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INTRODUCTION

Several random processes have been proposed as mathematical models

for atmospheric turbulence in aeronautical applications. Thy: amplitude

modulated raudom process or the Press model (references 1 and 2) has been

widely applied to the analysis and measurement of aircraft response to

atmospheric turbulence (references 3 to 7, for example). The amplitude`

modulated process accounts for the local variations of the turbulence in

combination with a random modulation of the amplitude. In reference 8 this

process was extended by the addition of an independent mean value process,	 e

based upon a reinterpretation of the random process described in references'

9 to 12. The resulting amplitude-modulated-plus-mean (AM-PM) random process

allows more versatility in modeling the measured properties of atmospheric

turbulence. The basic mathematical properties of the AMPM process, including

the first and second order properties and the characteristic function of

general order, have been developed in reference 8.

The correspondence between the properties of the AMPM process and

the associated properties of both atmospheric turbulence and aircraft	 t

response are examined on_a qualitative basis in the present study, which r

consists of three parts. The first part is an interpretation of the AMPM

random process in terms of the physical structure of atmospheric motions.

« The second part is an examination of the considerations involved in	 '.

application of the ANIPM process as a model for atmospheric motions.- The

third part is an evaluation of the effect of the random mean value
i'

variation upon aircraft response. A procedure for the development of	 ;u

aircraft strength design criteria is outlined The mathematical properties
f

of the ANiPi4 process are reviewed in Appendix A

f



SYMBOLS

A standard deviation of either the subscripted process or

(without subscript) the R process

a filter constant of aircraft plunging motion

b standard deviation of S process

b amplitude intensity parameter

c standard deviation of M process

c mean value intensity parameter

wean aerodynamic chord length of wing

ensemble average

erf error function (reference 13)

erfc complementary error function 	 1	 erf

L scale of turbulence of subscripted. process

M4 fourth order flatness factor or ',.:urt-os-i-s (fourth moment

square of second moment)

M, M mean value random process

N( expected frequency of positive slope crossings of indicated

level

N expected frequency of positive slope zero crossings of R
or

process

P. probability parameter

r, R local random process

S, S amplitude random process A

T integral scale 
of 

subscripted process

t time

U gust intensity paxamcter
G

V aircraft speed

2
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W, W amplitude-modulated-plus-mean (MPM) random process

W aircraft plunging velocity

_w vertical velocity component of atmospheric motion

w deterministic mean value of 	 w0

x intensity random variable

Z ' Z amplitude modulated random process
f:

a ''	 processesratio of standard deviations of Z and 12

E ratio of	 No	 of subscripted process to 	 RTor

}1g aircraft mass parameter
i

P autocorrelation function of subscripted process, correlation
s

9

coefficient of subscripted variables

Cr standard deviation of subscripted process
-f

time difference variable

i (o^) power spectral density function of subscripted process

CW) normalized power spectral density function of subscripted

process, 0 <_w <

^Y(T) autocovariance function of subscripted process

W frequency, Fourier transformation variable of	 [ ;

natural frequency of dynamic system
n

Subscripts:

b breakpoint
1

in input random process E

out output random process

quasi-steady

I
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PHYSICAL I3TERPRETA •T'IO11 OF THE AMPM PROCESS

The A14PIA process is formed by the sum of an amplitude modulated and a,

mean value random process. 	 The amplitude modulated process is formed by the

product of a local	 R	 component process and a slowly varying amplitude 	 S

component process which modulates the local process.

z(t)	 r(t)	 s(t)	 (l; Al)*

The amplitude modulated process accounts for some of the Gaussian and

non-Gaussian aspects of atmospheric turbulence measurements.	 For a short

sample of the amplitude modulated process, the slowly varying amplitude

component is approximately constant; measurements of the process have

approximately Gaussian properties.	 For a long sample, the amplitude

component varies as a random function of time; measurements of the process
a

have strongly non-Gaussian properties. 	 The defining relations for the

AMP14 (amplitude-modulated-plus-mean) or total process are

W(t) = z ( t ) + M (t )	 (2, A2)
r

_w(t) = r(t) s(t) + m(t)	 (3; A3)

3

*The dual equation numbers identify equations which are discussed in
Appendix A.	 Equation (1; Al) is both equation (1) of the text and equation
(Al) of Appendix A.

f
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The three component processes are identified as the local, R, the amplitude

S, and the mean value M.* Following 'the development of references 9 to 12

the three component processes are specified to be independent, stationary,

and Gaussian with zero mean values.

A physical interpretation of the AMPM random process, which considers

both recorded atmospheric turbulence data and general turbulence properties, r

is presented in this section.	 Two aspects of the random process axe of

i

primary interest.	 The first is the addition of the independent mean value

component to the amplitude modulated process.. 	 The second is the interpre-

tation of the mean value component as slowly varying relative to the

amplitude modulated or, more specifically, relative to the local	 R	 component

process.	 This aspect is a reinterpretation of the original development of

' references 9 to 12, which assigned the same integral scale value to the

three component processes.
i

i The qualitative effect of slowly varying changes in both the amplitude

-; and the mean value can be evident in measured atmospheric turbulence data.

Figure l shows an example of measurements of the three velocity components

of atmospheric motion. 	 The data show, two periods of moderate turbulence

superimposed on a background of light turbulence. 	 These two periods show

I' significant increases in the amplitude of the local variations. 	 Slow,

' random variations of the mean value are also apparent.- The vertical velocity
ii

component, shows a dominant amplitude modulation with relatively little

z 'The term mean value process is used for 	 m(t), since it appears as a
random variation in the mean value of the local 	 R	 process.	 Care
must be used to distinguish between this mean value process and the mean
value of any measurement of the AMfM process.

a

I

f
s



6

variation of the mean value. The two horizontal components, particular_

the lateral, show large, slow variations in the mean value.

The set of data in figure l is a case of clear air turbulence relw

to high-altitude wind shear. The data were recorded above the Death Va:

area of California at an altitude of 13 km with an airspeed of 183 m/s.
r`

The average wind, direction was almost perpendicular to the flight path.

The data were obtained as part of the MAT (Measurement of Atmospheric

Turbulence) program at NASA-Langley Research Center (reference 14) .

Special care was taken in the measurement of the long wavelength part of

the at-qospheric motion, particularly in removing the low frequency aspects

of the aircraft motion (reference 15).	 Thus the slow variation of the mean

value shown in figure 1 is atmospheric motion; the residual aircraft motion'

in the data is negligible.

The properties of the A&iPM process can be interpreted by examining

the associated power spectra, density function, which is the sum of the 3

'	 functions of the independent amplitude modulated and mean value processes.

4)(w) _ ^ z (w) +	 ( W )	 (4; A23) a
M

The power spectral density function consists of two terms with significantly

different frequency dependence. 	 The composition of the resulting power
9

spectral' density function is shown in schematic form in figure 2. 	 The °	 3

term corresponding to the mean value process has a predominantly low

frequency content, since this component is slowly varying with respect to

the local	 h	 component process.	 The term corresponding, to the amplitude v

modulated process has a predominantly high frequency content, which is
J

0



associated with the local A component process. (The effect of the

amplitude process upon the spectral properties of this term is relatively

small as will be shown subsequently). The higher frequency term,

corresponding to the amplitude modulated process, is currently accounted

for in aeronautical applications.	 The lower frequency term is an

additional effect which is included in the AMPM process.

The structure of the AMPM process suggests a possible correspondencea

witn the basic composition of atmospheric motion, which consists of several

different types of motion (references 16 and 17	 for example).	 The primary

classification divides atmospheric flow into two basic kinds of motion::;

internal gravity waves (winds or drafts) and turbulence. 	 Based upon the
3

associated ranges of frequency values, the internal gravity waves would

correspond to the lower frequency mean value process and the turbulence

would correspond to the higher frequency amplitude modulated. process.

i

The resulting separation of the associated power spectral functions into

two terms in the manner of figure 2 appears in studies of measured

atmospheric motions (references 18, 19 and 20, for example). 	 A specific

example of the separation of the spectral function into two distinct terms h'

is given in reference 21, which includes an examination of the transfer

of energy between the terms.

The possible correspondence between the AMPM process and the composition

of atmospheric motions must be thoroughly examined before it is established

on a firm basis.	 Such an examination must consider the basic mathematical

properties of the random process and the corresponding physical properties

of atmospheric motion.	 In particular, the random process specifies two

important properties. 	 First, the AMPM process specifies that the two

{
w,
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kinds of atmospheric motion have significantly different probabilistic

structures, the lower frequency term being Gaussian and the higher frequency

term being formed by the product of two independent Gaussian processes.

This difference is reflected in all associated properties, for example, the

probability density function and the associated flatness factors. Studies
a

such as references 18 to 21, which show two terms in the spectral functions,
	

r

do not examine the probabilistic structure associated with these terms.

FSecond, the AMPM process specifies that the two terms are statistically

independent.	 Since the two terms consequently can not interact, the AMPM

process can not account for the interaction due to nonlinear coupling

between the two kinds of motion, which is an essential physical property

(reference 16, for example).- One possible means of removing the

independence property is the introduction of correlation between the

amplitude and mean value component processes. 	 This modification and the

properties of the resulting *IPM process are discussed in appendix B,

where it is shown that the effects of the correlation upon the probabilistic

structure are small if the amplitude and mean value processes are weakly

correlated.

An associated question is the determination of the values of the

physical parameters associated with the random mean value variation in
.,a

atmospheric motions.	 Although the answer to this question requires an

extensive examination of atmospheric data, a preliminary estimate is made

to determine representative values for use in the subsequent discussion.

7`he first quantity of interest is the 	 a	 parameter, which is the ratio

of the standard deviations of the amplitude modulated and, the mean value

processes.
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a _ ^? _ 
cb
	 (5; A14)

m

In reference 9 a value of slightly less than one is suggested for the 	 a

parameter of the vertical velocity of atmospheric motion, based upon

examination of measured data. 	 The value of one is used as a representative

value of the	 a	 parameter in the subsequent discussion.' 	 The second

quantity of interest is the ratio of the integral scale values of the mean

value and the amplitude modulated processes. 	 :Based upon published

spectral data which show the existence of both processes (references 18
^s

to 21), the value of ten is used in the subsequent discussion as a

representative value of this ratio for the vertical velocity component of

atmospheric motion.
Y

ry

*If the 	 a- parameter is equal to one, then	 b = c	 since	 A	 is given
Y	 a unit value for turbulence processes. 	 The condition of equal standard

deviations (b = c) does not imply that the values of the amplitude and
^A

the mean value processes are equal within any short segment of turbulence,
since those values are only member functions of their 'total ensembles.

c

t
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APPLICATION OF THE AMPM PROCESS AS AN ATMOSPHERIC TURBULENCE MODEL

The considerations involved in modelling the properties of atmospheric

motions with the AMPM process are examined in this section. 	 The primary

topic is the effect of the slowly varying mean value component, since the

presence of this component is the difference between the amplitude modulated
i

and the AMPM process. 	 The discussion begins with an examination of the

correlation and spectral properties of the AMPM process. 	 The relationships

between these dynamic properties and the probabilistic structures of both

the ANiPM process and atmospheric motions are then examined. 	 The effect of

the mean value :Tariation upon the exceedance expression of the AMPM process
i

is also examined:

Correlation and Spectral Properties

The mean value variation has a strong effect upon the au'tocorrelation

function of the AMPM process, particularly for large values of the time

difference.	 There are coi.-,responding effects upon the power spectral
a

density function, particularly for small values of the frequency.	 In

the present understanding, of atmospheric turbulence properties there

are open questions on the spectral properties at low frequency values

and consequently on the value of the integral scale (reference 14).

The (normalized) autocorrelation function of the AMP IN process is

determined from the corresponding functions of the three component

processes:

2
pw(T) =	

2a	
Pz(T) +	

1	 p(T)	 (6; A31a)

a	 + 1	 a	 + 1

f

]_0
-a

i	
^

E
T
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where	 P (T)	 Pr ( T ) Ps(T).

The corresponding relation for the normalized power spectral density

function is the Fourier transformation of equation (6).

i

2
(w) _	 C,

	 +	 1
^m(w)	 (7	 A31.b)

w	 2	 z	 2
a	 + 1	 a	 + l

I
I

The preceding relations show the relative contributions of the amplitude

modulated and the mean value processes to the functions of the AMPM process.

The relative contributions are detexzulned by the 	 a	 parameter.	 For small

values of the	 a	 parameter, the functions of the mean valuo component are

dominant; for large values of the	 a,	 parameter, the function's of the i

amplitude modulated process are dominant. 	 The autocorrelation and spectral A

functions of the AMPId process must be distinguished from those of the

three component processes. 	 Most discussions in the aeronautical literature

and most applications to aircraft design (references 3 to 6, for example)

consider only the functions of the local R	 component process.

One measure of the dynamic properties of a random process is the

integral scale, which is the integral of the autocorrelation function

over the range of positive time values.

TW = fo pw (T) dT

The integral scale is related to the zero frequency value of the normalized

power spectrall density function, the relation fallowing front equation - (8 )

and from the definition of -the Fourier transformation.

I

f
_
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Tw	 2 (P w(0) (9)

These relations for the integral scale follow the notation used in the

atmospheric turbulence and the aeronautical literatures (reference 5,

for example). However, the autocorrelation is usually defined as a

function of the spatial dimension; the corresponding integral scale is

referred to as the scale of turbulence. Also, the present notation uses

W to denote any of the vector components of the atmospheric velocity,

not specifically the vertical component.

The integral scale value of the .AMPM process is determined by those of

the amplitude modulated and mean value processes. The relationship is

obtained by combining the definition of the integral scale, equation (8),_

and the relation between the autocorrelation functions, equation (6).

2

Tw = 2a	
TZ + ^l	 Tm	 (10)

a + l	 a + 1

In the concept of the A14PMp process, the mean value . process is slowly

varying relative to the local R component and also relative to the

amplitude modulated process. The value of the integral scale of the

mean value process is accordingly much greater than that of the amplitude

modulated process. Thus by equation (10) the presence of the mean value

variation strongly influences the-value of the integral scale of the

AMPM process. This can be true even if the contribution of the mean

value component to the standard deviation of the total process is fairly

small, that is, if the value of the a parameter is large.

a
7

i
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a.	 fa'
The amplitude component process also influences the integral scale

of the AIVIPM process, although to a much smaller extent..	 This effect

can be seen by a specific example. 	 The functions of both the local	 R

J
and the amplitude component processes are assumed to have the form for

the longitudinal velocity component in the Dryden model for turbulence

(reference 5). 	 Equivalently, the Gacssian	 R	 and	 S	 components are

1
} assumed to be Markov processes.	 Their ,autocorrelation functions are

P (T)	 erITI
^Tr	

(lla)
r

T 

I/T

s
p s (r)	 e, I 	(11b)

F. The autocorrelation function of the amplitude modulated process is the

' product of the autocorreletion functions of the local and amplitude

component processes by equation (6).`

T	 Tz
I/

r
PZ(T) = e

_I

(12)

i

where' T _ 2 + T
z	 r	 s

Under the modulation concept the integral scale of the amplitude process
tl

is much larger than that of the local 	 R	 process.	 In this case the

amplitude modulation has the effect of slightly reducing the integral

., scale value of the original	 R	 process.	 For example, if the integral
r

scale of the 'amplitude process is ten times that of the local 	 R	 -

process, then the amplitude modulation reduces the integral scale of

the original process by about nine percent. 	 The amplitude component
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accordingly has a minor effect on the correlation and spectral functions of

the amplitude modulated process. 	 Conversely, it will be difficult to

separate the autocorrelation and spectral functions of the local	 R	 and

the amplitude components from the measured functions of the amplitude
_ w

modulated process.	 The preceding example is a special case where the
i

separation is impossible.

Effect of Dynamic Properties Upon Probabilistic Structure

The mean value variation has significant effects upon the probabilistic

structure of the AMPM process. 	 These effects are related to the dynamic

properties of the process, since the AMPM process is the sum of two

independent processes which have significant differences in both their

dynamic properties and probabilistic structures.

As an example of the effects of the mean value variation, the

differences between the AMPM random process and its first derivative are

-	 considered.	 The defining relation for the AMPM process is

W(t) ='r(t)	 s(t) + m(t)	 (3)

The quasi-steady derivative of the process is considered.*

Wq(t)	 r(t) s(t)	 (13, A50)

*The quasi-steady form of the AMPM process is used in the discussion, i
that is, the dynamic properties, such as the derivatives, of the slowly a
varying amplitude and mean value components are omitted.	 The dynamic
properties of the local	 R	 component are retained.
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t

For the quasi-steady derivative the value of the	 a	 parameter is infinite.

Consequently the A_MPM process and its first derivative generally have

different relative contributions from the amplitude modulated and the mean

value processes, that is, they have different values of the 	 a	 parameter.

The difference is shown by the values of the associated fourth order
R

flatness factors.

_k
f	

".

M(w) = 3(3U.	 + 2a	 + 1)	 (14;A.16)1+
(a2 + 

1)2

M(Wq) _ g	 (15)

The flatness factor of the derivative follows from the general form of

equation (14) with an infinite value of the	 a	 parameter.	 The 'value of

nine also follows from the form of the derivative, equation (13), which is

the product of two independent Gaussian processes.

The amplitude modulated process and its quasi-steady first derivative

have similar properties.

z(t)	 - r(t)	
s(t)	 (1)

z q(t) = r(t)	 s(t)	 (16)

I
The amplitude modulated process and its quasi-steady derivative have

the same basic forms	 the product of a Gaussian local process and the

same amplitude process.	 Consequently their probability density functions

l
have the same functional form and their fourth order flatness factors

is
"
r

have the same ` value.
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M4 (z) = M4 ( zq ) = 3M4(s)	 {17)

The flatness factor has a value of nine if the amplitude process is Gaussian.

i

Other distributions have been suggested for the an litude rocess enabling.p	 p

the resulting amplitude modulated process to account for a,range of values

for the flatness factor. 	 However, in all cases the resulting amplitude
j

r

modulated process and its quasi-steady derivative must have the same value

for the flatness factor.

-,consequently one effect of the slow, random mean value variation is

that it allows the ANPM random process and its derivative to have different

probabilistic structures.	 This property cannot be accounted for by
1

amplitude modulation alone.	 There are several studies which show that this jf

property appears in measurements of atmospheric motions.	 These studies

present a strong argument that the inclusion of the mean value variation

gives a better representation of the properties of atmospheric motions.

One study is reference 22, which examined turbulence related to storms.	 The

probability distribution functions of the atmospheric velocity components

and their gradients were examined and presented in graphical form. 	 Comparison

of the measured probability distributions shows that the functions of

the velocity components and their gradients have significantly different

functional forms.	 The gradients show a much greater deviation from the

Gaussian form, 'a property which is consistent with the form of the flatness

factors of the AMPM process, equations (14) and (15).
I

A more definitive study; is that of Chen, _ reference 23. 	 Atmospheric
I
^

turbulence data were obtained from several sources: 	 low altitude,

s
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severe storm, and high altitude clear air turbulence.	 The properties
-

of the three velocity components and their gradients were examined,

including computation of the fourth order flatness factors.	 The results

show a consistent trend of higher values of the flatness factor for the 4

gradients than for 'the velocity itself.	 The flatness factors for the

w	 velocity generally had. values somewhat greater than three, with a few

values being slightly less than or equal to three.	 The flatness factors

for the gradients had values between three and seven. 	 These values are

less than the value of nine for the derivative of the quasi-steady process.

However values, below nine are possible if transition effects* are present
l

or if the quasi-steady approximation is not completely satisfied,

particularly since the results are based upon the gradients and not the

derivatives of the velocity components.	 Thus the results of reference 23

are generally consistent with the properties of the AMPM process.

The study of references 24 and 25 presents data for atmospheric4	 i

motions which were measured by tower-based instrumentation.	 The

probability density functions and the associated flatness factors were

determined:	 The data show higher values of the flatness factor for the

velocity gradients than for the velocity itself. 	 Another set of results
{

was obtained in an examination of the effects of high-pass filtering'

upon the measured data.	 The filtering- consisted of removing a running

mean value from the data. 	 The filtering calculation considered several

time periods, the shorter time periods removing more of the lower

*Transition effects are related to the development of the slowly varying
amplitude and mean value components from their initial values in any
measurements of the AMPM process (reference 8).-

a

I
I

f

S
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frequency content of the velocity components. Using the concept of the

AMPM process, this operation represents an approximate but direct removal

of the random mean value variation. The resulting flatness factors show

a definite trend toward higher values as the filtering operation removes

more of the low frequency content. These results indicate that the

inclusion of a slow mean value variation gives a better representation of

the measured atmospheric motions. The highest values of the flatness

factor were generally less than the value of nine for the quasi-steady

derivative, which represents the complete removal of the mean value

variation. The data also show some values of the flatness factor less than

three and some relatively large values for the skewness (normalized third

moment). These results can not be modelled by the AMPM process in its

fully developed form, but could represent the transitional form of the

process (reference 8).

The difference between the probabilistic structures of the velocity

and the velocity gradient of atmospheric motions has been examined in

other studies where possible explanations of this property have been

suggested. For example, reference 26 uses this property to recommend that

the gradient rather than the turbulence velocity is the more important

experimental_ quantity.. The turbulence velocity is considered to be a

Gaussian process, thus omitting the amplitude modulation effect. The

analysis of reference 26 shows that the Gaussianproperty is lost in taking

the gradient of the process. However the gradient, which is the difference
a

'between the values of the process at two time values, is a linear

combination of Gaussian random variables and therefore must itself be

Gaussian (reference 27). Consequently the development of reference 26



can not explain the difference between the probabilistic structures of

the velocity and the velocity gradient of atmospheric motion.

In summary, -the probabilistic structure of the AMPM random process

possesses some mathematical properties that are not present with

amplitude modulation alone. In particular, the probabilistic structure

of the ABTM process can vary as different ranges of frequency values are

emphasized. Measurements of atmospheric motions show corresponding

properties, for example, the velocity gradients show more deviation from

Gaussian properties than the velocity itself. Atmospheric motions thus

show significant properties which can be accounted for by the AMPM process.
lj

It is noted that this conclusion is in disagreement; with that of

references 11 and 12, which are the original development of the basic

random process. However the development of those references did not

include the differences between the dynamic properties of the three	
t

component processes, which are essential for the existence of the
v

indicated dynamic properties of the AMPM random process. 	
s

Exceedance Expression

The mean value variation has significant .effects on the exceedance

expression of the AMPM process. An analytical relation for the exceedance	 i

expression has been developed by using the quasi-steady, approximation.

The relation is expressed as an exceedance ratio: the ratio of the

expected frequency of crossings of a given level of the AMPM process to

the expected frequency of crossings of the zero level for the R

component, process.

.4
f

iSS
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id(Iw) - 2 e1/2a2 i { e
-w/ac

[1 + erf( W
	 1 )^

or	 v72-c	 r2-a

+ ew/ac erfc( W	 +	 1	 )}	 (18; A54)
,mac 	 Z 

E
t

where	 w > 0 lI,
N(-w) = Ti(w)

M

The exceedance ratio is plotted in figure 3 as a, function of the ratio of

}	 the level of the AMPM process to its standard deviation, and for several

values of the	 a	 parameter.	 For large values of the 	 a	 parameter the
t

exceedance ratio approaches the exponential form of the amplitude modulated-

process, equation (A57) .	For small values of 	 a	 the exceedance ratio

t

approaches a Gaussian form related.to the mean value component process, _±

equation (A58).	 The intermediate cases show a combination of those two

functional forms.	 At the zero level the exceedance ratio is not equal

to one since the exceedances are ratioed to the expected number of zero

crossings of the R	 component process and not that of the'AYIPM process.

The exceedance ratio can be strongly influenced by the-quasi-steady

approximation at low levels of the process and for small	 a	 values, since

the dynamic properties of the mean value component are absent. 	 The exact

form of the exceedance expression is examined in appendix C.

The contribution of the mean value variation to the exceedance ratio k
r

of the AMPIA process is not clearly shown- in figure` 3, since the mean value =:

process affects the non-dimensional level of the AITM process through its r	 y.

standard deviation, which depends upon the 	 a	 parameter.

z
P
f
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y

^w _ 
C2 (a2 + 1)
	 (19 A15)

i

The contribution of the mean value variation is more clearly shown in
i

figure 4, where the exceedance ratio is plotted as a functicn of -the ratio
i

of the level of the MOM process to the standard deviation (Ab) of the

'	 amplitude modulatedprocess, which is independent of the a parameter.

Figure k thus shows the effect of the mean value variation relative to the 	 ?
9

amplitude modulated. process, which corresponds to an infinite value of.the

a parameter. Figure 4 shows that the mean value variation can either

increase or decrease the exceedances depending upon the values of both the

process level and the a parameter. The mean value variation can

significantly increase the exceedances at large values of the process as

the value of the a parameter approaches zero. In the limit of large

values of the process, the exceedance ratio approaches the exponential
a

form of the amplitude modulated process, but with the exceedances increased

by a constant factor whose value follows, from equation (A59).

3

lim N(wr a) = e1/2a2

v)-N(w; a=-)	 (20)

1

This factor indicates the upward shift with decreasing value of a ofp	 s	 g	 ^	 1-	 i
the limiting exponential form of the exceedance ratio curves of figure 4.

1

The effect of the mean value variation upon the 	 can be
i
i

seen in the measurements of the velocity of atmospheric motion in figure, 1.

The lateral velocity component shows crossings at high levels which are

related to the combination of the rapid local variations superimposed on

i

i
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the large, slow variations of the mean value. For example-, the

crossings of the 20 m/s level are related to the mean value variation.

Groesings of this level do not occur in the other two velocity components

which show similar local variations but not the large variations in the

mean value. Also, the mean value variations cause the crossings at the

zero level of the _lateral velocity component to be much less than those

of the other two velocity components. The measured data thus show the

decreased exceedances at low levels and the increased exceedances at high

levels, due to the mean, value variations, which are indicated in figure 4.

Experimental Aspects

Intensity Process	 a

It was estimated previously that the standard deviations of the

amplitude modulated and mean value processes are approximately equal for the
I

vertical, velocity component of atmospheric motion. The condition of equal

i standard deviations for these two processes suggests an explanation for

another aspect of measured atmospheric turbulence date. Attempts have been

made to determine the distribution of the "intensity" process directly
i

from measured data, in order, to verify the assumed, Gaussian distribution of

the amplitude process. Reference 28, for example shows that the measured

data suggest a Rayleigh rather than a Gaussian distribution for the

intensity. The measured data were obtained from two studies, references

29 and 30, which involved direct measurement of atmospheric motions. The

resulting intensity random variable is 	 F

x = s2 + m2	(21)

I

i
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where	 E,[ r2 ]	 1

This assumes that the data samples are of appropriate length to allow the

full development of the local 	 R	 component without significant development

`	 of the amplitude and mean value component processes. 	 The resulting intensity, N

X, is a random variable which depends upon the values of both the amplitude

~	 and the mean value processes.	 Following the basic formulation, the random

amplitude and mean value variables are independent and Gaussian with zero

mean values.	 If they also have equal standard deviations, the intensity 	 x

of equation (21) has a Rayleigh distribution (reference 27). 	 "thus the
,s

distribution of turbulence intensity indicated by the results of reference
is	 ;

28 suggests a correspondence with the properties o,f,the AOM`random process.

Experimental Procedures

The determination of -the spectral properties of the mean value
,i

variations in atmospheric motions presents a difficult experimental problem.

There are several problems in the accurate measurement and analysis of

atmospneric motions in the range of low frequency values associated with

the mean. value process, especially when the data are measured with a

flight vehicle.	 References 5 (appendix C), 15 and 31 give discussions of

the difficulties associated with the removal of the cxtraneous effects of >+-

-aircraft motion from the measurements. 	 Another problem is the accurate

computation of the spectral functions.	 Reference 32, for example, shows

that significant spurious effects can be introduced in the low frequency 3

range by the numerical procedures used to compute the spectral. functions.
F

Thus caution must be used in both the measurement and the analysis of

atmospheric motions in order to determine the spectral propertiesof the --

mean value variation.

i



EFFhC'2 OF THE LEAN VALUE VARIATION UPON AIRCRAFT RESPONSE

The effect of the mean value variation in atmospheric motions upon

aircraft response is examined in the present section, using estimates of

the dynamic properties of both the mean value process and significant

aircraft response quantities.	 Also, a; procedure for developing design l

criteria for aircraft structural strength is outlined.

AtMPM Process and Aircraft Response-

The effect of the AMPM process upon aircraft responses can be examined

by considering a simple mathematical model, in which the aircraft is a

rigid body in level flight at con,,^tant airspeed and is allowed to move in

plunging motion only. 	 The corresponding equation of motion is

w + aw = awg	 (22)

where	 w	 is the plunging velocity of the aircraft, w	 the plunging
a

acceleration and	 wg	 is the vertical velocity of the atmospheric motion.

The plunging velocity has the characteristics of a low-pass filter; the
i

frequency response function is approximately constant for frequency values
i

below the filter constant	 a	 and decreases as a.minus =one power of 7

G

frequency above	 a.	 The accelerati.)n has the chaxacteristics of a high- 	 -

pass filter; the frequency response function increases proportionally to

frequency below	 a	 and is approximately constant for frequency values

above	 a.	 The filter constant` of the first-order system is related to

aircraft response parameters:
s	 i

s

a =	 V	 (23)

cu

r

24
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where V is the aircraft speed, c the mean aerodynamic chord of the wing,

and	 }1g 	the dimensionless aircraft mass parameter (reference 33)*.

-	 The aircraft plunging motion is developed for the response to atmos-

pheric motion which is modeled:by the AMPM process. 	 The spectral properties

of both the local	 R	 and the mean value components are taken to be those
i

of the transverse velocity component in the Dryden model of turbulence

(reference 5).

W + 
3w2

ray	
rb	 rb

2^t$r (	 )	 _	 (	 )2	 2 2
( wrb	 )

where	 wrb = 1/Tr = V/Lr 	and	 Lr	 is the scale of turbulence of the 	 R

component process.	 For the first-order differential equation, equation (22),

and the normalized spectral density function for the transverse velocity

component, equation (24), the variances of the response are (reference 34)

l
a+ _w

= _	 2	 rb 

2	 (25a)Az2

a(a +wrb)

A. =	 5wrb ( 2 a +wrb)	 2 b )
r	

(a +, wrb ) 2

The aircraft plunging response to the AMPM process is developed from

the previous relations by using the quasi-steady approximation for the

*urr = 
2(W/S)/(gcCZ p), where (W/S) = wing loading, g	 gravity constant,

CL^ = lift curve slope, and	 p = air density.
a

L
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aiiiplitude modulated process.	 The variance of the response to the AMP1

process is the sum of the variances for the responses to the independent

amplitude modulated and mean value processes. 	 The	 a	 parameters of the

response are determined by the standard deviations of the response to the

local	 .	 and mean value components and by the 	 a	 parameter of the AMPM

process, for example,

A

w = Ar at	 (26; A48)
m	 g

Me	 a	 parameters of the plunging response are determined by combining

the previous relations and introducing the appropriate notations for the

two component processes.

l	 2
+ w 
b )a + 2 wrba2 	

( a	
a2	(27a)w	 a+	 W	 a+Wrb	 wg,

2	 mb

3	 2+	
mb)wrb	 2 a + wrba2 =	

( a
a2	 (27b)wa+w	 wmb	 3	 rb	 g

2 a +	 nb

The	 a	 parameters of the response quantities depend upon the three
a

frequency constants:	 that of the	 ,lunging response, a, and those of the

two component processes, wrb 	
and	

winb.

The preceding analysis is used to estimate the effects of the mean
J`

value variations in atmospheric motions upon the aircraft plunging motion

*The dynamic properties of the mean value procesu have been included in
the variances of the response, but have been omitted in the exceedance
expression, equation (18). 	 The quasi-steady values of the variances are
obtained by setting	

mb	 to zero.
f

I
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for the present class of subsonic transports.	 The ratio of the frequency

constants of the plunging response and the local 	 R	 component process is

L
a 	 _ r	 (28)

wrb	
c ug

Using typical parameters for subsonic transport aircraft, the mass parameter

value is usually between 50 and 100. 	 Using typical values of the wing chord

_ length and the scale of turbulence, the ratio of the frequency constants has

a minimum value of about one, that is, a = w(Larger values of the ratio
rb _.

of equation (28) result in larger values of 	 a.	 and thus less effect of
i

the mean value variation upon the plunging acceleration.) 	 Using the previous

estimates of the physical properties of atmospheric motions, the 	 a

parameter of the vertical velocity is equal to one, and the ratio of the r	 '

integral scales of the mean value and the local 	 R	 components is equal

to ten.	 With these values of the parameters, the resulting values of the
,y

a	 parameters and the fourth order flatness factors of the plunging

response are

M4(W	 a = .66) — 3. 55 -'a

s

I^14 (wg	 a	 1.00) = 4.50	 (29)*

T/ (w; a = 2.18)	 7.09
4

3

A

*If the quasi-steady approximation is used in determining the variances
of the response to the mean value process, that is, 	 w	 is set equal to Ambzero, the results are	 Ni4(w; a _ .51) = 3.44

M4(w; a	 ^) _ 9 A 
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The results show the effects of the dynamic system response upon the relative

contributions of the lower frequency mean value process and the higher

frequency amplitude modulated process. For the plunging velocity, which has

the characteristics of a low-pass filter, the relative contribution of the

clean value process is increased, resulting in a lower value of both the a

parameter and the fourth order flatness factor. The opposite effects are

shown by the plunging acceleration, which has the characteristics of a
i

high-pass filter.

The associated effects upon the quasi-steady exceedance ratios for

r

the three quantities of equation (29) are shown in figure 5, with the process

level ratioed to the standard deviation of the response to the amplitude

modulated process in the same manner as figure 4. For the original AJ6PM

process (a parameter equal to 1.00) the effect of the mean value

variation is small. For the plunging acceleration (a equal to 2.18) the

effect is almost negligible. For the plunging velocity (a equal to 0.66)
x

the mean value variation significantly increases the exceedancc ratio,

J.except at the lowest response levels. The results of figure 5 show two

points First, with the presence of both the amplitude modulated and the

mean value processes, the exceedance expression depends upon the dynamic

properties of the system response quantity and-consequently can be different

for different response quantities. Second, the presence o;.' the mean value

variation can significantly increase the exceedances, particularly fora

response quantity which acts as a low-pass filter. Since the critical

aircraft response quantities are usually either accelerations, or incremental a

loads which are closely related to accelerations, the effect of the mean

value variations in atmospheric motions upon-a.ircra.ft response are

3	

At

A , .'W
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generally not significant. The effect of the mean value variation however

can be important for response quantities which are related to the velocity

or displacement.

The effects of the mean value variation in atmospheric motions upon

aircraft response are also examined by considering quantities which have

the characteristics of a narrow. band-pass filter, such as Tow damped

oscillatory modes, either whole body or elastic. For simplicity both the

amplitude modulated (or equivalently the local F) and the mean value

processes are assumed to have the Dryden spectral function for the

longitudinal component of atmospheric turbulence (reference 5), for
a

example,

^r(w) 	 27Trb	 2 1	
2	

(30)

wrb +

where wrb l/Tr

The power spectral density function has a simple, approximate form: for

frequency values below wb the function is constant, and for values above

wb the function decreases as the minus-two power of the frequency. This

approximate form is plotted in figure 6 for both the mean value and the

amplitude modulza ed (or the local R) processes. Since the mean value

fcomponent is considered to be slowly varying, the integral scale value 	 a

is significantly greater than that of the local R process, giving the

opposite relation for 'the corresponding values of the frequency breakpoint.
S

GY
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The power spectral. density function shows the basic effects of the

two random processes upon the response of dynamic systems which have the

characteristics of narrow band—pass filters. 	 The associated frequency

response function is dominated by a single frequency value, which is the
I natural frequency	 n	of the dynamic system.	 The relative effect of the

two random processes upon the variance of the response is directly

related to the values of the two power spectral density .functions at the

value of the system natural frequency.	 The effect can be visualizedi

from figure 6.	 The functional properties of the composite power spectral

density are divided into three regions of frequency values. 	 First, for

values of the system natural frequency which are below the frequency

breakpoint of the mean value ,process, both spectral functions are constant.
I

The response is dominated by the mean value process; the -a	 parameter of

the system response is smaller than that of the excitation process.

2	 mb	 2	 2
W	 < w	 a	 a.< a.	 (31)n	 ni	 in	 mb	 out	 w rb•.

Second, for values of the system natural frequency which are between the

two frequency breakpoints, the spectral function of the amplitude

modulated process is constant while the function of the mean value

process decreases with increasing frequency. 	 hither process can be

dominant in the system response, depending upon the value of the natural

frequency.

y

i

f

..
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2

2 wn 	2
Wnb < Wn < Wrb ,	aout w wrb mb ain

Third, for values of the system natural frequency which are above the

frequency breakpoint of the amplitude modulated process, both spectral

functions decrease as a minus-two power of frequency. 	 The response is

dominated by the amplitude modlated process; the	 a	 parameter of the !	 y

system response is larger, than that of the excitation process.

< W
	

2	 rb	 2	 2W	 (33)aout	 ainrb	 n	 ainmb

Consequently the relative contributions of the two processes to the response

of a narrow band-pass system to the AMPM process depend on the value of the

natural frequency of the dynamic system relative to the values of the -

frequency breakpoints of the amplitude modulated and the mean value processes.

The preceding development can be used to estimate the effects of the

E	 (	 mean value variation in atmospheric motion upon aircraft dynamic systems.	 The

i	 frequency breakpoint of the amplitude modulated process, which is

!	 i	 approximately equal to that of the local R 	 component process, can be

estimated from the values of the scale of turbulence currently suggested in

the aeronautical literature.	 There is an open question on the most appropriate

value, but estimates vary from about 250-m (800 ft, reference 35) up to
j

j	 the value of 762 m (2500' f t) 'used in aircraft design criteria, references 3i

ind 4.	 For the present class of subsonic transports this gives values of j
z^

u.yr ,_between about 0.2 and 1.0 radians per second.* 	 The dominant whole body
i

YV*The frequency breakpoint is given by the relation	 orb _	 where the constant

I	 •y	 locates the "knee" of the spectral curve and has a value between 1.0 and 1.5

i

{	 for the atmospheric turbulence models used in aeronautical applications.

b
p

1

(32)
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ft
	 modes of aircraft, the Dutch roll (lateral) and the short period (longitudinal)

modes, have representative values of about one and two radians per second,

respectively, for subsonic tr ansport aircraft.	 The values of theP	 y ^	 P	 primary

response frequency thus fall mostly in the third region of the spectral function,

j which is dominated by the amplitude modulated process. 	 Consequently, the value

of the	 atarameter for most aircraft responsep	 p	 quantities is greater than

that of the original atmospheric velocity components.

The effects of the mean value variation in atmospheric motions are

thus fairly small for most aspects of the response of current subsonic
°s

-transport aircraft, for example, response quantities such as accelerations and

'	 incremental loads which are related to ac-celeration quantities. 	 The mean value j

variation will be more important for response quantities related to the velocity
4

`	 or displacement. 	 The mean value variation may significantly effect the long

period or-phugoid mode associated with speed -and, altitude perturbations of
i

aircraft (reference 36).. 	 This mode is usually ignored in the calculation

of aircraft loads.	 However, there are cases where the effects of the phugo-id

moue may be significant. 	 The effects of the mean value variation may become A

important for aircraft which are significantly larger than the current class
t

of subsonic transports, due to the generally lowed^ values of the frequencies' ?.

of the whole body modes.	 The mean value variation is more important for
a

higher flight speeds due to the corresponding higher values of the frequency 1

-breakpoint of the amplitude modulated process.	 A similar conclusion applies

o flight at low altitudes due to the associated lower values of the scale of _.

turbulence (reference 35)•
j

^.
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The previous conclusions depend upon the condition that the standard

	

is
	 deviations of the amplitude modulated and mean value process are approxi-

mately equal in atmospheric motions, that is, the value of the a

parameter is approximately one. This condition is used as a preliminary

	

-ii	 estimate of the standard deviation of the mean value process. If measured

atmospheric data show cases where the standard deviation of the mean value

component is significantly different, then the previous conclusions must be

revised accordingly. An associated question is the isotropy of the atmospheric

motions. Examination of the measured data of references 18 and 19, which show

the separation of the spectral functions into two fairly distinct parts,

suggests that the mean value component process of the atmospheric velocity

can be strongly anisotropic, giving significantly larger contributions to

the horizontal velocity components. These data suggest that the a parameter

can have significantly lower values for the lateral thar, for the vertical

velocity component of atmospheric motion. The lateral response of the

aircraft may accordingly be more significantly influenced by the mean value

variation.

The presence, of the mean value variation in atmospheric motions has

an indirect effect upon the calculation of aircraft response through the

specification of the appropriate integral scale value for the local turbulence

variations. The development of the integral scale values in measured
,-

atmospheric data requires the determination of two primary quantities:

the integral scale of the mean value process and that of the local turbulence

variations. Previous determinations of the integral scale value have not

directly accounted for the mean value variations. This effect was included

in the determination of the integral scale of the local turbulence variations,

. K
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that is, the local R component of the total process. This suggests that

these determinations of the scale of turbulence, and, consequently the

criteria value of 762 m (2500 f0 , are too high. It is noted that

suggestions for reducing the present scale of turbulence values have been

made elsewhere (reference 35, for example).

Development of Aircraft Design Criteria	

'i

The application of the AMPM process to long-term measurements of

atmospheric motions and the associated aircraft response requires the

introduction of the concept of several types of turbulence. This concept

was used in the original development of the amplitude modulated model

(reference 1) and has extensive experimental justification. The original

random process is modified by introducing a conditional process, which

is conditional on the type of turbulence. The probability density functions

are weighted by the probability of the occurrence of each -type. The quasi

steady exceedance expression of the modified AMPM process is obtained from

E
the original expression, equation (A53).

r
A2 c2

S(w) = l N E P. exp ( m i)
2 or 

i 
1	 2A2 b2

r i

{exp (
-Jw w

° I	
w

	

)L1 + erf (
w - ° I	 m c
	 (34)
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Historically two types of turbulence are considered. These are often

referred to as nonstorm (i=1) and storm (i=2) turbulence. There is an

additional term, representing the probability of no turbulence, which is

usually omitted in the literature.

The exceedance expression of the modified process, equation (34),

1
I

can be applied to both the velocity components of atmospheric motion and

the resulting dynamic system response under the quasi-steady assumption.
s

For the case of an atmospheric velocity component, the deterministic mean

value (w ) is zero and the two standard deviation factors (A 	 and	 Ao	 r	 m

have unit values by definition.

The mean value variation introduces an additional atmospheric parameter.

Consequently there are three atmospheric parameters for each type of

turbulence:- the probability parameter 	 Pi , the amplitude intensity parameter

b
i
, and the mean value intensity parameter 	 c..	 No data are available on

i_

representative values of the mean value intensity parameters since previous

^.
examainations of measured data have not considered the mean value variation.

Also, these parameters cannot be obtained from long-term measurements of

} aircraft vertical acceleration, since the aircraft acceleration acts as a

high-pass filter which largely removes the mean value variation.

-There remains Lhe question of the effects of the mean value variation

on the related problem of the specification of structural criteria for

turbulence induced loads.	 The present approach is the specification of a

maximum exceedance level for all aircraft loads.	 For the amplitude

Modulated process this requires the computation of two quantities:	 the

`
standard deviation and the expected number of zero crossings of the	 1

1

response to the local	 R	 component process. 	 From these quantities,the

f	 ^.

l	 ^
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deterministic mean value (one-g flight response) and a given set of

atmospheric parameters, the exceedances of the response can be calculated.

The introduction of the mean value variation requires the calculation of

one additional quantity: the standard deviation of the response to the mean

value process. This quantity can be determined by the same computational

procedures used for determining the response to the local R component
a

process. Once the response quantities are known, the associated

exceedances can be computed from equation (34) for a given set of

atmospheric parameters.

Aircraft design criteria are usually presented in terms of a gust

intensity parameter.

-
U	

(w	

oI	 (35)
c5	 A

For the amplitude modulated process the exceedance ratio depends solely

i
upon Uo for given values of the atmospheric parameters. Consequently the

aircraft design criteria can be specified as a required value of Ua,

which is a function, through the atmospheric parameters, of the altitude

only. For the MPM process this procedure is more complicated since the

exceedance ratio of the re=sponse quantities depends additionally upon

the a. parameter. This is shown by figures 7 and 8,._ Figure 7 shows a

set of exceedance ratios as functions of the process level, and for

several values of the a parameter. The exceedance ratios are computed
l

for an altitude of 6.1 km (20,000 ft) using the atmospheric parameters	 z

of references 4 and 37. No assumption on the values of the atmospheric

parameters of the mean value process have been made, except that the a
I

r
^	 w

^	 1
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parameters of the two types of turbulence are equal. From figure 7 the

II	 combinations of the gust intensity parameter Uo and the a parameter
I

which correspond to a given value of the exceedance ratio axe determined.

These combinations are plotted in figure 8, which shows the Ue and a

parameter combinations which correspond to constant values of the exceedance

ratio at the given altitude. It is noted that figure 8 also shows that

the effect of the mean value variation upon the exceedance expression

is very small if the a parameter of the response quantity has a value

above two.

The approach outlined above is based upon the exceedance ratio andp	 ^

not directly upon the exceedances, since the secondary effect of the

expected number of zero crossings of the local R process for the

response quantities is omitted. In order -to use the number of exceedences

directly, all three parameters of the system response (A r , A n , Nor ) must

be accounted for. The resulting exceedances can be computed from equation 	 j
(34)
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CONCLUSIONS

The application of the AIAPM (amplitude-modulated-plus -mean) rancLom A

process as an atmospheric turbulence model is examined and evaluated on

a qualitative basis.	 The effect of the mean value variation is of primary

interest since this is the distinction from the amplitude modulated process

(the Press model, references 1 and 2) which is currently used to model

atmospheric turbulence in aeronautical applications.	 It is concluded that

the cowbination of amplitude modulation and a slow, random variation of the

mean value is a better representation of measured properties of atmospheric

motions.	 In paxticular, the AMPM process can account for the differences

in the statistical properties of atmospheric velocity components and their

gradients; these differences cannot be accounted for by -a.plitude

modulation alone.

The correspondence between the properties of the AMPM process and the

physical properties of atmospheric motions are examined. 	 The structure

of the random process suggests a possible correspondence with the structure

of' a:tmospheric motion:	 the lower frequency mean value process corresponding

to the internal gravity waves (winds or drafts) and the higher frequency If

amplitude modulated process corresponding to the turbulence.	 The

separation of the atmospheric motion into two elements appears in the power

spectral density functions of atmospheric motions, which have the same

general form as the functions of the AMPM process.

The response of linear dynamic systems to the AMPM process is

examined.	 Due to the structure of the process, the relative contribution

0 f the mean value variation to the total system response is strongly
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1

'	 influenced by the dynamic properties of the response quantity. 	 For

response quantities Which have the characteristics of a high-pass filter, r'

such as aircraft accelerations, the relative contribution of the mean

value variation is considerably reduced.	 For this reason, the gradients

of the ,AMPIA process show a larger deviation from Gaussian properties than 5

_	 the process itself.	 For response quantities which have significant r-

R

response in the lower frequency range, such as aircraft displacements and

velocities, the mean value variation can significantly increase the

exceedances of the response at high response levels. 	 Using

estimates of aircraft dynamic properties, it is concluded that the

effects of the mean value variation upon aircraft loads are small in

most cases.	 However, the effects can be important in the measurement

and interpretation of atmospheric motions.

8

I

a
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APPENDIX A

SUMMARY OF MATHEMATICAL PROPERTIES OF AMPM PROCESS

The mathematical properties of the amplitude-modulated-plus-mean or

the A14PM random process are reviewed in this appendix.

Process Definition and General Properties

The AMP1,1 process is formed from three independent random processes,

which are identified as the local	 R, the amplitude	 S, and the mean

value	 M	 components.	 The modulation of the local process by the amplitude

component forms the amplitude modulated process	 Z.

z (t ) - r(t) S (t )	 (Al)

The sum of the amplitude modulated and the mean value processes forms the

PVPb1 process W.

W(t)	 z(t) + m(t)	 (A2)

l

W(t) = r(t) s(t) + m(t)	 (A3)

The properties of the AMP14 process are determined by the defining

relation, equation (A3), and the properties of the three component 1

processes, which are specified to be stationary and Gaussian with zero

mean values.	 The notation for the variances of the component processes

Z

I
'The numbering of the equations corresponds to that in reference 8;
equation (Al) is equation (1)- of that reference.

40
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f.

E[r2]	 A2

rr

E[s2] = b2 (AlO)

w

E[m2]

	

c2
}

_ w

i

The moments of the AMPM process are determined by the defining relation;

I
for example, the variance is

E[w2 ]	 A2 b	 + c2 (A13)

The ratio of the standard deviations of the independent amplitude modulated

and mean value processes is a basic parameter of the AMPNi process.

F

- -	
a	

Ab (Ali+)
: c

{

The moments of the AMPM process can be expressed in terms of the	 a

i parameter; for example, the variance is

E[w2 ] = '6w = c 2 (a2 + 1) (A15)

The fourth order flatness factor (or kurtosis) shows the dependence of

the probabilistic structure of the MEN process upon the relative

contributions of the amplitude modulated and the mean value processes.

_	 i^[w2]	 3(3a	 + 2a2 +^1)_"14(w) (A16) 
i

;2 [w2 ]	 (a2 + 1)

i

a

S
f'

i
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For a zero value of the a parameter, the flatness factor has the value

of three for the Gaussian mean value process. For an infinite value of

the a parameter, the flatness factor has the value of nine for the

amplitude modulated process, the value of nine resulting from the product

of two independent Gaussian processes.

The autocovariance function of the AMPM process is related to the

autocovariance functions of the amplitude modulated and the mean value

processes. Using the defining relation and the independence property,

the relationship is

T (T) = T (T) + T (T)	 (A22)V	 z	 m

i

where

tjl (

T

)^ (T) 

T 

(T)

z	 r	 s

The corresponding relation for the power spectral density function is

(w) _Z(w) + 0(w)	 (A23)

The autocovariance functions can be expressed in terms of the (normalized)

autocorrelation functions:

',	 a
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i

{	

^YZ(T)	 A^b2PZ(T)

(A29)

where

PZ(T) = Pr (T)PS(T) J^

V

Combining the previous relations and introducing, the 	 a	 parameter, the

-	 corresponding relations for the autocorrelation function and the normalized

power spectral density function, which is the Fourier transformation

of the autocorrelation function, are ~

2
P."	 Pz(T) +	

L 1	
Pm( T )	 (A31a)

2a
a	 + 1	 a	 + l

2 l	
$m( w )	 (A31b)(W) _

	 2a	
^Z(^) +w

2

-	 a,	 + 1	 a	 + 1

Quasi-Steady Approximation {

In application as an atmospheric turbulence model, the AMPM process

is interpreted as the combination of a rapidly varying local component

with slowly varying amplitude and mean value components.	 This concept

leads to the quasi-steady approximation in which the dynamic properties

of the amplitude process, and possibly the mean value process, are

omitted in developing the dynamic properties of the AMPM process. 	 The

quasi-steady approximation presents a simple method for the analysis of

the response of linear dynamic systems to the AMPM process. 	 Assuming

that the amplitude process affects the dynainic response of the system

f
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only in a static manner, the dynamic response (or output) of a linear

systeri to an PJVT 1 process is also an AMPM process.

Win	 rin(t) s(t)+ Min (t)	 (A3' ) in

wout (t)	 rout (t) sin (t)+ mout(t)	 -	 (A43)

Using the quasi-steady approximation, it is necessary to develop the

response of the system to only the local 	 R	 and the mean value components, a

which are stationary and Gaussian random processes. 	 The variances of the

three components of the input process are those of equation (AlO), except

that a unit variance is specified for the input 	 R	 component.	 The notation

'	 for the variances of the components of the output process is
r.

2	 _2
E, [r
	 _ Ar

(A45)

E[m2 	] = A2 c2
out	 m

The moments of the input and output processes are developed from equations

(A3') and (A43), and from the independence of the component processes.

in	 in
(A47)

f
,

L[wout^	
Arr 

c2(^out	
1)

i

{

i

m-. 4	 ...v	n	 ..	 m	 r^c.a	 y___..._.....z_	 x.. rsk':c ..s.••"_u ..	 x^._ari	 ^,zti/a:v.xL._	 ,_.	 .. 	 __._..^	 ._.s.rs _._.^`X_..'a_.Y..bz 	 -_ ^2"'v"an 2.^R 	 ^J	 .^.	 "a..,e.!	 yhas.^:	 ,_.^ e.v.-.mrmdecz: .:e
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The relation between the a parameters of the input and output processes

is obtained from eatiations (A14) and (A45).

t

A b	 Ai __
coin	 (A48)out	 Arc

m
1

The values of the	 a	 parameters and consequently the probabilistic

structures of the input and output AMPM processes car_ be different,

depending upon the relative response of the dynamic system to the local

R	 and to the mean value component processes.

Another application of the quasi-steady approximation is the
i

development of the derivative of the ANIPM process.	 The exact derivative,

which is developed from equation (A3), depends upon the derivatives of

all three component processes. 	 In the quasi-steady form, the derivatives

of the amplitude and mean value components are omitted. 	 The resulting I

`	 quasi-steady derivative is -

w ( t ) _ rW s(t)	 (A50) s
q

Quasi-Steady Lxceedance Expression
w

The exceedance expression (the expected frequency of the crossings

of a giver. level) of a random process is developed from the joint

probability density function of the process and its first derivative
t

(references 38 and 39).	 An analytical forme can be developed for the
3

exceedance expression of the PITIM, process by omitting the derivatives

i

Y

1k,

.4
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of the amplitude and mean value components. The resulting quasi -steady

exceedance expression is

_w
Id{w __ l ec2/2A2b2 {e Ate [1 + erf( w - c )]
I1or	2	 Vc	 'r2_Ab

(A53)

+ ew/Ab erfc ( w + c )}	

4	 '

^2_c	 /2--Ab

N(w) = 1 el/2a2 {e-w/ac [l + erf ( w - l )]	 (A54)
11or	 72-c 	 r2-a

+ ew/ac erfc ( 
w + l )}

72-c -a

where w > 0

a^

N(-w) 	N(w)
y

A.	 1
N = 1 r

or	 2Tr Ar

The exceedance expression contains both the exponential dependence

of the amplitude modulated process and the Gaussian dependence of the

mean value process. The exponential dependence is dominant for large

values of the a parameter.

lim 	 Nor 
e-lwI/Ab	 (A57)

i

The Gaussian dependence is dominant for small values of both the a

parameter and thelevel of the process.

]
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s

2 / 2
N(lwl«c; a«l) ~f Nor a e-w 2c	 (A58)

The exceedance expression approaches the exponential form of the amplitude

mcdulated process for large values of the AMPIVI process.

N(Jwl »ca) ;z:Nor e
l/2aL e-JwJ/ac	

(A59) a1

i

Since the dynamic properties of the mean value component have been eliminated

by the quasi-steady approximation, the value of the expected number of 	 l

crossings of the zero level becomes zero in -the limit of small values of the

q
a ' parameter., as indicated by equation (A58). The exact form of the

exceedance expression, which includes the dynamic properties of all threeP	 ^	 Yn	 p p

component processes, is examined in appendix C

Af

f	 ,

3

1	
F	 ^



.APPENDIX B. EFFECTS OF CORRELATION BETWEEN THE AMPLITUDE
AND MEAN VALUE COMPONENT PROCESSES

In the formulation of the AMPM or total process, the amplitude and

mean value component processes are specified to be independent.	 The

resulting MlPM process is the sum of the amplitude modulated and the mean

value processes which are independent.	 However turbulence theory -

introduces the concept of interaction between the two processes, specifically

the flow of energy from the lower to the higher frequency process.	 This

interaction raises the question of the effect of the assumed independence

upon the properties of the resulting total process.	 In this appendix the

formulation of a total process with correlated amplitude and mean value

component processes is outlined. 	 The effects of this correlation upon

-properties of the resulting total process are examined.

The defining relation of the total process is

` w(t)	 z(t) + m(t)	 (Bla)

z (t) = r(t)	 s ( t )	 (Blb)

The amplitude and the mean value components are specified to be

'
correlated Gaussian processes.- V

E[sm] _ psm be	
(B2) 3

t
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The local R component is specified. to be independent of the other two

component processes. The resulting total process is the sum of the

amplitude modulated and the mean value processes. The relation between
I

these two processes is shown by their joint moments, for example,
t

E[zm] = 0	 (B3a)

E[z2m2 ]	 A2b2c (1 + 2Psm)	
(B3b)

Equation (B3a), which follows from the independence and zero-mean

properties of the R component, shows that the amplitude modulated and

the mean value processes are uncorrela.ted. Equation (B3b) shows that

the amplitude modulated and the mean value processes are not independent
I

(for a non-zero value of the correlation coefficient).

The moments of the corresponding total process are developed from

the defining relation, equations (Bla) and (Blb). All odd order moments

I	 are zero. The relations for some of the even order moments are:

E[w2 ] = C2 (a
2
 + 1)	 (B4a)

E[w4 1 = 3c4 Da4 + 2a2 (1 + 2psm) + 11	 (BZfb)

j	 E[w6] _ ^5c6[X56	
(9a + 3a2 )(1 + 1^p2

 ) + 1]	 (34c)
sm.

3
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Examination of the basic form of the moments shows that the correlation

coefficient always appears as an even power. 	 The correlation is thus a

second order effect for small correlation values.

The effect of the correlation is also shown by the associated fourth

order flatness factor.

3L3a	 + 2a2 (1 + 2P
	

+ 1] vsin

M4 (w) -	 (B5)'
t

2	 2
(a
	

+ 1)

The correlation increases the value of the flatness factor, thus showing )

tendency away from a Gaussian distribution toward that of the amplitude

Modulated process. 	 However, the minimum value of three and the maximum

value of nine for the flatness factor are not changed by the correlation.

In order to estimate the numerical effects of the correlation upon the

flatness factor, the case of equal values of the standard deviations of

the amplitude, modulated and mean value process is considered.

M4 (w; a = 1) = 4.5 + 3 psm 	 (B6)

The correlation coefficient must have an appreciable value in order to

significantly change the value of the fourth order flatness factor.

Conversely, if the amplitude and mean value component processes are

weaY^ly correlated, it will be difficult to determine the extent of

correlation from measured data by use of the flatness factor.



The relations for the characteristic and probability density functions

of the total process follow from the defining relations, equations (Bla)

land (Blb). The relation for the characteristic function is

y

i
	 Gw(0) y 1.

00 
f.eim0 Ir(se) p(s,in) ds dm	 (B7)

r

i
4

Since the required functions of the three Gaussian component processes

are known, the characteristic function of the total process can be	
3a

determined.
i

The effect of the correlation upon the exceedances of the total process

is an important question for aeronautical applications. The exceedance

expression is developed from the joint distribution of -the process and its

first derivative. Using the quasi-steady approximation (reference 8),

Cw) = f^ f Nx(^' 
s m ) p(s,m) ds slm	 (B8)

Equation (B8) is integrated numerically since the required integrations

appear to be intractable. Figure 9 shows the resulting exceedance

expression asa function of the ratio of the level of th e total, process

to the standard deviation (Ab) of the amplitude modulated process. The

exceedance curve is shown for an a, parameter of .60, which is

approximately the value for the maximum differences; the effects of the

`	 correlation upon the exceedance expression vanish in the limits of zero

and infinite a values. The correlation has the effect of increasing

the exceedances at high values of the process level. For a value of the

non-dimensional process .level equal to six, which is about the critical

I

r
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i

level in aeronautical applications, the exceedances are increased by

less than 20% for a correlation coefficient of .30.

In summary, the introduction of correlation between the amplitude

and mean value component processes eliminates the independence property

of the amplitude modulated and mean value processes. Thus the two

processes can interact as required by basic turbulence theory. If the

amplitude and mean value processes are weakly correlated, thea the

correlation is a second order effect; the effects of the correlation

;;	 I
on the fourth order flatness factor and on the exceedance expression

of the total process are fairly small.
=1

t
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APPEITDIX C. COMPARISON OF THE EXACT AND QUASI-STEADY
EXC EDANCE EXPRESSIONS

	

^	 14
i

The exact exceedance expression of the AMEX or total process is

examined and compared with the quasi-steady form of the exceedance

expression, equation (A54), in this appendix. In the quasi-steady

approximation the dynamic properties of the local R component process

i are considered, while those of the amplitude and mean value component

j	 processes are omitted. In the exact form of the exceedance expression

the dynamic properties of all three component processes are considered.

The present development extends that of references 11 and 12. Although

the exceedance expression is examined in general form, the modulated

form of the total process is of primary interest, that is, the amplitude

and mean value component processes are slowly, varying relative to the

local R process, with the quasi-steady approximation being a limiting

case.

	

!	 The exceedance expression is developed from the joint probability

	

j	 density function of the random process and its first derivative j

(references 38 and 39):

N(w)tow p(w, w ) diw	 (Cl)

The indicated integration operation essentially gives one-half of the

first absolute moment of the first derivative. (This moment is assumed

to exist ire the subsequent development.) For the total process it is

convenient to develop the exceedance expression from the joint character-

istic function of 'the process and its first derivative,

53
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C" ( Ow S ed ) = E[eiwew + iwed

Tne absolute moments of a random variable are deve

teristic function (reference 40).

I

)
E[) x I n ] 	 f^ 

Ixjn 
p(x)

n

n+l Io an m
y + C(-^)] 

d	 (C3)
27ri	 a

where n odd.

The relation for the Fourier transformation of the exceedance

expression is obtained by combining the previous relations.

de
F{N(w)} _ -1 f- 

a _ [C(e 
,e )]	

d	 (C4)

T 	 ed -

where C(eW , -e d )	 C(ew, Od)

]
Introducing the inverse Fourier transformation, the relation for the

exceedance expression is

3

N(w) 2 fofo aed [C(ew, ed)]

d6
cos(weW )

dew 
®	 (C5)

a
I 

	 ,

The joint characteristic function of the total process and its first
s

derivative is

5

f A

E	 I
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obtained from equation (C2). Since the total process is the sum of the

independent product and mean value processes, the characteristic function

is the product of the functions of these two processes.

C •(0 ' e ) = C (0 ,0 )C ,(e ,0 )	 (C6)
WW	 d mm 

The joint characteristic function of the product process Z and its

first derivative is given in reference 7. Since the three components

of the total process are stationary and Gaussian, it is convenient to

express the standard deviations of their first derivatives in terms of

the expected number of positive slope zero crossings. The appropriate

notation for the local R component process is

A.

or	 27r A	 ( C7,r
r

-	 where

A2 _ E[r2]

A2 — L[r2]r	 }'

The notation for the amplitude component process is

x	
E	

1Jos	 ^^s2	 Ar	
CSs	 N	 E[	 A.	 ( )

or	 r

The notation for the mean value component process is

E 
= nom	

[m2 r	 (Cg)
m Nor `i E[m^] A.

- ^, .^lr	. _., _ _ ,_.^_	 .mom ,^^^c^-• 	 ,^^_e.^z-4	 _	 ,. __ ^ w... 	 __
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The concepts of amplitude modulation and the slow variation of the mean

value require that the C parameters have values much less than ore,

with zero values corresponding to the quasi-steady approximation.

The joint characteristic function of the total process and its first

derivative is obtained by combining the previous relations.

-1/2
C(Aw,oQ ) _ [u2x2 + (1 + a2y2 ) ( l + Csa2y2)]

1 2 l _2 2

	

exp(- 
2 
x - 2 Amy )	 (C10)	 <:

i

where

x = A bow/a

y = A.bOd

The relation for the exceedance expression is obtained by combining the

joint characteristic function and equation (C5).

s

N(w) = y2	 °o -1/2	 1 2 l 2t 2

N	
7a I

ofo 
fD	 exp(- 2 x - 2 any ),	 (C11)

or
x

.cos( x) dx dy
A

where

Y

	D = x2 + (c 2 + y` )(1 + CSa2y`)	 Y

2	 -
-f = ^ + [l+CS (1+2a2)'y2]vl

S

3

L-a- ̂__ ^^

^.
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In the special case of both c 	 parameters equal to zero the integrals

reduce to a standard form, giving the quasi -steady exceedance expression,

equation (A54).	 In the general case the integration appears to be intractable

and is evaluated numerically.

The exact exceedance expression is plotted in figures 10 and 11 as a

function of the level of the total process (ratioed by the standard

deviation, Ab, of the product process), and for several values of the 	 cm
pa.rameter.-	 The dynamic properties of -the amplitude component process have

been eliminated by setting the value of the	 es	 parameter to zero.	 Figure

10 shows the exact exceedance expression for the value of the	 a	 parameter
t

equal 'to one, in which case the variances of the product and mean value

processes are equal.. 	 Figure 11 shows the exact exceedance expression for ~

the value of the	 a	 parameter equal to .5, in which case the mean value
777

component is the dominant contributor to the total process. 	 The exceedance

expressions for the quasi-steady case correspond to the zero value of the a

'. Em	 parameter.	 As the value of that parameteris increased, the values of

the exceedance expression are increased at all levels.	 Thus the dynamic
i

properties of the mean value process uniformly increase the exceedances
•a

of the total. process.	 The relative increase is greater for smaller value

of the	 a	 parameter, that is, for larger static contributions of the mean

value component to the total process.	 The largest relative increase in

the exceedances occurs at the zero level of the total process. 	 The exact

and quasi-steady exceedance expressions axe equal in the limit of large
^x

values of the level of the total process. The results of figures '10 and 11
s

`	 z
i

show the following relation for the special case of equal values of the
j

e

i

^_	 c^E^iWi^°	 ^`^.	 r z.x_	 ^-_., _r_ r..	 v.	 .•_	 rir'°	 ..r ^^'^. ^^.. 	 i^a_..-	 ..,^= 3 	 -	 -	 .a^^_.4_»r^	 ^__r^^ ^_._,^. _... 	._.,r^`
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expected number of zero _crossings of the local R and mean value component

processes, that is, the Em parameter equal to one.

N(w 0; a, Em = 1, Es	 0) = Nor = Nom	 (C12)

i

This relation follows from the general expression, equation (Cll), winch

can be integrated analytically in this special case.
a

The concept of the AMPM process specifies that the mean value process

is slowly varying relative to the local 	 R	 process.	 Consequently the

value of the	 E	 parameter is generally much less than one.	 However there
M

can be exceptions to this which are within the concept of the AMPM process.

One example is the response of a narrow band-pass system to the AMPD4

process.	 The frequency content of the system response, including both the

amplitude modulated and mean value processes, will be dominated by the

frequency of the narrow band.-pass system. 	 Consequently the expected

number of zero crossings of the local 	 R	 and the mean value processes of

the response will be almost equal; the value	 of	 Em	parameter of the

system response process will be approximately one.
I .7

The effects of the dynamic properties of the amplitude process, which

are expressed through the 	 E	 parameter,; equation (C8), were examined by
s

numerical integration of theexact exceedance expression. 	 Numerical

results show the following general effects for values of the	 es	 parameter

less than .25.	 If the value of the	 a	 parameter is one or greater, the

effect, of the	 £s 
,parameter upon the exceedances is always less than 5%.

-

7

f	 -

l



The effect is larger for smaller values of the a parameter. The effect

of the E. parameter can significantly increase the exceedances in the
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