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THE COVER: The fir'st close-up IJictur'e of 
Mar's (in black and w hite on the cover') was 
taken by Mar'iner IV at a range of 10,500 miles 
fr'om the r'egion in the center' of the pictur'e, 
T he 410-mile-wide r'egion shown is between 
Tr'ivium Char'ontis and Pr'opontus II , The light 
ar'ea called Phlegr'a is on the hor'izon, T he pic
tur'e was assembled fr'om 240,000 digital bits 
tr'ansmitted by the spaceC1'aft after' the Mar's 
encounter' and pr'ocessed by the I BM 7094 com
puter to remove bit er'r'or's and fiducial (identi
fication) marks , 

The color photogr'aph of Mars was obtained 
by R, B, L eighton of the Calif ontia Institute of 
T echnology eighteen days bef01'e the opposition 
of September 1956, using the. Mt. Wilson 60-
inch r'efiector' telescope , The photogr'aph sug
gests that dar'ker' ar'eas ar'e not necessarily 
"gr'een" as sometimes descr'ibed, but may be a 
dar'ker' shade of the pr'evailing yellow-orange. 
T he br'illiant white south polar cap is pr'obably 
a thin layer' of f r'ozen water', per'haps hoarfr'ost, 
(In accord with astr'onomical convention, south 
is at the top.) Craters photogr'aphed by Mar'i
nCl?' near' the evening terminator appear' /r'osted, 
(Page 42.) The natur'e of the /r'ost is unknown, 
bu t conditions would be consistent with its being 
watCl?' . 

The photographs of Mars on pages 
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Mt. Wilson and Palomar Observatories. 
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PREFA CE 

The successful mission of Mariner IV is a most gratifying conclusion 

to the first generation of lunar and planeta1"y expl01"ation, which has been 

based on lightweight automatic unmanned spacecraft in constant com

munication with Ea1·th, designed for luna1' impact 01' planeta1'y encounter. 

The flight of this first MaTS probe is notew01"thy not only f01' the outstand

ing quantity and quality of scientific data but also as the verification of 

large and useful advances in a number of technological areas. 

The Ma1'iner MaTS Project of IfNJ4- 1965 was conducted for the National 

Aeronautics and Space Administration by the Jet Propulsion Laborat01'y; 

it 1vas made possible by the valued assistance and SUPP01't of many gov

e1'nment agencies, scientific institutions, and industrial concerns, Among 

these are NASA's Lewis R esea'rch Center (Launch V ehicle Systems Mana

ge1) and their prime contract01's, Lockheed Missiles and Space C01'

lJOration and General Dynamics/Convair; Goddard Space Flight Cente1' 

(Launch Operations) and other agencies at Cape Kennedy; the agencies 

of the Australian, South African, and Spanish governments which operate 

oveTSeas tracking stations; many hundreds of American indust'rial con

tractors and vendors; and a number of scientists in va1"ious fields of 

endeavor. 

The Project was established in late 1962 with the objective of conduct

ing scientific obseTvations nea1' the planet MaTs and 1'etu1'ning the data 

to Ea1'th for' study and analysis; secondary objectives we1'e to develop and 

study the equipment and techniques involved and to make certain scien

tific measurements of the interlJlanetary environment on the way to Man , 

Successful accomplishment of these objectives under the seve1'e constraints 

which W81'e a pa1't of the mission is a t?"ibute to eVe1"y single individual 

who sha1'ed in the p1'eparation and execution of the Mariner Mars P1'oject. 

--~"~ HOMER [ NEWELL 
ASSOCIATE ADMIN ISTRATOR fOR 

SPACE SCIENCE AND APPLICATIONS 
NATIONAL AERONAUTICS AND 

SPACE ADMINISTRATION 





EXPEDITION FROM EARTH 

Mariner has gone to Mars. 
Though it sounds like a simple task, in retrospect the challenge was 

awesome. A journey of 8 months in space, 325 million miles long, had to 
be devised in less than two years and with less than 600 pounds of flight 
spacecraft weight. 

Pha e by phase the design, development, fabrication, assembly, and 
test were completed. Second by econd the launch operations were carried 
out. Mile· by mile the trip to Mars :was accompli hed. Bit by bit the engi
neering and scientific data were recorded, reduced, and studied. 

A Giant Inst rumen t 

Mariner is far more than a pacecraft. It is a complex organism, a 
major new device of this age, called a system, which combines men and 
machines, techniques and plans, radar arrays, and computers. It is a huge, 
complex scientific instrument, engaged with remarkable versatility in a 
multiple scientific experiment to extend man's knowledge of Mars and 
the solar system by a quantum jump. 

Only a tiny part of this instrument-the Mariner IV pacecraft
journeyed to Mars. Becau e of its monumental phy ical leap, and because 
the spacecraft is a fascinating object in its own right, there is a tendency 
to regard it as the whole instrument. Mariner consists of a large number 
of elements, all essential to its functioning: the spacecraft; the two-way 
communications stations of the Deep Space .[ etwork spread around the 
world; the Atlas/ Agena launch vehicle, which placed the spacecraft on a 
true flight path; the Space Flight Operations Facility at JPL in Pasadena, 
where, from the ovember 28, 1964, launch to the commanded mission 
termination on October 1, 1965, the operations crews were on station every 
hour of every day; and an intangible something in the heart and heads of 
Mariner's human element. 



Spacecraft assembly and testing 

Launch operations mission con
trol 
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This instrument has scaled off the solar system and weighed Mars, 
observed almost a dozen solar flares in the season of the quiet Sun, photo
graphed the craters of the Martian surface, measured the thin atmosphere 
of Mars, and sensed the radiation, magnetic, and cosmic-dust environment 
of interplanetary space from Earth's orbit out beyond Mars. 

Trip Report 

The Mariner IV mISSIOn commenced mid-morning on November 28, 
1964, with a flawless launch from Cape Kennedy. Within 2 days, it 
was nearly half a million miles out, going more than 7,200 miles per hour; 
it was drawing power from the Sun, and had stabilized its attitude by 
locking on the star Can opus. 

On December 5, Mariner was commanded to change its course slightly, 
using the 50-pound-thrust rocket motor built into the spacecraft. The 
maneuver shifted the rendezvous point at Mars from July 16, 1965, passing 
150,000 miles ahead of the planet and north of the equator, to July 15, 
6,100 miles behind the planet and above the south pole. 

In mid-February and late March, Mariner shared the DSN tracking 
network and operational facilities with the Ranger VIn and IX lunar 
missions, giving up a 6% -hour communications period daily for 2 weeks 
each month. The Rangers were in flight for 2% days in their historic 
missions to the Moon, attaining a maximum distance of less than a quarter 
of a million miles from Earth. 

On March 27, Mariner IV equalled the deep-space endurance record set 
by Mariner II's 129-day mission past Venus; it bested the Mariner II 
long-distance communications record of just under 54 million miles on 
April 14. 
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It took a little less than 1 day from the time Mariner's planetary
encounter mode was turned on by ground command, early in the morning 
of July 14, 1965, until the first elements of the first close-up picture of 
Mars were received. During that day, the space environment near the 
planet was measured and examined, 21 pictures and a fragment of 
another picture were obtained and recorded on the spacecr-aft tape re
corder, the spacecraft passed within 6,118 miles of Mars' surface, Mariner 
sent its radio signal-still transmitting information on magnetic field 
strength, radiation, and cosmic dust-through the Martian atmosphere in 
the occultation operation, and then, eme::-ging, continued making space
environment measurements until it was time to play back the taped picture 
data. 

After the 9-day picture-playback sequence, with periods of engineering
telemetry transmission sandwiched between the pictures, the tape was run 
through a second time to minimize errors in transmission . Finally, on 
August 2, Mariner was returned to the cruise mode in which it had sailed 
to Mars. 

Two months later, as Earth left the beam of the high-gain antenna, 
transmission was returned by ground command to the low-gain omni
directional antenna: the long stream of telemetry is no longer audible, 
though the primary carrier signal may be detected. A few minutes past 
3 p.m., Pacific Time, October 1, Mariner's last message was received. 

The Deep Space Network will track Mariner IV from time to time as a 
radio beacon, using the new extreme-range 210-foot antenna. If Mariner 
remains on the air long enough, Earth will again pick up its telemetry in 
Summer 1967. 

Au revoir. 

Encounter operations at Gold
stone 

Spacecraft perfo1mance analysis 
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MARS BEFORE MARINER 

Though Mars has often been populated, irrigated, and civilized in 
speculation and in fiction, its characteristics are relatively unearthly. It 
appears to be a small orange-red desert world; ours is a robust green-and
blue world of jungle, grassland, and river, three-quarters ocean. 

Mars has about half Earth's diameter, a ninth of Earth's mass, resulting 
in a surface gravity 38 per cent of Earth's, and an escape velocity of some 
3.1 miles per second, as compared with 6.9 for Earth. Therefore, Mars is 
ill-equipped to retain mu.:h of an atmosphere; the Martian surface pressure 
is probably less than Earth's pressure at 5- to 15-mile altitudes. What air 
there is appears to lack oxygen and contains only enough water vapor to 
make its detection barely possible from Earth. The lack of oxygen and 
scarcity of water vapor, in turn, rule out liquid water (which must reach 
equilibrium with a vapor pressure above it) except very temporarily or 
underground. There are polar caps of ice or frost-possibly of frozen 
carbon dioxide rather than water-though probably extremely thin by 
Earth standards. 

However, Mars' marked surface and thin atmosphere permitted astron
omers to measure its 24% -hour day and the annual change of seasons as 
early as 1659. Mars' axis is tilted about the same as Earth's, so its seasons 
are comparable, though scaled to the 687 -Earth-day Martian year. Earth 
vacationers might tend to regard t he four Mars seasons as little more than 
variations in a bad winter: a hot midsummer afternoon on the equator 
might bring the ground temperature up to 85-100°F, but during the night 
it would drop to 100 0 below, and 6 feet off the ground the air wouldn't 
get above freezing all day. 

A Dim View of Ca nals 

Like the Moon, Mars abounds with so-called seas, bays, and the like. 
By this century, when the essentially waterless condition of the surface 
was recognized, the names had al ready been established, and the smaller 
bluish regions remained "mare," "sinus," and " lacus." 

Even with the most powerful telescopes and under the most favorable 
atmospheric conditions, Earth's astronomers cannot get high-resolution 
pictures of Mars. To appreciate the difficulties under which the observers 
of Mars labor, imagine yourself watching moonrise at the end of a hot 
da:y. The Moon rises above an asphalt road still warm from the afternoon's 
baking. The faint, glowing disk wavers and dances in the warm rising air. 
Your impression of the Moon might be compared to the way astronomers 
see Mars. Mars is never closer to Earth than about 35 million miles, and 
that only about every 15 years. At opposition (the Sun and Mars are 
opposite, Earth and Mars adjacent), which occurs every 25 months, it 
may be as far as 62 million miles, as it was on March 5, 1965. And our 
atmosphere is always in the way. 
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Canal map by Schiaparelli (1877-88) 

Two and a half centuries after Galileo had been barely able to distin
guish the disk of Mars in the first astronomical telescope, Guido Schiaparelli, 
working at Milan Observatory in 1877, noted surface features which have 
been argued about ever since. He called them ct1nt1li- "canals" or "chan
nels"-because they were dark and seemed to reach across the "lands" from 
"sea" to "sea." Thus began a great international dispute which was to make 
Mars famous to the public and somewhat infamous among astronomers. 

Not everyone saw the "canals" to which Schiaparelli, and then an 
American, Percival Lowell, referred . Lowell was convinced of the implica
tions of the word "canal" ; he founded an observatory, whose contributions 
to science would include the discovery of Pluto, but whose early activity 
centered on Martian inland waterways. Lowell's maps showed what 
de Vaucouleurs describes as "a veritable cobweb" of canals (400 in 1900, 
almost 700 by 1909-including parallel "spare" channels) . His books, Mt1?·s 
t1nd Its Ct1nt1ls and Mt1TS t1S the Abode of Life (published in 1906 and 1908, 
respectively), with speculations about irrigation from the polar caps, led 
to a considerable reaction. A popular idea was to attempt to communi
cate with the Martians by digging a canal in the shape of a huge right 
triangle in the Sahara, wireless communication being, of course, impossible 
over such a distance. Most ast ronomers saw the other side of the question. 
"Nobody has ever seen a true artian canal," wrote one eminent observer 
after prolonged study through a powerful instrument. Others compared 
the drawings of different observers made on the same night, referred 
charitably to optical illusion, or suggested that the smaller the telescope, 
the more canals were claimed. 

Photographic advances have resolved some differences by apparently 
resolving some canal -like features, but even photographs are subject to 
interpretation: there are still partisans, pro and con. 



Effect of atm ospheric 
haze, 1956; M t. W i l
so n ph oto g?'a ph s in 
orange li gh t, J u ly 
(to p) an d A u gu st 
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Interestingly, no Martian mountains of Rocky or Himalayan propor
tions have been identified: gradual slopes, modest east-west chains, or 
small prominences could not be .spotted from Earth, and no shadows-the 
tell-tale index of the Moon's mountains- have been resolved. 

The Thin A i r 

Studies of Mars' atmosphere indicate that it probably consists of nit ro
gen, argon, some carbon dioxide, a trace of water vapor, and a spectro
scopically undetectable amount of oxygen (if any). This statement is based 
on well-founded speculation for the nitrogen and argon, and extremely 
skillful spectroscopy for the rest. 

The spectroscope is an instrument used to analyze a beam of light for 
the chemical constituents of the luminous gas in which it originates (such 
as a flame or the Sun) or the partly opaque gas through which it shines 
(such as the atmosphere of Venus or Mars). Its output is a wide photo
graph of the color spectrum laced with a pattern of parallel bright (lumi
nous) or dark (absorption) lines. 

Carbon dioxide was detected first on the planet Venus. Nitrogen lacks 
a strong spectrographic signature of absorption lines in visible light and, 
in addition, Earth's nitrogen-rich air would mask the weaker indications 
from another planet. The same masking problem dogged the hunters for 
oxygen and water vapor on Mars after G. P. Kuiper's subsequent discovery 
of carbon d ' 0 ide on Mars. They calculated that if they shot the spectro
gram when Mars and Earth were moving apart or together at the maxi
mum speed, the doppler effect would shift the indications of Martian 
oxygen and water vapor out from under those of the terrestrial atmos
phere. The latter refinement led at last to the conclusion that water vapor 
was barely in evidence and oxygen was too sparse to detect. Spectral evi
dence that the polar caps were water ice had been obtained in 1948. 

The atmospheric pressure, which corresponds to the weight of the 
atmosphere per unit area at the surface, is a function (given Mars' gravi
tational field) of the total amount and kind of gases making it up. It can 
be measured only by very indirect means from Earth, relat ed to the effects 
of the atmosphere on light. Some of the methods have involved stUdying 
the diffusion of various colors, the polarization, the variation of color across 
the disk, and the brightness of surface spots as they rotate from one limb 
of the disk to another and are seen through different slant thicknesses of 
the Martian air. 

A very recent approach to the question of Martian atmospheric pres
sure, which may provide the most accurate Earth-based estimate, is based 
on the tool used to examine the composition of the atmosphere. The spectral 
absorption lines from the carbon dioxide on Mars are broadened or smeared, 
according to the theory, as a function of the gas pressure. Comparison 
with carbon dioxide spectra obtained at various pressures in the laboratory 
gives, after much analysis, the pressure value. Kaplan, Munch, and Spinrad, 
who applied this method to Mars, produced a value of 25 millibars, with an 
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uncertainty of 15 millibars. Subsequent refinement raised this value slightly. 
Earth's standard sea-level pressure is just over 1013 millibars. Values esti
mated by other methods, with much greater uncertainties, yield a possible 
range from 200 millibars down to about 14 (corresponding to the pressure 
4% to 18 miles above Earth's surface) . 

With Mars' smaller gravitational field, the atmosphere is not hugged 
close to the planet's surface as is Earth's. Yellow clouds, presumed to be 
fine dust swept up off the deserts, are frequently observed at altitudes from 
3 to 6 miles, and occasionally much higher. The clouds have been observed 
to move as fast as 85 miles per hour, though more often in the 20- to 30-
mile-per-hour range. Wind velocities necessary to pick up the dust may 
range as high as 125 miles per hour at 300 feet altitude. 

1973 opposition 
40.4 million miles 

Mars orbit: 687 days, 142. mil~i on miles, ~ 
e = 0.093, Inclination 1 51 . . 

1969 opposition 
4.5 million miles 

Earth orbit : 3651f. days, 
93 million miles, e = 0.016. 

Mars receives from 36 0/0 
to 52 0/0 as much solar 
radiation as Earth does. 
Its equatorial plane is 24·25 ' 
from its orb ital plane 
(231f2' f or Earth). 

(afte r 51 ipher) 

301/3 hours 

Phobos 

Deim os 

1967 opposition 
55.8 million miles 

____ 14.600 miles 

5800 miles 
2100 miles 





L eft: Space simulator test preparation 

TWO YEARS TO MAKE READY 

When the Mariner Mars 1964 Project was authorized by the National 
Aeronautics and Space Administration in late 1962, it was recognized as 
an assignment somewhere between difficult and impossible. However, such 
tasks a re characteristic of most aspects of space exploration in its present 
dawn age. The distances, forces, and hazards of interplanetary space are 
huge; though our knowledge and technical skill are growing rapidly, the 
unknown aspects remain extensive. 

Mariner's Venus 1962 mission, then just successfully concluding, gave 
encouragement and contributed vital knowledge and experience to the Mars 
mission, but the scale of the problem was larger in a ll aspects. It was to 
the successful Mariner Venu team that the new problem was presented. 

Mariner' s Pedigree 

The Mariner Mars system would be the first of its kind, but not the first 
of its family. The dynasty was founded in late 1958 and 1959, when NASA 
and JPL worked out a linked series of unmanned lunar and planetary 
missions which would advance the technology of space exploration while 
accumulating basic and practical knowledge about the Moon, t he planets, 
and the solar system. 

A three-stage launch-vehicle system would have been needed, but the 
development of restartable second-stage rockets (which in effect made two 
stages out of one) made this unnecessary. Atlas/ Agena was to be the launch 
vehicle for Ranger, the first lunar member of the series; early Mariner 
planetary and the Surveyor lunar spacecraft developments were first asso
ciated with Atlas/Centaur, a higher-performance system then being de
signed. Subsequent schedule changes, together with advancements in Agena 
and spacecraft technology, necessitated and made possible the quick devel
opment of an Atlas/ Agena-boosted, lightweight planetary spacecraft and 
its successful use in the Mariner II mission to Venus. 

Now the same switch was suggested for the Mars mission : marry the 
best elements of the Ranger-Mariner II- Atlas/ Agena system with the 
heavy Mars-spacecraft development and launch a Mars mission in 1964. 
There were less than 2 years to do the job, and a rigid deadline was 
imposed by the Mars launch opportunity. The Venus mission had been 
developed in less than a year. It could be done-just barely. 

On a Larger Scale 

The energy required to ship a pound of payload to Mars in 1964/65 is 
actually a little less than that which was needed to send it to Venus in 1962. 
The slightly lower energy requirement, however, turned out to be just about 
the only aspect of Mariner Mars that wasn't twice or three times as diffi
cult as the earlier mission. 

Ma?'iner II 

Ma?'iner IV 
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Consider service life, for example. New cars are guaranteed for years 
or tens of thousands of miles, if serviced regularly. TV sets are guaran
teed for a year (except the tubes) . A fine watch is guaranteed practically 
forever-just send it back to the factory. However, you cannot send a 
spacecraft back to the factory, or adj ust the valves, or check the tubes, 
when it's 100 million miles out in space, and sti ll going. 

Mariner II had had to operate for about 2500 hours on its flight to 
Venus; Mariner IV had to be designed for 6000 to 7000 hours of flight life, 
on the way to Mars, at the planet, and beyond. 

Then there was electrical power. Mariner Mars would need only a little 
- less than 200 watts - but it must come from sunlight, whose power 
decreases as you go away from the Sun. Mariner II had one solar panel 
partly disabled en route to Venus but drew nearly as much power from the 
undamaged one at Venus as it had received from both panels near Earth. 
Going out from Earth to Mars, the solar power decreases instead of in
creasing. Mariner Mars must have more than twice the solar-panel area 
of its predecessor-70 square feet as against 27. 

Considering the environment through which the spacecraft must travel, 
we again see a sharp difference from any mission attempted before. Mariner 
II flew toward the Sun, braving increasing solar radiation , which helped 
with t he power problem but aggravated the temperature-control problem. 
Mariner II had become hotter and hotter on the way to Venus; Mariner 
Mars would grow colder on its journey. 

In addition to the increased flight time and the change of direction, 
another inevitable dimension put a strain on the Mariner Mars mission: 
sheer distance. At Mariner II's maximum 54 million miles, radio waves 

In outdOOT test (wi thin p1'otective plastic tent), so lar panels dTaw poweT fTorn Sun t o 
ope1'ate PToof- tes t-model spacecTaft 
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Prepa1'ations on an tenna ran ge f or m apping actual characte1'is tics of Mariner's two 
?'adio an tennas 

took nearly 5 minutes to come back to Earth; communication with the Mars 
spacecraft would be delayed about three times as long, More important, the 
communications system would have to be better, , , nine times better, since 
radio strength decreases as the square of increasing distance, Both the 
ground and flight units would have to be improved, 
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Beyond Mars, where one might expect to find another planet, is the 
asteroid belt, consisting of thousands of planetoids in independent solar 
orbits. Accordingly, astronomers believed that the meteoritic intensity 
might be expected to increase in the direction of this belt. In addition, the 
Mars path lay across several "cometary" meteor streams. Mariner might 
be expected, then, to run into more space dust than had previously been 
experienced. Mariner II's detector had recorded only two impac::ts in its 
3-month flight. Since the total area of the spacecraft is about 200 times 
that of the small dust detectors, the detectors record only a fraction of the 
particles actually hitting the vehicle. 

The Weight Watchers 

Mariner's planners early decided they would need more spacecraft 
weight than the 450 pounds that the Atlas! Agena B vehicle had launched 
to Venus in 1962. A new version of the second stage of the launch vehicle, 
Agena D, basically a collection of improvements from better propellant 
utilization to lightweight materials, gave an 80-pound weight bonus for 
the spacecraft. The energy difference between Venus 1962 and Mars 1964 
contributed 40-odd pounds. Thus, the spacecraft could weigh about 575 
pounds ; something could be done with that. 

Initial checkout of octagonal structu~·e 

1 



High·gain antenna 

Solar panel (about 21 Ib each), 7056 solar cells 
per panel. 

) 

Magnetometer (11/3 Ib) 

Low·gain antenna 

Ionization chamber (2"h Ib) 

Thermal control louvers (six sets, 11 pairs of 
louvers per set, about 2 Ib per set) 

Propulsion sUbsystem (51 Ib), 50.7-lb.thr~J ~. 
monopropellant hydrazine engine capable of f) , ).11 
two separate thrust periods II £lII 

--:::::::::==~:::;;:;;:==~~ 

Data encoder and command subsystem (41 
Ib), 9800 electronic components, 
transistors, diodes, capacitors, etc. 

Scientific equipment (plasma probe, cosmic · 
ray telescope , TV and scan platform elec· 
tronics) and science data automation, 48 Ib 

J 

I , . ( . ; 

P 

I~~~~;:~;;=".;~~~;===J Tape recorder and radio equipment (62 Ib). 
Radio receiver, transponder. and two transmit· 
ter amplifiers contain 1247 electronic parts 
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Prepar ation f or test firing of midcou1"Se motor in 25-fo ot space simu lator 

Question: How do you increase the scientific experiments, more than 
double the solar power, get nine times as much radio power, and guarantee 
a flight time two-and-a-half times as long, all within a mere 575 pounds? 
Answer: Get tough with the design. 

For example, the bones of birds and the I-beams of girders indicate that 
nature and man have found ways to get more strength for less structural 
weight. Mariner's structural designers went further; they nearly eliminated 
the skeletal structure. Mariner's forebears were built around a hexagonal 
skeleton belted with electronic-equipment packages and crowned with a 
tower. For Mariner Mars the packages became the structural foundation, 
the tower a slim waveguide. 

Eight shallow trays, deriving part of their strength from their close
packed contents, were joined in a ring; electrical cables were contained in 
two smaller concentric rings. A thermal shield was spread across the "top" 
and "bottom" of the larger ring. The fixed elliptical-dish antenna, solar-panel 
dampers, and the waveguide, which ended in a small omnidirectional low
gain antenna, were mounted topside; the Canopus sensor and planetary 
scanners were on the shady-side deck. Between decks, the att itude-control 
gas bottles and the fuel tank for the deep-space rocket motor (mounted in 
a shear plate replacing one unit of the octagonal ring) were stowed. The 
spacecraft battery, too big for a shallow tray, also protruded into the space 
between the decks. 

Mariner's four solar panels were conventional in appearance, but radical 
in const ruction. Corrugation-stiffened sheet-metal floor structures were 
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supported by stamped-aluminum-sheet-metal spars about the gauge of 
kitchen aluminum foil. The panel structures weighed less than 1/ 2 pound 
per square foot. 

Keeping Cool and Keeping Warm 

An object in space will be warmed by the rays of the Sun, alld cooled 
by its own radiation to the black sky around it, at a rate dependent on its 
temperature. It will thus eventually stabilize at a temperature primarily 
dependent on its distance from the Sun: near Earth it would be about 
125°F warmer than at Mars' distance. Its sunlit side, if it is not rotating, 
might be several hundred degrees hotter than the shady side. 

Mariner couldn't tolerate such conditions. Its electronic components have 
certain temperature limits within which they will operate properly, even 
as we humans do. Their temperatures must be controlled. 

The isolation and vacuum of outer space rule out contact conduction and 
convection; the only controllable heat-transfer factor affecting the space
craft is surface radiation. The surfaces, then, must be controlled. If painted 
black, they will radiate or absorb; if polished like mirrors, they will reflect 
and neither absorb nor radiate. 

Explorer, the very first United States spacecraft, had been painted with 
black and white stripes, the area of white stripes (reflecting surface) cal
culated to maintain the necessar y temperature in Earth orbit. A more 
advanced development, a heat blanket of layers of very thin aluminized
Mylar plastic, gave .Mariner Mars good, yet lightweight, insulation coverage. 

A sophisticated thermal-control device, a set of polished aluminum shut
ters which could open to expose a radiat ing surface beneath, was tested 
on one compartment of Mariner IT in its fligh t to Venus. The shutters 
are activated by bimetallic strips, like inexpensive dial thermometers or 
the thermostat in an electric blanket. As the temperature rises, the strip 
uncoi ls, the shutters open, and heat radiates away to space. Then, as the com~ 
partment cools, the strip coils up again, closing the shutters to conserve heat. 

Thermal-control louvers of this type were designed for six of Mariner's 
electronics trays; they would keep the temperature inside between 55 and 
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85 °F. An aluminized-Mylar shield would protect the sunny upper deck 
and the shady lower deck; the upper blanket was surfaced with black 
Dacron. The backs of the solar panels, which absorb a great deal of solar 
heat in the process of tapping the Sun for photoelectric power, were black
ened to re-radiate heat and keep the solar cells within their operating range 
of 10 to 130 °F. Most other exposed metallic surfaces were polished; exposed 
cables were wrapped with fiberglass or aluminized-Mylar tape. The fixed 
high-gain antenna dish was painted green: it would cool from its upper 
operating limit near Earth to about room temperature at Mars. 

Put Them All Together 

Some philosopher has remarked that you can't get from "1 + I" to "2" 
just by understanding the "1." Systems engineering might be likened to 
the "+" sign. It started with a job to be done. Each of the Systems of the 
Mariner Mars 1964 Project (Launch Vehicle, Spacecraft, Deep Space Net, 
and Space Flight Operations) was divided into subsystems or units. 

In the case of the Mariner Mars spacecraft, the functional units are: 
structure, radio, command, telemetry, central computer and sequencer, 
power, attitude control, pyrotechnic-actuator control, thermal control, 
cabling, and postinjection propulsion; these make up what is often called 
the spacecraft "bus." The scientific-experiment "passenger" units are 
science data automation, planetary scan system, television and its recorder, 
and six interplanetary-environment instruments : magnetometer, plasma 
probe, ionization chamber, trapped-radiation and cosmic-dust detectors, and 
cosmic-ray telescope. 

PROPULSION 

GAS JETS 

SCIENCE DATA 
AUTOMATION 

STRUCTURE, CABLES, 
AND 

PACKAGING 

TEMPERATURE 
CONTROL 

All in all, nearly 140,000 parts were carefully screened and put together, 
inspected, subsystem-tested and system-tested, and re-tested. All members 
of the Mariner team labored long and hard in the development and fabri
cation of the components and the assemblies they constitute; Mariner IV is 
the sum of these parts. 

I 

J 
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System test 

Outer Space on Earth 

Though space exploration serves experimental science, it is not itself 
purely experimental; this is evidenced by the distaste with which spacecraft 
developers brush off such labels as "cut and t ry," "file to fit," "shoot and 
hope." With the exception of extremely long missions such as Mariner IV, 
most space projects live nine lives on the test bench before they are 
allowed one life in flight: the emphasis is on performance as predicted from 
test experience. 

Mariner Mars' development schedule allowed less than 1000 hours for 
testing each flight article for a 6000-hour mission-a tight schedule for a 
large and exacting job. 

A Mariner Mars temperature-control model-a full-scale spacecraft 
duplicating the heat-generating and heat-transferring properties designed 
into the flight articles-was built and tested as long as possible in JPL's 
25-foot space simulator, which was equipped to approximate the black, cold 
vacuum of space and the blazing radiance of the Sun. Correction factors 
learned from the flight of Mariner Venus had been engineered into this test 
device to achieve the best possible Earth-surface reproduction of space 
conditions. 

I ' Before the flight spacecraft were built, a prototype or proof-test model 
was put together. Serving as a final test bed in subsystem development, 
as well as the initial system-test vehicle, this spacecraft was at one end 
of the development loop: modifications found necessary in proof testing 
were themselves retested on the same craft. At the end of the design evolu
tion and after 1100 hours of system test, the proof-test model had evolved 
into a functional duplicate of the fli ght spacecraft; they, in turn, were 
spared the rigors of prolonged design evaluation by t he existence of 
the test spacecraft which could never fly a mission. The proof-test space
craft was also used for inter-system testing, verifying compatibility of the 
spacecraft with ground equipment. It then supported both flight missions 
by simulating observed flight situations so that they could be studied at 
close range. 



MARINER LEAVES PORT 

Three Mariner Mars spacecraft began the journey to the planet Mars 
from a canyon north of Pasadena, California, at the Jet Propulsion Labora
tory, where they had been designed, assembled, and tested for months. Two 
of the three would fly; the third was a spare. They were partly disassem
bled, carefully packed, and loaded on moving vans. On September 11, 1964, 
after a four-day journey, the last van reached the Air Force Eastern Test 
Range, Cape Kennedy, Florida. 

Here each spacecraft was carefully inspected and retested. There were 
spare parts for the individual plug-in units of the Mariner spacecraft. The 
calendar and the high quality standards would allow no tinkering or repair 
in the conventional sense: replacement of modules, if necessary, should 
solve faulty-parts problems. 

At the Cape, two 100-foot-high Atlas/ Agena D rockets were waiting, 
each standing in its own launch complex. The engineers could select either 
one for the first launch, and could launch the two missions as close as 2 
days apart if desired. 
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Spacecraft and launch vehicles were given separate system te'sts, assur
ing that each would function in every phase of its role in the mission. 
The mechanical, electrical, and radio compatibility of spacecraft, vehicle, 
ground equipment, and tracking system were tested. Finally, at the begin
ning of November, the Mariner III spacecraft and launch vehicle stood on 
the pad, going through a dress rehearsal. The actual Mars launch period 
opened on ovember 4 and lasted for only about a month. 

Interplanetary Navigation 

Unlike a conventional aircraft, a spacecraft spends most of its time 
fa ll ing. The first few minutes of the flight, and then, a day or a week later, 
a few more seconds, are all the powered flight it ever has. Accordingly, its 
captain must plot his course before the ship leaves port; this process is 
more gunnery than navigation. 

Every planet of the Sun travels an ellipse, a closed curve which resem
bles a circle stretched out in one dimension. The Sun is at one focus of the 
ellipse, not at the geometric center. As the planet comes closer to the Sun, 
it speeds up; as it goes outward, it slows. 
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Nose fairing: 13 ft high, 5'12 ft diameter. 
Weight about 350 lb. 574·lb spacecraft inside .. 

Agena 0 stage (Lockheed single 16,000.lb. 
thrust, hydra~ine/nitric ac i Bell engine. Stage 
is 23 ft high, 5 ft in dia eter, weighs about 
15,300 Ib when fuelled. 

~ 
I-

II 
(- il·-

Atlas 0 main st ge (Ge era I 0 namics): single 
57,000· lb·thrust Rocke yne s stainer engine, 
two 500·lb ver ier en nes, I burning Rp·j 
(kerosene) and iquid xygen. Stage is 67 ft 
high, 10 ft in di meter weigh ~bout 130 tons 
fully fuelled. 
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An interplanetary spacecraft is as subject to these laws as are the 
planets. It must be given the correct velocity-speed and direction-so 
that it will arrive at the intersection of its orbit with that of the planet 
just as the planet gets there. Most of the necessary velocity can be picked 
up from Earth-which orbits the Sun at an average of 66,600 miles per 
hour-but the rest must be provided by the booster vehicles. 

The velocity required to reach Mars is lowest, and within reach of 
present-day rocket power, when the Earth launch and the Mars arrival 
occur almost on opposite sides of the Sun, Such conditions prevail only for 
a few weeks every 25 months, limiting the practicable launch periods to 
those times, The absolute minimum velocity would be needed when the 
injection point, the Sun, and the arrival point form a straight line but, 
because of the tilt of Mars' orbit plane relative to Earth's, this coincidence 
hardly ever happens. 

Near Earth, the entry point of the Earth-to-Mars ellipse is relatively 
fixed in space. Since the Earth turns under this point, it is within the safe 
firing angle from Cape Kennedy (24 degrees south from due East) for 
only a few hours per day; as the injection point sweeps from East to West, 
the rocket must be guided to meet it. Using the Atlas/ Agena D, the tech
nique is to launch into Earth orbit, coast until the injection zone is almost 
reached, and then restart the Agena to transfer from Earth orbit to solar 
orbit. 

Several thousand Mariner Mars trajectories were calculated, accom
modating the changing relationship of the planets day by day, and the 
changing angles near Earth from minute to minute. They took into account 
not only Earth, Sun, and Mars, but the perturbing effects of the Moon and 
the planet Jupiter, and the pressure of light from the Sun. The latter would, 
over the course of the flight to Mars, push Mariner about 10,000 miles 
away from the Sun. 

Left: President Johnson inspects Mariner prelaunch operations. Right: Inside the block
house at launch 
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Nine Hours 

Mariner III was launched toward Mars about midday on November 5. 
Minor launch vehicle difficulties encountered on the first day's countdown 
had been solved to the engineers' satisfaction; the prelaunch countdown 
was normal ; the weather was good. The tall , snub-nosed space vehicle rose 
from Launch Complex 13 with an air of confidence. 

Nevertheless, within minutes the mission was doomed, though it took 
nearly 9 hours for it to die. The cylindrical fiberglass-honeycomb nose 
fairing, or shield, designed to protect the spacecraft during the smashing 
thrust up through the atmosphere and then to be jettisoned, failed during 
the climb through the air. When the time came, it could not be ejected. 

Early indications of trouble came at the end of powered flight. Because 
of the dead weight of the nose fairing, the velocity was too low. The 
spacecraft would not reach its target. 

About 51h minutes later, after spacecraft and Agena had separated, the 
spacecraft unsuccessfully attempted to deploy its solar panels. Without 
solar panels, there was no solar power. Studying the telemetry from 
Mariner, building up piece by piece a picture of the trouble, and conduct
ing failure-mode tests on the proof-test spacecraft, the operations teams 
commanded Mariner III to conserve power by switching off the scientific 
equipment, repeatedly commanded panel deployment, and were in the 
process of igniting the spacecraft rocket motor in an attempt to remove 
the nose shield by force when, 8 hours 43 minutes after launch, the space
craft battery ran out of power. 

Mariner's team wasted no time. The problem was identified, studied, 
and solved. A quick, thorough test program detailed and verified the condi
tions which had caused the failure. Experiments were conducted with 
fibergla~s nose shields, and a newall-metal shield was designed, developed, 
and built in record time by the Launch Vehicle team. A little over 3 
weeks after the launch of Mariner III, another Mariner/ Atlas/ Agena 
stood ready on the pad, with the new metal nose shield installed. 

Mariner IV: A Good Sendoff 

On November 27, the first countdown of the new Mariner was inter
rupted by radio difficulties. On Saturday, November 28, at 1 :37 in the 
morning, EST, the launch countdown began for the Atlas and Agena; the 
spacecraft was activated at 4 :32 a.m. Launch operations crews went 
through the long list, establishing and checking communications, forecast
ing the flight weather, monitoring spacecraft and launch vehicle condition, 
filling the Agena oxidizer tank, and switching equipment into a state of 
readiness. At 9 :22 a.m. EST, the clock had counted to zero without a hitch; 
the report was "clear to launch." Liftoff occurred 1.309 seconds later. 

As it rose, the space vehicle rolled to an azimuth of 91.4 degrees, just 
South of due East, and began to pitch over from its vertical ascent. Shed
ding its two massive booster engines, Atlas carried on with the single sus
tainer . . A ground computer fed guidance commands to the vehicle until 
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the sustainer engine was shut down and the velocity properly ad justed with 
two small rocket eng ines. Then the huge, empty Atlas was detached and 
Agena took over. Before the Agena engine was started, the aerodynamic 
nose cover had to be jettisoned. This time, it came off easily. 

Agena's 16,000-pound-thrust engine couldn't lift the weight of the 
Agena vehicle and t he encapsulated Mariner spacecraft if they were on 
the ground. But starting at an altitude of 100 nautical miles and a velocity 
of 13,000 miles per hour, it could and did thrust Mariner to orbital velocity, 
about 17,500 miles per hour. The Agena engine then shut off, and the 
vehicle coasted for a lmost 41 minutes. Swinging around Earth to bear on 
its target, Agena flamed into action again. When the big engine shut down 
for good, the spacecraft was traveling at 25,598 miles per hour along a 
path that led within 150,000 miles of Mars. The application of one-fifth 
of the spacecraft on-board propulsion power would bring that path within 
the desired target zone, between 4000 and 8000 miles above the planet's 
surface. 

Launch operations were described as nominal: it was a good shot. 

TO MARS 

A minute and a half after entering the path to Mars, Mariner and Agena 
passed into Earth's shadow for a period of almost 12 minutes. There, in 
the dark, spacecraft and Agena separated. A 3-minute timer was started, 
and, simultaneously, t he spacecraft radio power was switched up and the 
interplanetary scientific instruments were turned on. When the 3-minute 
timer ran out, electric current was applied across the solar-panel pin-puller 
squibs. 

A squib is a small, electrically fired explosive charge attached to 
a cylindero-piston arrangement, enabling a one-stroke internal-combustion 
engine to open or close a bolt or valve. These mechanisms would be used 
later to turn the propulsion system on and off and to release the scanning 
platform carrying the TV camera. Eight pairs of squibs (they are usually 
mounted in pairs for increased reliability) were mounted on the spider
like legs which held up and steadied the four solar panels during launch. 
Now they fired, pulling the pins and releasing the panels. 

Opening for Business 

Under spring tension, the panels hinged away to the deployed position. 
At the end of each opening panel, a silver fan unfolded and spread. These 
fans are solar pressure vanes, a new attitude-control trim device in a first 
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flight test; they were designed to balance the spacecraft against the endless 
pressure of sunlight, saving attitude-control-jet gas and permitting a longer 
stable flight. 

Now the spacecraft came back into the sunlight, and, the attitude
control system having already been switched into a Sun-seeking operation 
by the central computer and sequencer, Mariner turned toward the Sun. 

Usually called CC&S, a central computer and sequencer serves as com
bination brain and alarm clock for the Ranger-Mariner family. It provides 
the master synchronization for spacecraft operations, the rhythm for telem
etry transmission and command interpretation, and a number of set com
mands (such as Sun search, star search, and midcourse maneuver), and 
conducts complex maneuvers in accordance with instructions sent from 
Earth. 

Searching for the Sun consists of placing the pitch and yaw control 
systems under the command of the Sun sensors. The spacecraft is treated 
as though it were a ship or aircraft traveling in the direction in which the 
solar panels face: yawing moves the prow or nose to the left or right, pitch
ing moves it up or down, and rolling spins the ship around. Mariner left 
this mode of travel behind with the launch vehicle, and normally moves 
almost at right angles to the "nose" direction, but the names stuck. In 
Mariner's cruise mode, pitching or yawing means rotating around one or 
the other pair of solar panels, and rolling means turning like a propeller. 

ROll 

PITCH 

TOWARD 
MARS 
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There are Sun sensors on Mariner's upper and lower decks; their output 
signals drive control-amplifier chains, which use puffs of nitrogen gas from 
paired jets on the tips of the solar panels to turn the spacecraft until the 
panels face the Sun, and to stop it in that position. This process took 
12 minutes. 

Now Mariner's 28,224 solar cells were converting sunlight into 700 
watts of raw electrical power, which, in turn, was converted to various 
forms to run the spacecraft and recharge the battery. At Mars' distance 
from the Sun, the spacecraft would still generate 300 watts, leaving a good 
margin in case of solar cell damage in the space environment. 

Like a big jewelled windmill, the spacecraft rolled slowly through space 
for the next 15 hours; the known roll rate was used to calibrate the 
magnetometer, one of the interplanetary sensors, so that the spacecraft's 
own magnetic field could be subtracted from the magnetometer readings. 

S tar Lock 

Imagine a weight suspended from a single long cord: it spins and spins. 
A second cord, approximately at right angles, will steady it in a moment. A 
line of sight on the star Canopus, second brightest in the sky, and located 
near the ecliptic south pole, was to be Mariner's second stabilizing cord. 

Mariner Mars was the first space mission using or needing a star as a 
reference object; earlier missions, remaining near Earth or traveling 
to Venus, had sighted on the home planet. But during this flight, Earth 
would transit across the face of the Sun, and through much of the flight 
it would appear as a relatively dim crescent. A bright reference source, 
at a wide angle away from the Sun, was necessary. Canopus filled the 
requirements for such a reference source. Mariner's Canopus sensor is 
mounted on the shady side of the spacecraft ring, pointing outward at an 
angle, so that its field of view covers an area in the shape of a shallow 
cone. 

An electronic "logic" in the attitude-control system was set to respond 
to any object more than one-eighth as bright as Canopus. Including 
Canopus, there were eight such objects visible to the sensor as Mariner 
swung around in the search mode; it was no surprise when the system 
acquired one of the other seven. The engineers had prepared brightness 
charts, corresponding to star maps of the ribbon of sky the star tracker 
would inspect, and the stars were recognized as they came around. It took 
more than a day of star-hopping to find Canopus. 

Change of Course 

A lunar or planetary mission has too great a range and too small a 
target to be accurately guided from the brief initial powered fl ight. Thrust 
must be applied later, in what has come to be called the "midcourse cor
rection" maneuver- a double misnomer, in that it occurs earlier than the 
midpoint of the flight, and, rather than correcting a mistake, increases the 
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MARKAB 

EARTH 

CAN OPUS 

Star b?'ightness graph in ci?'culaT f orm, with spacecTaft locked on Ganopus; predicted 
b?'ightness indicated by distance in fTom ci?'l;-umference 

possible accuracy. All members of the Ranger-Mariner family used essen
tially the same type of small rocket engine to apply this thrust. Mariner 
IV's propulsion system was modified so that it could be used twice if neces
sary, and its thrust was calibrated so accurately that the resulting change 
of velocity could be metered by the burning time alone. 

After about a week of tracking to determine the flight path and Mars 
arrival time, the thrust maneuver was scheduled for December 4. All 
the necessary ground commands had been received by the spacecraft, when 
it suddenly "lost lock" with Canopus. Though Sun lock was not disturbed, 
the spacecraft had no roll reference from which to orient its rocket motor, 
and the maneuver had to be postponed by ground command until Canopus 
lock could be regained. 

Next day, the thrust maneuver was successfully carried out. Three 
quantitative commands from Earth had the CC&S store in its electronic 
memory the dimensions of the required maneuver, which were a negative 
pitch turn of 39.16 degrees, a positive roll turn of 156.08 degrees, and a 
thrusting time of 20.07 seconds. Then three direct commands told the MidcouTse motor 
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Flight-path analysts calculate t?·ajec to1·y and midcourse maneuve1·. 

spacecraft to cock the system, take off the electrical safety catch, and 
ignite the engine. Since the motor was initially pointed almost along the 
direction of flight, the turns aimed it back in the general direction of Earth 
but high above the plane of the orbit. The pitch and roll were performed 
with better than 1 per cent accuracy, the velocity change with about 2112 
per cent accuracy. As planned, the angle of flight was changed less than 
14, degree, and the velocity was increased a little more than 37 miles per 
hour. Mariner was headed straight for its target, which was 7 months 
and 300,000,000 miles ahead. 

PITCH MANEUVER 

ROll MANEUVER 

MOTOR BURN 

REACQUISITION 

--
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The Routine of Space 

During the long cruise to Mars, it was housework and homework for 
Mariner. The housework consisted of many routine tasks, programmed in 
the CC&S and supplemented with a few ground-commanded operations, 
designed to maintain the spacecraft in condition to carry out its mission 
at the planet. The homework consisted of a constant examination of space
craft condition and performance and the space environment through 
which it was passing, and the reporting of these measurements to Earth, 
where they were correlated and studied. 

The CC&S, which was counting the time until a number of Mars
encounter operations should be ordered, sent counting pulses back to Earth 
about every 2%. days, permitting the operators to check the clock opera
tion. As the spacecraft moved around the Sun, Canopus tended to drift 
sideways out of the field of the star tracker, and on four occasions the 
CC&S adjusted the angle of the tracker. 

The attitude-control system kept Mariner's roll axis pointed within 1,4 
degree of the Sun, using puffs of nitrogen gas from jets on the solar-panel 
tips each time the attitude reached the prescribed limit. The fan-shaped 
solar vanes on the ends of the panels were automatically adjusted to help 
maintain Mariner's balance against solar pressure. Similarly, the space
craft was stabilized in the roll direction on the star Can opus, after some 
initial light~sensing difficulties. The disturbance of December 4 was re
peated, probably because tiny dust particles, brightly lit by the Sun, mov
ing with the spacecraft drifted in front of the tracker the total image 
appeared too bright to be Canopus, and the control system turned on the 
gyros to roll Mariner in search of the correct brightness. After several 

Fo?' the fi?'st 2% months of fi,ight , 
TV optics (lower center, point
ing ?'ight) and planet sensors 
we1'e protected by a metal cover 
(shown hinged to lef t and down) ; 
on Feb?"Ua?'Y 11 , the cover was 
tmlocked and piv oted open by 
command from Earth. 



Mariner's fi x ed high-gain an
tenna cove1's a long, nan'ow r e
gion of space, pointed abou t 38 
degrees forw ard from the Stm 
di1'ection ; Earth was within this 
r egion for the last 7 months of 
the m1·ssion. 

days, the spacecraft was commanded to ignore excessive brightness, and 
the trouble ceased. 

The radio subsystem provides Mariner's tenuous link with Earth. 
Broadcasting continuously at 2300 megacycles with about 10 watts of 
power, the radio carries scientific measurements, data on the condition 
of the instruments, and some 90 meter reading on the spacecraft per
formance and status. The measurements are coded digitally, after the 
manner of teletype or Morse, rather than in analog form as used by com
mercial radio and TV and the Ranger spacecraft, and are imposed on the 
radio signal by a technique called phase-shift-keyed modulation. 

On December 13, the radio was switched from a cavity power amplifier 
to the longer-life, slightly more powerful traveling-wave tube. The rate 
at which telemetry was transmitted was lowed from 33% bits per second, 
or one readout every 12 lj:l seconds for the most frequently sampled meas
urements, to 8% bits, or one readout every 50 seconds, on January 3. 
Most of the measurements were sampled much less often: every 500, every 
5,000, or even every 10,000 seconds. Scientific measurements occupy two 
thirds of the transmission time, except during certain maneuvers, when 
they are turned off, or on special occasions, like Mars encounter, when 
they take over the whole transmission. On March 5, the radio was trans
ferred by on-board command from the omnidirectional broadcast antenna 
to the fixed narrow-beam parabolic dish. The range had lengthened to 6 
million miles, and Earth had entered the beam of the antenna, where it 
would remain until well after the spacecraft had passed Mars. 

ENCOUNTER 

JULY 15, 1965 

MARINER IV 

ANTENNA SWITCHOVER MAR. 5, 1965 

TELEMETRY RATE CHANGE 

LAUNCH 

NOV. 28, 1964 

OCT. 1, 1965 
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THE INTERPLANETARY PULSE 

Mariner's voyage to Mars involved an extended presence in the en
vironment-meaning the magnetic fields, solar and cosmic radiation, and 
whatever matter or particles were there- of the solar system. Study of 
this environment during the earlier mission of Mariner II to Venus had 
provided understandings to the benefit of the Mariner Mars project, as 
well as adding to scientific knowledge of the ~un and its surroundings. 
Six instruments to observe and measure these fields and particles were 
accordingly flown on Mariner IV. 

SiJC S ensors 

The solar-plasma probe was designed to measure the charged particles 
making up the solar wind, a hot ionized gas streaming out at hypersonic 
velocity from the corona of the Sun. Electrons, protons, and alpha particles 
(helium nuclei) are detected in 32 energy bands ranging from 30 to 10,000 
electron volts. The energy of the stream varies continuously, solar surface 
disturbances giving rise to plasma storms. Unfortunately the failure of a 
resistor in the instrument's circuitry 8 days after launch rendered its data 
exceedingly difficult to interpret. Reduction of the data transmission rate 
returned a number of readings to intelligibility, but a progressive decline 
was observed. Partial calibrations during the flight gave hope that much 
more information might be salvaged from the data. 
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N ext in energy range among the charged-particle or radiation detectors 
is the trapped-radiation detector, designed to measure the Van Allen belts 
of Earth, similar formations around Mars, and related phenomena in 
space. Four detectors with acceptance angles of 60 degrees, three pointed 
70 degrees and one 135 degrees away from the Sun, detect electrons above 
40,000 and 150,000 electron volts and protons above % million, above 3.1 
million, from % to 11 million, and from 0.8 to 4.0 million electron volts. 

The ionization chamber and Geiger-Mueller tube measured the ioniza~ 
tion caused by charged particles, and the number of particles, in the range 
above 112 million electron volts for electrons and 10 million electron volts 
for protons. The Geiger tube was saturated, possibly by the solar flare of 
February 5, and fai led on March 3; the companion ionization chamber 
failed, probably as a consequence, shortly afterwards. 

The cosmic-ray telescope is mounted on the shadowed side of the space
craft and has a 40-degree field of vi~w . It detects protons in three ranges 
from 0.8 to 190 million electron volts, and alpha particles in three ranges 
from 2 to far more than 320 million electron volts. 

Mariner's helium magnetometer has a sensitivity of 0.5 gammas and 
a dynamic range of ± 360 gammas along each of three axes. (At Earth's 
surface, the magnetic field is about 50,000 gammas.) It is mounted high 
on the spacecraft's low-gain antenna boom to minimize the effect of space
craft fields, which were calibrated early in the mission. 

The cosmic-dust detector consists of an aluminum plate perpendicular 
to the spacecraft velocity vector. Two surface penetration detectors (on 
either face) and a microphone attached to the plate indicate the momen
tum of each hit (greater than 0.00006 dyne-sec), the direction, and the 
number of hits. 

Near Earth 

During the first 2 days of the mission, Mariner IV passed through the 
region of space influenced by the Earth: the Van Allen belts, the attenu
ating magnetic field which holds them together, and the interface between 
solar plasma and geomagnetic field which is their source. The layers of the 
candle-flame-shaped interaction between Earth and Sun were pierced and 
measured in turn, leaving their traces in the data of the magnetometer , 
plasma probe, trapped-radiation detector, and ionization chamber, and 
cosmic-ray telescope. 

Two months later Mariner again passed through what was expected to 
be a zone influenced by Earth, when at a range of about 12% million miles 
it came close to opposition-directly behind the Earth as seen from the 
Sun. Any magnetic-plasma disturbance here, corresponding to Earth's 
"wake" in the interplanetary sea, was too faint to detect. 

Between Planets 

From Earth to Mars, Mariner IV indicated the impact of about 200 
micrometeorites, compared with two impacts noted between Earth and 
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Venus in 1962. The pattern was generally one of irregular increase going 
toward Mars, with a falling off as the orbit of Mars was approached, sug
gesting that each planet sweeps a relatively dust-free path for itself as it 
travels around the Sun, and that-over the region from Venus to Mars 
at least-the particles become fewer as one nears the Sun. No well-defined 
dust streams were identified, though encounter with a few cometary~orbit 
streams associated with shooting-star events had been predicted. 

Mariner made its journey during the period of the "quiet sun": the 
minimum-activity portion of the ll-year solar cycle. Nevertheless, en route 
to Mars, it detected the effects of solar flares in February, April, May, 
and June. These were evidenced as magnetic disturbances (caused by the 
passage of charged particles), as increases in the flow of the particles 
themselves at various energy ranges, and even as indications from the 
cosmic-ray telescope, which points away from the Sun but apparently 
detected solar particles scattered or reflected by disturbances in the inter
planetary magnetic field. A number of these flares were observed optically 
in the Sun's atmosphere from Earth. 

Experiment Data 

Description 

TV subsystem : up to 21 pictures of Martian surface 

Helium magnetometer: planetary and interplanetary 
magnetic fields 

Solar·plasma probe: quantity rate and energy of 
pJsi tive ion Hwind" 

lonization·chamber /particle·flux detector : 
corpuscular·radiation "dose rate" 

Trapped·radiation detector: low·energy solar charged 
particles and planetary " radiation belts" 

Cosmic·ray telescope : high·energy charged particles 

Cosmic·dust detector: miGrometeor ite COUflt and 
momentum 

OCCUltation (no instrument): Martian atmosphere as 
deduced from its effect on spacecraft ' s signal 
during OCCUltation by the planet 

* principal investigator 

Experimenters 

R. B. Leighton* , B. C. Murray, and R. P. Sharp, all of CIT, 
and R. K. Sloan and R. D. Allen of JPL 

E. J. Smith* of JPL, 
P. J. Coleman Jr. of UCLA, 
L. Davis Jr. of CIT, 
and D. E. Jones of Brigham Young University and JPL 

H. L. Bridge ' and A. Lazarus of MIT, 
and C. W. Snyder of JPL 

H. V. Neher* of CIT, 
and H. R. Anderson of JPL 

J. A. Van Allen *, L. A. Frank, and S. M. Krimijis , all of 
State University of Iowa 

J. A. Simpson * and J. O'Gallagher of University of Chicago 

W. M. Alexander*, O. E. Berg, C. W. McCracken, and 
L. Secret an , all of NASA/ GSFC, 
and J. L. Bohn and O. P. Fuchs of Temple University 

A. J. Kl iore*, D. L. Cain , and G. S. Levy, all of JPL, 
V. R. Eshe lman and G. Fjeldbo of Stanford University, 
and F. Drake of Cornell University 

Project scien tists and experi
mente?'s 





ONE DAY WITH ANOTHER PLANET 

Mariner IV approached its rendezvous with Mars in good condition to 
carry out its mission. All critical elements were working well; most space~ 
craft measurements were close to ideal. The plasma probe was still func
tioning, though in a limited sense, and the ionization chamber was out of 
service. Chances for recovery seemed remote. But the spacecraft attitude 
was stable, the temperatures were within expected margins, and the radio 
signal was coming in steadily.to the Earth at about 0.0000000000000000001 
watt: a bit faint for conventional receivers* , but well above the threshold 
for the fantastically sensitive Deep Space Instrumentation F acility stations 
at Johannesburg, Madrid, Canberra, Woomera, and Goldstone. Periodically 
during the flight, the ground transmitters were turned on for command 
transmission or two-way tracking; now, as encounter approached, they 
were in two-way operation. 

The spacecraft's planetary science platform, containing the TV camera 
and planet sensors and capable of scanning through a wide angle to point 
the camera at Mars, had been partly exercised by ground command earlier 
in the flight, and the lens cover had been removed. But the tape recorder 
and other elements had not been operated since before launch. 

Landfall 

Mariner-Mars encounter began properly with an event on Earth, not one 
in space. The Johannesburg DSIF station transmitted a command to turn 
on the TV scan platform, anticipating by about an hour a similar on-board 
command from the CC&S. This was the first of eleven ground commands 
transmitted to the spacecraft during encounter operations. 

Unlike the Ranger Project, which kept constant two-way contact with 
the spacecraft, Mariner communications were mostly spacecraft-to-Earth, 
with the ground transmitters brought into use only periodically: for 
testing, for precise doppler tracking-when a stable oscillator's frequency 
is sent to the spacecraft, multiplied by a known factor (240/221), and sent 
back for comparison with the original signal so accurately that a change 
in velocity of 1 millimeter per second can be observed-and for command 
transmission. The commands are coded digitally, like the telemetry: each 
command is a string of 26 1-second-Iong bits, each bit recognizable as 
either a one or a zero, and each command corresponding to a particular 
switch closure leading to an action on board. At Mars' distance, it took 
12 minutes for the command to travel to the spacecraft, and 12 minutes 
more for the resulting action or acknowledgement to be observed back on 
Earth. 

Acting on the first encounter command, the camera platform began 
cycling back and forth through a I80-degree arc, making a complete 

.. An average home TV set signal is about 0.0000001 watt. 
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N ew S-band t?'acking station n ea?' Mad?'id, Spain, ?noni to?'ed the encounter with Ma?·s. 

circuit every 12 minutes. The TV camera began exposing pictures every 
48 seconds, alternating between red and green filters, but no picture 
information was recorded at this stage: Mars was not yet in view. 

Two hours and 42 minutes after turning on the platform, the operators 
commanded it to stop, po itioning it only %. degree from the optimum 
angle for photographing Mars. Backing up this command, a wide-angle 
sensor would have stopped the cycling on sighting the planet. Now a 
narrow-angle sensor would activate the tape recorder and begin recording 
pictures of Mars as soon as it was actually in front of the lens. 

A third command was sent 5 hours after the platform had been posi
tioned, switching off spacecraft-bus telemetry so that the entire trans
mission was given over to the scientific experiments, their status, and their 
findings . Of particular interest at this critical time was the condition and 
behavior of the TV subsystem. 

Shutterbug 

Mariner's searching eye is built around the vidicon, a TV image tube 
whose compact dimensions and modest power requirements recommend it 
for spacecraft use. (The Ranger spacecraft also employed vidicons.) The 
science control subsystem shutters the camera optics every 48 seconds, plac
ing red and green filters alternately before the lens. A telescope of I2-inch 
focal length and I -degree field of view brings the image to the TV tube, on 
whose faceplate it is about 0.22 inch square. Scanning the image in 200 
lines (of 200 dots or picture elements each), the TV camera produces a 
digital signal of 240,000 bits per picture, which is recorded on a two-track 
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1,4-inch magnetic tape loop 300 feet long, capable of recording a little more 
than 21 pictures. The tape runs over the recording head at about 13 inches 
per second and stops between pictures to save tape. Only two out of every 
three pictures taken are r ecorded on the tape, resulting in a chain of pairs 
of overlapping alternate-color pictures extending all the way across the 
disk of Mars. 

The picture recording sequence was started automatically at 0018 15 
July Greenwich Mean Time (the standard 24-hour system used in space 
operations) ; 12 minutes later, at 5 :30 p.m., July 14, California time, the 
Goldstone DSIF station received notice of this event from the spacecraft. 
While the 26-minute sequence was still underway, two signals were re
ceived indicating that the end of the r ecording tape had been reached, 
prematurely and perhaps disastrously. Other telemetry r eceived argued 
the contrary. Mariner's captain and crew, back on Earth, could only wait 
it out. 

Two backup commands had been sent to shut off the picture-recording 
operations and return the spacecraft to the cruise mode of mixed engineer
ing and science data; the second command was repeated six times, to 
ensure the turn-on of the cruise science, which was dependent upon ground 
command. The television subsystem, having recorded part of picture No. 22 
and filled its magnetic tape, shut itself off and ordered the telemetry system 
into cruise mode, and the cruise science came on as soon as commanded. 

The spacecraft had been approaching the Martian surface throughout 
the picture-taking sequence : the range had been 10,500 miles (along the 
camera axis) for the first picture, and had shrunk to 7,400 miles when 
picture No. 17 was exposed. A quarter of an hour later, Mariner IV came 
within 6,118 miles of Mars, which was going around the Sun more than 
11,000 miles per hour faster than Mariner. 

134 MILLION MILES TO EARTH (12 MINUTES BY RADIO) ................ 

Space Flight Ope1'ations Di?'ector 
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Occultation geometry (Ma?'s fixed) 

The mission had been designed to occult the spacecraft behind the 
planet, so that the Martian atmosphere could be observed from its effect 
on Mariner's radio signal. The occultation of stars behind planets had 
previously played a part in various p lanetary investigations, and observa
tions of the occultation of the satell ites of J upiter by the planet from 
opposite sides of Earth' orbit led to the first accurate estimate of the speed 
of light (the apparent delay across 186 million miles being about 1,000 
seconds, a value of 186,000 miles per second was calculated) . 

Going one stage further, Mariner provided a "coherent source" of pre
cisely calibrated frequency, backed up by detailed predictions and extremely 
accurate equipment. The po ition and motion of the tracking stations, the 
actual spacecraft flight path, the transmission of the signal across 150 
million miles, and the effects of Earth's atmosphere all had to be and were 
precisely known. It would be the apparent changes in spacecraft motion, 
caused by the refraction of the signal, which would reveal the properties 
of Mars' atmosphere. 

About n~. hours after closest approach, the radio signal grazed Mars' 
ionosphere. Then, like a fishing line cutting the water, it sliced through. 
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For 2 minutes, the 2300-megacycle s ignal was bent and slowed by the 
atmosphere, and then it vanished. For the first time in 7112 months no 
Mariner signal was beaming to Earth. Almost an hour later Mariner's 
signal reappeared on the other side of Mars, and tracking began again. 

Mariner's flight path was bent slightly by Mars' gravity during the 
spacecraft's close brush with the planet. The tilt of its orbit relative to 
the Earth's was changed f rom 8 minutes to 21/2 degrees, the period of the 
orbit was extended from 529 to 587 days, and the orbit was widened 
considerably. 

Home Run 

Mariner continued sampling t he space environment just outside the 
orbit of Mars for 81;2 hours; then the spacecraft's CC&S turned off the 
cruise science and began the playback mode, in which engineering telemetry 
would alternate with playback of the TV picture data at 1/100 inch per 
second by the tape recorder-if picture data had been recorded. Doubt still 
clouded the air in the control rooms on Earth as the first segment of engi
neering telemetry began to appear: had the end-of-tape signal received 
during the picture-taking phase been an erroneous signal or a true indi
cation of erroneous spacecraft behavior? 

A long hour and 8 minutes later what should have been the first elements 
of picture No.1 began to appear in the telemetry. At 21/2 minutes per line 
of the picture, it was several minutes before enough lines had been received 
£0 that the edge of the Martian di k could be recognized. 

The Mariner crew of technicians, engineers, scientists, and managers 
had waited and worked more than 21/2 years since the start of the project, 
7% months since the start of the mission and, on this sleepless day of 
encounter, 23 hours for this picture of Mars. But they were not too tired 
to cheer. 
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The tape recorder continued to read out the brightness of each element 
of the first picture until it was complete. In the interval between pictures, 
corresponding to stopping the tape and starting it again, almost 2 hours 
of engineering measurements were transmitted. This process, t he slow and 
painstaking buildup of each picture followed by 2 hours of spacecraft 
diagnostic telemetry, conti nued t hrough the fragmentar y twenty-second 
picture and through a econd run of the whole tape, while t he spacecraft 
drew on past Mars and away f rom Earth, and beneath it the Earth turned, 
bringing one after another each of the great receiving antennas to bear 
on the spacecraft, until a ll of the data had come home to Earth. 

NEW VIEW OF AN OLD WORLD 

Twenty-one pictures don't go very far in covering a whole planet; nor 
do two passes through the atmosphere with a single radio beam, or a few 
hours of magnet ic and charged-particle data. But by comparison with the 
tenuous and indirect sources of information previously available for the 
study of Mars, in the context of the various theoretical models of Martian 
conditions, and given the elegant modern techniques of data-handling, cor
relation, and calculation, Mariner's view of Mars is a broad and profound 
one indeed. 
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Th?'ee ea?'Zy pictures of the Martian su?face, Picture No, 1 (top) shows the light region Phlegra on the limb of the planet, 
The spacecmft was appToximately 10,500 miles from the area in the center; a r ed filter was used, "Raw" picture is at Zeft, 
computer-processed version at right, B elow, pictu7'es 3 (left) and 4 (right) show the light r egion southeast of Phleflra and 
Trivium Charontis , The Sun is 14 deg from the zenith; slant range is 9500-9300 miles . Green filter was used on No , 3, whose 
contrast enhancement facto?' is 5; No.4 is through a red filt er, and its contrast is tripled. No . 3'8 lower right corner overlaps 
No, 4's upper left; north is approximately at top, 
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Craters 

The most arresting single phenomenon of the entire mission is the dis
covery of dense-packed lunar-style impact craters on the Martian surface. 
Though the television experiment's principal investigator had casually 
mentioned the possibility of Mars craters in a press briefing before the 
encounter, and the scientific literature reveals at least one prediction of a 
Moon-like surface on Mars, the actual presence of craters as they appeared 
in the developing pictures amazed the watching group of scientists. 

More than 70 craters appear in the Mariner IV pictures, which cover 
less than 1 per cent of the surface : if these areas are representative of 
Mars, there might be 10,000 craters within the 75- to 3-mile size range 
shown in the photographs. Slopes measured so far range only up to 10 
degrees; no features sharp enough to cast shadows were observed. Crater 
rims rise perhaps hundreds of feet above the surrounding terrain, and 
their interiors are depressed in the thousands of feet. One large elevation 
change, possibly that of a giant crater only partially seen, was estimated 
at 13,000 feet. 

- --- ---------------------------------------------------------------------------



41 

TMee photographs of Ma1,tian 
crate1'S, P icture No, 5 (top, 
p , 40), taken through a r ed fil
ter at a range of 8400 miles, def
initely put Martian craters on 
the map, Ghostly craters along 
the n01,thern border of Phaethon
tis, pictured on this page, may 
have been rimmed with f1'ost , 
Pictu1'e 13 (top) was taken 
tMoug h a red filter, No, 14 
throngh green ; slant range is 
7600 miles, a1'ea of each pictur e 
about 175 by 140 miles (west by 
1w1,th) , Lower 1-ight cot-ner of 
13 overlaps uppe1' left corner of 
14; Sun was 30-35 degrees above 
northern hm'izon, North is at top 
in all three pictures, and con
trast is appt'oximately dou bled, 
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A number of craters near the evening terminator-and hence in the cool 
of the afternoon- appear frosted. The nature of this frost is unknown, but 
the conditions would be consistent with its being water. 

No clear evidence of the famous Martian canals was apparent in the 
Mariner pictures. We must remember that the glistening lunar crater rays 
were resolved on magnification by Ranger cameras into chains and clusters 
of small secondary-debris craters. Possibly some equally unsuspected 
explanation may link the Earth-based and spacecraft views of the Martian 
surface. 

The unearthly appearance of Mars as seen from the spacecraft had a 
major impact on' our idea of Mars. This Martian topography is very old 
and, apparently, very little changed. Impact craters of Martian and lunar 
proportions very likely existed on Earth at one time, but the processes of 
growth and weathering, of mountain-building and canyon-carving, have 
long since ground all but a very few away to nothing. Mars is more like 
the Moon in its apparent lack of such smoothing. 

The Thinnest Air 

Mars' ionosphere and atmosphere, as measured by the impinging radio 
beam from the departing Mariner spacecraft, are somewhat less dense than 
had been expected. The maximum electron density encountered by the beam 
was 90,000 electrons per cubic centimeter, at an altitude of about 80 miles. 
From this the density at the subsolar 'point was calculated to be 150,000. 
Indications of a second ionized layer below the denser one were observed. 
The atmospheric pressure at the surface was estimated at 4 to 7 milli
bars (0.4 to 0.7 % of Earth's surface pressure), depending on the argon/ 
nitrogen/carbon dioxide proportions assumed for the composition. 

According to the principal investigator for this experiment, comparison 
of various atmospheric properties suggests that carbon dioxide is the 
majority constituent, and that the proportion of nitrogen is very small. 
This would provide the best agreement with the telescopic Mars atmos
phere studies which were based on carbon dioxide spectral lines. Moreover, 
a thin blanket of air correlates very well with the cratered appearance of 
the surface, for a dense atmosphere might have shielded the planet from 
most of the meteoritic impacts, believed to be responsible for the craters. 

Mars occulted the spacecraft with its sunlit side, between Electris and 
Mare Chronium. The signal emerged above Mare Acidalum, on the night 
side; the ionosphere was so tenuous as to be indetectable. 

Martian Fields 

Mariner's interplanetary instruments searched in vain for evidence of 
Earth-like radiation belts or magnetic fields. The radiation levels to which 
the scientists had become accustomed in the interplanetary phase of the 
mission continued virtually unchanged through the encounter with Mars. 

From the perturbation of Mariner's orbit at encounter, the trajectory 
analysts derived the mass of the planet Mars as being 0.03227 % of the 
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Ma?-iner's eleventh picture of Mars, "one of the most remarkable scientific photographs of this age" in the words of the experi
menters, shows a 75-mile-diameter crater, with a 8-mile crate?' in its easte?'n rim, Cont?'ast is quad?'upled ; filter used was green. 
Sun was 47 degTees j?'om zenith, Tang e was 7800 miles, a?'ea 170 by 150 miles (west by no?,th) in Atlantis, light ?'egion between 
da?'k aTeas, MaTe CimmeTium to west and Mare Sirenum to east. 
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Sun's mass (that is, Mars contains about 1,428,000,000,000,000,000,000,000 
pounds of mass) . 

The magnetometer experimenters estimated that Mars' magnetic mo
ment is no greater than 0.03 j~ of Earth's. Thi would account for the 
ab ence of radiation belts and magnetic shock layers around Mars, though 
they have been observed above Earth. The more interesting problem lies in 
accounting for the absence of Mar ' magnetic field or conversely, the pres
ence and strength of Earth's. 

The initial exploration of space in the past several years, of the Moon 
in 1959-65, of Venus in 1962, and now of Mars, has increasingly turned our 
attention inwards toward our own planet. Reporting the results of the 
Mariner Mars Project to Pre ident Johnson, the experimenters spoke of 
"the uniqueness of Earth" in our olar system. Yet the buried secrets of 
Earth's origin and early evolution may lie exposed upon these di tant 
worlds, waiting to be picked up. 

Mariner IV has opened Mars as we might open a book at random, to 
glance at one page. We have the whole book- and the rest of the library
yet to read. 

P1·esenting Ma1·iner IV results to President L yndon B. J ohnson 

I 



The Log of Mariner I V 

November 28, 1964 

1422:01.39 GMT 

1507:10 

1515:00 

1530:57 

November 29 

0659:03 

November 30 

1102:47 

December 4 

1305:00 

to 2402:44 

December 5 

1305:00 

to 1658:19 

December 6 

December 7-9 

Decerr.~er 13 

December 17 

January 3, 1965 

January 10-13 

February 5 

February 7-22 

February 11 

March 3 

March 5 

Liftoff 

Spacecraft/Agena separation 

Solar panels deployed 

Sun lock completed 

Canopus search started 

Canopus lock completed 

Midcourse maneuver attempted by ground command; 

Canopus lock lost. Maneuver cancelled from Earth, 

Canopus reacquired after seven commanded "star·hops" 

Successful midcourse maneuver (6 ground commands) 

Component failure in plasma probe: scientific data 

partly unintelligible 

Canopus lock lost, Gamma-Vela acquired repeatedly 

Transmitting amplifiers switched (to Traveling Wave 

Tube) 

Star lock lost, reacquired; star-hop commanded from 

Earth , Canopui reacquired. Star sensor desensitized 

to excess brightness by ground command 

Telemetry rate switched by on-board command from 

33113 to 8113 bits per second; plasma-probe data im

proved at new rate 

Johannesburg station assigned to Ranger VIII test: 

61/2-hour daily telemetry blackout 

Solar flare detected by science instruments 

Johannesburg station assigned to Ranger VIII test and 

operations; 61h-hour daily telemetry blackout 

TV lens cover removed , planetary equipment checked 

and prepared (12 ground commands) 

Plasma-probe failure mechanism analyzed, permitting 

70% data recovery 

Spacecraft transmission switched from omni to high

gain antenna by on-board command 

March 10-25 

March 17 

Apri l 16 

May 26 

June 5 and 15 

July 14 
1427:55 

1440:32 

1710:18 

1722:55 

July 15 
0017:21 

0043:45 

0100 :57 

0219:11 

0231:12 

0313:04 

0325:06 

1141:50 

1301 :58 

2138:07 

2332:27 

July 24 

August 2 

August 26 

August 30-

September 2 

October 1 

45 

Johannesburg station assigned to Ranger IX test and 

operations; 61/2-hour daily telemetry blackout 

lonization·chamber instrument failure (Geiger-Mueller 

tube failed March 3) 

Solar-flare indications 

Solar-flare indications 

Solar-flare indications 

Mars encounter science command transmitted from 

Earth 

Command received: encounter science on 

Camera·pointing command transmitted from Earth 

Command received: camera pointed 

TV picture recording sequence started at spacecraft 

TV picture recording sequence complete 

Closest approach to Mars (6118 miles above surface) 

Spacecraft passes behind Mars at 55°S, 177°E, 15,850 

miles 

Spacecraft signal loss on Earth 

Spacecraft emerges from occultation at 60 0 N, 34 °W, 

24 ,260 miles 

Spacecraft signal reacquired at Earth 

Picture playback mode initiated 

First data from Picture 1 observed on Earth 

Picture 1 data complete on Earth 

Start of Picture 2 reception on Earth 

Picture playback complete; second run started 

Second picture playback complete; spacecraft re

turned to cruise mode by ground command 

Conditioning commands transmitted to spacecraft (to 

prevent accidental midcourse sequence) for post

encounter cruise 

TV test: five pictures of black sky obtained and trans

mitted to Earth 

Spacecraft transmission switched from high-gain to 

omni antenna by ground command; telemetry no longer 

detectable on Earth 



NOV~O----- MARS ORBIT 

FEB. 5sr" 

\ 
ENCOUNTER 

JULY 14 

/ SOLAR FLARE 

°FEB . 5 

!:: ~ LAUN CH 
If I SUN NOV. 28, 1964' 

i 0- 0 
JOCT. 

JU~V 
~~CT. 1 

OCT. 1 _..-

Mariner's Course 

Distance traveled 
Date along trajectory , 

mi 

Dec. 1, 1964 525,782 

Dec. 11 22,649,177 

Dec. 21 

Dec. 31 

Jan. 10, 1965 

Jan . 20 

Jan. 30 

Feb. 9 

Feb. 19 

March 1 

March 11 

March 21 

March 31 

April 10 

April 20 

April 30 

May 10 

May 20 

May 30 

June 9 

June 19 

June 29 

July 9 

En counter 

July 14 

July 29 

Aug. 8 

Aug. 18 

Aug . 28 

Sept. 7 

Sept. 17 

Sept. 27 

Oct. 1 

Farth est from Earth 

40,24 1,575 

57,574 ,471 

74,583 ,451 

91,219,961 

107,451 ,878 

123,261,850 

138,644 ,479 

153,605,290 

168,155,150 

182,311 ,410 

196,094,740 

209,528,220 

222,636,480 

235,445,090 

247,980,100 

260,267,760 

272,334,370 

284,206,150 

295,909,190 

307,469,390 

319,123,300 

325,982,177 

344,383 ,125 

356,021 ,476 

367,628,758 

379,223,366 

390,823 ,717 

402 ,448,243 

414,115,356 

418,798,296 

Dec. 30, 1965 527,941 ,670 

Closest to Sun 

June 7, 1966 768,384 ,900 

Closest to Earth 

Sept. 8, 1967 1,374, 126,700 

Mariner position and velocity log 

From Earth 

517,870 

2,203 ,995 

3,873 ,488 

5,575,079 

7,450 ,269 

9,670,634 

12,394,127 

15,769,341 

19,858,102 

24 ,680 ,278 

30,232 ,660 

36,456,459 

43 ,301 .2 15 

50,705 ,889 

58 ,579 ,830 

66 .823 ,342 

75,427 ,220 

84.264 ,046 

93 .270 ,057 

102 ,362,020 

111,453 ,380 

120,485 ,400 

129,375,820 

134,400 ,890 

146,806 ,930 

154,772,430 

162,416,900 

169,701 ,290 

176,561 ,700 

182 ,962 ,130 

188,870 ,060 

191,082 ,640 

215,830,190 

196,945 ,440 

29 ,167,205 

Straight line distance, mi 

From Mars 

126,953,200 

116,862,720 

106,848,830 

97,078,054 

87,675,436 

78,740,116 

70,342,943 

62,528,068 

55,316,411 

48,709,726 

42,694,447 

37,244,945 

32,326,122 

27,895,443 

23 ,904,586 

20 ,315,235 

17,042,164 

14,044 ,672 

11 ,266,975 

8,655,916 

6,162,774 

3,744,829 

1,366,265 

6,118 

3,551,506 

5,948,908 

8,377,324 

10,839,023 

13,330,474 

15,842,742 

18,361,883 

19,367,460 

37 ,508,045 

40, 167, 187 

122 ,889,320 

From Sun 

91,824,713 

92 ,624 ,158 

94 ,011 ,320 

95 ,924,270 

98 ,281,742 

100,994,350 

103,972 ,235 

107,131,110 

110,394,380 

113,695,700 

116,978 ,530 

120,195,680 

123 ,308,240 

126 ,284,444 

129,098 ,570 

131 ,719 ,930 

134,151 ,990 

136,371 ,970 

138,368,640 

140 ,133,630 

141 ,660 ,360 

142 ,943 ,780 

143 ,980,310 

144,469 ,060 

145 ,483 ,970 

145,921 ,360 

146, 167,370 

146,221,220 

146,082,750 

145,752,490 

145,231,690 

144 ,970 ,440 

131 ,984 ,010 

103,080,860 

120,339,200 

Orbital characteristics for planets and Mariner spacecraft 

Earth Mars Mariner III 
Mariner IV 

afte r launch 

Velocity, mi / hr 

Relative 
to Earth 

7,288 

6,973 

6,977 

7,406 

8,586 

10,362 

12,748 

15,561 

18,561 

21,8 15 

25 ,167 

28 ,501 

31 ,929 

35,320 

38,621 

41 ,944 

45, 190 

48,342 

51,521 

54 ,598 

57,610 

60 ,667 

63,632 

66 ,732 

70 ,822 

73 ,92 1 

77 ,018 

80 ,161 

83,197 

86,243 

89 ,318 

90,511 

114,868 

133,815 

7,476 

Mariner IV 
after 

maneuver 

Relative 
to Mars 

61,438 

57,050 

52,869 

48 ,672 

44,548 

40,573 

36,80 1 

33,269 

29,996 

26,987 

24,243 

21,759 

19,528 

17,544 

15,804 

14,308 

13,043 

12,010 

11 ,202 

10,608 

10,206 

9,971 

9,872 

11,379 

9,934 

10,053 

10,200 

10,355 

10,503 

10,629 

10,722 

10,748 

8,866 

20, 177 

61,294 

Mariner IV 
after 

encounter 

Length of ellipse, miles 195,794,000 283,090,000 214,000,000 231,100 ,000 239,640 ,000 248 ,560,000 

Perihelion distance, mi les 91 ,342,000 128 ,330,000 92 ,000 ,000 92 ,180,000 92 ,230,000 102,531 ,000 

Aphe l ion distance, miles 94 ,452 ,000 154,760,000 122 ,000 ,000 146,920,000 147,410,000 146 ,029,000 

Tilt of ecliptic 

Period (" year"), days 

Inclination of roll plane 

0 ' 

365 

l ' 51' 

687 

(equator) to orbit plane 23'/2' 24-25 ' 

Per iod of rotat ion ("day") 23 hr 56 min 24 hr 37 mi n 

449 

0 ' 8' 

528 

90 ' 

528 days 

529 

90 ' 

529 days 

2 ' 32'12 ' 

587 

90 ' 

587 days 
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