
NAS eport 145105

Reliability Measurement
Durinl SoftwariDevelopment

H. Hecht, W. A. Sturp,
and S. Trattner

. I
The Aerospace Corporation
El Segundo, California

Prepared for
JLangley Research Center
under Contract NASM4392""!

NASA
j National

and
- 1 - ^ - - - - ----... . -,Vff,

'' Scientific: and Technicaf"
\ lnfo/mation;0ffice

i1977 I

Report No.
NASA-CR-145205
[ATR-77(7590)-2]

RELIABILITY MEASUREMENT

DURING SOFTWARE DEVELOPMENT

Prepared by

H. Hecht, W. A. Sturm, and S. Trattner

September 1977

Advanced Programs Division
THE AEROSPACE CORPORATION

El Segundo, Calif. 90245

Prepared for

NASA Langley Research Center
Hampton, Virginia

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT N U M B E R

NASA-CR-145205
2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle)

Reliability Measurement During
Software Development

5. TYPE OF REPORT A PERIOD COVERED

Final
Apr 1976-Apr 1977

6. PERFORMING ORG. REPORT NUMBER

ATR-77(7590)-2
7. AUTHORfs.)

H. Hecht
W. A. Sturm
S. Trattner

8. CONTRACT OR GRANT NUMBERfsJ

NAS1-14392

9. PERFORMING ORGANIZATION NAME AND ADDRESS

The Aerospace Corporation
El Segundo, California

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

1 t. CONTROLLING OFFICE NAME AND ADDRESS
NASA Langley Research Center
Hampton, Virginia

12. REPORT DATE
September 1977

13. NUMBER OF PAGES
96

14. M O N I T O R I N G AGENCY N A M E ft ADDRESSf// different from Controlling Office) 15. SECURITY CLASS, (of this report)

Unclassified

15a. DECLASSIFY ATI ON/ DOWNGRADING
SCHEDULE

16. D I S T R I B U T I O N STATEMENT (of this Report)

Unlimited

17. D I S T R I B U T I O N S T A T E M E N T (of the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

9. KEY WORDS (Continue on reverse aide If necessary and identify by block number)

Software reliability
Reliability measurement
Software failure ratio
Software failure rate

Error types
Software reliability trend

0. ABSTRACT (Continue on reverse side if necessary and Identity by block number)

Measurement of software reliability was carried out during the
development of data base software for a multi-sensor tracking
system. The failure ratio and failure rate were found to be
consistent measures. Trend lines could be established from these
measurements that provide good visualization of the progress on the
job as a whole as well as on individual modules. Over one-half of

in

RELIABILITY MEASUREMENT
DURING SOFTWARE DEVELOPMENT

ATR-77(7590)-2

S'&ti"̂

Prepared by

H. Hecht, Director
Digital Processing Office
Advanced Programs Division
Development Operations

ŷ—-'**-"•"
W. Anderson, Group Director

'Development Group Directorate
Advanced Programs Division
Development Operations

page

•d " "** *" ***"" ** **
The work reported»here5d»here w^as per formed by The Aerospace

Ĵ$ ji**'" ifP~s -*• &' a «̂ s*̂ ». ^
Corporation under Cdn€pafefê c|jfef̂ T̂ ASi-̂ .«s$9;-2Jwith the NASA Langley

Research Center under the technical guidance of Mr. G. E.

Migneault. It utilized data collected from a software

development project sponsored jointly by the USAF Rome Air

Development Center, with Mr. Frank Sliwa as the Project Engineer,

and the Metric Integrated Processing System (MIPS) team at the

USAF Space and Missile Test Center under the direction of Mr. J.

A. Salazar. The contractor for the development of the pertinent

MIPS segments is Federal Electric Corporation, and Mr. R. R. Hall

of that organization was responsible for implementation of the

data collection.

Much valuable assistance was received from Ms. Bonnie J.

Schmidt both in the maintenance of the software reliability data

base and in the preparation of this manuscript.

VII

page
XntentlonaUY

ACKNOWLEDGMENTS . . . li. h.jJv£rX^ *&t V& S.e ta%Jl4 •] Jk vi i

SUMMARY .^^,j^<t|j^.*^?*^.. .B 1

I. INTRODUCTION T. ."*... .*t' 3

II. OVERVIEW 9

III. THE COMPUTER PROGRAM AND ITS ENVIRONMENT 17

IV. MEASUREMENTS AND TIME TRENDS 21

V. VARIATIONS BETWEEN MODULES 39

VI. CAUSES OF FAILURE 45

VII. FINDINGS AND POTENTIAL APPLICATIONS 53

VIII. WHERE DO WE GO FROM HERE? 57

REFERENCES 59

APPENDIX A - BACKGROUND DATA FORMS A-l

APPENDIX B - ASTROS, ADVANCED SYSTEMATIC TECHNIQUES
FOR RELIABILE OPERATIONAL SOFTWARE:
ANOTHER LOOK B-l

x

Page
Intentionally

Left Blank

Total and Prog*rl|m̂ F;ai-]-vijr'C Rĝ loŝ f qx All 12
' V « 8 5. •'J k: £ '..;:| ,. if M && < 1

1.

2. Total Failures and Tot£d~Wilu¥e^/Ra%ios for All 14

3a. Computer Program Run Analysis Report 22

3b. Computer Program Run Analysis Report Instructions 23

4a. Computer Program Failure Analysis Report 24

4b. Computer Program Failure Analysis Report Instructions...25

5. Comparison of Hardware and Software Failure Ratios 29

6. Total Failure Ratio for All 31

7. Program Failure Ratio for Utilities 33

8. Total Runs and Total Changes for Utilities 34

9. Program Failure Ratio for LOG 37

10. Program Failure Rate for LOG 38

A-l General Project Summary A-2

A-2 Program Schedule A-4

A-3 Management Methodology Summary A-5

A-4 Design and Processor Summary A-7

A-5 Personnel Profile A-8

A-6 Personnel Profile Summary A-9

A-7 Testing Summary A-ll

A-8 Top-Level HIPO Chart A-12

XI

Page
Intentionally

Left Blank

TABLES

1. Background Data Reporting Forms 20

2. Major Module Reliability Summary 40

3. Data for the First 100 Runs on Each Module 44

4. Failure Ratios by Error Class for All 47

5. Failure Ratios by Error Class for Modules 48

6. Failure Ratios by Error Class for Utilities 49

7. Relative Frequency of Errors (in percent) 51

Xlll

. |L.
Measurement of| sWffê f̂t&̂ feê t̂-̂ b'ilî ĉ̂ /lsl̂ rried out during

the development of d̂ âakfeasiê sî Stŵ rĴ -̂9r vf3 roulti-sensor tracking

system. Every run made during this project was scored as success

or failure, and supporting data were collected on forms for

further analysis. The failure ratio (number of failures per

calendar interval divided by total number of runs) and failure

rate (number of failures divided by CPU time for the interval)

were found to be consistent measures, on a month-to-month basis

as well as from module to module, and therefore considered valid

indicators of reliability in this environment. Trend lines could

be established from these measurements that provide good

visualization of the progress on the job as a whole as well as on

individual modules. Over one-half of the observed failures were

due to factors associated with the individual run submission

rather than with the code proper.

Possible application of these findings for line management,

project managers, functional management, and regulatory agencies

is discussed. Steps for simplifying the measurement process and

for use of these data in predicting operational software

reliability are outlined.

Page
Intentionally

Left Blank

I. ' .INTRODUCTION
('•

Software reliability is essential to some of the nation's

most widely publicized technical -undertakings, e.g., the Space

Transportation System and the control of nuclear power. The

dramatic advancements now taking place in microelectronics and

memory technologies, accompanied by significant reductions in

computer hardware costs, will lead to even greater use of the

programmable digital computer in the. foreseeable future and hence

increased dependence on software. The speed and flexibility of

the computer make it, in principle, an ideal choice as a multi-

variable controller in real-time systems ranging in complexity

and physical scope from sophisticated aircraft flight controls to

unmanned mass transportation systems. In these and other

instances where the system being controlled interacts with the

public at large the safety of increasingly large numbers of

people will depend on the reliability of the software. Hence,

software reliability—what it is, how to measure it, how to

estimate and/or predict it, and how to achieve it—is a subject

of more than just academic interest. This report addresses the

first three of these aspects of software reliability with

emphasis given to reliability measurement.

For the purposes of this study we have defined reliable

software as follows:

It is software that is correct (capable of execution and
yielding correct results) and that meets other user
requirements such as timing and interfacing with the
environment.

This concept is consistent with an earlier statement, "Software

possesses reliability to the extent that it can be expected to

perform its intended functions satisfactorily"1. There is

justifiable concern about attempting to base measurement on

"intended functions", but more restrictive formulations tend to

prevent recognition of reliability problems arising from poorly

drawn specifications. A need exists to evaluate software

reliability against formally specified as well as against more

loosely defined (and particularly implied) requirements.

For reliability measurement the software is operated over a

period of time, segments of the operation are scored as failure

or success by the qualitative criteria cited above, and from

these scores an indicator of measured reliability is generated.

Typically, the software will not be modified during the period of

measurement, and the developed reliability numeric is applicable

to the measurement period and then-existing software

configuration only.

Estimation of software reliability is performed by taking

reliability measurements (as above) on an existing program and

modifying the result to represent the reliability in a different

operating environment. Estimation requires some quantifiable

relationship between the measurement environment and the

environment for which the estimate is to be valid.

Prediction of software reliability is any statement about the

reliability of a computer program that is not based on

measurement taken on that particular program. While this terse

definition may permit predictions based on casting of dice or

even less respectable methods (which, according to rumors, are

sometimes utilized for that purpose), prediction is normally

based on comparison of program length, complexity, and

environmental requirements with those of a program for which

measurements exist.

The ability to measure and predict software reliability is

required for the proper development and application of critical

computer programs, but suitable measures for this purpose are not

yet in general use. This study has identified two quantitative

indices, the failure ratio and the failure rate, that promise to

fill this need. They are obtainable from records usually

maintained in the development of critical software; they are

consistent in time and among modules for the specific program

studied; and they are potentially useful for management and

research purposes.

Although the motivation for this study is the measurement and

improvement of software reliability in an operating environment,

the results reported here for the development phase are

significant for three reasons.

a. The cost of "fixing" software is low during this early
stage and increases considerably after it is documented,
formally accepted, etc. To the extent that reliability
measurement during software development can point to
problem areas, it will permit corrective effort at the
most effective level.

b. The level and the trend of reliability during
development may be an indicator of reliability during
formal test and operational phases. The validity of
this assumption can only be established by following
this (and possibly other software products) through
further stages of the life cycle, and it is intended to
do so.

c. The data analysis a'nd data presentation techniques
developed here can be carried through test and
operation. Trying out new data collection techniques
might be very objectionable in an operational
environment.

Following this introduction, an overview has been provided

that outlines where and how the primary data were obtained,

describes the general methods of analysis, and reviews a sample

chart. The body of the report first describes the computer

program on which these measurements were taken and the

programming and data collection environments. The next section

describes the measurement process, introduces the general

analytical procedures, and presents findings on time trends of

software reliability. This is followed by a section that

summarizes data on individual modules of the computer program and

discusses differences between modules in the measured quantities.

Causes of failures are then discussed, summaries on these are

presented, and a comparison of causes of failures found here with

those reported earlier is m^d3f^^ge^§ext-to-last section

presents a summary^ojf^f

and suggests appli&&o&v8?'ffi&~H&S>T3g8f\m&i8tnea so far.
•y *• ih3

Readers who are confro;rti

ifesphase of the study
S a

JRŜ *t
._..,__._, _. __̂ .- rae'p^C^ Rtoblems in software
/'/ £=; U & ?s. ,5 K <•:.;£ ^ ft *3KV'sxM

reliability measurement may want to start their perusal of this

report with that material (Section 7). Recommendations for

further work in this field are contained in the final section.

Page
Intentionally

Left Blank

II. OVERVIEW

The motivation for the study' was the growing concern with the

reliability of software in critical applications, and

particularly in future air transport where the safety of aircraft

and passengers demand flawless performan.ee of. software programs.

The data analyzed in this report were collected during the

development of the Launch Support Data Base (LSDB), a portion of

the Metric Integrated Processing System (MIPS). LSDB includes

data management functions, coordinate transformations?, and other

scientific calculations supporting track generation from multiple

sources. It is run prior to launch operations without real-time

constraints. The data covers the development of the LSDB from

coding through the in-house test phases prior to acceptance by

the government. During the initial part of this period the code

constantly expanded as runs were being made, and the effect of

this on the reliability measurements is discussed later in this

paper. During program development there was no unusual pressure

to control reliability for current runs, but the aim was to

produce software that would be reliable in operation.

LSDB was developed as part of a demonstration program on

structured programming techniques. Personnel were motivated by

their participation in a demonstration, and the data collection

efforts and management attention may constitute further factors

for making some of the data presented here not completely

representative. Arrangements have been made to collect similar

data on another MIPS component where programming techniques are

not prescribed. Assessment of unique factors may be possible by

comparing reliability measurements from these two efforts.

Further information on MIPS and LSDB is presented in Section 3.

For every run made on LSDB, a run analysis report form was

completed that listed the date, the module name, CPU time for the

run, and coded information on the number of changes and run steps

(compile through execute). The run was scored as a success or

failure by the development group. If it was identified as a

failure, additional information, contained in the failure

analysis report, was provided which identified the type of

failure and the cause. This form, too, was prepared by the

program development personnel. The principal metrics developed

from the information in these forms are the failure ratio and the

failure rate. The former is the ratio of failed runs to total

runs over a given period, usually one month. The failure rate is

the ratio of failed runs to the total CPU time accumulated over a

given period, again usually one month. Both of these measures

were evaluated for LSDB as a whole and for individual modules.

Some differences in the information furnished by these measures

are discussed in Sections 4 and 5.

10

In the course of the study it was observed that many runs

ended in failure due to improper data setups, job control cards,

or other factors not directly associated with the code developed

for LSDB. By counting as failures only those runs in which the

cause of the failure resided in the program proper, we generated

the program failure ratio.

Typical measures obtained in the study are depicted in

Figure 1. The solid line represents the monthly failure ratios

for the entire LSDB software as reported from March 1976 through

January 1977. The dashed line is the program failure ratio as

determined above for the same reporting period.

While the plots in Figure 1 seem to depict a "noisy" process

it appears to be possible to make some observations regarding the

behavior of the software reliability which, in turn, lead to

conclusions regarding the utility of the measures employed. For

example, in no month did the total failure ratio exceed 0.26 nor

did it drop below 0.13. Therefore, it appears to be a reasonably

stable and meaningful measure of the software development. Both

the total failure ratio and the program failure ratio exhibit a

general trend with time. By the use of linear regression, trend

lines can be generated for the entire development period and/or

for the most recent, say six-month intervals, to provide

indicators of progress (or a lack thereof). The generation and

use of these trend lines is discussed in Section 4. It should

PROGRAM FAIIUR

Figure 1. Total and Program Failure Ratios for All

12

also be noted that there is a large difference between the total

failure ratio and the program failure ratio. This is discussed

in Section 6; in Section 5 it is shown that the ratio of total-

to-program failures is nearly uniform among the modules of LSDB.

Finally, it was observed that the peaking of the failure ratios,

discernible in August and October 1976 and January 1977,

coincides with the time that major design reviews of the programs

were taking place; it is plausible to believe that these

significant deviations in the central tendency of the failure

data are in some way correlated with these program events.

The use of the failure ratio, i.e., the ratio of failed runs

to total runs in a given period of time, as a measure of software

reliability is one of the innovations introduced in this study.

Previous investigators had simply reported the number of failures

per calendar interval. To the extent that the number of runs per

month (or other interval) is not uniform, these measures will

yield different results. For most purposes the measure that will

be preferred is the one that has the smallest variability. In

this connection, a comparison of the total failure experience on

LSDB when reported by failure ratio and by failures per month is

presented in Figure 2. The more stable measure of reliability

furnished by the failure ratio is quite obvious. It should also

be noted that this plot represents the entire program activity on

LSDB which, because it was constrained by manpower and computer

. 13

D ffOTAL FAILURES X 0.

-™"*̂ *-**™™9>rt**>~4«?""*3Sl ĵft̂ -qglK'T??*'™-*'??''*"?"'* -i~»«»i$*™™*»ma*- x~a~.., ~Ktf. *,,Mr—n,,s»r~i>*ftrw~>rrM

^^AJiM^J^:^i^^^

Figure 2. Total Failures and Total Failure Ratios for All

14

- /time availabiliit̂ K̂ ê ^̂ t̂̂ ^̂ d ^,^)£leB»aTiiform number of runsi
per month than the activity on an individual, module. Because

failure ratio yieljSs. f.̂ !J?i"6jrfe5!s*abSeî Bei3{f its use seems well-v*-fc, >^A -~y Safyj+vatix

justified for use in future software reliability measurements.

In total this study has established that a meaningful

quantitative measure of software reliability can be generated,

and data collection and data analysis methods to support this

measurement are available. The consistency of the failure ratio

data from month to month shows that quantity to be useful for

measurement and estimation, at least within the development

phase. The consistency observed here also makes it desirable to

use the failure ratio as a possible predictor of software

reliability in later stages of the life cycle as well. Specific

applications of the results of the study are discussed in

Section 7.

15

Page
Intentionally

Left Blank

III. THE COMPUTER PROGRAM AND ITS ENVIRONMENT

The host project for the Software Reliability Measurement

Study is the Metric Integrated Processing System (MIPS) that is

being developed for the U. S. Air Force Space and Missile Test

and Evaluation Center (SAMTEC) at Vandenberg Air Force Base,

California. MIPS provides the primary metric (i.e., positional)

data processing for test or trajectory measurement activities on

missiles, aircraft, and satellites. The constituents of MIPS are

the control segment, the real-time segment, and the non-real-time
f\

segment. The system specification^ requires a modular

program structure, hierarchical program design, and execution

order programming. In addition to these overall requirements it

was decided to demonstrate the value of a highly disciplined

programming environment on portions of the non-real-time segment

including the program from which the data for this study were

obtained. The additional requirements imposed on the software in

this study included the following:

a. Top-down development
b. Structured code
c- Program support library
d- Chief programmer teams
e- Structured walk-throughs.

The effort of implementing and evaluating these techniques is

termed ASTROS (Advanced Systematic Techniques for Reliable

Operational Software). Further background on ASTROS is presented

17

in a technical paper by J. A. Salazar and R. R. Hall. Because

its initial distribution was quite limited it is reproduced here

as Appendix B. The data accumulated for the evaluation phase of

ASTROS provided a unique opportunity to conduct software

reliability measurement during program development.

The measurements reported here were taken on the Launch

Support Data Base (LSDB), a major component of the non-real-time

segment of MIPS. The LSDB Program is broken down into five major

components (which will be referred to as "modules") and

approximately 40 independent subroutines (which will be referred

to as "utilities"). LSDB includes data base management functions

and scientific calculations, e.g, to translate local line-of-

sight data into a common earth-centered coordinate system. The

entire LSDB Program comprises approximately 25,000 lines of

source code, of which the modules account for about 18,000.

Approximately 40 percent of the module code consists of comments.
f

Most of the LSDB code was written in structured FORTRAN,

translated into ANSI FORTRAN by means of the S-FORTRAN -

precompiler, and then compiled for use on an IBM 360/65 computer.

Small segments were written in the IBM assembly language (BAL).

Originally, five programmers were assigned to LSDB but after a

few months this was reduced to a staff of three plus a

programmer-librarian. The design was started in September 1975.

18

The coding period for which measurements are presented here

comprised 11 months from March 1976 through January 1977.

It is intended to develop another non-real-time component of

MIPS in a non-structured programming environment during 1977.

This should permit comparisons of reliability measurements and

related development data between the two software components.

It is at present not known what factors in the programming

and computer system environment affect software reliability. For

this reason it was decided that a listing of requirements levied

against the software product (here LSDB) as well as a description

of the general environment should be a part of the record of this

Software Reliability Measurement Study. Forms for reporting this

background information had been developed earlier . The

forms utilized for reporting background data on LSDB are listed

in Table 1; samples of the forms are reproduced in Appendix A.

The primary use of this information is future comparative

evaluation of the reliability measurements on LSDB with those

from other sources. It is hoped that quantitative information

about the effects of programming, test, and management techniques

can be gained from such comparisons.

19

TABLE 1

BACKGROUND DATA REPORTING FORMS

General Project Summary
Management Methodology Summary
Design and Processor Summary
Personnel Profiles
Testing Summary (to be filled out during project test)
HIPO Charts (Hierarchy plus Input, Processing, Output)

20

IV. MEASUREMENTS AND TIME TRENDS

Data for this study was provided by the programming team by

means of reports and data tapes.

Two classes of reports were utilized: those providing

background data were mentioned in the preceding section; the

other class of reports provide data on each run. The run report

forms are illustrated in Figures 3 and 4. The run analysis form

(Figure 3) was prepared for every run, while the failure analysis

form was prepared only for those runs that were not successful.

The run reports were prepared daily by the program librarian.

The determination that a run had failed was made by the

development group. The data obtained from the run reports were

entered into a computer data base, and statistical summaries and

plots were generated by a series of APL programs. The principal

data tapes utilized were those from the System Management

Function (SMF) of the IBM computer operating system. Since the

SMF tapes duplicated most of the information on the run analysis

form, the tapes were used primarily as a check on the

completeness of the data collection effort(l). It was found that

data collection was carried out very conscientiously.

(l)For future applications of software reliability measurement it
may be possible to eliminate the run analysis form and derive
the data from a system tape such as SMF.

21

SYSTEM DATE

2.

3.

4.

5.

6.

7.

8.

Computer

Run Date

COMPUTER PROGRAM RUN ANALYSIS REPORT
Program Component ID

: Day Mon Yr Hr Min

Successful Run?

CPU Time

Category

a.

b.

c.

d.

CPCI/CPC

a..

b.

: Min . . Sec

of Work:

Program Development

Program Modification:

(1) Implementation of Additional Requirement

(2) Implementation of Hardware Change

(3) Memory/Time Optimization Enhancement

(4) Error Correction

(5) Design Modification

Program Conversion

Other

Status

CPC Test and Eval CD c. Full Integ. Test

Partial Integ. Test CD d. Production Program

e. Other

-

CD

CD
CD
CD
CD
CD
CD
CD

CD
CD
CD

Program Activity

a.

b.

Compilation CD c. Run with no compile

Compile and run CD d. Other

CD
CD

Number of Source Statements Changed/Deleted Inserted

a.

b.

c.

d.

None CD e. 31-40 CD i- 101-150

1-10 CD f. 41-50 CD j- 151-200

11-20 CD g. 51-75 CD k. Over 200

21-30 CD h. 76-100 CD

Contact

Figure 3a

22

CD
CD
CD

,

COMPUTER PROGRAM RUN ANALYSIS REPORT
INSTRUCTIONS

To be filled out by programming librarian or responsible programmer
after each computer run. If the run was unsucessful (SYNTAX errors.,
abort, calculation error, loop, etc.), the supplemental form
COMPUTER PEOGRAM FAILURE ANALYSIS REPORT should also be complete.
This form will yield error statistic data and computer run time data.

1. Use program mnemonic.

2. This time is start time of computer execution from the computer
printout.

3. If answer is no, complete COMPUTER PROGRAM FAILURE ANALYSIS REPORT.

4. This can be gotten from the computer printout.

5. Check the appropriate box.

6. Check the appropriate box.

7. Check the appropriate box.

8. Check the appropriate box.

Figure 3b

23

SYSTEM DATE

1.

2.

3.

4.

COMPUTER PROGRAM FAILURE ANALYSIS REPORT

Computer Program Component ID

Run Date: Day Mon

Severity of Failure

A. Caused Complete System to Crash

B. Caused A Dependent Job to Fail

C. Local Job Failure Only

D. Real Time Failure

E. Other

Error Category

A. Computational Error

B. Logic Error

C. Data Input Error

D. Data Handling Error

E. Data Output Error

F. Interface Error

G. Array Processing Error

H. Data Base Error

I. Operation Error

J. Program Execution Error

K. Documentation Error

OtherL.

Figure 4 a

24

Yr

n
c:
CD

CD

LI

a
G

G

CD

G

[]

G

G

G

G

G

CD

Contact

Hr Min

Count

COMPUTER PROGRAM FAILURE ANALYSIS REPORT
•INSTRUCTIONS

To be filled out by the responsible developer for each unsuccessful run. The
failure information should be available on the program printout or from the
computer operator. The error data, can be derived from an analysis of the
program output. (It is possible that a failure can be caused by more than one
error, list them all).

1. Use program mnemonic.

2. This time is start time of computer execution from the computer printout.

3. Check box which most nearly describes'the failure indication. If other is
checked, briefly describe failure.

4. The count under the error category means number of errors not number of erroneous
statements.

A. Examples of COMPUTATIONAL ERRORS include: (1) Incorrect operand in
equation, (2) Incorrect use of parenthesis, (3) Sign convention error
(4) Units or data conversion error, (5) Computation produces an over/under
flow, (6) Incorrect equation used, (7) Precision lost due to mixed mode,
(8) Missing computations, (9) Rounding or truncation error and loop.

B. Examples of LOGIC ERRORS include: (1) Incorrect operand in logical expres-
sion [2) Logic activities out of sequence, (3) Wrong variable being
checked, (4) Missing logic or condition tests, (5) Too many/too few state-
ments in loop, (6) Loop iterated incorrect number of times (including
endless loop).

C. Examples of DATA INPUT ERRORS include: (1) Invalid input read from correct
data file, (2) Input read from incorrect data file, (3) Incorrect input
format, (4) Incorrect format statement referenced, (5) EOF encountered
prematurely, (6) EOF missing. .

D. Examples of DATA HANDLING ERRORS include: '(1) Data file not rewound before
reading, (2) Data initialization not done, (3) Data initialization done
improperly, (4) Variable used as a flag or index not set properly,
(5) Variable referred to by wrong name, (6) Variable type is incorrect,
(7) Data packing/unpacking error, (8) Sort error, (9) Subscripting error.

E. Examples of DATA OUTPUT ERRORS include: (1) Data written on wrong file,
•(2) Data written using wrong format statement, (3) Data written in the
wrong format, (4) Data written with wrong carriage control, (5) Incomplete
or missing output,' (6) Output field size to small, (7) Line count and
page eject problems.

F. Examples of INTERFACE ERRORS include: (1) Wrong subroutine called,
(2) Call to subroutine made in wrong place, (5) Subroutine arguments not
consistent in type, units, order, etc. (4) Subroutine called is nonexistent.

G. Examples of ARRAY PROCESSING ERRORS include: (1) Array not properly
dimensioned, (2) Array referenced out of bounds, (3) Array being referenced
at incorrect location, (4) Array pointers not incremented properly.

H. Examples of DATA BASE ERRORS include: (1) Data should have been initial-
ized in data base out wasn't, (2) Data initialized to incorrect value in
data base, (3) Data base units are incorrect.

I. Examples of OPERATION ERRROS include: (1) Operating system error,
(2) Hardware error, (3) Operator error, (4) Test execution error.

J. Examples of PROGRAM EXECUTION ERRORS include: (1) Time limit exceeded,
(2) Core storage limit exceeded, (5) Output line limit exceeded,
(4) Compilation error.

K. Examples of DOCUMENTATION ERRORS include: (1) User manual error, (2) Inter-
face spec error, (3) Design spec error, (4) Requirements spec error.

L. Briefly describe the error(s).

: Figure >4b '

The principal measurements derived from the data are the

failure ratio and the failure rate. The failure ratio is defined

as

U = F/N (1)

where F is the number of failures observed in N runs. The

failure rate is defined as

u = F/t (2)

where F is the number of failures observed during t seconds of

CPU time. These failure metrics, and particularly their

complement, the reliability metrics,

R = 1 - U = S/N (3)

where S stands for the number of successes

and MTBF = t/F (4)

are analogous to commonly used hardware reliability expressions.

The relation of these metrics to those used by other researchers

in software relability is described in Ref. 4.

During the development phase the dominant computer usage is

frequently for compilation and related activities. Under these

circumstances, computer time used during a run is approximately

26

proportional to the length of the code submitted(2). This

relationship has significant effects on the failure rate data

presented and will be commented on further below.

Failure of a computer run can be due to three major causes:

(1) hardware faults or errors by the computer operator, e.g., in

mounting the wrong tapes; (2) faulty interactions, specific to

that run, with the data base or with the operating system (e.g.,

caused by control cards); and (3) errors in the code itself. The

first category has been termed "Operation Error", and, although

run analysis and failure analysis forms were completed for these

cases, they were not considered in the failure ratio or failure

rate measures (i.e., they affected neither numerator nor

denominator of these fractions). Failures due to (2) and (3) are

reported as "Total Failures", while the term "Program Failures"

pertains exclusively to those in the third category.

A typical graphical representation of these quantities has

already been presented in the overview (Figure 1). The central

tendency of total and program failure ratio has been commented on

there, and the constancy of these ratios over a period of time

has been interpreted as making them useful for reliability

measurement.

(2)During test and operation the CPU time is dominated by the
execute step. This is less directly bound .to length of code
because of time spent in loops, I/O, etc.

27

Another way of evaluating the plots of software failure

ratios is to compare them to equivalent plots for hardware. For

this purpose, reliability data on a guidance set were obtained,

and the failure ratio was defined as the number of sets failing

in a given month divided by the number of sets in the field

(approximately constant over the period). A comparison of such a

hardware failure ratio with the total software failure ratio for

LSDB is shown in Figure 5. A significant conclusion from this

figure is that the deviations about the average value are about

the same for both plots. The hardware failure data was reported

in a logistic planning document and had been used for predicting

the quantity of spares and number of repair crews required. This

suggests that the month-to-month variability of the software data

should not present a major obstacle to their serving for useful

reliability forecasting. Also, the similarity of the two failure

ratio plots permits one to speculate in a general way about

combining hardware and software failure ratios. (The two

specific plots shown here pertain to completely different

equipments and environments; it is not appropriate to combine

them.)

In addition to the similarities, the two plots in Figure 5

also exhibit a significant difference: the software failure

ratio shows a decreasing trend with time over the interval shown

whereas- the long-term trend for the 'hardware failure ratio is a

28

Figure 5. Comparison of Hardware and Software Failure Ratios

29

constant independent of time. A decrease in the failure ratio is

of course what one expects to see as the software reliability is

improved during development.

Formal reporting of the trend with time is a potential tool

for demonstrating progress to management and contracting

agencies. For this reason, plots with trend lines (obtained by

linear regression) were developed as shown in Figure 6. Trends

for both the entire interval and just for the last six months

seemed desirable as measures of progress. To avoid overly

complex presentations, it was therefore decided to separate the

plots for total and program failure ratios. Note that the trend

lines in Figure 6, particularly the one for the last six months'

period, indeed show a desirable decrease in the failure ratio.

Below the plot is printed the 90-percent confidence interval

for the slope of the regression lines. This shows that there is

only five percent probability that the overall trend is less

negative than -0.0069 (-0.0073 + 0.0004), or that the six-month

trend is less negative than -0.0110 (-0.0123 + 0.0013). The use

of the t-distribution permits calculation of other confidence

intervals. E.g., there is only 0.5 percent probability that the

six-month slope is less negative than -0.010. Either the point

estimate of the slope or an upper confidence limit may serve as a

useful management tool for control of reliability during software

development. Experience with several other development projects

30

n "TOTAL FAILURE RATIO ~
(OVERALL RATlOL t̂t

o,LINBpEGRESSION - _
* LASf 6 MONTHS LINEAR REGRESSION.

p'

*

CONR
CONF

* „.„ - .. .• ,M-

INT
INT

,~ ..

.0073

.0123
+/- .0004j
+f- .0013'

Figure 6. Total Failure Ratio for All

31

is required to establish suitable time periods for the regression

and the statistical limits that should be employed.

In evaluating the trend lines it must be kept in mind that

this is a top-down program development, in which modules are

constantly being fleshed out as they are being tested so that the

actual amount of code increases for a considerable time while

runs are being made. It is therefore not surprising to see a

more sharply decreasing trend for the last six months' period

when the overall size of the code has been reasonably stable.

Figures 1 and 6 have demonstrated the central tendency of

failure ratio measurements, deviations about the expected value

due to random events, and more pronounced deviations when the

project life cycle exposes the code to a higher stress level. It

has also been shown that, despite these deviations, a trend in

failure ratio can be clearly depicted by linear regression lines.

Failure ratio plots can also highlight unusual events that

affect individual elements of the computer program as shown in

Figure 7. The utilities have already been introduced as a

collection of small subroutines' within the LSDB Program. The

initial three months of coding showed a normal failure ratio

history, and after that the utilities seemed to be exceptionally

failure free through September. Runs continued to be made on

these subroutines during these months as shown in Figure 8.

32

n PROGRAM FAILURE RATIO
HERALt .0378}

o LINEAR REGRESSION
* LAST 6 MONTHS

.OD41'+/- .0001

.012014V- -0003

Figure 7. Program Failure Ratio for Utilities

33

n T A L R U N S 1
o CHANGES X 0.01

-A J J ! A S O N D J

Figure 8. Total Runs and Total Changes for Utilities

34

Beginning in October 1976, Figure 7 shows a sharp increase in

the failure ratio, and fairly high failure ratios have persisted

through January 1977. As can be seen in Figure 8, the number of

changes increased above the previous level in the summer of 1976,

and a high level of program runs and change activity has

continued ever since. On inquiry to the developers it was found

that a major change in the utilities format was required by the

concurrent development of another MIPS segment that uses LSDB

output. Also, the addition of new coding during LSDB development

put additional stress on the utilities. Events of this nature

are, of course, not uncommon in any major software development.

The ability of the failure ratio plots to highlight the effects

of changes and other occurrences on reliability has considerable

potential as a management tool.

That runs made early during the coding period involved fewer

instructions than those made after the module was completed(3)

can be seen by comparing plots of failure ratio and failure rate

for a given module. It will be recalled that failure rate is

based on a measure of computer time that is a function of the

length of the source code. Thus, the overall failure ratio trend

(3)Each module consists of a number of elements (50 to 100
statements long). Initially some of these elements were
"dummied" and then replaced by full code as the details were
defined.

35

line shown for the LDG module in Figure 9 would indicate that no

improvement in failure ratio has been observed for this module.

On the other hand, the failure rate plot in Figure 10 shows a

steady trend of improved software reliability throughout this

period. For the latest six months, both figures indicate that a

sizeable reduction in the failure experience has taken place.

Under conditions where the size of the code is expected to change

materially during development it is therefore concluded that

reliability measurement based on failure rate (where computer

time is dominated by compilation) may provide a more

representative index of reliability.

36

P [PROGRAM FAILURE RATIO

o j LINEAR REGRESSION
* [LAST 6 MONTHS LINEAR REGRESSION

D J
1976

~ - •

-.0006

Figure 9. Program Failure Ratio for LOG

37

o PROGRAM FAILURE RATE
((OVERALL: .2914): 1

P LINEAR REGRESSION
j*|AST 6 MONTHSLINEAR REGRESSION

.0627 -H4^ .0380;

Figure 10. Program Failure Rate for LDG

V. VARIATIONS BETWEEN MODULES

Failure ratios and failure rates for the major modules in

LSDB are summarized in Table 2. The mean and standard deviation

for the module values of these quantities are shown at the bottom

of the table. The current number of source statements and number

of runs accomplished to date for each module are also shown.

The first observation is that within each failure ratio

category there is a remarkable consistency. The highest failure

ratio in no case exceeds twice the value of the lowest failure

ratio for that column. (In hardware reliability tests for

different lots of a given device type it is not uncommon to see

two-to-one variations.)

At first glance it would appear that the program failure

ratio, yielding a smaller standard deviation, furnishes the most

cohesive measure. It must, however, be considered that the mean

for the program ratio is considerably lower than the mean for the

total failure ratio. Under these conditions a more meaningful

index of variability is furnished by the ratio of standard

deviation to the mean, which is also called the coefficient of

variability. This is listed in the last row of the table. By

this criterion total failure ratio furnishes a slightly more

stable index. The ratio of program to total failures is also

fairly constant between modules except for the last module, BDT,

39

00

H

I*
PH

S
H)
to
>H

H

«
$
r^
W

•P t J

w
HH

!=>

P

O2
rto
t-T>

rH
• iH

n)
PH O

• H

"nj %

<u
nj

PH

O
rH

• rH

r
rH.

O
• rH

cd

0)
rH

I— 1
• iH

rH

O

o
rH

O .,
0 H
0 C
rH tU

rH ClJ

P-i W

•-1 f-1

(tt ~" —

Sft

rH

0£

O
rH

i — 1

cd
"o

4J l̂!.

rS^

rH

bo
O
rH

PH

|

n)
O

EH

O CO
C

O -yl

*7 rH

CO
.. -4-1

S
o

u
rc

e
S

ta
te

m

0)

0

s

00

o
o

oo
CO

0

rH

00

0

NO

NO•
o

rH

CO

O

co
o

o

in
NO

00

o

QN

CO
OO

00

o
COa

NO

CO
o
o

5
m

o

ON!

o

«NJ

NO

•
o

NO

"Sj*

o

I— H

oo
o

o

•xt1
r—
1-1

o

CO
oo
00

CO
00

o
Q
J

m
o

o

o
m

o

o
CO

o

in
r^
.

o

o
•*
o

r̂-
o

o

in
oo
"~l
o

0
CO
CO

in

CO
CO

n
P

o
o
o

CO

m

o

CO
CO

*

O

rr̂^
.

o

CO
•st<

o

NO

o
o

oo
r~-
rH

O

f^-

00
i-H

rH

PU
P

in
00
i— i

0

CO
NO
,

O

CO
xD

*

O

o
o

•
1— 1

CO
NO

o

o
00
1— 1

o

o
O"N

rH

o

oo
o
rH

rH

00
in
•—<

H
P

5

f^

CO
i-H

r-H

NO

00
o
oo
i-H

1— 1
at
"o
H

m
•

o

NO

•

O

r-
oo
o

o
00

a
n)
0)

in
rH

•

O

O
•

o

co
CO

o

CO
CD

<D

I
(U

0)
Q

cn

in
•

o

o
oo

oo
oo

I-H
•

O

nj

(U
• rH
O

0)
o
O

40

for which program failures constitute a significantly higher

percentage. That non-program failures constitute the major

fraction of failures during development is an important finding

of this study that is commented on in Section 6.

The variability for total failure rate is about the same as

that for total failure ratio, as measured by the coefficient of

variability and also as can be determined from the total range of

the data. For program failure rate a considerably greater

variability exists (e.g. , range is three to one), this being

largely attributable to the high program failure rate for BDT.

The ratio of program-to-total-failure rate is almost identical to

that for the failure ratios. This is at first surprising, since

many errors that cause failures only in the program category lead

to abort early in execution (e.g., data reference errors). It

must be remembered, however, that the predominant use of CPU time

is for compilation and that this step can be completed without

dependence on data-related control statements.

That failure rate normalizes for program size (compared to

failure ratio) can be seen particularly by the relative ranking

of the LSO module, the largest one in this group. It has the

highest total failure ratio and the second highest program

failure ratio, but ranks second lowest in total failure rate and

lowest in program failure rate. Also, the relative ranking of

BDP and LDI is reversed between failure ratios and failure rates,

' 41

as would be expected due to the larger number of statements in

LDI.

A direct normalization with respect to number of statements

for the total failure ratio is shown in the last column. The

variability in this column is greater than for the non-normalized

cases, as can be seen by both the coefficient of variability and

the total range (here greater than three to one). Also, one is

led to the surprising conclusion that normalized failure ratio

decreases with program size. A number of explanations can be

offered for this: the exposure to non-code-related errors is the

same for each module regardless of size; the division of the

program into modules is governed by concepts of equal complexity

of computation and not by estimates of lines of code; or,

finally, that small modules receive less attention. None of

these hypotheses completely explains the observations.

The somewhat anomalous data for the BDT module in this

comparison led to inquiries of the developers for a possible

explanation. Lack of attention to this module or assignment of

it to inexperienced personnel were clearly ruled out by their

findings. It was, however, noted that this module contained the

most difficult algorithms, including many coordinate conversions,

and that accounted in their opinion for the observed

characteristics.

42

The listing in Table 2 shows that the larger modules had been

subjected to more runs than the small ones, and it was suspected

that this might introduce a bias in lowering the failure ratio

and failure rate of the large modules. For this reason, the

summary of results for exactly 100 runs on each module was

prepared as shown in Table 3. This shows only very modest

changes in the failure ratio and slightly larger ones in the

failure rate from the overall data in Table 2. The total failure

ratio is seen to be only slightly higher for the large modules

than for the small ones, while program failure ratio seems to be

almost independent of module size. Failure rate, on either total

or program basis, also shows no clear trend that would indicate

that module size has a major effect. Further internal analysis

on LSDB (e.g. , in quantifying module complexity) and studies of

the effect of module size from other development environments

should be undertaken.

43

TABLE 3

DATA FOR THE FIRST 100 RUNS ON EACH MODULE

Module

LSO

LOG

LDI

BDP

BDT

Failure Ratio

Total Program

0.28 0.08

0.28 0.08

0.18 0.08

0.20 0.09

0.19 0.12

Failure Rate

Total Program

0.29

0.40

0.34

0.39

1.03

1.39

0.76

0.88

1.00 0.63

44

VI. CAUSES OF FAILURES

A gross classification of causes of failures was made when

separate plots for total and program failures were presented

(e.g., in Figure 1). The primary reason for this segregation is

that failures due to the program itself would be expected to be

carried into the operational environment, while failures due to

improper setup of a data deck or improper use of job control

language affect only the immediate execution of the run then in

progress. This does not imply that the reliability of a software

product should be characterized solely by the program failure

ratio or program failure rate. Well-designed programs are easy

to set up (and thus cause few errors in job control) and are

robust with regard to at least some of the commonly encountered

difficulties in interacting with the data base. However, this

major division was fairly easy to make, and it shed light on some

of the processes that cause software failures. It is quite

obvious from Tables 2 and 3 that failures other than those in the

program itself caused most of the difficulties during this

development phase. This is in itself a significant conclusion

but one that does not come as a surprise to anyone familiar with

the development of scientific programs against a complex data

base. The programmer is trained to devote his efforts to the

control structure, algorithms, and logic of the problem, and

45

details of data setup and job control receive comparatively less

attention. There is also, of course, the feeling that errors in

these latter categories can easily be remedied by resubmitting

the run. If reduction of failure frequency during the

development phase is to be accomplished, considerable educational

effort in this area is obviously required.

A more detailed breakdown by error categories obtained from

the failure analysis reports is shown in Tables 4, 5, and 6(4).

As originally entered on the failure analysis sheets, the "Other"

category was the largest one. More detailed examination showed

many of these errors to be due to either keypunch or Job Control

Language (JCL). When these were established as separate cases

(on the basis of explanations entered at the time the sheets were

filled out) a more uniform distribution of error classifications

emerged. As shown in Table 4, on an overall basis (for the

entire time period) logic errors were the single most significant

classification. This was followed by a fairly close grouping of

JCL, residual other, and keypunch errors. Data input and program

execution errors ranked further down, and all other categories

contributed only very minor amounts. Due to the early stage in

(4)Program errors comprise class codes A, B, F, G, and J in these
tables. The descriptions of the class codes on the tables are
necessarily brief. A complete explanation is provided on
Figure 4b.

46

r- Ssj cr- it T-I co CT> o>
r--S4 to O T-I to T-I T-I
C T) * ^ , | O O O O O O
T-I

C_| 10 ooo
t*3l it CN CM it
Q4 O OOO

S>J Cx 00 T-(0> CD
Cjl 10 & c*v O O
Sd O O OOO

Esl C7> TH it t>- CM
C_l it CM T-I O CO
CJ O O O O T-<

IJ
t-a
^c Qj r~ to CM en r-

Cof T-» co in o T-I
a; tr>| o o oooo
fc,

to
to cy in on en CN io
^ Sal vi O o to co
*-3 "^ T-I o o o o
C_ to

t~-
a; CT>

d- O T-I
a: »^)j ^ t-

ta EC ESI t- m
•^ to "-si o o
CQ
^ tH
Es CQ

CO fe|CT>t̂ CTlOlitt̂ CO
O E^| O vi O O C O T - l i t
H ' • f c l O O O O O O O
Es
•̂ :
a:
t«3 t x ^ ^ T - i i n r - T - i r - m t ^
a: "SJ T-I .a- t>- o it omo
is S3 o o o o o ooo

Ĥ
•s:
b.

aj iHt- to U>T-IT-I r-r~co
CVJ VOT-I O OT-IT-! T-lT-llO
•S3 OO O OOO OOO

aj co to co in in
^ to tn in co co
S3 o o o o o

to
to

Q a, ha
=s Es t.
**: a> -s:
se Cj fe.

a:

o
H
Es
E3 ft:
t_ o
to H

to X Es
co Ss ba •s:
to to Es :
-=c H S: ss '
CQ E-, •<?: ca

•̂ c a; 5; cq
•s; ft; e> Si fa
Es ba c, c_ a:

fei

cr> T-I •*-* co T-I
o in T-I o o
o o o o o

T-i CO CN O CM O>
O O T-I CO CM CO
O O O O O O

terf

47

t~- ^J f^- iO CO CN CO CO
r~- »^J & o T-I co CN T-I
oi'-al o o o o o o
T - I ! . . . • • • • •

c_(o> o o o
tjj in T-I co in
cy o o o o

fc^J f- CN co r~-
Ol to A o T-I
fed o o o o

Esl t~- d- co T-I CN
Cj.| m co CN T-I CD
Ol o o o o o

CO •
63

CJ ftj J- t̂ - O> CN
O 63l CN 3- in T-I
5: col o o o o

O

til co T-I o co
co Eal =t T-I co CM
co ^ T-I o o.o

u3 t*-
C_ C7)

m T-I • •
ft; k l̂ o> co

63 o tj» T-I A
»-3. ft; "~B| T-I o
C Q C t ; • • • • • • • • • • • • •
•̂ 63

oa a ^ T - i T - i T - I T - I C N T - I C O
S J T - I C N T - i T - i ^ - T - i m

c o * - s l o o o o o o o
o «

f t ; ^ O T - l T - l T-I THO
•̂ J CN in T-I UD in T-I

63 5 3 O O T T I o oo
ft;
•̂

r-«j

^c ft̂ co co co co in in in in in
fei ftj mo O OT-IT-I T-lT-ir-

•^3 oo o ooo ooo

f t 3 o o o o
^3 (O (O IO ^
53 o ooo

6310

6s
«OJ t)
tol ft,

C5 Co S> S;
ft: to e> O
*~s 6s 63 63 *—(

Es ^ Ei C_ Co N; E,
t iCjft,t»3C,63!%:63V:
ft,a:6-,C.ft;CoO Es ft:
ft:'^;S3l«i:ft,'s:^~(5:fe: Cj
Kf t rO& j C Q 6 s ^ c 6 j f t :

a; t>s -̂ c ft; 5: ft; s>
•55:'^: 's:63'^: -s;ft;c^3£36t3ft,
E - ,EsEsEsf t :Es63OC^t t :> - (

mcn^- T-I T- iz tco J-mio
omt-i o OOT- I C O C N C O
ooo o ooo ooo

ft}

631

63)
tj
01

bjft;ft;oft:

48

r- fed

en
to
o

CO •«-< T-i
si- T-< <N
o o o

Cll

o
CSi
o

o o
.=»• CM
o o

tO
LO

o

CN
o

(T> O)
x-l O
o o

to
fc>
H
E-,

E-4

CU
tal
tol

in
CO
o

en

CO
o

to

o o
zJ- oo
o o

to
r-

tO

Co
v-3
Kl

a;
c>
a;

to
c>
H

t-t rrl
CN CN
O O

ev 10
o o

to
to

tes
O
H
Es

CO CO
=*• d-
o o

.=!• =t A
Oi CS* O*
o o o

Es --3 S> O to Sx Es
SsdOck iC j&ass fc i ' q :

CjJEs 0, fe Es C: a; to O Es £C

Es H C e O t t I O j E s ^ t c !fe
ColSsCi a;&s ^a;5S:Q;t3

H'^'^'^fei '^ '^ajt iSjCodi

53

(O
CO
CN

C4

& O tM
O O O

X- 3- lf>
CN rt =t
O O O

C4

49 "

the life cycle when these data were taken, interface errors and

documentation errors were not encountered at all. Distribution

of the errors over the 11-month interval showed only minor

trends, most noticeably in that input errors ceased to be

encountered after the first three months. Among the major error

types, however, the relative standing remained almost unchanged

throughout the development period. Comparison of Table 5 and 6

also shows only minor differences between the modules and the

utilities. JCL errors were encountered in greater frequency

among the latter, which is not surprising since the utilities

interact more closely with the overall control structure of the

computer system.

For some error categories, a comparison of relative

frequency with errors found in an earlier study5 could be

made. For this purpose the data input and data output categories

were combined into an I/O error classification, interface and

execution errors were combined into a single category, and data

base and global variable errors (the latter reported only in the

comparison study) were also combined. The resulting relative

frequency of errors is shown in Table 7(5). The columns headed

(5)The relative frequencies are computed for only those errors
for which comparable classifications could be established.
Some LSDB and some TRW errors were not considered in computing
the percentages.

50

TRW2, TRW3, and TRW4 relate respectively to Projects 2, 3, and 4

reported in Ref. 5. In all cases, logic errors comprised the

highest percentage, althô P̂̂ pî ^̂ iems to be exceptionally high

for the LSDB population. -At t*ie« other end o£ the scale,
'•*liiSR^CMjfi^T r«T

computational er rors Jwere th^llfaitf^fagrife'le-afnt or second least

"~ £?* J83&, >~ _ _ssignificant in all (ĵ ŝ̂ .p̂ li|î ?-̂ vê |̂lĵ o'|iclusion is that the

relative frequency of errors encountered during this study is

roughly comparable with that found in earlier experience.

TABLE 7

RELATIVE FREQUENCY OF ERRORS (in percent)

Source

Error Category

Computational

Logic

I/O Error

Interface/Execution

Database/Global Vars

LSDB

4.15

66.33

10.68

15.58

3.27

TRW2

17.23

27.23

16.60

20.11

18.83

TRW3

11.49

30.51

23.41

20.22

14.36

TRW4

2.37

47.46

12.2034

25.76

12.20

51

Page
Intentionally

Left Blank

VII. FINDINGS AND POTENTIAL APPLICATIONS

*

Significant findings of this study are that software

reliability measurement during the development phase is possible,

that the forms utilized' here captured significant data, and that

they could be conscientiously filled out by the development

personnel. Of considerable immediate interest is the stability

of the failure ratio and rate quantities, both as a function of

time and between modules. This implies promise for use of these

quantities in estimation and prediction of software reliability

in the operational phase.

The setting up of a computer data base for accumulating the

software measurement data and the summary routines generated as

part of that effort provided great flexibility in data

presentation, and the resulting plots illustrate the significant

processes at work. The inclusion of trend lines, based on linear

regression, further helped in emphasizing the essential

information content of the data base. The use of moving trend

lines, covering say the most recent three to six months data, as

a management reporting tool seems to have obvious promise.

The fact that almost two-thirds of the failures reported

were not due to errors in the coding proper is an important

finding of this study. It leads one to believe that more

education in the mechanics of run setups, data referencing, and

53

other interfacing with the computer system would be very

desirable in minimizing errors during the development phase,

speeding up the development process, and increasing programmer

productivity.

As the month-to-month variation in failure ratios and

failure rates indicate, software development is not a completely

deterministic process. Random factors and not-so-random factors

can cause appreciable deviations from the smooth convergence to a

zero-failure-rate situation.

These findings suggest that software reliability measurement

as described here may produce data for the following

applications:

1. For the Line Management the failure ratio or failure

rate may identify reliability problems that may reside in program

modules or in organizational units or individuals. The trend

lines described in Section 4 of this report may be particularly

useful for this purpose. The analysis of error types may

identify the critical program development phase (analysis,

design, coding, etc.).

2. For the Project Manager, experience with software

reliability measurement over a number of projects can guide cost

and schedule allocation between various steps of the development

process, particularly between analysis and test. Such

measurements may also be significant in evaluating whether budget

54

or schedule constraints ŵ a.̂ ĵ R̂̂ t̂he attainment of a given

reliability goal fojr^the computing function. Failure rate

measurements may ̂e^ ̂a'r̂ k4ui.ŝ l̂ ̂ĝ ^̂ l̂ ta in hardware/software

tradeoffs. vj; ,*$n , «* f* &*'** -i #̂e, »

M'ftfeSdi3. For functional management (TnW"fldirector of software

development or an equivalent staff function) , reliability

measurement can be used for the evaluation of development tools

and procedures. In test of critical software cost can be

staggering, and software reliability measurement is expected to

be particularly useful in identifying good test practices and

tools so as to reduce these costs. It may even help with that

most baffling of all questions: when to stop testing. Also,

consistent implementation of software reliability measurement for

several projects should yield a reliability growth model that

permits early indication whether reliability goals will be met.

4. For regulatory agencies failure rate measurements may

be a key element in determining that safety or availability

criteria have been met. In mosts cases the criteria will be

aimed at the computing function as a whole (or at a higher

system) rather than at software. The compatibility of the

software failure rate with conventional hardware reliability

indices will be particularly useful.

55

Page
Intentionally

Left Blank

VIII. WHERE DO WE GO FROM HERE?

The valuable baseline that has been established on the LSDB

Program during the development phase makes it very desirable to

continue the process of reliability measurement on the LSDB

program into the operational test and user phases. The absolute

level of failure ratios and failure rates that were seen during

the development can be translated into meaningful quantities only

if they are related to similar measures in the actual usage

environment. It is also proposed to accumulate similar

measurements on another non-real-time program that will be

developed under MIPS in a non-structured programming environment.

Although no two programs are exactly alike, a comparison would

obviously furnish some insight into the value of the structured

program techniques. It is further intended by use of a much

simplified data collection technique, relying primarily on data

accumulated in the operating system, to conduct software

reliability measurement on a major operational ground computer

system supporting a NASA spacecraft.

All told the data recorded here, together with what is

expected to be learned from the scheduled activities in the near

future, form a good basis for performing software reliability

measurement during the development of critical programs both as a

tool for the management process and as a forecasting device for

57

the operational reliability of the resulting systems. We also

hope to have accumulated a data base here that can be used as a

starting point for further research.

58

REFERENCES

1. M. J. Merritt, et al., Characteristics of Software Quality,"

Report 25201-6001-RU-OO, TRW Systems, Redondo Beach, CA

(December 1973).

2. MIPS (Metric Integrated Processing System) Performance and

Design Requirements, System Segment Specification, MIPS-

1023-3117-C6, Data Processing Directorate, Federal Electric

Corporation, Vandenberg Air Force Base, CA, Contract No.

F04701-72-C-0203 (29 November 1976).

3. J. P. Johnson, Software Reliability Measurement Study,

SAMSO-TR-75-279, Aerospace Corporation, El Segundo, CA (8

December 1975).

4. H. Hecht, Measurement, Estimation, and Prediction of

Software Reliability, NASA CR-145135, National Aeronautics

and Space Administration, Washington, DC (January 1977).

Also in Software Engineering Techniques, Infotech

International Ltd., Maindenhead, Berkshire, England, (1977),

Vol. 2, p. 209-244.

5. T. A. Thayer, et al., Software Reliability Study, Final

Technical Report, 76-2260.1.9-5, TRW Defense and Space

Systems Group, One Space Park, Redondo Beach, CA, Contract

No. F30602-74-C-0036 (19 March 1976).

59

APPENDIX A

BACKGROUND DATA FORMS

One unique feature of this Software Reliability Measurement

Study is the great amount of information collected which

describes the environment under which the Launch Support Data

Base (LSDB) software is being developed. This background data is

of particular value for future comparisons of the reliability

parameters obtained here with those from other sources. The

background data is contained in five report forms: the General

Project Summary, the Management Methodology Summary, the Design

and Processor Summary, the Programmer/Systems Analyst

Questionnaire, and the System Development Log.

The General Project Summary (Figure A-l) provides an

overview of the LSDB software development efforts. LSDB is a

level-of-effort contract providing non-real-time software (part

of Prelaunch) for Project MIPS. It is being developed on an IBM

360/65 computer with the following configuration: 768K bytes of

memory and 2 million bytes of Large Capacity Storage (LCS).

The function of LSDB is to prepare and update the parameters

required to support missile and spacecraft launches at SAMTEC.

The total development time for LSDB is about 21 months (64 man-

months) , with a scheduled completion date of July 1977.

Following the July date (completion of Development Test and

Engineering) the LSDB software will be subjected to configuration

audits (functional and physical) and then integrated with the

MIPS Missile Flight Control software through December 1977. On

A-l

rt
Q
M
J

S
Y

S
TE

M

sJD

OJ

^H~

S£2

>.
g

Is
PH H

el °
i

o
r-
o

CO

D
cu

A!
In
O

^

a

a
T

CO
CU
G
rt

t/T
c

CO
cu
>.

m
ill
io

n

M

£

e
s

m
e
m

c

rO

oo
SO

r-

m

0̂

ro

S
«
i — i

CJ

a
3

13
SH

rt
S ^
CD
4-* *

!x "
C/} T3

4-> rt
U JH CU
CIS CD K

4J 3 -0

O fc5 ni
CJ O o
<4-(^
0 4J m-
«' S> EH
a, JH p;
fP £ 0

cu
a

"̂cS

. !->
1

O
c

•5
IH
CU
'O

3
t_H
O

U
rt
to

•|H

ffl

P

si

p
a

ra
ti
o

n

cu
M
G,

cu
CO

ni

1
-LJ

,̂
O
G,
a
3
CO

X!o
3
rt
J

ni
a
CO
rt!

CO
CU

CT

1
O
cu

a

fia
ni
^
0

G,

m

,<_j

o

to

M

• lH
CO

ao
CU

cu

a
>rH
cu

to

JJ
I-H

A
3
-M

CJ
cu
"~to
h
n.

g £
•H o

a. — ~•H EH
{j P5
tn z
CU i_-
Q

4-> R
u JJ

•j? «.
p, CO

c
cua
b£
cu
CO

cu
1

,

tt
(U
»-(

(y

>!

T3
cu

cu
. fi

CO

cu

rt
JH
ni
Gi
i — i
It

CO
cu
rt

G

Tl
a

p
a

re
s
 a

cu
G

«
P
OT

a
<u
tn

tn
i — i
rt

O
•iH

-)-}

rt
IH
cu
G
O

rt

o

(B
ID

S
).

a
<u
tn

tn

i
d
is

p
la

y

n

.2-LJ
ni

a
IH

"s
G

i

CJ

rto
r
1
^

cu
•fj

a
rt
w
p ti — i
S
_,j
CJ
V

• 1— 1
0

PH

"o

w"
H

r̂-
r-

«

(S
T3
JH

tw

o
0>

'2
OH

TJ

2

-4J

'W

O

CO
XJ

R
Oa
i — i
<M

CD

03
cu
"*-*
— <

bi
C

a
dv^
rt

b
O
In
G

in
•

CO

to

"rt

rt
C
bl

'tH

to
CU
ts

s
u
p
p
o
rt

,

r-H

CU
w

1
 m

a
n
a

CO
cufi

.rH

-l->

o

CO

to

PH
in
M

i-l

g +
S iri

t3 to
<D t-iIt IT?

to
"rt

R

a
cu
CO
3
O
in

4.J

CO
cu

m

CO
CJ
cu

CO

o
CD
r-l

CO

cu

o
o
r-t

g

^
cu
bi

3

R
1 — '
L

_o

(a
s

s
e
m

i

J

n
o
o
o

H

O

o
o
o
^

to
cu

1 — 1

CO

cu
CO
rt
XI
rt
-M

rt

i — i

tn

cu
O
rt

CM

IH
CU

"fi
'H
IH

_G

to

O
G
cu

Tf

tn

w
-Sa
d

rt

bi
O

G

^J*
xO

to
CO

"rt
R
rt

o3
R
bi

• H
CO
CU

00

CO
cu

00

u
p

p
o

rt
,

CO

-0

.

a
bo

8
rt tn o UH ^H

4-> C BH

CO

3o

o
vO
m

o

p! O 4J tn E-i

o 2 ~ 8 1 a O
a « 2 S ° « 4 - . 4 - . > i < ^
e i - H M n - c c f i ^ o

• H 4 - > 3 O I - H C D < U S U

' c ? b f l ^ t j u j ^ ^ C
JH JH t̂ -(Ctf JH *H >H JH 4J O
O O , O O H C U Q Q O S ^

" c s o c o o i o o i i a

" • H O fe I .fe S « S * 2 U

i s ^ l ^ ' i o ' i ' i ^ ^ ^
4^ 3 4™* tZ O *y C-H ^ 2^ c,̂ c_, ,_H;c /) Q i n < ^ ^ * - * ^ ^ . H

•r- > •!— > CS -H -H -H -H -H -H -5 -5 en

Figure A-l

A-2

1 January 1978 the LSDB software is scheduled to become

operational.

A total of six full-time personnel were involved in the LSDB

development when the report forms were completed, but this was

subsequently reduced to four. LSDB consists of five modules (6)

(LOG, LDI, LSD, BDP, and BDT) and was originally estimated to

require 4000 lines of FORTRAN code and 1000 lines of assembler

code. About 360 hours of computer time have been estimated to

complete the job. The General Project Summary is supplemented by

the Program Schedule (Figure A-2).

The Management Methodology Summary (Figure A-3) describes

the rules under which the development must be done and the

outputs from the project. The development effort is being done

in compliance with MIL-STD-483 (Configuration Management

Practices for Systems, Equipment, Munitions, and Computer

Programs) and modified by the Implementation Plan for Advanced

Programming Techniques on the MIPS Project (TD-75-1392). This

modification has been included to provide structured programming

techniques (Top-Down Design, Chief Programmer, Librarian, Top-

Down Test, HIPO, Structured Code, Structured Walk-Through) to be

used extensively through the LSDB development. The Preliminary

Design Review (PDR) of the software was scheduled for June 1976,

with the Critical Design Review (CDR) being September 1976.

(6)There were originally six modules, but BDT and BDR were
combined into BDT.

A-3

a <£
<

6 z

°?

S5:
o

u </»

Bs!

%
? °-

o o
in o

</>
m

<R

ui|o>01

u o o. a: cc

33

cc a:

CC

(-•JO

• (U
J!
o

CO

s i
nJ :

W)•t-i

A-4

CO

CU

.2)'c
45
0
<U
H
tx.s
g

a
2
o

ft!
Tl
4)
0

id

T!
<tj

O

j3

"rt
ft

o
•T-4

.s
~c
D

§t_ ip.
a

rvj

ro
r- i
I

in

P
H

V)[%
c

JH

'3

0^
$-4
O

u
CD tf)

• i—j r*
0 O
î -H

^•H

a-^
^ o
rtl O i

4n W

fi rH
O t8

bO
*rt j— i
CU -H
t/1 T3
D 3

rH
</) O

<H C
0 l-H

ed
ur

e/
T

o

n
e
ra

te
d

1 s
1 ag <u55 (->•;
00
Cu ^^

S 13

O O O O O
2 2 2 2 2

D D D D D

en t/i c/) in en
CD CD <D 03 CD

tHrf ftrt • i • r . .
[3 O O [3 rl

f T pr [T rr pT

O O O O O

CD OJ CU CU CD
•H -H -H -H -H
rH rH rH rH rH

& & & & & ^0

C/3 CO CO CO CO O
f-H

CJ
CD
a

CO
-4-)
cI)
a
a
0

CU

P

O
CU

CO
.1-1
o
3

TJ
0

P^

R
ni

i — 1

ft

co
cu
H

:e
d

u
re

s

u
o

"CD
cu
H

-M

O
a

(S
i— i
a}

•r-i

0)

§
l-n

?

,g

î— i

S

TJ
(1)

3

,_j

r^
-u
CO

rtp

vO

o

J *

a
0)
co

'J
£

r̂— <

nJ

-0
cu

3

r̂\

CO

P
U

0)

•3
2
O

> ^
<U Q

/ — \ r — \ t — -N f — \ i — \ ^ CO
rH r-q to r̂ in a> j

t\j
ro

• i— <

in

P̂

>

rr-«
(J

•r-l
O ^32: o
D S

m
00

V) ,

s 0 1n j
r-l

•g S
CO 1A
O ^3

0 O

r4

a-
O 0)

w n w
Ji(/> g

jJJ +3
C/3

0 s.

o rti^. j i

1 1 CD rH

•rJ Hi!
35- -g

S & §
4-* •*

0 £ to
(U rH
B ^
03 3
be f±

3 i/)
cr c c
0) O O
Ci -H -H

+J 4-J
0 rt rt

PH 50 QC
•H (U

</> C
<u o P-.
E- CJ <

i — i
u
ft,
u
CQ
P
CO

~1

0)
rH

•s
S-i

•H

«

•«->

5

rt

rt
^
v>
o

I/)
0)

P
ro

ce
du

r

Q en
CU

O -H

nS -H
S rH
4-* «H

w i£

ro
i

(U
h
rJ00

O

J?
PH

O
Wl

CUa.

A-5

However, both dates were extended three to six months, and the

CDR was divided into five sections (one per module).

The output from LSDB consists of a Development

Specification, a Product Specification, a Test Plan, Test

Procedures, and a Final Report. All documents are a part of the

Contract Data Requirements List (CDRL).

The Design and Processor Summary (Figure A-4) primarily

provides information on the IBM 360/65 computer. The software is

being developed on the same computer that will be used

operationally. Development jobs are submitted in both over-the-

counter batch mode with a 24-hour turnaround time and by remote

terminal mode with a two-hour turnaround time. The operating

system being used is OS/MVT Version 21.7 with the optimized

FORTRAN H compiler and the Level F assembler. About 90 percent

of the total code has been written in a High Order Language

(FORTRAN and S-FORTRAN), with the remainder in Assembler

Language.

A separate Personnel Profile exists for each programmer/

analyst/librarian associated with LSDB development, and a sample

is shown in Figure A-5. A summary of all Personnel Profiles is

shown in Figure A-6. The typical programmer had eight years

programming and analysis experience, a college degree with two

years postgraduate training, has worked on similar projects, and

is familiar with a wide variety of programming languages.

The Librarian's function is to submit jobs for the users,

maintain statistics on the system, and generally to relieve the

programmers of many of the administrative tasks associated with

A-6

SYSTEM MIPS/LSDB DATE 28 Jun 76

DESIGN AND PROCESSOR SUMMARY

1. Target ComputerCs) 360/65

Target Computer Same as Development Computer Yes

2. Processing Environment

3. Configuration: On Line Batch X Remote Batch X_

4. Operating Systems (s) Version 21. 7 IBM OS

5. Compiler Version(s) H FORTRAN

6. Assembler(s) 1

7. Est. Percent: HOL 90 % Assembler 10

8. Automated Software Tools Used:

S-FORTRAN
/

Librarian (Attach Vendors Users Manuals)

9. Design Standards

10. Programming Standards TD-15 (ASTROS Plan)

11. Programming Techniques Employed:

Top Down Design X HTPO X

Chief Programmer X ; :ructured Code X (mostly)

Librarian x Structured Walk Thru X

Top Down Test X Other

12. List Existing Programs/CPC's to be Used MIPLIB subroutine

13. Est. Turn around Tine (MRS): Batch 24 Remote Batch 2

Contact

Figure A-4

A-7

TD-75-1392-A
1 May .1977

TESTING SUMMARY ^

INSTRUCTIONS ^

To be filled out by chief programmer or member of independent
test group when project is ready for system test. This form
identifies testing and requirements documents. It also identifies
testing approach* tools, procedures3 etc.

1. Reference all requirements and specification documents which were
the guidelines for system development.

2. Reference all test plans/procedures the system is being tested
against.

3. Briefly describe the overall testing philosophy including debug,
computer program test, and integration.

4. Briefly describe or reference procedure documentation for verifying
coding standard adherence.

5. List formal audits and tentative dates.

6. Reference management procedures used as guideline for testing.
'•%

7. Reference quality assurance documents which describe Q& involve-
ment in testing.

8. Estimate person-hours to be expended in testing, include programmers,
testers, QA., support and management.

- /
5958

SYSTEM LSDB DATE 21 Jan 76

PERSONNEL PROFILE

1. Name or ID, JMM

2. Project Assignment (Job Title) Programmer

3. Education Level: HS 4 YRS College 6 YRS

Degree Cs) BS - Computer Science
BS - Applied Mathematics

4. Special Computer Training Courses: MS - Computer Science

a. Structure Design Date 12-16 Jan 76

b. Date

c. Date

5. Target Language(s) S-FORTRAN. FORTRAN-G. BAL

6. Years of Experience as:

Operator/Technician Analyst

Programmer x Other

7. Years of experience on:

Target Computer(s) 5 Target Language _

Operating System 5 Similar Projects

8. List Other Programming Languages ALGOL. BASIC. BOBOL. PL/lr

SNOBOL. TYDAC : ^

9. List Other Computers IBM 1620, 360/40. 360/65. 370. 7094.

NOVA 2000

Figure A-5

A-8

pq -H 00 00
-X-

in

ffi ̂ to
00

-X-

O rn pq
-x-

pq
i—i \o in

rH in ro o m

Q

0)
ao

O

U

s e

a
a
•rt

* * -x-
GO
•H

U 00 Pq r-l
* * -X-

pq

CO

W ^« r-T

ro
OT N*

rH 00

m

m

m

00 vO
0)
r-l

co

Id
en

ti
fi

ca
ti

fio

•1-1u
•iH
•4->
rH

ni
PH

pq
Q
COJ

0)
M
bO

H
ig

h
e
st

 D
e

L
an

g
u

ag
es

rt
cu
CJfi
(U

Y
rs

ex

p
er

i

o
,̂

a)

p
ro

g
ra

m
m

*
an

al
y

st

o
0)o
fi
<u

Y
rs

ex

p
er

i

01

"3ex

ta
rg

e
t

co
m

c
0

0)
o
fi<u

Y
rs

 e
x

p
er

i

CO

o
(U**— i
n

si
m

il
a
r

p
r<

^

H->
o
o

o'
£ la

n
g

u
ag

es

cu
bO
ai

rt
•J
>^

1
0)
CO
CO

<
O
fi

o
.iH
-U

n)s
rH

O

tuO
rt

rt
00 CO

A-9

program development. In this instance, the librarian has not had

a programming or engineering background and has one year of

college.

The Testing Summary is shown in Figure A-7. A significant

feature of the test philosophy is that at least three distinct

groups in the developing organization performed the tests over

the development cycle.

An example of a HIPO chart is reproduced in Figure A-8. It

shows the function of the major modules within LSDB. The BDR

module referred to in that figure was during the coding phase

combined with BDP.

A-10

SYSTEM MIPS/LSDB DATE

TESTING SUMMARY

1. Requirements and Specification Documents MIPS LSDB Dev Spec

(MIPLSD-1364-3119) MIPS Non-Real-Time Segment Spec (MIPNRT- 1264-3117)

2. Test Plans/Procedures MIPS, LSDB Test Plan (MIPLSD-1364-3706, Vol. I)

MIPS LSDB Test Procedures (MIPLSD-1364-3706. Vol. II)

3. Testing Philosophy (1) Structured Programming Team performs detail
Testing and debug prior to delivery to test group; (2) test group performs
preliminary informal DTfcE testing per test procedures to validate CPC
and CPCI programs and test procedures; (3) program control formally
performs DT&E: (4) fully integrated testing is performed with other CAI.

4. Method Employed to Audit Coding Standard Adherence Implementation Plan

for Advanced Programming Techniques on the MIPS Project (TD-75-1392-A)

5- Formal Audits and. Dates

FCA - 8 Jun 77 Date

b-P^PCA - 17 Jun 77 Date

c. Date

6. Internal Management Procedures for Control of Testing MIPS LSDB

Test Plan, MIPS LSDB Test Procedures

7. Quality Assurance Procedures Para. 4 to MIPS LSDB Dev Spec

Contact DCC

Figure A-7

A-ll '/

ID-75-1392-A
1 May 1977

TECHNOLOGY CRITIQUE x

INSTRUCTIONS ,/

To be'filled^ out by all project personnel as they leave the
project or when the project is complete. This form will
provide a subjective evaluation of the technologies employed
by the people who actually used ttyem.

•^. /

' ' • > . / ' '
1. Names are optional. , x

2. Person's assignment description or job title, if meaningful.

3. List time assigned to project in"months.

4. Check techniques/tools used on project, briefly describe others.

5. Honest evaluation of yjour feelings.

6. Be candid, help us define a workable policy.

7. Once again be candid, let's make the training useful.

4259

I.0 LSOB PREPARATION

MlPti

f CONTROL
OPTIONS

f
\ ANALYST

1

-̂ -̂/'MFC N,
^ LSDB \
1 TflPF I

*̂î ^ _̂ r̂

"̂ -

(MIPS /
DATA L
BASE T

/BIPS\
[LSDB)
I TAPE /..

•V

^

1
/-•(
1̂
<_
k
~

it
^

C * V-VV

(̂'

0-

0i

(t)~
t
V

I .

1
9

•3

/.

c.

IN ITI AL 1 2AT 1 ON

2.0

LSDB
GENERAT ION

3.0

LSOB

(LSO)'t.O

BIDS LSDB
PREPARAT ION

5.0

BIPS LSDB
TAPE

6.0

BIPS LSDB
SUMMARY
REPORT
(BDR)7.0

A

\

r\ŷ
^

Ĵ
1

\r̂
f̂ —̂f

, |
I — 1
(* i

MIPNRC

MIPS
DATA BASE

(LOI)

MIPS
DATA BASE

(LOG)

Figure A-8. Top-Level HIPO Ghart

A-12

APPENDIX B

ASTROS

Advanced Systematic Techniques

for

Reliable Operational Software:

Another Look

By

J. A. Salazar, SAMTEC

R. R. Hall, Federal Electric Corporation

March 1977

Space and Missile Test Center
Vandenberg Air Force Base, California

B-I

ABSTRACT

The Advanqed Systematic Techniques for Reliable Operational Software (ASTROS)
project is a joint Space and Missile Test Center (SAMTEC) and Rome Air
Development Center (RADC) effort to validate the claimed benefits from the
application of modern programming practices In an Air Force operational
environment.

The ASTROS project was briefed to the Range Commander's Council in April
1976 at Patuxent, Md. by Lt. Col. Everett A. Lyons, III from a paper co-
authored by him and Mr. Robert R. Hall. At that time SAMTEC had just under-
taken the measurement of the target program, the Launch Support Data Base
(LSDB) configuration item, for this technology investigation.

This paper relates the progress of the ASTROS project in the last year.
Special emphasis is given on the management problems encountered so that
any agency which is contemplating a "structured programming" project can
take advantage of SAMTEC's experiences and recommendations.

B-2

ASTROS: Advanced Systematic Techniques for
Reliable Operational Software: Another Look

f ' .
1.0 Introduction

The purpose of this paper is to detail the progress made in the joint SAMTEC-
RADC investigation into the applicability of modern programming practices.
A little background will be given into the beginning of the ASTROS project,
but the paper will focus upon the progress of the Launch Support Data Base
(LSDB) measurement activity. The emphasis will be in the management problems
encountered and what steps SAMTEC has taken to overcome them. It is hoped
that other organizations involved in structured programming activities (or
those about to become involved) can get some value from the SAMTEC experience.

There is a genuine need for actual and reliable statistics on the value of
structured programming techniques in an operational environment. A project
needs to be thoroughly documented so that the tools and techniques used are
understood. The quantities measured, their method of evaluation, and the
variables affecting the statistics must be described. Equally important is
a description of the "normal" operational environment and the comparative
statistics gathered from its production. The management planning, involve-
ment, and support must be defined. The costs incurred in implementation,
procurement of software tools, training, continuing support and overhead to
existing operations must be recognized and documented.

We at SAMTEC are concerned with the rising costs and have been interested
in implementing advanced programming techniques in an effort to improve
programmer productivity and increase software reliability.

The Rome Air Development Center (RADC) shares our concern and also recog-
nizes the paucity of objective measurement data on the application of
structured programming. At the confluence of these objectives the ASTROS
project was born. SAMTEC is implementing contemporary technology to selected
projects and objectively measuring them. Since the measurement is objective,
infeasibility is an acceptable outcome.

1.1 Purpose of ASTROS

The objective of the ASTROS project, simply stated, was to investigate and
validate the various structured programming concepts and tools in the SAMTEC
operational environment. This investigation has been done with the goal of
improving programmer productivity and developing more reliable software.
More precisely, ASTROS applied structured programming techniques to selected
programming projects in order to validate the hypothesis (generally accepted
throughout the industry) that these techniques will yield (1) lower cost per
line of code, (2) higher quality code (less errors), (3) more easily main-
tainable code, and (4) more realistic schedules. Initially, these investi-
gations have been confined to a single processor, IBM 360/65, and to a single
higher level language, FORTRAN.

B-3

A secondary, but important, objective has been to provide RADC with product-
ivity measurements within the Air Force operational environment in order to
objectively evaluate the benefits derived in applying these techniques.
Also, we need to trade-off the extra costs for support and system overhead
needed to operate within a structured environment against any productivity
and reliability gains. .

The objectives suggested certain methods of approach to best provide an
environment for objective evaluation of the data gathered in order to pro-
vide validation of the above hypothesis. In short, "How do we prove
structured programming works without stacking the deck?" and "How do we
measure without imposing distortion on the results by the measuring process?"
The basic approach was to keep the cards on the table, i.e. (1) declare
methodology, measurement controls, evaluation criteria, expectations, etc.
prior to gathering any measurements and (2) minimize non-contributiory
measuring.

To achieve the objectives stated above, the ASTROS project concentrated on
three areas: (1) investigation and validation of structured programming
tools and concepts, (2) management aspects of structured programming, and
(3) measurement.

B-4

2.0 Background.

A little departure here to acquaint the reader with a little
background of the ASTROS project.

2.1 Beginnings.

In December 1974, SAMTEC invited representatives from RADC,
the Air Staff, SAMSO and PMR; as well as members of all the software
development companies at the Western Test Range; to a conference at
Vandenberg AFB. The purpose of the conference was to acquaint the atten-
dees with modern programming practices, often given the generic term
"structured programming". After a day of lectures and presentations, the
attendees were split into working groups to devise an implementation
plan for applying these modern programming practices in the SAMTEC opera-
tional environment. The interim reports of these working groups were
integrated and compiled into an Implementation Plan approved and published
in February 1975.

2.2 Implementation Steps.

The Implementation Plan detailed a series of phased steps
necessary in order to place SAMTEC into a stance to undertake the develop-
ment of a target project utilizing the modern programming practices and
to measure the results. It is certainly pleasing to report that each of
the steps was carried out on schedule. A brief description of each of
the steps is described below.

2.2.1 Formation of a Team.

The Implementation Team was modeled after a Chief Programmer
Team. The Project Leader was the primary decision maker and reviewer of
the rest of the team's output. The Librarians served as a funnel for
all information flow into and out of the team. Selected technical
personnel were added to the team as their functions were required.

2.2.2 Set Up a Technology Library.

A specialized "structured programming" library was installed.
The primary purpose of this library was to provide the team with all
available technology so that they could become familiar with modern pro-
gramming practices and learn from other imp!ementers experiences. A
secondary purpose was to provide a technology center for "state-of-the-
art" thinking in modern software engineering circles. As time has gone
Oh the technology center has grown in importance and size. There are
over fifty books and over 500 magazine articles, technical reports, etc.
in the library. Requests for information are received from all over the
country.

/ B-5

2.2.3 Define, Roles, Functions and Procedures for Involved Personnel.

'It was important to SAMTEC that, prior to embarking upon a
development project, the roles of the personnel involved would be defined.
The way the team would function, how a structured programming team would
operate in an unstructured environment, and what deviations and waivers
would be needed from established Military Standards were all addressed.
Structured programming standards and conventions were established. The
duties of each of the team members was defined. The contents of the
Systems Development Library was detailed. All of this was done in
general terms before the selection of a particular development project
was made.

2.2.4 Selection of Support Software.

The ASTROS Implementation Plan identified the selection and
procurement of a Program Support Library (PSL) as the pacing item in
the implementation scheme. It also stated it was key to a chief program-
mer team operation. The IBM 370/65 computer and the FORTRAN language
were identified as the target computer and target language. The Applied
Data Research (ADR) LIBRARIAN was selected as the ,PSL with the most
readily available functions on the IBM 360/65. Since FORTRAN was the
selected language a pre-compiler was necessary in order to program using
the structured code constructs. A rigorous validation process yielded
Caine, Farber and Gordon's S-FORTRAN pre-compiler as the best available
at the time. Other automated tools such as program design language
generators, code auditors, automated test case generators, code analyzers
and restructuring programs were all considered. It was decided that
no other tools would be necessary for this first investigation.

2.2.5 Definition of the Management Process.

A Structured Programming Life Cycle was devised in order to
show how a structured programming project could be implemented into
the standard Military Program Life Cycle. The approach here was to show
an evolutionary, rather than revolutionary, process. The reviews and
audits were described. Special documentation necessary in a structured
environment was detailed. The "structured walk-through" procedures
were established.

2.2.6 Definition of Measurement Forms and Procedures.

A great deal of energy went into deciding what to measure.
The tendency to count something just because it was countable was
strenuously avoided; we intended to minimize the impact of the measuring
process upon the developer. Also, great pains were taken to assure
the developers that we are measuring the technology and not the people.
How well this is believed will influence the objectivity and usefulness
of the data.

; B-6

-This goal of obtaining meaningful, quantatitive data in order
to perform an objective analysis without impacting the software developer's
schedules may be unrealistic.. First of all, the developers know they
are being measured and the "Hawthorne effect" cannot.be ignored. Second,
much of the information required has to be provided, by.the developers.
In order to minimize the impact of the measurement process, a'large
part of the data being gathered has been automatically captured by
placing "hooks" into the LIBRARIAN software and into .the IBM Accounting
Software. Also, manual forms have been devised; most of them are
completed on a "one-shot" basis. AIT forms are short and concise with
explicit instructions on the back. Although the forms have been designed
for this project, they could have applicability in other software
development activities.

The Personnel Profile is filled out once by everybody when they
are assigned to the project. The General Contract/Project Summary and
the Management Methodology Summary are filled out by the Project Lead/
Chief Programmer once at the start of the project. The Design and
Processor Summary and the Testing Summary are completed prior to the
Critical Design Review (CDR), i.e. the last formal review before start
of coding. The Systems DeVelopment Log is a multi-purpose form completed
on an irregular basis whenever a significant event transpires which
could have an impact on design and/or schedule. It is also completed
when a document or software increment is delivered, when a review or
audit has taken place, or when a piece of software passes a testing
phase. The Computer Program Run Analysis Report is filled out for each
job submittal. Most of the information on this form is available on the
program listing. If a run is unsuccessful, the Computer Program Failure
Analysis Report is completed. Much work went into generically cat-
egorizing the many possible errors to yield a workable set; error
examples are included on the back. As each person leaves the project,
either because it is complete, they have a new assignment, or they are
leaving; they are asked to complete the Techno!ogy Critique. The
General Project Hrap-Up Report is filled out by the Project Lead/Chief
Programmer at the completion of the project.

A Weekly Module Report will be generated automatically from
the librarian software, the ADR LIBRARIAN. This report will keep track
of module size, number of updates, number of runs, etc. A unique
feature of this report, to be used as a means for management visibility
and control, is the reporting facility. The report can be generated
a) periodically (weekly) b) on demand or c) on exception.

2.2.7 Selection of Target Projects.

The ASTROS Implementation Plan established the constraint on
the target project that all software produced had to be something that

B-7

would have to be developed anyway. This ruled out a pure experiment or
a parallel development. We centered upon the .MIPS (Metric Integrated
Processing Systems)-for candidates for measurement and comparison. The
MIPS project holds appeal for application of advanced techniques for
such reasons as:

..1. It is a large system being developed incrementally

2. The environment is defined and controlled (processor,
system, data base, reporting structure, etc.)

3. It is well managed and highly visible
•

4. The IBM 360/65 has more automated tools available than
any other SAMTEC processor

5. The end-product is useful with, a long projected life

6. All of the Non-Real Time Software is being developed using
.a common language, FORTRAN

7. Its increments are non-trival, i.e. complex algorithms,
large data bases and interfaces, and significant manpower
requirements (10-15 man-years per increment).

Three Non-Real Time Increments were selected. One, the Data
Analysis Processor (DAP), is being measured and developed using traditional
programming techniques. Another, the Launch Support Data Base Generation
(LSDB) is being measured and developed using such advanced techniques as
top-down design, HIPO, structured code, program support library, chief
programmer teams, and structured walk-throughs. The third increment,
History Tape Generation (HTG), is being developed using the advanced
techniques but will not be measured.

2.2.8 Training of Involved Personnel.

The ASTROS team defined six different training courses for
specialized application of the various structured programming techniques.
-Vandenberg personnel were provided the necessary training required in
order to implement advanced programming techniques..

- , 1. Overview.

This course was a general survey of what, why, who and how of
structured programming. Each of the tools and concepts, along
with the management approach of the ASTROS team, was briefly
highlighted. This was a two hour presentation.

B-8

2. Structured Design.

^This course included discussions of top down design, Program
' Design Languages, KIPO, Threads and top down test.. The course
augmented technical discussion within-class problem solving
using the team approach and structured walk throughs. This
course was a 40 hour course, taught.4 hours a day for two
weeks.

3. Structured Code.

The theory of structured constructs, their history, and
mathematical proofs were discussed briefly. The bulk of the
course was an instruction in the usage of Caine, Farber,
Gordon S-FORTRAN pre-compiler with emphasis on coding and
review of actual problems. This course was 20 hours in length,
taught 4 hours a day for one week.

4. ADR LIBRARIAN.

This course concentrated on the optional features of the ADR
LIBRARIAN and how to best utilize them. It included a discussion
and working example of use of the Systems Management Facilities
(SMF). This was a 20 hour course taught in 5-four sessions.

5. Measurement Reporting.

This course discussed the measurement reporting forms and
explain how to fill them out. Emphasis was given to the
error classifications and to the meanings of each classification.
Ways of automating the collection function by using the ADR
Librarian was discussed. This 4 hours, taught in two hour
segments with follow-up OJT and monitoring during the develop-
mental phase.

6. Management of Structured Project.

This course addressed the systems management aspects of
structured programming. MIL-STD's were discussed as to their
applicability, deviations were defined. Measurement
reporting and management controls available in the ADR
LIBRARIAN were discussed. A structured programming life
cycle was presented and discussed. Chief programmer team
organization and structured walk throughs were highlighted.
This was a 20 hour course taught in 5-four sessions.

2.2.9 Exercise Concepts and Measure Results.

After the above activities were completed, SAMTEC was ready
to precede with the technology investigation. .A joint SAMTEC/RADC

B-9

Memorandum of Agreement was signed in February.1975 and the development
and the measurement of the Launch Support Data Ba.se Generation-(LSDB)
Computer ..Program Configuration Item (CPCI) was initiated. It was at this
point that the ASTROS project was presented to-th.e Range Commanders
Council in April 1975. Many interesting things have happened since,'
leading to some enlightening discoveries. The s,tory.of the last year
comprises the rest of this paper. '

B-10

3.0 -LSDB Measurement Activity

The Launch Support Data Base CPCI has been continuously measured and monitored
since February 1976. The project is scheduled for completion in June 1977.
This paragraph will provide a brief description of the project, explain the
advanced programming techniques being applied to the project, detail what
measurements are being gathered, discuss the development progress and the
management problems encountered, and take a look at the present status.

3.1 Description of the Project

The LSDB CPCI is a non-real time increment of the Metric Integrated Process-
ing System (MIPS). It is being developed on the IBM 360/65 using a Remote
Job Entry (RJE) terminal as the primary submittal technique and operates in
a batch mode. The program computes the data base parameters used by the
Missile Flight Control (MFC) CPCI in its real-time range safety calculations.
LSDB is comprised of six major Computer Programming Components (CPC's) each
with many sub-modules, subroutines and procedures. The error and producti-
vity measurements are being collected on the CPC level. There are four full
time members of the development team; the chief programmer, two programmers
and a programming librarian. The integration testing is being conducted by
an independent testing group within the MIPS organization.

3.2 Advanced Techniques Applied

Below is a short description of the advanced programming techniques being
applied by the LSDE development team. These techniques and concepts include
a top down development approach, structured code, Hierarchy plus Input-
Process^Output (HIPO), a Chief Programmer Team and Structured Walk-Throughs.

3.2.1 Top Down Development Approach

Top-Down Design approach is used in the LSDB development. Each subsystem
is designed from the control sections down to the lowest level sub-
routine prior to the start of code. There is one HIPO per subsystem
which is expanded until the lowest level of detail is reached.

Top-Down test requires the highest level unit or units of a system or sub-
system to be coded and tested first. Since that unit will normally invoke
lower level units, dummy code must be substituted temporarily for the lower
level units. The required dummy units (program stubs) may be generalized,
prestored on disk, and included automatically by the linkage editor during
a test run (as in the case of a CALL sequence). Although the program stubs
do not normally perform any meaningful computations, they can output a
message for debugging purposes each time they are executed. Thus, it is
possible to exercise and check the processing paths in the highest level
unit before initiating implementation of the lower level units which it
invokes. The lower level units are built and tested in the same manner,
using stubs for programs which they invoke. This procedure is repeated,
substituting actual program units for the dummy units at successively
lower levels until the entire system has been integrated and tested.

/•B-ll

The important point is that program units at each level are full integrated
and tested with their predecessors before coding begins at the next lower
level. , -

The use of dummy calling routines or test drivers ts prohibited unless a
Request for Deviation/Waiver has been submitted and approved.

A routine is not be implemented until the calling routine has been imple-
mented. Data definition statements are coded and the actual data records
are generated before exercising any segment which references them. Top-Down
Implementation does not imply that the implementation must proceed down the
hierarchy in parallel. Some branches intentionally will be developed earlier
than other branches. All code will be produced by members of the team and
reviewed by at least one member. If a logic change is required during code
generation or review, the HIPO is updated and appropriate entries will
be made in the development work book. If the logic changes are made to a
controlled portion of the HIPO, (e.g., a HIPO in the Part I), a formal re-
view is performed prior to proceeding. In general, HIPO's are updated
continuously throughout project duration to reflect the latest design/docu-
mentation of programs being developed. The CPC/CPCI test procedures are
updated continuously during the implementation period.

3.2.2 Structured Code

The five constructs illustrated below are adhered to wherever possible. The
Caine, Farber & Gordon pre-compiler S-FORTRAN shall be used for all programs
except Processing Modules (PM's). Processing Modules are MIPS special pur-
pose programs designed to input and output data.

B-12

3.2.3 Hierarchy plus Input-Process-Output.(HIPO).

XHIPO is the advanced programming technique used to support
documentation. HIPO ts used as both a documentation technique and as
an aid in the support of top-down design. : HIPO documentation standards
are contained in the IBM document "HIPO - A Design Aid and Documentation
Technique". This document is used'as a guide. The concepts are used
without all the drafting requirements.

3.2.4 Chief Programmer Team.

A chief programmer team is used in the development of the LSDB
CPCI. The team consists of the chief programmer and back-up programmer,
programmers, and a librarian.

Responsibilities of the team are:

a. Chief Programmer ts responsible to the non-real time
supervisor for the development of the programming system.
This person shall carry technical responsibility for the
project including management coordination; production of
the critical core of the programming system in detailed
code, direct specification of all other codes required
for system implementation, and review of the integration
of that code. Individual responsibilities are identified
below:

1. Function as first level team manager.

2. Approve all HIPO's.

3. Conduct structured walk-throughs for Preliminary
Design Review (PDR) and Critical Design Review (CDR).,

4. Chair the working walk-throughs with the team.

5. Approve all code.

6. Review and approve all code checkout runs and certify
the software ready for CPC/CPCI test.

7. Be responsible for preparation of:

(a) Test Plan.

(b) Training Plan.

(c) Users Manuals.

B-13

(d) Classroom training of users.

(e) Test Procedures. :

Cfl Development Specification; Product Specifications.

8. Generate entries for the appropriate documentation
sections of the LSDB Development Library.

9. Be responsible for Measurements.

b. 'Back-Up Programmer supports the chief programmer at a
detailed task level so that to assume the chief programmer's
responsibility temporarily or permanently. This person,
though primarily a programmer, may be called upon to
explore alternate design approaches, independent test
planning, or other special tasks but will serve normally
as an active participant in technical design, internal

3 supervision, and external management functions.

c. Programmers responsibilities are, as a minimum:

1. Code assigned routines.

2. Review code.

3. Generate/gather subsystem test data.

4. Generate/gather unit test data.

5. Code necessary stubs.

6. Review development specifications and test plans.

7. Write Users Manuals.

8. Write training plans.

9. Train users.

10. Generate entries for the appropriate document sections
of the LSDB development library.

d. Librarian assembles, compiles, and linkage-edits programs
and submits test-runs as requested by project programmers.
The librarian has responsibility for the project-
critical task of maintaining the library. The librarian
also performs the following functions:

B-14

1. Submit AH Computer Runs. fh.e programming team • .-
members must submit all computer jobs and/or ,
keypunch forms to the librarian. The librarian
punches the cards, verifies all OCX, or adds the
required JCL and submits the job.: The librarian also
corrects all obvious JCL, FORTRAN, and Assember
errors.

2. Catalog and Bind AH Computer Runs. All computer
jobs,are cataloged and kept in a binder. The
catalog contains the job name and data, filed

. tn chronological order.

3. Maintain the Development Data Base. The librarian
is responsible for running a variety of programs
tn support of the developer's data base, this
requires performing the following functions:

(a) Adding new or replacing functions

(b) Adding new or replacing subroutines

(c) Allocating or deleting data sets

(d) Maintaining source in a LIBRARIAN data set

(e) Executing all the appropriate utilities to
maintain data base integrity such as DBEXAM,
DBDELETE, DBSAVE, DBCOPY, DBMOVE, FDR, COMPRESS,
VTOCLIST etc.

4. Maintain the LSDB Development Library. The librarian
maintains all the document sections of the LSDB
development library.

o Add new or replacement functions.

o Add new or replacement subroutines.

o Allocate or delete data sets.

o Maintain source in a LIBRARIAN data set.

o Configuration control of all source not main-
tained by ADR Librarian must be provided.

5. Maihtain the Subsystem Work Book. The librarian
maintains a developers subsystem work book.

B-15

6. Team Support. The librarian performs keypunching, -
typing, editing and drafting for the team when 'these

,. normal services are,not.avail able from the support
groups. - - •

7. Official Project Recorder. Tfie librarian compiles
and issues all walk through and meeting minutes.

3.2.5 Structured Waik-Throughs.

A structured walk-through is conducted on all CPC's of the LSDB
CPCI. There will be two types of structured walk-throughs, a working
walk-through and a formal walk-through, each of which is described below.
Not only can these reviews help the developer to find errors in his
work earlier in the development cycle but reviewers have an opportunity
to learn new approaches and techniques and can be kept informed of the
characteristics of work related to their areas of responsibility.

The working walk-through is a structured walk-through with
the attendees composed of the LSDB structured programming team. Non-team
members shall attend at the chief programmer's discretion, e.g., a member
of Systems Engineering staff shall be invited to attend a working walk-
through of the CPC/CPCI Test Procedures.

At the formal structured walk-throughs for the PDR & CDR,
attendees from other groups are invited by the developer. Since it is
difficult to conduct a structured walk-through for a large group of
people, PDR and CDR attendence is limited by the Non-Real-Time
Branch Supervisor. While the entire Chief Programming team may be
present, only the chief programmer or his designate will conduct the
walk-through. Action items, using standard MIPS Action Item Forms, shall
be assigned rather than attempting to resolve problems at the walk-
through. Reasons for the Chief Programmer Team's approach shall be
presented when several reasonable alternatives were considered.

The basic characteristics of the structured walk-through are:

a. It is arranged and scheduled by the developer of the work
product being reviewed.

b. The Chief Programmer selects the list of reviewers
but the Non-Real-Time branch supervisor may review the
list to ensure that the review team will be able to
provide an adequate review. External participants may
Include:

1. Management.

2. Developers of other parts of the MIPS system.

3. Supporting users and hardware engineers.

B-ie

.4. Testers responsible for component and system testing.

.5. Designers of the system to.ensure compatibility and
continuity of design.

6. Individuals responsible for documenting the function
being reviewed.

c. All of the developer's products are reviewed during at
least one working walk-through.

d. The.reviewers are given the review materials at least
four to six days prior to the walk-through and are expected
to review them and come to the session with a list of
questions.

e. The walk-through is structured in the sense that all
attendees know what it is to be accomplished and what
role they are to play. The emphasis during the walk-
through is on problem identification rather than problem
solution.

f. The chief programmer chairs the session and the librarian
records all errors, discrepancies, exposures, and in-
consistencies uncovered during the walk-through. MIPS
Action Item forms are used to record all actions to be
taken and responses thereto.

g. A typical walk-through is scheduled to last for a
specified period of time, usually one or two hours. If
the session's objectives have not been met at the end
of that period, another walk-through is scheduled for
the next convenient time.

h. The following actions occur at a walk-through. First,
the reviewers are requested to comment on the completeness,
accuracy, and general quality of the work product. Major
concerns are expressed and identified as areas for poten-
tial follow-up. The product author gives a brief
tutorial overview of the work product. The product author
"walks" the reviewers through the work product in a
step-by-step fashion which follows the logic of the
function under investigation. The product author takes
the reviewers through the material in enough detail to
satisfy the major concerns expressed earlier in the
meeting.

f. Immediately after the meeting, the librarian distributes
copies of the handwritten action items to all the
attendees. The chief programmer, supported by management,
ensures that the action items are successfully resolved,
and that the reviewers are notified of the actions taken
or of the corrections made.

B-17

3.3 Measurements.
/ . .
As mentioned above the LSDB project is being measured and

closely monitored during its entire development. The manual measurement
forms described in paragraph 2.2.6 are being augmented by automated
measurement gathering facilities available in the ADR LIBRARIAN and the
IBM Systems Management Facility (SMF) of the Operating System (OS). Of
particular note is the great bulk of archival data being gathered in.
support of the measurements. For instance, every computer listing ever
generated since the project inception has been saved. The LSDB Structured
Programming Library contains Standards and Conventions, the Development
Work Book, the Test Work Book, the Monitor Work Book, Development Documents,
Structured Programming Documents, and the LSDB Support Documents. These
items are discussed in more detail in paragraph 3.3.3 below.

3.3.1 Manual Forms.

The manual forms were devised so that most of them are completed
on a "one-shot" basis. All forms are short and concise with explicit
instructions on the back. Although the forms have been designed for this
project, they could have applicability in other software development
activities.

The Personnel Profile is filled out once by everybody when they
are assigned to the project. The General Contract/Project Summary and
the Management Methodology Summary are filled out by the Project Lead/
Chief Programmer once at the start of the project. The Design and
Processor Summary and the Testing Summary are completed prior to the
Critical Design Review (CDR), i.e. the last formal review before start
of coding. The Systems Development Log is a multi-purpose form completed
on an irregular basis whenever a significant event transpires which
could have an impact on design and/or schedule. It is also completed
when a document or software increment is delivered, when a review or
audit has taken place, or when a piece of software passes a testing
phase. The Computer Program Run Analysis Report is filled out for each
job submittal. Most of the information on this form is available on
the program listing. If a run is unsuccessful, the Computer Program
Failure Analysis Report is completed. Much work went into generically
categorizing the many possible errors to yield a workable set; error
examples are included on the back. As each person leaves the project,
either- because it is complete, they have a new assignment, or they are
leaving; they are asked to complete the Technology Critique. The General
Project Wrap-Up Report is filled out by the Project Lead/Chief Programmer
at the completion of the project.

Particular attention should be given to the Computer Program
Run Analysis form and the Computer Program Failure Analysis form. The
first form is filled out for every job submittal. The second form is
completed when any job failure occurs. The bulk of the software
reliability information will be analysed by using these two forms. The

B-18

Software Development Log is useful in reconstructing the project scenario
including document deliveries, reviews and audits, and major design
decisions.f • • . . . ' ' .
3.3.2 Automated Measurements.

In order to take much of the burden of the project control and
measurement gathering off from the LSDB development team, automated
measures are gathered from.the ADR LIBRARIAN and the IBM OS Systems
Management Facility.

A Weekly Module Report will be generated automatically from
the librarian software, the ADR LIBRARIAN. This report will keep track
of module size, number of updates, number of runs, etc. A unique
feature of this report, to be used as a means for management visibility
and control, is the reporting facility. The report can be generated
a) periodically (weekly) b) on demand or c) on exception.

The program accounting information is gathered from SMF. The
compile times, pre-compile times, linkage edit times and run times are
identified and accumulated on a module-by-module basis. This information
is also available on a CPCI level. Other information such as turn-around
time and I/O peripheral times are also captured.

3.3.3 Archival Data.

As mentioned above, every computer listing generated by the
project has been retained as part of the back-up archival information.
In addition, the LSDB Structured Programming Library contains much
valuable information to completely describes the processing environment
in which this development effort is being accomplished. The information
contained in this library is detailed below.

1. Standards and Conventions. The Standards and Conventions
section contains the following items.

a. HIPO Standards

b. Structured Code Standards

c. Top Down Test Standards

d. Library Maintenance Procedures

e. Data Base Maintenance Procedures

f. Submittal Procedures

(1) Development to Production Library

B-19

(2) Documentation including Computer Listings

g. Job Submittal Procedures

h. File Description Procedures

i. Procedures for updating the development work book

j. Procedures for updating the monitor work book

k. Procedures for updating the test work book

1. ADR LIBRARIAN procedures

m. Code and message standards

2. Work Books. There are several work books which are kept
current during the development process. These include

a. Development Work Book

(1) Decision logs/reason for design approach.

(2) Notes from all walk-throughs.

(3) HI PO/ code problems that were uncovered.

(4) Results of AET testing.

(5) Deviation/waiver log.

(6) Memorandums.

b. Test Work Book

(1) Test plan guidance.

(2) Test report guidance.

(3) LSDB test plan.

(4) Top-down testing approach for MIPLSD

c. Monitor Work Book

(1) General contract/project summary.

(2) Management methodology summary.

(3) Design and processor summary.

B-20

(4) Testing summary.

(5) Technology critique.

(6) Personnel Profile.

(7) System Development log.

(8) Computer program failure analysis report.

(9) General project wrap-up report.

(10) Notes.

(11) Computer run analysis reports contained in
several volumes in chronological order.

3. Development Documents. Documents which have been prepared
during the development process are also retained. These
include

a. LSDB development specifications.

b. LSDB test plan.

c. LSDB test procedures.

d. CDR material.

e. Product specifications.

f. Action items.

g. Draft documents.

.4. Structured Programming Documents. The following documents
are kept as reference documents

a. Structured programming courses handouts.

b. S-FORTRAN.

c. IBM JCL/FORTRAN.

d. IBM Structured Programming test/workbook.

5. LSDB Support Documents. The following documents are re-
tained as interface reference material for the LSDB developers.

a. VPAR 34 Vol. I.

b. VPAR 34 Vol. II.
"$

B-21

c. MFC CDR Material.
/

d. MFC development specifications.

e. System segment specifications.

3.4 Project Progress.

The LSDB development project has progressed on, or near, schedule
during its whole lifetime. All major milestones have been met. This is
despite the fact that the walk-throughs have uncovered several design
deficiencies which have been corrected without impacting the schedule.
Ordinarily many of these deficiencies would not be uncovered until
demonstration testing (DT&E) or beyond. The user involvement in the
walk-throughs has led to some design modifications due to requirement
changes. In a "traditional" development life cycle these modifications
most certainly would not have been made until after the software had
become operational. Then the cost of making these modifications would
probably have been significantly higher.

3.5 Project Problems.

Over a year of planning went into the preparation of this
technology investigation. Other implementer's experiences were viewed
in light of the SAMTEC operational environment. Theoretically everything
was addressed and all contingencies planned for. Yet we have had some
problems. The importance of this paper seems to be in the fact that
despite careful! planning, rigorous application, and close monitoring,
certain unforeseen difficulties did arise. The following paragraphs
the most problems and what our management approach was to solving them.

3.5.1 Organizing a Library.

The joint SAMTEC/RADC Memorandum of Agreement stated that
SAMTEC would collect measurements and deliver them to RADC. Although
the manual measurement forms and the automated processes were established
prior to the start of the LSDB development project, the archival (or
support) data had not been addressed. The measurements were decided upon,
but until the project was underway the necessity for retaining archival
data was not realized. What data should be kept, what form should it
be preserved, and how was it to be delivered were all things that were
addressed after the project was underway. The burden of establishing
the LSDB development library fell on the project monitor and, primarily,
upon the programming librarian. Establishing what should go into each
of the work books, establishing procedures for maintaining the library,
and establishing the responsibilities of all the involved personnel was
an arduous task. The day-by-day development activities progressed while
much of this data had to be recovered. It was a long, difficult process.
Everything is in place now, but the task would have been much easier had
these items, procedures, responsibilities, etc. been established in
advance.

.B-22

3.5.2 f Single "Structured" Project in an Unstructured Environment.

The choice of a MIPS CPCT was a good one for the reasons
detailed in paragraph 2.2.7. However, there are some inherent problems
in taking a piece of a system under development and change the development
ground rules for that piece. Many of these difficulties were anticipated
and the LSDB Implementation Plan specifically addressed organizational
structure and responsible ties, walk-through procedures, and MIL-STD
deviations required in reviews and documentation. What was not anticipated
were difficulties uncovered by the technology itself. The top down
development method allows for design to progress hierarchically down
through the structure establishing the interfaces as the detail expanded.
In a system where the data base had previously been established, the
increments, or CPCI's defined, and their interfaces described, much of
the top down design work has been done. This places design constraints
at the CPCI level; the data interfaces suggest the module interfaces
rather than the other way around. Another difficulty involves team
operations. In theory placing a librarian onto a development team
relieves the technical people of the administrative and clerical tasks
and allows management to utilize their talents in a more effective manner.
This has not proved true in our technology investigation for a very
peculiar reason. The librarian has effectively relieved the developers
of the clerical functions which once took so much of their time. However,
since they are working on a target project which was using different
techniques in comparison with the other development efforts, management
had to assign other efforts to fill the void. This suggests better planning
of manpower utilization is needed when using this technology. The
technical people will become more productive only when their given more
to do.

3.5.3 Impact of Measurements on the Development.

Once again, we foresaw that there would be an impact made by the
measurement process. We strived to minimize this impact with the careful
development of the manual forms and by augmenting the measurement
gathering by automated means. We also placed more personnel on the
project to absorb the measurement burden. This took care of the physical
impact but didn't take care of the psychological impact. People do
not like to be watched while they're working. Despite the minimal effect
the measurements have upon their day-to-day activities, there is certainly
an antagonism in knowing they are being measured at all. We are witnessing
a sort of "inverse - Hawthorne effect". Continued assurances that we are
measuring the technology and not the people has helped keep the measurement
process flowing.

3.5.4 Communication in Walk-Throughs.

Both the developers and users at SAMTEC have been used to
communicating at Preliminary Design Reviews (PDR's) or Critical Design

/ B-23

Reviews (CDR's). Both of these reviews are rather formal, involve a lot
of people, and usually a lot of material. Because of the bulk of information,
a whole CPCI, these reviews seldom get into design detail. In going to
a structured walk-through format, SAMTEC established explicit rules as
to the attendance, format, and materials to be covered. This was a new
procedure for user and developer alike. There was a definite learning
curve involved before these parties were comfortable with format. Now
this communication seems to flow easily but at first many small procedural
modifications were required.

3.5.5 User-Involvement.

There are only two things wrong with user involvement - there's not
enough or there's too much. The idea behind the structured walk-throughs was
to get the user involved in the day-by-day development process so that he
could better see if his requirements are being met. It is felt that design
deficiencies and requirement changes could be identified earlier in the life
cycle they could be modified with minimal impact upon the schedule. This
has certainly proved true in the LSDB development. However, the old statement
"a little learning is a dangerous thing" is certainly applicable. As the user
has become more and more knowledgeable of the design detail, he has often
yielded to the human tendency to dictate that detail. He also has the
tendency to want slight requirement changes or "nice-to-have" additions with-
out being aware of the impact of these changes on the system as a whole. This
is a problem that is gradually improving as the user's learning goes up and
with the developer's adherence to a workable design.

3.5.6 • Use of HIPO's as a Communicational and Design Technique.

Probably SAMTEC's biggest managemnet problem has been with the use
of HIPOs. Theoretically HIPOs allow the user to see how his requirements
have been satisfied by presenting the design in his own words. In practice,
learning a new graphical technique, after years of trying to get comfortable
with flow charts, was a very confusing and frustrating experience. Once again
there is a great learning curve. The developer has to know how to use HIPOs
in his design so that they truly communicate his approach. The user needs
to understand the graphics and the hierarchy so that he can understand the
data flow. Perhaps a Program Design Language (PDL) is the answer. PDL has
proven very effective when presented in SAMTEC's training courses. By using
PDL in the "Process" portion of a HIPO, an effective means of bridging the
"Input" to the "Output" was seen. Also the PDL can be done at any level of
detail necessary to communicate the detail required.

3.6 Present Status.

The LSDB project is nearing completion. The CPCI is currently
undergoing testing by the independent MIPS test group. The measurement
forms and archival data are being microfiched ,in preparation for delivery
to RADC. The developers are placing more comments in code, documenting,
and writing their views of the project and the technology.

B-24 , . -

Acknowledgement.

This project and this paper would not have been possible without
the continued support and encouragement of many people. It would be impos-
sible to name them all, but we would like to single out some people who
have made significant contributions to this effort. Mr. Frank Sliwa of
RADC has given his enthusiasm, confidence and friendship to all of us during
our working relationship. We are indebted to Dr. Herbert Hecht of Aerospace
Corporation for his continued support and for permission to use some of
his visuals in the presentation. Lt. Col. Everett A. Lyons III (ret.) was
instrumental in getting the ASTROS project underway and providing keen
management insight. Dr. John P. Johnson and Donald Reifer of Aerospace
Corporation have lent their technical knowledge and guidance. David
Wulftange of Federal Electric Corporation has performed a yeoman service
as the LSDB project monitor. John Johnson of Federal Electric Corporation
who has given his support as MIPS Project Manager. And a very special
thanks to the LSDB development team - Tom Hull, Chief Programmer; Sue
Wagoner, Programming Librarian; John McMillan and John Malengo.

B-25

