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small   parameter   def ined  in   Appendix A 
o r i f i c e   a r e a  (7rd2/4) 
sound  pressure   l eve l  
time 
t ime   va r i ab le   de f ined   i n   Append ix  A 
r a d i a l   p o l a r   a n d   a z i m u t h a l   a c o u s t i c   p a r t i c l e  
veloci ty   components  
volume o f  r e s o n a t o r   c a v i t y  
r e s o n a t o r   s p e c i f i c   a c o u s t i c   r e a c t a n c e  
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SUMMARY 

A semi-empirical fluid mechanical model of the acoustic be- 
havior of Helmholtz resonators is presented which predicts impe- 
dance as  a function of the amplitude and frequency of the  incident 
sound pressure field and resonator geometry. The model assumes 
that the particle velocity approaches the orifice in  a spherical 
manner.  The incident and  cavity sound fields are connected by 
solving the governing oscillating mass  and momentum conservation 
equations. The model is in agreement with the Rayleigh slug-mass 
model at low values of incident sound pressure level. At high 
values, resistance is predicted  to be independent of frequency, 
proportional to the square root of  the amplitude of the  incident 
sound pressure field, and virtually independent of resonator geometry. 
Reactance  is  predicted to depend in a  very complicated way upon 
resonator geometry, incident  sound pressure level, and  frequency. 
Nondimensional  parameters  are  defined  that divide resonator impe- 
dance into  three categories corresponding to low, moderately low, 
and  intense  incident sound pressure amplitudes. 

The two-microphone method was used  to measure the impedance 
o f  a  variety of  resonators. The data were used  to  refine and verify 
the  model. 

vi 
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1. INTRODUCTION 

Helmholtz resonators are  currently  being used as  devices to 
control  the  intense sound fields generated within jet  engines. Des- 
pite  its  extensive application, the acoustic behavior of the Helmholtz 
resonator  is not well understood.  As  part of the NASA Lewis  Research 
Center  Basic  Noise Research Program, a fluid mechanical model has 
been  derived  describing  the  acoustic  behavior of the Helmholtz reson- 
ator as a function of resonator geometry, incident  sound  pressure 
level  and  frequency. 

Rayleigh' credits Helmholtz as the originator of the first 
theoretical  analysis describing the  acoustic  behavior of small cavity- 
backed  resonators - appro riately  called  today  the Helmholtz resonator. 
In a recent paper, Junger' reviewed briefly the historical use of the 
Helmholtz resonators. Apparently, they  were used by  the  Greeks to 
provide  for a reverberation time  in their open-air theaters. They 
were  also  used  in Swedish and Danish churches as  early  as the thirteenth 
century. 

Rayleigh  predicted  the  impedance of cavity-backed orifices  by 
using  the concept of lumped  elements  in a simple slug-mass mechanical 
oscillator  analogy.  His model is  essentially non-fluid mechanical 
but  predicts  quite  accurately resonance frequency when an  empirical end 
correction is added  to  the  slug  mass.  Rayleigh's derivation is quite 
straight-forward. He assumed that the mass contained in an 
orifice of thickness T *  and  diameter  d*  moves  as a solid  body when 
excited  by an incident  sound  field. Crandal13 was one of the  first 
to  use fluid mechanical concepts to analyze  the  behavior of the  sound 
fields near orifices. He solved for the friction resistance for  the 
case of very  long  thin orifices (i.e.,  by assuming  that  the flow 
within  the  orifice is viscously fully-developed, one-dimensional, and 
excited by an oscillatory  driving  pressure  gradient  that  is  independent 
of  the  orifice  axial coordinate. In a later study, Ingard4 modified 
Crandall's solution by  including  additional  terms due to frictional 
losses  over  the wall containing the  orifice.  Based on both  Crandall's 
earlier  work  and on further experimental  and analytical studies, Ingard 
derived  the following approximate prediction of the  impedance of  Helm- 
holtz resonators exposed to weak sound waves 

The impedance ,  as predicted by Eq. (l), is c o n s t a n t   i n d e p e n d e n t  
o f   t h e   a m p Z i t u d e   o f   t h e   i n c i d e n t   s o u n d   p r e s s u r e  for a specified fluid, 
sound frequency, and resonator geometry. Herein this will be called 
"linear"  impedance.  In 1935, Sivian5 observed  that  at high sound 
pressure amplitudes, the impedancesof   HeZmhoZtz   resonators   are   no t  
c o n s t a n t   b u t ,   i n s t e a d ,   a r e  s t r o n g Z y  a f f e c t e d   b y   t h e   a m p Z i t u d e   o f   t h e  



i n c i d e n t  sound pressure. Herein, this will  be called  "nonlinear" 
impedance. Sivian observed experimentally and confirmed theoretically 
that  the  acoustic resistance of resonators are, at sufficiently high 
sound pressures, linearly proportiona2 to the acoustic particle vel- 
ocity in  the  orifice.  Sivian's studies prompted a variety of theoreti- 
cal and experimental-studies to understand and  predict the behavior 
of Helmholtz resonators at high sound pressure levels. Mellin6 has 
recently reviewed the historical development of most of this work. 
In terms of predicting the nonlinear behavior of Helmholtz resonators, 
the  work of Ingard  and Ising', Sirignanoe,  Zinng and Hersh and 
Rogers"  are  particularly  important. 

Ingard  and  Ising conducted a detailed experimental investigation 
of the nonlinear behavior of  an isolated orifice.  By measuring simul- 
taneously  the  amplitude  and  phase of the sound pressure within the 
cavity  and  the  particle  velocity within the orifice (using a hot wire 
apparatus)  they  concluded  that  for low cavity sound pressure levels, 
the orifice resistance and reactancewere in essential agreement with 
that  predicted  by  Rayleigh's slug-mass model. At high  cavity sound 
pressure levels, the measurements showed that the orifice resistance 
varied ZinearZy with orifice  (centerline) particle velocity; the 
measurements also showed that the orifice reactance was very insen- 
sitive to  the  cavity sound pressure level decreasing at the very high- 
est  measured  cavity  sound pressure levels to  roughly one-half its 
linear  value.  Ingard  and Ising interpreted the orifice resistance 
data in  terms of Bernouilli's Law suggesting that  the flow behavior 
through  the orifice is quasi-steady. The hot-wire measurements 
indicated  that  at  these high sound pressure levels, the flow separates 
at the orifice forming a high velocity jet. Thus during one half 
cycle, the flow incident to the orifice is irrotational, b u t  is highly 
rotational (in the form of jetting) after exiting from  the orifice. 
During  the  other half of the cycle, the flow pattern is reversed. 
The  loss of  one-half of the reactance at these high pressure  levels 
was accounted for by assuming that one half of the end corregtion 
is "blown"  away  by  the  exiting  jet (in their experiments ?/d<<l 
hence  from Eq.(l) most of the reactance is due to  the  end  correction). 
Ingard and Ising  also measured the particle velocity  as a function of 
axial  distance  from  the  orifice. They found that  the inflow velocity 
rapidly  decayed  to  very small values at distances of about  two to 
three  diameters  from  the  orifice. 

Initially Sirignano and  later Zinn, recognizing that  Rayleigh's 
slug-mass model was incapable of accounting for the jetting of fluid 
from  the orifice, used  fluid mechanical concepts to predict  the be- 
havior of the Helmholtz resonator. To simplify their models, they 
assumed  that  the characteristic dimensions of both  the orifice and 
cavity  are  very much smaller than the incident acoustic wavelength 
and, further, that the acoustic flow through the orifice is one- 
dimensional, incompressible, quasi-steady, and calorically perfect. 

Both authors base  their models on an integral formulation of 
the conservation of mass  and momentum applied to  two control volumes, 
one  being the volume  bounded  by  the orifice inlet  and outlet surfaces 
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and the other the  cavity. To solve these integrals, they  used the 
method of successive approximations with the first order solution 
corresponding to the linear case of very small sound pressures inci- 
dent to an orifice. The orifice nonlinear behavior  is  introduced 
through the higher order terms and represents only a second order 
approximation to the (linear) first order  solution.  Thus  their 
conclusions apply only to weakly nonlinear acoustic pressures and not 
to  the  intense sound pressures existing within rocket chambers or 
jet engines, the intended application of their  models. 

Hersh and Rogers assumed that the acoustic inflow in the  immediate 
vicinity of an orifice can be modelled as a locally spherical flow. 
Near the orifice, the particle flow is  to a first approximation, unsteady 
and incompressible-referred to  as  the  near field. A n  analytical 
model was presented of the behavior of orifices exposed  to  intense 
sound pressure fields which showed that orifice impedance  to be 
dominated  by particle flow nonlinearity. This model establishes ex- 
plicitly the quasi-steady behavior of orifices exposed  to  intense 
sound  fields. 

The approach used by Hersh and  Rogers  is  applied in Section 2 
below to derive a semi-empirical fluid mechanical model of the non- 
linear  acoustic  behavior of Helmholtz resonators. In Section 3 ,  ex- 
perimental data, obtained using  the two-microphone method to measure 
resonator impedance, is  used  to  both  support  and  verify  the  model. 
The principal findings of the study are  summarized in Section 4 .  

2 .  FLUID MECHANICAL MODEL 

A fluid mechanical model of the behavior of Helmholtz resonators 
is  described  below. The model has been idealized  sufficient to permit 
mathematical solution without compromising important  physical character- 
istics. The derivation is divided  into  two categories, one correspond- 
ing  to weak or  moderately weak incident  sound fields and  the  other  to 
very  intense  incident  sound  fields. 

The model  is  based on the following key assumptions: 

(1) Sound waves approach the neighborhood of the resonator ori- 
fice in a spherical manner. The three-dimensionality of the  sound 
field  will account for the large changes in acoustic particle velocity 
measured by  Ingard  and  Ising.  For  this assumption to be valid  the 
orifice diameter mu;t be very small.relative to the  incident  sound 
wavelength (i.e.,  d<<X*- orifice geometry is defined  in  Fig. 1). 

(2)  The acoustic pressure and  density are adiabatically related. 
Further, the incident sound is simple harmonic. 

( 3 )  The amplitude of the incident  acoustic pressure is small 
compared to the ambient pressure. 

3 



2.1 Approach 

Consider the special case of a sound wave approaching a resonator 
with its wavenumber k perpendicular to the plane surface containing the 
orifice (i.e., the cross-hatched surface shown in Fig. 2a). From  this 
and assumption (1) above, the incident sound particle velocity field 
near the orifice is modelled as spherical and  independent of the 
azimuthal angle 9. A sketch of the flow is shown entering  the resona- 
tor cavity in Fig.  2b. The principal advantage of the model i s  its 
simplification of the  governing equations of motion. Its principal 
disadvantage is its inability to accurately  model the particle velocity 
entering the resonator cavity. This is illustrated in  Fig.  Zb*wherein 
the spherical inflow model is singular at the virtual origin r=O; 
deviations from  a  truly  spherical flow are required in order to permit 
the flow to enter  the orifice in an axial manner. To avoid this sin- 
gularity,*-t$e  (spherical) flow field is  truncated at a hemispherical 
surface r-Le defined such that at this surface the particle volume 
flow rate is  equal  to  the actual particle volume flow rate entering 
the  cavity.  The consequence of this limitation is that  the character- 
istic surface radius L% must be determined experimentally. This is 
discussed in  more detail later. 

The spherical inflow model described above  is assumed to  be  valid 
only during the half-cycles corresponding to particle inflow.  The hot- 
wire measurements conducted by Ingard  and  Ising showed that  at moderate 
and  higher  sound pressure amplitudes the outflow particle velocity 
field  separated within the orifice forming a  highly rotational jet. 
They  further  observed the particle flow to  be symmetrical with respect 
to inflow and  outflow. Thus a solution valid during the inflow half- 
cycle should via conservation of particle mass into and out of the 
cavity be  valid  throughout the cycle. 

The background  material described above provides the basis for 
the  following  approach.  First continuity and momentum conservation 
equations  governing  the motion of a harmonically driven spherically 
symmetric particle inflow are derived. Second, the resulting equations 
of motion are normalized by appropriately scaling  the dependent and 
independent variables. 'The resulting equations are then simpltfied 
by retaining only the  important  terms.  Separate  equations o f  motion 
are  then  derived for the  "linear" case (constant or almost constant 
impedance)  and  the  "nonlinear" case (variable impedance). Third, 
the equations of motion are solved so  as  to  satisfy  two boundary condi- 
tions  imposed by the pressure field. One is that  the near field pres- 
sure must  merge smoothly (asymptotically)  into  the  harmonically oscil- 
latin%incident pressure. The other is  that  at the hemispherical sur- 
face r=L%  (see Fig. Zb), the near field  pressure  must  be  equal  to  the 
instantaneous cavity pressure. 

2 . 2  Derivation of Governing Equations .~ 

The flow field  is  assumed to consist of a steady-state part 
containing no flow and  an oscillating part.  Assuming spherically 
symmetric inflow, the conservation of oscillating mass  and momentum 
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may be written approximately 

where ( ) I  denotes fluctuating  terms. 

Equation (2c) shows that  the  pressure  gradient  in  the 8 
direction is proportional to  p*which  is quite small for  most  fluids 
of  interest (viz.  air). Hence the  momentum  balance  in  the 9 direction 
will be  ignored. 

Equations (2a,b) can be simplified by proper normalization of 
the  various  terms  and  retaining  only  those of importance. The idea 
here is  to  try  to  anticipate the order-of-magnitude of the  changes of 
the various terms in order to rank order their relative importance. 
To start with, the  .amplitude o f  the incident sound field  Pi*is 
assumed  to characterize thezcoustic pressure change external 
to the resonator orifice, Pi/C*2the  density change (recall  that the 
acoustic  pressure  and  density  are  adiabatically related),  q*the particle 
velocity change, L: the length scale and w*"the time scale. 

The selection of the magnitude of the various normalization 
quantities above requires special comment. The hemispherical radius 
L!$ is chosen to characterize the scale of the  displacement of the 
sound  particle  field near the orifice.  Because of the  spherical 
inflow assumption, the behavior of the  particle  displacement L: will 
be determined  indirectly  from measurements described  in  Section 3 .  
The time scale w*"is obvious  as the response of the cavity,is driven 
by  the harmonic incident sound  field. The selection of  Pi and q* is 
based on the  experimental findings of Ingard  and  Ising. Their experi- 
mental data showed that two  distinct regimes exist  depending upon 
the  amplitude Pi*Of the incident  sound  field. For sufficiently low 
values of Pi*(the "linear" regime wherein orifice inertial reactance 
is much larger than orifice  resistance), 

and f o r  sufficiently high values of %*(the "nonlinear" regime 
wherein orifice resistance is much larger than orifice  inertial 
reactance), 
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Introducing the nondimensional variables r, t, u,  p, p 
defined  as 

the continuity and momentum equations may be written 

The importance of the various terms  in E q s .  (5a,b) are 
determined  solely by the magnitude of their coefficients (recall  that 
the  dimensionless  terms have been normalized to  be  of  order unity). 
TO rank  order them, the  governing  equations  are  divided  into 
the linear regime where Eqs.(3a)apply and  the nonlinear regime 
where Eqs. ( 3 b )  apply. 

Consider  f i r s t  t h e   l i n e a r   r e g i m e .  The small parameters E and B 
are introduced where 

E =  Pi * << I ; 2 L*e p =  - <<I 
f(JL*e) C* 

Assuming  that Le* is of the  order of d*, then .B<<1 for  most  aircraft 
applications. B is shown  below to be a measure of the  importance of 
fluid  compressibility.  Substituting  these  parameters  into  the 
continuity and momentum equations, the  behavior of weak sound waves 
approaching  the  resonator orifice may  be written 
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An examination of the various terms in Eq.  (7a) the continuity 
equation, shows that: 1) the second term, which represents the 
divergence of the volume velocity, is of order unity and is by far 
the most important term; 2) the first term, which is  a measure of 
the fluid compressibility, is very much smaller than the second term 
and 3 )  the third term, which takes into account the fluid nonlinearity, 
is the the smallest. T h u s   t h e   f Z o w   f i e Z d   f o r   t h e   c a s e   o f  weak  sound 
w a v e s   a p p r o a c h i n g   t h e   r e s o n a t o r   o r i f i c e   b e h a v e s   p r e d o m i n a t e l y  a s  
uns t eady   and   i ncompress ib l e .  This incompressible behavior of the flow 
field near the resonator orifice is consistent with the large changes 
in acoustic velocity measured by  Ingard  and  Ising. Since the changes 
occurred over a distance very much smaller than the sound wavelength, 
they represent hydrodynamic rather than acoustic changes. 

For t h e   n o n l i n e a r   r e g i m e ,  it is convenient to  introduce the 
small parameters M and  E defined as 

The restriction that M 2 < < 1  follows from assumption ( 3 )  and Eq. (3b )  
above. The restriction that E<<1 follows from the assumption that 
the  amplitude of the  incident  sound  pressure  field is large. Substi- 
tuting  the parameters into the continuity and  momentum  equations 
yield 

M 2 E  & +  ~ ( P ' u )  t M2r2u ?,f? = 0 
dt At- at" 

C o n s i s t e n t   w i t h   t h e   Z i n e a r   r e g i m e ,   t h e   c o n t i n u i t y   e q u a t i o n   g o v e r n i n g  
t h e   n o d i n e a r   r e g i m e   a l s o   b e h a v e s  a s  i f  t h e   s o u n d   f i e l d  is uns teady  
and incompress ibZe .  Equation (sa) differs from Eq.  (7a) in one interest- 
ing  aspect.  The  third  term  in  Eq. (9a)which  is a measure of the 
importance of nonlinearity is larger by  the  amount  1/E  than the first 
term which is  a measure of the importance of compressibility. The 
converse is true for the linear case. Thus, the normalization for 
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the two regimes reveals an ordering among the various  terms  that  is 
consistent and, therefore, lend credence to the validity of the 
approach. 

2.3 Boundary  Conditions 

The governing equations of motion must satisfy two boundary 
conditions both of which are  imposed upon the fluctuating pressure 
field during the half cycles corresponding to particle flow into 
the  cavity. The boundary conditions provide the connection missing 
in  previous studies between the instantaneous pressure within the 
resonator cavity and the harmonically oscillating driving pressure 
incident to the resonator orifice.  One of the  boundary conditions 
requires the near field pressure  to merge smoothly  (asymptotically) 
into  the  incident  pressure. In dimensional terms, this  boundary 
condition is written as 

f -+- 

In nondimensional terms, Eq.  (loa) becomes 

Using  the  Ingard  and  Ising hot-wire measurements as  a guide, r*= m 

corresponds practically to a radial distance of about  three  orifice 
diameters. Thus, when r*>  3d*the oscillating pressure  field will be 
assumed to  be outside the near field  influence of the  orifice. 

The other  boundary condition is considerably more  complicated 
principally  because  of difficulties associated with the spherical 
inflow model. This boundary condition requires the fluctuating near 
field  pressure  at the hemispherical surface r*,=,Lf (recall  that  at 
this surface the  particle  volume flow rate 2 7 r k  q  is  equal to the 
actual volume flow rate entering the resonator cavity)  to  be  equal  to 
the  instantaneous  cavity  pressure. The connection between  the time 
pressure  history of the cavity pressure  and the particle flow rate 
into  the  cavity  follows  immediately  from the adiabatic  relationship 
between the  cavity pressure and densitywritten in dimensional terms, 

where 27rLe  q(r=L% ,$) is  the  instantaneous  volume  velocity flow rate 
entering  the cavity volume V? The negative sign is  used  because q* 
is negative for  inward  directed  spherical flow (see Fig. 2b). Using 
E q .  ( 4 )  to nondimensionalize E q .  (lla) yields 

* 2 *  
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There  are separate boundary  conditions for the  linear and 
nonlinear regimes depending upon the relationships  between Pi*and q* 
given  by  Eqs. (3a)and  (3b). For t h e  Z i n e a r  r e g i m e ,  the nondimensional- 
ized  boundary condition is 

For t h e  nonZinear  r e g i m e ,  the nondimensionalized  boundary condition is 

Equation (13a) can be rewritten in  a more convenient  form - this will 
be clear later-by replacing q*by j m f r o m  Eq. (3b)and using Eq. (8) 
to yield 

There  is  one limitation to  the derivation of the  cavity  pressure 
boundary  conditions  described  by  Eqs. (12) and (13) that  must  be dis- 
cussed.  Recall  that  in  their derivation, the  cavity  pressure responds 
both  adiabatically  and  instantaneously (i.e., hydrodynamically) to 
the  particle voZume fZow r a t e  entering  the  cavity.  This  means that 
the  cavity  pressure  cannot distinguish different spatial  distributions 
of entering  particle flow (e.g. spherical or axial).  For application 
to  the  proposed  spherical inflow model, angular  effects  in  the 8 direc. 
tion associated  with  boundary  layers  over  the  side  walls  and orifice 
(see Fig. 2b) will  have  to  be  accounted  for b e f o r e  application of 
Eqs.  (12)  and (13). This  will be discussed  in  more  detail in Sections 
2.4 and 2 . 5 .  

2.4 The Linear  Regime 

The solution to  Eqs. (7a) and (7b) subject to  the  boundary condi- 
tions specified  by  Eqs. (lob) and (12 ) describe  the  behavior of 
Helmholtz resonators exposed to weak or  moderately weak sound  fields. 
In the derivation that follows, the effects of frictional  losses due 
to the  viscosity of the flow near and within the orifice gre assumed to 
be inverselyproportional  to  the square root of Re(=JL:!/v, a char- 
acteristic  length  based  Reynolds  number). This assumptlon is  based on 
the recent study of the acoustic behavior of orifices  by Hersh and 
Rogers, which showed that the retarding action of the  fluid  viscosity 
acts, for a  given  driving excitation pressure, to decrease  the magnitude 
of the acoustic  velocity  pumped through an orifice by an amount propor- 
tional  to the local  boundary layer displacement thickness  along  the 
orifice side  walls.  This  is  equivalent  to  assuming that the oscillating 
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boundary  layer  f low i s  laminar .   Adoption  of   these  assumptions w i l l  
r e s u l t   i n  a p a r t i c l e   i n f l o w   t h a t  i s  compa t ib l e   w i th   t he  cav i ty  
pressure   response   boundary   condi t ion   def ined  by Eq. (12) .  Recall 
t h a t   i n   t h e   d e r i v a t i o n   o f   t h e s e   b o u n d a r y   c o n d i t i o n s ,   t h e   s p h e r i c a l  
p a r t i c l e   - i n f l o w  was assumed t o   b e   i n d e p e n d e n t   o f   t h e   a n g l e  0 .  
Incorpora t ing   the   above ,   Eq . (7b)  may b e   r e w r i t t e n  

Here K i s  a c o n s t a n t   t h a t  w i l l  be   eva lua ted   expe r imen ta l ly .   Equa t ions  
(7a)and  (7c) a re  f u r t h e r   s i m p l i f i e d  by r e t a i n i n g  terms t o   o r d e r  E 
( s i n c e  f3<<1, t h e  e f f ec t s  of  compressibil i ty  would  only  weakly a f fec t  
resonator   behavior -hence  a re  i g n o r e d )   t o   y i e l d  

L (r2u)=o 
Jr 

I n t e g r a t i n g  Eq. ( 1 4 a )   w i t h   r e s p e c t   t o  r y i e l d s  

where   F ( t ;E ;Re) i s   an   a rb i t r a ry   func t ion  o f  i n t e g r a t i o n .  The nega t ive  
s i g n   a g a i n   d e n o t e s   t h a t   t h e   p a r t i c l e   v e l o c i t y  i s  d i r ec t ed   i nwards  
t o w a r d s   t h e   r e s o n a t o r   o r i f i c e .   S u b s t i t u t i n g  Eq. ( 1 5 )  i n t o   t h e  
r a d i a l  momentum equat ion   (Eq .14b)   y ie lds  

- 
The ( ' )  nota t ion   denotes   d i f fe renYt ia t ion   wi th   respec t   to  time. 
I n t e g r a t i n g   w i t h   r e s p e c t   t o  r y i e l d s  

where  T(t)  i s  a n o t h e r   a r b i t r a r y '   f u n c t i o n   o f   i n t e g r a t i o n .  From a p p l i c a t i o n  
o f  the  boundary  condi t ion  given by  Eq. ( l o b ) ,   T ( t ) = c o s ( t ) .  The boundary 
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condition given by  Eq. (12) relates the instantaneous cavity pressure 
Pc(t;Re) to  the  instantaneous  particle velocity u(r=l,t) entering  the 
orifice at r=l (recall  again  that  to  avoid the singularity  at r=O 
associated with the  spherical inflow assumption, the flow was arbi- 
trarily truncated at the hemispherical surface r=ll. To incorporate 
this boundary condition, Eq. (17) is  differentiated with 
respect to time, r is set equal to unity (r=l) and Eq.  (12)  and 
T(t)=cos  (t) substituted  to yield 

Equation (18) in  its present form is  misleading. It is  valid 
only during the half-cycles associated with particle inflow. To 
properly model the particle  velocity throughout all cycles Eq. (18) 
should  be written 

The motivation here is  that  during each half cycle the  coordinate 
system must be switched to  the appropriate side of the resonator 
orifice corresponding to  particle  inflow. While the-linear terms 
account for  this  automatically  the nonlinear term,EFF does  not.  An 
alternate explanation is  that the c o e f f i c i e n t   o f  F r e p r e s e n t s   t h e  
sy s t em  damping   wh ich   mus t   a lways   be   pos i t i ve .  

The solution to Eq.  (18a)yields directly, upon combining it 
with Eq. (15), the time and space behavior of the acoustic  particle 
velocity  field  incident to the resonator. Because of its complexity, 
only an approximate solution will be sought. An analytic solution 
is possible, however, for  the  special case E = 0.  

2.4.1 Analytic Solution for E = 0 

Setting E = 0, Eq. (18a)reduces to  the linear equation 

Only the  particular solution is of interest because the homogeneous 
solutions exhibit  a  time  decay proportional to  exp[-Kt/2&], hence 
do not contribute to  the steady-state behavior. 
The solution to the  above equation, written in complex notation where 
it  is understood that  only the real part has physical meaning, is 
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The  particle velocity follows immediately by substituting F(t) 
above  into Eq.  (15) 

The impedance of Helmholtz resonators is often defined  in  the 
literature as the (complex)  ratio of the incident driving acoustic 
pressure  (Pi=elt)  to the "orifice  area-averaged"  particle velocity 
(uori). To use  this definition, it will be necessary to relate the 
particle  velocity at the reference hemispherical surface of area 
( ~ I T L " ~ )  to  another hemispherical surface whose area is  equal  to  the 
orifice  area (1~d*2/4). Using  Eq. (15) which represents the conserva- 
tion of particle  mass  for spherical inflow, the orifice area  averaged 
particle  inflow  is 

The  impedance of the Helmholtz resonator follows immediately  to be 

From Eq. (ZZ), resonance  is  defined  to occur at zero reactance. 
This occurs at a radian frequency given by 

Equation ( 2 2 )  provides for a rigorous definition of the characteristic 
length L:. Setting  the reactance specified in  Eq. (1) equal to zero 
yields the  following well known expression for  the resonance frequency 
of Helmholtz resonators, 

* 2 - Td*' cx2 
L3re5 -- - 

4 V*dt?* 
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where 
* 

de =z+ * 0.85d* 

I + 0.625($) 

is interpreted  as  the  orifice  "effective" inertia length.  Combining 
Eq.  (23a)  and  Eq. (22 )  and  solving  for the characteristic length 
L)lf leads  to  its definition 

Thus  the characteristic length LE is  independent of the cavity volume 
V*or the details of the incident  sound  pressure level and frequency - 
it  is dependent primarily upon the orifice thickness  and  diameter. 

Equation ( 2 5 )  can be used  to  define an orifice discharge coeffi- 
cient (CD) characteristic of Helmholtz resonators operating  in the 
"linear"  regime.  The discharge coefficient is defined as the  ratio 
of  the  orifice  area-averaged  particle velocity to  the  maximum particle 
velocity  entering the cavity.  This definition is equivalent  to  that 
used  to define the  discharge coefficient of orifices exposed to steady- 
state  flow. Since the maximum  particle inflow occurs  at  the hemispher- 
ical surface (r=l), the discharge coefficient is easily  computed  to be, 

Since d".d"e for  most  orifice  geometries o f  practical  interest to the 
aircraft industry, CD  is a small number. Mellin's review paper shows 
that low  values of steady  state  discharge coefficients occur  whenever 
the  flow  through the orifice is viscously controlled. This is cer- 
tainly  consistent with the above derivation which shows the  orifice 
resistance to  be controlled by  laminar boundary-layer losses. 

With L z  defined  by  Eq. (25), the  final  form of the nondimensional- 
ized  resonator  impedance  is 

In dimensionaZ terms, the resonator impedance  is 

13 



where S=ad2/4 is the orifice cross-sectional area. Equation (27h) 
compares favorably with Eq. (l), the slug-mass model providing the 
constant K is appropriately defined  and the radiation resistance 
term  in  -Eq. (1) is  negligible. 

* +  

The amplitude  and phase difference between the incident and 
cavity sound fields are derived by combining Eqs. (12) and (21) and 
evaluating  them at r=l.  Using complex notation where again only the 
real part has physical meaning and noting that  a/at=i, then the 
instantaneous  cavity pressure PC is 

P C  

Recalling  that  the nondimensionalized incident sound  field Pi=eit, 
then the amplitude  and  phase differences between the incident and 
cavity  sound fields are 

(2  8a) 

and 

At resonance,  the  amplitude  and  phase angle differences  between 
the  cavity  and  incident sound fields simplify to 

Thus at resonance, the amplitude difference between the  cavity  and 
incident  sound  field  is due primarily to viscous boundary layer losses 
retarding  the  fluid motion near and within the orifice. 

To summarize, the classical Helmholtz resonator impedance  derived 
originally by assuming that  the particle mass within and near the ori- 
fice moves  as  a solid body (i.e., the  lumped  mass  model) upon excita- 
tion by an incident  sound field has been rederived from  fluid mechani- 
cal conservation laws. This has accomplished two  important  objectives. 
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First, it establishes the validity of the spherical inflow model 
and second, it provides a logical model to understand the nonlinear 
acoustic  behavior of the Helmholtz resonator. 

2.4.2 Weakly Nonlinear Solution 

The effects of moderate increases in incident sound pressure 
levels are modelled by E q .  (18a). An approximate solution is sought 
in terms of a regular perturbation expansion in powers of E, the 
first two terms of which are 

Collecting coefficients of the various powers of E ,  the  leading  term 
(c0=1)  is  identical  to E q .  (19) while the  terms proportional to E are 

where w;es is defined by  Eq. (23). 

For  this approach to be valid, leFl(t;Re)[<[Fo(t;Re)l. This means 
that only modest deviations from the "linear" solutions described in 
Section 2.4.1 above  are sought. This will place upper bound restric- 
tions on the magnitude of the amplitude of the incident  sound  field. 
Nonlinear solutions only for the special case w*=w:es corresponding to 
resonance will be sought. This will simplify considerably the math- 
matical details and will provide insight regarding the effects of 
nonlinearity for the most important application of the Helmholtz 
resonator, at resonance. Substituting the real part of E q .  ( 2 0 )  for 
Fo(t) into the RH$ gf Eq. (29) yields the following solution for  the 
special case of w=wres, 

where the ( - )  sign is  valid for those half-cycles corresponding to 
particle inflow and  the (+) sign for  the particle outflow. 

To predict resonator: impedance, the first harmonic  or fundamen- 
tal component o f  Eq. ( 3 0 )  is required Using standard Fourier- analysis , 
it  is straight-forward to show that the fundamental components 
are, approximately, given by 
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Combining zeroth and first-order terms, written in complex notation 
where it is understood that only the real part has physical meaning, 
yields 

For  Eq. (31)  to be valid, the constraint that IEFl(t)l<lFo(t)l trans- 
lates  into  the  following constraint on E ,  

This constraint on E can be translated directly into the following 
constraint placed on the upper bound of the amplitude of the  incident 
sound field 

where, from Eqs. (6) and (25) 

Following  the  same procedures used  in deriving the linear 
resonator impedance  defined  by Eq.  (27a), the resonator orifice-area 
averaged  impedance is, to order E, 

Expressed in dimensional terms, 

It  is clear from Eq.  (33) that the effects of moderately weak non- 
linearityare to  increase only very  slightly the resonator resistance 
and  to  decrease slightly the reactance. Following the same procedures 
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used t o  d e r i v e  Eqs. (28a ,b , c ) ,   t he   ampl i tude   and   phase   d i f f e rences  
be tween  the   cav i ty   and   inc ident   sound  f ie lds   a re  

and 

From Eqs.  (34a)and  (34b) it i s  c l e a r   t h a t   b o t h   t h e   r a t i o   o f   s o u n d  
pressure  ampli tude  and  phase  angle   differences  between  the  cavi ty  
and inc iden t   sound   f i e lds  d e c r e a s e  with  i n c r e a s i n g   s o u n d   p r e s s u r e  
Zeve Is. 

The dec rease   o f   r eac t ance   p red ic t ed  by E q .  (33) i s  i n   a g r e e -  
ment wi th   tha t   measured  by Ingard and I s ing .   Inga rd  and I s ing   be -  
l i e v e d   t h a t   t h e   d e c r e a s e  was caused by a r educ t ion  o f  e f f e c t i v e  
o r i f i c e   p a r t i c l e   i n e r t i a   l e n g t h   ( d z )   r e l a t e d  t o  p a r t i c l e   f l o w   j e t t i n g  
from t h e   o r i f i c e .  The d e r i v a t i o n  shown b e l o w   s u p p o r t s   t h i s   i n t e r p r e -  
t a t i o n .  Combining the   r eac t ance te rms   o f  E q s .  (27b)  and  (33b) y i e l d s ,  
in   d imens iona l   t e rms ,  

Now assume t h a t   t h e   e f f e c t i v e   o r i f i c e   p a r t i c l e   i n e r t i a l   l e n g t h   c a n  
be  expanded  as a power s e r i e s   i n  E s o  t h a t   t o   o r d e r  E ,  

S u b s t i t u t i n g  Eq. (36)   for   de"   in to  Eq. ( 3 5 )   y i e l d s ,  t o  o rde r  E,  

The s o l u t i o n   f o r   ( d g ) , ,  where pur,, * *  (dQ = e *C*'S* / vL;d , i s  

T h u s ,   t h e   e f f e c t i v e   o r i f i c e   i n e r t i a l   l e n g t h  (d:) i s  shown t o   d e c r e a s e  
wi th   i nc reas ing   i nc iden t   sound   p re s su re   l eve l  in accord   w i th   t he  
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measurements of Ingard  and  Ising. The reduction of (a:) suggests 
that flow nonlinearity transfersstored inertial energy  into dissi- 
pated kinetic energy - it apparently does not affect stored (cavity) 
potential  energy. 

2.5 Nonlinear Regime 

Equations (9a)and (9b) govern the behavior of Helmholtz resona- 
tors  exposed  to  intense  sou$d+fizlds. In this regime, the character- 
istic  Reynolds number Re = qLe/V  is inde endent of frequency in con- 
trast to the  Reynolds number Re = WLe * * 2  /u J: characterizing the linear 
regime.  Since  the Reynolds number is  fairly large in the nonlinear 
regime (Ingard  and  Ising measured particle speeds as high as 50 m/sec), 
the contribution of the  viscous terms will be  ignored. 

Retaining  terms only to order E, Eqs. (sa) and (9b) simplify to 

The particle  velocity follows immediately from Eq.  (37a)  to be 

whereGft;E) is an arbitrary function of integration. Substituting 
Eq.  (38)  into  (37b)  and integrating with respect to the  radial coordi- 
nate r yields 

where f(t) is yet another arbitrary function of integration.  The 
absolute  value is imposed upon G to insure  that  particle  jetting 
absorbs  acoustic  energy  throughout  the  cycle. 

N 

The  pressure p(r,t) must satisfy the boundary conditions speci- 
fied  by  Eqs. (lob)  and  (13b). Applying the boundary condition speci- 
fied  by  Eq.  (llb) , it  is clear that f (t) = cos(t). To apply the 
boundary  conditionspecified  by Eq.  (13b), Eq. (39) must  first  be 
differentiated  with respect to  time with Eq.  (13b) substituted for 
ap/at  (r=l,t)  to yield, 
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Because E q .  ( 3 9 a ) i s   n o n l i n e a r ,  it i s  n o t   p o s s i b l e   t o   r e a d i l y  
i d e n t ' i f y i t s   r e s i s t i v e   a n d  reactive components. 

The s o l u t i o n   t o  Eq. ( 3 9 a ) d e s c r i b e s   t h e  time behav io r   o f   t he  
p a r t i c l e   v e l o c i t y   e n t e r i n g   t h e   c a v i t y .  I t  i s  n o t   p o s s i b l e   t o   s e e k  
approximate  solutions  by  expanding  G(t;E) i n  powers  of E .  This  
kind  of  approach becomes s i n g u l a r   f o r   v a l u e s   o f  t = (2n-1) ~ / 2 ,  
n=O, + 1, + 2 ,  ... To i l l u s t r a t e   t h i s ,   t h e   f u n c t i o n   G ( t ; E )  i s  
expan'ded iii powers  of E ,  t h e  f irst  two terms of  which are 

S u b s t i t u t i n g  Eq. ( 4 0 )  i n t o  E q .  (39a)   y ie lds   the   fo l lowing   approximate  
s o l u t i o n n s  

I t  i s  c l e a r   t h a t   t h e   s o l u t i o n s   G o ( t )   a n d   G l ( t )   a r e   n o t   v a l i d  
nea r  t = (Zn- l ) . r r /Z;   they   a re   va l id   on ly   near  t = 2 m .  The methods 
o f   s i n g u l a r   p e r t u r b a t i o n   t h e o r y  w i l l  be   used   to  remove t h e   s i n g u l a r i t y  
r e s u l t i n g   i n   a n   a p p r o x i m a t e   s o l u t i o n   v a l i d   t h r o u g h o u t   t h e   e n t i r e   c y c l e  
( r eca l l   t ha t   Inga rd   and   I s ing ' s   ho t -wi re   measu remen t s  showed t h e   o s c i l -  
l a t i n g   o r i f i c e   v e l o c i t y   t o   b e   s y m m e t r i c a l   o v e r   e a c h   h a l f - c y c l e ) .  The 
p r o c e d u r e s   f o r   d e r i v i n g   t h e   a p p r o x i m a t e   s o l u t i o n   a r e   ( 1 )   t h e   s o l u t i o n  
given by Eq. (39) w i l l  be  assumed t o  be v a l i d   o n l y   o v e r   t h e   p a r t   o f  
t h e   h a l f - c y c l e   d e f i n e d  by (4n-l/2)~/2<t<(4n+l/2)~/2, ( 2 )  a second 
approximate   so lu t ion  w i l l  b e   d e r i v e d   v a l i d   f o r   t h e   p a r t   o f   t h e   h a l f -  
c y c l e   d e f i n e d  by ( 4 n - 1 ) 1 ~ / Z < t < ( 4 n - 1 / 2 ) 1 ~ / 2  and ( 4 n + l / 2 ) ~ / 2 < t < ( 4 n + l ) ~ r / Z  
and  (3) a t h i rd   app rox ima te   so lu t ion  w i l l  b e   d e r i v e d   v a l i d   i n   t h e   v e r y  
th in   ( i n   t ime)   r eg ion   nea r   t= (2nk l ) . r r /Z .  The method o f   s i n g u l a r   p e r -  
t u r b a t i o n   t h e o r y  w i l l  b e   u s e d   t o   d e r i v e   t h e   t h i r d   s o l u t i o n .   F i n a l l y ,  
w i th   t he   approx ima te   so lu t ion   va l id   t h reughou t   t he   ha l f - cyc le   r ange  
( 4 n - l ) 1 ~ / 2 r t s ( 4 n + l ) . r r / Z ,  t h e   F o u r i e r   c o e f f i c i e n t s   a l  and  bl w i l l  be 
c a l c u l a t e d .  The F o u r i e r   c o e f f i c i e n t s  w i l l  t h e n   b e   u s e d   t o   p r e d i c t  
resonator  impedance. 

Fo l lowing   t h i s   p rocedure ,   t he   de t a i l s   o f   wh ich   a r e   summar ized   i n  
Appendix A, t he   app rox ima te   so lu t ion  to G(t;E) i s  
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where Yo+(rl) and Y l + ( r l )  are  special functions defined 
in Appendix A.  The solution described by E q .  (42) is  used  to calcu- 
late  the Fourier harmonic coefficients a1  and  bl where 

and 

0.07 - 0.43 I n  ( E ) -  ( 2 n L e  C2) (2.55-2.63 E b) I (43b) 
V U 2  

With  the  harmonic components a1 and b l  specified, the resulting 
harmonic  component of the acoustic particle velocity, written in 
complex notation where again it  is understood that only  the  real 
part has physical meaning, is 

The relationship between  the amplitudes and relative phase o f  
the  incident  and cavity sound pressure fields are  determined  by 
combining Eqs.  (44) and (13b). The ratio o f  the cavity-to-incident 
sound pressure ampl-itudes  and relative phase is respectively 
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and 

For E 

Thus , 

Recalling  that E = ~$(U?L*)~/P; it  is clear that for very high  inci- 
dent  sound gields, I P,*l <<ePp I and +ci = 90 degrees. Further, the 
ratio IPz/Pil should vary almost linearly with E; the relative phase 
angle +ci, however, is a rather complicated function of the  parameter 
E princlpally  because of the term In (E) in the  denominator. In 
evaluating Eq.  (45b), the  term -0.43 h o w i l l  never become excessively 
large  because of the constraint that  the  amplitude of the  incident 
sound field be small relative to  the ambient pressure.  Equation  Q5a) 
provides a convenient way  to  determine  the characteristic length  Le. 

small ; 

measurements of I P?/Prl, Pi, and a* lead directly, via Eq. ( 4 6 )  , 
to predictions of the characteristic length L:. The details of these 
measurements  are  presented in Section 3. For  the  remainder of this 
derivation, L$ will be presumed  to  be known. 

* 

The resonator orifice area-averaged  impedance  follows  immediately 
from  its definition to yield 

where the  term 1/8(d+/L%) references the particle  velocity  to  the 
orifice inlet area 7rd*'/4 instead of the reference hemispherical area 
2.rrLS2. Substitution of Eq.  (43a) and (43b) for a1  and bl yields 
for the resonator resistance and reactance 
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and 

For E sufficiently small, E q s .  (48a) and (48b) simplify to 

and 

Nondimensionalized with respect to the characteristic impedance $c', 
the resonator resistance  and reactance are 

and 

Further interpretation of the nonlinear impedance as defined 
by E q s .  (50a)  and(50b)  is deferred until the experimental measurements 
leading to  the definition of the characteristic length LE are des- 
cribed in Section 3 .  
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3. EXPERIMENTAL PROGRAMS 

The two microphone method used by Deadland others has been 
applied to measure the impedance of the resonator geometries summarized 
in Table I. As shown in the Table, the range of the three  important 
test parameters (fld:  d”/D”,  d+/L*) were varied approximately one order- 
of-magnitude. The purpose of the measurement program is two-fold. 
First, it will be used to  define experimentally the  parameter K 
introduced in the derivation of the linear theory (Section 2.4) and 
the characteristic length Lg introduced in the derivation of the 
nonlinear theory (Section 2.5). Second, it will be used to improve 
and/or refine the  model. 

The two-microphone approach and the instrumentation required is 
described in Section 3.1 below. The application of the data to the 
linear and nonlinear regimes are described in Sections 3.2 and 3.3 
respectively. 

3.1 Measurement System 

A schematic of the instrumentation and  test set-up required to 
use the two-microphone method  is shown in Figure 1. The resonator 
consists of a cylindrical cavity of diameter D: depth L: and an 
orifice of diameter d*and thickness T’! 

Dean derives the following expressions for the resonator 
orifice-area averaged resistance and reactance 

and 
SPL (i) - ~ P L  (c) x*= -[ 10 20 ] cos 4 ci y y  

m* L* (51b) sin&) r3 

where SPL(i)-SPL(c) represents the sound pressure  level  difference 
(in  dB) between the incident sound field and the cavity sound  field 
and @ci represents the corresponding phase difference, The two- 
microphone method of measuring impedance requires the simultaneous 
measurement of the incident and cavity sound pressure levels and 
phase. These measurements are obtained by flush mounting  one 
microphone at  the  cavity  base  and the other flush with the wall 
containing the orifice  as shown in  Fig. 1. It is important  to locate 
the incident microphone sufficiently far from the orifice to  avoid 
near field effects (our experience shows that a separation distance 
of about 4 or 5  orifice diameters is  adequate). The microphone should 
be located sufficiently close, however, so that  the separation dis- 
tance  is small relative to the incident sound wavelength; this  is 
necessary to  insure  accurate measurement of the incident sound wave 
amplitude and  phase. 
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A schematic of the instrumentation used to conduct the 
experiments is shown in Figure 3. To generate incident sound 
pressure levels up to 160 dB, a JBL type 2480 driver capable of 
producing in excess of  10 watts of relatively "clean"  acoustic power 
is used as  the sound source. The 2" diameter driver throat  is coupled 
to the test section by means of a 2" to 4" diameter exponential ex- 
pansion, JBL type H-93. Sound pressure levels in  excess of 150 dB 
exceed the input capability of the GR 1560-P42 preamp. A 10 dB 
microphone Attenuator, GR  Type 1962-3200 has been added, which 
extends  the measurement range accordingly. 

The signal generated by the Heath 1G-18 audio generator is 
amplified by  the McIntosh MC2100 100 watt/channel power amplifier 
to power the JBL driver. The audio generator provides a tracking 
signal for the AD-YU Synchronous Filter and phase meter system. 
The 1036 system filters the two microphone input signals to  the 
tracking signal frequency 5 2.5 Hz. The AD-YU Type 524A4 Phase Meter 
reads phase angle between the signals independent of signal  amplitudes. 
The phase angle output is displayed on the AD-YU Type 2001  digital 
volt  meter. A General Radio-1564 1/10 octave filter together with a 
Heath Type IM2202 DVM is  used to record the output signals from each 
of the  two  microphones. Also the two signals are  observed on a 
Tektronix  533 Oscilloscope to visually note approximate phase and 
distortion effects. 

The output of the incident microphone channel of the synchronous 
filter is  used  as a control voltage for an automatic level control 
amplifier. This control amplifier adjusts the drive level  to  the 
power  amplifier in such a way as to keep the incident level constant, 
independent of frequency and amplitude response irregularities in 
the loudspeaker and  tunnel. 

As a convenience, a triple  ganged 5 dB per step ladder attenua- 
tor  is  used to simultaneously increase the power amplifier  drive 
level  and decrease the synchronous filter input signals s o  that the 
control loop of the automatic level control amplifier always  has 
the same gain.  This has the  added advantage keeping the  levels 
at the AD-YU Filter  input constant for all testing levels. Since 
the AD-YU Filter  displays a small amplitude-phase dependency, this 
improves accuracy as well as speed of data acquisition. A test of 
both microphones mounted flush in  the wind tunnel wall showed phase 
tracking within - + . Z 0  over a sound  pressure level range of 70-150dB. 

3 . 2  Linear  Regime 

3.2.1 The E = O  Case 

At resonance, the response of the cavity  to the incident sound 
pressure  field  was shown in E q .  (28c) to be proportional  to  the 
square root of the  Reynolds number 
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The  only unknown in the above equation is the parameter K. According- 
ly, tests were conducted to determine K experimentally.  The  test 
procedure was straight-forward. Only  those resonator geometries that 
satisf'ed  tQe constraint that ~<0.1 were considered (recall  that 
E =  6+(d$'ii'[p@(dd*)z] - the  particular value E<O .1 will be explained 
later). The geometry of the  resonators  tested are summarized  in 
Table 11. TQe garious values of K tabulated were determined  by 
measuring IPc/Pi(res at  resonance for an incident  sound  pressure 
amplitude  of  70dB. An approximate  fit  to  the data is 

Figure 4 shows IPz/Pz I r e s  to be predicted  to within 10% accuracy 
using  Eq. (52)  to predict K. 

With K specified by  Eq. ( 5 2 ) ,  the final approximate expression 
for resonator impedance, written in dimens iona2 terms, is 

Resistance Reactance 

where (de*/$) is  defined  by Eq. (2,4)+ and S*= 7rd2/4. Assuming radiation 
resistance to  be negligible and d/D<<1, the resistance as  predicted 
by  the  real  part of Eq. (53) differs from that predicted by  Eq. (1) 
by less than 10% over the range of resonator orifice  geometries 
satisfying  0.5<ryd%1.5. A comparison between predicted  and experimen- 
tal  resistance measurements is  shown  in Figure 5. The  errors  associated 
with predicting resistance from  Eq. (53) arise  from  two  separate 
sources, those  associated with the  parameter K and  those  associated 
with the  ratio (dg/$). As shown in Figure 5, Eq. (53) can be used to 
predict  the linear value  of resistance to within an accuracy of 
roughly 10%. 

* 

Equation (53) can also  be used to predict  the off-resonance 
behavior of resonators. Following  the procedures described  in Section 
2.4.1,  the  ratio of the cavity-to-incident sound  pressure amplitudes 
IP:/P<( and relative phase  angles ~$=i can be shown t o  be 
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where K is defined by E q .  (52) and U:e.s2 = ?‘$’a:. Figures 6 and 7 
summarize respectively the comparison between predictions based on 
using Eqs. (54a)and  (54b)and measured data. As shown  in the Figures, 
the comparison is  excellent. 

3.2.2 Weakly  Nonlinear Case 

Measurements of the weakly nonlinear resistance and reactance 
of five resonators are summarized in Figures 8 and 9 respectively. 
The nondimensionalized resistance data can be divided  into  two regimes, 
one in which the resistance is virtually independent of incident sound 
pressure  amplitude (say ~ ~ 0 . 1  - this is the reason only ~ ~ 0 . 1  data 
was  considered in determining the parameter K in Section 3.2.1) and 
the other strongly dependent upon it.  For ~ > 0 . 5 ,  the resistance 
values  appear to converge into a behavior dependent only upon the 
nonlinear parameter E. This  is  in agreement with the behavior predicted 
from the model governing equation (see,Eq. 18a). The damping or loss 
term  in  Eq. (18a), the coefficient of  F, is (K/&+EIFI). At very 
low values of E ,  the first term dominates in  accord with the data 
shown in Fig. 8.  For sufficiently large values of E ,  the nonlinear 
term  E[Fl  dominates  and one would  ex  ect the importance of the 
individual resonator parameters (.c*,d,D’:LT J) to become unimportant.  This 
is explicitly shown below in the following empirical curve fit  to 
the data summarized  in  Fig. 8 ,  

where 8 (dg/dT 2K/JRe represents  the orifice area  based non-dimensional- 
ized resonator  resistance at E = O .  Equation (55) differs negligibly 
from  the  real  part of Eq.  (33a) , derived on the  basis of a regular 
perturbation  exp.ansion  for  values o f  ~ < 0 . 0 1 .  For large values of E,  
however, Eq. (55) matches considerably more accurately, the measured 
data  as  shown  in  Figure 8 .  

According  to  Eq.  /33a),  the nondimensionalized reactance 
data  should decrease  with i n c r e a s i n g  incident  sound  pressure 
level  from  its  tuned resonance value of zero  at E = O .  The  decrease 
should be only a function of the nonlinear parameter E,  

The  measured reactance data is summarized in  Fig. 9. Despite the 
scatter in  the data which arises because of the extreme sensitivity 
of the  cosine  function  near ninety degrees (recall  that  at resonance, 
@ci=90 degrees),  the nondimensionalized reactance data is roughly 
dependent only upon the nonlinear parameter E .  The model 
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prediction Eq. (56) is seen in  Fig. 9 to over predict the measure- 
ments. As shown in Fig. 9 ,  a  “better“ fit to the data is 

In agreement with the resistance data shown in Fig. 8 ,  nonlinear 
effects are not important for ~q0.1. 

The main findings of this study  is that the  onset of acoustic 
nonlinearity occurs only when the parameter ~>0.1 where 
6 = 64 (&$d2 [Ff!‘?(i~fd?~] . Significant deviations from  its  linear  or 
E = O  values do  not occur until €20 .2 .  

3 . 3  ”- Nonlinear  Regime 

The derivation of the nonlinear model described in Section 2 . 5  
assumed  the characteristic length L$ was independent of both  incident 
sound  pressure  level  and  frequency. Equation ( 4 6 )  provides  a con- 
venient way to  indirectly  measure  its  value.  Rewriting it in terms 
of the resonator resonant frequency  defined by Eq. (23a), 

At resonance, where w=wres , the ratio IPE/Pi I becomes,  only  a function 
of the amplitudz of the incident  sound  pressure field. Measurements 
of the ratio IPc/PpIres  vs @(w*d*)2/PF are summarized in Figure 10. 
Although the slopes of the IPE/P,lres ti vs dfldd&)’/Pf data appear to 
be constant, they do exhibit slight variations with resonator  geometry. 
Comparing  the data shown in Fig. 10 with Eq. ( 5 8 )  yields the follow- 
ing  estimate of the characteristic length (Le), 

* *  * 

The characteristic length defined  by  Eq. ( 5 9 )  should be viewed  with 
caution because of the extremely limited*data  base  used  in its 
determination.  For example, the ratio  d/fi<l  for all of the 
resonator configurations shown in Fig.  10. 

The derivation leading  to  Eq. (59) assumes that the character- 
istic length (L*/d*) is independent of frequency. If this is true, 
then the ratio TPC+/Pll should vary  inversely with frequency as 
predicted by  Eq. (58). To  verify this, the  frequency of the 
resonator geometry having  DC1.905 cm, L*=2.54 cm, -?=.OS1 cm, d”=.Oll cm 
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(the o symbol in Fig. 10) was varisd from about 300 Hz to 650 Hz 
and  the corresponding ratios kPpxC/PiI measured. A comparison 
between measurements of IPz/Pll and predictions based on combining 
Eqs. (58)  and (59)  is shown in Fig.  11. The excellent a reement 
between prediction and measurement shown verifies that (Le/$) 8 is 
independent of both sound pressure level and  frequency. With the 
characteristic length Lg specified by Eq. ( 5 9 ) ,  the final form of 
the resonator resistance and reactance follows immediate1 from 
Eqs. (50aI and (50b). Nondimensionalized with respect to &d: they 
are 

The nondimensionalized form of Eqs. (60) and  (61) show explic- 
itly  their dependence upon the  parameter E and resonator geometry. 
A comparison between predicted  and measured resistance andreactance 
is shown in  Fig. 12 for five different resonator geometries. The 
reactance of each configuration is  "tuned"  to zero at an incident 
sound  pressure  level of 70 dB  by  proper adjustment of the sound 
frequency.  The resistance, as  predicted  by  Eq. (60 ) ,  is in excellent 
agreement with the data, thus confirming the assumptions made in 
its  derivation.  The reactance, as predicted by  Eq.  (613,  is also 
in close agreement with data as shown in Fig. 12. Also shown in 
Fig. 12 is  the close agreement between predicted(via combining 
Eqs. (45b) and (59)) and  measured  relative phase between the  incident 
and cavity sound  fields. 

As a final verification of the model, the predicted resistance, 
reactance and relative phase variation with sound frequency is com- 
pared with measurements in Fig. 93. The incident sound pressure 
level  was  maintained  at 140 dB  and  the frequency varied 
from  about  300 Hz to 650 Hz. The measured phase change with fre- 
quency  was  larger than predicted.  For example, between 300  and 650 
Hz, the measured phase  increased from 76  to 97 degrees, a 21 degree 
phase change, while  the corresponding predicted phase change is 
only about 9 degrees. The same  trend was observed for the reactance. 
Here the reactance data varied  from  approximately -2 at 
300 Hz to  +0.5  at 650 Hz in contrast with the 
predicted variation of -1.4 at  350 Hz to -0.06 at 650 Hz. 
Part of these differences may be related to nonsinusoidal 
wave form Gf the  cavity  sound  field. Observations on the 
oscilloscope showed  the  cavity wave form to be highly distorted 
when  the  incident  sound  pressure  level was 140 dB 



(the corresponding cavity sound pressure level was 129  dB at 
404 Hz). Oscilloscope traces of the incident  sound  pressure 
showed it to be reasonably sinusoidal. The measured  cavity 
phase  may contain contributions to the fundamental harmonic 
frequency  arising  from nonlinear interactions not accounted  for 
in the nonlinear model.  Since reactance is proportional to  the 
cos 4 ,  these nonlinear induced  small  errors  in phase (e.g. from 
Fig. 13, +4.6% error at f = 300 Hz and -88% error at f = 650Hz), 
strongly amplified near 90 degrees, may account for the differ- 
ences in  predicted  and  measured  values shown in  Fig. 13. Figure 
13 also shows that both  predicted (Eq.  60) and measured resis- 
tance are independent of frequency. Since the resistance is 
proportional  to sin 4 ,  the errors in phase near 90 degrees are 
unimportant. This explains the excellent agreement between 
predicted  and measured resistance. 

In reducing the data, care was taken  to  account  for  two 
serious sources of measurement error. One is phase and  amplitude 
distortion of the cavity  sound field due to  ,impingement upon the 
cavity microphone by  the  particle  velocity (see Fig. (1) during 
inflow. The second  is  flecture of the face  plate due to the 
excessively high incident  SPL's. A detailed accounting of these 
effects  is  summarized  in  Appendix B. To ensure that  the relative 
phase measurements were unaffected  by temperature increases  due to 
the  high SPL levels, a thermister probe was installed in  the  cavity. 
Temperature measurements showed negligible changes - less  than 2 
degrees  Fahrenheit  for values of Pi between 70 and 160 dB. 

The experimentally determined characteristic length (Lz) 
provides direct information on the value of the discharge coefficient 
CD which connects the  maximum particle velocity jetting at the 
orifice  vena contracta to its orifice area-averaged value.  The 
spherical  inflow model forces  the  maximum vena contracta particle 
velocity to occur at the  hemispherical surface 2.rrLZ2.  It follows, 
via  the continuity of particle  volume flow velocity, that 

Substituting Eq.  (59) for  the  ratio  Lz/d*yields 

a value remarkably close to  that measured by orifices exposed  to 
steady-state flow (see e.g., Fig. E-1  of the study  by  Rogers  and HershE). 

a I$ is clear from a comparison between Eqs. (60) and (61) that 
IR]>>lXl regardless of  the  frequency of the  incident sound (the 
constraint that E<<1 restricts the maximum value of the frequency). 

29 



Thus,  from a sound  absorp t ion   apul ica t ion   v iewpoin t ,   Helmhol tz   resona  
to r s   ope ra t e   a s   b roadband   abso rbe r s  in the   h igh  SPL range.  To c la r i f :  
t h i s ,   c o n s i d e r  a wall conta in ing   an   a r ray   o f   Helmhol tz   resonators  
exposed- to   in tense   sound.  The d r i v i n g   s o u n d   f i e l d   c o n s i s t s   o f  
b o t h   i n c i d e n t   a n d   r e f l e c t e d  waves. The f r a c t i o n   o f   i n c i d e n t  
acous t i c   ene rgy  (a) absorbed by the   Helmhol tz   resonators  is a 
func t ion   of   the   wal l   impedance   and  may be w r i t t e n I 3  

4 [(;a] 
d =  

Equation2 (60) and  (61)  re%rr;ltten in   t e rms   of  &*ma b e   u s e d   t o   e s t i -  
mate  (R)ori/pC  and (X)*or-/pC. The q u a n t i t y  cf=(Gd2 i s  t h e  
t o t a l   o r l f l c e  open  area t o  c a v i t y   a r e a   r a t i o   ( f o r   c y l i n d r i c a l   c a v i -  
t i e s ) .  I t  l s  assumed tha t   t he   a r r ay   o f   He lmho l t z   r e sona to r s   a r e  
s u f f i c i e n t l y   f a r   a p a r t   f r o m   t h z i r   n e i g h b o r s  s o  tha t   t hey   r e spond  
independent ly .  R)*ri/pC i s  inde   endent   o f   f requency   ( see  

a b s o r p t i o n   c o e f f i c i e n t  (CY) i s  v e r y   i n s e n s i t i v e   t o   f r e q u e n c y .  I t  
fo l lows   tha t   Helmhol tz   resonators   exposed   to   in tense   sound  a re  
broadband  sound  absorbers.  This i s  i n   s h a r p   c o n t   a s t  t o  t h e i r   b e -  
h a v i o r   a t  low  sound  amplitudes  where  generally I R / P C  +* [ << IX7&?[ 
except   near   resonance .  

Since ? Fig.   13)  , and I (R))gri/PC*u > > I  (X)%ri($C*oy , it i s  c l e a r   t h a t   t h e  

The use o f  Eqs.  (60)  and  (61) i n  s o u n d   a b s o r p t i o n   c a l c u l a t i o n s  
i s  n o t   s t r a i g h t   f o r w a r d .  The c o m p l e x i t y   a r i s e s   i n   s p e c i f y i n g   t h e  
inc ident   d r iv ing   sound  ampl i tude  Pp .  Wi th   regard   to   the   above  
a p p l i c a t i o n   o f  a sound wave r e f l e c t i n g  from a wa l l   con ta in ing   an  
a r r ay   o f   He lmhz l t z   r e sona to r s ,   t he   p rope r   i nc iden t   d r iv in   r e s su re  
ampli tude i s  Pi+P,*(Pp) .   Here  the  ref lected  sound  f ie ld   Pr(P1)  i s  
w r i t t e n   e x p l i c i t l y   a s  a f u n c t i o n   o f   t h e   i n c i d e n t   s y n d  $0 emphaslze 
t h e   n o n l i n e a r i t y  o f  the  Helmholtz  wall  impedance  Z(PP+Pr), 

si p, 

The q u a n t i t y  [Z*(P;+P;)] i s  the   o r i f i ce -a rea   ave raged   impzdance ,  (T 

i s  the   pe rcen t   open   a r ea   de f ined   ea r l i e r   and  U T  and u r ( P i )   a r e   t h e  
i n c i d e n t   a n d   r e f l e c t e d   s o u n d   p a r t i c l e   v e l o c i t i e s   r e s p e c t i v e l y   ( f a r  
f rom t h e   o r i f i c e ) .  Assuming t h a t   P i *  and  Pf(Pf)   are   plane  waves,   the  
p a r t i c l e   v e l o c i t i e s   a r e   r e l a t e d  t o  t h e i r   d r l v l n g   p r e s s u r e   f i e l d s   a s  
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Substituting tQese*velocity fields into Eq. (64)  and solving for 
the ratio Pr(Pl)/Pi yields 

To correctly specify P:, an iterative  approach  to solving Eq. (65) 
is required.  For  examplei  assume  that  the  driving pressure is the 
incident sound pressure P Substitute PT into Eq. (65) to predict 
Pr. Then replace Pr by P1+PF 4- and Substitute this  value  back  into 
Eq. (65) to obtain a revised estimate of Pp. Repeat  this process 
until P: becomes  virtually  constant. In this application, the 
correct driving sound pressure amplitude incident to the resonator 
orifice  is Pi+P;(PT). This value of the driving pressure amplitude 
would be used in calculating the parameter  E in Eqs. (60)  and (61). 
With regards to  interpreting the data shown in Figures 10-13, the 
proper incident driving pressure amplitude  is 2PT corresponding to 
pressure  doubling  at the incident hard wall microphone location 
(see Fig. 1). By  locating the incident microphone far from the 
resonator orifice, the complexities described above have been avoided. 

4 .  CONCLUSIONS 

The acoustic behavior  of Helmholtz resonators  has been divided 
into  three categories corresponding to (1) very weak, ( 2 )  moderately 
weak and (3)  very  intense incident sound pressure  amplitude.  The 
first  two categories are characterized by  a  "linear"  or  almost 
"linear"  impedance  and  the  third  by  a  "nonlinear"  impedance. The 
"linear"  and almost "linear" regimes are  defined  by the small 
parameter E expressed below in terms of the resonator geometry, 
incident sound pressure amplitude Pr and circular frequency w': as 

The quantities .c*and d*represent  the orifice thickness  and  (circular) 
diameter respectively; D*is the Gylindrical) cavity  diameter.  The 
corresponding nondimensionalized orifice area-averaged resistance 
and reactance at resonance are defined empirically  by E q s .  (55) and 
(57) ,  rewritten below in  a slightly more  convenient form, as 
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where CD is  the  Reynolds number  dependent o r i f i c e  .d i scha rge  
c o e f f i c i e n t   d e f i n e d  by  Eq. (26) .   Both  data   and  model   predict ion show 
t h a t   t h e   e f f e c t s   o f  weak n o n l i n e a r i t y   a r e   t o  increase r e s i s t a n c e  
and decrease r eac t ance .  The model  shows r e s i s t a n c e   t o  a r i se  from 
two s o u r c e s ,   o n e   b e i n g   v i s c o u s   l o s s e s   t h a t  are independen t   o f   pa r t i c l e  
v e l o c i t y  and t h e   o t h e r   c o n v e c t i v e   i n e r t i a l   l o s s e s   t h a t   a r e   l i n e a r l y  
p r o p o r t i o n a l   t o   p a r t i c l e   v e l o c i t y .  The d e c r e a s e   i n   r e a c t a n c e   a r i s e s  
from a r e d u c t i o n   o f   t h e   o r i f i c e   e f f e c t i v e   i n e r t i a   l e n g t h   ( d e * ) .   I n  
acco rd   w i th   t he   conc lus ions   o f   Inga rd   and   I s ing ,   t he   r educ t ion  o f  
dk! i s  b e l i e v e d   t o   b e   r e l a t e d  t o  p a r t i c l e   v e l o c i t y   j e t t i n g   g e n e r a t e d  
by t h e   f l u i d   n o n l i n e a r   i n e r t i a .  I t  i s  c l e a r   t h a t ,   p r o v i d i n g  E 
i s  small ,   both  the  res is tance  and  reactance  depend  weakly  upon  the 
sound  ampli tude  Pi*.   Signif icant   deviat ions  of   the   impedance 
from i t s  " l i n e a r "   o r  E = O  va lue  do n o t   o c c u r   u n t i l  ~ > 0 . 2 .  As an 
example,   consider  a c a v i t y - b a c k e d   r e s o n a t o r   w i t h   d t l .  5 ~ 1 0 - ~  meters  
( -0 .06") ,   - r*/d*=0.2  and  (d*/D*-0.1)   exposed  to   an  incident   sound  f ie ld  
a t  1 , 0 0 0  H z .  S i g n i f i c a n t   d e v i a t i o n s   o c c u r  when the   i nc iden t   sound  
p r e s s u r e   l e v e l  i s  e q u a l   t o   o r   g r e a t e r   t h a n   a b o u t  8 5  dB. 

The nonl inear   reg ime i s  de f ined  by the   sma l l   pa rame te r  E 
expressed  below  in   terms  of   the  resonator   geometry  and  incident  
sound f i e l d   a s  

Using  the same resonator   geometry  and  f requency  as   descr ibed  above,  
n o n l i n e a r   e f f e c t s  become impor tan t  when the   i nc iden t   sound   p re s su re  
l e v e l  i s  e q u a l   t o  o r  g rea t e r   t han   abou t   130  dB. The corresponding 
r e s i s t a n c e  and  reactance  fol low  f rom  Eqs.   (60)   and  (61)   rewri t ten 
below a s  

and 

0.07- 0.43 I n  E - a (2.55-2.63E v3) 

where 
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is the  orifice high SPL discharge  coefficient.  The  resistance is 
shown  both  theoretically  and  experimentally to  be independent of 
frequency  and  proporziZFal t the  square  root of the  incident  sound 
amplitude.  Since I R / p c  I >> I P /&*I,  Helmholtz  resonators  absorb  sound 
in a broadband  manner  in  contrast  to  its  narrowband  sound  absorption 
at low  pressure  levels. 
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TABLE I. SUMMARY OF RESONATOR GEOMETRIES  TESTED 

1.905  1.27  0.091  0.025 . 0.278  0.048  0.072 
1.27  0.091 0 * 051  0.558  0.048  0.072 
2.54 0.091  0.025  0.278 0.048 0.036 
2.54  0.178  0.102  0.573 0.093  0.070 
2.54 0.356  0.102  0.286 0.187 0.140 
2.54 0.114 0.051  0.071  0.375  0.281 
2.54  0.178  0.051 0.286  0.093 0.070 
5.08  0.178 0.051 0.287  0.093  0.036 
5.08  0.356  0.051  0.143  0.187  0.070 

3.17b  1.27 0.091 0.025 0.278  0.029  0.072 
2.54  0.178 0.025  0.140 0.056 0.070 

0.051 0.143 
0.102  0.278 1 0 . 7 1  

0.203  0.570 
0.406  1.140 I O*l4I 
0.051 0.071 0.225 0.281 

\1 0.203 
0.102 0.143 

0.284 3. .1 
5.08  2.54  0.714  0.102  0.143 0.141  0.281 

3.81  0.714 0 .lo2  0.143 0.141  0.187 

0.356  0.025  0.070  0.112 
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TABLE 11. SUMMARY OF RESONATOR DATA USED TO DETERMINE PARAMETER K 

0 . 1 7 8   0 . 0 2 5   1 . 2 7 0   1 . 9 0 5   1 0 5 8  
0 . 0 5 1   2 . 5 4 0  6 8 2  

3 .810  5 6 1  
5 .080  476 

0 .356   0 .025   2 .540  1 1 5 3  
3 .175   697  

0 . 0 5 1  11 1 . 9 0 5   1 0 9 7  
3 .810 880  
5 .080   746  

11  11 2.540  3 .175  663 
4 .445 494  

0 .714   0 .025   3 .810   5 .080   504  

11 

I 1  11 

11 I 1  

11 

11 

11 

11 

11 I 1   I 1  

1 1  

11 11 

11  11 

11 

11 

11 11 11 

~~ . . 

8 .97  
7.78 
7.12 
7 .07  

1 7 . 4 4  
1 3 . 2 1  
1 6 . 9 7  
1 6 . 1 6  
1 6 . 1 1  
1 4   - 6 4  
13 .55  
22.96 

K 

. . . -. . 

.552 
* 444  
- 4 4 0  
.408  
. 6 7 3  
- 6 6 5  
.622 
.585  
.540  
. 5 4 1  
.SO4 
. 6 9 1  

I Pty/PT I 
(predicted) 
. . .. . . . . " . . . -. - - 

8.84  
8 .02  
7 .27  
6 .70  

1 7 . 8 2  
1 3 . 3 2  
18 .85  
1 6 . 8 8  
1 5 . 5 4  
14 .13  
1 2 . 2 0  
21 .99  
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APPENDIX A 

DERIVATION OF NONLINEAR FOURIER COEFFICIENTS 

A de t a i l ed   de r iva t ion   o f  Eq. (42)  and  the  subsequent  calcula- 
t ion   o f   the   fundamenta l   Four ie r   coef f ic ien ts   a1   and   b l   fo l low.  

The d e r i v a t i o n   s t a r t s  f rom Eq. (39a) .   Recal l   f rom  the  dis-  
cussion  fol lowing Eq. (39a)   tha t   expans ion   of   the   func t ion   G( t ;E)  
i n  a r e g u l a r  power s e r i e s   o f  E l eads   t o   t he   app rox ima te   so lu t ions  
Go(t)   and  Gl(t)   defined by Eq. ( 4 1 ) .  These  solut ions become 
s i n g u l a r   a t   t = ( Z n - l ) T / Z .  An approximate   so lu t ion  t o  G(t;E) i s  
derived  below v a Z i d  throughout t h e  h a l f - e y e  l e  (4n-1) . r r /2<t<  (4n+l )  .rr/2 
( h e r e a f t e r  n=O without  l o s s  o f   g e n e r a l i t y ) .  

The der iva t ion   proceeds   as   fo l lows .  The h a l f - c y c l e  -7r/2<t<7r/2 
i s  d i v i d e d   i n t o   t h e   s i x   r e g i o n s  shown i n   F i g .  A - 1 .  Region 1 i s  
def ined  by t h e   i n t e r v a l  O < t < ~ / 4 ,  Region 2 by . r r /4<t<T where T w i l l  
b e   s p e c i f i e d   l a t e r  and  Region 3 by T<t<. r r /2 .  Regions -1, - 2  and - 3  
a re   de f ined  by t h e   i n t e r v a l s  - 1 ~ / 4 < t < 0 ,  - T < t < 7 r / 4 ,  and - 7 r / 2 < t < - T  
r e s p e c t i v e l y .  

I t  w i l l  prove  convenient t o  r e s c a l e  Eq. (39a) by in t roducing  
the   fo l lowing   t ransformat ions ,  

r e s u l t i n g  i n  

2 j 9 ' s  [ 9 + ( 2;L,Xc*7c4 v*a*2 = - ( t )  

The absolu te   va lue   opera tor  I (   ) I  i s  removed b e c a u s e   o n l y   p a r t i c l e  
inf low (g>O) i s  cons idered .   S ince   the   independent   var iab le  t i s  
unaf fec ted  by the   above   t ransformat ion ,   the   reg ions   def ined   in  
Fig. A - 1  s t i l l  apply.  An approx ima te   so lu t ion   t o  Eq. (A-2) i s  
der ived   va l id   in   Regions  1 and -1 by  expanding g ( t ; s )   a s   f o l l o w s ,  

S u b s t i t u t i n g  Eq. (A-3) i n t o  Eq. (A-2)  and c o l l e c t i n g   c o e f f i c i e n t s  
o f   t h e   f i r s t  two powers  of s y i e l d s  
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Approximate solutions to E.q. (A-4)  are 

In deriving gl(t), the function go(t) was approximated  by (1-t2/4). 
This approximation restricts the solution gl(t) to  Regions  1  and -1. 

To derive approximate solutions  valid in Region 2, Eq.  (A-2) 
is  transformed as follows, 

Under these transformations, Eq.  (A-2) becomes 

Expanding g(T; s )  in  a regular 

] - 9 g = - cos(*) 

perturbation power series of s ,  

and  substituting  into Eq. ( A - 7 )  yields the following approximate 
solutions 

r 1 

(A- 7 )  

In the derivation of gl(T),  go(.c) was approximated  by G(l-~~/l2). 
Here A is  a constant of integration. To match the solutions solutions 
go(t)+sgl(t) at t=.rr/4 to  go(T)+sgl(T) at T=IT/~, the  interface between 
Regions 1 and 2, the constant A -  -0.59. 

Observe that  Eq.  (A-9)  is singular at T=O(or  t=.rrr/2). It is 
important to understand that the  singularity  occurs  because the 
power series expansion used in its derivation (see Eq. A-8) assumes 
that t h r o u g h o u t   t h e   c y c l e  

(A-  10) 
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It is easy to show that the pertur6ation expansion given by Eq. 
(A-8) generates approximate solutions that violate Eq. (A-10). 
Con.sider the solution described b Eq.  (A-9). Assuming that both 
T and s are small, g(T;s)-go(T) ?A, which upon substituting into 
Eq. (A-10) and retaining only important terms yields the following 
inequality 

Obviously, this is not satis'fied for T sufficiently small. The 
failure of the regular perturbation expansion described by  Eq.  (A-8) 
to satisfy the  inequality described by  Eq.  (A-10)  is manifested 
by the appearance of the singularities in Eq. (A-9). The  method of 
singular perturbation theory  is  used  to derive an approximate 
solution valid in Region 3 .  The singularities are removed  by 
appropriate  rescaling of the dependent and independent variables 
so that in Region 3 the terms on the LHS of Eq.  (A-10)  are of the 
same order as the nonlinear term on the RHS. To accomplish this, 
the  following transformations are introduced 

Substituting these quantities into Eq. (A-7) yields 

(A- 11) 

(A-12) 

Since  Region 3 is near .c=O(or t=n/2)  it  is reasonable to assume that 
the  two highest derivatives are o f  equal order. This occurs when 

2 m - n  = Itrn-2n->rn=l-n 

Replacing  m by l-n in  Eq.  (A-12) yields, after some rearrangement, 

(A- 13) 
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Matching  the  leading  terms on both sides 

where from Eq.  (A-11) , 

(A- 15) 

The quantity T in  Fig. A - 1  is  identified  by  appropriate 
matching of the solution in  Region 2 to the solution o f  Eq.  (A-14). 
As a guide to the solution of  Eq.  (A-14),  Eq.  (A-9)  is written, 
for T small, 

Using Eq. (A-15) to replace T by TI and collecting coefficients of  
the various fractional powers of  s, 

Comparing Eq. (A-16) to  Eq.  (A-15)  suggests  the following expansion 
for Y ( q ; s )  for proper matching, 

(A-17) 

Substituting Eq.  (A-17) into Eq.  (A-14),  and collecting the coefficients 
of the first two  powers of s yields 

(A-  18) 
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(A-19) 

Integrating with respect to 0, 

(A-20) 

(A- 21) 

where ( )‘Ed/dq( ) and A, and  A1  are constants of integration.  The 
solution of Eq.  (A-20) can be expressed in terms of the  Airy function 
Ai(q) as 

providing  the constant Ao=O. A graph of its  behavior  is shown in 
Fig. A-2. The asymptotic behavior of Y 0 ( q )  can be shown (see 
Chapter 10  of the Handbook of Mathematical Functions published by 
NBS) to  be 

(A- 22) 

With Yo(n) known, Eq.  (A-21) can be solved numerically to determine 
Y l ( r l ) .  A plot of Y l ( r l )  is shown in  Fig. A-3. Its asymptotic be- 
havior follows immediately upon substitution of Eq.  (A-22) 
into  Eq.  (A-21)  to yield, 

(A- 23) 

The  method of singular perturbation theory requires that  the 
asymptotic  behavior of the  Region 3 function Y ( n ; s )  merge  smoothly 
into  the  Region 2 function g(T;s). Although mathematically, the 
matching  occurs asymptotically, that is  in  the  limit  as q+a, numeri- 
cally, matching  occurs for finite  values  (often  less  than 5) of the 
independent  variable.  Combining  Eqs.  (A- 15) , (A- 17) , (A-22)  and 
(A-23) yields the  following asymptotic behavior for the  Region 3 
functions , 
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I 

Comparing E q .  (A-24)  above  with E q .  (A-16)   which   represents   the  
Region 2 s o l u t i o n   w r i t t e n   i n  terms o f  n ,  ma tch ing   occu r s   p rov id ing  
t h e   c o n s t a n t  

(A- 25) 

The f u n c t i o n s  Yo(n)  and Y1 (0) are  shown i n   F i g u r e s  A - 2  and 
A-3 r e s p e c t i v e l y   t o   b e   w i t h i n   o n e   p e r c e n t   o f   t h e i r   a s y m p t o t i c  
behav io r  a t  n = 2 .  T h i s   v a l u e   o f  1 i s  used   t o   de f ine   Reg ion  3 .  
S u b s t i t u t i n g   o f  n = 2  i n  E q .  (A-15) y i e l d s  . c = ~ s ~ / ~ .  From E q .  (A-6) 
and  Fig.  A - 1  , t h i s   t r a n s l a t e s   i n t o  t = T ~ r / 2 - 2 s ' / ~ .  Thus  an  approximate 
s o l u t i o n   v a l i d   t h r o u g h o u t  O<-r<n/2 h a s   b e e n   c o n s t r u c t e d .   I n  a similar 
manner ,   app rox ima te   so lu t ions   can   be   cons t ruc t ed   fo r   Reg ions  -1, 
- 2 ,  and - 3 .  F o r e g o i n g   t h e   d e t a i l s ,   t h e   v a r i o u s   s o l u t i o n s   a r e  
desc r ibed   be low:  

Reqion-I  i F  s t s o :  
-TI 

4 

(A- 26) 

(A- 28)  

The n o t a t i o n   Y - d e n o t e s   t h e   f u n c t i o n  i s  va l id - in   Reg ion-  - 3 ;  t h e  (Y+) 
denotes   Region 3 .  G r a p h s   o f   t h e   f u n c t i o n s  Yo (0) and Y 1  ( n )  a r e  
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shown i n   F i g s .  (A-2)  and (A-3)  r e s p e c t i v e l y .  

The above   approximate   so lu t ions   a re   va l id   th roughout   the  
h a l f - c y c l e  - I T / ~ < ~ < I T / ~ .  The corresponding  fundamental  harmonic 
coef f ic ien ts   a1   and   b l   def ined   be low  as  

-+' - ?T 
2 

b,(E) = L [  ~ i ( 4  ;E) s i n ( t ) d t  
7r 

a r e   e v a l u a t e d   i n   t h e   u s u a l  way. The r e s u l t s  o f  t h e   i n t e g r a t i o n  
a r e  

a, (E)= 1.57 t 0.19 E % + .(E') (A- 29) 

5 6  



EQ. (A -2 7) 

Z=%+t 

EQ.@ -26) 1 Eq. (A - 5) 1 EQ. (A-9) 

t t o  t >o x=% -t 

t 

f 

Note: t = ("/2 - 2S%) 
Increasing rime 

-Ess.(A-I5)+ (A-17) 

FIGURE A-1.  D E F I N I T I O N  OF HALF-CYCLE  SUBREGIONS  WITHIN  WHICH  INDICATED  SOLUTIONS ARE V A L I D  
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APPENDIX B 

CORRECTION OF HIGH SPL DATA FOR THIN ORIFICE FACE PLATES 

At very high incident sound pressure levels (150 dB and 
higher) , the  measured data showed that the very thin (T*=O. 0lff) 
orifice face sheets di.d not correlate well with the parameter E. 
This could be attributed to any, or possibly a combination of, 
three  phenomena. 

(1) Cross-modulation products of higher harmonics of the cavity 
sound field  could combine with the  transmitted fundamental signal, 
resulting  in substantial phase shifts, even if the level of such 
cross modulation products were 2 0  dB or more below that of the 
fundamental. Quantitative evaluation of this  effect  would  require 
knowledge of the amplitudes and  phases of all the harmonics, as well 
as an understanding of the non-linear process which generates the 
cross modulation.  Since at incident levels of 150-160  dB, wher.e 
phase correlation is poorest, the incident  field contains consider- 
able  2nd  harmonic distortion, there  is  probably some cross modulation 
occurring  in  the orifice as well as within the cavity, further com- 
pounding  the  difficulties. 

(2) Due  to  the physical size of the microphones required for use 
at 7 0  dB  incident level (l/Z" diameter) it is necessary to mount the 
cavity  microphone  at  the rear of the cavity.  At low to moderate 
incident  sound levels, the cavity microphone is expected to measure 
the  response  of  the entire fluid  contained within the cavity.  At 
high sound pressure levels, however, the influx of fluid into the 
cavity  is characterized by strong jetting.  If  the jet does not 
decay  before  reaching  the microphone, a stagnation pressure velocity 
would result from  the impingement of the jet on the microphone 
diaphragm, giving an altered  phase  angle  and  effective  cavity  sound 
pressure  level. Observation of the  cavity sound pressure signal 
on  an  oscilJoscope at high  incident level, reveals, for  the  larger 
values o f  d/L*, an instability  in  the  wave  form on one half cycle, 
which we  believe to  be related to  this  phenomenon. 

In an  attempt to quantify this effect, a small hole was 
drilled  into  the  side of one of the cavities, into which a 1/811 
diameter  microphone was inserted. The output from  this microphone 
and  that  from  the  1/2" microphone at the back of the cavity were observ- 
ed simultaneously  on  the oscilloscope as the  incid,ent  sound  pressure 
level was increased from 90 to  155 dB.  At the higher levels, the 
wave  instability reappeared on the 1/2" microphone trace, but was 
absent  from  the 1/8" microphone trace. Although the general wave 
shape of the  two microphone signals was similar and there appeared 
to be a slight  advance in phase of the 1 / 2 "  microphone signal with 
increasing  incident  sound  pressure level, the phase and  amplitude 
of the l/Srl microphone  signal was judged  too unreliable to  make con- 
clusive judgements since it was extremely sensitive to slight changes 
in position. 
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( 3 )  I t  was o b s e r v e d   t h a t   t h e   c a v i t i e s   w i t h   s m a l l   v a l u e s   o f  T* 
and L*exhib i ted   the   poores t   phase   cor re la t ion .   This   sugges ted  
t h a t   t h e   f a c e   p l a t e  o f  t h e   c a v i t y  was be ing   f lexed  by t h e   i n c i d e n t  
sound  pressure,   effect ively  modulat ing  the volume o f   t he   cav i ty  
and   hence   i nc reas ing   t he   cav i ty   p re s su re   i n   phase   w i th   t he   i nc iden t  
pressure .   This  would  have the   e f fec t   o f   bo th   advancing   the   phase  
o f   t he   cav i ty   sound   f i e ld  and increas ing   the   cav i ty   sound  pressure  
l e v e l .  

As a t e s t   o f   t h i s   p o s s i b l i l i t y ,   t h e   c a s e   t h a t   e x h i b i t e d   t h e  
p o o r e s t   c o r r e l a t i o n ,  (D*= 1 . 2 5 " ,  L*= 0 .  S I r ,  d*=  .036"  and T*= .OlO) 
was remeasured   wi th   the   o r i f ice   covered .  A t  low i n c i d e n t   l e v e l s ,  
t h e   f a c e   p l a t e   f l e x u r e  was inconsequent ia l .  However, a t  150 dB, 
it r e s u l t e d   i n  a phase  advance  of 2 8  degrees  and a cav i ty   p re s su re  
increase   o f   1 .5  dB. 

These r e s u l t s  were s u f f i c i e n t l y   e n c o u r a g i n g   t h a t   s e v e r a l   o f  
the  other  samples  which  had  given  poor  phase  correlations  were  re- 
measured   us ing   th i s   t echnique .   In   each   case   the   phase   cor re la t ion  
was improved,  but  the  degree  of  improvement  depended upon t h e   f a c e  
p l a t e   t h i ckness  and cavi ty   d imens ions .   Resul t s   o f   the   mos t   s ign i f i -  
c a n t l y  improved   cases   a re   p lo t ted   in   F igure  B - 1  for   phase .  

The b e t t e r  improvement in   phase   co r re l a t ion   ach ieved   w i th   t he  
t h i n n e r   f a c e   p l a t e s  and   sma l l e r   o r i f i ce   d i ame te r s   sugges t s   t ha t  
Phenomena # 2  F, # 3  a re   bo th   a f f ec t ing   t he   phase ,  and t o  a l e s s e r  
ex ten t   the   ampl i tude  o f  the   cav i ty   sound  pressure .  We b e l i e v e   t h a t  
without   properly  account ing  for   pressure  change on t h e   f a c e   p l a t e  
due t o  f low  th rough   t he   o r i f i ce ,   t he   p l a t e   f l ex ing   co r rez t ion  i s  
excess ive .  F o r  t h e   c a s e   o f   t h e   t h i n   f a c e   p l a t e ,   s m a l l  d/D models, 
t h i s   e x c e s s  i s  minimal  because  of low a i r f low  due  t o  the   h igh  
o r i f i c e   r e s i s t a n c e .  Hence the   phase   co r re l a t ion   has  been  improved 
f o r  these  models.  

In   o rder  t o  o b t a i n  a be t t e r   unde r s t and ing  o f  t h e   j e t   i m p i n g e -  
ment  phenomenon, a resonator   wi th   the   d imens ions  D*= . 75" ,  L* = . 75" ,  
d*= .07" ,  T*= . 0 2 "  was t e s t ed   w i th   t he   s t anda rd  1 / 2 "  microphone a t  
the  back  of  the  cavity  and  the 1/8" microphone a t   t h e   s i d e  of   the 
c a v i t y .  The outputs   f rom  these two microphone  were  fed t o  t h e  AD-YU 
Phase  meter   and  s imultaneously  observed  on  the  dual   t race  osci l loscope.  
The measurement  procedure was as   fol lows.  F i r s t ,  the  frequency  of 
the  incident   sound was t u n e d   a t  a low l e v e l   t o   t h e   r e s o n a n c e   f r e -  
quency. The l e v e l  was t h e n   i n c r e a s e d   u n t i l   t h e   o n s e t   o f   t h e  wave 
i n s t a b i l i t y  ( f rom  the  output   f rom  the 1 / Z v t  microphone  signal) 
appeared on the   o sc i l l o scope .  I t  was observed  (see F i g .  B-2) t h a t   t h e  
i n s t a b i l i t y   o c c u r r e d   i n   t h e   t r o u g h   o f , t h e   o s c i l l o s c o p e  wave a t  an 
inc iden t   l eve l   o f  1 4 5  dB. As t h e   l e v e l  was i n c r e a s e d ,   t h e   i n s t a b i l i t y  
moved forward on t h e  wave, reaching   the   c res t   o f   the  wave a t  150 dB 
and s t a r t i n g  down the  leading  edge when the   sys t em  l imi t a t ion   fo r   t he  
pa r t i cu la r   d r ive   f r equency  was r eached   a t   153  dB. This   suggests  a 
sound  pressure  level   dependent   delay  t ime  for   whatever  i s  caus ing   the  
i n s t a b i l i t y   a t   t h e  microphone. The j e t  f rom t h e   o r i f i c e  i s  an 
obvious   candida te ,   s ince  i t  would t r a v e l  from t h e   o r i f i c e  t o  t h e  
microphone a t  a n   a v e r a g e   v e l o c i t y   r e l a t e d   t o   t h e   p a r t i c l e   v e l o c i t y  
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in the orifice. 

To support the hypothesis that the jet impingement caused the 
nonlinear phase and amplitude shifts, the average jet travel time 
from the orifice to the cavity backing was measured and correlated 
with the particle velocity u in the orifice. Since the jet enters 
the cavity at the maximum (vena  contracta) value of particle velocity, 
it would originate at  a time corresponding to a positive-going 
zero crossing of the cavity pressure (negative going on the scope 
trace, since the condensor microphone by  its nature inverts the signal). 
The delay of the instability by  some fraction (possibly >1) of a 
wavelength on the trace could then be related to its travel time if 
we were able to  identify the zero crossing associated with each 
instability. To identify this, the position in t ime  of each 
instability was noted while the oscilloscope trace was started at 
the negative-going zero crossing. Holding the amplitude constant, 
the frequency was shifted downward 10%. A s  expected, the instabilities 
relative position on the  wave changed; the position in  time of only 
one instaiblity remained constant, as illustrated by  the two sketches 
shown in Figure B-3. One may conclude that the instability which 
stayed constant in time was due to the high particle velocity which 
occurred at  the  beginning of the oscilloscope trace, so by knowing 
the oscilloscope sweep speed, the mean travel time of the  jet  from 
the orifice to  the microphone at  the  back of the cavity  may be 
determined. 

As an example, for  the model checked, at an incident  level of 
151 dB, the  delay of the jet arrival was found, from  the oscilloscope, 
to  be  3/4 wavelength at 784 Hz, corresponding to a  travel  time of 
0.96 millisecond. Since the cavity depth is  0.75"  (or  0.019  meters), 
this corresponds to  a  mean  jet velocity of 20 meters per  second. 
The peak orifice velocity, in accordance with Eq. (44), would, at 
151  dB, be  33.5 meters per second. This would indicate  an  average 
jet speed of 60% maximum, which is not unreasonable. If we estimate 
a  linear  deceleration in the cavity, this would result in a peak 
pressure level o f  122.5 dB at  the microphone, as opposed  to  a  peak 
level of 147 dB for the  unc.ontaminated wave, or approximately 19% 
contribution.  From the appearance of the oscilloscope trace  this 
seems to be a  high estimate, demonstrating the approximate nature o f  
the linear deceleration assumption. 

The series of sketches in Figure B-3 shows how this level 
dependent travel  time can contaminate the phase data from the two 
microphone method  unless  precautions are taken to prevent jet im- 
pingement  on  the  cavity  microphone.  Note  that  there  is  (obviously) 
one jet  instability per wave length, and that these would  be ex- 
pected to  have the form of a somewhat unstabile positive pressure 
pulse train, whose relative position on the cavity pressure wave 
depends on the  mean  travel time, and hence on the incident pressure, 
the cavity depth and the decay rate of the jet. 

Since the composite signal is  processed through a narrow band 
filter, only the Fourier component at the  test frequency will affect 
the  final  results.  This is displayed in  Fig. B-3. It will be noted 
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that  the relative phase of this signal will follow the relative 
position of the pulse train. 

Figure B-4 shows the position of the pulses at three sound 
levels for the  model  tested at incident levels of  145,  148,  150 
and 153 dB. Visual estimate of the amplitude of the jet pulse is 
approximately 3%  of the  total  wave. If  we estimate that the 
fundamental component is 1% of the total, the phase of the contam- 
inated signal relative to the uncontaminated would be  as shown in 
the  following table, for the case illustrated  in Figure B5. 

SPLinc ASPLinc A9 9c (total) 
145 4 OdB 90 O . 6 O  

148 40dB 30 .3O 
150 40dB -60 '  - . 5 O  
153 4 OdB -120O - .5O 

If the  amplitude of the contaminating wave were actually 3% 
of the total, the phase angle error would be increased proportionately, 
and  this fraction could be even higher for small cavity depths and 
large or if ices. 

One previously unexplained measurement inconsistency can now 
be  at least qualitatively understood.  In some of the cavities tested 
the  phase  was noted to approach 9 0 °  as the level was increased, and 
then, at  very  high levels, to decrease again, causing reactance from 
Dean's model to become much too negative to be  physically  meaningful. 
As shown earlier, this was attributable in  part to face  plate  flexture 
and in part to jet impingement. However, it was observed that  the 
phase would  occasionally  go past 9 0 °  at very high levels.  This  effect 
could not be explained  by face plate  flexing. However, we see now 
that if the level, frequency and orifice to microphone distance are 
present in the correct combination to allow the jets to arrive at 
the microphone during  the negative half cycles of the  cavity pressure, 
a positive phase purturbation results. 

Conclusion 

We now set: that  in order to obtain phase  and reactance data 
with sufficient  accuracy  to  test  the theoretical model at high 
incident sound levels, some basic limiting characteristic of  the 
two microphone method not previously considered in the literature 
will have to be either  avoided or quantified. 

The cavity flexure problem is probably not too important, 
since the very thin unsupported orifice plates for which it  appears 
to  be a dominant factor are probably not feasible for practical 
application. It  is also  a real effect which depends on the geometry 
of the test specimen rather than the measurement procedure. 

The jet impingement and cross modulation phenomena, on the 
other hand, represent effects which are detected inside  the cavity, 
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but  which  have  no  bearing  on  the  true  surface  impedance  of  the 
cavity  as  seen  from  the  incident  sides. .The cross  modulation 
problem  is  unavoidable.  The  jet  impingement  problem  might  be 
avoided  by  changing  the  microphone  location. 
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FIGURE B-2. DETERMINATION OF MEAN TEWVEL TIME OF JET 
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b )  P u l s e   T r a i n  O f  Je t  A r r i v a l s ;  Moves T o   T h e   L e f t  
A s   I n c i d e n t   L e v e l  Is I n c r e a s e d  

I c) A p p r o x i m a t e   F o u r i e r   C o m p o n e n t  O f  P u l s e   T r a i n   A t   T e s t  

F r e q u e n c y ;   P h a s e   A d v a n c e s   A s  Incident L e v e l  Is Increased 

FIGURE B-3. PHASE  RELATIONSHIP OF FUNDAMENTAL FOURIER COMPONENT 
OF JET  PULSE TO UNCONTAMINATED WAVE 
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b )  1 4 8  dB 

c)  150 dB 

d )  153 dB 

FIGURE B-4. TIME OF J E T  ARRIVAL  AS  INCIDENT  LEVEL  INCREASES 
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