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INVESTIGATION OF SUPERSONIC TURBULENT BOUNDARY-LAYER SEPARATION
ON A COMPRESSION RAMP BY AN INTEGRAL METHOD

D. K. Patel and K. R. Czarnecki

SUMMARY

An investigation was made to determine the feasibility of using a

"boundary-layer integral method to study the separation of a turbulent

boundary layer on a two-dimensional ramp at supersonic speeds. The.numeri-

cal calculations were made for a free-stream Mach number of 3, a Reynolds

number of 10 million, and over a ramp-angle range from 0° to 30°.

For ramp angles where no flow separation was indicated, the theoretical

calculations were in reasonable agreement with experimental data except

for a somewhat belated rise in the pressure. For the larger ramp angles,

where separation was present, the investigation produced results that

were not in agreement with experiment or with results calculated by time-

dependent Navier-Stokes methods apparently because no provision had been

made for a proper shock-boundary layer interaction where strong normal

pressure gradients are induced within the boundary layer under the shock

independent of surface curvature effects. Within the limits of the

calculations, the effects of changes in the size of the fillet, the

omission of curvature terras, and changes in eddy-viscosity model were neg-

ligible.

INTRODUCTION

With the development of large high-speed computers, one of the aero-

dynamic problems currently receiving considerable theoretical attention

is that of the separation of a turbulent boundary layer in a two-

dimensional compression corner at supersonic and hypersonic speeds.



Although progress is "being made in theoretically predicting separation

characteristics which agree reasonably well with experiment (see refs. 1

and 2) many aspects of the problem remain unsolved. In particular, for

combinations of free-stream Hach number and ramp angle for which there is

no shock detachment in inviscid flow and if the boundary-layer thickness

is small relative to ramp chord the length of the separation region is

dependent upon boundary characteristics alone. For combinations of Mach

number and ramp angle which result in the shock detachment angles being

exceeded the separation length is dependent primarily upon the maximum

height of the ramp if the boundary layer is relatively thin and on both

the ramp height and boundary-layer characteristics if the boundary layer is

relatively thick, in close analogy to the forward-facing step flow

separation (ref. 3). The transition from one regime to the other needs

further investigation. This investigation can best be done by a param-

etric study. Unfortunately, the time-dependent Navier-Stokes methods

which appear to give reasonable results (refs. 1 and 2) a.re rather

expensive and lengthy timewise for such an investigation. Consequently,

it appeared desirable to determine if it was feasible to make such a study

using a boundary-layer integral method where the inherent simplifying

assumptions generally eliminate significant amounts of computer time.

The boundary-layer integral method used in this investigation is

based on the method devised by Kuhn and Nielson (refs. k and 5) and

extended by Tai to include the strong-interaction case (ref. 6). The

same velocity profiles and eddy-viscosity models utilized by the afore-
/

mentioned investigators were used, but the basic boundary-layer equations

were modified to include surface curvature terms so that a singularity

at the intersection of the ramp with the flat plate could be eliminated

by incorporating a fillet. External-flow characteristics were determined

assuming a Prandtl-Meyer supersonic flow. No investigation was made of

the case where the external flow behind the boundary-layer reattachment

point was subsonic or of the characteristics of separated-flow regions

because of a major deficiency in the general method. Both the weak-

and strong-interaction methods of Tai were investigated along with

many modifications.
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Numerical calculations vere made for a free-stream Mach number of

3, over a ramp angle range from 0° to 30°, at a Reynolds number, based

on the flat-plate length to the ramp leading edge, of 10 million. The

fillet between the ramp and flat plate was varied from 1.5 to 6 percent

of the flat-plate length to the ramp and its shape was varied. Most of

the solutions were obtained by a point-iteration downstream-marching

procedure but some global iteration solutions were also obtained for

comparison.

NOMENCLATURE

a speed of sound
A

w
c_ local skin- friction coefficient, - •%

c. coefficients of polynomial, equation A-l

D distance from plate-ramp corner to beginning or end of

fillet, figure 10

E. functions defined in equations C-l through C-9
i J

f ( n ) weighting function, equation 22

F(n ) function defined in equation C-13

k constant in equation 35

/\

I distance from leading edge of flat plate to plate-ramp

corner

m constant in equations 3^ and 35

M Mach number

+
n dimensionless normal distance from plate-ramp surface ,

V



N exponential constant in equation 3

.A

p dimensionless static pressure ?—
Poo

Q. . functions defined in equations C-10 through C-12
J

/\
r

r dimensionless radius of curvature , w-

p u iroo co
R Reynolds number, — * -

s ,n dimensionless orthogonal curvilinear coordinates measured along
A A
s n

and normal to plate-ramp surface; F > T

A
t time

A

T
T diraensionless temperature, -—

T
00

u,v dimensionless velocity components along and normal to plate-
A /\

_ U V
ramp surface; ——, ——

u u
OO 00

A

U6uft dimensionless vake velocity, —E-
u
00

A

U

U dimensionless friction velocity, -—
T u

CO

A
u friction velocity, */ -—

/ 2 i
V dimensionless resultant velocity, */u + v

™ C C

x,y cartesian coordinates
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a ramp angle

B eddy viscosity, defined in equations 27-30
*

B function defined in equation 3

B- , jB o J 3- j eddy-viscosity parameters, equation 19
1 fi j

y specific-heat ratio
A
r

6 dimensionless boundary-layer total thickness, —
A*

* 6
6 dimensionless boundary-layer displacement thickness —

£

A
£ . eddy viscosity

Q

6 dimensionless boundary-layer momentum thickness 7-
£

6 boundary-layer flow angle defined by equation 38 or

equation Hi

X exponent denoting temperature-viscosity relationship,

equation 3

A

y viscosity

V Prandtl-Meyer angle

A

V kinematic viscosity

p density

a exponent defined in equation 22
A

T dimensionless shear stress , 5-

PooUco

Subscripts

c compressible flow

e edge of boundary layer



m median

t total or stagnation

w wall

00 free-stream

Superscripts

' turbulent fluctuating velocities

time averaged mean quantities

dimensional quantities

Note: All quantities without the subscript c are in the incompressible-

flow plane.

THEORETICAL MODEL

Details of the theoretical model used in this investigation are

shown in figure 1. A two-dimensional supersonic turbulent boundary layer

on a flat plate approaches and then is deflected onto the ramp surface at

corner C. If the ramp angle is sufficiently small the boundary layer

remains attached during the turn and ensuing encounter with a strong

adverse pressure gradient. In order to eliminate a singularity in the

computations a fillet is incorporated into the corner, the size and

shape of which can be varied to influence the shape of the pressure rise

if necessary. (For details of fillet design see Appendix A.) Thus, the

usual thin corner shock is essentially replaced by a set of strong coalescing

compression waves and the expected abrupt pressure jump by a steep but

finite adverse pressure gradient. Inasmuch as boundary-layer separation

might be expected to first occur on the fillet as the ramp angle is

sufficiently increased this approach requires that the basic boundary-

layer equations retain curvature terms to r ~ 0 ( 6 ) . The inviscid flow
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above the boundary layer was assumed to be governed by the Prandtl-Meyer

relations. Calculations indicated that the maximum expected entropy

changes should be small and their influence on the flow characteristics

negligible for the range of conditions that were to be explored in this

investigation.

For greater simplicity the viscous boundary-layer calculations were

made in the constant property or incompressible-flow plane with the

transition from or to the compressible boundary layer being made via

Stewartson's transformation (ref. ?)• The interaction between the

boundary layer and inviscid exterior flow was investigated in the

compressible-flow plane by two methods. In the weak interaction

(see ref. 6) the angle of the inviscid stream was matched to the angle

generated by the growth of the displacement thickness of the boundary

.layer and the velocity at the edge of the boundary layer was then matched

to that of the stream. In the strong interaction the velocity and flow

angle of the inviscid flow were matched to the velocity and streamline

angle at the edge of the boundary.layer.

INVISCID FLOW

The pressure, density, Mach number, etc., characteristics of the

inviscid flow over the boundary layer were determined by Prandtl-Meyer

flow. Preliminary calculations based on experimental indications

revealed that the entropy changes that might occur in actual physical

flows were relatively small for the Mach number range of the investigation

and that their omission in the present theoretical approach would have

no significant effect on the general flow characteristics to be calculated.

Actually, the calculations were made by using the Prandtl-Meyer flow

tables of WACA 1135 (ref. 8) with the Prandtl-Meyer angle V being

used as the entering variable to make the interpolations. The angle V

is found from either-the slope of the boundary-layer displacement thick-

ness or the angle of the flow at the outer edge of the boundary layer

in the compressible-flow plane.



VISCOUS FLOW

Stewartson Transformation

As mentioned earlier the boundary-layer calculations vere made in

the incompressible-flow plane whereas the interaction between the

inviscid and viscous flows were carried out in the compressible-flow

plane. The transformation from one plane to the other was accomplished

by means of the Stewartson transformation (ref. 7)-

S =

A
n =

A
u =

A
V =

A

i
c A A. A

p a p
e ,c e , c c A

A A 7 dri
c

D a D
0 H°°,c °°,c e,c

A

a
-£»££
* c
aoo,C

A A /A

A A 1 A C
P a \ p
e,c e,c \ °°,c

A A
a d s O a
e,c c

Additional transformation equations can be derived directly from the

definitions of the pertinent quantities and the Stewartson transformation

or from the definitions, transformation and Crocco's relationship between

8
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local temperatures and velocities within a boundary layer having a constant

static pressure and total temperature across the layer. Some of the more

useful relationships are

A

6 =
c

A

6

/>
Tt
A
T

e

Y - 1
2

A

6

M

6
f
J

2
•£-} dn
'e

A*6

A

T

T
e,c
A
a
e,c

A

a°°,c

Y - 1...2
^-r M

2 e ,c

A
p
e ,c

/v
p

°°,C

6

A

6 ——
C A

a
e,

A
a

A

e
A

c Pe
~

_ P..

,c

o°,C %C

(2)

The transformation equation derived from the Stewartson transformation

for the local skin-friction coefficients was not considered reliable

because it depended upon the temperatures or densities at the wall

whereas the T' methods indicate a mean boundary-layer temperature or

density approach is more reliable. (See ref. 9, for example.) For this

investigation therefore the assumption was made for simplicity that such an

equation derived in reference 10 would be adequate



= B(l - A) K) (3)

where

A =0.76

Governing Equations

The basic boundary-layer equations vere derived from the two-dimensional

incompressible Navier-Stokes equations in the curvilinear orthogonal coordi-

nate system (ref. 11, page 98):

Continuity

_
3ft

A
V

A A
r + n

= 0

s-Momentum

A A A A
3u r 3u A A jju

—~+ A A- — A U + V ~ T
3t r + n3s 3n

A
r

A A
r + n

_1_
A
P 3 £

A 1
V 1

A2
r

(r + n

2r
,*(r

A .P
+ n)

£A a 2 / x
d u d u

,2 A 2 ' _A2
; d s d n

A A
3 v r

A . A /
3s (r + ri)3

1
A
r +

A
3r A

3s "

3t*i
A A .A
n 3n (r

A A
r n

(r
^ A^3
+ n)

A

U

A '3r 3 \
A r

3 r\
S d £

10

(5)
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A
3v

m ,

A

3t

A
_r
A
r +

u
A

3v

3s- + v li
A

3n

A 2u
A
r +

A

n

1 3p

p 3n

A
+ V

"

3 v
A2 ~

3n

A
V

/A j. N2
(r + n)

A
2r 3

.A A 2
(r + n) 3

A
, r

/ A A ^3
(r + nT

A 0

u 1 3 v . r"
A
S

A

3r

3s

A A A ' A
r + n 3 n (r

A A
A r n 3
u + . ' 0

( r + n ) 3 3

+

A
r
A
S

A >2
n)

A

3v

3 s

3 s

(6)

In the analysis the steady-state case is considered, thus, the
A

3t
terms

become zero in equations (5) and (6) .

To convert the above equations to dimensionless form the following

dimensionless ratios were adopted

A
s

A
nn = -

u =
A
U

U

V =

P =

U

A
rr = 7

Here
A A

P = P.. for incompressible flow. £ is the distance between the

flat-plate leading edge and the ramp corner.

Thus, equations (U) through (6) become:

n (7)

11



r 3 u 3 u v u _ r 3 p
r + n 3s 3n r + n r + n3s

2r

(r -f n)2

3 2 u ,
p 1

3s

3 2 u ,

3n2

1 3u
r + n 3 n

u

(r + n)2

2r __ 3 v r 3 r r n 3 r 3 u
~ v 3s 3sr -L ^(r + n) ^ ^ \(r + n) , A N(r + n)

(8)

3 "> c-v 3 v u
. U ~ + V ~ — ———

r + n d s 3 n r + n 3n R

2r 3u , 2 .23 v r_ d v v
, ^ *2 3s r + n 3n ' , , 2 - 2 , .2
(r + n) (r + n) 3 s (r + n)

r 3 r r n 3 r 3 v I
r . \ 3 3 s / . x 3 3 s 3 s
k r + n) ( r + n ) J

(9)

Equations (7) through (9) are reduced to "boundary-layer equations by

the standard order of magnitude analysis used for shockless "boundary layers.
3

This procedure does not take into account that under the shock the -r—
3 d s

terms are on the same order of magnitude as the -5— terms and, consequently,
d n

large normal pressure gradients may be induced by terms other than those
3 v

involving centrifugal forces. In particular, the n-r— term is probably
(7 S

very important in generating normal pressure gradients and having a strong

influence on the boundary-layer separation characteristics under a shock.

Still, it is of interest to determine whether the significant characteristics

12
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of the separation can be reproduced by inducing separation by means of the

adverse gradients generated by a fillet and making the calculations by means

of a second-order boundary-layer theory. Experimental results indicate that

the pressure rises associated with shock-induced separation occur in one or

two boundary-layer thicknesses (see ref. 12, for example); thus, the fillet

must be relatively small. Estimates indicate that curvature terms of

r = 0(6) must be retained in the equations. The results are:

Continuity:

r + n 3 s 3 n r + n

s-Momentum:

_ _
r + n " 3 s ' " 9 n ' r + n r + n 9 s

1 _ 9 u 1 9 u u
R T~2 + r + n 3n ~ , ^ ^2" L B n ( r + n ) J

n-Momentum:

(12)

To convert the equations (10) through (12) to turbulent-flow equations,

let

13



u = u + u'

V = V + V1

p = p + p1

and after substitution of the above values in equations (10) through (12)

and after the equations are mean time averaged, the following equations are

obtained

r 3u + 9v + v _
r + n 3 s 3 n r+n (13)

r - d u
U -r— + v

1 3u
r + n 9n

_U U V

n r + n

u

(r + n)2

r + n 3s + Roo

v a Or 0 / , d.
(r + n) 3s

~ 3 2 u

3n2

I — -x i.u v ; — — — — -

- -2 ?n ^- 1 £-3p _ u u'
3n r + n r + n (15)

In the shock interaction region the magnitude and characteristics of the

term u'2 is not well known (ref. 13). Thus, for this analysis the term
2

u' is not taken into account.

In order to eliminate the Reynolds shear stress, an eddy viscosity is

introduced as

3u
R Aoo y

(16)
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Thus, equations ( lU) and (15) "become

s-Momentum:

r - _j u - 9 u u v _ r 9p
r + n 9s 9 n r + n r + n 9 s

9
9n r + n M2 9n , ,2(r + n)

(IT)

and

n-Momenturn:

_u
n r + n (18)

vhere

3, =

(19)

Equations (13), (IT), and (18) are the governing equations for the viscous

flow. The boundary conditions are u = o, v = v at the surface and u = u (s)

at the edge of the boundary layer for the weak interaction and u = o, v = vw

15



I p o
at the surface and V ( s ) = Vu + v at the edge of the boundary layer for

the strong interaction, v represents a surface injection or suction velocity

if one is desired.

Integral Method

The desired integral equation is obtained by combining the continuity,

s- and n-momentum equations (eqs. (13) ( l?)» and (l8)) in a manner similar

to that of Tai (ref. 6) and Kuhn and Nielsen (refs. h and 5). Equation (13)

is solved for the normal velocity

n
i ~ 1

(20)

and the n-momentum equation (eq. (l8)) is integrated vith respect to n

to remove the n dependency and differentiated with respect to s to
3p

obtain the pressure gradient -r*- as

3s 3s

n
a^ f n oop I - <i ~ r ~^ iw l u o u I u o r

-s + 2 I s— dri - 1 r- -T—
3 s < r + n d s I / . \ ^ o s0 < (r + n)

n

(21)

where r| is a dummy variable of integration. Equations (20) and (2l)

are substituted into equation (IT) and the resulting equation is multiplied

by a weighting function

f (n ) = n ; a = 0, 1 (22)

and integrated completely across the boundary layer to yield the desired

integral equation as
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°F

6 / _ n _ _ _ n _
f ) ~ du o f u 3u /_3_u u \ (* 9 u
J ) U T s ~ + 2 J r + n T s ~ d n ~ \~^n~ r + n/ J T7 dn

A V r> n

JL r + n i-
s ~ r R

_

3n
3u

in r + n 3n / _,. \2(r + n)

n

-i (23)

In equations (22) and (23), cr = 0, 1 corresponds to the momentum and moment-

of-momentum equations, respectively.

The tvo equations derived from equation (23) using O = 0 and 1 are

sufficient to obtain solutions for the case of the weak interaction. For

the case of the strong interaction, which might be expected to apply in

the neighborhood of the fillet between the flat plate and ramp, an additional

equation is required to obtain a solution. This equation is derived by

integrating the continuity equation (13) completely across the boundary

layer (essentially extending the limit n in equation (20) to 6) to get

o

1
3u , r + 5 - _,_ -

-r— dn = - v + v3s r e w (2U)

Velocity Profile

The integration of equations (23) and (2k) is accomplished by

assuming a velocity profile that has the potential for indicating separated

(reversed flow) characteristics in strong adverse pressure gradients. A

profile that had satisfactory characteristics in subsonic and transonic

flow on a convex surface was developed by Kuhn and Nielsen (ref. k) and is

utilized in this analysis

IT



u = U [2.5 An (1 + n+) + 5.1 - (3-38? n+ + 5.l)e~°*3Tn ]

0.5 ;„ [i -
P I

cos Tr (25)

where u~ is the wake velocity and u is the friction velocity

u = (f /If |U|f i/p )
T \ W ' W ' / V W1 W/

1/2
(26)

In equation (25) , the first term on the right-hand side represents the

inner part of the velocity profile, consisting of a laminar sublayer

whose function is to allow the no slip boundary conditions to be met at

the wall and of the law-of-the-wall function. The second term represents

the wake portion or outer part of the boundary layer by a cosine function

that is easier to handle in the calculations than the more accurate error

function representation.

Eddy Viscosity

The eddy viscosity model used in the present analysis is identical

to that of Tai (ref. 6) which is similar to that of Kuhn and Melsen

(ref. 5).

The expressions for the eddy viscosity are given as follows:

For attached flow, inner layer

6 = 1 + 0.0533 u,. i + o.Uiu
u

u+ 0.5 lo.ia —
u

(27)

For attached flow, outer layer
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I w ds 15

o 0.013 + 0.0038 e L -*- ~*e = —? ^ ue 6 RM (28)

For separated flow, inner layer

B = 1 + 0.018 u n R
e e (29)

For separated flow, outer layer

0.013 u 6 R
rt = (30)

System of Equations for Strong Interaction

Equation (25) is substituted into equations (23) and (2H) with u0p
being eliminated by evaluating u at n = 6. Details as to how this is

actually accomplished are given in Appendix B. -Three ordinary differential
CLU -, r> U-PT do wequations are finally obtained with unknowns -— , —t and -— vhich can

^ J ds ' ds' ds
be written in the matrix form

19



Ell E12 E13

E21 E22 E23

E31 K32 E33

_

du
TL

ds

d6_
ds

dp

ds

=

— —

Ql

Q2

Q3

(31)

where the functions E. . and Q. are presented in Appendix C. Note that
i j J

because of the existence of surface curvature effects the substitution of

equation (21) into equation (l?) makes it more convenient to make the wall

pressure gradient the third unknown in the present investigation^ -
a U

rather than the velocity gradient at the edge of the boundary layer
3s

as was done by Tai who had no such terms. Furthermore, the experimental

pressure gradients with which theory is compared are wall pressure gradients.

Systems of Equations for Weak Interactions

Most of the calculations for the weak interaction case were made by.

an approach similar to that of Tai

11

21

E.12
du 1

T f
ds '•

1

! =

d6
Is" !

Q, - E

n T'1
Q2 " L

d?,.
13 ds

ds

(32)

where E. . and Q. are identical to those in equation (31). As u
i J J «•

tended toward zero near separation the coefficient determinant also tended

toward zero with the result that the calculations diverged. For some of

these conditions the solution algorithm was changed, to

20

ORIGINAL PAGE TS

POOR QUALITY



QUALITY

-"2.2.

V
13

E
'23

i

dS
ds

dp
w

ds

C\Q "
du
— . .

ds

du
Q2 ~ E21 ds"

(33)

where an initial value of u was prescribed by a parabolic arc extrapo-

lation from previous stations so that the derivative could be an
ds

input. The solutions of equation (33) were then iterated with the

Prandtl-Heyer inviscid flow, with continuous updating of u , until the

velocities calculated for the outer edge of the "boundary layer by the

viscous equations (eq. (33)) matched the velocities coir.puted for the

Prandtl-Meyer flow.

Initial Conditions

Initial values for the boundary-layer variables were derived from

Schlichting's equations for an incompressible flat plate boundary layer

(ref.' 11, pp. ^33 and k6Q) modified for taking account of a pressure

gradient

u = °-1T1

T H,0 '1
m ds

0.1
( 3 U )

and

K^llf - e(3.U + m̂ ds

m
IP.+I

(35)

21



where

m = h, k = 0.0128

These equations were derived assuming a l/7th power velocity profile, hence,

are not compatible with the velocity profile used in this investigation

(eq. 25). Consequently, u and 6 from equations (3̂ 0 and (35) were

iterated with the velocity profile of equation (25) to obtain new values of

boundary-layer variables that were compatible both with that velocity profile

and the pressure gradient existing at any particular iteration.

COUPLING OF INVISCID AND VISCOUS FLOWS

In the case of the strong interaction the requirements for the coupling

of the inviscid and viscous .flows are that both the magnitudes and directions

of the velocities of the two flows match one another at the outer edge of

the boundary layer. Because of entrainment of air from the inviscid into

the viscous flow as the boundary layer grows along the surface, the slopes

of the streamlines at the edge of the boundary layer are smaller than the
n r

slopes of the surface of the boundary layer — . The relation between theds
slopes is readily found by the use of the continuity equation to be

4^= tan C+ -^-f- [p u (6 - 6*)] (36)as - - ds e e
P ue e

which can be written as

*

= tan G + (6 - 6*) ̂  in (p^) (37)
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and solved for the streamline angle

•

£ = tan'1 (—• - (6 - 5*) f- in (p u )] (38)
ds ds e e

The normal velocity in the inviscid flow at the edge of the boundary layer

is found from

v = v. sin 0 (3Q)e,inv inv

and the edge velocity u in the equation defining the assumed velocity

distribution within the boundary layer, equation (25 ) , is thus related to

the inviscid flow by

/ 2 2
u = (v. - v .e inv e,inv

For the case of the weak interaction the slopes of the inviscid stream-^
j f

lines are matched to the growth in boundary-layer displacement thickness -—

and equation (38) reduces to

#

6= tan'1 (|M (Ul)ds

Also, the assumption is usually made that v . is negligible, hence

23



u = v. (42)e inv

Because of divergence problems that were encountered in the strong inter-

action calculations some weak interaction solutions were obtained both

with and without this latter assumption.

COMPUTATIONAL METHODS

The numerical integrations of the viscous-flow equations in the s

direction were carried out by means of a standard fourth-order Runge-Kutta

method for both the point-iteration and global-iteration techniques. In

the point-iteration technique the interaction between the viscous and inviscid

flows was iterated at a constant s station until the solution converged,

broke down or a prescribed number of iterations were completed. In the

global-iteration method the boundary-layer calculations were executed over

the complete s domain before reevaluation of the new inviscid pressure

gradients and recalculation of the boundary layer. The computations were

usually begun at s = 0.20 and continued downstream until the calculations

broke down or an s of 1.5 was reached. Relaxation factors of varying

magnitude were used on one or more of the dependent variables and various

types of smoothing procedures were incorporated into the global-iteration

calculations. All calculations presented herein were made with v equal

to zero. For most calculations the Stewartson s transformation was ommitted

because its effects were found to be generally negligible and its presence

increased the complexity of the calculations.

As the calculations proceeded toward a separation point in the weak-

interaction point-iteration method the solutions obtained by Tai's method,
du <-

where and — were the unknown dependent variables , began to diverge
ds ds

because the determinant for the equations tended toward zero. For some cases
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du ,. dp
j _ , j . T • - , - , - , do . Wthe equations vere revised so that -— was prescribed and — and -—

ds.."" ds dsdu
became the unknowns. The gradient -— was initially prescribed by

CLS

extrapolating u parabolically from the previous stations and calculating

a three-point backward derivative using the extrapolated u as the third

point. During the iterations u was continuously modified to require

that the boundary-layer edge velocities in the inviscid and viscous flow

were identical within prescribed limits. In many ways this type of calcula-

tion scheme seemed to be more naturally suited to supersonic flow problems

than the approach used by Tai (ref. 6).

RESULTS AND DISCUSSION

General Comments on Stability and
Convergence of Calculations

Before any final results of the calculations are presented it appears

desirable to point out a few interesting or unusual characteristics that

were encountered in making the computations that are not apparent from the

final plots themselves. These are: the extreme instability of the calcula-

tions ; the unusual values of relaxation factors that were required to allow

the calculations to proceed; the ineffectiveness of the relaxation coefficients

in improving convergence; and, finally, the inability to obtain any useful

results using the strong-interaction or global-interaction techniques. (See

ref. lU for similar problems in instability in calculations in large adverse

pressure gradients using a similar integral approach.)

First, there never was any problem in calculating the boundary-layer

characteristics on the first iteration where the pressure gradient was

assumed to be zero. As the boundary layer was iterated with the inviscid

flew in the second and higher iterations many of the terms involved in

the calculations tended to oscillate in value with the magnitude of the
*

oscillations usually being catastrophically large. As an example, &

would often increase so much between adjacent stations as to make the



*
slope -r— so large that the inviscid-flow calculations would indicate

O.S

the existence of a detached shock with a subsonic inviscid flow above the

boundary layer. This would abort the calculations because no provision

had been made for the existence of subsonic flow this early in the investiga-

tion. Again, calculations would often abort because 6 would become

negative during the oscillations and no provision had been made in the

equations for the interpretation of negative values of boundary-layer total

thickness. In general, only a few of these types of problems could be

solved without recourse to the introduction of relaxation factors.

The role of the relaxation factors was to introduce the interaction

effects into the computations slowly and hence decrease the magnitude of

the oscillations. Because of the magnitudes of the oscillations that

existed without relaxation, numerical values of relaxation factors an order

of magnitude smaller than usual had to be used. For example, in steep

adverse pressure gradient regions but still some distance away from separa-

tion points, relaxation factors of 0.05 to 0.2 were required in the

weak-interaction point-iteration method on two or more of the most critical

terms to preserve order in the calculations. These small values of relaxa-

tion factor required about 200 iterations to permit satisfactory convergence.

In the global-iteration scheme single relaxation factors on the order of

0.2 to 0.5 were sufficient, but this was because smoothing procedures were

simultaneously employed.

A short study was made to determine the effects of relaxation factors

on convergence. In the study no evidence was ever found that the use of

relaxation factors converted a divergent solution into a convergent one.

In fact, all evidence indicated that the use of relaxation factors in

divergent solutions merely delayed the time required to reach the point

where the computations broke down (i.e., larger number of iterations).

Attempts to obtain converged solutions by the strong-interaction

technique were universally unsuccessful. In the point-iteration method

these attempts included starting the calculations at s = 0.20 by the

use of the usual initial procedures, starting the calculations just ahead

of the fillet from the boundary layer determined by the weak-interaction
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technique, and using a range of relaxation factors. Even the use of the

global-interaction method resulted in divergent solutions for the flat

plate.

In weak interactions converged solutions could be obtained "by the

use of the global-iteration technique combined with a cubic-spline smoothing

procedure. Without smoothing, oscillations quickly began to appear in areas

such as the junctures of the fillet with the approach surface and the ramp

as the calculations proceeded downstream. The magnitude of these oscillations

increased rapidly with increases in the number of iterations but without

changes in location. Unfortunately, the smoothing procedure first controlled

then decreased the magnitude of the oscillations by merely flattening the

waves in both the upstream and downstream directions. Inasmuch as the positive

and negative oscillations were completely out of phase with one another the

oscillations were not properly cancelled and the converged solutions were

obviously physically incorrect. In essence, the smoothing procedure allowed

the errors from the critical points to seep in until the flow changes at the

critical points were overwhelmed by the smoothing corrections, whence conver-

gence could be achieved.

An examination was also made of the effects of grid size on stability

of calculations and convergence. The results indicated no effect except to

pinpoint more sharply the station at which divergence actually began.

Finally, the u initially prescribed method appears to alleviate many

of the previously mentioned problems , but its potential was not fully

explored.

Effects of Various Terms or Parameters

Some final results computed by the weak-interaction method with point-

iteration technique are presented in figure 2. In the figure, the non-

dimensional wall-pressure ratio p and the local skin-friction coefficient

c are plotted as functions of surface distance s for a range of wedge

angles from 0° to 30°. The fillet is based on a 9th power polynomial and

begins at s = 0.98 and ends at s = 1.02. Theoretical computations are

represented by the lines; the symbols have been included at intervals only
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to aid in identifying the curves. Only converged data are plotted. Data

for c > 0.0008 vere computed "by the Tai method and data for c < 0.0008

for a = 30° were computed by the u initially-prescribed method. Similar

calculations for c < 0 . 0 0 0 8 were not made for the other wedge angles for

reasons that will be discussed in the next section. The ticks on the pressure

plot indicate the inviscid-flow pressure rises expected for the various wedge

angles using shock equations.

The curves of figure 2 indicate that as the wedge angle increases the

adverse pressure gradient also increases and the local skin-friction

coefficient decreases. Boundary-layer separation was calculated for

a = 30° at s =1.007 and appears to be a probability for a = 25°, 20°,

and 15°. Hote that the pressure rises lag changes in surface curvature.

Approximately one-half of theoretical pressure rise at a = 10° occurs

on the flat wedge surface downstream of the fillet. A comparison of the

a = 10° calculations where no separation is indicated with some experimental

data obtained at a Mach number of 2.75 (ref. 15) indicates (fig. 3) that,

although the theoretical pressure rise occurs somewhat belatedly, it is in

reasonable agreement with the experimental results.

Some nondimensional velocity profiles corresponding to the wedge

angle of 30° are shown in figure U. They corrobrate the appearance of

separation. ITote that practically all the significant boundary-layer

profile changes occur in an extremely short region that corresponds to

the steepest part of the adverse pressure gradient in figure 2.

At this point the question arises as to the possible effects the

fillet could have on separation. Figure 5 shows that even for the larger

wedge angles the effects of changing the size and, hence, radii of curva-

ture of the fillet had very little effect on either the pressure or skin-

friction distributions. Figure 6 shows that the surface curvature terms

contributed little or nothing despite the relative smallness of the radii

of curvature (lowest r/6 was about 2 .9 ) -

Finally, figure 7 indicates that sizable variations in the eddy-

viscosity model were of no significance.
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Calculations With Experimental Input

Although the results discussed in the previous section would appear

to indicate the possibility of deriving a reasonable criterion for boundary-

layer separation a closer examination reveals a serious problem. The

data of figure 2, for example, indicate that separation occurs at wall

pressure ratios approaching 3 or more whereas experiments such as those

in references 12 and 16 and theoretical calculations such as those in

reference IT indicate that separation at MTO = 3 occurs for pressure ratios

less than 2. In order to test this discrepancy some calculations were

made using Law's (ref. 12) experimental pressure distribution for a = 25°,

where separation was well developed, to represent the final converged

pressure distribution. The results are presented as figure 8. Included

in figure 8 are the theoretical skin-friction results of Shang and Hankey

(ref. 17) whose pressure distributions calculated by time-dependent

Navier-Stokes methods are in reasonable agreement with Law's experimental

data.

The data of figure 8 and the discussion in reference 12 indicate that

boundary-layer separation occurred experimentally at an s of approximately

0.96 and a p of approximately 1.9- The calculations of Shang and Hankeyw
(ref. IT) indicate separation at s approximately 0.95 and p about 1.03.w
Present calculations indicate separation at s = LOT and p = U.3.

Furthermore, the experimental separation point occurs in the first pressure

rise leading to the pressure plateau region whereas in the present investiga-

tion separation occurs in the second pressure rise at a much higher pressure

in a region where a reattachment shock might be expected. This discrepancy

is ascribed to the failure to provide in the present investigation for

terms which can induce normal pressure gradients withou the need of surface

curvature. This omission becomes even more serious for the cases where the

ramp angle is large enough to force separation to occur well ahead of the

fillet where there is no surface curvature and hence no mechanism for

boundary-layer separation in the present approach. As illustrated in

figure 9> due to the strong coelescence of the compression waves into a shock

as one proceeds away from the surface, the pressure gradients at the wall
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are considerably smaller than those at the outer edge of the boundary layer

or the mean gradient that is essentially utilized in the integral-equation

calculations. Omission of the terms that generate the normal pressure gradients

also means ommission of the coelescence effects at the edge of the boundary

layer and consequently much smaller mean axial pressure gradients than those

that actually should exist. A similar serious problem was encountered by

Werle and Eertke (ref. 18) in an investigation of the supersonic wedge problem

wherein the boundary-layer equations were solved by a finite-difference

approach. This concept was further substantiated in the present investigation

by making some calculations wherein the pressure gradient within the first

pressure rise was arbitrarily steepened without modification of the plateau

pressure. Boundary-layer separation was readily achieved at the desired

location. Additional evidence that normal pressure gradients in the- boundary

layer must be accounted for in integral methods is presented in reference 19

vhere the boundary layer is subsonic but is thick and has significant stream-

line curvature.

Modifications can be made to the integral-equation method to provide

for a more realistic shock-boundary-layer interaction but at the present

time the modifications will have to be either empirical or built up by

interative inclusion of one or two more terms. From the standpoint of the

desired end result the normal pressure gradients should not be prescribed

a priori but should be an integral part of the interaction solution. In

this respect, both the inviscid and viscous flow solutions in the present

investigation are essentially one-dimensional calculations. It is possible

that a practical solution of the shock-boundary-layer problem will require

calculations in two dimensions. In view of the major deficiency just dis-

cussed in the present approach it was felt that further calculations without

major modifications were not justified.

The strong normal pressure-gradient effects in shock-boundary-layer

interactions are apparently peculiar to turbulent boundary layers. In

laminar flows the pressure rises and pressure gradients, even at separation

points, are an order of magnitude smaller and pose r.o major problems in

the use of integral methods (ref. 20).
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SUMMARY OF KECULTS

An investigation was made to determine the feasibility of using a

boundary-layer integral method to study the separation of a turbulent

boundary layer on a two-dimensional ramp at supersonic speeds. The

numerical calculations were made for a free-stream Mach number of 3, a

Reynolds number of 10 million, and over a ramp angle range from 0° to 30°.

For ramp angles where no flow separation was indicated, the theoretical

calculations were in reasonable agreement with experimental data

except for a somewhat belated rise in the pressure. For the larger ramp

angles , where separation was present, the investigation produced results

that were not in agreement with experiment or with results calculated by

time-dependent Navier-Stokes methods apparently because no provision had

been made for a proper shock-boundary layer interaction where strong normal

pressure gradients are induced within the boundary layer under the shock

independent of surface curvature. Within the limits of the calculations

the effects of changes in the size of the fillet, the omission of curvature

terms, and changes in eddy-viscosity model were negligible.
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APPENDIX A

To avoid a singularity in the computations at the sharp corner C

a fillet is introduced as indicated in figure 10. For best results it is

desirable that the entry to the fillet at A and exit from the fillet at

B be as smooth as possible and the smallest radii of curvature be con-

centrated close to the corner C. These conditions can most easily be

attained by the use of a high-pover polynomial wherein several of the

higher order derivatives at A and B are set to zero. Preliminary calcula-

tions indicated that a 9th power polynomial would be optimum for the calcula-

tions. Some calculations were also made with a fillet based on a 7th power

polynomial and an exponential shape which closely resembled the above

shapes. Inasmuch as no data are shown for the last two shapes the details

of the fillet are restricted to the 9th power polynomial case.

The shape of the fillet tangent to the flat plate at A and to the

ramp at B where A and B are equidistant from C by the distance D is given

by the 9th power polynomial

y= yVc.x1 (A-l)

1̂ -0

The boundary conditions are:

At point A

y = 0

(A-2)dx . 2 . 3
dx dx dx

At point B
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y = D sin a

^ = tan a
dx

p

ORIGINAL PAGE IS
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(A-3)

2 ~ 3 ~
dx dx dx

_

With the aid of the MIT algebraic computer language MACSYMA (ref. 21 ) the

coefficients were found to be:

U
TOD cos a sin a

° (1 + cosa)9

Cl =

C2 =

sina(350 cos^a - 22U cos a + 8U cos a + 36 cos a + 9 cosa)

cosa (l + cosa)"
2

cos a - 8 cosa + 5) sina cosa

D (l + cosa)9

C3 =
lUO(cosa - 1_)(5 cos a - 11 cosa + 5) cosa siina

D (l + cosa)"

1| -3 O
TO sina (5 cos a - 32 cos a + $2 cos a - 32 cosa +

~ -i Q
D (1 + cosaT

\t O O

70 sina (cosa - l)(cos a - 13 cos a + 31 cos a - 15 cosa + l)
^ -D cosa (l + cosa)

lj 3 2- 28 sina(8 cos a - 33 cos a + 88 cos a - 53 cosa + 8)
5 / \9D cosa (1 + cosa)

sina (cosa - 2)(cosa - l)(2cosa - !_)_g . __
D cosa (1 + cosa)

Cr, =
- -10 sina (16 cos"a - 31 cosa + 16)

D cosa (l + cosa)

33 sina (cosa - l)
'9 ~ .8D cosa (l + cosa)
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where a is the ramp angle and D is the distance from the corner to

fillet tangency points. The radius of curvature r is computed as

3/2

1 +
dx

r = (A-5)

The profile of the fillet for D = .02 and a = 30° is shown as a solid

line in figure 10.
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APPENDIX B

Incorporation of Velocity Profile into
Integral Equation

The boundary-layer integral equation vas derived in the main body of

the paper as

f t - n _ _ n _
\ J ~ 3 u o f u 3 u J / 3 u u \ f 3 u ,I < u -r— +2 I ——— -r— dn - (-r— + —7—) I -~— dr\l i 3 s l r + r ) 3 s \ 3 n r + n / 1 3 s
•'n v Jr, Jc\

3s

r + n 1_
r R 3n 3 n/ r + n3n / . v2(r + n)

n

- L
-2u

(r v2 ds ' v n
= 0 (23)

The assumed velocity profile that must be incorporated into the above

integral equation is

u = u [2.5 £n (1 + n+) + 5.1 - (3-387 n+ + 5.l)e~°'3Tn ]

0.5u 3 j ^ l - cos (if.)] (25)
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In order to develop an expression for -r— note that u is a function of
o s

several variables that are in turn functions of s, hence, let

u = [ug(s) , U T (S ) , 6 ( s ) ] (B-l)

or

<% ~ ^~ 3 u~ ~ ~ 3 u »\ ~ <\ p_3ji _ 3u & | 9u i+_Li_Li
3 s 3 u 0 9 s ^ - 3 s 8 6 9 sP ou

Also, let

ug = ue [ug(s) , U T (S ) , 6 ( s ) ] (B-3)

or

3 u 3 u S u . ._ _ _ e_ r_ e_ 36
3 s 3 u 0 3 s 3 u 3 s 3 6 3 s (B-U)

P T

Boundary conditions at n = 6

u = ue

and

3u
- S-=l (B-5)

Substitution of equation (B-5) into equation (B-li-), followed by the
35

elimination of -r - from equation (B-2) with the use of the resultant
d s
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equation (B-^) yields

/ - > - •} ~ 3 u \ 3 u / ,, - •* - 3 u \ ~ ~ « - 3 u_u _ 3u 3u e_ I r_ .( 3 u _ 3 u el 3 6 3 u
s I 3u " 3uQ 3u / 3s \36 3uQ 3 6 / 3 s 3 u0 3 sv T p T p p

3u 3 u
The derivatives -r-=— and ^ ̂  are not fxmctions of n and it is convenient

o u a o

to remove them from the equation by differentiating equation (25) to give

-^=§-= an = 2.5 to (1 + 6+) - (U.887 - 1.253196+) so u x

5 .1 (1 - e - ' ) + (B_T)
1 + 6

A .A

+ I U T I n

where 6 = A' , and

3u
e = u u36 ^2 T t ~ u + 6

so that equation (B-6) can be written in the form

+)e-°-3T61
J

- (1.5 - 1.253196+)e-- (B-8)

9 jf } ~ ° u
o_ o u e

3 s ~ \ 3 u ~ a l 3 u o y 3 s + l 3 6 ~ a 2 S u . ^ S s 3 u Q 3 s
T p p p

9 u ~ t. ^u

The remaining derivatives in the coefficients for -s , -r—, and -T in
O S OS OS

equation (B-9) are functions of n. Expressions for these derivatives can
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readily be deduced from equation (25) but are not reproduced here.

In the region of the ramp fillet centrifugal forces will affect

the boundary-layer edge velocity u if the radius of curvature exceeds

the boundary-layer thickness 6. Consequently, the necessity that the

edge velocities computed by the boundary-layer equations match those

computed from_Prandtl-Meyer invicid flow requires that the unknown
3 u 3p

e w
derivative -5 be replaced by a new unknown -rr . Put n = 6 in

equations (21), (17), and (20) to obtain, respectively

9p,
TT + 2

/

- i- r ~2u a u , I u— 5— dn - I
O
r + n3s 4"*n:

dr
ds dn (B-10)

3 u v ue e e u

r + 6 e 3 s r + 6 + 6 3s R (r
(B-ll)

(where the assumption was made that viscous effects at the edge of the

boundary layer are small)

e
3u-r —3s

. .dn - vw (B-12)

Elimination of -z and v from equation (B-ll) by use of equations (B-10)
as e

and (3-11) results in

Ts

-. - 6 6
1_ 3pw 2_ ( u 3u A A 1_ (

~ ~ - 3s ~ - I (r + n) 3s ^ - /u u - J . u - ^e e 0 e 0

_ dr
,2 ds dn
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vw
•(r + 6) " r + 6

3u
Substitution of the expression for -r— from equation (B-9) into equation

6 S

(B-13) yields after some simplification

3u
€

3 s

P., 3p P. _ Pnv P_ > -2 ,_ 1 ^w 1 1 1 v + _JL l .. u dr
=~u 3s R r(r + 6) ~ (r+6) u / , . s2 dsoo v e ^ ( r + n)

dn

(B-lH)

where

i + |i
U

e

u 3u
Tn" 3u

_6 [ 3u
+ 6 / 3u

Jn P

V26_ / u / 3u _ a 3u A d (nj
u / r + n \ 3 u l 3 u Q / 6

e .A T P

p - 26. /^ u f 3u _
P3~ u / r + n \ 3 5e JQ

3u
2 3u (-)16;

Pl| ~ r + 6 / V 9 ^ al 3 uc

v
6 / / 3u
— J (T$-

3u , / _ xd ( )

-1

> (B-15)
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3u
Next, substitution of e from equation (B-1̂ ) into equation (B-9)

CIS

produces

_3_u
9s + 6) 3 u,

+ \ _ Z 6 ~ 9uB
 (P1P3 P1P5 + VJ " ue 3u6 3s

(B-16)

— v P f —2
p 9u _¥ + _i / u
l 3 u D r + 6 u / . . .3 e y. (r + n.

dr .
T~ ^ds

Finally, the expression for -5— from equation (B-l6) is substituted into
o s

equations (23) and (2k) for the strong interaction case and equation (23)

for the weak interaction case to yield, after collection of like unknown

terms, the algebraic equations

TP T7* IP
Ell E12 E13

E21 E22 E23

E31 E32 E33

duxt
ds~

d6
ds

d^w
ds

-

~ -

Ql

S

s

(31)

for the strong interaction and

Ell E12

E21 E22

X"

ds

d6_
ds

dp
Ql " E13 IT"

dp
Q2 - E23 dT

(32)



or

E E
12 13

E22 E23

" d6_'
ds

dp
V.

ds

au -

S. - Eii dT

du
n TP -
Q2 ~ E21 ds

(33)

for the weak interaction.

The coefficients or functions E and Q are given in Appendix C.
ij J
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APPENDIX C

The Functions E.. and Q.
1J J

The E's and Q.'s in equations (32) are as follows
i J J

(C-l)

' 12

n_
1 6

-fi
0 0

T) (c-i)

E12
f (2 u_ D (Ji Jl_ (a + p p p j
J ue - [36 - 3u a2 + 1 3" 1

n_
6

- \ -f- ^- ( [4i - -P- <S + PiP-, - Pip,)l d(S-)<i(T)J r + n u J 3 c 9 u p 2 1 3 - ^ - 5 1 o o
** G *x » M •

n_
1 6

2 f f -A_i_2 3 J r + n a
0 0

3 U 3U / . T, -n T>

T6 - TsT (a2 + Pip
3 - Pa

- 1 2

(C-2)



13
=- !X f (2 i- -ue H ue

M -s-M" J r + n u J d(J)d(|)
o o

n_
1 6

_ 2 ^1 f f __JL_ i_ 31. d(2)d(!
u J J r + nu 3u0 o / v 6

o » » £a K
u

0 0

(C-3)

E21 =

n

1 r
( S. \ 6 u
1 6 J r + n u^ p
0 0 <c-iO

1.3
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P P _ P P
P1F3 1 ']

n n

l^f j([Hj(( -
36 9u

^ fa + P P - P P )
u U2 13 1 V

n

+ '2
f n f 6 u_
I 6 J r + n ue

0 0
\P3

1 2
Ue J /u \ n n /^
- J (r J 6 7T1T a(6} (C-5)

E
'23

= .!i f P(nue I

n n

Ue JQ (r + n)'

u ./TH
S" d (6 )

T 6r - 1/ 3u ,HX
/ T^7 d(6>)

L7 3 J

1 6
2P1 /"n ^ 6 u 3u

" u / 6 / r + n u 3uQe /, -x e

_ _
(S} 2u

0 0

(C-6)



J31 (C-7)

f1L̂ 3 6 "Jo
(C-8)

E33 = - a.
3 u ., /n.

(C-9)

Ql Pl |Rm r(r + 6) + 6 I V u_ r + n
'0

n

- 2 'S u 9 u J / T K ,/
TTT ~ TST d (6 J d(

e p

u 3u_ , / r | vr TOT d(6-}
e Jo B

ei(sio) au
6 u ' 3ne

+ —=-

u

n

o 6
_ v f i + i * I d(")

w | 6 l u r + n 6

(C-10)



= p
u

. el /u 6 \ dr , /n ,n.r<r + «)*y-^fcrnr]s- *<r

n_
.6

n

S. I 6
6 r +

Jn

u 3 u / H x , / n x
u 3u d(6"} d(I}

r1 „
I r(r + n!
•0

^e_ ( r^ f [ u
6 ) 6 ) \G"

•' J x e

6 dr

v

u
u u

(C-ll)

R r

n r1 / - x \2 v 1 r1 -1 + _e I f u o_ \ dr ^ , n* _ w j 8u ,n
(r + 6) 6 I Via r + n) ds 6 r + 6 1 9ufl 6

Jo x e / J Jo y

v r v_w r + o e
6 ~ r T"

(C-12)
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where

f1 - fn/6-
F("> = 2f-f-1 + 7TT t-d(t'-7fir 5-<>

e Jn e J~ e

and where P , P . P,,, P. , P and a , a0 have "been defined in Appendix B.
J_ £_ „» 4 ^? J. £l

For r > > 6 these functions reduce to those of Tai (ref. 6).
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