
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



t_
JPL PUBLICATION 77-30

Software for C' Surface Interpolation

'	 (DASA-C12-155C47)	 SOFZWARE FCF C1	 N77-32825
INTELLCLATICN Oft FrCrulsicn Lat.)	 40 F
HC AC3/Mf A01	 CSCL 12A

Onc:las
G3/67 45077

4

MI

J

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California institute of Technology
Pasadena. California 91 10^3

S,7

1977	
^Iwo



lb-

TECHNICAL REPORT STANDARD TITLE PAGE

I. Report No. T2. Government Accession No. 3.	 Recipient's Catalog No.
JPL Pub.	 77-30

4. Title and	 Subtitle 5. Report Date
August	 15	 1977

6.	 Performing Organization CodeSOFTWARE FOR C l SURFACE INTERPOLATION

7. Author(s) 8.	 Performing Organization Report No.
C.	 L.	 Lawson

9. Performing Organization Name and Address 10. Work Unit No.

JET PROPULSION LABORnTORY
. 1 .	 Contract or Grant No.California Institute of Technology

4800 Oak Grove Drive NAS 7-100

13. Type of Report and Period CoveredPasadena, California 91103

JPL PUBLICATION
12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
14. Sponsoring Agency Code

Washington, D.C. 20546

15. Supplementary Notes

16. Abstract

This report treats the problem of mathematically definin-, a smooth surface,

z =	 f	 (x,y),	 passing through a	 finite set of given points 	 (xigyipzi,	 k =	 1,...,n).

In particular,	 it	 is not assumed that the given 	 (x.,y ) values lie in any special

pattern such as at the nodes of a rectangular grids
	 i

The literature relating to this problem is briefly reviewed.	 An algorithm is

described that first constructs a triangular grid in the 	 (x,y)	 domain, next estimates

first partial derivatives at the nodal points, 	 and finally does interpolation in

the triangular cells using a method that gives C l continuity overall.	 Performance

of software implementing this algorithm is discussed.

New theoretical results are presented that provide valuable guidance in the develop-

ment of algorithms for constructing triangular grids.

17. Key Words	 (Selected by Author(s))	 18.	 Distribution Statement
Mathematical and Computer Sciences

(General)	
Unclassified - Unlimited

Computer Programming and Software
Numerical Analysis

19. Security Classif. 	 (of this	 report)	 I0,	 Security Classif. 	 (of this page)	 21.1'ric•-

Unclassified	 Unclassified	 4i



JPL PUBLICATION 77-30

Software for C' Surface Interpolation

C. L. Lawson

August 15, 1977

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103



77-_

PREN

a*-

The work described herein was performed by the Information
Systems Division of the Jet Propulsion Laboratory.

This paper was presented at the Symposium on Mathematical Software,
Mathematics Research Center, University of Wi—onsin, Madison, Wise., March
28-30, 1977. The paper will appear in the symrosium proceedings entitled
"Mathematical Software III," John R. Rice, Editor, Academic Press, 1977.

R



r

77-30

ABSTRACT

This report treats the problem of mathematically defining a

smooth surface, z = f(x,y), passing through a finite set of given points

(xi ,yi ,z i , i = 1, .... n). In particular, it is not assumed that the

given (xi ,yi ) values lie in any special pattern such as at the nodes
of a rectangular grid.

The literature relating to this problem is briefly reviewed.

An algorithm is described that first constructs a triangular grid in

the (x,y) domain, next estimates first partial derivatives at the nodal

points, and finally does interpolation in the triangular cells using
a method that gives C 1 continuity overall. Performance of software

implementing this algorithm is discussed.

New theoretical results are presented that provide valuable

guidance in the development of algorithms for constructing triangular

grids.
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SECTION I

PROBLEM STATEMENT AND GUIDE TO THE LITERATUhE

1.1	 1NTRODUCTION

This paper is a result of our fourth effort in software

for surface representation. We developed subroutines for rectangular

grid contour plotting in 1965 with N. Block and R. Garrett, least squares
bicubic spline surface fitting in 1970 with R. Hanson, and contour
plotting via triangular grid construction and linear interpolation
in 1972. 

The letter two subroutines deal with irregularly located

data. however, application3 continue to arise in which one would like
the interpolatooy capability of the triangular grid program but with
at least C 1 continuity. Such an algorithm with underlying theory and
implementing software are the topics of this paper.

In Section I we introduce the problem and give a brief
survey of the pertinent literature. Section II describes our algorithm
and concludes with examples of surfaces produced by our new subroutines.
We express appreciation to Bob Barnhill and Frank Little for valuable
discussions that particularly influenced our triangulation algorithm
of Section 2.2.

There has been practically no theory to guide the development

of algorithms for triangulation and no practical static global criterion

to characterize a preferred triangulation. We are indebted to Michael
Powell and Robin Sibson for conversations and correspondence in 1976
that introduced us to Thiessen proximity regions and the fact that

this concept can be used to define a triangulation as is related in
Section 3.1.2.

In our initial effort to determine the relationship of
the Thiessen criterion to the max-min angle criterion we had used in
1972, we discovered the circle criterion, which served as a convenient
mathematical link between the other two. The outcome is the material
of Section 3.1, showing the equivalence of these three criteria when
used for local optimization of a triangular grid.

The local equivalence results opened the way to certain
•	 global equivalences reported in Section 3.2 and new algorithmic insiahts

reported in Sections 3.3 and 3.4.

Our conclusions regarding the state of the art for this

problem appear in Section 3.5.

1.2	 PROBLEM STATEMENT

The following surface interpolation problem will be treated:

Given a set of triples of data (x i , y i , z i ), i = 1,	 n, construct

1-1
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a conveniently computable C 1 function f(x,y) satisfying the interpolation
conditions

zi = f(xi, Yi)r 1 = 1,...,n

The data (xi, yi) are not assumed to lie in any special pattern such
as at the nodes of a rectangular grid. It is assumed, however, that
ill (xi, yi) pairs are distinct; i.e., (xi, yi) = (xj , yj ) only if

	

1.3	 EXPECTED APPLICATIONS

The usual situation in which the author has seen a need
for this type of computation is that in which a scientist or engineer
has in hand a set of (xi , yi , zi) data representing measured or computed
values of some phenomenon and desires to obtain a visual impression
of a smooth surface of the form z = f(x, y) interpolating the data.
In such a case, an interpolation algorithm, such as is treated in this
paper, must be interfaced with algorithms for contour plotting or surface
perspective plotting. If, as is the case at JPL, subroutines are available
for doing contour or surface perspective plotting for data given on a
rectangular grid, then the surface interpolation algorithm can be used
to produce the values needed at the lattice points of a rectangular grid.

Other applications have arisen which can be regarded as
the inverse of contour plotting. Certain handbook data is available
in the form of contour plots. To use the data in a computer program
it is necessary to produce a computable representation of the function
depicted by the contour plots. A convenient way to do this is to develop
a list of (xi , yi , zi ) values from appropriately spaced points along
the contour lines and then use a surface interpolation algorithm such
as is discussed in this paper.

We have also seen applications which can be regarded as
implicit function problems. One may have a rectangular table or a
contour plot giving z as a function of x and y, but then need to be
able to determine x as a function of y and z in some computational
procedure. If the data has appropriate monotonicity for this to make
sense, then the interpolation algorithm of this paper can be used foi
such problems.

	

1.4	 PUBLISHED WORK ON SURFACE INTERPOLATION TO IRREGULARLY
LOCAIED DATA

A variety of algorithmic ideas have been developed for
this problem or closely related problems.

Two of the most recent papers giving methods for C 1 surface
interpolation to irregularly located data are Akima (1975) and McLain
(1976). Akima's report contains listings of a set of Fortran subroutines

1-2
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to handle this problem. This code and a second version of it using
a more economical triangulation subroutine due to Lawson (1972) have
been made available to requestors by Akima.

both Akima (1975) and McLain (1976) contain introductory
sections giving useful brief characterizations of other approaches,
particularly those of bengtsson and Nordbeck (1964), Shepard (1968),
maude (1973), and McLain (1974). Franke (1975) reports on computer
tests of eleven nethods constructed using a combination of ideas from
Sard (1963), Mansfield (1972), Maude (1973), McLain (1974), Nielsor.
(1974), and Barnhill and Nielson (1974).

Powell (1976) and "chumaker (1976) give surveys of methods
for surface fitting and related pr'L.blems of bivariate function repre-
sentation.

The computerized repre g t• ntation of surfaces is a central.
issue in the field of computer -aided geometric design (CAGD) and plays
an important role in the field nz finite element methods (FEM). For
discussions of surface representation from the point of view of CAGD
see Forrest (1972) and Barnhill (1977). For descriptions of surface
elements used in FEM see Birkhoff and Mansfield (1974) as Well as any
of the current books on FEM.

Some methods of building a triangular grid with a given
set of nodes start by locating the boundary points of the convex :;ull
of the point set. Algorithms for locating these boundary points are
treated in Graham (1972), Jarvis (1973), Preparata and Hong (1977),
and Eddy (1976).

Some interesting new triangular grid elements providing
C 1 continuity through the use of piecewiae quadratics are described
in Powell and Sabin (1976).

so-
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SECTION II

AN ALORITHM FOR TRIANGULATION AND C 1 SURFACE INTERPOLATION

	

2.1	 OUTLINE OF IhE ALGORIThMIC APPROACH SELECTED

Our approach to the C 1 surface interpolation problem consists
of the following four steps.

,1) Construct a triangular gria covering the convex hull
of the given set of (x i , yi ) data using the (x i, yi)
data points as vertices of the triangular cells.

(2) Estimate first partial derivatives of z with respect
to x and y at each of the (xi, yi) data points.

(3) For an arbitrary (x, y) point, perform a lookup in
the triangular grid to identify which triangle, if
any, contains the point.

(4) For an arbitrary (x, y) point in a triangle, compute
an interpolated value of z and optionally of az/8x
and 8z/8y also. Make use of the nine items of data
associated with the triangle, i.e., the values of
zi and its two first partial derivatives at each
of the three vertices.

This top level description of the approach also characterizes
the methods of Akima (1975) and McLain (1976), with the exception that
their methods estimate different quantities at Step 2 for use in the
interpolation at Step 4. At the more detailed level of devising algorithms
for each of the four steps, there are substantial differences between
our approach and that of Akima and that of McLain.

The four steps will be discussed in the following four
sections.

	

2.2	 CONSTRUCTING A TRIANGULAR GRID

Given the set S of distinct points, (xi, y i ), i = 1,..., n,
the triangular grid T to be constructed is to cover the convex hull
of this set of points. Each triangular cell in the grid is to have
three of the given points as its vertices and is to contain no other
points of S as interior or boundary points.

Conceptually there is no difficulty in manually constructing
such a triangular grid. For example, one can just start. drawing edges
connecting pairs of points and continue as long as edges can be drawn
that do not intersect any previously drawn edges. An edge must not
contain any points of S other than its own two endpoints.

2-1
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In general, there exist many different triangulations n
a set S. It is noteworthy, however, that all possible triangulation]
of S have the same number of triangles and the same number of edges.
Let nb denote the number of points of S on the boundary of the convex
hull of S and let n i denote the number in the interior so that
n = n b + ni . Then the number of triangles is

nt = nb + 2 ( ni - 1) < 2n

and the number of edges is

ne = 2nb + 3 (ni - 1) `. 3n

Taking these relationships into account we selected the
data structure illustrated by Figures 2-1 and 2-2 to represent a tri-
angular grid. Column 1 of Figure 2-1 is not stored so each triangle
is represented in storage by six integers. Since n t S 2n, a total
of 12n integer storage locations suffices to represent the triangular
grid for n points. This of course is in addition to storage for the

(xi, yl) data.

Three subroutines for storing and fetching in this structure

are used throughout the package so that the actual mode of storing
these pointers can be -hidden' , from the main subroutines. On many
computers one could easily pack two or three of these pointers per

computer word. Our triangulation algorithm has the property that it
makes additions and changes to the list of triangles but no deletions.
thus there is no garbage collection problem.

INDICES OF ADJACENT TRIANGLES INDICES OF VERTEX POINTS
IN COUNTERCLOCKWISE

TRIANGLE IN COUNTERCLOCKWISE ORDER. ORDER. THE F: q 4T VERTEX IS
INDEX A ZERO INDICATES THE REGION AT THE POINT OF CONTACTEXTERIOR TO THE TRIANGULAR OF THE THIRD AND FIRSTGRID NEIGHBORING TRIANGLE

1 2 0 4 5 8 7

2 5 3 1 5 3 8
3 6 0 2 3 1 8

F=.gure 2-1. Data Structure hepresenting a Triangular Grid

2-2
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Figure 2-2. The Portion of a Triangular
Grid Described by the Data
Structure of Fig. 2-1

In some reasonable triangulation algorithms the number

of boundary points of the convex hulls of a sequence of subsets of
S has an effect on the operation count. Thus it is desirable to have
some notion of the expected value of n b as a function of n. Clearly,
any value of n b from 3 to n is possible.

Consider the case in which S is a random sample of n points
from a uniform distribution on a disc. Let v n denote the expected
value of nb in this case. Renyi and Sulanki (1963, 1964) and also
Rayna l• I (19701 show that vn is asymtotically proportional to n 113 as
r.--co. Efron (1965) derives the following formula for vn:

1
vn = n ( n - 1)Tr2 Fn-2 f3 dp

3 f-1

where

(p) = 2 
(1 - p2)1/2
f 

Tr

and

p
1	 1	 112

F(p) =	 f(t) dt = 2 +	 p ( 1 - p2 )	 + aresin (p)

-1

2-3
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We have evaluated this formula by numerical integration
and corroborated the results by a computer program that counted the

number of boundary points of the convex hulls of a large number of
point sets generated as pseudorandom samples from a uniform distribution
on the unit disc. Selected values are shown in Table 2-1.

Since a given point set S generally admits many different
triangulations, how is one to characterize and produce a preferred
triangulation? So far there does not appear to be any fundamentally
compelling best answer to this question.

A very satisfactory candidate, however, emerges from the

theoretical -esults presented in Section III. There it is shown that
three differently stated criteria ivr choosing the preferred triangulation
rf a quadrilateral are in fact equivalent in that they produce the
same decisivas in all cases. It is also shown that if all quadrilaterals
consisting of pairs of adjacent triangles in a triangulation satisfy

one of these optimality criteria, then the triangulation as a *hole
has some pleasant properties, and in fact is unique to within some
arbitrariness associated with subsets of four or more neighboring points
lying on a common circle.

It is further shown that these local criteria have favorable

properties for use in triangulation algorithms. In particular it is
shown that the final triangulation is reached in a finite number of
steps and that the operation of changing an optimized triangulation

to include a new data point has some properties that can be exploited
to simplify an algorithm.

Our triangulation subroutine TRI09D presently uses the
max-min angle criterion as its local optimization procedure. This
is one of the three equivalent local criteria defined in Section 3.1.

Table 2-1. vn Is the Expected Number of Boundary Points in the
Convex Hull of an n-Point Sample from the Uniform
Distribution on a Disc

	

n
	

vn	 on = vn/n1/3

	

4
	

3.7	 2.3

	

10	 6.1	 2.8

	

100
	

15.2	 3.3

	

1000	 33.6	 3.4

	

10000	 72.6	 3.4

2-4
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The TRIGRD algorithm starts by finding the point of S having
the smallest x coordinate. Any ties are broken by minimizing on y.
The point p • found in this way is an extreme point of the convex hull
of S. Finding p• requires 0(n) operations.

The points of S are next sorted on increasing (squared)
Euclidean distance from p*. Denote the points with this ordering by

q 19 q2+ ... I qn with q1 = pe . We estimate the operation count for
the sort to be 0(n log n).

`

	

	 The first edge is drawn connecting q1 and q2. The next
point in the q i sequence not colinear with q1 and q2 is connected to
q1 and q2 to form the first triangle. If this third vertex is not
q3 but rather qk with k > 3, relabel the points q3 through qk so that
qk is called q3 and the indices of the intervening points are each
increased by one. These steps assure that qj is strictly outside the
convex hull of jq1, ..., qj-11 for all j = 4, 5, ..., n.

Let c denote the centroid of Bglg2q3. Let r be the half
ray from c through q1. When an angular coordinate is needed for a
point, the angle will be measured counterclockwise around c from r.
Note that the angular coordinate of q1 is zero, and all other points
qi for i > 1 have angular coordinates strictly between 0 and 2n. The
program does not actually compute angles but rather computes a less
expensive function monotonically rel-Rted to the angle.

Build an initial boundary list consisting of q1, q2, q3,
and q 1 (again) along with their angles, assigning the angle 2n to the
second occurrence of q1.

This finishes the preliminaries. The algorithm proceeds to loop
through the points q k , k = 4, ..., n, doing the following for each one:

Determine the angular coordinate of qk and use that coordinate
as a key to search for a pair of boundary points whose angles bracket
that angle. This is a linear search requiring an average of nb(k)/2
scalar comparisons, where nb (k) is the number of points on the boundary
of the convex hull of I q 1 ,	 -, qk-11• If we estimate nb (k) to be
about 3k1/3 (recall Table 2-1) then the total cost of this lookup
as k runs from 4 to n is 00/i ). This appears to be the highest-order
operation count in the triangulation algorithm.

Having found two boundary points to which q k can be connected,
attach qk to these points and record the edge opposite qk in the new
triangle in a stack, identifying edges to be tested for possible swapping.

If the stack is nonempty, unstack one edge and apply the
local optimization procedure to it. If the decision is to swap the
edge, do so, and stack the two edges that are opposite qk in the two
new triangles. Continue processing the stack until it is empty.

When the stack is empty try to connect qk to another neighboring
boundary point. If this is possible, then run through the stacking
and testing again, starting with the edge opposite qk in the new triangle.

2-5
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When qk cannot be connected to any more boundary points, the processing
of qk is completed.

We estimate the average operation count to process q k is
a constant, independent of k. Thus the total cost to process all the
points qk , k = 4, ..., n is 0(n).

The total operation count for TRIGRD is thus estimated
to be 0(n4/3) + 0(n log i) + 0(n). Actual timing on the Univac 1108
for cases having four different values of n are shown in Table 2-2.

The data of Table 2-2 suggests that in the range 25 <_ n < 500,
either 0(n4/3 ) or 0(n log n) may be used as a model of the execution
time of this triangulation algorithm.

2.3	 ESTIMATING PARTIAL DERIVATIVES AT THE GRID NODES

To estimate 8z/ax and 8z/8y at a nodal point p = ( xk , yk)
of the triangular grid, the subroutine ESTPD sets up and solves a local
least squares problem. All of the immediate grid neighbors of point
p are used up to a maximum of 16 immediate neighbors. If the number
of immediate neighbors is less than six, then additional nodes beyond
the immediate neighbors are used to bring the total number of points
in addition to p up to six.

A six-parameter quadratic polynominal in x and y is fit
to the z data values at this set of points. The quadratic is forced
to interpolate the z value at p, ^.nd it'fits the remaining points in
a weight%.) least squares sense. The weighting is used to diminish
the effect f the more distant points.

Table 2-2. t Denotes the Time in Seconds for Execution of
TRIGRD for a Case Having n Points

n t t/(n4 / 3) t/(n log n)

25 0.061 0.00084 0.00175

100 0.346 0.00075 0.00173

200 0.951 0.00081 0.0020?

500 2.211 0.00056 0.00164

The values at p of the first partial derivatives of this
quadratic are stored as estimates of 8z /ax and az/ay at p. Execution

....

2-6
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time on the Univac 1108 averages 8 milliseconds per point at which
partials are estimated.

This method of estimating derivatives is the most ad hoc
part of our entire surface interpolation method. We intend to investigate
the effect of various parametric and algorithmic changes in this procedure.

2.4	 LOOKUP IN ThE TRIANGULAR GRID

`	 Given an arbitrary point q : (x, y) and an index k in the
range 1	 k , n t , where nt is the total number of triangles, the subroutine
TRFIND tests to see if q is in the triangle whose index is k.

If so, the index k is returned. If not, q must be outside
one of the edges of the triangle. In this case, TRFIND resets k to be the
index of the neighboring triangle on the other side of that edge and loops
back to test q in this new triangle k. If there is no neighboring
triangle, the fact that q is outside the triangular grid is reported.

This approach is particularly efficient for the case of
interpolating to points of a rectangular grid, since t:!e search can always
be started at the triangle in which the previous point was found. When
a new row of the rectangular grid is started, the search can be started
in the triangle in which the first point of the previous row was found.

2.5	 INTERPOLATION IN A TRIANGLE

The interpolation subroutine TVAL makes use of the piecewise
cubic macroelement of Clough and Tocher (1965). A tutorial derivation
of this element and a discussion of some alternative ways to organize
its computation are given in Lawson (1976a). Quadrature properties
of the element are derived in Lawson (1976b).

Definition of this element involves partitioning the triangle
into three subtriangles by drawing internal boundaries from the centroid
to each vertex. In each of these three subtriangles the element is
a cubic polynomial in x and y

3 3-1

Z ' F, E ai j xi yj
i=0 j=0

The element matches nine items of data, the function value
and first partials with respect to x and y at the three vertices.
It has C 1 continuity across the internal and external boundaries of
the triangle. It is exact for quadratic data.

Since it is a piecewise cubic, it is straightforward to ob-
tain expressions for computing its first partial derivatives. The sub-
routine TVAL includes an option to compute az/ax and az/ay as well as z.

2-7
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Starting with the information x, y, z, Wax, and 8z/8y
at the vertices of a triangle, this method requires 55 multiplies,
65 adds, and 4 divides to compute one interpolated value. There are
various possibilities for saving computed quantities that depend only
on the triangle's data in order to cut down the time to interpolate
for a number of points in the same triangle.

Execution time on the Univac 1108 averages 750 microseconds
per interpolated point. This is about 10 times the cost of EXP or SIN.

This timing of the interpolation subroutine TVAL includes
execution of the look-up subroutine TRFIND, usually beginning the look-
up in the correct triangle or an immediately neighboring triangle. 	 40

2.6	 EXAMPLES

Figure 2-3 shows a set S consisting of 26 points in the
plane. Figure 2-4 is the triangular grid constructed for the set S
by TRIGRD. In view of the results of Section 3.2, this is a Thiessen
triangulation for S.

4

-1.0
-1.0	 0.0	 1.0

Figure 2-3. Set of 26 (x i , yi ) Points for Examples 1 and 2
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1.01

0.01

-1.01 ,- --r - i - i- T—+	 i	 i
-1.0	 0.0	 1.0

Figure 2-4. Thiessen Triangular Grid for Examples 1 and 2

2.6.1	 Quadratic Test Case

Values are assigned at the points of Figure 2-3 by computing
Z = ( - 1 + 2x - 3Y + 4x2 - xy + 9y2 )18. Using ESTPD to estimate first
partial derivatives and WIND and TVAL to interpolate to points of
a 51 x 51 point rectangular grid, we then obtained the contour plot
of Figure 2-5 and the perspective plot of Figure 2-6. This illustrates
the exactness of the method for quadratic data.

This case required 1.9 sec of Univac 1108 CPU time to build
the triangular grid and interpolate to the rectangular grid. It then
used 15.3 sec in the plotting subroutines.
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-1.0	 0.0	 1.0

Figure 2-5. Contour Plot for Example 1

Figure 2-6. Perspective Plot for Example 1
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2.b.^	 Exponential Test Case

For this case the z data is computed as

z 2 e-2(x2+ y2)

Again estimating partial derivatives at the 26 data points
and then interpolating to a 51 x 51 rectangular grid, Figures 2-7 and

=	 2- 8 are obtained. The most noticeable defect in the surface produced
is the kink in the contour plot near ( x,y) = (0.2, -0.4). This also
appears as a groove in the perspective plot. From Figure 2-3, however,
it is seen that this corresponds to a region in which there is a lack
of data. Computer time was similar to the first test case.

Figure 2-7. Contour Plot for Example 2
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Figure 2-8. Perspective Plot for Example 2

2.6.3	 A Case With More Points

The third test case is the same exponential function on
a set of 500 points. The grid produced for this case has 985 triangles.

This data was interpolated to a 21 x 21 point rectanaio?-.r
grid for plotting (see Figures 2-9, 2-10, and 2-11). This ease used
6.25 see of CPU time to triangulate and interpolate. It used 4.01
see in the plotting subroutines. The plotting was faster becaust:. o
the much coarser rectangular grid.

...
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1.51

-1.5

-1.0	 0.0	 1.0

Figure 2-9. Thiessen triangular Grid for Example 3:
500 Points and 9b5 Triangles

-I.V	 u.v	 I.v

Figure 2-10. Contour Plot for Example 3
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1

2-14

','



71-30

SECTION 1II

THEORETICAL RESULTS ON TRIANGULATION

3.1	 THREE; CRITERIA FOR TRIANGULATION OF A STRICTLY CONVEX

QUADRILATERAL

We will call a quadrilateral Q strictly convex if each
of its four interior angles measures less than 180 0 . Such a quadrilateral

•	 can be partitioned into two triangles in two possible ways. Three
criteria will be described for choosing a preferred triangulation of
a strictly convex quadrilateral.

w

3.1.1	 The Max-Min Angle Criterion

Choose the triangulation of Q that maximizes the minimum
interior angle of the two resulting triangles. Either choice can be
made in the case of a tie. For example, it Figure 3-1 L cab is the
smallest angle in triangles f1 and 81, L cdb is the smallest angle in
triangles f2 and B2, and L cdb is larger than Lcab. Thus, the triangulation
(b) is preferred over (a).

3.1.2	 The Circle Criterion

Let K denote a circle passing through three of the vertices
of a strictly convex quadrilateral Q. If the fourth vertex is interior
to K, insert the diagonal from this fourth vertex to tt.e opposite vertex.
if the fourth vertex is exterior to K, insert the other diagonal.
If the fourth vertex is on K, insert either diagonal (see Figure 3-2
for an example). Note that when all four vertices are not on a common
circle, the same triangulation will be selected regardless of which
set of three vertices is used to construct the circle.

3.1.3	 The Thiessen Region Criterion

Let Ra denote the closure of the region of the plane consisting
of all points that are closer to point a than to points t), 7, or d.
Similarly define regions h b , R c , and R d Eurroundina points b, c, and d,
respectively. These regions are called Yhiessen regions following
Powell (1976) and Rhynsburger (1973). These proximity regions are
also identified by other names in the mathematical literature.

Two of the points a, b, c, cr d will be called Thice2en
neighbors if their Thiessen regions are in contact. They are std
Thiessen neighbors if the contact is along a line segment of nonzero
length. They are weak Thiessen neia bors if the contact is at one
point only.
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a	 a

C	 c	 ..r

(a)	 (b)

Figure 3-1. The Max-Min Angle Criterion

Figure 3-2. The Circle Criterion

To triangulate a strictly convex quadrilateral Q, insert
the oiagonal that connects a pair of strong Thiessen neighbors. A
strictly convex quadrilateral can have at most one pair of opposite
vertices that are strong Thiessen neighbors. If neither pair of opposite
vertices are strong Thiessen neighbors, then both pairs will be weak
neighbors and either diagonal can be inserted (see Figure 3-3 for an
example).
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Figure 3-3. The Thiessen Region Criterion

3.1.4	 Equivalence of The:- Three Criteria for Strictly Convex
Quadrilaterals

The first observation to be made about these three criteria
is that they give identical results for strictly convex ouadrilaterals.
This can be verified by noting that all three criteria have the same

neutral case and then studying perturbations from the neutral case.

The neutral case for all three criteria is the case in
which all four vertices of the quadrilateral lie on a common circle.

To verify this last statement consider a quadrilateral
Q whose vertices a, b, c, and d all lie on a common circle K (see Figure

3-4). Suppose arc be is shorter than arcs cd, da, or ab. If the angular

measure of are be is 26, then angles cab and edb are each of measure
0, and these two angles are each the minimum angle for one of the possible
triangulations. Thus, this is a tie case for the max-min angle criterion.

F

Figure 3-4. The Neutral Case for the Max-Min Angle Criterion
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Constructing Thiessen regions for the case of four points
on a common circle results in the four Thiessen regions meeting at the
center of the circle, as in Figure 3-5. Thus, each pair of opposite
vertices are weak Thiessen neighbors, which is the neutral care for
this criterion.

Further analysis, the details of which will be omitted,
shows that moving one point, say point d in Figures 3-4 and 3-5, inside
circle K causes c edb to become larger and causes points b and d to
become strong Thiessen neighbors. Thus, all three criteria will choose
to introduce the edge bd.

3.1.5	 A Local Optimization Procedure

Let a denote an internal edge in a triangular grid T.
Consider the quadrilateral Q formed by the two triangles having a as a
common edge. If Q is not strictly convex then a cannot be considered for
swapping. Otherwise, if Q is strictly convex, apply any one of the three
equivalent criteria discussed in the preceding sections. Replace a by
the other diagonal of Q if this is preferred by the criterion. Otherwise
if a is preferred or if the decision is neutral, leave a as it is.

If the criterion used is the circle test and if the circle
used is the circumeircle of one of the triangles containing the edge
e, then it is not necessary to do an initial test for Q being strictly
convex since the correct decision will be made anyway. That is, if
Q is not strictly convex, then the circumcircle of one triangle will
not enclose the vertex of the other triangle so the decision will be
not to swap the edge e.

An internal edge of a triangulation T will be called locally
optimal if application of the local optimization procedure to it would
not swap it.

Figure 3-5. The Neutral Case for the Thiessen Region Criterion
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3.2	 GLOBAL CONSEQUENCES OF THE LOCAL OPTIMIZATION PROCEDURE

The local optimization procedure has a number of consequences
that are useful in suggesting, and proving properties of, a variety
of possible triangulation algorithms.

3.2.1	 A Linear Ordering of Triangulations

Let S be a set of n points in the plane and a.et J'denote
• the setof all triangulitiona of S. As has previously been noted,

all triangulations T* J" have the same number of triangles, say nt.

With each Tcd' associate an indicator vector of n t components
constructed as follows: Determine the measure of the smallest angle
in each of the nt triangles of T and sort these angular measures in
nondecreasing order. The triangulations in.3r can then be linearly
ordered by the lexicographic ordering of their associated vectors.

3.2.1.1	 Theorem. Lrj T be a triangulation of a finit point set
S. Lr& e be an internal edge of T. Suppose aoplicgtlon of the local
optimization Rroe dure to a leads to a swan, renlacina a by a new _edge
e', and thus producing a new triangulation T' gL S. Z= T < T'; i-e-,
T' strictly follows T in the linear ordering defined above.

Proof. Let v be the indicator vector for T. The measures
of the smallest angles in the two triangles in T sharing the edge e
occur as two of the components of v, say vj and vk , with 3 < k and
thus vj S vk. Since a swap was made when a was tested, the smallest
angles in both of the new triangles of T' sharing the edge e' must
be strictly greater than vj. It follows that the indicator vector
v' for T' strictly follows v in lexicographic order and thus T < T'.1

This theorem can be used to prove finite termination for
a variety of possible triangulation algorithms that repeatedly apply
the local optimization procedure to all internal edges of a sequence
of triangulations. Since there are only a finite number of possible
triangulations of a point set S and each swap produced by the local
optimization procedure causes a strict advance through a linear ordering

•	 of the triangulations, it follows that after some finite number of
swaps a triangulation T* will be reached such that each internal edge
in T* will be left unswapped when tested by the local optimization

•	 procedure; i.e., all internal edges are locally optimal.

3.2.1.2	 Theorem. All internal edges of a triangulation T jaf_g
finite point set S are locally optimal if and only if ng point of S
is interior to any circumeirele of a triangle of T.

Proof of "if' , . Assume no point of S is interior to any
circumcircle of a triangle of T. Consider the application of the local
optimization procedure to any internal edge a in T. Let f and g denote
the two triangles sharing the edge e. Let d denote the vertex of g
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opposite to edge e. By hypothesis d is not interior to the circumcircle
of triangle f. Thus the local optimization procedure will not swap
e; that is, a is already locally optimal.

Proof of "only if". Assume all internal edges of T are
locally optimal. Suppose the theorem is false; i.e., suppose there
is a triangle f in T with vertices a, b, and c and circumcircle K such
that there is a point p of S interior to K.

Without loss of generality assume edge ac is the nearest
edge of ,& abc to p as in Figure 3-6. Denote the perpendicular distance
from ac to p by 6. Among all triangles of T, whose circumcircle contains
p as an interior point, assume without loss of generality that none

	 dft.a

is at a distance of less than 6 from p.

Since p is on the opposite side of ac from b, the edge
ac is not a boundary edge of T. Thus there is another triangle, say
Dacq, sharing the edge ae. The vertex q cannot be interior to the
circle K as this would contradict the hypothesis that edge ac is locally
optimal. Thus q is on K or exterior to K.

Without loss of generality, assume edge eq is the closest
edge of 0 acq to p as in Figure 3-7. Note that the distance from eq
to p is less than 6. Thus a contradiction will be reached if it is
shown that the circumcircle K' of A acq contains p as an interior point.

Figure 3-6. Theorem 3.2.1.1
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Figure 3-7. Theorem 3.2.1.1

If q is on K, then K' = K, and so p lies interior to P.
If q is outside K, then K' intersects K only at a and c and encloses
all of the interior of K to the right of ac in Figure 3-7. In particular
K' encloses p.•

3.2.2	 the Global Thiessen Triangulation

The notion of Thiessen regions and an associated triangulation
were defined for strictly convex quadrilaterals in Section 3.1.3.
The same definitions can be applied to any finite set of points in
the plane. First the Thiessen region surrounding each point can be
determined. Then line segments can be drawn connecting points that
are strong Thiessen neighbors. This will provide a polygonal grid.

For points in general position, the grid will in fact consist
of triangles. Any polygon of the grid that is not a triangle will
have all of its vertices on a circle and all nonadjacent pairs of vertices
will be weak Thiessen neighbors. Any such k-point polygon can be triangulated
by connecting any k -3 pairs of its vertices as long as no crossing
lines are drawn. A triangulation in which all strong Thiessen neighbors
are connected will be called a Thiessen triangulation.

3.2.2.1 Lg=. LgJ S be a set pf n points in the plane and let
Sbe a subset of S. Iwo points of that are Thiessen neighbors in
S remain so in and if they are strong Thiessen neighbors in S they
remain strgna Thiessen neighbors in %

Proof. Consider the effect of removing one point, say
p, from S, leaving a subset S'. The only change that takes place in
transforming the Thiessen regions for S to form the Thiessen regions
for S' is a redistribution of the part of the plane that was the Thiessen
region for p. This region will be partitioned, with various portions
being absorbed into the neighboring Thiessen regions. In this process
no boundaries between pairs of remaining Thiessen regions are shortened.
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Thus neighbors remain neighbors and strong neighbors remain strong
neighbors. Clearly the same is true for the removal of any number
of points from a finite set, as the removals can be done one at a time.•

3.2.2.2	 Theorem. All internal _ edges of a triangulation T of as
finite aoint not S are locally optimal if and only if T is a Thiessen
triangulation of S.

Proof of ' c if". Assume T is a Thiessen triangulation of S.
Let a be an internal edge of T connecting vertices a and c and belonging
to triangles Aabc and Aeda. If the quadrilateral Q = abed is not strictly
convex, then a cannot be swapped and is thus locally optimal.	 ""

Consider then the case of Q being strictly convex. By 	 =
hypothesis, a and c are Thiessen neighbors in S. By Lemma 3.2.2.1 they
are also Thiessen neighbors relative to the point set {a, b, c, dl. With
the quadrilateral Q = abed being strictly convex, this implies a is
locally optimal.

Proof of "only if". Assume all internal edges of T are
locally optimal. Suppose the theorem J.a false. Then there is some
pair of strong Thiessen neighbors in S, say points p and q, that are
not connected by an edge in the triangulation T.

Define B to be the polygonal curve whose constituent line
segments are the segments that occur as edges opposite vertex q in
those triangles that have q as a vertex. If q is not a boundary point
of T, then B is a closed polygon with q in its interior and p lying
exterior to it. Clearly a line segment from p to q would intersect B.

If q is a boundary point of T, then B is an open polygonal
curve with end points on the boundary of T at the two points immediately
adjacent to q on each side of q along the boundary. Although in this
case B does not surround q, it still follows that pq must intersect
P owing to the convexity of the region covered by T.

Since p and q are strong Thiessen neighbors in S, there
can be no other points of S on the line segment pq. Thus the intersection
of pq with B is not at a point of S on B but must be strictly between
a pair of points of S on B, say points r and s.

Thus the triangle Agrs is a triangle of T having the property
that r and s are on strictly opposite sides of Vq and p and q are on
strictly opposite sides of Fs, as is illustrated in Figure 3-8. By hypo-
thesis, all internal edges of T are locally optimal. By Theorem 3.2.1.2
this implies that point p is not in the interior of the circumcircle K of
tlgrs. From the equivalence of the circle test and the Thiessen criterion
for strictly convex quadrilaterals, this would imply that p is not a
strong Thiessen neighbor of q relative to the point set 1p, s, q, ri.

By Lemma 3.2.2.1, however, p and q are strong Thiessen
neighbors relative to {p, s, q, r} since they are strong Thiessen neigh-
bors in S. Thus a contradiction has been reached.1
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Figure 3-8. Theorem 3.1.2.2

.3.3	 MCLAIN'S TRIANGULATION METHOD

The triangulation method described in McLain (1976) builds
its grid one triangle at a time in such a way that each triangle con-
structed is a triangle of the final grid. This is in contrast to methods
that involve triangle modification steps such as are used in Section

2,2, in Lawson (1972), and by Frank Little of the University of Utah
CAGD group.

The paper, McLain (1976), with the subsequent errata, leaves

open the question of the characterization of the grid the algorithm
produces. We find that the results of the preceding sections can be

used to show that the grid produced by McLain's method is in fact a
Thiessen grid.

Let S be a set of n points. Define To to be a single edge
belonging to some Thiessen Lriangulation for S. F Dr example, 1 0 could

be a boundary edge of the convex hull of S. For k > 1 define T k to

be a configuration of k triangles that is a subset of some Thiessen

triangulation of S and contains Tk-1 as a subset. In general, the
configurations Tk are not necessarily convex.

Given some Tk , how can one more triangle of a Thiessen
triangulation of S be found to advance to Tk+1?

Let ab be an edge belonging to just one triangle, saylabc,
•	 in Tk . Let Sk be the subset of S consisting of the points lying on

the opposite side of ab from c. (If there are none, then try another
edge as ab or terminate.)

From our inductive assumption that Tk is a subset of a

Thiessen triangulation of S, there must be a point p in S k such that
adjoining Aabp to T k gives a configuration T k+1 that is also a subset

of a Thiessen triangulation of S.

by Theorems 3.2.1.2 and 3.2.2.2 we know that such s triangle,
d abp, must not contain any points of S k in its interior. ouch a triangle
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is ,just what is selected by McLain's method, since he selects p such
that the signed distance from ab of the center of the circumcircle
of ,dabp is the algebraically smallest possible among all choices of
p in Sk. The signed distance from ab is positive on the side of ab
opposite to c.

3.4	 LIMITS ON GRID CHANGES WHEN ADDING A NEW POINT

This section presents results that limit the amount of
edge testing needed in algorithms such as ours in Section 2.2 that
transform from the Thiessen triangulation of one point set to that
for the set augmented by one new point.

Let Sn-1 be a set of n-1 points in the plane. Let p be
a point not in Sn-1 and define Sn 2 Sn-1 U j p }. Let Tn_1 be a Thiessen
triangulation for Sn-1-

Given Tn_1, an initial triangulation Tn (1) for Sn can be
constructed by inserting all edges that connect the new point p to
points of Sn-1 without crossing edges already present in T;_1. A special
case arises if p falls on an edge, say ac, already present in Tn_1.
Then the edge ac must be replaced by the two edges ap and pe. For
our theoretical discussion it will be easier to assume p does not fall
on an edge of Tn_1. The case of p arbitrarily close to an edge of

Tn_1 is of course permitted, and analysis of this case can be used
to Justify the replacement of ac by ap and pc.

An edge a in a triangulation will be called converged if
it is locally optimal in the present triangulation and if in addition
it can be proved that no sequence of applications of the local optimiza-
tion procedure to the various edges could lead to a decision to swap e.

Assuming p does not lie on any edge of Tn-1, it will be
shown that all of the initial edges inserted connecting p to points
of Sn-1 are converged. Any edge opposite to p in a triangle must be
tested once using the local optimization procedure. If it remains
unchanged after testing, then it is converged. If it is swapped by
the procedure, then the new edge introduced is converged and the two
edges opposite p in the two new triangles must each be tested.

3.4.1	 Theorem

ASAUM p is strictly outside the convex hull of Sn_1 =4
Tn (1) is formed h; connecting p to all boundary points of Tn_1  that
can bg reached without croasi.n any edges of TA-1 . Then all of the
new edges are converged.

Proof. Let pq be a new edge connecting p to a point q
on the boundary of TA-1. If in the course of triangulating Sn it is
ever to be decided to swap pq for some other edge ab, then a and b
must (at least) be points of Sn-1 such that a and b are on strictly
opposite sides of pq and p and q are on strictly opposite sides of a'b.
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This is impossible since the line segment ab could not
pass outside the convex hull of Sn-1 and thus could not intersect pq
strictly between the boundary point q and the point p which is exterior
to the convex hull of Sr_1. •

3.4.2	 Theorem

Assume p ia interior to the convex hull of Son-,  and in
fact interior to some triangle Aabc 2L Tn-1. Asnume Tn( 1 ) is formed
by connecting p J^a a, b, Md c. These three new edges are converged.

Proof. Since Tn_ 1 is a Thiessen triangulation of Sn_1,
the circumcircle K of Aabc contains no points of Sn_1 in its interior.
If in the course of triangulating Sa-it is ever decided to swap pa,
for instance, for !3o lie other edge, rs, then r and s must not be interior
to K, r and s mutt be on strictly opposite sides of'pa, p and a must
be on strictly opposite sides of Fs, and a must be strictly outside
the circle K' through r, o, and s (see Figure 3.9).

Partition circle K' into the three arcs rp, ps, and sr.
Note that arc rp intersects circle K since p is inside .K and r is on
or outside K. Call this intersection point r'. Similarly, arc ps
intersects circle K, say at a point s'. Then are r ps' of K' is inside
K oecause p is inside K and r'&,d s' are intersection points of K'
with K. It follows that are s'srr of K' is outside K. The are of
K between s' and r' that lies inside K' contains the point a. Thus
it is impossible for a to be outside K' as it must be for pa to be
swapped. •

3.4.3	 Theorem

L&. Tn(i) be a triangulatign of Sn = Sn-1 UIp1. Lftj Acbp
an Aabc bp, adjacent triangles of Tn i and assume Aabc was	 a
triangle of Tn_1. SuQ2ose application of the local optimization procedure
I a ge Fe leads to a swan, replacing be DI ba. Then edge pa is conversed.

Proof. Note that the symbols, a, b, and c do not necessarily
denote the first vertices to which p was connected as was the case
in Theorem 3.4.2. The notation for this theorem was selected, however, to
permit the proof to be identical to that of Theorem 3.4.2 (see Figure 3.10).1
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Figure 3-9. Theorem 3.4.2

Figure 3-10. Theorem 3.4.3

3.5	 CONCLUSIONS

Triangular grid construction is certainly not as well understood
as sorting of scalars, but at least a general notion of what to expect

in running time, storage usage, and properties of the final triangulation
is now available. Thus an algorithm with an 0(n 2 ) time estimate must
be regarded as inefficient except possibly for small n. There remain
a wide variety of possible triangulation algorithms with time estimates

in the neighborhood of 0(n 4/3 ). It will require more time, experience
and direct comparative testing to sort these out.

C 1 interpolation on triangles is still very ad hoc. Three
different methods are used by Akima (1975), McLain (1976), and the

present paper. It appears that our method requires the least amount

of auxiliary stored information per node (two first partial derivatives
per node) and the fewest number of operations per interpolated value
once the auxiliary nodal information has been computed and stored.
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Direct comparative tests would be needed, however, to assess accuracy
and actual execution times.

There is much scope for additional work on this problem,
including generalizations such as smoothing instead of interpolation,
the introductions of constraints, and permitting the domain of the
independent variables to be the surface of a sphere or three-dimensional
space instead of the plane.

e
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