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PREFACE

This Reference Publication is part of a cryogenic fluids safety review

performed
on oxygen

1.

This Reference Publication is composed of information from the available

by the NASA-Lewis Research Center. Major emphasis has been
safety. The objectives of the review include:

Recommendations to improve NASA cryogenic and oxygen
handling practices by comparing NASA and contractor

systems including the design, inspection, operation,
maintenance, and emergency procedures.

Assessment of the vulnerability to failure of cryogenic
and oxygen equipment from a variety of sources so that
hazards may be defined and remedial measures formulated.

Formulation of criteria and standards on all aspects of
handling, storage, and disposal of oxygen and cryogenic
fluids.

reports and publications on Cryogenic Foam Insulation. The documents
abstracted and listed contain information on the properties of foam

materials

and on the use of foams as thermal insulation at cryogenic

temperatures.

The properties include thermal properties, mechanical properties, and
compatibility properties with oxygen and other cryogenic fluids. Uses
of foams include applications as thermal insulation for spacecraft
propellant tanks, and for liquefied natural gas storage tanks and

pipelines.
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INTRODUCTION

This survey is composed of information from the reports and
publications available in January, 1976, on Cryogenic Foam Insulation.
One group of documents, listed alphabetically by first author, was
chosen to include the most important or most informative papers on the
properties and applications of foams. An abstract has been prepared
for each document in this group, and the most important references are

‘listed as found in the document.

Another group of documents, also listed alphabetically by author,
generally includes less important papers than those in the first group.
Some important papers are in the second group because iInformation from
them has been reviewed or repeated in documents included in the first
group.

An author index and a subject index are provided. The indexes
cover the authors and subjects of both groups of documents.

Paul M. Ordin of the NASA-Lewis Research Center was the Project
Manager for NASA.

Identification of a manufacturer's product in this publication in no
way implies a recommendation or endorsement by the National Bureau of
Standards or by the National Aeromautics and Space Administration.
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ABSTRACTED DOCUMENTS



PLASTIC AND ELASTOMERIC FOAM MATERIALS

Arden, B.

Northrop Corp., Calif., Nortronics Div., Rept. National Aeronautics
and Space Administration Rept. No. NASA CR-100463, Contract NAS 7-430

(1966) 186 pp

The purpose of this report is to review contributions to the
technology of plastic and elastomeric foam materials derived from NASA
research and development programs. The emphasis is on actual or proposed
use of foam materials in space vehicles. One chapter of the review is
on foam systems for cryogenic insulation, mostly for liquid hydrogen
tankage. It is noted that foams have much higher thermal conductivities
than do evacuated multilayer insulations, but that advantages of weight,
cost, producibility, and reliability have made foams the insulation of
choice for short—-term missions with liquid hydrogen.

Several foam insulations are described extensively. The first of
these is the internal insulation developed for the S-IV-B third stage
of the Saturn V. This was the "3-D foam,” a polyurethane foam reinforced
with glass threads oriented in three mutually-perpendicular directions,
bonded to the inside of the tank with an epoxy adhesive, lined with a
glass cloth reinforced polyurethane resin layer, and sealed with a coat
of polyurethane resin. The second system is the external insulation
developed for the S-II stage of the Saturn V vehicle. This was the
polyurethane foam-filled phenolic honeycomb bonded to the outside of
the tank, purged with helium to prevent condensation of air. A third
insulation system is the external insulation developed for the Centaur
vehicle. This was a polyurethane foam, sealed with an aluminized mylar
vapor barrier, and held to the tank by a constrictive wrapping of glass
filament. This final insulation was under development, and the
development program is discussed quite extensively.

The report is an excellent review of the foam insulations developed
for space vehicle liquid hydrogen tanks before 1966. It is limited by
its age, and does not cover several later developments. Fifteen
references are given for more comprehensive information on the foam
insulations discussed.

Important references:

1. Perkins, P. J., Jr. and Esgar, J. B., ATAA Fifth Annual Structures
and Materials Conf. (Palm Springs, Calif., Apr 1-3, 1964), NASA
LERC Publication CP-8.

2. Sealed~Foam, Constrictive-Wrapped External Insulation System for
Liquid Hydrogen Tanks of Boost Vehicles, NASA TN D-2685 (1965).

3. McGrew, J. L., Advances in Cryogenic Engineering 8, 387-392
(1963).



Important references (continued):

4.
5.

Dearing, D. L., Advances in Cryogenic Engineering 11, 89-97 (1966).

Shriver, C. B., Goodyear Aerospace Corp., Final Rept. GER-12249,
NASA Contract NAS 3-5646 (Jun 25, 1965).

Burkley, R. A. and Shriver, C. B., Goodyear Aerospace Corp., Final
Report GER-11193, NASA Contract NAS 3-3238 (Nov 1, 1963).

Knoll, R. H. and Oglebay, J. C., Lightweight Thermal Protection
Systems for Space Vehicle Propellant Tanks, NASA, paper 746C,
Presented International Automotive Eng. Congress (Detroit, Mich.,
Jan 11-15, 1965).



COMPRESSIVE PROPERTIES OF POLYURETHANE AND POLYSTYRENE FOAMS FROM 76
TO 300 K

Arvidson, J. M., Durcholz, R. L., and Reed, R. P. (National Bureau of
Standards, Boulder, Colo. Cryogenics Div.)

Advances in Cryogenic Engineering 18, Proc. Cryogenic Engineering Conf.
(Colorado Univ., Boulder, Aug 9-11, 1972), K. D. Timmerhaus, Editor.
Plenum Press, New York, 194-201 (1973)

For many applications of foam insulation in cryogenic environments,
compressive properties are more important than tensile properties. The
ultimate strength (in the compressive mode) is not well defined for most
foams, in that the foam does not reach an ultimate strength, but the
rigid foam begins to crumble allowing higher and higher loads to be
sustained as the cell structure collapses.

This paper complements another paper abstracted on page 89 giving
tensile properties for foam insulation. The compressive properties,
measured in transverse and longitudinal directions, were modulus of
elasticity, proportional limit, yield strength, compressive strength and
elongation. The materials were four densities of polyurethane (95.64
kg/m3 to 31.72 kg/m3) and two densities of polystyrene (99.48 kg/m3 to
51.26 kg/m3. Three of the polyurethane foams were rigid and one was
flexible while both polystyrenes were rigid.

The paper gives tabular results for the compressive properties,
but stress-—strain curves are also presented. These results showed a
strong dependence on density for compressive behavior. As with the
tensile results reported in a previous paper the modulus of elasticity,
yield strength and compressive strength increased with decreasing
temperature while the elongation increased. An approximate linear
dependence on density was found for the modulus and proportional limit.
Longitudinal specimens were usually stronger than transverse specimens.

The results of the compression tests were compared to companion
tensile results. Both the modulus of elasticity and yield strength
were about twice as great in tension as in compression and this
difference held for all temperatures. In ultimate strength the
differences diminished at the lowest temperatures.

Important references:

1. Doherty, D. J., Hurd, R. and Lester, G. R., Chemistry and
Industry (London) p. 1340 (Jul 1962).

2. Reed, R. P., Arvidson, J. M. and Durcholz, R. L., Advances in
Cryogenic Engineering 18 (1972).



INTERNAIL TINSULATION SYSTEMS FOR LH2 TANKS — GAS LAYER AND

REINFORCED FOAM

Barker, H. H., Jr., McGrew, J. L., Buskirk, D. L., and Gille, J. P.
(McDonnell-Douglas Astronautics Co., Huntington Beach, Calif., and
Martin Marietta Corp., Denver, Colo.)

Space Transportation Systems Propulsion Technology, Proc. Conf. (George
C. Marshall Space Flight Center, Huntsville, Ala., Apr 6-7, 1971) -

Vol 4 - Cryogens. National Aeronautics and Space Administration, Rept.
No. NASA TM-X-67348, 1453-80 (Apr 1971)

Three forms of internal insulation for the liquid hydrogen tanks
of the Space Shuttle were being developed: gas layer or capillary
insulation, reinforced foam, and polyphenylene oxide foam. The
polyphenylene oxide foam is described in the paper abstracted on page
108. This paper describes the other two concepts.

The reinforced foam, identified as 3-D foam insulation, was
developed for use as internal insulation for the liquid hydrogen tanks
of the Saturn-IV and S-IVB stages. It consisted of a polyurethane
foam reinforced with glass threads in three mutually perpendicular
directions. The foam was bonded to the tank wall with an epoxy
adhesive, and sealed against hydrogen permeation with a layer of glass
cloth impregnated with polyurethane resin. The insulation on each of
two battleship vehicles survived over 100 cryogenic loadings, on
an all-systems vehicle 300 loadings, and on each flight stage between
2 and 6 loadings. After initial modifications on the first battleship
vehicle, no significant degradation was observed. Thermal conductivity
of the foam approached that of helium gas. For the Space Shuttle, the
maximum service temperature was increased to 450 K. The paper shows
some results of weight-loss tests at high temperatures on various
candidate materials, including a polyurethane foam which, after heat
conditioning, was more stable than the previously-used foam, and
seemed usable at 450 K. A total weight reduction by 20 or 257 seemed
feasible.

The gas layer insulation consists of a honeycomb structure
bonded to the tank wall and covered with a punctured membrane.
Capillary forces at the membrane holes support a stable liquid/gas
interface, separating liquid in the tank from the gaseous hydrogen
within the honeycomb cells. This concept is similar to an open-cell
foam with large cell size. The insulation appeared usable at
temperatures up to 616 K to 644 K with available materials.

The authors conclude that both the reinforced foam and the gas
layer insulation are feasible for use on the Space Shuttle.



A STRUCTURAL PLASTIC FOAM THERMAL INSULATION FOR CRYOGENIC SERVICE
Bennett, R. B. (Amspec, Inc., Columbus, Ohio)

Advances in Cryogenic Engineering 19, Proc. Cryogenic Engineering Conf.
(Georgia Inst. of Tech., Atlanta, Aug 8-10, 1973), K. D. Timmerhaus,
Editor. Plenum Press, New York, 393-9 (1974)

This paper describes a commercial rigid polystyrene foam developed
as a load bearing insulation for the bases or bottoms of liquefied
natural gas tanks. The material is a high density (52.8 kg/m3) extruded
foam.

Compressive stress-strain curves at 111 K and 296 K show that
compressive strength increased gradually with decreasing temperature.
Yield points at both temperatures were at about 4% strain. Long-term
compressive creep was estimated at less than 27 after 20 years at
maximum design load at 296 K, and was even lower at lower temperatures.
Cyclic loading and freeze-thaw cycling had little effect on the foam.
Thermal conductivity had an s~shaped curve with a maximum near 185 K
and a minimum near 250 K. Measured thermal conductivities were 0.022
W/m*K at a mean temperature of 200 K and 0.030 W/m°*K at 297 K. Complete
replacement by diffusion of the freon blowing agent with methane would
substantially increase the thermal conductivity, but over a period of
10 to several hundred years. Long term immersion tests in liquid
methane, liquid ethane, liquid propane, and LNG showed complete
compatibility. The foam contained a fire retardant. In actual
applications to LNG tanks, the polystyrene foam performed well within
design expectations.



ANALYSIS AND MEASUREMENT OF THE HEAT TRANSMISSION OF MULTI-COMPONENT
INSULATION ON PANELS FOR THERMAL PROTECTION OF CRYOGENIC LIQUID
STORAGE VESSELS

Bourne, J. G., and Tye, R. P. (Dynatech R/D Co., Cambridge, Mass.)
Heat Transmission Measurements in Thermal Insulations, Proc. Symp.
Thermal and Cryogenic Insulating Materials (Philadelphia, Pa., Apr
16-7, 1973), American Soc. for Testing and Materials, Philadelphia,
Pa., Special Tech. Publ. No. STP-544, 297-305 (Jun 1974)

The usual insulation for the liquefied natural gas tanks on ocean
tanker vessels 18 external insulation, which provides structural load
bearing as well as thermal insulation. Insulation systems combining
foam insulation with balsa wood were developed, and thils paper reports
on thermal conductivity measurements of the insulation components and
of scale models of the composite insulation systems. These measurements
aided the development of an analytical model to predict the.thermal
performance of full-scale insulation systems.

The components tested were a commercial polyurethane foam, a
commercial polystyrene foam, balsa wood with two grain orientations, and
commercial foamed glass. A layer of the composite insulation consisted
of alternating strips of balsa wood and foam insulation. Scaled samples
consisted of three layers of the composite, with or without adhesive
bonding, with or without plywood facings, and with varying angular
displacement of strip orientation between layers. Thermal conductivities
were measured between a cold face at 82 K and a hot face at 395 K.
Results are tabulated for the five component materials and for six
composite insulations. The analytical model used the properties of the
components to predict the thermal conductivities of the composite
insulations, with errors ranging from O to 7%. The authors conclude
that the analytical approach is valid and useful. :

Important references:

1. Tye, R. P., Proc. XIII Internmational Congress of Refrigeration 1

(Washington, D.C.), Institute International de Froid, Paris (1971).



METHODS OF INSULATING PIPE WITH POLYURETHANE FOAMS

Brochhagen, F. K., and Schmidt, W. (Farbenfabriken Bayer A. A.,
Leverkusen, West Germany) '
Plastics Inst. (London) Trans. J. 35, No. 117, 499-503 (1967)

Polyurethane foams have found increasing use in insulating pipelines.
This paper reviews the methods of applying the foam to the pipe, and
describes some of the limitations in using polyurethane foams as
pipeline insulation. Service temperature limits are given as 73 K to
" 403 K for rigid foam and 233 K to 383 K for flexible foams.

The methods of application are foaming in place, installing
prefabricated half-pipe sections, or pre-insulating the pipe in sections
at the factory. In foaming in place, the reactive mixture is injected
between the pipe and a sheet-metal jacket. This method is limited by
temperature requirements for proper production of foam. Prefabricated
half-pipe sections can be molded to shape or cut from rectangular shapes,
and applied to the pipe as other solid insulations are. Flexible foams
can be made as tubing to slip over the pipe, or as sheet to wrap around
the pipe. Pre-insulated pipe is foamed in place under controlled
conditions in the factory. '

A problem with polyurethane foam insulation is its permeability to
water vapor. This property makes it necessary to seal the foam in a
vapor barrier for low-temperature applications.



PPO FOAM FOR CRYOGENIC APPLICATIONS

Burkinshaw, L. D. (General Electric Company, Bridgeport, Connecticut)
Proceedings of the International Conference on LNG lst, Chicago, Ill.
(Apr 7-12, 1968) (J. W. White and A. E. S. Neumann, Eds.) Institute of
Gas Technology, Chicago, I11l. (1968) 12 pp

Polyphenylene oxide (PPO) foam was described in this paper as a
potential component for cryogenic insulations. The foam is an
anisotropic open cell foam produced in flat sheets. The open cells
extend through the entire thickness of the sheet, all aligned in the
same direction. o : :

Foam densities ranged from 24 to 59 kg/ms. Thermal conductivity
of a foam of unspecified density was 0.025 W/m*K at 208 K and 0.058
W/m*K at 316 K. Compressive strength of the foam with load applied
perpendicular to the plane of the sheet was greater than that of
polyurethane foam of similar density over the temperature range from
220 K to 480 K. Compressive strength was strongly dependent on density
and weakly dependent on temperature.

In a test as insulation, the PPO foam was sealed on one side and
exposed directly to liquid nitrogen or liquid natural gas on the other
side. The liquid cryogens penetrated less than 5 mm into the foam.
Pressure increases caused only temporary increases in the penetration
depth of the liquid. The reason for the limited penetration was not
known, but it was suggested that liquid entering the pores boiled and
produced a back pressure which prevented further penetration by the
liquid. A proposed container would consist of a PPO foam liner within
an outer metal housing.



DEVELOPMENT OF METHODS FOR APPLICATION OF POLYURETHANE SPRAY FOAM
INSULATION SYSTEMS TO LIQUID HYDROGEN TANKS _

Carter, J. M. B '

National Aeronautics and Space Administration, Huntsville, Ala.,

George C. Marshall Space Flight Center, Tech. Memo No. NASA TM-X-53897,

62 pp (Sep 1969)

Polyurethane foams had been used for insulating liquid hydrogen
tanks for several years when, in 1967, two proposals were made to apply
spray polyurethane foam as insulation for liquid hydrogen tanks on
large flight type structures. These structures were the Nuclear Ground
Test Module and the S-II vehicle. This report reviews the available
spray foam application equipment, describes the modified commercial
spray foam formulator developed for use, describes the methods of
surface preparation, foam application, and surface finishing, and
reports on the results of several test items insulated with the

polyurethane spray foam.

The foam is sprayed onto a cleaned and etched aluminum tank
exterior surface. Specific instructions are given for applying the
spray. The exterior surface of the foam is sealed with a sprayed-on
coating of polyurethane adhesive or with a fiberglass reinforced
polyurethane adhesive coating. Spray foam insulation was applied to a
1.8 m diameter tank which was then subjected to a liquid hydrogen
fill-drain cycle. Foam failures led to modification of the procedure.
Spray foam was applied to a 76 cm rectangular dewar, which withstood
liquid nitrogen and liquid hydrogen fill-drain cycles and exposure to
radiation without visible damage. Some debonding was noted after
further liquid hydrogen fill-drain cycles. Spray foam applied to a
S-IC/S-II test container showed split and debonded areas after a
cryogenic tanking procedure, but all defective areas were removed and

repairs made.

The author concludes that a capability has been developed to
satisfactorily apply polyurethane spray foam insulation to cryogenic
propellant tanks, and that the foam insulation applied to test tanks
satisfactorily withstood cryogenic cycling.

ST o
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AN INVESTIGATION OF THE USE OF INTERNAL INSULATION FOR LIQUID
HYDROGEN FUELED MISSILES

Coxe, E. R., Lowrey, R. 0., Hunt, R. T., and Freeman, S. M.
(Lockheed-Georgia Co., Marietta)

Advances in Cryogenic Engineering 8, Proc. Cryogenic Engineering Conf.
(Los Angeles, Calif., Aug 14-16, 1962), K. D. Timmerhaus, Editor.
Plenum Press, New York, 404-10 (1963)

An experimental study was conducted to determine the suitability
of several commercial plastic foams . for use 1in composite internal
insulation for liquid hydrogen tanks. The insulation considered was
plastic foam adhesively bonded to the inside of the tank wall and
covered by a vapor barrier bonded to the foam.

The first part of the program obtained the mechanical properties
of three adhesives, six foams, and two vapor barriers. In the second
part of the program, twelve composite insulation configuratiens were
installed in 30-cm diameter tanks and tested by thermal cycling in
liquid nitrogen and then in liquid hydrogen. 1In general, flexible
foams resulted in the vapor barrier failing in tension under tank
pressure, while the rigid foams failed under high thermal stresses.
The best foams from these tests were a flexible polyurethane foam and
a rigid epoxy foam. Composite insulations with these foams were
subjected to pressure and vibration in liquid hydrogen. The polyurethane
foam failed in compression and its vapor barrier failed in tension under
pressure. The epoxy foam did not fail, but separated from the tank wall.
The two systems were then applied to a 1 m diameter, 2.5 m long tank,
and tested under pressure in liquid hydrogen. The polyurethane sample
showed vapor barrier penetrations, and a thermal conductivity no better
than that of hydrogen. The epoxy foam did not fail, and the vapor
barrier did not rupture where it covered the epoxy foam, but there was
considerable detachment of vapor barrier from foam and of foam from the
tank wall. '

The tests showed that the main problem with foam internal insulation
is maintaining an intact vapor barrier. Local penetrations of the
vapor barrier only resulted in contamination of the insulation with
hydrogen gas, so that insulation performance is at least as good as
that of gaseous hydrogen even with local failures of the vapor barrier.

11



LOW TEMPERATURE INSULATIONS-FOAMS AND COMPOSITES
Cryogenic Engineering News
Cryogenic Eng. News 4, No. 5, 20-5 (May 1969)

This review covers the subjects of foam insulation and composite
insulation with the aid of data taken from a number of sources. The
rather brief discussion of foams stresses the polyurethanes. Graphical
data show the temperature dependence of thermal conductivity of freon-
blown polyurethane foam, of polystyrene foams, and of teflon and a
composite of teflon foam with teflon. Thermal conductivity versus
pumping time is shown for polystyrene, epoxy, and isocyanate foams.
Thermal conductivities are tabulated for polystyrene, epoxy, polyurethane,
rubber, and silica foams. Thermal and mechanical properties of several
densities of polyurethane foam are tabulated. Graphs and a table show
the tensile, shear, and compressive strengths and the linear thermal
expansions of polyester polyurethane, epoxy, polyurethane, and polyether
foams. Composite insulations containing foams are very briefly discussed.

The review concludes with an extensive bibliography of 29 references,
most of which deal with foam insulation. The primary application of this
review would be as an introduction to the subject, with the bibliography
providing sources of more detailed information.

Important references:

1. Development of Low-Density Rigid, Polyurethane Foam for Use on
S-1C Flight Vehicle, Final Report, NASA CR-62110 (1964).

2. Barringer, C. M., Refrigerating Engineering New York 65, No. 4,
53-6 and 108-12 (1957).

3. Haskiﬁs, J. R. and Hertz, J., Advances in Cryogenic Engineering 7,
Plenum Press, New York, 353-9 (1962).

4. Lewis Research Center Staff: Sealed-Foam, Constrictive-~Wrapped,
External Insulation System for L1qu1d—Hydrogen Tanks of Boost
Vehicles, NASA TN D-2685 (1965).

5. McClintock, R. M., Advances in Cryogenic Engineering 4, 132 (1958).

6. Miller, R. N., Bailey, C. D., Beall, R. T. and Freeman, S. M.,
Advances in Cryogenic Engineering 8, Plenum Press, New York, Paper
C-6 (1963).

7. Miller, R. N., Bailey, C. D., Beall, R. T., Freeman, S. M. and
Coxe, E. F., Ind. Eng. Chem. 1, No. 4, 257-61 (Dec 1962).

8. Stoecker, L. R,, Advances in Cryogenic Engineering 5, Plenum Press,
New York, 273-81.

12
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MATERIALS OF CONSTRUCTION FOR USE IN AN LNG PIPELINE

Dainora, J., Duffy, A. R., and Atterbury, T. J. (Battelle Memorial
Inst., Columbus, Ohio)

American Gas Association, Arlington, Va., Rept. No, L40000 127 pp
(Apr 1968)

This report contains a 13-page section reviewing cellular
insulation, including plastic foams, foam glass, cork, and balsa wood.
The review is based on data taken from the literature. The major types
of material discussed are urethane foams, polystyrene foams, epoxy
foams, silicone foams, phenolic foams, syntactic foams, cellular glass,
and cork and balsa wood. Nine data sources are cited in the discussion.

Much of the information included in this review is on properties
at room temperature. Tables summarize the room temperature properties
of the urethane, polystyrene, epoxy, sllicone, syntactic, and glass
foams. Mechanical properties and thermal conductivity of urethane
foams, thermal conductivity of polystyrene foams, compressive strength
of epoxy foams, and mechanical properties and thermal conductivity of
phenolic foams are all presented graphically as functions of foam
density at room temperature. Data of more direct interest for cryogenic
insulation are graphs of thermal conductivities from 200 K to 400 K of
cellular glass, cork, polystyrene foam, phenolic foam, and urethane
foam; mechanical properties of urethane foams from 77 K to 297 K; thermal
conductivities of polystyrene foams from 30 K to 310 K; mechanical
properties of epoxy foam from 77 K to 310 K; and thermal conductivity of
corkboard from 77 K to 300 K.

The review should serve as an introduction to and comparison
between cellular insulation, rather than as a source of specific data.

Important references:
1. Gerstin, H., Product Engineering, 59-68 (Jun 1965).

2. Miller, R. N., et al., Advances in Cryogenic Engineering 8, Edited
by K. D. Timmerhaus, Plenum Press, Inc., New York, 417- 24 (1963).

3. Campbell, M. D., Haskins, J. R., Hertz, J., Jones, H., and Percy,
J. L., MRG-312, Contract No. AF 33(616)-7984 (Compilation of
Materials Research Data (Apr 1962)).

4, Haskins, J. F. and Hertz, J., Advances in Cryogenic Engineering 8,
Edited by K. D. Timmerhaus, Plenum Press, Inc., New York, 353-9
(1963).

5. Fabian, R. J., Mater. Design Eng. (Mar 1958).

6. Gray, V. H., Gelder, T. F,, Cochran, R. P., and Goodykoontz, J. H.,
NASA TN D476, Washington, DC (1960).

13



Important references (continued):

7. Jacobs, R. B., Technology and Uses of Liquid Hydrogen, Edited by
‘R. B. Scott, W. H. Denton, and C. M. Nicholls, Macmillan Co., New
York, 106-48 (1964).

14



EXPANDED POLYSTYRENE MOULDING TECHNIQUES APPLIED TO A LIQUID NITROGEN
DEWAR,

Dickson, E. M., and Sheffield, T. B. (Warwick Univ., Coventry, England)
J. Seci. Instrum. 3, No. 6, 466-8 (Jun 1970)

A method is described in detall for fabricating various shaped
vessels by expanding polystyrene in a mold. The technique requires
the construction of a mold in which pre-expanded polystyrene beads
are expanded to form the vessel. The authors provide sufficiently
detaliled instructions so that either leak-proof (1iquid) or non- .
leakproof vessels can be fabricated.

The authors have applied these molding techniques to the
fabrication of a rather large (615 mm long and 230 mm in diameter)
vessel intended as the liquid nitrogen shield surrounding a conventional
glass finger Dewar holding liquid helium.

Included in the paper are detailed suggestions concerning such
things as the styrofoam density needed for minimum thermal conductivity,
the age of the polystyrene beads, etc.

Important references:

1. Dillon, J., F., Geschwind, S., Jaccarino, V., and Machalett, A.,
Rev. Sci. Instrum. 30, 559-61 (1959).

15



THE DEVELOPMENT OF INSULATION SYSTEMS FOR LARGE CAPACITY DOUBLE
WALLED METALLIC LNG STORAGE TANKS :
Dodd, P., and Todd, G. (Whessoe, Ltd., Darlington, England)
Proc. Fourth International Conf. Liquefied Natural Gas (Algiers,
Algeria, Jun 24-7, 1974), Inst. Gas Technology, Chicago, Ill.,
Session-VI-Paper-8 (1974) 27 pp

This paper presents the design basis and results of development
work on the insulation for a 50000 m3 capacity liquefied natural gas
storage tank. The design used foamed glass as the base insulation
under the tank., Foamed glass had been used successfully as base
insulation for smaller tanks, but the base insulation carries the
weight of the tank and its contents, and a larger tank imposes larger
loads. An experimental program of strength testing on foamed glass
was carried out. '

Compressive strength of foamed glass is highly dependent on the
capping material, used on and between blocks of foamed glass to dis~
tribute the load and prevent stress concentrations. Initial ambient
temperature tests were made with some 40 capping materials, including
paper and cardboard, rubber, roofing materials, and fabric~reinforced
asphalt materials. Ultimate compressive strengths varied widely, over
a range of nearly 14 to 1, between capping materials. The four best
capping materials were asphalts, two not reinforced, one reinforced
with paper, and one with hessian. These materials were used in further .
tests, for ambient temperature creep, large-scale ambient compressive
strength with eight layers of 100-mm thick blocks, and compressive
strength of four layers of the blocks when one face was cooled to 77 K.
The hessian~reinforced material was the only capping material that
allowed the foamed glass to pass all of the tests.

The base insulation under the periphery of the tank is loaded with
the weight of the tank shell and part of the sidewall insulation. For
this area, a low density aerated concrete was substituted for the foamed
glass. This concrete had a density of 600 kg/m3, and a thermal
conductivity of 0.09 W/m*K at a mean temperature of 200 K. Both the
concrete and the foamed glass had additional advantages of being
non-combustible and chemically inert in LNG.

An outline for design of a 100000 m3 tank also considers foamed
glass for the base insulation, but the authors conclude that the
strength limits of foamed glass have been utilized and that future
efforts will be directed toward other systems.

Important references:

1, Furber, B. N. and Davidson, J., The Thermal Performance of Porous
Insulants in a High Pressure Gas Enviromment, 2nd Conf. Prestressed

Concrete Reactor and their Thermal Insulation (Brussels, Nov
18-20, 1969).

16



INVESTIGATION OF THE VAPOR PERMEABILITY OF THERMAL INSULATION
MATERTALS

Dudnik, D. M.

Foreign Technology Div., Wright-Patterson AFB, Ohio, Tramsl. No.
FTD-HT-23-541-68, Oct 1969. Transl. of Kholod. Tekh. Tekhnol. No. 4,
45-9 (1967)

Water vapor permeabilities of several foamed plastics and thermal
insulation materials are reported in this Russian paper. The
measurements were intended as an aid to the refrigeration industry.

Of the materials tested by one method, 12 are various polyurethane
foams and 11 are identified by code designations only. A variation of
this method was used with two polyurethanes, two polystyrene foams,
foam glass, mineral wool, a foamed urea-formaldehyde resin, and some
13 unidentified materials. The tests measured loss of water through a
sample over a period of 5 to 7 months. Temperature was held constant
at 293 - 303 K. Results are in terms of water vapor penetrating a

1 m2 area of sample in 1 h, through a 1 m thickness, under a pressure
of 1 N/m2, reported by the author in units of gem/N<h.

The author concludes that all of the foam plastics investigated,
with the exception of the foamed urea-formaldehyde and an elastic
polyurethane foam, are good vapor insulators. In general, from the
tabulated results, all of the polyurethane foams have higher
permeabilities than the other plastic foams.
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COOL-DOWN OF FOAM INSULATED CRYOGENIC TRANSFER LINES

Durga Prasad, K. A., Srinivasan, K. and Krishna Murthy, M. V. (Indian
Inst. of Tech., Madras. Refrigeration and Airconditioning Lab.)
Cryogenics 14, No. 11, 615~7 (Nov 1974)

An experimental program was carried out to test the validity of
an analytical method of estimating cooldown of foam-insulated transfer
lines. The experiments were conducted with liquid nitrogen flowing
into a copper tube insulated with polystyrene foam. The commercial
foam was bonded to the copper with glue and sealed with a film of bitumen
as moisture barrier. Temperatures at various locations were monitored
during cooldown and compared to analytical predictions. The experimental
and analytical results agreed well enough to validate the analytical

method.

The authors report a "crashing" noise in the insulation near the
end of cooldown. They attribute the noise to cell destruction caused
by the differential thermal contraction of the foam and the metal tube.
The authors recommend leaving sufficient gap between insulation and tube
to accommodate the differential thermal contraction, and prevent
degradation of the foam insulation.

Important references:

1. Srinivasan, K., Seshagiri Rao, V. and Krishma Murthy, M. V., Paper
S-5. ICEC5 (Kyoto, 1974).

2. Durgaprasad, K. A., M Tech Dissertation, Indian Institute of
Technology, Madras (1974).
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RIGID OPEN CELL POLYURETHANE FOAM AS A CRYOGENIC MULTI-LAYER INSULATION
COMPONENT

Faddoul, J. R., and Lindquist, C. R. (National Aeronautics and Space
Administration, Cleveland, Ohio, and Union Carbide Corp., Tonawanda,
N.Y.)

Annual Technical Conf. of the Society of the Plastics Industry, 12th
(Washington, D. C., Oct 16-18, 1967), Paper. National Aeronautics and
Space Administration, Cleveland, Ohio, Lewis Research Center, Tech.
Memo. No. NASA TM-X-52332, 32 pp (1967). J. Cellular Plastics 4, No. 3,
1-10 (Mar 1968)

This paper describes the application of a rigid open cell urethane
foam in a self-evacuating multilayer insulation panel concept. The
insulation consists of aluminized mylar radiation shields separated by
sheets of the foam, with the multilayer structure sealed inside a
gas—-tight vacuum jacket filled with carbon dioxide. In use, the
insulation evacuates itself when the carbon dioxide condenses at the
cold side of the insulation.

The open cell foam was first selected for development because it
showed greater compressive strength than closed cell foam, it was easier
to evacuate, and it had a better surface quality than closed cell foam
when sliced to the 0.5 mm thickness of the foam spacers in the multilayer
insulation. The paper shows compressive strengths of bulk samples of
both open and closed cell foams at RT. Pressure-deflection curves of
both types of foam at RT and 77 K show a permanent set after the first
compressive cycle, but no further set in subsequent cycles. Offgassing
tests show that the open cell foam has a much lower offgassing rate
than the closed cell foam. A preliminary large scale thermal test used
panels with 6 radiation shields and 7 foam spacers, applied to a
calorimeter tank in a shingled configuration to give a total of 18
radiation shields. After filling the tank with liquid hydrogen, the net
equilibrium heat flux was 2.5 W/mZ2, better than the initial goal of 3.2
W/mz. Several configurations of foam spacers, with punched holes or
crisscrossed strips of foam used to reduce contact area, were tested for
thermal performance. A small reduction in heat flux was achieved, along
with a secondary advantage of improved gas conductance which allows more
rapid self-evacuation of the insulation.

The authors conclude that the open cell foam shows promise, with
further development to improve spacer configuration and cryopumping
performance, of achieving the overall program goal of a net heat flux of
0.9 W/m2 into a liquid hydrogen tank.

Important references:

1. Little (Arthur D.) Inc., Rept. No. ADL-67180-00-04, and NASA Rept.
No. NASA CR-54929 (Jun 1966).

19



LOW-TEMPERATURE THERMAL AND MECHANICAL PROPERTIES OF POLYSTYRENE

AND POLYETHYLENE FOAMS

Foley, R. J., and Jelinek, F. J. (Lawrence Livermore Lab., California
Univ., Livermore, and Battelle Columbus Labs., Ohio)

International Cryogenic Engineering Conf., Proc. 5th (Kyoto, Japan,
May 7-10, 1974), K. Mendelssohn, Editor. IPC Science and Technology
Press, Sussex, England, 439-42 (1974)

An experimental program was conducted to determine the low
temperature properties of several polystyrene and polyethylene foams
of varying densities. These foams were candidate materials to improve
insulation systems for storage of cryogenic materials.

Polystyrene foams were fabricated at densities of 50 and 100 kg/m3.
Thermal contractions and thermal conductivities were measured from 4 K
to 300 K, and ultimate tensile and compressive strengths were measured
at 20 X, 77 X, and 300 K. Thermal contractions were independent of
density. Thermal conductivities showed a density dependence, with the
denser material results 40% higher at 300 K and 807% higher at 4 K than
the results on the less dense material. Strengths showed a density and
temperature dependence, with higher densities and lower temperatures
leading to greater tensile and compressive strengths,

Polyethylene foam was chilled and compressed to a density of
220 kg/m3. The compression at low temperature ruptured previously-closed
cells, resulting in an open-cell structure. It also resulted in
anisotropic behavior. Thermal contractions and thermal conductivities
were measured from 4 K to 300 K, with orientations parallel and
perpendicular to the direction of compression. Both thermal contraction
and thermal conductivity were considerably higher in the parallel
orientation.
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FOAM INSULATION FOR TANKS AND VESSELS
Foster, C. S. (Upjohn Co., Torrance, Calif.)
Chem. Eng. Progr. 70, No. 8, 55-6 (Aug 1974)

This rather short article describes the applications and advantages
of a spray type polyurethane foam insulation material for application to
large tanks and the like, Prior forms of polyurethane were blocks or
blankets which resulted in high installation costs ($38 to $48/m2). The
use of mechanized, revolving scaffolds permits fast application and
results in installed costs of $11 to $16/m2. Examples are given of the
use of spray type polyurethane for heated tanks as well as ammonia
tanks and LNG tanks.

Included with the article is a comparison of the K-factor (thermal
conductivity per unit thickness) of polyurethane with styrene foam,
glass fiber, cork, asbestos fiber and glass foam. Comparative K-factors
are given at four temperatures: 116 K, 239 K, 311 K and 367 K. At all
temperatures polyurethane was a more efficient thermal insulation than
the other materials.
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RECENT EXPERIMENTAL DATA CONCERNING THE THERMAL CONDUCTIVITY OF
FIBERGLASS AND POLYSTYRENE FOAM INSULANTS AT LOW TEMPERATURE _
Fournier, D., and Klarsfeld, S. (Centre de Recherches Industrielles,
St-Gobain Ind., Rantigny, France)

Some Thermophysical Properties of Refrigerants and Insulants, Proc.
International Inst. of Refrigeration Commission Bl (Zurich, Switzerland,
Sep 27-9, 1973), Bull. Inst. Int. Froid, Annexe 1973-4, 183-8 (1973)

Thermal conductivity measurements were made on several insulation
materials, including polystyrene foams of three densities. The foam
densities were 18.2, 21.3, and 33 kg/m3, and measurements covered mean
temperatures from 130 K to 300 K. At temperatures below about 230 K,
the thermal conductivities were practically the same for all three
densities. Above 230 K, a density effect appeared, with the higher
density material having a lower thermal conductivity.

Thermal conductivity curves for polyurethane foam and polyvinyl
chloride foam, taken from a paper by R. P. Tye, are shown for comparison
with the polystyrene foams. At cryogenic temperatures, the polystyrene
had the lowest and the polyurethane had the highest thermal conductivity.

Important references:

1. Tye, R. P., Proc. XIII International Congress on Refrigeration 1
(Washington, D.C.), 371-378 (1971).
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NONMONOTONICITY IN SENSITIVITY TEST DATA

Gayle, J. B. (National Aeronautics and Space Administration, Huntsville,
Ala., George C. Marshall Space Flight Center)

Mater. Res. Stand. 6, No. 3, 147-8 (Mar 1966)

This paper reports an apparently anomalous response in liquid
oxygen impact sensitivity tests on an insulation system. The insulation
consists of a mylar—aluminum-mylar laminate adhesively bonded to a
polyester foam. The results of the tests show a rapid rise in the
frequency of visible or audible reactions with liquid oxygen as the
impact energy is increased, to a peak at an impact energy of 2 kgem.

As the impact energy is increased further, the reaction frequency
drops to a minimum at 7 to 8 kgem, then increases slowly.

Such anomalous behavior had been reported previously, but was often
attributed to experimental error. Sufficient tests were made on the
insulation material to confirm the existence of the irregular response,
and further tests on the constituents of the insulation showed that the
behavior was a characteristic of the polyester foam. Tests on other
foams were planned.

The mechanism of the anomalous behavior was not known, but the fact

that such behavior exists in a foam material emphasizes the need for
caution in interpreting and extrapolating test results.
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EVALUATION OF CRYOGENIC INSULATION MATERIALS AND COMPOSITES FOR USE IN
NUCLEAR RADTATION ENVIRONMENTS

General Dynamics/Fort Worth

General Dynamics/Fort Worth, Tex., Rept. National Aeronautics and Space
Administration, Rept. No. NASA CR-2162, Contract No. NAS 8-18024, 179 pp
(Dec 1972) :

The radiation effects tests described in this report are part of a
long-term evaluation of materials subjected to high levels of nuclear
radiation at cryogenic temperatures. The materials tests reported here
include several composite structures, liquid level sensors, fission
couples, valve-seal materials, explosives, bifuels and thermal insulation.
The thermal insulation tests were conducted on a 20.4 m3 tank insulated
with polyurethane foam and complete with vapor barrier. In effect, this
was a test of the complete assembly. The reactor facility was not
adequate to irradiate the insulated tank so that the various materials
were irradiated separately and the tank assembly was thermally cycled.
The tank was subjected to five £fill, drain and warmup cycles, using
liquid nitrogen. Temperature, boiloff and strain measurements were used
to aid in the evaluation.

Test results revealed considerable wrinkling and puckering of the
outer glass cloth covering of the foam during filling, however, there
was no evidence, visually or from temperature data that the insulation
was damaged or that its effectiveness was impaired. The measured boiloff
rate was 0.08 m3/hr and the effective thermal conductivity was 0.00795
W/meK. Data from strain gages mounted internally on the tank wall
indicated that strains were within expectations during the pressure
cycles (to 0.186 MPa). Data from the gages mounted on the outer surface
of the insulation tended to have large variability, generally going from
large positive values to large negative values during the cycles. This
is probably a reflection of the considerable movement that obviously
occurred due to the lowering of the pressure and partial condensation
of the freon gas in the foam. After completion of the tests, the outer
coating retained slight creases at the locations of the deeper wrinkles.
However, there was no visual indication of insulation separation from
the tank or other deterioration.

Important references:
1. General Dynamics/Fort Worth, Tex. Rept. No. FZK-348 (Jun 1968).

2, General Dynamics/Convair, Fort Worth, Tex. Rept. No. FZK-378
(Jun 1971).
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FOAMGLAS INSULATION SYSTEMS FOR LOAD-BEARING APPLICATIONS IN THE
STORAGE OF CRYOGENIC LIQUIDS

Gerrish, R. W. (Pittsburgh Corning Corp., Pittsburgh, Pa.)

Cryogenic Engineering Conference and International Cryogenic Materials
Conference, Joint Meeting (Queens Univ., Kingston, Ontario, Canada,
Jul 22-5, 1975) 10 pp '

Blocks of foamed glass have been used as load-bearing thermal
insulation in the base of cryogenic storage tanks for liquid natural gas,
oxygen, nitrogen, and ethylene. Base insulations use capping or inter-
leaving materials, such as asphalt, felts with asphalt, or asbestos paper,
between layers of blocks to reduce stress concentrations. Some concern
was expressed that differential thermal contraction could cause shear
stresses at the interfaces, and reduce the compressive strength of the
base insulation at low operating temperatures. This paper presents
information on strength characteristics of foamed glass blocks at
ambient and cryogenic temperatures, with standard and experimental capping
or interleaving materials.

The foamed glass had a density of about 136 kg/m3. The capping
materials tested were a hot-melt asphalt, a hesslian-reinforced asphalt,
an asphalt-saturated roofing felt, asbestos paper, and a vermiculite
aggregate. Compressive strengths were measured on a single layer with
hot asphalt capping at ambient temperature as control, on a single
layer with the test capping material at ambient temperature, on a two-
layer stack at ambient temperature, and on a two-layer stack with one
face at 77 K and the other face at amblent temperature. Compressive
strengths were '"yield" strengths for initial failure of some of the
cells. Generally, ultimate compressive strengths were considerably
higher.

The asphalt capping materials produced compressive strengths nearly
twice as high as those with the felts and asbestos paper, apparently
because the asphalts filled the top layer of cells and distributed the
load better. Compressive strength with the asphalts dropped off slightly
at cryogenic temperatures, as an effect of differential thermal con-
tractions. With the vermiculite experimental capping, the average
compressive strength was higher at cryogenic temperatures, showing that
decreasing temperature increases the strength of the glass itself.

Important references:

1. Reyntjens, G. P., Univ. of Leuven Report, PV: R/I 3287/73, Leuven,
Belgium (1973).

25



THERMAL INSULATION SYSTEMS, A SURVEY

Glaser, P. E., Black, I. A., Lindstrom, R. S., Ruccia, F. E., and
Wechsler, A. E.

Little (Arthur D.), Inc., Cambridge, Mass., Rept. National Aeronautics
and Space Administration, Washington, D. C., Office of Technology
Utilization, Rept. No. NASA SP-5027, 154 pp (1967)

This review of thermal insulation includes a chapter on cryogenic
insulation systems, which contains a section on foam insulation. After
a discussion of the types, materials, and some advantages and
disadvantages of foam insulation, some problems in application of foams
to cryogenic tanks are described. Polyurethane foams on metal tanks
cracked because of differential thermal expansion, until the problem
was solved by using glass fibers as reinforcement. Cryopumping of air
and oxygen enrichment of the condensed liquid presented the possibility
of fire and explosion hazards. Extensive tests showed that catastrophic
failure is possible but improbable with well-designed foam insulation.
The specific foam insulation systems used with the Centaur and Saturn
S-1C are described briefly.

The properties of foams are described with the aid of data taken
from a paper by Miller, et al. (see abstract on page 73) These data
include tensile and shear strengths of urethane, epoxy, polyurethane
and polyether foams from 20 K to 394 K; load-compression strengths of
the same foams at 20 K; and linear thermal expansions of six urethane
and epoxy foams from 77 K to 300 K. Other data on thermal conductivity
and on effects of radiation combined with cryogenic temperatures are in
references mentioned in the review.

Another section of the same chapter, on composite insulations,
describes the use of foams in honeycomb-foam insulations, such as the
Saturn S-IT insulation system, and in constrictive-wrap external
insulation, such as a system designed for the Centaur. Exterior surface
bonded foam insulation and an internally insulated fiberglass cryogenic
storage tank using foam insulation are also described.

Important references:

1. Haskins, J. F., and Hertz, J., Advances in Cryogenic Engineering 7,
353-9 (1962).

2. Black, I. A., et al, NASA Rept. No. NASA CR-54191 (1964).
3. Heidelberg, L. J., NASA Tech. Note No. NASA TN-D-3068 (1965).

4. Key, C. F,, and Gayle, J. B., NASA Tech. Memo. No. NASA TM-X-53144
(1964).

5. North American Aviation, Inc., Rept. NO. SID-63-600-2, NASA Contract
No. NAS 7-200 (Jul 1964).
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Important references (continued):

6. Islamoff, I., NASA-Marshall Flight Center, Huntsville, Ala.,
Rept. (1965).

7. NASA Rept. No. NASA CR-62110 (1964).

8. Isenberg, L., National SAMPE Symp. on Materials for Space Vehicle
Use, 6th. Society of Aerospace Materials and Process Engineers
(Nov 1962).

9. Kerlin, E. E., and Smith, E. T., NASA Rept. No. NASA CR-51140
(1962). '

10. Lockheed Missiles and Space Co., Palo Alto, Calif., Rept. NASA
Contract No. NAS 8-9500 (Oct 1964).

11. NASA Tech. Note No. NASA TN-D-2685 (1965).

/
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EVALUATION OF URETHANE FOAM PANELS

Glemser, N. N.

General Dynamics/Astronautics, San Diego, Calif., Rept. No.
GDA~-AN62AMR4087 (Apr 1962) 15 pp

Rigid polyurethane foams, bonded to tanks as cryogenic external
insulation, showed a tendency to grow or change dimension over a period
of time. The growth caused cracking in the foam and failures in bonds
to the tank, and loss of insulation effectiveness when atmospheric
moisture and air could reach the metal tank surface. A test program
was conducted to measure dimensional changes in foam samples subjected
to various treatments.

Twelve freon-blown polyurethane foams were each treated to six
test conditions, trimmed to standard size panels, and carefully measured
in all three dimensions. The size measurements were repeated after
storage at ambient conditions, every week for five to elght weeks. The
test conditions included unstabilized foam, stabilized foam, stabilized
foam formed at about 355 K, stabilized foam formed at about 380 K,
stabilized foam vacuum-formed at about 380 K, and stabilized foam
vacuum-formed at about 380 K and coated. All of the foams were
dimensionally unstable and showed erratic but progressive growth with
storage time. The growth was accelerated by heat and humidity. The
foams with the lowest average growth rates were also least affected by
the forming cycles. The author notes that polyurethane foams subjected
to 100%Z humidity at 350 K can grow as much as 127 in 4 h.

The author recommends using foams with the highest heat distortion
point and the lowest permeability and moisture absorption rate for best
stability, coating or -sealing cut surfaces of foam to retard ‘moisture
absorption, and investigating foams other than polyurethanes for use as
insulation.
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BONDED AND SEALED EXTERNAL INSULATIONS FOR LIQUID-HYDROGEN-FUELED
ROCKET TANKS DURING ATMOSPHERIC FLIGHT '

Gray, V. H., Gelder, T. F., Cochran, R. P., and Goodykoontz, J. H.
National Aeronautics and Space Administration, Cleveland, Ohio, Lewis
Research Center, Tech. Note No. NASA TN-D-476, 51 pp (Oct 1960)

Several nonmetallic insulation materials capable of being bonded
onto liquid-hydrogen tanks and sealed against air penetration into the
insulation, were investigated for use on rockets and spacecraft.

Emphasis was placed on the problems of insulating high-acceleration rocket
vehicles which attain high velocities while in the atmosphere.
Requirements for this application include resistance to aerodynamic loads
and heat fluxes, and unreinforced plastic foams were excluded from the
investigation because of their lack of strength at high velocity and
temperature. However, one of the tested insulation systems used
polyurethane foam as filler material in the cells of a phenolic

honeycomb sandwich.

The insulation materials considered were two composition corkboards,
foamed corkboard, balsa wood, a phenolic-glass cloth laminate, a
waterglass laminate, an epoxy mastic with glass spheres and fibers, and
phenolic honeycomb core with air, potassium titanate-epoxy mastic, dry
potassium titanate, and two commercial low-density fillers, as well as
the polyurethane foam filler. Several facing materials, seal materials,
and bonding materials were also evaluated. Experimental data were
taken on thermal conductivity, sealability, strength and high-temperature
resistance. The overall temperature range was from 20 K to 730 K.

Thermal conductivity of the foam-filled honeycomb was greater than
that of the foamed corkboard, balsa wood, composition corkboards, and
the honeycomb filled with the lighter of the two commercial fillers,
over the temperature range from 90 K to 200 K. The importance of
sealing against air was shown, by measurements of boiloff from an
insulated liquid-hydrogen container. The seal over the foam-filled
honeycomb insulation developed leaks in an early test, and subsequent
tests showed thermal conductivities rising to 230% of the original
value as air condensed in the insulation. At high temperatures,
composition corkboard failed gradually by charring between 600 K and
730 K, phenolic honeycomb failed at 600 K, but the polyurethane foam
in the cells melted away at lower temperatures.

For the intended purpose, the composition corkboards were the best
insulation. The balsa wood and foam-filled honeycomb might be suitable
except for marginal strengths at the temperature extremes. Filling the
cells of the honeycomb with low-density fillers, including polyurethane
foam, was considered worthwhile, because the increase in weight was
more than offset by the reduction in thermal conductivity.
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Important references:
1. National Bureau of Standards Rept. No. 5A229 (Feb 1956).

2. Eppinger, C. E., and Love, W.' J., Advances In Cryogenic Engineering
4, 123-31 (1959).

Wilkes, G. B., Refrig. Eng. 52, No. 1, 37-42 (Jul 1946).

Rowley, F. B., Jordan, R. C., and Lander, R. M., Refrig. Eng. 50,
No. 6, 541-4 (Dec 1945).
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AN ANALYTICAIL MODEL FOR DETERMINING THE THERMAL CONDUCTIVITY OF
CLOSED-CELL FOAM INSULATION )

Hammond, M. B., Jr. (North American Rockwell, Downey, Calif. Space
Div.)

Advances in Cryogenic Engineering 15, Proc. Cryogenic Engineering Conf.
(California Univ., Los Angeles, Jun 16-18, 1969), K. D. Timmerhaus,
Editor. Plenum Press, New York, 332-42 (1970)

An analytical model of a closed-cell polyurethane foam insulation
is presented in this paper. The insulation was developed for spray-on
application to the liquid hydrogen tanks of the Saturn V second stage
(S-I1). The model assumes parallel heat-flow contributions from solid
conduction in the resin of the cell walls, gas conduction within the
cells, and radiation from cell to cell. The cells are originally full
of fluorotrichloromethane blowing agent, but air rapidly diffuses
through the cell walls. The analytical model predicts the mole fraction
of air in the cells.

In the insulation nearest the liquid hydrogen tank, in the cells
below 50 K, the air is condensed and the dominant heat-flow is by solid
conduction. Between 50 K and 250 K, gaseous air in the cells is
dominant, while above 250 K the presence of freon mixed with the air
reduces the conductivity. At higher temperatures, radiation becomes
significant.

This model was one of several described in the paper abstracted

on page 32,

Important references:
1. Hammond, M. B., Advances in Cryogenic Engineering 14 (1969).
2. Tye, R. P., Dynatech Report No. 798 (Ref. NASA-23) (22 Jul 1968).
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ANALYTICAL MODELS FOR AIRBORNE-CRYOGENIC-INSULATION THERMAL PERFORMANCE
Hammond, M. B., Jr. (North American Rockwell Corp., Downey, Calif.
Space Div.)

Advances in Cryogenic Engineering 14, Proc. Cryogenic Engineering Conf.
(Cleveland, Ohio, Aug 19-21, 1968), K. D. Tlmmerhaus, Editor. Plenum
Press, New York, 205-12 (1969)

In the process of designing thermal insulation systems for liquid
hydrogen tanks of spacecraft, one requirement is to determine the thermal
conductivity of the system and to establish the influences that might
change the thermal conductivity in service. This paper summarizes three
insulation designs, presents analytical predictions of thermal perfor-
mance, and correlates the predictions with test results. Two of the
three insulation designs involve foam insulation: a helium-purged
foam-filled honeycomb external insulation, and a closed-cell foam
external insulation.

The helium-purged foam—filled honeycomb used polyurethane foam
pressed into a glass-phenolic honeycomb core, bonded to the outside of
the liquid hydrogen tank wall and sealed with a vapor barrier film.

The insulation was pressurized with helium to prevent air from penetrat-—
ing into the insulation. The analysis showed that the helium purge

gas was the predominant contributor to thermal conductivity of this
system, which was the basic insulation designed for the Saturn-V second
stage.

The helium-purged insulation was later replaced on the Saturn-V
second stage with a closed-cell polyurethane foam sprayed on the tank.
Analysis of this insulation showed that diffusion of air into the cells
had great influence on the thermal conductivity. At temperatures below
255 K, the freon blowing agent was condensed and air in the cells was
the primary contributor to heat conduction. At higher temperatures, the
presence of freon mixed with the air tended to reduce gas conduction.

This mechanism explains the S-shaped character of the thermal conductivity
versus temperature curve of closed cell polyurethane foam.

Important references:
1. Hammond, M. B., Chem. Eng. Progr. Symp. Ser. 62, No. 61, 213 (1966).
2. Key, C. F. and Gayle, J., B., NASA TM S~43144 (1964).

3. Glaser, P. E., Black, I. A,, Lindstrom, R. S., Ruccia, F. E. and
Wechsler, A. E., NASA SP-5027, NASA Office of Technological
Utilization, Washington, D.C. (1967).

4. Liquid-Hydrogen Tank Insulation Test Report, Space Div. of North
American Rockwell Corp., SID 64-1157 (Jun 1964).

5. Hammond, M. B., Paper 68-766, ATAA Thermophysics Specialists
Meeting (Jun 1968).
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THERMAL CONDUCTIVITY OF PLASTIC FOAMS FROM -423 DEGREES TO 75 DEGREES F
Haskins, J. F., and Hertz, J. (General Dynamics/Astronautics, San
Diego, Calif.)

Advances in Cryogenic Engineering 7, Proc. Cryogenic Engineering Conf.
(Michigan Univ., Ann Arbor, Aug 15-17, 1961), K. D. Timmerhaus, Editor.
Plenum Press, New York, 353-9 (1962)

This paper presents a method of measuring thermal conductivities
of plastic foams from 20 K to room temperature, and gives results of
measurements on polystyrene foam, polyurethane foam, a polyurethane
foam-filled honeycomb composite, and a composite of polytetrafluoro-
ethylene sheet and foam. A total of 13 foam materials was tested.

Of the two polystyrene foams tested, the fire-retardant material
was the poorer insulator. Among the several polyurethane foams tested,
thermal conductivities were about the same at 90 K and below, while the
carbon dioxide-blown (high-temperature resistant) foams had thermal
conductivities 50% higher than those of the freon-blown foams at 285 K.
The foam-filled honeycomb was similar to the carbon dioxide-blown foam.
Two fire-retardant polyurethane foams had nearly identical thermal
conductivities at 90 K, but thermal conductivity of the molded
formulation was 25% higher than that of the spray formulation at 285 K,
with this result attributed to the finer cell structure usually
obtained with spray foams.

The authors conclude that base resin and blowing agent have more
effect on thermal conductivity at RT than at 90 K and below. At
cryogenic temperatures, gases within the cells are condensed, and cell
size and uniformity is the major factor contributing to good insulation
properties.

Important references:
1. Stoecker, L. R., Advances in Cryogenic Engineering 5, 273 (1960).

2. Gray, V. H., and Gelder, T. F., Advances in Cryogenic Engineering
5, 131 (1960).

3. Waite, H. J., Advances in Cryogenic Engineering 5, 230 (1960).
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CELLULAR PLASTICS FOR CRYOGENIC INSULATION
Hayes, R. G. (Upjohn Co., Torrance, Calif. CPR Div.)
Cryogen. Technol. 8, No. 4, 127-8 (Jul-Aug 1972)

-
insulation to the p1p1ng of a maJor 1iquefied natural gas progect. The
Brunei project produces LNG for transport by ship to Japan. The project
involves nearly 10 km of stainless steel pipe, factory preinsulated with
a fire-retardant fluorocarbon-blown rigid polyurethane spray foam. Foam
insulation was chosen rather than vacuum jacketing because of its ease
of maintenance in the field.

The foam was applied in the factory to a length of pipe rotating
at a controlled speed, from the spray equipment moving along the pipe
length at a controlled speed. A 5-cm thickness of foam was applied and
wrapped with glass fiber reinforced tape, a second 5-cm layer was applied
and reinforced similarly, then a third foam layer was applied and
wrapped with a glass reinforced epoxy vapor barrier 3 mm thick.

Polyurethane foam is seen by the author to be a potential insulation
of choice for other LNG projects, including piping and LNG tankers,
because of its insulating efficiency and its ease of maintenance in
remote locations.
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DEVELOPMENT OF URETHANE FOAMS FOR LNG INSULATION

Hayes, R. G. (Upjohn Co., Torrance, Calif. CPR Div.)

Advances in Cryogenic Engineering 20 (Presented at National Technical
Meetings during 1973 and 1974), K. D. Timmerhaus, Editor. Plenum
Press, New York, 338-42 (1975)

The purpose of the testing program was to find a polyurethane
foam suitable for use as insulation for liquefied natural gas storage
or transport containers. Eight polyurethane foam formulations were
screened by measuring volume change and absorption after immersion in
LNG, The four formulations least affected were used to make samples
for mechanical strength testing at 296 K and 111 K. The two best
formulations were selected for full-scale testing. Immersion in LNG
for 1000 h caused no apparent loss in physical properties. Thermal
conductivities were measured between surfaces at 111 X and ambient
temperature, and thermal expansions between 77 K and 296 K were
determined. In a test simulating service conditions as external
insulation, the foams were attached to aluminum plate and cycled between
77 K and 289 K. One formulation warped, but the other remained nearly
unchanged through 20 cycles.

The author concludes that the one best formulation of polyurethane

foam will be a useful insulation for cryogenic systems down to 77 K,
and is completely compatible with LNG.
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EVALUATION OF A SUBSCALE INTERNALLY INSULATED FIBER-GLASS PROPELLANT
TANK FOR LIQUID HYDROGEN

Heidelberg, L. J.

National Aeronautics and Space Administration, Cleveland, Ohio, Lewis
Research Center, Tech. Note No. NASA TN-D-3068, 31 pp (Oct 1965)

The use of glass fiber reinforced plastics as structural materials
for liquid hydrogen propellant tanks was investigated. The research
program had the objective of designing, fabricating, and evaluating the
thermal and structural performance of a subscale tank. The tank consisted
of a structural shell of filament-wound fiber-glass, an internal
insulation system of polyurethane foam enclosed in an aluminum-mylar-
aluminum laminate vacuum jacket, and an impermeable liner of the same
laminate. Thermal performance was evaluated by liquid hydrogen boiloff
tests, and structural performance by pressure—cycllng tests with liquid
hydrogen in the tank.

Initial leak tests showed that the aluminum-mylar-aluminum laminate
with adhesive-bonded seams produced leakproof vacuum jackets and liner.
Thermal shocks with liquid nitrogen and liquid hydrogen did not cause
leaks. The insulation performed satisfactorily. A large heat leak
occurred where the laminated vacuum jackets were bonded together and
provided an aluminum heat path through the insulation. Pressure cycling
caused a liner failure at a pressure below the design goal. It was felt
that changes in construction, to allow the liner to expand more, would
bring the failure pressure closer to the ultimate strength of the
filament-wound tank structure.

Important references:

1. Hanson, M. P., Richards, H. T., and Hickel, R. O., NASA Tech. Note
No. NASA TN-D-2741 (1965).

2. Shriver, C. B., NASA Rept. No. NASA CR-127 (1964).
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THE EFFECT OF HEAT FORMING ON THE THERMAL CONDUCTIVITY OF POLYURETHANE
FOAMS

Hertz, J., and Haskins, J.
General Dynamics/Astronautics, San Diego, Calif., Quarterly Progress
Rept. No. MRG-303, Contract No. AF33 616 7984, 8 pp (May 1963)

The insulation for the Centaur forward bulkhead was manufactured
by heat-forming of polyurethane foam panels. This heat-forming process
in vacuum at 372 K had the potential of removing the freon 11 blowing
agent from the foam cells, and allowing air to replace it. This would
result in an increased thermal conductivity and would introduce a
source of error in determining heat transfer across the forward
bulkhead. A test program was conducted to evaluate these possibilities.

Three polyurethane foams were supplied for test in the form of
panels. The thermal conductivities were measured between 91 K and 296 K,
the panels were subjected to the heat-forming process, and thermal
conductivities were measured again. Thermal conductivities after
heat-forming were 8% lower, 5% lower, and 5% higher than those before
heat-forming for the three foams. Since experimental error could
amount to 6%, and the expected changes were toward increases of thermal
conductivity, it was concluded that the heat-forming caused no
significant changes.
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GETTING THE MOST FROM RIGID POLYURETHANE FOAMS
Hilado, C, J. (Union Carbide Chemical Co,, South Charleston, W. Va.)
Chem, Eng, 74, No. 20, 190+192+194+196 (Sep 1967)

This article is a brief but thorough review of the application of
rigid polyurethane foams as insulation over the entire temperature range
from 5 K to 560 K, Graphs of generalized properties show thermal
conductivity, tensile, compressive, flexural, and shear strength and
modulus, and water vapor permeability, as functions of demsity at 297 K.
Other graphs show generalized thermal conductivity and tensile and
compressive strength as functions of temperature for isotropic closed-cell
foams of 32 kg/m3 density.

The total temperature range of application is divided into several
parts., Below about 89 K, the thermal conductivity is very low, and the
major problem is air condensation and liquid oxygen accumulation, with
some danger of detonation on impact. Between 89 K and 211 K, the thermal
conductivity is that of an air-filled foam, and moisture accumulation is
the major problem. Between 211 K and 395 K, polyurethane foam is more
effective than most other insulations, but suffers from dimensional
changes and increased conductivity caused by air and water permeation.
Low strength and thermal degradation are the major problems at
temperatures above 395 K.

The review cites 23 references as sources of more detailed information.

Important references;
1. Hilado, C. J., J. Cell. Plast. 3, No. 4, 161-7 (Apr 1967).

2. Key, C. F., and Riehl, W. A., Repts No. MTP-P and VE-M-63-14 (Dec
1963).

Key, C. F., NASA Tech. Memo. No. NASA TM-X-53052 (May 1964).
4, Levy, M. M., J. Cell. Plast. 2 (Jan 1966).
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A METHOD FOR DETERMINING THE EFFECTIVENESS OF THERMAL INSULATION
SYSTEMS AT LOW TEMPERATURES

Hilado, C. J. (Union Carbide Corp., South Charleston, W. Va.)
J. Cell. Plast. 5, No. 2, 110-1 (Mar-Apr 1968)

A method of comparing piping thermal insulation systems is
presented. The method is specifically designed to compare complete
systems in an operational configuration rather than comparisons based
on the thermal conductivity of the insulation alone. The configuration
uses a one meter length of aluminum tube 7.6 cm in diameter, and
closed at both ends. The insulation systems are installed complete
with adhesive and vapor barrier. A test consisted of filling the tube,
sealing the fill end and measuring, continuously, the weight loss
from vaporization. This allowed the calculation of average heat
transfer rates over a three hour period.

The paper presents results of a comparison of 2.5 cm thickness of
cellular urethane and 10.1 and 15.2 cm thicknesses of cellular glass
using both liquid nitrogen and solid carbon dioxide. In all cases the
urethane performed much better than the cellular glass.

The heat transfer rates per unit length of pipe differed
significantly from the values predicted on the basis of available
thermal conductivity data for the insulation material. The actual
values were lower than predicted for cellular polyurethane, and higher
for cellular glass.

The total time required for a test is 1.5 hour which makes this
a quick way to arrive at system comparisons.

Important references:

1. American Society for Testing and Materials, ASTM Std. 14, 172-9
(Nov 1967).

2. Haskins, J. F., ASTM Spec. Tech. Publ. No. 411, 3-12 (Feb 1966).

3. Karp, G. S., and Lankton, C. S., ASIM Spec. Tech. Publ. No. 411,
13-24 (Feb 1966).

4. Black, I. A., Wechsler, A. E., Glaser, P. E., and Fountain, J, A.,
ASTM Spec. Tech. Publ. No. 411, 74-94 (Feb 1966).

5. Black, I. A., Glaser, P. E., and Perkins, P., ASTM Spec. Tech.
Publ. No. 411, 52-60 (Feb 1966).

6. Hollingsworth, M., ASTM Spec. Tech. Publ. No. 411, 43-51 (Feb 1966).
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Important references (continued):

7. Kinzer, G. R., and Pelanne, C. M., ASTM Spec. Tech. Publ. No. 411,
110-8 (Feb 1966).

8. Gibbon, N. C., Matsch, L. C., and Wang, D. I. J., ASTM Spec. Tech.
Publ. No. 411, 61-73 (Feb 1966).
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A THERMAL PROTECTION SYSTEM FOR LIQUID HYDROGEN FUEL TANKAGE IN
HYPERSONIC VEHICLES

Johnson, C. L. (Lockheed~California Co., Burbank)

ATAA Thermophysics Specialist Conf. (New Orleans, La., Apr 17-20, 1967),
Paper No. ATAA-67-297 (1967)

A composite insulation system for the liquid hydrogen tanks of a
hypersonic vehicle was designed and tested. In the design concept, the
liquid hydrogen tank was the primary vehicle structure. A polyurethane
foam was sprayed onto the outside of the tank and sealed with a glass
cloth reinforced epoxy layer. Layers of silica fiber batting were wrapped
over the foam and held in place with a stainless steel screen. Thin-walled
inconel 718 tubing standoff posts were attached to the tank wall, and
extended through the insulation to support inconel 718 heat shield shingles.
The polyurethane foam provided cryogenic insulation, while the silica
fiber insulation kept the high temperatures generated by aerodynamic
heating from reaching the surface of the foam.

The insulation was applied to a calorimeter, and tested with liquid
nitrogen or liquid hydrogen in the calorimeter and heat lamps at the outer
surface. Heat flux values were satisfactory in the liquid nitrogen tests,
but doubled with liquid hydrogen in the calorimeter. Calculations showed
that the difference could be attributed to a relatively small amount of
air condensing on the tank surface. Disassembly of the insulation
revealed extensive thermal stress cracking of the polyurethane foam and
its vapor barrier, which allowed air penetration and condensation.

Modifications to improve the insulation system included changing from
spray-on foam to panels of the glass fiber reinforced polyurethane foam
developed for the Saturn S-IV stage. The reinforcement was to strengthen
the foam while application in panels left space for thermal stress relief.
The vapor barrier was changed to a more flexible polyester cloth
reinforced epoxy layer. The report states that the initial results
demonstrated the practicability of the insulation system, and that the
modifications should produce a system with acceptably low thermal
conductivity.

41



INSULATION SYSTEMS FOR CRYOGENIC STAGES

Jonke, R. J.
Rev. Sci. Tech. CECLES/CERS 3, No. 1, 17-48 (1971)

This paper is a review of experimental work on thermal
insulation systems for cryogenic propellant tanks, summarizing those
systems which were candidates for the ELDO Europa III upper stage but
were not finally selected for use. The systems covered are polyphenylene
oxide (PPO) foam (described here as ''polypropylene oxide foam'),
polyvinyl chloride (PVC) foam, polyurethane foam, and polymethacrylimide
foam. Another PVC foam was selected for the application, and is
described elsewhere (see the paper abstracted on page 74).

The PPO foam is an anisotropic open-cell foam, with the cells
oriented in a single direction. It was proposed as an external
insulation, with the cells closed at one end by bonding to the tank
wall, and at the other by a vapor barrier film and a protective glass
cloth reinforced epoxy coating. Linear thermal expansion of the foam,
both parallel and perpendicular to fiber orientation, is shown from
20 K to 300 K; tensile properties in both orientations are shown from
20 K to 400 K. Thermal conductivity is given as 0.024 W/m-K at a mean
temperature of 166 K, and 0.009 W/m*K at 138 K. The foam was applied
to a test tank, and during cooldown with liquid nitrogen, the vapor
barrier delaminated from the foam. A prestressed constrictive wrap
solved the problem, but a better bond might make prestressing
unnecessary.

The polyurethane and PVC foams were studied in another program.
Data are shown on thermal conductivities of the foams at temperatures
from 20 K to 320 K. For the same density, the polyurethane shows
slightly lower thermal conductivity than the PVC. The typical
S-shaped curves of freon-blown foams are evident in the data. Thermal
contractions, tensile strengths, and ultimate elongations of the foams
are compared from 20 K or lower to 300 K or higher. A polyurethane
foam reinforced with glass fibers was included in the comparisons.
Small scale tests on tanks with liquid hydrogen also provided data.
It was concluded that thermal performance of the foams was approximately
equal, but higher elasticity at low temperature made the polyurethane
a better choice than the PVC, and the fiber-reinforced polyurethane
better than the plain foam.

In another program, a polymethacrylimide foam was evaluated,
and thermoforming was investigated as a means of shaping this foam
along with polyurethane and PVC foams. The polymethacrylimide required
closely controlled high temperature for thermoforming, and was highly
permeable to gas, making it unsuitable for insulation. Thermoforming
was highly successful with PVC, while polyurethane foam tended to crack.
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THERMAL INSULATION IN CRYOGENIC ENGINEERING

Kaganer, M. G.

Israel Program for Scientific Translations, Jerusalem, 1969. Transl. of
Teplovaya Izolyatsiya v Tekhnike Nizkikh Temperatur, Izdatelstvo
Mashinostroenie, Moscow, 226 pp (1966) :

This Russian book on thermal insulation only briefly considers
foam insulation. Evacuated powder, evacuated fiber, high-vacuum, and
evacuated multilayer insulations receive much greater coverage.

The cellular materials considered are cork, expanded ebonite, a
urea-formaldehyde foam, polystyrene foam, polyurethane foam, and foam
glass. The properties of these materials are presented as general
graphs or tabulations of thermal conductivity, specific heat, linear
thermal expansion, and moisture permeability, in a general temperature
range from 175 K to 300 or 325 K. The data are taken from the
literature, and the literature should provide better sources of
information on these properties.

Important references:

1. Dudnik, D. M., and Meltser, L. Z., Trudy OTIPKhP, 10, 75-86,
Odessa (1961).

2. Cammerer, W. F., Kaeltetechnik 12, No. 4, 107-10 (1960).

3. Cooper, A., International Congress of Refrigeration, Proc. X, 1,
251-60 (1961).
4. Haskins, J. F., and Hertz, J., Advances in Cryogenic Engineering 7,

353-9 (1962).

5. Battle, B., and Laine, P., Suppl. Bull. Inst. Intern. du Froid,
No. 4, 267-73, Annexe (1958).

6. Miller, R. N., Bailey, C. D., Beall, R. T., and Freeman, S. M.,
Advances in Cryogenic Engineering 8, 417-24 (1963).

7. Vahl, L., International Congress of Refrigeration, Proc. X, 1,
267-73 (1961).
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MEASURED EFFECTS OF THE VARIOUS COMBINATIONS OF NUCLEAR RADIATION,
VACUUM AND CRYOTEMPERATURES ON ENGINEERING MATERIALS

Kerlin, E. E., and Smith, E. T.

General Dynamics/Fort Worth, Tex., Nuclear Aerospace Research Facility,
Rept. No. FZK-290. National Aeronautics and Space Administration, Rept.
No. NASA CR-77772, Contract No. NAS 8-2450, 520 pp (Jul 1966)

This report summarizes the work done during the last two years of
a five year contract with NASA to measure the effects (singly and in
combination) of nuclear radiation, vacuum and cryogenic temperatures on
structural adhesives, structural laminates, potting compounds, electrical
insulation, thermal insulation, dielectrics, thermal control coatings,
seals, sealants and lubricants. The testing was done for the purpose of
establishing guidelines in the selection of materials for the Space
Nuclear Propulsion System (NERVA). Tests were conducted in air at
ambient temperature, in liquid nitrogen, at 77 K and in liquid hydrogen
at 20 K. The tests included mechanical and tensile properties
(measured at test temperature and in test environment), lubricating
properties, electrical properties and thermal conductivity for the foam
insulation.

The foam thermal insulations tested are: polyurethane (polyether-
polyester rigid foam), polyurethane (carbon dioxide blown rigid foam),
urethane (polyester flexible foam), epoxy (rigid, spray foamed),
polyurethane (polyether, rigid, halocarbon blown) and polystyrene.
Measurements were made in the radiation environment in vacuum and air
at ambient temperature and in liquid nitrogen and liquid hydrogen. The
results indicate that radiation levels to 5 x 106 J/kg had no or
insignificant effects on the thermal conductivity of all specimens
tested. With regard to the compression test, not all of the foam
materials have data reported because experimental difficulties resulted
in a small number of reliable results. Because of these factors, the
data presented are considered to be of marginal reliability. The
authors did conclude, however, that for most foams the exposure to both
vacuum and radiation reduced significantly the compressive strength.

Important references:

1. Kerlin, E. E., General Dynamics/Fort Worth, Tex. Rept. No. FZK-161-1
(Jan 1963).

2. Kerlin, E. E., and Smith, E. T., General Dynamics/Fort Worth, Tex.
Rept. No. FZK-188-2 (May 1964).
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COMPATIBILITY OF MATERIALS WITH LIQUID OXYGEN, III.

Key, C. F.

National Aeronautics and Space Administration, Huntsville, Ala., George
C. Marshall Space Flight Center, Tech. Memo. No. TM-X-53533, 54 pp

(Nov 1966)

. This report summarizes in tabular form the results of the
compatibility testing of a large number of materials with liquid oxygen.
The classes of materials included are lubricants, sealants and threading
compounds, thermal and electrical insulation, plastics, elastomers,
adhesives, gaskets and packings, metals and alloys, solders, chemicals,
solvents, paints and leak check compounds. The tests were conducted
with the Army Ballistic Missile Agency (ABMA), LOX impact tester used
according to MSFC-SPEC-106B. Two ratings are given, one for the
individual sample or lot evaluated and the other for the material in
general. The ratings are Satisfactory (S), Satisfactory, if each jar
of sample is individually tested and found acceptable (J), Satisfactory
if each batch is tested and found acceptable (BT), Insufficient test
experience to rate sample adequately (I) and Unsatisfactory (U).

The foam insulation tested and the results are: H-Foam (batch
rating - S, material rating - I), RL Foam (batch and material rating -
(U), Styrofoam (batch and material rating — U). As would be expected
foam insulations are not particularly compatible with liquid oxygen.
No results are given for polyurethane foam.

Important references:

1. Lucas, W. R., and Riehl, W. A., ASTM Bulletin No. 244, 29-34 (Feb
1960).

2. Key, C. F., and Riehl, W. A., NASA Tech Memo. No. NASA TM-X-985
(Aug 1964).

3. Key, C. F., NASA Tech Memo. No. NASA TM-X-53052 (May 1964).

45



EFFECT OF LIQUID NITROGEN DILUTION ON LOX IMPACT SENSITIVITY
Key, C. - F., and Gayle, J. B. (National Aeronautics and Space
Administration, Huntsville, Ala., George C. Marshall Space Flight
Center) : .

J. Spacecraft Rockets 3, No. 2, 274-6 (Feb 1966)

This paper summarizes an experimental investigation on the impact
sensitivities of a number of materials in liquid nitrogen-oxygen mixtures.
Earlier work had shown that organic materials were impact-sensitive in
liquid oxygen, and that there was a chance of a catastrophic reaction if
damaged insulation on a liquid hydrogen tank was impacted during ground
hold, because air could condense in the insulation and become enriched in
oxygen by fractionation processes. The liquid nitrogen-oxygen mixtures
in this work represented liquid air and oxygen-enriched liquid air,
ranging from 207 to 100% oxygen.

The materials tested included a polyurethane foam insulation, an
epoxy foam, a foam of 132 kg/m3 density identified by its commercial
designation, and a foam-filled Ahenolic honeycomb. All of the fpams were
completely insensitive in 507% oxygen mixtures at impact energies up to
10 kg-m. Threshold impact energies dropped to 1 to 2 kg-m in 100% liquid
oxygen. The foam—-filled honeycomb was insensitive in 20% oxygen mixture
(1iquid air) up to 10 kg-m, but the threshold impact energy was only 3
kg-m in 307% oxygen mixture, and less than 1 kg-m in 100% liquid oxygen.
While none of the materials reacted in liquid air, and the foams remained
insensitive with considerable oxygen enrichment, the foam-filled honeycomb
became impact sensitive in only slightly oxygen-enriched liquid air.

This paper summarizes the work reported in an earlier Technical
Memorandum (below and in Secondary Documents). This summary contains the
experimental results, but not all of the details on test methods.

Important references:

1. Key, C. F., and Gayle, J. B., NASA Tech. Memo. No. NASA TM-X-53144
(Oct 1964).

2. Key, C. F., and Gayle, J. B,, NASA Tech. Memo. No. NASA TM-X-53208
(Feb 1965).
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PRELIMINARY INVESTIGATION OF FIRE AND EXPLOSION HAZARDS ASSOCIATED

WITH S-II INSULATION

Key, C. F., and Gayle, J. B.

National Aeronautics and Space Administration, Huntsville, Ala., George

C. Marshall Space Flight Center, Tech. Memo. No. NASA TM-X-53144 (Oct 1974)

Insulation developed for the S-II vehicle was polyurethane foam
bonded to the aluminum tank surface with an epoxy adhesive, reinforced
with a phenolic~fiberglass honeycomb, and covered with an essentially
impermeable vapor barrier. With the tank wall at liquid hydrogen
temperature, any leakage in the vapor barrier was expected to allow air
to condense inside the insulation. The condensate could contain
appreciably more than 207 liquid oxygen, and could create a fire or
explosion hazard in the event of an impact. A series of tests was
conducted to evaluate this hazard.

Standard LOX impact tests on the composite insulation and its
constituents showed a high sensitivity. Since condensate in the
insulation would not be pure LOX, the tests were repeated in LOX/LN2
mixtures. Decreased oxygen concentration resulted in decreased sensitivity,
down to zero sensitivity in 20% LOX mixture.

In a more realistic test configuration, the insulation was applied
to flat aluminum plates and the vapor barrier was removed or punctured.
Samples were immersed in LOX/LN2 mixtures for about 15 min, removed and
allowed to stand for varying lengths of time, and impacted by about 125
0.013 g lead shot fired from a .22 calibre rifle. With the rifle located
less than 1.3 m from the sample, reactions occurred consistently when LOX
concentration in the mixture exceeded about 207%. Reaction frequency
increased with increasing warm-up time after immersion in mixtures
containing 20 to 30% LOX, consistent with the expectation that condensate
becomes enriched with LOX during warm-up. Similar results were obtained
with .177 calibre copper coated pellets fired from an air gun and with
insulation applied to the curved surface of a test tank.

To achieve a more realistic simulation by eliminating direct
immersion in LOX/LN2 mixtures, the insulation was applied to liquid
hydrogen tanks and the vapor barrier was punctured to allow natural
cryopumping. After maintaining the liquid hydrogen for 4 to 12 h, the
hydrogen supply was cut off and the test tank impacted with bird shot
fired from a 22 calibre rifle from a distance of 45 to 70 cm from the
tank. Sustained burning occurred 10 min and 8 min after liquid hydrogen
shutoff in two of the tests. The reaction after 10 min warm-up was more
violent than that after 8 min warm-up, indicating either a larger quantity
or more oxygen-richness of the condensate.
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The authors conclude that there is a small but finite probability
of catastrophic reaction if damaged S~II insulation is subjected to
impact, shock, fire, or other stimuli during or after liquid hydrogen
hold. The danger is greater during warm-up. This small hazard must

be balanced against other factors to determine whether modification
is required. '
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HEAT TRANSFER IN EXPANDED MATERTIALS (UBER DEN WARMETRANSPORT IN
SCHAUMSTOFFEN)

Koglin, B. (ERNO Raumfahrttechnik GmbH, Bremen, West Germany)
Kaltetechnik-Klimatisierung 21, No. 5, 122-5 (May 1969)

An experimental program was conducted to measure heat transmission
in plastic foam insulation materials, and to establish the effects of
variations in foam properties on the heat transfer mechanisms. A
polyurethane foam of 40 kg/m3 density and a polystyrene foam of 15 kg/m3
density were the materials measured, and thermal conductivities were
determined in the temperature range between 20 K and 350 K.

The polyurethane foam thermal conductivity showed characteristics
typical of halocarbon-blown foams, with a maximum and a minimum in the
curve between 230 K and 280 K, near the condensation temperature of the
blowing agent, where variations in the vapor pressure cause the thermal
conductivity to change. The thermal conductivity also showed an abrupt
drop as the temperature decreased below about 50 K, a region where air
in the cells of the foam has mostly condensed.

The polystyrene foam was made with air as the blowing agent. Its
thermal conductivity showed a continuous increase with increasing
temperature from 110 K to 330 K. Other measurements at a temperature of
308 K established the effects on thermal conductivity of air pressure
in the cells, of temperature difference across the sample, of sample
thickness, and of emissivity of the foam surface. These results along
with simple models of heat transfer mechanisms were used to show the
effects due to solid conduction, gas conduction, and radiation heat
transfer. Convective heat transfer was negligible in the tests. The
combined effects led to the conclusion that, for foam of a specific
density, there is an optimum cell size for minimum thermal conductivity.

Important references:

1. DIN 52612, Beuth-Vertrieb, Berlin-Kolm.

2. Koglin, B., Diss. TU Berlin (1967).

3. Haskins, J. ¥. and Hertz, J., Adv. Cryog. Eng. 7, 353 (1962).

4. Tariel, H. M., Boissin, J, C. and Segel, M. P., Adv. Cryog. Eng.
12, 274 (1967).

5. Zehendner, H., Kaltetechn. 19, No. 1, 2 (1967).
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MECHANICAL PROPERTIES OF FOAM MATERIALS IN THE TEMPERATURE RANGE OF
300°K TQO 20PK (MECHANISCHE EIGENSCHAFTEN VON SCHAUMSTOFFEN IM
TEMPERATURBEREICH VON 300°K BIS 20°K)

Kreft, H., and Wagner, D, (ERNO-Raumfahrttechnik GmbH, Bremen, West
Germany)

Kaltetechnik-Klimatisierung 21, No. 9, 258-65 (Sep 1969)

An insulation consisting of foam bonded to the wall of a liquid
hydrogen or liquid oxygen tank, and sealed with a vapor barrier bonded
to the foam, was considered for upper rocket stages. Such insulation
must withstand loads imposed by thermal contraction, external air
pressure or vacuum, tank pressurization, and acceleration and air friction
during launch. The mechanical properties of the materials must be known
for design of the insulation system. Two foams, a polyurethane and a
polyvinyl chloride, were tested along with four adhesives and an
aluminized mylar vapor barrier.

Standard bar samples of both foams were tested for tensile strength
at 20 K, 77 K, and 293 K, and for elongation and modulus at 77 K and
293 K. Flatwise tensile strengths of samples adhesively bonded between
metal blocks were measured at 77 K and 293 K. Compressive strengths at
77 K and 293 K, tensile-shear strengths at 20 K, 77 K, and 293 K, and
T-peel shear strengths at 77 K and 293 K were also measured for both
foams. At all temperatures, the polyurethane foam had lower strengths
and tensile modulus, and higher elongation, than the PVC foam. The PVC
showed considerable sensitivity to temperature, with decreasing tensile
and shear strengths and increasing compressive strength at lower
temperatures. The polyurethane has the same general trends except that
tensile strength of the bar samples increased at lower temperatures.

The authors conclude that the polyurethane has good mechanical
properties at all temperatures being considered. The polyvinyl chloride
foam has relatively high strength at room temperature and is brittle at
lower temperatures.

Important references:

1. Kreft, H., Technischer Bericht RT/P-1/1/66, ERNO-Raumfahrttechnik
GmbH, Bremen (Jan 1966).

2. Kreft, H., Abschlussbericht TB RT/Z/1/69, ERNO-Raumfahrttechnik
GmbH, Bremen (Apr 1969).

3. Hollstein, W., Technischer Bericht 1204, Hamburger Flugzeugbau
GmbH, Hamburg (Mar 1968).

4, Wagner, D., Technischer Bericht RT/S-86/68, ERNO-Raumfahrttechnik
GmbH, Bremen (Jun 1968).

5. Wagner, D., Technischer Bericht RT/S-148/68, ERNO-Raumfahrttechnik
GmbH, Bremen (Oct 1968).
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CRYOGENIC PROPERTIES

Landrock, A. H. (Plastics Technical Evaluation Center, Picatinny
Arsenal, Dover, N. J.)

Encyclopedia of Polymer Science and Technology Vol 4. John Wiley and
Sons, Inc., New York, 415-49 (1966)

The article includes a summary of cryogenic foam Insulation,
reviewing some data from the literature. Data are taken from Miller,
et al. (see the paper abstracted on page 73), on tensile, shear, and
compressive strengths of rigid polyester-polyurethane, epoxy, semirigid
polyurethane, and flexible polyether foams, between 20 K and 298 K.
Other data from Bailey (included in the paper abstracted on page 73)
show linear thermal expansions of six foams between 78 X and 295 K.
Tabulations from Kropschot's papers (listed under Secondary Documents)
demonstrate the high thermal conductivities of foams as compared with
evacuated powder and multilayer insulations. The discussion on
cryogenic foam insulation cites 14 references.

Important references:

1. General Dynamics/Astronautics, San Diego, Calif., Rept. No. MRG-162
(Jun 1960).

2. Hertz, J., and Haskins, J., General Dynamics/Astronautics, San
Diego, Calif., Rept. No. MRG-202, 10 pp (Dec 1960).

3. Haskins, J. F., and Hertz, J., General Dynamics/Astronautics, San
Diego, Calif., Rept. No. MRG-242, 21 pp (Jul 1961).

4. Hertz, J., and Haskins, J., General Dynamics/Astronautics, San
Diego, Calif., Rept. No. MRG-303, 8 pp (Mar 1962).

5. Isenberg, L., and Johnson, C. L., Materials Compatibility and
Contamination Control Process, Proc. National Symp., 4th (Hollywood,
Calif., Nov 13-15, 1962). Soc. Aerospace Mater. Process Engrs.
(SAMPE), 445-79 (1962).

6. Campbell, M. D., Haskins, J. F., Hertz, J., Jones, H., and Percy,
J. L., General Dynamics/Astronautics, San Diego, Calif., Rept. No.
MRG-312, 75 pp (Apr 1962).

7. Doherty, D. J., Hurd, R., and Lester, G. R., Chem. Ind. (London),
1340-53 (1962).

8. Griffin, J. D., and Skochdopole, R. E., Chapter 15 in Engineering
Design for Plastics, E. Baer, Editor. Reinhold Publishing Corp.,
New York (1964).
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POLYURETHANE FOAMS. TECHNOLOGY, PROPERTIES AND APPLICATIONS
Landrock, A. H.

Plastics Technical Evaluation Center, Dover, N. J., PLASTEC Rept.
No. 37, 256 pp (Jan 1969)

This report discusses the state of the art of polyurethane foams as
it existed in 1969. While much of the report is taken up with the
chemistry and production of polyurethane foams, and with properties and
applications outside the cryogenic temperature range, the chapter on
Foam Properties ineludes sections on low-temperature effects, cryogenic
effects, and liquid oxygen compatibility. The chapter on Military and
Space Applications has a section on thermal insulation.

The low-temperature effects are mostly concerned with temperatures
between room temperature and about 200 K. The section on c¢ryogenic
effects cites some 17 papers and reports from the literature. Specific
data used in the discussion include a table of compressive strength,
modulus, and deflection of three densities of foams, taken from Buxton,
Hanson, and Fernandez (cited under Secondary Documents); graphs of
tensile, shear, and compressive strengths of rigid, semi-~-rigid, and
flexible foams, taken from Miller, Bailey, Beall, and Freeman (abstracted
on page 73); and graphs of linear thermal expansions of two foams, taken
from Bailey (cited under Secondary Documents) and from Miller, Bailey,
Freeman, Beall, and Coxe (cited under Secondary Documents). A section
on radiation effects on polyurethane foams also discusses combinations
of radiation with exposure to vacuum and cryogenic temperatures. The
section on liquid oxygen compatibility states that most polyurethanes
are not LOX compatible, but that halogenated polyurethanes and those
prepared from hexafluoropentanediol are compatible with LOX. The section
on the application of polyurethane foams as insulation cites 8 references
which deal specifically with cryogenic temperatures.

This report looks in depth at polyurethane foams and provides some
comparisons with other foams as well. The bibliography of over 700
references from the literature aids in finding more detailed informatiom.

Important references:

1. Haskins, J. F., and Hertz, J., General Dynamics/Astronautics, San
Diego, Calif., Rept. No. MRG~242 (Jul 1961).

2. Dearing, D. L., Advances in Cryogenic Engineering 11, 89-97 (1966).

3. Johnson, P. M., Lewis, J. H., and Self, M. R., General Dynamics/Fort
Worth, Rept. No. FZK-195 (Dec 1964).

4, Hauck, J. E., Mater. Des. Eng. 63, No. 5, 87-102 (May 1966).
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Important references (continued):

5. Kropschot, R. H., Applied Cryogenic Engineering, Chapter 6, edited
by R. W. Vance and W. M. Duke. Wiley, New York (1962).

6. Landrock, A. H., Encyclopedia of Polymer Science and Technology 4.
Wiley~Interscience, New York, 415-99 (1966).
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PROPERTIES OF PLASTICS AND RELATED MATERTALS AT CRYOGENIC TEMPERATURES
Landrock, A. H. ' '

Plastics Technical Evaluation Center, Picatinny Arsenal, Dover, N. J.,
Plastec Rept. No. 20, 253 pp (Jul 1965)

This extensive compilation includes a section on foam cryogenic
insulation, with a discussion summarizing data or conclusions from 22
references. The index lists over 64 references under the "foam"
categories.

Graphical and tabulated data used in the discussion include data on
the tensile, shear, and load-compression strengths of five foams at
temperatures between 20 K and 395 K, taken from a paper by R. N. Miller,
et al. (see abstract on page 73). Data on load-compression strengths
of six foams at 20 K, 77 K, and 296 K were taken from another paper by
R. N. Miller, et al. (cited under Secondary Documents). Linear thermal
expansion of six foams between 78 K and 300 K were taken from a report
by C. D. Bailey (cited under Secondary Documents). Thermal conductivities
of polystyrene and polyurethane foams came from a 1961 report by J. F.
Haskins and J. Hertz (cited under Secondary Documents). Other data on
compressive strengths of polyurethane and polystyrene foams between 20 K
and 300 K were taken from a report by M. D. Campbell, et al., and a
journal article by D. J. Doherty, et al. (both cited under Secondary
Documents). Tensile and shear moduli and anisotropy of the moduli,
between 20 K and 300 K were taken from a book chapter by J. D. Griffin
and R. E. Skochdopole (cited under Secondary Documents). Thermal
conductivities of several foam materials at temperatures from 20 K to
300 K, and comparisons with vacuum powder and multilayer insulations,
came from a chapter on Low-Temperature Insulation, by R. H. Kropschot, in
the book Applied Cryogenic Engineering (cited under Secondary Documents).

This report on plastics at cryogenic temperatures is very
comprehensive in the area of properties of materials. It represents
the state of the art at the time of its publication, in 1965. Applications
of materials were not covered in the report. Despite its age, the report
remains a valuable source of information.

Important references:

1. Allen, R. J., and Van Paassen, H. L. L., Advances in Cryogenic
Engineering 6, 548-54 (1961).

2. Hertz, J., and Haskins, J., General Dynamics/Astronautics, San Diego,
Calif., Rept. No. MRG-303, Contract No. AF 33(616)-7984, 8 pp (Mar
1962).

3. Isenberg, L., and Johnson, C. L., Proc. National SAMPE Symp., 4th
(Hollywood, Calif., Nov 13-15, 1962), 445-79 (1962).
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Important references (continued):
4, Stoeker, L. R., Advances in Cryogenic Engineering 5, 273-81 (1960).

5. Vahl, L., Progress in Refrigeration Science and Technology, Vol 1,
Proc., International Congress of Refrigeration, 10th (Copenhagen,
Denmark, 1959). Pergamon Press, New York, 267-73 (1960).

6. Eyles, A. G., Advances in Cryogenic Engineering 10, 224-32 (1965).
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DEVELOPMENT OF ADVANCED MATERIALS COMPOSITES FOR USE AS INSULATION

FOR LH2 TANKS

Lemons, C. R., and Salmassy, 0. K.

McDonnell-Douglas Astronautics Co., Huntington Beach, Calif., Research
and Engineering Dept., Rept. No. MDC-G4492. National Aeronautics and
Space Administration Rept. No:. NASA CR-124388, Contract No. NAS 8-25973
(Apr 1973) 101 pp

This report is on a continuation of the work described in the
report abstracted on page 58. The earlier work had developed and
optimized an internal insulation system, consisting of 3D foam (a
polyurethane foam reinforced with glass fibers oriented in three mutually
perpendicular directions) bonded to the tank wall with epoxy adhesive
and lined with a glass-cloth-reinforced epoxy layer. This system was
applied to a one-meter dome and subjected to seven simulated mission
cycles consisting of liquid hydrogen tanking, pressurization, and
reentry heating to 450 K. The insulation withstood the simulated
mission cycles with no apparent damage or degradation.

Another one-meter dome was insulated with a similar composite
system, but using simpler butt joints between 3D foam panels. A
syntactic foam material, epoxy resin filled with phenolic microballoons
and glass fibers, was used as a gap filler in the butt joints. Only
about half as much adhesive was used in bonding the foam to the dome.
This modified insulation also withstood seven simulated mission cycles
without significant damage or degradation, while reducing insulation
weight and cost.

The authors conclude that the original structural and thermal
objectives of the program were achieved, and that weight and cost
reduction objectives were exceeded.

An appendix contains material and process specifications for the
polyurethane foam, for the yarn-reinforced polyurethane foam, for the
epoxy adhesive, and for installation of the internal insulation system.

Important references:

1. Salmassy, 0., et al., MDAC Quarterly Summary Report MDC-G2525,
Contract NAS 8-25973 (Sep 1971).

2. Lemons, C. R., Watts, C. R. and Salmassy, 0. K., Summary Report
Phase 1II MDC-G3677, Contract NAS 8-25973 (Jumn 1972).
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ADVANCES IN CRYOGENIC FOAM INSULATION

Lemons, C. R., Salmassy, 0. K., and Watts, C. R.

McDonnell Douglas Astronautics Co., Huntington Beach, Calif., Paper No.
MDAC WD 1756, Presented at Society of Aerospace Material and Process
Engineers Nationmal Tech. Conf. on Space Shuttle Materials (Huntsville,
Ala., Oct 5-7, 1971), Contract No. NAS 8-25973 (Sep 1971) 12 pp

An internal insulation was required for the liquid hydrogen tanks
of both the booster and orbiter of the Space Shuttle. Prime considerations
were reusability and heat resistance to survive reentry with wall
temperatures up to 450 K. A thread-reinforced polyurethane foam internal
insulation had proven reliable in the Saturn S-IV and S-IVB stages, and
a program was conducted to modify this insulation to satisfy the
requirements for the Space Shuttle.

The insulation was a polyurethane foam reinforced with glass fiber
threads oriented in three mutually perpendicular directions. This 3D
foam underwent expansion followed by shrinking when exposed to a
temperature of 450 K. It could be stabilized by preheating to take care
of the dimensional changes before applying the foam to the tank. A new
formulation of polyurethane proved superior in having better stability
after heating, lower density, and no cracking problem. Thermal
conductivities of the new foam were measured in vacuum and helium
environments at temperatures from 134 X to 325 K and found equivalent
to the older foam. The insulation was applied to an aluminum dome by
bonding with an epoxy adhesive, then sealed with a liner of glass-cloth
reinforced polyurethane. The dome was subjected to simulated Space
Shuttle service by cooling with liquid hydrogen, then heating to 450 K.
The insulation survived testing with no apparent serious degradation.
The authors concluded that the insulation system was shown to be ready
for scale-up to large tank insulation.
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DEVELOPMENT OF ADVANCED MATERIALS FOR USE AS INSULATIONS FOR LH2
TANKS

Lemons, C. R., Watts, C. R., and Salmassy, 0. K.
McDonnell-Douglas Astronautics Co., Huntington Beach, Calif.,
Summary Rept. No. MDC-G3677, Jul 1971 - Apr 1972. Natiomal
Aeronautics. and Space Administration Rept. No. NASA CR-123928,
Contract No. NAS 8-25973, 176 pp (Jun 1972)

The experimental program had the objective of developing reliable
composite materials for a minimum weight internal insulation for the
Space Shuttle liquid hydrogen tanks. The approach was to modify the
reinforced foam insulation which had been developed for the Saturn
§-IVB. This insulation, called 3D foam, consisted of a polyurethane
foam reinforced with glass fibers oriented in three mutually
perpendicular directions, bonded to the tank wall with epoxy adhesive
and lined with a glass cloth reinforced epoxy coating.

A polyurethane foam formulated to withstand 450 K, as required
for the Space Shuttle, was used, and foam fabrication was optimized
to produce the lightest composite with the greatest strength possible.
Some results of tensile, compressive, shear, and bond strengths at
77 K and 298 K are given. Adhesive bonding to the tank wall was
optimized, vibration and acoustic fatigue tests were devised, various
panel joints were evaluated, and methods of repairing the insulation
were developed and tested.

The program succeeded in developing a satisfactory material and
methods for manufacturing, applying, testing, and repairing the
internal insulation. Detailed material and process specifications
were to be prepared using the data from this experimental program.

Earlier work in this program was reported in the paper abstracted
on page 57. A report of later work is abstracted on page 56.

Important references:

1. Salmassy, et al., MDAC Quarterly Summary Rept. No. MDC G2525
(Sep 1971).

MDC Rept. No. G2525 (Sep 1971).

. MDC Rept. No. E0276 (Jun 1971).

MDAC Quarterly Rept. No. MDC G2740 (Jan 1972).
Dearing, D. L., MDAC Rept. No. SM-42545 (Nov 1962).
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OPTIMIZATION ASPECTS AND TEST RESULTS OF A CRYOGENIC UPPER STAGE TANK
INSULATION

Leupold, M., and Mueller, E.

Boelkow Entwicklungen GmbH, Munich, West Germany, Rept. No. U55-1,

35 pp (1967)

This paper describes a compound insulation for the upper stage of a
space vehicle, combining foam insulation with superinsulation. The
vehicle stage has both liquid hydrogen.and liquid oxygen tanks to be
insulated. The foam insulation is effective during ground hold and ascent
while the superinsulation becomes most effective in space. The foam is
bonded to the tank wall, superinsulation is applied over the foam, and
the total insulation is enclosed in a vacuum bag and evacuated.

The insulation system was analytically optimized to balance propellant
boiloff loss against insulation weight. This analysis assumed a constant
10 mm thickness of foam insulation, and varied the number of super-
insulation layers according to mission length. Two foams were considered,
a polyurethane foam and a polyvinyl chloride foam. 1In tests of tensile
and shear strengths at 77 K and room temperature, the PVC foam was
superior. Weight losses at elevated temperatures were measured because
the insulation is exposed to aerodynamic heating. The PVC foam began to
decompose at a temperature near 410 K, while the polyurethane remained
stable at least up to 425 K.

A program was started to measure the effectiveness of compound
insulation by measuring boiloff from insulated liquid nitrogen tanks.
Only initial results are reported, and tests with liquid hydrogen tanks
were planned.
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SEALED-FOAM, CONSTRICTIVE-WRAPPED, EXTERNAL INSULATION SYSTEM FOR
LIQUID-HYDROGEN TANKS OF BOOST VEHICLES

Lewis Research Center

National Aeronautics and Space Administration, Cleveland, Ohio, Lewis
Research Center, Tech. Note No. NASA TN-D-2685, 157 pp (Mar 1965)

This report is a collection of nine chapters by various authors,
describing the concept, design and testing of the external foam insulation
system. The first chapter, by P. T. Hacker and J. B. Esgar, describes
the insulation concept. The system consisted of 10 mm thick, 32 kg/m3
density polyurethane foam panels, hermetically sealed within a mylar-
aluminum-mylar laminate covering, protected from aerodynamic erosion by a
thin fiberglass cloth layer, adhesively bonded to the tank wall to prevent
air penetration, and held in place by a prestressed constrictive wrap
of fiberglass roving. Chapter 2, by W. H. Roudebush, presents the
calculated thermal conditions during a boost trajectory, which the
insulation was designed to withstand.

Chapter 3, by L. J. Heidelberg, gives results of measurements of
thermal conductivity of insulation panels. Panels were tested under
compressive loads between surfaces at liquid hydrogen and ambient
temperatures. The average thermal conductivity, 0.021 W/m-K at a mean
temperature of 156 K, was considered a good indication of the thermal
conductivity of the insulation held against a liquid hydrogen tank by
constrictive wrapping. Changes in compressive load did not affect
thermal conductivity, and addition of fiberglass separators produced
small reduction of thermal conductivity while adding to weight and
complexity of the insulation.

The insulation system was sealed to prevent cryopumping of air,
but any leaks in the seal would allow air to condense in the insulation,
and the collection of liquid air or liquid oxygen might create a
hazardous condition in case of accidental impact. Chapter 4, by R. P.
Dengler, describes tests of the impact sensitivity of the insulation and
its component materials in the presence of liquid oxygen. 1In 40 tests,
10 produced some reaction and only 1 led to sustained combustion. These
results, along with the effective hermetic sealing, the localized area
of any leakage, the condensation of air rather than liquid oxygen, and
the high impact magnitudes used in the test program, led to the
conclusion that the probability of damage was very small.

Chapter 5, by P. J. Perkins, Jr., M. Colaluca, F. P. Behning, and F.
Devos, reports on the fabrication and tests of insulated subscale tanks.
Tests included equivalent thermal conductivity during ground hold,
structural effect of rapid pressure drop during launch, and effect of
surface heating during launch. Chapter 6, by R. P. Cochrane, V. O.
Bazarko, and R. W. Cubbison, describes aerodynamic heating tests
conducted in a jet engine exhaust and in a supersonic wind tunnel.
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Chapter 7, by P. J. Perkins, Jr., C. B. Shriver, and R. A. Burkley,
reports on application of the insulation to a full-scale centaur tank.
Chapter 8, by H. F. Calvert, P. J. Perkins, Jr., W. C. Morgan, and M. A.
Colaluca, describes ground-hold tests on the full-scale insulated tank.
Chapter 9, by J. B. Esgar and P. T. Hacker, summarizes results of the
program.

The subscale tests showed thermal conductivities about the same as
those determined in the thermal conductivity tests. TFull-scale tests
showed even lower thermal conductivities, near 0.014 W/m-K, partially
because of lower mean temperature of 110 K. The insulation, protected
by the constrictive wrap and fiberglass cloth layer, withstood the
simulated aerodynamic heating and pressure of launching. Leaks were
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observed in the tests, but were limited to relatively small areas, and
had no apparent effect on thermal performance of the insulation. The
insulation withstood all tests, and was considered suitable for use on
hydrogen-fueled boost vehicles.

Important references:
1. McGrew, J. L., Advances in Cryogenic Engineering 8, 387-92 (1963).

2, Miller, R. N., Bailey, C. D., Beall, R. T., and Freeman, S. M.,
Advances in Cryogenic Engineering 8, 417-24 (1963).

3. Perkins, P. J., Jr., and Esgar, J. B., ATAA Annual Structures and
Materials Conf., 5th (Palm Springs, Calif., Apr 1-3, 1964), Publ.
CP-8, 361-71 (1964).

4. Gray, V. H., Gelder, T. F., Cochran, R. P., and Goodykoontz, J. H.,
NASA Tech. Note No. NASA TN-D-476 (1960).

5. Perkins, P. J., Jr., NASA Tech. Note No. NASA TN-D-2679 (1964).

6. Key, C. F., and Riehl, W. A., NASA Tech. Memo. No. NASA TM-X-54611
(1963).

7. Dengler, R. P., NASA Tech. Note No. NASA TN-D-1882 (1963).
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MECHANICAL AND PHYSICAL PROPERTIES OF ORGANIC FOAMS
Lormis, F. E.
Bendix Corp., Kansas City, Mo., Final Rept. No. BDX—613 562—REV

(Feb 1972) 60 pp

A test program was conducted to establish the cryogenic properties
of organic structural foams. Four foams were investigated, including a
rigid polystyrene foam, two rigid polyurethane foams, and a flexible
polyurethane foam. The tests were for thermal conductivity, thermal
expansion, and torsional shear modulus and shear strength between 77 K
and 298 K.

In all of the shear tests, shear modulus and ultimate shear strength
increased and ultimate angle of rotation decreased with decreasing
temperature. Tests were run at 77 K, 195 K, and 298 K, except on the
flexible polyurethane foam which was unable to support the test fixture
at 298 K and only partially supported the fixture at 195 K. The author
states that the polyurethanes showed orientation effects while the
polystyrene did not. This statement is not confirmed by the data, which
show little or no orientation effect for any of the foams. The author
also states that the polystyrene was by far the most flexible at 77 K.
While this is true of the rigid foams, the flexible polyurethane is
shown by the data to be more flexible than the polystyrene at 77 K.

Thermal conductivity results are given for samples with a cold
side between 75 K and 91 K and a hot side between 289 K and 303 K.
Thermal expansion results are shown between 100 K and 298 K. 1In another
test, tensile strengths of the polystyreme and a polyurethane were
measured at room temperature using three different adhesive systems.
It was concluded that there was little or no difference resulting from
the type of adhesive. Conditioning times were determined in tests
measuring the time required for the center of a polyurethane foam block
to reach the testing temperature. The center of a cylindrical block
76 mm long by 29 mm diameter reached 77 K in 10 min after immersion
in liquid nitrogen. The center reached the gas temperature in 45 min
after being placed in gaseous nitrogen at 78 K. Conditioning times
were assigned as 15 min in liquid and 60 min in gaseous coolants.
The shear modulus and shear strength of a polyurethane foam were measured
after long conditioning in gaseous nitrogen and after rapid cooling in
liquid nitrogen. Strength and modulus were the same or higher in the
liquid, showing that there was no degradation due to thermal shock.

Important references:

1. Miller, R, N., Bailey, C. D., et al., Advances in Cryogenic
Engineering 8, 417-424 (1963).
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Important references (continued):

2.

Reed, R. P., Durcholz, R. L. and Arvidson, J. M., Advances in
Cryogenic Engineering 16, 36-45 (1971).

Latter, G. I. and Prado, M. E., LRL Report, ENS 71-366, 1-12
(Feb 1971).

Lazarus, L. J., Bendix Report, EP 46411-00, 1-14 (Dec 1970).

Landrock, A. H., Plastec Report 20, Plastic Technical Evaluatlon
Center, Picatinny Arsenal (Jul 1965)

Jelineck, F. J., Cryogenic Properties of Polystyrene and Polyethylene
Foams, Progress Rept., Battelle Memorial Inst., Columbus, Ohio
(Dec 1970).
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THERMOPHYSICAL PROPERTIES OF THERMAL INSULATING MATERTIALS

Loser, J. B., Moeller, C. E., and Thompson, M. B. (Midwest Research
Inst., Kansas City, Mo.)

Air Force Materials Lab., Wright-Patterson AFB, Ohio, Rept. No.
ML-TDR-64~5, Contract No. AF33(657)-10478 (Apr 1964) 362 pp

This report is a compilation of data on the thermophysical
properties of insulating materials, resulting from a comprehensive
literature survey and analysis of original test data published between
1940 and 1962. The data are presented graphically, and a reference
table with each graph gives the sources of the data, the sample forms
and test methods, and remarks on temperature ranges and accuracies.

The foam insulations included in the compilation are epoxy, glass,
polystyrene, polyurethane, polyvinyl chloride, rubber, and silicon
dioxide. The data for these forms are thermal conductivities as
functions of temperature or pressure, and linear thermal expansions of
the polyurethanes. The foam data came from 17 references.

The data pages are followed in the compilation by a section on
experimental methods, which describes and evaluates the available
methods of measuring thermal conductivity, thermal expansion, specific
heat, total normal emittance, and thermal diffusivity. A glossary of
synonyms and trade names, conversion factors, references, and an author
index are part of the report. The report is an excellent and
comprehensive summary of the available data on foam insulation, and the
major limitation is the age of the compilation.

Important references:

1. Hickman, M. J. and Ratcliffe, E. H., Int. Inst. Refrign/IIF/Bul
35, No. 4 (presented 9th Int. Cong. Refrign. AG-S), 794 (1955).

2. Powers, R. W., Johnston, H, L., Hansen, R. H. and Ziegler, J. B.,
ASTTA AD 27-569, TR 264-16, 1-29 (May 1, 1963).

3 Verschoor, J. D., Refrig. Eng. 62, No. 9, 35-7, 98 (1954).

4, Kropschot, R. H., ASHRAE J. 1, No. 9, 48-54 (Sep 1959).

5. Corruccini, R, J., Chem. Engng. Progress 53, No. 6 (Jun 1957).
6

Haskins, J. F. and Hertz, J., Convair Astronautics Rept. MRG-242
(Jul 25, 1961).

7. Speil, S., Thermal Performance of Rigid Insulations at Cryogenic
Temperatures, Presented AFOSR Conf. Aerodynamically Heated
Structures (Arthur D, Little, Inc., Cambridge, Mass., Jul 1961).
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STUDY OF THERMOPHYSICAL PROPERTIES OF CONSTRUCTIONAL MATERIALS IN

A TEMPERATURE RANGE FROM 10 TO 400 K

Luikov, A. V,, Shashkov, A. G., Vasiliev, L. L., Tanaeva, S. A.,
Bolshakov, Yu. P., and Domorod, L. S. (Heat and Mass Transfer Inst.,
Minsk, BSSR, USSR)

Heat Transmission Measurements in Thermal Insulations, Proc, Symp.
Thermal and Cryogenic Insulating Materials (Philadelphia, Pa., Apr
16-7, 1973), American Soc. for Testing and Materials, Philadelphia,
Pa., Special Tech. Publ. No. STP-544, 290-6 (Jun 1974)

The thermal conductivities, thermal diffusdivities, and specific
heats of several structural and insulating materials were measured.
One of the materials was a polyurethane foam, identified by its Russian
designation. The thermophysical properties are tabulated for the
temperature range from 30 K to 300 XK. The thermal conductivity of the
material increased with increasing temperature over the entire
temperature range. The authors note that these results differ from
those reported by Tye. They attribute the difference to a denser foam,
49 kg/m3 compared to the 32 kg/m3 tested by Tye.

The Russian data do not show the s—shape characteristic of the
thermal conductivity versus temperatdre curve reported by other
investigators for polyurethane foam. This difference is attributed
to the experimental conditions, with vacuum as the external medium,
and the foam pores filled with helium during thermal treatment before
the test. Such results emphasize the importance of matching test
conditions to proposed operating conditions, and demonstrate the ways
that different applications can affect insulation effectiveness.,

Important references:

1. Tye, R. P., Proc. XIII International Congress of Refrigeration 1
(Washington, D.C.)(1971).
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HIGH PERFORMANCE SPRAY FOAM INSULATION FOR APPLICATION ON SATURN S-IT

STAGE _ : .
Mack, F. E., and Smith, M. E. (North American Rockwell Corp., Downey,

Calif.)

Advances in Cryogenic Engineering 16, Proc. Cryogenic Engineering Conf.
(Colorado Univ., Boulder, Jun 17-19, 1970), K. D. Timmerhaus, Editor.
Plenum Press, New York, 118-27 (1971)

This paper describes the overall program to develop a spray-on
foam insulation for use as external insulation on the liquid hydrogen
tanks of the Saturn S-II stage. Six spray foams were screened, and a
flame retardant polyurethane foam with a density of 32 kg/m3 was selected
for further development. Evaluations were based on a "cryogenic strain
compatibility" test, in which a thermal gradient and temnsile strain were
applied to a sample in the presence of liquid hydrogen. Samples were also
subjected to simulated boost heating with altitude.

Process development included selection of proper spray equipment,
selection of primers to insure adhesion of the foam to the aluminum tank
wall, and evaluation of temperature and humidity effects during spraying
to establish allowable processing conditions. A coating material was
developed to protect the foam from weathering effects caused by exposure
to ultraviolet in direct sunlight.

Small tank tests were used to verify spray-foam application
feasibility, retention of insulating characteristics with extended
environmental exposure, and structural integrity during vibration and
heating. Smaller samples were subjected to environmental aging and wind
tunnel tests. Foam panels were applied to surfaces of an X-15, and flights
of the X-15 subjected the samples to combinations of heating, aeroshear,
and altitude simulating the S-II flight profile. The resulting erosion of
the foam led to another test program to develop erosion protection for the
insulation. Finally, large-scale tank tests qualified the insulation for
application to the S-IT.

All of the screening, development, verification, and qualification
tests were successful, and the spray foam material was shown to be an
applicable insulation for large-scale liquid hydrogen boosters.

Important references:
1. Hammond, M. B., Advances in Cryogenic Engineering 15, 332-42 (1970).

2. North American Rockwell Rept. No. 69MA5502, Contract No. NAS 7-200
(Jun 1964).

3. Cioth, B. B., North American Rockwell Rept. No. SID 67-696 (Dec 1967)
and SID 68-394 (Jul 1968).
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INSULATION BY SYNTHETIC FOAMS IN CRYOGENICS

Mathes, H. (Messerschmitt-Boelkow-Blohm GmbH, Ottobrunn bei Munich,
West Germany)

Kaeltetech.-Klim. 22, No. 2, 50-5 (Feb 1970)

This paper describes a foam insulation developed for use on the
liquid oxygen and liquid hydrogen tanks of a rocket stage. The insulation
consisted of foam panels, thermoformed and adhesively bonded to the tank
surface. The experimental program involved the selection of the foam and
adhesive, and the development of suitable fabrication methods for applying
the foam to the tank. '

Three types of foam were considered, a polyurethane foam, a cross-
linked polyvinyl chloride foam, and a polymethacrylimide foam. In tests
of thermoforming, the polyurethane had a tendency to crack and the
polymethacrylimide required a rather precise high forming temperature.
The PVC foam was chosen for the formed portion of the insulation. Panels
were formed within a vacuum jacket in a heating chamber, over molds with
the tank contours. A polyurethane adhesive was selected to bond the
molded panels to the tank. Foamed-in-place polyurethane was applied
around the flange portion of the tank. A polyvinylidene chloride film
was used as a vapor barrier over the seams of the insulation, to prevent
air leakage and condensation. The insulation as developed appeared to be
satisfactory for its intended applicationm.

Important references:

1. Zimni, W. F., and Meitzner, K., Kaeltetech.-Klim. 22, No. 2, 34-40
(Feb 1970).

2. Kreft, H., and Wagner, D., Kaeltetech.-Klim. 21, No. 9, 258-65
(1969).

3. Kreft, H., Schulz, J., and Hoffmann, H., ERNO Raumfahrttechnik
GmbH, Bremen, Germany, Rept. (1967).
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MECHANICAL PROPERTIES OF INSULATING PLASTIC FOAMS AT LOW TEMPERATURES
McClintock, R. M. (National Bureau of Standards, Boulder, Colo.
Cryogenics Div.)

Advances in Cryogenic Engineering 4, Proc. Cryogenic Engineering Conf.
(Massachusetts Inst. of Tech., Cambridge, Sep 3-5, 1958), K. D.
Timmerhaus, Editor. Plenum Press, New York, 132-40 (1960)

The mechanical properties of a material must be known in order to
evaluate its response to the thermal stresses imposed in low temperature
applications. This is important in plastic foam insulations, which are
often bonded to a more rigid structure, and sustain large temperature
gradients across the material. This paper reports on the experimental
determination of important mechanical properties of three expanded plastics.

The materials were polystyrene foam of two densities, 48 and 66
kg/m3, and an epoxy foam of density 88 kg/m3. The properties determined
were elastic modulus in tension and tensile strength at temperatures from
76 K to 300 K, and a modulus of rigidity in rotational shear at
temperatures from 20 K to 300 K. 1In every case, the elastic moduli showed
a marked increase with decreasing temperature. Results are given in
terms of the moduli divided by the densities, to take care of the density
dependence of the elastic properties. The materials showed distinct
anisotropy, with the properties being different in each of the three
mutually perpendicular directions. However, the effect of temperature
was the same in each direction. Microscopic examination confirmed the
anisotropy of the foams, showing a preferred orientation of the cells in
a sample. But the direction of the preferred orientation was not the
same at all locations in a large sample. The best way to analyze the
foams was judged to be to evaluate properties in the three mutually
perpendicular directions, and use the average of the values to characterize
each material.

Tensile strengths of the foams showed no particular trend of change
with temperature. This was in contrast to bulk plastics, which showed
an increase of tensile strength with decreasing temperature. The
difference in behavior was attributed to the increased brittleness at low
temperature leading to an increased notch sensitivity, and the inherently
"notched" structure of a foam. The brittleness was confirmed by the
decreases in ultimate elongation with decreasing temperature.

Important references:

1. Corruccini, R. J., Chem. Eng. Progr. Pt. 3, 53, 8 (Aug 1957).

68



POLYURETHANE FOAM INSULATION FOR CRYOGENIC LINES

McDonnell Aircraft Corp.

McDonnell Aireraft Corp., St. Louis, Mo., Final Rept. No. TR-052 068 44,
29 pp (Jul 1964)

An experimental program was conducted to determine some of the
properties of a number of rigid polyurethane foams proposed for use as
insulation on cryogenic lines in the Gemini spacecraft. Fourteen
polyurethane foams were submitted for test, four as premolded specimens
and the other ten as components to be mixed and molded in the laboratory.
The premolded samples were tested for thermal embrittlement and water
absorption. The other materials were molded around an aluminum tube,
and tested for thermal embrittlement, water absorption, and thermal
conductivity. Densities of the premolded samples were 29 to 37 kg/m3,
while the laboratory-molded samples ranged from 46 to 99 kg/m3. The
molding process in the laboratory used excess material to insure filling
the mold, and was difficult to control.

The thermal embrittlement test was a very rough qualitative test,
consisting of immersing a sample in liquid nitrogen for 15 s, removing
the sample and hitting it against a table top, and examining it for
apparent breaks or cracks. There was no evidence of thermal embrittle-
ment as determined by this test. Water absorption testing consisted of
measuring weight increase of a sample and penetration depth of water
after 24 h immersion in dyed water. Water penetrated the foams to a
depth of three to five cell diameters, thought to be the depth to the
first undamaged layer of cells. Thermal conductivity measurements were
made on the samples molded around an aluminum tube, by f£illing the tube
with liquid nitrogen and recording the rate of boiloff. Thermal
conductivities on ten samples ranged from 0.012 to 0.017 W/m*K, with an
average of 0.015 W/m*K, at a mean temperature of 172 K.
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EFFECTS OF NUCLEAR RADIATION AND CRYOGENIC TEMPERATURES ON NONMETALLIC
ENGINEERING MATERIALS

McKannan, E. G., and Gause, R. L. (National Aeronautics and Space
Administration, Huntsville, Ala. Marshall Space Flight Center)

J. Spacecraft Rockets 2, No. 4, 558-64 (Jul-Aug 1965)

The experimental program had the objective of evaluating materials
for use in nuclear-powered spacecraft. The materials were tested by
exposure to various combinations of nuclear radiation, cryogenic
temperature, and vacuum enviromments. For the combination of nuclear
radiation with cryogenic temperature, the materials evaluated were two
structural adhesives, two structural laminates, two thermal imsulations,
and four electrical insulations. The thermal insulations were a
polyurethane foam and a polystyrene foam. Compressive strength of the
foam was used to evaluate the response to exposure, and the more
pertinent property for insulation, the thermal conductivity, was left as
the subject of some future evaluation.

Samples were irradiated to two dose levels and tested at 323 K in
air, at 77 K immersed in liquid nitrogen, and at 20 K in liquid hydrogen.
The two foams reacted similarly to exposure except that the polyurethane
had higher compressive strengths than the polystyrene. Without radiation,
compressive strength and modulus increased with decreasing temperature.
Maximum compressive strength of unirradiated foam was observed at 20 K
for polystyrene and at 77 K for polyurethane. Irradiation in air at 323
K badly degraded both foams. This result is attributed to reactions with
residual blowing agents, which decompose and attack the foam. These
reactions are inhibited at cryogenic temperatures, and radiation at low
dose levels of about 0.5 x 106 J/kg increases the compressive strength
and modulus of each foam at 77 K and 20 K, apparently by cross-linking.
At higher dose levels of 1.2 to 1.3 x 106 J/kg, radiation-induced
degradation competes with the cross-linking, and reduces strength and
modulus at cryogenic temperatures.

Because of the severe degradation at room temperature, neither foam
can be recommended for application in a nuclear radiation environment.

Important references:

1. Lucas, W. R., Symp. on Space Radiation Effects, ASTM Publ. No. 363
(1964).

2. Smith, E. T., 1963 Summer General Meeting of the Institute of
Electrical and Electronics Engineers (Toronto, Canada) (1963).

3. Lockheed Missiles and Space Co., Palo Alto, Calif., Rept. No.
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EVALUATION OF CRYOGENIC INSULATION MATERIALS AND COMPOSITES FOR USE

IN NUCLEAR RADIATION ENVIRONMENTS. MATERIALS TESTS

McMillan, W. D., Bradbury, H. G., Carter, H. G., Lightfoot, R. P., and
Kerlin, E. E.

General Dynamics/Fort Worth, Tex., Rept. No. FZK-347. Natiomal
Aeronautics and Space Administration Rept. No. NASA CR-61920, Contract
No. NAS 8-18024, 264 pp (May 1968)

The objective of this program was the evaluation of cryogenic
insulation materials for application to a nuclear rocket vehicle, where
the materials are exposed to cryogenic temperatures and nuclear radiation.
The materials tested included foam and corkboard insulation, adhesives,
and vapor barrier films. The mechanical property tests were tensile
shear and compressive strengths for the insulation; shear and peel
strength for the adhesives; and elongation and tensile strength for the
films. Irradiation was performed at doses ranging from 9 x 105 to
2.5 x 106 J/kg. Two detonations occurred in the corkboard irradiation
tests (caused by the reaction of hydrogen with trapped air in the
corkboard cells). Tests were conducted in air, liquid nitrogen and liquid
hydrogen. The insulation materials tested were four commercial urethane
foams and one insulating cork.

The results showed that all of the foams maintained their
compressive strength at low temperatures and under radiation. Radiation
in air decreased the strength. Corkboard is significantly weaker than
foam under all conditions. Under shear testing the foams performed
well at all temperatures and radiation levels as did the corkboard
except that the latter material showed degraded results after irradiation
in air.

Tensile tests were also performed on composite insulation-adhesive-
film insulation systems. In all cases failure occurred in the insulation,
but the foams had higher strength than the corkboard.
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3. Kerlin, E. E., and Lightfoot, R. P., General Dynamics/Fort Worth,
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FOAMS AND PLASTIC FILMS FOR INSULATION SYSTEMS

Miller, R. N., Bailey, C. D., Beall, R. T., and Freeman, S. M.
(Lockheed-Georgia Co., Marietta)

Advances in Cryogenic Engineering 8, Proc. Cryogenic Engineering Conf.
(Los Angeles, Calif., Aug 14-16, 1962), K. D. Timmerhaus, Editor.
Plenum Press, New York, 417-24 (1963)

The use of liquid hydrogen as a rocket propellant created a demand
for reliable and lightweight cryogenic insulation systems. To aid in
the design of such systems, the properties of a number of materials
were determined. This paper reports on the mechanical properties of
three vapor barriers and four foams, and the thermal expansion of four
adhesives, three vapor barriers, and seven foams.

The four foams tested for mechanical properties were a flexible
polyether, a semirigid polyurethane, an epoxy, and a polyester
polyurethane foam. Tensile and shear strength tests were conducted at
20 K, 77 K, 298 K, and 394 K. The semirigid polyurethane and the
epoxy had the highest tensile strength at 20 K, at room temperature
the polyester polyurethane was strongest, and tensile strengths of all
the foams dropped off at high and low temperature extremes. The polyester
polyurethane was strongest of the four at room temperature. Load-
compression tests at 20 K, 77 K, and 298 K showed that the polyether,
epoxy, and polyester polyurethane foams had good elastic recovery at
room temperature, but the polyether embrittled and was crushed at 77 K,
and the polyester polyurethane at 20 K, leaving only the epoxy foam
retaining elasticity at liquid hydrogen temperatures.

The foams tested for thermal expansion were two epoxy, three
polyurethane, a polystyrene, and a filled epoxy polyamide foam.
Between 77 and 293 K, the polyurethanes and filled epoxy polyamide had
the highest thermal expansion coefficients, and the epoxies had the
lowest.
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EXPERIMENTAL STUDY OF A NEW PVC FOAM INSULATION SYSTEM FOR LHZ—LO2
SPACE VEHICLES .

Muller, F. J. (Societe 1'Air Liquide, Sassenage, France)
Advances in Cryogenic Engineering 16, Cryogenic Engineering Conf.
(Boulder, Colo., Jun 17-19, 1970), K. D. Timmerhaus, Editor. Plenum
Press, New York, 109-17 (1971) : .

This paper is an extension of an earlier paper, abstracted on page
101. The earlier paper described a polyvinyl chloride foam developed
for use as an ex*ernal insulation for spacecraft liquid hydrogen tanks.
This paper describes an improved formulation of the PVC foam, its
application as insulation for a launch vehicle, and evaluations of
insulation system performance.

The original PVC foam was satisfactory for small scale test tanks,
but had too little temsile elongation to withstand the combined effects
of differential thermal contraction and tank pressurization of thin-
walled tanks. The reformulated foam was reported to have nearly the
same properties as the original foam, except for an improved ultimate
elongation at 20 K.

The insulation system designed for the liquid hydrogen-liquid
oxygen stage of the Europa III launch vehicle consisted of a layer of
foam, 16 mm thick on the liquid hydrogen tank and 10 mm thick on the
liquid oxygen tank, bonded to the aluminum tank wall with a fiberglass
cloth reinforced epoxy adhesive, and a similar layer of epoxy-fiberglass
applied over the foam to provide a base for a 0.5 mm coating of
ablative material. Insulated test tanks were subjected to pressurization
cycles while filled with liquid hydrogen, to expected dynamic pressures
and temperatures in wind tunnel tests, and to vibration while filled
with liquid hydrogen. No damage to the insulation was observed. A
complete insulated tank assembly with liquid oxygen and liquid hydrogen
in compartments separated by a common bulkhead was tested under ground
hold conditions. The insulation proved satisfactory and remained
undamaged. The author concludes that all tests have been fully
successful, showing the suitability of the insulation for application to
the launch vehicle as well as various other cryogenic equipment.

Important references:

1. Tariel, M., et al, Advances in Cryogenic Engineering 12, 274-85,
Plenum Press (1967).

2. Muller, F., Thesis (1967).
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THERMAL PERFORMANCE CHARACTERISTICS OF A COMBINED EXTERNAL INSULATION
SYSTEM UNDER SIMULATED SPACE VEHICLE OPERATING CONDITIONS

Muller, F. J., and Klevatt, P. L. (L'Air Liquide, Sassenage, France
and McDonnell Douglas Astromautics Co., Huntington Beach, Calif.)
Advances in Cryogenic Engineering 19, Proc. Cryogenic Engineering Conf.
. (Georgia Inst. of Tech., Atlanta, Aug 8-10, -1973), K D. Tlmmerhaus,
Editor. Plenum Press, New York, 482-9 (1974)

A combined foam-multilayer external insulation was designed for
-use on space vehicles such as the space shuttle orbiter or the Space
Tug. This paper reports on tests of the long term thermal performance
of the insulation system on a liquid hydrogen tank under 51mulated space
vehlcle operating conditions. .

The insulation consisted of a 11-mm thick layer of polyvinyl
chloride foam bonded to the tank, with a 10-shield multilayer aluminized
mylar assembly attached over the foam, the entire system enclosed in a
polyimide purge bag for purging with either helium or nitrogen. The
insulation was applied to a liquid hydrogen tank 1.5 m long by 1.2 m
diameter, the tank was filled with liquid hydrogen, and tests were run
under simulated ground-hold steady state, ascent transient, space steady
state, reentry transient, and post-mission ground-hold conditions.
Transient and steady state heat fluxes were measured and agreed well
with predicted values, except for the space flight condition where heat
flux was twice that expected. The purge bag maintained its integrity
throughout testing. The foam sublayer sustained some cracking, which
apparently had no effect on performance and did not cause debonding.

The authors concluded that the insulation system proved feasible
and a viable candidate for further consideration for use on space
vehicles.

Important references:

1. Muller, ¥. J., and Flacon, B. G., CEC/SES/FM/BF/CM/CD/2I.860,
McDonnell Douglas final Rept., L'Air Liquide (Jul 1972).

2. Muller, F. J., Advances in Cryogenic Engineering 16, Plenum Press,
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A GUARDED HOT PLATE APPARATUS FOR THE MEASUREMENT OF THERMAL
CONDUCTIVITY OF INSULATING MATERIALS AT LOW TEMPERATURES

Myncke, H., Van Paemel, 0., and De Cnop, L. (Laboratorium voor
Akoestiek en Warmtegeleiding K.U.L., Heverlee, Belgium)

Some Thermophysical Properties of Refrigerants and Insulants, Proc.
International Inst. of Refrigeration Commission Bl (Zurich, Switzerland,
Sep 27-9, 1973), Bull. Inst. Int. Froid, Annexe 1973-4, 157-61 (1973)

An apparatus was developed to measure thermal conductivities of
insulation materials between 113 K and 273 K. This paper describes the
apparatus and presents results of measurements of the thermal '
conductivity of glass foam. Two samples of the foam, having densities
of 119 and 129 kg/m3, were tested simultaneously at mean temperatures
between 117 K and 274 K. The results are shown in tabulated and graphical
forms, and are compared to the results obtained by W. F. Cammerer on a
similar material in the temperature range between 117 K and 302 K. The
curves of thermal conductivity versus temperature are similar but not
identical, as would be expected from samples of similar but not
identical materials. 1In both cases, the thermal conductivity decreases
nearly linearly with decreasing temperature down to about 180 K, then
decreases more slowly with further decrease of temperature.
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POLYURETHANE FOAM INSULATION THERMAL AGING CHARACTERISTICS

Navickas, J., and Madsen, R. A. (McDonnell Douglas Astronautics Co.,
Huntington Beach, Calif.)

Cryogenic Engineering Conf. and International Cryogenic Materials

Conf. Joint Meeting (Queens Univ., Kingston, Ontario, Canada, Jul
22-5, 1975) 12 pp

Thermal aging is the time-dependent thermal conductivity
characteristic shown by closed cell polyurethane insulation. Freshly
made foam has a relatively low thermal conductivity which gradually
increases to a significantly higher value. This paper presents an
analysis of the aging process for trichlorofluoromethane-blown foam
aged in air at ambient temperature. The model starts with the closed
cells of the foam filled with the blowing agent. Over a period of time
air diffuses into the cells and mixes with the blowing agent. The
thermal conductivity changes as the proportions of gases in the cells
change. The blowing agent also diffuses out of the cells, but this is
such a slow process that it is ignored in the analysis.

Thermal conductivity versus operating temperature curves were
calculated for various aging times. With aging longer than about 100 h
the curves show the s-shaped characteristic typical of polyurethane
foams. After 500 h, the thermal conductivity at temperatures below 200 K
remains constant, while the thermal conductivity at higher temperatures
is still increasing slowly. Comparison of the calculations with
experimental data shows reasonable agreement.

The authors conclude that the analytical model is valid, and can
be used to extrapolate available thermal performance and thermal aging
data to conditions where data are not available. Given diffusion
characteristics, the model can be used with different blowing agents,
exposure to different gases, and exposure at different pressures and
temperatures. The authors note that, since aging effects are manifested
much more rapidly at cryogenic operating temperatures, great care is
required in interpreting thermal conductivity data taken at ambient
operational temperatures. They feel that much of the inconsistency of
data in the literature is due to differences in aging conditions.
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ON THE POTENTIALITIES OF POLYPHENYLENE OXIDE (PPO) AS A WET-INSULATION
MATERIAL FOR CARGO TANKS OF LNG-CARRIERS

Opschoor, G. .

Nederlands Scheeps-Studiecentrum TNO, Delft, Technische Afdeling,
Rept. No. 194-M (Jul 1974) 13 pp

Polyphenylene oxide foam was evaluated as an internal insulation
for liquefied natural gas tanks. PPO foam consists of elongated open
cells oriented in a single direction, so that they are open through
the entire thickness of a layer of foam. When PPO foam is used as
internal insulation, it is bonded to a tank wall so that one end of
each open cell is sealed. The other end of each cell remains open to
the liquid, the cell fills with gas, and gas pressure and capillary
forces maintain a stable gas~liquid interface at the open end of the
cell, making a vapor barrier unnecessary.

The linear expansion coefficients and the tensile, shear, and
compressive strengths of PPO foam are given, at temperatures of 77 K
and 293 K and with orientations parallel and perpendicular to cell
orientation. The thermal conductivity with the cells filled with
natural gas at 200 K is about 807 higher than that of polyurethane or
polyvinyl chloride foam. Immersion of the foam in a mixture of LNG
and higher hydrocarbons for 50 days resulted in greater flexibility
and reduced thermal stresses. A urethane adhesive withstood the
50-day immersion without loss of strength.

For safety reasons, an internal insulation for LNG tankers must
consist of two insulation layers separated by a vapor barrier. With
this structure, a failure of either the primary insulation or the tank
wall does not necessarily become a catastrophic failure. Several
possible constructions are considered, using PPO as the primary
internal insulation, bonded to an intermediate vapor barrier of plywood
or metal. Cost of the PPO makes it unsuitable for the secondary
insulation contained between the vapor barrier and the tank wall.
Polyurethane foam, PVC foam, perlite, fiberglass, or balsa wood can be
used. Calculations of insulation thickness were made for free-standing
and membrane tanks using PPO as primary insulation, plywood as vapor
barrier, and polyurethane or PVC foam as secondary insulation. The
calculations show that polyurethane and PVC foams are nearly equivalent
insulations, and both are better than PPO foam. The advantage of the
PPO is in not requiring a vapor barrier. Calculations of thermal
stresses show that the insulation systems are feasible. The authors
recommend that research on PPO foam continue.

Important references:
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EFFECT OF ENVIRONMENT ON INSULATION MATERTALS

Parmley, R. T. (Lockheed Missiles and Space Co., Sunnyvale, Calif.)
Space Transportation System Propulsion Technology, Proc. Conf. (George
C. Marshall Space Flight Center, Huntsville, Ala., Apr 6-7, 1971) -
Vol 4 ~ Cryogens. National Aeronautics and Space Administration, Rept.
No. NASA TM-X-67348, 1411-37 (Apr 1971)

The purpose of this program is to understand environmental effects
on insulation by exposing 20 candidate insulation materials to 8
conditions representin§ operational environments. One of the 20
materials is a 32 kg/m° polyurethane foam, a candidate ground-hold
insulation material. '

The polyurethane foam was exposed to 40% relative humidity at
366 K, 95% relative humidity at 308 K, salt spray at 95% relative
humidity and 308 K, water immersion at 294 K, gaseous oxygen at 294
K and 0.13 N/mz, and prolonged exposure to vacuum at temperatures
from 21 K to 365 K. The compressive strength of the foam was used as
a measure of envirommental effects. The compressive strength decreased
after exposure to all of the environments. The greatest decrease was
caused by exposure to vacuum and high temperature, and exposure to
high temperature and 407 humidity had nearly as great an effect. The
least effect was noted after the water immersion.
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EXPERIMENTAL STUDY UNDER GROUND-HOLD .CONDITIONS OF SEVERAL INSULATION -
SYSTEMS FOR LIQUID—HYDROGEN FUEL TANKS OF LAUNCH VEHICLES

Perkins, P, J.,Jr.

National Aeronautlcs and Space Administration, Cleveland, Ohio, Lewis
Research Center, Tech. Note No. NASA TN-D-2679, 27 pp (Mar 1965)

Three proposed external insulation systems for liquid hydrogen fuel
tanks of launch vehicles were applied to flight-weight tanks and tested
under ground hold conditions. The three systems tested were corkboard
insulation bonded to.the tank and sealed with a phenolic varnish and a
mylar film; polyurethane foam hermetically sealed in an aluminum-mylar-
aluminum laminate vacuum bag, evacuated, and held in place with a nylon
filament-wound constrictive wrap; and the sealed and constrictively wrapped
polyurethane foam with a thin film of liquid nitrogen sprayed on the
surface to reduce heat flow through the insulation. An uninsulated liquid
hydrogen tank, with and without a natural accumulation of ice and frost, was
also included in the investigation. Insulation effectiveness was measured
by recording insulation surface temperature and rate of liquid hydrogen
boiloff in the tank.

The corkboard insulation cracked during the cooldown with liquid
hydrogen, particularly in areas of complicated geometry at the tank ends.
The sealed and constrictively wrapped foam insulation performed satisfactorily
although the outer surface showed wrinkling from thermal contraction. Total
heat flow was about half that with the corkboard insulation. The liquid
nitrogen spray provided a heat flow through the insulation only one-fifth
of that without the liquid nitrogen spray. The uninsulated tank showed a
very high heat influx, 50 times that with the polyurethane foam insulation,
with considerable liquefaction of air on the walls of the tank. A natural
accumulation of ice and frost prevented the formation of liquid air on the
tank surface and cut the heat influx in half.

The sealed and constrictively wrapped polyurethane foam was the best
of the insulation systems tested, in terms of insulation effectiveness and
system weight.
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ANALYTICAL HEAT TRANSFER INVESTIGATION OF INSULATED LIQUID METHANE
WING TANKS FOR SUPERSONIC CRUISE AIRCRAFT

Pleban, E. J.

National Aeronautics and Space Administration, Cleveland, Ohio, Lewis
Research Center, Tech. Note No. NASA TN-D-5641, 37 pp (Jan 1970)

This report gives a detailed heat transfer analysis of foam
insulated wing tanks for storing liquid methane fuel in a supersonic
cruise aircraft. The analysis considered a range of insulation
thickness from 1.27 to 5.08 cm, insulation density from 32 to 138
kg/m3, internal tank pressures from ambient to 0.02 MPa, and both
saturated and initially subcooled methane for typical SST missions with
cruise Mach numbers of 2.7, 3.0 and 3.5. It was determined that the
total vented bpiloff losses could be kept to less than 1.5 percent of
the initial fuel for Mach numbers up to 3.5 with wing tank insulation
thickness of 2.54 cm under the following conditions:

1) The fuel stored in the wing tanks (assumed to be about 1/2

the total fuel load) is used during the early part of the
flight.

2) Either the fuel is initially subcooled 14 K or the saturated
liquid methane is subjected to a constant internal tank
pressure of 0.01 MPa,

It was also determined that due to a higher fuel usage rate
during the early part of the mission with high cruise Mach numbers,
increasing the cruise Mach number from 2.7 to 3.5 did not result in
increased boiloff.

Loading fuel for 20 minutes into tanks with an initial temperature
of 294 K and followed by an additional 10 minute ground-hold resulted
in a boiloff (recoverable) of less than 1.5% of the methane loaded
into the tanks. The maximum boiloff rate would be less than 1/35 of
the fill rate. It was verified, however, that regardliess of the
insulation thickness, the wing surface temperature depression during
fill and ground hold can cause moisture to freeze under some weather
conditions.

The insulation considered in the analysis was polyurethane foam.
After the fuel is expended in the wing tanks, the wing and insulation
temperatures rise rapidly, therefore, it does not appear feasible to
use currently available polyurethane because of the excessive wing
tank temperatures.
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THERMAL CONDUCTIVITY OF HEAT INSULATING MATERIALS

Powers, R. W., and Johnston, H. L.

Ohio State Univ. Research Foundation, Columbus, Cryogenic Lab., Rept.
No. TR-264-16, Contract No. W33-038-AC-14794(16243), 59 pp (May 1953)

The insulating properties of a number of insulation materials were
studied at liquid air and liquid hydrogen temperatures, with a view
toward gaining information which could result in the development of
better insulations, particularly for liquid hydrogen propellant tanks.
Heat flows were measured with insulation materials placed between two
concentric copper spheres. The space containing the insulation was
evacuated or filled with hydrogen or nitrogen gas at various pressures.

The foam materials tested were two urea resin foams, of densities
14 and 24 kg/m3, and a polystyrene foam of density 26 kg/m3.  Heat flows
and thermal conductivities were measured on the low-density urea resin
foam in vacuum at mean temperatures from 48 K to 188 K, in hydrogen at
various pressures at mean temperatures from 49 K to 141 K, and in nitrogen
at various pressures at mean temperatures from 110 K to 141 K. The higher
density urea resin foam was measured in vacuum from 99 K to 188 K and in
hydrogen at 99 K. The polystyrene foam was measured in vacuum from 102 K
to 190 K and in hydrogen at 141 K. The authors note that, among the
three foams tested, the low-density urea resin foam has the highest heat
conductivity and the polystyrene foam has the lowest.
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HEAT TRANSMISSION IN LOW CONDUCTIVITY MATERTALS

Pratt, A. W. (Aston Univ., Birmingham, England) .
Thermal Conductivity 1, R. P. Tye, Editor. Academic Press, New York,
301-405 (1969) ' : T

This paper is principally_difected toward the measurement of heat

-flow-through thermal insulation materials. Before describing the

methods of measuring heat flow, the paper discusses the mechanisms of
heat transfer in thermal insulation. This discussion includes a brief
summary of the typical properties of nine cellular plastics: two
densities of expanded polystyrene, two densities of expanded polyvinyl
chloride, foamed urea-formaldehyde,; two densities of foamed phenol-
formaldehyde, and two foamed polyurethanes, one blown with carbon
dioxide and the other with fluorinated hydrocarbon. The properties
given are approximate density, thermal conductivity at 283 K, maximum
temperature recommended for continuous use, water absorption in seven
days, and behavior in fire, Thus the information is not particularly
valuable for cryogenic insulation. The more valuable part of the paper
is the comprehensive discussion of measurement methods, the equipment
used, and precautions necessary for accurate measurements. A reference
section with more than 120 citations concludes the paper.
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THERMAL CONDUCTIVITY OF WET-WALL LIQUID HYDROGEN STORAGE TANK
INSULATIONS FOR SPACE APPLICATIONS

Rawuka, A. C., and Yundt, C. G. (Douglas Aircraft Co., Santa Monica,
Calif.)

Cryogenic Engineering in the Aerospace Industry, Proc. Symp., National
Meeting, 56th (San Francisco, Calif., May 16-19, 1965). Chemical

__________________ Qardac &2 B
Mus;ucc;;us Progress Symp. Series UL, No. 61, 1966. American

of Chemical Engineers, New York, 219-24 (1966)

Foamed plastic insulation systems have been used successfully as
internal insulation in liquid hydrogen tanks. To predict performance
of such systems, it was necessary to measure the thermal conductivity
of the composite insulation under simulated design conditions. This
paper describes the measurements, and reports changes in thermal
conductivity of the insulation during exposure to liquid hydrogen.

The composite insulation consisted of foam bonded to the internal
surface of the metal-walled liquid hydrogen tank, with a reinforced
plastic liner laminated over the foam as a barrier to hydrogen diffusion.
Two types of polyurethane foam were used, one reinforced with glass
threads foamed in place at uniform spacings and oriented along the
three principal directions. The foam was bonded to aluminum plate with
epoxy adhesive. The barriers consisted of various weaves and weights
of glass cloth, sometimes in combination with an aluminum-polyester-
aluminum film sandwich, laminated to the foam and sealed with epoxy or
polyurethane resin.

Tests consisted of measurements of thermal conductivity of
insulation samples held between a 20 K cold side and a 300 K hot side.
Samples were exposed directly to liquid hydrogen at various pressures
for various times, to find the effects on the thermal conductivity. It
was found that thermal conductivities increased with pressure and with
time, indicating changes in the composition of the gaseous phase in the
foam. Differences in foam density produced small differences in thermal
conductivity, while variations in liner materials produced much larger
differences. These effects are explained by hydrogen diffusion through
the barrier layer into the foam. Air, which had originally diffused
into the foam, migrates to the cold side and condenses leaving a partial
vacuum into which the hydrogen diffuses. The thermal conductivity
eventually approaches that for hydrogen gas. After long exposure to
liquid hydrogen, analysis of the gas within the foam confirmed the
presence of nearly pure hydrogen gas with traces of air.

The authors conclude that improvements in thermal conductivity of

internal insulation can be achieved by controlling gaseous diffusionm,
and this depends on the choice of the least permeable liner material.
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Important references:
1. Skochdopole, R. E., Chem. Eng. Progr. 57, No. 10, 55 (1961).

2. Lindsay, A. L., and Bromley, L. A., Ind. Eng. Chem. 42, 1508-11
(1950).
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TENSILE PROPERTIES OF POLYURETHANE AND POLYSTYRENE FOAMS FROM 76 TO
300 K

Reed, R. P., Arvidson, J. M., and Durcholz, R. L. (National Bureau of
Standards, Boulder, Colo. Cryogenics Div.)

Advances in Cryogenic Engineering 18, Proc. Cryogenic Engineering Conf.
(Colorado Univ., Boulder, Aug 9-11, 1972), K. D. Timmerhaus, Editor.
Plenum Press, New York, 184-93 (1973).

Polyurethane and polystyrene foams have low thermal conductivity
and correspondingly low density and are thus useful for cryogenic
insulation purposes. Their low cost, ease of molding and application
are also positive factors. Increasingly, foam use in cryogenic
applications requires load-carrying capacity. For efficient design in
these cases, mechanical property information is needed. The literature,
however, contains very little reliable and reproducible mechanical
property data. This paper reports tensile data (transverse and
longitudinal) at 76 K, 195 K and 300 K. The specific properties
measured were modulus of elasticity, proportional limit, yield strength,
tensile strength and percent elongation.

The foams tested in thlS work included 17 densities of polyurethane
(124 64 kg/m3 to 30.6 kg/m ) and two densities of polystyreme (100.12
kg/m to 52.23 kg/m ). The results are given as averages, with each
data value representing the average of about four tests. Variations for
the various properties were + 5 percent to + 10 percent for tensile
strength, with the variation due mainly to material inconsistency. The
results showed that the modulus of elasticity, yield strength and
tensile strength increased with decreasing temperature, while the
elongation decreased. Strength and modulus were found to be approxi-
mately linearly dependent on density; however, at low temperatures the
density dependence was greater. Specimens whose long axls was cut
parallel to the cell rise direction were stronger than those whose long
axis was cut normal to the cell rise direction. A companion paper
abstracted on page 4 on compressive properties compares the tensile
and compressive results.

Important references:

1. Reed, R. P., Durcholz, R. L., and Arvidson, J. M., Advances in
Cryogenic Engineering 16, 37-45, Plenum Press (1971).

2.  McClintock, R. M., SPE J. 14, 36 (1958).

3. Doherty, D. J., Hurd, R., and Lester, G. R., Chemistry and
Industry (London), p. 1340 (Jul 1962).

4. Kreft, H., and Wagner, D., Kaltetechnik-Klimatisierung 9, 258
(1969).

5. Patel, M. R., and Finnie, I., UCRL Rept. No. 13193, Inst. Engr.
Res., California Univ., Berkeley (1965).
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LOW-TEMPERATURE TENSILE PROPERTIES OF POLYETHYLENE TEREPHTHALATE
MULTIFIBER YARN AND POLYSTYRENE FOAM

Reed, R. P., Durcholz, R. L., and Arvidson, J. M. (National Bureau
of Standards, Boulder, Colo. Cryogenics Div.)

Advances in Cryogenic Engineering 16, Proc. Cryogenic Engineering
Conf. (Colorado Univ., Boulder, June 17-19, 1970). Plenum Press,
New York, 37-45 (1971)

Polystyrene foam is used extensively as an insulating material in
cryogenic applications. In many applications, knowledge of the temper-
ature dependence of the tensile strength and modulus is beneficial.

Foam properties are dependent on density, method of forming (mold or
extrusion), and, very probably, on the conditions of forming. The foam
data reported in this study were produced by a process using dry nitrogen
gas and pre-expanded polystyrene beads. The tensile data indicate that
polystyrene foam fabricated in this way is considerably stronger than
any types tested previous to this study. Tensile strength, yield
strength, percent elongation and modulus of elasticity data were taken
on two densities of foam (0.094 and 0.051 g/cm3) at temperatures of 20 K,
76 K, 195 K and 295 K. In both sample densities the tensile strength
increased as the temperature was lowered. The denser foam had higher
strength, the average strength at 295 K was 1.3 MPa and at 20 K it was
2.1 MPa. The lower density foam had a tensile strength average at 295 K
of 0.74 MPa and at 20 K of 1.4 MPa. In both cases the load rate was
0.013 cm/min. The tensile strength of the foam samples was of the order
of twice as great as that of previously reported tests. The paper

also includes results for the tensile properties of polyethylene
terephthalate yarn from 4 K to 295 K.

Important references:

1. Griffin, J. D. and Skochdopole, R. E., Engineering Design for
Plastics (ed. E. Baer), Reinhold Publishing Co., N. Y. (1964) 995 p.

.  McClintock, R. M., SPE J., 14, 36 (1958).

Phillips, T. L. and Lannom, D. A., British Plastics 34, 236 (1961).
Brown, W. B., Plastics Progr. 1959, 149 (1960).

Cooper, A., Plastics Inst. Trans. (London) 26, 299 (1958).

Cooper, A., Plastics Inst. Trans. (London) 29, 39 (1961).
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HEAT INSULATION IN THE SEA TRANSPORT OF LNG
Richard, L. (Gaz de France, Paris)
Rev. Prat. Froid 23, No. 284, 15-21 (Jan 1970)

This French paper discusses the types of insulation used in LNG
tankers. The primary materials have been perlite and balsa wood, but
polyvinyl chloride foams have received some use, and polyurethane foams
have shown some promise.

The PVC foams for LNG tankers have had to satisfy specifications
on density, compressive strength, heat transfer coefficient, and water
absorption. In addition, because of the conditions on shipboard, a test
of vibration resistance under load and high temperature gradient was
devised. The foam must withstand the test conditions without cracking
or deterioration of its physical properties. PVC foam was used on the
"Jules Verne" to insulate the tank walls and the secondary barrier. It
was also used to insulate the cryogenic piping, and a protective coating
of glass cloth reinforced polyester resin proved to be satisfactory
protection against weather and sea action. The paper lists one LNG
tanker using PVC foam as supporting insulation and secondary barrier
insulation, and four other tankers using PVC foam as the insulation of
self-supporting tanks.

The polyurethane foams are described as having characteristics
similar to the PVC foams, and as having the additional advantage of
foaming in place. However, the polyurethanes are described as being
susceptible to cracking in the vibration test, because their relatively
high thermal contraction causes internal strains when the foam is
subjected to high thermal gradients. Foaming in place is inexpensive,
but it is difficult to obtain a homogeneous material with controlled
properties.

The author notes that the final choice of insulation material for
LNG tankers is decided by economic factors.
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ENERGY-ABSORBING CHARACTERISTICS OF FOAMED POLYMERS

Rusch, K. C. (Ford Motor Co., Dearborn, Mich. Scientific Research
Staff)

J. Appl. Polym. Sci. 14, No. 6, 1433-47 (Jun 1970)

This paper discusses a property of foams which is not gemnerally
considered in insulation systems. While impact energy absorption is
not usually a critical property of insulation, it is related to the
flexibility or brittleness of the material, which is a critical property
for cryogenic insulation. Energy absorption characteristics also
provide a measure of how fragile an insulation will be.

The energy absorption characteristics can be calculated from
experimental compressive stress-strain data at slow compression rates.
The calculated quantities are the energy-absorbing efficiency, the
impact energy per unit volume, and the maximum decelerating force on an
impacting body. An analytical scheme for determining these quantities
is given, and calculations for two polyurethanes, at 77 K and 298 K,
were carried out. The paper uses the results to illustrate the
differences between flexible and brittle foams. A curve of efficiency
versus impact energy has a higher peak for brittle than for flexible
foam. A curve of maximum deceleration has a wider and flatter plateau
for brittle than for flexible foam. Both of these effects are more
pronounced for a higher density foam. In terms of impact-energy
absorption, a brittle foam is superior to a flexible foam. Other
factors in designing an energy-absorbing foam structure are also
considered in the paper.

92



INVESTIGATION OF FABRICATION AND PROCESSING PARAMETERS ASSOCIATED
WITH USE OF POLYURETHANE FOAMS IN SEALED CRYOGENIC INSULATION
Shriver, C. B.

Goodyear Aerospace Corp., Akron, Ohio, Rept. No. R-12249. National
Aeronautics and Space Administration, Cleveland, Ohio, Lewis Research
Center, Rept. No. NASA CR-72025, Contract No. NAS 3-5646, 85 pp

(Jun 1965)

The sealed insulation consisted of a number of layers of aluminized
mylar film separated by thin layers of polyurethane foam, with the
composite structure enclosed in a vapor barrier. The insulation was
self-evacuating when residual gases inside the vapor barrier were
condensed at the cold wall. The experimental program was directed
toward foam optimization by increasing the hole area in perforated
foam, pretreating foam to reduce outgassing, developing a rigid open
cell foam, and selecting foam with the best compression characteristics.

Foam separators with various open areas in various patterns of
perforations were used to separate aluminized mylar films, and contact
between films was monitored as a function of open area and applied
pressure. Electrical contact between aluminized films was used as a
conservative indication of thermal contact between films in the
insulation. Separators with less than about 40% open area prevented
contact between films at pressures of 100 kN/m2. Multi-layer samples
were made up using the most promising separator configurations, and
sent out for thermal conductivity tests. Results of these tests are
not given in this report.

Four polyurethane foams, three open cell and one closed cell,
were tested for outgassing in vacuum and in vacuum at 422 K. Weight
losses in vacuum alone ranged from 0.65% to 1.4%, and at 422 K were as
high as 2.2%. The open cell foams lost weight faster than the closed
cell foams. Attempts to rigidize flexible open cell foams by chemical
treatment had limited success, but vendors supplied rigid open cell
polyurethane foams. Compression test samples of one closed cell and
three open cell rigid foams were made up of ten layers of foam
alternating with nine layers of mylar film. Compression tests at room
temperature and 77 K showed that all specimens showed elastic recovery
at both temperatures after release of a 100 kN/m2 load, and that
compressive modulus increased with decreasing temperature. The closed
cell foam was more rigid than the open cell foams. The best open cell
foam showed a yield point at a load more than double the maximum
pressure on self-evacuated insulation panels.

The report also gives permeability and outgassing test results
on vapor barrier materials.
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THE THERMAL-CONDUCTIVITY OF FOAMED PLASTICS
Skochdopole, R. E. (Dow Chemical Co.)
Chem. Eng. Progr. 57, No. 10, 55~9 (Oct 1961)

The effects of the properties of foamed plastic insulations on the
mechanisms of heat transfer are thoroughly analyzed. Results of the
analyses are confirmed by comparison with literature data. Data were not
~available on the effects of foam cell size on convection heat transfer, so
an experimental program was conducted on polystyrene foams with cell sizes
varying from 0.6 to 6.0 mm. It was found that there was no convection
effect with cell diameters less than about 4.0 mm.

The analysis shows the effects on thermal conductivity of changing
foam density, cell size, polymer composition, and gas phase composition.
While each of these factors can affect the thermal conductivity, the most
important variable is the gas phase composition. The environmental
effects of aging and temperature are shown to be mostly caused by changes
in the composition of the gas phase. In aging, the gas phase changes by
diffusion through cell walls. Temperature changes can change the
composition of the gas phase by condensing or changing the vapor pressure
of the foam blowing agent in the cells.

The aging model was verified by an experimental program, in which
the thermal conductivity of a trichlorofluoromethane-blown polyurethane
film was measured at intervals over a period of 206 days of aging in air
at 333 K. After the aging period, the foam was mechanically compressed,
then re-expanded by heating. After three such cycles, the foam cells
were open and filled with air. The thermal conductivity was again
measured, and the contributions of air and foam were calculated. A
calculation based on the contribution of the foam and the thermal
conductivity of the blowing agent agreed with the measured thermal
conductivity of the foam before aging.

Important references:
1. Wilkes, G. B., Heat Insulation, Wiley, New York (1950).

2. Rowley, F. B., Jordan, R. C., and Lander, F. M., Refrig. Eng. 50,
541 (1954).
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MEASUREMENT OF THE COMBINED EFFECTS OF NUCLEAR RADIATION AND
CRYOTEMPERATURES ON NON-METALLIC SPACECRAFT MATERIALS

Smith, E. T. (General Dynamics/Fort Worth, Tex.)

ATIEE Summer General Meeting (Toronto, Canada, Jun 17-21, 1963), Paper
No. CP 63-1175, 36 pp (1963)

This paper presents the experimental results of a program to
measure the combined effects of nuclear radiation and cryogenic
temperatures on the mechanical (tensile and compressive) properties of
nonmetallic structural materials for use in nuclear-powered spacecraft.
The materials tested included two adhesives, two mechanical seal
materials, two thermal insulations, two electrical insulation materials
and a structural laminate. The materials were tested at ambient
conditions, at 20 K, and at 77 K at zero radiation and up to 6 x 106 J/kg.
The irradiation and subsequent testing were done without warming the
sample, so that no chance was given for annealing out the radiation
induced defects.

The two thermal insulations tested were a polyurethane foam and a
polystyrene foam and both were tested with compressive loads only and
compressive strength (unirradiated) increased with decreasing temperature
although the polyurethane showed some degradation in going from 77 K to
20 K. Radiation levels decreased the compressive strength of both
materials at ambient temperature but a threshold level between 5 x 105
J/kg and 0.2 x 106 J/kg was indicated at the lower temperatures.
Radiation, up to this level, increased the compressive strength at 77 K
and 20 K. Above these radiation dose levels, however, the strength
dropped off severely. Any level of irradiation at ambient temperature
served to reduce the compressive strength significantly. Both materials
are recommended for use under relatively low radiation environments at
cyrotemperatures. Most of the results of this paper are used by
different authors in the paper abstracted on page 70.

Important references:
1. General Dynamics/Fort Worth, Tex. Rept. No. MR-N-254 (May 1961).

General Dynamics/Fort Worth, Tex. Rept. No. FZK-142 (Mar 1962).

2

3. General Dynamics/Fort Worth, Tex. Rept. No. FZK-147 (Jun 1962).
4 General Dynamics/Fort Worth, Tex. Rept. No. FZK-152 (Aug 1962).
5

General Dynamics/Fort Worth, Tex. Rept. No. FZK-161-2 (Jan 1963).
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MEASURING THE THERMAL CONDUCTIVITY OF IRRADIATED FOAM-TYPE INSULATION
MATERIALS

Smith, E. T., and Miller, R. E. (General Dynamics/Fort Worth, Tex.)
Advances in Cryogenic Engineering 12, Proc. Cryogenic Engineering Conf.
(Boulder, Colo., Jun 13-15, 1966), K. D. Timmerhaus, Editor. Plenum
Press, New York, 315-21 (1967)

This paper reports results of measurements made on four foam
insulations at room, liquid nitrogen and liquid hydrogen temperatures.
Control samples in unirradiated conditions were compared with irradiated
samples subjected to gamma doses from 5 x 102 to 3 x 10 J/kg. The
tests were performed as part of a program to select candidate materials
for nuclear powered space vehicles. Organic materials are particularly
vulnerable to radiation and deserve special attention. Insulating
materials and insulation systems, because of the importance of their
functions, were prime candidates for early assessment.

The four materials were polyurethane (polyether-polyester rigid
foam, manufacturers designation CPR-200-2), polyurethane (polyether,
rigid, halocarbon blown, manufacturers designation H-1502), epoxy
(rigid, spray foamed, manufacturers designation EFS-175) and polyurethane
(rigid foam, COy blown, manufacturers designation CPR-1021-2). Tabular
results for all four materials at room and liquid nitrogen temperatures
are given for radiation levels of zero, 5 x 105, 1 x 10 and 3 x 10°
J/kg. These results show that changes in the thermal conductivity of
the four test materials as a result of the irradiation were slight to
insignificant to the highest dose level achieved. The data obtained
in the liquid hydrogen tests, both control and post irradiation, are
questionable. The measured values of thermal conductivity are higher
than expected and it was concluded that either the cell gases froze out
completely, or a hydrogen leak occurred.

This paper contains a more detailed description of the thermal
conductivity work reported in the paper abstracted on page 44.

96



COMPRESSIVE LOAD-DEFLECTION CHARACTERISTICS OF SEVERAL FOAM MATERIALS
AT ROOM TEMPERATURE, 77 K AND 4.2 X

Stewart, W. F., Eash, D. T., and May, W. A. (Los Alamos Scientific
Lab., N. Mex.)

Advances in Cryogenic Engineering 19, Proc. Cryogenic Engineering Conf.
(Georgia TImst. of Tech., Atlanta, Aug 8-10, 1973), K. D. Timmerhaus,
Editor. Plenum Press, New York, 385-92 (1974)

This report gives results of an experimental program to measure the
compressive properties of candidate foam materials used as a rigid
support for the primary coil of a 300 kJ superconducting energy storage
coil. The coil is a model for a pulsed plasma thermonuclear fusion
energy source. At the levels of current and voltage involved, large
transient forces can be produced by misalignment of the primary and
secondary coils. A foam pad (flexible at room temperature but rigid at
4.2 K) was considered to be a better means of adapting the coil supporting
arms to the inner shell of the cryostat than springs or other mechanical
or pneumatic (gaseous helium) damping systems.

The materials tested included various densities of gas-blown
flexible polysiloxane foam, a polyether based flexible polyurethane, a
proprietary flexible cellular silicone, and a low density rigid
polystyrene foam. The results are presented as curves of load versus
deflection at room temperature and 77 K with a few tests conducted at
4.2 K. Little difference was seen in the compressive tests at 77 K and
4.2 K. All of the candidate materials performed quite well and none of
them were observed to crack or break during testing. One polysiloxane
and a cellular silicone were compressively loaded to over 11.8 x 107 N/m?
at 77 K and did not exhibit any sudden shifts in deflection. Following
the 77 K test, the load-deflection data at room temperature were
essentially the same as before the test. The report does not make a
final recommendation as to the material to be used.

Important references:

1. Arvidson, M. J., Durcholz, R. L., and Reed, R. P., Advances in
Cryogenic Engineering 18 (1972).
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LOW-DENSITY FOAM FOR INSULATING LIQUID-HYDROGEN TANKS

Sumner, I. E.

National Aeronautics and Space Administration, Cleveland, Ohio, Lewis
Research Center, Tech. Note No. NASA TN-D-5114, 52 pp (Mar 1969)

The objective of this investigation was to develop and test a
lightweight polyurethane foam insulation for liquid hydrogen tanks of
space vehicles that 1) could be foamed in place on the outside of the
tank, 2) would not require any strengthening or reinforcing to prevent
cracking and splitting when cooled to liquid hydrogen temperature, and
3) would have a thermal conductivity of approximately 0.015 J/m*K at a
mean temperature of 135 K.

Three 0.56 m diameter aluminum spherical tanks having wall
thicknesses of 0.056 cm were insulated with a 2.54 cm thick, rigid,
freon-blown, polyurethane foam with a nominal density of 32 kg/m3.

Two tanks were insulated using a foaming-in-place process with each
tank suspended in a cylindrical mold. The third tank was insulated
with a slightly different polyurethane formulation and simplified
foaming-in-place process where the foam constituents were poured
directly on the tank wall and allowed to expand in a radial direction.

Testing of the insulated tank assemblies included 1) cooldown
and boiloff tests to determine insulation temperature profiles, thermal
conductivity and structural integrity under simulated ground-hold
conditions, 2) vibratory compressive tests under simulated ground-hold
and launch conditions, and 3) cooldown tests for simulated space-hold
conditions where the entire foam thickness was cooled to temperatures
near that of liquid hydrogen (21 K).

The initial (first two tanks) foaming-in-place process produced
an unsatisfactory insulation, where the direction of foam rise relative
to the tank wall varied from top to bottom, and which failed
structurally under both ground-hold and space-hold conditions. The
simplified process used on the third tank produced a satisfactory
insulation in which the direction of foam rise was normal to the tank
wall at all locations, which had uniform cell size and structure and
which exhibited relatively uniform physical properties. The
insulation fabricated with this process provided the desired thermal
performance and remained structurally intact through all ground-hold,
vibratory and space-hold tests.

Small samples of the insulation were used to measure the thermo-
physical properties of the insulation material itself. Graphical
results are presented for compressive yield strength, compressive
modulus of elasticity, tensile yield strength, tensile modulus of
elasticity, shear modulus of elasticity, thermal contraction and
thermal conductivity.
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THE APPLICATION OF RIGID CELLULAR P.V.C. AS AN INSULANT FOR VERY LOW
TEMPERATURES

Tachdjian, N. (Ste Kleber Colombes Plastiques, France)

Bull. IIR Annexe 1965-6, Meeting of Comm. 8 (Sweden, Sep 13-17, 1965),
369-79 (1965)

This paper reviews polyvinyl chloride (PVC) rigid foam, its
properties, and its application as thermal insulation. The problems of
cracking and of creep are discussed at some length. Cracking results
from differential thermal contraction between a foam insulation and facing
or base materials attached to the foam. If the foam is not free to
contract during cooling, it may crack. The best solution to the problem
is described as application of the foam in such a way that it is left
free to contract. Another solution is to increase the density of the foam
in areas of potential cracking, to the point where the foam itself can
sustain the loads imposed by thermal contraction. Tests for creep
tendency are described as only partially complete. Creep characteristics
are not necessarily constant with time, so that extrapolation from
short-term tests can be disastrous. PVC foam is described as having very
slow creep at temperatures below 278 K, and no detectable creep at
temperatures below 238 K.

An appendix compares some of the properties of PVC foam with other
foams. Approximate densities and thermal conductivities at a mean
temperature of 273 K are tabulated. A nomogram gives the thermal
conductivity of PVC foam as a function of hot face and cold face
temperatures. Water vapor permeabilities and temnsile and compressive
strengths are tabulated. In most cases, PVC foam is shown as having
superior properties.
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KLEGECELL THERMAL INSULATION FOR LIQUID HYDROGEN TANK OF CRYOGENIC
STAGE ‘

Tariel, H. M., Boissin, J. C., Segel, M. P. (Societe L'Air Liquide,
Centre d'Etudes Cryogeniques, Sassenage, France)

Advances in Cryogenic Engineering 12, Proc. Cryogenic Engineering Conf.
(Boulder, Colo., Jun 13-15, 1966), K. D. Timmerhaus, Editor. Plenum
Press, New York, 274-85 (1967)

Polyurethane foam insulation for liquid hydrogen tanks of spacecraft
has the disadvantage that the cell walls are permeable, to air in the
case of external insulation, and to hydrogen for internal insulation.
Polyurethane foam also has relatively low mechanical strength. A rigid
crosslinked polyvinyl chloride foam is proposed as a solution to these
problems.

Two densities of PVC foam, 30 and 55 kg/m3, were tested. The tests
were tensile strength and modulus at 20 K, 77 K, and 300 K; compressive
strength and modulus at 20 K, 77K and 300 K; thermal contraction
between 20 K and 373 K; permeability to air before and after exposure
to liquid hydrogen; impact sensitivity in liquid oxygen; thermal
conductivity between a surface at 20 K and a surface at 77 K to 345 K;
and specific heat from 20 K to 300 K. The higher density material had
higher tensile and compressive strengths. Tensile strengths decreased
gradually with decreasing temperature. Compressive strengths decreased
gradually with decreasing temperature to 77 K, then increased sharply at
20 K. Permeability to air was too small to measure. No reactions were
observed with impact in liquid oxygen. Thermal conductivity increased
non-linearly with increasing temperature from 0.007 W/m*K at 50 K to
0.027 W/m*K at 300 K. Specific heat followed an S—~curve with a maximum
near 50 K and a minimum near 150 K.

The proposed insulation system consists of the foam bonded to the
outside of the tank wall with a polyurethane adhesive, and a constrictive
fiberglass-polyurethane laminate wrapped over the foam as protection from
vibration and external stresses, and a final external coating of
ablative material as protection against atmospheric heating during launch.
Sample small scale tanks insulated as proposed were reported to have
withstood thermal cycling with liquid hydrogen, with no observable
damage.

Important references:
1. Dearing, D. L., Advances in Cryogenic Engineering 11, 89-97 (1966).

2. Middleton, R. L., Advances in Cryogenic Engineering 10, 216-23
(1965).

3. NASA-Lewis Research Center, Tech. Note No. NASA-TN-D-2685.
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INTERNAL INSULATION FOR LNG

Tatro, R. E., and Bennett, F. O., Jr. (General Dynamics, San Diego,
Ccalif. Convair Div.)

Advances in Cryogenic Engineering 20 (Presented at National Technical
Meetings during 1973 and 1974), K. D. Timmerhaus, Editor. Plenum
Press, New York, 315-26 (1975)

This paper describes the gas-layer-insulation concept, the
polyphenylene oxide (PPO) foam that accomplishes the concept, the prop-
erties of PPO as evaluated for aerospace applications, and the possibilities
of using PPO as internal insulation for the tanks of liquefied natural

gas tanker ships.

PPO foam is made up of parallel elongated open cells, oriented so
that the cells are open through a layer of the foam. When the foam is
bonded to a tank wall, so that the wall seals one end of the cells, and
the tank is filled with a cryogenic liquid, the cells fill with vapors
of the liquid, and gas pressure and surface tension prevent liquid from
entering the cells. This forms an in8ulating stagnant layer of gas
between the liquid and the tank wall. The properties of PPO foam
discussed in the paper are the effects of thermal aging at 450 K and
thermal cycling from 21 K to 450 K, density and uniformity of the foam,
lateral permeability as a function of foam density and pressure drop,
thermal conductivity as a function of density from 50 K to 190 K,
compressive and tensile yield strengths in longitudinal and lateral
directions as a function of foam density from 20 K to 400 K, and
compatibility with liquid ethane and liquid methane.

Internal insulation in LNG tankers would have a number of advantages.
Because the tank wall remains warm, structures and materials are less
critical, heat leak due to structural supports is decreased, and less
LNG is required for cooldown because the tank structure is not cooled.

PPO foam, being open-celled, would not trap vapors and could be more
easily purged than closed~cell foams, reducing the possibility of fires
such as occurred in the Staten Island disaster. PPO foam is considered
a promising candidate for internal insulation for LNG tankers.

Important references:
1. Yates, G. B., Advances in Cryogenic Engineering 20, 327 (1975).

2. General Dynamics, Convair Division Rept. No. GOCA 632-3-169,
Contract NAS 8-27203 (Feb 15, 1973).
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MEASUREMENTS OF HEAT TRANSMISSION IN THERMAIL. INSULATIONS AT CRYOGENIC
TEMPERATURES USING THE GUARDED HOT PLATE METHOD

Tye, R. P. (Dynatech R/D Co., Cambridge, Mass.)

Progress in Refrigeration Science and Techmnology 1, Proc. Intermational
Conf., XIII (Washington, D. C., 1971). AVI Publishing Co., Inc.,
Westport, Conn., 371-8 (1973)

The thermal conductivities of five types of commercial insulating
materials were measured. The materials tested were foamed glass,
polyurethane foam (2 densities), polyvinyl chloride foam (4 densities
and 2 blowing agents), vermiculite (3 grades), and a fiberglass blanket-
type insulation. Thermal conductivities were measured in the temperature
range from 120 K to 300 K, with some measurements on vermiculite near
90 K. A guarded hot plate apparatus was used and an accuracy of 3 percent
is claimed for the results.

The two polyurethanes behaved identically over the temperature
range, with an s-shaped curve having a maximum near 240 K and a
minimum near 260 K. The PVC foams generally showed a steadily increasing
thermal conductivity with increasing temperature. While the polyurethanes
had lower thermal conductivities than the PVC foams at temperatures
above 270 K, the inflected curve resulted in the PVC foams having
conductivities 11% to 207 below the polyurethanes at temperatures below
230 K. The other materials had thermal conductivities substantially
above the foams, increasing through the fiberglass blanket and the
foamed glass to the three grades of vermiculite. Of the materials tested,
the lowest thermal conductivity at cryogenic temperature is observed for
the PVC foams.

Important references:
1. Thermal Insulation Systems, NASA SP-5027 (1967).
2. Dushman, S., Vacuum Technique, John Wiley & Sons, New York, 50 (1945).

3. Haskins, J. F., and Hertz, J., Advances in Cryogenic Engineering 7,
353 (1962).
4. Tariel, H. M., Boissin, J. C., and Segel, M. P., Advances in

Cryogenic Engineering 12, 274 (1967).
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SOME OBSERVATIONS ON THE COEFFICIENT OF THE THERMAL EXPANSION OF
POLYSTYRENE FOAMS AT LOW TEMPERATURE

Vahl, L. (Technische Hogeschool, Delft, Netherlands)

Progress in Refrigeration Science and Technology, Proc. International
Congress of Refrigeration, Xth (Copenhagen, Denmark, 1959) - Vol 1.
Pergamon Press, 317-24 (1960)

Polystyrene foam panels used as insulation for low temperature
equipment developed cracks after a period of operation. The cracks were
thought to be caused by thermal stresses, but data on thermal contraction
at low temperatures were not available. An experimental program was
conducted to measure coefficients of thermal expansion.

Closed cell polystyrene foams of 12.4, 24.3, and 37.5 kg/m3
densities were measured during cooling from 288 K to 123 K over a period
of 3 h, hold at 123 K for 1 h, then rewarming to 288 K. The lowest-
density foam had a relatively large thermal contraction, and contraction
per degree of cooling was greater at lower temperatures. The contraction
continued even during the period of hold at constant temperature. The
sample exhibited a hysteresis effect, with the dimensional changes
following different curves with respect to temperature during cooling
and warming. The two higher—-density foams behaved differently. The rates
of thermal contraction were lower and remained constant over the
temperature range, there was no dimensional change during hold at 123 K,
and there was little or no hysteresis effect.

The author attributes the behavior of the lowest-density foam to
differential thermal contraction of polystyrene in the cell walls and
air contained in the cells. The greater contraction of the air apparently
caused a breakdown of the cell walls. This breakdown continued as a
sort of creep during hold at constant temperature. The destruction
caused by thermal contraction makes foam of this density unsuitable for
use as insulation at temperatures below about 230 K. Further examinations
were recommended to determine whether the higher-density foams could be
used below this temperature. :
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VESSELS FOR LIQUEFIED GASES FORMED FROM POLYSTYRENE FOAM PSB
Vedernikov, M. V., Filippov, V. A., and Krivets, L. I. (Academy of
Sciences of the USSR, Leningrad. Inst. of Semiconductors)
Cryogenics 9, No. 5, 386-7 (Oct 1969)

This paper describes, in detail, a method for producing cryogenic
containers from foamed polystyrene PSB (polystyrene beads). The method
can be used in the laboratory with very little equipment and is
particularly useful in forming vessels of large sizes or complex shapes
where glass flasks are impractical. Experiments by the authors showed
that the consumption of liquid nitrogen when using a foamed plastic
vessel, even with comparatively little heat conduction in the casing of
the submerged device, exceeds by only 35-507% its evaporation from a
glass vessel of the same shape and volume. When more massive devices
are cooled, this difference practically disappears.

The process of fabricating vessels of foam consists of three
stages: 1) prefoaming the polystyrene beads in boiling water (they
expand 10-30 times normal size), 2) curing of the prefoamed beads (in
air at ambient temperatures), 3) molding, wherein the preformed beads
are placed in the mold which is immersed in boiling water. This causes
further expansion of the beads. The article is then removed from the
mold and allowed to cool under ambient conditions.
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OPEN CELL CRYOGENIC INSULATION

Yates, G. B. (General Dynamics, San Diego, Calif. Convair Div.)
Advances in Cryogenic Engineering 16, Proc. Cryogenic Engineering
conference (Boulder, Colo., Jun 17-19, 1970), K. D. Timmerhaus, Editor.
Plenum Press, New York, 128-37 (1971)

The open-cell insulation concept was considered for use as internal
insulation in the liquid hydrogen tanks of reusable space vehicles, such
as the space shuttle. In this concept, narrow open cells are bonded
to the tank wall at one end and open to the tanked liquid at the other.
The cells are sized so that surface tension maintains a stable interface
between liquid in the tank and gas in the cell. This paper describes
an analysis and some preliminary tests of the concept.

The analysis showed that the open-cell concept has a lower thermal
efficiency than previous closed-cell insulations, and about the same
efficiency as a helium-purged system. The thermal conductivity of the
insulation is essentially that of the gas filling the cells. Theoretical
cell sizes to support stable interfaces with water, liquid hydrogen,
liquid oxygen, and liquid nitrogen were calculated.

The three open-cell insulations tested were polyphenylene oxide
(PPO) foam and two sizes of phenolic honeycomb. The larger cell-size
honeycomb was faced with fine-mesh screen or filled with the PPO foam
to maintain stable liquid/gas interface. Screening tests were run with
insulation bonded to the bottom of an open beaker, which was then filled
with liquid hydrogen. Larger scale tests used the insulation bonded to
the inner surfaces of a rectangular 0.21 m3 tank, filled with liquid
hydrogen or liquid nitrogen. In all cases, the PPO foam was the lightest
and most efficient of the insulations. Ability of the honeycomb to
maintain a stable liquid/gas interface was marginal in some cases.
Convection heat transfer was appreciable in the honeycombs but not in
the PPO foam. The insulation kept the tank external surface at a
temperature high enough to prevent condensation of air.

The author concludes that the feasibility of the concept was
established.

Important references:

1. PPO Foam: A Unique High Temperature Insulation, Technical Data
Sheet, General Electric Company, October 1967.

2. Kouffeld, R. W. J. and van Riesen, P. E., Ref. No. 67-02294,
Centraal Technisch Instituut, T.N.O., Delft, 31 Jul 1967.
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PPO FOAM. LIQUID HYDROGEN INSULATION

Yates, G. B. (General Dynamics, San Diego, Calif. Convair Div.)
Advances in Cryogenic Engineering 20 (Presented at Nationmal Technical
Meetings during 1973 and 1974), K, D. Tlmmerhaus, Editor. Plenum
Press, New York, 327-37 (1975)

An extensive fabrication and test program was carried out to
demonstrate the use of polyphenylene oxide (PPO) foam as an internal
insulation for liquid hydrogen tanks. Early results were reported in
the paper abstracted on page 102, which described the concept and
advantages of open-cell internal insulation. This paper describes
application of the insulation to an aluminum test tank, and the test
program simulating launch vehicle. flight cycles.

The PPO foam was heat-formed to the necessary contours, trimmed
into panels, and bonded to the tank walls with a urethane adhesive. The
panels were made 2% oversize and compressed 2% during installation to
form solid joints between panels without using adhesive, and to prevent
joint gaps caused by thermal contraction. The test program consisted of
100 cycles of tanking and chilldown with liquid hydrogen, pressurization,
rapid detanking, and heating of the tank surface. The cycles simulated
service in a liquid-hydrogen-fueled reusable booster or reusable orbiter.
Thermal performance of the insulation was determined by measuring boiloff
rates and temperature gradients, which did not change significantly over
the test program. Post-test examination showed no apparent deterioration
of the PPO foam.

The authors conclude that PPO foam has been demonstrated to be a
reliable and reusable internal insulation for liquid hydrogen. Its
primary limitation is its relatively high thermal conductivity. Because
the open cells of the foam are filled with gaseous hydrogen during
service, the thermal conductivity must be equal to or greater than that
of gaseous hydrogen.

Important references:

1. Yates, G. B., Advances in Cryogenic Engineering 16, 128 (1971).

2. Tatro, R. E. and Bennett, F. 0., Jr., Advances in Cryogenic
Engineering 20, 315 (1975).
3. Space Shuttle Structural Test Program Final Report, Convair

Division of General Dynamics, Rept. No. 549-3-092 (Mar 1972).

4. Yates, G. B. and Tatro, R. E., Proceedings of the Space Transpor-
tation System Propulsion Technology Conference, Vol. IV, NASA,
. Marshall Space Flight Center, 1441 (Apr 1971).
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PPO FOAM INTERNAL INSULATION

Yates, G. B., and Tatro, R. E. (General Dynamics/Convair, San Diego,
Calif.) .

Space Transportation System Propulsion Technology, Proc. Conf. (George
C. Marshall Space Flight Center, Huntsville, Ala., Apr 6-7, 1971) -
Vol 4 ~ Cryogens. National Aeronautics and Space Administration, Rept.
No. NASA TM-X-67348, 1439-52 (Apr 1971)

The reusable mission of the Space Shuttle imposes new requirements
on liquid hydrogen tank insulation systems. A candidate system is
polyphenylene oxide (PPO) open cell foam used as internal insulation.
Internal insulation is exposed only to a known and controlled
environment, and the tank wall and insulation bond line are kept warm
to minimize thermal stresses. The PPO foam is open celled and not
subjected to cyclic pressure fatigue, and is a simple one-component
insulation.

The PPQ foam was made in thicknesses up to 8 cm, and densities
from 30 to 180 kg/m3. The open cells are elongated and extend through
the thickness of the foam. Tests with helium showed the presence of
some lateral gas movement between cells, but this had no apparent effect
on thermal performance. At a temperature of 20 K, the foam exhibited
2% elongation and 2% elastic compression parallel to fiber directionm.
Face tensile, compression, core shear, and climbing drum peel tests
were conducted between 20 K and 422 K. Tensile strengths decreased
slightly with temperature increasing from 20 K to 300 K, then decreased
more sharply with temperature increasing above 300 K. Compressive
strengths gradually decreased with increasing temperature over the
entire temperature range. Shear and peel strengths had more complicated
temperature dependence, but were generally low at 20 K and high at
422 K. Samples bonded to aluminum were fatigue tested at 20 K, 294 K,
and 394 K, and withstood 400 cycles at each temperature with no
observable damage. Thermal conductivity at mean temperatures from 200
K to 350 K was from 1.10 to 1.25 times the thermal conductivity of
gaseous parahydrogen at the same temperature. The foam could be
hot-formed to various desired shapes.

The authors conclude that the feasibility of using PPO foam as
internal liquid hydrogen tank insulation has been demonstrated.
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HEAT CONDUCTIVITY MEASUREMENTS ON FOAM PLASTICS AT LOW TEMPERATURES
Zehendner, H. (Forschungsinstitut fuer Warmeschutz, Munich, Germany)
Kaeltetechnik.-Klim. 19, No. 1, 2-8 (Jan 1967)

This paper presents results of an extensive study of the cell
structures and thermal conductivities of a number of commercially
available foam insulations. The materials studied were two phenolic
foams with densities 27 and 104 kg/m3, a polyethylene foam with density
37 kg/m3, four polystyrene foams with densities 12.7, 24, 37 and 62
kg/m3, two polyurethane foams, one a cast foam with density 26 kg/m3
and the other a spray foam with density 43 kg/m3, two polyvinyl chloride
foams with densities 43 and 70 kg/m3, and a hard rubber foam with density
79 kg/m3. Microphotographs of the cell structures of the foams are
shown. Thermal conductivities of the foams were measured from 93 K to
323 K.

The thermal conductivities of the two phenolic foams show a nearly
linear increase with increasing temperature, but with the high-density
material having a thermal conductivity consistently higher than that of
the low-density foam. This is attributed to the high-density foam
having such small cells and such a high solid content that it acts more
like solid than foam phenolic. Thermal conductivity of the polyethylene
foam is higher than that of any of the other foams, and increases
strongly with increasing temperature.

Thermal conductivities of the polystyrene foams were studied as a
function of foam density. The curves of thermal conductivity versus
temperature show a steady increase with increasing temperature, but
differences between foams are difficult to see. A presentation of
thermal conductivity versus foam density reveals that at any temperature
level, there is a density having minimum thermal conductivity, and that
this optimum density is higher at higher temperature.

The polyurethane foams have a complicated thermal conductivity
curve, increasing with increasing temperature up to about 225 K, then
decreasing until the temperature reaches about 272 K, then once more
increasing with increasing temperature. The region between 225 and
323 K is further complicated by an age effect, in which older foams
have a higher thermal conductivity than freshly~made samples. This
aging effect is attributed to the gradual replacement of the fluoro-
trichloromethane blowing agent with atmospheric air by diffusion
through the cell walls. This gradual increase in thermal conductivity
was still continuing steadily at 30 months storage time.

The thermal conductivities of the polyvinyl chloride foams
increased non-linearly with increasing temperature, with the low-density

109



foam having lower thermal conductivity at temperatures below about

220 K, and the high-density foam superior above this temperature. The
hard rubber foam showed a linear increase of thermal conductivity with
increasing temperature.

Important references:

1. Cammerer, W. F., Kaeltetechnik 12, 107-10 (1960).
2. Achtziger, J., Kaeltetechnik 12, 372-5 (1960).

3. Schmidt, W., Kunststoffe 53, No. 7, 413-20 (1963).
4

. Eiermann, K., Hellwege, K. H., and Knappe, W., Kolloid Z. 174,
No. 2, 134-42 (1961).
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INSULATION MATERTALS SELECTION CRITERIA FOR AN AERODYNAMIC PROTECTED
CRYOGENIC STAGE (AUSWAHL UND EXPERIMENTELLE UNTERSUCHUNG EINES
AFERODYNAMISCHEN NICHT BELASTBAREN SCHAUMSTOFFISOLATIONS-SYSTEMS FUER
KRYOGENE RAKETENSTUFEN)

Zimni, W. F., and Breves, E. 0. (ERNO Raumfahrttechnik GmbH, Bremen,
West Germany)

Luftfahrttechnik Raumfahrttechnik 16, No. 10, 251-7 (Oct 1970)

An experimental program was conducted to select an insulation
system for use as external insulation on the liquid hydrogen and liquid
oxygen tanks of a launch vehicle. The materials considered were
polyurethane foam, the material used in the United States space program,
and polyvinyl chloride foam, the material preferred in the French
program. The test program included application of the foam to the
surface of a liquid hydrogen tank and testing under simulated space
flight conditions. Both foams were applied to tanks in two variations,
the first with foam panels completely enclosed in mylar film vapor
barrier, and the panels then bonded to the tank wall, the second with
the foam bonded directly to the tank without any intervening film.
Temperatures were measured during boiloff of liquid hydrogen in the tank,
and heat leaks through the insulation into the tank were determined.

The test results led to the conclusion that the two materials were
approximately equal in terms of thermal performance, while the poly-
urethane had some advantage in ease of application. The polyurethane
foam has a high thermal expansion coefficient, which can be decreased
by the addition of glass fiber reinforcement to the foam without degrading
thermal performance. The tests qualified the materials for use as
cryogenic tank insulation.

Important references:

1. Stumpf, O. and Zimni, W. F., Proc. of the XVIII Astronautical
Congress, Vol III (Oct 1966).

2. Tariel, Boissin and Segel, Adv. Cryog. Eng. 12, 274 (1966).
3. Zimni, W. and Mertzner, K., Klimatisierung, No. 2 (1970).
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THE THERMAL PROPERTIES OF FOAMS AND FOAMED HONEYCOMBS IN THE
TEMPERATURE RANGE BETWEEN 20 AND 300 K .
Zimmi, W. F., and Meitzner, K. (ERNO-Raumfahrttechnik GmbH, Bremen,

West Germany)
Kaeltetech.-Klim. 22, No. 2, 34-40 (Feb 1970)

This paper reviews measurements made over a period of several years,
of the thermal properties of a number of foams and composite insulating
materials. The polyurethanes, which were the most often used foams in
the United States space program, and polyvinyl chloride foam, preferred
by the French, were the primary materials investigated. The materials
also included a phenolic foam, phenolic-fiberglass honeycombs filled
with foam, and polyurethane foams with 5 to 107% glass fibers added. The
properties measured were thermal conductivity, thermal expansion and
specific heat.

Thermal conductivities were measured at mean temperatures between
20 K and 320 K. Comparisons of results show the effects of blowing
agents, aging, densities, and sample thickness. Polyurethane and
polyvinyl chloride foams of similar density, both blown with trichloro-
fluoromethane, had nearly identical thermal conductivities. An air-blown
foam and a halocarbon-blown foam showed the same thermal conductivity up
to about 250 K, but the air-blown foam lacked the S-curve characteristic
typical of halocarbon~blown foams at higher temperatures. Thermal
expansions were measured between 4 K and 380 K. Particularly striking
was the very high thermal expansion of the polyurethane foam, and the
great decrease of this expansion caused by the addition of glass fibers.
Specific heats of foams were difficult to measure, but the specific heat
of a very high density polyurethane foam is shown between 20 K and 350 K.

In general, the tests showed a superiority for halocarbon-blown
foams over air-blown foams as insulation. Reinforcement of the
polyurethane foam with glass fibers improved its thermal expansion
coefficient and its elasticity.

Important references:

1. Kreft, H., and Wagner, D., Kaeltetech.-Klim. 21, No. 9, 258-65
(1969).

2. Koglin, B., and Zimni, W., ERNO Raumfahrttechnik GmbH, Bremen,
Germany, Rept. (Oct 1967).

3. Stumpf, 0., and Zimni, W., Proc. Astronautical Congress, XVII - Vol
III (Oct 1966).

4. Koglin, B., Gesellschaft fuer Weltraumforschung mbH, Bonn-Bad
Godesberg, Techn. Bericht (No Date).

5. Koglin, B., and Zimni, W., Techn. Rev. 2, No. 1, 3-28 (1967).
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