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STABILITY OF NUMERICAL  INTEGRATION  TECHNIQUES FOR 

TRANSIENT ROTOR DYNAMICS 

by  Albert F. Kascak 

Lewis  Research  Center  and 
U.S.  Army  Air  Mobility RED Laboratory 

SUMMARY 

A nonlinear  finite  element model of a  rotor  bearing  system  was  linearized  at  some 
instant of time.  The  stiffness and damping  coefficients were  assumed to be constant 
over  a  short  time  period  at the  instantaneous  values. A numerical  stability  analysis 
was applied to the linearized model to determine the stability  limits of the forward, 
backward, and centered  Euler;  the  fourth-order Runge-Kutta; the Milne; and the Adams 
methods of numerical  integration of the  set of equations of motion. 

The stability  analysis obtained  the e r ror  growth rate (the  ratio of the  amplitudes of 
the errors  for two succeeding  time  steps) as  a function of a  nondimensional time  step 
(the  product of the time  step and the natural frequency) and of the  damping ratio  for each 
mode. The  absolute e r ror  growth rate  was independent of the  actual  transient;  the  rela- 
tive error  growth rate  was not. The relative  error growth rate  was  normalized by the 
transient solution of the  perfectly  balanced  rotor. 

For any  mode  with a  nonnegative  damping ratio, the absolute error  growth rate 
must  be  less than o r  equal  to 1. (If not,  the  numbers used in the calculation will be- 
come too large  for the  computer.) If a mode is to be  calculated  accurately,  the  relative 
e r ror  growth rate  must  also  be less than o r  equal to 1. The lower  frequency  modes 
are the only modes that are  physically  meaningful, although all the  modes a re  inher- 
ently present in the  calculation of any transient. 

Usually, the  highest  frequency mode possible in the  finite  element model determines 
the  threshold of numerical  stability.  Therefore,  the  number of mass  elements in the 
finite  element model should be minimized. Increasing  the damping of a mode can  cause 
it to become  numerically  unstable. An example  considered is that of a uniform  shaft on 
rigid  bearings, with 10  mass  elements, and operating  at  approximately  the first  critical 
speed. The  maximum  time  step  for the Runge-Kutta, Milne, and Adams methods is 
that which corresponds to approximately 1 degree of shaft  movement. To calculate  the 
shaft motion  to several revolutions would thus  require  thousands of time  steps. 



INTRODUCTION 

The simulation of transient  rotor  dynamics by a  computer is done by one of two 
methods. The first is the modal method. This method is applicable to l inear  prob 
lems.  It  consists of integrating the  equations of motion for  each mode separately and 
then summing them to get  the  final  result. The second method is the  finite  element 
method. This  method is applicable to nonlinear  problems.  It  consists of modeling the 
rotor  dynamics  system by a  finite  number of elements and then integrating the  equations 
of motion for  all of these  elements  simultaneously. 

References 1 and 2 use the  finite  element approach. Reference 1 is the more gen- 
eral of the two codes.  Besides  simulating  more  features of the rotor  dynamics sys- 
tem,  it  includes  several  choices of numerical method for  integrating the  equations of 
motion. Reference 1 concluded that the Adams-Moulton predictor-corrector  integration 
technique gave the best combination of computational speed and accuracy. Application 
of this code to other  problems, such as that of reference 3,  has been  frustrated by  nu- 
merical  stability  problems. 

Reference 2 is the  more  restrictive of the two codes.  It  uses  a modified (centered) 
Euler technique to integrate  the equations of motion. This code has been applied suc- 
cessfully to the  problem of reference 3 .  The question arises  as to  why the code of ref- 
erence 2 worked and that of reference 1 did not. A partial  answer to this question can 
be found in the  numerical  stability of the  various  integration  techniques. 

This  report  discusses the numerical  stability of some  typical  integration  techniques 
as applied to transient  rotor  dynamics. The set of equations  simulating the transient 
rotor  dynamics would be  classified  mathematically  as  a stiff Set of equations. (A set of 
equations is stiff if the ratio of the largest to the smallest eigenvalue is large, i. e. , 
more than 100 to 1.) Reference 4 discusses  numerical  stability and proposes  a numeri- 
cal  integration technique, Gear's method, for  a  general  set of stiff  equations.  This 
method was applied to the code of reference 1 but  required too much computing time. 

The numerical  stability  analyses of references 4 and 5 were applied to some  typical 
numerical methods presented in reference 6. The present study  examined  the  numeri- 
cal  stability of the forward, backward, and centered  Euler methods;  the fourth-order 
Runge-Kutta method; the Milne method; and the Adams method as applied to a  transient 
rotor dynamic  simulation. 

The finite  element method divides  the  shaft  into  a  number of axial  elements. The 
acceleration of the  elements is related to the  sum of the forces on the elements.  These 
forces  are  basically the  elastic  force, the drag  force, and the  inertial unbalance force. 
The elastic  force is related to the  shaft  stiffness and therefore to the displacements of 
the elements. The drag  force is related to the  velocity of the  elements. The unbalance 
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force is independent of the  displacement and velocity of the elements and is therefore 
the  "forcing function." 

equations of motion  by  a set  of difference equations. When the  time  step is small,  the 
solution to the  difference  equations  approximates  the solution  to the  differential equa- 
tions. When the time  step  in  the  difference  equations  exceeds a critical value, the SO- 
lution no longer  approximates  the solution of the  differential  equations of motion. The 
relative  error between  the two solutions  increases with time.  The  numerical  integra- 
tion  technique is unstable for  time  steps  greater than the  critical  value  since a small 
error  will  increase to a large  error.  

This  critical  time  step is not generally known since  the  solution to the  differential 
equations of motion is not known. If the  problem is linearized  in  time (i. e., the stiff- 
ness and damping of the  elements are  assumed to be  constant  at  the  instantaneous val- 
ues), a modal analysis  can be applied to the  instantaneous  mode  shapes and frequencies 
for both the  differential and difference  equations. The relative  error  in the  amplitude 
of each mode must not increase with time. The stability  analysis  applies  for  the lin- 
earized problem; therefore, an extension  must  be  made  between  the  linearized and  non- 
linear  problems (i. e.,  if the linearized  problem is unstable,  the  nonlinear  problem is 
also unstable). 

The numerical  integration technique replaces  the  time-dependent  set of differential 

Since the  problem is linearized,  the  absolute e r ror  can  be  calculated independently 
from the actual  simulation. The error  must  satisfy the same  set of homogeneous equa- 
tions,  but it  has a different  forcing function  (the rate  at which the  computer  generates 
errors). If the  computer  rounds  the  last  significant  figure  (rather than truncating),  the 
forcing function, on the  average, is zero. The error  analysis then reduces to an initial- 
value problem  that  can  be  solved  analytically  for  each  numerical  integration method. 

In order to determine  the  relative  error,  the  absolute  error  must  be  normalized by 
the  solution to the linearized nonhomogeneous differential  equations of motion. This 
solution  depends on the  specific  transient. In order to generalize  the  results,  the  most 
conservative  transient is used to normalize the  absolute error;  that is the  solution  to 
the homogeneous differential  equations of motion. The  solution  to the homogeneous 
equation of motion (i. e. , the  shaft in perfect  balance)  will  yield  the  smallest  vibrations 
and therefore  the  largest  relative  error. 

ANALYSIS 

This  analysis  assumes a model of a rotor  bearing  system  that is linearized  at  some 
instant of time and neglects both torsional windup and gyroscopic  moments.  Figure 1 
shows  a model of the shaft with n finite  elements. The complex number  representation 
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of the radial  displacements of the  shaft  centerline  from  the axis of rotation for the i 
finite  element is r. (Symbols are defined in the appendix.) 

th 

If R is a column matrix of the displacements of the shaft  centerline, if the column 
matrix V is the  time  derivative of R, and if the column matrix A is the  time  deriva- 
tive of V, the  second-order  matrix equation of motion for the rotor  bearing  system can 

be  written  as 

M A + C V + K R = F  

where M is a  diagonal matrix of the  masses, C is a square  matrix of the  damping 
coefficients, K is a square  matrix of the  stiffness  coefficients, and F is a column ma- 
trix of the forces. The following partitioned matrices can be defined: 

Then the first-order  matrix equation of motion becomes U = P Z  + Q, where U is the 
time  derivative of Z. 

If Z. is def$ed to be the  solution of the  eigenvalue  equation P Z  = h Z the soh- 
J j j j ’  

tion  of the  homogeneous differential equation of motion can  be  expressed  as a  modal 
series: 
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I 

where a  the  complex  amplitude of the jth mode, is 
j ’  

a. = a.(O)exp(A.t) 
J J  J 

3 

From  the definition of P, 

V. = A.R. 
J J J  

and 

-r (KRj + CVj) = A.V. J J  
1 

Substituting for V. yields  the damped eigenvalue equation J 

with 2n eigenvalues. If this equation is premultiplied by R. (R. conjugate trans- 
posed), i t  becomes 

* 
J J  

A. m. + L C .  + k. = 0 2 
J J J J  J 

where  the  scalar modal mass, modal  damping, and modal stiffness  are defined as 

R. MR. 
* 

m =U * 
j R. R. 

J J  

R. CR. 

R. R. 
J J  

* 
c. =+ 

* 
k. =+ 

R. KR. 

R . R .  
J J  

If the natural  frequency is defined as 
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and the  damping ratio  as 

the  eigenvalue is 

The  frequency is defined to be greater than zero. If the damping ratio is greater 
than zero, the mode is damped, if the damping ratio is less than zero,  the mode is am- 
plified. 

The firsborder  matrix equation of motion defines U as  a function of Z and t. 
The various  numerical  solutions of this  set of differential  equations are solutions of the 
following difference equations: 

Forward  Euler method: 

Backward Euler method: 

Centered Euler method: 

Z(t + h) = Z(t) + hU[Z(t), t] 

Z(t + h) = Z(t) + hU[Z(t + h), t + h] 

z( t   +h)  = Z(t) +-h k [ Z ( t ) ,  t] + U[z(t +h),  t +h)] 
2 
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Runge-Kutta method (fourth order): 

g1 + 2% + 2g3 + 84 
Z(t +h) = Z(t) + 

6 

where 

gl = hU[Z(t), t] 

84 = hU[Z(t) + g3, t +h] 

Milne method: 

Adams method: 

+ u[Z(t - 2h),  t - 2h]} 

From the definition of  U, these  difference equations can be  generalized as 

where Z indicates the various  terms used  in  the  difference  equations and D and B I Z 
are  matrices that are different  functions of P and h for each  difference equation. The 
exact  solution to these  difference equations is Z. The computation actually calculates 
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where E is a column matrix of the roundoff e r ror  and G is a column matrix of the 
rate of generation of the roundoff error. If the  specific  computer rounds  the last sig- 
nificant figure  (rather than truncating),  the rate of generation of  roundoff error, on the 
average, is zero.  Subtracting the  exact  difference equation from  the computational dif- 
ference equation yields the following homogeneous difference  equation for the roundoff 
error: 

E(t  +h) = DIE(t - Ih) 
1 

The  matrix D can be  expressed  as a polynomial function of hP 1 

k 

where d is a different scalar constant for  each  integration technique and k indicates 
the various  powers of the polynomial. Table I is a tabulation of d for the various 
techniques. If E is expressed  as a sum of eigenvectors (modal expansion), E becomes 

k l  
kl  

E = ej(t)zj 

j 

where e is the complex  amplitude of the roundoff e r ror  of the jth mode. Substituting 
this into the  difference equation for'the roundoff error  and noting  that Z is a linear in- 
dependent eigenvector of P result in the following equation for the amplitude of the 
roundoff error  of the jth mode: 

j 
j 

This homogeneous difference equation has a solution of the  form 
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I 

where p. is a  constant. If w., the  absolute error  growth rate of the jth mode, is de- 
fined as 

J J 

e.(t + h) 
w. = J 

ej(t) 

w. becomes 
J 

w = exp(pjh) 
j 

If s., a complex nondimensional time  step  for the jth mode, is defined as s. = Mj, 
J J 

this  form of solution converts the difference equation into an algebraic equation in 
terms of  w. and s.: 

J J 

w. = dkl sj k Z  wi 
J 

If the relative error of the jth mode is defined as 

E.(t + h) 
u. = J 

Ej(t) 

Substituting the values of a.  and E and using the definitions of s and w. yield 
J j j J 

u. = w. exp(-s) 
J J  

The algebraic equation in terms of  w. and s is transformed into an equation in terms 
of u. and s. 

J J 
J j 



Both equations are polynomials  in terms of either w. o r  u. with complex coeffi- 
cients  that are functions of s. These polynomials  can be solved either  analytically or  
numerically  for w. o r  u. in terms of s. From the  definition of s. and the value of 

J J J 
I.., s. becomes 

J J 

J J  

s. J =hwj ( -5  f 4F) 
The largest absolute value of either w. o r  u. was used with a  numerical contour 
plotting  routine in terms of ha and C j .  These  contours  are shown in figures 2 and 3 .  

J J 
j 

DISCUSSION 

A nonlinear  finite  element model of a rotor  bearing  system  can  be  linearized  at any 
instant of time.  The stiffness and damping coefficients are assumed to be  constant  over 
a  short  time  period  at  the  instantaneous values. A damped critical-speed  analysis can 
then be applied to obtain  the  instantaneous mode shapes,  natural  frequencies, and d a m p  
ing ratios. The analysis only applies for the time  period  for which the  linearization is 
valid. For  other  time  periods  the  analysis  must  be  repeated with "new" stiffness and 
damping coefficients. 

A numerical  stability  analysis  was applied  to  the linearized  finite  element model of 
the rotor  bearing  system to determine  the  stability  .limits of the  forward,  backward, and 
centered  Euler; the fourth-order  RungsKutta; the Milne; and the Adams methods of 
numerical  integration of a set of differential  equations. The stability  analysis obtained 
the error  growth rate (the ratio of the  amplitudes of the errors  for two succeeding time 
steps) as a  function of a  nondimensional time  step (the  product of the time  step and the 
natural  frequency) and of the damping ratio  for each mode. Figure 2 shows contour 
lines of the absolute e r ror  growth rate and figure 3 shows contour lines of the relative 
error  growth rate. The relative  error growth rate  was  normalized by the transient so- 
lution of the perfectly  balanced  rotor. 

In the  finite  element model of the rotor  bearing  system, the  higher  frequency  modes 
are  not physically meaningful but are inherently  present. The accuracy of the  calcula- 
tions in these  modes is not important.  It is only important  that,  for  a nonnegative 
damping ratio, the  absolute error  be bounded (i. e. , the  absolute error  growth rate  must 
be less than o r  equal  to 1). If the  absolute e r ror  growth rate is greater than 1, even- 
tually  the numbers used  in the calculation  will become too large  for the  computer and a 
computer  overflow  will occur.  This is not too serious  for the  negative damping ratio 
case (amplification) since  the  rotor  vibrations will be unbounded  and the  actual  displace- 
ments  will eventually cause the computer to overflow. 
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The lower  frequency  modes are the only modes  that are physically meaningful. The 
accuracy of the  calculations in these modes is  important.  These  modes  must  have  a 
relative  error  that is bounded (i. e. , the  relative  error growth rate must  be less than or  
equal to 1). If the relative  error growth rate is greater than 1, eventually  the numbers 
used in the  calculation  will become  meaningless. The relative  error growth rate shown 
in figure 3 is for  a  rotor  that is in perfect  balance.  This will yield the  smallest vibra- 
tions and therefore the largest  relative  error. A rotor  that is out of balance  will  have 
larger vibrations and therefore a smaller  relative  error. If the  integration  technique is 
to be universal (i. e., applying to all transients),  relative  error growth rate as shown in 
figure 3 must  be less than o r  equal to 1. 

In general,  increasing  the damping ratio while keeping  the  product of the  time  step 
and the  natural  frequency fixed causes the relative  error to grow. This is also  true  for 
the  absolute error,  with the  exception of the centered and backward  Euler  methods. 
For damping ratios between -0.5 and 0.7 for  the  forward  Euler method, between 0.5 
and m for  the  backward  Euler method, between 0 and 0.8 for the centered  Euler method, 
between 1.7 and m for  the Runge-Kutta method, between 0 and 03 for the Milne method, 
and between -06 and -1.7 for the Adams method, the  relative error  growth rate is 
greater than 1. 

EXAMPLE 

A s  an example,  consider  a  uniform  shaft on rigid  bearings. The damping ratio is 
zero  for all modes; thus,  the  absolute and relative  error growth rates  are equal. The 
natural  frequency  for  a continuous model of this  system is 

0. = J W1 
.2 

J 

A s  an order-of-magnitude  approximation, the natural  frequencies of the finite  element 
model are  approximately  equal to the  natural  frequencies of the continuous model. If 
there  are n  elements  in the  model,  the  highest natural  frequency is 

2 wn = n o1 

The nth mode (not usually desired  from  the  calculations but inherently  present) 
determines  the  threshold of the  numerical  instability.  From figure 3 the  forward  Euler 
method is always  unstable.  The  backward and centered  Euler methods are  never un- 
stable. The Runge-Kutta method is unstable for a time  step  greater than approximately 
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3 h>- 

The Milne method is unstable  for  a  time  step  greater than approximately 

2 h >- 

The Adams method is unstable for a  time  step  greater than  approximately 

h>-  1 

w1 
2 

If the  shaft is running at  approximately  the  first  natural  frequency and if there  are 
10  elements, the  calculation  must  be done at  least  every  1.5, 1, and 0.5  degrees of 
shaft  rotation for  the  RungsKutta, Milne, and Adams methods,  respectively. To  cal- 
culate the shaft motion to several  revolutions would require thousands of time  steps. 

If these  time-step  limits  are exceeded by a  factor of 2, the e r ror  growth rates  are 
approximately 10, 3, and 1 .5  for the Runge-Kutta, Milne, and Adams methods,  respec- 
tively.  This  means  that  a  relative error of lo-' will grow to a value of 1 in less than 
8, 17, and 46 time  steps  for  each of these methods, respectively. 

The preceding  example  illustrates  the  fact that great  care should be taken to mini- 
mize  the  number of elements in the  finite  element  modal,  thus  maximizing  the  time 
step.  This is important not only to save  calculation time but also  because the time  step 
has a  lower  limit  dictated by the roundoff error.  

CONCLUSIONS 

The numerical  stability of the Euler, RungsKutta, Milne, and Adams integration 
techniques as applied  to transient  rotor  dynamics  was analyzed. The following conclu- 
sions  were drawn: 

1. The highest  frequency mode possible in the finite  element modal usually  deter- 
mines  the  threshold of numerical  stability.  Therefore,  the  number of mass  elements 
in the  finite  element model should be minimized. 

2 .  Increasing  the damping ratio of a mode can cause it to become  numerically un- 
stable. 
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3. Numerical  stability for the  RungsKutta, Milne, and Adams methods for a uni- 
form  shaft on rigid  bearings with 10 mass  elements  (operating  approximately  at  the first  
critical speed) is to make  a  calculation  at less than 1 degree of shaft  rotation. 

In general, the  product of the time  step and the natural  frequency, for all modes pos- 
sible in the  finite  element model of the rotor  bearing  system,  must  be less than  the sta- 
bility  threshold. 

Lewis Research  Center, 
National Aeronautics and Space  Administration, 

and 
U. S .  Army A i r  Mobility R&D Laboratory, 

Cleveland, Ohio,  August 4, 1977 
505-04. 
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APPENDIX - SYMBOLS 

A 

a 

B 

C 

C 

D 

d 

E 

e 

F 

G 

g 

h 

K 

time  derivative of V 

complex amplitude 

column matrix  functions of P and h 

square  matrix  describing damping in finite  element model 

modal damping 

column matrix functions of P and h 

scalar coefficient of polynomial of hP 

column matrix of roundoff error  

amplitude of absolute error  

column matrix  describing  forces in finite element model 

column matrix of rate of generation of roundoff e r ror  

parameters used in Rung-Kutta method 

time  step 

square  matrix  describing  stiffnesses in finite element model 

k modal stiffness 

M diagonal matrix  describing  masses in f in i t e  element model 

m 

n 

P 

Q 

R 

r 

S 

t 

U 

modal mass 

number of mass  elements in finite  element model 

partitioned  square  matrix used in homogeneous firsborder  matrix equation of 
motion 

partitioned column matrix  describing  forcing function in firsborder  matrix equa- 
tion of motion 

column matrix  describing  displacements of shaft  centerline in finite  element model 

complex elements of R 

complex nondimensional time  step 

time 

time  derivative of Z 

u relative error growth rate 
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V 

W 

Z 

E 

5 

h 

P 

0 

time  derivative of R 

absolute error  growth rate 

partitioned column matrix  describing dependent variables in first-order  matrix 
equation of motion 

amplitude of relative  error 

damping ratio 

complex (damped) eigenvalue 

constant used in  solution of finite  difference equations 

natural  frequency 

Subscripts: 

j any mode between 1 and n 

k power of polynomial of hP 

2 various  terms of difference equation 
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TABLE I. - TABULATION OF dkl FOR VARIOUS TECHNIQUES 

(a)  Forward  Euler (b) Backward  Euler 

Term of 

of hP,  k equation, 
polynomial difference 
Power of 

(c)  Centered  Euler 

(d) Rung-Kutta 

I Term of difference I Power of polynomial of hP, k I 

(e) Milne 

Term of Power of 
difference 

of hP, k equation, 
polynomial 

.~ 

1 
0 1  

-1 

0 

1/3 0 

1/3 1 1 

4/3 0 

(f) Adams 
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Axis of rotation 7 

Figure 1. - Model of shaft  showing  complex  number  representation of radial  displacements  (distance 
between  shaft  centerline  and  axis of rotation).  Real  and imaginary axes fixed in  space. 
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I Absolute modal 

la) Forward Euler method. (b) Backward Euler method. 

k t  Centered  Euler method. (dt Runge-Kutta  method 

Damping  ratio, 5 
le) Milne method. ( f l  A d a m  method. 

Figure 2 - Contours of absolute modal error  growth rate. 
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I I 
(a)  Forward  Euler method. 

(cl Centered  Euler method. 

\ I  I 
(b) Backward  Euler method. 

(d)  Runge-Kutta method. 

ratio, < 
(e)   M i lne  method. 

Figure 3. - Contours of relative modal 

( f )  Adams method. 

e r ro r   g rowth  rate. 
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maximum  t ime  step  for a stable  solution.  Thus,  the  number of mass  elements  should  be  mini- 
mized.  Increasing  the  damping  can  sometimes  cause  numerical  instability. For a uniform 
shaft,  with 10 mass  elements,  operating  at  approximately  the  first  critical  speed,  the  maximum 
time  step  for  the  Runge-Kutta,  Milne,  and  Adams  methods is that  which  corresponds  to  approx- 
imately 1 degree of shaft  movement.  This is independent of rotor  dimensions. 
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