  Count 

Yarn  Size 

Yarn  Twist 

Filament  Count 

Filament  Strength 

Filament  Modulus 

Density 

5a,  5b,  6b 

0.047  N/m 
(1.4 oz/yd2) 

2 

6100 N/m 
(35  lb/in. ) 

6100  N/m 
(35  lb/in. ) 

Plain 

Scoured  and  heat  set 

39/cm x 39/cm 
(18/in. x 98/in.) 

40 denier 

9 turns/cm 
(23  turns/in.) 

27/yarn 

570  NM/m2 
(0.83 x 105  lb/in.2) 

13.8  GN/m 2 

(2 x lo6  lb/in. ) 

1380  kg/m3 
(0.05  lb/in.3) 

2 

5a 

0.108 N/m 
(3.25  oz/yd2) 

2 

27,000  N/m 
(155  lb/in.) 

27,000  N/m 
(155  lb/in.) 

Plain 

Scoured  and  heat  set 

20/cm x 20/cm 
(50/in. x 50/in.) 

220  denier 

1 turn/cm 
(3  turns/in.) 

50/yarn 

1030  MN/m2 
(1.5 x 105  lb/in. ) 

13.8  GN/m 2 

(2 x 106 l.b/in. ) 

1380  kb/m3 
(0.05  lb/in. 3, 

2 

2 

la 

0.126  N/m. 
(3.8  oz/yd2) 

39,400  N/m 
(225  lb/in.) 

39,400  N/m 
(225  lb/in.) 

Plain 

Scoured  and  heat  set 
with  5  to  10%  by  weight 
of polyvinyl  acetate 

5/cm x 5/cm 
(13/in. x 13/in.) 

1000 denier 

4 turn/m 
(0.1 turns/in.) 

192/yarn 

1030  MN/m2 
(1.5 x 105  lb/in. ) 

13.8  GN/m 2 

2 x 106 lb/in. ) 

1380  kg/m3 
(0.05 lb/in.3) 

2 

2 



TABLE 2. - Properties of Kevlar-49  Fabric  Components,  Metric  Units 

Weight 

Strength:  Warp 

Fill 

Weave  Type 

Fabric  Finish 

Yarn  Count 

Yam Size 

Yarn  Twist 

Filament  Count 

Filament  Strength 

Filament  Modulus 

Density 

(English  units  in  parentheses) 

lb,  2b, ac, 3b, 4c 

0.60  kg/m (1.8 oz/yd ) 

39,400  N/m  (225  lb/in.) 

39,400  N/m  (225  lb/in.) 

Plain 

Scoured 

13/cm x 13/cm  (34/in. x 34/in.) 

195  denier 

4 turns/m (0.1 turn/in.) 

134/yarn 

3620  MN/m  (5.25 x 10 lb/in. ) 

131  GN/m  (1.9 x 10 lb/in. ) 

1450  kb/m 3 (0.052  lb/in.’) 

2  2 

2  5 2 

2 7 2 

“ 

i 
” 

I 

5b,  6b,  6c 

0.090 kg/m  (2.7  oz/yd2) 

74,400  N/m  (425  lb/in.) 

74,400  N/m  (425  lb/in.) 

Plain 

Scoured 

20/cm x 20/cm  (50/in. x 50/in.) 

2 

195  denier 

4 turns/m (0.1 turdin.) 

134/yarn 

3620  MN/m  (5.25 x 10 lb/in. ) 

131  GN/m  (1.9 x 10 lb/in, ) 

1450  kg/m3 (0.052 lb/in. 3, 

2 5 2 

2 7 2 



TABLE  3. - Properties  of  Film,  Adhesive,  and  Coating  Components,  Metric  Units 
(English  units  in  parentheses) 

Characteristic 

Component 

Tedlar 

Mylar 

Adhesive 

Hypalon 

Neoprene 

Urethane 

Saran 

Application 

la, lb, 2b, 
2c, 3b, 4c 

la,  lb, 2b, 
2c,  .3b, 4c 

A - 102 

5a,  5b,  6b 
6c 

5a,  5b,  6b 

5a,  5b,  6b, 
6c 

.4c 

Description 

38.lpm  (1.5  mil)  thick,  DuPont 
polyvinyl  fluoride  film,  type 30, 
adherable  both  sides, "L" gloss, 
titanium  dioxide  pigment 

6.35~m (0.25  mil)  thick,  DuPont 
type s polyester  film 
Aromatic  polyester  resin  cured 
with  di-isocyanate  for  hydrolytic 
stability 

54.5pm  (2.1  mil)  thick,  chloro- 
sulfonated  polyethylene  with 
titanium  dioxide  pigment 

9 5 . 3 ~  (3.75  mil)  thick,  low 
temperature  noncrystalline  poly- 
chloroprene  with  lead  cure 
system  for  hydrolytic  stability 

71.2pm  (2.8  mil)  thick, B.F. Good- 
rich  low  temperature  polyurethane 
formulated  for  high  hydrolytic 
stability,  ultraviolet  resistance 
and  heat  stability.  Carbon  black 
pigment.  Fab,ric  surfaces  to  be 
coated  are  treated  with  isocyanate- 
type  primer 

1O.Ovm  (0.75  mil)  thick  polyvinyl- 
idene  chloride;  Dow  commercial 
grade  Saran  wrap 

Tensile 
Strength 

at 22OC (72'F) 

5 5 W m  2 

(8,000 lb/in. ) 

138 MN/m 2 

(20,000 lb/in. ) 

10 m/m2 
(1,500  lb/in.2) 

14 MN/m2 
(2,000 lb/in. ) 

24  MN/m2 
(3,500  lb/in.2) 

34 m/m2 
(5,000  lb/in. ) 

34 - 55 m/m2 
(5000 - 9000 
lb/in. ) 



FABRICATION OF TEST MATERIALS 

All material  samples  were  hand  lay-ups. . To simulate  the  material 
orientation  of  web-process  production  machinery,  all  components  were 
oriented  with  respect  to a common  machine  (warp)  direction.  Each  sample 
was  marked  with  the  machine  'direction  and  the  designated  code of Figure 2 
(la,  lb,  etc.) 

Laminate Materials 

All  laminate  samples  (materials 1 through 4) were  made  at  Sheldahl,  Inc., 
Northfield,  Minnesota. A polyester  thermosetting  adhesive,  Sheldahl  A-102 

applied  in  solution  with  methylene 
. .  .,,.,.$ chloride  was  used  as  the  bonding 

:I , . . .;a,c agent.  This  adhesive  has  been !> , , y:,,. , I 

extensively  used  for  film  and  fabric 
laminates.  The  samples  were  combined 
with  heat  and  pressure  using a platen 
press,  Figure 3 .  Maximum  sample  size 
for  the  press  was  30.5  cm  by 30.5 cm 
(12  in.  by 12 in.)  Test  materials 
were  assembled  using  constituent 
layers  of  larger  dimensions  to  permit 
handling  by  the  edges.  Ten  samples  of 
each  laminate  were  made. 

The  samples  were  assembled  on a 
polycarbonate  surface 40.6 cm  by 40.6 
cm (16 in.  by  16  in.)  Because of 
lighting  conditions  and  film  reflectance, 
air  entrapped  during  film  lay-up  was 
easier to locate  when  the  surface  was 
slightly  inclined.  First,  Tedlar.  film 
exterior  surface  down,  was  tensioned 
to remove  creases,  and  taped  to  the  work 
surface  at  the  corners  (Figure  4aj. 
Subsequent  layers  of  material  were 
added  after  applying  the  required 
amount  of  adhesive.  Film  layers  were 
cut  slightly  smaller  than  the  lay-up 
surface  and  wound  on  15-cm (6411.) 

minimized  by  unrolling  the  film  from 
the  core  (Figure 4b). After  the 

Figure 3 .  Platen  Press  diameter  cores.  Air  pockets  were 

lay-up  was  complete,  the  sample  was  trimmed  to  30.5  cm  (12  in.)  square  with a 
metal  template.  The  adhesive  quickly  developed  sufficient  strength  to  main- 
tain  position of the  layers  until  the  sample was laminated. 

.Registered  tradename: E.I .  DuPont  de  Nemours,  Inc. 
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Figure 4 .  Hand Lay-Up of Laminate Samples 
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Adhesive  thickness  w a s  c o n t r o l l e d  by  weighing  out  the  required  amount, 
and  spreading  with a r o l l e r .  Tare weight   o f   the   conta iner  w a s  measured a f t e r  
f i l l i ng   w i th   adhes ive   and   empty ing  it ,  and t h e   r o l l e r  w a s  p re sa tu ra t ed   w i th  
adhesive  to   compensate   for   the  weight   of  material remain ing   on   the   ro l le r  
and  container.  

Kevlar-49  yarn, 380 den ie r ,  w a s  u s e d   f o r   t h e  60" b i a s   p ly   (F igu re   5a ) .  
This   conf igura t ion  is readi ly   p roduced   in   conjunct ion   wi th  a web-type  lamina- 
t ion   p rocess   and   has   been  commonly u s e d   t o   i n c r e a s e   t h e   s h e a r   s t i f f n e s s   o f  
laminates.   Yarns were pos i t ioned   on  a rectangular   f rame  with  notched  edges,  
Figure  5b.   Figure 4c shows t h e  method of app ly ing   t h i s   p ly   t o   t he   s ample .  

MD 

Figure 5. Kevlar Yarn Bias Ply 
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After  lay-up,  the  sample was placed  between  layers  of  release  paper, 
blotter  paper,  and  aluminum  wear  plates  (Figure 6 )  before  placing  it  in  the 
press.  Blotter  paper  serves  to  distribute  the  pressure  loading  around 
thickness  variations  caused  by  wear-plate  surface  irregularities  and  bias 
yarns.  The  release  paper  was  included  to  prevent  bonding  the  blotter  paper 
to  the  specimen.  The.wear  plates  protect  the  surface of the  press  platens. 

A1 umi num 
Wear P l a t e  

B1 o t t e r   P a p e r  

Laminate 

Figure 6. Laminate  Sample  Prepared  for  Pressing 

Press  platens  are  provided  with  temperature  controlled  electric  heaters 
and a water-cooling  system.  Ram  pressure  is  produc,ed  hydraulically  using  an 
air  pressurized  reservoir,  and  dwell  time  is  controlled  by  the  operator. 

An important  feature  of  this  laminating  process  is  that  both  heating  and 
cooling  occur  while the sample  is  restrained  by  pressure.  Cooling the sample 
under  pressure  minimizes  shrinkage.  Web-process  laminators  ordinarily  do  not 
restrain  the  material  during  cooling. 

Several  test  samples  were  made  to  establish  the  following  process  param- 
eters,  based  on  peel  testing  and  appearance. 

Heat-cycle  temperature: 127°C  (260OF) 
Dwell  time: 15 seconds 
Cool-down  temperature: 66°C (150°F) 
Ram  force: 9 . 8  x lo4 N (11 tons) 
Air  pressure: 1.0 X lo6  N/m2 (150 psi) 

At  the  beginning  of a sample  run  the  press  was  cycled  to  check  pressure 
and  temperature.  During  heating,  platen  temperature  was  monitored  with a 
separate  pyrometer  and  temperature  controls  adjusted  as  required.  Ram 
pressure  was  verified  by  monitoring  air  pressure  in  the  hydraulic  reservoir. 
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A c a l i b r a t i o n   c u r v e   r e l a t i n g   r e s e r v o i r   p r e s s u r e   t o  r a m  p re s su re  w a s  used t o  
a d j u s t   t h e  a i r  p r e s s u r e   r e g u l a t o r  as required.   Unless   obvious  sample  defects  
were noted   dur ing   the   run ,  no fu r the r   checkswere   aade   on   p re s su re   o r  
temperature.  

The material sandwich w a s  p l a c e d   i n   t h e   p r e s s  and ram pressu re  and p l a t e n  
h e a t e r s  were turned on. Af t e r   t he   r equ i r ed   hea t ing  time, t h e   h e a t e r   c u r r e n t  
w a s  turned  off  and water c i r c u l a t e d   t h r o u g h   t h e   p l a t e n s .   A f t e r   c o o l i n g   t o  
the   spec i f ied   t empera ture ,   the   p ress  w a s  opened  and t h e  sample  removed. The 
pla ten   hea t   exchanger  w a s  purged  of   coolant   before   beginning a new hea t ing  
cycle .  

Coated-Fabric  Materials 

These were coated  and  combined by  Chemprene, Inc . ,  a d i v i s i o n  of t h e  
Richardson Comapny, us ing  r a w  materials suppl ied  by Sheldahl.  The a v a i l a b l e  
laboratory-scale   coat ing  equipment   l imited  the  product   to  a width of 0.38  m 
and a l eng th  of 3 m (15  in .  by 9 f t ) .  The amount  of scrap  produced w a s  
about twice t h e   o r i g i n a l  estimate of 25 percent ,   which   l imi ted   the  amount 
of   t es t ing ' tha t   could   be   per formed.  

Bias yarns   (Figure  5a)  were combined w i t h   t h e   a d j o i n i n g   s t r u c t u r a l   f a b r i c  
before   coat ing.  The metal frames  could  not  be  used  because  of  the 3 m 
sample  length  required.  A s u b s t i t u t e  w a s  made wi th   na i l s   pos i t i oned   on  
1.27 c m  (0 .5   in . )   centers   around a plywood rec t ang le  0.61 m by 3 . 8  rn (2  f t  
by 1 2 . 5   f t ) .   F a b r i c  w a s  p l aced   i n s ide   t he   r ec t ang le  and t h e   y a r n   p a t t e r n  
of  Figure  5a  produced  with  Kevlar  yarn. A d i l u t e   a d h e s i v e   s o l u t i o n  (3- t o  
5-percent   so l ids )  w a s  a p p l i e d   t o  bond yarn   and   fabr ic   toge ther .   Af te r  a i r  
dry ing ,   the   yarns  were trimmed f l u s h  wi th  t h e   f a b r i c  edge.  During  the  coating 
p rocess ,   t he   f ab r i c  and b i a s   p l y  were t r e a t e d  as a s i n g l e   l a y e r .  No 
d i f f i c u l t i e s   a s s o c i a t e d   w i t h   t h e   b i a s   y a r n s  were encountered  during  the 
coat ing  process .  

TEST PROGRAM 

Tests of t e n s i l e   s t r e n g t h ,  crease degradat ion,  tear s t r e n g t h ,   i n t e r -  
l amina r   pee l   s t r eng th ,   punc tu re   r e s i s t ance ,  and  handle were performed  on 
the  two b a s e l i n e  Dacron  laminates  and  the  eight Kevlar composites. The 
test procedures  and  equipment are d i scussed   i n   t he   fo l lowing   pa rag raphs .  
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Strength  Tests 

Ultimate  tensile  strength  and  elastic  properties  were  determined  by 
uniaxial  testing.  Inter-laminar  bond  strength  was  investigated  by  peel  tests. 

Uniaxial tensile  tests. - The  uniaxial  tensile  tests  were  performed  using 
Federal  Test  Method  5102  which  empIoys  a  sample  size  2.54-cm (l-in.) wide  and 
a  7.6-cm  (3-in.)  grip  separation.  The  grip  separation  rate  used  .for  these 
tests  was  5.1  cm/min  (2  in./min).  Five  specimens  of  each  material  were  tested 
at  specimen  orientations  of  machine  direction  (warp),  transverse  direction 
(fill), and.45" left  and  right  of  machine  direction  and  at  temperatures of 
60"C,  22"C,  and -5loC, - +1.7"C  (140°F,  72"F,  and  -60°F,  respectively, - +3"F). 

All  tests  were  conducted  on  a  Model 114 Instron  Testing  Machine  (Figure  7) 
having  a  capacity  of  4,448 N (1000 lb)  and  variable  strain  rates  up  to  1.27 
m/min  (50  in./min)  for  loads  up  to  2224 N (500 lb). -Accuracy  is  one  percent 
of  full-scale  reading.  The  recorder  has  a  variable  load  range  and  can  be 
driven  to  1.27  m/min  (50  in./min)  paper  speed.  Figure  7a  shows  the  machine 
as  used  for  22°C  tests and Figure  7b  shows  the  machine  with an environmental 
chamber  in  place  for  testing  at  elevated  and  sub-zero  temperatures. 

The  Thwing-Albert  sample  cutter  shown  in  Figure 8 provides  a  precision 
sample  width  of  2.54  cm (1 in.)  Three  methods  were  used  for  clamping  the 
custom  material  test  specimens. An ideal  method  would  apply  a  uniform 
clamping  force,  independent  of  any  specimen  thickness  change  caused  by 
loading.  Because  of  the  clamping  force  required  for  high  strength  Kevlar 
materials,  hydraulically  actuated  jaws  (Figure  9a)  were  used.  Since  these 
are  limited  to  a  temperature  range  of 0 ° C  to  50°C  (35°F  to  120°F)  it  was 
necessary  to  use  D-ring  grips  (Figure  9c)  for  the  cold  tests  and  screw 
clamp  jaws  (Figure  9b)  at  elevated  temperatures. 

The  D-ring  grips  are  superior  for  cold  tests  because  the  clamping  force 
is  not  affected  by  frost  formation on the  jaw  faces. 

Figure 9d shows  the  material  wrap  configuration  which  provides  efficient 
clamping,  but  complicates  attainment  of  uniform  free  specimen  lengths. 
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(a)  Ambi en t Temperature Test Arrangement ( b )  Variable Temperature Test Arrangement 

Figure 7. Ins t ron   Tes t ing   Fac i l i ty  



( b )  

Figure 8. Test Specimen Cutter 
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( a )  Hydraul i c  (b )  Mechanical 

Sliding  Rod 

Machine toad  Applied 
a t  Fixed  Rod 

iI U c 
Specimen 

Load 

( c )  "D" R i n g  ( d )  Material Wrap f o r  D-Ring 
Jaws 

Figure  9. Various Specimen Grips 
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Peel strength  testing. - Peel  strength  measurements  on  f i lm-to-fabric 
bonds were made in .accordance   wi th  ASTM D 1876,  Reference 4 ,  Figure   lob .  
Film-to-film  bonds were t e s t ing   u s ing   She ldah l   pee l  test method Q000066, 
i l l u s t r a t e d   i n   F i g u r e  loa. In   the   former ,   bo th   adherends  are a l lowed   t o  
f l e x   a b o u t  90 d e g r e e s   n e a r   t h e   l i n e   o f   f a i l u r e .  The equi l ibr ium flex ang les  
vary  depending  on  the relative s t i f f n e s s  of the  adherends.  No e x t e r n a l  
cont ro l   over   the   angle  w a s  exercised.  Under Q000066,  one  adherend is f l exed  
through 90" o r  less and the   o ther   th rough a very small angle ,   F igure  loa. 
Because  of  asymmetry i n   f l e x i n g ,  a l l  f i lm- to- f i lm  pee ls  were made from  the 
outer   sur face   o f   the   l amina te  by mounting t h e   f a b r i c   s i d e   a g a i n s t   t h e  drum. 

Fi lm-fabric   peels   under  D 1876 were run  a t  30.5 cm/min (12  in./min)  and 
the   f i lm- to- f i lm  pee ls  a t  5 . 1  cm/min (2   in . /min) .   Pee l   s t rength  is  rate 
sensit ive  and  measurements made a t  d i f f e r e n t  rates cannot   general ly   be 
compared. 

Five tests were conducted  on  each  of   the  ten  composi tes  a t  22OC (72°F). 
Laminated  peel  specimens were prepared   by   inser t ing  release paper  between 
p l y s  a t  l a y e r s   t o   f a c i l i t a t e   t e s t i n g   b y   p r o v i d i n g   a n   i n i t i a l   f r e e   l e n g t h  
for   c lamping.   Control   specimen  peel  w a s  i n i t i a t e d  by c u t t i n g   w i t h  a r azo r  
blade.  

( a )  Sheldahl Q00066 ( b )  ASTM D 1.876 

Figure  10. P e e l  S t rength   Tes t ing  
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Durabi 1 i t y  Tests 

The  custom  experimental  and  control  materials  were  exposed  to  handling 
and  durability  tests  to  measure  characteristics  essential  to  the  performance 
of  inflatable  structures.  These  included  measurement  of  crease,  tear,  and 
puncture  resistance. 

ietermine  loss  in  strength.  Five 
samples  of  each  material  were  tested 
at  22OC (72'F). 

Trapezoidal t e s t s .  - FTM 5136  was 
used.  Sample  form  is  a  right  trape- 
zoid 7.5 cm ( 3  in.)  high  with  bases  Figure 11. Folding  Method  for 
of  2.54  cm (1 in.)  and  10.2  cm (4 in.)  Crease  Specimens 
as  shown  in  Figure  12.  The  test 
specimen  was  notched  on  the  2.54-cm  base  (1-in.  base)  and  clamped  with  the 
two  non-parallel  edges  gripped  in  the  jaws  as  shown  in  Figure  12a.  Grip 
separation  rzte  was 30.5 cm/min (12 in./min).  Five  specimens  of  each 
material  were  tested  at  a  temperature of 22OC (72'F). A standard  template 
is  shown  in  Figure  12b  along  with  specimens  before  and  after  failure.  The 
tear  occurs  normal  to  the  warp  yarns  and  generally  a  minimum  tear  force is 
noted  along  orthogonal  tears.  Composites  .with  bias-fiber  plys  sustain  much 
higher  tear  forces.  Loose,  woven  uncoated  fabrics  show  greater  tear  strength 
than  impregnated  and  coated  or  close  weave  materials.  This  characteristic 
allows  the  designer to alter  tear  reistance  without  affecting  tensile  strength. 

(a) Specimen  Under  Test (b) Test  Specimens - Before  and  After 
Testing 

Figure  12.  Trapezoidal  Tear  Testing 
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Puncture t e s t s .  - Sheldahl  Industrial  Specification  Q000215  was  used.. 
Under  this  method,  a  15-cm  (6-in.)  diaphragm  of  material is pressurized with 
air  to  about  one-third  the  material's  ultimate.stress  (Figure  13a). A stylus 
(Figure  13b) is pressed  against  the  material  and  the  stylus  force  at  which 
puncture  occurs is taken  as  a  relative  measure  of  puncture  resistance.  Where' 
sample  material  was  limited, an alternate  method  was  employed  using  a 
coupon  clamped  across  a  1.1-cm  (0.43-in.)  diameter  hole  (Figure  13c),  and 
the  Same j ig  and  stylus. 

The  principal  difference  between  the  two  methods  is  presence  of  tensile 
stress  'in  the  material  under  Q000215.  Puncture  of  flaccid  material  (Figure 
13c)  simulates  damage  occurring  to  the  material  during  fabrication  and 
handling,  and  the  stressed-material  puncture  simulates  damage  to  a 
pressurized  inflatable  structure. 

Five  test-s on each  material  were  conducted  at  a  temperature  of 22°C 
(72'F) with  the  stylus  initially  applied  from  the  Tedlar  or  Hypalon  side. 

Hand1 e Tests  

For  flexible,  inflatable  structures,  material  feasibility  is  highly 
dependent  on  its  capacity  to  sustain  multiple  packaging  cycles  at  high 
packing  densities,  to  accommodate  simple  or  comDound  folding,  and  to  adapt  to 
compound  curvatures  without  damage  to  the  gas  barrier.  This  characteristic 
can  be  measured  in  a  relative  way  with  a  "handle"  test. 

The  handle  property  concept  and  a  method  for  measuring  it  have  been 
developed  at  the NASA Langley  Research  Center  (Reference 5.). The  method  con- 
sists  of  measuring  the  slope  of  the  force  displacement  data  acquired  from 
extraction  of  a  circular  specimen  through  a  nozzle,  Figure 14. , It was  postu- 
lated  and  proven  by  test  that  lateral  pressures  in  the  nozzle  during  initial 
extraction  are  proportional  to  the  local  packing  density  of  the  compacted 
material  times  a  material  constant.  The  axial  component  of  the  integral 
of  the  pressure  and  associated  friction  forces  over  the  nozzle  surface 
are  equated to the  extraction  force, F. This  provides  a  means  for  determining 
an  intrinsic  material  constant,  termed  the  handle  modulus, H :  

1 dF 

AoN dP 
H = -  

0 

where A is  the  orifice  area 
0 

dF - 
dP  is  the  variation of the  extraction  force  with  respect  to  a  variation 
0 in  the  packing  ratio  at  the  nozzle  throat; 

N is  a  characteristic  number  of  the  nozzle  geometry; 

Po is  the  ratio  of  the  differential  volume  occupied  by  the  compacted 
specimen  to  the  volume  of  a  differential  slice  through  the  nozzle 
normal to  the  axis of revolution. 
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Figure 14. Handle Test Apparatus 
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Geometric Properties 

Weight  measurements. - Weight  measurements  were  made.  by  cutting a 15.2-cm 
by  15.2  cm  (6-in.  by  6-in.)  sample of each  control and each  custom  material 
and  weighing  on a precision  laboratory  balance. 

The cutting  template  and a specimen  are  shown  in  Figure  15a  and  the 
laboratory  balance  in  Figure  15b. 

Wei g h t  sampl e, 

oz/yd 
2 6 - i n .  by 6 - i n .  

temp1 ate 

(a)  Sample  Template and 
Prepara t i on 

( b )  Laboratory  Balance 

Figure 15. Weight  Measurement 
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TEST  RESULTS AND DISCUSSION 

Strength  data  were  obtained  by  unaxial  testing and,by peel  testing. 
Durability  data  acq.gired  included  crease  effects,  tear  strength  and  puncture 
resistance.  Additional  information  on  durability  and  geometric  properties is 
given in Reference 3. The  tests  of  Reference 3 were  conducted  for  materials, 
produced on full-scale  production  machinery,  while  the  similar  materials 
la,  lb,  and 5a of  this  study  were  custom-made  by  hand. 

Uniaxial  Tensile  Test  Results 

Uniaxial  testing  is  simple,  fast,  and  inexpensive; it is  adequate  as  an 
indication  of  relative  strength  and  anistopy  and  as a quality  control  pro- 
cedure.  However,  uniaxial  tests  are  not  generally a reliable  indication  of 
strength for,film and  fabric  composites  having  diagonal  structural  elements. 
For  such  materials,  the  appropriate  equilibrium  forces  are  lacking  at  the 
free  edges  which  affects  the  contribution  of  diagonal  and  transverse  fiber 
constituents  and,degrades  the  weave,  crimp,  and  yarn  interlocks.  The  failure 
of  uniaxial  coupon  tests  to  fully  involve  these  structural  features  of 
laminated  fabric  materials  has  motivated  more  sophisticated  biaxial  testing 
using  cylindrical  specimens,  described  in  References 1 and 3. In  the  tests 
described  here,  coupon  tests  involved  two  distinctly  different  structural 
mechanisms  for  specimens  tested  along  the  bias and for  specimens  tested 
along  the  machine  and  transverse  directions.  The  temperature  response  of 
the  two  types  of  test  specimens  suggests  some  basic  principles  of  fabrica- 
tion,  adhesion,  test  methods  and  temperature  dependency  useful  in  future 
material  designs. 

For  orthogonally  aligned  specimens (MD and TD) having  no  bias  yarns, 
the  fabric  constituents  aligned  with  the  specimen  axis  are  loaded  directly 
without  being  significantly  affected  by  the  bond  strength,  degree  of 
encapsulation,  and  free  boundary  forces  which  strongly  affect  bias-direction 
tests. 

In  this  program  the  changes instress and  strain  that  occur  with 
temperature  for  the  orthogonal  and  bias  specimens  of  various  fabrications 
vary  widely  but  are  consistent  with  the  specimen  type,  constituents,  and 
fabrication  details.  This  is  not  readily  evident  because  of  the  eight 
different  combinations  of  test  directions  and  materials. 

These  combinations  result  in  distinctly  different  temperature  responses, 
in  part  as a result  of  the  thermomechanical  behavior  of  the  adhesive, 
common.to  all  the  materials.  The  thermomechanical  behavior  of  this  adhesive 
is  reported in Reference 6 from  which  the  thermomechanical  spectra  in 
Figure 16 were  obtained.  The  adhesive  exhibits  onset  of  glasseous-phase 
transition  at  -1OOC and a second  glasseous  transition  at  -40°C.  The 
rigidity  of  the  adhesive  increases 560 percent  between  the  22°C  room  tempera- 
ture  and  the  -51OC  cold  temperature  test  environment.  Adhesive  in  the  cold 
state  improves  integration  of  the  films  and  fabrics  by  reducing  edge  losses 
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Figure 16. Thermomechanical  Spectra of Adhesive 

and  interlaminar  shear  deformation,  by  better  constraining  crimp  and  weave 
interlocks  and  by  decreasing  the  difference  between  elastic  moduli  of  film 
and  adhesive  layers . 

The  contribution  of  diagonal  reinforcement  in  narrow,  uniaxially  loaded 
specimens  depends  on  the  Poisson's  ratio of the  films,  the  tensile  and  com- 
pressive  elastic  moduli  of  the  films  and  adhesives,  the  tensile  modulus  of 
the  yarn,  the  twist,  crimp,  angle  of  diagonal  orientation,  and  the  location 
of  constituents  normal to the  specimen  plane.  The  contribution  of  diagonal 
fibers  for  bias-direction  tests is appreciably  different  for  Kevlar  and 
Dacron.  The  rheological  factors  cited  are  not  as  important  for  tensile 
strength  of  specimens  loaded  along  machine  and  transverse  directions. 

Though  hardening  of  a  composite-materials  matrix  can  have  favorable 
effects  on  strength  and  stiffness,  opposing  effects  also  occur.  Increased 
ridigity  is  accompanied  by  a  loss  in  the  composite's  capacity  to  yield  and 
adapt  to  unequal  load  distribution  and  stress  concentrations.  The  constituent 
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materials, t h e  test or ientat ion,   and  the  temperature   determine  whether   or   not  
low  temperature  advantages  exceed  the  disadvantages.  

Coupon t e n s i l e   s t r e n g t h   d a t a  are p r o v i d e d   i n  TABLE 4 f o r   t h e   t e n  material 
types.  Data are for   the   load   and   sample   o r ien ta t ions   a long   the   machine  
d i r e c t i o n  (MD), . t r a n s v e r s e   d i r e c t i o n  (TD), 45O t o   t h e   l e f t ,  and r i g h t  of t h e  MD. Tests were performed a t  room temperature ,  22OC (72OF) and a t  the   u sua l  
env i ronmen ta l   ex t r emes   fo r   i n f l a t ab le   s t ruc tu res ,  - 5 1 O C  (-60PF) and 6OoC 
(140OF).  The d a t a  are compared g raph ica l ly   i n   F igu res   17   and  18. Data on 
e longat ion  a t  f a i l u r e   f o r   t h e  same cond i t ions  are p r o v i d e d   i n  TABLE 5 and 
Figures   19  and  20. Figure  21 shows f a i l u r e   p a t t e r n s   r e p r e s e n t a t i v e   o f   s p e c i -  
mens 212, 4c,  and  6c  having a b ias -yarn   a r ray .   Carefu l   s tudy   of   the   s t rength  
d a t a  shows t h a t  a l l  Kevlar materials show s i g n i f . i c a n t  improvement  over t h e i r  
Dacron con t ro l s   a long   t he  warp  and f i l l ,  and moderate-or  varying  improvements 
a long   d iagonal  axes. 

The s t r e n g t h   d a t a  of  Figures 1.7 and 1'8 and t h e   s t r a i n   d a t a  of  Figures  19 
and 20 show several t rends   wi th   t empera ture ,  material cons t ruc t ion ,  and 
spec imen  or ien ta t ion .  MD and TD tests of Kevlar materials with  Dacron-bias 
f a b r i c  (5b  and  6b), show c o n s t a n t   o r   i n c r e a s e d   s t r a i n   w i t h   d e c r e a s e d   s t r e n g t h  
f o r  a temperature  change  from +22OC t o  -51OC.  The cor responding   cont ro l  mate- 
r i a l  having a l l  Dacron  reinforcement  (5a) shows nea r ly   cons t an t   s t r eng th ,   bu t  
dec reas ing   s t r a in   w i th   t empera tu re   d rop .  

The Kevlar materials wi th  no b i a s   r e in fo rcemen t ,   l b ,  2b,  and  3b, show 
c o n s i s t e n t   l o s s   i n   s t r e n g t h  and i n c r e a s e   i n   s t r a i n   f o r   t h e  MD and TD tests 
as temperature  i s  reduced  below  ambient. However, t h e  same materials t e s t e d  
i n   t h e   b i a s   d i r e c t i o n   g e n e r a l l y  show s t r e n g t h   i n c r e a s e s  and s t r a i n   d e c r e a s e s  
as temperature   drops.  The MD and TD tests of materials having  Kevlar  bias- 
yarn  arrays  (2c,   4c,   and  6c)  behave similar t o   t h e  MD and TD .tests of   speci-  
mens l b ,  2b,  and 3b bu t  show a d i f f e r e n c e   i n   t h e   b i a s   s p e c i m e n s  of  no l o s s   t o  
moderate loss i n   s t r e n g t h  and d e c r e a s e   i n   s t r a i n   t o   t e m p e r a t u r e   d r o p .  

The a l l -Dacron   cont ro l  materials p e r f o r m   d i f f e r e n t l y   f r o m   t h e i r  Kevlar 
coun te rpa r t s .   Lamina te   l z  shows i n c r e a s i n g   s t r e n g t h   w i t h   i n c r e a s i n g   s t r a i n  
for  the  orthogonal  specimens  and  near-constant stress w i t h   d e c r e a s i n g   s t r a i n  
for   the   b ias   spec imens .  The all-Dacron  coated material, 5a, shows cons tan t  
s t rength   wi th   decreas ing   s t ra in   for   the   o r thogonal   spec imens   and  similar 
behavior   for   the   b ias   spec imens .  

E x p l a n a t i o n s   f o r   t h e s e   e i g h t   c h a r a c t e r i s t i c  modes of behavior  are 
sugges t ed   i n   t he   fo l lowing   s ec t ions .  
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TABLE 4. - Tensile  Properties  at  Failure 

la 

lb 

2b 

2c 

3b 

MD 
TD 
45"L 
45"R 

MD 
TD 
45  "L 
45'R 

MD 
TD 
45"L 
45"R 

MD 
TD 
45'L 
45'R 

MD 
TD 
45"L 
45"R 

60°C  (140'F) 

N/m (lb/in.) 
" ". .. 

3.87 x io4  (221) 
3.24 1) (185) 
1.52 ; (87) 
1.00 (57) 

5.57 1 (318) 
6.25 , (357) 
2.28 I (130) 
2.54 (145) 

5.92 
5.85 
2.71 
2.64 

5.58 
6.83 
2.18 
2.21 

C.V.f<* 
. ... . ____. 

0.065 
0.094 
0.065 
0.103 

0.151 
0.127 
0.201 
0.049 

0.051 
0.117 
0.079 
0.113 

0.023 
0.040 
0.029 
0.248 

(331) 
(329) 

0.142 
0.045 
0.147 
0.192 

22OC  (72OF) 

'I 11 
11 

-51°C  (-60°F) 

N/m (lb/in.) c.v.** N/m (lb/in.) c.v.** 

4.24 x l o 4  (242) 
4.02 1 (229) 

2.23 1 (128) 
2.02 (115) 

5.49 ; (314) 
5..58 ,' (318) 
3.12 8 ,  (178) 
2.90 ': (166) 

5.55 I (316) 
44.82 (275) 
3.38 (193) 
3.16 (180) 

5.65 (323) 
6.00 (343) 
2.64 (151) 
2.73 (156) 

5.87 (335) 
5.35 (306) 
3.51 (200) 
3.79 x !04 (217) 

I 

! 

i 

I 

0.053 
0.067 
0.046 
0.077 

0.066 
0.088 
0.207 
0.057 

0.121 
0.153 
0.181 
0.030 

0.048 
0.067 
0.262 
0.139 

0.029 
0,091 
0.096 
0.039 

5.36 x l o 4  (306) 
5.49 4 (313) 

2'34 ~ (96) 
(133) 

1.68 

0.035 
0.142 
0.103 
0.129 

0.218 
0.354 
0.070 
0.227 

0.318 
0.243 
0.088 
0.301 

0.098 
0.240 
0.061 
0.126 

0.180 
0.199 
0.087 
0.043 

*See  Figure 2 for definition of material  matrix - row  number,  column  letter. 
**C.V. = coefficient  of  variation. 



TABLE 4. - Tensile  Properties  at  Failure  (Concluded) 

. 

4c 

5a 

5b 

6b 

6c 

MD 
TD 
45"L 
45"R 

MD 
TD 
45"L 
45"R 

MD 
TD 
45"L 
45"R 

MD 
TD 
45"L 
45"R 

140 
TD 
45  "L 
45"R 

60°C  (140°F) 

N/m  (lb/in. ) c.v.** 

5.27 x lo4 '(301)  0.066 
5.89 
1.83 
1.76 

3.61 
3.21 
2.39 
2.17 

5.86 
5.31 
3.28 
3.20 

5.94 
6.34 
4.12 
4.26 

5.83 
6.64 
2.46 

(337) 0.058 
(105) 0.110 
(100 0.090 

(206) 0.021 
(184) 0.017 
(137) 0.089 
(124) 0.035 

(335) 0.072 
(304) 0.089 
(187) 0.071 
(183) 0.099 

(339) 0.094 
(362) 0.090 
(235) 0.071 
(243) 0.094 

(333)  0.127 
(379)  0.067 

,. (140) 0.030 
0.114 

22°C  (72°F) 

N/m  (lb/in. ) c.v.** 

5.45 x lo4  (311)  0.036 
4.39 
3.05 
2.63 

3.72 
3.45 
3.23 
2\42 

6.64 
6.91 
4.44 
4.98 

6 :52 
8.02 
5.11 
5.83 

5.71 
5.75 
4.51 

I 

0.030 
0.129 
0.129 

0.022 
0.044 
0.026 
0.029 

0.042 
0.043 
0.026 
0.041 

0.052 
0.048 
0.062 
0.037 

0.085 
0.061 
0.054 

4.76 X 3. (272)  0.131 

-51°C  (-60'F) 

N/m  (lb/in.) c.v.** 

4.50 
2.84 
2.29 

3.83 
3.02 
2.81 
2.53 

5.61 
6.14 
3.36 
3.68 

5.15 
6.65 
6.60 
6.01 

5.42 
4.37 
4,39 

0.336 
0.072 
0.050 

0.184 
0.052 
0.152 
0.163 

0.204 
0.194 
0.205 
0.175 

0.191 
0.116 
0.085 
0.165 

0.222 
0.158 
0.162 
0.087 

*See  Figure 2 for  definition of material  matrix - row  number,  column  letter. 
**C.V..=  coefficient  of  variation. 
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TABLE  5. - Tensile  Elongation  at  Failure 

rl 

rl 
m 
M *  a l a  u a  
2 8  
- ." - - . 

la 

lb 

2b 

2c 

3b 

4c 

5a 

5b 

MD 
TD 
45  "L 
45"R 

MD 
TD 
45"L 
45"R 

MD 
TD 
45"L 
45"R 

MD 
TD 
45"L 
45"R 

MD 
TD 
45"L 
45"R 

MD 
TD 
45"L 
45"R 

MD 
TD 
45  "L 
45"R 

MD 
TD 
45"L 
45"R 

60°C  (140°F) 
. .~  " ~ 

Percent 

19.8 
16.4 
51.8 
38.0 

5.9 
5.4 
37.8 
45.6 

5.3 
5.2 
42.6 
41.2 

5.9 
5.7 
47.3 
43.8 

5.4 
5.3 
45.7 
45.7 

5.5 
5.5 
53.9 
49.2 

25.7 
32.5 
63.5 
60.9 

8.1 
7.3 
65.2 
68.6 

.. - 

. .  

c.v.** 
0.039 
0.071 
0.043 
0.142 

0.047 
0.119 
0.059 
0.062 

0.062 
0.097 
0.101 
0.090 

0.061 
0.049 
0.022 
0.153 

0.101 
0.053 
0.057 
0.105 

0.069 
0.033 
0.104 
0.154 

0.018 
0.027 
0.103 
0.091 

0.064 
0.053 
0.050 
0.022 

~ 

"~ - 

22°C  (72°F) 

Percent 

16.0 
14.8 
47.7 
50.9 

4.0 
4.4 
48.1 
38.6 

4.8 
4.5 
38.7 
32.5 

5.3 
5.4 
43.3 
49.3 

5.1 
4.1 
45.7 
42.6 

4.3 
5.0 
36.3 
52.5 

26.3 
32.0 
71.9 
66.9 

8.5 
5.8 
61.4 
54.2 

_____ 

c.v.** 
0.053 
0.085 
0.077 
0.039 

0.000 
0.064 
0.108 
0.105 

0.116 
0.066 
0.109 
0.077 

0.000 
0.053 
0.044 
0.163 

0.058 
0.122 
0.063 
0.064 

0.000 
0.019 
0.026 
0.207 

0.050 
0.059 
0.051 
0.012 

0.127 
0.062 
0.028 
3.093 
" - 

-51°C  (-60OF) 

Percent 

25.4 
24.6 
21.2 
15.0 

10.0 
10.7 
38.0 
32.0 

7.2 
6.6 
23.2 
20.5 

8.2 
10.6 
12.4 
20.0 

8.6 
8.4 
36.8 
36.4 

12.0 
11.8 
13.2 
12.4 

21.0 
23.3 
15.9 
12.8 

11.3 
10.6 
19.3 
29.1 

c.v.** 
0.126 
0.247 
0.361 
0.125 

0.071 
0.206 
0.157 
0.337 

0.267 
0.254 
0.239 
0.129 

0.054 
0.143 
0.354 
0.359 

0.335 
0.1tio 
0.070 
0.227 

0.144 
0.163 
0.196 
0.072 

0.177 
0.243 
0.391 
0.236 

0.288 
0.108 
0.393 
0.262 

*See  Figure 2 for  definition of material  matrix - row  number,  column  letter. 
**C.V. = coefficient of variation. 
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TABLE 5. - Tens i le   E longat ion  at Failure  (Concluded) 

4 
E: 
0 

.rl Ip 

L 4 - R  

.rl 
U 

a! lJ  UP) 
UTI  m L 4  (do 

0 22OC (72OF) 60°C (140OF) -51OC (-60OF) 

z u  $2, Percent 

6b I 45OL 
TD 

I :OR 

TD 
6c I 45"L 

I 

10.0 
8.4 

59.6 
60.0 

7.9 
5.5 

46.0 
34.4 

0.138 7.6 0.072 8.0 
0.122 64.0 0.022 62.8 
0.074 1 63.8 1 0.017 1 42.4 I 

. ~~ 

c.v.** 

0.379 
0.200 
0.087 
0.182 

0.046 

0.391  18.5  0.063 45.0  0.079 
0.074  36.2 0.044  58.9 0.048 
0.110 4.4 0.104 4.3  0.054 
0.168  5 .. 7 0.082 5.. 9 

*See Figure 2 f o r   d e f i n i t i o n  of material matr ix  - row number,  column le t ter .  
** C . V .  = c o e f f i c i e n t  of va r i a t ion .  
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Dacron control laminate la. - This  material  exhibits  the  large  elongations 
characteristic  of  Dacron  and  Mylar.  The MD and TD elongations  are  representa- 
tive  of  plain-weave  Dacron  fabrics.  The  bias  elongations  are  representative 
of  Mylar  and  adhesive  strains  since  this  material  has  no  bias  reinforcement. 

For a drop  in  temperature  from  22OC  to  -51OC  the  stress  and  elongation 
for  the MD and TD tests  show  characteristic  increases.  Although  the  con- 
stituent  stiffnesses  increase  in  the  cold  environment,  the  similarity  of 
film  and  yarn  elastic  moduli  and  the  more  rigid  bonds  between  them  results 
in a relative  strength  increase  with  temperature  greater  than  the  chang,e  in 
stiffness 

For  the  bias-test  direction, a reduction  in  elongation  and  little  strength 
change  is  observed  with  the  drop  in  temperature.  This  may  be  partially 
attributed  to  the  increased  stiffness  of  the  Mylar  and  adhesive,  but  is 
primarily  attributed  to  the  increased  contribution  of  Dacron  fabric  diagonal 
to  the  test  direction  caused  by  increased  adhesive  rigidity  (phase  change). 
In  spite  of  the  increased  diagonal  yarn  contribution,  there  is  little  net 
increase  in  strength.  Strength  and  elongation  results  may  be  inconclusive, 
however.  Small  triangular  regions,  which  occur  where  diagonal  yarns  are 
fixed  by  the  test  grips,  produce a non-uniform  stress  field  across  the  width 
of  the  coupon  and  cause  the  actual  strain  along  the  specimen's  centerline  to 
be  greater  than  the  indicated  strain.  Average  strains  in  TABLE 5 are  thought 
to  be  less  than  the  true  local  strain  associated  with  failure.  The  average 
strengths  in  TABLE 4 for  bias-direction  tests  are  thought  to  be  less  than 
the  membrane,forces  at  the  apexes  of  the  triangular  areas  at  the  specimen 
ends.  In  addition,  the  adhesive  bonds  have  greater  sensitivity  to  the 
disruptions  in  the  stress  field  because  of  reduced  adhesive  toughness  at 
temperatures  below  the  glass  transitions. 

Kevlar-based  laminates l b ,  2 b ,  and 3b. - These  materials  are  similar  to 
the  control  la  except  that  Kevlar  is  used  in  place  of  Dacron.  The  lower 
elongations  exhibited  by MD and  TD  tests  of  lb,  2b,  and  3b  compared  .to  la 
are a direct  result  of  the  high  modulus  Kevlar  fabric. A reduction  in 
elongation  was  not  observed  in  the  bias  direction,  indicating  that  the  Kevlar 
did  not  fully  contribute  to  composite  stiffness  in  that  direction  because  of 
the  free  fabric  edges  in  the  narrow  bias  specimens. 

Of  particular  interest  is  that  the  temperature  effect  on  strength  and  strain 
from  22°C  to  -51OC  is  opposite  to  that  of  the  control,  la. MD and  TD 
elongations  at  -51°C  are  consistently  greater  than  at  22"C,  but  the  amount 
of  change  varies  widely.  The  larger  strains  at  -51°C  are  about  twice  the 
ultimate  strain  characteristic  of  Kevlar.  There  is  an  average  25-percent 
reduction  in  strength  between  22OC  and  -51OC  which  is  opposite  to  the  strength 
changes  that  occur  in  the  constituents  tested  separately.  The  yarn  load 
distribution  for  the MD and  TD  tests  was  probably  quite  uniform.  In  view 
of  the  above,  it  was  concluded  that  the  strength  reduction  and  strain 
increase  must  be  attributed  to  partial  filament  bond  failure  and  reduced 
toughness  resulting  from  the  thermomechanical  phase  change  in  the  adhesive. 
This  low  ductility  becomes  particularly  apparent  in  composites  with  high 
strength,  high  modulus  Kevlar  yarns.  Internal  random  bond  failure  probably 
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occurs  without  external  appearance  of  failure  until  general  specimen  rupture 
takes  place  below  the  potential  strength  of  the  constituents. 

At  22OC  the MD and  TD  strength  is  greater  and  the  strain is within  the 
possible  range  for  Kevlar,  considering  crimp  and  weave  effects.  This  sug- 
gests  that  the  Kevlar  must be contributing  more  to  the  strength  because of 
greater  adhesive  deformability  and  toughness. 

The  net  effect  of  adhesive  phase  change  and  embrittlement  is  detrimental 
for MD and TD test  orientations  of  high  modulus  materials.  Conversely,  the 
net  effect  appears  beneficial  for  the  Dacron  material,  la.  Materials  lb, 
2b,  and  3b  have  no  bias  reinforcement  and  depend  on  the  film  for  shear 
strength.  Bias  strengths  of  the  Kevlar  laminates  are  considerably  improved 
over  the  Dacron  control  laminate.  This  can  only  be  attributed  to  load 
transfer  between  the  film  and  yarns,  in  spite  of  the  free  yarn  ends;  lb  and 
3b show particularly  enhanced  bias  strengths  in  the  cold  environment. 
The  2b  material  has  less  sensitivity  to  temperature,  similar  to  the  control 
la.  Note  that  bias  elongations  are  well  in  excess  of  those  characteristic 
of  Kevlar  fabrics  and  that  widespread  yarn-bond  failure  probably  occurred 
along  with  yarn  strain,  crimp  reduction  and  lateral  specimen  contraction. 
It  is  possible  that  the  composite  was  sufficiently  integrated  despite  yarn- 
bond  failures  to  show  stiffness  gains  exceeding  the  stiffness  of  Dacron 
control  and  film  constituents.  Local  strains  are  suspected  to  be  greater 
than  the  average  indicated  because  some  of  the  yarn  ends  are  restrained  in 
the  specimen  grips.  The  discussion  of  specimen  la  bias  loading  is  generally 
applicable  to  lb,  2b,  and  3b  except  that  the  Kevlar  is  thought  to  contribute 
more  strength  than  the  Dacron  within  the  threshold  of  bond  integrity.  In 
addition,  the  yarn-bond  strength  is  more  likely  to  determine  the  composite 
failure  points  for  Kevlar  materials  which  appear  to  occur  at  stress  levels 
considerably  higher  than  for  the  Dacron  control.  The  increase  in  adhesive 
stiffness  with  low  temperatures  contributes  to  the  cold  temperature,  bias- 
direction  performance of the  Kevlar  materials. 

Materials.  with Kevlay-based fabric  and Kevlar-bias  yarns. - Materials  2c, 
4c, and 6c  have an orthogonal  base  fabric  of  Kevlar  and  a  bias  Kevlar 
reinforcement.  The  effect of the  bias  reinforcement  on  specimens  2c, 4c, 
and 6c  is  totally  obscured  by  the  lack  of  equilibrium  boundary  forces  at  the 
free  edge  of  specimens.  For  tests  in  the MD and  TD  directions,  the 
discontinuous  bias  yarns  to  not  contribute  directly  as  a  load-carrying 
constituent.  For  bias-direction  tests,  only  about  one  yarn  of  the  sparse 
array,  Figure  5a,  has  continuity  between  grips.  The  high  ultimate  strains 
exhibited  for  bias-direction  loads  were  five  to  six  times  the  characteristic 
breaking  strain  of  Kevlar,  assuring  that  the  bias  yarn  aligned  with  the  test 
direction  must  have  broken'or  debonded  from  the  matrix  at  some  lower  stress 
level.  Bias-direction  tests  were  probably  not  satisfactory  indicators  of 
the  Kevlar-bias  yarn  strength.  The  discussions  of  materials  lb,  2b,  and  3b 
above  generally  apply  to  2c  and  4c  because  of  their  similarity,  except  for 
the  Kevlar-bias  yarns.  There  is  evidence  from  the  bias-strength  tests  that 
low  temperature  performance  is  impaired  by  the  Kevlar-bias  yarns. 
Asymmetry  of  the  Kevlar-bias  ply  with  respect  to  the  neutral  plane  is 
thought  to  reduce  the  contribution  of  this  constituent. 
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Strains  in 212,  412, and 6c  are  greatly  decreased  frorn.22OC  to  -51OC. 
This  cannot  be  attributed  to  the  increases  in  elastic  modulus  of  the 
structural  fabric  at  low  temperatures  which  is  about  20  percent,;nor  to 
the  small  modulus  change  of  Kevlar. It appears  that  the  increase  in 
stiffness  is  caused  by  the  adhesive  phase  transition  which  increases  the 
contribution  of  the  Kevlar  base  fabric,  oriented  diagonal  to  the  bias  test 
direction. 

Bias-direction  stiffness  is  dramatically  improved  by  increasing  the 
contribution  of  the  base  fabric  through  a  more  rigid  bond.  The  bias  yarns 
do not  increase  significantly  in  stiffness  because  of  the  large  yarn  separa- 
tion.  Tensile  strength  is  not  appreciably  altered  from  the  room-temperature 
performance.  This  is  attributed to the  large  differences  in  stiffness 
between  the  film,  adhesive,  and  Kevlar.  At  low  temperatures,  initially,  loads 
are  carried  primarily  by  the  Kevlar  which  is  bonded  to  the  film  by  the 
glasseous  adhesive.  The  adhesive  shear  strength  limit  is  reached  before  the 
Kevlar  tensile  limits,  causing  bond  failure  and  slippage  which  cause  the 
composite  to  perform  as  at  high  temperature,  with  several  differences. 
Since  yarn-bond  failures  probably  don't  occur  simultaneously,  only  local 
regions  experience  transfer of loads  from  the  Kevlar  to  Mylar.  The  ensuing 
composite  failure  is  observed  at  average  elongations  above  the  Kevlar  limits 
but  consdierably  below  the  break  strain  characteristic  of  Mylar. 

The  observed  bias  strengths  of  materials  2c  and  4c  do  not  reflect  the 
conbtibution  of  the  Kevlar-bias  reinforcement.  Their  strengths  are  similar 
to  materials  2b  and  3b  because  of  inadequacies  of  the  coupon  tests. 

Specimen  4c  is  geometrically  similar  to  material  2c  except  for  the 
substitution  of  a  bi-laminate of Hytrel  and  Saran  for  the  Mylar  film.  The 
test  data  indicate  no  conclusive  differences  in  strength  and  elongation  at 
the  temperatures  investigated. 

For  the MD and  TD  tests,  the  coated  material  6c  differs  from  the  laminates 
(2c  and  4c)  in  the  respect  that  strain  is  essentially  unchanged  from  22OC 
to -51°C.  It  is  similar to the  other  materials  in  strength,  showing  a  drop 
in MD and  TD  strength  with  temperature.  Break  strains  of  the  6c MD and TD 
direction  tests  are  compatible  with  Kevlar  fabric  strains,  indicating  full 
contribution of the  Kevlar  throughout  the  temperature  range.  The  reduction 
in  strength  with  temperature  is  an  indication  of  the  inability  of  the 
coating-yarn  bonds  to  maintain  composite  integrity  up to the  breaking 
strength of the  Kevlar.  Generally,  coated  materials  give  better  yarn  bonds 
than  lamiaates  because  the  greater  amount  of  coating  matrix  required  to 
control  permeability  surrounds  the  yarns  more  completely  and  increases  the 
bond  area. 

The  6c  coated  Kevlar-bias  yarns  show  bias-direction  strain  characteristics 
very  similar  to  materials  2c  and 4d. The  arguments  above  for  the  reduced 
Kevlar-bias  performance  of  2c and 4c  are  generally  valid  for  6c.  The 
insensitivity  of  bias  strength  to  temperature  is  attributed  to  the  nearly 
total  ineffectiveness of the  Kevlar-bias  ply,  and  the  effective  load  transfer 
to  the  base  fabric  yarns.  The  absolute  bias  strength  of  6c  is  considerably 
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h ighe r   t han   fo r   t he   l amina te s ,   i nd ica t ing   b i a s   s t r eng th  is very  dependent on 
t h e  amount  of matrix which  imbeds the   yarn .  The 6c material i s  n o t   a f f e c t e d  
by  the  adhesive  phase  change, as is a p p a r e n t l y   t h e  case f o r  most  of t h e  
laminates .  

A l l  of t h e  "a" and "c" series materials as w e l l  as 5b,   exhibi t   lower  
d i agona l   s t r eng ths  compared t o   t h e  MD and TD d i r e c t i o n .  The "a" series is 
to t a l ly   Dac ron- re in fo rced ,   exp la in ing   t he i r   l ower   s t r eng th  compared t o  similar 
Kevlar materials. The  5b coated  specimen shows r e l a t i v e l y  weak d iagonal  
s t r e n g t h ,   a t t r i b u t e d   t o   t h e   l a r g e   d i f f e r e n c e   i n   s t r e n g t h  between t h e  Dacron 
b i a s   f a b r i c  and the  Kevlar b a s e   f a b r i c   w i t h   y a r n s   a l i g n e d   w i t h   t h e  MD and TD. 
These  indicat ions  of   anisotrophy  might   be  overly  emphasized  by  vir tue of t h e  
d e f i c i e n c i e s   i n   b i a s   t e s t i n g   d e s c r i b e d   i n   t h e   p r e c e d i n g   t e x t .  

Bias-fabric-reinforced - "" materials. ~ - Specimen  5a is  the   coa ted   con t ro l ,  
having a Dacron f a b r i c   a l i g n e d   w i t h   t h e  MD and TD axes  and  another  Dacron 
f a b r i c  on   t he   b i a s .  The s t r eng th   o f   t he   con t ro l  is  less a long   t he   b i a s   t han  
a long   t he  MD and TD b e c a u s e   o f - t h e   d i f f e r e n c e   i n   w e i g h t  of t h e  two f a b r i c s .  

The s t r e n g t h  is near ly   independent  of tempera ture   for  a l l  t es t  d i r e c t i o n s  
from 22°C t o  -51°C. Th i s  is a t t r i b u t e d  t o  t h e   f a c t   t h a t   t h e   c o a t e d  materials 
con ta in  less of the  adhesive  believed  to  have  pronounced  thermomechanical 
e f f e c t s  on  the  laminates .  Materials 5a,  5b,  and 6b had a l i g h t  wash coa t  of 
a d h e s i v e   a p p l i e d   t o   t h e   f a b r i c   f o r   s i z i n g   p u r p o s e s .   S t r u c t u r a l   l o a d   t r a n s f e r  
between  yarns i n   t h e   c o a t e d  materials depends  on  the  polyurethane  and  neoprene 
coatings.  Yarn-to-coating  bonds are no t  as t empera tu re   s ens i t i ve  as the  yarn- 
to-adhesive  bonds  and  they are not  as s t rong .   For   the  l a  Dacron-fabric  speci-  
mens the   ya rn  bond s h e a r   s t r e n g t h s  are reasonably w e l l  matched t o   t h e  Dacron 
t e n s i l e   c a p a c i t y .  

The temperature   independence  does  not   hold  for   the  bias  tests of material 
5a .   Inc reased   s t i f fnes s   appea r s   fo r   r educ t ion   i n   t empera tu re   f rom 22°C t o  
-51°C.  This  is a t t r i b u t e d   t o   c h a n g e s   i n   m o d u l i  of the  polyurethane,   neoprene,  
and adhesive wash coa t .  The i n c r e a s e d   c o n s t i t u e n t   s t i f f n e s s   p r o b a b l y  
inc reases   t he   s t r eng th   con t r ibu t ion   o f   t he   ya rns   a l igned  45" t o   t h e  test 
d i r e c t i o n .  Materials having two f a b r i c   p l y s  a t  45" are though t   t o   be  less 
s e n s i t i v e   t o   l o a d   d i r e c t i o n   a n d   t o   r e s p o n d   p o s i t i v e l y   t o   s t i f f n e s s   i n c r e a s e s  
o f   t he   ma t r ix   cons t i t uen t s .   These   p robab ly   cause   t he   r educed   b i a s   s t r a in  
observed.   Although  the  coat ings  encapsulate   the  yarns  more completely  than 
the   adhes ives   used   in   the   l amina ted  materials, yarn   bonds   to   the   po lyure thane  
and  neoprene are i n s u f f i c i e n t   t o  improve matrix s t r e n g t h .  

The ex t r eme ly   h igh   e longa t ions   (up   t o  70 p e r c e n t )   f o r   t h e   b i a s  tests of 
5a, 5b,  and 6b a t  22°C and 60°C are much l a r g e r   t h a n   c h a r a c t e r i s t i c  Dacron 
f i lament   b reak   e longat ions .   For   the   b ias - tes t   d i rec t ion ,   one   Dacron   fabr ic  
p l y  is p a r a l l e l  and  normal t o   t h e   l o a d  axis. The l a r g e   e l o n g a t i o n s  may be  
a t t r i bu ted   t o   ya rn   c r imp   r emova l ,   ya rn   un twi s t ing ,   de fo rma t ion  and f a i l u r e  
of the polyurethane-   and  neoprene-yarn  bonds,   and  s l ippage  in   the  specimen 
g r i p s .  A t  60°C most of t h e   c o a t i n g s  are h i g h l y  amorphous. 
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The coated material, 5b,  has  an MD and TD Kevlar f a b r i c   b a s e   w i t h  a Dacron 
f ab r i c   b i a s   p ly .   Th i s   combina t ion  of  high-  and low-modulus materials produces 
i n c o m p a t i b i l i t i e s   n o t   e v i d e n t   i n  5a. Cons ide rab le   l o s s  .in s t r e n g t h  was 
observed  from room tempera tu re   t o   t he   co ld   env i ronmen t   fo r  a l l  test d i r e c t i o n s ,  
I n   s p i t e  of t h i s ,   t h e   a b s o l u t e   s t r e n g t h  is l a r g e r   t h a n   f o r   t h e   c o n t r o l  mate- 
r ial ,  5a. The h igher   s t rength   ob ta ined   f rom  the  Kevlar i s  more  demanding  of 
the  yarn-coating  bonds.   Apparently,  bond toughness is less a t  low  tempera- 
t u r e s  and  widespread, random-bond f a i l u r e s   o c c u r  , r e s u l t i n g   i n   h i g h e r   a p p a r e n t  
s t r a i n s  and   l ower .   s t r eng ths   i n  MD and TD tests. The coated material, 6b, is 
similar i n   c o n s t r u c t i o n   t o  5b e x c e p t   f o r   r e l o c a t i o n  of t h e  Kevlar MD and TD 
a l igned   f ab r i c   f rom  the   su r f ace   t o   nea r   t he   cen te rp lane .   Th i s   p roduced  a 
s ign i f i can t   d i f f e rence   i n   t he   b i a s   s t r eng th   and   e longa t ion .   Encapsu la t ion  of 
the   Kevlar  is improved  by the   p rovis ion   of  two s h e a r   s u r f a c e s   i n s t e a d  of  one. 
Apparen t ly ,   t h i s  was s u f f i c i e n t   t o   m a i n t a i n   f u n c t i o n a l   y a r n   b o n d s   t o .   h i g h   l o a d  
levels fo r   t he   l ow- tempera tu re   b i a s  tests. The nea r ly   cons t an t  MD and TD 
s t r a in - t empera tu re   r e l a t ionsh ip  i s  fu r the r   ev idence  of  improved i n t e g r i t y .  
The l o s s   i n   c o l d   t e m p e r a t u r e  MD and TD s t r e n g t h  is similar t o   t h e  5b spec i -  
mens. S i n c e   t h i s  test  o r i e n t a t i o n  is p r i m a r i l y  a test of   Kevlar   s t rength,  i t  
is ev iden t   t ha t   f ab r i c -coa t ing  bonds are too  low  to  have a p o s i t i v e   c o r r e l a -  
t i on   s t r eng th   w i th   t empera tu re .  

S t r a in  ra tes .  - The  Dacron composites show near   independence   to   t empera ture  
i n  some tests, and a n e g a t i v e   c o r r e l a t i o n   i n   o t h e r s .   S t r a i n  rate w a s  con- 
s ide red  as a poss ib l e   cause   fo r   t he   d i f f e rence .  The u n i a x i a l  tests of  Refer- 
ence 3 used  an i n i t i a l   s t r a i n  rate of  400 percent  per  minute,   whereas  the 
tests repor ted   here   used  a ra te  of 67 percent   per   minute .   In   Reference 7 , 
f u r t h e r   s t r a i n - r a t e   d a t a  are a v a i l a b l e  on individual   Kevlar-49  yarns   tes ted 
under FTM 5102 a t  0.17  percent  per  second  and 800 percent  per  second. The 
h igh  rate y ie lded   break   e longat ion   va lues  similar t o   t h e  low rate,  b u t   t e n s i l e  
l oads  were about   15  percent  less than  obtained a t  t h e   l o w e r   s t r a i n  rate. 
S i n c e   s t r a i n  rates of t h e   c u r r e n t ' s t u d y  were lower  for  Kevlar-49  based mate- 
rials than   t hose  of Reference 7 ,  t h e   v a r i a b i l i t y   i n  test r e s u l t s  of t h i s  
r e p o r t  i s  p robab ly   no t   t he   r e su l t  of t h e   s t r a i n - r a t e   v a r i a t i o n s .  

Clamp e f fec ts .  - The present   s tudy  used  different   methods  of   c lamping  the 
specimen for   each  temperature   condi t ion.   This   does  not   present  a problem 
when comparing d i f f e r e n t  materials a t  a given  temperature ,   but  i t  does make 
it d i f f i c u l t   t o   d e t e r m i n e   t h e   e f f e c t  of  temperature  on  an  individual material. 
The various  clzmping  methods  apparently had l i t t l e  e f f e c t  on t h e   b a s e l i n e  
Dacron materials s i n c e   t h e r e  w a s  good agreement   with  the  data  of Reference 3 .  
Consider ing  the material wrap  of  the  D-ring  grip,   Figure  9,   higher  elonga- 
t i o n s   c a n   b e   e x p e c t e d   f o r   t h i s  method. Not only  is  i t  d i f f i c u l t   t o   m a i n t a i n  
a c o n s t a n t   i n i t i a l  j a w  separation  between  samples,   but it is  a l s o   d i f f i c u l t  
t o   e s t a b l i s h   t h e   e f f e c t i v e  j a w  sepa ra t ion .  Specimen loads   decrease  expo- 
nent ia l ly   a round  the   curved   p ins   wi th  no sharp  demarkat ion  between  the speci- 
men, which is d e s i r a b l e  when t e s t i n g   h i g h   s t r e n g t h  material. It h a s   t h e  
d isadvantage   tha t  some f i n i t e   l o a d  must  be  applied  to  the  specimen  before '  
enough g r ipp ing   fo rce  is developed   to   p revent   s l ippage .  The pre-loading 
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required  depends  on  the  coeff ic ient  of f r i c t i o n  o.f the  specimen  and  r ings.  
The amount of s l ippage  depends on t h e  rate of   loading.   In   Figure 22 t h e  
load   e longa t ion   cu rves   r ep resen t   t he   r e su l t s  of an  ambient test  us ing   t he  
hydrau l i c  j a w s ;  and t h e   r e s u l t s   o f  a cold-temperature test u s i n g   t h e   s l i d i n g  
D-ring g r i p .  
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After the   l oad  becomes s u f f i c i e n t   t o   t e n s i o n   t h e  material wrap  and  supply  the 
necessa ry   g r ipp ing   fo rce ,  the s l o p e s   o f   t h e  two curves  are similar. 

Adequacy o f  bias ply. - The test da ta   have   cons is ten t ly   ind ica ted   lower  
b i a s   s t r e n g t h  compared t o   t h e  MD and .TD s t r e n g t h s .   T h i s   h a s   b e e n   a t t r i b u t e d ,  
p r i m a r i l y ,   t o   f a i l u r e   t o   o b t a i n  a fu l l - s t r eng th   con t r ibu t ion   f rom a l l  c o n s t i t -  
u e n t s   i n   t h e   b i a s  tests. 

It i s  a l s o   p o s s i b l e   t h a t   t h e  amount  of b ias   re inforcement  w a s  i n s u f f i c i e n t  
t o   p r o v i d e   s i g n i f i c a n t   b i a s   s t r e n g t h .  The  voiume  and s t i f f n e s s   r a t i o s  of 
b i a s - p l y   y a r n s   t o   t h e  MD and TD ya rns  are i n d i c a t e d  below: 

Volume S t i f f n e s s  
Material Rat i o  R a t  i o  

Code (Bias/MD and TD) (Bias/MD and TD) 

2c 
4c 
5a 
5b 
6b 
6c 

0.1.9 
0.19 
0.36 
0.42 
0.42 
0.13 

0.19 
0.19 
0.36 
0.04 
0.04 
0.13 

The bias-yarn materials, 2c,  4c,  and 612, have a b i a s   s t i f f n e s s  less than  
20 percent   of   the  MD and TD yarns  which would i n d i c a t e  a low degree of i so-  
t ropy.  The c o n t r o l ,   5 a ,   h a s   t h e   h i g h e s t   s t i f f n e s s   r a t i o   b e c a u s e  of t he   h igh  
volume r a t i o  and i d e n t i c a l  elastic moduli. Materials 5b and 6b show t h e  
l o w e s t   s t i f f n e s s   r a t i o s ,  a r e s u l t  of t h e   d i f f e r e n c e   i n  e las t ic  moduli of 
Dacron  and Kevlar. Although 6b has  a low s t i f f n e s s   r a t i o ,  it shows t h e   b e s t  
co ld   t empera ture   i so t ropy .   This   sugges ts   tha t   the   b ias   s t rength  comes from 
the   non-b ia s   cons t i t uen t s   because   o f   e f f i c i en t   l oad   t r ans fe r   t o  MD and TD 
yarns  when loaded on t h e   b i a s .  More c o n s i s t e n t   r e s u l t s  and b e t t e r   i s o t r o p y  
c o u l d   r e s u l t  from i n c r e a s i n g   t h e   b i a s - s t i f f n e s s   r a t i o  by s u b s t i t u t i o n  of 
Kevlar b i a s   c l o t h   f o r  Dacron. 

Strongest material. - Of a l l  t h e  materials t e s t e d ,  6b showed t h e   b e s t  
s t r e n g t h  and i so t ropy .   Th i s  material is similar to   5b ,   having  a Hypalon 
outer   surface,   polyurethane  and  Neoprene  gas   layers ,  a Dacron b i a s   f a b r i c ,  
a Kevlar b a s e   f a b r i c  and  an  adhesive wash c o a t   o n   t h e   f a b r i c .  The Kevlar 
f a b r i c  is repos i t i oned  from t h e   o u t e r   l a y e r   i n  5b t o   n e a r   t h e   c e n t e r p l a n e  
i n  6b. The improved  diagonal  performance  of 6b is a t t r i b u t e d   t o  more  uniform 
and symmetric loading  when near ly   equal   amounts   o f   o ther   cons t i tuents  are 
loca ted   on   bo th   s ides   o f   the  Kevlar. This  arrangement,  however, may reduce 
t h e   s p l i c e  and seam s t r e n g t h   o b t a i n a b l e ,  compared to   compos i t e s   w i th   t he  
s t r u c t u r a l   f a b r i c   n e a r   o n e   s u r f a c e .  

I n  compar ing   t he   t ens i l e   da t a  of TABLE 4 and  Figures  17  and 18, n o t e   t h a t  
the  higher   performance  of   the 5- and  6-ser ies  materials compared w i t h   t h e  1-, 
2-, 3-, and 4-series materials does  not   hold  on a s t rength- to-weight   basis .  
The 1- throu  h 4-ser ies  materials are l igh twe igh t   l amina te s   r ang ing   i n   we igh t  
from  1.9 N/m 5 t o  2.7 N/m2 (13 oz /yd2   to   8 .2   oz /yd2) .  The 5- through  6-ser ies  
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coated materials are 
2.9 N/m2 t o   4 . 3  N/m2 
material weighed  2.5 
4 N/m2 (12  oz/yd2). 

heav ie r ,  as w e l l  as s t ronge r ,   r ang ing   i n   we igh t   f rom 
(8.7 oz /yd2   to   13   oz /yd2) .  The lamina ted   cont ro l  
N/m2 (7.6  oz/yd2) , and the   coa ted   con t ro l  material, 

Further  improvements in   s t rength- to-weight   performance of t h e  6b material, 
based   on   cons idera t ion   of   i so t ropic   s t rength   a lone ,  may r e s u l t  from  replace- 
ment of   the   Dacron   b ias   fabr ic   wi th  a l i g h t e r  Kevlar f a b r i c   o r   s u b s t i t u t i o n  
of a t r i a x i a l  Kevlar ply  (References 8 and 9) f o r   b o t h   f a b r i c s   c u r r e n t l y   u s e d .  
Considerat ion  of   handle   character is t ics   and crease degrada t ion  may i n d i c a t e  
q u i t e   d i f f e r e n t   m o d i f i c a t i o n s  . 

The s t rong  inf luence  of   low  temperature  on adhes ive   s t r eng th  and r i g i d i t y  
and the   cons i s t en t   ev idence  of bond f a i l u r e   i n d i c a t e   t h a t   b e t t e r   a d h e s i v e s  
could   s ign i f icant ly   improve   the  Kevlar composi te   s t rength.   This  is f u r t h e r  
j u s t i f i c a t i o n   f o r   t h e   t y p e  of r e sea rch   desc r ibed   i n   Re fe rence   6 .  

Peel Test  Data 

Pee l  test r e s u l t s  are summarized i n  TABLE 6.   Peel   values  were gene ra l ly  
found  adequate ,   based   on   convent iona l   s tandards   for   in f la tab le   s t ruc tures ,  
except  for  6c  where low pee l   va lues  were ob ta ined   fo r   t he   u re thane   t o   Kev la r  
and Kevlar b i a s   y a r n   t o  Kevlar f a b r i c  bonds.  The  low peel   s t rength  between 
the  Kevlar   yarns  and f a b r i c  is  n o t   s u r p r i s i n g   s i n c e   t h e s e  were bonded wi th  
a ve ry   l i gh t   coa t   o f   adhes ive .  The  low p e e l   s t r e n g t h  of t he   u re thane  t o  t h e  
f a b r i c  may ind ica t e   t he   p re sence  of a n   i n c o m p a t i b l e   f a b r i c   f i n i s h   o r   r e s i d u a l  
l u b r i c a n t s  from the   weaving   process .   In   an t ic ipa t ion  of such   condi t ions ,  a l l  
f a b r i c s  w e r e  wash coated  with  adhesive  before   fur ther   assembly.  It is pos- 
s i b l e   t h a t   t h e  wash coa t ing  w a s  i n s u f f i c i e n t  on t h i s   p a r t i c u l a r   s a m p l e ,   s i n c e  
the  poor  adhesion w a s  l oca l i zed .   Th i s  w a s  no t   r ep resen ta t ive   o f   t he   o the r  
coated materials. Normal p e e l  v a l u e s   f o r   e l a s t o m e r i c   c o a t i n g s   a p p l i e d   t o  
fabr ics   range  f rom 900 t o  1200 N / m  (5 t o  7 l b / in . ) .   Unfo r tuna te ly ,  l i t t l e  
pee l  test d a t a  were ob ta ined   fo r   t he   coa ted  materials because of a shor t age  
of materials, precluding  completion of t h e   o r i g i n a l  test p lan .   S t rength  
tests were judged  more  important  to  this  study,  and  peel tests were conducted 
a f t e r   o t h e r   t e s t i n g  w a s  completed  with  the  remaining material. The i n a b i l i t y  
t o   i n s e r t   p l y   s e p a r a t o r s  when f a b r i c s  were coa ted   compl ica ted   the   t es t ing .  
Pee l  w a s  i n i t i a t e d   f o r   t h e   m a j o r i t y  of the  specimens by c u t t i n g   w i t h  a r azo r  
blade.  An at tempt  w a s  made t o   s e p a r a t e   t h e   p l y s   w i t h   s o l v e n t s ,   b u t   t h e  
so lven t s   deg raded   t he   coa t ing   s t r eng th   t o   t he   ex t en t   t ha t   t he   pee l ing   cou ld  
no t   be   sus t a ined   w i thou t   t ea r ing   t he   coa t ings .  
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TABLE 6 .   Pee l  Test Resu l t s  

Material 
Code 

l a  

l b  

2b 

2c 

3b 

4c 

5a 

5b 

6b 

6c 

In t e r f ace   Tes t ed*  

Dacron x Mylar 

Mylar x Tedlar  

Mylar x Mylar 

Mylar x Kevlar 

Mylar x Mylar 

Tedlar  x Mylar 

Kevlar x Mylar 

Tedlar  x Mylar 

Mylar x FTL Bias 

Tedlar  x Kevlar 

Kevlar x Mylar 

Mylar x Mylar 

Tedlar  x Saran 

Saran x Hyt re l  

Hy t re l  x FTL Bias 

Neoprene x Dacron 

** 
Neoprene x Dacron 

Urethane x Kevlar 

Kevlar x FTL Bias 

___ 

770 

424 

361 

945 

452' 

396 

858 

434 

750 

784 

1170 

518 

546 

308 

1292 

1050 

1357 

126 

402 
~~ 

~~ " "" -~ ~ ~~ 

Pee l   S t r eng th  
N/m ( lb / in . )  

~ 

- ." ____ 

Coef f i c i en t  
o f   Var i a t ion  

-~ "" ~ .~i_ 

0.124 

0.103 

0.060 

0.041 

0.141 

0.074 

0.046 

0.060 

0.132 

0.111 

0.363 

0.444 

0.414 

0.187 

0.254 

0.48 

0.046 

0.207 

0.204 

* A l l  i n t e r f a c e   s u r f a c e s   a t t e m p t e d  are i n d i c a t e d   i n   F i g u r e  2. 
**NO p e e l  data because   o f   i n su f f i c i en t   s ample  material. 
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Durabi 1 i ty  Test  Results 

Test  data  for  crease  effects,  tear  strength  and  puncture  resistance 
relate  to  performance  of  the  ten  custom  materials  under  handling,  packing 
and  wear  in  service. 

Crease tests.  - Data  from  crease  .testing  are  provided  in  TABLE  7  and 
Figures  23  and  24.  Comparative  coupon  strength  data  are  given  for  uncreased 
and  creased  specimens.  Coefficients  of  variation  are  given  to  show  the 
consistency  of  results.  The  Kevlar  laminates,  lb,  2b,  2b,  3b,  and  4a, 
exhibited  high  sensitivity  to  creasing,  showing  strength  losses  in  the 
range  of  33  to  59  percent.  The  Kevlar  laminate  with  the  least  crease 
degradation  was  material  2b. The Kevlar  laminates  ranked  in  order of 
decreasing  performance  are  2b,  4b,  2c,  lb,  and  3b.  Materials  2c  and  4c 
were  nearly  identical  in  crease  degradation.  These  materials  are  very 
similar  execpt  that  the  higher  modulus  Mylar  film  in  2c  is  replaced  by 
a  bi-laminate  of  lower  modulus  Saran  and  Hytrel  film  in  4c.  The  results 
indicate  that  the  reconfiguration  had  little  beneficial  effect  on  crease 
sensitivity.  Both  2c  and  4c  have  Kevlar  bias  yarns. If these  two 
materials  are  treated as exceptions,  then  the  crease  performance  may  be 
said  to,  vary  inversely  with  laminate  thickness.  Materials  2b,  2c,  and  4c 
were  all  designed to reduce  membrane  stiffness.  Compared  with  the  other 
Kevlar.laminates,  a  small  improvement  was  obtained,  Figure  23. 

TABLE  7. - Crease  Test  Results 

Material 
Code 

. - 

la 
lb 
2b 
2c 
3b 
4c 
5a 
5b 
6b 
6c 

~~ 

" __- 

Control 

Break  Strength 

N/M  (lb/in.) 

4.24  x  lo4  (242) 

~ . . .  ~ . 

5.49 

5.55 
2.92 
5.87 
5.45 
3.72 
6.64 
6.52 

5.71 
" ~ 

X 1)04 (326) 
- . .. 

c.v.* 

0.053 
0.066 

0.121 
0.048 
0.029 

0.036 
0.022 
0.042 
0.053 
0.085 

- .  

Creased 

Break  Strength 

N/n (lb/in.) C.V." 
~~~ 

3.94 x lo4 (225) 0.070 

3.04 (173) 0.144 
3.72 
3.38 

(212)  0.075 

(138)  0.130 2.42 
(193) 0.084 

4 

3.33 

(202)  0.025 3.54 
(190)  0.072 

6.02 

6.37 1 

(344)  0.058 

5.24 x 10 (299)  0.134 
(364) 0.118 

I 4  
~- ". 

Percent 

7 
45 
33 
40 
59 
39 
5 
9 
2 
8 

*Coefficient  of  variation. 
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Figure  23.  Comparison of Crease  Performance 

Materials  lb  and  3b  exhibited  the  worst  crease  performance.  Apparently, 
high  modulus  film  plys  along  with  the  Kevlar  fabric,  produce an undesirable 
laminar  geometry.  The  failure  to  obtain  the  anticipated  improvements  from 
materials  2c  to  4c  is  consistent  with  this  conjecture. At the  beginning 
of  this  study  it  was  believed  that  both  crease  performance  and  handle 
characteristics  could  be  improved  by  relocating  the  structural  fahric 
nearer  to  the  mid-plane  of  the  laminate  and  by  using  more  elastomeric  gas 
membranes  such  as  Hytrela  (4c).'  For  the  laminates,  relocation  of  the 
Kevlar  to  the  mid-plane  was  accomplished  in  lb,  2b,  and  3b. A slight 
improvement  in  handle  did  result  from  this  change.  However,  crease 
performance  reduced  rather  than  improved.  This  might  be  attributed  to 
an  unproductive  exchange  in  position  of  two  plys  having  similar  section 
moduli. 

The  coated  materials  (5a,  5b, 6b, and  6c)  show  marked  improvements 
over  the  laminates  in  crease  performance.  This  is  clearly  evident  from 
the  strength-loss  column  of  TABLE 7 and  Figure  23.  The  coated  Kevlar 
material, 6b, even  showed  improvement  over  its  Dacron-coated  control,  5a. 
The 6b material  is  identical  with  5b  except  for  the  repositioned  Kevlar 
fabric.  Relocation of the  Kevlar  was  clearly  a  favorable  change,  reducing 
the  9-percent loss for  5b  to a low of 2  percent  for 6b. Material 6b has 

.Registered  tradename  of E . I .  DuPont  de  Nemours,  Inc. 
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a  low  sensitivity  to  crease,  although  the  factors  responsible  for  this 
characteristic  are  not  entirely  clear. 

Further  investigation  into  the  nature  of  crease  degradation  in  Kevlar 
laminates  and  coated  fabrications  would  be  beneficial.  Some  related  basic 
research  has  been  reported  in  the  development  of  FTM  5102.  High  twist 
levels  in  Kevlar  yarns  were  found  to  degrade  strength  as  much  as  32  percent. 
Bending  was  fourid  to  be  a  secondary  effect.  Strength  degradation  under 
combined  tension,  bending,  and  transverse  compression  was  greater  than  the 
sum of  the  individual  degradations.  The  most  significant  of  these  factors 
is the  transverse  compression  (load  applied  normal  to  filaments).  For 
example,  a  strength  loss  of 25 percent  was  found  for  a  compressive  loading 
of 193  N/cm (100 lb/in.) 

Since  laminate  yarns  are  more  highly  constrained  because  of  the  rigidity 
of the  membrane  materials  to  which  the  yarns  are  bonded,  it  is  possible  that 
high  transverse  compression  occurs  in  creased  laminates.  Transverse  com- 
pression  for  coated-Kevlar  materials  might  be  substantially  less  than  for 
laminates  since  yarns  are  imbedded  in  a  more  elastic  matrix.  It  is  also 
reasonable  to  expect  a  reduction  in  transverse  compression  for  laminates 
which  contain  more  elastic  membranes. 

Strength-to-weight  ratio  is  perhaps  the  most  significant  figure  of 
merit  for  materials  used  in  inflatable  structures.  This  parameter  is  shown 
in  Figure  24  for  all  of thematerials, before  and  after  creasing.  In  the 
absence  of  severe  creasing,  Kevlar  laminates  offer  superior  strength-to- 
weight  performance  compared  to  coated  Kevlar  materials.  When  hard  creasing 
occurs,  the  severe  degradation  of  the  laminates  and  the  mild  degradation  of 
the  coated  materials  tend  to  equalize  the  strength-to-weight  performance  of 
the  two  types  of  materials.  Figure  24  indicates  that  after  crease  degrada- 
tion  the  Kevlar  laminates  (lb , 2b,  2c , 3b,  and  4c)  are  comparable  to  the 
Dacron  laminate  control  and  to  the  creased,  coated  Kevlar  materials.  It 
is  noteworthy  that  coated  materials  are  competitive  with  laminates  only 
if  they  are  fabricated  of  Kevlar.  For  example,  the  coated  Kevlar-49 
materials  exhibit  about  twice  the  strength-to-weight  ratio  of  the  coated 
Dacron  material,  even  after  crease  degradation. 

The  characteristic  lower  strength-to-weight  ratio  of  uncreased  coated 
materials  compared  to  the  uncreased  laminates  is  a  direct  result  of  the 
coating  weight  required  to  achieve  gas  permeability  equivalent  to  the 
membrane  constituent  used  in  the  laminates.  For  applications  not  requiring 
low  permeability,  coated  Kevlar  composites  of  higher  strength  to  weight 
appear  feasible.  Research  devoted  to  reducing  permeability  of  coated 
materials  per  unit  weight  would  be  beneficial  and  rewarding. 

Trapezoidal-tear tests. - Trapezoidal-tear  results  are  summarized  in 
TABLE 8 and  are  presented  graphically  in  Figure 25. 

The Dacrm control  materials  exhibited  the  best  tear  resistance. 
Since  tearing  propagates  by  progressive  fracture  of  individual  yarns, 
open-weave  fabrics of high  denier  yarn  have  a  greater  tear  resistance 
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t h a n   t i g h t l y  woven f a b r i c s  of small denier  yarns. .  The presence  of   bias   yarns  
t e n d s   t o  raise t h e   r e q u i r e d   t e a r i n g   f o r c e .   T h i s   c a n   b e   s e e n   i n   F i g u r e  25 by 
comparing materials having a b a s e   f a b r i c  and a ' b i a s   p l y   w i t h  materials having 
s i n g l e   f a b r i c  ("c" series materials have   the  Kevlar b i a s   y a r n s ) .  

...... ...... ...... ...... ...... ...... ...... ....... ...... ....... ....... ...... 

...... ...... n ...... ....... ...... ....... ...... ....... ...... ....... ....... ...... ....... ...... ...... . . . . . . .  ...... ....... ...... ...... ...... ....... ...... ...... ...... ..... ...... 
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Materi a1 Code 
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Figure  25. Tear Resistance  of Test Materials 
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TABLE 8.  Trapezoidal  Tear I 

Material 
Code 

la 

lb 

2b 

2c 

3b 

4c 

5a 

5b 

6b 
6c 

Tear  Force 
N (1b) 

109 (24.5) 
30 (6.7) 
27 (6.1) 
116 (26.2) 

26  (5.7) 

148 *33.4) 
224  (50.4) 

165  (37 .I) 
85  (19.2) 

143  (32.1) 

lesults 

Coefficient 
of  Variation 

0.200 

0.142 

0.147 

0.176 

0.023 

0.219 

0.236 

0.041 
0.068 

0.065 

Puncture resistance  tests. 
machine-direction  specimens  of  the  test  materials  is  given  in  TABLE  9. 

- The  average  force  required to 

TABLE  9. - Puncture  Test  Results 

Material 
Code 

la 

lb 

2b 

2c 

3b 

4c 
5a 

5b 

6b 

6c 

Puncture.  Force 
N (1b) 

211  (47.4) 

14  3  (32.2) 

143  (32.2) 

133  (30.0) 
168  (37.8) 

125  (28.2) 
202  (45.4) 

209  (47.0) 
22  7 (51.0) 

278  (62.6) 

Coefficient 
of  Variation 

0.179 

0.314 

0.470 

0.125 

0.318 

0.149 
0.110 
0.034 
0.342 

0.218 

puncture 
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To relate  puncture  resistance  and  material  configuration, a linear,  multiple 
regression  analysis  was  performed  for  six  variables: 

Variable 
Correlation 
Coefficient. 

Material  thickness  0.707 
Membrane  or  coating  thickness  0.706 
Membrane or  coating  strength  0.749 
Yarn  strength  (fabric  strength/yarn  count)  0.343 
Yarns  per’  unit  length  (yarn  count)  0.437 
Fabric  stiffness,  Et  (force/unit  length)  0.261 

While  puncture  strength  appears  most  highly  related  to  membrane o r  
coating  strength,  the  true  relationship  is  probably  nonlinear  and  much  more 
complex  than  assumed  for  this  analysis.  The  relationship  appeared  to  differ 
between  coated  and  laminated  materials, so the  analysis  was  repeated, 
treating  the  two  material  types  independently.  Puncture  resistance  of 
laminated  materials  was  then  found  to  vary  inveresely  with  fabric  stiffness 
(correlation  coefficient  of  -0.985).  This  indicates  that  puncture  resistance 
may  be  significnatly  influenced  by  the  laminar  configuration of a composite. 

Handle Characterization Data 

Results  of  handle  measurements  were  supplied  by  NASA  Langley  Research 
center  for  the  ten  research  materials,  Reference 5, and are  given  in 
Figures  26  and  27.  Improvement  of  the  handle of Kevlar  composites  was a 
prime  objective  of  this  study. 

Figure  26,  reprinted  from  Reference 5, is-included  as  background  to 
indicate  the  value  of  the  handle  parameter, H / H  of  many  conventional 
materials.  All of the  handle  moduli H are  ratioed  to  the  reference  modulus 
B = 2 .L7  N/cm2  (3.15  lb/in.2)  of  the  widely  available  and  well  defined  nylon 
parachute  cloth,  MIL-C-7020F,  Type 1 (Reference 10). Note  the  three  order- 
of-magnitude  range  in HE denoting  how  readily a material  can  be  creased, 
folded,  packaged  and  draped  over  compound  curves.  Only  four  of  the  research 
materials  (la,  lb,  5b,  and 6b) are  shown  in  Figure  26.  Material  5b  appears 
once  for  the  hand-fabricated  material  of  this  contract,  and  once  for  the 
production-scale  material  developed  under  contract  NASL-11694.  The lb 
material  shown  in  Figure  26 !H/p = 102)  was  also  manufactured on full-scale 
processing  equipment.  Its  hand-produced  equivalent  has a H/I = 106. Mate- 
rials  with H f H  ? 40 may  be  considered  difficult  to  fold,  crease,  and  flex, 
without  specialiy  engineered  processes  and  controls.  Materials  to  be  folded, 
packed,  and  deployed  should  have  lower  handle  ratios.  Developmgnt of a 
Kevlar  laminate  of  strength  similar  to  lb  through  4c  with  an H/H value 
below 40 would  be a highly  desirable  objective  for  further  research. 

In  Figure  27 theHDratios are  shown on a linear  scale  for  comparison. 
The  laminate  series  la  through  4c  all  have  inherently  high  handle  moduli. 
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(8) Sim'ilar  to (7 )  with  increasing  severity 
when  using  high  nodulus  Kevlar  fabrics. 
In ranges of 100 <H/Fi C300 are   cons idered  
foldable  and  flexible  only  under  limitations. 

(7 )  Moderate  to  severe  crease  damage  limiting 

. - .  

folding  and  creasing  to  specific  design  processes 
and  cri teria  and t o  several  packaging  cycles of 
low density.  Are  highly  resistant  to  compound 
curvatures  and  experience  damage  from 
orthogonal  (double)  folds  at  apecies. 

(6 )  Zero  to   mild  crease  damage  requir ing  control led 

and' degenerate  with  repeated  packaging,  are 
folding  and  light  creasing.  Resilient  and  bulky 

highly  resistant  to  compound  curvatures. 

( 5 )  Mild  to  appreciable  crease  memory,  foldable 

&- 

but  resilient,  resistant  to  compound  curvature, 
have no drapability,  and  few  repackageable  life 
cycles. 

(4 )  Zero  to  mild  crease  memory,  foldable,  
packageable,  with  limited  repackageability 
but resistant  to  compound  curvatures.  Have 
poor  drapabili ty,   are  generally of c r i s p  
texture  and  noisy  to  compound  folding.  Have 
high  strength-to-weight. 

(3)  Fibrous  materials,   range  from  t issues,  
absorbent  papers,  towels,  to  newspapers. 
Foldable  with  plastic  behavior,  have  crisp 
texture  and  are  noisy  to  compound  folding  at 
upper  ranges of H/W. 

( 2 )  Similar  to (1 )  but  with  wide  strength  range 
applicable  for  parachutes,  sails,  drapes, 
etc.  Packageable by presses   to   high densities.- 

(1)  Esthetic  materials,  amenable  to  compound 

foldable,  and  repackageable,  low  strength. - curvatures,   draping,  insensit ive  to  crease,  

CHARACTERISTICS 

Echo 11, 3 Ply 
Lam,  Kevlar  Cloth, G. T.S.  1 b (Mach) 

Kevlar  Scrim. on  Mylar 
3  Mil  Mylar 

Lam, .Dacron  Cloth, G. T.S. 1  a 
2 Mil  Mylar 

Newspaper 
13  Mil  Coated  Comp. G. T. S .  5 b 

Coated  Kevlar  Comp. G. T. S .  5 b  (Mach) 
13 Mil  Coated  Compos'ite G. T. S. 6 b 
1 / 3 Mil  Mvlar 
6 Mil  Vinal 

Al.  Dep. on Mylar  with  Scrim 
1  Mil  Capran 

Lam,  Mylar  with Nylon Cloth 

""_ H / n  = 40 

Al.  Dep. on Mylar  with  FTL 

1  Mil  Mylar  Film 

1.. 6 oe/yd2  Kevlar  Cloth 
2-1/4  Mil  Polyethylene 

Industrial  Wipers 
4 Mil  Nomex  Cloth 
1.9  oz/yd2  Dacron  Cloth 

NASA Tri-Cot  

Mil-C-7020F,  Type I, Nylon Cloth - 
(Ref.,  H = 2. 1 7  N/crn2) 

I .  5 oz/yd2  Dacron Cloth 
I Mil  Fiberglas 

Nylon  Hosiery 

Cheese  Cloth 

TY P I CAL  MATER I ALS 

Figure 26. Handle Comparisons 
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Compared w i t h   t h e  Dacron c o n t r o l   l a m i n a t e ,   t h e  Kevlar l a m i n a t e s   h a v e   i n f e r i o r  
handle   propert ies .   Laminate  3b i s  a r e c o n f i g u r a t i o n  of l b ,   p l a c i n g   t h e  Kevlar 
f a b r i c  near the   cen terp lane .   This   ach ieved   on ly  an 8 - p e r c e n t   r e d u c t i o n   i n  
handle  modulus  which is a t t r i b u t e d   t o   t h e   u n p r o d u c t i v e   e x c h a n g e   i n   p o s i t i o n  of 
p lys   having  similar sec t ion   modul i .  The  Mylar f i l m  is a n   e f f e c t i v e   g a s   b a r r i e r ,  
b u t   s i g n i f i c a n t l y   i n c r e a s e s   t h e   h a n d l e  modulus  of a l l  materials i n  which i t  is 
used. 

The coa ted .mater ia l s   ' (5a   th rough  6c)   have   cons iderably   be t te r   handle   than  
the   l amina te s  and t h e  same o r   be t t e r   hand le   t han   t he   coa ted  Dacron c o n t r o l .  
The exchange i n   p o s i t i o n   o f   t h e  Dacron  and Kevlar f a b r i c s   f r o m  5b t o  6b o f   t he  
figure  reduced  the  handle  modulus by 40 percent ,  as w e l l  as reduced crease 
s t r e n g t h   l o s s  from 9 t o  2 pe rcen t .   A l though   on ly   t r i v i a l   d i f f e rences  were 
o b s e r v e d   i n   t h e  MD t e n s i l e   s t r e n g t h ,  8- t o   1 9 - p e r c e n t   i n c r e a s e s   i n   t e n s i l e  
s t r e n g t h  were o b s e r v e d   i n   t h e   t r a n s v e r s e   d i r e c t i o n ,  15- t o   32 -pe rcen t   i nc reases  
in   t he   e l eva ted   t empera tu re   b i a s   s t r eng th ,   and  63- t o   9 6 - p e r c e n t   i n c r e a s e s   i n  
low t e m p e r a t u r e   b i a s   t e n s i l e   s t r e n g t h . w e r e   o b t a i n e d   f o r   6 b ,  compared t o  5b. 
The r econf igu ra t ion  w a s  designed  to  improve  handle  modulus,   but i t  r e s u l t e d   i n  
s ign i f i can t   a l l - a round   bene f i t s .  

Material 6 c   e x h i b i t s  a handle  modulus similar t o  6b. However, 6c  has  
Kevlar b i a s   ya rns   and   i n fe r io r   b i a s   s t r eng th ,  somewhat lower MD and TD 
t ens i l e   s t r eng th ,   and   abou t   fou r  times t h e   s t r e n g t h   l o s s   f r o m   c r e a s i n g  as 6b. 
The favorable  performance  of 6b suggests   that   mid-plane  locat ion  of   high 
s t r eng th ,   h igh  modulus cons t i t uen t s   y i e lds   t he   mos t   e f f i c i en t   compos i t e .  

None of   the  Kevlar   laminates   possessed a handle  as low as the  Dacron 
laminate ,   a l though  both  coated  Kevlar  materials (6b  and  6c) showed apprec iab le  
improvement o v e r   t h e i r  Dacron  counterpart .  Materials 6b  and 6c  were 
comparable in   hand le ,   and   t he   l owes t   o f   t he   t en  materials t e s t e d .  A l l  of 
the   coa ted  materials showed marked  improvement i n   h a n d l e   c h a r a c t e r i s t i c s  
over   the  laminates .  

The concept  of  handle  modulus  used  here  should  be  generally  useful 
f o r   e s t a b l i s h i n g   r a t i o n a l   d e s i g n   c r i t e r i a   f o r   f l e x i b l e   c o m p o s i t e  materials 
r equ i r ing   fo ld ing  and  handling. 

Material Weight  Data 

Material weights   and   th ickness   for   the  material conf igu ra t ions  of 
F igure  2 are p r e s e n t e d   i n  TABLE 10. 
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Material 
Code 

la 
lb 
2b 
2c 
3b 
4c 
5a 
5b 
6b 
6c 

. .  ~ " 

- .  . ~ - 

- 

TABLE 10. - Weight  and  Thickness of Test  Materials 
.~ .. .. 

Weight  per 
Ref erl 
N/mi 

.. .. 

2.73 
2.06 
1.86 
1.96 
1.92 
2.50 
4.32 
4.14 
4.14 
3.33 

- - - -. . - 

e 
I 
Ice  Area* 

2 
~~~ 

(OZIYd 1 
"~ . . -  

(8.20) 
(6.20) 

(5.91) 

(7.52) 
(13.00) 
(12.45) 
(12.45) 
(10.02) 

. (5.59) 

(5.77) 

. .. ~~ ~~ 

r Thickness** 

I-lm (mils) 
. "" 

272 

(13.8) 351 
(12.6) 321 
(14.0) 35  5 
(14.6) 372 
(11.4) 289 
(8.0) 202 
(9 0) 229 
(7.6) 194 
(7.7) 196 
(10.7) 

Variation 

0.030 
0.051 
0.027 
0.032 
0.053 
0.057 
0.016 
0.023 
0,010 
0.017 

* Weight  was  computed  as  the sum of  the  constituents  weights. 
**Thickness  was  determined  by  micrometer  measurement. 

Other Characteristics 

The  ten  materials  of  this  investigation  were  not  analyzed  for  creep  and 
relaxation  effects  or  thermal  and  electrical  characteristics  such  as 
absorptivity,  emissivity,  reflectivity,  transmissivity,  heat  capacity, 
conductivity,  dielectric  strength,  outgassing,  and  vapor  conductivity. 

CONCLUDING REMARKS 

Six  laminated  and  four  coated  composite  materials  were  designed,  fabri- 
cated  and  tested  to  investigate  the  effects  of  high  modulus,  high  strength 
Kevlar  fabric  and  yarn  reinforcements  when  used  in  place  of  Dacron.  Empha- 
sis  was  placed  on  acquiring  superior  strength  to  weight  along  with  acceptable 
peel  strength,  tear  resistance,  puncture  resistance  with  good  crease  perform- 
ance  and  improved  handle  characteristics. 

Materials  were  configured  to  determine  the  effects  of  relocating  the 
most  rigid  constituents  near  the  mid-plane,  of  replacing  high  modulus  film 
layers  with  more  elastic  film, and of  using  open  scrims  of  Kevlar  yarn  in 
place  of  bias  fabtics. 

The  fabrication  techniques  used  in  specimen  preparation  were  consistent 
with  conventional  production-scale  laminating  and  coating  processes. 

Because  this  was  a  preliminary  investigation  of  many  configurations  and 
was  limited  to  small  handmade  specimens,  strength  measurements  were  made  by 
uniaxial  tensile  tests.  These  provide  relative  or  comparative  data,  but 
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they  f a i l  t o   p r o p e r l y   i n v o l v e  a l l  o f   t h e   s t r u c t u r a l   c o n s t i t u e n t s  as i n  b i - ax ia i  
t e n s i l e   t e s t i n g .   S t a n d a r d  coupon t e n s i l e  tests were found  inadequate   for  
materials con ta in ing   d i agona l   f i be r   cons t i t uen t s   because  of the  high-length- 
to-width r a t i o  and f r ee   edges .   Th i s   e f f ec t ive ly   r educes   t he   spec imen ' s  test 
l eng th   caus ing   i nc reased   l oca l   s t r a ins   above   t he   ave rage   i nd ica t ed  strain, 
p o o r   t r a n s v e r s e   l o a d   d i s t r i b u t i o n ,   l o c a l  stresses h ighe r   t han   t he   ave rage  
stress, and l imi t ed   s t r eng th   con t r ibu t ions   f rom  d i agona l   r e in fo rcemen t s .  

Most o f   t he   da t a   i nd ica t ed   poor   s t r eng th   and   s t i f fnes s   i so t ropy  a t  room 
temperature ,   a l though some improvement was noted a t  cold  temperatures .  The 
materials wi th   no   b ias   re inforcement  were p a r t i c u l a r l y   a n i s o t r o p i c .  The 
materials having Kevlar scrim b ias   r e in fo rcemen t s   appea red   weake r   i n   t he .b i a s  
d i r e c t i o n   t h a n  similar materials without   bias   re inforcement   which is a t t r i b -  
u t e d   t o   t h e   s i m i l a r i t y   i n   b i a s   y a r n   s p a c i n g  and test specimen  width.  The 
laminate   employing  Hytrel   f i lm  in   place  of   Mylar   exhibi ted a comparative 
s t r eng th   l o s s   and   i nc reased   an i so t ropy  as a r e s u l t  of t h e   s u b s t i t u t i o n .  
Because  of  the  inadequacy of t h e  coupon t e s t  t o   p r o p e r l y   l o a d  materials wi th  
d iagonal   cons t i tuents ,   the   an iso t ropy   observed  may no t   be   r ep resen ta t ive .  

The e f f e c t  of  temperature on stress and s t r a i n  w a s  found to   va ry   w ide ly  
but   cons is ten t ly   wi th   type   o f   spec imen,  material, and f a b r i c a t i o n   d e t a i l s .  
Two d i s t i n c t l y   d i f f e r e n t   s t r u c t u r a l  mechanisms were invo lved .   fo r   b i a s -  
d i r e c t i o n   t e s t i n g  and f o r  MD o r  TD d i r e c t i o n   t e s t i n g .  A s t rong   tempera ture  
e f f e c t  was produced  by two thermomechanica l   phase   t rans i t ions   in   the   adhes ive  
wi th in   the   range   of  tes t  temperatures .  The b i a s   d i r e c t i o n ,   s t r e n g t h ,  and 
e longat ion   change   a f te r  a temperature  drop  from 22OC t o  -51°C is o p p o s i t e   t o  
the   change   for   the  MD and TD d i r e c t i o n  tests. I n   t h e   b i a s - d i r e c t i o n  tests 
e longat ion  is  reduced  with  temperature  which is a t t r i b u t e d   t o   t h e   o r d e r   o f  
m a g n i t u d e   i n c r e a s e   i n   s t i f f n e s s  of t he   adhes ive   a long   w i th   modera t e   s t i f fnes s  
inc reases  of t h e   o t h e r   c o n s t i t u e n t s .  The adhesive  phase  changes a t  low t e m -  
perature   produce a more r i g i d   f i b e r   m a t r i x  and   enhance   t he   s t i f fnes s   con t r i -  
bu t ion  of diagonal   e lements   not   otherwise  involved  because  of   the  narrow 
specimen  width  and  free  edges  of  coupon  specimens. 

The b i a s - d i r e c t i o n   s t r e n g t h  w a s  e i t h e r  unchanged o r   i nc reased  by t h e  
temperature   reduct ion.  B i a s  s t rength   depends   on   the   s t rength   cont r ibu t ion  
from  diagonal  elements  and  the  degree of matrix embri t t lement   which  increases  
s e n s i t i v i t y   t o   f a i l u r e   f r o m   l o c a l  stress concentrat ions.   Compatibi l i ty   of  
bond s h e a r   s t r e n g t h   w i t h   y a r n   t e n s i l e   s t r e n g t h ,   u s e  of Kevlar i n   p l a c e  of 
Dacron ,   the   p resence   o r   absence   o f   b ias   re inforcements ,  and the   spac ing  of 
b i a s   r e i n f o r c e m e n t   f i b e r s   a l s o   h a v e   s i g n i f i c a n t   e f f e c t s   o n   b i a s   s t r e n g t h .  

For MD and TD d i r e c t i o n   t e n s i l e  tests, t h e   c h a n g e   i n   f a i l u r e   s t r a i n   w i t h  
tempera ture   reduct ion  i s  a t t r i b u t e d   t o   p r o g r e s s i v e  bond f a i l u r e s .   F o r   t h e s e  
tests, d i a g o n a l   f i b e r s  were Dacron  and  not  Kevlar, so  a d h e s i v e   s t i f f e n i n g  a t  
low temperatures  had a smaller e f f e c t  on s t r e n g t h .  MD o r  TD d i r e c t i o n   y a r n s  
were l o a d e d   d i r e c t l y  by the   g r ip s   w i thou t   s ign i f i can t   l oad   t r ans fe r   t h rough  
the   adhes ive .  MD and TD break   e longat ions  were i n   e x c e s s  of t he   cha rac t e r -  
i s t i c  Kevlar f a i l u r e   s t r a i n ,   s u g g e s t i n g   t h a t   p r o g r e s s i v e  bond f a i l u r e   o c c u r s .  
There w a s  ev idence   t ha t   t he   adhes ive  bond t o  Kevlar y a r n s   i s . c o n s i d e r a b l y  
less t h a n   a v a i l a b l e   f i b e r   t e n s i l e   s t r e n g t h .  
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The  Dacron  laminate  exhfbited  a  greater  increase  in MD and  TD  direction 
strength  and  strain  with  temp.erature  drop  than  the  Kevlar  laminates. This 
is  attributed  to  the  better  match  of  bond  shear  strength  and  Dacron  tensile 
strength.  For  materials  with  both  bias  fabric  and MD and  TD  fabric  reinforce- 
ment,  the  differences  at  -51°C  between  bias  and MD or  TD  direction  test  data 
are  less  since  all  specimens  have  d,iagonal  elements  for  all  test  directions. 
The  test  direction  showing  greatest  sensitivity  to  temperature  was  the  one 
where  the  heaviest  Kevlar  fabric  ply  was  diagonally  oriented  to  the  load. 
This  effect  was  not  apparent  for  materials  having  Kevlar  bias  yarn  reinforce- 
ment  which  may  be  attributed  to  the  test  method  deficiency  noted  above  or  to 
an  insufficient  amount  of  bias  reinforcement. 

The  effect  of  material  configuration  on  tear  resistance  was  the  same  for 
Kevlar  and  Dacron  materials.  Open  weaves  of  high  densier yams have  greater 
tear  resistance  than  tightly  woven  fabrics  with  small  denier  yarns.  This 
feature  permits  the  designer.  to  alter  tear  strength  without  affecting  tensile 
strength. 

Puncture  resistance  of  the  materials  under  tension  was  found  to  be 
inversely  related  to  fabric  stiffness for the  laminates  and  inversely  related 
to  coating  thickness  for  the  coated  materials. 

Creasing  of  Kevlar  laminates  reduced  the  strength-to-weight  ratio 
considerably.  Strength loss after  creasing  was  comparatively  small  for  the 
coated'Kevlar  materials. The strength-to-weight  ratio of laminated  and 
coated  Kevlar  materials  were  similar  after  creasing. 

After  creasing,  the  strength-to-weight  ratios of Kevlar  laminates  were 
generally  less  than  that of Dacron  laminates,  but  coated  Kevlar  materials 
retained  about  twice  the  strength  to  weight  of  coated  Dacron  samples. 

The  material  showing  the  least  strength  loss  from  creasing  was  the  coated 
Kevlar  material (6b) with  the  Kevlar  fabric  located  near  the  mid-plane. 

Material  handle  measurements  were  provied  by NASA Langley  Research 
Center  using  a  method  proposed  by  the  government  monitors. A handle  modulus 
was  defined  that  is  potentially  useful  for  ranking  laminar  materials  for 
applications  where  material  drape,  repeated  high  density  packing,  and  strength 
degradation  from  creasing,  are  important. 

Results  reported  in  this  paper,  based  on  coupon  tensile  tests  and 
limited  laboratory-scale  material  specimens  may be misleading.  More  con- 
clusive  measurements  would  require  material  specimens  made  on  production- 
scale  equipment,  and  biaxially  tested  in  a  cylinder  configuration. 
Investigations  conducted  under  this  contract  have  considerable  value, 
however,  as  a  precursor to more  sophisticated  research  and  were  one  to  two 
orders  of  magnitude  less  in  scope  and  cost  than  a  comprehensive  and  thorough 
inves t iga t ion. 

57 



m e  following  effects  observed  during  this  effort  should be considered 
in  any  future  development: 

1. Locating  constituents  with  high  strength  and  modulus  near  the 
mid-plane  increases  composite  strength,  improves  strength 
retained  after  creasing  and  is  significant in reducing  the 
handle  modulus. 

2. 

3. 

4 .  

5. 

6 .  

7. 

8 .  

9. 

10. 

11. 

High  tensile  modulus  films  increase  crease  sensitivity  and 
degrade  handle  and  should  be  avoided  whenever  gas  permeability 
considerations  are  secondary. 

Use  of  more  elastic  films  in  place of high  modulus  films 
lowers  crease  sensitivity  and  improves  handle. 

Tear  strength  is  increased  'for  open  weaves  and  large  denier 
yarns  and  decreased  for  tight  weaves  and  small  denier yams 
of  the  same  tensile  strength. 

A fabric  bias  reinforcement  or  a  triaxial  fabric  appear  to  be 
superior  to  an  open  scrim  bias  reinforcement. 

Puncture  resistance  in  laminates  is  inversely  related  to 
fabric  stiffness  and  inversely  related  to  coating  thickness 
for  coated  materials. 

Coated  Kevlar  materials  with  increased  strength-to-weight 
performances  are  feasible  in  applications  where  gas 
permeability  is  not  an  important  consideration. 

Kevlar  laminates  provide  superior  strength-to-weight 
characteristics  in  applications  where  creasing  and  packaging 
can  be  minimized. 

In  applications  where  lightweight  and  good  handle  are  impor- 
tant,  Hypalon  coating  is  to  be  preferred  to  Tedlar  film  as  a 
W barrier  because  of  its  lower  stiffness  and  lower  density. 

The  coated  material (6b) with  Kevlar  fabric  at  mid-plane  dis- 
played  the  best  distribution  of  reinforcement  elements  and 
strength  isotropy,  low  crease  degradation,  the  lowest  handle 
modulus,  good  strength-to-weight  properties  and  acceptable 
tear  and  puncture  performance.  Additional  development  of  this 
material  would  be  of  considerable  value  in  promoting  the 
objectives  of  this  investigation. 

The  strength  and  elastic  properties  of  laminates  and  coated 
composites  are  subject  to  near  discontinuous  changes  with 
temperature  where  constituents  undergo  thermomechanical  phase 
changes  within  the  service  temperature  range.  Test  data 
points  should  be  adequately  spaced t o  define  such  changes. 
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12.  More  rigid  adhesives  and  film  constituents  improve  the 
integration  of  fiber  components  in  composites  and  generally 
reduce  strain.  However,  the  associated  reduction  in  ductility 
of the  matrix  constituents  increases  sensitivity  to  local 
stress  concentrations  and  reduces  average  composite  strength. 

13. The  performance  of  composites  is  strongly  influenced  by  the 
strength  and  ductility of.the adhesive.  Shear  strength  of 
the  adhesive  used  (Sheldahl  A-102  resin)  was  well  matched  to 
Dacron  tensile  properties  but  bond  strength  to  Kevlar  was 
considerably  less  than  the  filament  strength.  Further  adhesive 
research  is.  essential  to  increase  fiber  bond  strength  and  to 
reduce  the  phase  transition  temperature  below  the  service  temperature 
range,  if  the  potential  advantages  of  Kevlar  yarns  are  to  be 
fully  realized. 

14. For  a  maximum  return  on  research  expenditures,  a  more  sophisti- 
cated  test  program  should  yield  the  usual  research  data, 
carefully  analyzed  failure  modes  and  failure  sequences , 
photographic  records  of  progressive  deformations  and  terminal 
failures,  transverse  strain  characteristics,  measurement of 
out-of-plane  deformation  and of diagonal  or  axial  tension 
fields,  checks on-grip slippage  and  grip  uniformity,  observa- 
tion  of  local  filament  bond  failures,  evidence of relaxation, 
and  thorough  records  of  photogrametric  details  such  as  camera 
coordinates  and  lens  properties.  Data  on  individual  con- 
stituents  such  as  stress-strain  information,  tensile,  peel 
and  shear  strengths,  creep  and  relaxation  rates,  and  thermo- 
mechanical  spectra  should  also  be  acquired. 
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