NASA Technical Memorandum 73252

Simplified Clustering of Nonorthogonal Grids
Generated by Elliptic Partial Differential Equations

Reese L. Sorenson and Joseph L. Steger

AUGUST 1977

$M 77-16345$

Simplified Clustering of Nonorthogonal Grids Generated by Elliptic Partial Differential Equations

Reese L. Sorenson and Joseph L. Steger
Ames Research Center
Moffett Field, California

National Aeronautics
and Space Admınıstration
Scientific and Technical Information Office

SIMPLIFIED CLUSTERING OF NONORTHOGONAL GRIDS GENERATED BY

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Reese L. Sorenson and Joseph L. Steger
Ames Research Center

SUMMARY

A simple clustering transformation is combined with the Thompson, Thames, and Mastin (TTM) method of generating computational grids to produce controlled mesh spacings. For various practical grids, the resulting hybrid scheme is easier to apply than the inhomogeneous clustering terms included in the TTM method for this purpose. The technique is illustrated in application to airfoil problems, and listings of a FORTRAN computer code for this usage are included.

INTRODUCTION

Thompson, Thames, and Mastin (TTM) have developed a practical way of generating two-dimensional computational grids about arbitrary bodies with coordinate lines coincident with all boundaries (refs. 1,2). Curvilinear nonorthogonal coordinates are generated by conventional numerical solution of two nonlinear elliptic partial differential equations. Because a refined grid is generally needed in regions where a rapid change in gradient of the flow variables occurs, the TTM method includes a provision for concentrating coordinate lines in any region of the field. However, this clustering feature can be either complicated or unsatisfactory, at least for the uninitiated user. The purpose of this note is to illustrate a simple alternative procedure for clustering about any grid line.

The authors wish to acknowledge the helpful discussions with L. B. Schiff with whom we first investigated the TTM scheme, and the assistance of P. Kutler who later programmed an airfoil grid generation scheme (some portions of which we adapted) to investigate the effectiveness of the P and Q terms. The authors also wish to acknowledge the assistance given by C. Schulbach in writing computer code for the SC4020 plotter.

> THE THOMPSON-THAMES-MASTIN METHOD

In its simplest form, the TTM method solves Laplace equations in the physical plane

$$
\begin{align*}
& \xi_{x x}+\xi_{y y}=0 \tag{1}\\
& \eta_{x x}+\eta_{y y}=0 \tag{2}
\end{align*}
$$

to generate curvilinear coordinates $\xi(x, y)$ and $\eta(x, y)$, which form a rectangular grid in the transformed computational plane. Equations (1) and (2) are transformed into the computational plane as

$$
\begin{align*}
& \alpha x_{\xi \xi}-2 \beta x_{\xi \eta}+\gamma x_{\eta \eta}=0 \tag{3}\\
& \alpha y_{\xi \xi}-2 \beta y_{\xi \eta}+\gamma y_{\eta \eta}=0 \tag{4}
\end{align*}
$$

where $\alpha=x_{\eta}{ }^{2}+y_{\eta}{ }^{2}, \beta=x_{\xi} x_{\eta}+y_{\xi} y_{\eta}$, and $\gamma=x_{\xi}{ }^{2}+y_{\xi}{ }^{2}$. Although equations (3) and (4) are mildIy nonlinear, it is usually a simple matter to solve for x and y on the rectangular ξ, n computational grid by conventional relaxation methods. Then, if the transformation Jacobian at each point is nonzero, the locally one-to-one mapping between the computational plane and the physical plane yields the solution for ξ, η in the physical plane as well.

Simple boundary conditions usually accompany equations (3) and (4). For example, Dirichlet conditions can be picked for the blunt-body problem sketched in figure 1 , where lines of constant η are chosen to coincide with the body and outer shock boundaries and the end points of lines of constant ξ are arbitrarily spaced along these boundaries. Lines of constant ξ terminate the blunt body flow region, with end points of lines of constant η distributed along these boundaries. This ability to arbitrarily locate boundary points by specifying their locations in the x, y plane is one of the most desirable and significant aspects of the TTM method.

While the Laplace equations automatically generate grids, the nodes are often poorly concentrated in regions where a large change of gradient in the flow variables occurs. To illustrate this, a grid is constructed about an NACA 0012 airfoil using Dirichlet boundary conditions as in figure 2. The resulting grid is shown in figure 3(a), and the lines nearest the airfoil are shown in detail in figure 3(b). The computed grid has the deficiency that the spacing between the airfoil-wake boundary and the next outward line of constant η is too large and not uniform, especially near the airfoil trailing edge. Clustering of lines of constant η to the airfoil-wake boundary (abcde in fig. 2) is needed.

The provision for clustering in the TTM method consists of adding inhomogeneous terms to equations (1) and (2), producing Poisson equations

$$
\begin{align*}
& \xi_{x x}+\xi_{y y}=P(\xi, \eta) \tag{5}\\
& \eta_{x x}+\eta_{y y}=Q(\xi, \eta) \tag{6}
\end{align*}
$$

which in the computational plane become

$$
\begin{align*}
& \alpha x_{\xi \xi}-2 \beta x_{\xi \eta}+\gamma x_{\eta \eta}=-J^{2}\left(P x_{\xi}+Q x_{\eta}\right) \tag{7}\\
& \alpha y_{\xi \xi}-2 \beta y_{\xi \eta}+\gamma y_{\eta \eta}=-J^{2}\left(P y_{\xi}+Q y_{\eta}\right) \tag{8}
\end{align*}
$$

where $J=x_{\xi} y_{\eta}-x_{\eta} y_{\xi}$ is the transformation Jacobian. Here P and Q are summations of exponential terms, as defined in reference 2 (however, the sign of these terms in ref. 2 is in error).

The harmonic functions P and Q can cause clustering about any number of nodes or grid lines. The TTM method of clustering is versatile (with respect to where clustering takes place in the field), but exact control of mesh spacings can be difficult. Particularly difficult is the imposition of a predetermined and uniform spacing between two adjacent grid lines along their entire length.

To illustrate this last remark, consider the 0012 airfoil application. Here terms of Q giving clustering near the airfoil-wake boundary line of constant η are used. The closeup of the resultant grid, shown in figure 4, is improved over the unclustered grid shown in figure 3(b) but is still not sufficiently uniform around the airfoil.

COMBINING SIMPLE STRETCHING WITH THE TTM METHOD

In this section we show that for particular problems in which only grid refinement near a boundary is desired, a simple stretching procedure combined with the simplest, unclustered form of the TTM method can produce good results. This technique is easier to implement than the inhomogeneous form of the TTM method.

In the airfoil problem, the ξ spacing can be sufficiently controlled by placement in the x, y plane of the nodes along the $\eta_{\text {min }}$ and $\eta_{\text {max }}$ boundaries, so only clustering of lines of constant η is needed. Instead of trying to enforce a specific clustering by choice of Q, the lines of constant ξ from the inhomogeneous form of the TTM method can be accepted and the lines of constant η can be discarded. Then points on lines of constant η are redistributed along each line of constant ξ by means of simple monotonic stretching functions. This method is detailed below for an airfoil application where an exponential stretching function is chosen to give a specified minimum grid spacing adjacent to the airfoil-wake boundary.

Given the grid resulting from the simplest form of the TTM method, the arc length $\left.S(n)\right|_{\xi}$ along each constant ξ line is computed from the relations

$$
\begin{align*}
& S_{1}=0 \tag{9}\\
& S_{k}=S_{k-1}+\sqrt{\left(x_{k}-x_{k-1}\right)^{2}+\left(y_{k}-y_{k-1}\right)^{2}} \quad 2 \leq k \leq k_{\max } \tag{10}
\end{align*}
$$

where k is the index of the k th line of constant η. Along each line of constant ξ, equations (9) and (10) allow tabulation of x_{k} and y_{k} as functions of S_{k}. The η spacing from the TTM solution can now be discarded.

An exponential stretching transformation is introduced such that $\left.\tilde{S}(\eta)\right|_{\xi}$ will be the arc length along the constant ξ line with grid-point distribution defined by

$$
\begin{align*}
& \tilde{S}_{1}=0 \tag{11}\\
& \tilde{S}_{k}=\tilde{S}_{k-1}+\Delta \tilde{S}_{\min }(1+\varepsilon)^{k-2} \quad 2 \leq k \leq k_{\max } \tag{12}
\end{align*}
$$

where $\Delta \tilde{S}_{\text {min }}$ is the desired minimum physical spacing along lines of constant ξ near the body, and ε is chosen so that $\tilde{S}_{k_{\text {max }}}=S_{k_{\text {max }}}$. Values of x_{k} and y_{k} corresponding to the new \tilde{S}_{k} are obtained by interpolating the $x=x\left(S_{k}\right)$ and $y=y\left(S_{k}\right)$ tables generated with equations (9) and (10). These locations define the new lines of constant n. A new grid has therefore been defined where the lines of constant η are uniformly spaced in the physical plane and equal to $\Delta \tilde{S}_{\text {min }}$ along the entire airfoil-wake boundary and exponentially stretched toward the outer ($n=\eta_{\max }$) boundary.

For each constant ξ line, the value of ε is determined such that $\tilde{S}_{k_{\text {max }}}=S_{k_{\text {max }}}$ using a Newton-Raphson iterative procedure. With ε_{n} defined as the value of ε after the nth iteration

$$
\begin{equation*}
\varepsilon_{n}=\varepsilon_{n-1}-\frac{F\left(\varepsilon_{n-1}\right)}{F^{\prime}\left(\varepsilon_{n-1}\right)} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
F(\varepsilon)=S_{k_{\max }}-\tilde{S}_{k_{\max }} \tag{14}
\end{equation*}
$$

Combining equations (11), (12), and (14) and reducing yields

$$
\begin{equation*}
F(\varepsilon)=S_{k_{\max }}-\frac{\Delta \tilde{S}_{\min }}{\varepsilon}\left[(1+\varepsilon)^{k_{\max }^{-1}}-1\right] \tag{15}
\end{equation*}
$$

from which it is seen that

$$
\begin{equation*}
F^{\prime}(\varepsilon)=\frac{\Delta \tilde{S}_{\min }}{\varepsilon^{2}}\left\{1+(1+\varepsilon)^{k_{\max }-2}\left[\varepsilon\left(k_{\max }-2\right)-1\right]\right\} \tag{16}
\end{equation*}
$$

A value for ε_{0} on the first constant ξ line for which the Newton-Raphson procedure has been found to be stable is obtained from

$$
\begin{equation*}
\varepsilon_{0}=\left(\frac{S_{k_{\max }}}{\Delta \tilde{S}_{\min }}\right)^{1 /\left(k_{\max }^{-2)}\right.}-1 \tag{17}
\end{equation*}
$$

For all subsequent constant ξ lines, the final solution ε for the immediately previous line is used for ε_{0}.

The above procedure has been applied to the NACA 0012 airfoil with $\Delta \tilde{S}_{\text {min }}$ as small as 0.00005 chords. An example with $\Delta \tilde{S}_{\min }=0.01$ chords is shown in figure 5(a) and a closeup of the lines nearest the airfoil is seen in figure 5(b). The control of the grid line spacing is evident. In comparing figure 5(a) with figure 3(a), one observes that the outermost line of constant η (in the shape of three sides of a rectangle) has been discarded and the next inner line of constant η is taken for the $\eta=\eta_{\text {max }}$ boundary. This was done before application of the simple clustering procedure for the purpose of minimizing variations in the lengths of different constant ξ lines. The appendix contains a listing of the FORTRAN computer code used to generate these grids and notes on its use.

CONCLUDING REMARKS

A simple stretching transformation has been combined with the simplest form of the Thompson-Thames-Mastin grid generation method to produce grids with certain types of controlled spacings. The technique has been used to generate various grids including those for viscous flow calculations about airfoils.

Ultimately, the clusterings in both ξ and η will probably be done by an improved version of the Thompson-Thames-Mastin method. Such an algorithm should include a procedure for dynamic adjustment of the parameters in the P and Q terms during solution of the Poisson equations. For the present, the much simpler method is adequate for many cases.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, March 8, 1977

APPENDIX

FORTRAN PROGRAM FOR AIRFOIL GRIDS

The FORTRAN computer program that combines simple exponential stretching with the TTM method to produce two-dimensional grids about airfoils is designed to be run on the Control Data Corporation 7600 computer system but should prove easily adaptable to other installations. It is approximately 700 cards in length and consists of a main program and twelve short subroutines. Of these subroutines, five deal with plotting the resultant grids on the Stromberg-Carlson SC4020 plotter and can be easily removed if this feature is not desired. Another two of the included decks are proven utility subroutines for standard mathematical operations. Thus, only the main program and five of the subroutines constitute the operative part of the code that creates the grids.

MAIN PRÓGRAM

The main program first reads input data cards, which are detailed in a later section of this appendix. Subroutine INNER is called to distribute points on the airfoil-wake and rear boundaries. Points on the bottom-fronttop boundary are located by subroutine OUTER. With all boundary points fixed, initial conditions for the TTM method are provided by equally spacing grid nodes along straight lines of constant ξ between corresponding boundary points. The TTM method is applied by subroutine RELAX, exponential stretching is applied by subroutine CLUSTR, and the finally resultant grid is output using a FORTRAN unformatted WRITE statement.

*DECK MAIN

PROGRAM MAIN(INPUT,TAPE5=INPUT, OUTPUT, TAPE6=DUTPUT, TAPE48, TAPE8)
LOGICAL UNIT NUMBERS USED IN THIS PROGRAMz
5 - READ INPUT DATA GARDS
6 - WRITE PRINTER OUTPUT
8 - UNFORMATTED WRITE OF FINAL SCLUTION GRID
48 - SC4020 PLOTTER DATA

COMmON/TCOM/ITITLE(B)

DIMENSION XB(140),YB(140),X(140,80),Y(140,80)
DIMENSICN LINE(B)
GRIDS ARE PRESENILY LIMITED BY OIMENSION SIZE TO 140 POINTS
IN XI DIRECTION AND BO POINTS IN ETA DIRECTION. THESE dimension sizes are found in subroutines inner, outer, relax, clustr, epsil, and plawt as well as here in the MAIN PKGGRAM.

```
C
C
C
    READ IN PARAMETERS.
    READ(5,101) JWAKE,KMAX,MAXIT
    READ(5,102) XGMX,XGMN,YMAX,YMIN,XNOSE,XTAIL
    READ(5,102) DY1
    READ(5,102) XORG,ETACD,BETA
    KEAD(5,102) CMEGA
    READ(5.102) DYZ
    CALL READIN
    READ(5,10C)ITITLE
    READ(5.100) LINE
    WRITEI6,112I JWAKE,KMAX,MAXIT,XGMX,XGMN,YMAX,YMIN,XNOSE,XTAIL
    WRITE(6,113) DY1,XORG,ETACD,BETA, OMEGA,DY2
    WRITE(6,137)ITITLE
    WRITE(t,109) LINE
    ETAC=ETACD*PI/180.
        READ IN AIRFIOL SHAPE.
        N=O
        1 N=N+1
    READ(5,102) XB(N),YB(N)
    IF( EOF(5))}2,
    2 NBOC = N-1
    WRITE(6,103)
    WRITE(6,104) (N,XB(N),YB(N),N=1,NBOD)
    DISTRIBUTE POINTS ON INNER AND REAR BOUNOARIES.
    CALL INNER(NBCD, JWAKE,KMAX,XB, YB, XNOSE,XTAIL,XGMX,YMAX,YMIN,
    1 DY1,JMAX,X,Y)
    DISTRIBUTE POINTS ON BOTTOM-FRONT-TOP BOUNDARY.
    CALL OUTER(XGMX,XGMN,YMAX,YMIN, XORG,ETAC,BETA,JMAX,KMAX,X,Y)
    FILL-IN beTwEEN ETA-MAX AND ETA-MIN BOUNDARIES.
    JMM = JMAX -1
    KMM = KMAX-1
    RKMMM=1.0/KMM
    DO 13 J=2, JMM
    DELX=(X(J,KMAX)-X(J,1))*RKMM
    DELY=(Y(J,KMAX)-Y(J,l))*RKMM
    OO 13 K=2,KMM
    X(J,K)=X(J,1) + (K-1)*DELX
13 Y(J,K) = Y(J,1) + ( K-1)*DELY
DATA PI/3.141592654/
READ IN PARAMETERS.
READ(5,101) JWAKE,KMAX,MAXIT
READ(5,102) XGMX,XGMN,YMAX,YMIN, XNOSE,XTAIL
\(\operatorname{READ}(5,102)\) DY1
READ(5,102) XORG,ETACD,BETA
READ (5,102) OMEGA
CALL READIN
READ (5,10C)ITITLE
READ(5.100) LINE
\(N=0\)
\(1 N=N+1\)
\(\operatorname{READ}(5,102) \times B(N), Y B(N)\)
IF( EOF(5)) 2,1
2 NBOC \(=\mathrm{N}-1\)
WRITE(6,103)
WRITE ( 6,104 ) ( \(N\),XB(N),YB(N),N=1,NBOD)
CALL PLAWT(JMAX,KMAX,X,Y,XGMX,XGMN,YMAX,YMINI
generate un-clustered grid.
CALL RELAX(JMAX,KMAX,X,Y,OMEGA, MAXIT)
PLOT UN-CLUSIERED GRID.
CALL PLAWT(JMAX,KMAX, X,Y, XGMX, XGMN, YMAX,YMIN)
```

CALL CLUSTR(JMAX, X,Y, OYZ,KMAX)

```
    WRITE(8) ((X(J,K),J=1,JMAX),K=1,KMAX),((Y(J,K),J=1,JMAX),K=1,KMAX)
```

 PLOT BLOW-UP OF INNERMOST 10 LINES.
 NJW=JWAKE/4
 \(N J M=N B O D+2 * N J W\)
 JJJ=JWAKE-NJW-1
 XMAX=X(JWAKE,1)
 \(X M I N=X M A X\)
 YMAX \(=Y(J W A K E, 1)\)
 YMIN = YMAX
 C
DO $35 \mathrm{~K}=1,10$
$0035 \mathrm{~J}=1$, NJM
JJ= $7 J J+J$
$x X=X(J J, k)$
$Y Y=Y(J J, K)$
$\operatorname{IF}(X X \cdot G T, X M A X) \quad X M A X=X X$
IF(XX.LT.XMIN) XMIN=XX
IF(YY.GT.YMAX) YMAX=YY
IF(YY.LT,YMIN) YMIN=YY
$X(J, K)=X X$
$Y(J, K)=Y Y$
6
CALL PLAWTINJM,10, X, Y, XMAX, XMIN, YMAX,YMINI
CALL EOFTV
C
c

STCP
FORMAT(8A2G)
FORMAT(1615)
FORMAT(8F10.0)
FORMAT(127H AIRFOIL POINTS AS READ IN.)
FORMAT(3H $N=, 13,5 \mathrm{X}, 3 \mathrm{HXB}=, \mathrm{E} 12.5,5 \mathrm{X}, 3 \mathrm{HYB}=, \mathrm{El2.5}$)
FORMAT(34H CARD NO. $9:$ AIRFIOL DESCRIPTION:,10X,8A10)
FORMAT (24H1 PARAMETERS AS READ IN://
1 GOH CARD NO. 1: JWAKE, NUMBER OF POINTS IN EACH SIDE OF WAKE $=$,
2 I5/14X,41HKMAX, NUMBER OF POINTS IN ETA DIRECTION $=, I 5 /$
$314 \times$, $57 \mathrm{HM} A X I T$, MAXIMUM NUMBER OF ITERATIONS IN MAKING UN-CLUSTERE, 4 8HO GRID =,I5/
5 57H CARD NO. 2: XGMX, X-DIRECTION CODRDINATE OF DOWNSTREAM,
6 IOHBOUNDARY $=, F 20.10 / 14 \times$. 32 HXGMN, X-DIRECTION COORDINATE OF,
719 HUPSTREAM BOJNDARY $=, F 20.10 / 14 x, 25 H Y M A X, Y-D I R E C T I O N ~ C O D R D I N$, 823 HATE OF UPPER BJUNDARY $=, F 20.10114 \mathrm{X}, 23$ HYMIN, Y-DIRECTION COORD, 9 25HINATE CF LOWER BOUNDARY $=, F 20.10 / 14 X, 19 H X N O S E, X-D I R E C T I O N$, A 39HCOORDINATE OF LEADING EDGE OF AIRFOIL $=, F 20.10 / 14 \mathrm{X}$, B 59HXTAIL, X-DIRECTION COORDINATE OF TRAILING EDGE OF AIRFOIL =, C F20.10)

```
1 1 3
    FORMATIEIH CARD NO. 3: DYI, MINIMUM Y-INCREMENT ON REARWARO
        1 33HBOUNDARY FOR INITIAL CONDITIONS =,F2O.10/14H CAKD NO. 4: ,
        2 6IHXORG, X-DIRECTION LOCATION OF ORIGIN FOR ANGULAR CLUSTERING =,
    3 F20.10/14X,45HETAC, ANGLE (IN DEGREES) ABOUT WHICH ANGLLAR,
    4 2OHCLUSTERING IS DONE =,F8.2/14X, 25HBETA, ANGULAR CLUSTERING,
    5 11HPARAMETER m,F2J.10/35H CARD NO. 5: OMEGA, PARAMETER FOR,
    6 17HTHDMPSON SOLVER m,F20.10/31H CARD NO. 6: DY2, MINIMUM ETA-,
    7 4OHDIRECTIDN SPACING FOR FINAL CLUSTERING =,F2O.10)
        FORMATI25H CARD NO. 8: PLOT TITLE&,10X,EAIOI
```

 END
 Subroutine INNER distributes points on the airfoil-wake ($\eta=\eta_{\text {min }}$) boundary and the rear boundaries. The distribution of points on the airfoil part of the $\eta=\eta_{m i n}$ boundary is taken from the input data cards describing the airfoil shape; no redistribution of these points or modifications of their number is allowed for in the program. The airfoil shape, however, is shifted and scaled to allow arbitrary placement on the x axis of the leading and trailing edges. Points on the wake part of the $\eta=\eta_{\min }$ boundary are exponentially stretched toward the rearward boundary using the transformation

$$
\begin{align*}
& \tilde{S}_{1}=0 \tag{18}\\
& \tilde{S}_{k}=\tilde{S}_{k-1}+\Delta \tilde{S}_{\min }\left(1+\frac{\varepsilon}{\sqrt{k-1}}\right)^{k-2} \tag{19}
\end{align*}
$$

much like equations (11) and (12). Distribution of points in the y direction on the rear $\left(\xi=\xi_{\min }\right.$ and $\xi=\xi_{\max }$) boundaries is also obtained by exponential stretching from the wake to the bottom and top boundaries using the transformation in equations (11) and (12). It should be noted that the y-direction point distribution on the rear boundaries $f a$ and $e i$ of figure 2 is used only as a boundary condition in the TTM method and is discarded along with all other η spacing in the application of the final exponential clustering.

```
*DECK INNER
    SUBROUTINE INNERINBOD,JWAKE,KMAX,XB,YB,XNOSE,XTAIL,XGMX,YMAX,YMIN,
        1 DYI,JMAX,X,YI
C
C
    THIS SUBROUTINE DISTRIBUTES PQINTS ON THE ETA-MIN (AIRFOIL-
                WAKE, INNER) BOUNDARY AND THE REAR (OUTFLOW) BOUNDARY.
    DIMENSION XB(1),YB(1),X(140,80),Y(140,B0)
C SHIFT AND SGALE aIRFOIL POIMTS.
        XMIN=XB(1)
        XMAX = XB(1)
        DO 3 N=2,NBDD
        IF( XB(N) &LT. XMIN) XMIN = XB(N)
        3 IF(XB(N) GT•XMAX) XMAX=XB(N)
C
    SCALE = XTAIL-XNOSE)/( XMAX - XMIN)
    DO 4 N=1,NBOO
    XB(N) = XB(N) - XMIN)*SCALE+XNOSE
    4 YB(N) = YB(N)*SCALE
        WRITE(6,105)
        WRITE(6,1(6) (N,XB(N),YB(N),N=1,NBOD)
C
    JWT = JWAKE + NBOD -1
    N=0
    OO 5 J = JWAKE,JWT
    N=N+1
    X(J,I)=XB(N)
    5 Y(J,1)=YB(N)
```

 DISTRIBLTE POINTS ON WAKE BOUNDARY.
 \(D \times 0=(X(J W T, 1)-X(J W T-1,1)+X(J W A K E, 1)-X(J W A K E+1,1)) *, 5\)
 \(N=-1\)
 JMAX \(=\) NBOO \(+2 *\) JWAKE -2
 \(J W T P=J W T+1\)
 \(X X=(X(J W T, 1)+X(J W A K E, 1) * 05\)
 \(Y Y=(Y(J W T, 1)+Y(J W A K E, 1)) *, 5\)
 EPSW=EPSIL(XGMX,XX,OX0, JMAX-JWT+1,0.001,100,2,1)
 DO \(6 \mathrm{~J}=\mathrm{JWTP}, \mathrm{JMAX}\)
 \(N=N+1\)
 \(J J=J W A K E-1-N\)
 \(X X=x X+0 \times 0 *(1.0+E P S W / S Q R T(F L O A T(N+1))) * * N\)
 \(x(J, 1)=x x\)
 \(X(J J, 1)=X X\)
 \(Y(J, 1)=Y Y\)
 \(6 Y(J J, I)=Y Y\)
 NONE = 1
 WRITE(6,107)
 WRITE(6,108\()(J, N O N E, X(J, 1), J, N O N E, Y(J, 1), J=1, J M A X)\)
 DISTRIBUTE POINTS IN Y DIRECTION ON REARWARD BOUNOARY.
 \(N=-1\)
 EPSY1T=EPSIL(YMAX,YY,OY1,KMAX,0.001,100,1,1)
 EPS Y1 B = EPSIL (-YMIN,-YY, DY1, KMAX, \((.001,100,1,2)\)
 DO \(8 K=2, K M A X\)
 \(N=N+1\)
 \(Y(J M A X, K)=Y(J M A X, K-1)+D Y 1 *(1.0+E P S Y 1 T) * * N\)
 \(Y(1, K)=Y(1, K-1)-D Y 1 *(1,0+E P S Y 18) * * N\)
 \(X(J M A X, K)=X G M X\)
 \(X(1, K)=X G M X\)
 WRITE $(6,110)$
WRITE(6,108) (NONE, $K, X(1, K), N O N E, K, Y(1, K), K=1, K M A X)$
WRITE $\{6,1111$
WRITE(6,108) (JMAX,K,X(JMAX,K),JMAX,K,Y(JMAX,K),K=1,KMAX)
RETURN
FORMATI/32H AIRFOIL POINTS AFTER RESCALING.)
FORMAT ($3 \mathrm{H} \mathrm{N}=, \mathrm{I} 3,5 \mathrm{X}, 3 \mathrm{HXB}=, F 12.5,5 \mathrm{X}, 3 \mathrm{HY} \mathrm{E}=, \mathrm{F} 12.5$)
FORMAT(/30H BOUNDARY ON WAKE AND AIRFOIL:)

FORMAT(/33H LOWER PART OF REARWARD BOUNDARY:)
FORMAT(/33H UPPER PART OF REARWARD 3OUNDARY:)
END

Subroutine OUTER distributes points on the bottom-front-top boundary by first locating a special "clustering origin" at an arbitrary point on the x axis, and then placing the boundary points in an angular fashion about that origin. The angular distribution of boundary points is derived from an angular clustering transformation given by Davy and Reinhardt (ref. 3). The user specifies the angle about which clustering is performed and a parameter determining the strength of clustering. Equal angular distribution is available as a special case.

SUBROUTINE QUTER(XMAX,XMIN,YMAX,YMIN,XDRG,ETAC, BETA,JMAX,KMAX,X,Y)
ETARU=ATAN2 (YMAX, XMAX $-X O R G$)
ETARL=ATAN2(-YMIN, XMAX-XORG)
$D E T A=(2.0 * P I-(E T A R U+E T A R L) / /(J M A X-1)$
CLUSTR =.FALSE.
IF(BETA.GT.0.0) CLUSTR =.TRUE.
IF(.NOT. CLUSTR) GO TO 14
FACT=PI/(2.0*PI-(ETARU+ETARL))
FACTR=1.O/FACT
ETACT=(ETAC-ETARU)*FACT
$B=0.5 * A L O G(1 .+(E X P(B E T A)-1) * E T A C. T / P I) /(1 .+(E X P(-B E T A)-1) *$.
1 ETACT/PI)
RSB $=1.1 S I N H(B)$
$E T A=E T A R U$
ANG 1=ATAN2 (YMAX, XMIN-XORG)
ANG2 =ATAN2(YMIN,XMIN-XORG) +2.0*PI
NSIDE =1
C
ETARUD=ETARU*180./PI
ETARLD=ETARL*180./PI
ANG1D $=A N G 1 * 180 . /$ PI
ANG2D=ANG2*180./PI
WRITE(6,109) CLUSTR,ETARUD,ETARLD,ANG1D,ANG2D
IFICLUSTR.AND.ETAC.LT.ETARU.OR.CLUSTR.AND.ETAC.GT.(2.0*PI-ETARL))
1 GO TO 22

```
C
    DO 9 JJ=2,JMAX
    J=JMAX+1-JJ
    ETA = ETA + DETA
    IF(.NOT.CLUSTR) GO TO 26
    ETAT=(ETA-ETARU)*FACT
    PHIT=ETACT*(SINH(BETA*ETAT/PI-B)*RS9+1.)
    PHI=ETARU+PHIT*FACTR
    GO TO 27
    PHI=ETA
26
C
27
1 IF(PHI.GT.ANG1) NSIDE=2
    GO TO 3
    IF(PHI.GT.ANG2) NSIDE=3
    GO TO (10,21,12),NSIDE
    10 Y(J,KMAX) = YMAX
    X(J,KMAX) = YMAX/TAN(PHI) + XORG
    GD TO 21
    II X(J,KMAX)=XMIN
        Y(J,KMAX) = ( XMIN - XORG)*TAN(PHI)
        GO TO 21
    X(J,KMAX) =XORG+YMIN/TAN(PHI)
    Y(J,KMAX)= YMIN
    continue
        ETAD=ETA*1&\./PI
        PHID=PHI*180./PI
        WRITE(6,113) J,KMAX,X(J,KMAX),J,KMAX,Y(J,KMAX),ETAD,PHID,NSIDE
        9 CONTINUE
C
C
22 WRITE(6,114)
        STOP
C
109 FORMATI/GH CLUSTR=,L1,5X,6HETARU=,F8.2,5X,6HETARL=,F8.2,5X,
    I SHANG1=,F8.2,5X,5HANG2=,F8.2//24H OUTER BOUNDARY ON TOP, ,
    2 18HFRONT, AND BOTTOMB)
113 FCRMAT(3H Xl,I3,1H,,I3,2H)=,F12.5,2X,2HY(,13,1H,,I 3,2H)=,F12.5,
        1 5X,4HETA=,F&, 2,5X,4HPHI=,F&.2,5X,6HNSIDE=,II)
114 FOKMAT(/23H ERRDR EXIT. BAD ETAC.)
C
FND
```

Subroutine RELAX creates a grid by solving equations (3) and (4) in the uniform $\xi-\eta$ domain using successive line overrelaxation (SLOR). Second-order accurate central difference operators are used throughout, and tridiagonal matrices are solved along lines of constant n using the utility program TRIB.

```
*DECK RELAX
    SUBROUTINE RELAX(JMAX,KMAX,X,Y,OMEGA,MAXIT)
C
c
C
C
    DIMENSION X(140,80),Y(140,80)
    DIMENSION A(140),B(140),C(140),D(140),F(140),G(140)
C
    KMM=KMAX-1
    JMM=JMAX-1
    ICOUNT=0
C
2 ICOUNT = ICOUNT+1
    RSUM=0.
C
C
    DO 3 J=2,JMM
    XXD=(X(J+1,K)-X(J-1,k))*0.5
    XED=(X(J,K+1)-X(J,K-1))*0.5
    YXD =(Y(J+1,K)-Y(J-1,K))*0.5
    YED=(Y(J,K+1)-Y(J,K-1))*0.5
    AD=XED**2+YED**2
    BD=XXD*XED+YXD*YED
    GD=XXD**2+YXD**2
    XXED=(X(J+1,K+1)-X(J+1,K-1)-X(J-1,K+1)+X(J-1,K-1))*0.25
    YXED=(Y(J+1,K+1)-Y(J+1,K-1)-Y(J-1,K+1)+Y(J-1,K-1))*0. 25
    BD=-2.0*BD
    A(J)=AD
    B(J)=-AD-AD-GD-GD
    C(J)=AD
    F(J)=-BD*XXED D-GD*(X(J,K+1)+X(J,K-1))
    G(J)=-8D*YXED-GD*(Y(J,K+1)+Y(J,K-1))
3
    F(2)=F(2)-A(2)*X(1,K)
    G(2)=G(2)-A(2)*Y(1,K)
    F(JMM)=F(JMM)-C(JMM)*X(JMAX,K)
    G(JMM)=G(JMM)-C(JMM) #Y(JMAX,K)
C
    CALL TRIB(A,B,C,D,F,2,JMM)
    CALL TRIB(A,B,C,D,G,2,JMM)
```

C
DO $4 \mathrm{~J}=2, \mathrm{JMM}$
$X C=O M E G A *(F(J)-X(J, K))$
$Y C=O M E G A *(G(J)-Y(J, K))$
$R S U M=R S U M+A B S(X=)+A B S(Y C)$
$X(J, K)=X(J, K)+X C$
4
$Y(J, K)=Y(J, K)+Y C$
1 CONTINUE
C
WRITE 6,100)RSUM, ICOUNT IF(ICOUNT.LT.MAXIT) GO TO 2
c
WRITE(6,121)
$0024 \mathrm{~J}=1, \mathrm{JMAX}, 10$
WRITE(6,115)J
WRITE $(6,117) \quad(X(J, K), K=1, K M A X)$
WRITE $(6,116) \mathrm{J}$
WRITE $(6,117)$ (Y(J,K),K=1,KMAX)
24
RETURN
C
1CO FORMATI2OH SUM OF RESIDUALS =,F20.10,
1 7H AFTER, I 5,12H ITERATIONS.)

Subroutine CLUSTR applies along each line of constant ξ, the exponential clustering transformation discussed at length in the main body of this paper.

*CECK CLUSTR

SUBROUTINE CLUSTR(JMAX,X,Y,OY2,KMAX)
C
C THIS SUBROUTINE APPLIES TNE EXPONENTIAL CLUSTERING
C TO THE LINES OF CONSTANT XI.

DIMENSION X(140,80),Y(140,80)
DIMENSION T(80),S(80),XXX(80),YYY(89)
C
KMAX $=$ KMAX-1
KMM $=$ KMAX-1
C
$0020 \mathrm{~J}=1, \mathrm{JMAX}$
C
$T(1)=0$.
DO $16 \mathrm{k}=2$, KMAX
$16 T(K)=T(K-1)+S Q R T(X(J, K)-X(J, K-1)) * * 2+(Y(J, K)-Y(J, K-1))$ 1 **2)
C
EPSY2=EPSIL(T(KMAX),0.0, OY2,KMAX,0.001,100,1, 1$)$
C
$S(1)=0.0$
$N=-1$
DO 15 K=2, KMAX
$N=N+1$
25
C
DO $17 \mathrm{~K}=1, \mathrm{KMAX}$
$X X X(K)=X(J, K)$
17 YYY(K) $=Y(J, K)$
C
PTL $=0$.
$0018 \mathrm{~K}=2, \mathrm{KMM}$
18 CALL TAINT(T, XXX,S(K),X(J,K),KMAX,2,NER,PTL)
C
PTL $=0$.
DO $19 \mathrm{~K}=2, \mathrm{KMM}$
19 CALL TAINT(T,YYY,S(K),Y(J,K),KMAX,2,NER,PTL)
c
20 continue
C
WRITE(6,120)
DO $23 \mathrm{~J}=1$, JMAX
WRITE(6,115)J
WRITE $(6,117)(X(J, K), K=1, K M A X)$
WRITE(6,116)J
WRITE $(6,117) \quad(Y(J, K), K=1, K M A X)$
RETURN

C
120 $i 15$ 116 117
C

FORMAT(/24H AFTER FINAL CLUSTERING:I FORMAT(131H X \geq S FOR CONSTANT XI LINE AT J*, [5) FORMAT(/31H Y \geq S FOR CONSTANT XI LINE AT J=, I5) FORMATIIOE13.6)

END

Function EPSIL applies a Newton-Raphson iterative technique to find a value of ε for use in the exponential stretching transformations given by equations (11), (12), (18), and (19).

```
    FUNCTION EPSIL(FMX,FMIN,DFM,NPT,FPCC,ICC,KEY,NCALL)
        THIS SUBRQUTINE APPLIES A NEWTON-RAPHSON ROOT-FINDING
        TECHNIQUE TO FINO A VALUE OF EPSILJN FQR A PARTICULAR USE
        OF THE EXPDNENTIAL STRECHING TRANSFORMATION.
    DIMENSION R(140)
    FMXL =FMX
    FMINL=FMIN
    DFML=DFM
    FPCCL=FPCC
    ICCL#ICC
    GO TO {2,2},KEY
1 FNPTMZ=NPT-2
    IF(NCALL.EQ.1) EPS=(FMKL/DFML)**(1.0/FNPTM2)-2.C
    DO 3 NIT=1,ICCL
    EPI = EPS+1.む
    EPITN=EPI**FNPTM2
    REPS=1.0/EPS
    CFMOE=DFML*REPS
    F=FMXL-FMINL-DFMOE*(EPITN*EPI-1.J)
    IF(ABS(F).LT.FPCCL) GOTO 4
    CFMOC2=DFMDE*REPS
    FPN=OFMOE 2*(1.O+EP\TN*(EPS*FNPTMZ-1.0))
    EPS=EPS+F/FPN
    CONTINUE
    GO TO 5
C
2 NPTM=NPT-1
    IF(NCALL.EO.I)
    1 EPS=((FMXL/DFML)**(1.J/(NPT-2))-1.0)*SQRT(FLJAT(NPTM))
        DO G L=1,NPTM
    R(L)=1.(C/SORT(FLOAT(L))
    DU }7\mathrm{ NIT=1,ICCL
    SUMI=C.O
    SUM2=C.S
    DU 8 L=1,NPTM
    FLM2=L-2
    FACT1=1.U+EPS*R(L)
    FACTZ=FACT1**FLMZ
    SUMI = SUMI +FACT2*FACTI
    SUM2=SUM2+(L-1)*FACT2*R(L)
    F=FMXL-FMINL-DFML*SUM1
    IF(ABS(F).LT.FPCCL) GO TO 4
    FPN=OFML*SUM2
    EPS=EPS+F/FPN
    CONTINUE
    EPSIL=EPS
    WRITE(6,IJ0)
    RETURN
C
```

$4 \quad$ EPSIL=EPS
WRITE(6,2.J1) EPSIL,F,NIT
RETURN

C
100 FORMAT(/42H EXCEEDED MAX. NO. OF ITERATIONS IN EPSIL.I
101 FORMATI/7H EPSIL=,F12.5,5X,7H AND F=,F12.5,5X,7H AFTER - 12H ITERATIDNS.I

C
END

Subroutine TAINT is a utility subroutine that inputs a tabulated function of one independent variable, then outputs the value of the function at a given value of the independent variable by passing a polynomial of arbitrary order (≤ 9) through the nearest input points. It is used for second-order interpolation.

Subroutine TRIB solves a tridiagonal system of linear equations using the so-called Thomas algorithm (i.e., Gaussian elimination or L-U decomposition).

SUBROUTINE TAINT(XTAB,FTAB,X,FX,N,K,NER, MON)
C
C
C SYSTEM LIBRARY SUBROUTINE TAINT FOR POLYNOMIAL INTERPOLATION

DIMENSION XIAB(1),FTAB(1),T(10),C(10)
CPSO400 TAINT SLBROUTINE- IN FORTRAN II.
IF (N - K) 1,1,2
1 NER=2
RETURN
2 IF ($\mathrm{K}-9$) 3,3,1
3 IF (MON) 4,4,5
5 IF (MON-2) 6,7,4
$4 \mathrm{~J}=0$
NMI $=\mathrm{N}-1$
DO 8 I $=1$, NM1
IF (XTAB(1)-XTAB(I+1)) 9,11,10
11 NER=3
RETURN
$9 \mathrm{~J}=\mathrm{J}-1$
GO TO 6
$10 \mathrm{~J}=\mathrm{J}+1$
8 CONTINUE
MON = 1
IF (J) $12,6,6$
12 MON=2
7 OO $13 \quad \mathrm{I}=1, \mathrm{~N}$
If (X-XTAB(I)) 14,14,13
$14 \mathrm{~J}=1$
GO TO 18
13 CONTINUE
GO TO 15
$60016 \mathrm{I}=1, \mathrm{~N}$
If (X-XTAB(I)) $16,17,17$
$27 \mathrm{~J}=1$
GO TO 18
16 CONTINUE
$15 \mathrm{~J}=\mathrm{N}$
$18 \mathrm{~J}=\mathrm{J}-(\mathrm{k}+1) / 2$
IF (J) 19,19,20
$19 \mathrm{~J}=1$
$20 \mathrm{M}=\mathrm{J}+\mathrm{K}$
IF ($M-N$) 21,21,?2
$22 \mathrm{~J}=\mathrm{J}-1$
GO 10 20
$21 K P I=K+1$
JSAVE=J
260023 L=1,KP1
$C(L)=X-X T A B(1)$
$T(L)=F T A B(d)$
$23 \mathrm{~J}=\mathrm{J}+1$
DO $24 \mathrm{~J}=1 \mathrm{gK}$ $I=\mathrm{J}+1$
25 T(I)=(C(J)*T(I)-C(I)*T(J))/(C(J)-C(I))
$\mathrm{I}=\mathrm{I}+1$
IF (I-KP1) 25,25,24
24 CONTINUE
$F X=T(K P 1)$
NER=1
RETURN
ENO

SUBROUTINE TRIB(A,B,C,X,F,NL,NU)
DIMENSION $A(2), B(2), C(2), X(2), F(2)$

```
THIS SUBRQUTINE SOLVES A TRI-DIAGONAL SYSTEM OF LINEAR EQUATIONS.
```

$X(N L)=C(N L) / B(N L)$
$F(N L)=F(N L) / B(N L)$
$N L P 1=N L+1$
DO 1 J=NLPI,NU
$2=1 . /(R(J)-A(J) * X(J-1))$
X(J) $=C(J) * Z$
$1 \quad F(J)=(F(J)-A(J) * F(J-1)) * Z$
NUP NL $=$ NUUNL
DO $2 \mathrm{Ji}=\mathrm{NLP}$ P1,NU
$J=$ NUPNL-J1
$F(J)=F(J)-X(J) * F(J+1)$
RETURN
END

SC4020 PLOT SUBROUTINES

Subroutines PLAWT, AXIS, LABEL, PLOT, and TITLE are used to illustrate the grids on the SC4020 plotter. They contain calls to the standard SC4020 software subroutines; thus, the SC4020 software subroutines must be made available to the loader. If the user's computer installation does not include an SC4020, the five subroutines listed above should be removed from the deck; calls to subroutines READIN, PLAWT, and EOFTV should be removed from the main program; and data card 7 should be deleted.

SUBROUTINE PLAWT(N,H,X,Y,XMAX,XMIN,YMAX,YMIN)
c
C
C
C
this subroutine is one of the subroutines that plots grios ON THE SC402J PLOTTER.

DIMENSION $X(140,80), Y(140,80), X X(80), Y Y(80)$
COMMON/TCOM/ITITLE(8)
READJUST PLOT LIMITS SO AS TO AVIOD A STRECHED PLOT. XOIF $=$ XMAX-XMIN
YDIF=YMAX-YMIN
IF(XDIF-LT.YDIF) GOTO 4
XDIFH=XDIF*0.5
$Y M I D=(Y M A X+Y M I N) * 0.5$
$Y M X=Y M I D+X D I F H$
YMN = YMID-XOIFH
$X M X=X M A X$
$X M N=X M I N$
GO 105
YOIFH=YDIF*O.5
$X M I D=(X M A X+X M I N) * 0.5$
$X M X=X M I D+Y C I F H$
$X M N=X M I D-Y O I F H$
$Y M X=Y$ MAX
YMN = YMIN
continue
PLOT THE LINES.
CALL AXIS(XMN,XMX,YMN,YMX,O,O)
CALL TITLE(ITITLE,80)
$001 \mathrm{~J}=1, \mathrm{M}$
CALL PLOT(X(1, $J), Y(1, J), N, 0)$
DO2 I $=1, N$
D03J=1, M
$X X(J)=X(I, J)$
$3 Y Y(J)=Y(I, J)$
CALL PLOT(XX,YY,M,O) PETURN
END

SUBRDUTINE AXIS(XMIN, XMAX,YMIN, YMAX,NXINTS, NYINTS)

```
        THIS SUBROUTINE IS ONE OF THOSE THAT PLOTS GRIDS
```

 ON THE SC4020 PLOTTER.
 this subroutine draws the \(x\) and y axes, marks off the
 intervals, sets the scale values, and moves the film to a new
 FRAME.
 xMIN is the minimum value of the x (horizontal) variable.
 xmax is the maximum value dF the \(x\) variable.
 ymin is the minimum value of the r (vertical) variable.
 ymax is the maximum value of the r variable.
 NXINTS IS THE NUMBER OF INTERVALS INTO WHICH THE \(X\) AXIS IS TO
 BE DIVIDED.
 NYINTS IS the number of intervals into which the y axis is to
 BE DIVIDED.
 DO INITIALIZATION
 CALL CAMRAV(35)
CALL SMALLV
CALL FRAMEV(O)
NX=NXINTS
NY=NYINTS
IF NX OR NY . LE. o make them equal to 1
IF INX.LE. O) NX=1
IF (NY .LE. O) NY=1
SET UP VALUES to be useo for margins
$M L=123$
$M R=923$
$M B=123$
MT=923
ORAW X AXIS
CALL LINEV(ML,MB,MR,MBI
DRAW Y AXIS
CALL LINEV(ML,MB,ML,MT)
OETERMINE INCREMENTS FOR IIC MARKS
DX=(XMAX-XMIN)/NX
OY= (YMAX-YMIN)/NY
SCALE X ANO Y VALUES
CALL XSCALV(XMIN,XMAX,ML,100)
CALL YSCALVIYMIN, YMAX,MB,1001
DRAW TIC MARKS ON THE X AXIS
CALL LINRV(1, MB-20,MB-5,MB+5,XMIN,XMAX, DX, 0, -1, $-3,8$)
DRAW TIC MARKS ON Y AXIS
CALL LINRV(2,ML- $90, M L-5, M L+5, Y M I N, Y M A X, D Y, 0,-1,-3,10)$
RETURN
END

SUBROUTINE LABEL(IXLABL,NX,IYLABL,NY)

SUBROUTINE TITLE(ITITLE,NCHARS)
this subroutine is one of those rhat plots grids ON THE SC4O2O PLOTTER.
the maximum number of characters allowed in the title is 108.
ICHARS=IABS (NCHARS)
IF (ICHARS .GT. 108) ICHARS: 108
IF (ICHARS .GT. 54) $I X=14$
IF (ICHARS .LE. 54) IX:510-(ICHARSI2)*18
$I Y=990$
CALL RITE $2 \mathrm{~V}(I X, I Y, 101 \mathrm{C}, 90,1$, ICHARS,1,ITITLE,NLAST)
RETURN
END

Input data cards are as follows. All integers are read using 16 I 5 format. All floating-point variables are read using 8 F10.0 format. All alphanumeric data are read using 8 A 10 format.

Card 1. Card 1 contains three integers.

Columns	Name	Description
1 to 5	JWAKE	Number of grid points in the x direction in the wake including the trailing edge point
6 to 10	KMAX	Number of grid points in the η direction
11 to 15	MAXLT	Number of iterations to be used in creating the unclus- tered grid

Card 2. Card 2 contains floating point numbers that define the physical size of the grid and the location of the airfoil.

Columns	Name	Description
1 to 10	XGMX	x-direction coordinate of rearward boundary
11 to 20	XGMN	x-direction coordinate of front boundary
21 to 30	YMAX	y-direction coordinate of top boundary
31 to 40	YMIN	y-direction coordinate of bottom boundary
41 to 50	XNOSE	x-direction coordinate of leading edge of airfoil
51 to 60	XTAIL	x-direction coordinate of trailing edge of airfoil

Card 3. Card 3 contains in columns 1 to 10 one floating-point number $D Y 1$, which is the physical spacing in the y direction on the rear boundary immediately above and below the wake.

Card 4. Card 4 contains floating-point numbers determining the location of points on the bottom-front-top boundary.

Columns	Name	Description
1 to 10	XORG	Location on the x axis of the special "clustering origin"
11 to 20	ETACD	Angle (in degrees), measured counterclockwise from the x axis, about which clustering should be performed
21 to 30	BETA	Parameter determining the strength of clustering. Zero (for equal-angular distribution) or values in the range 1 to 5 are recommended.

Card 5. Card 5 contains one floating-point number in columns 1 to 10 , OMEGA, the relaxation parameter for the SLOR procedure in subroutine RELAX. Values must be between 0 and 2, with a typical value being 1.55 .

Card 6. Card 6 contains one floating-point number in columns 1 to 10, the parameter $D Y 2$, which is the physical spacing in the η direction between the airfoil-wake boundary and the next line of constant n.

Card 7. Card 7, read by SC4020 subroutine READIN, contains up to 80 alphanumeric characters to be used for a comment on the title frame of the SC4020 plots.

Card 8. Card 8 contains up to 71 alphanumeric characters to be placed as a title on each of the four SC4020 plots that result from each run.

Card 9. Card 9 contains up to 80 alphanumeric characters describing the airfoil to be used. This description will appear on the printed output.

Cards 10, 11, All cards following card 9 contain in columns 1 to 10 and 11 to 20 two floating-point numbers, x and y, respectively, which are coordinates of points on the airfoil surface, defining the airfoil shape. The points should be ordered to begin and end at the trailing edge and proceed counterclockwise.

Two notes of caution with respect to the input data cards are in order for those installing this program on computers of manufacture other than Control Data. First, the cards defining the airfoil shape are read until an end-of-file is encountered. End-of-file conditions are handled differently by different computers. Second, alphanumeric data is stored 10 characters per word on Control Data machines. Care should be taken on machines having different word lengths.

SAMPLE DATA CASE

The data cards used to produce the grid shown in figure 5 follow:


```
    .564684
    .501943
    .501943 -.052817
.439612-.056319
.378638-.058748
.319904 -.059927
.264227 -.059712
.212357 -.058027
.164970-.054863
. .122669 -.050245
.085973 -.044279
.055327-.037107
.031109 -.028668
.013637 -.017743
.003244 -.009929
.000000 .000C02
.003283 .007432
.013651 .019728
.031111 .028866
.055331 .037100
.085475 .044274
.122670 .050244
.164972 .054858
.212357 .058027
.264227 .059712
.319904 .059926
.378638 .05874E
.439613 .056319
.501943 .052815
.564E85 .048424
.620855 .04336t
.687413 -C37653
.745314 .032084
.799450 .026289
.848961 .02064C
.892711 .01538C
.929881 .010691
    .959694 .006777
    .981540 .0C3816
1.000COD .001252
```


REFERENCES

1. Thompson, J. F.; Thames, F. C.; and Mastin, C. W.: Automatic Numerical Generation of Body-Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-Dimensional Bodies. J. Comp. Phys., vol. 15, no. 3, July 1974, pp. 299-319.
2. Thames, F. C.; Thompson, J. F.; and Mastin, C. W.: Numerical Solution of the Navier-Stokes Equations for Arbitrary Two-Dimensional Airfoils. NASA SP-347, 1975, Pt. 1, pp. 469-530.
3. Davy, W. C.; and Reinhardt, W. A.: Computation of Shuttle Nonequilibrium Flow Fields on a Parallel Processor. NASA SP-347, 1975, Pt. 2, pp. 1351-1366.

Figure 1.- Location of boundaries on a typical physical domain.

$$
\eta=\eta_{\text {max }}
$$

Figure 2.- Schematic showing boundary locations for one kind of airfoil grid generation.

(a) Overview.

Figure 3.- Computed grid using equations (3) and (4) with specified boundaries.

(b) Grid detail near boundary.

Figure 3.- Concluded.

Figure 4.- Detail of computational grid using equations (7) and (8).

(a) Overview.

(b) Grid detail near boundary.

Figure 5.- Computational grid after application of clustering along lines of constant ξ.

Washington, D.C. 20546

Official Business
Penalty for Private Use, $\$ 300$

