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SUBSONIC AND SUPERSONIC LONGITUDINAL STABILITY AND CONTROL 


CHARACTERISTICS OF AN AFT-TAIL FIGHTER CONFIGURATION WITH 

CAMBERED AND UNCAMBERED WINGS AND CAMBERED FUSELAGE 


Samuel M. Dollyhigh 

Langley Research Center 


SUMMARY 


An investigation has been conducted over a Mach number range from 0.50 to 
2.16 to determine the longitudinal aerodynamics of a fighter airplane concept.
The configuration incorporates a cambered fuselage with a single external-
compression horizontal-ramp inlet, a clipped arrow wing, twin horizontal tails, 
and a single vertical tail. The wing camber surface was optimized in drag due 
to lift and was designed to be self-trimming at Mach 1.40 and at a lift coeffi
cient of 0.20. The fuselage was cambered to preserve the design wing loadings 
on the part of the theoretical wing enclosed by the fuselage. An uncambered or 
flat wing of the same planform and thickness ratio distribution was also tested. 

The results indicate that the configuration possessed linear pitching-
moment characteristics over the test Mach number and angle-of-attack ranges, 
except for a tendency to pitch down at subsonic Mach numbers when the flow over 
the wing separated at the higher angles of attack. The horizontal-tail control 
effectiveness was found to be adequate over the test Mach number range. The 
configuration with the supersonic cambered wing had much better drag polar char
acteristics at subsonic and transonic Mach numbers, and the drag polar character
istics at supersonic Mach numbers were only slightly better than those for the 
configuration with the flat wing. Most of the supersonic benefits expected from 
optimizing the wing camber for minimum drag due to lift and trim were apparently
achieved by cambering the fuselage to preserve the design wing loadings on the 
part of the theoretical wing enclosed by the fuselage. The shape of the trimmed 
drag polar and the tail deflection necessary to trim at Mach 1.47, 1.80,and 
2.16 are fairly accurately predicted by current supersonic theoretical methods. 
However, the theoretical methods underpredicted the experimentally realized drag
level. The difference is primarily attributable to evidence of separated flow 
not accounted for in the theoretical methods. 

INTRODUCTION 


As part of a research program in advanced fighter technology, the National 
Aeronautics and Space Administration has undertaken to study the design of effi
cient supersonic cruise and maneuver in fighter airplanes. References 1 to 6 
give a good general background of this research program. This report presents
the results of wind-tunnel tests of a generalized fighter configuration dis
cussed in references 1 and 2. This configuration is designed for maneuver or 
operation at high lift coefficients at low supersonic speeds. 



The configuration concept is as tightly packaged as possible to keep the 
frontal area low. The configuration incorporates a cambered fuselage with a 
single external compression horizontal-ramp inlet, a clipped arrow wing, twin 
horizontal tails, and a single vertical tail. The cockpit features an inclined 
pilot seat, and as a result, the cross-sectional area at the pilot station is 
greatly reduced, and the pilot is able to withstand higher g loads. The wing 
planform was selected to provide linear low-speed pitching-moment characteris
tics and the potential for good transonic maneuver. The wing camber surface is 
designed for minimum drag due to lift and also to be self-trimming at Mach 1.40 
at a lift coefficient of 0.20 by the method discussed in reference 7. The fuse
lage was cambered using the method presented in reference 8 so as to preserve 
the design wing loadings on the part of the theoretical wing that was enclosed 
by the fuselage. Ideally, when the wing is designed in this manner and the fuse
lage is cambered so that the wing loadings are maintained, a low drag penalty, 
associated with trimming the aircraft by keeping the necessary horizontal-tail 
deflections (horizontal-tail loads) small, should result. An uncambered wing of 
the same planform and thickness distribution was included in the investigation 
as a reference. 

Wind-tunnel tests on a 0.056-scale model were conducted in the Langley 

8-foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel at 

Mach numbers ranging from 0.50 to 2.16. The results of the wind-tunnel investi

gation together with some supersonic analytical results are reported in this 

paper. 


SYMBOLS 


The longitudinal force and moment coefficients are referenced to the 

wind-axis system. The moment reference point was located at fuselage station 

39.40 cm (0.40E). Values are given in SI Units. 


A aspect ratio 


b wing span, cm 

CD drag coefficient, Drag 

qs 

cD,O drag coefficient at CL = 0 

lift coefficient, Lift 
qs 

lift-curve slope at CL = 0, aCL 
aa 

Cm pitching-moment coefficient, Pitching moment
qSF 
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CL 



drag-due-to-lift parameter (determined at CL = 0.50) 

tail control effectiveness at zero moment, per deg 


longitudinal stability parameter at CL = 0 

pitching-moment effectiveness of horizontal tail at CL = 0 

streamwise chord, cm 


wing mean geometric chord, cm 


acceleration due to gravity 


lift-drag ratio 


free-stream Mach number 


free-stream dynamic pressure, Pa 


reference area of wing including fuselage intercept, cm2 


longitudinal distance along center line of model from nose, cm 


lateral distance from center line of model, cm 


vertical distance from center line of model, cm 


vertical ordinate of camber surface, positive up, cm 


angle of attack, deg 


dihedral angle, deg 


horizontal-tail deflection angle, positive when trailing edge is down, 

deg 


leading-edge sweep angle, deg 


Subscripts: 


m a X  maximum 

trim trimmed 




DESCRIPTION OF MODEL 


A three-view drawing of the complete model is shown in figure l ( a ) ,  and 
drawings of the wing, vertical tail, and horizontal tail are shown in fig
ures l(b) to l(d). Some geometric characterist4cs are given in table I, and a 
photograph of the model is presented in figure l(e). The configuration incorpo
rates a cambered fuselage with a single external compression horizontal-ramp 
inlet, a clipped arrow wing, twin horizontal tails, and a single vertical tail. 

The taper ratio of the theoretical planform was 0.20, and the notch ratio 
o r  cutout factor was 0.157. The streamwise airfoil thickness distribution was 
an NACA 658004.5. Two wings were tested; each had the same planform and airfoil 
thickness distribution but differed in camber surface. The first wing had a cam
ber surface that was designed for minimum drag due to lift at M = 1.40 and 
CL = 0.20 by the method of referen,ce7. The camber surface was also designed 
so that the wing would be self-trimming about the center of gravity of the con
figuration at the design point (M = 1.40; CL = 0.20). The camber surface ordi
nates of this wing with respect to the leading edge are given in table 11. This 
wing is hereafter referred to as the cambered wing. The second wing, which was 
also tested on the same cambered fuselage, was uncambered and untwisted (flat) 
and is hereafter referred to as the uncambered o r  flat wing. 

The fuselage was cambered by the method presented in reference 2 so as to 
preserve the wing loading on the part of the theoretical wing enclosed by the 
fuselage. The configuration employed low twin horizontal tails with a 4-percent 
biconvex airfoil section. The horizontal tails could be deflected over a range 
from -15O to IOo and could be removed from the model. The single vertical tail 
also had a 4-percent biconvex airfoil section. 

TEST CORRECTIONS 


The tests were conducted in the Langley 8-foot transonic pressure tunnel 

and the Langley Unitary Plan wind tunnel. The tests were conducted under the 

following conditions: 


4ach number Stagnation pressure, Stagnation temperature, Reynolds number 

K
mPa 


0.50 57.46 320 
.80 57.46 321 
.85 57.46 322 
.90 57.46 323 
.95 57.46 323 
1.03 57.46 323 
1.20 57.46 323 
1.47 66.03 339 
1.47 39.60 339 
1.80 73.07 339 
1.80 43.86 339 
2.16 85.61 339 
2.16 52.38 339 
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per meter 


5.18 x IO6 
7.05 
7.22 
7.38 

7.48 

7.68 

7.81 

8.20 

4.92 

8.20 

4.92 

8.20 

4.92 
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The presented data taken at Mach 1.03 in the Langley 8-foot transonic pres

sure tunnel were not corrected for the severe tunnel-wall interference that 

exists at this test condition. To stay within the balance load limits, the 

Reynolds number per meter was reduced at angles of attack above loo at Mach 1.47, 

1.80, and 2.16 as indicated by the second value in the preceding table. The dew-

point was maintained sufficiently low to prevent measurable condensation effects 

in the test section. The angle of attack ranged approximately from -60 to 20°. 

To insure boundary-layer transition to turbulent flow at conditions between 

Mach 0.20 to 1.20, transition strips 0.16 cm wide of No. 60 carborundum grit 

were placed on the body 3.05 cm aft of the nose of the model, and strips of 

No. 80 carborundum grit were placed streamwise 1.02 cm aft of the leading edge 
on the wings, tails, inlet ramps, and external inlet surface. At conditions 
between Mach 1.47 to 2.16, strips of No. 50 carborundum grit were used. These 
transition strips were shown to be adequate in the conclusions of reference 9. 

Aerodynamic forces and moments on the model were measured by a six-

component strain-gage balance which was housed within the model. The balance 

was attached to a sting which in turn was rigidly fastened to the tunnel sup

port system. Balance-chamber static pressure was measured with pressure tubes 

located in the vicinity of the balance. The model internal-flow total pres

sures and static pressures were measured with a rake consisting of 12 total-

pressure tubes and 4 static-pressure tubes. The rake was placed flush with 

the base of the model and was removed during the force-measurement tests. The 

drag data presented have been corrected for internal flow and have been cor

rected to the condition of free-stream static pressure in the balance chamber. 

Corrections to the angles of attack of the model have been made for both tunnel 

airflow misalinement and for the deflection of the balance and sting under load. 


PRESENTATION OF RESULTS 


Figure
Longitudinal aerodynamic characteristics with cambered wing . . . . . . .  2 
Longitudinal aerodynamic characteristics with flat wing . . . . . . . . .  3 
Longitudinal aerodynamic characteristics with cambered wing and 
flatwing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

Trimmed drag polars and lift-drag ratios with cambered wing and 
flatwing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

Summary of pertinent longitudinal data . . . . . . . . . . . . . . . . .  6 
Comparison of experimental and theoretical trim curves for 
Mach 1.47, 1.80, and 2.16 . . . . . . . . . . . . . . . . . . . . . . .  7 

DISCUSSION 


Figure 2 shows the longitudinal aerodynamic characteristics of the config
uration with the cambered wing. The configuration exhibits linear pitching-
moment characteristics at all test conditions except for a tendency to pitch
down at the higher angles of attack at subsonic Mach numbers. Although arrow 
wings tend to pitch up, this behavior is presumably associated with flow sepa

ration on the wing. As the flow separates, the downwash on the low horizontal 

tail is decreased, and an increased positive tail load results. This presump
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tion is supported by the fact that the tail-off lift-curve slope (see figs. 2(a) 

to 2(c)) indicates that separation is beginning to occur at these angles of 

attack. The wind-tunnel model did not incorporate any wing devices ordinarily 

used on a fighter airplane to assist in maintaining the flow on the wing at 

high angles of attack. The horizontal-tail control effectiveness appears to be 

adequate at all Mach numbers of the test for the moment reference center used. 

Additional tail deflection data were taken at supersonic speeds to better define 

the trim drag polar. 


The longitudinal aerodynamic characteristics are shown in figure 2(f) for 
Mach 1.47, the closest test Mach number to the Mach 1.40 design point of the 
wing and fuselage camber. Note that in figure 2(f), the configuration with the 
horizontal tail off is trimmed (has zero pitching moment) at a lift coefficient 
of approximately 0.20. As discussed earlier, the wing camber surface was 
designed for minimum drag due to lift so that the wing would be self-trimming 
at the design point (M = 1.40; CL = 0.20). The fuselage was then cambered by 
the method presented in reference 8 to preserve the wing loadings on the part of 
the theoretical wing enclosed by the fuselage. The pitching-moment curves in 
figure 2(f) indicate that the self-trimming feature was achieved. The signifi
cance of the feature can be seen in the drag polars presented in figure 2(f). 
Note that the drag levels are approximately the same for a number of tail deflec
tions which result in no trim drag penalty over a lift coefficient range. By 
designing for no tail load at CL = 0.20, the tail deflection necessary to trim 
and the resulting tail loads are kept relatively small for a substantial part of 
the operating lift coefficient range. 

A second wing identical to the cambered wing in planform and thickness 
except that it was uncambered (flat) was tested on the model. Tail-deflection 
data were limited on the flat-wing configuration since this configuration was a 
baseline for the effects of exposed wing camber. The longitudinal aerodynamic 
characteristics for the configuration with the fl?t wing are shown in figure 3. 
The effects noted about pitching-moment characteristics and tail control effec
tivehess for the configuration with the cambered wing are also true for the con
figuration with the flat wing. The comparison of differences between the two 
wings is limited to the discussion of figures 4 to 7. 

A comparison of the longitudinal aerodynamic characteristics of the 
cambered-wing configuration with the flat-wing configuration is shown in fig
gure 4. The data presented are for the configuration with zero horizontal-tail 
deflection and for horizontal tail off. As expected, the configuration with the 
cambered wing and horizontal tail off has a greater pitching-moment coefficient 
at a given lift coefficient across the Mach number range than the flat-wing tail-
off Configuration. However, both configurations with the tail on at Oo deflec
tion tend to have the same pitching moment at low lift coefficients for subsonic 
speeds and at all lift coefficients for supersonic speeds. Apparently, at all 
test Mach numbers the horizontal-tail loads are slightly different behind the 
two wings; the horizontal tail behind the cambered wing is slightly more down 
loaded than the tail behind the flat wing. This speculation is supported by the 
fact that for the cambered-wing configuration at Mach 1.47,which is closest to 
the design Mach number, the trim point for the tail-on Oo deflection (fig. 4(f))
is at a lower lift coefficient than the tail-off (no tail load) trim point. For 
the flat-wing configuration, the tail-on Oo deflection and the tail-off trim 
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points are the same. Drag polars for the cambered-wing configuration show a 
much lower drag due to lift than the flat-wing configuration at subsonic and 
transonic speeds. Increases in (L/D)ma, of over one are common for the con
figuration with the cambered wing when compared with the flat wing for subsonic 
and transonic speeds. But there are very few differences in the drag polars and 
(L/D),, at supersonic speeds. These results are not as surprising as they may 
seem. As discussed previously, the fuselage was cambered to preserve the design
wing loading (M = 1.40; CL = 0.20) on the part of the theoretical wing planform 
enclosed by the fuselage. The region of the theoretical wing planform enclosed 
by the fuselage is the most highly cambered part of a supersonic wing and, there
fore, has a major influence on the drag-due-to-lift and pitching-moment charac
teristics of the wing. Since the fuselage is the same for both wings, the drag 
and pitching-moment characteristics are similar. This situation holds much 
promise for fighter aircraft because if the fuselage is cambered properly, major
benefits of supersonic wing design are realized. The airplane designer is 
allowed a degree of freedom in exposed wing design to improve the subsonic and 
transonic aerodynamic characteristics where large influences of exposed wing cam
ber were observed. Then a minimum acceptable supersonic design would allow the 
wing to be decambered at supersonic speeds to remove any adverse subsonic-
transonic camber. The results of a wind-tunnel test using the same wing plan-
form but without fuselage camber are presented in reference 10. The discussion 
in reference 10 reinforces the statements made earlier about exposed wing
camber. 

Trimmed drag polars and L/D curves for the configuration with the cam
bered wing and the flat wing are presented in figure 5. The discussion of fig
ure 4 has already suggested that the drag characteristics of the cambered-wing
configuration are superior to those of the flat-wing configuration at subsonic 
and transonic speeds; these characteristics are only slightly better at super
sonic speeds. 

A summary plot of the variation of the more pertinent longitudinal parame
ters with Mach number for the configuration with the cambered wing and with the 
flat wing is shown in figure 6. Except for (L/D)max, which is trimmed, and for 
tail control effectiveness, the data for the configurations are untrimmed with 
zero horizontal-tail deflection. 

Correlations between the experimental and theoretical trimmed drag and 
tail deflection necessary to trim are given in figure 7 for the configuration
with the cambered wing at Mach 1.47, 1.80, and 2.16. The method used in refer
ence 11, modified to include control surfaces, was employed to calculate the 
camber drag, drag due to lift, and tail control characteristics. The wave drag
and skin friction calculated by methods of references 12 and 13, respectively, 
were added to the camber drag and drag due to lift to obtain the total drag.
Poor agreement exists in the correlation of the drag levels, and fairly good 
agreement exists in the shape of the drag polar. The experimental and theoreti
cal polars tend to diverge somewhat as the experimental tail-control effective

ness weakens with increasing tail-deflection angle. There are several drag 

sources such as grit drag and separated flow that are-notaccounted for in the 

theoretical drag polars, and these drag sources could be the cause of some of 

the differences. On this particular model, there was evidence in vapor screen 

photographs (flow visualization by the induction of fog in the tunnel) of sepa
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rated flow on the aft side of the canopy. This region of separated flow was 

evident at zero lift coefficient and increased in magnitude with increasing lift 

coefficient. Local streamline tailoring of the fuselage aft of the canopy would 

probably eliminate this problem. 


CONCLUDING REMARKS 


An investigation has been conducted over a Mach number range from 0.50 to 
2.16 to determine characteristics of a fighter airplane concept. The config
uration incorporates a cambered fuselage with a single external-compression 
horizontal-ramp inlet, a clipped arrow wing, twin horizontal tails, and a single 
vertical tail. The wing camber surface was optimized in drag due to lift and 
was designed to be self-trimming at Mach 1.40 and at a lift coefficient of 0.20. 
The fuselage was cambered to preserve the design wing loadings on the part of 
the theoretical wing enclosed by the fuselage. An uncambered or flat wing of 
the same planform and thickness ratio distribution was also tested. 

The results indicate that the configuration possessed linear pitching-
moment characteristics over the test Mach number and angle-of-attack ranges, 
except for a tendency to pitch down at subsonic Mach numbers when the flow over 
the wing separated at the higher angles of attack. The horizontal-tail control 
effectiveness was found to be adequate over the test Mach number range. The 
configuration with the supersonic cambered wing had much better drag polar char
acteristics at subsonic and transonic Mach numbers, and the drag polar charac
teristics at supersonic Mach numbers were only slightly better than those for 
the configuration with the flat wing. Most of the supersonic benefits expected 
from optimizing the wing camber for minimum drag due to lift and trim were 
apparently achieved by cambering the fuselage so as to preserve the design wing 
loadings on the part of the theoretical wing enclosed by the fuselage. The 
shape of the trimmed drag polar and the tail deflection necessary to trim at 
Mach 1.47, 1.80, and 2.16 are fairly accurately predicted by current,supersonic
theoretical methods. However, the theoretical drag underpredicted the experi
mentally realized drag level. The difference is primarily attributable to the 
evidence of separated flow not accounted for in the theoretical methods. 

Langley Research Center 

National Aeronautics and Space Administration 

Hampton, VA 23665 

May 26, 1977 
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TABLE I.- COMPONENT GEOMETRY 

Wing : 
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.758 
A ,  deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 
r, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0-
c,  c m  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19.185 

b ,  cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45.552 
S, i n c l u d i n g  f u s e l a g e  i n t e r c e p t ,  cm2 . . . . . . . . . . . . . . . .  752.398 
A i r f o i l  s e c t i o n  . . . . . . . . . . . . . . . . . . . . . . . .  NACA 658004.5 

H o r i z o n t a l  t a i l s  (exposed) :  
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.586 
A .  deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42.5 
l'. deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
Mean geomet r i c  chord .  c m  . . . . . . . . . . . . . . . . . . . . . .  9.025 
Semispan. c m  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.026 
Area. cm2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188.038 
A i r f o i l  . . . . . . . . . . . . . . . . . . . . . . . . .  4-percent  biconvex 

Vertical t a i l :  
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.435 
A ,  deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 
Mean geomet r i c  chord ,  cm . . . . . . . . . . . . . . . . . . . . . .  13.467 
Semispan, c m  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.483 
Area, cm2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127.977 
A i r f o i l  . . . . . . . . . . . . . . . . . . . . . . . . .  4-percent  biconvex 

I n l e t  area. cm2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13.344 

E x i t  area. cm2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16.821 

Chamber area. cm2 . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.401 
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T A B L E  11.- CAMBERED SURFACE O R D I N A T E S  

[Fuselage juncture at 	y = 0.15; wing sections were sheared so that 0.25 
b/2 C 

was at z = 0 in model reference axis1 
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Figure 1.- Drawing of model. Dimensions i n  em. 
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Figure 3.- Longitudinal aerodynamic characteristics with flat wing. 
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Figure 4.- Longitudinal aerodynamic characteristics with cambered wing 

and flat wing. 
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( d )  M = 1.03. 

Figure 4.- Continued. 
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