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INTRODUCTION

Several random processes have been proposed as mathematical models
for atmospheric turbulence in aercnautical applications. The amplitude
modulated raudom process or the Press model (references 1 and 2) has been
widely applied to the analysis and measurement of aircrafl respouse to
atmospheric turbulence (references 3 to 7, for example). The amplitude
modulated process accounts for the local variations of the turbulence in
combination with a random modulation of the amplitude. In reference 8 this
process was extended by the addition of an independent mean value process,
based upon a reinterpretation of the random process described in references
9 to 12. The resulting amplitude-modulated-plus-mean (AMPM) random process
allows more versatility in modeling the measured properties of atmospheric
turbulence. The basic mathematical properties of the AMPM process, including
the first and second order properties and the characteristic function of
general order, have been developed in reference 8.

The correspondence between the properties of the AMPM process and
the.associated properties of both atmospheric turbulence.and aircraft
response are examined on a qualitative basis in the present study, which
consists of three parts. The first part is an interpretation of the AMPM
random process in terms of the physical structure of atmospheric motions.
The second part is an examination of the considerations involved in
application of the AMPM process as a model for atmospheric motions. - The
third part is an evaluation of the effect of the random mean wvalue
variation upon aircraft response. A procedure for the development of
aircraft strength design critéria is outlined. The mathematical properties

of the AMPM process are reviewed in Appendix A.
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SYMBOLS

standard deviation of either the subscripted process or
(without subscript) the R process

filter constant of aircraft plunging motion

standard deviation of S process

amplitude intensity parameter

standard deviation of M process

mean value intensity parameter

mean aerodynamic cliord length of wing

ensemble average

error funetion (reference 13)

complementary error. function = 1 - erf ( )

scale of turbulence of subscripted process

fourth order flatness factor or kurtosis (fourth moment
+ square of second moment)

mean value random prccess

expected frequency of positive slope crossings of indicated
level

expected frequency of positive slope zero crossings of R
process

probability parameter

local random process

amplitude random process

integral scale of subscripted process

time

gust intensity paramcter

aircraft speed



Subscripts:
b
in

out

amplitude-modulated-plus-mean (AMPM) random prucess

aircraft plunging velocity

vertical veloclity component of almospheric motion

deterministic mean value of w

intensity random variable

amplitude modulated random process

ratio of standard deviations of Z and M processes

ratio of NO of subscripted process to Nor

alrcraflt mass parsmeter

autocorrelation function of subscripted process, cor:elation
coefficient of subscripted variables

standard deviation of subscripted process

time difference variable

power spectral density function of subscripted process

normalized power spectral density function of subscripted
process, 0 < w < «

autocovariance function of subscripted process

frequency, Fourier transformation variable of T

natural frequency of dynamic system

breakpoint
input random process
output random process

quasi—steady'



PHYSICAL INTERPRETATION OF 1HE AMPM PROCLESS

The AMPM process is formed by the sum of an amplitude modulated and a
mean value random process. The amplitude modulated process is formed by the
product of a local R component process and a slowly varying amplitude S

component process which modulates the local process.
z(t) = r(t) s(t) (1; AL)*

The amplitude modulated process accounts for éome of the Gaussian and
non-Gaussian aspects of atmospheric turbulence measurements. For a short
sample of the amplitude modulated process, the slowly varying amplitude
component is approximately constant; measurements of the process have

f approximately Gaussian properties. TFor a long sample, the amplitude

> component varies as a random function of time; measurements of the process

have strongly non-Gaussian properties. The defining relations for the

AMPM (amplitude-modulated-plus-mean) or total process are

]

w(t) = z(t) + m(t) (2; A2)

1

w(t) = r(t) s(t) + n(t) (3; A3)

¥The dual equation numbers identify equations which are discussed in
Appendix A. Mquation (L; Al) is both equation (1) of the text and equation
(A1) of Appendix A. L ‘



The three component processes are identified as the local R, the amplitude
8, and the mean value M.¥ Following the development of references 9 to 12
the three component processes are specified to be independent, stationary,
and Gaussian with zero mean values.

A physical interpretation of the AMPM random process, which considers
both recorded atmospheric turbulence data and general turbulence properties,
is presented in this section. Two aspects of the random process are of
primary interest. The first is the addition of the independent mean value
component to the amplitude modulated process. The second is the interpre-
tation of the mean value component as slowly varying relative to the
amplitude modulated or, more specifically, relative to the local R component
prucess. This aspect is a reinterpretation of the original development of
references 9 to 12, which assigned the same integral scale value to the
three cgmponent processes.

The gualitative effect of slowly varying changes in both the amplitude
and the mean value can be evident in measured atmospheric turbulence data.
Figure 1 shows an example of measurements of the three velocity components
of atmospherié motion. The data show two periods of moderate turbulence
superimposed on a background of light turbulence. These two periods show
significant increases in the amplitude of the local variations. Slow,
random variations of the mean value are also apparent. The vertical velocity

component shows a dominant amplitude modulation with relatively little

*The term mean value process is used for m(t), since it appears as a
random variation in the mean value of the local R process. Care

must be used to distinguish between this mean value process and the mean
value of any measurement of the AMPM process.



variation of the mean value. The two horizontal components, particularly
the lateral, show large, slow variations in the mean value.

The set of data in figure 1 is a case of clear air turbulence related
to high-altitude wind shear. The data were recorded above the Death Valley
area of California at an altitude of 13 km with an airspeed of 183 m/s.

The average wind direction was almost perpendicular to the flight path.

The data were obbained as part of the MAT (Measurement of Atmospheric
furbulence) program at NASA-Langley Research Center (reference 1k).

Special care was taken in the measurement of the long wavelength part of
the atmospheric motion, particularly in removing the low frequency aspects
of the aircraft motion (reference 15). Thus the slow variation of the mean
value shown in figure 1 is atmospheric motion; the residual aircraft motion
in the data is negligible.

The properties of the AMPM process can be interpreted by examining
the associated power spectral density function, which is the sumvof the

functions of the independent smplitude modulated and mean value processes.

¢ (w) =2 (w) +2 () ‘ (4; A23)
The power spectral density function consists of two terms with significantly
different frequency dependence. ‘The composition of the resulting power
spectral density function is shown in schematic form in figure 2. The

term corresponding to the mean value process has a prédominantly low
freguency content, sinée this component is slowly varying with respect ﬁo
the local R component process. 'Yhe term correspondirg to the amplitude

modulated process has a predominantly high frequency content, which is



associated with the local R component process. (The effect of the
amplitude process upon the spectral properties of this term is relatively
small as will be shown subsequently). The higher frequency term,
corresponding to the amplitude modulated process, is currently accounted
for in aeronautical applications. The lower frequency term is an
additional effect which is inecluded in the AMPM process.

The structure of the AMPM process suggests a possible correspondence
with the basic composition of atmospheric motion, which consists of several
different types of motion (references 16 and 17, for example). The primary
classification divides atmospheric flow into two basic kinds of motion:
internal gravity waves (winds or drafts) and turbulence. DBased upon the
associated ranges of frequency values, the internal gravity waves would
correspond to the lower frequency mean value process and the turbulence
would correspond to the higher frequency amplitude modulated process.

The resulting separation of the associated power spectral functions into
two terms in the manner Qf figure 2 appears in studies of measured
atmospheric motions (references 18, 19 and 20, for example). A specific
example of the separation of the spectral function into two distinct terms
is given in reference 21, which includes an examination of the transfer
of energy between the terms.

The possible correspondencé between the AMPM process and the composition
of atmospheric motions must be thoronghly examined before it is established
- on a fimm basis.‘ Such an examination must‘qonsider the basic mathematical
properties of the random érocess and the corresponding physical properties
of atmospheric motion. ’In particular, the random process: specifies two

important properties. First, the AMPM process specifies that the two



kinds of atmospheric motion have significantly different probabilistic
structures, the lower frequency term being Gaussian and the higher frequency
term being formed by the product of two independent Gaussian processes.

This difference is reflected in all associated properties, for example, the
probability density function and the associated flatness factors. Studies
such as references 18 to 21, which show two terms in the spectral functions,
do not examine the probabilistic structure associated with these terms.
Second, the AMPM process specifies that the two terms are statistically
independent. Since the two terms consequently can not interact, the AMPM
process can not account for the interaction due to nonlinear coupling
between the two kinds of motion, which is an essential physical property
(reference 16, for example). One possible means of removing the
independence property is the introduction of correlation between the
amplitude and mean value component processes. This modification and the
properties of the resulting AMPM process are discussed in appendix B,

where it is shown that the effects of the correlation upon the probabilistic
structure are smzll if the amplitude and mean value processes are weakly
correlated.

An associated question is the determination of the values of the
physical parameters associated with the random mean value variation in
atmospheric motions. Although the answer to this question requires an
extensive examination of atmospheric data, a preliminary estimate is made
to determine representative values for use in the subsequent discussion.

The first quantity of interest is the o parameter, which is the ratio
of the standard deviations of the amplitude modulated and the mean value

processes.
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In reference 9 a value of slightly less than one is suggested for the o
parameter of the vertical velocity of atmospheric motion, based upon
examination of measured data. The value of one is used as a representative
value of the o parameter in the subseguent discussion.¥* ''he second
quantity of interest is the ratio of the integral scale values of the mean
value and the amplitude modulated processes. Based upon published
spectral data which show the existence of both processes (references 18

to 21), the value of ten is used in the subsequent discussion as a
representative value of this ratio for the vertical velocity component of

atmospheric motion.

*If the o parameter is equal to one, them b = ¢ since A is given

a unit value for turbulence processes. The condition of equal standard
deviations (b = ¢) does not imply that the values of the amplitude and
the mean value processes are equal within any short segment of turbulence,
since those values are only member functions of their total ensembles.



APPLICATION OF THE AMPM PROCESS AS AN ATMOSPHERIC TURBULENCE MODEL

The considerations involved in modelling the properties of atmospheric
motions with the AMPM process are examined in this section. The primary
topic is the effect of the slowly varying'mean value component, since the
presence of this component is the difference between the amplitude modulated
end the AMPM process. The discussion begins with an examination of the
correlation and spectral properties of the AMPM process. The relationships
between these dynamic properties and the probabilistic structures of both
the AMPM process and atmospheric motions are then examined. The effect of
the mean value Vﬁ;iation upon the exceedance expression of the AMFM process
is also examined.

Correlation and Spectral Properties

The mean value variation has a strong effect upon the autocorrelation
funétion of the AMPM process, particularly for large values of the time
difference. There are corresponding effects upon the power spectral
density function, particularly for small values of the frequency. In
the present understanding of atmospheric turbulence properties there
are open questions on the spectral properties at low frequency values
and consequently on the value of the integral scale (reference 1L).

The (normalized) autocorrelation function of the AMPM process is
determined from the corresponding functions of the’three componen£ : -

processes.

~—— p,(T) {65 A3la)
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where o (1) = p (1) p_(1).
The corresponding relation for the normalized power spectral density
function is the Fourier transformation of equation (6).
2
¢, (w) = —— 8 () + ¢ () (73 431p)
a +1 o+ 1
The preceding relations show the relative contributions of the amplitude
modulatéd and the mean value processes to the functions of the AMPM process.
The relative contributions are determined by the o parameter. TFor small
values of the o parameter, the functions of the mean value component are
dominant; for large values of the o parameter, the functions of the
amplitude modulated process are dominant. The autocorrelation and spectral
functions of the AMPM process must be distinguished from those of the
three component processes. Most discussions in the aeronautical literature
and most applications to aircraft design (references 3 to 6, for example)
consider only the functions of the local R compcnent process.
One measure of the dynamic properties of a random process is the
integral scale, which is the integral of the autocorrelation function

over the range of positive time values.
7= f: p. (1) dt (8)
The integral scale is related to the zero frequency value of the normalized

power spectrel density function, the relation following from equation (8)

and from the definition of the Fourier transformation.



T, =% 6 (0) (9)
These relations for the integral scale follow the notation used in the
atmospheric turbulence and the aeronautical literatures (reference 5,
for example). However, the autocorrelation is usually defined as a
function of the spatial dimension; the corresponding integral scale is
referred to as the scale of turbulence. Also, the present notation uses
W to denote any of the vector components of the atmospheric velocity,
not specifically the vertical component.

The integral scale value of the AMPM process is determined by those of
the amplitude modulated and mean value processes. The relationship is
obtained by combining the definition of the integral scale, equation (8),

and the relation between the autocorrelation functions, equation (6).

2 ;
1, -, (o)
o + 1 o +1

In the concept of the AMPM process, the mean value process is slowly
varying relative to the local R component and also relative to the
amplitude modulated process. The value of the integral scale of the

mean value process is accordingly much grester than that of the amplitude
modulated process. Thus by equation (10) the presence of the mean value
variation strongly influences the‘value'of the integral scale of the

AMPM process. This can be true even if the' contributicn of the mean
value component to the standard deviation of thé‘total process-is fairly

small, that is, if the value of the o parameter is large.
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The amplitude component process also influences the integral scale
of the AMPM process, although to a much smaller extent. This effect
can be seen by a specific example. The functions of both the local R
and the amplitude component processes are assumed to have the form for
the longitudinal velocity component in the Dryden model for turbulence
(reference 5). IEquivalently, the Gaussian R and S components are
assumed to be Markov processes. Their autocorrelation functions are

~|T}{/T ;
e I | T (11a)

p. (1)

T

Il
e (11v)

p (1)

The autocorrelation function of the amplitude modulated process is the
product of the autocorrelastion functions of the local and amplitude
component processes by equation (6).

~ltl/r,

p, (1) = e , (12)

where

l—JI!—’
f—EilI——’

=-1-—"-—+
T
z r

S

Under the modulation concept the integral scale of the amplitude procéss
is' much larger than that of the loéal R process. In-this case the
amplitudg modulation hés the effect of slightly reduciﬁg the integrélk’
scalé value of the original R process. For example, if the integrél
‘scale of the‘amplitude process is ten times that of the local R

process,/then the amplitude modulation reduces the integral scale of

the Origihal process by about nine percént. The -amplitude component
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accordingly has a minor effect on the correlation and spectral functions of
the amplitude modulated process. Conversely, it will be difficult to
separate the autocorrelation and spectral functions of the local R and
the amplitude components from the measured functions of the amplitude
modulated process. The preceding example is a special case where the
separation is impossible.
Effect of Dynamic Properties Upon Probabilistic Structure

The mean value variation has significant effects upon the prdbabilistic
structure of the AMPM process. These effects are related to the dynamic
properties of the process, since the AMPM process is the sum of two
independent processes which have significant differences in both their
dynamic properties and probabilistic structures. |

As an example of the effects of the mean value variation, the
differences between the AMPM random process and its first derivative are

considered. The defining relation for the AMPM process is
w(t) = r(t) s(t) + m(t) - (3)
The quasi-steady derivative of the process is considered.*

i (1) = 3() (k) (133 A50)

*¥The quasi-steady form of the AMPM process is used in the discussion,
that is, the ‘dynamic properties, such as the derivatives; of the slowly
varying amplitude and mean value components are omitted. The dynamic
‘properties of the local R component are retained.
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For the quasi-steady derivative the value of the o parameter is infinite.
Consequently the AMPM process and its first derivative generally have
different relative contributions from the amplitude modulated and the mean
value processes, that is, they have different values of the o parameter.
The difference is shown by the values of the associated fourth order

flatness factors.

3(3au + 20° + 1)

My (w) =
(5 ) =9 (15)

The flatness factor of the derivative follows from the general form of
equation (14) with an infinite value of the « parameter. The value of
nine also follows from the form of the derivative, equation (13), which is
the product of two independent Gaussian processes.

The amplitude modulated process and its quasi-steady first derivative

have similar properties.

The amplitude modulated process and its guasi-steady derivative have
the same basic form: the product of a Gaussian local process and the
same amplitude process. Consequently their probability densify functions
have the same functional form and theirnyUrtp.order flatness factors

have the 'same value.
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Mh(z) = Mh(iq) = BMu(s) (17)

The flatness factor has a value of nine if the amplitude process is Gaussian.
Other distributions have been suggested for the amplitude process, enabling
the resulting amplitude modulated process to account for a range of values
for the flatness factor. However, in all cases the resulting amplitude
modulated process and its quasi-steady derivative must have the same value
for the flatness factor.

.onsequently one effect of the slow, random mean value variation is
that it allows the AMPM random process and its derivative to have different
probabilistic structures. This property cannot be accounted for by
amplitude modulation alone. There are several studies which show that this
property appears in measurements of atmospheric motions. These studies
presert a strong argument that the inclusion of the mean value variation
gives a better representation of the properties of atmospheric motions.
One study is reference 22, which.examined turbulence related to storms. The
probability distribution functions of the atmospheric velocity components
and their gradients were examined and presented in graphical form. Comparison
of the measured probability distributions shows that the functions of
the velocity components and their gradients have significantly different
functionalkforms. The gradients show a much greater deviation from the
Gaussian form, a property which is consistent with the form of the flatness
factors of the AMPM process, equations (14) and (15).

A more definitive study is that of Chen, reference 23. Atmospheric

turbulence data were obtained from several sources: Jlow altitude,
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severe storm, and high altitude clear air turbulence. The properties

of the three velocity components and their gradients were examined,
including computation of the fourth order flatness factors. The results
show a consistent trend of higher values of the flatness factor for the
gradients than for the wvelocity itself. The flatness factors for the
veloclty generally had values somewhat greater than three, with a few
values being slightly less than or equal to three. The flatness factors
for the gradients had values hetween three and seven. These values are
less than the value of nine for the derivative of the quasi-steady process.
However values below nine are possible if transition effects¥ are present
or if the quasi-steady approximation is not completely satisfied,
particularly since the results are based upon the gradients and not the
derivatives of the velocity componenté. Thus the results of reference 23
are generally consistent with the properties of the AMPM process.

The study of references 24 and 25 presents data for atmospheric
motions which were measured by tower-based instrumentation. The
probability density functions and the associated flatness factors were
determined. The data show higher values of the flatness factor for the
velocity gradients than for the velocity itself. Another set of results
was obtained in an examination of the effects of high-pass filtering
upon the measured data. The filtering consisted ofkremoving a running
mean value’from the data. The filtering calculation considered several

time periods, the shorter time periods removing more of the lower

*¥Transition effects are related to the development of the slowly varying
amplitude and mean value components from their imitial values in any
measurements of the AMPM process (reference 8).
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frequency content of the velocity components. Using the concept of the
AMPM process, this operation represents an approximate but direct removal
of the random mean value variation. The resulting flatness factors show
a definite trend toward higher values as the filtering operation removes
more of the low frequency content. These results indicate that the
inclusion of g slow mean value variation gives a better representation of
the measured atmospheric motions. The highest values of the flatness
factor were generally less than the value of nine for the quasi-steady
derivative, which represents the complete removal of the mean value
variation. The data also show some values of the flatness factor less than
three and some relatively large values for the skewness (normalized third
moment ). These results can not be modelled by the AMPM process in its
fully developed form, but could represent the transitional form of the
process (reference 8).

The difference between the probabilistic structures of the velocity
and the velocity gradient of atmospheric motions has been exaﬁined in
other studies where possible explanations of thié property have been
suggested. For example, reference 26 uses this property to recommend that
the gradient rather than the turbulence velocity is the more important
ekperimental quantity. The turBulehce velocity is considered to be a

Gaussian process, thus omitting the amplitude modulation effect. The

~analysis of reference 26 shows that the Gaussian property is lost in taking

the gradient of the process. However the gradient, which is ‘the difference

between the values of the process at two time values, is a linear

combination of Gaussian random variables and therefore must itself be

_Gaussian (reference 27). Consequently the dévelopment'of reference 26
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can not explain the difference between the probabilistic structures of
the velocity and the velocity gradient of atmospheric motion.

In summary, ‘the probabilistic structure of the AMPM random process
possesses some mathematical properties that are not present with
amplitude modulation alone. In particular, the probabilistic structure
of the AMPM process can vary as different ranges of frequency values are
emphasized. Measurements of atmospheric motions show corresponding
properties, for example, the velocity gradients show more deviation from
Gaussian properties than the velocity itself. Atmospheric motions thus
show significant properties which can be accounted for by the AMPM process.
It is noted that this conclusion is in disagreemenl with that of
references 11 and 12, which are the original development of the basic
random process. However lhe development of those feferences did not
include the differences between the'dynamic properties of the three
component processes, which are essential for the existence of the
indicated dynamic properties of the AMPM random process.

Exceedance Expression

The mean value variation has significant effects on the exceedance
expression of the AMPM process. An analytical relation for the exceedénce
expression has been developed by using the gquasi-steady approximation.
The relation is expressed as an exceedance ratio: the ratio of the
expected frgquen¢y of crossings of a given level of the AMPM process to
the expected freqﬁency of crbssings of the zero level for the R

‘component process.
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- 2 .
NI(IW) = % el/201, {{e"'W/aC[l + erf(_T_/_T__ - __l__)]
or /56 20,
+ eW/OLc erfc(fﬂ;'+ L )} (1835 A5kh)
2¢ VE&
where w >0

N(-w) = N(w)

The exceedance ratio is plotted in figure 3 as a function of the ratio of
the level of the AMPM process to its standard deviation, and for several
values of the o parameter. For large vdlues of the o parameter the
exceedance ratio approaches the exponential form of the amplitude mbdulated
process, equétion (A57). TFor small values of o the exceedance ratio
approaches a Gaussian form related to the mean value component process,
equation (A58). The intermediate cases show a combination of those two
funetional forms. At the zero level the exceedance ratio is not equal
to one since the exceedarnces are ratioced to the expected number of zero
crossings of the R component process and not that of the AMPM process.
The exceedance ratio can be strongly influenced by the quasi—stéady
approximation at low levels of the process and for small- o <values, since
the dynamic properties of the mean wvalue component are absent. The exact
’form of the eiceedénce expression -is examined in appendix C.

~ The contribution of the mean’valuervariation‘tq the exceedance ratio
of the AMPM process is’not clearly‘shown in figure 3; since the mean value
process affects the non-dimensional level of the AMPM process ﬁhrough'its

standard déviation, which depends upon the o paraneter.
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of = Pla? + 1) (195 A15)
The contribution of the mean value variation is more clearly shown in
figure 4, where the exceedance ratio is plotted as a function of the ratio
of the level of the AMPM process to the standard deviation (Ab) of the
amplitude modulated process, which is independent of the « parameter.
Figure 4 thus shows the effect of the mean value varistion relative to the
amplitude modulated process, which corresponds to an infinite value of the
¢ parameter. Pigure 4 shows that the mean value variation can either
increase or decrease the exceedances depending upon the values of both the
process level and the « parameter. The mean value variation can
sign&ficantly increase the exceedances at large values of the process as
the value of the o parameter approaches zero. In the Ilimit of large
values of the process, the exceedance ratio approaches the exponential

form of the amplitude modulated process, but wiﬁh the exceedances increased
by a constant factor whose value follows from equation (A59).

lim N(w; o) el/eu2

wo N(wy o=e) (20)

Thig factor indicates the upward shift, with decreasing value of «, of:
the limiting exponential form of the exceedance ratip curves of figure k.
The effect of the mean value variétion upon the exceedﬁnces can be
seen in the measurements of the velocity of atmospherie motion in figure 1.
The lateral velécitj component shows crossings at high levels which are

related to the combinaticn of the rapid local variations superimposed on
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the large, slow variations of the mean value. Yor example, the

crossings of the -20 m/s level are related to the mean value variation.
Crosisings of this level do not occur in the other two velocity components
which show similar local variations but not the large variations in the
mean value., Also, the mean value variations cause the crossings at the
zero level of the lateral velocity component to be much less than those
of the other two velocity components. The measured data thus show the
decreased exceedances at low levels and the increased exceedances at high
levels, due to the mean value variations, which are indicated in figure L.
Experimental Aspects

Intensity Process

It was estimated previously that the standara deviations of the
amplitude modulated and mean value processes are approximately equal for the
vertical velocity component of atmospheric motion. The conditiqn of equal
standard deviations fdr these two processes suggests an explanation'for
another aspect of measured atmospherie turbulence datg. Attempts have been
made to determine the distribution of the "intensity'" process directly
from measured data, in order to verify the assumed Gaussian distribution of.

the amplitude process. Reference 28, for example, shows that the measured

~data suggest a Rayleigh rather than a Gaussian distribution for the

intensity. The measured data were obtained from two studies, references
29 and 30, which involved direct measurement of atmospheric motions. - The

resulting intensity random variable is

. x"—‘\’se-,%-'mg | S (e1)
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where E[rz] =1

This assumes that the data samples are of appropriate length to allow the

full development of the local R component without significant development
of the amplitude and mean value component processes, The resulting intensity,
%X, is a random variable which depends upon the values of both the amplitude
and the mean value processes. Following the basic formulation, the random
amplitude and mean value variables are independent and Gaussian with zero
mean values. If they also have equal standard deviations, the intensity x
of cquation (21) has a Rayleigh distribution (reference 27). Thus the
distribution of turbulence intensity indicated by the résulﬁs of reference

28 suggests a correspondence with the properties of the AMPM random process.

Experimental Procedures

The determination of the gpectral properties of the mean value
variations in gbtmospheric motions presents a difficult experimental problem.
There are several problems in the accurate measurement and analysis of
atmospneric mwotions in lhe range of low frequency values associated with
the mean value process, especlally when the data are measured with a
flight vehicle. Réferences 5 (appendix C), 15 and 31 give discussions of
the difficulties associated'with.the removal of the cxtraneous effects of
aircraft motion from the measurements., Another problem is the accurate
computationrof ‘the spectral functious. Reference 32, for example, shows
that significant spuricus éffects can be introduced in: the low frequency
range by the numerical;proéedures used to compute’the spectrai functions.
Thus caution must be used in both the measurement and the analysis of
atmosphieric motions in order to determine the spectral,pfoperties of the

mean value variation.



EFFsCH OF THE MEAN VALUE VARIATION UPON AIRCRAFT RESFONSE

"he effect of the mean value variation in atmospheric motions upon
aircraft respconse is examined in the present section, using estimates of
the dynamic properties of both the mean value process and significant
aircraft response quantities. Also, g procedure for developing design
criteria for aircraft structural strength is outlined.

AMPM Process and Alrcraft Response

The effect of the AMPM process upon aircraft responses can be examined
by considering a simple mathematical model, in which the airecraft is a
rigid body in level flight at congtant airspeed and is allowed to move in

plunging motion only. ' The corresponding equation of motion is

where w is the plunging velocity of the aircraft, w the plunging
acceleration and wg is the vertical.velocity of the atmospheric motion.
The plunging velocity has the characteristics of a low-pass filter; the
frequency response function is approximately constant for frequency values
below the filter constant é and decreases as aAminﬁs—one‘power of
frequency above a. The aéceleration.has‘the charaétéristics of a high-
pass filter; the frequency response function increases proportionally to N
'frequéncy'below a and is approximately constant for fréquency values

abové a. The filter conétant’of the first;order system is related to :

aircraft response parameters.
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vhere V is the aircraft speed, ¢ the mean aerodynamic chord of the wing,
and ug the dimensionless aircraft mass parameter (reference 33)%.

The aircraft plunging motion is developed for the response to atmos-
pheric motion which is modeled by the AMPM process. The spectral properties
of both the local R  and the mean value components are taken to be those

of the transverse velocity component in the Dryden model of turbulence

(reference 5).

2 2
w W=+ 3w
b rb
o (w) = ==« (2k)
r ' 2 2,2
(ws, + w™)
rb

where Wy = 1/T, = V/Lr and Lr is the scale of turbulence of the R
component process. For the first-order differential equation, equation (22),
and the normalized spectral density function for the transverse velocity

component, equation (24), the variances of the response are (reference 34)

1
a + =W i
T oala+w )2
rb
3
w.(=a+w.)
r (a + )2
, b ,

The aircraft plunging response to the‘AMPM process is developed from

the previous relations by using the quasi-steady approximation for the

*ug 2(W/S)/(gECL p), where (W/S)’= wing loading, g = gravity constant,

@
H

lift curve S%OPG, and p = air density.
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anplitude modulated process. The variance of the response to the AMPM
process is the sum of the variances for the responses to the independent
amplitude modulated and mean value processes. The o parameters of the
response are determined by the standard deviations of the response to the
local 7 and mean value components and by the o parameter of the AMPM
rrocess, for example,

A
o = o (265 ALS)

X
w A w
m g
The o parameters of the plunging response are determined by combining

the previous relations and introduéing the appropriate notations for the

two couponent processes.¥

1 2
2 _ &+ 2 OJrb at Yib 2 ﬁ
o2 = () (27a)
LA L at o, Vg

2 mb

3 2
2 _Ypp pET UG ATOH 9 ,
. = = ( ) o (27p)

a+w W
mb é-a ¥ w rb g
2 mb

The o parameters of the response quantities depend upon the three
frequency constants: that of the plunging response, a, and those of the
two component prgcesses, wrb and ”mb’

The preceding analysis is used to estimate the effects of the mean

value variations in atmospheric motions upon the aireraft plunging motion

*he dynamic properties of the mean value process have been included in
the variances of the response, but have been omitted in the exceedance
expression, equation (18). The quasi-steady values of the variances are

obtained by setting u%b to zero.
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for the present class of subsonic transports. The ratio of the frequency

constants of the plunging response and the local R  component process is

._.a_‘_= r (28)

Using typical parameters for subsonic transport aircraft, the mass parameter
value is usually between 50 and 100. Using typical values of the wing chord
length and the gcale of turbulence, the ratio of the frequency constants has

a minimum value of about one, that is, a = w (Larger values of the ratio

b’
of equation (28) result in larger values of o and thus less effect of

the mean value variatioﬁ upon the plunging acceleration.) Using the previous
estimates of the physical properties of atmospheric motions, thek o
parameter of the vertical velocity is equal to one, and the ratio of the
integral scales of the mean value and the local R components is equal

to ten. With these values of the parameters, the resulting values of the

o parameters and the fourth order flatness factors of the plunging

response are
Mh(w; o= .66) = 3.55
Mh(wg; ¢ = 1.00) = L.50 (29)*

Mh(ﬁ; a = 2.18) = 7.09

*If the quasi-steady approximation is used in determining the variances
of the response to the mean wvalue process, that is, W b is set equal to
zero, the results are MM(W; o= .61) = 3.4y T

‘ TTREP Mh(v'r, o= m) =g
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The results show the effects of the dynamic system response upon the relative
contributions of the lower freguency mean value process and the higher
frequency amplitude modulated process. For the plunging velocity, which has
the characteristics of a low-pass filter, the relative contribution of the
mean value process is increased, resulting in a lower value of both the a
parameter and the fourth order flatness factor. The opposite effects are
shown by the plunging acceleration, which has the characteristics of a
hnigh-pass filter.

The associated effects upon the quasi-steady exceedance ratios for
the three quantities of equation (29) are shown in figure 5, with the process
level raticed to the standard deviation of the response to the amplitude
modulated process in the same manner as figure 4. For the original AMPM
process (o parameter equal to 1.00) the effect of the mean value
variation is small. For the plunging acceleration (o equal toc 2.18) the
effect is almost negligible. For the plunging velocity (o equal to 0.66)
thec mean value variation significantly increases the exceedance ratio,
except at the lowest response levels. The results of figure 5 show two
points. First, with the presence of boﬁh the amplitude modulated and the
mean value processes, the exceedance expression depends upon the dynamic
properties of the system response quantity and counsequently can be different
for aifferent response gquantities. Second, the presence ol the mean value
variation can signifiéantly increuase the exceedances, particularly for a
regponse quantity which acts as a low-pass filter. Since the critical
aircraft response quantities are usually either acceleratiohs or‘inCremental
loads which are closely related to accelerations, the effecf of the mean

value variations in atmospheric motions upon aircraft response are
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generally not significant. The effect of the mean value variation however
can be important for response quantities which are related to the velocity
or displacement.

The effects of the mean value variation in atmospheric motions upon‘
alreraft response are also examined by gonsidering quantities which have
the characteristics of a narrow band-pass filter, such as low damped
oscillatory modes, either whole body or elastic. TFor simplicity both the
amplitude modulated (or equivalently the local R) and the mean value
proéesses are agsumed to have the Dryden spectral fﬁnction for the
longitudinal component of atmospheric turbulence (reférence 5), fof

example,

20 ‘
- _Tb 1
w + W
rb

where W, = l/Tr : :

The power spectral density function has a simple, approximate form: for
frequency values below Wy the function is constant, and for values above
w, the function decrgases as the minus-two power of the frequenqy. This
approximate form is plotted in figure 6 for both the mean value and the
amplitude modulated (or the local R) processes. Since the mean value
componeht’is considered to be slowly varying, the integral scale value

is significantly greater than that of‘the local R process; giving the

- opposite relation for the corresponding values of the frequency breakpoint.
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The power spectral density function shows the basic effects of the
two random processes upon the response of dynamic systems which have the
characteristics of narrow band-pass filters. The associated frequency
response function is dominated by a single frequency value, which is the
patural frequency W, of the dynsmic system. The relative effect of the
two random processes upon the variance of the response is directly
related to the values of the two power spectral density functions at the
value of the system natural frequency. The effect can be visualized
from figure 6. The functional properties of the composite power spectral
density are divided into three regions of frequency values. First, for
values of the system natural frequency which are below the frequency
breakpoint of the mean value process, both spectral functions are constant.
The response is dominéted by the mean value process; the o parameter of

the system response is smaller than that of the excitation process.

W . o
w < w T TR P (31)
n mb out wrb in in

Second, for values of the system natural frequency which are between the
two frequency breakpoints, the spéctral function of the amplitude
modulated process is constant while the function of the méan value
proceés decreases with incfeasing frequency. Either process can be
dominant in the system response, depending upon the value‘of the’natuféi

frequency.,'
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m2
2 n 2

v ———— o)
b %out %in (32)

) < wn < w " @
r rb “mb

b
Third, for values of the system natural frequency which are above the
frequency breakpoint of the amplitude modulated process, both spectral
functions decrease as a minus-two power of frequency. The response is
dominated by the amplitude modulated process; the o parameter of the

system response is larger than that of the excitation process.

w
2 rb 2 2
< Y e— > 2
wrb wn OLout me 0[:’Ln 0Lin (33)

Consequently the relative contributions of the two processes to the response
of a narrow band-pass system to the AMPM process depend on the value of the
natural frequency of the dynamic system relative to the values of the
frequency breakpoints of the amplitude modulated and the mean value processes.
The preceding development canrbe used to estimate the effects of the
mean value variation in atmospheric motion upon aircraft dynamic systems. The
frequency breakpoint of the amplitude modulated. process, which is
approximately equal to that of the local R component process, can be
estimated from the wvalues of the scale of turbulence currently suggested in
the aeronautical literature. There is an open question on the most appropriate
value, but estimates véry from about 250 m (800 ft, reference 35) up to
the value of 762 m»(2500 ft) used in aircraft design criteria, references 3
and 4. For the present class of subsonic transports this gives values of

mrb between about 0.2 and 1.0 radians per second.¥ The dominant whole body

*¥The frequency breakpoint'is given by the relation Wy = LV, where the constant
T

v locates the "knee' of the spectral curxve and has a value between 1.0 and 1.5
for the atmospheric turbulence models used in aeronautical applications.
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modes of aircraft, the Dutch roll (lateral) and the short period (longitudinal)
modes, have representative values of about one and two radians per second,
respectively, for subsonic transport aircraft. The values of the primary
response frequency thus fall mostly in the third region of the spectral function,
which is dominated by the amplitude modulated process. Consequently, the value
of the o parameter for most aircraft response quantities is greater than

that of the original atmospheric wvelocity components.

The effects of the mean value variation in atmospheric motions are
thus fairly small for most aspects of the response of current subsonic
transport aircraft, for example, response quantities such as accelerations and
incremental loads which are related to acceleration quantities.  The mean value
variation will be more important for response quantities related to the velocity
or displacement. The mean value variation may significantly effect thg long
period or phugoid mode associated with speed and altitude perturbations of
aircraft (reference 36). This mode is usually ignored in the calculation
of aircraft loads. However, there are cases where the effects of the phugoid
mode may be significant. The effects of the mean value variation may become
important‘for’aircraft which are significantly larger than the current class
of subsonic transports, due to the generally lower values of the frequencies
of the whole body modes. The mean valué variatioﬁ is more important for
’hiéher flight speeds due to the corresponding nigher values of the frequency
breakpoint of the amplitude modulated process. A similar conclusion applies
to flight at 1ow>altitudes due to the associated lower values of thé scale of

turbulence (reference 35).
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The previous conclusions depend upon the condition that the standard
deviations of the amplitude modulated and mean value process are approxi-
mately equal in atmospheric motions, that is, the value or the o
parameter is approximately one. Thiz condition is used as a preliminary
estimate of the standard deviation of the mean value process. If measured
atmospheric data show cases where the standard deviation of the mean value
component is significantly different, then the previous conclusions must be
revised accordingly. An associated question is the isotrory of the atmospheric
motions. ETxaminstion of the measured data of references 18 and 19, which show
the separation of the spectral functions into two fairly distinct parts,
suggests that the mean value component process of the atmospheric velocity
can be strongly anisotropic, giving significantly larger contributions to
the horizontal velocity‘components. These data suggest that the o parameter
can have significantly lower wvalues for the lateral than for the vertical
velceity couponent of atmospheric motion. The lateral response of the
aircraft may accordingly be more significantly influenced by the mean value
variation.

The presence of the mean value variation in atmospheric motions has
an indirect effect upon the calculation of aircraft response through the
specification of the appropriate integral scale value for the local turbulence
variations. The development of the integral scale values in measured
atmospheric data requires the determination of two primary quantities:
the integral scale of the mean value process and that of the local turbuience
variatioﬁs. Previous determinations of the integral scale value have not
directly accounted for the mean value variations. This effect was included

in the determination of the integral scale of the local turbulence variations,
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that is, the local R component of the total process. This suggests that
these determinations of the scale of turbulencé, and consequently the
criteria value of 762 m (2500 ft), are too high. It is noted that
suggestions for reducing the pregsent scale of turbulence values have been
made elsewhere (reference 35, for example).
Development of Aircraft Design Criteria

The application of the AMPM process to long-term measurements of
atmospheric motions and the associated aircraft response requires the
introduction of the concept of several types of turbulence. This concept
was used in the original development of the amplitude modulated model
(reference 1) and has extensive experimental justification. The original
random process is modified by introducing a conditional process, which
is conditional on the type of turbulence. The probability density functions
are weighted by the probability of the occurrence of each type. The quasi-
steady exceedance expression of the modified AMPM process is obtained from

the original expression, equation (AS3).
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Historically two types of turbulence are considered. These are often
referred to as nonstorm (i=1) aﬁd storm (i=2) turbulence. There is an
additional term, representing the probability of no turbulence, which is
usually omitted in the literature.

The exceedance expression of the modified process, equation {(34),
can be applied to both the velocity components of atmospheric motion and
the resulting dynamic system response under the gquasi-steady assumption.

For the case of an atmospheric velocity component, the deterministic mean
value (wo) is zero and the tﬁo standard deviation factors (Ar and Am)
have unit values by definition.

The mean value variation introduces an additional atmospheric parameter.
Consequently there are three atmospheric parameters for each type of
turbulence:  the probability parameter Pi’ the amplitude intensity parameter
bi’ and the mean value intensity parameter c,- No data are available on
representative values of the mean value intengity parameters since previous
examainations of measured data have not considered the mean value variation.
Also, these parameters cannot be obtained from long-term measurements of
aircraft vertical acceleration, since the aircraft acceleration acts as a
high-pass filter which largely removes the mean value variation.

There remains lhe question of the effects of the mean value variation
on the related problem of the specification of structural criteria for
turbulence induced loads. The present approach is the specification of a
maximum exceedance level for all airc¢raft loads. For the amplitude
irodulated process this requires the computation of two quantities: +the
‘standard deviation and the expected number of zero crossiﬁgs of the

response to the local R compoﬁent process. - From these quantities, the
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deterministic mean value (one-g flight response) and a given set of
atmospheric parameters, the exceedances of the response can be calculated.
The introduction of the mean value variation requires the calculation of
one additional quantity: the standard deviation of the response to the mean
value process. This quantity can be determined by the same computational
procedures used for determining the response to the local R component
process. Once the response quantities are known, the associated
exceedances can be computed from equation (34) for a given set of
atmospheric parameters.

Aircraft design criteria are usually presented in terms of a gust

intensity parameter.

v = |

° By

(35)

For the amplitude modulated process the exceedance ratio depends solely
upon U0 for given values of the atmospheric parameters. Consequently the
aircraft design criteria can be specified as a required value of Uo’
which is a function, through the atmospheric parameters, of the altitude
only. For the AMPM process this procedure is more.complicéted since the
exceedance ratio of the response quantities depends additionally upon
the o parameter. This is shown by figures 7 and 8. Figure T shows a
set of exceedance ratios as functions of the process level, and for
several values of the o parameter. The exceedance ratios are computed
for ah.altitude of 6.1 km (20,000 ft) using the atmospheric parameters
of references 4 and 37. No assumption on the values of.the atmospheric

parameters of the mean value process have been made, except that the a
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parameters of the two types of turbulence are equal. From figure T the
combinations of the gust intensity parameter UG and the o parameter
which correspond to a given value of the exceedance ratio are determined.
These combinations are plotted in figure 8, which shows the Uy and
rarsmeter combinations which correspond to constant values of the exceedance
ratio at the given altitude. It is noted that figure 8 also shows that

the effect of the mean value variation upon the exceedance expression

is very small if the o parameter of the response quantity has a value
above two.

The approach outlined above is baged upon the exceedance ratio and
not directly upon the exceedances, since the secondary effect of the
expected number of zero crossings of the local R process for the
response quantities is omitted. In order to use the number of exceedances
directly, all three parameters of the system response (Ar, A Nor) must

m

be accounted for. The resulting exceedances can be computed from equation

(34).



CONCLUSIONS

The application of the AMPM (amplitude-modulated-plus-mean) random
process as an ammospheric turbulence model is examined and evaluated on
a qualitative basis. The effect of the mean value variation is of primary
interest since this is the distinction from the amplitude modulated process
(the Press model, references 1 and 2) which is currently used to model
atmospheric turbulence in aeronautical applicaﬁions. It is concluded that
the cowbination of amplitude modulation and a slow, random frarj.ation of the
mean value is a better representation of measured properties of atmospheric
motions. In particular, the AMPM proéess can account for the differences
in the statistical properties of atmosphefic velocity components and their
gradients; these differences cannot be accounted for by amplitude
mwodulation alone.
The correspondence between the properties of the AMPM process and the
physical properties of atmospheric motions are examined. The structure
of the random process suggests a possible correspondence with the structure
‘éf‘émnwspheric motion: the lower frequency mean value process corresponding
to the internal gravity waves (winds or dréfts) and the higher fréquency
am@lifﬁde modulated process corresponding to the turbulence. The
éeparation of the atmospheric motion into two elements appears in the power
spectral dénsity functions of atmospheric motions, Which4haVe %heksame
general form as the functions of the AMPM process.
The response of linear dynamic systemé to the AMPM process 1is
examined. Due to the structure bf the process, the relative cqntributiqn.

of the mean value variation to the total system response is stroﬁgly

38



39

influenced by the dynamic properties of the response quantity. For
response guantities which have the characteristics of a high-pass filter,
such as aircraft accelerations, the relative contribution of the mean
value variation is considerably reduced. For this reason, the gradients
of the AMPM process show a larger deviation from Gaussian properties than
the process itself. For response quantities which have significant
response in the lower frequency range, such as aircraft displacements and
velocities, the mean value variation can significantly increase the
exceedances of the response at high response levels.  Using

estimates of aircraft dynamic properties, it is concluded that the
effects of the mean value variation.upon aircraft loads are small in
most cases.  However, the effects can be important in the measurement

and interpretation of atmospheric motions.



APPENDIX A

SUMMARY OF MATHEMATICAL PROPERTIES OF AMPM PROCESS

The mathematical properties of the amplitude-modulated-plus-mean or
the AMPM random process are reviewed in this appendix.
Process Definition and General Properties

The AMPM process is formed from three independent random processes,
which are identified as the local R, the amplitude S, and the mean
value M components. The modulation of the local process by the amplitude

component forms the amplitude modulated process Z.
z(t) = r(t) s(t) . (AL)*

The sum of the amplitude modulated and the mean value processes forms the

ANMPM process W.

w(t)

z2(t) + m(t) (A2)

]

w(t) = r(t) s(t) + m(t) (A3)
The properties of the AMPM process are determined by the defining
relation, equation (43), and the properties of the three component
processes, which are specified to be stationary and Gaussiar with zero
mean values. The notation for the variances of the component processes

is

¥1'he numbering of the equations corresponds to that in reference-B;
equation (Al) is equation (1) of that reference.

40
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B[r°] = A2
E[s°] = b° (A10)
E[n?] = ¢°

The moments of the AMPM process are determined by the defining relation;
for example, the variance is

E[w"] = A° b2 + c° (A13)

The ratio of the standard deviations of the independent amplitude moduléted

and mean value processes is a basic parameter of the AMPM process.
o= = , (A1k)

The moments of the AMPM process can be expressed in terms of the o
parameter; for example, the variance is

m$]=ﬁ=c%£+1) (A15)

The fourth order flatness factor (or kurtosis) shows the dependence of
the probabilistic structure of the AMPM process upon the relative
contributions of the amplitude modulated and the mean value processes.

B[] _ 330" + 207 + 1)

22 [w°] (o® +1)°

() = (116)
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For a zero value of the o parameter, the flatness factor has the value
of three for the Gaussiar meun value process. Fbr an infinite value of
the o parameter, the flatness factor has the value of nine for the
amplitude modulated process, the value of nine resulting from the product
of two independent Gaussian processes.

The autocovariance function of the AMPM process 1s related to the
autocovariance functions of the amplitude modulated and the mean value
processes. Using the defining relation and the independence property,

the relationship is

il

WW(T) WZ(T) + Wm(f) (A22)

where

i

WZ(T) Wr(r) WS(T)

The corresponding relation for the power spectral density function is

¢ (w) = e (w) + 2 (w) (A23)

The autocovariance functions can be expressed in terms of the (normalized)

autocorrelation functions.
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¥ (1) = Aebepz(’r)
(429)
¥ (1) = czpm(r)
where
p, (1) = p (T)p_(T)

Combining the previous relations and introducing the o parameter, the
corresponding relations for the autocorrelation function and the normalized
power spectral density function, which is the Fourier transformation

of the autocorrelation function, are

o ,
o (1) = =2— p (1) + — = p (T) (A3la)
W a2 +1 Z ua +1 m a
-——-0‘2 (w) -1 (w)
¢ (w) = ¢ (w) + ¢ (w (A31Db)
W a2 +1 7 a2 +1 m

Quasi-Steady Approximation

In application as an atmospheric turbulence model , the AMPM process
is interpreted as the combination of a rapidly varying local component
with clowly varying amplitude and mean value components. This concept
leads to the quasi-steady approximation in which the dynamic properties
of the amplitude process, andkpossibly the mean value process, are
omitted in‘develoﬁing the dynamic‘properties of the AMPM process. The
quési-steady,approximation presents a simplé method‘for‘the’analysis of
the response of linear dynamic systems to‘the AMPM process. Assuming

‘that the amplitude procesg affects the dynamic response of the system
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only in a static manner, the dynamic response (or output) of a linear

system to an AMPM process is also an AMPM process.

Win(“c-) = rin(t) sin(t) +m, () (A3")

wout<t) ~ rout(t) s. (t) +m__ (%) (Ak3)

in outb
Using the quasi-steady approximation, it is necessary to develop the
response of the system to only the local R and the mean value components,
which are stationary and Gaussian random processes. The variances of the
three components of the input process are those of equation (A10), except
that a unit variance is specified for the input R component. The notation

for the variances of the components of the output process is

ir 2 _ .2
L[rout] = AL
(a45)
2 ,_ 2 2
E[mou.t] =4 ¢

The moments of the input and output processes are developed from equations

(A3') and (AL3), and from the independence of the component processes.

R 2,2
L[Win] c (ain +1)
(ALT)
2 .2 22
ul outJ A (aout +‘l)
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‘The relation betweer the o parameters of the input and output processes

is obtained from equations (Alk) and (ALS).

f
3

o'
il

E:D
(¢}
e
=
=]

a4 = a, (A48)
The values of the « parameters and consequently the probabilistic
structures of the input and output AMFM processes can be different,
depending upon the relative response of the dynamic system to the local

B and to the mean value component processes.

Another application of the gquasi-steady approximation is the
development of the derivative of the AMPM process. The exact derivative,
which is developed from eguation (A3), depends upon the derivatives of
all three component procecsses. Ih the quasi-steady form, the derivatives
of the amplitude and mean value components are omitﬁed. The resulting

guasi-steady derivative is.

w (8) = (%) s(t) ’ (A50)
Quasi-Steady Iixceedance Expressicn
The exceedance expression (the expected frequency of the crossings
of a givern level) of a random process is developed from the joint
prébability’density function of the process and its first derivati?e
(references 38 and 39).k An analyticai form can be de&eloped for the

exceedance expression of the AMPY process by omitting the derivatives
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of the amplitude and mean value components. The resulting quasi-steady

exceedance expression is

2, 22 X
ﬁ(w =%e° /287D fe " [1 + err(¥— - £)]
or fé_c /—2_Ab
(a53)
+ ew/Ab erfc (—‘YT—- + )}
/2—c /2—A'b
2
ﬂ(") - % /e {e—w/uc [1 + erf (- - <] (A5h)
or 2¢c 1/2—0L
+ ew/oac erfc (— + —;—')}
2c /é-ct
where w > 0
N(-w) = N(w)
A.
A N
Nor T om A
r

The exceedance expression contains both the exponential dependence
of the amplitude modulated process and the Gaussian dependence of the
mean value process. The exponential dependence is dominant for large

values of the: o parameter.

lim _ -|w|/Ab
oo N(w) = N e : (A57)

The Gaussian dependence is dominant for small values of both the a

parameter and the level of the process.
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2, 2
H(|w|<<c; o<<1) = \E N, e /2e (A58)

The exceedance expression approaches the exponential form of the amplitude
mcdulated process for large values of the AMPM process.
1/202 ~|w]/ae

N(|w|>>ca) = N, e e (A59)
Since the dynamic properties of the mean value component have been eliminated
by the quasi~steady approximation, the value of the expected number of
crossings of the zero level becomes zero in the limit of small values of the
o parameter, as indicated by equation (A58). The exact form of the
exceedance expression, which includes the dynamic properties of all three

component processes, 1s exemined in appendix C.



APPENDTIX B, EFFECTS OF CORRELATION BETWEEN THE AMPLITUDE
AND MEAN VALUE COMPONENT PROCESSES
In the formulation of the AMPM or total process, the amplitude and
mean value component processes are specified to be independent. The
resulting AMPM process is the sum of the amplitude modulated and the mean
value processes which are independent. However turbulence theory
introduces the concept of interaction between the two processes, specifically
the flow of energy from the lower to the higher frequency process. This
interaction raises the question of the effect of the assumed independence
upon the properties of the resulting total process. In this appendix the
formulation of a total process with correlated amplitude and mean value
component processes is outlined. The effects of this correlation upon
properties of the resulting total process are examined.

The defining relation of the total process is

w(t)

z(t) + m(t) (Bla)

i

z(t) = r(t) s(t) (B1b)

The amplitude and the mean value components are specified to be

correlated Gaussian processes.

Elsm] = Pep bC : . (g2) -
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The local R component is specified to be independent of the other two
component processes. The resulting total process is the sum of the
amplitude modulated and the mean value processes. The relation between

these two processes is shown by their joint moments, for example,

Elzm] = 0 (B3a)

E[zgm2 = A?becz(l + 2p§m) (B3b)

Bquation (B3a), which follows ffom the independence and zero-mean
properties of the R component, shows that the amplitude modulated and
the mean value processes are uncorrelated. Equation (B3b) shows that
the amplitude modulated and the mean value processes are not independent
(for a non-zero value of the correlation coefficient).

The moments of the corresponding total process are developed from
the defining relation, equations (Bla) and (Blb). All odd order moments

are zero. The relations for some of the even order moments are:

B[] = (o + 1) (Bha)
Blw*] = 3M36 + 20P(1 + 202 ) + 1] (Blib)
E[w6] = 15c6[15a6,+ (9@1" + 3@2)(1 + hpim) +:1] | (Bhe)
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Examination of the basic form of the moments shows that the correlation
coefficient always appears as an even power. The correlation is thus a
second order effect for small correlation values.
The effect of the correlation is also shown by the associated fourth
order flatness factor.
3[3(1)’L + 20°(1 + 2p§m) + 1]

M (w) = (B5)-
u\v (2 + 1)2

The correlation increases the value of the flatness factor, thus showing
tendency away from a Gaussian distribution toward that of the ampiitude
modulated process. However, the minimum value of three and the maximum
value of nine for the flatness factor are not changed by the correlation.
In order to estimate the numerical effects of the correlation upon the
flatness factor, the case of equal values of the standard deviations of

the amplitude modulated and mean value process is. considered.
My(w; 0= 1) = 4.5+ 3 o ~ (B6)
IR : sm :

The correlation coefficient must have an appreciable value in order to
significantly change the value of the fourth order flatness factor.
Conversely, if the amplitude and mean Yalue component processes are
‘weakly correlated, it will be difficult to determine the extent of

correlation from measured data by use of the flatness factor.
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The relations for the characteristic and probability density functions
of the total process follow from the defining relations, equations (Bla)
.and (Blb). The relation for the characteristic function is

o« 00

c (o) = [0 ™ ¢ (s0) p(s,m) ds dm (B7)

Since the required functions of the three Gaussian component processes
are known, the characteristic function of the total process can be
determined.

The effect of the correlation upon the exceedances of the total process
is an important gquestion for aeronautical applications. The exceedance
expression is developed from the joint distribution of the process and its

first derivative. Using the quasi-steady approximation (reference 8),

H{w) = foo fOo Nr( Yooy p(s,m) ds dm , (88)
Equation (B8) is integrated numerically since the required integratiocns
appear to be intractable. Figure 9 shows the resulting exceedance
expression as a function of the ratic of the level of the total process
to the standard deviation (Ab) of the amplitude modulated process. The
exceedance curve is.shown for an o parameter of .60, which is
approximately the value for the maximum differences; the effects of the
correlabion upon the exceedance expression vanish in the limits of zero
and infinite o values. ‘The correlation haé the effect of increasing
thevexceedances at high values of ﬁhe process level. For a value of the

non-dimensional process level equal to six, which is about the critical
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level in aercnautical applications, the exceedances are increased by
less than 20% for a correlation coefficient of .30.

In summary, the introduction of correlation between the amplitude
and mean value component processes eliminates the independence property
of the amplitude modulated and mean value processes, Thus the two
processes can interact as required by basic turbulence theory. If the
amplitude and mean value processes are weakly correlated, then the
correlation is a second order effect; the effects of the correlation
on the fourth order flatness factor and on the exceedance expression

of the total process are fairly small.



APPENDIX C. COMPARISON OF THE EXACT AND QUASI-STEADY
EXCEEDANCE EXPRESSIONS

The exact exceedance expression of the AMPM or total process is
examined and compared with the quasi-steady form of the exceedance
expression, equation (ASh), in this appendix. In the quasi-steady
approximation the dynamic properties of the local R component process
are considered, while those of the amplitude and mean value component
processes are omitted. In the exact form of the exceedance expression
the dynamic properties of all three component processes are considered.
The present development extends that of references 11 and 12. Although
the exceedance expression is examined in general form, the modulated
form of the total process is of primary interest, that is, the amplitude
and mesn value component processes are slowly varying relative to the
loecal R process, with the gquasi~steady appiroximation being a limiting
case.

The exceedance expression is developed from the joint probability
density function of the random process and its first derivative

(references 38 and 39).
N(w) = f: W plw, W) aw (c1)

The indicated integration operation essentialliy gives one-half of the
first absclule moment of the first derivative. (This moment is assumed
to exist in thc subseguent devélopmcnt.) Tor the total process it is

convenient to develop the exceedance expression from the joint character-

istic function of the process .and its first derivative,

53
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(6_,0,) = E[e™¥0w + 1984] (c2)

C .8
WW W

Phe absolute moments of a random variable are developed from the charac-

teristic function (reference 40).

B[] = [P] = £ |x]" p(x) ax
SR o il [c(g) + c(-£)] & (c3)
o 7O 8 &

where n = odd.
The relation for the Fourier transformation of the exceedance
expression is obtained by combining the previous relations.

de

RGN} = T 7 g 1006,0,) - o (ew)

where C(Gw, -0

Introducing the inverse Fourier transformation, the relation for the

exceedance expression is

w 0 -G

N(w) = == /0 S [c(e, 8.)]
1T2 oo aed SrTw? d

N ,
cos(wew)dew'——- . (cs5)

The joint characteristic function of the total process and its first

derivative is
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obtained from equation (C2). Since the total process is the sum of the
independent product and mean value processes, the characteristic function

is the product of the functions of these two processes.
Cwﬁ(ew’ed) = czé<ew’8d)cmﬁ(ew’ed) (c6)

The joint characteristic function of the product process Z and its
first derivative is given in reference 7. Since the three components
of the total process are stationary and Gaussian; it is convenient to
express the standard deviations of their first derivatives in terms of
the expected number of positive slope zero crossings. The appropriate

notation for the local R component process is

1 A
or T 2T A (c7)
r .
where
Ai = E[r°]
Ai = E[fg]

The notation for the amplitude component process is

i Nos _ E[éZJ fﬁ_v (c8)
8.0 VE[S ] A
The notation for the mean value component process is
om l‘[me] A e
& 7 a 2, A, (c9)
or B[] Tr
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The concepts of amplitude modulation and the slow variation of the mean
value require that the € parameters have values much less than ore,
with zero values corresponding to the quasi-steady approximation.

The joint characteristic function of the total process and its first
derivative is obtained by combining the previous relations.

-1/2
c(8,,8,) = [P + (1 + o2y2) (1 + eiazyz)]

1 1 22
. exp(- §-x2 - 2 &%) (c10)
where
x = A bl /o
W
y = Aibed/a

The relation for the exceedance expression is obtained by combining the

joint characteristic function and equation (C5).

1. 2 -1 22
XP(_ ) X - 2 ey )

M) _ S i b

T 0.0 (Cll)

N
or
.cos(%-x) dx dy k

where

- oy 2
D=x"+ (a e v+ Eidey )

-
n
o

2 2, 2, 24.-1
t +
mT[ﬁl’LEs\l,Qu)y]D
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In the special case of both € parameters equal to zero the integrals
reduce to a standard form, giving the quasi-steady exceedance expression,
equation (A54). In the general case the integration appears to be intractable
and is evaluated numerically.

The exactlgxceedance expression is plotted in figures 10 and 1l as a
function of the level of the total process (ratioced by the standard
deviation, Ab, of the product process), and for several values of the o
parameter. The dynamic properties of the amplitude component process have
been eliminated by setting the value of the € parameter Lo zero. - Figure
10 shows the exact exceedance expression for the value of the o parameter
equal to one, in which case the variances of the product and mean value
processes are equal. Figure 11 shows the exact exceedance expression for
the value of the ¢ parameter equal to .5, in which case the méan valué
component is the dominant contributor to the total process. The exceedance
expressions for the guasi~steady case correspond to the zero value of the
Em parameter. As the value of that parameter is increased, the values of
the exceedance expression are increased at all levels. Thus the dynamic
properties of the mean value process uniformiy increase the exceedances
of the tdtal process. The relative increase is greater for smaller values
Qf the o parameter, that is; for larger static contributions df the mean
value component to the total process. The largest relative increase in
the exceedances occurs ab the zero level of the total process. The exact
and quasi-steady exceedanée expressions are equal in the limit of large
values of the level of the total process. The results of figures 10 and li

show the follbwing relation for the special case of equal values of the
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expected number of zero crossings of the local R and mean value component

processes, that is, the emA parameter equal to one.
Nw=0;0a,€6 =1, =0)=N_=N (c12)

This relation follows from the general expression, equation (Cli), which
can be integrated analytically in this special case.

The concept of the AMPM process specifies that the mean value process
is slowly varying relative to the local R process. Consequently the
value of the € parameter is generally much less than one. However there
can be exceptions to this which are within the concept of the AMPM process.
One example is the résponse of a narrow band-pass system to the AMPM
process. The frequency content of the system response, including both the
amplitude modulated and mean value processes, will be dominated by the
frequency of the narrow band-pass system. Consequently the expected
number of zero crossings of the local R and the mean value processes of
the response will be almost equal; the value of Em parameter of the
system response process will be approximately one.

The effects of the dynamic properties of the amplitude process, which
are expressed through the ES parameter, equation (c8), were examined'by
numerical integration of the exact exceedance expression. Numerical
results show the following general effects for values of the Es‘ parameter
less than .25. If the value of the «o parameter is one or greater, the

' effect of the Eg parameter upon the,exceedances is always less than 5%.
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Ihe effect is larger for smaller values of the o parameter. The effect
of the € parameter can significantly increase the exceedances in the

case of very small values of both the o and the em parumeters.
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Figure 1. Example of atmospheric velocity components showing random amplitude and

" mean value variations (flight 32, run 2 from NASA-Langley MAT program, reference 14)
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