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Foreword

The National Aeronautics and Space Administration was created in 1958
and had as one of its principal objectives to extend man's domain farther

into and beyond the Earth's atmosphere, tiQwever, it quickly became ap-
parent that an Earth-based applied science, geodesy, would be among the

first to benefit from its activities, and soon a new discipline, satellite
geodesy, was born. A major series of early results associated with an
unexpected value for the polar flattening, asymmetries in the zonal gravity
field (the "pear-shape" component), and, in the nonzonal, the ellipticity of
the equator, were developed in gravimetric geodesy. Also in geometric
geodesy, the first interconnection of major geodetic datums in a center-of-
mass system was achieved. Thus one small step in satellite geodesy had

been taken; the giant leap came in 1964. After prior recommendations to
proceed had come from the National Academy of Sciences and the Congress,
and after agreement had been reached on the division of responsibility with
other agencies having geodetic activities and requirements, the NASA
National Geodetic Satellite Program (NGSP) was launched.

Now, a decade later, this volume is dedicated to recording the major re-

sults obtained as a consequence of this program. Although no attempt has
been made to report on all the research that has taken place directly in sup-
port of or as a result of the impetus of the NGSP, this work does record
that the objectives of the program have been met. The gravity field has
been determined to 5 parts in 10_ for a field of degree and order 15, and
numerous geodetic datums have been connected in a common center-of-mass

world datum in such a way that the control stations have relative accura-
cies of _ 10 meters. The data from several electronic and optical geodetic
satellite instrument systems have been compared and correlated so that
errors in each system could be reduced and the geodetic parameters im-
proved by combined analyses.

The activities of the NGSP have benefited other NASA programs. All
programs that require precise trajectory calculations--Apollo, OGO, and
ERTS, for example--have drawn on NGSP advances. In addition, an Earth
and Ocean Dynamics Applications Program (EODAP) has emerged
from the NGSP in which many of the same techniques and approaches are
used to measure not the static but the dynamic characteristics of the Earth
that affect man's daily life in so many ways.

--FRANCIS L. WILLIAMS



Preface

In assembling this final report on the National Geodetic Satellite Pro-
gram (NGSP), the editor was guided by the recommendations of a com-
mittee that met in 1971 to help the National Aeronautics and Space Admin-
istration (NASA) plan the structure of the final report. The committee
was made up both of participants in the program and representative future
users of the program's results. The committee's recommendations reflected
the desire of its members to see the results not only fairly presented but
also widely used. The essence of the recommendations was that the com-
plete results should be given together with as much other material as neces-
sary to support them, and that all the material should be presented in a
form useful to the largest number of scientists, engineers, and educators.
Because the committee realized that the results reported by the participants
were not going to be in agreement and because it realized that there were

more advantages than disadvantages in this diversity, it recommended that
the results not be combined and homogenized before publication but be
presented separately.

The editor agreed completely with these recommendations. Since the

results were to be kept separate, each of the major original participating
organizations--Department of Defense (DOD), NASA/Goddard Space
Flight Center (GSFC), National Geodetic Survey, Ohio State University
(OSU), and Smithsonian Astrophysical Observatory (SAO)--wrote its
own chapter as a complete entity. To make the presentations coherent, each
chapter was organized in the same way. An introductory section described
the organization's purpose in participating in the program and presented
a brief history of the participation. A section then described the instru-
ments used in getting the data, another section described the data itself,
another gave the theory used in processing the data, and a final section
gave and evaluated the results. Additional chapters were needed to com-
plete the programs and history or to provide additional support to the
results. These chapters, by the Applied Physics Laboratory (APL), Jet
Propulsion Laboratory (JPL), NASA/Wallops Flight Center (WFC), and
University of California, Los Angeles (UCLA), were organized in .the same
way as the other chapters, insofar as possible.

This scheme could not be adhered to in all cases; the chapters by JPL
and UCLA are organized to best present their special topics. On the other
hand, the result of applying the scheme to chapters 3 and 5, which actually
describe several individual projects, has been to break the continuity of
these subprojects. The editor decided that maintaining the continuity of
each subproject, from instrumentation to results, was less important than
keeping the results together for ease of reference. Accordingly, the reader
of chapters 3 and 5_who is more interested in the development of a particu-
lar subproject than in the total picture will have to skip over intervening
material.
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To assemble in 18 months a final report on the results of a program that
extended over the entire globe for a period of 10 years was of course far
more than a one-man effort, particularly since results were still being re-
vised well into the final stage of assembly. Before beginning the task, the
editor therefore asked the NGSP's participating organizations for advice
and assistance. The response of these organizations was immediate and
whole-hearted. With the help of these organizations, two boards were
formed. One, the Editorial Board, was responsible for passing on the gen-
eral format and content of the report to ensure that these had the approval
of the participating organizations. The members of this board were Dr. R.
Kershner of APL, Mr. 0. W. Williams of DOD (Dr. A. Mancini, alter-
nate) ; Dr. D. W. Trask of JPL; Dr. F. Vonbun of NASA/GSFC; Mr. J.
McGoogan of NASA/WFC; Dr. H. Schmid of the National Geodetic
Survey (NGS) ; Dr. I. I. Mueller of OSU; Dr. E. M. Gaposchkin (Dr. G. C.
Weiffenbach, alternate) of SAO; Dr. A. F. Spilhaus, Jr., of the American
Geophysical Union (AGU) ; and Mr. J. Milwitzky (Mr. J. Murphy, alter-
nate) of NASA Headquarters. A Technical Advisory Board was formed
to pass on specific format and content and to advise on technical problems.
In keeping with the highly technical nature of this board's work, its mem-
bers represented disciplines or projects rather than organizations. Its
members were Dr. R. Kershner (Mr. H. Black and Dr. S. M. Yionoulis,
alternates) of APL; Dr. A. Mancini, Dr. R. Anderle, and Mr. G. Hadgi-
george of DOD ; Dr. D. W. Trask of JPL ; Dr. D. Smith and Mr. J. H. Berbert
of NASA/GSFC; Mr. H. R. Stanley of NASA/WFC; Dr. H. Schmid of
NGS; Dr. I. I. Mueller of OSU; and Dr. E. M. Gaposchkin of SAO. With-
out the help given freely by the two boards, the report would not have been
possible, and the editor gives sincere acknowledgment of help of the boards
and particularly of the individual members.

Although the work of copy editors is usually accepted by contributors
without acknowledgment (but frequently with resentment), Mrs. Holoviak
of the AGU staff has contributed to the volume beyond what duty called
for, and the editor feels deeply indebted to her.

MS. W. HENRIKSEN
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1.1 INTRODUCTION

Every major science or discipline has its
development marked by epochs during which
the creation of new ideas and the influx of

new data increase beyond the ability of the
science to absorb them. The science loses for

a time its sense of direction and purpose, and
results, while spectacular, are often incon-
sistent and appear unrelated to each other
and to the science as a whole. In 1964, ge-

odesy found that it had entered such an epoch
several years earlier and began to worry
about the consequences. It had achieved its
breakthrough seven years earlier by launch-
ing an artificial satellite for use as a geodetic
tool and had been "going ahead in all direc-
tions" ever since. The period between 1957
and 1965 saw the growth of geodetic satellite
networks, the start of work on geodetic satel-
lites, and a vast increase in the amount of
satellite-tracking data that could be used for
determining the shape and figure of the
Earth. Although the growth of this body of
knowledge was exciting, there was little evi-
dence of its having direction.

While each scientist reveled in the abun-

dance of data and rejoiced in his ability to
mold them into new results, the ultimate
users of geodetic information had no reliable

means of choosing among the results or judg-
ing their suitability for any one application.
And of course there was absolutely no way
of estimating the value of the results as a

function of the cost of the satellites, because
there was no comprehensive geodetic satellite
program whose results could be evaluated in
terms of cost. Since the National Aeronautics

and Space Admihistration (NASA) was in
one way or another carrying by far the great-
est part of the costs of satellite geodesy and
was also a major user of the results, it was
natural that the push toward a coordinated
and comprehensive national program in sat-
ellite geodesy should come from NASA.

The National Geodetic Satellite Program
(NGSP) was .qta_edin 1965 by NASA pri-

marily in response to pressures from within
NASA for improvements in the geodetic and
geophysical constants used by NASA in its
computation of orbits. There were also pres-
sures from outside NASA for a program that
would correlate the diverse efforts of several

groups engaged in satellite geodesy: Ohio

State University, Smithsonian Astrophysical
Observatory, European Satellite Triangula-
tion Network, and others. Furthermore,
when the program was started, there was
very little systematic work being done on
calibration and intercomparison of the dif-
ferent kinds of satellite-tracking systems.
The need for reliable information on the cali-

bration constants of the tracking systems
and on how the systems compared in accu-
racy and precision with each other was con-
sidered great enough to warrant a special
place in the proposed program.

NASA's own requirements were many (ch.
5 and ch. 6). First, it needed more accurate
geodetic coordinates for its PRIME MINI-
TRACK and radar tracking systems, and
these coordinates had to be in a reference sys-
tem common to all the systems. Figure 1.1
shows the distribution of NASA's tracking
stations in 1964, as well as the locations of
other tracking stations whose data were used
by NASA. The locations of these stations
with respect to one another were known
partly by connections through classical tri-
angulation networks and partly by connec-
tions through the orbits of artificial satellites
as computed from the tracking data of these
stations. The errors in these locations were

greater than could be allowed in future
NASA programs. They would have to be
reduced. The NGSP was therefore planned
to provide more accurate coordinates for
tracking systems. In figure 1.2 the 86 sta-
tions (not all of which existed in 1965) that
were to be located are shown as dots on a
background indicating the networks (and
their datums) in which they lay.
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Second, some of these programs required
prediction of accurate orbits. This meant not

only more accurate locations for the tracking
stations but also more accurate descriptions
of the Earth's gravity field (fig. 1.3).

These requirements of NASA paralleled
requirements of other groups both in the
United States and abroad. The U.S. Coast

and Geodetic Survey was starting its World
Geometric Net (ch. 7, fig. 7.4.) but needed
help in carrying out its field operations and
data reduction. The Smithsonian Astro-

physical Observatory had the same require-
ments for its observing network of cameras
that NASA had. The U.S. Navy wanted to
improve the navigational accuracies of its

navigation satellite system (NNSS), and the
Army Map Service (AMS) wanted satellites
suitable for use in constructing its geometric
equatorial network (ch. 3).

Besides the purely geodetic and geophys-
ical requirements, there was also a strong
requirement for evaluating the performance
of various satellite-tracking instruments then
in use and for calibrating these instruments.

Although there were eight major kinds of

tracking equipment in use or under develop-
ment (short-focal-length photogrammetric
cameras, long-focal-length reconnaissance

cameras, Schmidt-type cameras, 5-cm radar,
10-cm radar, laser distance-measuring equip,
ment (DME), CW radar, and frequency-
measuring equipment), the accuracies of
these instruments, and sometimes even their
precision, were not known, or at least not

well enough known to permit useful compari-
son of the performance of one instrument
with respect to that of another.

Therefore, in 1965 NASA started the

NGSP by setting up an extensive program of
observation and data reduction (e.g.,
Bowker, 1967). The major participants in
this program were NASA's Goddard Space
Flight Center (NASA/GSFC), the Smith-
sonian Astrophysical Observatory (SAO),
Ohio State University (OSU), the Depart-
ment of Defense (DOD), and the National
Geodetic Survey (NGS), a part of the former
U.S. Coast and Geodetic Survey. The many
activities involved were centralized by desig-
nating certain persons in the participating
organizations as principal investigators.
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FIGURE 1.3.--National Geodetic Satellite Program objective 2: determination of gravitational field.
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These investigators would monitor the con-

tributions of their organizations and would

be responsible for processing and distribut-

ing these contributions. Overall direction

lay with J. Rosenberg of NASA Headquar-

ters, and the principal investigators were J.

Berbert and W. Kaula of NASA/GSFC, C.

Lundquist of SAO, I. Mueller of OSU, J. Mc-

Call, M. Rosenbaum, and R. Anderle of DOD,

and L. W. Swanson of NGS. During the life-

time of the NGSP some of these investigators

left the program and were replaced by others.

Other organizations such as Applied Physics

Laboratory (APL), Jet Propulsion Labora-

tory (JPL), and Wallops Flight Center of

NASA (NASA/WFC), while not directly in-

corporated into the NGSP, made contribu-

tions that had important effects on the re-

sults of the program. Because the NGSP

had strong and capable administrative con-

trol throughout its history and because the

organizations involved in the program co-

operated so well, changes in principal in-

vestigators and overall direction did not

affect the progress of the program, and the

contributions of organizations outside the

program considerably furthered it.

The following pages of this chapter pro-

vide a historical background for the NGSP

and a historical summary of the program it-
self and then the technical structure. With-
out this historical overview the results of the

program could not be seen in their proper

places in the geodetic picture as a whole. The

technical structure of the program--its in-

strumentation, data, and theory--is de-

scribed in enough detail that the reader can
relate the work of the individual contributors

(given in chs. 2 through 10) to each other

and to the NGSP. The results of the program
are summarized and evaluated in the final

chapter (ch. 11).

1.1.1 Historical Survey of Geodesy

To understand the NGSP, we must first

have at least a feeling for the long develop-

ment that went into bringing geodesy and

geophysics to the state in which it was at the

start of the NGSP (1964). The development

took place (from our point of view) in two

stages--the presatellite stage, from prehis-

tory up to 1957, when Sputnik-1 was

launched, and the post-Sputnik stage from

1958, when a value of the flattening of the

earth (1/298.3) was first derived from arti-

ficial satellite data alone, to 1964, when work

began on setting up the NGSP.

1.1.1.1 Era Preceding Artificial Satellites

Before the advent of artificial satellites,

geodesy was essentially four different disci-

plines which only rarely (as in the hands of

the 19th century geodesist, Helmert) were

coordinated and synthesized. The work in
horizontal control, vertical control, astro-

geodesy, and physical geodesy usually went

on independently, and the development of
geodesy reflected this separation.

For a closer look at the geodetic back-

ground we select a particular epoch at which
to summarize the state of the sciences. The

obvious epoch in this case is the beginning of

1957, just before the launching of Sputnik-1.

Datums.--A datum is a set of numbers de-

fining a coordinate system. Until the early

part of the 20th century, each country, from

choice or necessity, used its own coordinate

system. As a consequence, whenever such

problems as the calculation of the points in
two countries or the determination of the

location of a point in one country with re-

spect to the reference system of another

country were undertaken, difficulties arose

because there was no accurately known rela-

tionship between the datums used by the
countries involved. This situation troubled

the engineers occasionally and the scientists

frequently, but only when it had political or

economic effects was there any strong agita-

tion to do something about it. Until artificial

satellites became a possibility in the early

1950's, datums were related to one another

by the following methods.

(1) When only political barriers were to

be overcome, connection of coordinate sys-

tems to each other was accomplished by con-

ventional triangulation and, sometimes, by
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leveling. The principal examples of this ap-
proach were the completion of the arc of the
30th meridian, connecting European to Cape
datums, and completion of the triangulation
between European and Indian datums
(Adams, 1960).

(2) When short stretches of water inter-

vened, the datums were connected by flare
triangulation, as in the connection of Danish
and Norwegian datums across the Kattegat
(Simonsen, 1949).

(3) Longer distances over water were
bridged by use of HIRAN, as in the connec-
tion of the Hawaiian Islands to each other

(Thomas, 1962), the connection of Crete to
North Africa (Owen, 1960), and the connec-
tion of North American Datum 1927 to Euro-
pean Datum 1950 via Greenland and Iceland

(Hopke, 1959; Owen, 1960).
(4) Very long distances over water could

not be bridged with high accuracy. Methods
used for the purpose all (except for the
gravimetric method, of course) depended on
using the moon as an intermediary (Lam-
bert, 1969). The costs of getting up expedi-
tions for surveying in this way were very
high, and because of persistently bad weather
the chances of a successful survey were low.
Lunar surveying expeditions were therefore
infrequent. Various organizations used solar
eclipses or occulations by the moon to get
data that would permit connecting North
American Datum 1927 to European Datum
1950 and to Tokyo Datum. Few results were
published until long after the observations
had been made, partly because there were

military restrictions and partly because of
the difficulty of measurement and the length
of time needed for precise reduction. (See
Kukkamaki_ 1954; Schauer, 1952.)

As was mentioned before, the long-dis-
tance connections were highly inaccurate.
Also, like the HIRAN-based connections,
their values were never published in the open

literature. For all practical purposes the
situation in 1957 was therefore still one in

which datums were continental in scope.
Table 1.1 in the appendix lists those datums
that provide the framework for points in
regions covering more than 200,000 km 2.

Besides these "major" datums, there were a

very large number (well over 100) of minor
or provisional datums, each dominating a
very small isolated region, such as an oceanic

island. Furthermore, there were (and still
are) many datums that in theory had been
superseded by newer datums but that were
the only referents for existing geodetic mark-

ers. (See, for example, Mueller, 1966, and
ch. 8, table 8.4 for an extensive list of
datums.)

Closely connected with the datums (and
the reason for their existence) are the sets of
geodetic control points that form the geo-
metric framework of countries. These sets

are called geodetic networks. Figure 1.4
shows the extent of the networks associated
with the datums of table 1.1.

Station Coordinates.--Although 1957 was
the year that the first artificial satellite was
launched, the setting up of permanent sta-
tions for satellite tracking had been started
several years earlier. The United States'
Vanguard satellites were to be launched in
1958, and the U.S. government had provided
funds for two independent networks of satel-
lite-tracking stations. (See Greene and Lo-
mask, 1970.) These stations were the SAO
optical (camera) tracking stations--not in
operation until mid-1958--and the electronic
tracking stations (PRIME MINITRACK) of
the Naval Research Laboratories (NRL)--
seven such stations were in operation at the
end of 1957. The stations, except in a few
cases, were connected to the geodetic control
of the country in which they were located.

The tracking stations planned for 1958 are
listed in table 1.2 of the appendix (Wilson,
1959 ; Hyneck, 1959). The only ones of these
functioning at the beginning of 1958 are the
six marked by asterisks.

Note that neither NRL (Project Van-
guard) nor SAO located its tracking stations
with geodetic research in mind. Both were
first concerned with ensuring that satellites
launched under the Vanguard project would
be detected and tracked at least once every
revolution. PRIME MINITRACK could

track at any time of the day or night and in
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FIGURP. 1.4.--Horizontal geodetic networks controlled by major datums (1957).

most kinds of weather. NRL was therefore

able to set up its tracking stations so close
together along the 75th meridian that it
created an electronic fence which any satel-
lite would have to cross every revolution
(Mengel, 1956). SAO, on the other hand, had
two important limitations on where it could
place its stations. First, the stations had to
be located in regions with a large percentage
of clear weather. (Many stations were there-
fore located near astronomical observa-

tories.) Second, since SAO had to plan on
photographing satellites by sunlight reflected
from the satellites, the satellites would be de-
tectable only during twilight hours at any
particular station. SAO stations therefore
had to be spaced longitudinally about the
globe in order to ensure that a reasonable
number of observations could be obtained

from the network (Hynek, 1959).

A large number of radar stations were in
operation in 1957. These, for the most part,
were operated by the U.S. Air Force and
were used for tracking missiles launched

from bases in Florida and California. Only a
very few had the ability to track at ranges
over:a few hundred kilometers (it was the
FPS"16 radar at Cape Canaveral that

tracked the Vanguard-1 and Explorer-I).

The Geoid.--In 1957 there was no such

thing as the geoid, even in theory. There
were a number of geoids devised in different
parts of the world by different methods and
according to different definitions. The two
principal types of geoids were the astroge-

odetic geoid (derived by comparing astro-
nomic place coordinates with geodetic ones)
and the gravimetric geoid (derived by means
of Stokes' formula--or some modification of

it--with gravity measurements). There

were also mixtures of the two types of
geoids. The principal gravimetric geoid of
global extent was the Columbus geoid of

1957 (tteiskanen, 1957), derived by the
Mapping and Charting Research Laboratory
of Ohio State University (fig. 1.5). (Gravity
values were scarce in the southern hemi-
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sphere; therefore the geoid was not computed

for that region.) There were no correspond-

ing astrogeodetic geoids, of course. However,

bits and pieces of astrogeodetic geoids, such

as the one for Europe (Lieberman, 1955;

Bomford, 1956), the one for India (Survey of

India, 1957), and the one for Eurasia and

northern Africa (Tanni, 1948) did exist.

Fischer (1959) assembled a number of these

geoids, using the Columbus geoid to connect
the regional geoids. The result is shown in

figure 1.6. (Original values were with respect
to the Hough ellipsoid, a=6,378,224 and

1/f = 297. )

Gravity and Gravitation.--Although a

knowledge of gravity is important to most

science and engineering disciplines, it is ex-

tremely important in three applications : geo-

physical exploration, prediction of trajec-

tories and orbits, and calculation of the geoid.
The prospector needs to know the value of

gravity accurately over small regions but at

points close together; the trajectory spe-

cialist needs to know them over large areas

but can make do with approximate, repre-

sentative values. The geodesist, for calculat-

ing the geoid, needs average values of gravity

over small (1' x 1') or large (10 ° x 10 ° )

regions, depending on the resolution wanted.

Because the surface gravity values were far

from being uniformly distributed over the

globe and were at all levels of error, from less

than 1 _m/s _ to more than 100 _m/s _, there
was little point in using the values them-

selves. Instead, average values over 5 ° x 5 °

quadrangles were quite good enough, consid-

ering immediate purpose and material avail-

able. Table 1.3 in the appendix shows the

values of the coefficients C _, S _ of the gravi-

tational potential as it was known in 1957.

(Note that in 1957 the existence of nonzero
values for odd values of n and of nonzero val-

ues of m was considered impossible. A body in

hydrostatic equilibrium, such as the Earth

was thought to be, must be symmetric about

the axis of rotation and with respect to a plane
perpendicular to that axis. Nonzero values for

the coefficients with n--2k÷l or m--0, k

being an integer, imply lack of symmetry.)

1.1.1.2 The Era of Artificial Satellites (1958

to 1964)

The groundwork for the era of satellite
geodesy was laid well before 1957 in the work

of V. Viiis_il_i, W. De Sitter, D. Brouwer, W.

Lambert, J. O'Keefe, and other geodesists.

Results of geodetic importance did not start

to come in until after the launching of Sput-
nik-1. The first definite new result was the

derivation of the value 1/298.3 for the
Earth's flattening by O'Keefe et al. (1958),

Buchar (1958), and King-Hele and Merson

(1958), using observations of Explorer-1

and Sputnik-2. From that time on, derivation
of further constants defining the earth's

gravity field and of geometric data on the

Earth's shape followed swiftly. Some of the
major events are listed in table 1.4 of the

appendix.

Not all important events of this era were

connected with satellites, however. The clas-

sical methods were still superior to satellite

methods when they could be applied properly,

and important geodetic measurements were

made by classical methods in Africa, Aus-
tralia, and the United States.

By 1964 many of the problems that had

been bothering geodesists in 1957, and to

whose solution they had been devoting years

of study, had been solved with an accuracy

unhoped for in earlier years. A practically
definitive value had been obtained for the

Earth's flattening, the major datums (North

American 1927, European 1950, Tokyo,

South African, and others) had been con-
nected with an error of less than _+50 meters

(compared to _+100 to 200 meters of earlier

years), the geoid was now known, at least in

its larger aspects, over the oceans and in un-

explored or unknown continental interiors,

and the gross features (low-frequency com-

ponents) of the gravitational potential were
known.

Datums.--By 1964 there were only two

methods being used for connecting widely
separated datums: that using HIRAN

(radar) systems and that using satellites.

Flare triangulations, so successfully used in

Scandinavia (Simonsen, 1949) and by the
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12 NATIONAL GEODETIC SATELLITE PROGRAM

United States, were being used for primary
triangulation in Finland, but not elsewhere.
(See Ewing et al., 1959, for a novel method
of trilateration over great distances, which
used oceanic layers of low sonic attenuation,
the SOFAR channel, as a medium.) Ties be-
tween datums using HIRAN were still being
made, but published results were scarce.

Fortunately, satellite geodesy was begin-
ning to provide ties almost as accurate as
those provided by using HIRAN. The points
shown in figure 1.7 represent locations that
had been determined to within _+50 meters.

(Within a few years this value would shrink
to +10 to +15 meters.) Table 1.5 in the ap-
pendix (Kaula, 1963b) gives the "shifts"
Kaula found in six datums. These shifts are

approximately the coordinates of the spher-
ical center of each datum in an earth-center-

of-mass system with axes parallel to the
Earth's axis of rotation and the Greenwich
meridian.

Locations of Stations.--In 1957 only three
organizations, Smithsonian Astrophysical
Observatory (SAO), Naval Research Labo-
ratory (NRL), and Army Map Service

(AMS), were engaged in large programs in-
volving satellite geodesy. The SAO was using
Baker-Nunn cameras, NRL was using
PRIME MINITRACK, and AMS was using

MINITRACK-MII. By 1964 the number of
organizations involved had grown, as had the
number of tracking stations and the variety
of instruments. The NRL Vanguard project
had been absorbed in NASA, and PRIME

MINITRACK was supplemented by 40-in.
(100 cm) cameras (ch. 5). The Coast and
Geodetic Survey was getting its geometric
world network underway, using Wild BC-4
cameras (ch. 7), and the TRANSIT project
(ch. 2) of the Applied Physics Laboratory
(APL) was using 11 or more receiving sta-
tions. Figure 1.8 shows the most important
(with respect to volume of output data)
tracking stations existing in 1964, at the
start of the NGSP.

By 1964 global geoids based on surface
gravity data or astrogeodetic data alone were
almost entirely replaced by geoids based on
satellite-tracking data. The role of the satel-

lite in this situation is that of a free-fall type
of gravimeter that is being transported
around the Earth 12 to 16 times daily. Be-

CONTROL POINTS LOCATED

IN CENTER-OF-MASS

COORDINATE SYSTEM. e-,_-1-5Om.

FIGURE 1.7.--Locations determined to ___50 m.
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FIGURE 1.8.--Most important tracking stations (with respect to
volume of output data), 1964.

cause of its distance from the surface, such
a gravimeter is not sensitive to small varia-
tions of gravity (say, 10-30 t_m/s 2) nor is it
able to distinguish between large variations
close together. Furthermore, unless the satel-
lite is in an orbit of very high inclination, it
is not able to measure gravity from pole to
pole but only over a restricted zone. Within
these limitations, however, the satellite, used

as gravimeter, did provide many data leading
to geoids somewhat distorted through poor
distribution of data. Figure 1.9 shows a
geoid determined by Uotila (1962) from
an analysis of gravity in Legendre har-
monics. Figure 1.10 shows a geoid (Izsak,

1964) based on data obtained by photo-
graphic observation of satellites. A compari-
son of these figures with figures 1.5 and 1.6
shows the difference between the situation in
1964 and that in 1957.

Gravity and Gravitation.--By 1964 a large
amount of data on surface gravity had been
added to what was available in 1957. But the

increase was not large in proportion to the
total volume of gravity data or in proportion
to the amount still to be gotten. Large areas
nf the world (particularly in oceanic or inac-

cessible land regions) had no measurements
at all within them or had a measurement

density of only one value per 500 km _. This
situation was particularly true of the south-
ern hemisphere.

The situation was far different for average
values of gravitation as derived from satel-
lite observations. In 1964 there were values
of the coefficients C_, S'_ for all n,m

through n=7, m=6, for values of n=9
through 13 with m--0, and for various spe-
cial higher values of n,m such as (13,13),

(15,13), (15,14), etc. Table 1.6 in the ap-

pendix shows the status as of 1964.

The quantity GM, the gravitational attrac-
tion of the earth, appears in the formula for

the gravitational potential V as

V= G--M L(k,_,r)
ae

where L is a function (usually a finite
Legendre series) in _,,¢, and r. The best value

for GM was obtained by the Jet Propulsion
Laboratory from data on the tracking of

lunar "probes" and was [3.986 00(9___6)] ×
1014 m3/sec _ (Sjogren et al., 1964).
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16 NATIONAL GEODETIC SATELLITE PROGRAM

1.1.2 Organization of the NGSP

As was mentioned earlier, the overall re-
sponsibility for the program lay with J.
Rosenberg of NASA Headquarters. There
were eight individual but coordinated proj-
ects under Rosenberg's guidance. Those con-
cerned with geodetic problems were carried
out by the Army Topographic Command
(ATC, formerly AMS) using SECOR (ch.
3), the Aeronautical Chart and Information
Service (ACIC) using PC-1000 cameras

(ch. 3), the-Naval Weapons Laboratories
(NWL) using TRANET (ch. 2 and ch. 3),
NASA/GSFC and UCLA using a variety of
data from MOTS cameras and from other

participants (chs. 5 and 10), the U.S. Coast
and Geodetic Survey and the U.S. Army Topo-
graphic Command using observations with
BC-4 cameras of PAGEOS (ch. 7), Ohio
State University (OSU) using those data
from the other participants that could be
fitted into a geometric theory (ch. 8), and
Smithsonian Astrophysical Observatory
(SA0) using data from Baker-Nunn cam-

eras as well as data from other participants.
In addition, there was a separate effort by

NASA/GSFC to evaluate the various track-
ing systems used by the participants in order
to find a valid way of assessing the data and

better ways of processing the data (ch. 5).
The data resulting from each participant's

activities were to be sent, in a form specified
for each kind of instrument, to a central col-

lecting, storing, and distributing center. This
center was the Geodetic Satellite Data Serv-

ice (GSDS). (See sec. 1.3.4.1.) (Not all
data collected during the NGSP reached the
GSDS for several reasons, such as that data

were gathered as part of special projects or
were not in standard format.) Among the
organizations whose data were used in the

NGSP were NASA/WFC, which participated
with its radar network in many evaluations,
and the Jet Propulsion Laboratory, whose
computations of GM and of its station coordi-
nates were used by many of the NGSP
participants.

Finally, to provide a suitable and uni-
formly available set of satellites for the

NGSP, the program was planned to concen-

trate efforts on three satellites designed espe-
cially for geodetic application: GEOS-1,
GEOS-2, and PAGEOS. The first two of

these were constructed by the Applied Phys-
ics Laboratory (ch. 2) and the last by
NASA/Langley (ch. 5).

The work of the major participants and of
the assisting organizations is discussed in

detail in the following chapters. Each chap-
ter is organized approximately under the
headings : introduction, instrumentation,
theory, and results. A final chapter analyzes
the results of chapters 2 through 10 and
evaluates the results on the basis of their

applications.

1.1.3 European Satellite Triangulation Pro-
grams

In 1965 a commission was organized in
Europe to take advantage of the geodetic
satellite that NASA had announced would be

launched. NASA actively supported the

commission's activities by providing predic-
tions and other help. This commission, or-
ganized under the auspices of the Interna-
tional Association of Geodesy (IAG) and
known as the International Commission for

Artificial Satellites, was divided into two
subcommittees : the Western European Satel-
lite Triangulation (WEST) subcommittee

and the Eastern European Satellite Triangu-
lation (EEST) subcommittee. Very few data
or results have been published by EEST, but
the WEST group was quite active until 1972,
when observations ceased and full attention

was concentrated on data reduction (Vari-
ous, 1972). Although neither WEST nor

EEST networks have ever taken formal part
in the NGSP, data from many of the cameras

have been used by NASA/GSFC (ch. 5), by
OSU, and by SAO (ch. 9). Dobaczewska

(1972) and Massevitch (1965) have reported
on EEST work, and there have been other
reports submitted at the General Assemblies
of the IAG. WEST's work is effectively sum-

marized by Lefebvre (1969) and in the pro-
ceedings of a symposium at Graz (Various,
1972).
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1.2 INSTRUMENTATION (TRACKING
SYSTEMS)

It has frequently been pointed out that
great advances in science generally follow
great advances in instrumentation rather
than the other way around. This is a hum-
bling thought for the theoretician, but it is
well illustrated by the development of geod-
esy over the period following the launching
of Sputnik-1. Until 1958 the results of geod-
esy were essentially those obtainable with
classical instrumentation and methods. With
the introduction of the artificial satellite as a

geodetic tool, not only did new results appear
but new theories had to be provided to ex-
plain these results.

Consequently, it is not only desirable but
essential that a description of the instrumen-
tation (including satellites) developed for
and during the NGSP be a major element in
this report. However, we will confine our
attention to the instruments directly in-
volved in measuring the distance, direction,
or velocity of a satellite. They will be called,
in this book, "tracking systems" or "satellite-
tracking systems" to adhere to common
usage, although the term is also applied to
non-tracking systems. Where the distinction
is important, it will be explicitly noted.

A typical tracking system consists of four
to six distinct subsystems, as shown in figure
1.11. There is also interest at present
in tracking systems involving two satellites
simultaneously, one of which is continuously
measuring its distance from or velocity with
respect to the other. See, for example,
Schwartz (1972) for a discussion of one such
kind of system and Martin et al. (1972) for
discussion of another. Table 1.7 in the ap-
pendix lists the types of satellite-tracking
systems used for the NGSP and gives those
characteristics with geodetic significance.

1.2.1 Satellites

Although the fact is often overlooked, a

satellite is an indispensable part of any
tracking system. Not only is the system in-
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FIGURE 1.11.--Subsystem of a general

tracking system.

operative without the satellite, but the meas-
urements made by the system depend in type
and value and in precision and accuracy on
the satellite. This influence of satellites on

geodetic data is analyzed in table 1.8 of the
appendix, and the satellites that have formed
part of tracking systems are listed and their
main characteristics given in table 1.9 of the
appendix. Those satellites of major impor-
tance to the NGSP are described in more

detail by the organizations responsible for
designing and/or building them. Satellites
TRANSIT-1B, ANNA-1B, GEOS-1, GEOS-
2, BE-B, and BE-C are described in chap-
ter 2. Satellites ECHO-l, ECHO-2, and
PAGEOS are described in chapter 5, and the
SECOR series of satellites is described in

chapter 3. Specific instrumentation in or on
the satellite is also covered. The SECOR

transponder is described in chapter 3; the
5-cm radar transponder is described in chap-
ter 6. The ANNA and GEOS satellites car-

ried flashing lamps, which are described in
chapter 3 and are pictured in chapter 2. Cor-
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ner-cube reflectors, used with laser DME, are
described in this section and in chapter 9.

1.2.2 Tracking Equipment on the Ground

Most present-day tracking equipment (in-
cluding MINITRACK, the 5-cm radars,
SECOR, GRARR, and the BC-4 cameras)
can trace its descent from equipment devel-
oped for tracking ballistic missiles. Of
course, many kinds of equipment originally
developed for use on ballistic missiles saw
little or no further development for use on
satellites (e.g., Marquis, 1960; Mertens and
Tabeling, 1965). Almost all other tracking
equipment--the Baker-Nunn, PC-1000, and
MOTS cameras--is descended from astro-

nomical prototypes. Only one instrument,
the laser DME, is entirely of the space age.

Table 1.10 in the appendix shows the most
important characteristics of the satellite-
tracking instruments used in the NGSP.

The precision shown is of course approxi-
mate and is not clearly distinguishable

from accuracy. In spite of the considerable
and important work done by Berbert and
others on calibration and comparison of in-
struments (see sec. 1.3.4 and chs. 5 and 6),
one still has a hard time finding a reliable
way of evaluating either the precision or the
accuracy of an instrument and of separating
the one from the other. Note that the meas-

urements are shown as having been made
either along the line from observer to satel-
lite or transversely thereto. Measurements
made in one mode are therefore not directly
comparable to those made in another. See
chapters 5 and 11 on evaluation of tracking
systems for further discussion of this point.
Note also that FME equipment does not even
measure distances but measures one compo-
nent of the velocity (or a quantity that can
be converted into one component of veloc-
ity); thus comparisons are even more diffi-
cult to make.

1.2.2.1 Camera-Type Tracking Systems

The development of camera-type tracking
systems can be traced back to two special

types of cameras developed in the 19th cen-
tury. (See fig. 1.12.) One is the camera in-
vented by B. Schmidt (1932). His intention
was to get a wide-angle, large-aperture cam-
era that could be constructed easily. The wide
angle and large aperture were obtained by
using a short-focal-length reflector as the
principal element (Bowen, 1960). This cam-
era, the "super-Schmidt" (Whipple, 1949)
then became the starting point for design of
cameras for satellite photography. Other
cameras have followed the same line of de-

velopment. The best known is perhaps the

f/1 camera of Hewitt (1960), which was de-
veloped in Britain. The Soviet VAU (Masse-
vich and Lozinsky, 1970) is a spectacular
variation from the main line. Because of the

influence of Maksutov, inventor of the Mak-
sutov camera (a Schmidt camera deriva-
tive), many Soviet satellite-tracking cameras
follow his design. The AFU-75 is the Rus-
sian camera from which most data have been
obtained and used.

The second line of development was
through the aerial camera. Here again the
line split. One group selected aerial mapping
cameras because the resulting photographs
had very little distortion and because they
had been used on missile testing ranges. The

]
L SCHMIDT

TELESCOPE

(ASTRONOMY)

!SUPER-SCHMIDT_..
FOR METEOR

PHOTOGRAPHY

BAKER-NUNN ] H_AECAMERA

AERIAL

MAPPING

CAMERA

._ BALLISTIC ICAMERA

BC -4(ASTROTAR)

Ir

ITT I BC-4 [(COSMOTAR)

I

I AERIA iRECONNAISANCE
CAMERA

1
PC-IO00,

MOTS,

ETC.

FIGURE 1.12.--Family tree of satellite-tracking
cameras.
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result was the BC-4 series of cameras used

by NGS (ch. 7). Other groups selected aerial
reconnaissance cameras because of their

availability and low cost, and the results were
the DMA/AC PC-1000 cameras (ch. 3) and
the NASA/GSFC MOTS cameras (ch. 5).

Table 1.11 of the appendix lists the most
important characteristics of the cameras

used during the NGSP. Note that no values
are given for the accuracies obtainable with

these cameras. Although one can find in the
literature values given for precision and ac-
curacy of various camera systems, such val-
ues must be considered qualitative in nature.

(The values given in table 1.7 and in chapter
11, for instance, are indicative rather than

definitive.) The accuracy of a camera type of
tracking system depends not only on the de-
sign of the camera, but also on the method
used for measuring the photographs and re-
ducing the data. Not only are differences in
methods of reduction great but the effects of
these differences on the overall accuracy are
difficult to estimate. For example, one would
perhaps expect that the accuracy of a camera
would be related to its focal length--the
greater the focal length, the larger the scale

(microns per second of arc) of the photo-
graph, and the less important the measuring
errors. But with increased focal length usu-
ally comes decreased field of view, and thus
fewer stars with accurate coordinates are

available against which to compare the loca-
tions of a satellite. If the aperture is in-
creased in order to increase the field of view,
errors become larger in the outer parts
of the field. The NGS has done a particularly
thorough job of analyzing the factors affect-
ing camera accuracy, and a reading of chap-
ter 7 and the references cited therein is well

worthwhile. See also the NASA/GSFC eval-
uation of camera performance (ch. 5). Note
that SAO uses two different values for the

of the same laser DME system in order to ab-
sorb into one number the errors in the gravi-
tational potential used with its data (ch. 9).
Information on Russian cameras can be

found in Massevich et al. (1969), Massevich
and Lozinsky (1970), Lozinsky and Leikin
(19_9), and Lapushka (1972).

Calibration of Camera Systems.--One of
the most interesting aspects of the camera
type of tracking system is that it can be cali-
brated by using only its own observational

material. This apparent "bootstrapping"
paradox is a consequence of the fact that the

stars themselves, whose images appear on the
photographs, constitute a set of points with
accurately known coordinates. The proce-
dures used for calibrating the camera por-
tion of the system are discussed by DMA/AC
(ch. 3), NASA/GSFC (ch. 5), NGS (ch. 8),
and SAO (ch. 9). The differences in ap-
proach are not as great as the discussions
might indicate. All organizations use forms
that can be reduced to :

_i= _ai_Xy_r 1 j,k,l= 0 to J,K,L, respectively
j,k,l

where _, (_,.) is the error in coordinate x (y),
the aij_tare constants, and

r2__x-,+y _-

The difference between the photogrammetric

(projective) method used by DMA/AC (ch.
3) and NGS (ch. 7), and, on observations of

GEOS-1 and -2, by NASA/GSFC (ch. 5),
and the astrometric (Turner's) method used

by SAO (ch. 9) and on some occasions by
NASA/GSFC (ch. 5) lies simply in the fact
that in the photogrammetric method there
are, between the constants [aiy}, relations
derived from optical considerations, whereas
in the astrometric method no such relations
are specified. Which method is preferable
will depend on the system being calibrated.
A system with a wide field of view (BC-4,
MOTS, PC-1000) will either require more
terms in the above equation to account for
distortion and aberration than will a system
with a narrow field of view, or for the same
number of terms will require assumptions of
relations between coefficients.

Hornbarger (1968) studied this question
with some thoroughness. Whether his con-
clusion (the photogrammetric equations are
preferable for use with wide-angle cameras)
is in general correct is still not known. One
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indication of our uncertainty of what the

photogrammetric version of the calibration

equations should look like can be gotten by

comparing the equations used by the various

authors in this work (chs. 3, 7, and 9). Ber-

bert and others (unpublished reports) have

compared results of using particular equa-
tions.

Because of the peculiar nature of the cam-

era data, there is little difference between the

calibration process and the ordinary process

of photographic data reduction. The de-

scriptions given in the sections on preproc-

essing of data therefore apply almost un-

changed to the calibration process. The most

significant difference is that calibration may,
as in the case of the PC-1000 cameras

(ch. 3), occur long after the photographs of

a satellite have been taken. If the experiences

of users of other cameras is applicable to

PC-1000 camera systems, then such long
times between calibration degrade the data

on satellite tracking.

Measuring Engine.--The camera type of

tracking system is unusual in that the meas-

uring part, the comparator, is usually hun-

dreds or thousands of kilometers away from

the rest of the system. But the comparator,

unless care is taken, can contribute from 10

to 50 percent of the total error to the data,

and it is therefore as important as any other

portion of the system. Almost all of the
measurements used for the NGSP were made

on the D. Mann Company's comparators, and

that company's literature can be consulted

for information on specific instruments. Most
of the measurements have been with instru-

ments in which the point of measurement

was selected by a human operator (NGS,

SAO, NASA/GSFC), but some were made
with an instrument that itself selected the

precise point of measurement (DMA/AC).
The distinction is important because the lat-

ter type is capable of attaining greater pre-
cision than the former.

The least reading--that is, the shortest

distance shown directly on the machine--is,

for most of the measuring engines used

by NGSP participants, lt, along each axis.

Shorter distances can be estimated by inter-

polating visually between graduations if the

measuring engine is appropriately equipped.

If the machine indicates its readings digi-

tally, as is most often the case, no interpola-

tion is possible. The least reading is then
often taken to be the resolution of the ma-

chine, and the precision and accuracy are

assumed to be limited by the least reading.

This assumption is not correct, however. The

precision and accuracy attainable depend on

many more factors than just the least read-

ing, and some of these are much more impor-

tant. Table 1.12 in the appendix lists the

most important factors. Note that the accu-

racy of the instrument does not depend on the

accuracy of the screws or scales. This ap-

parent paradox is readily explainable. The

explanation lies in the method used for cali-
bration.

For a discussion of standard methods of

calibration, see Hotter (1967), Rosenfield

(1963), and Hallert (1963). For a discussion

of optimal methods of calibration, see Marck-

wardt (1971), Bennett (1961), and Henrik-

sen (1965). The entire system can be cali-

brated without separate calibration of the

camera portion and the comparator portion.

(See Hotter, 1967, and ch. 7.)

1.2.2.2 PRIME MINITRACK

The original frequency allocated to MINI-

TRACK was 108 MHz. This region of the

spectrum was, however, part of the general

band intended for use by commercial televi-

sion. When pressure for reallocation of the

108-MHz frequency band to commercial use

became heavy, MINITRACK was modified to
work at around 136 MHz and remained there.

Data used in NGSP were taken by the 136-
MHz version.

The basic PRIME MINITRACK system

(Watkins, 1969; Wilson, 1959; Mengel,

1956) consists of (1) pairs of linear antenna

arrays arranged on base lines perpendicular

to each other (fig. 5.7, ch. 5), (2) a set of

radio receivers and phase comparators, and
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(3) a radio beacon emitting a signal at a

fixed frequency around 136 MHz. The arrays
are connected in pairs by coaxial cables to the
receivers. The phase of a signal arriving at
one array of a pair is compared with the
phase of the signal arriving at the other

array, and these phases are converted to
direction cosines.

Because of the long wavelength (2.2 m)
compared with the distance between the ar-

rays (125 m), the standard deviations of
the directions measured by PRIME MINI-
TRACK are about __20" at best. This value

is considerably worse when the sun is very
active. The characteristics of PRIME MINI-
TRACK are summarized in table 1.13 of the

appendix.

1.2.2.3 Distance-Measuring Equipment

From the geodetic point of view, a basic
difference between distance-measuring equip-
ment (DME) and angle-measuring equip-
ment (AME) is that the latter can, in prin-
ciple at least, provide the data in a celestial
(stellar) reference system, whereas the
former provides its data in the system of the
local datum. Furthermore, there is a differ-
ence between types of DME that divides such
equipment into two groups. Instruments in

one group measure the time it takes a pulse
to travel from the transmitter on the ground
up to the satellite and then back to the re-

ceiver. Instruments in the second group
measure difference in phase between a con-
tinuous wave traveling from the transmitter
up to the satellite and back to the receiver.

Although this distinction is justified by the

very different construction of equipment in
the two groups, it is just as important from
the geodetic point of view because of the

effect it has on the way the data from each
group are treated.

A pulse travels at the velocity v_/ of the
group of waves composing it, and the meas-

ured distance is equal to

s = _v,j dt

whereas the distances obtained by phase
measurement depend on the phase velocity v
of the single frequency involved

s=x=_xv¢ dt

In the ionosphere, v,j and vo behave quite dif-
ferently and this difference must be taken
into account in the reductions. Table 1.14 in

the appendix summarizes the principal char-
acteristics of DME as used with satellites.

Pulse-Type DME--Laser DME.--A laser
DME system consists of the following essen-
tial components: (1) a generator and trans-
mitter of light pulses, (2) a reflector of the
pulses, (3) a detector of the light pulses, and
(4) a timing device for measuring the time
interval between emission of the pulse and
detection of its return.

In addition, since measuring satellite dis-
tances simultaneously from several stations
is very difficult, each station also has a clock
for giving the time of pulse emission. The
time and distance (calculated from the time
interval) are then used to compute the satel-
lite orbit. Table 1.15 of the appendix com-
pares the major characteristics of systems
giving data used in the NGSP. Table 1.16 of

the appendix lists the satellites that, because
they carry corner-cube reflectors (sec. 1.2.4),
have been much tracked by laser systems.

5-cm Radar.--The 5-cm (C-band)' radar

systems discussed in chapter 6 consist basic-
ally of (1) a transmitter, composed of a pulse
generator and amplifier, (2) a paraboloidal
antenna, (3) a receiver, and (4) time-inter-
val-measuring devices. It may include a
transponder carried on the satellite, and the
distance at which a satellite can be tracked
is then greater because the signal-to-noise

ratio at the receiver of the tracking station

'What is here termed 5-cm radar is also called

C-band radar. The designation by letter is an in-
heritance from World War II days, when the Allies
assigned letters in random fashion to various parts

of the radio spectrum. The radar systems operating
in these frequency ranges were then designated by
the same letters.
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is improved. (See table 1.17 in the appen-
dix.) If the transponder is not present, the
pulses of the radar system are simply re-
flected from the surface of the satellite.

When the pulses are reflected in this manner,
the radar is sometimes said to be "skin track-

ing." When a transponder is used, the pulse
from the tracking station is picked up by the
satellite antennas, amplified, and reemitted.
Since the 5-cm radars were originally de-

signed and are still mostly used for tracking
rocket-propelled missiles, they also measure
azimuth (A:) and elevation (Ez) components
of the direction to the satellite. The errors in

these quantities are of the same size as those
in directions measured by PRIME MINI-
TRACK (1.2.2.2) but are 10 to 20 times
larger than those measured by camera sys-
tems (1.2.2.1). The angular measurements
are therefore not of great importance for
geodetic purposes. Table 6.2 (ch. 6) lists
the radar Systems used on geodetic or calibra-
tion projects during the NGSP. Although
some nine different models of radar are

listed, the differences are often only as simple
as, for example, whether vacuum tubes or
transistors are used in the circuitry or
whether the system is mobile or fixed. There
are more significant differences within dif-

ferent systems of the same model; for ex-
ample, FPS-16's may have different radio-
power outputs. The characteristics of the
two major varieties of 5-cm radar, the AN/
FPS-16 and the AN/FPQ-6, are given in
table 1.17 in the appendix. A block diagram
of the AN-/FPS-16 is shown in fig. 1.13.

It should be noted that large radar sys-
tems, such as those used in the NGSP, are
invariably subject to engineering mutation.
This means that each radar system is struc-
turally unique and that no two radars have
the same geodetically significant measuring
characteristics. It also means that no one

system can be depended on to retain its char-
acteristics unchanged .over a long period.
Even the strictest supervision has never been
able to prevent the personnel operating a
radar system from "improving" (the engi-
neering term is "tweaking") the equipment.
As a result, published values for the char-

FIGURE 1.13.--Basic AN/FPS-16 (simplified

block diagram).

acteristics of one radar cannot be used for

another system even of the same model.
Furthermore, calibration constants deter-
mined for one epoch cannot be relied upon at
a later epoch. For these reasons the calibra-
tion projects carried out under the NGSP are
of great importance.

Phase-Type DME._There is a close rela-
tionship between the principle on which
phase-type AME like PRIME MINITRACK
works and that on which phase-type DME
like SECOR and GRARR works (and on
which, for that matter, the Michelson inter-
ferometer works). This relationship is indi-
cated by the sketch in figure 1.14. The figure
shows, first, a MINITRACK system with two
antennas, 1 and 2, separated by a distance d.
The beacon in the satellite emits CW radia-

tion and the phase of the wavefront at an-
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FIGURE 1.14.--Principle of phase-type DME.
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tenna 2 is compared to that at antenna 1.
There is an ambiguity of an integral number
of wavelengths in the total phase.

If we add to antenna 1 a transmitter

(shown enclosed by dashed lines) and de-

crease the distance d to a quantity smaller
than the expected resolution of the system
(say, 10 cm) and if we replace the beacon by
a receiver/transmitter unit (transponder),
we have essentially a phase-measuring sys-
tem whose observations can be translated di-

rectly into distance (with, of course, the
usual ambiguity). If the phase difference is

A¢, then the distance r to the transponder is

r-----_-_+nA

where _ is the wavelength and n is an un-
known integer.

Ambiguity can be resolved by either of two
methods.

If r is known to within _+_,/2, the correct
distance is

r= -_ 2

where ro is the approximately known dis-
tance.

The distance can be measured at wave-
lengths ._,,_,_.... , _,s, where

x_= k_(X.1)

and k_ is an integer such that _/k_ is greater
than the smallest resolution interval on A___.
This method is used on data from SECOR
and GRARR.

1.2.2.4 Frequency-Measuring Equipment

Two "range rate," or frequency-shift-
measuring, instruments have been used in

the NGSP to an extent great enough to war-
rant detailed description. One, TRANSIT
(or AN/ASN-8) developed by the Applied
Physics Laboratory (APL), is described in
detail in chapter 2. The other, developed by
MOTOROLA, ADCOM, and others for

NASA/Goddard Space Flight Center and

referred to as GRARR (or STADAN RR,
GRR), is described in detail in chapter 5. A
third system, DSS, developed by Jet Propul-
sion Laboratory for tracking spacecraft at
very great distances, has been of less impor-
tance for geodesy. Data from it have been
used, however, to derive values for GM and
for the coordinates of the stations them-

selves. The system is discussed briefly in
chapter 4.

All the systems compare the frequency of
radio waves received at a station with the
frequency emitted from some source of

known frequency. The TRANSIT system
places the emitter in the satellite; the

GRARR and DSS systems place the emitter
at the same point as the receiver and place a
relay (transponder;receiver/transmitter) in
the satellite. The TRANSIT system has the
advantage of simplicity but depends for its
accuracy on the stability of the source. The
GRARR and DSS systems are much more

complex than the TRANSIT but give the
operator exact knowledge of the emitted fre-
quencies. The observation equations for the

three systems are of course similar. They
differ mainly because a transponder cannot

simultaneously receive and transmit signals
of the same frequencies unless the antennas

are designed to ensure that the transponder
does not receive its own emitted signals. A
transponder could be designed to alternately
receive and transmit. But designers of

GRARR and DSS systems (and of SECOR)
preferred to have the transponder receive
signals at one frequency and transmit at
another. The observation equations are
therefore written to take this fact into ac-
count.

In the TRANSIT systems (fig. 2.7, ch. 2)
the incoming waves are separated by two
(or more) tuning sections into component
signals of frequencies fl, f2, and so on.
(TRANSIT uses two frequencies, but four
frequencies have been used in earlier work.)
Each separated frequency is heterodyned
down to the frequency :

m

aft - f,,- fo,
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m

where the frequency foi, obtained from a fre-
quency standard at the station, is a close
approximation to the frequency foi used in
the satellite. This frequency is then "tracked"
--that is, a reasonably stable, local oscillator
is locked in phase to the frequency n f, and
the output of the local oscillator is then
measured and recorded. The phase-locking
circuit provides a filtering action, since it
responds slowly to sudden changes. The out-
put of the local oscillator (also denoted as ±f
for convenience) is sent to a counter which
measures the period of _fl. The result, times
of starting the count, and the number of
cycles counted are recorded.

For the design of GRARR system, see
chapter 5; for the design of DSS systems,
see chapter 4.

Table 1.18 in the appendix lists the satel-
lites which have carried beacons for use with
FME.

The velocity v8 of a source and the volocity
v, of a receiver are related to the frequencies
fo and f,, emitted and received, respectively,
by the Doppler equation :

f"=f°I1 (v'_-v') "r 1c

where r is the vector from source to receiver.

See section 1.4 and chapter 2.
Besides the work of APL on the theory of

FME, there should be mentioned the analyses
of Lorens (1959) and Mendoca and Garrioff
(1962).

1.2.3 Timing Subsystems

In theory, two different kinds of time-
measuring systems should be used for satel-
lite geodesy. One kind, of only fair accuracy
(say, 1 part in 10_), would be adequate for
static satellite geodesy, since this kind of
geodesy uses observations taken nearly simul-
taneously. The timing subsystem at a track-
ing station would then need to be just good
enough to allow adjustment of all observa-
tions to a single, common time and to allow
accurate compensation for the rotation of the

Earth. Of this type are timing subsystems
used in camera-type tracking stations where

the light flashes from GEOS are photo-
graphed simultaneously at other tracking
stations (such as DOD's and WEST's track-

ing stations) or where they are photographed
by reflected light in near simultaneity with
other cameras (such as the NGS network).
SECOR, an electronic DME which measures
phase simultaneously with similar DME, is

also of this type. On the other hand, cameras
and electronic instruments making their ob-
servations independently of all other systems
would require highly accurate clocks (errors
of 1 part in 1011 in rate or better) to give the
times used in the equations of dynamic satel-
lite geodesy. APL's (ch. 2) system is cer-
tainly of this type, as are the instruments in
the JPL network (ch. 4) and those in NASA's
PRIME MINITRACK network (ch. 5).

It turns out that most tracking systems
have the same general kind of timing sub-
system. The timing subsystem is composed of
two different kinds of components. One kind
is concerned with putting out extremely ac-
curate or precise time intervals. It furnishes
the time scale for the station (Essen, 1962).
Its most important unit is the frequency
standard (Essen, 1962; Behler, 1967). This
unit provides time intervals with a precision
of 1 part in 10 TM to 1015 (table 1.19 of the ap-
pendix) depending on whether the oscillator

in it is a quartz crystal, cesium beam, or
hydrogen gas (Mainberger, 1958; Throne,

1968). The frequency of this oscillator is
monitored by means of VLF broadcasts from

one of a number of stations (table 1.20 of the

appendix). The frequency standard sends
the time intervals to a clock. The epoch of
the clock is set according to pulses received
from one of a number of VHF time-broad-

casting stations (table 1.20 of the appendix).
Time established in this way is accurate to

from about 0.2 msec to perhaps 1 msec, de-
pending on the state of the atmosphere, dis-

tance of the broadcasting station f_om the
receiver, and so on.

Since this accuracy is not good enough for
many applications, a portable cesium or
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rubidium clock is carried from a primary
time station, such as the U. S. Naval Obser-
vatory (cesium only), to the field stations
and then back to the primary time station.
This procedure, begun by Rader and others
in 1960 (Rader et al., 1961) is now used by
almost all organizations that run tracking
systems. Clocks can be synchronized to bet-
ter than 10 _sec as a routine matter, and to
1 _sec with care.

The second kind of component of a timing
system is of course that directly concerned
with timing or controlling the scheme of
measurements at the station. At stations

with camera-type tracking systems, the clock
is used to time, and sometimes to control, the

opening and closing of the camera shutters.
At stations with laser DME, the clock, acting
as frequency divider, provides accurate time

intervals, which are sent to the counting or
timing instrument. This measures the time

elapsed between pulse emission and pulse re-
turn. It also provides the time of pulse emis-
sion and/or pulse return. At stations using
phase measurement for finding distance
(such as SECOR and GRARR), the fre-
quency standard ensures that the modulating
frequencies are of correct wavelength.

It is worthwhile mentioning here some
relatively new timing subsystems. One of
these, the subsystem that controls synchro-
nism in television receivers and transmitters,
is unlikely to be of great importance to sat-
ellite geodesy of the future. It can pro-
vide a frequency referent with a precision
of 1 part in 1011 and is immediately available
to anyone with a television receiver (Davis
et al., 1970 ; Davis, 1971). Another subsystem
is that contained in the Navy Navigation
Satellite System (NNSS) satellites. This
subsystem provides time (not frequency) to
+_0.2 msec. A third is the timing subsystem
in TIMATION satellites. Experiments were
made by S. C. Laios at GSFC in 1969 using
GEOS-2 as a carrier of time from the Ros-

man, North Carolina, tracking station to
other tracking stations. Time derived in this

way agreed to within 25 _sec with time given
by cesium clocks whose time was carried
from Rosman. (See also MueUer, 1969.)

FIGURE 1.15.--Corner-cube reflector.

1.2.4 Corner-Cube Reflector

Although they are not usually thought
of as instruments, corner-cube reflectors
(CCR) _ are an important part of many

satellites and of many distance-measuring
systems. They have the property of reflecting
incident energy back in the direction from
which it came. The CCR gets its name from
the fact that it can be (and sometimes is)

made by removing a corner from a cube (fig.
1.15). The theory of the corner-cube reflector
at optical wavelengths is covered in detail
by Yoder (1958), Chandler (1960), Karube
(1967), and Chang et al. (1971), and at radio
wavelengths by Spencer (1944), and Blank
and Sacks (1965). The earliest attempt at
using CCR's in satellite geodesy was not done
with lasers but with 60-inch searchlight
beams. The initial experiments carried out
by J. A. O'Keefe in 1957, using corner-cube
reflectors on the earth's surface, were un-
successful because of the large amount of

These are also referred to as cube-corner re-

flectors, corner reflectors, and retroreflectors. The
first of these terms would be best, but it is not as
common as "corner-cube reflectors." Retroreflector

is definitely inappropriate as a synonym for the CCR,
since other prism.q than the CCR nvo v_tvare__eetors.
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backscattered light involved. Not until the
narrow laser beam was available did the CCR

idea become practicable at optical wave-
lengths for satellite geodesy.

Note that the CCR for radio waves is much

larger than that for light. This size makes it

impracticable to form large arrays. Other
forms such as the Laneburg lens and the
Helisphere-(Schrank and Grove, 1968) are
also used. NASA/WFC uses the Van Atta
array (see ch. 6).

1.2.5 Evaluation of Performance of Tracking
Systems

A tracking system can be considered as
being made up of two parts, the physical and
the mathematical. The physical part is the
obvious part; the mathematical part, which
is just as important and consists of the cali-
bration constants and error estimates, is
often overlooked. NASA in setting up the
NGSP realized the importance not only of
the physical machinery for observing the
satellites but also of the calibration constants
and the error estimates. It ensured that these

mathematical components of the systems
would be adequately dealt with by making
them the particular responsibility of a group

within NASA. This group, headed by J.
Berbert of GSFC, undertook its task by
making an extensive and exhaustive series

of comparisons of the performance of the

tracking systems participating in the NGSP.

Most of the work done by the group is pre-
sented in a long series of internal reports of

GSFC, but a considerable portion has not yet
been put together. Other personnel at GSFC

and Wallops Flight Center also compared
systems of the NGSP. A report (X-514-67-
315 GSFC) of J. Berbert's represents the

status as of July 1967.
But as Socrates put it, "Comparisons are

slippery," and very great care is needed in
interpreting the results of such an evaluation.

The subject is examined critically in chapters
5 and 11.

1.3 DATA

The preceding sections on the origin and
development of the NGSP, on its place in the
geodetic scheme, and on the instrumentation
used to acquire data :_are important if one
wishes to understand the theory and results

presented in _his book. The data themselves,
however, are the basic life-stuff from which
the results are built up, and these are always
the first interest of the geodesist and of other
users. The scientist takes the data, molds
them into the skeleton provided by theory,
and produces a new creation that can be
utilized to produce newer versions, in steadily
progressing cycles of improvement.

So with this section we enter on a discus-

sion of purely geodetic aspects of the NGSP.
It is of course impossible to give here, or even
in the individual chapters, the totality of data
that the NGSP produced. There were, for
instance, over 200 000 observations made by
Baker-Nunn cameras alone, and the total
number of observations made during the
NGSP and available from the Goddard Sci-

ence Data Center (sec. 1.3.4.1) is probably
over 2 000 000.

The data used for the NGSP fall into four

categories--(1) constants, (2) locations of
and geometric relations between observers,
(3) models of the geopotential and/or gravi-
tational potential, and (4) measurements giv-
ing the satellite's distance or direction with
respect to the observer, or the difference in

frequency between signals from the satellite
and signals from a standard. An additional
category, auxiliary data, contains all those
data such as temperature, pressure, calibra-
tion constants, etc., which are used to correct
the measurements for their departure from
their "ideal" values. Such data are of ephem-
eral value and are not listed in this volume.

1.3.1 Constants

Although the participants in the NGSP
had common geodetic objectives, they took

8 By data is meant, of course, the set of all numbers
inserted into the theory (sec. 1.4) and from which
values of the unknown are then derived.
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completely independent paths toward them.
As a consequence, the results from each par-
ticipant are derived not only from different
observational material and from different
theories but also from different values for
the fundamental constants or even from dif-
ferent fundamental standards.

For the benefit of those who will be work-

ing with data or results from the NGSP, a
summary is given of the sources of standards
and reference values that should be used.

1.3.1.1 International Standards

The units adopted by the General Confer-
ence on Weights and Measures are as fol-
lows :

Meter (length) m
Kilogram (mass) kg
Second (time) s
Ampere (electric current) A
Degree kelvin (temperature) K
Mole (amount of matter) mol
Candela (luminous intensity) cd

These units have the status of interna-
tional standards and form the basis for the

set of units known as the "Systeme Inter-
national" (SI). Besides these fundamental
units, there are a number of supplementary
and derived units. The derived units are
defined in terms of the fundamental units.

Their definitions and symbols are given in
table 1.21 of the appendix; for full discus-
sion see, for example, Page et al. (1966),
Page and Vigoreaux (1970), and Markowitz
(1973).

1.3.1.2 Defined Physical Constants

Table 1.22 of the appendix lists those
quantities which are of particular interest to
geodesists and for which values have been
recommended for common use. Two sets of

quantities are listed. Set I (table 1.22a)
consists of physical quantities. Its values
were recommended by the NAS/NRC Com-
mittee, on Fundamental Constants in 1963

(Jet Propulsion Laboratory, 1964). The U.S.
National Bureau of Standards has published

a revised list (Abramowitz and Stegun,
1971). The revised list is based on the 1969
adjustment by Taylor et al. (1969a,b). How-
ever, the International Council of Scientific
Unions has not yet (1973) finished an official

readjustment, so adherence to the older
values is advisable.

Set II (table 1.22b) consists of astronomi-

cal quantities for which conventional values
have been adopted. These conventional or
defined values are, unlike the older set that

they replace, self-consistent (Kulikov, 1964).
Since they have the sanction of the Interna-
tional Astronomical Union (Wilkins, 1964,
1965), they are being used in the computation
of the national ephemerides and in other
computations. The geodesist should therefore
use these values in all cases where data from

national ephemerides are used. JPL's and
SAO's results (ch. 4) should of course be
evaluated with their use in mind.

113.1.3 Time

Time as a fourth coordinate in geodesy and
in satellite geodesy in particular is important
for at least three reasons. First, positions on
the earth's surface are not fixed but vary
slowly with time. For every set of coordi-
nates of a point in 3-space, the time at which
these coordinates were determined should

also be given. See, e.g., the discussions of
polar motion in chapters 3 and 5 and of
continental drift in chapter 3. Motions of this
kind are slow and do not require measure-
ment of time to better than an hour at the

least. Second, the theory of motion of a
satellite was used either entirely or in part
by eight of the investigators (chs. 2, 3, 4, 5,
6, and 9) in the NGSP for finding positions
and the gravitational field. Time is the only
independent variable in these theories, and
the times of measurement should be known
to better than ± 0.1 msec in order that final

errors be acceptably small. Third, even in
the cases where the theory did not involve
satellite motion and was nominally geometric
(chs. 5, 7, 8, and 9) because observations
were made simultaneously, time was involved
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through the rotation of the earth. The ob-

servations were only simultaneous in small

subsets of the total set of observations, and

the times between subsets (or equivalently,

times of subsets) had to be determined ac-

curately (but not as accurately as in the

second ease, because the angular velocities

were less). Unfortunately, time is measured

in a number of different systems and the

relations among them are not in every ease

carefully stated.

Table 1.23 of the appendix lists the epochs

of major importance in the NGSP ; Table 1.24

of the appendix lists the time scales of major

importance. The most valuable source of

information on epochs of astronomical im-

portance is the Explanatory Supplement to

the Astronomical Ephemeris and the Ameri-

can Ephemeris and Nautical Almanac

(1961). Because time scales have been

changed repeatedly since 1961, each change

marking a discontinuity in the corresponding

time and epoch, the Explanatory Supplement

is not satisfactory for information on time

scales. For this, Hudson (1967), Preuss

(1966), Mueller (1969), Guinot and Feisel

(1969), Smith (1972), Henderson (1972),

and Chi and Fosque (1973) should be con-
sulted.

All investigators used either universal time

coordinated (UTC) or atomic time (AT)

during the NGSP (see table 1.24). Those

observers having atomic clocks generally

used portable clocks to relate the time from

the atomic clock to time of the U.S. Naval

Observatory and used portable frequency
standards or VLF broadcasts to maintain the
AT scale.

1.3.2 Coordinate Systems
r

Satellite geodesy is carried out in two
different kinds of coordinate systems: the

system defined by reference to fixed points on
the earth and the system defined by fixed

points (stars) in the heavens. The theory of

transformations between these systems is dis-

cussed in succeeding chapters (e.g., chs. 5, 7,
and 8). Their definitions, however, occur in

the NGSP as data and therefore are given

here. The first kind of system is defined by

datums (1.3.2.1), the second kind by, in a

practical sense, star catalogs (1.3.2.2). Be-

cause the coordinates of satellite-tracking

stations bear in many cases the same relation
to datums that stars do to astronomic refer-

ence systems, these coordinates are given

here rather than being discussed in the sec-
tion on unknowns in section 1.4.1.

1.3.2.1 Datums

The set of constants that defines the rela-

tionship between a coordinate system (which

is a mathematical abstraction) and the real
earth is called a datum. The number of con-

stants in this set depends on the kind of

coordinate system chosen. From elementary
mechanics it is known that the motion of a

rigid body (such as a coordinate system) is

completely specified by six quantities: three

linear quantities that give the translation of

a point in the body and three angular quanti-

ties that give the rotation of the body about

the point. (Time is not relevant here.) There-

fore, a datum for a Cartesian orthogonal

coordinate system contains six constants
(some of which, of course, can be made equal

to zero by suitable definition). If a geodetic

coordinate system is to be used, the datum

must also specify the size and shape of the

ellipsoid. This means three additional con-

stants if the ellipsoid is triaxial, two if the

ellipsoid is a spheroid, and one if the ellipsoid

is a sphere. Since all geodetic reference sys-

tems in use at present specify an oblate

spheroid as the reference surface, all the

corresponding datums should contain eight

constants. If, as is usually the case, the axes

of the spheroid are defined to be parallel to
the earth's axes of rotation and to the

meridian of Greenwich (or some other stand-

ard meridian), then only five constants need

be given explicitly.

It has been customary to specify different
datums for horizontal and vertical coordi-

nates, and usually to specify them in such a

way that there is no defined relationship

between the two. The consequent errors

induced in each coordinate begin to appear
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as the accuracy of three-dimensional geodesy
increases, and care must therefore be used
when dealing with datums or interpreting
the meaning of coordinates in them.

Every satellite-tracking instrument used
to gather the data for the NGSP is located in

some reference system for which a datum
exists, but they are far from all being in the

same reference system or datum. Table 1.1
in the appendix lists those datums which
control regions of more than 200 000 km.
The majority of the satellite-tracking instru-
ments are on one or more of these datums.
Datums of smaller extent are described in

chapters 3 and 8 and in NASA Directory of
Observation Station Locations (1973). Al-
though the above definition of a datum is
theoretically correct, the geodesist applying
it to the "datums" now existing will find that
very few of these meet all the conditions
necessary to make them well-defined. This
means, of course, that calculations made with
such existing ill-defined datums are errone-
ous. Fortunately, the errors are, as was
mentioned earlier, insignificant by present-
day standards. Excellent references on the

pitfalls of datum definition are Yeremeyev
and Yurkina (1969), Isotov (1968), and
Hristow (1968).

Besides the absolute or geometric datums,
there are a large number of datums estab-
lished for use in orbit computation. These
"dynamic" datums are all defined to have
their origins at the earth's center of mass;
their axes are oriented relative to various

arbitrary choices. The most common orienta-
tion used because of the characteristics of the
tracking systems involved is to have one

axis in BIH's (Bureau International de
rHeure) meridian of zero longitude (Guinot
and Feisel, 1969) and the other parallel to
the 1903 mean axis of rotation of the earth.

However, in execution these intended sys-
tems are not necessarily adhered to. (See
chs. 3 and 7.)

Locations of Stations.--Locations (coordi-
nates) of satellite-tracking stations are prop-

erly classified as unknowns (see ch. 4).

However, the importance of the surveyed
coordinates in fixing the local datums makes
it desirable to use them as data also. For this
reason, the coordinates on local datums are
discussed here.

Until such a time as one datum is adopted
by all countries, points on the Earth's surface
will occur in sets, each set belonging to a
different datum. This diversity of datums
was first caused by the political nature of
survey activities, but it also has good tech-
nical justification. One reason is that at
present all so-called "World Geodetic Sys-
terns" are defined in such a way as to give
large (5 m to 50 m) values for the rms error
of all points on the earth's surface. A suit-
ably chosen absolute reference system, on the
other hand, can give from 0 to 4 m rms error
for most of the points within the region
governed by the datum. Another reason is
that a datum designed particularly for a spe-
cific region can usually provide a better local
fit of spheroid to the geoid than does a datum
specifying a single spheroid for the world
(for examples, the Great Lakes Datum, Aus-

tralian Geodetic Datum, and Old Hawaiian
Datum). Furthermore, it should be noted
that while the coordinates of points in World

Geodetic Systems (WGS) must change every
time a change is made in the theory connect-

ing the WGS's origin to surface points, no
change due to theory is introduced into coor-
dinates on local datums. Such coordinates

are absolute and are not relative to a par-
ticular theory.

For these and other reasons, coordinates

on the local datums are very important. It is

therefore these coordinates that are given
for the observing stations. Coordinates in

relative coordinate systems as derived
through the theory of satellite motion are

given among the results in the various chap-
ters following. Table 1.25 of the appendix

lists the stations in order of increasing longi-
rude. (In order to keep European stations

close together in the table, the list begins at
longitude -30°.) The last column tells what
sets of results used these stations in their
derivation.
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Locations of radar stations other than

NASA's that participated in the NGSP are
given in the NASA Directory (Anonymous,
1973). Locations of TRANET stations whose
positions were determined by NWL are given
in chapter 3 and are the coordinates of the
phase centers of the antenna arrays (ch. 2).
They differ from the coordinates given in the
NASA Directory for the same stations by the
difference between phase center and geo-
metric center.

1.3.2.2 Stellar Positions

All data from camera-type tracking sys-
tems in the NGSP were reduced by using

stellar positions taken from one of two star
catalogs, the Fourth Fundamental Catalog
(FK4) (Fricke and Kopff, 1963) or the SAO
Star Catalog (Staff of Smithsonian Astro-
physical Observatory, 1966). The former has
been used by European tracking stations, the
latter by DOD, NASA, NGS, OSU, and, of
course, SAO. The SAO catalog, described by
K. Haramundanis (1967) and H. Eichhorn
(Mueller, 1969), is made up of positions
taken from nine different sources. The co-

ordinate system is that of the FK4 (whose
positions are included); the Boss catalog
(Boss, 1936), AGK2 catalog (Schorn and
Kohlschutter, 1951-1953), Yale Zone cata-
logs, and Cape Zone catalogs contributed
most of the positions. Figure 1.16 (Hadara-
mundas, 1967) shows the distribution of
stars according to magnitude and .spectral
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type; figure 1.17 (Hadaramundas, 1967)
shows the distribution of the standard devi-

ations of the positions according to declina-
tion.

Besides being needed for reduction of data
from camera-type tracking stations, stellar
positions are needed for the determination of
time and polar motion. Whenever an obser-
vatory changes the characteristics of the set
of stars it uses for time determination, it

changes the epoch as well as the accuracy of
its determinations. The geodesist need not
concern himself with the mechanics of this

process, but should keep track of the ensuing
changes in time. See section 1.3.2.2 for a
discussion of the effects of star position on
time determination. See also Mueller (1969)
and Melchior et al. (1972).

1.3.3 Gravity I and Gravitation

Most of the results given in this report
were derived from observations on the satel-
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lites alone. This is, of course, obvious for the
results of static satellite geodesy, and many
of the results on the gravitational field of the
earth were also derived as part of a general
solution based on observations alone. A few

results were, however, based in part on either
computed values for the gravitational poten-
tial or average gravity anomalies.

APL's results (ch. 2) were derived with
the use of values for coefficients of the zonal
harmonics provided by Anderle and Smith of

Naval Weapons Laboratory. These values
are listed in chapter 2.

Both SAO and NASA/GSFC used average
gravity anomalies as additional input for
their solutions. GSFC's GEM-6 used Rapp's

averages over 555×555 km _-areas (ch. 5).
The gravimetric geoid was based on average
gravity anomalies obtained from DMA/AC,
University of Hawaii, and other sources, as
well as on measurements. SAO's data on

gravity were obtained from DMA/AC (ch. 9).

1.3.4 Observational Data

The volume of data accumulated by obser-
vations on satellites exceeds that of all other

categories of data by several orders of mag-
nitude. Almost every satellite launched by
the United States has had its distances, direc-

tion, and/or velocity measured, and for the
NGSP some data on satellites not launched

by the United States and on planetary probes
also have been used. These data are contained

in the archives of the organizations that col-
lected for the NGSP and are stored in
NASA's Space Science Data Center.

1.3.4.1 Storage and Retrieval of Data

Anticipating that during the NGSP a large
volume of data would have to be transferred

among the five or more major participants,
the organizers of the program asked the

NASA Space Science Data Center (NSSDC)
to act as data storage, retrieval, and distribu-
tion center for NGSP data. Since NSSDC
considered the NGSP data to be of a consider-
ably different kind from the data NSSDC had

been organized to handle, it set up within

itself a separate group, the Geodetic Satellite
Data Service (GSDS) to handle data accu-
mulated during the NGSP.

To ensure that data passing through GSDS
were handled efficiently within GSDS and
were intelligible to and usable by those re-
ceiving the data, GSDS established a set of
rules that controlled the quality of data
accepted by the service and required that the
data submitted to it be in a standard format

acceptable to all NGSP participants. The
quality control rules require data submitted
to be grouped in distinct sets, each set con-
sisting of all those data gathered during one
passage of a satellite through the observation

region of a single station. Data other than
photographic were to be on 1/.,-inch tapes
usable on IBM computers and in BCD (even
parity) form.

Data submitted to GSDS for storage must
be in the prescribed format, and data re-
ceived from GSDS also will be in that format.

The format varies with the type of data.
Formats, specified by reference to the col-
umns of a standard 82-column computer card,
can be found in Hotter (1967) for camera
data and in Gross (1968) for range and
Doppler data.

The data stored by GSDS are listed in
catalogs published by the service, and direc-
tions for obtaining these data are also avail-
able from GSDS. The data are copied from
GSDS files onto magnetic tape and sent out
in this form. Punched cards are prepared
only for small volumes of data. Requests
should be sent to :

NASA Space Science Data Center
Geodetic Satellite Data Service

Goddard Space Flight Center
Greenbelt, MD 20771

Table 1.26 of the appendix summarizes
most of the data available in the GSDS.
These data are the results of observations on

GEOS-1, GEOS-2, ECHO-l, ECHO-2.
PAGEOS, BE-B, BE-C, D1-C, and D1-D.
Not all available data are stored in the

C.SDS, nor are all data stored in GSDS sum-
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marized in the table. To find out exactly
what data are available, letters to the GSDS
and to each of the participating agencies are
required.

A comprehensive summary (to 1970) of
data accumulated during the NGSP is given
in a report by Clavelaux and Strange (1973,
unpublished). Most of these data are avail-
able from GSDS ; some are available from the

investigators at GSFC, Wallops Flight Cen-
ter, and SAO.

1.3.4.2 Preprocessing of Observational Data

Observations produce observational mate-
rial. This material may be in the form of
photographs, graphs, magnetic tape, printed
paper, and so on. The data, which are num-
bers, may be already on the material (mag-
netic tape, punched paper tape, filled-out
forms, printed sheets, etc.) or may be created
by making measurements on the materials
(e.g., putting photographs or oscillographic
recordings on a measuring engine). The data,
which in this first form are called raw data,
are transformed by certain procedures into
other numbers called processed data. The
processed data are the numbers stuck into
the observation equations (sec. 1.4.2) and
"reduced." The process of turning raw data
into processed data is "preprocessing."

The exact structure of a particular pre-
processing scheme depends of course on what
kind of data are involved. The general struc-
ture, however, is the same for all kinds of
observational data used in satellite geodesy
(fig. 1.18). The differences induced in pre-
processing by the nature of the measure-
ments are displayed in table 1.27 of the
appendix. Note that six different kinds of

data are involved. Only five are considered
in the following sections, since the (A:, E_)
variety are of minor importance for geodesy.
(See, however, ch. 6.) We will consider the

various kinds in this order: cameras, MINI-
TRACK, DME, and FME. For details, see
Hotter (1967) and Gross (1968).

Preprocessing of Data From Cameras.--
Three separate preprocessing procedures are
applied to data from cameras. One is applied
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FIGURE 1.18.--General scheme for preprocessing

of data.

to the measured x,y coordinates of images to
correct for errors introduced by the measur-
ing engine, camera, and atmosphere. Another
is applied to the astronomic coordinates of
the stars which are photographed to bring
them from their cataloged values to their
values at the time of the photograph. The
third is applied to the time and may be simply
a correction for the clock errors, or it may

be more complicated and may take into ac-
count the travel time of the light, etc. Table
1.28 of the appendix lists the most important
corrections applied during preprocessing. De-
tailed discussions are given in chapters 3, 5,
7, and 9. The chart in chapter 8 refers to
preprocessing applied to data from GSDS
(sec. 1.3.4.1) and not to preprocessing by the
organizations themselves.
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It should be noted that a very important
consideration in the usefulness of the pre-
processing is the timeliness of the calibration
constants used. Some organizations, like

NASA/GSFC, NGS, and SAO, calibrate the
camera either very close to the time of pho-

tography or solve for the calibration con-
stants as a part of the reduction procedure.

DMA/AC, on the other hand, let a long time
elapse between calibration and photography,

consequently with greater danger of using
obsolete values in the preprocessing.

Preprocessing of MINITRACK Data.--For
various reasons, most of them connected with
the MINITRACK use of 2.2-m radiation and

the large area covered by the antenna,
PRIME MINITRACK data require treat-
ment considerably different from that given
other kinds of data. Only the fact that users
of PRIME MINITRACK are satisfied with

20" to 40" standard deviation keeps preproc-
essing from being almost impossible. A dis-
cussion is given in Gross (1968) and Watkins
(1969), and a summary is given in chapter 5.

Preprocessing of Data From DME.--The
four kinds of DME considered are (1) laser
DME, which measures the travel time of
short pulses of 6943-A light, (2) 5-cm radar
of the FPS-16 type, which measures the
travel time of short pulses of 5-cm radio
waves, and (3) the GRARR, and (4) SECOR
DME, which measures phase differences in
radio waves--GRARR at wavelengths of 600
m to 18 740 000 m being present as modula-
tion on a number of VHF or UHF carrier
waves, the latter at wavelengths of 512 m to
1 048 576 m present as modulation on carrier
waves of 224.5-, 420.9-, and 449-MHz fre-

quency. In spite of the substantial differences
in wavelength and measuring techniques, the

preprocessing procedures are in general
much alike. Table 1.29 of the appendix shows

the steps taken in preprocessing the data
from each type of instrument. There are,
besides the differences (for each type) aris-
ing from inclusion or omission of various
steps, also differences in the equations used.
The greatest difference is found in computing

the correction for refraction (table 1.30 of

the appendix). See chapters 3, 5, 6, 7, and 9
for details.

Preprocessing of Data From FME.--As
would be expected, data from FME get a

considerably different treatment during pre-
processing than do data from AME or DME.
A typical procedure is shown in figure 1.19
(based on APL's procedures as given by
Guier, 1966a). It is obvious that a great deal
of attention is paid to smoothing the data by
comparing them with values computed from
the equations of motion of the satellite.

1.4 THEORY

Among those engaged in deriving geodetic
quantities from observations on artificial
satellites, it is common to think that there
are two kinds of theory involved: (1) geo-
metric or static and (2) dynamic. The for-
mer is based almost entirely on analytic
geometry, does not contain time as an essen-
tial variable, and uses an absolute (i.e.,
Euclidean and fundamental) system of coor-
dinates. The latter is based almost entirely
on the theory of motion of a particle in a
noncentral force field, contains time as an
essential independent variable, and uses a
coordinate system defined in terms of the
motion of the particle. Which kind of theory
is adopted and which variations are intro-
duced depends essentially on (1) what kind
of instrument was used for the observations
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and (2) how the observers were placed with
respect to each other, i.e., whether they
could observe simultaneously or not. NGS

(ch. 7), DMA/AC (ch. 3), and OSU (ch. 8)
adopted geometric theory; SAO (ch. 9) used
geometric theory with some success but relied

principally on dynamic theory, as did DMA/
AC (ch. 3). APL (ch. 2), DOD/NWL (ch.
3), JPL (ch. 4), and NASA (chs. 5 and 6)
relied almost entirely on the dynamic theory.

But the dichotomy between static and dy-
namic satellite geodesy is based on differences
which, though practically important, are less
significant from a mathematical point of view

than the very great basic similarity under-
lying all the methods (fig. 1.20). The follow-
ing section therefore concentrates on the
common part of the mathematics used. The
differences in methods are found almost en-

tirely in the way the observations are ex-
pressed as a function of the unknowns,

and these will be discussed only enough
to bring the reader up to where the

specialized treatments in the following chap-
ters start off. The fundamental and most

valuable reference for geodesy is Helmert's
two-volume work (1880-1884). Notable later

works are those of Molodensky et al. (1960),
giving the views of the Russian school;
Hotine (1969), giving the theory in tensorial
notations; and Levallois and Kovalevsky
(1971), giving a clear exposition of three-

FIGVRE 1.20.--Relations between geodetic

methods and concepts.

dimensional (including satellite) geodesy.
Heiskanen and Moritz (1967) is a good ex-

position of physical geodesy, as are the vari-
ous editions of H. Jeffreys' "The Earth"
(e.g., 1970). See also Bomford (1971) and
Mueller (1969).

For satellite geodesy alone, the works of
Levallois and Kovalevsky (1971), Mueller
(1964), and Kaula (1966b) are detailed;
Bursa's (1970) paper is an excellent sum-
mary of the status in 1970.

1.4.1 General

All investigators, regardless of the par-
ticular methods they used in getting the
results put down in the following chapters,
followed the same general theoretical proce-
dures in obtaining the results.

(1) To start with, each investigator
selected or was assigned a set of quantities as
unknowns, quantities whose values were to
be determined. The set differed from investi-

gator to investigator and depended on the
interests or responsibilities of the organiza-
tion involved. Table 1.31 of the appendix lists
the unknowns (called "solve-for's" by JPL)
of concern to the NGSP.

(2) Measurements were made of certain
properties of the satellite or of the observer's
environment that could be related, mathe-
matically, to the investigator's unknowns.
These properties, called basic observables,
are listed in table 1.32 of the appendix. The
basic observables were themselves affected

by other properties of the environment of the
observer, the satellite, or both. Data on these
other properties, called auxiliary observables,
also had to be collected. Table 1.33 of the

appendix lists the most important of the
auxiliary observables. Note that time may be
either a basic observable or an auxiliary
observable.

(3) Each investigator derived, from geo-
metric considerations, from the equations of
motion of a satellite or from other considera-

tions, equations relating the K observables
(Yk} to the M unknowns (xm}. A typical
equation would be
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f,, (Y,, Y,,... YK) =f2, (X,, X2.... X_) (1.1)

This is an observation equation. In all cases
considered in this book, fl, and f_, were
nonlinear. The investigators therefore lin-
earized the equations by expanding fl, and

f_, into Taylor series and dropping terms of
order higher than the first (the Einstein
summation convention is used).

af,, ._. aft, dx
t_,._ k "_ _- mc)yk m

(1.2)

(4) Using approximate values (x$}
(called by various investigators assumed

values or a priori values) assumed to be close
to the true values of the unknown quantities,

the investigators computed from the n equa-
tions of the form of (1.1) approximate values

(y_, }. Subtracting the y_, from the observed
values Yk, gave residuals Ayk, related to the
unknowns AX_ ( --=X_-- X _) by the approxi-
mation

t<,y,.1Fag.l-'F oi.l
= L L[J, Lax,.J,
_ [F]-' [A] [Ax,n] (1.3)

where the matrices of coefficients are evalu-

ated with values a_ of the variables. The
matrix F in all work done in the NGSP has

been made an identity matrix by suitable
derivation of (1.1) above, so the equation

(1.3), called also a (matrix) observation
equation, is

[Aye] = [A] [Axe] (1.4)

(5) All of ,the investigation procedures
used in the work reported on here ensured
the existence of relations between the (x_}
which did not depend on the observables.

These relations, L in number,

0=g_ (x, x_.... xm) (1.5)

were treated like equation (1.1) to give

[Ag_] = [B] [Axe] (1.6)

Equations (1.5) and (1.6) are to be solved
simultaneously. Several methods have been
used by the investigators.

(5.1) Equation (1.6) may be solved for
those {_x_} which are not of interest, such as
coordinates of satellites, etc., and the result-
ing expressions substituted into (1.4). This
procedure was used by many of the investi-

gators such as OSU, NASA/GSFC and
NASA/WFC.

(5.2) Equation (1.6) may be treated as
an observation equation with large weights
associated,

= [W,]'a [Ax.,] (1.7)

so that when combined with the weighted,

true observation equation (1.4)

[W.]_/_[Ay,] = [W,]V2[A] [Axm]

the result is

This procedure has been used by, among
others, DOD/AFCRL, NGS, and OSU. See,
for example, chapter 2 (D. Eckhardt).

(5.3) An additional set of L unknowns
{_} can be introduced (these are called
Lagrangian multipliers or correlates), so
that the total number of equations can be set
equal to the number (M+L) of unknowns:

I JL"g,a • ,, • (1.8)

This method has been used by, among

others, DMA/AC, NASA/GSFC, OSU, and
SA0 in developing their theory. However,
because the multipliers {K_} are not of geo-
detic interest, it would be a waste of effort to
actually compute them. Equation (1.8) is

therefore solved for the {Kz}and the result
used to eliminate them from (1.8). See, for

instance, chapters 5, 8, and 9.
(6) Once the observation equations and

condition equations have been set up, appli-
cation of the theory of least squares leads to
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a "best" set of values for the unknowns--
best in the sense that the set found has the

highest probability (or at least, minimum
variance) of yielding the values found by
measurement. (See Bjerhammer, 1951,

1973; Anderson, 1958, Cramer, 1946; Carl-
ton, 1962; and Baarda, 1960, for detailed
analysis.) Weights are assigned to the ob-
servations-either by a study of the disper-
sion of the observation or from prior knowl-

edge, or whatever--and the equations solved
for the unknowns [Ax,_] as, for example,

±x,n'] VATWA BT']-_VATW_y, 1 (1.9)
KzJ=[ B O J L_gz j

This equation will have a different appear-
ance if the method of using condition equa-
tions as observations has been employed (5.2
above) or if the Lagrangian multipliers {K_}
have been eliminated (5.1 above), or if any
one of a number of other minor modifications

has been made. It can be shown, however,
that all these modifications are merely vari-

ants of equation (1.9). That is, they can be
transformed into (1.9) by matrix manipula-

tion and will give approximately the same
values for [±x,,] (approximately, because
round-off errors in computation increase dif-
ferently according to the method).

Among the modifications that will be found
in following chapters, some are worth special
mention here.

(6.1) The mathematics given above
assumes that the equations are divided into
"observation equations" and "condition equa-
tions" as indicated. But the problem can be
restated in such a way that the relations ex-
pressed as observation equations

[±y,_] = [A] [_xm]

are instead expressed as condition equations

[±hi] = [A] [_xm]

where the values ±hi are of the same kind as
_g,:. There are J conditions of this type. This
different viewpoint does not mean that there

are no observation equations but that the ob-
servation equations are now the simple set

[±y.] = [D] [±xm]

where the rows of D are unit vectors. The

resulting normal equation is then

This equation can be derived by the usual
methods used in deriving (1.9). This method

of working entirely with observables is pref-
erable to (1.9) if the number of observations
is only a little greater than the number of un-
knowns. For this reason, it was used by

DMA/AC (ch. 3) and NASA/GSFC (ch. 5).
(The method has certain dangerous aspects
which must be well understood before it is

used.)
(6.2) It is frequently possible to get,

from previous solutions by oneself or others,
values for and standard deviations of the un-

knowns being sought in the current compu-
tation. This information can be used to
improve the current solution by applying di-

rectly to laws of propagation of errors (see,
e.g., Anderson, 1958). However, a more in-
teresting derivation, because it appeals to

Bayes' theorem, is that of C. Goade in chap-
ter 6. One must, of course, always be careful
in using Bayes' theorem not to push the as-
sumptions too far. One of these assumptions,
seldom correct, is that the ,earlier informa-
tion is from the same population as the later.

Another, even less frequently satisfied, is that
either the original information results from
a sufficient sample of the population or the

original plus later information will be suffi-
cient samples. See the IEEE Transactions
on Reliability (1972) for a thorough discus-
sion of Bayes' theorem, its applicability, and
its limitations.

(7) Finally, the validity of the results, the
solutions for the unknowns, [_x], is tested by

computing the covariance matrix_ of

these quantities, using the well-known
theorem that if
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X=DY_

then

The eigenvalues of _i_- give the dimensions
of the m-dimensional error ellipsoid. Usu-
ally, these are computed only for m=2 or

m=3. (See chs. 9, 3, and 8.) The validity

of the _ _. matrix itself is, of course, another
matter, and for m_3 this testing, which in-
volves the Wishart distribution, is seldom
done. Fortunately, most problems in satellite

geodesy can be broken down into subprob-
lems in which only 3 x 3 matrices are involved

at any one step, and for these Fischer's t test
or the x _ test may be applied. See Anderson
(1958), Cramer (1946), and Carlton (1962)
for general discussion, and Baarda (1960)
and Baarda and Alberda (1962) for geodetic
applications.

1.4.1.1 Coordinate Systems

completely defined with respect to another if
six quantities are given: three defining the
location of the origin of the one system and
three defining its orientation. These six

quantities, plus two defining the size and
shape of the spheroid to be used, are neces-
sary and sufficient. A penetrating discussion
of the geodetic significance of these quanti-
ties is given by Isotov (1968) and by Yere-
meyev and Yurkina (1969).

1.4.1.2 Transformations

In satellite geodesy there is need for the
following transformations :

Transformation of Coordinates

(1) Geodetic coordinates _-_Cartesian
coordinates

Transformation between Systems
(2) Geodetic (datum) oGeodetic

(datum)
(3) Geodetic(--_Astronomic
(4) Geodetic (datum) (-->Dynamic

(datum)

Geodesy per se is interested only in abso-
lute or Euclidean systems of coordinates,
that is, systems definable in terms of (acces-
sible) points, distances, and directions, sys-
tems in which coordinates are defined in
terms of distance and direction and can be
measured in terms of the same fundamental

units. The data and results of NGS (ch. 7)
and OSU (ch. 8) have relevance primarily to
such systems. Some of the data and results

of SAO (ch. 9) also are in an absolute sys-
tem, but because the geometric arrangement
of the observing stations (ch. 9) is unfavor-
able to determination of corresponding co-
ordinates, the system ultimately selected is a
barycentric one (see below). Until the com-
pletion of NGS's and OSU's World Geometric

Networks, a major disadvantage of absolute
systems was that each geographically or
politically isolated government set up its own
system, and it was often impossible to find,
accurately, the transformations between sys-
tems. As is known from elementary mathe-
matics or physics, one Euclidean system is

(1) Transformation 1 is

X, 7 F (N+h) cos)tcos_ ]
x: |=/(Y+h) sin Xcos
X: J L[N(1-e2)+h]sin¢

and its inverse. Levallois (Levallois and
Kovalevsky, 1971) describes an iterative
method and a one-step approximate method
of getting {;t, _, h} from [X]; H. Schmidt
(ch. 7) describes a one-step exact method.

(2) Conversion from a geodetic system
(datum) to an astronomic system is a trans-
formation between mutually rotating sys-
tems. The usual procedure is to convert from

geodetic to Cartesian coordinates, rotate to
bring the Z axis parallel to the instantaneous

axis of rotation and the X axis parallel to the
instantaneous meridian of Greenwich, then
rotate about the Z axis, using the rate of ro-
tation of the Earth; see, e.g., Mueller (1969)
or Veis (1960).

(3) No exact transformation from a geo-
detic datum to a center of mass system is pos-
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sible. However, an approximate transforma-

tion is possible when coordinates of at least

three points are known in both systems. See

chapters 5 and 8.
(4) A geodetic datum involves, in general,

eight quantities. To effect a transformation

from one datum to another, there must be

known (measured) relations between the

origin and orientation constants of one datum

and those of the other. In general, these rela-

tions do not exist. When they are known,

however, the transformation is usually ac-

complished by conversion of geodetic to Car-

tesian coordinates, rotation to an astrogeo-

detic system, translation to a new origin,

rotation into the new datum, and conversion

to geodetic coordinates with the new a and f.

See, for example, Veis (1960).

1.4.2 Observation Equations

For convenience, the observation equations
used in this volume are considered as belong-

ing to static (geometric) satellite geodesy or

to dynamic satellite geodesy. Since all obser-

vation equations are put in linear form be-

fore being used for computation, the division

is not sharp. That is, the equations of dy-
namic satellite geodesy can be considered as

an augmentation of those of static geodesy.

The unknowns {aXe, AY,, aZ_}, corrections to
the satellite coordinates, are replaced by the

unknown (±a, _e, _i, ±_, so,, ±_}, corrections

to the orbital elements, and, in some cases,

also by {AC_,, ±ST }, corrections to the coeffi-

cients {C'_, ST} in the expansions in Le-

gendre series of the gravitational potential.

1.4.2.1 Static (Geometric) Satellite Geodesy

Only three kinds of geometry have arisen

in the NGSP : (1) only directions to the satel-
lite are measured; (2) only distances are

measured, and (3) both distance and direc-
tion are measured. As far as the observation

equations are concerned, only two kinds need
be considered. One relates the measurements

(x,y) of the image of a satellite to the coordi-
nates Xo, Yo, Z_, of the projection center of

the camera and to the coordinates X_, Ys, Z_

of the satellite. Letting

R_=_ (X_-Xo)'_+ (Y_-Yo)_-+ (Z_-Zo)

and

r2 =_x_ + y_ + f 2

where f is the distance of the projection
center from the principal point, we have,

first,

_1= ZbijxiyJ
i.t

(1.10)

where the a_, b_s are constants (see chs. 1

and 5). Then

$/r= (X,-Xo)/R

,l/r= (Y._- Yo) /R

f/r= (_-_o) /R

(1.11)

Linearized, these equations become

Yo

Zo

(1.12)

The observation equation for observation of

distance is

r_-= (X_-Xo) 2- (Y._-Yo)'_+ (Z_-Zo)-'

and this, on linearization, also turns into an

equation like (1.12).

Equations (1.11) appear in many forms--

as projection equations (ch. 8) or as vector

equations for the volume of a parallelopiped

(chs. 3 and 5).

1.4.2.2 Dynamic Satellite Geodesy

Dynamic satellite geodesy (DSG) can be

defined as that branch of satellite geodesy in



INTRODUCTION 39

which the observation equations contain, as
unknowns, orbital elements (or corrections
thereto) of a satellite. It has been used prin-
cipally where the arrangement of instru-
ments used for observing does not allow
simultaneous observations with strong ge-
ometry, for example, APL (ch. 2), NWL (ch.

3), JPL (ch. 4), NASA/GSFC (ch. 5),
NASA/WFC (ch. 6), and SAO (ch. 9). How-

ever, it was used when the gravitational po-
tential also had to be determined, as was

necessary for NASA/GSFC and SAO. The
constants determining this potential are
easily added to the list of unknowns involved.
(See, for example, Mueller, 1964; Kaula,
1966a; Arnold, 1968; Chapront-Touze,
1972.) A third reason for sometimes using
DSG is that the precision of the resulting
coordinates is higher than that obtained with
static satellite geodesy. This can be seen, for

example, by comparing the results of DOD/
NWL (ch. 3) with those of NGS (ch. 7). One
must be careful not to regard this higher pre-

cision as being, at present, a very important
consideration. There are several reasons why
the differences in precision are not indicative

of better (i.e., more accurate) results, and
these are discussed further in chapter 11.

1.4.2.2.1 THE BASIC EQUATIONS

Dynamic satellite geodesy starts with New-
ton's equation for the motion of a small body.

d'_X
m-d_- = m V V + Fatmosphere -_- Fradiatton -{- Fhmi-solar

+ F,!lect ..... gnetic (1.13)

=mVV+F

where F is the resultant of the individual

forces Fatmospheric, Fradiation, Fluni--solar, Felectromagnetio

other than mVV. The potential V is different
from that of a spherical homogeneous solid

but close enough to it that an expansion of
V in a series of associated Legendre poly-
nomials is practical :

V- k_M _ _ (-_)'÷IP? (sin ¢) (1.14)ao _ m:o

[C2 cos mX+S_ sin m_,]

The usual first step in solving (1.13) is to set

F=0

{C mn,S _}=0, n>0

The result is the "basic" equation of orbit
theory and of dynamic satellite geodesy:

where

d2X GMX
dt 2 - r3 (1.15)

r 3---X-X

This is the equation of motion of a particle in
the field of a Newtonian (inverse-square)
central force. The equation has an exact solu-
tion, which is simplest in a coordinate system
defined as follows with respect to a rectangu-
lar coordinate system.

(1) Define the orientation of a certain set
of axes by three Eulerian angles a, i, and _.
If the coordinates implicit in (1.15) are ro-
tated through these angles, the new Z (Xs)
coordinate disappears. Furthermore, the re-
lationship between the new X1 and X2 coordi-
nates can be shown to be

(X'l - _ )2 X_
+ 1 (1.16)

a 2 a2(l_e 2) -

which is the equation of an ellipse with its
major diameter (length 2a) along the new X1
axis, a minor diameter of a(1-e2)_, and its
center at

X_ = -de

(2) A final transformation is therefore
made to a system specified by the constants
a, e, and vo (the angle between the X_ axis and
a radius vector to the particle at time To). In

this system, only the time T is an independ-
ent variable. The angle v, the true anomaly,
is a complicated function of T, which is usu-
ally broken up into a sequence of three func-
tions :

M-_(T-To) (1.17)

where _, the mean motion, is a constant,
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and

M--E-sin E,

cos E- e
cos ,- 1 - e cos E

The radius vector r is

(1.18)

(1.19)

a(1-e 2)_ (1.20)
l+ecosv

static geodesy for getting rid of the time
variable. In the static case, polynomials of

low degree in the time t are fitted to the
measurements x (t) and y (t)

x(t) = __a,,t"
1

(1.21)

y(t) = __b,,t '_

This basic orbit is extensively used as a

first approximation to the true orbit. It is
also much used, as by DOD/AFCRL (ch. 3)
and NASA/GSFC (ch. 5) as a curve for fit-
ting to a short series of observations by one
observer. Used in this way, the method is
referred to as the "short-arc" method (see

next section). Finally, the basic orbit was
used by SAO for its "differential orbit im-
provement" (DOI) method (Veis and Moore,
1960; Izsak, 1961c; Gaposchkin, 1964). This
method expresses the orbit as an empirical
formula composed of two parts : a basic por-
tion which is an analytic solution of (1.15)
(or, in later developments, of the more gen-
eral equations), and a series portion com-
posed of power series and trigonometric
series. The orbital elements a, e, i, a, o,, _,,
and the coefficients of the various terms in
the series are determined from the data.

It should be noted that the expression of V
as a series of associated Legendre polyno-

mials (see Macmillan, 1930; Helmert, 1880-
1884) is not the only form nor even the best.
Lam_ functions (Morse and Feshbach, 1953;

Hobson, 1931) are theoretically more suit-
able for the gravitational potential near the
surface of the earth, while expression as the
result of surface layers (Orlin, 1959) is fre-

quently used (Koch and Morrison, 1970;
Morrison, 1972). Weightman (1967) pro-
posed using point masses, and this procedure
also has been used successfully.

or to the satellite, coordinates a(t) and _ (t)

a(t) = Eant" (1.22)
(t) = Eb,,t"

and so on. (See ch. 8 and Bialas, 1967.) In

the dynamic case, the functions used are the
equations of motion of the satellite

X=X (a, e, i, _, o,,Vo; t)
Y= Y (a, e, i, _, o,,_o; t)
Z=Z (a, e, i, _, o,, Vo; t)

(1.23)

Because the time t covers an interval of only

a few periods (and usually an interval con-
siderably shorter than a full period), those
perturbing forces which produce appreciable
effects only after many revolutions can be
neglected. So atmospheric drag, solar radia-
tion pressure, and luni-solar gravitation do
not enter into the equations. Nor need the

high-degree terms in the Legendre series for
terrestrial gravitation be included.

Equations (1.23) contain, besides the
orbital elements, the constants that char-
acterize the gravitational field. Under cer-

tain conditions, these also can be treated as
unknowns.

1.4.2.2.3 PERTURBATIONS OF THE
BASIC ORBIT

1.4.2.2.2 SHORT-ARC METHODS

The short-arc method is a generalization,

using dynamic geodesy, of the method used in

Methods and Terrestrial Gravitational

Perturbations.--The basic orbit described

above is inadequate for describing the motion
of a satellite if an arc longer than about one-
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eighth of a revolution is to be accurately
computed. Methods which require use of
orbits more complicated than the basic orbit
are called "long-arc" methods. There are
numerous variants, but three major varieties:
have been used by the investigators in the
NGSP.

(1) The quasi-empirical method of SAO,

the DOI method, was described previously in
scetion 1.4.2.2.1.

(2) Equation (1.21) with appropriate ex-
pressions for the {F_}, can be left as is and
integrated numerically. If the {F_} involves

only second-order or zero-order derivatives,
Cowell's method (e.g., BroUwer and Clem-

ence, 1961), which takes advantage of the
fact that first-order derivatives are missing,

can be used. Otherwise, more general meth-

ods of numerical integration must be used.
Because the formulas involved are simple,

are easily programed, and provide an accu-
racy dependent only on the size of the com-

puting machinery available, this method was
the choice of most investigators (chs. 2, 3, 4,

5, and 6).
Most investigators started with equation

(1.21). A few, however, started with equa-

tion (1.23) and integrated the perturbations
on this orbit.

(3) Equation (1.21) can be solved ana-

lytically, although not in closed form except
for special cases. The usual procedure is to

start with the basic orbit (sec. 1.4.2.2.1). If
we denote the potential (GM/ao) (ao/r) lead-

ing to the basic orbit by V, and the perturbing

potential by Vp, so that V - Vs + V_, and if we
regard the orbital elements (a, e, i, _, o,, Mo)

as functions of time,

dP_
{P,} = {P,,+-_-_t} (1.24)

where P_ is one of the orbital elements and t
is the time, then the coefficients dP_/dt can be

found from Lagrange's equations

D I
--I

D I
--i

de I

ml

--i

--i

_e0

_Mo ¸

.Y_ --

0 0 0 [a,_t] [a,_] [a,Mo]

0 0 0 [e,a][e,_] 0

o o o [i,u] o o

[_,a] [_,e] [_,i] 0 0 0

[_,a] [_,e] 0 0 0 0

[Mo,a] 0 0 0 0 0

d___a
dt
de
dt
di

, dt
cla
dt
d_

dt
dMo
dt

Here [ ] denotes Lagrangian brackets,

[pi,pk]-Z[ oqj _qJ _q_ OqJ_ (1.26)i\_aP_ ap_apk

This equation (1.26) was used extensively by

Murphy and Felsentreger (ch. 5) for their

analysis of perturbations caused by lunar
and solar gravitation and by solar radiation

pressure and by SAO (ch. 9) for develop-
ment of their equations. (See also Gaposch-

kin, 1966c.)

Unlike the theory involving solution by
numerical integration, that involving analytic

solutions is extremely complicated even for
motion of a single particle in a given force
field. General treatises like those of Wintner

(1941), Siegel (1956), Tisserand (1960),
Brouwer and Clemence (1961), Stumpf

(1959, 1965), and Hagihara (1972) are
valuable for the fundamentals but are pri-

marily concerned with motion of a particle

in the Newtonian gravitational fields of other
particles. Dynamic satellite geodesy is pri-
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marily interested in motion of a particle in
a non-Newtonian field, and for this theory
the works of Mueller (1964), Kaula (1966b),
A. H. Cook (1967), and Levallois and Kova-
levsky (1971) are more useful.

The basis of dynamic satellite geodesy was
laid by D. Brouwer in his papers of 1946,
1958, and 1959, in which he proceeded from
Delauney's form of the Hamiltonian equa-

tions using a method of successive approxi-
mation called von Zeipel's method. (See
Hutcheson, 1964; see also Lyddane and
Cohen, 1962, for comparison with numerical
integrations.) This same method was used
later by Kozai (1962b), and Kozai's equa-
tions were adopted by SAO for the zonal
harmonics (Gaposchkin, 1966c). For orbits

involving tesseral harmonics, one generally
proceeds from Lagrange's equations, as did
Kaula (1961a), whose method was also
adopted by SAO.

Besides these methods, which are the most
important ones for the NGSP, a number of
other methods have been used for DSG. The

most important of these is that of King-Hele
(1964; A. H. Cook, 1967), which has been

used in England very successfully for both
close and distant satellites. Hansen's theory
as applied to Earth's satellites by Musen
(1954, 1961) and Bailie and Bryant (1960)
has not yet been much used. Nor have most

of the theories designed to deal with particu-
lar kinds of orbits, such as those with small

e or i (Kozai, 1961b; Izsak, 1961a; Lyddane
and Cohen, 1962), large i (Cunningham,
1957), or i near the vertical inclination

(Hori, 1960; Hagihara, 1961a; Lubowe,
1969), been extensively used. Most of the

problems involving singularity in coordinates
can be eliminatecl, in analytic solutions, by
choice of a nonsingular set. (See, e.g., Eckert
and Brouwer, 1937; Newton, 1961; Cohen
and Hubbard, 1962; Lyddane, 1963; Musen,
1963b.)

The basic orbit (sec. 1.4.2.2.1) is not the
only closed solution to equation (1.13). If
spheroidal coordinates are used, a solution in
closed form for more general U involving the
C_ coefficient can be found. This was first
suggested by Sterne (1958), investigated by

Garfinkel (1958, 1959), and put into elegant
and final form by Vinti (1959, 1961).

Other Perturbations.--Besides the gravita-
tional attraction of the Earth as a rigid body,
there are a number of other forces acting on
the satellite. One of these is a fictitious force

originating in the deformation of the earth
by the attraction of the sun and moon. The
deformed Earth exerts a different force than

a rigid Earth does, and the amount of defor-
mation is a function of Love's number, k_,

which is a measurement of the rigidity of the
solid Earth; k2 can be taken as one of the
unknowns to be solved for. The first values,

based on tracking data, were found by Kozai
(1965, 1968a) and Newton (1960). More
recent work by Anderle (DOD) is reported

in chapter 3 and by D. Smith (NASA/GSFC)
in chapter 5. See also Musen and Estes
(1972) for another viewpoint. Other forces

of appreciable size which are usually taken
into account are summarized in table 1.34 of

the appendix.
In regard to solar radiation pressure, note

that the equation accounts only for radiation

direct from the sun. Radiation reflected by or
otherwise coming from the Earth is not in-

cluded. Studies of the effect of this secondary
radiation, especially in the ECHO and

PAGEOS satellites, have been made by,
among others, Wyatt (1963), D. Smith
(1969), and Prior (1970).

Other sources of perturbation are rela-

tivity (McVittie, 1963 ; Gilvarry, 1959 ;
Krause, 1964; Jenkins, 1969 and 1971;
Moyer, 1971) and, since a satellite is an

extended body, the gravitational gradient
(Chin, 1962; Fleig, 1970).

Polar motion is not a perturbating force,
but is in the nature of a variation in the

coordinate system used. It can be measured
if the observing systems are sufficiently pre-
cise. The theory is given by, among others,
Munk and MacDonald (1960), Fedorov
(1963), and Woolard (1953); a survey is

given by Gaposchkin (1966). Rikhlova
(1969) gives a summary of polar motion for
119 years. Determination from tracking data
is discussed here by D. Smith (ch. 5) and
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R. Anderle (ch. 3) while still further infor-
mation is available in Lambeck (1971a),

Beuglass and. Anderle (1972), Kane (1972),
D. Smith et al. (1972a), and Melchoir et al.

(1972).

Resonance.--One important exception to
the statement above that theories concerned

with special kinds of orbits have been little
used in the NGSP is the theory dealing with

orbits whose periods have some simple ratio
to the length of a day. For such orbits, the
satellite finds itself at equal intervals of time
above the same part of the gravitational field,
and resonance is thereby induced in the satel-
lite motion. Even very small gravitational
forces can then build up into respectable

perturbations on the orbit. This effect was
first pointed out by A. Cook (1960, 1961);
its presence in orbits of 24-hour period was
analyzed by Blitzer et al. (1962)and Mo-
rando (1963). It was used for finding vari-
ous tesseral harmonic coefficients by Yionou-

lis (1965, 1966a) and Anderle (1965a) and
has been extensively used since then by many
other researchers. (See, for example, Wag-
ner and Douglas (1970), Cazenave et al.
(1972b), Gedeon et al. (1967), and Allan
(1964, 1965, 1967); see also chapter 2.)

Comprehensive studies of perturbation of
orbits of Earth satellites were made by Porter
(1958) and Challe and Laclaverie (1969).

Numerical Integration.--Of the various
contributors to the NGSP, only SAO places
its entire dependence on literal functions as
solutions to the differential equations of mo-

tion (Lundquist and Veis, 1966). NASA/
GSFC uses literal functions only for projects

of special purpose. The other contributors
all depend on numerical integration to solve
the differential equations. The theory of
numerical integration is simple in concept.
It is in essence the fitting of a polynomial to
a small set of consecutive points and the
extrapolation of the polynomial to give one
further point. The process is then repeated
as often as desired. The coefficients of the

extrapolation polynomial are determined by
(1) the set of points already given and (2)

the derivatives of these points as given by the

equations of motion. Theories differ accord-
ing to the number of data points required,
the distances which a point is extrapolated,

the fitting process used, and so on. These
theories are treated at great length in many
texts. Among the best of these is that of
Henrici (1962), which goes into great detail
about the errors caused by integration. Other
excellent sources are Scarborough (1966),

Collatz (1966), Milne (1949), and Bucking:
ham (1966). The methods used in this volume
are listed in table 1.35 of the appendix. A
useful analysis of the stability of the major
procedures is given by Lomax (1967). The

Runge-Kutta method (Runge, 1895; Kutta,
1899) becomes too complicated for easy
programming if the order is higher than 4.
Rosen (1965) and Fehlberg (1966a, b, 1969)
have done much to generalize the method and
work out the specific equations for higher
order.

1.4.3 Condition Equations

The use of condition equations is for the

most part straightforward and was treated
in an earlier section. A more detailed exposi-
tion of the various kinds is given by J. Reece

in chapter 5. One kind which deserves spe-
cial comment, however, is that of "inner
constraint" used by OSU (Blaha, 1971; ch.

8). The condition imposed is that the trace of
the normal equation be a minimum. This is
equivalent to selecting an origin and orienta-
tion of the coordinate system which depend
on the assemblage of points. It results in
smaller _'s for the unknowns. The method is

perfectly valid but its usefulness may be
limited. (See, for example ch. 11.)

1.4.4 The Geoid

At present, geoidal heights, N, are not
among the unknowns present in the observa-
tion equations of either static or dynamic
satellite geodesy. However, they do appear
in 0SU's work in the condition equations

used for determining the size and flattening
of the best fitting ellipsoid (ch. 8) and are
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used for the same purpose but in a different
way by NASA/GSFC (ch. 5). In this work,
N has been determined either by solving
equation 1.24 for r, after adding on the
centrifugal force and deciding on a value
Wo=-Vo + centrifugal force and then sub-
tracting the length of the radius vector to the
spheroid (see, for example, ch. 5) or by using
Stokes' formula or some modification thereof.

A slightly different procedure is that by
which Rapp (ch. 3) derived his geoids. A
geoid based on isostatic anomalies is given by
Kahn in chapter 5.

The theory of the geoid since Bruns (1878)
and Sludskii (1888)and of geops (equipoten-
tial surfaces in general) even yet is not com-

pletely rigorous. Excellent treatments are
those of Hirvonen (1962), Bjerhammar

(1962), Hunter (1960), Egyed (1964), and

Zhongolovich (1956, 1962).
Note that part of the reason for disagree-

ment on geoidal heights lies in the fact that
there is still no universal agreement on what

a geoid is (as was obvious from proceedings
of a 1973 GEOP conference). The original

definition as "that equipotential surface
which best fits mean sea level on the oceans"

became inadequate when geoidal heights
could be determined so precisely that a sig-
nificant difference could be found between
mean sea level and the defined geoid. Another

part lies in the method of determining the
geoid, i.e., from tracking data, gravimetric
data, or astrogeodetic data. Only the first
two of these methods have been used in the

NGSP; astrogeodetic geoids have been used
as checks on the others. (See, for example,
ch. 5.)
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APPENDIX

TABLE 1.1.---Datums Controlling More Than 200 000 Square Km

Area
controlled
(millions of Origin Connections to

Datum sq kin) Regions involved (horizontal control) other datums

NAD 1927 24.4 Canada, U.S.A., Mexico, Meades Ranch, Kansas SAD, European 1950
Central America

Pulkova 42 17.1 USSR Pulkova Observatory European 1950

European 1950 10.7 Europe, Near East Helmert Tower NAD 1927, Indian
Potsdam, Germany Cape, Pulkova

Peiping 1954 9.60 China Peiping Tokyo Datum

SAD 9.13 All South America La Canoa, Venezuela NAD 1927

Except Argentina

Australian 7.80 Australia, New Guinea Johnston Geodetic Station SW and Central
Pacific Islands,
Papua

Cape 5.02 South Africa Boffelsfontein European 50

Indian 4.38 India, Thailand, Burma Kalianpur European 50

Blue Nile 3.74 Ethiopia, Sudan Station 15, Adindan European 50
baseline

Argentinean 2.70 Argentina S.E. end of Castelli Base SAD 1969

Angola 1.25 Angola Camp de Avinco

Manchurian 1.10 Manchuria Shinkyo Tokyo Datum
Principal

Nigerian 0.928 Nigeria Menna ...............

............ / 0.590 Malagasy .......................................

Tokyo 0.369 Japan Tokyo Observatory Manchurian, Peiping

Malayan Revised 0.333 Malaysia Kertau Luzon

Luzon 0.302 Philippines Arbitrary Malaysian

Guinean 0.260 Guinea Conakary ...............

Papataki 0.258 New Zealand Papataki ...............
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TABLE 1.2.--Tracking Stations Planned for 1958

PRIME MINITRACK Baker-Nunn Cameras

1001 Blossom Point, Maryland"

Fort Stewart, Georgia"

1005 Quito, Ecuador"

1006 Lima, Peru"

1007 Antofagasta, Chile"

1008 Santiago, Chile"

9001 Las Cruces, New Mexico

9012 Maui, Hawaii

9007 Arequipa, Peru

9011 Villa Dolores, Argentina

9002 Olifantsfontein, South Africa

9004 San Fernando, Spain

9006 Naini Tal, India

9008 Shiraz, Iran

9003 Woomera, Australia

9005 Tokyo, Japan

9010 Jupiter, Florida

9009 Curacao, Neth. Antilles

" Stations functioning at the beginning of 1958.

TABLE 1.3.--Coefficients of Gravitational Potential Terms (x 10 ")

C,'/S,"

1927 1941 1948 1957

n,m (De Sitter) (Jeffreys) (Jeffreys) (Zhongolovich)

2, 0 1092.5 _+ 0.7 1091.8 --_ 4.2 1089.7 _+ 2.1 .....

2, 2 ....................... +4.1 -+ 1.4 +4.74

-1.58

3,0

3, 1

3, 2

3, 3

4, 0

4, 1

4, 2

4, 3

4, 4

+3.1 _+ 1.2

+0.66 _+0.35

2.0 _+ 1.1

0.13 _+ 0.08

+ 1.99

-0.96

+0.36

-0.50

+0.42

-0.34

-0.67

-0.40

0

+0.08

+0.05

-0.01

+0.01

+0.02
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TABLE 1.4.--Significant Geodetic Events Between 1957 and 1965

47

Date Event Name Scale

1957
1958

Launching of Sputnik-1 .................. Global
Flattening from satellite O'Keefe, Marchant, Global
data (1/298.3) and Herz; Buchar,

King-Hele

1958 Launching of Explorer-1 Global
1959 Third Zonal Harmonics O'Y.eefe, Eckels, Global

and Squires
1@59 Theory of motion of artificial Brouwer None (math.)

s_tellite

Launching of TRANSIT-1B
Launching of ECHO-1
Theory for satellite orbits
Launching of ANNA-1B
Connection of France-Algeria
APL geodetic constants 4.5

Connection of Europe-Azores

1960 .................. Global
1960 .................. Global
1960 Kaula None (math.)
1962 .................. Global
1962 IGN Continental
1965 APL Global
1965 IGN Continental

TABLE 1.5.---Shifts in Datum Points (Kaula, 1963b) a

Shift in coordinate (meters)

Datum Az Ay Az

NAD 1927

European 1950
Australian

Tokyo
Argentine
Hawaiian

-24 ±6

+37 ±4

-111 ±10

-57 ±3

+245 ±10

-26 ±10

-32 ±5

-56 ±3

+33 ±12

+60 ±4
-15 ±4

+59 ±17

-3 ±1
+13 ±1

+67 ±3
+10 ±5

+37 ±23

-291 ±24

a These values are shifts from a system with center at center of mass of the Earth,
x, y, z axes directed toward 0°, 0°, and 90 ° N, respectively (Kaula, 1963a).

TABLE 1.6.---Status of Gravitational Potential in 1964

Determined Principal
Date by Zonals Tesserals Other

From tracking data
1964 Kozai q to C_4 .........................

1968 Anderle C_zto C_7 C|_. _C_7 C _3 C_s C _+

s,'.+13_ 15P 15

From gravimetry
1962 Uotila ......... c+tto l___ ............

ts: ............

1964 Uotila C°3e _to_C| _ ............

S_ ............
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TABLE 1.7.---Satellite-Tracking Systems Used in NGSP

Type Satellites Measured Used by

Camera, PC_1000 Bright reflectors Angles DOD
or beacons

Camera, MOTS Bright reflectors Angles GSFC
or beacons

Camera, BC-4 Bright reflectors Angles NGS,DOD
or beacons

Baker-Nunn All Angles SAO, DOD
Radar, 5-cm GEOS Distance WFC, DOD
MINITRACK All with MINITRACK Angles GSFC

beacon

SECOR SECOR and GEOS Distance DOD
GRARR GEOS Distance and GSFC

Doppler-shift
Laser DME Reflecting Distance DOD,GSFC,SAO
TRANET FME GEOS, Navigation Doppler-shift DOD

TABLE 1.8.--Geodetically Important Characteristics of a Satellite

Characteristic Effect

Structural

Reflectivity
Mass]area ratio

Shape

Instrumental

Active or passive

Type of stabilization

Frequency and type
of signals

Orbital

Apogee/perigee

Inclination

Period

Affects signal-to-noise ratio at a receiver
Affects size of atmospheric-drag and solar-radiation-

pressure perturbations

Affects atmospheric-drag perturbations and radiation
pressure perturbations

Has big effect on instrumentation design, on distance

at which satellite can be detected, etc.
Affects visibility and may affect frequencies in signal
Determines what kind of tracking-station is needed

Affects signal-to-noise ratio, how many stations can ob-

serve simultaneously, and length of time satellite
is visible; also satellite sensitivity to gravitation

Determines, along with apogee/perigee heights, those
zones of earth from which satellite is visible; also af-
fects satellite sensitivity to certain zonal harmonics

Helps determine frequency of observation, extent of res-
onance between satellite period and earth's rotation
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TABLE 1.9.--Characteristics of Satellites

Satellite

SAS-1 12 Dec 1970
(1970-107A)

DIAL

(1970-17A)

Elements of
initial orbit

Date
of a e i Period

launch (kin) (degrees) (minutes)

Mass (kg)
Height
(kin) at Area (rod
perigee

6922.505 0.002 3.0 95.6 530

i

10 Mar 1970 7344 0.09 5.4 104.4 310

PEOLE 12 Dec 1970

(1970-109A)

Courier-lB
(1960 vl)

TRANSIT-3B
(1961 _)

Explorer-2 27 Apr 1961
(1961 v)

Pegasus-3 30 Jul 1965
(1965-60A)

LCS-1

(1965-34C)

TRANSIT-4B

(1961 w_l)

OSO-3
(1967-20A)

Vanguard-2
(1959 al)

7006.155 0.02 15.0 97.3 530

4Oct 1960 7474.289 0.017 28.3 107 965

22Feb 1961 16876 0.04 28.4 94.5 187

7509 0.086 28.8 108 490

6906 0.002 28.9 95.2 483

6 May 1965 9162 0.00 32.1 145.6 2788

5 Nov 1961 7415 0.013 32.4 105.6 970

8May 1957 6916 0.002 32.9 45.4 910

Geodetic
Instru- Stabili-

(*) ment@ zation c

79.5 MR MAG
0.4

,61.7 CC ROT

55 CC GG

227 MR ....

110 DR MAG
2.8

43 MR NS
0.3

10 430 MR

34 NI

90 DR
0.4

281 MR

Explorer-I
(1958 a)

NS

Vanguard-3
(1959 n)

Vanguard-1

(1958 f12)

NS

MAG

MAG

ROT

JET

17 Feb 1959 8306.760 0.165 32.9 126 557 9.3 MR NS
0.2

1 Feb 1958 8157 0.18 33 114.8 358 8.3 MR NS
0.15

18 Sep 1959 8433 0.190 33.4 130 510 23 MR NS
0.2

1.5 MR
0.2

MR

17 Mar 1958 8680 0.19 34.1 133.8 691

7960 0.121 38.9 118 636 6.8
1.6

7337 0.052 39.5 109.2 591 22.7
0.3

Explorer-9 16 Feb 1961
(1961 51)

DIADEME-2 15 Feb 1967

DI-D

(1967-14-01)

DR
CC
MR

NS

NS

MAG
ROT
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TABLE 1.9.--(Cont'd)

Satellite

DIADEME-1
DI-C
(1967-11-01)

BE-C

(Explorer-
27)
(1965-32A)

Elements of
initial orbit

Date
of a e

launch (kin)

8 Feb 1967 7336 0.053

29Apr 1965 7311 0.026

TELSTAR-1 10 Jul 1962

(1962 aE)

9669.530 0.242

12 Aug 1960 i7568.579 0.011ECHO-1
Rocket

(1960 t2)

ECHO-1 12Aug 1960 8966
(1960 tl)

13 Dec 1962 10 736RELAY-1

(1962 fi)

GRS
(1963-26A)

ANNA-1B

(1962 fi/zl)

TRANSIT-1B

(1960 _,2)

TIROS-6

(1962 a@l)

TIROS-7
(1963-24A)

GEOS-1

(Explorer-
29)
(1965-89A)

0.01

0.284

28 Jun 1963 7228.289 0.060

31 Oct 1962 7504.951 0.008

13Apr 1960 6936 0.03

18 Sep 1962 8020.761 0.026

19 Jun 1963 7003 0.003

Elektron-3

(1964-38A)

DOD
(1963-55A)

6Nov 1965 8067.354 0.080

11Jul 1964 10 080 0.34 61

21 Dec 1963 6607 0.001 64.9

i
(degrees)

3_9 104.3

41.1 108

44.8 158

47.2 118

47.2 11&3

47.5 184.9

49.7 102.1

50.1 107.8

51.28 95.8

58.1 120

58.2 97.4

59.4 120.3

168

89.3

Mass (kg)
Height Geodetic

Period (km) at Area (m 2) Instru-
(minutes)[ perigee (°) ments b

Stabili-
zation c

557 22.7 CC MAG
0.13 MR ROT

927 54 DR MAG
___ CC

950 77 MR ROT
0.6

1501 ___ NI NS

1524 76 MR NS
700 RF

1317 78.2

421 100

1080 250
1.5

379 125
0.5

590 128
0.5

615 130

1115 175
1.23

408

N/A

SR

FL

DR

MR

SR

DR

MR

MR

DR
GR
SR
CC
FL

N/A

N/A173

ROT

ROT

MAG

MAG

ROT

ROT

MAG

GG
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TABLE 1.9.--(Cont'd)

Date
of

launchSatellite

Sputnik-1 4 Oct 1957

(1957 a)

INJUN-1 29 Jun 1961

(1961 o2)

TRANSIT-4A 29 Jun 1961

(1961 ol)

TRANSIT-2A 22 Jun 1960

(1960 Wf)

EGRS-5

(1965-63A)

Agena Rocket
(1969-1A)

a

(kin)

6959

7313.542

7321.522

7221

Elements of
initial orbit

e i
(degrees)

0.052

0.008

0.008

0.03

10Aug 1965 8194.970 0.080

11 Jan 1964 7297.252 0.001

DOD Vehicle 11 Jan 1964 7301

(1964-1A)

TIMATION-2 30 Sep 1969 7289
(1969-082B)

EGRS-3 9Mar 1965 7289.5

(1965-16E)
(SECOR-3)

FR-1 6Dec 1965 7126
(1965-101A)

0.002

Explorer-19
(1963-53A)

BE-B

(Explorer-
22)
(1964-64A)

ALOUETTE-2

(1965-98A)

0.002

0.003

Period
(minutes)

65 96.1

66.8 103.8

66.8 103.8

67 102

69.2 122.2

69.9 103.5

69.9 103.5

70 103.5

70.1 103.5

0.001 75.9 . 99.9

19 Dec 1963 7857 0.11 78.6 115.9

10Oct 1964 7354.785 0.014 79.7 105

28Nov 1965 8097.474 0.151 79.8 125

ECHO-2 25 Jan 1964 8267

(1964-4A)

PAGEOS 24 Jun 1966 10 614.790
(1966-56A)

14Oct 1965 7345.634

0.03 81.5 108.8

0.0025 87.1 181.4

0.074 87.4 104.4

I

t

Height IMass (kg)

(kin.)at Area (m 2)
perigee (a)

227 83.6
1

Geodetic
Instru- Stabili-
ment@ zation c

N/A NS

895 93 MR MAG

79 DR MAG
0.4

880

630 101 DR MAG

0.5

1140 2_.._._O0 DR MAG
0.02 SR

920 ....... NI NS

921 ................

905 ....... DR ....

900 18 SR MAG

0.02

740 60 MR ROT

589 8 MR NS
10.5

874 53 DR MAG

CC

502 145 MR ROT
0.7

1029 256 MR NS
1260 RF

4207 54 RF NS
700

I
424.8 450 [ MR GG

-- I JET
! I

51

0GO-2

(1965-81A)
I
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TABLE 1.9.--(Cont'd)

Date
of

launchSatellite

DASH-2 19 Jul 1963

(1963-30-D)

ISIS-1 30 Jan 1969

(1969-9A)

MIDAS-7 19 Jul 1963

(1963-30A)

OSCAR-7 28 Jan 1966

(1966-o_A)

5 BN-2 6 Dec 1963
(1963-48C)

DOD Vehicle 5 Dec 1963

(1963-49B)

EGRS-7 19 Aug 1966
(1966-77B)

MIDAS-4 21 Oct 1961
(1961 aS1)

TIROS-9 22 Jan 1965

(1965-4A)

3 Feb 1966ESSA-1

(1966-8A)

a
(kin)

Elements of
initialorbit

_342 0.074

3240 0.175

_337 0.074

7404.041 0.024

7463.227 0.005_

7477 0.004

l0 057 0.001

10005 0.012

8020.761 0.117

7141 0.010

i Period
(degrees) (minutes)

88.4 168

88.4 128.2

88.4 167.9

89.7 105.6

89.95 106.9

90.0 107.2

90.11 167.6

96 166

9614 119.2

97.9 100.1

Mass (kg)
Height Geodetic
(km) at Area (m _) Instru-
perigee (') ments _

228O

586

2277

868

1062.5

1108

3679

3496

690

710

241 MR
0.5

1032 N/A
3.5

6O DR
0.98

Stabili-
zation c

ROT

ROT

GG

75 DR GG
0.5 MAG

....... DR

20.4 SR

0.02

1576 N/A

7

139 MR

0.6

13_ MR

0.6

MAG

ROT

ROT

ROT
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TABLE 1.9.--(Cont'd)

Satellite

GEOS-2

(Explorer-
36)
(1968-2A)

Date
of

launch

11 Jan 1968

OVI-2 15 Oct 1965
(1965-78-

01)

EGRS-9 29 Jun 1967

(1967-65A)

Elements of
initial orbit

a

(kin)

7710.807 0.031

8314.7 0.164

10 237 0.007

i
(degrees)

106 111.6

144.3 126

172.1 172.1

Mass (kg)
Height

Period (kin) at Area (m 2)
(minutes) perigee (a)

1084 213
1.3

418 170

3794 20.4
0.02

Geodetic
Instru-
ments _

MR,GR,
RR, SR,

RFR,
DR,
FL

N/A

SR

Stabili-
zation c

GG

ROT

MAG

" Cross-sectional area in direction of motion. Many of the satellites have complex surfaces and change orien-
tation with respect to direction of motion. Areas are not usually given for such satellites or, if given, are
estimated maxima.

b CC
DR
FL
GR
MR
NI
RF
RFR
RR
SR
N/A

GG
MAG
ROT
NS
JET

Corner-cube reflector
Doppler beacon
Flashing light
Grarr transponder
MINITRACK radio (sometimes used primarily for telemetry)
Not instrumented

Reflecting surface
Radar reflector

Radar transponder
Secor transponder
Instrumentation not used geodetically or unknown
Gravity-gradient stabilized
Magnetically stabilized
Stabilized by rotation
Not stabilized

Orientation partly or entirely controlled by jet engines
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TABLE 1.10.--Characteristics of Satellite-Tracking Equipment

Precision ..... Meteorological Portable/
Type Accuracy/lJlrectlon Requirements Fixed Users"

1000-mm -+ 10 m/transverse Darkness; clear Portable DMAIAC (3.2.1)

camera weather NASA/GSFC (5.2.1)

450-mm -+ 5 m/transverse Darkness; clear Portable NGS (7.2)

camera weather

300-ram -+ 5 m/transverse Darkness; clear Portable NGS (7.2)

camera weather

Baker-Nunn -+ 10 m/transverse Darkness; clear Fixed SAO (9.2.1)

weather

Radar FPS-16 -+ 1 m -/radial Any conditions except Fixed NASA/WFC (6.2)
-+ 2-5 m thunderstorm USAF (6.2)

Radar FPR-6 -+ 1 m ./radial Any conditions except Fixed NASA/WFC (6.2)
-+ 2-5 m thunderstorm USAF (6.2)

MINITRACK -+ 100 m -/transverse Not effective in rain Fixed
-+ 300 m or thunderstorm,

nor in times of very

active sun

NASA]GSFC (5.2.2)

SECOR -+ 5-10 m/radial Not effective in Portable DMA/TC (3.2.3)

thunderstorm

FME -+ 2 cm/sec (radial) Not effective in Portable APL (2.2)

(TRANSIT) thunderstorm NWL

GRARR -+ 5 m/radial Not effective in Fixed NASAIGSFC (5.2.3)

thunderstorm

Laser DME 0.2 m /radial Clear weather Portable
1.0-2.0 m

SAO (9.2.2)

AFCRL (3.2.2)

NASA]GSFC

(3.2.2)

a Numbers in parentheses refer to sections in subsequent chapters.
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TABLE 1.12.--Factors Affect i t_g Precis io _

and Accuracy of Measurit_g Engine

1. Method of calibration

2. Stability of instrument as function of

a. Time

b. Temperature

c. Position of carri_

3. Method for identifying points

a. Human observer

b. Impersonal observer

4. Treatment of data

5. Resolution

TABLE 1.13.--Characteristics of PRIME MINITRACK

Baseline length

Resolution

Calibration

Beamwidth

Phase equation

Perturbations

Ionosphere

Troposphere

Array alignment

Cable lengths

Phase-measurement error

125.5 m Polar fine

101.4 m Equatorial fine

0.1 milliradian

Against beacon carried in airplane located by

camera

10.E-W1  100oNS
100 ° N-S or (10 ° E-W

80 = [M(27rp cos 0)_ d<b

Large

Small

Calibrated

Calibrated

Calibrated

TABLE 1.14.--Characteristics of DME

Carrier frequency (MHz)

Pulse or CW

Power output (kW)

Maximum range (m)

Precision (m)

Accuracy (m)

Resolution

Used by

5-cm Radar

5400-5900

Pulse

250, i00 (",

2500 _2,

"2 000 000"'

"60 000 000 'z'

-+lm

-+2-5

0.5 m

NASA, DOD

Type

Laser DME

4.32 × 10 _

Pulse

1000-500 000

-+0.2-_+1

_+0.5-2

0.1 m

NASA, DOD,

SAO

SECOR

449 224.5

CW

2

GRARR

1500

CW

10

5000 400 000 km

But depends on

transponder

t'3-10 m

0.25 m

DOD

15 m

NASA

Barton (1964)

b Prescott (1965) unpublished
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TABLE 1.15.--Characteristics of Typical Laser DME (6943 A)

NASAJGFSC SAO AFCRL a
(Chapter 5) CNES (Chapter 9) (Chapter 3)

Transmitter pulse

Energy 1 J 1 J 7 J 0.5 J

• Length 30 ns 30 ns 13-18 ns 30 ns

Repetition rate 60 ppm 15 ppm 4 ppm ............
Beamwidth 60" (variable) 30" 200" 290"
Receiver

Aperture 40 cm 30 cm 49 cm -22 cm

Resolution 1 ns 10 ns 1 ns 1 ns
Timer

Type Quartz clock Quartz clock Quartz clock Cesium clock

Control VLF VLF VLF UNS Obs and

portable clocks
Precision (estimated) 0.5 m bl.5 m c0.01 m <0.5 m

" Ranging system.
t, Bracket and Brossier (1972, unpublished).
" Lehr et al. (1971, unpublished).

59

TABLE 1.16.--Satellites With Corner-Cube Reflectors

Number
Inclin- of Effective

Apogee Perigee ation Period cube area
Satellite (Mm) (Mm) (deg) (min) corners (cm _) Divergence Stabilization

BE-B (1964-64A) 1.09 0.89 80 105 360 80 12"

BE-C (1965--32A) 1.32 0.94 41 108 360 80 12"

GEOS-1 (1965-89A) 2.27 1.12 59 120 334 940 20"

D1-C (1967-11A) 1.35 0.53 40 104 144 a20-100 _16"

D1-D (1967-14A) 1.85 0.58 39 110 144 _20-100 a16"
GEOS-2 (1968-2A) 1.61 1.08 74 112 400 1100 20"

PEOLE (1970-109A) 0.73 0.53 15 97 ...............

Magnetic

Magnetic
Gravitational

Magnetic

Magnetic
Gravitational

" The retroreflectors on D1-C or D1-D shape the returning beam so as to compensate
velocity aberration. Consequently, a characterization of its properties in terms of effective
is an approximation. Lehr et al. (1970, unpublished).

most effectively for
area and divergence
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TABLE 1.17.--Major Characteristics of 5-cm Radars Used in NGSP

Characteristics

Frequency

Transmitter

Power, peak

Pulse width

Repetition

Antenna

Type

Diameter

Beamwidth

Gain

Scan

Receiver

Bandwidth

Noise figure

Range

General (1 m0

"Reflector (1 m0

_rransponder (100 w)

Accuracy
Precision

Resolution

Angle

Resolution

Values (Nominal)

FPS-16 (modified) FPQ-16
(CAPRI, HAIR, MPS-25) (TPQ-18)

5400-5900 MHz
I

I
1-3 MW

0.25, 0.5, 1 _sec ]

285 to 1707 pps I 2.5 to 640 pps

Paraboloidal

4 m [ 4 m (9 m)

1"1° ! 0"4°
44 db 51

Mon )ulse

1.6 MHz

8.0 MHz

4-12 db

560 km (275 km)

3 000 km

32 000 km

-+ 5-10 m

_+ 1-2m

0.5m

0.1 mil

i

" For reflector characteristics, see chapter 6.

b For transponder characteristics, see chapter 6.

0.5 MHz

8 db

1 400 km

7 500 km

100 000 km (60 000)

-+3m

-+lm

2m

0.1 mil
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TABLE 1.18.--SateUites Carrying Highly Stable CW Beacons"

61

Transmitting (T)
or not

transmitting (NT)
Transmitted Launch (or ceased

Name Designation frequencies date transmitting)

TRANSIT-1B 1960 T2 B,C 13 Apr 60 11 Jul 60

TRANSIT-2A 1960 _1 B,C 22 Jun 60 26 Oct 62

TRANSIT-3B 1961 _?1 B,C 22 Feb 61 1 Apr 61
TRANSIT-4A 1961 ol C,Z 29 Jun 61

TRANSIT-4B 1961 a_l C,Z 15 Nov 61 2 Aug 62
TRAAC 1961 aV2 C 15 Nov 61 12 Aug 62

ANNA-1B 1962 flftl B,C 31 Oct 62
5A1 1962 fl_l Z 19 Dec 62 19 Dec 63
5A3 1963-22A Z 16 Jun 63

5BN-1 1963-38B Z 28 Sep 63 22 Dec 63

5E-1 1963-38C Y 28 Sep 63
5BN-2 1963-49B Z 5 Dec 63

5E-3 1963-49C C,Y,X 5 Dec 63 9 Mar 64

5C-1 1964-26A Z 3 Jun 64 23 Aug 65
Oscar-01 1964-63A Z 6 Oct 64 8 Oct 64
BE-B 1964-64A Y 9 Oct 64

Oscar-02 1964-83D Z 12 Dec 64 31 Dec 64
5E-5 1964-83C Y 12 Dec 64

Oscar-03 1965-17A Z 11 Mar 65 6 Apr 65

BE-C 1965-32A Y 29 Apr 65
Oscar-04 1965-48C Z 24 Jun 65

Oscar-05 1965-65F Z 13 Aug 65
GEOS-A 1965-89A Y 6 Nov 65

Oscar-06 1965-109A Z 22 Dec 65

Oscar-07 1966-05A Z 28 Jan 66

D1-A 1966-13A Z 17 Feb 66

Oscar-08 1966-024A Z 25 Mar 66

Oscar-09 1966-41A Z 19 May 66

Oscar-10 1966-76A Z 18 Aug 66 T
D1-C 1967-11D Z 8 Feb 67

D1-D 1967-14A Z 15 Feb 67

Oscar-12 1967-34A Z 14 Apr 67 T

Oscar-13 1967-48A Z 18 May 67 T
Timation-1 1967-53F 400 Hz 31 May 67

Oscar-14 1967-92A Z 25 Sep 67 T

GEOS-B 1968-02A T 11 Jan 68 NT
Oscar-18 1968-12A Z 1 Mar 68 T

Timation-2 1969-82B Z 30 Sep 69

Oscar-19 1970-67A Z 27 Aug 70 T
Doppler Beacon-1 1970-16A Y 4 Mar 70 NT

Doppler Beacon-2 1970-40A Y 20 May 70 NT
Doppler Beacon-3 1970-98A Y 18 Nov 70 NT

Doppler Beacon-5 1971-22A Y 24 Mar 71 NT

Doppler Beacon-6 1971-76A Y 10 Sep 71 NT
Doppler Beacon-7 1973-19A Y 9 Mar 73 NT

B = 162/216 MHz; C = 54/324 MHz; Z = 150/400 MHz; T = 162/324/972 MHz;
Y = 162/324 MHz; X = 648 MHz. From Gross (1968) and other sources.

T-lines -- 1 hr. 5 minutes
input- 1 hr. 30 minutes
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TABLE 1.20.--Time Signals

63

Stationary frequencies (VHF)

Call City MHz

FFH Paris 2.5

HBN Neuchabel 5
IAM Rome 5

JJY Tokyo 2.5,5,10,1

MSF Rugby 5.10

RWV Moscow 5,10,15
WWV Fort Collins 5 to 25

WWV-U Hawaii 5 to 25

Stable frequencies (VLF)

Call City kHz

GBR Rugby 16
MSF Rugby 60

NBA Balboa 24

NSS Annapolis 21.4
RWM Moscow 100

WWVB Fort Collins 60

TABLE 1.21.---Defined Quantities

Meter (1960, llth General Conference on Weights and Measures)

The length equal to 1 650 763.73 wavelengths in vacuum of the radiation corresponding

to the undisturbed transition between the levels 2pl0 and 5d5 of the atom of
krypton--86.

Kilogram (1901, 3rd General Conference on Weights and Measures)

The unit of mass represented by the mass of the International Prototype Kilogram

at Sevres, France.

Second (1964, 12th CGPM and ICWM)

The standard to be used is the transition between the hyperfine levels F = 4, M = 0

and F = 3, M = 0 of the fundamental state 2Sz_2of the cesium-133 atom unperturbed
by external fields. The value 9 192 631 770 hertz is assigned to the frequency of this
transition."

Degree Kelvin (1954, 10th CGPM)

Define the thermodynamic scale of temperature by means of the triple-point of water

as a fixed point, attributing to it the temperature 273.16 degrees kelvin, exactly.

" Second (llth General Conference on Weights and Measures): (31 556 925.9747) -_ of the

tropical year 1900 January 0 at 12 hours of ephemeris time.
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TABLE 1.22a.--The NAS-NRC System of Physical Constants

(Adjusted Values of Constants)

Est.
error Unit

Constant Symbol Value limit" (MKSA)

Speed of light in vacuum ....... (c) 2.997 925 x 10 _ 3 m s '

Elementary charge ............. (e) 1.602 10 x 10 " 7 C

Avogadro constant ............. (N,) 6.022 52 × 10 _:' 28 tool '

Planck's constant .............. (h) 6.625 6 x 10 :_ 5 J s

Charge to mass ratio for electron (e/m,.) 1.758 796 x 10" 19 C kg '

Gas constant ................... (R) 8.314 3 x 10" 12 J K ' mol '

Normal volume perfect gas ..... (V,) 2.241 36 × 10 _ 30 m:' mol

Boltzmann constant ............ (k) 1.380 54 × 10 -_:' 18 J K '

Stefan-Boltzmann constant .... (_) 5.669 7 × 10 _ 29 W m _ K 4

Gravitational constant ......... (G) 6.670 x 10 " 15 N m: kg _

"Based on three standard deviations, applied to last digits in "value" column.

Electromagnetic system: C--coulomb J--joule Hz--hertz W--watt N--new-

ton t--tesla G--gauss.

TABLE 1.22b.--Set II--The IAU System of Astronomical Constants

Defining constants

Number of ephemeris seconds in 1 tropical year (1900) s

Gaussian gravitational constant, defining the a.u. k

Primary constants

Measure of 1 a.u. in meters A

Velocity of light in meters per second c

Equatorial radius for Earth in meters a,,

Dynamical form factor for earth J2

Geocentric gravitational constant (units: m :) s -z) GE

Ratio of the masses of Moon and Earth tz

Sidereal mean motion of Moon in radians per second

(1900) n_
General precession in longitude per tropical century

(1900) P

Obliquity of the ecliptic (1900)
Constant of nutation (1900) N

Derived constants

Solar parallax _O

Light-time for unit distance _A

Constant of aberration K

Flattening factor for Earth f

Heliocentric gravitational constant (units: m :_ s _) GS

Ratio of masses of Sun and Earth

Ratio of masses of Sun and Earth + Moon

Perturbed mean distance of Moon in meters a._

Constant of sine parallax for Moon sm lr_
Constant of lunar inequality L(_

Constant of parallactic inequality P_

System of planetary masses (ratio of masses of Sun and planet)

Mercury 6 000 000 Mars 3 093 500

Venus 408 000 Jupiter 1 047.355

Earth + Moon 329 390 Saturn 3 501.6

= 31 556 925.974 7

= 0.017 202 098 95

= 149 600 x 10"

= 299 792.5 × 10:'

= 6 378 160

= 0.001 082 7

= 398 603 x 10"

= 1/81.30

= 2.661 669 489 x 10 "

= 5 025?64

= 23°27 ' 08?26

= 91'210

= 8_ 794

= 499_.012

= 20?496

= 1/298.25

= 132 718 x 10 '_

332 958

328 912

= 38 440 × 10 :_

= 3 4227451

= 67440

= 1247986

Uranus 22 869

Neptune 19 314

Pluto 360 000
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TABLE 1.23.---Major Epochs Used in Satellite Geodesy (NGSP)
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Epoch

1900 Jan 0'_12h

1950.0

For

Definition of Ephemeris Time, Universal Time

Ephemeris Second, Calculation of Funda-
mental Ephemerides

(Anonymous, 1961, p. 69; Trans. IAU 10:172,
1960)

General (Boss) Catalog, Zodiacal Catalog, FK3,
FK4, Yale (Zone) Catalogs, Smithsonian Star
Catalog (See catalogs mentioned; also Anony-
mous, 1961)

Distance (in J.D.) From

1900 Jan 0d12 h

0_313

Julian day number 0.(

2 415 020.0

2 433 282.423

Julian day number 0 Chronological reckoning by days elapsed; cal- '2 415 020.0 0
culation of sidereal time, etc.

(Anonymous, 1961, p. 21)

Julian day modified Same as Julian day number 15 019.5 2 400 000.5
number 0 (ch. 9)

1967 Jan 1 CIO Adopted (BIH Report, 1965; Trans. IAU, 24 471.5 2 439 491.5
1967)

1972 Jan 1 Discontinuity in UTC (BIH Circular D.59; 26 293.5 2 441 317.5
Chi and Fosque, 1973)

1964 Apr 1 Discontinuities in UTC on 1964/5/1, 1964/9/1, Various Various
1965/1/1, 1965/3/1, 1965/7/1, 1965/9/1, 1966/1/1,
1968/2/1
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TABLE 1.24.--Time Scales of Major Importance in NGSP

Name ] Symbol ] Basis and refei-ence I Test object

Unit: second of atomic time

A.1Atomic time

A.1

Atomic time

TA.1

Atomic time

A3

Atomic time

NBS

Ephemeris time

TA.1

A3

NBS-A

ET

Initially,a set of eight cesium-beam frequency standards

at USNO, NRL, NBS, Cruft Lab., NPL, Neuchatel, Bayneux

Epoch of 0h0"0` 1 Jan 1958 (UT2).

Various standards since.

(Audoin, 1973; USNO Time Bulletins)

Time Standard of Laboratory Suisse Recherche Horolo-

genes (Neuchatel) (Audoin, 1973)

Cesium-beam clocks at NBS, NPL, LSRH (Neuchatel) and

averaged by BIH (Guinot and Feisel, 1969; Guinot, 1972)

Times of two cesium-beam clocks. Epoch of A.1 -+ 0.001 S

(Behler, 1967)

Motion of Earth about the Sun and Newcomb's Tables of the

Sun. In practice, motion of the Moon and the ephemeris of

the Moon (Anonymous, 1961)

Unit: second of mean solar time

Cesium-beam

clocks;

hydrogen

maser

Cesium-beam

clock;

ammonia maser

Cesium-beam

clocks;

radio broadcasts

Cesium-beam

clocks

Moon and

Brown's equations

for motion of

the Moon

Universal time UTO

TO

Universal time

T1

Universal time

T2

UT1

UT2

Rotation of Earth. Time between successive passages of

point with right ascension

a = 18h38"45_836 + 86'40 184.542 T + 0.0929 T 2

Measured by successive passages of T , which are then

converted to UTO. (Trans. IAU 7, 1950)

UT0 corrected for motion of pole. (Melchior et al., 1972;

Dejaffe, 1972; Trans. IAU 7:75, 1950; Rice, 1959;

Anonymous, 1961)

UT1 corrected for seasonal variations (Anonymous, 1961;

Guinot and Feisel, 1969)

T, o stars

UT0 and stars

UT1 and stars

Unit: second of mean sidereal time

Sidereal time,

apparent

Sidereal time,

mean

STA

STM

Time between two successive passages of true equinox of

date = 24" = 86.400"

Greenwich Hour Angle of Mean Equinox of Date

(Anonymous, 1961)

Stars

Stars

Unit: second of solar time

Solartime,

apparent

Time between two successive passages of true Sun through Sun

lower meridian = 24" = 86 400"
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TABLE 1.25.---Stations in Order of Increasing Longitude
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Coordinates _

Number" Name _ _, _b H_l(m) Datum _ Instrument e ModeV

5715 Dakar 3420 30' 59"794 14 ° 44' 36':678 27.3 Adindan SECOR 5, 10

2813 Dakar 53':268 ........ YOF Astro Doppler 2*

67

6063 Dakar 31' 02':452 39':899 26.3 Adindan BC-4 1, 6, 9, 10

8820 Dakar 342 ° 35' 29':321 46' 00"548 28.5 Adindan Laser (CNES) 8, 9

9020 Dakar 29':795 01':645 24.6 Adindan B-N 9

5736 Ascension 345 ° 35' 32':385 -7 ° 58' 15':200 74.0 AscensiSn SECOR 5, 10

1958

6055 Ascension 32':764 16':634 70.9 AscensiSn BC-4 1, 6, 9, 10
1958

2722 Ascension 38':840 ........ AscensiSn Doppler 1, 2*
1958

4080 Ascension 345 ° 35' 53':898 -07 ° 58' 22'.'779 125.4 Ascensibn TPQ-18 4
1958

6069 Tristan da 347 ° 40' 53':555 -37 ° 03' 26':257 24.8 Local BC-4 1, 6, 9, 10
Cunha

5740 Rota Insufficient data SECOR 5, 10

5741 Roberts Field Insufficient data SECOR 5, 10

8804 San Fernando 353 ° 47' 41':286 36 ° 27' 50':119 ___ EU-50 Laser (CNES) 8, 9

9004 San Fernando 42':09 51':37 ___ EU-50 B-N 1, 8, 9, 10

DSS 62 Madrid 355 ° 38' 00':572 40 ° 27'15':273 783.3 EU-50 DSS 9, J

DSS 61 Madrid 45' 08':278 25' 47':717 78&4 EU-50 DSS 9, J

8818 Colomb- 357 ° 34' 54':06 31 ° 43' 19':25 855.7 EU-50 Laser (CNES) 9*
Bechar

8011 Malvern 358 ° 01' 59':47 52 ° 08' 39':13 113.2 EU-50 Camera 8, 9, 10

2106 Lasham 358 ° 58' 30':21 51 ° 11' 12':32 190.3 EU-50 Doppler 1

1035 Winkfield 359 ° 18' 14':10 51 ° 26' 49:11 67.37 EU-50 MOTS 1, 8

8030 Meudon 2° 13' 51':339 420 48' 25':354 165.5 EU-50 Camera 8, 10

8009 Delft 4° 22' 21':23 52 ° 00' 09':24 24.7 EU-50 Camera 8, 10

8815 St. Michel de 5° 42' 48"382 43 ° 55' 59:183 657.83 EU-50 Laser (CNES) 8, 9*
Provence
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TABLE 1.25.--( Cont'd)

Coordinates"

Numbel" Name _ h _ Hm_,(m) Datum '1 Instrument' Model ±

8015 Haute 49':277 56' 01"14 658.8 EU-50 " Camera 8, 9, 10

Provence

8809 Haute 48"788 00':190 657.8 EU-50 Laser (CNES) 8, 9*

Provence

8019 Nice 7 ° 18' 03':309 43' 36':496 377.4 EU-50 Camera (Antares) 8, 9, 10

8010 Zimmerwald 27' 58':239 46 ° 52' 40':318 903.4 EU-50 Camera 8, 9, 10

9426 Oslo 10 ° 45' 08':74 60 ° 12' 40':38 575.9 EU-50 B-N 1, 8, 9, 10

6065 Hohenpeissen- 11 ° 01' 28':574 47 ° 48' 07':009 943.2 EU-50 PC-4 1, 6, 9, 10

berg

2830 Hohenpeissen- 30':259 ........ EU-50 Doppler 2*

berg

2812 Catania 14 ° 55' 05"883 ........ EU-50 Doppler 2*

2822 Ft. Lamy 15 ° 02' 05':680 12 ° 07' 50"895 298.4 Adindan Doppler 1, 2

(Chad)

5717 Ft. Lamy 06':232 49':291 298.5 Adindan SECOR 5, 10

(Chad)

6064 Ft. Lamy 06':234 51':741 295.4 Adindan PC-4 1, 6, 9, 10

(Chad)

5744 Catania 15 ° 02' 44':955 37 ° 26' 40':831 11.8 EU-50 SECOR 5, 10

6016 Catania 47':696 42':345 9.2 EU-50 PC-4 1, 6, 9, 10

2818 Tromso 18 ° 56' 30"700 ........ EU-50 Doppler 2*

9432 Uzhgorod 22 ° 17' 57':88 48 ° 38' 04':56 189 EU-50 AFU-75 8, 9,* 10

8816 Stephanion 23 ° 49' 43"313 37 ° 45' 17"043 803.1 EU-50 Laser (CNES) 1, 9*

9051 Stephanion 46' 42':89 37 ° 58' 40':31 ___ EU-50 36" Camera 9, 10

9930 Dionysos 23 ° 55' 59':99 38 ° 04' 46':157 472.4 EU-50 Laser (SAO) 8, 9

9030 Dionysos 56' 00':13 46':56 472.64 EU-50 B-N 9*

9091 Dionysos 01"587 48.215 466.3 EU-50 B-N 1, 8, 9, 10

9431 Riga 24 ° 03' 37':81 56 ° 56' 54':98 8 EU-50 AFU-75 8, 9, 10

8435 Helsinki 24 ° 57' 11':07 60 ° 09' 44':06 40 EU-50 B-N 8

DSS 51 Johannesburg 27 ° 41' 08':53 -25 ° 53' 21':150 1391.0 Cape DSS 9, 10, J



INTRODUCTION

TABLE1.25.--(Cont'd)
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Coordinates e

Number" Name" h _b H,_(m) Datum" Instrument e ModeV

6068 Johannesburg 42' 25':17 52' 56'.'98 1523.8 Cape BC-4 1, 6, 9, 10

1031 Johannesburg 42' 27':931 -25 ° 52' 58':862 1522.3 Cape MOTS-40 1, 8

9002 Olifantsfon- 28 ° 14' 53':91 57' 33':85 1544.1 Cape B-N 1, 8, 9, 10

tein

9902 Olifantsfontein 53"909 33':851 1543.88 Cape Laser (SAO) 8, 9*

9022 Olifantsfontein 54':351 33':82 1543.3 Cape B-N 1, 9*

2115 Pretoria 28 ° 20' 53':205 ........ Cape Doppler 1, 2*

4050 Pretoria 21' 29':948 -25 ° 56' 35':336 1584 Cape MPS-25 1, 4, 10

5719 Cyprus Insufficient data SECOR 5, 10

9028 Addis Ababa 38 ° 57' 30':48 6 ° 44' 47':23 1925.2 Adindan B-N 1, 8, 9, 10

6042 Addis Ababa 59' 49':164 08':501 1886.5 Adindan BC-4 1, 6, 9, 10

5720 Addis Ababa 59' 49':196 09':479 1889.4 Adindan SECOR 5, 10

1043 Tananarive 47 ° 18' 00':461 -19 ° 00' 27':097 1377.9 Tananarive MOTS-40 1, 8

1122 Tananarive 09':45 01' 13':32 1403 Tananarive GRARR 1

1123 Tananarive 12':56 09':33 1399 Tananarive GRARR 1

4741 Tananarive 54':191 00' 00':991 1338.3 Tananarive FPS-16 4

9008 Shiraz 52 ° 31' 11':445 29 ° 38' 18':112 1597.4 EU-50 B-N 1, 8, 9, 10

2020 Mahe 55 ° 28' 48':63 ........ Local Doppler 2*

2717 Mahe 48':738 ........ Local Doppier 2*

6075 Mahe 55 ° 28' 50':38 -4 ° 40' 07':23 588.98 Local BC-4 1, 6, 9, 10

2838 Mauritius 57 ° 25' 07"503 ........ Local Doppler 2*

6045 Mauritius 07"661 -20 ° 13' 41':942 ___ Local BC-4 1, 6, 9, 10

5721 Mashad 59 ° 37' 40':105 36 ° 14' 30':404 994.4 EU-50 SECOR 5, 10

6015 Mashad 42"729 29':527 991.0 EU-50 BC-4 1, 6, 9, 10

2817 Mashad 42'.'916 ........ EU-50 Doppler 1, 2*

6051 Mawson 62 ° 52' 24"41 -67 ° 36' 03':28 11.3 Local BC-4 1, 6, 9, 10

Station
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TABLE 1.25.--( Cont'd)

Coordinates"

Number" Name _ h _ H,,_(m) Datum 't Instrument' Model j

5722 Diego Garcia 72 ° 28' 31':570 -7 ° 20' 57':440 6.7 Local SECOR 5, 10

6073 Diego Garcia 32':156 58':527 3.9 Local BC-4 1, 6, 9, 10

6044 Heard I. 73 ° 23' 27':42 -53 ° 01' 12"03 3.8 Local BC-4 1, 6, 9, 10

9006 Naini Tal 79 ° 27' 25"51 29 ° 21' 38"97 1927 EU-50 B-N 1, 8, 9, 10

6040 Cocos 96 ° 49' 47':08 -12 ° 11' 57':91 4.4 Local BC-4 1, 6, 9, 10

2723 Cocos 47"730 ........ Local Doppler 1, 2*

5723 Chiang Mai Insufficient data SECOR 5, 10

2765 Chiang Mai 98 ° 58' 14"812 ........ Indian Doppler 2*

6072 Chiang Mai 98 ° 58' 15"123 18 ° 46' 06':149 308.4 1968 Astro BC-4 1, 6,* 9,

10

5724 Singapore Insufficient data SECOR 5, 10

6052 Wilkes 110 ° 32' 04':61 -66 ° 16' 45"12 18 Local BC-4 1, 6, 9, 10

Station

7054 Carnarvon 113 ° 42' 53':892 -24 ° 54' 19':908 31.4 AGD Laser (NASA) 1, 8

1152 Carnarvon 54':938 14':964 37.9 AGD GRARR 1

4761 Carnarvon 57':765 -24 ° 53' 50':755 49.0 AGD FPQ-6 4

7079 Carnarvon 43' 11':592 -24 ° 54' 26"914 23.6 AGD PTH-100 1, 8

5725 Hong Kong Insufficient data SECOR 5, 10

2709 Caversham 115 ° 55' 47"572 ........ AGD Doppler 2*

6032 Caversham 115 ° 58' 26':618 -31 ° 50' 28':992 26.3 AGD BC-4 1, 6, 9, 10

5726 Zamboanga 122 ° 04' 03':558 6 ° 55' 26':213 ___ Luzon 1911 SECOR 5, 10

2821 Zamboanga 03':700 ........ Luzon 1911 Doppler 2*

6047 Zamboanga 04':838 6 ° 55' 26':132 ___ Luzon 1911 BC-4 1, 6, 9, 10

2832 Japan 129 ° 42' 43':640 ........ Tokyo Doppler 2*

5727 Darwin Insufficient data SECOR 5, 10

6013 Kanoya 130 ° 52' 24':860 31 ° 23' 30'_140 65.9 ___ BC-4 1, 6, 9, 10

5742 Palau Insufficient data SECOR 5, 10

9003 Woomera 136 ° 46' 58':70 -31 ° 06' 07':261 159.2 ___ B-N 1, 9
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Coordinates e

Number" Name t' _ _b H_,l(m) Datum d Instrument e ModeF

4946 Woomera 50' 13':120 -30 ° 49' 11"003 124.7 AGD FPS-16 1, 4

1024 Woomera 52' 11':022 -31 ° 23' 30':07 129.5 AGD MOTS-40 1, 8

9023 Woomera 52' 39':016 30':816 137.9 AGD B-N 1, 8, 9

DSS 41 Woomera 53' 10':124 -31 ° 22' 59':431 140.3 AGD DSS J

9025 Dodaira 139 ° 11' 43':159 36 ° 00' 08':606 855.89 Tokyo B-N 1, 8, 9

9005 Tokyo 32' 28':222 35 ° 40' 11':078 59.8 Tokyo B-N 1, 8, 9, 10

6023 Thursday 142 ° 12' 35':496 -10 ° 35' 08':037 60.5 AGD BC-4 1, 6, 9, 10
Island

2744 Thursday 36':990 ........ AGD Doppler 2*
Island

5728 Guam Insufficient data SECOR 5, 10

7060 Guam 144 ° 44' 05'.'374 13 ° 18' 28':614 85.9 Local Laser (NASA) 8, 9

5729 Manus Insufficient data SECOR 5, 10

1038 Orroral 148 ° 57' 10':705 -35 ° 37' 37'.'501 931.3 AGD MOTS-40 1, 8

DSS 42 Tidbinbilla 58' 48"206 24' 08'.'038 655.8 AGD DSS 9, 10, J

2805 Culgoora 149 ° 33' 36"622 ........ AGD Doppler 2*

6060 Culgoora 36':892 -30 ° 18' 39':418 211.1 AGD BC-4 1, 6, 9, 10

5731 Guadalcanal Insufficient data SECOR 5, 10

2708 Wake Island 166 ° 36' 39':128 ........ Local Doppler 2*

6012 Wake Island 39':780 19 ° 17' 23':227 3.5 Local BC-4 1, 6, 9, 10

6066 Wake Island 41':206 24':100 5.3 Local BC-4 10

5730 Wake Island 41':206 24':100 8.1 Local SECOR 5, 10

2019 McMurdo 166 ° 40' 03"444 ........ Local Doppler 1, 2*
Station

6053 McMurdo 38' 07':585 -77 ° 50' 46':249 19.0 Local BC-4 1, 6, 9, 10
Station

6078 Port Vila 168 ° 17' 57"921 -17 ° 41' 46':966 15.2 Local BC-4 1, 9, 10

6031 Invercargill 168 ° 19' 31':155 -46 ° 25' 03':491 0.9 New Zea- BC-4 1, 6, 9, 10
land
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TABLE 1.25.--(Cont'd)

Coordinates"

NumbeY' Name b h _b Hm_j(m) Datum" Instrument' Model j

___ New Zea- Doppler 2*2809 Invercargill 18' 13':206 .....
land

___ NAD 1927 Doppler 2*2739 Shemya 174 ° 06' 51':482 .....

6004 Shemya 07' 37':87 52 ° 42' 54':89 36.8 NAD 1927 BC-4 1, 6, 9, 10

5734 Shemya 37':870 54':894 39.3 NAD 1927 SECOR 5, 10

5410 Midway 182 ° 37' 49':531 28 ° 12' 32':061 6.1 Local SECOR 5, 10

2117 Tafuna 189 ° 17' 07':643 ........ Am. Samoa Doppler 1, 2*

62

2017 Tafuna 07':87 -14 ° 20' 07':99 6.7 Am. Samoa Doppler 1"
62

6022 Tafuna 13':242 12':216 5.3 Am. Samoa BC-4 1, 6, 9, 10
62

5732 Pago Pago Insufficient data SECOR 5, 10

9427 Johnston 190 ° 29' 05':59 16 ° 44' 45':39 5 Local B-N 1, 8, 9, 10

Island

4742 Kauai 200 ° 19' 53':962 22 ° 07' 35':828 1155 Old Hwn. FPS-16 4, 10

2100 Wahiawe 202 ° 00' 00':63 21 ° 31' 26':86 395 Old Hwn. Doppler 1

5733 Christmas 202 ° 35' 21"962 2° 00' 35':622 3.5 Local SECOR 5, 10

Island

6059 Christmas 21"962 35':622 2.8 Local BC-4 1, 6, 9, 10

Island

2849 Christmas 21"036 ........ Local Doppler 2*

Island

6123 Pt. Barrow 203 ° 21' 20':720 71 ° 18' 49':882 8.3 NAD 1927 BC-4 1, 9, 10"

2811 Maui 203 ° 31' 52':080 ........ Old Hwn. Doppler 2*

5411 Maui 52':77 20 ° 49' 37':00 32.3 Old Hwn. SECOR 5

9012 Maui 44' 24':08 42' 37':50 3034.1 Old Hwn. B-N 1, 8, 9, 10

6011 Maui 44' 28':529 20 ° 42' 38':561 3049.3 Old Hwn. BC-4 1, 6, 9, 10

2014 Anchorage 210 ° 10' 37':46 61 ° 17' 01"98 68 NAD 1927 Doppler 1

1033 Fairbanks 212 ° 09' 47':168 64 ° 52' 19"721 162.7 NAD 1927 MOTS-40 1, 8, 10

1036 Fairbanks 28' 40':898 64 ° 58' 38':600 289.6 NAD 1927 MOTS-40 1, 8
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Coordinates _

Number" Name _' h _b H_(m) Datum d Instrument e ModeF

1128 Fairbanks 29' 22':415 20':886 346.6 NAD 1927 GRARR 1

6039 Pitcairn 229 ° 53' 11"882 -25 ° 04' 07"146 339.4 Local BC-4 1, 6, 9, 10

4280 Vandenberg 239 ° 25' 10':428 34 ° 39' 57'.'140 123.0 NAD 1927 TPQ-18 4, 10
AFB

2738 Moses Lake 240 ° 39' 47':400 ........ NAD 1927 Doppler 1, 2*

6003 Moses Lake 48"118 47 ° 11' 07".132 368.7 NAD 1927 BC-4 1, 6, 9, 10

5201 Moses Lake 50':463 05':916 368.9 NAD 1927 SECOR 5, 10

9425 Edwards 242 ° 05' 11"584 34 ° 57' 50"742 784.23 NAD 1927 B-N 1, 8, 9, 10
AFB

6134 Wrightwood 242 ° 19' 09':259 34 ° 22' 44'.'444 2198.4 NAD 1927 BC-4 1, 9, 10"

6111 Wrightwood 09"484 34 ° 22' 54'.'54? 2284.3 NAD 1927 BC-4 1, 6, 9, 10"

1030 Mojave 243 ° 06' 02'.'73 35 ° 19' 48':088 929.1 NAD 1927 MOTS-40 1, 8, 10

DSS 14 Goldstone 243 ° 06' 40':850 35 ° 25' 33':340 1031.8 NAD 1927 DSS 9, 10, J

DSS 11 Goldstone 09' 05"262 23' 22':346 1036.3 NAD 1927 DSS 9, 10, J

DSS 12 Goldstone 11' 43"414 17' 59'.'854 988.9 NAD 1927 DSS 9, 10, J

DSS 13 Goldstone 12' 21"573 35 ° 14' 51".788 1093.5 NAD 1927 DSS J

6038 Socorro 249 ° 02' 39"28 18 ° 43' 44':93 23.2 Local BC-4 1, 6, 9, 10
Island

2831 Socorro 40"587 ........ Local Doppler 2*
Island

9021 Mr. Hopkins 249 ° 07' 21"35 31 ° 41' 02"67 2383.1 NAD 1927 B-N 1, 8, 9, 10

9921 Mt. Hopkins 21'.'35 31 ° 41' 02'.'87 2383.1 NAD 1927 Laser (SAO) 8, 9

9424 Cold Lake 249 ° 57' 26':389 54 ° 44' 33"858 704.6 NAD 1927 B-N 1, 8, 9, 10

6020 Easter Island 250 ° 34' 17'.'495 -27 ° 10' 39'.'213 230.8 Local BC-4 1, 6, 9, 10

2846 Easter Island 18':384 ........ Local Doppler 2*

2103 Las Cruces 253 ° 14' 48':25 32 ° 16' 43':75 1203 NAD 1927 Doppler 1

9001 Organ Pass 253 ° 26' 51':17 32 ° 25' 24"56 1651.33 NAD 1927 B-N 1, 8, 9, 10

9901 Organ Pass 51':17 32 ° 25' 24"56 1651 NAD 1927 Laser (SAO) 9
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Number" Name _' h & H,,_(m) Datum 't Instrument '' Model j

3400 Colorado 255 ° 07' 01"01 39 ° 00' 22':44 2184.1 NAD 1927 PC-1000 10

Springs

3902 Cheyenne 255 ° 08' 02"65 41 ° 07' 59"200 1882.2 NAD 1927 PC-1000 10

7045 Denver 255 ° 23' 41':19 39 ° 38' 48':026 1789.6 NAD 1927 MOTS-40 1, 7, 8, 10

7036 Edinburg 261 ° 40' 09"03 26 ° 22' 45':443 59.59 NAD 1927 MOTS-40 1, 7, 8, 10

(Tex.)

5709 Austin Insufficient data SECOR 5, 10

7034 E. Grand 262 ° 59' 21':56 48 ° 01' 21':40 253 NAD 1927 MOTS-40 1, 7, 8, 10

(1034) Forks

5706 Worthington Insufficient data SECOR 5, 10

7037 Columbia 267 ° 47' 42"12 38 ° 53' 36"068 272.7 NAD 1927 MOTS-40 1, 7, 8, 10

(Mo.)

2745 Stoneville 269 ° 05' 10"70 33 ° 25' 31':57 44 NAD 1927 Doppler 1

5333 Stoneville 10':78 32"342 38.7 NAD 1927 SECOR 7

3334 Stoneville 11':35 31':95 39.0 NAD 1927 PC-1000 10

3402 Semmes 271 ° 44' 52':37 30 ° 46' 49*:35 73 NAD 1927 PC-1000 3, 7, 10

Island

3647 Dauphin 271 ° 55' 17':598 30 ° 14' 48':229 1.2 NAD 1927 PC-1000 7

3404 Swan Island 276 ° 03' 29':87 17 ° 24' 16':57 40.4 Local PC-1000 3, 7, 10

1126 Rosman 277 ° 07' 26':230 35 ° 11' 45':051 873.9 NAD 1927 GRARR 1

7051 Rosman 26"23 46"60 879 NAD 1927 Laser (NASA) 7

1042 Rosman 41"008 12' 06"926 909.4 NAD 1927 MOTS-40 1, 7, 8, 10

1037 Rosman 41':308 35 ° 12' 06':911 909.27 NAD 1927 MOTS-40 1, 8

1022 Ft. Meyers 278 ° 08' 03':926 26 ° 32' 51':891 4.8 NAD 1927 MOTS-40 1, 7, 8, 10

5648 Ft. Stewart 278 ° 26' 00':260 31 ° 55' 18':405 27.8 NAD 1927 SECOR 5, 10

3648 Hunter AFB 2780 50' 46':359 32 ° 00' 05':868 12 NAD 1927 PC-1000 3, 7, 10

7075 Sudbury 279 ° 03' 10':354 46 ° 27' 20':988 281.9 NAD 1927 MOTS-40 1, 7, 8, 10

(Ont.)

4082 Merritt 279 ° 20' 07':376 28 ° 25' 27':928 11.3 NAD 1927 TPQ-18 1, 4, 10

Island

3861 Homestead 279 ° 36' 42'.'69 25 ° 30' 24"686 2.4 NAD 1927 PC-1000 3, 7, 10
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Coordinates e

Number _ Name" A _b H_,l(m) Datum _ Instrument e Model f

5861 Homestead 279 ° 37' 39':35 25 ° 29' 21'.'18 6.4 NAD 1927 SECOR 5

7071 Jupiter 279 ° 53' 12':312 27 ° 01' 12':769 14.0 NAD 1927 MOTS-24 1, 8

7072 Jupiter 12'.'485 13':168 14.2 NAD 1927 MOTS-40 1, 7, 8, 10

9049 Jupiter 12':636 12':726 12.9 NAD 1927 Geodetic-36 1

7073 Jupiter 12':722 13"107 13.56 NAD 1927 PTH-100 1

7074 Jupiter 12"761 13':333 14.2 NAD 1927 BC-4 1

9010 Jupiter 13':008 12'.'882 15.1 NAD 1927 B-N 1, 9, 10

3649 Jupiter 13':72 14':80 15 NAD 1927 PC-1000 7

5711 Panama Insufficient data SECOR 5, 10

1025 Quito 281 ° 25' 17':939 -00 ° 37' 20'.'621 3568.6 SAD 1969 MOTS-40 1

6009 Quito 34' 49':212 - .5' 50".468 2682.1 SAD 1969 BC-4 1, 3, 6, 9,
10

2844 Quito 50':213 ........ SAD 1969 Doppler 2*

5001 Herndon 282 ° 40' 16':705 38 ° 59' 37':697 127.8 NAD 1927 SECOR 5, 7, 10

1021 Blossom Pt. 282 ° 54' 48"225 38 ° 25' 49':628 5.8 NAD 1927 MOTS-40 1, 7, 8, 9,
10

2111 Howard 283 ° 06' 11':07 39 ° 09' 47':83 145 NAD 1927 Doppler 1
County APL

7077 Greenbelt 283 ° 09' 37':31 38 ° 59' 56".73 50.9 NAD 1927 MOTS-40 1

7050 Greenbelt 10' 18':04 39 ° 01' 13':676 54.8 NAD 1927 Laser (NASA) 1, 8, 9

7043 Greenbelt 19:93 15'.'004 53.5 NAD 1927 PTH-100 1, 7, 10

6002 Beltsville 26':942 39".003 44.3 NAD 1927 BC-4 1, 3, 6, 9,
10

2742 Beltsville 27"170 ........ NAD 1927 Doppler 2*

7076 Kingston 283 ° 11' 26".528 18 ° 04' 31':980 445.9 NAD 1927 MOTS-40 1, 7, 8, 10

3657 Aberdeen 283 ° 55' 44':780 39 ° 28' 18':971 5.5 NAD 1927 PC-1000 3, 7, 10

7052 Wallops 284 ° 29' 23':333 37 ° 51' 33".432 &6 NAD 1927 Laser (NASA) 1, 8
Flight
Center
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Coordinates '_

Number" Name r' h _b H,,,_(m) Datum '_ Instrument' Model /

4860 Wallops 25':236 36':509 14.9 NAD 1927 FPQ-6 1, 4

Flight

Center

2203 Wallops 31':414 51':314 13.6 NAD 1927 Doppler 1

Flight

Center

4840 Wallops 30' 52':378 50' 28':393 12.4 NAD 1927 FPS-16 1, 4
Flight

Center

3477 Bogot_ 285 ° 55' 35':482 4 ° 49' 2':379 255.8 SAD 1969 PC-1000 3

9027 Arequipa 288 ° 30' 26':578 -16 ° 27' 54':365 2450.2 SAD 1969 B-N 9

9007 Arequipa 26':814 55"085 2451.9 SAD 1969 B-N 1, 8, 9, 10

9907 Arequipa 26':81 -16 ° 27' 55':08 2452.3 SAD 1969 Laser (SAO) 8, 9

9050 Cambridge 288 ° 26' 28':71 42 ° 30' 20':97 187.2 NAD 1927 Geodetic-36 1, 8

3401 Bedford 288 ° 43' 35"03 27' 17':530 83.0 NAD 1927 PC-1000 7, 10
(Mass.)

3405 Grand Turk 288 ° 51' 13':796 21 ° 25' 46':796 2.2 NAD 1927 PC-1000 3, 7, 10

4081 Grand Turk 52' 03':051 21 ° 27' 43':487 36.00 NAD 1927 TPQ-18 10

1028 Santiago 289 ° 19' 56"40 -33 ° 08' 57':24 693.4 SAD 1969 MOTS-40 1, 8

2847 Cerro 290 ° 46' 29':005 ........ Prov. S. Doppler 2*

Sombrero Chile

6043 Cerro 29':573 -52 ° 46' 52':468 80.7 Prov. S. BC-4 1, 6, 9, 10

Sombrero Chile

9009 Curacao 291 ° 09' 46':078 12 ° 05' 25':912 8.7 SAD 1969 B-N 1, 8, 9, 10

3406 Curacao 45':80 12 ° 05' 26':843 6.8 SAD 1969 PC-1000 3, 7, 10

2018 Thule 291 ° 13' 21':472 ........ Quornoq Doppler 1, 2*

6001 Thule 27' 51"887 76 ° 30' 03':411 206.0 NAD 1927 BC-4 6, 9, 10

9031 Comodora 292 ° 23' 12':215 -45 ° 53' 11':028 186.5 SAD 1969 B-N 1, 8, 9, 10
Rivadavia

5738 Puerto Rico Insufficient data SECOR 5, 10

7040 San Juan 294 ° 00' 22':174 18 ° 15' 26':216 49.7 NAD 1927 MOTS-40 1, 7, 8, 10

2820 Villa Dolores 294 ° 53' 39':460 ........ SAD 1969 Doppler 2*
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Coordinates _

Number" Name *' h & Hm,,(m) Datum d Instrument e Model /

9011 Villa Dolores 38795 -31 ° 56' 337228 608 SAD 1969 B-N 1, 8, 9, 10

6019 Villa Dolores 417342 337954 608.2 SAD 1969 BC-4 1, 3, 6, 9,
10

3471 Bermuda 295 ° 18' 59':824 32 ° 22' 54':204 51.9 Bermuda PC-1000 3
1957

5710 Bermuda Insufficient data SECOR 5, 10

7039 Bermuda 295 ° 20' 34':49 32 ° 21' 447529 53.1 Bermuda MOTS-40 1, 7, 8, 10
1957

4740 Bermuda 467321 32 °20' 48?033 19.9 Bermuda FPS-10 1, 4, 10
1957

4760 Bermuda 46"532 47"530 21.1 Bermuda FPQ-6 1, 4
1957

2825 Palmer 295 ° 56' 29':748 ........ Local Doppler 2*
Station

6050 Palmer 37':040 -64 ° 46' 37704 16.4 Local BC-4 1, 6, 9, 10
Station

4061 Antigua 298 ° 12' 24':472 17 ° 08' 34'.'777 42.3 NAD 1927 FPQ-6 4, 10

3106 Antigua 377552 527685 1.9 NAD 1927 PC-1000 3, 7, 10

3407 Trinidad 298 ° 23' 25':652 10 ° 44' 35'.'844 254.8 SAD 1969 PC-1000 3, 7, 10

3478 Manaus 300 ° O0' 597620 -3 ° 08' 44':820 84 SAD 1969 PC-1000 3*

3451 Asunci6n 302 ° 25' 157376 -25 ° 18' 567192 150 SAD 1969 PC-1000 3*

6008 Paramaribo 304 ° 47' 42735 05 ° 26' 54'.'97 18.38 SAD 1969 BC-4 1, 3, 6, 9,
l0

3476 Paramaribo 437744 54':292 18.3 SAD 1969 PC-1000 3, 10

5712 Paramaribo 44752 05 ° 26' 5Y:46 21.5 SAD 1969 SECOR 5, 10

2815 Paramaribo 46'.'590 ........ SAD 1969 Doppler 2*

1032 St. Johns 307 ° 16' 43':369 47 ° 44' 29'.'739 69 NAD 1927 MOTS-40 1, 8, 10

3414 Brasilia 312 ° 06' 027679 -15 ° 51' 35':540 10.58 SAD 1969 PC-1000 3

6061 S. Georgia 323 ° 30' 427531 -54 ° 16' 397515 4.2 Local BC-4 1, 6, 9, 10

3413 Natal 324 ° 49' 57':605 -5 ° 54' 56':253 36.9 SAD 1969 PC-1000 3, 10

5735 Natal 577605 56'.'253 39.5 SAD 1969 SECOR 5, 10
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Number _ Name b h _b Hm+_(m) Datum _ Instrument s ModeV

2837 Natal .57':617 ........ SAD 1969 Doppler 1, 2

6067 Natal 50' 06':200 37"414 40.63 SAD 1969 BC-4 1, 3, 6, 9,

10

9029 Natal 08"660 38"62 45.3 SAD 1969 B-N 8, 9, 10

9039 Natal 09':401 38':62 41.6 SAD 1969 B-N 9*

9929 Natal 08':68 38':62 45.6 SAD 1969 Laser (SAO) 8, 9

2727 Terceira 332 ° 54' 18'.'919 ........ Local Doppler 2*

5739 Terceira 19"686 38 ° 45' 36'.'311 56.1 Local SECOR 5, 10

5713 Terceira 21':064 36':725 56.0 Local SECOR 5, 10

6007 Terceira 21':064 36"725 53.3 Local BC-4 1, 6, 9, 10

"These are the numbers assigned to stations for the NGSP and are the ones given preference in the NASA

Directory of Observation Station Locations (Anon., 1971). Other numbers have been assigned by some participants
to some stations. (TRANET numbers + 2000 = NGSP numbers; NGS numbers + 6000 = NGSP numbers; SAO has

erratic numbering differences.)

b These names are in general those given in the NASA directory (1971) or by the organization occupying
the station. The same location may have several names. Since the names have no official status, the differ-

ences are unimportant.

c Coordinates given for stations in the 2000 series (NWL) and the 8000 and 9000 series (SAO and associated

groups) must be used with caution. Coordinates given in the NASA Directory (Anonymous, 1971) for Dop-

pler-tracking stations refer to the geometric center of the antennas. This center differs from the phase center

of the antennas given in section 2.3. The coordinates (Z-coordinates) of the phase center are given by R. Anderle
in chapter 3. Corrections should be made, when necessary, for differences between geometric center and phase

center and, if this is indicated, between phase centers of 162/324-Mc/s pair and 150/400-Mc/s pair.

Some of SAO's Baker-Nunn cameras were moved to another site by a laser-type DME. In a few cases,
the DME was given the same coordinates as the camera had had. It is unlikely that the true coordinates

could be exactly the same, since the structures are quite different. When accuracy is essential, special investi-
gation should be made.

h and _b are geodetic coordinates; H_+ is height above mean sea level.

Most of the minor datums have no official designation, and slight variations will be found. See section 8.3 for
an extensive list.

B-N designates a Baker-Nunn camera (section 9.2). For a list of characteristics of most of the cameras

involved, see section 1.2.

1 - Chapter 5, GEM

2 - Chapter 3, NWL-9D

3 - Chapter 3, DMA/AC

4 - Chapter 6, WFC

5 - Chapter 3, SEN

6 - Chapter 7, WGN
7 - Chapter 3, AFCRL

8 - Chapter 5, GSFC '73

9 - Chapter 10, SE-III

10 - Chapter 8, WN14
J o Chapter 4, JPL

/The references are to chapters and models where original and/or new coordinates may be found. The coordi-
nates given are, where possible, these in the NASA directory (1971). Only lon'gitude is given unless there

is some special reason for also giving latitude and height above mean sea level. Where the directory did not
describe a particular station or where a contributor's coordinates were considered considerably more reliable,

the contributor's coordinates are given.

An asterisk (*) indicates source (see list in (e) above) of coordinates cited in this table. If not specifically

indicated by asterisk, source is Anon., 1971.
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Network Observations Passes Period Covered

GEOS-1

Camera network
SAO 11 371 1 701 8 Nov 1965--29 Nov 1966

NASA MOTS 22 618 2 219 18 Nov 1965--24 Nov 1966

USAF 1 101 164 20 Dec 1965--20 Nov 1966

USAF (revised) 4 642 .550 25 Nov 1965--30 Nov 1966

USAF (special)
preprocessing) 1 328 213 25 Nov 1965--30 Nov 1966

U.S. Coast and

Geodetic Survey 130 19 28 Nov 1965--27 Jul 1966
International" 1 803 201 8 Dec 1965---21 Nov 1966

Electronic network
AMS SECOR" 78 357 756 25 Mar 1966--- 8 Feb 1967

USN doppler" 683 478 19 088 14 Nov 1965--17 Dec 1967
NASA range and

range rate 42 417 1 308 17 Nov 1965--28 Nov 1966
NASA MOTS 14 291 9 525 6 Nov 1965---14 Jan 1967

USA SECOR"

(reduced by 43 241 90 11 Jan 1966---25 Apr 1966
GIMRADA)

Laser network
SAO laser" 796 140 27 Jan 1966---24 Jun 1967

NASA laser 4 849 19 11 Apr 1966---21 Nov 1966
5 602 8 23 Apr 1969---30 May 1969

GEOS-2

Camera network
SAO 10 806 1 736 20 Feb 1968---31 Jan 1970
NASA MOTS 20 033 2 488 20 Feb 1968--12 Dec 1969
USAF 21 3 7 Oct 1968-- 7 Dec 1968

USAF (special
preprocessing) 54 8 28 Mar 1968--- 8 Jan 1969

International 7 938 948 20 Feb 1968--27 Mar 1973

Electronic network
AMS SECOR 11359 88 1 Apr 1968---29 Jun 1968

USN doppler 86 097 3 110 11 Jan 1968---30 Dec 1968

Laser network
SAO laser 385 97 2 Sep 1969---31 Jan 1970
NASA laser" 166 014 368 7 Feb 1968---13 May 1970

BE-B

Electronic network

USN doppler 26 957 1 635 11 Nov 1964---30 Mar 1965

Laser network
SAO laser 98 31 10 Mar 1966---26 Jun 1967
NASA laser 5 481 13 12 May 1967--17 Apr 1971
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Network Observations Passes Period Covered

BE-C

Electronic network

USN doppler" 73 108 4 102 2 May 1965--24 Feb 1966

Laser network

SAO laser 661 161 25 Jan 1966---24 Jun 1967

NASA laser 11 081 41 3 Apr 1967-- 2 May 1970

D1-C

Laser network

SAO laser 207 44 17 Feb 1967--29 Jun 1967

NASA laser 47 868 (b) 23 Apr 1967-- 9 Sep 1971

D1-D

Laser network

SAO laser 238 38 9 Mar 1967-- 2 Jun 1967

NASA laser 24 433 61 10 May 1967--23 Jun 1971

ECHO-1

Camera network

U.S. Coast and

Geodetic Survey 865 2 1 Feb 1967-- 1 Feb 1967

ECHO-2

Camera network

U.S. Coast and

Geodetic Survey 824 4 15 Dec 1966---17 Jan 1967

PAGEOS

Camera network

U.S. Coast and

Geodetic Survey 70 743 244 20 Jul 1966---31 Mar 1967

USAF (special

preprocessing) 212 30 20 Sep 1967--10 Jan 1969

Number of tapes

U.S. Coast and

Geodetic Survey 49" (b) 20 Jul 1966---12 Jun 1970

"Catalog prepared.

b Unknown.

c Tapes are not in NGSP format.
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From

Raw Processed instrument

data Corrections Transformations data type

x,y Camera errors From x,y to a,8 at a,8 Camera

Measuring engine errors catalog epoch

Refraction From a,8 at catalog

Aberration of EMW epoch to a,8 at

Target phase appropriate epoch

Timing errors

Star catalog errors

At Instrument errors From At to distance s s Laser DME

Pulse threshold Radar DME

Refraction

Aberration of EMW

Target phase

Timing errors

A_,Et Instrument errors From Az,E_ in local Az,E, Radar

Beam pattern system to Az,Et in

Refraction appropriate system
Aberration of EMW

Timing errors

_bm Instrument errors From phase difference to l,m,n

Calibration errors direction cosines

Refraction l,m,n

Aberration

Timing errors

Wavelength errors

MINITRACK

_b, Instrument errors From phase difference to s

Phase center distance s

Refraction

Timing errors

Wavelength errors

SECOR

Af Instrument errors

Beacon frequency errors

Refraction

n Aberration

Timing errors

No change 5f

From number of cycles to

change in radial distance

Ar FME
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TABLE 1.28.---Corrections Introduced During Preprocessing

NGS SAO DMAJAC NASA"

Proper motion bj _ j

Precession ) ) j

Nutation _ _

Precession + nutation __

Parallax, annual ) ....

Aberration, annual _ _ )

Aberration, diurnal _ .... )

Refraction, astronomic ) __ J J

Refraction, parallactic ) _ _

Polar motion _ _ __

Calibration, comparator _ ) ) ,/

Calibration, camera

separate _ __ _ )

combined ) ) ....

Time

Shutter ) ) ....

Instrumental delay J __ ) __

Propagation _ _ ) _ )

Light ) ) _ _

UTI-AT ¢ ¢ _ __

Erratic; various procedures applied at various times.

Including radial proper motion.

TABLE 1.29.--Preprocessing of Data From DME

Item Laser DME 5-cm Radar GRARR SECOR

Receive material ) ) )
Inspect J J )
Catalog and annotate ) ) ) )
Combine wavelengths .... ) )
Resolve ambiguities ) J
Calculate distance _/- -J- J ¢
Quality control _ J ) J
Correction of errors _ J _ )
Correct ranges

Calibration constants J ¢ J ¢
Refraction

Troposphere ) J J ¢
Ionosphere

Multi-Hz .... _
Mono-Hz _ _ ) __

Time Correction

Calibration constants ) ) ) )
Travel time _ _ _ J

Compute ranges from orbit _ _ )
Compute residuals J J J J
Quality control ) ) J



INTRODUCTION 83

TABLE 1.30.---Formulae for Correction of Range

The correction AR to the measured distance is computed as a function of

the di'stance R, and of time derivatives of distance, time t, and elevation

angle _b. The general formula is

= a I + a_ + a_/_ + A_/_ + a_ (3'

+aet + a# 2 + aaRt + aaRt + a_/R

+ am CSC _b

Instrument Type

Constant Laser DME 5-cm Radar GRARR SECOR

a, J J ¢ J

a2 J -- v/ _/

a_ J __ J ¢

a4 .... _/ --

a 5 ........

a_ ¢ __ _ ¢

a 7 ........

a_ ...... ,/

.... ,/ __

a,o ¢ -- ¢ _/

TABLE 1.31.--4]nknowns of Concern to the NGSP

Unknown

Station location

Coordinates in barycentric system

Coordinates in absolute system

Relative coordinates

Gravitational potential

Symbol Organization

APL% DOD/NWL, JPL _, NASA/GSFC,

x, y, z NASA/WFC, SAO

k, _b, h DOD/DMA/TC, NGS, OSU, SAO, DOD/

x, y, z AFCRL, DOD/DMA/AC

AX, A4_, Ah JPL, DOD/AC, DODfrC

C", S'_ APL, DOD/NWO% DOD/DMA/AC% NASA/
GSFC, SAO

Polar motion x, y APL% DOD/NWL, NASA/GSFC, SAO

Earth tides k APL% NASA/GSFC, SAO

Geocentric gravitational constant GM JPL et al.

" Results not given in this book.
t, Distance from axis of rotation and distance above equatorial plane.
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TABLE 1.32.--Observables Used in NGSP

I

Observable [ Symbol Used by

I
d, r, sDistance to satellite

Direction to satellite

Right ascension
Declination t

Direction cosines

Altitude, azimuth

Frequency

Gravity

Distance between surface

points (SP's)

Direction between SP's

Elevation of SP

Time

DOD/DMAJTC, DOD/AFCRL, NASA, OSU, SAC

DOD/AFCRL, DOD/DMA/AC, NASA/GSFC,

Az, El

f
g

d, s

A_

H

t

NGS, USO, SAO

NASA/GSFC

JPL, NASA/WFC

APL, DOD/NWL, JPL, NASA/GSFC

NASA/GSFC, SAO

NASA/GSFC, OSU, SAO

NASA/GSFC, OSU, SAO

NASA/GSFC, OSU, SAO

All investigators

TABLE 1.33.--Auxiliary Observables Used in NGSP

Observable Symbol Used to Compute

Temperature
Pressure

Humidity

Electron content

Density of atmosphere

Solar radiation constant

Time

T

P

e

Np

P
S

t

Tropospheric refraction

Tropospheric refraction

Tropospheric refraction

Ionospheric refraction

Drag

Solar radiation pressure

Time of observation; position

from equations of motion



1NTRODUCTION

TABLE 1.34.--Formulae for Forces of Appreciable Size
Terrestrial Gravitation)

(Other Than

85

Force Formula

Lunar"

Solar"

GM¢ "r_ r cos0_

re rs_ T_

Atmospheric drag b As V V
pCD M, 2

Pressure of solar radiati°n_ _r _, k_-R_ S or _ k cS

M_, M_, M, masses of the Moon, Sun, and satellite, respectively.
r_, r_j geocentric distances of the Moon and Sun, respectively.
r, c r,_) distances of the satellite from the Moon and the Sun, respectively.
0_, 0G angles between the radius to the disturbing body (Moon and Sun, respectively)

and the radius to the satellite.

p atmospheric density at the height of the satellite.
CD drag coefficient.

V velocity vector of the satellite relative to the atmosphere.
Aa, As cross-sectional areas of the satellite in a plane perpendicular, respectively, to

the direction of motion and to the direction of the Sun.
S solar radiation constant; 1.94 caYcm 2 min or 1.5 × 10 -_ newton/m 2.
k reflection factor.

Kozai (1959a, 1966b), Blitzer (1959), Kaula (1962a), G. Cook (1962), Newton (1965), Mur-
phy and Felsentreger (1966), Berger and Boudon (1972), Challe and Laclaverie (1969).

b Parkyn (1960), Izsak (1960b), Brouwer and Hori (1961), G. Cook (1963a), Ewart (1962),
King-Hele (1964).

" Geyling (1960), Musen (1960), Bryant (1961), Brouwer (1963), Lala (1971).

TABLE 1.35.---Methods of Numerical Integration Used in NGSP

Name Used by Type General Form a

Runge-Kutta APL One-step Y_+, = Yn +h_P,xn.r_.h_

CowelP NASA Multi-step Yn+, = 2Yn-Yn_,+h2_TmV,,fn+l
m

Stormer b NASA Multi-step Y_+, = 2Y_-Y._,+h2_TmV"f_
m

Adams-Bashford _ NASA Multi-step Y.+_ + Y.+h_T.V"f.
m

Adams-Moulton b NASA Multi-step Y_÷_ + Yn+h_T,_V_f_+_
m

j 2 sum [
Second-sum JPL Multi-step I10 diffJ Moyer (1971)

Second-difference DOD/NWL Multi-step Herrick (1971)

" h = step size
T_ = constant
fm= given function
q) = adjustment function

b Note that Cowell's and StSrmer's methods apply to function f without first deriva-
tive, whereas the Adams-type equations apply to first-order equations.
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2.1 INTRODUCTION

The satellite-geodesy research program at
the Johns Hopkins University Applied Phys-
ics Laboratory (APL) was initiated as part
of a major effort to develop a Doppler navi-
gation satellite system for the U.S. Navy.
The concept of this system was proposed by
F. T. McClure, head of the laboratory's re-
search center, after reviewing the results of
an experiment performed by W. H. Guier and
G. C. Weiffenbach.

When the Russians orbited the first Sput-
nik satellite on 4 October 1957, Guier and

Weiffenbach (1958) demonstrated that the
satellite orbit could be determined from an

analysis of the Doppler shift on transmis-
sions of the satellite. Later, using more

sensitive tracking equipment designed by
H. B. Riblet and J. W. Hamblen, they were
able to repeat these experiments with the
Sputnik 2 signal (40 MHz) and also with
the 108-MHz signals from the Explorer and
Vanguard satellites.

McClure, noting the accuracy with which
the orbits were being predicted from the
Doppler-shift measurements, realized that if
the satellite position could be determined by
measuring the Doppler shift at a station of
known position, it would also be possible to
determine the position of a station if the
position of the satellite was known. He also

recognized that this ability could provide the
Navy with a precise all-weather navigation

system (McClure, 1965).

By 1959 the first experimental satellite,
TRANSIT 1A, had been designed and con-

structed, the computer tracking programs
had been prepared, and five tracking stations

had been constructed by APL. Although this
satellite failed to achieve orbit, sufficient data

were obtained to demonstrate the feasibility

of the Doppler navigation satellite system as
proposed to the Navy.

To establish this system for the Navy, it
was necessary for APL to design and fabri-

cate satellites (and satellite-tracking equip-
ment) and begin geodetic studies. A develop-
ment program was officially begun in 1959.

It was recognized from the beginning that
the success of this system would depend
mainly on the ability to provide an accurate
satellite ephemeris to the users. It was also
recognized that the largest force affecting the
motion of a near-Earth satellite was the

Earth's gravitational field. Therefore the
main emphasis of the developmental pro-
gram was directed toward obtaining an accu-
rate model of this field.

Inasmuch as the Doppler shift in the fre-

quency of the radio signal transmitted by
the satellite is a strong function of the motion
of the satellite relative to the observer,
Doppler shifts are an excellent source of data
for determining a model of the Earth's gravi-
tational field. Therefore a worldwide net-

work of tracking stations was established
(Newton and Kershner, 1962) and a constel-
lation (set) of geodetic satellites proposed
to obtain the necessary Doppler data.

It would be impossible, in the space allo-
cated, adequately to describe and present the
analyses used and results obtained in all the
geodetic studies performed at APL. The
major effort of the laboratory's space re-
search program has been directed toward
modeling the Earth's gravitational field from
an analysis of the Doppler shifts on the

transmitted frequencies of the satellites as
obtained by the tracking stations. Therefore

the emphasis in this chapter is on the satel-
lites involved and the methods used in ac-

complishing this goal.
Section 2.2 describes some of the satellites

built by APL that contributed significantly to

the geodetic programs of many of the organi-
zations associated with the NGSP. Section

2.3 presents a discussion of the Doppler
tracking station network (TRANET) and
describes the operation of the network and
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the instrumentation needed by each tracking
station. Additional information on TRANET

can be found in chapter 3. Section 2.4 sum-
marizes the data and the preprocessing ap-

plied to them. The methods of analyzing the
data that culminate in an improved model of
the Earth's gravitational field are presented
in section 2.5, and the results of the last
determination of this model are given in
section 2.6.

2.2 SATELLITES

Figure 2.1 gives the overall status of APL
satellites covering the period from 1959

through early 1969. Six of these satellites,
which made a significant contribution to the
development of the navigational system and
to geodetic research programs, are described
in the following pages: TRANSIT 1B,
ANNA 1B, Beacon Explorer-B, Beacon Ex-
plorer-C, GEOS-A, and GEOS-B. Doppler
data from observations on the last four of
these are stored in the Geodetic Satellite Data

Center. (See chapter 1.) Data from satellites

SATELLITE PROGRAM

that carried TRANSIT beacons were used by
APL and the Naval Weapons Laboratory

(NWL) in the results given in this chapter
and in chapter 3. Section 2.2.3 describes the
TRANSIT beacon.

2.2.1 TRANSIT 1A

TRANSIT 1A was the "granddaddy" of all

TRANSIT-type navigation satellites, and its
design was adhered to for a long time.
Unfortunately it failed to acquire orbital
velocity after launch on 17 September 1959.
The next satellite, TRANSIT 1B, which was
almost identical to TRANSIT 1A in design,

was successfully launched 13 April 1960,
with an electronic system almost identical to
that of TRANSIT 1A. Other satellites simi-

lar in design to TRANSIT 1A and success-
fully put into orbit were TRANSIT 2A, 3B,
4A, 4B, and 5A. Model 3B was launched
together with satellite LOFTI, which failed
to separate. TRANSIT 4B was launched
together with satellite TRAAC. The shape
was changed from spherical to octagonal.
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1960 '72 %
19_60/'/1

19611961o" __,
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FIGURE 2.1.--Overall status of APL satellites for period 1959-1969.
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2.2.2 TRANSIT 1B (1960-_2)

TRANSIT 1B lasted 89 days after launch.

Replacing TRANSIT 1A, it had the same
objectives, i.e., to demonstrate the feasibility
of the Doppler navigation concept and to test
various items of equipment involved in the
Doppler navigation system. It also carried
instruments for measuring the Earth's
albedo in the infrared. Table 2.1 gives the
characteristics of the satellite. Figure 2.2
shows the satellite construction.

TRANSIT 1B was similar in mechanical
and electrical structure to TRANSIT 1A ex-

cept that the modulated 108-MHz carrier of
TRANSIT 1A was replaced by an unmodu-
lated 324-MHz signal in TRANSIT lB.

General descriptions of the satellite and
project TRANSIT can be found in articles

by Kershner (1960) and Nicolaides (1961).
The circuitry of TRANSIT 1A and 1B is
described by Hamblen and Oakes (1961) and
Schreiber and Wyatt (1960). The antenna,
of a broadband spiral type used in many
succeeding satellites, is described by Riblet
(1960).

2.2.3 ANNA 1B (1962-fl_1)

Satellite ANNA 1B was launched 31 Oc-

tober 1962 as part of a joint Army, Navy,
NASA, and Air Force project to improve
geodetic control and to compare the perform-
ance of the various tracking instruments of

tracking system; flashing lights for photog-
raphy by the PC-1000 cameras of the Air
Force, the MOTS cameras of NASA, and the
BC-4 cameras of the U.S. Coast and Geodetic

Survey (CGS) ; and a TRANSIT beacon for

use in the APL and NWL tracking systems.
The characteristics of ANNA 1B are given

in table 2.2. Figure 2.3 is a schematic of the

satellite. Details on the flashing light sub-
system and on the SECOR transponder are
given in chapter 3.

Except for the painted pattern on the out-

side of the satellite, ANNA 1B was identical
to ANNA 1A, which was to have been
launched on 10 May 1962 but did not go into
orbit because the second-stage rocket engine
failed.

ANNA 1B was important for several rea-
sons: it was the first satellite launched spe-
cifically for geodesy; it provided data over a
long period of time to many groups; and
finally, it was the prototype of the GEOS
series of satellites (see secs. 2.2.6 and 2.2.7).

2.2.4 Beacon Explorer-B (1964-64A)

The satellite Beacon Explorer-B (also
called BE-B, S-66, and Explorer 22) was
launched 9 October 1964 by a Scout rocket,
Beacon Explorer-A having failed to go into

orbit. It carried a TRANSIT-type beacon, an
array of corner-cube reflectors to allow tests

of the newly developed laser-type distance-
measuring equipment (DME), and a photo-

the services. The satellite therefore contained ......
swlTcms 111,U_'rOI

a transponder as part of the Army's SECOR .... _ ,_- '.....
PACK NO. I LO01¢ UACON COmlO_I_C0N

aAr_my _ s_o_
HANDLING ItNG .----_--

tAUNC_IN_ SUPPOmT TU|! _ IODS CA_AC:I_'_ IANK.I_CO_
ANTINNA ¢OU_LmG

MECHANICAL TIME_

INFIAml0 SCANNII KIOPSO_n

INSULATION ", wo_ NO_ 2 _NSU_TIC_

mM NO. v _ IJ_OOUtA_'_OSCiLLAtOR

RAOIATION SmfLO VACUUM _1_ _ _ _
PACK _o. 1-s¢<ol I_r_lllS

_ICX_L-CAO_IU_

Ju FUQ coNvll_ll
NOrtON 10X OSClt_TOI SVmC_

_C, mlO*eT_ mlO *eat

COC_t_NIO .............. i_c_Jt_ol _ow_l Mvt.

DE.SPIN CA_L_ C_TmS _ ASSY U_

NYtON LACING . T_Z_OCOU_! com, m_ _o

ASL_ TUS_ _ _LLS

iLl.200) TELEMETER CI_'4Vl_TR F{O. 1 MAGNETOMETBI

BATTeRIeS TIANSMITT_I

Fmu_ 2.2.--TRANSIT lB. FzGu_z 2.3.--Schematic diagram of ANNA lB.
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detector for measuring the intensity of inci-

dent light from the laser. It also carried a

three-axis, flux-gate magnetometer and two

probes for investigating electron density in

the neighborhood of the satellite. Table 2.3

gives the satellite's characteristics; figure

2.4, an exploded view of the satellite, shows
the instrumentation.

2.2.5 Beacon Explorer-C (1965-32A)

This satellite (also called BE-C and Ex-

plorer 27) was launched on 29 April 1965 by
a four-stage Scout rocket. Its purpose and
instrumentation were identical to those of

Beacon Explorer-B and therefore need not
be discussed. Table 2.4 lists those character-

istics that differed from the characteristics

of Beacon Explorer-B.

2.2.6 GEOS-A (1965-89A)

Satellite GEOS-A (also called GEOS-1 or

Explorer 29) was launched 6 November 1965.

(See fig. 2.5.) It was intended that the satel-
lite orbit reach apogee at 1480 km, but be-

cause the fuel of the second stage of the

rocket burned to completion, the apogee was

2294 km instead.

In structure, function, and purpose,

GEOS-A (see table 2.5) was a direct de-
scendant of ANNA 1B, described previously.

Two ANNA satellites were built. The first,

ANNA 1A, never achieved orbit. The second,

REMOVABLE PANEL (FLIGHT PLUGS BELOW)

POWER SWITCHING

40,41

COMMAND BATTERY 2

(20, _/41 MC X_TRS)

TERMINAL 8OARD

MAiN BATTERY 6 TUBES "D" CELLS

ELECTRON DENSITY PROBE (FORWARD)

_ LASER REFLECTOR

ELECTRON PROBE ELECTRONICS

324/360 _4C XMTR

CUTOFF

ELECTRON DENSITY PROBE (AFT)

162 MC XMTR

BUFFERS & ANTENNA COUPLING NETWORK
BELOW OSCILLATOR

{ COMMAND RECEIVER, TM XMTR, 324 360 MC XMTRr 162 MC XMTRI

136MC

z AxIs MAGNETOMETER SENSOR

INTERMEDtATE FREOUENCY ANTENNA

FIGURE 2.4.--Instrumentation of Beacon Explorer.
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ANNA 1B, did get satisfactorily into orbit

and continued functioning even after GEOS-

A was launched. As a consequence of the

success of ANNA 1B, more satellites pat-

terned after ANNA were planned. R. B.

Kershner, writing in 1964 just before GEOS-

A was launched (Kershner, 1965), gave an

excellent description not only of the situation

at that time, but also of GEOS-A itself. The

following paragraphs are from his paper.

"Although the ANNA satellite is the

only one launched to date which was in-

tended to provide broad geodetic useful-

ness, it was by no means the only satellite
which contributed to the current advanced

state of geodetic knowledge. The photo-

graphic approach has also been used dur-

ing dawn and dusk periods for satellites

which are illuminated by the sun against
a dark background. The Navy's Doppler

system has been used with a large number

of satellites containing stable transmitters

which have been launched in connection

with the development of their satellite

navigation system. Finally, the Army has
launched several small satellites containing

SECOR transponders which have been
successful.

"By all odds the greatest amount of data

of geodetic quality has resulted from the

use of the Applied Physics Laboratory/

Navy Doppler system. This results from

a combination of the rather large number

of satellites with appropriate stable trans-
missions launched in connection with the

development of a satellite navigation sys-

tem together with an extensive global net-

work of Doppler receiving stations.

"Although progress to date [1965] has

been quite rapid using, largely, satellites of

opportunity with only one general and a

few special satellites primarily intended

for geodetic purposes, it is quite clear that,
in the future, things will be more difficult.

The honeymoon is over. Just because the

progress to date has been so impressive

further progress will require considerably

more effort, with satellites very specifically

designed for geodetic purposes.

"By now two new elements have altered

the situation. First, it has been determined

that further progress in geodesy has no

real military significance and, accordingly,

the responsibility for geodesy has been
transferred to the National Aeronautics

and Space Administration (NASA). Sec-

ondly, two new measurement techniques

have been developed which have precision

of geodetic quality; namely, a range and

range rate system developed by the God-

dard Space Flight Center of NASA and a

laser corner reflector system developed for

NASA by General Electric. [See ch. 5.]

"The laser system has already been

tested. The concept is very simple--a laser

(coherent light) pulse is sent to an orbit-
ing satellite which cont_ains a corner re-

flector capable of returning the incident

energy back to the source point. The total

time of travel is measured and a very

accurate range measurement results. This

system has been tested with the S-66

satellite, launched on October 10, 1964,

which was primarily intended for iono-

spheric research, but which also carried an

appropriate corner reflector. The range/

range rate system was incorporated in the

SYNCOM satellite and has already been

useful in confirming the values for the
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zonal harmonics obtained from other

sources.

"In view of the situation outlined above,

the NASA has asked the Applied Physics

Laboratory of the Johns Hopkins Univer-

sity to develop a series of satellites to ad-

vance the state of knowledge of geodesy ....

"The first satellite under the NASA spon-

sorship intended from the beginning for

geodetic research has been named GEOS

and is under construction at the Applied

Physics Laboratory intended for launching

in the fall [1965]. It contains provisions

for the use of all five of the systems cur-

rently considered to have sufficient accu-

racy to contribute to geodetic research;

namely, flashing light, Doppler, SECOR,

range/range rate, and laser reflector. A

block diagram of GEOS-1 is shown in

Figure 1. [See fig. 2.6.]
"The configuration of the GEOS satellite

differs quite markedly from that of ANNA.

The major differences in external configu-
ration are a result of the decision to use

gravity gradient stabilization for GEOS.

This means that one face of the satellite

can be assumed always to face the earth.
This allows the solar cells to be concen-

trated on those faces of the satellite that

do not face the earth while the antennae,

the flashing lights and the laser reflectors

can be mounted on the earth-facing side of
the satellite.

"The flashing light system of GEOS i_

greatly improved over that incorporated

in ANNA. A total of four independent

flashing light systems are incorporated.
This provides a considerable increase in

reliability through redundancy and also

great flexibility in use. By flashing all four
lights simultaneously a very bright inten-

sity is available. Alternatively somewhat

weaker flashes extending over a longer
period can be obtained by commanding

separate flashing of individual light sys-
tems. [See ch. 3.]

"The Doppler transmitters in GEOS

differ in two ways from those used in

ANNA. First the basic oscillator stability
is slightly better than that of the ANNA

_PPLER S_STEM

TELEMET_V/M,_,TRACK aEA_.
COMMA"D SysTeM

LY

(

FIGURE 2.6.--Block diagram of GEOS A.
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oscillator, being about 3×10 -11 as com-

pared to 5 × 10 -'1 for ANNA. In addition,

transmitters are provided not only at 162

and 324 Mc [MHz] as in ANNA, but also

at 972 Mc. This made it possible to make a

more sophisticated correction for iono-

spheric refraction using all three frequen-
cies rather than the first-order two-fre-

quency correction used with the ANNA

transmissions. Even with the same two-

frequency correction technique the results

are greatly improved by the use of the
972-Mc transmission as one of the two

frequencies.

"The remaining systems, i.e., the

SECOR, range/range rate, and laser re-

flector, are described elsewhere and their

implementation in GEOS contains no spe-

cial features except for the obvious ad-

vantage of gravity gradient stabilization

in making possible convenient orientation
of antennae and the laser corner reflector.

"In order to make a maximum contribu-

tion to geodesy, it is necessary to consider

carefully not only the satellite design but
also the orbit into which it is launched.

The primary consideration is the follow-

ing: There is a limit to the number of

gravitation field force terms that can be

determined from any particular satellite

orbit. Since the satellite is responsive to a
specific summation of all the force terms

it is always possible, for any particular

orbital inclination, to change the value of

some force term coefficients by making

compensatory changes in other coefficients,
without appreciably altering the effect on

that particular satellite. However, the

effect of the altered gravitational field

model would be appreciably different for

satellites at another inclination. The more

different inclinations there are for which

precision tracking data are available, the

more force terms can be computed. Data of

geodetic quality were already available at

inclinations of 32 °, 50 °, 67 °, 80 °, 90 °. The

BE-C (back-up) ionospheric research

satellite is planned for a 41 ° orbit. GEOS

A is planned for 59 °."

2.2.7 GEOS-B (1968-002-A)

Satellite GEOS-B (also called GEOS 2,
S-11, and Explorer 36) was launched 11 Jan-

uary 1968. It was placed in a retrograde

orbit of 105.°977 or -75 ° as compared to the

59 ° orbit of GEOS-A. Also it was placed in

an approximately circular orbit (e=0.0308).

Except for this difference in orbits and the

addition of a transponder (5 cm, C-band)

and reflector to work with the 5-cm (C-
band) radars, the two satellites were much

alike. The main power source, the flashing
light system, and the satellite clock began to

develop problems soon after the satellite was

in orbit. Table 2.6 lists the principal charac-
teristics of GEOS-B.

2.3 INSTRUMENTATION EXCLUSIVE OF

SATELLITES

2.3.1 TRANET Network

The Doppler tracking station network

TRANET was established in the early 1960's

under U.S. Navy sponsorship. It was a

necessary part of the Navy Navigation Satel-

lite System (NNSS) development effort.

Once the NNSS requirements had been satis-

fled, TRANET observations of the Doppler

shift were applied to other problems: deter-
mination of geocentric coordinates of earth-

fixed points, establishment of ties between

the several world datums, determination of

tides in the crust (Newton, 1968), and fur-

ther refinements to the model of the gravita-
tional field.

Thirteen of the stations constitute a basic

network that has remained essentially intact
over the past decade. The basic network is

augmented for special missions or short-term

requirements by van-mounted or otherwise

transportable equipment. Operation of the

stations is a responsibility of the Doppler

Satellite Office at the Pacific Missile Range

and is carried out by contract with the Physi-

cal Science Laboratory of the New Mexico

State University and through operating

agreements with other agencies, including
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the governmentsof foreign countries. Sev-
eral cooperatingstationssponsoredby the
NationalScienceFoundationareoperatedin
the Antarctic in support of U.S.Geological
Surveyprojectsby contractwith theApplied
ResearchLaboratoriesof the University of
Texasat Austin.

TRANET stations automaticallyacquire
signals and producedata from satellites
transmitting onthe frequencypairs 150/400
and 162/324MHz. With suitablemodifica-
tions, other frequenciescan be and have
beenreceived.Stationsoperatelargely un-
attended,accumulatingDoppler shift data
onpunchedpapertape. Thedataare trans-
mitted via the Autodin network of the De-
partmentof Defense(DOD) to the Satellite
Controland CommunicationCenter (SCC)
at APL.

Communicationby high-speedteletype-
writers ensuresearly receiptandprocessing
of thedataandmorerapid return of station
diagnosticresultsto the stationsthan would
bepossibleif the datawere mailed. It also
simplifiesthe assemblingand processingof
data in the SCCby reducingthe time re-
quiredto assembleeachday'sdataand the
amountof dataaccumulatingin the SCCat
anygiventime.

2.3.2 Satellite Control Center

Data are received more or less continuously

in the SCC on punched paper tape. The data

may be in one of four formats: TRANET

CCID, TRANET Sampled, GEOCEIVER, or

ITT 5500. The data are logged and trans-

ferred to magnetic tape for further process-

ing by computer.

Soon after 0500 UT each day, the magnetic

tape containing the data from the previous

24-hour period is taken to a computer for

processing. The processing includes, among

other things, checking for format errors,

correcting data identification errors, creating
data files from which the corrected data can

be retrieved by giving satellite, day, and

station, and generating seven-track magnetic

tape for subsequent transmission.

2.3.3 Tracking Station Instrumentation

Measurement of the Doppler shift in sig-

nals received from satellites requires the

measurement of frequency and time. (In a

strict sense, all frequency measurements are

made by measuring time interval; however,

it is convenient to speak of frequency meas-
urement without this qualification.) It re-

quires that the frequencies radiated by the
satellite be derived from a "highly stable"

frequency source and that the receiving sta-
tion have "stable" frequency and time refer-

ences. In practice, the satellite signals are

radiated in pairs of phase-coherent frequen-

cies, i.e., frequencies derived from a common

crystal. Use of two frequencies enables a
correction to be made for the frequency-

dependent refractive effects of the iono-

sphere. 1

TRANET stations are designed to receive

signals on certain specified frequency pairs,

nominally 150/400 and 162/324 MHz, to

correct for ionospheric refraction effects, to

measure the Doppler shift on the refraction-

corrected signal, to receive timing signals

from NNSS satellites, and to record both the

Doppler shift and the timing data on punched

paper tape.

For convenience in specifying the perform-

ance required of a TRANET station, specific

frequencies in the satellite signal have been

used to define modes of operation. Each mode

defines a set of station-operating conditions

that must be satisfied to produce data from

the specified frequencies. Table 2.7 gives the

currently defined modes for automatic and

manual operation of TRANET stations.

When operated manually, the stations are

capable of receiving signals on frequency

offsets other than those listed, the limiting

condition being the frequency range of the

voltage-controlled oscillator (VCO) of the

receiver. This range is approximately 0.2 to

1 This is, of course, not the only approach. If the
frequency is high enough, ionospheric refraction
effects are negligible. Experience indicates that 2.5
GHz is high enough that correlated ionospheric
errors are rarely seen in the data.
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80 kHz below the nominal frequencies listed
in table 2,7.

A complete tracking station (fig. 2.7) con-
sists of the following components: (1) an-
tennas and preamplifiers, (2) dual-channel,
phase-lock tracking receivers, or separate
fixed-frequency receivers and phase-lock
tracking filters, (3) a refraction-correction
analog system, (4) a digital processor, com-
prising a Doppler shift-and-timing data digi-
tizer and station clock, and a header pro-

grammer, (5) a frequency standard, typically
a crystal oscillator and VLF receiver for
frequency determination, (6) a device for
recognizing 2-min time marks from NNSS
satellites, (7) a WWV receiver and time

comparator, (8) a paper-tape punch and
analog-signal recorders, and (9) power sup-
plies, standby batteries, test equipment, dis-
plays, and station-control devices for auto-
matic operation.

2
FIGURE 2.7.--Simplified block diagram of typical

tracking station instrumentation using phase-lock
receiver.

2.3.3.1 Antennas and Preamplifiers

Ideally, ground station (tracking station)
antennas should be chosen to match the sig-
nal polarization and the gain pattern of the
satellite antenna. Geodetic and navigational
satellites flown in the past decade have radi-
ated signals with linear, left-circular, and
right-circular polarization. The TRANET
ground-station system began with quarter-
wave vertical antennas and has continued to

use them successfully to receive signals from

numerous satellites of opportunity--the
French-built D1A, D1C, D1D and the U.S.-
built nongeodetic satellites--as well as those

intended specifically for geodetic purposes.
Circularly polarized receiving antennas have
been used on occasion for test purposes, with
fair success.

Before 1969, station antennas were gener-
ally arranged in a square array, with the two
antennas of each pair on diagonally opposite
corners. In 1969, analysis and experiment
determined the effective measurement center

of a pair of vertical antennas (see 2.3.3.3).
Since 1969 all new antenna installations have

been linear arrays of whip antennas having
a common measurement center for both fre-

quency pairs.

Low-noise preamplifiers, mounted near the
individual antennas, establish a system noise
figure at 5 dB or better on all frequencies.

2.3.3.2 Receivers

The phase-lock receivers used by most
stations may be one of two models : the Space
General Model 104751 or the ITT Model

1004AB. Although they differ in detail, both
are dual-channel receivers incorporating a
second-order, phase-lock demodulator. Some
stations of the TRANET use instead separate
fixed-frequency receivers and phase-lock de-
modulators.

In any case, the inputs to the receivers are

the satellite signals and a local reference sig-
nal derived from the station's frequency
standard. The receiver amplifies and trans-
lates the noisy, Doppler-shifted signal, as
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received, to a new frequency, which serves

as the input to the receiver or tracking filter

phase-lock demodulator. The outputs of the

phase-lock demodulator consist of the filtered

Doppler-shifted signal offset by a certain

fixed frequency and the demodulated phase

signals, which contain the satellite time word.
In the phase-lock receivers the Doppler-

shifted signal is offset in frequency by 26

MHz. In the tracking filter the corresponding
offset is 250 kHz. In either case the offset is

removed by the operation of the refraction

corrector.

The phase-lock demodulator acts as a vari-

able-frequency band-pass filter. For such

filters, output rms phase-noise is related to

the input signal-to-noise ratio and the track-

ing bandwidth by (Interstate Electronics

Corporation, 1960)

where

• . N B,
output rms pnase-nolse =----

a B_

N rms noise voltage at the input
a rms signal voltage (sinusoidal) at the

input
Bt tracking loop bandwidth, typically 10 Hz
Bi bandwidth of input, established by the

receiver, typically 50 kHz or less

Output rms phase-jitter for either type of

receiver is typically less than 0.01 Hz.

2.3.3.3 Refraction Corrector

The effect of ionospheric refraction on the

Doppler shift of a satellite signal is a func-

tion of the signal frequency. It can therefore

be eliminated, to first order, by transmitting

two phase-coherent signals of different fre-

quencies and combining the data as follows:

The total Doppler shift _f in the frequency

f of either transmitted signal as measured at

the tracking station can be written, correct

to 0(l/p), as (Guier, 1961)

f a, a._ a3
Af= _cp . . .

where

(2.1)

=-dp/dt

C

a_/f

a_/f _-

a,_/f ,_

the geometric range rate (uncor-
rected for tropospheric effects)
the velocity of light
the first-order ionospheric refrac-
tion contribution; al is propor-
tional to the time derivative of the
total electron content along the
geometric slant-range vector from
station to satellite.
the second-order ionospheric re-
fraction contribution; a_ depends
on signal polarization (choice of
sign depends on direction of circu-
lar polarization) and on the mag-
netic field component in the direc-
tion of travel of the signal; a_ is
related to Faraday rotation; the a=
term is typically 1 percent of the al
term
the third-order inospheric refrac-
tion contributions; a3 has several
components and involves, among
other things, the difference be-
tween the signal path and the slant
range vector.

The validity of this expansion depends ex-

plicitly on the fact that the frequency of the

transmitted signal is large in comparison

with the (so-called) electron plasma reso-

nance frequency of the ionosphere. This lat-

ter quantity depends on the local electronic

density and therefore varies from point to

point in the ionosphere. The plasma reso-

nance frequency is typically a few megahertz

and rarely exceeds 10 MHz. To ensure that

the expansion is valid, the transmission fre-

quency for Doppler satellites should exceed
100 MHz.

If higher order terms are neglected, equa-

tion (2.1) yields for the two frequencies

Af I = f1 a_
-c_+T

f2 al
±f,.,= ---p +--

c f2

(2.2)

We can eliminate the al term and obtain

where

±jl_,x.±f__= fl(1-x2)-- p
c

A=--f2/fl<l

(2.3)

(2.4)
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When equations (2.3) and (2.1) are com-

pared, fl(1-x 2) can be interpreted as an
effective frequency of a transmitter in the
absence of the ionosphere. Since, however,

we can multiply equation (2.3) by any con-
stant, we can make the effective frequency
any convenient value.

In practice, the refraction corrector oper-
ates on the above principle: combining sig-
nals from the two voltage-controlled oscil-

lators of the receiver (or tracking filter) to
produce a single refraction-corrected Dop-
pler signal. The frequency to which this re-
sulting signal is scaled depends not only on
the input frequency ratio, as shown above,
but also on the choice of multiplying factors,
i.e., on the instrumentation. (The system
contains frequency synthesizers to provide
the required frequencies.)

Table 2.8 gives the effective signal fre-
quency corresponding to the refraction-cor-
rected, Doppler-shifted frequencies for each
of the standard frequency pairs. The effec-
tive frequencies listed in the last column of
the table are derived from the third column,
but a further correction for the satellite fre-

quency offsets listed in table 2.7 has been
made. 2

To complete the explanation of correction
for ionospheric refraction, we recognize that
the two antennas associated with the fre-

quency pair are not precisely at the same
point. If we repeat the above analysis and

insert this detail, the result is unchanged,
providing we take for the station position

_'e-- _1-- 1_x----_ (_2-_1) (2.5)

where _, is the position of the antenna asso-

ciated with the higher frequency, f, of the
two and _._.is the position of the other (lower

frequency) antenna.

It is a beguiling fact (eq. (2.5)) that the
station position lies outside the line connect-

2 Satellites rarely transmit frequencies having

integer values. The difference, the actual transmitter

frequency less the nearest integral megahertz value,
is defined as the offset.

ing the two antennas and close to the higher-
frequency element of the pair.

The paired antennas for both the 162/324-
and 150/400-MHz channels are located so
that, consistent with equation (2.5), a com-
mon set of station coordinates can be used

for both frequency pairs. (R. Anderle of the
Naval Weapons Laboratory suggested this
refinement.)

In summary, the refraction-corrected Dop-
pler signal is derived as follows. Doppler-
shifted, refraction-corrupted satellite signals
appearing at the antennas are amplified and
mixed with local reference signals to produce
beat notes, each containing the Doppler sig-
nal, a frequency bias, modulation if present,
ionospheric refraction errors, and noise. The
phase-lock demodulators reduce noise on the
Doppler signals and remove any modulation.

The signals from phase-locked loops in the
demodulator are combined in correct propor-
tions to produce a single refraction-corrected
signal containing the Doppler shift plus a

frequency bias, scaled to a new frequency.

2.3.3.4 Doppler Digitizer and Station Clock

The Doppler digitizer and station clock is a
self-contained unit incorporating a time-of-
day clock and all counters and registers re-
quired to count accurately cycles of the Dop-
pler-shifted signal, to perform time and
time-interval measurements, and to furnish
signals in the proper format to operate a
paper-tape punch. It is used to provide accu-
rate period measurements on the Doppler-
shifted signal from the refraction corrector.

Until 1971 a 4-sec interval between samples
and approximately 1-sec counting periods
were used. Every 4 sec, the digitizer counted
a preset number of cycles of Doppler shift
frequency and recorded the time required for
such a count. The count began at the first
positive-going zero crossover of the Doppler
signal, 100 t_sec after an integral second. It
ended at the positive-going zero crossover of
the Nc th cycle, where N_ is the preset number
of counted cycles. The resolution of the time
measurement was either 10 .6 or 0.2 × 10 -6 sec,
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depending on the equipment ; the preset count

was almost continuously variable between 1

and 99 999. The preset count was chosen to

make the counting interval just under 1 sec

at the beginning of a pass, when the differ-

ence between the station frequency and the

Doppler-shifted carrier is least.
When the TRANET stations were con-

verted from manual to semiautomatic opera-

tion in 1971, the data format was modified to

provide counts over contiguous time intervals

spanning 10 to 30 sec. The beginning and
end time of each interval is now recorded to

10-"-sec resolution and the counts are con-

tinuous. This procedure has permitted a re-
duction in the amount of data transmitted

(over ground lines) by a factor of four or

five and yet resulted in a higher theoretical

accuracy and total information content.

2.3.3.5 Frequency and Time Standards

As the measured physical quantities are

frequency and time, the station must have ac-

curate time and precise frequency standards.

Oscillator stability required for specified

accuracy of position determination involves

two main considerations: (1) If the fre-

quency drift is continuous and monotonic, an

error in the Doppler-frequency measurement

can result from neglecting oscillator drift

parameters. A neglected drift rate of a few

parts in 1011 per day corresponds to a posi-

tion error of about 2 cm. (2) Although short-

term stability is a commonly used measure of

oscillator quality, short-term variations in

frequency do not have an important influence

on system accuracy unless the variations

have a period comparable to 10 _ sec, the dura-

tion of a satellite pass. Oscillator variations

of a few parts in 101'2 over the period of a

pass correspond to a position error of one

meter in the worst case. The stability char-

acteristic of crystal frequency standards of

the type used in TRANET stations typically
exhibits short-term rms variations of about

one part in 1011 .
TRANET station clocks are maintained at

the UTC rate by monitoring one of the co-

ordinated VLF stations (ch. 1). Typically,

a separate clock slaved to the received VLF

frequency produces a once-per-second refer-
ence pulse. A phase shifter allows the refer-

ence pulse to be set to an external standard

(NNSS, WWV, portable clock); after the
reference pulse has been set to this external

standard, it follows the phase of the received

VLF signal.
The NNSS satellites provide both UTC for

clock control and data from which the station

clock error can be determined. In tracking

NNSS satellites, the station clock times are

recorded at the satellite. These times are

later processed to remove propagation and

equipment delays, to recalibrate the satellite

clocks against a station clock selected as

standard, and to compute a station clock
error for each satellite pass. These station

clock errors can be used to correct the times,

but not all users of Doppler data have fol-

lowed this practice. The computed station
clock errors are also fed back to the stations

and used to maintain the UTC epoch (ch. 1).

The largest error in using satellite time is

thought to be caused by the variability in

equipment delay times. These variations cur-

rently limit the accuracy attained in station

timekeeping to about 0.1 msec at most
TRANET stations.

A measure of the attainable accuracy in

using NNSS satellites as source of UTC is

afforded by comparing the independent mea-
surements of satellite clock error made (1)

by the U.S. Navy Astronautics Group, using

data from the Navy's four tracking stations

in setting the satellite clbcks, and (2) in the

programs that compute satellite and station
clock errors for the TRANET stations. The

agreement between these two measurements

is usually good to a few tens of microseconds.

Both Navy Astronautics Group time stand-
ards and the TRANET time standard at APL

are related to the U.S. Naval Observatory

time by periodic portable clock visits,
LORAN C monitoring, or similar means.

2.3.3.6 Satellite Time-Mark Detector

Several devices have been used in the

TRANET to recognize the occurrence of the
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2-min mark that is broadcast by NNSS satel-
lites. Most stations are equipped with a de-
vice that produces a fiducial pulse at the 2-
min mark. Another device used at several

stations produced a pulse at a bit transition
that occurs in the satellite time encoder

775 434 _sec after the 2-min mark. In either
case, the fiducial pulse triggers a readout of
the tracking station clock with a resolution

of 1 _sec. These time readouts are inter-
spersed with Doppler data points.

Accuracy of the first device is limited by
the variability of delays through the equip-
ment and decoder to about 100 _sec. Accu-
racy of the other is about 10 _sec.

2.3.3.7 Automatic Control Unit

Acquisition of satellite signals and the pro-
duction of data on punched paper tape can be
under the manual control of an operator, but
normally are controlled by the station auto-
matic control unit (ACU). Functions per-
formed by the ACU include control of the re-
ceiver or tracking-filter signal search opera-
tion, automatic acquisition of signals, valida-
tion of satellite signals, and operation of the
digitizer and paper-tape punch to produce
data and headers.

2.3.4 The Doppler Beacon

Instrumentation required in a satellite for
Doppler tracking includes a highly stable
oscillator, a frequency synthesizer, and
power amplifiers and antennas for the
signals to be radiated. These components
make up a Doppler beacon, a system that has
been used with minor variations from the
earliest TRANSIT satellites to the most

recent satellites carrying Doppler beacons.
•In some applications the RF carriers may be

phase-modulated to provide telemetry and
timing signals. NNSS satellites also broad-
cast the ephemeris of the satellite and time
marks in UTC each even minute. The time

marks are of particular interest to the
TRANET system, since they provide time
reference for the system.

The typical Doppler beacon consists basic-
ally of a low-frequency oscillator of high
stability, a frequency synthesizer, and power
amplifiers and antennas for 162- and 324-
MHz signals. The signal source is an ultra-
stable crystal oscillator using redundant,
fifth-overtone, 5-MHz crystals. Temperature
control is provided by redundant, propor-
tional control heaters. Either oscillator or

heater is selectable by command • The 5-MHz

signal is used to synthesize a 54-MHz signal.
Two buffered 54-MHz signals from the syn-
thesizer drive the two power amplifiers,
which multiply the 54-MHz signal by the

appropriate factor and amplify the signal to
a level suitable for radiation. Typical output
levels are 0.25 watt at 162 MHz and 0.4 watt

at 324 MHz. Antennas are selected to provide
left-hand circular polarization with hemi-
spheric coverage.

Short-term variations of the Doppler
beacon frequency are typically a few parts in
1011, measured on the ground. Oscillator
drift rates when the satellite is in orbit aver-

age two parts in 101_ per day for the more
recent satellites.

2.4 DATA

This section summarizes the data used by
APL in producing the model of the gravita-
tional field given in section 2.6.1. It also de-
scribes the procedures used in preparing the

observational data (Doppler shifts and cor-
responding times) for use in observation

equations.

2.4.1 Summary of Data

The data used in producing the results
given in section 2.5 are summarized in tables
2.9 through 2.12. Table 2.9 gives the approxi-
mate values of the elements of the orbits of
the satellites involved. Table 2.10 summa-
rizes for each satellite the amount of data

acquired from that satellite. Table 2.11 gives
the values of the zonal harmonic coefficients

used (these were provided by Anderle and
Smith of the Naval Weapons Laboratory,
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Dahlgren, Virginia, in a private communica-
tion). Table 2.12 gives values of miscella-

neous quantities used in the computations.

2.4.2 Doppler Data Preprocessing

The phase of the qth Doppler signal is

f,_q= 2,_ dt
jo

2.4.2.1 Introduction

The observations of the tracking station

must be processed before they can be used for
orbit .determination. This processing con-
sists of two steps. The first, usually per-
formed at the station, consists of correction
for first-order ionospheric refraction. The
second, performed at the computing center,
consists of converting the observation (as
corrected for refraction) from a Doppler

cycle count over a stated time interval into a
Doppler frequency at a stated epoch. A fixed
number of cycles of the Doppler shift to be
counted is selected so that the count for each

observation will require less than 1 sec. The
counts are started every 4 sec. This sampling

frequency, used in the National Geodetic
Satellite Program, differs from other later

sampling frequencies (in Continuous Count,
SRN-9, and GEOCEIVER equipment) in
which counting periods are loiiger and con-

tiguous and in which the count is equated to
a range difference rather than a frequency.
As will be seen, the later sampling frequen-
cies have certain practical advantages.

2.4.2.2 Refraction Correction (Ionosphere)

The satellite transmits signals at two fre-
quencies, obtained from the same oscillator so
that the transmissions are coherent. A typi-

cal pair of frequencies would be 162 and 324
MHz. These frequencies are offset (reduced)
by a small amount, typically 80 parts per mil-
lion. The reference frequencies of the track-
ing station are not offset, so that the resulting
Doppler shift frequencies never go through
zero. The station thus observes two Doppler
signals simultaneously. It is the combination
of these two signals that results in the elimi-
nation of the first-order ionospheric refrac-
tion contribution.

This is an all-inclusive expression, which we

now simplify. The summation over k, repre-
senting the ionospheric contribution, is re-

placed by the first term z_f_(1_. The remaining
terms have been ignored at this time as hav-
ing negligible effect. The noise term Nq
represents the contribution of many noise
sources. No attempt has been made to include
their effect analytically. Experience indi-
cates that the contributions may be ignored.

Since both the Doppler shift and the tropo-
spheric refraction correction (see sec. 2.5)
are proportional to transmitted frequency,
their sum can be rewritten in terms of values

scaled to the standard frequency :

Af----Afq. fR × l0 G
Fs_

Rr=Rrq fR× 106
FSq

so that

_f_+Rrq=m_ (±f+Rr)

The first-order, ionospheric refraction cor-
rection is inversely proportional to the fre-
quency of the transmitted signal. We re-
write it scaled to the standard frequency :

Af(1) fR×10 6 Afq(1)
-- rsq

= Afq(l)/mq

Assembling the above, we have finally

in which the q dependence has been confined
to the coefficients nq and mq. It is now seen
that if the two _q are multiplied by the proper
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constants and subtracted, the refraction term
Af(1) will vanish. We choose as constants iz
and iq, suchthat

iq/nq=iq,/nq.

Multiplying by iq and iq, and subtracting
yields

_q_q -- lq._q, _ _q,, _ 2,_ dt

where

(2.6)

nq. = iqnq - iq,nq,

__ nq.

mq,, - --f-_. Fs

Fs = Fsq

nq X 10 6

for either q=l or q=2. A typical value of
"equivalent" frequency (nq./fR) is 687.5

MHz, based on values of 600 and 225 for iq

and iq,, respectively. It is now apparent that
the equation for _q,, is the same form as that
for _q except that the ionospheric refraction

contribution has been removed and equiva-
lent frequencies have replaced the actual fre-
quencies. The computations outlined above
are accomplished by a device that produces
the corrected signal continuously.

2.4.2.3 Digitization Process

In this process the signal corrected for

ionospheric refraction, _q., is observed for a
specified number of cycles and the count time
T is recorded. The time of count initiation tb
and the count time T constitute the observa-

tions for one point. These data are converted

into a Doppler frequency and an epoch by
the method described subsequently.

The details of the counting process are
shown diagrammatically in figure 2.8. The

count initiation signal activates a gate that
passes the next positive zero-crossing of the
Doppler signal to a circuit, which in turn
activates a gate and starts the clock at the

f

FIGURE 2.8.--Timing and signals involved in

digitization.

I

/

next zero crossing of the counting signal. At
the end of count, a gate passes a signal that
turns off the clock, leaving a fraction of the
counting signal uncounted. The three short
time intervals, Co, c_, and _, incident to the
start and stop of the counting process repre-
sent such fractions of a single cycle of count-
ing frequency. They are assumed to have uni-
form distributions, so that their first and
second mC_-nents are

T

,(Ty<':)=-X

1
<'1_) = <'1) = 2-_- M

1
("=) -- {'2=)- 3 (fM) =

Thus

(T)= T + (c, + ,_) = T + (1/f_)

Equation (2.6) is now solved for the de-
sired quantity Af and the epoch at which it
occurs. The equation is rewritten to sub-

stitute q for q" throughout to simplify nota-
tion.
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The integration limits from the figure are

Tb and (_+r), and the total phase change is

2=no. Hence

_'b+T

2_m_=

T b

dt nq ±F- + RT) JI fR mq (Af

Although both ±F and ARt have some time

dependence, we assume that they are con-
stant during a pass, so that

Tb+T

nq f dt ( mq.nc = -_R_Fr-- mqR_.r- _f)

T b

and the problem resolves into evaluating this

integral. We evaluate ±F and RT at some

arbitrary epoch during the count interval. In
order to evaluate the integral, ±f is expanded

in a Taylor series to the quadratic term about

some arbitrary epoch during the counting

interval. It is this epoch that will be the de-

sired epoch tD corresponding to the desired

Doppler frequency _f (tD) :

known and is not readily available. It is a

larger rate than ±7, which should be quite
small in the 1-sec interval during which the

Doppler shift is counted. Noting that

<_>= <T+_+_,_,>= T+ _

T

<vb> : <tb + 'o) : tb + 2n_

we find that

1 1

This is just what might be expected. If A]

were zero and _] constant, then the Doppler

frequency at the midpoint of the observation

period would be the average frequency over

the time span, and the total count could be

computed without knowing A]. The small

time corrections represent the effects of

starting and stopping the count. Finally, the

station clock correction is added.

tT---- tD + At

±f(t) =Af(t,) +/,](t,) (t-to)

+ _--_(tD) (t-tD) 2

If the derived value of tD is now substituted

in the integral and solved for the correspond-

ing Doppler frequency, we obtain

Inserting this expansion, we find

Tb+T

f dt (m o. Af)

T b

+ 6

Note that to is an arbitrary epoch in the
interval. We now select to to make the ex-

pected value of the coefficient of _)t vanish.

<r+2(_b--tD)>=0

This choice is made to avoid dealing with 4].

The rate of change of Doppler shift is not

Af(tD)= n_ ±F
mqIR

mmq--_-_T(1-_---_) T_--RT--_±](tD)

This Doppler frequency together with the

corresponding time tr noted above constitute

the output of the preprocessing stages for

each point. The two inputs tb and T are used

directly in computing to. In the computation

of _f, two corrections are required from
another source. One is Rr, the correction to

Doppler frequency due to tropospheric re-
fraction. This is in part a function of satel-

lite elevation (hence of the orbit) and of

the weather. The other is the contribution of

±], which is also a function of the orbit. Both
corrections can be added later in the compu-

tation as they become known during the
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iterations that eventually produce the orbital

parameters.

2.4.2.4 Problems

The tracking system is sensitive to noise
and disturbances of different kinds. Phase

jitter and phase modulation arising out of
amplitude modulations induced by propaga-
tion effects, satellite motion, and receiver
noise are among the sources of distortion.
Timing errors are serious because the satel-
lite travels at the rate of about 7 m/msec.
The volume of data may be a problem. At a

sampling rate of one measurement every 4
sec, a 15-min pass produces 225 measure-
ments. It is customary to reduce the compu-

tational load by processing only a fraction of
the data. Another approach is to condense
several observations. This can be done by

fitting a curve to 10 observations (say) and
interpolating for the Doppler frequency and
epoch at the midpoint of the arc. It is esti-
mated that the perturbations that may be
considered irreducible at the current state-
of-the-art contribute an error of about 5 m to

satellite position. The conversion procedure
described herein has been used successfully

for counting intervals of 10 sec. Historically,
the conversion of cycles of Doppler counts to
Doppler frequency was the approach in de-
termining the orbit. It was later realized
that the count over a given time interval was
equivalent to the difference of slant ranges
over that interval. This "integrated Dop-
pler" approach dispensed with the need for
determining a Doppler frequency, minimized
some of the phase distortion and noise ef-
fects, and reduced the number of observa-
tions without discarding data. It has thus

become the currently prefered method of
orbit determination. The two-frequency

method of removing first-order ionospheric
refraction effects continues to be used.

2.4.2.5 Other Preprocessing Material

The process of eliminating blunders and
errors from the data is included by many

people as part of preprocessing and is in fact
so treated in most of this report. APL devel-

oped its data reduction procedures specific-
ally as part of the development of NNSS and
in addition used an approach peculiar to

APL. As a consequence, the APL theory for
data reduction cannot easily be separated

into the customary categories. The theory
given in section 2.5.3, together with the ma-
terial in this section, covers what could be
closest to what is covered under "Preprocess-
ing" in other chapters of this report.

2.5 THEORY

2.5.1 Introduction

The main emphasis of the APL geodetic
program was the determination of the coeffi-
cients associated with the tesseral harmonics

in the gravitational potential and the deter-
mination of the position of tracking stations.
However, some early studies on the effects of
the zonal harmonics were also made. Differ-

ent analytical techniques were used in the
two studies on gravitation, and both are

presented here.
Raw data are submitted by the TRANET

stations as sets of ordered pairs consisting of

reception time and a quantity referred to as
"period count." The period count is simply
the ratio of the number of cycles of the Dop-

pler signal to the counting frequency. These
ordered pairs are generated every 4 sec dur-

ing the passage of the satellite over a given
station, augmented with an identifying head-

ing called an identification header, and sub-
mitted to the computing facility on five-level,

punched paper tape. The sampling interval
lasts approximately 0.5 sec. (The TRANET
stations were modified in 1971 to count con-

tinuously.) The computing facility accumu-
lates these paper tapes from all the tracking
stations, batches them according to some ap-
propriate time span (one or two days), and
puts each Doppler pass (see following) on
magnetic tape in the order of time of obser-
vation.

A typical Doppler pass contains between
200 and 400 individual data points. (By Dop-



106 NATIONALGEODETICSATELLITEPROGRAM

pler passwe meanthe Doppler shift data
measuredby a tracking station during a
singletransit of a satellite.) Obviously,for
geodeticpurposes,where several hundred
Dopplerpassesare needed,the problemof
copingwith thismuchdatawouldproveto be
quite formidable. Thus it was decidedto
processthedatain twostages.

Theobjectiveof the first stageof process-
ing is to condensethe informationcontained
in theDopplerdataintoasmallsetof param-
eters. Theseparametersconsistof a set of
meanKeplerianelementsfor eachorbital arc
usedanda setof "aggregation"parameters
associatedwith eachDopplerpass.TheKep-
lerianelementsconstitutethedatabasefrom
which the zonalharmoniceffectsare com-
puted.A setof aggregationparameterscon-
sistsof threequantitiesS, A_, and ±f. These
parameters are determined via a least-

squares fit of the Doppler shift residuals gen-
erated from the observations at a particular

station during a particular pass (sec.
2.5.3.3). S and £ are modeled as corrections

to the station coordinates used in generating
the residuals; ±f is modeled as a correction

to the estimated current satellite frequency
offset (sec. 2.3). The theory leading from the
raw data to the aggregation parameters and
other quantities is given in section 2.5.3.

(This section constitutes approximately
what is called "theory of preprocessing" in
other chapters.)

The Doppler residuals analyzed in this first
stage reflect not only station coordinate
errors but also satellite ephemeris errors re-
sulting from the theoretical model used in
generating the ephemeris. Data measure-
merit errors are also reflected in these resid-

uals but are assumed to be negligible in

comparison to the other error sources. By
minimizing these residuals with respect to S,
A:, and ±f we were able to demonstrate that

the final or adjusted residuals were reduced
to the estimated noise level in the data meas-

urements themselves (i.e., that all significant

errors in the Doppler residuals for a given

pass were removed by an adjustment of these
three parameters). These parameters are

saved and archived into special data sets, one
for each collection of Doppler passes dis-
cussed earlier. These data together with ad-
ditional parameters associated with each
pass (which allow us to reconstruct the satel-
lite-station geometry during the time of the
pass) serve as the experimental data to be

processed in the second stage of analysis.
The objective of the second stage is to

derive results of geodetic significance (sta-
tion locations and values of the gravitational

potential) from the results of the first stage
(mean Keplerian elements, a set of aggrega-

tion parameters, and associated pass geom-
etry). Sections 2.5.4 through 2.5.7 deal with

this stage. Section 2.5.4 presents a theo-

retical analysis of the residuals of the Dop-
pler data (referred to hereafter as Doppler
residuals), which defines the parameters as a

function of station position errors and or-

bital errors. The theory relating orbital
errors to errors in the gravitational potential
coefficients is given in section 2.5.5. Sections

2.5.6 and 2.5.7 describe the algorithms used

in processing the aggregation parameters to

obtain better models of the earth's gravita-
tional field.

2.5.2 Notations and Definitions Peculiar to
This Chapter

(1) Coordinate systems

I:I, L, 2 coordinate system=right-
handed coordinate system with axes
defined as :

/_: direction of radius vector from

Earth's center of gravity to
satellite at a given epoch

L: direction of that component of

the satellite velocity vector, at
the same epoch, perpendicular
to its radius vector and lying in
the osculating plane of the com-
puted orbit

2: direction of angular momentum
vector of the theoretical orbit at

the same epoch.
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$, _, C (minimum slant range) coor-

dinate system= right-handed coordi-
nate system with axes in the three
directions :

$: direction of radius vector from
station to satellite at time of
closest approach of satellite to
station

_: direction of satellite velocity
vector at time of closest ap-

proach of satellite to station
: ,_ x _ direction.

(2) Potential

N,..= normalization used for spheri-
cal harmonics

I(n-m) !(2n+ l) (2-_o,.)l"-'-- (n+m) !

0 for mmO_0'"= 1 for m = 0

1
n _--C _C" N ..... "

av= right ascension of Greenwich

(3) Data

t_,= station clock time at start of
count (generally an integral
second) (sec)

•t,=station clock time when
counter is turned "on" (sec)

_= actual time required to count
n,, cycles (sec)

At=correction to station clock

relative to WWV time (sec)

t.= station clock time (com-
puted) corresponding to com-
puted Doppler frequency
(sec)

t.r: t.+At (corrected t.) (see)

T= approximate time required to
count n,, cycles (sec)

q= index of satellite signal (q=
1,2)

FT,q=station reference frequency
(as estimated at station) cor-
responding to qth signal (Hz)

n.= FT,,× 10-" (MHz)
fu= standard reference frequency

(MHz) (=300 MHz)

f._ = counting frequency (.= 5
MHz)

Nq= noise term for qt_ signal (Hz)
F,_,_= frequency of qth transmitter

in satellite (Hz)
,xF,_= FT,_-F,s,_ (satellite transmit-

ter frequency bias) (Hz)

m,_= (Fs_/f_) x10_=Fsq scaled to

±F = ±Fq. f _/n_
= fractional ±F,_ scaled to f_

Af,_= Doppler shift of qth satellite
signal in vacuum (Hz)

_f_,"= kth-order refraction contribu-
tion to q" satellite signal (Hz)

R_,_=tropospheric refraction con-
tribution to qt], transmitted
signal (Hz)

n,,=preset number of complete
cycles counted of the analog
Doppler signal

f_,= effective transmitted fre-
quency (Hz)

(4) Satellite position and motion
f = true anomaly
/_= f+_

_=/_
r_(t) = satellite position in true

equatorial system of date

3r, (t) = error in satellite position

r.. _, a.,= radial distance, latitude,
and longitude of the
satellite

_r_, _l. _Z.= components of satellite
position errors in the
/f, L, 2 coordinate system

(5) Tracking station position
r_,= station position vector in

true equatorial system of
date

re= station position vector in
Earth-fixed system

3r,, 8_,, _x_,= errors in station radial
distance, latitude, and
longitude

S, _/:= corrections to station
slant range and along-
track components which
minimize the sum of the
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(6)

squares of the Doppler
residuals at a station for

a given Doppler pass.
Geometry of satellite and station

t_,= time of closest approach of
satellite to station

_(t) = r_(t) -r_(t)
= slant range vector from sta-

tion to satellite

p(t) =it, (t) i

_(t) _(t)
-p(t)

_ (t) = error in slant range vector

_= _(tc)

"_- Ir_(t_) I
Et, A:= elevation and azimuth at sta-

tion of _c

a:, e,= pseudo azimuth and pseudo
elevation of _c

_=angle between r_(t,.) and

_,. at position of satellite

ap= 1-p_ cosO

tl_= time at which satellite rises
above minimum elevation

for acceptable tracking data
from stations

t,_,= time at which satellite sets •

below minimum elevation

for acceptable tracking data
from station

AM= _(t-t,.)

aM,, = -2- (t_ + t,_- 2t,)

2.5.3 Determination of Aggregation Param-
eters and Mean Orbital Elements

As stated in the introduction, the objective

of the first stage of analysis is to condense
the pertinent information content contained

in the raw Doppler-shift measurements into

a smaller and more easily analyzed set of

parameters. Also accomplished at this stage
is an editing of the Doppler data, the ob-

jective being to delete from further consid-

eration those individual Doppler measure-

ments (or even an entire Doppler pass) if
preestablished criteria are not satisfied. To

achieve these objectives, it is also necessary

to determine an improved satellite orbit for

each group of Doppler passes to be processed.

(By satellite orbit, in this context, we mean a

set of six orbital elements at a specified epoch

which can be used in generating a satellite

ephemeris, via a numerical integration

scheme, for the time span covered by the

Doppler data.)

The Doppler shift measurements from

each satellite are processed in groups, each

consisting of from 24 to 48 hours of data. If

the primary objective is to obtain aggrega-

tion parameters for each pass, then Doppler

passes covering a 48-hour time span are used.

For defining mean orbital elements, 24-hour

data spans are used.

Processing of the Doppler data is done in

six steps. The first of these merely formats

(rearranges) the data and need not be
described.

In the second step, period counts (sec.

2.4.2) are converted into frequencies (sec.

2.4.2.3). First-order ionospheric refraction

effects are computed and removed from the

frequencies if this was not done by the re-

fraction corrector unit (sec. 2.3.3.3) at the

tracking station. When a weather report is

submitted with the data, effective "wet" and

"dry" refractive indices are computed, to be

used later to calculate the tropospheric re-

fraction correction (sec. 2.5.3.2) to the Dop-
pler shift. Gaps in the measurements within

each Doppler pass are identified, and a rec-

ord is kept of the number of gaps and length
of the maximum gap.

To continue the analysis from this point, it

is necessary to generate the satellite ephem-

eris for the time span covered by the Doppler
data. This is accomplished via a numerical

integration procedure (sec. 2.5.3.1) using an
initial estimate of the satellite orbit. The

main objective of step 3 is to identify and

delete poor-quality data. Each Doppler pass
is first analyzed separately. After the satel-

lite ephemeris has been combined with the

station coordinates, a theoretical Doppler

shift is computed, which is then differenced

with the experimental measurements (now

with tropospheric (sec. 2.5.3.2) and first-

order ionospheric (sec. 2.3.3.3) refraction
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effects removed) to produce the Doppler
shift residuals for the pass being processed.

[In this chapter, residuals are defined to be
the theoretical value minus the experimental
value. This is the negative of the convention
used in the rest of the book.] These Doppler

residuals for each pass are then minimized
with respect to S, _E, and af (sec. 2.5.3.3)
by means of a least-squares iterative pro-
cedure. After each iteration a 3a "strip-

ping" is performed on the adjusted residuals.
This processing continues until a stable solu-
tion is found or until a maximum number of

iterations has been performed.
This method of editing the Doppler shift

measurements is useful in detecting noisy

data. However, this approach cannot detect

(for example) station timing or frequency
bias errors. Therefore an additional method

of editing the data is used. In section 2.5.4
a theoretical analysis of the Doppler shift
residuals is presented. This analysis shows
that the pass-determined parameters S and
.L" as computed (by means of the theory
given in sec. 2.5.3.3) are a function not only
of station position errors but also of satellite
ephemeris errors. Utilizing these results, we
now assume that the pass-determined param-
eters S and _ are functions only of satellite

ephemeris errors via equations (2.58) and
(2.59) in section 2.5.4, and that these in turn
are caused by the propagation effects of the
errors in the satellite initial orbit given by
equation (2.91) in section 2.5.5. Under these
assumptions we perform a least-squares fit to
these pass-determined parameters with re-
spect to the six orbit error parameters of
equation (2.91). Doppler pass deletion is

then performed on the basis of the statistics
of the adjusted S and £ values.

The six orbit parameters obtained in the
above minimization could also be used to cor-

rect the initial orbit needed for the numerical

integration scheme (sec. 2.5.3.1); however,
this approach was not used in the programs
being described here.

In step 4 the results of the previous step
are used to compute pass weights. The fre-
quency offset parameters, Af, are used to
_.,',mn,_f,_ _ onrr_etlnn fnr the drift in the

satellite oscillator. (Any frequency change
in time as measured by these pass param-
eters is attributed to the satellite oscillator.)

Finally, a representative subset of the sur-
viving Doppler shift measurements from all
the passes in the data span is selected for use

in step 5.
The objective of step 5 is to determine an

improved orbit. This is accomplished by per-
forming a least-squares fit to the subset of

Doppler shift measurements selected in step
4 with respect to the six Keplerian elements.
The partial derivatives of the satellite motion
with respect to these parameters are ob-
tained by means of an analytic theory that
includes only the central body and CO effects
of the potential. However, for each iteration
the satellite ephemeris, including all modeled
forces acting on the satellite, is recomputed
numerically (sec. 2.5.3.1) to accurately re-
flect the effects of the adjusted orbit param-
eters.

This final ephemeris (derived from the
"best" determined orbit) is used in the final

step to repeat the computations performed
in step 3.

Information determined from this final

analysis of the Doppler shift measurements
is then saved for further analysis by the ge-
odetic research programs. This information
consists of the pass-determined parameters
S, .L_, and _f, as well as computed parameters
that enable us to reconstruct the satellite-

station geometry during the time of each
pass (sec. 2.5.4). In addition, pass weights
are also saved.

A set of eight mean orbital parameters de-
scribing a constantly precessing ellipse are
determined from a least-squares fit to the

satellite ephemeris given for a 24-hour time
span. This ephemeris is generated from the
final "best" orbit by numerical integration

(sec. 2.5.3.1).

2.5.3.1 Determination of Orbit

Two factors control the accuracy of nu-

merical integration. The first is the choice of
orbit parameters (elements). The param-
eters should be chosen so that there is a mini-
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mum variation of the parameters with time.
The second is the choice of the algorithm that
approximates differential equations by dif-
ference equations. Table 2.13 indicates the
basic orbital parameters that have been

chosen (Newton, 1961). The second part of
table 2.13 indicates the definition of these

parameters in terms of the usual Keplerian
elements and consequently defines the scaling
(units) of the parameters. With the semi-
major axis, a, scaled by the mean radius of
the earth, the magnitude of the P vector is
about unity. The magnitude of the e vector is
the eccentricity of the osculating arbit. The
independent variable has been chosen to be

the argument of the latitude fl rather than
time t because the largest forces acting on
the satellite are functions of its position, with
only a weak, explicit dependence upon time.
Consequently, a variable is numerically inte-
grated along with the three components of

the P and e vectors. However, there are only
six independent parameters, since by defini-
tion the P and e vectors are orthogonal.

For an unperturbed orbit, the parameters
in table 2.13 are constant. Consequently, the
fixed word-length of a computer can be better

utilized by using, instead of the parameters
themselves, the changes in these parameters
due to perturbing forces on the satellite.

The difference parameters and variables
are shown in table 2.14. After integration
the actual orbital parameters and time are
computed as also shown in table 2.14. The
most sensitive parameters affecting the accu-
racy of the satellite's computed position are
the magnitude of P and the time. These are
computed separately from the components of
the two vectors. Consequently, six param-
eters and two variables (one a function of
the parameters) are numerically integrated
(the two variables are carried in double pre-
cision in the computer). Since the nodal (dra-
conic) period of the unperturbed satellite is
constant, the times in an unperturbed orbit
can be computed as indicated in the last equa-
tion in table 2.14.

The method used for integrating the differ-

ential equations of motion for the ±P (fl) and
Ae(fl) vectors and the time At (fl) is that of

Runge-Kutta, using fourth-order integration
(ch. 1). Considering the rapid variation of
the forces with fl, 64 steps of the independent
variable fl are taken per revolution.

The differential operations of motion and
the forces involved are given in chapter 1. In
addition to the Earth's gravitational forces,
the gravitational effects of the Sun and Moon
are computed. Also included are the contri-
butions of solar radiation pressure and at-
mospheric drag. The drag force is based on a
model of atmospheric density developed by
Jacchia (1965).

2.5.3.2 Refraction Correction (Troposphere)

The lower, un-ionized part of the atmos-
phere and the higher, ionized part have dif-
ferent effects on the velocity of an electro-
magnetic signal. This section deals with the
un-ionized part, which thus includes both the

troposphere and stratosphere; some 80 per-
cent of the combined effect of the troposphere
and stratosphere is, however, produced by
the troposphere proper, below the tropo-
pause. The index of refraction of un-ionized

air is independent of frequency in the radio
region, at least up to a frequency of 15 GHz.
The two-frequency method that corrects
radio Doppler data for ionospheric errors
(ch. 3) therefore does not remove tropo-
spheric effects. A correction based on an at-

mospheric model has been developed for this
purpose.

Passage of a satellite radio or optical sig-
nal through un-ionized air delays the arrival
of the signal. The resulting error in the
measured range (or range rate) is a function
of atmospheric conditions along with the sig-
nal path and of the satellite elevation angle.
The effect in the zenith direction is the height
integral

Aht,.o=f(n-1)dh (2.7)

through the un-ionized atmosphere, where n
is the index of refraction. If horizontal

gradients in the atmosphere are negligible,
the range effect at an elevation angle Ez is a
function of the effect at the zenith.
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It is convenient to define the refractivity N
as

N-106 (n-l) (2.8)

and also to separate N into its so-called dry
and wet components (Smith and Weintraub,
1953) :

Nd+Nw

Nd= 77"6P (2.9)

_ e
Nw= 3.73 x 10_ _2

In a dry, isothermal atmosphere the re-
fractivity would decrease exponentially with
height (Bean and Dutton, 1959) ; but if there
is a constant lapse rate a of temperature

(a=- -dT/dh), theoretically the refractivity
varies with height according to the equation

(Hopfield, 1969; Haurwitz, 1941)

N=No I To/a-h-]l'_o/a] (2.11)

where

g 1 (2.12)
_-- Ra

where T is the Kelvin temperature, P is the

total pressure in millibars, and e is the par-
tial pressure of water vapor, also in millibars.
Both Nd and Nw normally decrease with

height above the earth, but at different rates.
Equations (2.9) pertain to radio frequen-

cies. In the optical region, n is a function of
wavelength but is little affected by water
vapor. The results given below for the radio
dry component are applicable also to optical
studies (e.g., laser ranging) if a wavelength
correction of a few percent is made.

For a dry atmosphere, it can be shown
theoretically (Hopfield, 1971 ; Haurwitz,
1941) that

fN(, dh=k P_ (2.10)

where P, is the surface pressure and k is a
constant at a given location. Equation (2.10)

is also valid for the dry component of real
atmospheres. This has been verified by a
study of meteorological balloon data from
several thousand balloon ascents in one-year

sets (two balloons per day) at several widely
separated locations (Hopfield, 1971). The
observed values of the parameter k show a
small latitudinal variation (Hopfield, 1972).
The value of k is approximately 2.28 mm of
zenith range effect per millibar of surface

pressure.
Equation (2.10), though useful, is not suffi-

cient. A model of both the Na and the Nw

profiles is needed for correcting radio data.

In equation (2.11) the subscript 0 refers to
the surface, assumed at sea level ; in equation
(2.12), g is the acceleration of gravity, as-
sumed constant through the lower atmos-
phere, and R is the gas constant for a unit
mass of air.

It has been found empirically from meteor-
ological balloon data that an expression of
the form of equation (2.11), with _=4 (cor-
responding to a = 6.8 °C/km), can be satisfac-
torily used to represent the dry-component

profile Na in the real atmosphere. The ex-
pression is rewritten below for this purpose,
for a station at the surface but not at sea

level, where the subscript s refers to the
surface. The quantity To/(Z of equation

(2.11), which is a height, is replaced here by
the height parameter ha (later called hi).
Theoretically, ha depends on To; i.e., it has a
temperature coefficient, here called ad.

The wet-component profile is written in a
similar form for convenience, although doing
so does not have the same theoretical justifi-
cation. The complete expression becomes

N = _N, ]
i=1,2

N_ (2.13)
N,- (h__h_)4 (hi- h) _ h_ h_

N_= 0 h>h,

where i=1,2 refers to the dry and wet com-

ponents, respectively. All heights are meas-
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ured above the geoid. The values of hi must
at present be specified differently:

hi = hdo÷ adTsc ]

It.=const (for a given location and I (2.14)data sample)

where hdo is the value of hi at 0°C and Tsc is
the Celsius temperature at the surface.

The theoretical radio range effect of the
troposphere at the zenith is the height in-
tegral of this composite N profile :

Ahtro=lO-6xl _ N_i(h_-hs) (2.15)
i=l, 2 '

With suitable height parameters, the dry
part of the theoretical ±h,,.o matches observed
data within 2 mm rms. Deviations in match-

ing the wet part of the observed integrals are
an order of magnitude larger, i.e., a few
centimeters.

The values of the height parameters are
tabulated for several geographic locations,
in Hopfield (1972). The following are nom-
inal values :

hao-h_= 40.1 km
aa= 0.149 km/°C
h__ 10 km

The empirical values obtained for (hao-h,)
and aa are nearly the same for all the loca-
tions studied, and are in good agreement
with theory for a dry atmosphere. The val-
ues obtained for hw at different locations are

far more variable and not now theoretically
predictable. Fortunately, the wet component
of ±htro seldom contributes more than 10 per-
cent of the total effect and often much less
(Hopfield, 1971).

The N profile of equations (2.13) leads to
the following expression for the range effect

_otro at any elevation angle E_ (Hopfield,
1969). Path curvature of the signal is neg-
lected here; however, this is very small ex-
cept at low elevation angles, where satellite
data are seldom used. The total range effect
is the sum of the dry and wet contributions
Ap_.

/_ptro _ ZApi

i=l, 2

4 1
_p,= lO-_N,i{-l_ + _t_oi [-_ r_ l_

2 l_-_-r_rt,o_ll l_+y l_15

2 3 1
+ r t,oil 1- y r],oir_l_

1 2 -3 2
3 rt_°it3_+-_ l_

3 2 [.3 1 2\
)

2 , [,2 1 r 2

1 ]\
r_, + 13(JJ

(2.16)

In this expression, r_ and rtro_ are distances
from the center of the earth to the tracking

station and to the top of the troposphere (dry
or wet component), respectively. Also, where
h_= ha and h_o= h_,

ht_oi= hi - h8 rt_o_= r_ + ht_o_

11= r, sin E_ 12= r_ cos Ez

l_= (r_,,-l]) _/_

The tropospheric contribution to the Dop-
pler shift of the satellite signal of frequency
f is, again, the sum of the dry and wet con-
tributions ; c is the velocity of light :

±ftro=lO-6 f_- r_Ez_[N_F_,(E_)] (2.17)
i=1, 2

The function F_(Ez) for either component
(subscript 4 to refer to the quartic N profile) is

F4i (E) -- cos E

h_,o, L_ k 2 /

4- (_ q- r_]3,J]

(2.18)
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In practice, the computation of Ap_ or
F_(Ez) is done in double precision to avoid
excessive rounding errors. Ap_is particularly
hard to compute with enough precision, and
two algorithms for this purpose, based on
series expansions, have bden developed by
Yionoulis (1970). These may be used to re-
place equation (2.16). One is intended for
high, the other for low, values of Ez.

The observed range at any point is too
great, because of tropospheric delay, and the
amount of the error is greater near the hori-

zon than at the point of closest approach. The
observed range rate or Doppler shift there-
fore appears too large in magnitude and

changes too rapidly; i.e., the slope of the ob-
served Doppler curve is too steep. Geo-
metrically (and somewhat paradoxically),
this makes the satellite pass appear closer to
the station that it really is.

Figure 2.9 shows the Doppler residuals
for a satellite pass without and with tropo-
spheric correction. The upper graph shows
the residuals without correction; they show
a large systematic increase in magnitude to-

ward the ends of the pass. The computed but
unused correction is shown also as a solid

line. The lower graph shows the residuals
for the same pass, recomputed after the use
of the tropospheric correction. Nontropo-
spheric errors were small in this pass, and

1.0

=o

__ I
4_m 4300o

SURFACE CONDITIONS:

NTd = 264. NTw= 55 {STATION AT "TRU E ' POSITION FOR COMPUTING RESIDUALS)

ELEVATION OF SATELLITE _RINC. PASS i_,g.,,,)

Z.7 S 10 IS 2O 24.4 2O IS In S 0 -)

i T _ T l _ T F-

-- THEORETICAL TR_O_PHERIC CORRECTION FOR THE PAS_

• NAVIGATI_ ERRORS _OATA DELETED BELOW _°_

_o_ _'_"" _ 37_5JETERS RANGE _T_ SHORT_

o_

{b) ...... RE SIDU AL S WNEH TROPOSPH E_')C CORRECTION IS U_ED _N

NAVIGATION ERRORS (DATA DELETED BELOW Io} m o
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FIGURE 2.9.--Tropospheric effect on Doppler data

during pass of satellite 1967 34A, Lasham, Eng-

land, 2 September 1967.

the residuals now show little systematic vari-
ation. A small overcorrection may, however,
be noted at the end of the pass. This is the
effect of neglecting signal path curvature in

the model and is noticeable here only below
2-deg elevation.

2.5.3.3 Procedure for Determining S, _E, and
_f

The aggregation parameters S, _, and Af
associated with each Doppler pass being pro-
cessed are determined by minimizing the
function F :

1 N

F = _-_ {A/( _ _(p_, l_, Af ; t_,) - ±f( _ ( t_,) }_
tt=l

(2.19)

In equation (2.19), N is the number of data
points in the Doppler pass, p_ and l_ are
parameters associated with the position of
the station (fig. (2.10)), and Af is a correc-
tion for the difference between the frequen-
cies generated by the satellite oscillator and
the station oscillator. A formula for the ex-

perimental Doppler shift Af_ _ is given in
section 2.4.2.2. A tropospheric refraction cor-
rection is applied to this function (sec.
2.5.3.2), so that the theoretical representa-
tion Af_r_of the Doppler shift in vacuo is
given by

In this equation the slant-range vector is de-
fined as

e=_(t.*) -_T(t.)

The instants t*, t_ are related by the equation

c

which must be solved by iteration. The in-
stant t* represents time of emission of the

signal received by the station at t_.
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The coordinate system used in the analysis
is based on the theoretical Doppler shift. At
the time t, of closest approach of the satellite
to the station, the range rate _, and conse-

quently the theoretical Doppler shift, is zero.

Therefore at this instant the range _ and
range rate _ are orthogonal, and their unit
vectors, as computed at the time of closest
approach, become the basis of an orthogonal
coordinate system. The third component of
this system is obtained from the cross prod-
uct of these two vectors.

It is now necessary to show how these vec-
tors define the Earth-fixed coordinate system
in which the station position is "navigated."
Components defined in this Earth-fixed sys-
tem are referred to as the minimum-slant-

range (MSR) coordinates. The three differ-
ent coordinate systems used are shown in
figure 2.10. The subscript T denotes inertial
system components, and the subscript e de-

notes the Earth-fixed system components. It
should be noted that the x-y plane of the
Earth-fixed coordinate system coincides with
that of the inertial system.

The desired relationship between the sta-
tion-inertial system components as a function
of time and the Earth-fixed MSR system com-
ponents is given by

ZT: z I

P.

Ye

YT

(r:)x:

xe

XT,YT, Z T denote components in inertial coordinate system.

xe,Ye ,ze denote components in earth fixed coordinate system.

Pe,'fe , ce denote components in MSR coordinate system.

AG= right ascension of Greenwich relative to Aries.

FIGVUE 2.10.--Coordinate systems.

yr =R(t)R-l(t_.)M(t,.) le

\z,_, lt \co

(2.20)

where

\[cos_.(t) -sinai(t) !)
R(t) =/sin a, (t) cos _ (t) (2.21)

0 0

(In the period 1963-1966, when these equa-
tions were being used for geodetic research,
the effects of polar motion were not included.

However, R(t) is easily modified to include
this effect, and the procedure otherwise re-
mains the same.) The functional form of the
matrix M(tc) is given by eq. (2.22) in inset,
where the elements are functions of the

components of the MSR system unit vectors
in the inertial coordinate system defined at
the time of closest approach of the satellite
to the station. It can be shown that M (to) is
an orthogonal matrix, if it is noted that the

dot product of e and _ is zero at t,. In the
actual adjustment the station is "navigated"
in only two (S and _) of the three coordi-

nates. This is in the plane defined by the
slant-range and velocity vectors at to.

After a minimum has been found, the final
adjusted station position is compared with
the original position. The differences are
then expressed in the MSR system coordi-
nates and are referred to as the station

along-track, _/', and slant range, S, differ-
ences.

These aggregation parameters, as com-
puted in the final step in the processing of
the Doppler shift residuals (sec. 2.5.3), con-
stitute the data base from which the deter-

mination of improved tesseral harmonic
coefficients and station coordinates are made.

2.5.4 Theoretical Analysis of Doppler Shift
Residuals

In section 2.5.3.3 the theory used in ob-
taining the aggregation parameters was de-
scribed. In order to use these quantities for
determining improved station coordinates
and values of the gravitational potential,
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M(tc) =

X--XT X--XT

Y-Yr j'-j'r

Z--Z T Z--Z 7,

(Y-Yr) (2-2r) -(z-zv) (j'-j'r) \

I,I_1I_x , )(z-z_)

(_-_)-_lel . ,
(x-xr) (:_-:_T) - (Y-Yv) (2--x7,_

tel iF[ /

(2.22)

Guier (1966a) derived the functional de-
pendence of these quantities on station
position and orbital errors. This derivation
and the resulting formulas are presented in
this section. In section 2.5.5 the functional

dependence of errors in the coefficients C'_
and S_ on errors in the satellite motion are
given.

The following simplifying assumptions are
made in obtaining the results of this section :

(1) The orbit is assumed to be nearly
circular and near the Earth. This assumption
allows for the expansion of complex expres-
sions in powers of quantities approximately
proportional to the ratio of the satellite
altitude to the radius of the orbit and allows

the neglect of terms proportional to the
eccentricity of the orbit times the first-order
effects of the errors.

(2) Errors in station position and satel-
lite orbit are small enot_gh that the second-
order effects of the errors are negligible.

(3) The receiving station is rigidly con-
nected to the Earth's surface. This assump-
tion justifies the neglect of velocity errors in
the station trajectory in inertial space.

(4) Ionospheric and tropospheric refrac-
tion contributions as well as errors in the

measurements of the Doppler shift residuals
are negligible.

The first step in the analysis is to formulate
a mathematical model that can be used to

describe the time dependence of the Doppler
residuals for a given pass. The Doppler
residuals including a frequency correction
parameter can be written as

_f,,(t)- fT d [$p(t)]+$f (2.23)
c dt

where _tJ is the error in the slant range and
Sf represents the error in the estimate of the

satellite frequency offset. The slant range
error can be reexpressed as

e(t)
Sp(t) -I_ (t)j -$e(t) =_(t)'_e(t) (2.24)

where

go(t) =_r_ (t) -_rr(t) (2.25)

In section 2.5.3 the Doppler shift residuals
are minimized under the assumption that the
errors are a function only of two components
of the station position (S and ._') and a
frequency offset parameter (±f). Therefore
this theoretical model can be parameterized
as

±f,, (t) ----//d[_(t)'±rv(t) ] +af (2.26)

and the function that is minimized can be

approximated by (differencing eqs. (2.23)
and (2.26))

f,,,d

where

_'-'e(t) = S_r,, (t) + Srs (t)

_'-'rT(t) = ArT -- _rT

(2.27)

(2.28)

Two different coordinate systems are pre-
dominantly utilized in the analysis. They
are defined through the geometry of the
satellite relative to the station at the time of

closest approach, t=t_. The station errors
are resolved into the MSR system coordinates
defined in section 2.5.3, the unit vectors being
given by _, A', and (?. They are then trans-

formed into the ilL, L,, 2,: system defined in
section 2.5.5. The c subscript is used to
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denote the directions as defined at t=tc.
These coordinate systems are fixed in the

true equatorial system of date and are shown
in figures 2.11 through 2.13. Figure 2.11
illustrates the motion of the satellite and the

station in an inertial system during the time
that the satellite is above the horizon of the
station. The X-Y plane of the coordinate
system of figure 2.11 is the osculating orbital
plane of the orbit at to, where the Z axis is
in the direction of the satellite angular too-

mentum vector and is the Zc coordinate axis

of the/tc, Lc, 2_ system. We define

fl(t)-fl(t_) =AM=_ (t-te) (2.29)

4

/

\ /
\ /

FmURE 2.12.--Geometry at time of minimum slant

range (Hc--Zc plane, satellite motion into page).

and the maximum value attained by AM
during a satellite pass by AM,,. Also, to
simplify the analysis, we assume the pass to
be symmetric with respect to the in-plane
angular distance traveled by the satellite
before and after t = t,.

In the analysis, two quantities related to
the elevation Ez and azimuth A, (of the
satellite) are used. These quantities, the
"pseudo-elevation," e,, and "pseudo-azimuth,"
a,, are shown in figure 2.12, and their relation
to Ez and Az is summarized in table 2.15. The
use of ez and az allows the form of the trans-

zc EARTH'S
SPIN

\ / \\\ \ \

\ \

I y

ASC_ING
NOeE

FIGURE 2.11.--Geometry during satellite pass

(X-- Y plane = orbital plane).

formation equations to remain invariant for
all quadrants of the azimuth and for all
inclinations of the orbital plane.

To facilitate the analysis, the time deriva-
rive of the slant-range error is written as

1 _(t)d[o(t) .S_d [_ (t) .s_o(t) ] =_{p o(t)]

1 _ d
2o(t)._ p(t)_p (t)}

(2.30)

In order to evaluate this derivative, we

first obtain expressions for p_(t) and e (t) •
8_e(t) expanded in terms of the functions
sin AM and C(AM), where

FIGURE 2 13 Geometry of pass (orb::°::)
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C(AM) =l-cos (AM) (2.31)

A justification for using these as expansion
functions is given by Guier (1966a) and will
not be presented here.

We begin by writing the slant-range vector
as

0(t) = r, (t) --rT(t)
=r, (t) --r, (to) + [r,(tc) --rT(tc) ]

-- [rT(t)--rT(tc)]
(2.32)

Regrouping, we get

p (t) { _(t) +
rT(t) -- rT (t_)

p(t) }

=r,(t) --r,(tc) + 0(t_)

Since for near-Earth satellites

(2.33)

in which

_2rT (t) -------Art -- Sra.

We defined ArT to be the parameterized sta-
tion correction in the MSR coordinate system
determined from the least-squares fit to the
Doppler residuals. This is represented as

Arv----.C ._-}- S $ (2.37)

Since the Doppler shift is relatively insensi-
tive to out-of-plane motion of the satellite
with respect to the tracking station, the inclu-

sion of a C-component correction in the
determination results in ill-conditioned equa-
tions. Therefore the correction to the station

coordinates is confined to the plane defined
by the unit vectors _ and $. The estimated
errors in the station coordinates are given by

rr(t) --rr(t_) I_TI _(t-L)
p(-t) < <<i-- p(t)

this term can be neglected.

If all vectors are defined in the I=I_,L_, 2_
coordinate system, using figures 2.11-2.13,

we can then write equation (2.33) as

o(t) =r, { [_, cos 0-C(AM) ]//_+sin AML_

-p, sin O2_} (2.34)

where terms that depend on the eccentricity
of the orbit have been neglected. For con-
venience we have defined

Ie(t_) I
Ps --

rs

From equation (2.34) we can now obtain

where

p_(t) =r_[p_+2_C(AM)] (2.35)

a_= l-p, cos 0 (2.36)

In equation (2.28) we defined

_2o(t) =$_rr (t) +St, (t)

_rT=Es $+Ex.£+EcC (2.38)

and therefore

_2rT= (S-Es) $+ (._-Ez)__-EcC (2.39)

Transforming to the/_, L_, 2c system, we get

_2rr= [(S-Es) cos O-Ec sin 0] /q_

+ (£-E_) L_+ [ (S-Es) sin 0

+Ec cos 0] 2_ (2.40)

where we have assumed that .£=Lc. The
results given in equation (2.40) are easily
verified by figure 2.12.

In 2.5.5 we defined the satellite position

error by

Sr,(t) =_r,(t) iq+_/,(t) L+_Z,(t) 2 (2.41)

where the unit vector directions are also

time dependent. Transforming to the Earth-
fixed coordinate system, we get

_r_ (t).tq_= $r,(t) -_/, (t) sin AM
--$r,(t) C(AM)

St, (t) .Lc = _l, (t) +_r, (t) sin AM
-$/, (t) C(AM)

Sr, (t) '2c = Sz, (t)

(2.42)
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Finally, in equation (2.42) we expand the
time dependent components of the errors in
the satellite position in terms of their values
at t=tc. It is desirable that this expansion
represent accurately the position error at the
time of closest approach of the satellite to a
given station and a first-order estimate of the

time dependence of the position error (rela-
tive to its value at closest approach) during
the time that the satellite is above the horizon

of the station for that pass. One alternative
would be to use the complete solution to the
differential equations given in section 2.5.5
(including the force contributions), at epoch
to. However, this introduces complexities
that are not warranted in this analysis. The
best compromise is to use a Taylor series
expansion in time about tc and transform the
time differentials to functions of sin AM and

C(aM). This gives

_rs(t) = 8re+ _-sin ±M + _TC (±M)

g_ g,.
8l,(t) ----$/c+ -_sin AM+_C(AM)

_Zc . _2_
SZ, (t) = 8Z_ + _Smn AM + _=C (AM)

(2.43)

We again use a subscript c to denote that the
functions are evaluated at t= tc. Substitution
of these results into eq. (2.42) then gives the
desired form of the satellite position errors.

Using this together

where

U1(t) = 1

--fT rs .

Uo(t) = -czv p_n c sm AM

--fr/ r_ \_
Ul(t) : nckp-_t_)

[p_ -p_C (AM) -- C2(AM) ]

Uo(t) = ,ny_,_)

[p_ + _ C (AM) ] sin _M

[3p] + 4 C (AM) ] C (AM)

Now let the mean square value
Doppler residuals be given by

(2.47)

of the

1 f AMo[_f, (t) ] 2d(AM) (2.48)
F = 2±Mo j __._,o

where we seek to minimize F with respect
to ±f, _, and S. We define the partials of F as

DF
B_- OAf

OF
B_=_

so that

_F _ _ DRK

K=0,1,2,3

(2.49)

OF -_ _ _RK
OS -_L_o_-_- (2.50)

with the results given by equations (2.34) and (2.40), we obtain

o(t).$_o(t)=r,{p, Ro+R_sinAM+R__C(AM) +R_sinAMC(AM) +R_C°-(AM)} (2.44)

where

Ro = S-Es + [_r_ cos t_- _Z_ sin 0]

8_ _Zc
RI=.ff_-Ex +(_ _l_+p, COS_-p, sin t__--

n n

R,_= - [(S-Es) cos 8-Ec sin O] Lsro+2nJ+.. cos sin O-_

p c+  cl  to]R_=_ L _ _J

(2.45)

Equations (2.30), (2.35), and (2.44) are now used to obtain the desired form of the function
to be minimized in a least-squares sense :

$_fv(t)=8_fU_(t)+Ro Uo(t)+R_ U_(t) +R_ U_(t)+R_ U_(t) (2.46)
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Consider first BI. Using equation (2.27) to define $2r. (t), we get

1 f_Mo d
B1 = 0 = _:M_oJ_Amd-t (_ (t). 520 (t) + _2f d (AM)

^ "_ (AMo) -_ (-_Mo) ._ (AMo)_f= _ [rn_ (±Mo)
C 2AMo

Using equation (2.53), we then obtain

8_f= fr_(_ r, )I sinaMo- c \p(aMo) R1 AMo

R sin AMo . .7
+ s_C(AMo)J (2.51)

which, if the values of R1 and R3 are known,

yields the value for _2f. We now use equation
(2.51) to eliminate the frequency parameters
in _:f_ (t), thus getting

$2fD(t) :RoVo(t) +R1Vl.1(t) +R2U_(t)

+RaU_z(t) (2.52)

where

U_r(t) =U_(t)-_fr( r_ _sinaMo
• c \p(aMo)/ -_Moo

(2.53)

=fr[ r_ \sinAMo ....
U3,I (t) = U3 (t) - n_-_p (_-Mo))-_--o (/(_/V/°)

(2.54)

From equations (2.47) and (2.53) we see
that Uo (t) and U2 (t) are antisymmetric

functions and that U_,l(t) and U_z(t) are
symmetric functions of aM. Noting this and

substituting equation (2.52) into equation
(2.49), we get

Bo

_- =/¢o Ioo+ R2 lo2

B_
_- = RI I_ + R3 I_

_-_=Ro Io2+R2 I2__

B_
-ff- = R_ I_ + R_ I_3

(2.55)

where

1 f AMo

Ioo= A_/oJo [Uo(t)]2d( AM )

1 f_Mo
Io_--A_loJo Uo(t) U,_,(t) d(AM)

I 1 f_Mo
-+_= AMooJo [U2(t)]2d(AM)

1 f_,.o [

I__ A_ojo [Vi,_(t/] 2g(_M)

1 f_ro
L_=_jo v_•_(t) v_,,(t) a(_M)

1 r_eo
I.=-_oJ ° [u_,,(t) ] 5 d(aM)

(2.56)

Using these results in equation (2.50), we
have

OF
=0=B_=2 [R_ I_I + R3 I_3]

DF
DS - 0=Bo-B: cos

=2Ro [Ioo-COS 0Io_] +2R2 [lo2-cosI22]

(2.57)

Solving these equations for S and _, we have

1
S=Es

(1- a_ cos 0)

[E sin 0a_ + cos OSr_-sin 0 _Z_]

{ZI

(1-_ cos O)

_ +.4 cos o_- _:/_1+ z-_-) sin

(2.58)

I_3 _/_

+p:sin0 _Z_ I_ _c (2.59)
--_-- I---_%_-_
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where

I,,_- cos 0 I._,._,
a,- l,,,,- cos 0 I,,_. (2.60)

Equations (2.58) and (2.59) define the ag-
gregation parameters obtained from the

least-squares fit to the Doppler residuals in

terms of the station position and satellite
orbit errors that are contained in the data.

The station MSR-system positional errors

can be expressed as functions of errors in

their spherical coordinates by using the

pseudo-elevation and pseudo-azimuth angles
defined earlier.

Es = sin e_r,,- [cos a: (re _c)

- sin a: (r(_ cos _, _x,.) ] cos e_

EL= sin a: (r,, 3_,) +cos a: (re cos _ _hc)

Ec= cos e_3r,,+ [cos a:(rc 3_,)

-sin a= (r,, cos _, Sh,.) ] sin e_

(2.61)

Equation (2.62) represents the perturbed

equations of motion which result from incor-

rect coefficients in the series expansion of the

gravitational potential.

Guier (1966a) showed that if the error
vector was transformed into a certain

coordinate system, the resulting equations

were more amenable to an analytic solution.

He chose an orthogonal coordinate system

that moved in an inertial coordinate system
and that had its origin located at the satellite

position as defined by a reference orbit. The

unit vectors which specify the coordinate

systems directions are defined by (see sec.

2.5.2) fr, L, and 2.

If we now define 8r_, 31_, and _Z_ to be the

components of the difference vector in this

new coordinate system, then

_r_--_r_/f+_/_ L+ _Z_ 2 (2.64)

In the inertial coordinate system we have

These can be verified from figure 2.12.

As an aid in determining the relative im-

portance of terms appearing in the derived

equations the following results are presented
without further discussion :

C(±M,,)_ p(t,.) sinet
r,r+p(t,.) sin e_

I._,. = 0 (VC(±M,,) I,,.,) =0 (C(AMo) I,,o)

I:,:, = 0 (VC(AM,,) I,:,) =0 (C(AMo) I1_)

2.5.5 Special Procedure for Near-Earth
Satellites

The equations of motion of a satellite in an

inertial coordinate system under the influence

of the Earth's gravity field can be written as

GM,
_._+_r_=F (2.62)

Applying a first-order perturbation, we ob-
tain

GM
3i'_+ _3r,--3_3r_ r_----3F (2.63)

"s' rs ' '

3F= 8(6V) 8(3V)_" 8(_V)Ic (2.65)

where aV represents the error in the poten-

tial resulting from errors 3(=,'I, 3S m in the
harmonic coefficients. On transforming to

the new system we get

8(3V)/_ la(_V)3F=-- q L

1 8(3V) 2+
r, sin fl 8i

(2.66)

The unit vectors in this system are time

dependent. However, we can easily obtain

dr)
-dr =_ L+terms of order O (C_, S_,)

dL
dt = -3/)+terms of order O (C'_, S',_)

42

=0+terms of order O (C_, S,'_)

-(2.67)

Substituting equation (2.64) into equation

(2.63) and neglecting terms of the order

C._ _S_., _'_5._(=_, etc., we get
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8.. / "2 2GM_\ D($V)

{GM,, -/3-')_1_= 1_/_+ 2/_ _ +/_ Sr_+ \--_- r.,

(2.68)

a(_V)

(2.69)

GM_ - 1 D(SV) (2.70)_2_+ _-3 sz, = r, sin fl 0i

Note that in these equations the effects of

errors in the 2 component of the difference
vector are uncoupled from the remaining
two.

In nonzonal harmonic analysis the eccen-
tricity of the orbit is neglected in solving
the above equations. After this simplifica-
tion is made, equations (2.68)-(2.70) reduce
to

_i",- 3_'-'$r, - 2_$I_ - _ ($V)
Or, (2.68')

_1,+2_,- 1 _(_V) (2.69')

_2, +_Z,__ 1 D(_V) (2.70')
r, sin/3 Di

The forces on the right-hand side of these
equations are derived from a model of the

Earth's perturbing potential expressed in
terms of a series expansion in spherical har-
monics.

GM _ l /_ _n+l
V- N ..... ro P ,(sin _,)

ac n=:t ,u:(i \ s /

[C_ cos m(a,-aa) +S"_ sinm(_,-aa)]

(2.71)

where the notation used is given in section
2.5.2. We assume that all errors in the ex-

pansion are a result of using incorrect coeffi-
cients for the spherical harmonics. Thus a
mathematical description of _V is obtained
from equation (2.71) by replacing C_ and _

77/7t ,/nby St,, and S,, respectively.
To derive a more useful expansion, we de-

fine the complex function

/ ac\n*l

where

rnu, -P_ (sin _,) cos m (c_,- aa)

v'_ =P_ (sin _.,) sin m(a_-c¢_)

We then have that

(2.73)

8V=__,__SV_ (2.74)
_t=2 m=o

where

_V_= GM'{$C_Re[¢_] +_Smlm[¢_]} (2.75)
ac

From spherical geometry we note the follow-

ing identities :

sin _' = sin i sin/_ }

cos _,' cos (_,-_) --cos fl t (2.76)cos _', sin (a,-_) =cos i sin fl

Also, the Legendre polynomials are rewritten
as

P_ (sin _') = cos"_,_,'m_ (sin _'_) (2.77)

where

T"_(sin _'_)

12;
_ -_ t=O

1) t (2n - 2t) ! (sin i sin fl) ...... _-t
(-_" _. (n_--t) ! (n-m-2t) !

En2n_]=I 2 for n-m even

,orn- o  
(2.78)

When equations (2.76)-(2.78) are used, the
complex function ¢_ takes the form

¢'2 = N,,,,,\ r,] T'_(sin _') [cos fl
+ 2"cos i sin fl]"e _'"_-_") (2.79)

The trigonometric functions of argument fl
in this equation are redefined in exponential
form and then expanded to obtain
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_._Y.,./a,,V" [_] , (2n-2t) _ (-i'_ ....._'
.--_-_,_) _ (-1) t' (n-t)' (n-2t) [\-2-]

t=O " *

m ,-,_2t .,,,,8 i . _si/m\/n-m-2t\
Z Z (-1)cc°s-' - 2s'n'2/s)/ c )
8=0 C=O

exp j{[n-2(t+c+s)]fl+m(e-ao) } (2.80)

The above equation can be rewritten, collecting the coefficients of each argument of the func-

tion exp j([n-2(t+c+s)]fl+m(_-ao)}. Let

p=t +c +s (2.81)

where 0 <p <n. In adding the summation on p we can eliminate one of the other summations.

In this case we set s=p-t-c and eliminate the summation on s. Finally,

where

f,÷l n

@,_= (_j).__{a/_ ,_ i(o,O)exp j(n_2p)fl+m(__o_v) }

r- • i "qn-,n-2t-_

N_ (2n-2t)!Lsin2cos_]

2t-g\/m-h\ .,(,, _, i . i

(2.82)

(2.83)

and the limits on t and c are given by

O<t< _] rn-m-g]_ _rn+m-g]

I ;L-_--JsP-_L _ Jn-p-g-h; p>[n+2-g ] -h

o in-p-t-m+h;p-t__m _c_

-h

m-2t-g; p-t_n-m-2t-gl
p-t ; p-t<n-m-2t-gJ

(2.84)

The additional parameters g and h are introduced into the definition of the inclination function

to facilitate the computation of the forces derived from the potential, specifically, that com-
ponent of the force which is in the 2 direction. For this computation we first take the deriva-

tive of equation (2.79) with respect to the satellite inclination i. This yields a sin fl factor

which cancels with the one appearing in the denominator.

Since we neglect eccentricity effects in modeling the contribution of potential errors in the

satellite motion, no further expansion of equation (2.82) is needed. Using this form in equa-

tion (2.75), we can then express the error in the potential resulting from a harmonic of de-

gree and order (n, m) as

GM / - \n_l n
m__ e u_c ¢ _ ) uhf,)

C \ s / p=U

(2.85)
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where

S,,,,,_=S (_,,,,,_)

....-- ( __ _-- COS ¢TPnm_
m

-A=__ n=J( .... ) odd

+ sin l,,,,,,p (2.86)
L_C n (n-m, oda

'_,,,p= (n-2p) fl+ m(_2-ao)

Utilizing the above results, we can now
write the desired form of the forces to be

used in solving equations (2.68') and (2.70') :

Dr,- (n+l)_-j _-_) _ol;_p_,_,,_

(2.87)

_M/- \.+z -
1D(SV_) _ ,,_ ),,_ _ i(o,o)._,rs Dfl - _ a (n-2p) .my .... p

(2.88)

1 D(SV_) GMe(ae_ "+z
r, sinfl Oi --_\a/

n-1

_[COS -.(1 O) -- .i(o,1)1 Dz 1,,;,;v-m sin y nrnpJ nmv
p=O

(2.89)

where r_ is replaced by a, the orbit semi-

major axis. The frequency dependence of
the 2 component of the force vector for a
given harmonic is slightly different from the

other two. For emphasis, a different symbol
is used, which we define as

D.,,,p= D (,_.__, mp) = -S '..,p('_,,-x, ,,,v)

-- ( -- 1)[_- ,.1 sin *._x, ._.
' -- 8_ nd (n-m) odd

_R ......
-- cos ¢, _, ,,v (2.90)

_C n (n-m) odd

The prime used with S._p denotes the deriva-

tive with respect to its argument ¢,mp.
The general solution to the differential

equations given in equations (2.68')-(2.70')
consists of two parts, a complementary and a
particular solution. The complementary solu-
tion reflects how orbital errors at a given

epoch will propagate as a function of time.
In a least-squares determination of a satellite
orbit, orbital errors are introduced as a re-
sult of both measurement noise and deficien-

cies in modeling the data. Thus, if adjust-
ments are made to the data, the orbit param-
eters must also be modified to reflect these

changes. In an analysis of residuals, this
modification can be accomplished, with suffi-
cient accuracy, by a least-squares fit of the
adjusted data to the six orbital parameters
specified by the complementary solution
given below.

2 As Az
8r_`°_= - _A_ - _-cos _ (t- to) +_-sin_ (t- to)

81,(°'= Ao + A_ _(t-to) + Az cos _(t- to)
+A_ sin _(t-to)

aZ_(°) =A_ cos _(t-to) +A_ sin _(t-to)

(2.91)

The A_'s are referred to as the orbit param-
eters and the superscript zero is used to de-
note their contribution to the total solution.

(Since the principal frequency contributions
of zonal harmonics to the motion of a satellite

are similar to those in equation (2.91), it is
clear that short arcs of satellite data are not

very useful in estimating zonal values.)
The particular solution to the differential

equations reflects the contribution of the
forces acting on the system. This contribu-
tion for a given (n,m,p) combination is given
in equation (2.92) on page 124. Since the dif-
ferential equations solved are linear, the com-
plete solution consists of the sum of all the in-
dividual contributions.

2.5.6 Determination of Station Positions and
Tesseral Harmonics

As was stated earlier, the main emphasis
of the geodetic research program at APL was

directed towards obtaining improved coeffi-
cients of the tesseral harmonics in the series

expansion of the gravitational potential. Im-
proved coordinates for the TRANET stations

were also found in this analysis.
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] ,,o,+M "+_ 2_(n-2p) ,,,,,v_r,'v' GM,,_( ae n+l. _- : - -__----_ S.,,,p
ae" k a / L _,,,,p n -_,,,v

_ls(p,_ GM_(a,.y+212_(n+l) (n-2p) (3ff_++_"v)l" • I:'_°P'S;"'P-2.2
a/-' \ a / _,,,,,p J+,,,,p(n -+,,,p)

_M /a \.+.2 1 <"°_-m sin i I<°4q r_[cos i 1.,,,v .,.p j _,_.p
mp

(2.92)

This section describes the algorithms used

in processing the pass-determined param-
eters to achieve this goal. It is also pertinent,
at this point, to discuss some of the criteria
established for selecting and processing the
raw Doppler data (Guier, 1963a).

A uniform distribution of tracking sta-
tions over the Earth's surface is desirable to

avoid overweighting of data from a given
region. As far as possible, uniform coverage
of the satellite orbit by the data is obtained.
Data are considered only from those periods
for which the satellite oscillator is sufficiently
stable. Selection is also made on the basis
that the data are the best available with re-

spect to noise level, absence of second-order
refraction effects, and timing errors. To fur-
ther minimize refraction errors, only those
passes with maximum elevations of less than
80 deg and greater than 20 deg are used.
Individual data points within a pass corre-
sponding to instantaneous elevations less
than 13 deg are also eliminated.

The selected Doppler passes from a given
satellite are grouped into 48-hour time spans
and processed by the method discussed in
section 2.5.3. For studying the effects of
resonance harmonics the data are grouped
into spans comparable to 11/2 times the reso-
nance period. These resonance coefficients
are obtained in a separate analysis of the
data and will be discussed later.

The aggregation parameters obtained from
each 48-hour group of data are stored on
tapes. These tapes are then processed by a
special program designed by W. H. Guier and
called GEOFIT. This program seeks a mini-
mum to the following function :

N

F=lff_,W,y{$S_"-+$_,y 2} (2.93)
'y-1

where the weights W_ are based on informa-
tion obtained from the analysis presented in
section 2.5.3. The functions _S_ and ___
represent the theoretical minus experimental
station coordinates determined from one

Doppler pass. The experimental values are
those produced in section 2.5.3 and their
theoretical representation defined by equa-
tions (2.58) and (2.59) of section 2.5.4.

The minimization parameters consist of
the following: (1) six orbit-parameters for
each 48-hour span of data used, as defined
by equation (2.91) ; (2) a predetermined set
of tesseral-harmonic coefficient corrections

as defined by equation (2.92) ; and (3) three
position-coordinate parameters associated
with each tracking station from which Dopp-
ler data were received. These minimization

parameters are determined by an iterative
procedure. To avoid the problem of invert-
ing large matrices, the parameters associated
with the tesseral harmonics are partitioned
into subgroups according to the order of the
harmonics (i.e., all coefficients associated

with the harmonics of order m_ constitute
the minimization parameters in the ith sub-

group).
The orbit parameters are adjusted to the

data before and after each adjustment for
station parameters and for each determined
subgroup of harmonic coefficient corrections.
This iterative procedure is followed until a
stable solution is found for all the desired

minimization parameters.
By this method of analysis of Doppler

data, the approximations in the theory pre-
clude obtaining more than a three-to-five

factor improvement in the rms of the resid-
uals. To seek improvements beyond this

point, the entire procedure of processing the
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Doppler data should be repeated with the
improved parameters available at this stage
of the analysis.

Resonance harmonic coefficients have been

determined exclusively from an analysis of
the station along-track movements, _, given
in section 2.5.3 (Yionoulis, 1965). Equation

(2.58) of section 2.5.4 shows that the major
orbital error absorbed by this parameter is
the along-track component als. From equa-
tion (2.92) we have that the contribution
from the tesseral harmonics to the satellite

along-track errors for a given (n,m,p) com-
bination is

al8 ----
GMe/ ae \"÷_F__.

L n n+l)
(n-2p) 1

4, m. ]

where the frequency associated with the
given term is

cn,,p= (n-2p) t}+m(_-_o)

This form of the solution clearly illustrates
the two types of resonance effects that are

possible. From the frequency contribution
to the amplitude we see that Sn,,_ _+_ and
_mp<<l results in an amplification of the
effect associated with the corresponding har-
monic. The first type produces a nearly
orbital frequency oscillation with a long-
period envelope. The second type produces a
long-period oscillation in the satellite motion.
If a very strong resonance exists with a given
orbit, it may be necessary to include the
effects of eccentricity in the solution. Since
the near-resonance phenomenon occurs for
all near-Earth satellites, it admits the estima-
tion of harmonic coefficients whose effects
might otherwise be negligible.

2.6 RESULTS

The Applied Physics Laboratory's pro-
gram to develop a Doppler satellite naviga-
tional system for the U.S. Navy began in
1959. Since the success of this system de-

pended heavily on our ability to provide an
accurate satellite ephemeris to the navigator,
a major effort was directed toward improv-
ing this capacity. It was soon recognized
that an elaborate model of the Earth's
potential would be needed in order to sat-
isfy the accuracy requirements established

for this system. This was initially set at 0.1
nmi (0.18 km) for fixed-site navigation. To
achieve this goal, a worldwide network of

tracking stations (Newton and Kershner,
1962) was established and a constellation of
geodetic satellites was proposed to provide
the data needed for this analysis. A system
of programs was designed by W. H. Guier for
the IBM 7094 computer to be used for the
geodetic determinations.

The first major results from this program

were obtained in 1963 from an analysis of
Doppler data from satellites in three distinct

orbits (Guier, 1963a). Estimates for the
harmonic coefficients through degree and
order (4,4) were determined, and this model
provided a satellite tracking capability of
about 200 meters, rms error.

In 1964 the potential coefficients through
degree and order (8,8) were determined
from an analysis of Doppler data from
five different satellites. This model, when it
was used to process the satellite data, re-
vealed the large contributions made by high-
order resonant harmonic terms (Yionoulis,

1965, 1966a) to the satellite motion. This
effect was first noticed in the processed

Doppler data from satellite 1963-49B. Fig-
ures 2.14a and 2.14b are plots of station
along-track errors as a function of time

covering a 6-day period. 3 In figure 2.14a the

effects of a 60-hour resonant period with

the 13th-order harmonics in the potential
expansion is clearly discernible. The ampli-
tude of the oscillation is 130 meters. This

effect was removed from the residuals (fig.
2.14b) on including appropriate values for
coefficients of the 13th degree and order in

a The TRAFAC stations consist of four Doppler
tracking stations, located in the United States which

constitute the satellite tracking network for the

Navy Navigation Satellite System (NNSS).
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FIGURE 2.14a.--Plot of station along-track residuals (ECA) versus time

showing the effect of resonance with the 13th-order harmonics.

computing the gravitational forces acting on
the satellite.

After the resonance effect had been re-

moved from the data, the coefficients were

readjusted (Guier and Newton, 1965), and

the resulting model became the first to satisfy

the accuracy requirements established for the

Navy Navigation Satellite System (NNSS).

Gravitational Potential Model APL 5.0-

1967.--The last major redetermination of

the potential coefficients was made in 1966.

This model was deduced from the Doppler

tracking of satellites in seven different or-

bital inclinations and is currently (1974)

being used by the operational NNSS.
An extensive refinement of this model

(Yionoulis et al., 1972) was made in 1967.

(The zonal harmonic coefficients are a set

determined by the Naval Weapons Labora-

tory (table 2.11) (Anderle and Smith, pri-

vate communication).) The characteristics

of the satellites and the data used are pre-
sented in tables 2.9 and 2.10. Since the resid-

uals associated with each pass have the

dimensions of length, the rms of these re-

siduals for all passes associated with a given
satellite serves as a measure of the errors

still remaining in the data. These final rms

values, after fitting to new station coordi-

nares and potential coefficents, are listed
for each satellite in table 2.16. At the time

that these computations were made, the el-

fects of polar motion had not been incorpo-
rated. Neglecting this effect can contaminate
the station coordinates and rms of the re-

siduals by as much as 10m or more. Because

computer runs are costly the residuals

r
/



APPLIED PHYSICS LABORATORY 127

Ji_'3RESONANCE
SATELLITE 1963 49 B

Ji3I_ = 0
O.I-

°-I....,..! : "1 o.u- o.I- " ' _,'...'_. _...,'.
-o.,-.i- : "=J o-;." " ..... o-,.... "--.--_

" ":".... : i "I IE,0-o,- ,'".._.' ; -..'" ".,.: t. "l .... I /",.,_o,_. • ) II ' ";"_:" "
0 DAY 169 / o DAY 1_70 o DAY 171 DAY 172 DAY 173 DAY 174

o.,- , ! . " • r
0 -i''''''''" " " ' 0-' . '. -. '. ; - ,. , '.--

" " " " t _, :'" • x , _ • .
-0.1- -0.1- " " ," • ". :

X - TRAFAC STATIONS -0.2-
O-TRANET STATIONS

FIGURE 2.14b.--Plot of station along-track residuals (ECA) versus time

with resonance effects removed by using values shown.

shown in table 2.16 were not recomputed
to reflect this effect. It should also be noted
that the rms of the residuals for 1961

ol and 1961 _,/1 are significantly poorer than
those for the other satellites, mainly because
the tracking stations during these early years
had poorer-quality instrumentation and
lesser ability to maintain accurate time. For
this reason fewer passes from these satellites

were used in the determination.
The final values Of the coefficients are listed

in table 2.17. The geoidal heights based on
this model are given in figure 2.15. The
reference surface is defined by the central
term and by the C_ and C_ values. This
surface is very closely approximated by an
ellipsoid with a semimajor axis of 6378.140
km and flattening 1/298.26.
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APPENDIX

TABLE 2.1.---Characteristics of TRANSIT 1B (1960 3z2)

Launch

Date:

From:
Rocket:

13 April 1960
Cape Kennedy, Florida

Thor-Able-Star (two stages)

Orbital elements

Date a , e i

13 April 1960 6 944 160 0.027 51.°3

Lifetime

89 days

Physical characteristics

Shape: Spherical; 91.44-cm diameter (36 inches)
Weight: 120.5 kg

Equipment

Transmitters:

Antenna:

Power supply:

Clock:
Orientation control:

Remarks:

Height at Height at
Period perigee apogee

95.78 rain 378 km 754 km

TRANSIT beacon (Hamblen and Oakes, 1961)

B-system: 162-MHz and 216-MHz frequencies

+-5 parts in 109 rms variations
C-system: 54-MHz and 324-MHz frequencies

+-5 parts in 101° rms variations

Logarithmic spiral antenna painted on each hemisphere

(Riblet, 1960) with silver paint
B-system: solar cells/nickel-cadmium batteries

C-system: silver-zinc batteries (operated for 67 days)
Mechanical

Magnetic (Hamblen and Oakes, 1961)

Yo-yo despinning (Hamblen and Oakes, 1961)

Magnetic hysteresis despinning (Hamblen and Oakes, 1961)
An unmodulated 324-MHz carrier replaced the modulated 108-

MHz carrier in TRANSIT 1A.
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TABLE2.2.--Characteristicsof ANNA 1B (1962 fltt)

Launch

Date:

From:
Rocket:

31 October 1962

Atlantic Missile Range, Florida

Thor-Able-Star (two stages)

Orbital elements
Height at Height at

Date a e i Period perigee apogee

31 October 1962 7 504 951 0.0070 50°1 107.92 min 1077 km 1184 km

Lifetime

In orbit (1973)

Physical characteristics

.Shape: Prolate spheroid 107.7-cm diameter, 36-cm wide, 119-cm diameter, 12-sided
polygonal band of solar cells about the equator

Material: Aluminum and fiberglass

Weight: 159 kg

Equipment

Transmitters:

Transponders:

Flashing lights:
Antennas:

Power supply:

Clock:
Orientation control:

TRANSIT beacon

Frequency Power Stability

54 MHz 450 mW 7 × 10 -11 day -_

216 MHz 225 mW 6 x 10 -11 day -_

MINITRACK
136 MHz 400 mW ..........

SECOR
224.5 MHz 100 mW ..........

449.0 MHz 1 W ..........

See ch. 3 (Tomlinson, 1962)

Logarithmic spiral painted on each hemisphere in silver
Solar cells and rechargeable nickel/cadmium batteries

22 watts continuously
Electronic counter with 352-bit magnetic arc shift register

Magnetic despin by magnetic hystersis
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TABLE 2.3.--Characteristics of Beacon Explorer B (1965-65A)

Launch

Date: 9 October 1964

From: Point Arguello, California

Rocket: Scout (four stages)

Orbital elements
Height at Height at

Date a e i Period perigee apogee

9 October 1964 7 362 000 0.012 79?.7 104.7 min 874 km 1077 km

Lifetime

Still in orbit (1974)

Physical characteristics

Shape: Octagonal prism with truncated octagonal pyramids at ends
Four panels, 46 cm in diameter and 25 cm high, carrying solar cells extended

radially from prism 122 cm x 25 cm, each with 46 cmx 25 cm appendage
Weight: 32 kg

Equipment

Transmitters:

Corner-cube reflectors:

Antennas:

Power supply:
Orientation control:

TRANSIT beacon

Frequency Stability

162 MHz $-MHz oscillator: 1 x 10 -1° day -_

324 MHz 5-MHz oscillator: 2 x 10 -1° day -_
Ionospheric experiment 4

20, 40, 41, 360 MHz
MINITRACK

136 MHz
160

Whip antenna and dipole antenna
Solar cells

Initially spin-stabilized; yo-yo despinning mechanism used
after panels were extended; magnetic stabilization.
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TABLE 2.4.--Characteristics of Beacon Explorer-C

(See table 2.3 for characteristics not listed)

Launch

Date: 20 April 1965
From: Wallops Island, Virginia

Rocket: Scout (four stages)

Orbital elements

Date a e i

20 April 1965 7 504 564 0.0252 41.°168

Physical characteristics

Weight: 54.5 kg

Equipment

Transmitters: Stability
System 1

System 2
5-MHz oscillator

Height at Height at
Period perigee apogee

107.8 min 927 km 1310 km

2 x 10 -_ day -1

5 x 10 -n day -_
6.3 x 10 -l° day -1



APPLIED PHYSICS LABORATORY 133

TABLE 2.5.---Characteristics of GEOS-A (1965 89A)

Launch

Date: 6 November 1965

From: Cape Kennedy, Florida
Rockets: Thor-Delta-X258 (three stages, improved Delta)

Orbital elements

Date a e i Period

6 November 1965 8 067 354 0.0725 59?38 120.2 min

Height at Height at
perigee apogee

1115 km 2277 km

Lifetime

Still in orbit (1974)

Physical characteristics

Shape: Truncated octagon with octagonal prism (1.32 m outside diameter, 0.5 m
high with 0.6-m-diameter hemisphere at one end (down) and truncated

octagonal pyramid on other (fig. 2.5))
Weight: 175 kg

Equipment

Transmitters:

Flashing lights:
Corner-cube reflectors:

Other:

Clock and storage unit:
Antenna:

Power supply:
Stabilization:

TRANSIT beacon: 162, 324, 972 MHz (operation ended
15 January 1966)

Oscillator stability: No. 1:4-6 x 10 -n (½-hour average)

No. 2:1-3 x 10 -_ (V4-hour average)
SECOR transponder: 421 MHz (receive); 224.5 and 449

MHz (transmit) failed 8 February
1967

GRR: 2.270 GHz (receive); 1.705 GHz

(transmit)

MINITRACK: 136 MHz, turned off 14 January
1967

4 xenon 670-watt flash tubes (see Table 2.6)

322 reflectors mounted on bottom rim; 0.18 m 2 of surface;
50 percent within 20"

Vector magnetometer; solar aspect detector

Microelectronic circuitry
Equiangular spiral slot antenna on each hemisphere;

cone antenna (GRRR): 150° beam width
Solar cells

Gravity-gradient-stabilized; magnetially anchored, eddy

current damper; eddy-current-rod despinning system
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TABLE 2.6.--Characteristics of GEOS-B (1968 02-A)

Launch

Date: 11 January 1968
From: Vandenberg Air Force Base, California
Rockets: Thor-Delta (Augmented)--FW-4 (three stages)

Orbital elements
Height at Height at

Date a e i Period perigee apogee

11 January 1968 7 710 807 0.0308 105°.977 111.3 min 108i.0 km 1577.0 km

Lifetime

Still in orbit

Physical characteristics

Shape: Octagonal prism with hemispherical cap (1.32 m in outside diameter, 0.5 m

height) (0.3 m in radius) on down end and octagonal prism on top

Weight: 213 kg

Equipment

Transmitters:

Corner-cube reflectors:

Other:

Clock and memory:
Antennas:

Power supply:

Stabilization:

TRANSIT beacons:

SECOR transponder:

GRR transponder:

MINITRACK:

5-cm (C-band) transponder:

Flashing lights:

162, 324, 972 MHz; timing
markers on 162- and 324-MHz

frequencies
421 MHz (receive); 224.5 MHz and

449 MHz (transit)

2270 GHz (receive); 1.705 MHz

(transmit)
136.83 MHz

5.690 MHz (receive); 5.765 MHz
(transmit)

Four 670-watt (1580 candle sec

per flash) xenon flash tubes;
Beacon 4 failed soon after launch;
other beacons used until 31 Jan-

uary 1970

Optical 332 (0.18-m -2 reflecting surface) radar

Vector magnetometer; solar aspect detector; Precipitating

electron detector; laser light detector
Same as for GEOS-A

(1) Equiangular spiral slot antennas on each of two hemi-

spheres
(2) Conical antenna for GRRR

(3) Two button-type, circularly polarized antennas for 5-cm

(C-band) radar

Solar cells (N-on-P) covering more than 50 percent of exposed
area on prism; three independent power supplies (10, 10, and

20 watts)

Same as that for GEOS-A (See Whisnant et al., 1969.)
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TABLE 2.7.--TRANET Station Operating Modes

135

Type of Mode Frequencies Frequency, Station
satellite designation (MHz) offset (ppm) capabilities

GEOS, Yo 162/324 -50 Manual or automatic
Doppler
Beacon (DB)
NNSS Zo 150/400 - 80 Manual or automatic
TRIAD ZI 150/400 - 140 Manual or automatic

TIMATION Z2 149.5/399.4 None Manual only, bY
equipped stations
Automatic; station
searches alterna-

tively for Z0 and
Z1 signals

As above Zo/Z_ As above . As above

TABLE 2.8.--Scaling of the Frequencies by
the Station Refraction-Corrector

Station Effective
Satellite Q frequency

number a Formula (MHz)mode

Yo 351 3/2 P(t)(162) 242.98785
C

Zo 261 55/72 P(t)(150) 114.5742
C

Zo 266 55/24 P(t)(150) 343.7225
C

Z_ 261 55/72 P(t)(150) 114.5673
C

Z_ 266 55/24 P(t)(150) 343.7019
C

Z2 261 55/72 _5(t)(150) 114.4458
C

Z2 266 55/24 _(t)(150) 343.3296
C

The station Q number identifies the manner in
which the refraction correction was performed and
hence the effective frequencies to which the Doppler
solution is scaled and corrected for frequency offset
(Table 2.7).
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TABLE 2.9.---Satellites Used

Orbital elements"

Semimajor axis, Eccentricity, Inclination, Nodal (draconic)
Satellite a, km e i, deg period, p, min

1961 a_l 7414.482 0.010 32.4 104.9

1965 32A 7503.564 0.026 41.2 108.0

1962 fllzl 7504.951 0.006 50.1 108,0

1965 89A 8067.354 0.072 59.4 120.4

1961 ol 7321.522 0.008 66.8 103.9

1964 64A 7354.781 0.012 79.7 104.9

1965 48C 7460.782 0.009 90.0 107.0

1963 49B 7470.846 0.004 90.0 107.3

" Approximate values given.

TABLE 2.10.--Observational Data Used

Number of Total number

Satellite 2-day arcs of passes"

1961 a_l 4 78

1965 32A 4 106

1962 _pl 3 116
1965 89A 3 174

1961 ol 3 96

1964 64A 3 115

1965 48C 2 106

1963 49B 2 96

A typical satellite pass above a station's horizon

contains 200-400 data points. A data point consists

of a pair of numbers specifying frequency and time.

TABLE 2.11.--Coefficients of Zonal
Harmonics"

n m C',', x 10"

2 0 -484.257

3 0 0.953

4 0 0.718

5 0 0.074

6 0 -0.411

7 0 0.096

8 0 0.298

9 0 0.018

10 0 -0.191

11 0 -0.006

12 0 0.140

" Anderle and Smith, private communication.

TABLE 2.12.---Miscellaneous Quantities

Quantity Value

GM. 3.986015 × 10 H ma/sec 2

as 6 378 166 m (used for length

scaling only)

TABLE 2.13.-,-Numerical Integration--

Orbital Parameters

I. Parameters

fl = argument of latitude (independent vari-

able)

t(fl) = time corresponding to fl

P(fl) = angular momentum vector (normal to

plane of osculating instantaneous orbit)

e(fl) = "eccentricity" vector (in direction of

perigee)

II. Definition in terms of Keplerian elements

P.e =0

[P[_=a (1-e 2)

P, =[PI sin/ sinfl;P_=- IPI sin/cosll;

P:, = I P[ cosi
e_ =e (cos o) cos [l - sin(osinflsini)

e2 =e (cos _o sin fl + sin oJ cos fl cos i)

e:_ = e sin (o sin i
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TABLE 2.14.--Numerical Integration--

Change in Orbital Parameters

toq3)

P0

e0

at(_)

AP03)

Ae(_)

IP_)L_

to(_)

= time corresponding to fl in unperturbed
orbit

= P(fl = 0) = angular-momentum vector of
unperturbed orbit

= e{fl = 0) = eccentricity vector of unper-
turbed orbit

= t_) - toO_)
= P_) - Po
= e_) - eo
= IPo 12 + 2 Po"Ap(fl) + Ap(fl)z (double

precision)

for n th revolution after epoch
= n [to(27r) - to(O)] + [to(/3 - 2rrn) - to(2rrn)]

+ to(O) (double precision)

TABLE 2.15.--Relationship Between Pseudo

Angles and Angles as a Function of Pass

Direction

Pass Direction

Azimuth North South

az = _ - Az az = - Az
O<A_<rr et = E t et = _ - Et

az = - Az az = 7r - Az
Ir < Az < 2_r

et =_- El et =El

E_ = elevation et = pseudo elevation
A, = azimuth a, = pseudo azimuth

TABLE 2.16.--Data Residuals

RMS value of
Satellite residuals a (meters)

1961 a_ql 46.9
1965 32A 26.2

1962 fi/zl 27.0
1965 89A 23.9
1961 ol 40.2
1964 64A 29.8
1965 48C 17.0
1963 49B 18.7

Computed with program that did not include
effects of polar motion.
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TABLE 2.17.--Fully Normalized Coeffi-

cients of the Spherical Harmonic Expan-

sion of the Gravitational Potential

n m -_,," x 10 _ S," x 10"

2 1 0.0 0.0

2 2 2.443 -1.341

3 1 2.030 0.293

3 2 0.911 -0.602

3 3 0.643 1.396

4 1 -0.492 -0.446

4 2 0.370 0.536

4 3 0.964 -0.165

4 4 -0.135 0.292

5 1 -0.109 -0.270

5 2 0.502 -0.231

5 3 -0.321 -0.140

5 4 -0.196 -0.134

5 5 0.135 -0.745

6 1 -0.191 0.040

6 2 -0.130 -0.206

6 3 0.264 -0.035

6 4 -0.094 -0.564

6 5 -0.032 -0.489

6 6 0.046 -0.156

7 1 0.293 0.261

7 2 0.407 -0.132

7 3 0.172 -0.190

7 4 -0.179 -0.164

7 5 -0.062 0.033

7 6 -0.383 0.279

7 7 0.173 0.015

8 1 0.106 -0.040

8 2 0.144 -0.091

8 3 -0.192 -0.047

8 4 -0.054 0.019

8 5 -0.141 0.090

8 6 -0.749 0.379

8 7 0.126 0.107

8 8 -0.146 0.088

9 1 0.076 -0.131

9 2 -0.042 0.208

9 3 0.117 -0.227

9 4 -0.213 -0.064

9 5 -0.020 -0.018

9 6 0.065 0.166

9 7 -0.089 0.007

9 8 0.077 -0.094

9 9 -0.086 0.035

10 1 0.007 -0.017

10 2 -0.008 0.104

10 3 0.195 -0.205

10 4 -0.246 0.037

10 5 0.043 -0.063

10 6 -0.115 -0.123

10 7 0.067 0.094

10 8 0.039 -0.232

10 9 0.040 -0.014

10 10 0.060 0.008

TABLE 2.17.--(Cont'd)

m _," x 10" S,," x 10"

11 1 0.073 0.121

11 2 0.163 -0.263

11 3 -0.176 -0.011

11 4 0.145 -0.119

11 5 -0.171 0.003

11 6 0.121 0.004

11 7 -0.092 -0.267

11 8 -0.026 0.128

11 9 -0.033 0.176

11 10 -0.126 -0.037

11 11 0.052 0.009

12 3 -0.120 0.039

12 4 0.019 -0.000

12 5 -0.104 -0.036

12 6 0.100 -0.144

12 7 -0.058 -0.110

12 8 -0.000 0.117

12 9 0.097 -0.023

12 10 0.051 -0.013

12 11 -0.061 -0.068

12 12 0.010 -0.003

13 4 -0.133 0.138

13 5 0.170 0.139

13 6 -0.097 0.021

13 7 -0.088 0.144

13 8 0.217 -0.254

13 9 -0.147 0.034

13 I0 0.045 0.054

13 11 -0.036 -0.164

13 12 -0.048 0.034

13 13 -0.069 0.055

14 5 -0.012 -0.048

14 6 -0.177 0.067

14 7 0.189 -0.106

14 8 0.122 0.164

14 9 -0.000 0.006

14 10 0.037 -0.054

14 11 -0.019 -0.012

14 12 -0.013 -0.028

14 13 0.010 0.005

14 14 -0.039 -0.016

15 6 -0.116 -0.074

15 7 -0.046 -0.086

15 8 -0.082 0.176

15 9 0.125 -0.113

15 10 0.098 0.004

15 11 -0.086 -0.068

15 12 -0.038 -0.073

15 13 -0.041 -0.020

15 14 -0.003 -0.011

15 15 -0.009 -0.009

16 13 0.040 0.011

16 14 -0.043 -0.031

17 13 0.006 0.010
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3.1 INTRODUCTION
(Owen W. Williams, DMA)

The global responsibilities of the Depart-
ment of Defense (DOD) encouraged an early
interest in satellite geodesy. This interest
considerably predated the formal National
Geodetic Satellite Program (NGSP) and led

to the use of satellites of opportunity for
both positional and gravimetric investiga-
tions. The unique problems of the overwater
missile test ranges and the requirements
associated with development of worldwide
navigation systems provided much of the
early impetus to intercontinental geodetic
programs. Uniquely, these activities also
developed the skills and equipment that pro-
vided an initial base for subsequent develop-
ments in satellite geodesy by both the mili-
tary and the civil communities. Early efforts
included camera and electronic measuring
techniques based on ranging, phase compari-
son, and Doppler. They culminated in Project
ANNA, a truly cooperative effort involving
the three military services, NASA, and other
civil agencies. The basic concept of ANNA

fostered by DOD in 1958 resulted in the first
real geodetic satellite and the precursor of
the NGSP.

Project ANNA was a test bed for satellite
geodetic methods. The three military services
concentrated their efforts in research and

development in distinctly different tech-

niques that were incorporated into the
ANNA satellite (ch. 2 and ch. 3). This same

division continued through the early portion
of the NGSP.

The U.S. Army developed the.sequential
collation of range (SECOR) system at the

Geodesy, Intelligence, Mapping Research and
Development Agency (now the U.S. Army

Engineer Topographic Laboratories (USA-
ETL) ). The system was subsequently ex-

ploited by the Army Map Service (currently

known as the Defense Mapping Agency
Topographic Center (DMATC)). The first

SECOR transponder was orbited on ANNA

1B in 1962. SECOR systems continued in
use through 1970.

Navy developments in satellite geodesy
have used the Doppler technique and have
grown out of the TRANSIT navigation satel-
lite system developed by the Johns Hopkins
Applied Physics Laboratory. The Naval
Weapons Laboratory (NWL) has been the
primary proponent of this system for geo-
detic applications. This system, its beacon
having been first flown in 1960 as a naviga-
tion satellite and later included on the ANNA

and GEOS (ch. 2) satellites, continues in
use today as both a navigation and a geodetic
system. Continued system development has
resulted in the GEOCEIVER survey system.
The Doppler system has proven more accu-
rate, versatile, and efficient than other sys-
tems in early use within DOD and has been
adopted by the Defense Mapping Agency as
the primary DOD geodetic satellite system.

The U.S. Air Force, primarily as a result
of encouraging experiences in conducting
large-scale rocket-flare triangulations on the

Eastern Test Range, pursued optical meth-
ods for satellite geodesy. The Air Force
Cambridge Research Laboratories (AFCRL)

developed xenon strobe lights for satellite

applications. They also developed the PC-
1000 camera which, together with the Wild

BC-4 (ch. 7), was used for photographic
satellite observations. In addition, AFCRL

pioneered and has continued the development

of laser illuminating and ranging equipment
within the DOD.

Field observations using camera equip-

ment were conducted by the 1381st Geodetic
Survey Squadron (GSS). Data reduction

was done by AFCRL and by the Aeronautical
Chart and Information Center (ACIC) of

the Air Force. (Both ACIC and the 1381st
GSS have been incorporated into the Defense
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Mapping Agency Aerospace Center (DM- 
AAC) and continue to be active in satellite 
geodesy using the GEOCEIVER system.) 

Significant contributions to satellite geod- 
esy theory and to the practical methodology 
of data reduction involving active, passive, 
and cooperative satellites have been made by 
NWL, DMATC, DMAAC, AFCRL, and 
USAETL. 

The early diversity of equipment and tech- 
niques within DOD has been reduced as a 
result of operational evaluations carried out 
during the NGSP. The following sections 
describe the theory, instrumentation, and 
data reduction methods used and some results 
obtained during the NGSP period. 

3.2 I N ST R U ME NTATl 0 N 

Data used in deriving the results given in 
this chapter were obtained primarily by 
means of three tracking systems: the PC- 
1000 camera system (sec. 3.2.1), SECOR, a 
distance-measuring system (sec. 3.3.2), and 
the TRANET Doppler-frequency measuring 

been obtained by using laser DME (sec. 
3.2.3), BC-4 cameras (ch. 7), and GEO- 
CEIVER. The GEOCEIVER is basically a 
miniaturized version of the TRANET Dopp- 
ler frequency measuring equipment, and the 
principles of its operation can be inferred 
from the description of TRANET in chapter 
2. 

5,jrdtgiii (di. 2) .  Iii additiaii, SGiiie data k i ~ e  

3.2.1 PC-1000 Geodetic Camera System 
(Maj. Norman Mason, DMA/AC/GSS) 

Development of the PC-1000 camera sys- 
tem began at The Air Force Cambridge Re- 
search Center in the year 1959. Initial devel- 
opment of these cameras was undertaken for 
the purpose of testing the concept of long- 
range space triangulation using missile-borne 
flares. As the geodetic programs evolved 
from using missiles to using satellites, in the 
early 1960's, these cameras were modified SO 

that they could observe flashing-light satel- 
lites as well as sun-illuminated satellites. 

(1) Camera: Figure 3.1 shows a model 
of the PC-1000, which was used in several 
large-scale satellite triangulation missions. 
This camera consists of an eight-element lens 
with a focal length of about 1 meter and a 
relative aperture of f/5.0. The camera uses 
a photographic plate 190 mm x 215 mm x 6 
mm, with a field of view 10" square (table 
3.1). 

(2) Other components: The other com- 
ponents of the PC-1000 camera system con- 
sist of the chopping shutter, camera control- 
ler, timing equipment, a digital recorder and 
data storage, and the power source. 

(3) Shutter : The chopping shutter (Rap- 
idyne) allows exposure times from 1 msec to 
infinity, but with a maximum of three ex- 
posures per second. I t  is electrically operated 
and driven by signals from the solid-state 
controller. Signals triggered by shutter cause 
the recording of time by the high-speed digi- 
tal printer. 

(4) Controller : The controller was de- 
veloped to open and close automatically both 
internal and external shutters at precise 
predetermined times. The fully automatic 
mode can be overriden to permit manual 
operation. 

(5) Timing equipment : The timing equip- 
ment consists of a timing generator (digital 
clock), a precise frequency standard, and 
three types of radio receivers. The method 
used to establish and maintain accurate time 
can produce UTC over long periods to within 

10 psec (internal precision). 

PROGRAMMER RADIO k TIMING 
MODULE HIGH SPEED DATA b 

STORAGE 

V L I  RECEIVER HIGH SPEED 

RAlTERV PACK 

PC-IOIO STELLAR CAMERA 

FIGURE 3.1.-The PC-1000 system. 
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(6) Recording equipment: Time data in
binary coded decimal (BCD) format from
the timing generator are printed on paper
tape and are also stored in the 84-bit data
storage system when the shutter is activated.
This yields a record of the actual time of
operation of the shutter that is not affected
by the speed of the printer, and allows actual
time differences to ±10 _sec to be printed
every 50 msec.

(7) Operation and calibration: Figure
3.2 shows a star trace (not to scale) and a
satellite trace as recorded on a photograph.

The first operation (precalibration) begins
with the chopping shutter open and the cam-
era's internal shutter operating. Openings
and closings of a shutter produce five images
on the plate of each star in the field of view.
The time for each exposure varies from 1 to
0.1 sec. The intervals between exposures are

equal (usually 10 sec). Varying the exposure
times makes it possible to select the star
images, for each calibration sequence, whose
densities appear to equal the densities of the
satellite images. This sequence of five expo-
sures is then repeated to end the precalibra-
tion operation.

If the satellite contains flashing lights

(such as ANNA 1B or GEOS A), the internal
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FIGURE 3.2.--Star and satellite trace.

shutter is left open during the predicted time
of the burst of flashes. The chopping shutter
is not used for active satellite observation.

If a passive satellite (such as ECHO or
PAGEOS) is being observed, the internal
shutter is left open and the chopping shutter
is operated. Exposures are 0.02 in duration
and approximately 0.5 sec apart. Two or
three times during the overall exposure
period a special exposure, called the signa-
ture, is made. Exposure time for the signa-
ture varies from 2 to 4 sec, and its purpose
is to provide easy identification of time and
image.

Postcalibration is a repetition of the pre-
calibration operation. It is done to allow
selection of images before and after the main
event in order to detect any movement of the
camera during the exposure sequence.

3.2.2 Geodetic SECOR System
(F. W. Rohde)

3.2.2.1 Principles of the Geodetic SECOR
System

SECOR consists of four ground stations
and an Earth-orbiting satellite. Each ground
station contains a transmitter, a dual-fre-
quency receiver, data-processing equipment,
and data display and recording equipment.
The most important part of the satellite is a
transponder, which receives the signals from
the ground stations and returns them on two
carriers back to the ground stations. Each of
the ground stations is electronically identical
and is capable of two modes of operation;
namely, as master station and as slave sta-
tion. The master station is in control of the

operation and provides, in addition to the
ranging signals, commands to the satellite
and certain timing signals to the slave sta-
tions. The slave stations transmit only rang-

ing signals.
SECOR operates on the principle that an

electromagnetic wave propagated through

space undergoes a phase shift proportional
to the distance traveled. A ground station
transmits a phase-modulated signal which is
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received by the satelliteborne transponder

and returned to the ground. The phase shift

experienced by the signal during the round

trip from ground to satellite and back to

ground is measured by an electronic servo

at the ground station, which provides as its

output a digitized representation of range.

The modulation of the signal is determined

by the requirements for accuracy and unam-

biguity. For accuracy, since phase is com-

pared, the shortest possible wavelength

should be used. For unambiguity the longest

wavelength compatible with the required

range should be used. Unambiguous and ac-

curate measurements are achieved by modu-

lating with more than one frequency. Four
modulation frequencies are included in the

signals to provide adequate data on range.

SECOR can be operated in three different
modes. If the satellite is visible from all four

stations, the stations can interrogate (the

process of obtaining distance to the satellite,

including also the activation of the transmit-

ter portion of the satellite and the providing

of timing signals to the slave stations) the

satellite nearly simultaneously. Three ground

stations are therefore placed in known loca-

tions, and the fourth station is put in an

unknown location. Figure 3.3 shows the

simultaneous mode of operation. Range

measurements from the three known ground

stations to the satellite determine the position

of the satellite with respect to the known

stations. Range measurements from the

unknown station to at least three prop-

erly spaced positions of the satellite deter-
mine the location of the unknown station

relative to the known stations. If the un-

known station is too far from the known

station, observation of the satellite simulta-

neously by all four ground stations is im-

possible, and another mode of operation may

be used. This mode of operation is called the

"orbital mode" and is shown in figure 3.4.

Again, three stations placed on known loca-

tions simultaneously measure ranges to the

satellite. These ranges are used to determine

short arcs of the satellite orbits in the region

above the three ground stations. The short

arcs can be extrapolated into the region above

the unknown station. Interrogation of the

satellite by this station provides the data for

positioning the unknown station with respect
to the known stations. If the clocks of the

stations can be synchronized, each station can

observe independently of the other, which is

the third mode of operation.

Signal Structure.--To meet the require-

ments of both accuracy and range, SECOR

incorporates a multiple-frequency ranging

technique. The range to the satellite is meas-

ured in terms of the wavelengths and frac-

tions thereof of four ranging frequencies,

which are listed in table 3.2. The range

resolution is the smallest fraction of a rang-

ing frequency that can be measured by

FIGURE 3.3.--Simultaneous mode of operation. FIGURE 3.4.--Orbital mode of operation.
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SECOR. Since the unambiguous range of a

ranging wavelength is large in comparison
to the resolution of the next larger ranging

wavelength, ranges up to 524 288 meters can
be measured uliambiguously to an accuracy
of 0.25 meter. A further extension of range

is made possible by measuring the time for a
pulse to travel to the satellite and back.

For reason of optimum modulation the
ranging frequencies, except for the highest,
appear in the signal as difference frequencies
of a frequency group between 548 and 585
kHz. The signal of the master station is
modulated by more frequencies in addition
to the ranging frequencies. One frequency is

received only by the satellite and is used to
turn the transmitter part of the transponder
on and off. The other frequency is trans-
mitted through the satellite to the slave

stations and provides timing signals to the
slave stations. The ranging frequencies exist

as beat frequencies in the modulation of the
carrier. Because of the narrow bandwidth,
the selection of the carrier frequencies, and
the small modulation index, the dispersive
distortion of the SECOR signal along its

propagation path is smaller than 1 part in
10% and the group velocity is practically con-
stant within the bandwidth. Because of the
altitude of the satellites used, the signals

travel through the ionosphere and experience

a delay that must be considered in the calcula-

tion of distance. By using two frequencies a
correction for the ionospheric error in range

is provided. In order to avoid overlapping of
arriving signals at the satellites, the ground

stations transmit the signals in sequentially
arranged pulses.

Interrogation Cycle.--The interrogation

cycle is one complete sequence of interroga-
tions of a satellite from four stations. The

signal from each station must arrive at the
satellite at different times. An overlap, at

the satellite, of interrogations from two or
more ground stations results in a degradation

of range data. The degradation is propor-

tional to the degree of overlap. The interro-
gation cycle is 50 msec long and divided into
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FIGURE 3.5.--Example for interrogation cycle.

four intervals. Each interval consists of a

10-msec signal pulse and a 2.5-msec isolation
band. A delay is provided at each station to
adjust to time of transmission as required.

Figure 3.5 shows an example of interroga-
tion cycle timing. The master station estab-
lishes the 0.0 time reference. It is evident

from this example that any combination of
station transmission times could occur dur-

ing a pass of the satellite over the SECOR.
The operator at a slave station monitors the
signals returning from the satellite and ad-
justs this transmission to remain in the
allotted time slot.

3.2.2.2 Ground Station Equipment

Figure 3.6 is a block diagram of a ground
station. A SECOR ground station includes

1
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FICURE 3.6.--Block diagram of ground station.
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two major equipments: radio frequency
(RF) equipment and data-handling (DH)
equipment. These major equipments are
housed in two separate shelters, the RF
shelter and the DH shelter.

3.2.2.2.1 DESCRIPTION OF THE RF

EQUIPMENT

The RF equipment comprises (1) the
antennas, (2) a transmitter, (3) a high-
frequency receiver, and (4) a low-frequency
receiver.

ns,_,,mcp|

L"'.i';:;,_....

FIGURE 3.7.--Block diagram of transmitter.

Antennas.--Two 10-foot (3-meter) para-
bolic antennas serve as the ground terminal
of the radio link between the satellite and

the ground station. The high-frequency an-
tenna is used for transmitting signals on the
420.9-MHz carrier to the satellite and receiv-

ing signals on the 449-MHz carrier from the
satellite. The low-frequency antenna receives
signals on the 224.5-MHz carrier from the
satellite. Both antennas can radiate in two

polarizations that are perpendicular to each
other. The change from one polarization to
the other is achieved by polarization switches.
The gain of the high-frequency antenna is
about 18 dB and the gain of the low-frequency
antenna about 12 dB. The high-frequency
antenna is connected to the transmitter and

the high-frequency receiver through a di-
plexer. The diplexer allows simultaneous

reception and transmission of two closely
spaced frequencies. It prevents transmitted
power from entering the receiver and pre-
vents the leakage of received signals into the
transmitter circuit. The diplexer is essen-
tially a pair of band-pass filters. In order to
track the satellite, the antenna must be
pointed in the direction of the satellite. This
positioning is accomplished by the antenna
servo system, which moves the antennas
about the azimuth and elevation axes. The

movement of the antennas is manually con-
trolled and visually displayed on a panel.

Transmitter.--The transmitter (fig. 3.7)
provides a fixed-frequency, crystal-controlled,

phase-modulated source of RF power. The

basic function of the transmitter is to inter-

rogate the transponder. The transmitter

operates in three modes: (1) CW (continu-
ous wave), (2) keyed standby, and (3) keyed
transmit.

In the CW and keyed transmit mode the
transmitter output is fed through a coaxial
switch and diplexer directly to the antenna.
In the keyed standby mode the output is
switched into a dummy load. In both keyed
modes the transmitter output is an RF pulse
whose width is determined by the input key
pulse. Keying and modulation signals are
furnished by the frequency synthesizer in the
DH shelter.

The basic RF signal is generated by a
35.07812-MHz, crystal-controlled oscillator
in the exciter. This signal is first phase
modulated by data input from the DH shelter
and then doubled twice in amplifier stages to
provide a 140.31250-MHz signal to the tri-
pler. The tripler subsequently supplies
420.9375 MHz (the final output frequency)

to the driver, which increases the signal to
100 watts. The directional coupler provides

a means of monitoring the driver output
power. A coaxial switch routes the output of
the driver to the RF amplifier or to a dummy
load when the final amplifier is switched off.

The 100 watts of the 420.9375-MHz signal

from the driver is fed to the final amplifier,
where the power is increased to 2 kW. The
output of the final amplifier is passed through
a low-pass filter to a coaxial switch. The
output is switched to a dummy load when
operating in the keyed standby mode or to
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the diplexer when operating in CW or keyed
transmi_ mode.

Receivers.--A ground station uses two
receivers: a high-frequency (449 MHz) and
a low-frequency (224.4 MHz) receiver. The
basic function of each receiver is to amplify
and demodulate signals from the trans-

ponder. Both receivers use carrier phase lock,
correlation detection, and modulation feed-

back techniques. The high-frequency receiver
provides ranging data to the data-handling
equipment; the low-frequency receiver pro-
vides ionospheric correction data. These sig-
nals are shifted in phase by an amount pro-

portional to the distance traveled during the
round trip between the ground station and

the transponder. The high-frequency re-
ceiver also detects the timing signal trans-

mitted by the master station and directs this
timing signal to the sequencing and timing
circuits in the DH shelter.

The high-frequency receiver (fig. 3.8) ac-
cepts a phase-modulated 449-MHz carrier
from the antenna and demodulates this signal
to recover the individual frequencies. The

data frequencies are individually filtered and
then delivered to the DH shelter.

The incoming 449-MHz signal received by
the antenna is amplified by the RF preampli-
fiers and applied to the first mixer. The
amplified 449-MHz signal is heterodyned
with a 403-MHz signal from the high-fre-

quency local oscillator, and the 46-MHz dif-

I_" _...... _ __ ._ ' _",-'_-' ,-_,-_'--_'-_ '--"J- - -_

FIGURE 3.8.--Block diagram of high-frequency

receiver.

ference frequency is selected and amplified

by the first IF amplifier. The amplified 46-
MHz signal is heterodyned in a second mixer
with a 35.5-MHz signal from the second
local oscillator. The 10.7-MHz difference

frequency is selected and amplified by the
second IF amplifier. A portion of the ampli-
fied 10.7-MHz signal is fed to the correlation
detector, narrow-band IF amplifier, which
generates frequency correction and auto-
matic gain control (AGC) voltages. The
amplified 10.7-MHz signal is also fed to the
correlation detector, wide-band IF amplifier,
which amplifies the total modulation content
of the received signal.

The output of the narrow-band IF ampli-
fier is applied to the narrow-band phase de-
tector along with a 10.7-MHz signal from
the reference oscillator. The detector pro-
vides an output that is proportional to the
phase shift between the two 10.7-MHz sig-
nals. This output is used for acquisition com-
pensation and for frequency control of the
voltage-controlled oscillator (VCO) to obtain
and maintain phase lock to the carrier. The
narrow-band IF amplifier also drives an
AGC phase detector, which supplies AGC
voltage to the IF amplifier. In the AGC phase
detector the 10.7-MHz IF signal is phase-
compared to the 10.7-MHz reference signal,
which is shifted 90 ° in phase. The resulting
output of the detector is a function of RF
input level when the carrier is phase-locked.

The output of the wide-band IF amplifier
is applied to the correlation detector. This
circuit demodulates the 10.7-MHz output of

the wide-band amplifier and provides a com-
posite signal consisting of four ranging
modulation frequencies and a timing signal.
This composite signal is fed to five data am-
plifiers, where it is separated into four
individual data signals and a timing signal.
These signals are sent to the DH shelter for

processing. They are also fed into a data
adder and recombined into a composite sig-

nal. This composite signal is used as a nega-
tive-feedback signal to phase-modulate the
local oscillator carrier. This technique pro-

vides excellent phase stability for tracking
the received signal.
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During a no-signal condition the output of
the IF amplifier and the following phase
detectors is a noise voltage centered around
zero. Since this output controls the VCO

frequency, a small but insignificant variation
of the VCO frequency around the center

frequency will occur.
When a signal is received, the second IF

output is a sinusoidal signal, which is phase-
compared to the narrow-band reference sig-
nal in the narrow-band phase detector. This
results in a "beat-note" output: its amplitude

is proportional to the RF signal level, and
its frequency is equal to the difference be-
tween second IF and narrow-band reference

frequency. A difference in frequency can be
considered as a continuously varying phase
difference. The beat-note signal is fed back
through a low-pass filter and the acquisition
DC amplifier to the phase modulator in the
local oscillator. This results in a phase differ-
ence and consequently a frequency deviation
of the local oscillator signal, which in turn
causes the beat-note frequency to vary. At
the same time the beat-note is fed back

through a narrow-band compensation net-
work and DC amplifier to the VCO but, be-
cause of the roll-off characteristics and the

narrow bandwidth of this feedback path, no
substantial action is obtained in this loop

when the beat-note frequency is high. How-
ever, the resulting action of the acquisition
loop varies this frequency, and when it comes
within the capture range of the narrow-band
loop, the loop acquires the data RF input

because of its higher loop gain characteris-
tics. The beat-note from the narrow-band

DC amplifier also causes a deviation of the

VC0 output frequency around its center
frequency. When this deviation matches the
deviation of the RF signal, the beat-note

frequency becomes zero, and the output of
the narrow-band detector is a DC voltage

proportional to the phase difference between

the second IF signal and the narrow-band
reference signal. The receiver is now phase-

locked, and any change in the received RF
frequency results in a proportional change of
the DC control voltage and thus an equal

change in the output frequency of the local
oscillator.

In summary, during acquisition the output
of the narrow-band phase detector is a beat-
note because the phase difference between the

second IF signal and narrow-band reference
signal varies continuously. This output is
used for feedback in the acquisition and

narrow-band loop to obtain phase lock of the
carrier. After the phase lock is obtained, the
output of the narrow-band phase detector is
a DC voltage that is proportional to the con-
stant phase difference between the second IF
signal and the narrow-band reference signal.

Prior to obtaining a phase lock to a re-
ceived RF signal, the output of the AGC
detector is a beat-note. This varying voltage
is filtered out by a low-pass filter and does
not affect the AGC line. After phase lock is
achieved, the output of the AGC detector is
a negative DC voltage. The output is propor-
tional not only to the RF level, but also to

the phase difference between the second IF
signal and the AGC reference signal.

This negative output is amplified and ap-

plied as AGC voltage to the IF amplifier. A
decrease in its level will result in an increase

of IF amplifier gain, which in turn results in
an increased negative output. Therefore,

change in AGC detector output due to phase
variation is counteracted almost completely,

and the effective AGC is mainly determined
by the RF input level. Owing to the AGC
loop action, the second IF output level and
thus the narrow-band and wide-band detector

output levels are held relatively constant.

A second output of the AGC amplifier is

applied to a Schmit trigger and relay driver
circuit. When phase lock occurs, the high
AGC level triggers the Schmit trigger, and

the relay driver actuates a relay. The relay
contacts transfer the phase modulator input

from the acquisition network to the output
of the data adder. Thus the acquisition loop

is opened, and the data feedback loop is
closed.

During acquisition, the wide-band detector

output consists of a wide noise spectrum in
addition to the beat-note and the composite
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data. Until the second IF carrier is phase-
locked to the reference signal by the narrow-
band loop, the data are useless for phase com-
parison in the phase meter. After phase lock
is obtained, the output of the wide-band
detector consists of noise, a DC voltage, and
the composite data signal.

The DC voltage is present because of a
small phase difference between the second IF
carrier and the wide-band reference signal;
it is not used for any control purposes. The
composite data signal is the recovered modu-

lation. It comprises five data signals: four
ranging modulation frequencies and a timing
signal. Each of the five signals is separately
selected and amplified in a narrow-band
amplifier and then routed to the DH shelter
for processing.

The five data signals are also recombined
into a composite signal in the data adder.
The composite signal is used to phase-modu-
late the local oscillator after acquisition is
accomplished. This feedback effectively flat-
tens out the phase and amplitude responses
of the filter and practically eliminates phase
shift and amplitude variation due to fre-
quency shift (Doppler) of the data signals.
Although a relatively small modulation index
(0.7) is used for each modulation frequency
in the transmitter output, the fact that five
modulation signals are used adds up to a
relatively large instantaneous modulation
index. Therefore, a larger bandwidth is
needed to accommodate the second-order side
bands that are significant. The modulation
feedback results in a large reduction of the

side bands; therefore, the wide-band IF
channel has to accommodate only the first-
order side bands.

The low-frequency receiver accepts a
224.5-MHz phase-modulated carrier from

the antenna and demodulates this signal to
recover the data. The demodulated informa-

tion is sent to the DH equipment as iono-
spheric correction data for the very fine
wavelength.

In the low-frequency receiver, only three
data signals are used to phase-modulate the
first local oscillator signal, and one data sig-

nal is fed to the data-handling equipment.
In the high-frequency receiver, all five data
signals are used to phase-modulate the first
local oscillator signal and are also sent

to the data-handling equipment. Except for
the aforementioned difference, the acquisi-
tions, narrow-band, and AGC data feedback

loops in the low-frequency receiver operate
the same as those in the high-frequency
receiver.

3.2.2.2.2 DATA-HANDLING EQUIPMENT
(F. W. Rohde, USAETL; E. Cyran,

DMA/TC)

The DH equipment provides all ranging
and timing signals necessary for the opera-
tion of SECOR. Figure 3.9 is a block diagram
of the DH equipment. Input and output of

the DH equipment are the ranging and tim-
ing signals coming from and going to the
RF shelter. The DH equipment converts the
signals received in analog form to digital
form and extracts the range information.
The digitized ranges, including ionospheric
corrections, time, quality, and identification
data, are arranged in a suitable format and

recorded on magnetic tape.

Frequency Synthesizer.--The frequency
synthesizer generates the following signals.

(1) Basic ranging: These are the fre-
quencies that provide for adequate range
resolution and unambiguity. They are called

|f

_t0r

L .......... J

FIGURE 3.9.--Block diagram of DH equipment.
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the very fine tone (585 533 kHz), the fine

tone (36 596 kHz), the coarse tone (2287

Hz), and the very coarse tone (286 Hz).

(2) Ranging modulation: These are the

frequencies that are synthesized from the
basic ranging signals. They are the very fine

modulation (585.533 kHz), the fine modula-

tion (548.937 kHz), the coarse modulation
(583.245 kHz), and the very coarse modula-

tion (549.223 kHz). The ranging modulation

signals are used to modulate the carriers of

the radio links between ground station and

satellite. The basic ranging signals are trans-

lated into the ranging modulation signals in
order to make the bandwidth of the radio

links sufficiently small.

(3) Servo data: Each of the received
and demodulated ranging modulations is
translated down to 1144 Hz. The four result-

ing signals of 1144 Hz contain the phase

information that is proportional to the range

to the satellite. These signals are called the

servo data signals.

(4) Servo reference: This frequency

(1144 Hz) is used in the translation process
for the servo data signals and for the range

measurement process.

A stable oscillator operating at 1 171 065.-

625 Hz drives a binary frequency divider.

The output of the frequency divider is the

four basic ranging signals and the servo

reference signal. In order to maintain high

signal-to-noise ratio, the translation proc-

esses are achieved by phase-lock techniques.

Since all signals generated by the frequency
synthesizer are derived from the same source,

the signals are coherent.

The stable oscillator also drives the refer-

ence slave counter. This counter provides

the processor with a digital signal corre-

sponding to the count contained in the fre-

quency divider. The count in the frequency

divider is representative of the phase of the
range modulation at the time of transmission.

Control gates permit the reference slave
counter to be used as binary counter or as

shift register.

Electronic Servos.--The electronic servos

convert the servo data signals into a digital

representation of each cycle. The phase of
the signal is therefore available as a binary

word which is further processed by the proc-

essor. Each electronic servo comprises a

phase-locked mixer loop and a slave counter.
The servo data signal is applied to a phase

detector. The l144-Hz reference signal to

the phase detector is derived from a VCO by

means of a frequency divider, which func-

tions also as a loop counter. The VCO drives

a slave counter in parallel with the loop

counter. If the input signals to the phase

detector have the same phase, the output of

the phase detector is zero. As the phase of

the servo data signal changes with respect

to the reference signal, the phase detector

develops a DC voltage output which is pro-

portional to the phase difference. This voltage

is amplified and applied to the VCO. The

oscillator adjusts its phase in such a manner

as to reduce the phase detector to a minimum.

Loop counters and slave counters continu-

ously indicate the phases of the servo data

signals and by them the range to the satellite.

A simultaneous stopping of all counters (very

fine, fine, coarse, very coarse, very fine iono-

spheric correction, and reference slave) then

indicates the range at that particular instant

of time. This indication is a set of binary

numbers representing the count contained by

the counter when they were stopped. The

true range is computed from this set of

binary numbers.

Timing and Sequencing System.--Sequen-

tial interrogation of the satellite requires
that transmission from each ground station

be received by the satellite at a known and

separate portion of the interrogation cycle.

The allocation of portions of the interroga-

tion cycle to the various ground stations is

based on a calculated optimum sequence dic-

tated by the orbit of the satellite. Each

interrogation cycle is started by a timing or

synchronization signal provided by the

ground station designated the master station.
The slave stations use this signal as a time

reference to control their transmission.

The timing and sequencing system per-
forms the following functions : (1) initiation
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of master timing signal during master sta- 
tion operation, (2) synchronization of the 
station to the master timing signal, (3) con- 
trol of transmissions, (4 )  control of the 
processor, and ( 5 )  oscillographic presenta- 
tion of the interrogation cycle. 

The extended range portion of this system 
is used to resolve any ambiguities that might 
occur in the measurement of range by the 
very coarse channel. 

The master identification burst is detected 
by the amplitude modulation detector. The 
resulting envelope has a repetition rate of 20 
times per second. The phase of this pulsed 
signal is compared with the phase of the 
divided-down signal from the voltage-con- 
trolled oscillator in the phase detector. If 
there is a phase difference, the voltage- 
controlled oscillator will adjust to minimize 
this difference. Range is measured by start- 
ing the counter with the transmitter key 
pulse and stopping i t  with the received data 
burst. This range count is then sent to the 
processor. 

Timing System.-Each lJH originally hac! 
a digital clock that provided time information 
for each record of range and station-constant 
data. The information included hours, min- 
utes, seconds, and milliseconds. Initially, 
stable crystal oscillators were used along 
with WWV radio receivers to synchronize 
the clock. Later, rubidium oscillators re- 
placed the crystal oscillators in each station. 

3.2.2.3 Satellites 
(Robert H. Nichols, USAETL) 

3.2.2.3.1 DESIGN 

The first SECOR satellite (fig. 3.10) was 
a reflecting ball 51  cm in diameter. Its sur- 
face was made of polished aluminum with a 
thin layer of silicon monoxide ; this composi- 
tion helped to regulate internal temperatures. 
The satellite contained six circular solar-cell 
panels, 20 ern in diameter, and nine spring- 
loaded dipole antennas : four antennas for 
449-MHz signals, four antennas for 224.5- 
MHz signais, ana a single aiitenr;a attacherl 

FIGURE 3.10.-First SECOR satellite. 

at the apex of the satellite for telemetry at 
136 MHz. The satellites averaged 17 kg in 
weight. Most o i  &is *-eig% T.‘:3s in 2 pnwer 
system built to receive continuously and to 
transmit for at least 45 to 60 min per day. 

The second SECOR satellite (fig. 3.11) 
was built in the shape of a cube, measuring 
2 3 x 2 8 ~ 3 3  cm and weighing nearly 18 kg. 
The size and shape of this satellite made it 
easily adaptable to be a secondary payload 
on many rockets. The cubical satellite carried 
the same transponder as the spherical satel- 
lite. The history of SECOR satellites is sum- 
marized in table 3.3. 

3.2.2.3.2 OPERATION 

The transponder on the satellite was nor- 
mally in a standby condition (minimum cir- 
cuitry energized in the receiver) to conserve 
power. Upon reception of a command tone, 
“select call,” the transponder became fully 
activated, and electronic switching circuits 
applied power to all remaining electronics in 
the satellite. 

The transponder rcceived and. demodulated 
the signals of the ground station and retrans- 
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FIGURE 3.11.-Second SECOR satellite. 

mitted the ranging and timing subcarriers on 
two coherently related frequencies, 449 and 
224.5 MHz. The lower frequency was used 
for correcting for ionospheric refraction. 
Four  multiple-frequency ranging tones of 
overlapping wavelength values were used for 
increased accuracy (table 3.1) .  

The satellite remained active throughout 
each pass (12 to 15 min) until the strength 
of the “select call” faded. Eight seconds 
thereafter the satellite returned to its 
standby mode of operation. 

3.2.2.3.3 EQUIPMENT IN THE 
SATELLITE 

Transponder.-The transponder consisted 
primarily of a receiver and a transmitter. 
Normally in a standby condition, the dual- 
conversion receiver accepted a 420.9375- 
MHz carrier modulated with a “select call” 
tone from the ground station. The signal 
passed through an antenna and a diplexer to 
an  R F  amplifier. From there it was fed into 
a mixer, which was also being fed by a signal 
from a standby local oscillator. These two 
signals were mixed, and the resultant passed 

directly into an  AGC-controlled IF amplifier. 
The detected signal went to a data amplifier, 
where it was routed through a “select call” 
circuit to a switch that turned on the power 
to the remainder of the transponder cir- 
cuitry. Two command signals were routed to 
the telemetry portion of the circuitry. Other 
modulation signals from the ground station 
(four subcarrier frequencies for range meas- 
uring and a timing signal) followed the same 
path, but the data amplifier routed them to 
the transmitter section of the transponder. 
They were fed into the phase modulator and 
multiplier circuit and from there to an  ex- 
citer. The exciter doubled the frequency, 
yielding 224.5 MHz. This signal was routed 
to an  antenna and used at the ground station 
as an offset frequency for ionospheric refrac- 
tion correction. 

The 224.5-MHz signal was also doubled to 
449 MHz and routed into diplexer network 
associated with an antenna. A small portion 
pf the transmitted output was tapped off and 
used as local oscillator voltage for the trans- 
ponder receiver. Thus the transponder was 
caused to operate as a negative feedback 
amplifier for the modulation signals. The 
feedback effect stabilized the phase relation- 
ship between the received and retransmitted 
modulation signals. 

A phase-lock loop was used to  provide 
correlation detection, allowing automatic ac- 
quisition and phase tracking at signal levels 
of -120 dBm or lower, depending on the 
modulation index used. Also, the phase-lock 
feature allowed easy adaptation of the trans- 
ponder to coherent-carrier systems. 

The earliest transponder had a power out- 
put of 1 watt. Later, transistorized versions 
were capable of putting out 4 watts with 
modulation indices of 0.7 to 2.4. All param- 
eters were thoroughly tested before launch. 

There were several variations in physical 
appearance of the different transponders. 
Early vacuum-tube models were packaged in 
three individual units : transmitter, receiver, 
and power converter. Later models were 
condensed into one unit. All transponders 
weighed approximately the same: 3 to 5 kg. 



Antennas.-The spherical SECOR satel- 
lites used aluminum rods approximately 1.27 
cm in diameter and cut to match frequencies 
of 224,449, and 136 MHz. The nine antennas 
(four at 224 MHz, four at 449 MHz, and the 
single telemetry antenna for 136 MHz) were 
simple dipoles having no gain and producing 
regularly shaped “donut” patterns. They 
were spring-loaded and collapsed about the 
satellite, erecting automatically upon separa- 
tion of the spacecraft from the rocket. 

The antennas on the cubical SECOR satel- 
lite were identical in electrical characteristics 
to those on the spherical satellites but radi- 
cally different in physical construction. Ele- 
ments of the antennas were fabricated of 
hardened, tempered steel strips 1.27 cm wide 
by 0.025 cm thick and formed to a 1.9-cm 
radius. Each antenna was plated with silver 
and then coated with Teflon. Numerous per- 
forations were made throughout the antenna 
length to minimize the effect of shadows cast 
on the solar cell panels. 

Orientation Device.-The device used in 
the spherical satellite for stabilization con- 
sisted of a bar magnet, 7.6 cm long and 1.27 
cm in diameter, and two dampizg rods, 
O . l % l  ciii in diameter. Each magnet had a 
magnetic moment of greater than 6000 unit- 
pole/cm. A slightly larger magnet was pro- 
vided for the cubical satellite. 

3.2.3 AFCRL Geodetic Laser System 
(Robert L, Iliff, AFCRL) 

3.2.3.1 Introduction 

This system, designed and developed for 
measuring distances and direction to a satel- 
lite, is based-on the use of two ruby lasers 
and a camera. It obtains ranges from station 
to satellite with a Q-switched laser and deter- 
mines directions to the satellite by photo- 
graphing the satellite against a stellar back- 
ground with a PC-1000 camera using pulses 
from a high-energy, normal-mode laser for 
illumination. The two lasers and the ranging 
receiver are  shown in figure 3.12, and the 
PC-1000 camera is shown in figure 3.1. 

FIGURE 3.12.-AFCRL qeodeti:: !zia : Zange laser 
zt lower left, Pockels-cell high-voltage supply 
above it, receiver at lower right, and photographic 
laser at upper right. 

3.2.3.2 Description of System 

The characteristics of the two lasers are  
summarized in table 3.4. 

(1) Photographic laser : The “photo- 
graphic” ruby-laser is capable of about 500 J 
output but is generally operated a t  about 
250 J to give longer life to the components. 
The normal-mode pulse of 2-msec duration 
is collimated to a width at half-power of 2 
mrad. The two flash lamps are  water-cooled 
and the 300-mm-long by 19-mm-diameter 
ruby is cooled with liquid nitrogen to an 
operating temperature of about 150 K ( h =  
69368) to  avoid excessive atmospheric ab- 
sorption. The cavity is evacuated to 1 mm 
Hg or less to limit convection losses to the 
metal housing and to prevent freezing of the 
water. The maximum firing rate is once 
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every 3 sec because of the time needed to

recharge the capacitors. The banks of capaci-

tors are capable of storing 60 000 J total,

30 000 J for each lamp.

(2) Ranging laser: Ranges are deter-
mined by using pulses from a Q-switched

laser capable of emitting bursts of 10 pulses

per pumping period.

(3) Receiver (telescope) : The pulses re-
flected from the satellite are collected by a

22-cm aperture, f/2 telescope, focused

through a field stop at the prime focus; the

beam is collimated, passed through a tem-

perature-controlled, 5-_ interference filter,
and then converted to electrical pulses by an

RCA 4459 photomultiplier. The field of view

is 1.7 mrad for operation at night and 1.1

mrad for operation in daytime.

(4) Timing subsystem : Time is kept by a

cesium-controlled clock whose output is com-

pared continuously with LORAN-C signals.

The combination of delay time in propagation

and electronics is determined by comparison

with U.S. Naval Observatory and traveling

atomic clocks. The precision of the calibra-

tion is about 1 _sec, and the accuracy (as

compared to LORAN-C) is of the same

order. The travel time counter uses a sepa-

rate crystal oscillator, which is calibrated

against the cesium clock. The drift is kept

below 1 part in 10 _', which corresponds to an
error of less than 3 mm for a 3-mm range.

(5) Retroreflectors: The targets of inter-

est with a laser system are those satellites

equipped with retroreflectors. There are six
satellites that can be observed from the

AFCRL station at 42 ° latitude. These are

BE-B, BE-C, GEOS-1, GEOS-2, D1-C, and
D1-D. The orbital characteristics of these

satellites are given in chapter 2; the charac-
teristics of the retroreflectors are given in

chapter 1 and in chapter 2.

3.2.3.3 Operation

The PC-1000 camera with its 10 ° field of

view is used to photograph reflections from

the satellite. Four or five images from the
satellites are obtained with the camera ori-

ented in one direction; the camera is swung

to another position and another set of images

recorded on the same pass. Ranges, of

course, are measured during the entire pass.

3.2.3.4 Precision

The change in distance to the satellite dur-

ing the 400- to 500-_sec time for observation

of the 10-pulse burst was observed. The
standard deviation of the average range was

found to be 45 cm.

No degradation in the range rms error was

observed during daylight operations. For

use of this system in daylight, the receiver
field of view must be reduced to limit back-

ground noise, and the atmosphere must be
more haze-free than it would be for nighttime

operation. This requirement is made neces-

sary by the scattering of sunlight into the
receiver.

The multipulse approach to ranging re-

duces noise in the system by approximately

1/\/-fi as compared to a system operating with
single pulses. The accuracy of the present

system is estimated to be about 1 meter.

3.2.4 DOD (Navy) Doppler

The Doppler system developed by DOD for

the Navy TRANSIT program is described in

chapter 2.

3.2.5 Flashing Beacons
(Theodore E. Wirtanen, AFCRL)

3.2.5.1 Beacon on ANNA 1B (1962fl_)

The flashing beacon designed for the

ANNA 1B satellite (ch. 2) was the first

beacon designed and flown specifically for

geodetic operations. Several prototypes were

developed to study light intensity and light

distribution patterns, but the configuration

eventually adapted to ANNA consisted of
four linear flashtubes (EG&G, Inc., Type

XEX-40). These four tubes were mounted

in pairs on each side of the equatorial band
of solar cells on the satellite (fig. 2.2, ch. 2).

Each flashtube was mounted over a flat re-
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flector that was canted outward at an angle
of 5 ° with the equatorial plane of the satellite
in order to eliminate obstruction of the

emitted light by the polar areas of the space-
craft.

Lamps on each side of the band of solar
cells were necessary because ANNA was

magnetically stabilized; hence one pole faced
the earth when in the northern hemisphere
and the other pole faced the earth when in
the southern hemisphere.

The flashing beacons were designed to give
their greatest amount of light energy at
approximately 50°-60 ° off the mechanical
axis of the satellite (fig. 3.13). This arrange-
ment provided higher intensity for the more
distant observers. Light from the flashtube
had a uniform distribution of energy at
wavelengths from 4000 out to 8500 ._; 40

percent of the total output energy was at
wavelengths longer than 8500 A and 20 per-
cent of the energy was at wavelengths
shorter than 4000 ._. This made the light
somewhat comparable to sunlight, with a
substantial amount in the blue to make it

165o 180 ° 195 o

150"

135 °

\

120 °

/

60'

75 °

suitable for photography against a stellar
background.

The entire beacon assembly on ANNA 1B
consisted of flashtube-reflector assemblies, a
trigger circuit, a capacitor bank, a converter

circuit, a sequence controller, a power relay,
and a battery (ch. 2). Each flashtube-reflec-
tor assembly consisted of an XFX-40 linear
tube and flat reflector. The flashtubes were
15.24 cm long. The flat reflectors consisted of
rectangular, quartz, second-surface mirrors.
A summary of the flashing beacon character-
istics is given in table 3.5.

3.2.5.2 Trigsering

The trigger circuit started the ionization of

the xenon within the flashtubes causing the
main electrical discharge to occur and a flash
of light to be given off. It consisted of solid-

state switch, an energy-storing coupling
capacitor, a pulse transformer, and associ-

ated components. It was activated by a signal
from a sequence controller and coupled the

energy stored in the capacitor to the pulse

FmURE 3.13.--Optical beam pattern of ANNA lB.
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transformer primary. The pulse transformer
applied a high-voltage pulse to the flashtube
to cause ionization of the gas inside the tube.
Silicon-controlled rectifiers were used as the

switching devices for the trigger circuit.

3.2.5.3 Beacons on GEOS-A and GEOS-B

The beacon on GEOS was made up of four
helical xenon flashtubes. The lamps operated
from a common battery, but were otherwise
independent, with separate banks of capaci-
tors. The reflectors were spun aluminum
with foam backing. Because GEOS-A was
gravity-gradient-stabilized, the four lamps
were all mounted on that surface of the satel-
lite facing the earth.

The pattern of the beam from each lamp
was symmetric about an axis parallel to the
vertical axis of the spacecraft. Figure 3.14
shows a pattern from measurements on the
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FIGURE 3.14.--Output of four lamps flashed simul-

taneously (based on measurements of prototype

lamp reflector).

lamp-reflector combination; the luminous in-
tensity produced at the camera is shown in
figure 3.15.

The xenon flashtubes were made to flash at

a specified time with very high precision. The
lamps operated in sequences of five or seven
flashes, any specified combination of one to
four lamps being flashed simultaneously in
each sequence. The first flash of each sequence
was started at an integral minute (UT __+0.4
msec relative to WWV), and the interval
between successive flashes in each sequence
was 4 sec _+0.4 msec. The satellite memory
was used to store those times at which the

flashing sequences were to occur.

3.3 DATA

The results of DOD's geodetic activities in
the NGSP were obtained by several different
organizations. The data used in getting these
results are summarized in this section and

are connected to the results (sec. 3.5) as
follows.
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The results given in section 3.5.1.1 (coordi-
nates of stations in the western hemisphere;
DMAAC) were derived by means of the ob-
servational data summarized in section 3.3.1.

Results given in section 3.5.1.2 (coordinates
of stations in North America, the West In-
dies, and Bermuda; AFCRL) used observa-
tional data summarized in section 3.3.2. Re-

sults given (sec. 3.5.1.3) for the SECOR

Equatorial Belt Project (DMATC) depend
on observational data summarized in section
3.3.3. Results given (sec. 3.5.1.4) for the
TRANET Global Network used the data
summarized in section 3.3.4. The funda-

mental or accepted coordinates of these
points in their appropriate datums are given
in chapter 1. The preprocessing techniques
used on these data are described in section
3.3.5.

Satellites are described in chapter 2 and
chapter 5. Their approximate orbital ele-
ments are given in chapter 1, table 1.10.

DME, section 3.3.5.1 that applied to data
from the PC-1000, and section 3.3.5.2 that
applied to data from SECOR. The stations

involved are shown in figure 3.17. Their
coordinates are given in section 3.1.3.1, table
3.3. The constraints applied between stations
are given in figure 3.18.

3.3.3 Data for SECOR Equatorial Network

The SECOR data and the global stations

making up the SECOR Equatorial Network
are summarized in table 3.8; the distribution
of stations is shown in figure 3.19. The con-

straints imposed on the station positions are
given in tables 3.20a and 3.20b of section
3.5.1.3.

3.3.4 Doppler Data

3.3.4.1 Satellites

3.3.1 Data Used in Solution for Coordinates
in Western Hemisphere

Table 3.6 lists the PC-1000 and BC-4
camera stations that contributed data to the

four projects whose results are given in
section 3.5.1.1. The number of simultaneous
events used from each of the satellites and
the period of observation are tabulated in
columns 5 and 6.

A typical photograph is shown in figure
3.16. This is a photograph of the flashing
lights of the ANNA lB. The images are at
the centers of the heavy cricles.

3.3.2 Data Used in the Solution for
Coordinates in North America,
the West Indies, and Bermuda

The observational data used in getting the
results shown in section 3.5.1.2 are sum-
marized in table 3.7. The satellites used and
their approximate orbital characteristics are

described in chapter 1, chapter 2, chapter 3,
and chapter 5. Section 3.3.5.3 describes the

preprocessing applied to the data from laser

The first geodetic results based on Doppler
satellite observations were obtained by using
data from the TRANSIT 1B (1960 a2) and
TRANSIT 2A (1960 71) satellites. Analysis
of these data yielded determinations of the
third zonal coeffioient (Cohen and Anderle,
1960) and the second and fourth zonal coeffi-
cients. However, the perigee heights of these
satellites were too low for the observations to

be of use in current geodetic analyses. Cur-
rent analyses of Doppler data are based on
observations of the TRANSIT 4A and 4B

satellites (1961 ol and 1961 a_l), the ANNA
1B geodetic satellite (1962 fl_l), the Beacon
Explorer satellites B and C (1964-64A and
1965-32A), GEOS A and B satellites (1965-
89A and 1968-002A), the DIADEME 1 and
DIADEME 2 satellites (1967-11D and 1967-

14A), the TIMATION II satellite (1969-
082B), and a number of Navy navigation
satellites, such as 1967-92A. Each of these

satellites radiated at a pair of frequencies
synthesized from one stable oscillator to

permit correction for first-order ionospheric
effects on the Doppler signal. The naviga-
tion satellites radiated at approximately
150 and 400 MHz, while the other satellites
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FIGURE 3.16.-Photograph of the ANNA 1B flashing light taken by PC-1000 camera. 

radiated either at similar frequencies or at 3.3.4.2 Ground Stations 
162 and 324 MHz. The lifetime of the 
electronics system in the satellites varied 
from a few weeks to over 5 years. Oribtal 
data fo r  the satellites are given in table 3.9. 

Only six stations were operating in 1960, 
when the first geodetic results were obtained 
by analysis of Doppler observations of arti- 
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(25_0013657 (OPTICAL)

( SECOR )

CONSTRAINTS

DISTANCE DIRECTION

(METERS) (ARC SEC)

(I) 0.2 2.0

861 (SECOR) (2) 0.5 0.5
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FIGURE 3.18.--Constraints between stations.
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ficial Earth-satellites. By 1972, 19 Doppler
stations were contributing data used in geo-
detic analyses including 11 stations operated
by the Defense Mapping Agency, 4 stations
in the Navy Navigation Satellite System, and

4 other cooperating stations. Stations oper-
ating during various time periods are shown
in figure 3.20. Station antennas were moved

at the times shown by the arrows on the
fgure. The changes in position were gener-
ally less than a few meters except that the
movement from station 106 to 16 was 20 km

and the change from station 10 to 100 was
200 kin. The stations shown in figure 3.20

are termed "permanent" stations; mobile

equipment has been placed at over 200 sta-

tions for short periods of time. Coordinates
of stations involved in the solution given in

section 3.5.1.4 are given in table 3.10. The
distribution of these 39 stations is shown in

figure 3.21.

The stations originally recorded observa-
tions at two coherent frequencies which were

combined in a large-scale digital computer to

obtain a correction for first-order ionospheric
refraction effects. The stations were soon

modified so that they produced data that had
been corrected for first-order ionos)heric

FIGURE 3.19.--SECOR equatorial networks (SEN).
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STA LOCATION

I" MARYLAND • -- -I-

Z TEXAS -- -2-

3 NEW MEXICO • -- " 3

4 SEATTLE

5 NEWFOUND

6 ENGLAND

8 BRAZIL

I0 HAWAII

II PHILIPPINES

IZ AUSTRALIA

13 JAPAN

14 ALASKA

15 AFRICA

IT SAMOA

18 GREENLAND

19 MCMURDO

20 SEYCHELLES

22 UCCLE

310 MAINE

320 MINNESOTA

330 CALIFORNIA

?4_o HAWAII
766 WAK E

'59 '60 '61 '62 '65 '64 '65 '66 '67 '68 '69 '70 '71 '72

-- Ill = • --

-92

• • 103

e----o

*---12

I

÷ -I 5 - ..--i=.t -115

• ---17 :::

717'

_400 _ 31;

300 _ • 520

• 200 _ BBO

,100 _ 540

106 _ -16" --

-- -I00

121

112 --

_e "105

',17 ----_ _--

FIGURE 3.20.--Periods of operation of

Doppler stations.

refraction by analog combination of the two

frequencies at the station site.

Most geodetic results of current interest

derived from Doppler observations were

based on observations made with equipment

which produces data in one of three forms.

(1) Sampled Doppler data: Most of the
NGSP results were based on measurements

of time required to count a present number

of beat cycles between an analog combination

of received frequencies and a frequency gen-

erated by a ground oscillator. The measure-

ments were typically made every 4 sec, and

the number of cycles to be counted was set so

that the count would be completed in just
under 1 sec.

(2) Continuous-count integrated Doppler

(CCID) data: In 1971 the Doppler stations,

except those in the Navy Navigation Satellite

System, were modified so that they would

operate more automatically. As part of the
modification, the counting device was modi-

fied so that the time for the completion of

one count is now identical to the time for the
start of the next count. For the modified

equipment the number of cycles to be counted
is usually set so that the count lasts 10 to 20
sea.

(3) GEOCEIVER data: Production of

GEOCEIVER equipment commenced in 1971.

This equipment produces a beat-cycle count

at fixed time intervals. For Navy navigation

satellites, the time intervals are approxi-

mately 30 sec long as defined by time ticks

generated by the satellite. For other satellites
the GEOCEIVER clock terminates the count

at 30-sec intervals. The GEOCEIVER equip-
ment records the refraction correction and

the count at the high frequency so that the

ionospheric refraction correction is made

digitally.

Preprocessing techniques are described in
section 3.3.5.4.

FIGURE 3.21.--Doppler station locations.
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3.3.5 Preprocessingof Data

3.3.5.1 PC-IO00 Camera
(I)onovan N. Huber, DMA/AC)

3.3.5.1.1 PLATE PREPARATION AND
MEASUREMENTS

The plate reduction process begins with
the selection of four of the 25 to 30 reference

stars measured and used in the final adjust-
ment. These four stars (employed for auto-
matic star-identification purposes) as well as
the remaining reference stars are selected so
that they form an even distribution around
the satellite images and are selected also for
sharpness of image, size, and clarity of
image. All images of reference stars are
marked and numbered for the plate mensura-
tion phase. A generalized flow diagram of
the plate reduction procedure as employed by
DMAAC is contained in figure 3.22 at the end
of this section.

DATA FROM FIELD 1PLATES, DATE, TIMES, TEMP., PRESS., ETC.

I MEASUREMENT OF I

YES _DpR_L_ l

DETERMINATION OF l

ICOMPARJ_TOR ERRORS|

i LATEMENSU TION1(25/30 STARS) "

ICAME CA I  TIONH P ATECEHTERCOMPUTATIONI(SO,OOSTARS,CORNED IONOPPLATECDORO'S
t

l IDENTIFICATION** 1
OF REFERENCE

STARS

t

I COMPUTATION OF ATMOSPHERI C IREFRACTION COEFFICIENTS

_ I

[ AUTOMATI C STAR** IIDENTIFICATION

t
I OATAPREPARATIONI OIREDTIONCOSI, ES,

I PREL IMI NARY CAMERA ORI ENTATION IWITH DATA EDITING

I
[ FINAL CAMERA ORIENTATION IWITH ERROR ANALYSIS

I

COMPUTATION OF SATELLITE POSITIONS I
*SPECIAL PLATE L WITH ERROR ANALYSIS J

**SAO STAR CATALOG

FIGURE 3.22.--Generalized flow diagram of

Plate measurement involves the precise
determination of distances of the centers of

density of satellites and stellar images from
an arbitrary origin. The measurements on
the PC-1000 plates are made with a semi-
automatic comparator. Since the center of
density of each image is determined elec-
tronically by the comparator, the error aris-
ing from manual setting is avoided, and the
need for repeated settings is eliminated. The
ability of the comparator to repeat readings

was tested and the precision found to be 1 t_m.

3.3.5.1.2 CALIBRATION OF
COMPARATOR

The stellar comparator is calibrated peri-
odically to ensure continued integrity of

measured plate coordinates. A least-squares
adjustment is made between coordinates of
49 points (X_., Y_.) of a calibrated grid and
the actual measurements (X .... Y,,) of the

same points. The result of this adjustment
produces the amount of rotation (_) and

translation (Xp, Yp), a scale factor (K_, K,)
for each coordinate axis, the orthogonal
deviation (c) of the comparator axes, and the
standard deviation in the plate measure-
ments. The equations used that relate these
quantities are

X,.=Xp+Kx X,, cos _+K,, Y,, cos (c+_)

Y(.=Yp+KxX,, sin 4_+K_ Y,, sin (_+¢)

where X,,, Y_., X .... Y,, are known quantities
and Xp, Yp, _, c, K,, K, are the unknowns
sought and used subsequently to correct the
measured plate coordinates.

3.3.5.1.3 CORRECTION FOR ATMOS-
PHERIC REFRACTION

From observed barometric pressure and
temperature at the camera site and an ab-

breviated version of Garfinkel's (1967) at-
mospheric table, an approximation to the
atmospheric refraction is computed. This
approximation is used to determine the cor-

rection _ (to be applied to the star images
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for computing the initial camera orientation)
and is obtained from

8_=,/, tan 0+_j_ tan :_0+_/:, tan:' 0+,1_ tan: 0

where

tan 0= (1+,/o2COt _ _) 1/:_,/o cot

"/,! is computed from the temperature at the

camera site; *j1, ,j_, _:,, _/_ are the refraction

coefficients interpolated from Garfinkel's

table; and _ is the observed zenith distance.

3.3.5.1.4 CORRECTED PLATE

COORDINATES

The plate coordinates resulting from sec-

tion 3.3.5.1.2 are next referred to the plate

center. Coordinates for the plate center (x °,

yO) are computed by determining the point of

intersection of the two lines connecting the

diagonally opposite fiducial marks (xi, y_)i=

1, 2, 3, 4. The quantities x °, y° are obtained

from

x °= (PIR.,.-R_P._)/(P2Q1-P_Q2)

yO= (x o Q_/p_) + (RalPh)

where

P_ = x3 - x_ P2 = x_ - x._,

Qi = y3 - y_ Q._,= y_ - y2

R_ =y_ P_- x, Q_ R,_,=y._, P_- x2 Q2

for decentering distortion in x and y. The

apparent local sidereal time (ALST) for

each exposure is also computed at this time

for use in subsequent computations.

3.3.5.1.5 AUTOMATIC IDENTIFICA-

TION OF STARS

The corrected plate coordinates for the four

manually identified stars, along with their

apparent positions, are used to determine an

approximate exterior camera orientation ,',

_,', _'. The corrected plate coordinates for all

other selected star images are then converted

to their corresponding right ascension (_)

and declination (_) on the basis of this

preliminary orientation. The a and _ com-

puted for each image are then compared with

the stellar positions for that general area of

the sky, and the actual stars corresponding

to the selected stellar images are identified.
The fiducial marks in each corner of the plate

are used to define the limits in right ascension

and declination for searching by the com-

puter.

From the 1950.0 mean place (a °, _o) and

values for annual (a,,, a,,') and secular (s_.,

s/) variation and the integral number of

years (t) from 1950 (catalog epoch) to the

beginning of the year nearest the date of

observation, the mean place (ao, 8,,) for the

beginning of the appropriate Besselian year

is computed by

The plate coordinates are now adjusted for
radial and decentering distortion of the
camera lens. These corrections are deter-

mined according to adjustments (sec.

3.3.5.1.10) which are performed at least

every 30 days or when the camera system is
moved from one site to another. The cor-

rected plate coordinates (x, y) now become

where x, y are coordinates corrected for

comparator errors and referred to plate

center, _x, Sy are corrections for radial dis-

tortion in x and y, and ±x, ±y are corrections

ao=a°+t (a_.+sv t/200)

8o=_°+t (aj+s_: t/200)

The _o, 8o are then updated to the apparent

place (a, 8) for the time of observation by the

equations

_=ao+rt_+Aa+Bb+Cc+Dd+E+J tan _ $o

_=_o+rt_'+Aa'+Bb'+Cc'+Dd'+E+J' tan _o

where r is the fraction of the tropical year

elapsed since the beginning of the year near-

est the date of observations, _, t_' indicate the

proper motion of the star in right ascension

and declination, respectively, and A,B,C,D,E
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are Besselian day numbers linearly interpo-
lated to the time of observation, J, J' are sec-
ond-order day numbers interpolated to time

of observation, and a, b, c, d, a', b', c', and d',
are Besselian star constants.

Standard deviations in right ascension and
declination for _ and _ are determined for

each star from the values for probable error
given in the star catalog. The standard devia-
tions _., a_ are obtained from

E_ = elevation angle
A_= azimuth angle

h = local hour angle = ALST -

a= right ascension of the star (appar-
ent)

= geodetic latitude of the camera.

The second set of direction cosines is ob-
tained in a similar fashion using elevation

angles compensated for refraction _,

,7.=f{PE_ + (PE_.) _(t/100) 2}1_/.6745

(7_=f{PE_ + (PEc,_) _(t/100) 2}1/_,/.6745

where f is the scale factor for star catalog
errors, PE., PE_ are the probable errors in

star position at epoch 1950.0, and PE.., PEt6
are the centennial probable errors in proper
motion.

3.3.5.1.6 THE COMPUTATION OF
DIRECTION COSINES

Two sets of direction cosines for the refer-

ence stars are computed next: the first set
(x, _, v) without the refraction correction

and the second set (xR, _R, _R) with the re-
fraction correction included. The correspond-
mg x_, _, _/_ directions are used in a pre-
liminary camera orientation in which the

refraction coefficients _, ___,_, and _ are
carried as known quantities and x, _, "/
directions are used for the final camera

orientation adjustment. Using the apparent
star positions a, _ for all reference stars and
the ALST, the values of x, _, 7 are obtained
from

x = sin Az cos Ez

u= cos Az cos Ez

= sin E_

where

sin E_ = sin _ sin _ + cos q_cos $ cos h
cos Ez= (1-sin s Ez) _

sin A: = -cos _ sin h/cos E_
cos A_= -(sin _ cos _ cos h÷cos _ sin 3)/

cos E_

xa-- sin A. cos EZR

u_¢= cos Az cos W_R

yu = sin Eza

where E_a=Ez+_ and other symbols denote
the same quantities as above.

3.3.5.1.7 PRELIMINARY COMPUTA-
TION OF THE CAMERA
ORIENTATION

Input data for this step of the plate reduc-
tion include corrected plate measurements x,
y and direction cosines x_, _, "/_ for all star
images and an approximation of the elements

of exterior orientation ,', .,', _' and the three
interior elements (x_, y_, k). A weighted
least-squares adjustment is performed
through repeated differential correction. The

primary benefit from this adjustment is the
editing of plate measurements where those
with large errors are rejected, leaving a set
of screened measurements for the final steps
of the reduction. The results also provide a

good approximation of orientation x_, y_, k,
v, _,, _ parameters usable for starting the final
calibration without using excessive computer
time. The orientation of camera in space is
defined by matrix A

A o B o CO l
A= A'° B'° C 'o

D ° E o F o

The elements of A are the direction cosines

relating the coordinate system of object
space (X, Y, Z) to that of image space (x, y,
z). For example, A °, B °, and C ° are the di-
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rection cosines of the x axis relative to axes

X, Y, and Z, respectively. Similar definitions
apply to the elements of the second and third
rows of the A matrix with respect to the x
and y axes.

3.3.5.1.8 FINAL DETERMINATION OF
ORIENTATION

The final camera orientation is now com-

puted using the screened plate measure-
ments, the direction cosines (x, _, )'), and the
six preliminary orientation values resulting
from the last step. Two of Garfinkel's re-

fraction coefficients (_1 and _) are used as
partially constrained parameters which are
allowed to adjust in the final orientation
solution. The apparent coordinates of the
stars, which were assumed known in previ-
ous computations, are also allowed to adjust.
The lens distortion parameters are taken
from a separate adjustment (sec. 3.3.5.1.10)
and are not allowed to adjust. The linearized
projective equations for the ith image of the
jt_ star are described in matrix form as

where

V_=E V_s 1
V_-,sJ

--the residuals of the corresponding meas-
ured plate coordinates (x, y) for the
i th image of the ]th star

/)_--matrix of partial derivatives with re-
spect to the orientation parameters,

(@, _, K, x_, yv, k) and the refraction
coefficients (v,, 'l'-,)

$;=vector of corrections to preceding pa-
rameters

where

/_,s=matrix of partial derivatives with re-
spect to a and S computed from data
taken from a star catalog and current
ephemeris

_,s= corrections to computed a and S
c_= residuals being minimized in the adjust-

ment

At the end of each adjustment computa-
tion, an error analysis is made and several
tests are performed to determine the need for
more iterations. The items in the error

analysis and testing include residual errors
in the plate measurements (Vx, Vy); un-
weighted mean measuring error (Vx_) ; un-
weighted mean error in star coordinates
(V,_) ; composite weighted mean error (Vt)
(reflects errors in measurements, positions
from star catalogs and the adjusted orienta-
tion and refraction parameters) ; unweighted
mean error from the preliminary camera
orientation adjustment; and the principal
point coordinates from the preliminary ad-
justment along with those for the current

and immediately preceding iterations of this
final adjustment. Iterations are continued
until the criteria set for these tests are satis-

fied. The various errors are computed from

nt ny

V_v= V_,+ V_,/(nx+n,)
i=l t:l

where n_ and n, are the number of x and y
measurements used.

= _., (A,x,)'-'_- (_s,) _-V_
/---,=_ 2n_

where n_ equals the number of stars used.
Aa and AS are corrections to the computed
and S of the stars.

_(vxw_) _+_ (v,,w,)_+ _[ (_w.)_+ (asw_)_] +_ (_#)i

n_ + n v - 2n, - P

W,., W, = weights in measured x, y W = weights for parameters

W,, W_ = weights of star coordinates a, S
p = number of parameters in final solution

= parameter corrections from final solution
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3.3.5.1.9 COMPUTATION OF
SATELLITE POSITIONS

Finally, the plate measurements and the
apparent local sidereal times of the satellite
observations are used with the final adjusted
parameters from the general analytical plate
reduction (sec. 3.5.1.8) to obtain the azimuth,
elevation, apparent right ascension, and ap-
parent declination for each image of the
satellite. Standard errors in each coordinate

are also computed for evaluating the reliabil-
ity of the computed positions. The azimuth
and elevation of the satellite are computed
first, where refraction (adjusted for paral-
lax} is removed from the elevation. Then,
the azimuth (A.) and elevation (Ez) are used

to compute the final topocentric right ascen-
sion (a) and declination (8) using:

ages, 50 to 60 stars were selected covering the

entire exposed area of the plate. Plate coor-
dinates were corrected for comparator errors

and referred to the plate center. Stars were
automatically identified, direction cosines
computed, and a preliminary camera orienta-
tion computed just as was done in plate reduc-
tion except that the solution included approx-
imate values for the distortion parameters.

Adjustments for errors in the cataloged
coordinates were added when determining the

final orientation and distortion parameters.
The first part of this adjustment, along with
curve balancing (see below), produced the

coefficients of radial distortion (Ko, K1,K.,, _:_)
and their standard deviations. The displace-
ment, d, of a point due to radial distortion,
at distance r from the plate center, is ex-
pressed by the radial distortion function:

sin _ = sin E_ sin ¢ + cos A_ cos EL cos
= ALST- h

sin h = - sin A_ cos EL/cos 8

3.3.5.1.10 CALIBRATION OF CAMERA

d=Ko r+_, r_+K: r_+_ r 7

in which _,, (by definition) is equal to zero.
The relationship between the principal dis-
tance (k), radial distance, and displacement
due to radial distortion is expressed by

The plate reduction procedure discussed
in the preceding sections employs certain
constants (_,;, _(, K_',,J,, J.,, _°, k) for each
PC-1000 camera system which are derived
from special exposures specifically designed
to calibrate each camera system. Unlike some
other camera reduction procedures, the PC-
1000 plate adjustment does not involve a
simultaneous calibration and orientation re-

duction for each individual plate. Calibration
of the PC-1000's, as performed within ele-
ments of DMA, was done only intermittently
to check the calibration values or done after

the camera systems had been dismantled and
reassembled, or shipped to other locations.
In the latter case, a recalibration was per-
formed before any satellite observations
were started.

The camera calibration procedure is much
like the plate reduction procedure just de-
scribed, but there are some differences which
warrant discussion. Instead of 25 to 30 stars
distributed evenly around the satellite im-

r+d' k+Ak
r+d - k

When the radial distance is held constant and

the principal distance is changed by ak, the
d is the distortion with principal distance k,
and d' is the distortion with principal dis-
tance k+Ak. This relationship is expressed

by

kd'- kd
Ak=

r+d

A balanced curve is obtained by forcing the
distortion d' to become zero at distance r.
The change in principal distance becomes

Ak-----kd/ (r+ d)

The balanced curve is

d'=K_r+_r_+_'rS±_'r 7.,7- 3
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and the new radial distortion coefficients are

computed by

k_=k+Ak

K_=Ko+ (I+Ko) ±k/k

_= (l +Ak/k) _1

_'_= (l+±k/k) _2

_'-3- (l +±k/k) K3

The second part of the final adjustment
produces auxiliary decentering parameters
(P1, P.2, P_) which are then used to compute
the coefficients of decentering distortion (J1
and J.2) and phase angle (_°).

Jl = [p_ + p_ ],/2

J.2= P:, 2 2 ,.,[p, +p_ ],/2

_° = tan -_ [ -P_/P.2 ]_/2

3.3.5.2 AFCRL Geodetic Laser System
(Robert L. Iliff, AFCRL)

The operations performed on the data ad-
just the recorded values according to the
amplitudes of the individual returning pulses
and correct for bias. The corrected travel

times of pulses within each burst (of up to
10 pulses) are then averaged, resulting in a
single time per burst. The correct time for
this resultant range must then be calculated.
Time of observation is carried to the nearest
microsecond. Corrections for refractive index
are made in the final reduction by using

atmospheric conditions as measured at the
site. The process used to obtain the corrected
range is shown below.

The travel time is obtained from

Tttt

rc -- Cf
n

where _,: is the corrected travel time, _,,, is the
measured travel time, n is the number of
measured travel times in the burst, and C_ is
a calibration factor obtained by ranging to a
known fixed target.

The range is calculated by

R=-_- (299 792 462)

2.238 + 0.414 PT -1- 0.238H

sin Ez+ (10 -:_cot E_)

where Et is the elevation angle of the satel-
lites, P is the atmospheric pressure in milli-
bars, T is the temperature in degrees Kelvin,
H is the height of the laser above mean sea
level in kilometers, and R is the corrected
range in meters.

The time of observation corresponding to

R is obtained by a weighted average of time
delays by

T,,,=tp+t,z+ t,+t,+_ . . . t,,, _+_t,.+_-_n

where T,,, is the corrected observation time,

t, is the recorded time (coincident with flash-
lamp firing), t_ is the delay from flashlamp
trigger pulse to the first laser pulse (this

time is controlled by the operator), t,, t_ . . .
t,,, is the time of delays from the first pro-

grammed pulse to subsequent pulses (each
referred to first pulse), and t, is the time
difference between station clock and Loran C

and can be positive or negative.

3.3.5.3 SECOR
(Marvel A. Warden and George Dudley,

DMA/TC)

3.3.5.3.1 PREPARATION OF DATA

Data received from a field station were

analyzed to evaluate their quality. This pre-
liminary evaluation served to detect gross
errors which had escaped detection at the

tracking station. Since shipment of the tapes
_rom remote sites was often slow, an unde-

tected abnormality could have resulted in
costly and time-consuming re-observation.

The tape was next translated by means of
a Honeywell H-200 computer and a printout
made. Figure 3.23 illustrates how the five
channels overlap to make up the full range
word. The raw data on tape from a single

station include quality codes, run number,
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FIGURE 3.24.--SECOR data processing.

FIGURE 3.23.--Channel overlap.

day and month of track, and five individual
channels of binary range data, the raw iono-
spheric correction, and the time of each ob-
servation in hours, minutes, seconds, and
milliseconds. These data were screened for
quality and grouped with data from other

tapes carrying data for the same pass.
The combined data were then arranged in

order of time, edited (by examining first dif-
ferences), and packed onto a single tape. No
data smoothing was done at this time. Where
an ambiguity was detected, the range was
corrected and the correction noted. Incor-

rect ranges were flagged and data were
prepared for preprocessing.

A flow diagram of the SECOR data proc-
essing procedure is shown in figure 3.24.

3.3.5.3.2 CORRECTIONS TO THE
RANGE

Calibration Correction.--The system cir-
cuitry, both on the ground and in the satel-
lite, introduces a phase shift and consequent
bias in the measured ranges; hence, a cali-
bration must be performed to determine its
magnitude. Insofar as the transponder was
concerned, careful measurements of its con-
tributions to the phase shifts of the signal

were made before it was launched and it was

presumed that this value (SAT DELAY)
remained the same when the transponder
was in orbit. In any case, as long as the
phase delay in the transponder did not
change, any bias from this source was the
same at all stations.

At the original SECOR ground station,
calibration was performed by introducing, at
a point just before the antenna, a known sig-
nal similar to that received from the satellite.
The antenna was therefore outside the cali-

bration loop. After removal of the phase de-
lay within the loop it was still necessary to
range to a transponder placed at a known
distance from the station in order to deter-

mine the phase delay in the antenna. Because
of multipath reflection and radio interference
this method proved very unreliable. As a
consequence, undetermined bias, probably

varying from station to station, was a source
of error in early SECOR measurements in
the Pacific area. By the time the SECOR
Equatorial Network (SEN) was begun,

modifications to the equipment had been
made to bring the antenna within the cali-

bration loop by placing a small dipole within
the near field of the antenna and it was pos-
sible to remove all of the phase delay due to
the equipment itself. This was done before
each period of observation and was checked
immediately afterwards. In both pre-track
calibration (PRE CAL) and post-track call-
bration (POST CAL) a known range was
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also measured to verify the validity of the

calibration and to measure any drift in phase
during.the track. Data from each step of the

calibration process were recorded on data
tapes in the same manner as observational
data.

A calibration constant, or zero-set bias, is

added to take care of the phase delay in the

satellite's transponder, and any drift in the
zero setting noted between the pre- and post-

calibration. This correction is computed for

both the VF and VFIC channels. The total

correction for the VF channel is

CAL,.f=
PRE CALvf+POST CAL,.f

2

- SAT DELAY,._I_

and for the VFIC channel it is

CAL,.fi,. =
PRE CAL,._i_+POST CAL,_i,.

2

- SAT DELAY, fi,.

Elimination of Ambiguities.--Ranges

were next corrected for any obvious ambi-

guities (multiples of 256 meters). This cor-

rection was not made easily in the early

SECOR operations but, as a result of im-

provements in engineering and observation

procedures, ambiguities presented only

minor problems during the observational

phase of the SECOR Equatorial Network

project. Only on rare occasions was there any

question as to the amount of ambiguity, but

even then this question was easily resolved

once a preliminary solution had been ob-

tained and the unknown station positioned

approximately.

Tropospheric Refraction .--Refraction
causes both a bending and a phase shift of

the electromagnetic wave. Empirical for-
mulas were used to correct both elevation

angles and ranges for the effect of tropo-

spheric refraction. These formulas require

only a minimum of meteorological data and

are accurate to about 10 percent of the cor-
rection or within 1 meter for the case of a

range measured at a 15 ° elevation angle. The

empirical correction was obtained from

ARi=
K1 [1 - e 'l_'/?°°° _]

sin E,, + 0.0236 cos Eo

where K1 is the refraction value at zenith in

meters, E,, is the elevation angle, and Ri is
the range observation.

Ionospheric Correction.--By far the great-

est correction to range measurements is that

due to ionospheric refraction. In some cases

the magnitude of this correction becomes as

large as 500 meters.

The phase delays in the SECOR modula-

tions induced by traversing the ionized re-

gions of the Earth's atmosphere are depend-

ent upon the frequency of the carrier wave.

Therefore by transmitting the modulations

on two different carrier frequencies, two dif-

ferent ranges will be observed for a particu-

lar satellite position. Knowing the differen-
tial effects enables a correction to be made to

either range to remove the ionospheric delay.

The total phase-shift of a carrier wave of

frequency f in propagating a distance R_ is

determined by integrating the phase index of

refraction of the medium along the propaga-

tion path (ds) so that

where

f0 R_
• =k= np(f)ds (3.1)

= phase

k = wave number of beat frequency

np (f) = phase index of refraction

The phase shift measured in units of distance

(electrical path length) is then

R=-_ fonS np(f)ds (3.2)

The total phase shift of the beat frequency
modulation is measured as the carrier wave

is modulated. The group index of refraction

must replace the phase index in equation

(3.1). The two ranges measured by SECOR
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(½ round trip distance) can then be ex-
pressed as

f Rs fo RsR,=I/.,Jo ng(f,)ds+ ½ ng(f__)ds

foRs f Rs
R.. = 1/2 ng (fi) ds + !4 ng (fa) ds

.I0

where

fl = 420.9 MHz
f_o= 449.0 MHz
f3 = 224.5 MHz

(3.3)

and the range difference ±R becomes

R s fl:s

AR-=R._,-RI=1/2 f na(f._)ds-1/..,Jo na(fz)ds

(3.4)

The phase index of refraction describing
the propagation of electromagnetic waves in
an ionized medium can be derived by con-

sidering the waves' interaction with the
individual ions of the medium. Such an

analysis leads to the Appleton-Hartree dis-
persion equation for the phase index of
refraction in the ionosphere:

Analysis of the contribution of each term

to %(f) and ultimately to _R for the fre-
quencies used in SECOR leads to the conclu-
sion that the effects of collisions and of the

magnetic field are negligible (less than 4
meters in ±R under the most extreme condi-

tions). It is therefore adequate to approxi-
mate np (f) by

X
nv(f) =l-_-

since X <<1.

The group index of refraction is defined as

hence

ng(f) =nv(f) +f_--_np(f)

ng(f) =1+ _X
2

(3.6)

If we let a=1.0666, fl=0.5333, the range
difference becomes

fo [ ]AR = I/2 1+ ½ _N (s ) ds
fl2f_

-½fff'II+½vN(s) ]dsa'-'f_

=¼-#-_-_[_12 al_If_'N(s)_lyo as

(3.7)

n_(/) =1-
X

1-iZ- 2(1-X-jZ) ± 4(1-X-/Z) _
+Y_

(3.5)

where

where

Ne 2
X-

mE,,¢o 2

Yt = " He e go sin Op
m_o

YL- He e t_ocos 0p
mo,

Y

0v = angle between the ray path and the magnetic field

v= electron collision frequency m = electron mass

N= electron density e = electron charge

He = magnetic field strength o,= z_v
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If the integral is defined as the total electron

content along the path of propagation Nr,
AR becomes

AR=1_ nF1 1.,lNv (3.8)-

This relationship establishes the proportion-

ality of NT, to the measured range difference

(±R). When this expression is substituted

into equation (3.3) for the high-frequency

range, the following correction term is ob-
tained :

1 1 1
R_--R_+ ¼_111 + _.INT

1
1+_7,

a- (3.9)=R_+±R 1 1

fi" a'-'

=R_+ 0.7125 AR

The true range is then expressed as the

measured range minus a correction term

dependent on the measured range difference.

The error introduced into R_ by the assump-
tions made in the derivation of the two

frequency corrections can be determined by

numerically integrating equation (3.1)
through a model ionosphere. The assumption

of a linear propagation path produces the

largest error at lower elevation angles, and

consequently residual error in corrected

range due to ionospheric delays increases as
the elevation angle decreases.

For the region of SECOR operation (ele-

vation angles > 15 °) the residual ionospheric
error in extreme cases was less than 4 meters

and under normal conditions was less than
i meter.

In the dual-frequency technique the correc-
tion for ionospheric refraction was therefore

computed by

AR,=K [D1 -IC)_- CAL,.f+ CALvf_c]

where

K= - 0.7125 as defined above

D1-IC= R,-_ic- Rv_
2

CAL,_ and CAL,.fi_ are as previously defined.

Travel Time.--At some instant of time, to,
a pulse transmitted by the master station

leaves the satellite and travels to each station

in the quadrilateral, where it causes a range
and a time to be recorded. The recorded

range will be that to the satellite position at

the time to, but the time recorded will be

t,, + At, where At is the time of propagation of

the signal from the satellite to the station.

In order to bring range and time into corre-

spondence, all ranges are adjusted to their

proper value for the time recorded at the

master station. The correction added to the

observed range at any station, i, is

ARi-- R ..... RiR,_, +
-T-K,+ 2T-_, • . .

where

R,, = range to master station

c = speed of light

/_i = rate of change of range to i th station

Scale Factor.--Each station has a refer-

ence frequency oscillator, which is set to a

certain value. This setting can be related to

the value of the assumed velocity of light.
It was determined that this assumed value

differed from the internationally accepted

value of 299 792 500 m/sec by .98 × 10 "_ and
thus a correction is made to each measured

range.

±Ri= -.98 × 10 -_ Ri

where R_=measured range with ambiguity

applied, if an ambiguity existed in the initial

measured range.

3.3.5.4 Doppler Shift

(R. J. Anderle, NWL)

The principal objectives of the data-proc-

essing programs are to change the data

format, to calibrate the station clock, to

detect and eliminate erroneous data points

or passes, and to determine weights for the

observations. No corrections are made for

higher order ionospheric-refraction correco
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tion; corrections for tropospheric refraction
and aberration are made only as an aid in
the filtering and must still be applied to the
filtered observations for any subsequent cal-
culations. Most of the data placed in the
National Geodetic Data Service Center were

preprocessed without the aberration correc-
tion; thus there resulted a bias in the base
frequencies reported with the data. The bias
is of no consequence when the frequency is
a parameter of the solution.

Doppler data received on punched paper
tapes from teletype machines are first trans-
ferred to magnetic tapes for use in orbital
computations. Data recorded automatically
are compared with times of predicted passes
in order that the satellite may be identified

and a header message inserted in front of
each pass containing the satellite number,
station number, and calibration constants;
the inserted data are copied from a header
which had been placed manually by the sta-
tion operator before an earlier pass. Gener-
ally, the foregoing work is performed at the
Applied Physics Laboratory of Johns Hop-
kins University (ch. 2), and the results are
transmitted to the Naval Weapons Labora-
tory (NWL) by telephone data line. At
NWL, data are rejected if illegal characters
or formats occur as a result of transmission

errors, or if unusual time gaps or reversals
in the time order occur in the series of ob-

servations within any individual satellite
pass. Sampled Doppler data are converted
to frequency as follows:

where f, is the effective ground frequency
against which the combined frequencies are
beat, N,. is the number of beat-cycles counted,
T is the time to count N,. beats, and t, is the
time of the start of the count. If the data are

from the CCID or GEOCEIVER, the range-
difference ±p is

±p = - c (N,,--±fAt) / (f,.--_f)

where c is the velocity of light and ±f is the
offset between the satellite frequency and the
ground station frequency. Station clock and
frequency calibration constants provided in
the header message by the station operator
are applied in the course of these conversions.

The times of observation are then ad-

justed by means of the recorded times of
receipt of timing signals from the satellite.
Four to eight timing points are recorded for
each pass of the satellite over each station.
The time of receipt of the signal is corrected
for the travel time from the satellite to the

station by "using predicted positions for
the satellite. The relative error between the
satellite and station clock is the difference
between this corrected time and the nearest

even minute. First the satellite clock epoch
and rate are calibrated for the day by use
of the timing data from a group of stations
equipped with the most accurately calibrated
clocks. The clock epoch and rate are found
by a least-squares solution, minimizing the
satellite clock errors. An iteration of the

least-squares solution is performed after
the clock errors exceeding 2.5 times the
standard deviations of all clock errors are

rejected. The corrected satellite-clock signals
are then used to obtain a mean time correc-

tion for each pass of the satellite over the
remaining stations. The mean corrections are

applied to the time of observations of sam-
pled Doppler, GEOCEIVER, or CCID data
for the corresponding passes. If inconsistent
time corrections are obtained for the individ-

ual time signals within a "givefi pass, the
mcan correction for the day is applied to
observations for that satellite pass.

The sampled Doppler, GEOCEIVER, and
CCID data are then filtered to detect errone-

ous data. The observations are compared
with computed data corresponding to the

predicted satellite positions from the preyi-
ous orbit computation. Residuals exceeding a
coarse tolerance are rejected, and a least-
squares solution is made for a modified sta-
tion position for each satellite pass. This
station navigation, which is performed to
linearize residuals for filtering purposes, is
constrained to lie in the plane containing the
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slant range vector to the satellite and the

satellite velocity vector at the time of closest

approach of the satellite to the station• The

navigation errors are called the along-track
error and the range error• Residuals for the

modified station position are then rejected if
they are larger than 2.5 (2.0 for CCID or

GEOCEIVER data) times the standard de-

viation of all the residuals in the pass. The

least-squares solution and navigation are
iterated for CCID or GEOCEIVER data

until no further data points are rejected.
Each filtered CCID or GEOCEIVER data

point in a pass is assigned a weight equal to

the inverse square of the standard deviation

of the residuals for use in subsequent calcu-
lations. In the case of the more numerous

sampled Doppler data points, eight raw data

points are condensed to one data point. The

condensation is accomplished by making a

fit to the filtered residuals in a time span

corresponding to eight data points, after
which the fitted residual at the mid data

point is added to the computed Doppler value

for that point• The resulting condensed ob-

servation is assigned a weight equal to the
inverse square of the standard error of the
linear fit.

After all passes have been filtered in the

two-day span used for orbit computations,
the navigation errors are filtered. Passes

giving slant-range navigation errors larger
than 2.5 times the standard deviation of the

errors or passes giving along-track naviga-
tion errors that depart from a linear fit

through the errors by more than 2.5 times
the standard deviation of the differences

from the linear fit are rejected. This filtering
is relaxed to the extent that errors less than

10 meters are automatically accepted and all

passes from new site locations are accepted.

3.4 THEORY

This section gives the equations and de-

scribes the procedures used to determine

station coordinates by simultaneous observa-

tions by PC-1000 cameras (secs. 3.4.1 and

3.4.2.1), nearly simultaneous observation by

cameras and DME (sec. 3.4.2.2), nearly

simultaneous observation by SECOR (sec.

3.4.3), and observations by frequency-meas-
uring equipment (sec. 3.4.4).

The theory involved in determining the
potential by combining gravimetric data with

the gravitational potential determined by sat-
ellite geodesy is described in section 3.4.5.

Also given in section 3.4.4 is the theory by
which the potential, polar motion, Love's

number, and so on may be derived from using

data collected by the frequency-measuring
equipment.

3.4.1 Satellite Triangulation

(Donovan N. Huber, DMA/AC)

The theory on which satellite triangulation

is based is the same as the theory used by

V_iisal_ (1947) in solving the flare triangula-

tion problem (see also ch. 7). When the

satellite is at position ]j (fig. 3.25), the

cameras at stations i and k are operated and

the satellite is photographed against a stellar

background. At some later time, when the

satellite is at position ]_ (not necessarily on

the same pass as ]1), another photograph of
the satellite is taken. It is the geometric

relationship between the satellite and the

ground station positions that allows the

determination of interstation directions and
hence a solution.

Jz
L _ Satellite

V__ Forth, $

__ Camera k

Camera i

FIGURE 3.25.--Satellite triangulation.
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3.4.1.1 Basic Conditions

The vectors a, b, and e are all unit vectors
associated with the recording of event 1 (the
appearance of the satellite at point Jl). Vec-
tors a and b represent the directions from
stations i and k, and vector e represents the
direction of the chord between stations i and

k. The three vectors must all be coplanar;
hence

axb.e--0 (3.10)

A similar condition holds for the second

recorded event, which defines a second tri-
angle. It is obvious from this that the chord
between the two camera stations is the line

formed by the intersection of the two planes.

3.4.1.2 Coordinate and Time Systems

The reduction employs two coordinate sys-
tems, the Cartesian rectangular system (X,

Y, Z) with its origin at the center of the
ellipsoid and a topocentric, true right ascen-
sion and declination system (u, 8). There
are also two time systems used in the compu-
tations, the sidereal and universal systems.
The universal time (UTI) of an observation
is converted to sidereal time and added to the

apparent Greenwich sidereal time (AGST)
for 01' to obtain the exact angle between the
mean astronomic meridian at Greenwich and

the meridian of the true vernal equinox for
the time of the observation.

3.4.1.3 Observation Equations

Let

a,_--topocentric, true right ascension and
declination

xp,yp: polar motion (in radians)
G-- o_-8

T-- -- xp cos 8 cos G + y, cos 8 sin G
S= -yp sin
R: Xp sin
u-- sin 8h,+ Tr,:

t = cos _1,sin G,. + $1;

s= cos 8kcos Gk+Rk
r-: sin 8_+ T_
n= cos _ sin G_+S_
m= cos 8_cos Gi+R_
C = sn- tm
B= um-sr
A= tr- un

where the subscripts i and k denote the re-
spective ground stations.

Using the simultaneous observations of
the satellite at j" from the unknown stations
i and k, we obtain from equation (3.10) the

equation (case 1)

A &X_i + BA Y. + CAZ_j- A AX_.j- BA Y_.j

- CAZk_ + L_._= 0

where

L_=A(X_j-Xkj) +B(Y_j- Y_j) +C(Z_j-Zkj)
(3.11)

If the assumption is made that station k is
the known station and station i is the un-

known, the equation above reduces to (case
2)

AaX_j+B±Yij+CaZ_+Lw_=O (3.12)

3.4.1.4 Adjustment Procedures

A least-squares procedure (see ch. 1) is
used to determine values for X_, Y_j, and Z_;.
The station coordinates in the reduction can

be weighted, and other constraints, such as
the known chord length between two camera
stations, can also be introduced. The results
achieved from this procedure with PC-1000
camera data are given in section 3.5.1.

3.4.2 Short-Arc Method
(George Hadgigeorge, AFCRL; Duane C.

Brown and Jerry Trotter, DBA)

3.4.2.1 Observational Equations for Camera
Data

The equations for the plate coordinates x, y
are of the form
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x=fl (Xc, Yc, Zc, Xoo, Yo,,,Z ....
Xo, yo, Zo, 20, Yo, _o ; t) [

y=f._. (X", yc, z,',X ..... Y .....Z,,o, /
Xo, Y0, Zo, 20, Yo, Zo; t) J

(3.13)

in which X% Y', Z c are station coordinates,

X,,o, Yoo, Z,,,, are center of mass coordinates,
and Xo, yo, Zo, 20, yo, 20 are orbital elements
at t=O.

If x °, yO dermte the observed values of x, y,

the adjusted values corrected for systematic
error can be expressed as

x=x°+%,+2vt+2_t+6x l (3.14)

y=y° + vy+itvt+_t 6t+6y J

where 6x, 6y are given by equation (3.15). In

equation (3.14), v_, v, denote residuals in x

and y, and vt denotes the residual in timing.
The terms in 6t account for the bias in tim-

ing. The v, _, and _ are the inner orientation
angles defined in chapter 7 (a is used there

for v) ; k is the focal length.

60)

xy k 1+_ -x
6y k

(3.15)

We now set up the relations

in which the superscripts (oo) denote ap-
proximations and the 6 are the corresponding
corrections. Substituting these into the right-
hand side of equation (3.13) and linearizing
the resulting expressions by Taylor's series,
we obtain equations (3.17) and (3.18). To
arrive at explicit expressions for the ele-
ments of the linearized observational equa-

tions, we let X °°, yoo, Zoo, :_oo, ]_oo, 20° denote
the components of position and velocity for
the time _ of the observation. Then we define

the auxiliary vector

nOOi=IA, B,, yoo- (yc)oo |_ (3.19)
qOOI LD E Z°°--(Z_) °° J

where the orientation matrix has been com-

puted from the data. The values of the plate
coordinates thus computed then become

xoo F OOl
yooJ= LnooJ

(3.20)

The partial derivatives of the plate coordi-

nates with respect to the station coordinates

are given by

B(1) - D(x,y)

(2,3) O(XLYLZ_)

-kll O-x°°/k_[_D BC ]
___ t B r t

qOO 0 1-y°°/k.] E

(3.21)

In terms of this the partial derivatives of the
plate coordinates with respect to center of
mass and in terms of orbital elements are

given by
X_= (Xc) oo+6x _

Xoo=Xo_+6Xoo B(_) = _(x,y) _ _B(_ _

Xo=Xo°°+6Xo (3.16) (2,9) D(Xoo,Yo ....... Z.) (2,3) (3_9)

20= 2°0 +620 (3.22)

_x

x = x °°-_ _ (X%y%z_,Xoo,Yoo,Zoo, Xo,Yo,Zo,2o,Yo,2o) (6X_'" " " ,62o) •

Oy
y = yOO+ _ (Xc, Y_,Z_,X_o, Yo._,Zoo,Xo,y_%,_._g_o_c) (6X_' .... 62o) T

(3.17)

(3.18)
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The time derivatives of the plate coordinates
required in equation (3.14) can be computed
from

(3.23)
r.x.oo7

_ (_-,3) LZ°°J

If we partition __B'-_'as

B,2,=F _(x,y) _(x,y) 1
(2,9) L_D(Xo.,Y,,.,Z,,,,) D(Xo,y,,,zo,xo,Yo,Zo)

F B(_a' i B '=b' 1
=L_2,3) (2,6)3 (3.24)

the linearized observation equations can be
put into the form

A v -B (1, 8(1) _B,2a) _(2a)

(2,3) (3,1) (2,3) (3,1) (2,3) (3,1)

_B(Zb, $(Zb,-B" _(_) -B (4) _(*' = __
_,6) (-6,1) (2_1) (1,1) (2,4) (4,1) (2,1)

(3.25)

in which

station for a given pass. Accordingly, there
may be as many as four sets of error coeffi-
cients. Letting p denote the pth plate (max
p=4) taken and introducing the subscript
j to denote the jth point observed by the sta-
tion, we may express the pair of linearized
observational equations generated by point j"
on plate p as in equations (3.27)-(3.29).
The dimension 1 denotes the total number of

error coefficients needed for the given pass at
the station. The quantity _p is defined as

__ip=1 ifi=p }__ip=0 if i_p
(3.30)

It is understood that the number of param-
eters generated by a given station for a given
pass increases by 4 with each plate success-

fully recorded. Thus Bj may range from a
(2, 17) matrix for a single plate to a (2, 29)
matrix for a set of four plates.

3.4.2.2 Normal Equations (Optical and
Electronic)

 =[olO

_v= v_ _(_b,
Vt -

F X'l
s<,,=/syc / LSz,,J
- L ZcJ B - [ Jc

= --L_]

 ,2o, /
- LSZ,,,,j

(3.26)

At this point we shall recognize that as many
as four plates may be acquired at a given

We are now in a position to consider the

formation of the normal equations for optical
and electronic observations. We first form

the normal equations for a given station and
pass, ignoring the existence of other stations
and other passes. If the covariance matrix of
the random errors in plate coordinates and
timing for the j"' point from the given sta-
tion is denoted by

00

Aj = axj

(3,3) 0 ,r_2,j0
0 0 _:_j

in which

(2,12+/) (2,3) (2,3) (2,6) (2,1) (2,4) (2,4) (2,4) (2,4)

= r_(x)r _(2a,r _(2b)" _(3,, _(4,r _(4,r _Z4), a._e4),]r

(!2+l, 1) (!,._)(], 3) (1, 6) (1, 2) (1, 4) (1, 4) (1, 4) (1, 4)

(3.27)

(3.28)

(3.29)
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the system of normal equations generated by

the point can be expressed as

in which

Nj$ = cj

Nj=B7 (A_AiA[) 1Bj,

and, for optical observations,

N j= 1-_-BTBj

_rt2 (3.31)

c_= B [ (AiAiA 7) -1B_

and, for electronic observations,

cj= 1BfB_
O'r l2

in which re.t2 denotes the expression

(_2 +r%_)l/< It is to be noted that since

the results of the multiplication by (AjAjAj) -_

can also be effected by treating this matrix

as a unit matrix in equation (3.31) after

modifying Bj and _j by dividing their first and

second rows, respectively, by 2 ;_ jar j)

and (_y_.+y2 2 '_s_jffrj) •

The system normal equation generated by

all points from the given station pass is

simply

where

N = :_Ns

C = ]_C i

N_=c

3.4.3 Reduction of Data From SECOR

(M. A. Warden, W. D. Googe, and R. W.

Smith, DMA/TC)

3.4.3.1 Trilateration

from the coordinates of three known stations

and from three simultaneous ranges. Co-

ordinates of the fourth (unknown) station

are then developed from the assemblage of

ranges of this station from the satellite. The
solution takes the well-known form of

±R_ = (BerBe) _ (B0r Ye)

where

AR__= ±Y
±Z

= corrections to the assumed coordinates

of the unknown site

- _X., _Y_ _Z_

= partial derivatives of observables with

respect to the unknown site coordi-
nates

Ye,=R,,,- I R,-R_ [
= discrepancy

R_ = satellite coordinates

R,._= measured distance to the unknown site
from the ith position of the satellite

n = the number of satellite positions avail-

able for the adjustment

R4= estimated coordinates of the unknown
station

The summation includes all observations to

the unknown station. After each summation,

the correction is applied by

R4 = R_ + ±R_

3.4.3.2 Short-Arc Theory

A short-arc, batch, least-squares procedure

was used for final adjustment of all data ob-

served as part of the SECOR Equatorial Net-

work. The basic range equation is

The geometric solution is based on the as-

sumption that coordinates of three stations

in a four-station quadrilateral are known.

Satellite coordinates are determined uniquely

rt_= (Rt (R., Vo)_p j)2

where rti is the range at time t measured

from station ],2__ is the position vector of sta-



DEPARTMENT OF DEFENSE 177

tion ] and Rt=Rt (Ro, Vo) is the position
vector of the satellite at time t and as such is

a function of the position R o and velocity Vo
of the satellite at initial epoch for the short
arc in question• The short-arc, batch, least-
squares procedure is developed as

where

= Q[W,Q, _Q[W,Y,

-R_o_

Ro 2

X= Ro.
-- Yo n

P,

Pm

[R°J 1 nominalorbital vectorsforthe] th¢o;_ = = 1,nepoch where 3"

[ pj ] =site coordinates where ]= 1,m
X = estimated state vector

±_:-- correction to state vector

=14_i--weight matrix of the ith observation
=

where _0_is the estimated standard
deviation

Q_= matrix of partial derivatives of the
observables with respect to the
elements of the state vector

Y_ = 0,,,_- 0_= discrepancy between meas-
ured and computed observations

05- observation at the time t
i= 1,n observations in the adjustment

In the short-arc, batch, least-squares proce-
dure, orbit-to-orbit correlation is neglected;
however, the cumulative site-to-orbit corre-
lation is maintained. Also the short-arc,
batch, least-squares procedure allows an ad-
justment of more than four ground stations.
The procedure is begun by setting

[£OTW_ ±W -17-1 "Ax= o j ZQ, E,Y 
I- _-=l i=1

where

-- 2

%Rot_o_0 0 0 ... 0
0 2 0 0 0

(r_nogo_

2

0 0... %_o_Vo.0 .-. 0
0 0... 0 _, 0... 0

0 0"" 0 0 2_2"'" 0

2

0 0"" " 0 0 0"" " O'p m

The coefficients of the normal equations are

N(t,) = EQTW_Q,+ Wo -1
_=1

and the covariance matrix is

c (tO =N (t,)

The structure of N determines the correla-

tion carried in the adjustment. N has the
form

N_

-I 0"" 0 B_ B_2 "" B,.,

0 I._,.• • 0 B,21 B.,, • • • B2,.

• o

0 0 I, B,,_ B,,__ ... B ....

Br_ B_'I... B _ S_ 0 ... 0

B_r B_r_...B r 0 S: 0

B r B r B r 0 0 S,.
--Dn _ 2m _ nm
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The correlation terms Bij- will be nonzero
when the particular station tracks the corre-

sponding orbit. Off-diagonal terms in the

I matrix portions are zero because each orbit

]-s assumed to be independent. Off-diagonal
terms in the S matrices are zero because the

observations are made via the satellite rather

than from site to site, as would be the case

with land surveys.

The short-arc, batch, least-squares proce-
dure used here is iterative. After each itera-

tion the increment AX is applied to the state

vector X and the procedure is repeated;
hence

XL = XL 1+ AXL

where L is the number of the iteration.

Once a correction adjustment AX is ap-
plied to X_._I, the new state vectors Xf, are

used in the next set of computations.

3.4.3.2.1 INTEGRATION OF EQUA-
TIONS OF MOTION

Rr(t_.) = fl (t,, t_,)RT(tl) +gl (tl, t:)vr(t_)

(3.35)

vr (t._,) = f=.(t,, t,)Rr(t_) +g...(tl, t..,)vr(tl)

(3.36)

where Rr is the location vector and vv is the

velocity vector. The solution for AR is found

numerically as follows :

(1) Rs(t,,+At), vT(t,,+At) arecalculated

by means of _quations (3.35) and

(3.36).

(2) The perturbationary acceleration,

A,, is calculated at t. by using R,r (t),
vo(t) and at t+At by using

R r(t+At), v r(t+At).

(3) AR (to+At), v_(to+At) arecaleulated
from

At:
AR (t.+At) =_[2 Ap(t,,) +nj(t.+At)]

At
A v(t.+At) =_-[np(t,,) +np(to+At)]

The total acceleration of a satellite can be

represented as

d-' R
dt T - _TU+A.+ ... (3.33)

where V U is the two-body attraction and A,

are the higher order terms in the accelera-

tions caused by the earth's gravitational field.

Other forces (e.g., drag, radiation pressure)
are not considered for the short-arc orbit

integration procedure, since the effects of

these are primarily of long period.

The general solution of equation (3.33)

cannot be obtained in closed form. However,

the equation may be partitioned as follows

d"±R
dt.V =At

A. =A(I

(3.34)

Now, equation (3.34) is the two-body equa-
tion whose solution may be expressed as

The position at t,, + At is then

Implicit in the calculations of step (3) is the

assumption that the perturbating accelera-

tions may be approximated by a linear func-

tion over the rectification interval, At.

In fact, the rectification interval must be

chosen to make this assumption valid if no

significant error buildup is to occur. For

purposes of predicting the positions of a

satellite in a near circular orbit, the rectifica-

tion interval is held constant (normally 5

SeE).

3.4.3.2.2 PARTIAL DERIVATIVES OF

THE OBSERVABLES

The procedure used here requires the eval-

uation of the partial derivatives of the ob-

servables with respect to the position and

velocity components of a satellite. For con-
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venience, the partial differentiation operators
are defined as

/
L@J

_o
= OR

where X, Y, Z, S;, _, Z are the components
of the satellite position and velocity described
in a topocentric coordinate system.

The partial derivatives of the range rtj
with respect to X, Y, Z, X, 1_, Z at the time
of the observation are

Vr= 1 (Rr-Pi) =/_
r

Vr=0

The partial derivatives of the range rtj with
respect to the station positlion P_ are

OPt - DPj -

3.4.4 Doppler
(R. J. Anderle, NWL)

3.4.4.1 Organization of Computations

The principal parameters of recent general
geodetic solutions include 450 gravitational
coefficients and 150 components of positions
of observing stations. Incidental parameters
include thousands of orbital constants, pole
positions, and instrument bias parameters.
In order to reduce the problem to manageable
size without loss of accuracy, the normal

equations are considered to have parameters
of two types: geodetic parameters Pc; and
bias parameters Pn. The normal equations
are then partitioned as follows :

[Be] [A]] P,_

Operation on these equations yields

[B_]Pe=Ec,- [A]P_ (3.38a)

so that

where

P,= [B_,1] (E,- [A*]Pe) (3.38b)

[B_,]P_=E_ (3.39a)

[B_] = [Bo] - [A] [B?,1] [A*] (3.39b)

E_ =Ea- [A] [B7_1]E, (3.39c)

The weighted residuals for the solution are

R s* [W]RS=R * [W]R-P_,E,-P,jEo
(3.40a)

=R* [W]R-E* [B;1]E. - PaEc.*"'
(3.40b)

When PB are considered to be instrumental
biases, then [B_] is block diagonal when
partitioned according to the instrumental
biases in each pass. Therefore, the normal
equations can be formed and accumulated on
a pass-by-pass basis for a given set of orbital
constants, where the orbit constants are con-
sidered part of the Po parameter set for the
moment. The weighted residuals are adjusted
by the second term of the last equation. A
series of such matrices is generated for
various spans of data and is stored in a
library. Periodically, the stored matrices are
combined. In order to permit processing of
data for an unlimited number of time spans,
the orbital constants are eliminated and the

weighted residuals are again adjusted, where
now the orbital constants are considered to

be P. ; that is, [B_] is block diagonal when
partitioned according to the set of orbital
constants (including the pole position) for a
given span of data. Orbital constants are
obtained by back substitution in the normal
equations saved for each span of data. In-
strumental biases can only be obtained by
reintegration of the orbit using the improved
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geodetic and orbital parameters, because the

partitions of the matrix corresponding to
instrument biases are not saved.

3.4.4.2 Reference Frames and Constants

Force and Perturbation Equations

GENERAL EQUATIONS OF
MOTION AND PERTURBA-

TION EQUATIONS

The reference frame used in integrating
the equations of motion for a given span of
data is an inertial frame .defined by mean

equator and equinox at zero hours on the first
day of data. The Earth's gravity field is
rotated to this frame from a frame aligned
with the instantaneous axis of the Earth's
rotation. In the course of calculating resid-

uals, the coordinates are rotated from the
inertial frame to an Earth-fixed frame ori-

ented with respect to the CIO pole. Trans-
formation from the inertial to the Earth-

fixed frame is performed by successive
matrix multiplications

r'= [A] [B] [C] [D]r

where r' are the Earth-fixed coordinates, r

are the inertial coordinates, the [D] matrix
corrects for precession, the [C] matrix intro-
duces nutation, the [B] matrix accounts for
rotation about the spin axis, and [A] corrects
for the polar motion. The time argument
for the integration is taken to be UT2 in the
geodetic solution, although ephemeris time
would have been a better choice. The appro-
priate value of (UT2-UT1) is used in com-
puting station positions in inertial space;
therefore the difference in the ET rate and

UT2 rate is equivalent to a trivial error in
GM, the balance of the difference being ab-
sorbed in the arbitrary orbit constants. The

elements for the matrices [B], [C], and [D]
are obtained from the American Ephemeris
and Nautical Almanac and its supplement.

Initial values for the pole position are taken
from Circulaire D of Bureau International de

l'Heure (BIH). Corrections to the pole
positions provided by the BIH are also pa-
rameters of the solution, but the BIH values
are taken as a priori data and are assigned
an accuracy of 1 meter. The corrections are
considered constant for the length of the arc,
which is at most 16 days.

The equations of motion may be expressed as

= GE+ D_+ G., + G_ + Rp + T., + T.

Contributions to the force terms arise from

(;E gravitational field of the Earth
G., gravitational field of the Moon
G_ gravitational field of the Sun
Dg atmospheric drag

Rv radiation pressure
T,, tidal distortion due to the Moon
T_ tidal distortion due to the Sun

The maximum numbers of force param-

eters are about 500 in GE, 10 in D_, three in
Rp, and one to correct Love's number, KL. (In
addition there are six parameters corre-
sponding to the orbital elements, two param-
eters to correct the nominal pole position,
and two arc parameters to account for the
dominant effect of higher order resonance
gravitational coefficients.)

The pertubational equations are given by

where

_r .. _2r___r _= _=
_i= _pk' , -_, r = __,,

and Pk refers to the k TMparameter.

Z_Z'

(X, Y, Z)

3/-x "'-.J ',

×o

Y
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3.4.4.3.2 GRAVITATIONAL FIELD
CONTRIBUTION FROM
THE EARTH

We write the Earth's potential in an
Earth-fixed coordinate frame (x', y', z') as

ao._ is the rotation of the Greenwich merid-

ian from the reference equinox used in form-
ing [B]. We recall that the inertial coordi-
nate system is based upon the mean pole and
equinox for the starting time of the arc, to.
We use

M Xv   ,oeJr,+1
__P:7 (sin _)
,tt:o

(C_cos m 2 +̀ S,_sin m 2`)

where ae is the Earth's radius, z'/r=sin ¢,

where ¢ is the geocentric latitude, 2, is longi-
tude with respect to Greenwich meridian, and

r= (x _-+ y2 + z2 ) _ = ( x'2 + y'_ + z'2 ) 1/2

The contributions to the force terms are
obtained from

We write

ao._,= Ho +/:/t,, + _t

where H0 is the hour angle of the vernal
equinox at the start of the current year,/:/is

the rate of change of hour angle, and _ is the
mean angular rotation velocity of the Earth.

3.4.4.3.3 EVALUATION OF U_, V_
RECURRENCE RELATIONS

The recurrence relations obtained by R. N.
DeWitt in 1962 are used to evaluate spheri-
cal harmonics. The procedure calls for repeti-
tions of horizontal stepping followed by a
diagonal step. (See fig. 3.26.)

Horizontal stepping :

nv= _[c_.u _.+s_vy]
n=o m:o

n_l

where

GMa'_ P cos m 2`
m--

U. - r,+_

GMa: p_,(z"_ sin m
"\r/m__

V, - r,+_

U_t+l- _ [E._] r (2n+l) U._
(n_m+l) P

- (n+m)pUm__

P ,[E.,]r(2n+l)V _.
(n-m+1) •

- (n+m)pV_,_l

where [E_] is the third row of [E].

We note that V _ = O, C_ = S_ ---O. The longitude is introduced through

C(x) =cos _ cos x=a_[Ed ._'
r

S(2`) =cos ¢ sin 2`= a_[E_] ._'
r

where [E_] and [E2] are the first two rows of

E=BcD
ae

V 1 _ -a_ cos

C=|A¢(cos c-Ac sin 0 1 Ad2 A¢-_cos2

/
a¢ (sin c+hc cos _) _e-_sin _ cos

"3

-_¢ sin _ |
/

_¢_ • /
e--Ae--_--Sln c COS e/

!

", Ac_ A_2 " z /
_x -_ _ sln cJ

and the [B] and [D] were defined earlier.
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m

m=0

/I

s"

]_ s/"

= o --_JwU_
/

/
n=O n

and define the rotation matrix

[R_,] = [E*]

where the gradient operator V1¢ is defined to
take into account the rotation of the Earth.

We use

N tl

S. aeVV. )
_=o m=o

FIGURE 3.26.--Horizontal/diagonal stepping.

Diagonal stepping :

(VU, _ and V V,_ refer to Earth-fixed coordi-
nates.)

The recurrence relations for DU_,/_r * are
obtained from

n+l__ n _U,._ (2n+l)p[U,C()O V;S(A)]

VT__.__- (2n+l)p[V; C(A) - U_S(A)]

where

Using the values

ac

r

UO=_, UO= GMa_(ae[E3]r)r:_ , Vo°=0, Vo=0

we start at n=l, m=0 in the horizontal
stepping equation and compute U °, V ° for
i=2, 3 ..... N. We then utilize diagonal step-

ping, and calculate U], V]. Returning to
horizontal stepping enables calculation of

U[, V_ for i=2, 3..... N. This process is
repeated until re=M, where M<_N.

We note that

P 1/Am]T m I 1/ TTm+I==I

ae_V mn I II AmlT"-' I/IT""/

L- (n-m+ 1) uT/+, J

A,_-- (n-re+l) (n-m+2)

and similarly

P IIA#IIT ml 1/ 17)n+l'l

_ _&m_ll+ 1 -- /2_n+l J--_'m / |----r#l...i 1 ]_ _.lH+l

a,,Vv. =[ V.,A. U.+_ + '/..,o.+,
L - (n-m+l)V;'+_

N . i.h TTm m

)l:o l_i:l) i _n C/_C Dr*

N N

and

U_= (-1)"(n-m) '
(n+m) ! " U_

V_= (-1)'"+'(n-m))
(n+m) ! "V_

3.4.4.3.5 EVALUATION OF DERIVA-

TIVES OF (;_

The matrix of gradients is obtained from

3.4.4.3.4 EVALUATION OF DERIVA-

TIVES OF UT, V,_

We use the notation

DG_
ar* J

['_"_.,"_"_('C"a' D=_ J- ,q''-'D O_7"_-I----[R,,] \ " _Dr* ' -" _' Dr*/J [R*]

G_ : V_V where
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DU"'-I DTT"_+"
V.,A_a, _ L1 l/',a, ""+_- Dr /-' Dr*

..... DV,,,+,.+I
_ V.,A_a_, DV"+' 1A,ac _"

- Dr* " Dr*

, au:t,
- (n--m+l)a_

m_-I _Ufl,+l -1/_,A_a _ 1 ]/ _d _+1
v2a( Dr*

.... ' OU m,,_/.,A'- DU_'+_"+ 1Aa .+_
/_ .'*e Dr* ,_ c Dr*

_ (n_m+l)aO V'2÷_
Or*

The derivatives for U's and V's are ob-
tained from the recurrence relations given
earlier.

For Pk = C_ or S ,_

but

DGE
DPk - [R_,] _ or [R_] OL respectively

p_,:_=C_or SL DGE _ 0
Dp_

3.4.4.3.6 EVALUATION OF SOLAR AND
LUNAR GRAVITATIONAL
TERMS

The solar terms are as follows :

where

ms)G,=--CM{ r--r., ___

r2 -- x2 _L as2 A_ z 2
8-- 8_._81 8

and GM, is an input gravitational constant
for the Sun.

The Sun's coordinates, x,, y, z_ are sup-
plied on tape at one-day intervals. A sixth-
order Lagrangian interpolation is used to
evaluate current coordinates. Exactly anal-
ogous procedures apply for the Moon. The
Moon's coordinates are supplied on the
coordinate tape at half-day intervals and a

similar interpolation formula is applied.

3.4.4.3.7 EVALUATION OF DERIVA-

TIVES OF G,_ AND G_

Setting P_= (x-x_)2+ (y-y_)'-'+ (z-z.O 2,
the derivatives are given by the following
formulas :

Dr p_

--3(x 2,-xs) TP_
DG. GM

- -3 (x-x.0 (y-y_)
Dr p_

-3 (x-x_) (z-z_)

--3(x- xD (Y-Y')7
DG,v_ GM, _3(y_y,)2+p_ I

1
-3(z-z_) (y-y)_J

DG : G r-3(x-x ) ]Dr - p_ L-3(y-yA (z-z,)-3(z-z,)_+p_

DG_= 0 for all Pk
Opk

Similar expressions apply for lunar terms.

3.4.4.3.8 EVALUATION OF DRAG CON-
TRIBUTION

The relative velocity of the satellite with
respect to the atmosphere is

/ +o,v\
v,':'-'Xr_k_--'ox )

where _ is the average angular velocity of

Earth's rotation with o,= Io ].
The acceleration of the satellite due to

drag is the vector

D= -',/p_m ]vrlv,,

in which s is the cross-section area and m

the mass of the satellite, p is the upper atmos-
phere air density taken from

p=exp{Ah-B- # Ch'_+ Dh-E}

and the height of the satellite above Earth is

1 a_ e2 Ih = r C r._,+_i__z__z._!
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where e and a,, are the eccentricity and semi-

major axis of the reference ellipsoid.

The effective coefficient of drag is in step

form, y_, i--1 .... n< 10, where the values are

entries of a table separated by given times t_

of drag break.

For the parameter derivatives we note that

all vanish except those for the current drag

constant. With subscript implied, these are

aD s
-ap = -°-_MMIv'lv'

3.4.4.3.9 EVALUATION OF DERIVA-

TIVES OF THE DRAG ACCEL-

ERATION

Noting that drag acceleration is an explicit

function of v,. and other positionally depend-

ent quantities, we write

a_*/ Iv"lv"_Pr*(_)

or using

1 ap A+ Ch+D/2
p ah- \/Ch'-'+Dh-E

and

W=,v_,[pIDl/-1aPE(_h (1 h):_a'°l _lrl1_ _

+ 1 - a_ 1 - e_

To allow for possible negative effective drag
acceleration coefficient in these formulas use

3.4.4.3.10

8

CALCULATION OF RADIA-

TION PRESSURE TERM

Radiation pressure is calculated from the
formula

Rp KR rs--r
-- m Ir_-rl :_ when sunlit

Rp = 0 in Earth's shadow

K. is the radiation parameter.

3.4.4.3.11 EVALUATION OF DERIVA-

TIVES OF RADIATION PRES-
SURE

the positional gradient of the drag accelera-
tion is then a matrix whose three rows are

aD.,. IDIo,# = " "

ar- _t [v''] o[V,j_)-v,.,.w

aD,, IDI,,(- [v'']=-Iv,-I'-'_

Dr -- Iv,d:'\ v,..V,.o ] -

ar-Iv,.t:'t, v''ov'")-v"=w

VryW

The velocity gradient is more simply ex-

pressed as the symmetric matrix

aD ID[( 1 vv*\a_*- lv,.I +_=)

[Iv,.r-'÷ v,.,.v,..\
IDI v,.v,.,, Iv, l=+Ev,,] = v,.,,v,: I

--Iv,.l:\ v,.,v,: v,,,v,: Iv,.l-'+[v,.:]V

The derivatives of Rp are almost identical

with those of G(s) with GMs replaced by K_,.

However, we also have the requirement

aR. = 0 in the shadow
Dr*

Also, we have

aRp R_

Opt: - KI_,,,

if p_..=K_,_ re=l, 2 .... 6

but

3.4.4.3.12

OR, = 0 in shadow
8p,,

TIDES AND TIDAL DERIVA-

TIVES

The differential gravitational (tidal) at-
traction of the Sun or Moon causes the
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Earth to become elongated on an axis point-

ing toward the disturbing body. This redis-
tribution of mass results in a perturbation

of the Earth's own gravitational field, which

can be represented by potentials.

for the velocity integration, an accurate

velocity for use in Doppler calculations is
obtained by differentiating position.

3.4.4.3.14 TRUNCATION ERRORS

5

_ v GM, a_p _,.TT

r s r
5

GM, ae, , . ,
V., = - gL--:_- _..._r., Lr r.+)

I m •

where kr_ is Love's constant, presumed equal

for both solar and lunar effects, and P= is the

Legendre polynomial. The associated force,

obtained by differentiation, is

DT._

DT_

DkL

GM._a_(( 15(r*r_'_ 2 3)r+3(r*r.+_r_ _- r_ --2--\_] +2 \ rr+ /r_/

The lunar term is identical with subscript m

for s. The force gradient contribution is

DT.o kL GM.+ail ( 15(r*r+y_i+6r_r_ ._*Dr* -- 2 r_ 3- \ _r._ / / r_

+(105(_'*t_'_) -- 15_rr*/r'-' -30r*r_(rr*_r'_r*rr_\rr_ )i

with a similar term for the moon. The only

nonvanishing parameter derivative of either
tide is for Love's constant and

3.4.4.3.13

D# DTo 8T,,,
DkL - DkL d Dkz+

INTEGRATION METHOD

A "second difference" integration process

is used (Herrick, 1971). A 12th order is nor-

mally used for the position integration, but

recent geodetic solutions were based on sixth-

order integration, because of computer stor-

age limitation. Velocity integration per-

formed for geodetic solutions is based on

fourth-order integration, since less accuracy

is required for the velocity used in the drag

equaLions. When a low-order process is used

Computations at the Naval Weapons Lab-

oratory are performed on a computer with

14 or more significant decimal figures. There-
fore round-off errors have not been found to

be a significant source of error in geodetic

computations. The principal source of nu-

merical error occurs in the integration of the

equations of motion and variational equa-

tions. In the general geodetic solutions,

truncation errors in integrating the varia-

tional equations for gravity coefficients are

the critical quantities.

For ephemeris computation, a 12th-order,

60-sec interval of integration can be used,

yielding an ephemeris to 1-meter accuracy

and perturbations for orbit constants to 1

part in 10% This accuracy is achieved over

a span of several days for a variety of orbital

conditions and a complex field. But accuracies

in the perturbation in position due to potential

coefficients must be better than 1 part in 10%

because of the correlations among coefficients
as well as correlation between coefficients and

both orbit constants and station coordinates.

Therefore in general geodetic solutions a

sixth-order process and a 20-sec integration

interval are used. Under these conditions, or
with a 12th-order process and a 30-sec inter-

val, the truncation errors for the 25th har-

monic reach 1 part in 10'L

The goal of 1 part in 10 (' is achieved for
coefficients of 25th degree 15th order and

coefficients of 20th degree and order.

The sixth-order process is used in place of

tim 12th-order process, despite the fact that

a smaller integration interval is required at

this order, because of computer storage
limitations.

Interpolation Errors.--The program is de-

signed so that the equations of motion and

variational equations are integrated for the
maximum length of time allowed, considering

the disc storage space available for the results
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of the integration. Interpolations are then

made to obtain data at the times of observa- m-=-

tion, equations of condition are formed for
data observed in the time segment, and incre-

ments are made to the normal equations. The

integrations are then restarted at the end of Io-_-
the segment. Therefore, it is desirable to store

data for the minimum number of integration =
steps required to yield accurate interpolated
values at the time of observation. Eighth- _ io-'.

order integration in data stored at 240-sec ._
intervals is adequate for this purpose. Figure

3.27 shows that this choice results in errors = ,o-'.
in position of less than 1 meter for a variety
of orbital conditions.

Figure 3.28 shows little gain by increasing

the order of interpolation. Studies have io-'

shown that this interpolation process is also

consistent with the accuracy with which the

variation equations are integrated.

3.4.4.3.15 EXTRANEOUS RESONANCE

PARAMETERS

In treating gravitational resonance effects

we generally select for special treatment

iO-I -

I0-_ -

I0-s-

- /
10_7

uJ• ///
3E 10-9

IO-II.

iO-IZ.

30
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927 KM Z

J

20 386
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_,! SATL

X

120 210 300 390 480 540

INTERVAL (SECONDS)

FIGrRE ; 27.--Interpolation errors for Lagrangian

eight-point interpolation.

X

--Z

Y

-- 927 KM SATELLITE---185 KM SATELLITE

X

Z Z ......

Y V_L"OOClTIE S -

(KM/SEC)

6 8 I0 12

ORDER OF INTERPOLATION

FIGURE 3.28.--Interpolation errors for 240-second

interpolation interval,

three orders, m, of coefficients for which

m,,,_n,,, where ,,, is the Earth's angular rate

and n,, is the mean motion of the satellite.
One of the orders is the smallest m for which

m(,,>n,,, and the other two orders are the

two largest m for which m,.,<n.. Gravita-
tional coefficients of degree m through about

m+ll are introduced as parameters of the

solution for these orders. We are also con-

cerned about resonance effects for coefficients

of order m such that m,,,_2n,,. Effects of

these coefficients are generally about 20

meters for polar satellites in the along-track

direction for the coefficient nearest reso-

nance, and the effects are below 2 meters for

other orders of coefficient or in other direc-
tions. Effects at lower orbital inclinations

are smaller. Rather than integrate perturba-

tion equations for these high orders of co-
efficients, we sometimes account for the

dominant effects of these coefficients by in-

troducing additional arbitrary parameters

applicable to each time span of data. These
paran-_ters, which are termed "extraneous

resonance parameters," are the coefficients
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a and b of terms additive to the true anomaly

of the satellite a cos ,o,,t + b sin ,),_pt where _e_,
is the calculated beat frequency between m_

and 2no.

3.4.4.3.16 DIMENSIONAL (BLP)
CHECK OF NORMAL

EQUATIONS

C. J. Cohen discovered a nontrivial rela-

tion between system parameters and system
observables that has been found useful in

checking for formulation, coding, numerical,

and computer operating errors. The relation

is BLP=O, where B is the normal matrix

augmented to include a scale parameter, L

is the length dimension of each parameter,

and P is the initial value of each parameter

used in forming the normal matrix. There-

fore this BLP scale parameter, _, is intro-
duced in the normal matrix as it is generated.

(The check for BLP= 0 is performed before

the solution for the conventional parameters,

and if it is found satisfactory, the row and

column of the normal matrix corresponding

to the scale parameters are then deleted.)

The scale parameter adds no force on the

satellite and makes no contribution for any

derivative of force except its own perturba-

tonal force, which is a sum of contributions

from the drag and the solar and lunar satel-

lite perturbations

$_= G_+G,, _4T _4T,,_D 1 0s
p On

_(OG_ OG,,_ OT_ OTm\
\ Or* +

The starting conditions for _ and _ at arc

epoch are zero as they are for most other

parameters.

3.4.4.3.17 EQUATIONS OF CONDITION

AND NORMAL EQUATIONS

The principal geodetic results are obtained

by observations of frequency, range, range
difference, right ascension, and declination.

Therefore this section is limited to these data

classes, although the computer programs de-

scribed process additional types of data.

Processing of Doppler Frequency Observa-

tions.--Doppler frequency is that received
deviation from the satellite oscillator fre-

quency caused by relative motion of the

satellite and the receiving station. In the

simplest case this deviation is proportional to

the time rate of change of the electromag-

netic path length from the satellite to re-
ceiver.

The objective of this section is to give

explicit formulas for the coefficient in the
differential

di:5:21
k Vp_.

which are to be used in parameter improve-

ment and to explain other details of Doppler

pass processing. The parameters to be esti-
mated fall into classes :

(1) Orbit : satellite initial conditions,

coefficients of the gravity field, andconstant

of radiation pressure, drag, and tide.

(2) Station: the geocentric polar co-

ordinates.

(3) Bias: frequency offset, drift rate,

and clock error for the pass.

(4) BLP: velocity of light and scale

parameter.

Weighted partial derivatives of frequency,

with respect to these parameters, and the

weighted discrepancy of observation are the
coefficients in the observation equations to be

generated.

The observable is the total received fre-

quency approximated by

f=f,(1-_0 O)+Sf_

where f_= fb + fb (t- tb) gives the drifting

reference frequency and _f_ the correction to

frequency compensating for tropospheric

refraction. The vector _ is related to the
satellite position r, the station position r,,

and the time of observation t, implicitly
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Here ta is the time at which the currently

received signal presumably left the satellite.

p and t,. are defined by iteration starting with

ta = t. The actual position of the satellite used

is the sum of the trajectory position and the
long-period perturbation.

r(ta) =rtraj (ta) d- _'tr.j (t_)
_¢_.j (t.)

(a cos o,,..t,, + b sin o,_.pta)

Therefore the derivatives of r are sums

(evaluate at ta)

P
e = _+ o,_._,_ ( - a sin ......t_ + b cos o,_pt_)

1 ( _e*_+_ I---_-. )1" (a cos ,,,,.,t.+b sin ,,,,.,,ta)

/.
=e- 0'"_'7 (a cos .,,.t. + b sin O,e.ta)

1 _i-* ..
+ 2o.ep_;(l- _)r ( -a sin o,,..to + b cos o,,.,,t.)

1 *r 2 (I _*+(_:(I-7)'-_(i'*'). -_:_--' i_ )

1. ,/_ *i-*\ \
_,r, kl-_:_-_, ),)(acos,,,,,,,t_+bcos_,,.,t,,)

in which everything on the right is taken

from the trajectory at to. Corresponding to

the parameters, we approximate and ignore

the long-period corrections

almost entirely to the motion of Earth, not
to the drift in station coordinates. Therefore

r_ = [ABCD] * ro

_= .729 211 585 5 × 10 -_ rad/sec

This approximation to _ is in error at about

the eighth digit because of the precessional

velocity of the Earth's axis. Finally, the
slant range rate is

_= (e-e;) -_e* (e-,a)e

with

It should be noted that unless otherwise

specified all station-related quantities are

evaluated at tr while all satellite-related quan-
tities are evaluated at t..

In geodetic solutions conducted to date, the

refraction correction is given by the expres-
sion

a/r

fs i aN._-±N_. _xr).(_ 1 ro_- c o cos_ (*- 0 cos_ ro/

Here

_r _r
--jt,,,j or _p

OPk-- _Pk '

DP,.- OP_: Itr''j or _p

in anticipation of a=b=0 for the grand

geodetic solution. The tables of r, e and

can be used to obtain r, t-, _, _, and _ by

interpolation.

The station position and velocity at obser-
vation time are taken from the definitions

given earlier. The station velocity is due

aN,=Co(1-e C_',,) +--

_ *r.cos _ --
prs

C2

cos _

AN,, Co, C,, C2 are input constants and o, is

as previously defined. The refraction cor-

rection is not differentiated to give correc-

tions to the partials in the observation

equation.

However, the model has been revised and

computations are currently based on the fol-

lowing mathematics of first-order, closed
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form, tropospheric refraction correction for

Doppler range and range difference types of

data. The model of the differential tropo-

spheric refractivity is a polynominal in alti-

tude closely resembling that of H. S. Hopfield

(APL; see ch. 2) but modified by Mark

Tanenbaum to allow somewhat more rapid
machine calculations.

The theoretical forms of the basic first-
order refraction corrections are

(range)

_R= f (n-1) __r dr
V r 2 - k "_

(range rate)

r :dr
AR=kkf (n- 1) _/(r2-k2) 3

temperature, T, in degrees centigrade; pres-

sure, P, in millibars; and relative humidity,

H, in percent present, in that order as the

first three time corrections on the pass

header of the observation tape.
we get

kelvin

temperature TK = T + 273

water vapor

pressure

refractivities

radii

With these

E= H exp{ -37.246 5

+.213 166 TK

-.000 256 908 TK _}

N, = (.776 x 10-0 P/TK 2

N_= I (.373 x IO-_)E/TK "_
! 0 for optical data

r,= ro +40.1 +.149T

r2= r,, + 12.0

in which the geometric zenith angle _ from

the reference ellipsoid normal is defined by

cos_=Uopo_ with uo_|, yg
\zo(l+e _)

and

k = r0 sin

Also ro is the magnitude of the station posi-

tion vector, p is the slant range vector and

r,,t is the magnitude of the satellite position

vector. All integrals are assumed to be taken

between the limits of ro and rsat.

The differential refractivity is modeled

YTi

n- 1 = Nr_ + Nr__

N, \_] ifro<_r<_r,

0 otherwise

given as a function of radius rather than

height. The coefficients in this model are

determined from thermodynamic variables:

Evaluation of the integrals given above
proceeds as follows : In the case of electronic-

type data, the differential refractivity is

split into its two component parts and each is

integrated separately. (In the case of optical

data, only the part subscripted 1 is nonvan-

ishing.) A look at the model reveals that the

effective upper limit of integrals is r_ notr._,t.

The separated integrands are exact deriva-

tives and easily handled; in particular

f . rdrI,= (r'-'-_) (Vr_k_ _

(Vr___---CVT_

f_(_)(r -° k' J--_= - ) (k'- r_ ) "-J rdr
j=o

Now interchange integration and summation

and evaluate at the limits ro and r, to get

- L, .(r'-k')" (k'-_)"-q
i=0\ ] / 2j - m t _. j,.=,..

Unfortunately, though these integrals may

have terms near r TM, their values are close

to r_-_*_(r_-ro) "*_. Thus as many as

d,_ (n + 1) log_ < _ 10.9 for subscript 1- (13.5 for subscript 2



190 NATIONALGEODETICSATELLITEPROGRAM

digits may be lost in the process of summation, possibly making the result too inaccurate.

Double precision evaluation of I; is therefore recommended. Finally, for the two integrals of
interest we have

/ rd," _ Ni _ 1 (4) .]"'(n_ l) vr.__k 2 A.(__(___21),jIFJo2_L_. l \ j (r'-'-k'-')_v -' (M-r_)'J ro

f rdr "" Ni _ 1 (_) Jr,(n-l) (\/r._,_k_):-_(r._r_)_j_o2__ 1 (r'-'-k_) j-l�-' (k'-'-r_)"-J ,.,,

Substitution of values computed from these

formulas into the theoretical forms given

earlier is straightforward.

The final forms of the tropospheric refrac-

tion corrections to be added to the computed

values of the observable are, for Doppler,

afr,.f= _/s _,,
c

ARr,,f ----AR

as given earlier, and, for range difference,

A (AR) r_f= AR (t,,) -±R (t,_,).

Note that although Doppler data are al-

ways electronic, range may be either elec-

tronic or optical. In order that this class

obtain proper treatment it will be expected

that humidity values of 0 are inserted by the

laser range preprocessors.

Observation Equation.--The grand geo-

detic normal equations use the same type of

information as the navigation equations. The

quantities required for the observation equa-

tions are the weighted partial derivatives for

all parameters and the weighted discrepancy

af_
A_k= \/W_ap k

,_= Vw_ (fo_-/)_

for each acceptable observation (indexed by

i). The observed value and weight are taken

from tape input. The computed value has

already been given. The partial derivatives

are computed as follows :

Bias:

af _ 1-_-p o*baf_

af Df
a?o = (t- ta _,,

af _ f8 1-- O*e P--r,,
aT XC

+ 1 "*[1 ee*\"

Orbit :

af (a/ya_ .[a/Va_-

af fs 1 I
ar -- AC{_-( --_-'*)0 1CAp

1 ,. --_
[(1-_e e)e*_+_,(' ?') _"]

For the long-period parameters a and b, use

ar P
--==-COS (oepta
aa r

_r ar . 1/. i.i-*\

ar _ _"sin o,cp ta
ab

at ar 1( i-i-*'_ ..

For corrections to the geocentric station

position, ds* = ( drod¢,,dXo),
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af [ af \* Dr,, [ of \*ar.

af of
Or. - ar

a/ .is
a_.s - XCp 0

De. rr.,ro* x (Pxro), Pxr.]= L r,, r.

0_'o aro
_=_X as_

by columns

The vector

.(!)
defines the instantaneous direction of the

polar axis of the reference system in which

x and ¢ are given for dimensional check, BLP,

af
a(T -

_(a y

in which ,_ is the scale parameter.

The required output is the matrix observa-
tion equation together with the number of

observations, certain other identifiers, and
the uncorrected pass variance

1

Required partial derivatives for other un-

specified parameters have the value 0.

Options.--With time transmission off, the

iteration for p is not necessary, since t,,=t.

The BLP, station, and orbit partial deriva-
tives are modified by striking the terms in the

af/ar, af/a_, and f expressions beginning with

1/c_. As given, the formulation is correct to

order v/c but not to v_-/c 2.

Other Data Classes.--Since no range data

and only limited quantities of optical data

were processed in geodetic solutions per-

formed at the Naval Weapons Laboratory,
formulations for these data classes will be

omitted. Many point positions were calcu-
lated from Doppler data which were treated

as range differences; however, the formulas

will be omitted, since they are fairly straight-
forward.

3.4.4.3.18 SOLUTION OF NORMAL

EQUATIONS

After the normal equations are formed for

each span of data, the BLP test described

above is carried out to determine if the

matrix is suitable for further processing.

A matrix is considered to be satisfactory if
each row is less than 10 -_ for satellites with

perigee heights of 600 km and 10 -T for satel-

lites with perigee heights over 1000 kin. The

row and column corresponding to the scale
parameter are then deleted and the matrix is

augmented by two rows and columns corre-

sponding to components of pole position. The

elements of the rows and columns are com-

puted from the elements corresponding to
station coordinates, and 4.10 ''_ is added to

the diagonal elements corresponding to each

component of pole position to represent an

a priori observation of the BIH values of

pole position with 1-meter accuracy. The row

and column corresponding to the longitude of

the Maryland station are deleted to remove a

longitude singularity from the solution.

An "equate" operation is performed to

combine equivalent parameters. For ex-

ample, a separate radiation parameter is
established for the first and last half of each

span for use in experiments even though the

value is not expected to vary. The equate

operation consists of deleting the row and

column corresponding to the second radiation

parameter after adding the row elements for

the second parameter to those for the first

parameter. The right-hand side of the matrix

is then adjusted to account for any discrepan-

cies in initial parameter values, such as the

use of coordinates of neighboring stations

which are separated by a distance which does

not correspond to the survey distance. If the
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initial parameters are P,, and the desired

parameters are P,, the normal equations

[B] (p,_p.) =E

can be written

[B] (P_-P, +P_-P.) =E

so that

[B] (P'-P_) =E+ [B] (P,,-P_)

Therefore, the second term in the last equa-

tion is the required adjustment to the right-
hand side of the normal equations.

The final problem involves establishing

which parameters are determinable. The

solution for GM is usually suppressed by

deleting the row and column corresponding

to the parameters since it has been found to

be ill-determined. Other gravitational param-
eters are deleted if their standard errors

exceed empirical tolerances of about 10 -_ or

if the ratio of the normalized parameter to

10 Vn _ exceeds an empirical tolerance of
about 4. The tolerances are set after residuals

are computed for solutions using various
values for the tolerances.

Various methods are used to find the alter-

nate solutions for test purposes. Some solu-
tions are made for one order of a coefficient

at a time, with stations and other orders
held at best-determined values. Such solutions

sometimes help isolate poorly determined co-

efficients. Other solutions (including the final

one) are made using the entire matrix. In

some cases, the higher degree coefficients are

suppressed for each order, while in other

solutions, parameter selection is based on the
size of eigenvalues.

Methods of Point Positioning and Pole

Position Computation.--While positions of

observing stations are obtained in the course

of a general geodetic solution, only a limited
amount of the available observational data

can be processed in such a solution because of

the high cost of forming the large normal

equations. Therefore, positions of many ob-
serving stations are obtained in least-squares
solutions where the Earth's field and the

positions of many of the stations are held

at values determined in the last preceding

general geodetic solution. A separate com-

puter program is used for this purpose, be-

cause program efficiency is greater when the

program objectives are more limited. But the

mathematics is largely the same, so that only

differences between the two programs will be
described.

The first difference is in the use of a

shorter time span of data for each set of orbit

constants. A short span is desirable because

the program is used to provide diagnostics on

station and satellite performance, which

should be obtained promptly. A two-day span
of observation of one satellite is about the

shortest span in which a useful solution can

be obtained for the coordination of newly

deployed stations. The short span also re-
duces the effect of some errors in the field.

The parameters of the solution include six

orbit constants, one drag scaling parameter,

two components of pole position, the coordi-

nates of any newly deployed stations, and a
frequency and tropospheric refraction scaling

factor for each satellite pass. The radiation

force is calculated on the basis of the average
force determined in solutions using longer

spans of data for the satellite (such as in

general geodetic solutions). A value of 0.3
is used for Love's number while extraneous

resonance parameters are not normally used.

Forces and normal equations are otherwise
calculated in the manner described above for

the general geodetic solution except that the

variance for each data point is increased by
0.1 times the square of the tropospheric re-

fraction correction before inversion for use

as a weight in the formation of the normal

equation.

The components of pole position are com-

pletely free parameters in these solutions,

whereas in the general geodetic solutions the

BIH values were used as a priori data. The

integration method differs, although the dif-
ference is not numerically significant. A

60-sec integration interval and a tenth-order
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process yields 1-meter numerical accuracy
for a five-day interval, which includes the
two-day time span in which data are fitted

and a three-day prediction interval used for
filtering data and evaluation. The integration
is similar to that used in forming normal
equations for geodetic solutions.

3.4.5 Satellite Triangulation and Trilateration
(AFCRL Gulf Test)
(Donald H. Eckhardt, AFCRL)

The usual departure point for the adjust-
ment of overdetermined systems is the
method of least squares. This method is based
rigorously on the method of maximum likeli-
hood for normal deviates, which is the foun-
dation on which the reduction technique for
the systems used in the Gulf Test was directly
constructed (sec. 3.5.1.5.1).

The principle of the method of maximum
likelihood is to maximize the likelihood func-

tion or its logarithm L with respect to the
parameters to be adjusted, v", n= 1, 2 ..... N.
Consider these parameters as the elements
of an N vector, v. Then the conditions for a
stationary point at v=_ can be written as

eter v, and ,f" converges in probability to the
expected value of (_"-v") (_-v_) ; that is,
[_"] is the covariance matrix.

The elements of the vector v for the inter-

visible networks, as in the Gulf Test, are
taken as the coordinates of N flash positions
x/_ (n=l, 2 .... N), and the coordinates of M

ground stations, y_" (m=l, 2,... M). (Sub-
scripts always pertain to the three-vector of
Cartesian space, and the convention of sum-

mation over repeated subscripts is adopted.)
Estimates are available before the reduction

of the coordinates of the stations y_,,"_ yy
and of their covariances. The corrections for

each station, ±Y/"=YY-Y_o"', are normally
distributed with zero means and elements

Wi/" (ij=l, 2, 3) of the inverse of the co-
variance matrix.

It is assumed that there is no correlation

between stations and that each error ellipsoid
defined by W3 is an ellipsoid of revolution
about the local vertical. Properly inter-
preted, the solution to be derived is valid in
the limit as any error ellipsoid becomes in-
finitesimal (fixed station) or infinite (com-
pletely unknown station).

The range from station m to flash n is

(OL/av.) ¢,=0 r,,,,,=]xi,_y_,,!

Suppose that ; is an approximation to
v. By Taylor series expansion to the first
order in ( _" - _.), these conditions become

_L

Let the inverse of the matrix

=0

[- (D'-'L/_v"Svg"_] be [_f,z]

The first-order solution for _ becomes

_" = ;" + X?'l k_, ); (3.41)

This array is the form used in the iterative
solutions of the Gulf Test networks. It can be
shown that, with such an iterative technique,

convcrgcs in probability to th_ true param-

and the direction cosines from the station to
the flash are

m""= (x/'--yy)/r ....

The direction cosines derived from obser-

vations are denoted by too""; the differences
from the model are ±m',n=m .... m,,""'. It is

assumed that the small angle ]±m"_l between
the vectors [m""q and [m,'"'] is the resultant
of two angles that are mutually orthogonal
on the celestial sphere, each of which is nor-
mally distributed with zero mean and vari-

ance 1/u"". For a missing observation, 1/u ....
is taken as zero.

The log likelihood for this model is

L = constant
N M M

p.i / -- /2 _ vi ij _1

_t 1 ,tl 1 ,it I
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Its first derivatives are, to the first order in

A uf "z,

31

_L/_x," = _u""±_y"/_, ......
_n 1

N

n=l

Its second derivatives are, to the 0"' order

in A_,"",

= ...... (_;-_ m )/(r"") _i_ L/i_x_ _y; - u .............

M

52L /i_x f'c_x /" = - __,i_" L /_x i'i_y /"
lit = 1

N

iY_L / _Y_"_ Ys'" =- _. iY'L /_xi"_y/" - Wi/"

where _; is the Kronecker delta. All other
second derivatives are zero. The second de-

rivatives are calculated from the first ap-

proximations for x? _ and yd '_, and the covari-

ance matrix is found by inversion. For

reasonable first approximations, this matrix

need be evaluated only once. The first de-

rivatives are multiplied by the covariance

matrix as in equation (3.41) to generate cor-

rections to x_" and y_ (that is, to _"), which

are in turn used to update the first deriva-

tives for iterative application of the equa-
tion. Iterations are continued until all of the

corrections generated are significantly less
than the solution variances.

The criterion that

] ;,"--V' I <100 n""

was usually satisfied after the second itera-

tion; one application of the first-order proc-
ess is therefore usually quite sufficient. If

station m is completely unknown, W_/"=O,

and the preceding formulas need no modifica-

tion. If, however, the station is fixed, set

W_;"= fl_ and let fl--> _. Then _L/_y_'_yF-.->

-fl_i;, and the corresponding elements in the
covariance matrix approach fl-_j. These ele-

ments multiply only OL/Oy_m-->-fl (Yj_-yjm)

in the application of equation (3.41) ; the net
result is that any yY are replaced by y_om

after one iteration, and they are not modified

thereafter. In practice, this is accomplished

simply by dropping yY as adjustment param-
eters. The foregoing solution is valid only

for intradatum ties, but it can easily be ex-

tended for interdatum ties as well. For in-

stance, suppose that for m=l, 2, . . . M, y,/"
is referred to one datum, and for m=M_÷ 1,

M_+2 .... M, y_,,"_ is referred to a second
datum. Let the datum displacement be z,

and in all of the preceding formulas replace

y_,y by y_m + z_, when m > M_.
The additional derivatives with respect to

z_ of the modified log-likelihood function are,

to the appropriate order,

3I

5L/Dz,= __, Wi/"(y/"-yJ'-zO
In 31+1

M

_-'L/aziaz_= - _, Wiy
m M+I

i_2L/i3z;i3yi '_= Wi/" m > M_

All other additional derivatives are zero.

With the modified and new derivatives the

datum displacement can be carried along
with the coordinates of the stations and

flashes in the vector v.

In treating real data, u"" and W_/" should

be considered as weights rather than as

known inverse variances or covariances. The

solution covariance must then be scaled by

the solution value of

0 .2 --

N M 31

2 × number of observations - N

For the Gulf Test measurements, the weights

u "mwere the variances calculated in the least-

squares plate reductions of the Defense Map-

pling Agency/Aerospace Center (DMA/AC),

and the adopted weights for W_/" had little
influence in the determination of 0._. Gen-

erally, 0._ turned out to be quite close to unity,
so the residuals of the Gulf Test adjustments

(sec. 3.5.1.5.1) were consistent with the
residuals of the preliminary plate adjust-

ments.
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3.4.6 Least-Squares Collocation Method for
Combination of Satellite-Derived
Gravitational and Terrestrial Gravity 1
(Richard H. Rapp, OSU)

3.4.6.1 Introduction

The combination of a gravitational po-
tential from satellite data and terrestrial

gravity information has been a popular pro-
cedure for improving our knowledge of the
Earth's gravity field. Such combination may
be carried out in several ways.

Moritz (1970) considered methods of com-
bination under a more general adjustment

concept called "collocation." In his report
Moritz derived certain equations that allow
solutions obtained by the usual least-squares
method to be converted to a solution corre-

sponding to the least-squares collocation
method. In this section we will extend the

equations derived by Moritz. Actual com-
binations of satellite and terrestrial gravity
information using recent solutions for the
potential coefficients and terrestrial gravity
fields are reported in section 3.5.2.

3.4.6,2 Basic Methods

Two methods of combination are examined.

The first is a method that compares an esti-
mate, ±gT, of terrestrial anomaly to an
anomaly ±gs, computed from a set of satel-
lite-derived coefficients. We form an adjust-
ment model as follows

F=Lz-f(L_o) (3.42)

where Lz is the column vector of observed
anomalies and L_,, are the given potential
coefficients. An element of f (L_o) is given by

"""" a \"
= r_ r) (n-l)

_(C _, cos m),+S. _ sin mx)P_ (sin ¢)
m=o

(343)

i The research reported in this section was spon-

sored bv the Air Force Cambridge Research Labora-

tories,Bedford, Massachusetts.

where GM is the geocentric gravitational
constant, r is the geocentric radius, n .... is the

maximum degree for which coefficients are
to be found or are given, a is the equatorial

radius, C.m -m, , S, are the normalized (to 4_)
potential coefficients referring t0 an ellipsoid

of specified flattening, P_ is the normalized
(to 4_) associated Legendre polynomial, and

is the geocentric latitude.
The correction to the potential coefficients

is the vector

V_=- (B_D_IB.L.+D_)B_D_W (3.44)

where Dz is the variance-covariance matrix
of the observed anomalies, D_ is the variance-
Covariance matrix of the potential coeffi-
cients, and

DF
Bx= DL_ W=_F

The adjusted potential coefficients would be

L_a:L,o+ V._ (3.45)

The variance-covariance matrix 2:x of the

adjusted coefficients would be (for a stand-
ard error of unit weight)

_x= (BflD_B_ + D_ )-I (3.46)

The second method is that derived by
forming the difference between a given set of
potential coefficients (L,o) and an estimate
L_ _, computed through the usual summation
formula applied to a global field of terrestial
anomaly estimates, Lz. Then

F=L_o-L_ _ (3.47)

where an element of L_ cwould be

1 ff ±gP'2 (sin ¢)I cOs mxILeal - 4ry (n- 1) [ sin m_,} da

(3.48)

where d_ is an areal element on the unit
sphere. The solution from the usual least-
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F= - ( (B--_D,Bf)-1 +D_Z ) -_ (BzDzB l)-1W

(3.49)

where bars have been used to indicate results
obtained from this second method. We have

_-_L_t and W=-F

We may also express the anomaly residuals
as

vt = D,B FD;' F_ (3.5O)

The adjusted quantities are

L__= L_.,,+ V_

L? = Lz + Vz

(for potential coefficients)

(3.51)

(for anomalies) (3.52)

The variance-covariance matrix (_,) of

the adjusted potential coefficients would be
(for standard error of unit weight)

_= ( (B_-D_r)-I + D_') -_ (3.53)

We should note that the model represented
by equation (3.47) is not quite as accurate

as that represented by equation (3.43), since
the shape of the ellipsoid is not considered in
equaton (3.48).

of equation (3.54) can be related to the
solution obtained by the application of the
principle that VrPV=a minimum. (This is

equivalent to nTD-ln used in equation (3.54).)

If y is a vector representing the adjusted
anomalies and adjusted potential coefficients
(in an order dependent on the statement of

the combination solution) based on the appli-
cation of the collocation principle and y. is
the corresponding vector for the usual least-

squares solution, we have (Moritz, 1970, eq.
(6-6))

y= (I-S) -_ y, (3.55)

or, with the development of (I-S) -' into a
series,

y=(I+S+S -° "")yo (3.56)

where

S= -RDH r C-_ H (3.57)

R--- I-T (3.58)

T= DG r (GDG _) -1G (3.59)

G and H are matrices dependent on the
method of combining the solutions being
considered.

The error covariance matrix E in the col-

location adjustment is related to the corre-

sponding equation of the usual adjustment by

3.4.6.3 Modifications for the Least-Squares
Collocation Method

E= (I-S)-_ Eo (3.60)

3.4.6.3.1 GENERAL CASE

The basic principle of the collocation
method is

sTC-_s÷nrD-_n=-a minimum (3.54)

where s is a signal vector, C is the covariance
matrix of the signal, n is a noise vector, and
D is the covariance matrix of the noise.
Moritz showed that a solution of the com-

bination methods carried out by the principle

3.4.6.3.2 MODIFICATION FOR THE
FIRST APPROACH

We first specify that we will have n un-
known potential coefficients with m terres-
trial anomalies. For a solution complete to
degree 15, n would be 250. Using 5 ° equal
area blocks, m would be 1654. In the case of
this approach, Moritz has shown that

Y= n p (3.61)
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where g represents the adjusted anomalies

and p the adjusted potential coefficients.
Matrices needed to evaluate S are described

in the following.

The matrix D is

D_

The matrix H is

(3.62)

The matrix G is

(3.63)

G=M[_ B_] (3.64)

Under these circumstances Moritz (1970,

eq. (6-16)) shows that

)°1T = + N -1 BffDf 1G
n

are very much influenced by the neglect of

higher-order potential coefficients. Conse-

quently, we will not use equation (3.69).

The variance-covariance matrix pertaining to

the adjusted potential coefficients from the

collocation procedure would be

_;_-- (I+N -_ C-_)-_:_o (3.71)

In this method C is a n × n diagonal matrix

whose elements are the expected mean square

value of the potential coefficients being esti-

mated. The matrix (I+N -1 C 1) is not a

symmetric matrix, so that computer algo-

rithms designed for the inversion of nonsym-

metric matrices must be used. This fact

limits the number of unknowns that can be

solved for in a given computer memory.

Consequently, the series expansion for

(I-S) -1 may be used. Retaining the first

two terms in the series of equation (3.56),
we can write

where N = BSD-1B_ + D_ -1.

Substituting these results (for H, G, and

T) into equation (3.57) produces

mI0 B_ N-1C-1]S= 0
n -N-1C-I_

(3.66)

Then

[I° -B N 1](I-S) = I+N_IC_I j (3.67)

and

I B_N-_C -1 (I+N-'C -_)7(I-S)-1 = (I+N__C__)_,j (3.68)

Using equations (3.61) and 3.68) in equation

(3.55), we have

g=go+ BxN-_C -_ (I+N-_C-1) po (3.69)

p= (I+N-_C-_)-_po (3.70)

The anomalies given by equation (3.69) are

not of great practical significance since they

p= (I-N-1C -_

+ (N-_C -_) (N-xC -1) +-" ")po (3.72)

_p= (I-- N-1C -1

+ (N-_C-1) (N-_C-_) +"" ) _ po (3.73)

Numerical tests indicated that at higher

degree (say n= 20) the error in the computed

potential coefficient could reach 19 percent if

only the first term in the series is retained.

Stopping the series at the second term may

still leave an error of the order of 8 percent.

Although this method yields meaningful

potential coefficients directly, meaningful

anomalies are not so obtained. This is a fault

of the model used (i.e., a finite set of poten-

tial coefficients are being sought) and not the

adjustment method. To obtain a set of anom-
alies consistent with the various estimates of

the potential coefficients (either p or p.)

using the original terrestrial anomalies, a set

of conditions may be imposed on these anom-

alies, the least-squares adjustment being per-

formed to give an adjusted anomaly field.
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3.4.6.3.3 MODIFICATIONS FOR THE

SECOND APPROACH

We next turn to the evaluation of the

matrix S (eq. (3.57)) for the second ap-

proach. In this case we have the adjusted
variables as

The matrix may be substituted into equation

(3.55) and values of p and g (eq. 3.74)

found as before. If we retain only the first

term in (l-S)-1, we may also write for the
coefficients

p= (I + N-_M-_B_D_C-_) go (3.80)

y= (3.74)
m

where the overbars designate quantities

unique to this method.

The matrix D is

0]D= (3.75)
mLO Dz

The matrix H is

The matrix C, is

t¢ _t

H=m[0I] (3.76)

tz ,_t

G=n[I Bz] (3.77)

In these equations, C represents the covari-
ance matrix of the terrestrial anomalies.

Thus, in its complete form, it will be a 1654 ×

1654 matrix. Such a large matrix cannot be

inverted easily at this time without excessive

computer time. However, with the proper

ordering of the anomalies (e.g., Isner, 1972)
and the setting of covariances to zero for

anomalies separated by a distance greater

than some specified amount, a banded matrix

could be obtained for C. This would make the

inversion procedure somewhat easier. Such

modifications of C were not carried out. Con-

sequently, we conclude at this time that the

collocation concept is more easily applied (in

practice) to the first approach than to the

second.

The results obtained by means of method

one are presented in section 3.52.

Using these results and results from equa-

tions (3.49) and (3.50), we can find

T=IN-1 BffM-_ G 1DIBzTM -1 (I -- B_N-_BffM -_) G

where

(3.78)

Substituting these results for H, G, and

into equation (3.57), we find

st _tt

--S= n I0 N-1M-_BIDtC-_m 0 - (i---D_BTM-_

• (B__N__M__B_))D_e-_1 (3.79)

3.5 RESULTS

The DOD results deal almost entirely with

station coordinates. The only exceptions are

Rapp's geoid (sec. 3.5.2) and NWL compu-

tations (sec. 3.5.3) of Love's numbers and

the polar motion.

Station coordinates are presented for (1)

the western hemisphere (sec. 3.5.1.1), (2)

North America, the West Indies, and Ber-

muda (sec. 3.5.1.1), (3) SECOR Equatorial

Network (sec. 3.5.1.3), (4) TRANET Net-

work (sec. 3.5.1.4), and (5) various points

within the United States (sec. 3.5.1.5). The

coordinates for the various points within the

United States were obtained during tests of

the PC-1000 camera and GEOCEIVER and

are included partly because of their possible

use as coordinates and partly because they

show the performance of the instruments.
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Coordinates of Tracking Stations

Stations in the Western Hemisphere
(Donovan N. Huber, DMA/AC)

3.5.1.1.1 INTRODUCTION

The Defense Mapping Agency/Aerospace
Center (DMA/AC) has used PC-1000 and
BC-4 data obtained through the NGSP in
several geodetic solutions. The geometric
applications of the data were directed toward
specific-point positioning programs on the
Air Force Eastern Test Range (AFETR),
Bermuda, and Johnston Island. DMA/AC also
undertook densification of the World Geo-

metric Satellite (PAGEOS) Network (ch. 7)
in South America. Data from ANNA 1B

and GEOS 1 and 2 (ch. 2) and from ECHO 1
and PAGEOS (ch. 5) were used in these
efforts (sec. 3.3.1).

muda and the fixed values for Aberdeen and

Hunter AFB. Only data from ECHO 1 and
PAGEOS (table 3.6, sec. 3.3.1) were used for
this solution. Since each observation involved

at least one known station and Bermuda,
only case 2 type observation equations were
applicable (see sec. 3.4.1).

Several determinations of the coordinates

of Bermuda on NAD 1927 exist. Three solu-
tions in particular are in very close agree-

ment: the PC-1000 determination, the
AFETR determination, and a solution made
by the U.S. National Ocean Survey
(USNOS). In order to show the agreement

between them in a meaningful way, the co-
ordinate shifts from the local Bermuda 1957
Datum to NAD 1927 were derived for the

three solutions. The derived shifts are given
in table 3.14. As can be noted, the departure
of each determination from the mean value

is only a few meters.

3.5.1.1.2 EASTERN TEST RANGE 3.5.1.1.4 JOHNSTON ISLAND

Table 3.11 presents the adjusted positions
of five PC-1000 camera stations in the

AFETR project. The initial coordinates were
approximate values and were allowed to ad-
just freely. The positions for Hunter Air
Force Base, Semmes, and Homestead on
NAD 1927 (North America Datum) were
held fixed. Only observations on ANNA 1B
and GEOS-2 were used (table 3.6, sec. 3.3.1)
for this project. Both case 1 and case 2 (see
sec. 3.4.1) type observation-equations were
employed.

Coordinates for three camera stations were

determined also by the AFETR. Table 3.12
shows the difference between values of the
AFETR and those in table 3.11. These dif-

ferences are generally within the standard
deviations shown in table 3.11.

3.5.1.1.3 BERMUDA

Geodetic positions (NAD 1927) for two

stations, Aberdeen and Hunter, were held
fixed, and the position of the Bermuda sta-
tions was allowed to adjust freely. Table 3.13
gives the final adjusted coordinates for Ber-

The latest solution for Johnston Island

(table 3.15) was derived in November 1972.
It is based on coordinates of Maui, Wake, and
Christmas Islands determined by USNOS in
their October 1972 World Net (WN) Adjust-
ment (ch. 7). These stations being held fixed
and the data listed in table 3.6 (sec. 3.3.1)
being used, a relatively strong determination
was achieved for Johnston Island. The

strength of the tie to the World Net is indi-
cated by the standard deviations.

3.5.1.1.5 SOUTH AMERICA

The latest solution for stations in South

America was also referred to the WN adjust-
ment. The five BC-4 camera positions shown
in column 1 of Table 3.16 were weighted ac-
cording to their sigmas as published by NOS.
The sigmas are listed for the five stations
along with their coordinates on the WN. The
coordinates for Beltsville were held fixed, and
two conditions on chord lengths were imposed
in the adjustment. These chords were be-
tween the PC-1000 and BC-4 cameras col-

located at Paramaribo and Natal.
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Since WN positions for these two collo-
cated PC-1000 stations could be computed

accurately before any adjustment, this com-

putation was made, and the resulting co-
ordinates received a priori sigmas of 5

meters. Thus six stations were left to move

freely in the solution: Brasilia, Asunci6n,

Bogota, Manaus, Curacao, and Trinidad.
Internally, the results of the adjustment

show that the PC-1000 stations are tied to
the WN stations in South America to an

accuracy of 4 meters (one sigma) in hori-

zontal position and height. Combining this

error with the errors given for the BC-4

stations produced an overall sigma of 6

meters horizontally and a sigma of 7 meters

in geodetic height.

3.5.1.2 Stations in North America, West

Indies, and Bermuda
(George Hadgigeorge, AFCRL)

3.5.1.2.1 INTRODUCTION

The solution involved a 29-station network

on NAD 1927 (fig. 3.17, sec. 3.3.2). Data

consisted of camera and ranging observations

on 171 well-distributed passes. The camera
observations were those made with the PC-

1000 and MOTS camera systems, and the

ranging data were those collected by SECOR
and the NASA laser system (table 3.7, sec.

3.3.2). Prior to reduction the data were pre-

processed and corrected, e.g., for polar mo-
tion and for UTC to UT corrections, and all

data were fitted to a general conic of the form

ax-' + 2bxy + cy-' + 2dx + 2ey + 1 = 0

for evaluating randomness in the residuals.

Additionally, two error models were used to
discover errors in both sets of data.

3.5.1.2.2 RESULTS

Thirteen orbits were observed by four

SECOR stations, two of which were observed

simultaneously with cameras. Since most

observations by SECOR were not simultane-

ous with the camera observations, constraints

were applied to the distances and directions
between the two SECOR and the two collo-

cated camera stations (see fig. 3.18, sec.

3.3.2).
Measurements by laser systems were avail-

able from only one station and on only four

orbits. Since the number of orbits was not

sufficient to improve the station position, a

constraint was applied to the distance and

direction between the laser systems and

optical collocated camera system (fig. 3.18).

The weights used are given in table 3.17.

Original coordinates for the stations are

given in chapter 1.
The standard errors in the coordinates

found by the short-arc method are given in

table 3.18 (Hunter AFB coordinates were

held fixed). Errors of 2 to 3 meters for sta-
tions in the continental United States and 3

to 6 meters for stations in the Caribbean

reflect the precision and illustrate the

strength of the solution. The determination
of some coordinates was weaker than deter-

mination of others because of poor geometry
and limited observations available from some

stations. Table 3.18 also shows the finally

adjusted coordinates of the stations. These
coordinates are referred to NAD 1927

Datum.

A typical bias found in camera orientation

_, ,,,, and _ was 0'.'2. The largest bias found
was 1':5. Biases found in the measurements

by laser ranged from 2 to 15 meters, and

biases on the SECOR ranges ranged from 4

to 35 meters. The random noise was approxi-

mately 1 to 2 meters for laser measurements
and 1 to 5 meters for SECOR measurements.

In order to minimize errors included by the

displacement of the Earth's center of mass
relative to the center of the spheroid, another

reduction was attempted. In this reduction

the given NAD 1927 coordinates of all sta-

tions were transformed to Mercury Datum

before the adjustment. After the adjustment

was completed, the new coordinates were
transformed back to NAD 1927.

A comparison of the results of the two
methods reveals that high-quality determina-

tion of station locations may be sensitive to
uncertainties in the coordinates of the
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Earth's center of mass. If the station loca-
tions are referred to a datum whose origin
does not coincide with the center of mass of

the Earth, then either the first-degree co-
efficients of the potential should be con-
strained appropriately in the solution or the
station locations should be transformed to a
spheroid whose origin coincides more closely
with the center of mass of the Earth before

the adjustment is made.

3.5.1.3 Stations on the SECOR Equatorial
Network
(M. A. Warden, W. D. Googe, and

G. Dudley, DMA/TC)

3.5.1.3.1 PRELIMINARY GEOMETRIC
ADJUSTMENTS

As field work progressed on the SECOR

Equatorial Network, preliminary solutions
were computed for each successive quadri-
lateral. These solutions were purely geo-
metric ; the three "known" stations were held
fixed and satellite positions were computed
from simultaneous ranges. The computed
positions of the satellite were then held fixed,
and the position of the unknown station was
determined. The position of the unknown
station was determined through the least-
squares process described in section 3.4.3
with a three-sigma rejection criterion on the
range. There was no limit on the number of
observations used in solving for the position

of a single station.
The geometric solution was used primarily

to clean up data, e.g., to detect ambiguities in
range, to remove data taken at low elevation,

and to detect faulty corrections for iono-
spheric refraction. Faulty correction for
ionospheric refraction can be due to local
interference on the low-frequency carrier

when the higher frequency carrier is rela-
tively undisturbed. In addition to the station
coordinates, estimates of satellite position
and velocity vectors (in Earth-fixed coordi-
nates), which were used later in the short-

arc solution, were also provided by the geo-
metric solution.

3.5.1.3.2 SHORT-ARC SOLUTION FOR
EACH QUADRILATERAL

Although SECOR networks were designed
for simultaneous observation, the final
"quad" (set of four stations) by "quad"
determination was done by the short-arc

technique. The short-arc adjustment allowed
the use of all ranging data collected at a sta-
tion, whether or not observations were
simultaneous with those at the other three

stations; hence, it increased the amount of
data and improved the geometry of the solu-
tion. In addition, fitting an orbit to the meas-

ured ranges served, in effect, to smooth the
r_nges.

A modification of Enkes' method was used

to compute the reference orbit in which per-

turbation due only to the Earth's gravity was
computed by numerical integration. The

state vectors were then updated by an itera-
tive fit to the measured ranges. This process

was repeated for each satellite pass observed

over the quad. The position and velocity
vectors of each orbit and the coordinates of

the four tracking stations were the param-
eters of a state vector which was adjusted

by the method described in section 3.4.3. As
each solution for a single quad was com-

pleted, its data were stored on punched cards

for later adjustments.

3.5.1.3.3 ADJUSTMENT OF THE
NETWORK

Having a preliminary quad-by-quad short-

arc adjustment made it possible to prepare a
simultaneous adjustment of the entire net-
work soon after the last station in the net-
work made its observation.

This adjustment was accomplished by a

batch, least-squares, short-arc procedure ; i.e.,
for each pass of a satellite the position and

velocity vectors of the satellite were treated
as unknown, as were the position vectors of

the observing stations. The actual number
of unknowns was
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6 state vector unknowns for

594 passes

3 position unknowns for
37 stations

total unknowns

=3054

= 111

=3165

A total of 48 132 range observations entered
into the adjustment.

The system of normal equations resulting
from these data was, of course, singular,
since the range observations supplied no
orientation information and the short-arc

dynamic constraint was not strong enough to
fix the origin of the coordinate system. In
the first adjustment this singularity was

overcome by fixing the North American
Datum (NAD 1927) coordinates of Herndon,
Worthington, Ft. Stewart, Austin, and Lar-
son after they had been shifted to a geo-

centric system by applying the shifts

AX= -- 24 meters

±Y= 154 meters

±Z= 182 meters

These shifts were derived by comparing
the NAD 1927 coordinates to the Standard

Earth II coordinates (Gaposchkin and Lain-

beck, 1970) of those points common to both
systems.

In addition, the relative location of Azores

2 with respect to Azores 1 was held fixed.
This solution was iterated three times, the
observation equations being linearized each
time on the basis of the solution obtained
from the last iteration. The change in the
solution from the second to the third itera-
tion was completely negligible.

The normal equations from the third itera-
tion, before any conditions were applied,
were saved and subsequently the satellite
coordinates eliminated. The result was a set

of 111 normal equations containing all the
information the ranges supplied about the
relative location of the 37 tracking stations.
All further solutions were obtained by apply-
ing conditions to these normal equations.

As was expected, this first solution was
extremely weak. This weakness resulted

principally from the weaknesses in geometry
and data distribution. Undoubtedly, the best
use of the SECOR results would be in com-

bination with the results of other systems
which can supply the directional control
SECOR lacks, e.g., the BC-4 world net
(ch. 7). However, it was desired to have a
solution that was as "pure" SECOR as pos-
sible. The results (table 3.19) reported here
are from a relatively pure solution.

Five stations of the network were located
within the United States, and the relative
coordinates of these on NAD 1927 were felt

to be reliable. The eight pairs shown in
table 3.20a were selected from these five sta-
tions, and weighted constraints were placed
on the directions of these eight lines. Two of
these direction constraints also served to tie

Larson to Worthington and to Austin and
thus to close the network.

The origin of the coordinate system was
established by fixing the position of Worth-
ington. The relative positions of the Azores
stations were always held fixed.

At the time this solution was computed,
the results of a preliminary BC-4 network
adjustment (WGS-1) were available. Ac-
cording to H. Schmid, these are identical with
those in ch. 7). Sixteen BC-4 stations had
been collocated with SECOR stations, and
directions were available for 14 lines ob-

served by pairs of BC-4 cameras. These lines
fell into two groups: the first group spanned
the Atlantic and Africa from Paramaribo to

Mashhad, and the second spanned the Pacific
from Wake Island to Larson.

Since a pure solution was wanted, it was
desirable to keep the number of directional
constraints small and yet to employ enough
directional constraints to achieve adequate
control of direction throughout the network.
Several ways of choosing directional con-
straints were investigated. The final method
involved a systematic approach. A solution
was made without any BC-4 constraints, and
the uncertainty of the direction was com-
•puted from the SECOR solution for each of
the BC-4 lines.

This method allowed the identification of
the line that was most uncertain in direction
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and therefore most in need of external direc-
tional constraints. In the next iteration the
direction of this most uncertain line was
constrained to the values obtained from the

BC-4 observations, a solution was made, and
the uncertainties of the remaining lines were

examined. This procedure was followed
through several iterations. After each itera-
tion the uncertainties of the adjusted co-
ordinates of the SECOR stations were ex-

amined. When the improvement in these un-
certainties afforded by further BC-4
constraints became insignificant, the itera-

rive procedure was stopped. The six sets of
BC-4 direction contraints selected by this

procedure are shown in table 3.20b. In prac-
tice, these directions are between BC-4 sites
whose positions relative to the collocated
SECOR sites were rigidly held. The direc-
tions from the BC-4 adjustment are not

strictly compatible with those from NAD
1927, because of changes in the adopted
longitude of the Naval Observatory. This
should not seriously degrade the solution
because both sets of directional constraints

were incorporated into the solution with the
a priori weights shown in tables 3.20a and
3.20b.

3.5.1.3.4 RESULTS AND ANALYSIS

The coordinates of the equatorial network
stations obtained in the final adjustment
(solution C-9) are shown in table 3.19. The
standard deviation of a single measurement
of range was 2.7 meters. The indicated stand-
ard deviation of the adjusted coordinates

ranged from 4 to 8 meters. However, com-
parison of coordinates obtained by SECOR
with those obtained by other systems showed
much larger discrepancies. In order to obtain

the best possible coordinates for the SECOR
stations, a solution combining BC-4 and
SECOR data (B+S solution) was computed
by using the normal equations for SECOR
and the normal equations of the WGS 1 solu-
tion. This solution tended to be dominated

by the BC-4 data, so that there was fair
agreement between the combination solution
and a pure BC-4 solution at the BC-4 sta-

tions. The differences between the combina-
tion solution and the SECOR solution were

much larger, and many discrepancies as large
as 50 meters were noted. The rms differences
between the combination and SECOR solu-

tions were 25 meters in latitude, 30 meters in

longitude, and 26 meters in elevation. Fur-
thermore, the differences are quite systematic
in character, indicating large correlation
between similar coordinates of adjacent sta-
tions. This means that the relative coordi-

nates of adjacent stations may be quite accu-
rate, even though accumulation of error may
unfavorably affect the relative coordinates
of widely separated points.

If the combination solution is adopted as a

standard comparison, it follows that the
coordinates determined by SECOR, with only
a small amount of BC-4 directional control,

have an accuracy of about 25 to 30 meters in
each coordinate. Although these figures do

not reflect the potential for very precise
geodesy that some have seen in the system,
they do meet the original design specifica-
tions of the SECOR measuring system.

In combination with other systems, how-

ever, SECOR can make a significant con-
tribution. For example, table 3.21 gives the
discrepancies between the chord distances
from the B÷S solution and seven of the
traverse distances used to scale the BC-4 net.
The B+S solution was scaled by SECOR

alone, so these discrepancies are due to
SECOR scale error as propagated through
the BC-4 WGS 1 net or due to errors in the

surveyed distances. Notice that the two large
discrepancies in Europe largely cancel to
give very good agreement on the line
Tromso--Catania. Notice also that the only

line directly observed in the SECOR net is
the one in Africa.

3.5.1.4 Stations in the TRANET Network
(R. J. Anderle, NWL)

3.5.1.4.1 RESULTS

The Doppler system was used to p-Ssition
37 of the 44 BC-4 sites in the PAGEOS net-
work. The locations of the electrical center
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of the antennas determined from the Doppler
observations are given in table 3.22 in the
CI0 system. (Two stations were located in
Wake and Seychelles.) Also shown in the
table are the standard deviations of the solu-

tion. These errors give only the random error
in station position resulting principally from
uncertainties in the gravitational field. The
Doppler system also has biases which are
estimated to be 1 meter in pole position, 5
meters parallel to the spin axis, and 3 meters
in height (which also implies 0.5 part per
million in scale). The surveyed positions of
the electrical centers in the local datum are

given in table 3.10, section 3.3.4. Datum
shifts based on the differences between the

Doppler and terrestrial survey are given in
table 3.23.

3.5.1.4.2 EVALUATION

Geometric Simulations.--Early simula-

tions (Cohen and Hubbard, 1962) revealed
that geometric solutions for station positions

are particularly weak for Doppler or range
difference observations of satellites. As a

result, no geometric solutions for station
positions have been carried out with actual

Doppler or range difference data. Positions
of Doppler stations are normally based on
dynamic solutions using orbit constants best
fitting observations over time periods of two
or more days in order to obtain statistically
strong solutions and to provide results for
stations which are geographically isolated.
However, numerous experiments have been
conducted based on short-arc solutions, in
which the orbital constants are based on data

obtained during a period of about 30 min.
Such experiments were particularly useful
early in the program, when effects of uncer-
tainties in the gravity field on the satellite

orbit were orders of magnitude larger than
they are now.

Dynamic Simulations.--Initial simulations
of dynamic solutions indicated that accuracy
of 10 meters in coordinates of a station could

be obtained by such techniques (Anderle,

1963). The simulation was optimistic in that
it neglected effects of all but a few gravita-
tional terms but pessimistic in the effects of
Doppler instrument error. More realistic
simulations include the effects of neglected
potential coefficients which can be predicted
on the basis of the decrease in the magnitude

of the coefficients with increasing degree, as
shown in figure 3.29 (Anderle and Smith,
1968). It was found that synthetic fields could
be constructed on the basis of this decay
curve which could be used to predict the
effects of neglected coefficients (Anderle et al.,
1969). The study showed that the effect on
station positions of neglecting coefficients
above sixth degree is 10 meters, whereas the
effect of neglecting terms above 12th degree
is only 2 meters (H. L. Green, unpublished
report, 1969). Figure 3.30 shows the effects
on the orbit of a Navy Navigation Satellite
of neglecting coefficients above 12th degree
in geodetic solutions. This curve does not
include the effects of errors in resonance

coefficients which can be quite large if they
are not determined specifically for the satel-
lite orbit under consideration (Anderle,

x

i

.5 I, 1.5

LOG (DEGREE)

FIGURE 3.29.--Mean degree variances :

NWL 8D solution.



DEPARTMENTOFDEFENSE 205

oot-.il-:o
TANGE_i'IAL

N _AL I N "_ II
r 111111

l|12 _ I I _ I |1 U l[ t t, I
/_ I ,_ II ' I "

I "u L U _r |l
-_,1 -- I I IJ

'u 'J

0 6 12 18

I_AIRS

FIGURE 3.30.--Aliasing errors for 1100-kilometer

polar orbit: NWL 8D simulation.

1965a). The rms of the errors shown in
figure 3.30 is only 4 meters, which is con-
sistent with the residuals of fit encountered
when such a field is used to compute

the orbit of a 600-nm polar satellite. How-
ever, this orbital condition was strongly
represented in both the simulated and the
actual solutions for potential coefficients;
therefore, the effects of neglected coefficients
on the orbit of this satellite were absorbed in
errors in coefficients considered in the geo-
detic solution. If the lower order coefficients

had been perfect, the neglected coefficients
would have produced an rms error of 10
meters in the computed orbit, as shown in
figure 3.31 (C. W. Malyevac, unpublished
report, 1970). Such favorable aliasing of
errors cannot be expected for all orbital con-
ditions. More recent simulations show that
the effects on computed station positions of
neglecting coefficients above 17th degree are
less than 2 meters.

Special Evaluation Tests.--Periodically,
special evaluations of Doppler equipment or
the dynamic method of station positioning
were made. In the first test, results of short-

arc computations of station position based on
Doppler observations of the ANNA 1B satel-
lite were compared with positions surveyed
on the North American Datum. The results

agreed to 5 to 10 meters, depending on the
station geometry, which was essentially con-
sistent with the expected effects of instru-

20,

O
r¢

'" 10

x

0 I I
10 J5 20

DEGREE OF TRUNCATION

FIGURE 3.31.--Effect of neglected coefficients.

mentation error for the particular condi-
tions (Nott, unpublished, 1964). In 1965 a
more accurate terrestrial survey was con-

ducted in the southeastern part of the United
States, and the results were compared with
both long- and short-arc solutions for station
coordinates. The short-arc results agreed to
3 to 5 meters, which was again consistent
with the effects of instrument error (R. W.

Hill, unpublished report, 1966). The long-
arc results disagreed with the survey by 5
to 10 meters, which exceeded the survey or
instrument error. However, the results were
based on a gravitational field which was only
complete to sixth degree. It was later shown

(R. W. Hill, unpublished report, 1971) that
a Doppler ephemeris based on the NWL 9B
coefficients gave agreement with laser system

ranges to the satellite of 4 meters. When the
geodimeter survey was completed across the
United States in 1971, Doppler-derived posi-
tions agreed with the new survey to 1 meter
in the eastern United States and 3 meters in
the western United States (fig. 3.32). The
3-meter difference exceeds the expected un-

certainty in the Doppler position, but the
difference is close to the errors expected in
both the satellite and the terrestrial survey.
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FIGURE 3.32.--Satellite versus geodimeter survey.

Tests for Consistency.--Tests are con-
ducted periodically to determine the effect on
geodetic solutions of changing the data sets,
the station distribution, the number of satel-

lites used, and the number of potential
coefficients considered (Anderle, 1967a,b).
The effects found are usually smaller than
the effects of biases in the solution. Even the

deletion of data from nearly a hemisphere in
determining coefficients had only a small
effect on the subsequent determination of the

coordinates of stations in either hemisphere.
However, one particularly valuable test in-
volved the solution for station coordinates

while constraining the zonal coefficients to
various values. Table 3.24 shows how the z

component of station position varies depend-
ing on which set of zonal coefficients is
assumed to be correct. Biases as high as 100
meters can occur depending on which set of
coefficients is used, as a result of correlation
between odd zonal coefficients, orbital eccen-
tricity, and the z component of station posi-
tion. Note that the two sets of coefficients

obtained simultaneously with station posi-
tions, the Goddard Space Flight Center
GEM-2 and the NWL coefficients, give good
agreement.

Tests Against External Standards.--It is
desirable to test geodetic parameters obtained
on the basis of dynamic analysis of Doppler
satellite observations against external stand-
ards in order to determine if biases exist

which are not tested in simulations or in

tests for internal consistency. Unfortunately,
the available standards either are not per-
tinent to the principal results or are not
sufficiently accurate. Tests against terres-
trial traverses were discussed earlier. While
agreement of 1 to 3 meters was obtained for

interstation distances, the traverse provides
no test of the accuracy of the Doppler deter-
mination of datum origin or of worldwide

Doppler positioning accuracy. Mean sea level
would provide a worldwide evaluation of the

accuracy of relative station heights if the
distance of mean sea level from the center of
the Earth were known. The most accurate

worldwide geoid heights are those based on

satellite observations, and these have uncer-
tainties of several meters due to high-fre-
quency geoidal undulations. Tests of NWL

10D satellite determinations of station height
agree with those based on surveys above
mean sea level to 9 meters for worldwide
stations, which is consistent with effects of
the high-frequency geoid undulations. Con-

sidering other terrestrial standards, the
NWL 10D coefficients yield gravity anomalies
and geoid heights which agree with terres-
trial data to 18 mGal and 9 meters, respec-
tively, on a worldwide basis. These differ-
ences are also reasonable, considering the
neglected effects of high-frequency anoma-

lies. Differences between Doppler and astro-
nomic pole positions, discussed earlier, are

not unreasonable, considering the expected
accuracy of the two sets of data, but sys-

tematic variations are evident in the Doppler
solutions due to resonance coefficients

(Anderle, 1973). The Doppler solution for
Love's number is about 20 percent lower than

that found by analysis of terrestrial gra-

vimetry data or by Newton in his analysis of
Doppler data. However, the result is con-

sistent with that obtained by Kozai in his
analysis of camera data and that obtained

by Douglas and others of Goddard Space
Flight Center from analysis of camera ob-
servations of the GEOS=I satellite. Qualita-

tive agreement is obtained between tectonic
features and density anomalies in the earth
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corresponding to the computed coefficients
(E. W. Schwiderski, unpublished report,
1967). Doppler-derived positions for BC-4
sites in the PAGEOS networks are compared
in table 3.25 with the positions derived geo-
metrically from the camera data. Many of the
largest errors are in the South American area,
as shown in figure 3.33. The error vectors on
the figure depict the latitude and longitude
error; the altitude error is shown numeri-
cally. It is believed that the latitude discrep-
ancies are due to weak connections in the

BC-4 net in this area. The remaining discrep-

ancies are not unreasonable, considering the
estimated accuracy of the BC-4 solutions.

3.5.1.5 Station Positions in the United States

From time to time, DOD has carried out
small projects within the United States for
testing techniques or instruments of satellite
geodesy, but these tests also produced co-
ordinates of stations. The projects, re-
ported on briefly in the following section,
were satellite triangulation by AFCRL using
ANNA 1B carried out in 1963 and tests with
the GEOCEIVERS conducted in 1971-1972.
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3.5.1.5.1 GULF TEST PROJECT

(George Hadgigeorge, AFCRL)

A program in the southeastern United

States, called the "Gulf Test," was under-
taken in 1963 with a 10-station network of

PC-1000 cameras observing the flashing
beacon on ANNA lB. The observations col-

lected on the Gulf Test are shown in figure

3.34; coordinates of the stations are given in

table 3.26. The "net numbers" in figure 3.34
represents a sequence of flashes of the ANNA

beacon and the approximate satellite posi-

tions at the time of the flashing sequence.
One of the tests consisted of a reduction

using all 33 nets and all observing stations.

(Reduction was performed for AFCRL by

Duane Brown of D. B. Associates.) Coordi-

nates of stations AF640, AF641, AF643, and
3647 were determined by using stations 3648

and 3649 as known sites. Figure 3.34 shows

the distribution of the flashing sequences
used. The results of this adjustment have a

mean spherical error of 4 meters relative

to the coordinates on NAD 1927 (table 3.27).

Several other tests were made using the
same data collected on the Gulf Test. One

analysis which employed a different reduction

technique was that used by Mancini (1965).
From all available simultaneous data on each

line, the geodetic azimuths were determined

(_, 135 , 8_-_'--., #
i ' _5 ! _--1-85 (. • ./_,z,

3[,_, ,-1-;9o _:. _ ".._ _._
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FIGURE 3.34.--Coordinates of stations AF640, AF641,

AF643, and 3647 as determined from coordinates

of stations 3648 and 3649 by the nets (circles)
shown.

for several lines of the network on the condi-

tion that the two unit vectors from two sta-

tions to the satellite and the interstation

vector are coplaner (see sec. 3.4.1). Some of

the results obtained by Mancini are given in
table 3.28.

The azimuths derived from the data are

compared with the azimuth of the normal

section obtained from the NAD 1927 coordi-

nates by inverse computations. If these azi-

muths are used in a position computation
with the distances given in the last column,

the resulting coordinates agree within 5

meters or less with the NAD 1927 values.

3.5.1.5.2 GEOCEIVER TESTS BY

DMA/AC

(Haschal L. White, DMA/AC)

Observations were made by DOD teams
between 15 October and 12 December 1971

with small portable Doppler equipment

(GEOCEIVER) on the network shown in
figure 3.35. The network consisted of 22

sites, 19 connected (or scheduled to be con-

nected) to the National Ocean Survey's Pre-

cision Geodimeter Traverse (HPGT) (Eos,

Transactions American Geophysical Union,

1963, 1967). The observational program was

accomplished in two phases. Over 10 000

passes of the Navy Navigation Satellites

1967 34A, 1967 48A, 1967 92A, 1968 12A,

and 1970 67A were observed. Table 3.29

shows the stations occupied during phase 1

and phase 2.

Solutions using both the long-arc and the

short-arc methods were made. Both adjust-

ments were performed in the NWL-9D co-

ordinate system; however, for comparison
the derived coordinates were converted from

the NWL-9D system to Modified Cape

Canaveral Datum (MCCD). The following
datum shifts were used to effect the trans-
formation :

NWL to MCCD

aX = 24 meters

±Y= - 150 meters

AZ= - 179 meters

NWL to NAD 1927

AX= 30 meters

Ay= _ 156 meters

AZ= -- 178 meters
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Results by the Short-Arc Method.--The
procedure used in this solution has been de-

scribed in various reports to the Department
of Defense by Duane Brown Associates.
GEOCEIVER data were used exclusively in
the reduction but were used as ranges rather
than range differences. Short-arc solutions
were made in which either station Greenville

or Tipton was held fixed in the adjustment
and some interstation directions were used

as constraints. Data obtained in phases 1 and
2 are summarized in table 3.30. Constraints

used in solving with data from phase 1 are
listed in table 3.31.

Table 3.32 shows the results for phase 1,
phase 2, and phases 1 and 2 combined. The
mean correction in longitude of 2 to 3 meters
is larger than the mean correction in either

the latitude or the geodetic height, the latter
corrections being only a meter or less. In
phase 1 this difference would be the result of

a small timing bias, which was not completely
removed from the Greenville (fixed) station
data. In the phase 2 solution the large longi-
tudinal difference at the Cheyenne stations
leads one to suspect an error in the longitude
on NAD 1927. Similarly, an error is prob-
ably in the longitude for Las Cruces and
Moses Lake on MCCD because the HPGT was

not complete, and the error propagated from
a timing bias was not completely removed
from the Tipton (fixed) station data. The
longitudinal difference for the station at
Wrightwood was less definitive than that at
Cheyenne in different solutions.

The phase 1 and 2 solution shows longi-
tudinal differences for Cheyenne similar to
those obtained with the phase 2 solution and

longitudinal differences slightly larger for
Moses Lake (phase 2) and the Maryland
stations (phase 1).

Latitudinal differences are typical of those
with the other solutions, as are the geodetic
height differences with the exception of
Moses Lake and Wrightwood (NAD 1927).

Results Using Long-Arc Methods.--Precise

ephemerides computed by USNWL using the
TRANET station data were used in long-arc
solutions. The ephemerides were available

for Navy Navigation Satellites 1967-48A

(phase 1 only) and 1967-92A (phase 1-2) in
the NWL-9D coordinate system.

Again, the longitudes of the Cheyenne sta-
tions fared poorly, as did the MCCD longi-
tude of Moses Lake. The Moses Lake longi-
tudinal difference could be the result of not
having the final adjusted values of the west-
ern loop of the HPGT.

Summary.--The short-arc, phase 1 results
show typical accuracies in latitude and geo-
detic height of 2.5 meters or better, in com-
parison with the HPGT (MCCD) coordi-
nates, and longitudinal differences of less
than 4.5 meters. The phase 2 results are
similar except for the stations for which only
NAD 1927 coordinates were available (Chey-
enne and Wrightwood) and for the slightly
larger difference in the Moses Lake longi-
tude.

The long-arc results show similar agree-
ment. The maximum error in longitudinal
error for the long-arc solution is 2.8 meters.

(A more detailed description of these tests
is included in a Tri-Service DMA Report
0001, July 1972. Requests for copies of this
report should be directed to the Defense

Mapping Agency, Washington, D. C.).

3.5.1.5.3 GEOCEIVER TESTS BY

DMA/TC
(R. W. Smith and C. R. Schwarz,

DMA/TC)

The point positioning technique (sec. 3_4.4)
has proven to be extremely successful for
producing precise geodetic positions based
on observations from the miniaturized
Doppler receivers. The positions obtained
are referred to a center-of-mass coordinate

system and are independent of other posi-
tions. For some applications, however, a
precise relative position between two stations
is desired. In these cases, the technique of
section 3.4.4 is modified; this modified tech-
nique is known as translocation.

A translocation solution consists of the
difference between two point position solu-
tions, performed under special circumstances.
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It is used only to determine the relative posi-
tions of two points, never to determine the
position of a single point. The special cir-
cumstances are that each pass used in the

individual point position solutions must be
seen simultaneously by both stations and that
each station must obtain the same number of

data points. It is not necessary that the data
be simultaneous.

This concept assumes that errors in the
satellite ephemeris will, to a certain extent,
affect both stations in a similar manner.
These similar errors will cancel when the
coordinates of the two stations are differ-

enced, so that in many instances the relative
positions between two stations can be deter-
mined more accurately than the position of
either station can be.

The relative coordinates of 20 pairs of
stations were determined by means of the
translocation method and the DOD GEO-
CEIVER test data. These relative coordi-

nates were compared with relative coordi-
nates determined from the U.S. high-pre-
cision traverse. The discrepancies between
the two determinations of relative position
were examined in each coordinate and in the

direction of the line joining the two stations.
Some of these values are shown for NGSP

stations in table 3.33. As was expected, these
discrepancies were found to be larger for the
longer lines. Ninety percent of all the linear
discrepancies are contained within the
bounds "0.5 meters plus 2 parts per million
of the distance." This expression thus gives
the accuracy (90 percent probability) to
be applied to each component of relative
position.

The accuracy expression for discrepancies
found by translocation is valid for lines less

than 800 km in length in either north-south
or east-west orientation. When the separa-
tion is more than 800 km, the assumption
that errors in the ephemeris affect both sta-
tions in the same way becomes less valid, and
the translocation solution takes on the char-

acter of the difference of two point position
solutions. The accuracy expression for dis-
crepancies found by translocation applies to
solutions containing 20 or more passes.

There is no evidence that any improvement
can be gained by using more than about 35
passes, but the use of fewer than 20 passes
may be expected to result in a less accurate
solution. The application of the accuracy
expression should also be limited to solutions
similar to those from which the expression
was derived.

3.5.2 Gravitational Potential and Geoid

3.5.2.1 Gravitational Potential and Geoid by
the Least-Squares Collocation
Method

(R. M. Rapp _)

3.5.2.1.1 METHOD

The terrestrial data used for this compari-
son were the 1283 5 ° equal-area anomalies

computed by Rapp (1972a), supplemented
by model anomalies to form a complete set of
1654 5 ° anomalies. In the original computa-
tions a -2 mGal error was present for cer-
tain anomalies in the Canadian area. This

error was removed; hence it is not reflected
in the final solution given here.

The starting potential coefficients were
those of GEM 3 (Lerch and Wagner, 1972).
The standard deviation for each coefficient

of GEM 3 was computed from

2 A2 2 1/
k/0.8A1 +0.4 2 -_- 0.2A3'_ '2

m= )

where ±,, ±:, and ±:, are the mean differences
between GEM 3 coefficients and those of

GEM 1, the SAO Standard Earth II (Ga-
poschkin and Lambeck, 1970) and the SAO
Standard Earth I (Lundquist and Veis,
_1966). Values of k were chosen as ½, ¼,
Vs, and V_6 to reflect various relative weight-
ing schemes. The most realistic standard
deviation for GEM 3 coefficients should be

the k = _ case.

2 The research reported in this section was spon-
sored by the Air Force Cambridge Research Center,

Bedford, Massachusetts.
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3.5.2.1.2 SOLUTIONS

Using the original set of anomalies, a least-

squares solution and a least-squares colloca-
tion solution were made with the four values

of k. These solutions were complete to n=20
with additional resonance and zonal co-

efficients in degree 21 and 22. After making
tests with each solution it was decided that
the best overall solutions were achieved with

k=V_. The potential coefficients from the

least-squares collocation solution (made with

the corrected anomaly field) with k= ills are
given in table 3.34. In this table, two sets of

standard deviations are given. The first,

designated SD 1, is based on the actual

solution with k=%. As a guide to more

realistic standard deviations, the standard
deviations from a combination solution with

k = _/., are also given, as SD 2.

3.5.2.1.3 COMPARISONS OF SOLUTION

The results from the various sets of poten-

tial coefficients were examined by considering

anomaly degree variances, terrestrial gravity

comparisons, comparisons with astrogeodetic

undulations, and comparisons with fitted
orbits.

Comparisons of anomaly-degree variance

were made to see the aliasing effect at the

higher degrees that is caused by the trunca-

tion of the solution. This aliasing effect

manifests itself by larger-than-expected

values of the variances at high degree. In

the comparisons made here it was found that
the least-squares collocation adjustment sig-

nificantly reduced the aliasing effect.
The comparisons of the terrestrial gravity

field were made by computing anomalies from

the potential coefficients, which were then

compared with the starting anomalies by

using the equations given by Kaula (1966a).
The best agreement with the terrestrial

gravity field was found with k=l_. The

usual least-squares and least-squares colloca-

titon coefficients showed no significant differ-

ence in anomaly agreement, although there

was indication that the potential coefficients
of the least-squares collocation solution were

slightly (10 percent) more accurate than

those of the usual least-squares solution.

Comparisons with the astrogeodetic geoid

were made by computing undulations from

the potential coefficients and comparing these

undulations with the astrogeodetic undula-
tions after a suitable transformation. The

root-mean-square height after the adjust-

ment was a measure of the goodness of a
potential coefficient solution. Values of the

rms deviations are given in table 3.35 for
several solutions tested. In the North Ameri-

can Datum 1927, 3112 points were used,

whereas in the Australian Datum, 1084

points were used. Of these solutions, the best

is the least-squares collocation solution, al-
though the difference between it and the

usual least-squares solution is very minor. In
several cases the other solutions tested are

significantly poorer than those described in

this paper.

Various sets of potential coefficients were

used to obtain a best fitting orbit using laser

data on a 7-day arc of GEOS-A. The fit to
the orbit for these sets of coefficients is shown

in table 3.36. We see that the least-squares

collocation solution yields a better fit than

the usual least-squares solution, although
the differences decrease as k decreases. This

set of potential coefficients yields better fit

than all other sets tested except those of the
SAO Standard Earth II.

The geoidal heights and anomalies derived

from the potential coefficients of table 3.34

are shown in figures 3.36 and 3.37. Figure

3.38 shows the anomaly difference between

the solution of this paper and the anomalies

implied by the potential coefficients of the

SAO Standard Earth II. They were com-
puted from

N=

ttm:,xR _ (C2eos mA +S_sin mA) P2(sin9)
tl 2 nt=O

Ag =

t_znax _l

,y_(n-1)_(C2 cos m,_ +S_ ' sin rex) P_(sin q,)
J_:2 ttl=0

using a flattening of 1/298.256.
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Comparison of various potential coeffi-
cients in terms of geoidal heights and differ-

ences of anomalies with respect to the poten-

tial coefficients given in table 3.34 is shown
in table 3.37.

The largest anomaly and undulation dif-

ferences between the potential coefficients of

the SAO Standard Earth II and those given

in table 3.34 occur in the South Pacific (20°S

to 40°S, 130°W to 160°W). In this area there
were only six known terrestrial anomalies

used in this combination solution, and no
terrestrial anomalies in this area for the SAO
Standard Earth II solution.

3.5.2.1.4 SUMMARY

Highlights have been presented on the de-

velopment of a combination gravimetric and

satellite data solution using the concept of
least-squares collocation. Interested readers

will find more details on this development in
Rapp (1973).

Comparisons made indicate that the least-

squares collocation solution yields better
estimates of certain quantities than those

derived from the standard least-squares

method. In some cases, however, the differ-

ences in the results were slight.
The difference between the coefficient of

least-squares solution and that of the least-

squares collocation solution was approxi-

mately 2 percent for degrees 2-12 and

approximately 17 percent for degrees 13-20.
It can be shown that this difference will in-

crease linearly with higher degrees. For
example, at n=30 the difference reaches a

value of 42 percent.

these, which are only complete through sev-
enth degree and sixth order. The set in cur-

rent use at the Naval Weapons Laboratory is
the NWL 9B set, which is complete through

19th degree and order, although the coeffi-
cients are not well determined. This solution

was based on Doppler data from the satellites

listed in table 3.9 (sec. 3.3.4.1). Since these

data were insufficient for uniquely determin-

ing the full set of coefficients through 19th

degree, a priori observation of zero for

coefficients of degree n (except GM and C._..o)

was added with standard deviation of 10 _'/n'-',
in normalized form.

Three spans of data on polar satellites
were chosen to obtain solutions for 27th-order

gravity coefficients. Normal equations were

formed for arc constants and for two pairs
of 13th-, 14th-, and 27th-order gravity coeffi-
cients. Solutions were made for various

combinations of the gravity coefficients and

time spans for the drag parameters. The
solutions for the 27th-order coefficients

varied by 50 to 100 percent in the various

tests. The following normalized coefficients

were obtained under the conditions that gave
the most consistent results for the three

spans of data: The first data span listed,

which is also the longest data span, gave the
most consistent results in the various tests.

The 28th-degree coefficient corresponds to an

along-track effect on a polar satellite of 20-

meter amplitude with an 8-day period; the
27th-degree coefficient corresponds to an

along-track error of 5 meters at the orbit

period modulated by the 8-day beat period

(see inset).

3.5.2.2 Gravitational Potential From Doppler
Data

(R. J. Anderle, NWL)

The last published solution by the Naval

Weapons Laboratory is the NWL 5K set (An-

derle, 1965b). Most potential coefficients de-

termined recently are more accurate than

3.5.3 Other Results

(R. J. Anderle, NWL)

3.5.3.1 Inertia Axis

Since the potential coefficients C_, S_ are

parameters of the general geodetic solution,

Satellite Span of Data

1967-92A Days 286-302, 1968
1967-92A Days 214-224, 1970
1966-76A Days 59-69, 1967

c27,27 "27,27 c28,27 s28,27

.003 .001 --.022 .009

.003 .004 --.037 .007

.006 .001 --.024 --.012
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it is possible to compute the orientation of the
principal axis of inertia with respect to the
reference axis. However, the computed
orientation of the axis was found to be in-

consistent even in quadrant when solutions
were repeated with data from additional
satellites. The unsatisfactory results are
probably due to the fact that all even degree
first-order coefficients produce small effects
on the satellite orbit but correspond to large
displacements in the moment of inertia. A
normalized coefficient C_=10 -_ produces a
5ometer effect on the orbit of a 1000-km polar
satellite and corresponds to a 60-meter dis-
tance between inertia axis and reference axis
at the Earth's surface.

3.5.3.2 Love's Number

The geodetic solution in current use, NWL
9B, yielded a value of Love's number of 0.25.
A more recent solution, NWL 10D, gave a
value of 0.26. The newer solution included
data on the Timation 2 satellite and Baker-

Nunn data on Vanguard 2, Vanguard 3, TEL-
STAR 1, ECHO 1 rocket, MIDAS 4, and
TIROS 1. (The astronomical designations of
the satellites for which optical data were
processed are 1959 al, 1959 vl, 1962 _cl,

1960 i2, 1961 a_l, and 1960 f12.) The NWL
10D solution also included additional Doppler
data for polar satellites and optical data for

ANNA 1B, GEOS-1, and GEOS-2, and
omitted some data processed incorrectly for
the NWL 9B solution. Simulations have

shown that effects of neglected gravity co-
efficients on the computed value of Love's
number are negligible. However, no tests
have been made to determine the sensitivity
of the solution to neglected atmospheric and
oceanic tides. Since the solution is based on

time spans of observation of 8 to 16 days, the
results reflect primarily lunar tidal effects.

3.5.3.3 Solar Radiation

Since a solar radiation parameter is deter-
mined for each 8- to 16-day time span of data
used in a general geodetic solution, the solu-
tions provide a measure of the variation in
radiation effects from one span to the next.
Results for nearly spherical satellites were
separated from those for satellites with solar
panels, since the area to mass ratios for fhe
latter satellites are difficult to compute.
Radiation parameters for spherical satellites,
shown in figure 3.39, show a consistency of
about 10 percent. Radiation parameters for
NAVSAT type satellites (fig. 3.40) show
little if any correlation with the angle be-
tween the Sun and the orbit plane, although
the effective cross-sectional area might have

varied according to this angle for the gravity
gradient stabilized navigation satellites or the
magnetically stabilized Beacon-Explorer
satellites.
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FIGURE 3.39.--Radiation parameter for
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3.5.3.4 Atmospheric Drag Variations

Observations made in each 2-day time span
are used to determine a scaling factor for

atmospheric drag along with orbit constants.
Sample results (Anderle, 1971a) are shown
in figure 3.41 along with measures of solar
flux, magnetic index, and the orientation of
the angle between the angular momentum
vector and the sun. Fairly strong correlation
is evident between solar flux and drag, and
some correlation exists between magnetic

index and drag. A semiannual variation,
which appears to correlate with the Sun
angle, is readily apparent; however, the
dominant effect is really a seasonal variation
with some modulation due to Sun angle. Note

that the 27-day rotation period of the Sun is
reflected in both the solar flux data and the

drag coefficient. The rapid changes in at-
mospheric density result in significant errors
in predicting the satellite orbit. Figure 3.42
shows the prediction error 24 and 48 hours
after the last data point used in predicting
the satellite path. The prediction errors re-
flect the variations in drag to some extent,
but the dominant period in the 24-hour
prediction error is 17 days. This period is
approximately twice the beat period corre-
sponding to the 27th-order gravity coeffi-
cient. The rms of the prediction errors are

z_o

zoo

,5o
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o b , , i , J /
60 ,zo Jlo z4o 300 3so

FIGURE 3.41.--Drag scaling factors and atmospheric

characteristics for satellite 1967-92A for 1969.
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FIGURE 3.42.--Drag scaling factors and prediction
errors for satellite 1967-92A for 1969.

about 20, 50, and 100 meter for 1-, 2-, and
3-day prediction intervals (L. K. Beuglass
and M. S. Douglas, unpublished report,
1972). The errors were about 20 percent
higher than these values in 1969 and 20 per-
cent lower in 1971, but it is not known
whether the improvement stems from im-

proved computational techniques or from
reduced levels of atmospheric density varia-
tions. The prediction error is primarily in
the direction of the satellite motion ; the error
component that is directed radially outward
from the center of the Earth is about 4 meters

for any time span, whereas the error com-

ponent normal to the orbit plane varies from
2 to 5 meters as the prediction interval in-
creases from 1 to 3 days.

3.5.3.5 Earth's Rotational Rate

It should be possible to determine the rate
of Earth's rotation from satellite observa-
tions by measuring discrepancies in the pre-
dicted motion of the orbit plane of the satel-
lite with respect to a meridional plane of the
Earth. Errors in the neighborhood of a
meter per day might be expected, due to
errors in Doppler observations or uncertain-
ties in the gravity field, but much of the
error will compensate in computing accumu-
lated clock correction if the results are based

on successive orbit computations.
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Thus far, computations based on Doppler

observations have given unsatisfactory re-

sults because effects of neglected atmospheric

tides and biases of unknown origin exceed

the seasonal and irregular variations in clock

corrections. Sample results are shown in

figure 3.43. Computations for different years

and different satellites give biases of different

magnitude and sign ranging as high as 1

meter per day (A. F. Buonaguro, unpublished
report, 1972).

3.5.3.6 Pole Position

An independent determination of the com-

ponents of pole position is made based on

each two days of data processed for each
satellite. The mean and standard error of the

solutions falling within each contiguous 5-

day time span in 1972 are shown in figures

3.44 and 3.45. Data were available for only

tO.
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FIGURE 3.44.--X component of pole position for 1972.
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FIGURE 3.45.--Y component of pole position for 1972.

one satellite during most of the year; during

these periods the standard error of the 5-day

mean (which contains only two or three

solutions) was about 40 cm. From days 180
to 300, data from three satellites were avail-

able; during days 300 to 330, data from
five satellites were available. Standard errors

as low as 13 cm were obtained based on data

from five satellites. BIH values are also

shown on the figures. During the first six

months of the year the NWL and BIH values

differed by 0:'024 and 0'.'002 in the x and y

coordinates, respectively, on the average
with standard deviations of the differences

about the mean of 0'.'029 and 0':022, respec-

tively (Anderle, 1973). The pole path is

shown in figure 3.46, where the ellipses re-

present the standard error of the NWL solu-
tions.
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FIGuaE 3.46.--1972 pole path.
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3.5.3.7 Crustal Motion

NATIONAL GEODETIC SATELLITE PROGRAM

Positions of Doppler equipment located at

BC-4 sites in the PAGEOS network were

determined over the course of seven years

using the gravity field in use at the time.
Positions of many of the sites have now been

recomputed on the basis of ephemerides
which were first recomputed using the NWL

9B gravity field, current values for the posi-
tions of base stations, and modern computa-

tional techniques. Positions of the base sta-

tions were also computed with respect to the

new ephemerides. Thus solutions for base

station positions were obtained for about

30 spans of data irregularly distributed over

the 7-year period. Each span of data was

about 10 days long. A least-squares linear
fit was made to the solutions for each com-

ponent of position of each station to deter-

mine whether significant variations in the
solutions occurred over the 7-year time span.

Each solution was weighted with the square

of the number of passes in the solution.
Results of the solution are shown in table

3.38. The standard errors of the computed

drift rates are about 20 cm/yr with standard

errors as low as 10 cm/yr for stations at

extreme latitudes, which acquire more passes

per day. The computed drifts are statistically

significant for only a few of the components.

In one example, the longitude of Japan, the

drifts are not linear, as is shown in figure

3.47. Rather, there is a 300-cm change in the
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FIGURE 3.47.--Variations in the solutions for the

longitude of Japan; drift 54___12 cm per year.

computed longitude of Japan at the end of

1969 or early in 1970. The station antennas
were moved during this time period, but the

old and new positions were well documented
and the difference was under 1 cm. It is not

known whether the computed change in

longitude is physical or computational. Other
stations are moved, opened, or closed peri-

odically, and in some cases the changes affect
the mean orbit and, in turn, positions of other

stations computed from the mean orbit. Note
in table 3.38 that the residuals of a 10-day

solution for position are 1 to 2 meters. The

residuals are larger for mid-latitude stations,

which receive fewer passes per day, than sta-
titons at extreme latitudes. Latitude residu-

als are usually better than height or longi-
rude residuals. Average residuals for a group

of stations are 1.5, 1.2, and 1.6 meters in

longitude, latitude, and height, respectively.
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TABLE 3.1.---Specifications of the

PC--IO00 Camera

Camera body
Focal length ........... 1000 mm
Aperture ............... 200 mm
Resolution ............. 64 lines/mm
Distortion .............. < -+2 microns
Field of view ........... 10 ° x 10 °
Transmission factor____85-90%
Weight ................ _62.3 kg

Photographic medium
Glass ................. _Kodak optically fiat quality

190mmx 215minx 6mm
Emulsion ............. _Spectroscopic 103 f

APPENDIX

TABLE 3.2.--Tabulation of Ranging

Frequencies

Ranging Unambiguous Range
frequency Wavelength range resolution

(kHz) (m) (m) (m)

585.530 .......... 512 256 0.25
36.596 ......... 8 192 4 096 16

2.287 ....... 131 072 65 536 256
0.286 ..... 1 048 576 524 288 2 048

TABLE 3.3.--SECOR Satellites

Incl. angle Period Apogee Perigee
Launch Date (degrees) (minutes) (kilometers) (kilometers)

EGRS I ........ 11 Jan 64 69.91 ° 103.4 928 916
EGRS III ...... 9 Mar 65 70.09 _ 103.5 906 906
EGRS II ....... 11 Mar 65 89.98 ° 97.5 992 982
EGRS IV ....... 3 Apr 65 90.20 ° 111.4 1324 1266
EGRS V ........ 10 Aug 65 69.24 ° 122.2 2427 1135
GEOS A ........ 6 Nov 65 59.38 ° 120.3 2273 1119

EGRS VI ....... 9 Jun 66 90.04 ° 125.2 3655 171
EGRS VII ...... 19 Aug 66 90.01 ° 167.9 3743 3686
EGRS VIII ..... 5 Oct 66 90.19 ° 167.6 3704 3677
EGRS IX ....... 29 Jun 67 89.80 ° 172.1 3945 3794
GEOS B ........ 11 Jan 68 105.80 ° 112.2 1573 1080
EGRS X ........ 18 May 68 99.00 ° 106.0 1100 1100
EGRS XI ....... 16 Aug 68 91.30 ° 172.0 3900 3900
EGRS XII ...... 16 Aug 68 91.30 ° 172.0 3900 3900
EGRS XIII ..... 14 Apr 69 99.90 ° 107.3 1141 1085
TOPOI ........ 8 Apr 70 99.86 ° 107.0 1090 1081

TABLE 3.4.--Characteristics of Lasers

Ranging laser Photographic laser

Laser type ......... Ruby
Wavelength ........ 6943/_
Beamwidth ........ 1.45 mrad (after collimation)
Polarization ....... Linear
Cooling method .... Water-cooled
Mounting .......... Elevation over azimuth

Aiming method .... Programmed
Pulse length ....... 30 nsec
Energy per pulse __0.5 joule

Pulsing method .... Programmed, up to 10 pulses per pumping
period with Pockels cell for Q-switching

Ruby
6936 A
2 mrad
Linear
Water-cooled

Elevation over azimuth

Programmed
2 msec

250 joules
Limited by capacitor
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TABLE 3.5.--Specifications on Flashing Lights in ANNA, GEOS-A, and GEOS-B

Satellites

Item ANNA-1B GEOS-A and GEOS-B

Flashtubes ......... EG&G XFX-40; 4 lamps EG&G helical lamps

Location ........... Two lamps each on top and bottom faces of Four lamps on the Earth-facing side of the
solar cell belt satellite

Light output ....... 550 watt-seconds per tube 670 watt-seconds per tube

Flash sequence ..... Five consecutive flashes, 5.6-second interval Five or seven flashes per sequence, 4.0-
between flashes second interval between flashes

Flash duration ..... 1 millisecond at Va amplitude points 1 millisecond

Beam pattern ...... Figure 3.13 Figure 3.14

Flashes available___Approximately 100 per day 225 per orbital revolution
650 per day for 67% sun orbit

850 per day for 100% sun orbit

Expected life of
flashtubes ........ _20 000 flashes, minimum 90% intensity after 40 000 flashes

Energy available 410,000 watt-see per day, 67% sun orbit

from battery ....... 580,000 watt-sec per day, 100% sun orbit

System weight ..... 24 kg not including batteries Approximately 27 kg not including batteries
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TABLE 3.7.---Observational Data for Station Positions in

North America, the West Indies, and Bermuda

Number of

Station number Type sequences or orbits

5001 .......... SECOR

5333 .......... SECOR

5649 .......... SECOR

5861 .......... SECOR

7051 .......... LASER

3405 .......... PC-1000

3402 .......... PC-1000

3657 .......... PC-1000

3106 .......... PC-1000

3861 .......... PC-1000

3401 .......... PC-1000

7040 .......... MOTS-40

1022 .......... MOTS-40

1034 .......... MOTS-40

1042 .......... MOTS-40

7037 .......... MOTS-40

7036 .......... MOTS-40

7039 .......... MOTS-40

7075 .......... MOTS-40

3648 .......... PC-1000

3649 .......... PC-1000

3404 .......... PC-1000

3406 .......... PC-1000

3407 .......... PC-1000

1021 .......... MOTS-40

7043 .......... PTH-100

7045 .......... MOTS-40

7072 .......... MOTS-40

7076 .......... MOTS-40

8

10

11

8

4

14

18

19

20

28

15

28

97

54

33

66

41

34

16

7

15

8

18

5

12

31

26

36

19
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TABLE 3.8.--SECOR Data
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Station Total number Station Total number
number Station of passes number Station of passes

5001 .......... Herndon

5706 .......... Worthington
5648 .......... Ft. Stewart
5710 .......... Bermuda
5709 .......... Austin

5738 .......... Puerto Rico
5711 .......... Panama

5712 .......... Paramaribo
5713 .......... Azores _

5715 .......... Dakar

5735 .......... Natal
5736 .......... Ascension

5717 .......... Ft. Lamy
5739 .......... Azores 2
5744 .......... Catania

5719 .......... Cyprus
5740 .......... Rota
5741 .......... Roberts Field

5720 .......... AddisAbaba

11 5721 .......... Mashhad 72

24 5722 .......... Chagos 90
11 5723 .......... Chiang Mai 96
51 5724 .......... Singapore 93
18 5725 .......... Hong Kong 101

5 5726 .......... Zamboanga 143
28 5727 .......... Darwin 73
70 5729 .......... Manus 125
45 5728 .......... Guam 134

152 5730 .......... Wake 171

57 5742 .......... Palau 23
59 5731 .......... Guadalcanal 61

145 5732 .......... Pago Pago 48
64 5733 .......... Christmas 73

129 5411 .......... Maui 81

102 5410 .......... Midway 41

18 5734 .......... Shemya 47
19 5201 .......... Larson 22
81

TABLE 3.9.--Orbital Data for Doppler Satellites

Perigee
Internation Period height

Satellite designation Inclination (°) (min) (km)

TRANSIT 4B ........ 1961 a,}l
DIADEME 2 ......... 1967 14A
DIADEME 1 ......... 1967 llD
Beacon C ............ 1965 32A

ANNA 1B ............ 1962 _1

TRANSIT 1B ........ 1969 _2
GEOS-A ............. 1965 89A

TRANSIT 2A ........ 1960 _1
TRANSIT 4A ........ 1961 al

TIMATION 2 ........ 1969-082B
Beacon B ............ 1964-64A
NAVSAT ............ 1967-92A et al.

GEOS-B ............. 1968-002A

32.4 105.8 950
39.5 110.2 593
39.9 102.4 575
41.2 107.8 937
50.1 107.9 1083
51.2 95.8 289
59.0 120.4 1115
66.7 101.5 611
66.8 103.8 879
70.0 103.5 905
79.7 104.8 878

89.3 106.8 1043
105.8 112.2 1080
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TABLE 3.10.--Survey Coordinates of Doppler Stations--Z System a

Station Longitude Latitude
No. Height

(2000+) MSL KM Deg Min Sec Deg Min Sec Datum

018 ........ 0.0487 291. 13. 21.472 76. 32. 20.523 QOR

019 ........ 0.0382 166. 40. 03.444 -77. 50. 56.724 CMP

020 ........ 0.5910 55. 28. 48.630 -4. 40. 06.806 SEI

115 ........ 1.5804 28. 20. 53.205 -25. 56. 46.124 ARC

117 ........ 0.0092 189. 17. 07.643 -14. 20. 08.032 SAM

708 ........ 0.0103 166. 36. 39.128 19. 17. 27.064 AST
709 ........ 0.0916 115. 55. 47.572 -31. 36. 29.584 AUS

717 ........ 0.5871 55. 28. 48.738 -4. 40. 06.418 SEI
722 ........ 0.0812 345. 35. 38.840 -7. 58. 11.310 ASC
723 ........ 0.0086 96. 49. 47.730 -12. 11. 58.347 AST
727 ........ 0.0562 332. 54. 18.919 38. 45. 38.407 SWB

738 ........ 0.3722 240. 39. 47.400 47. 11. 08.060 NAD

739 ........ 0.0443 174. 06. 51.482 52. 43. 01.511 NAD

742 ........ 0.0498 283. 10. 27.170 39. 01. 39.500 NAD
744 ........ 0.0601 142. 12. 36.990 -10. 35. 06.210 AUS
765 ........ 0.3111 98. 58. 14.812 18. 46. 07.008 IND

766 ........ 0.0092 166. 36. 39.814 19. 17. 26.421 AST

805 ........ 0.2151 149. 33. 36.622 -30. 18. 39.601 AUS
809 ........ 0.0064 168. 18. 13.206 -46. 24. 49.311 GEO

811 ........ 0.0323 203. 31. 52.080 20. 49. 38.090 OHD

812 ........ 0.0289 14. 55. 05.883 37. 24. 38.796 ED

813 ........ 0.0275 342. 30. 53.268 14. 44. 40.311 YAF

815 ........ 0.0214 304. 47. 46.590 5. 27. 04.419 PRO
817 ........ 0.9946 59. 37. 42.916 36. 14. 30.096 ED

818 ........ 0.1093 18. 56. 30.700 69. 39. 44.270 ED

820 ........ 0.6110 294. 53. 39.460 -31. 56. 34.633 SAD

821 ........ 0.0147 122. 04. 03.700 6. 55. 26.800 LUZ

822 ........ 0.2983 15. 02. 05.612 12. 07. 50.939 ADI

825 ........ 0.0150 295. 56. 29.748 -64. 46. 34.916 AST

830 ........ 0.9431 11. 01. 30.259 47. 48. 08.330 ED

831 ........ 0.0263 249. 02. 40.587 18. 43. 43.666 ISA

832 ........ 0.0409 129. 42. 43.640 33. 04. 46.650 TD
837 ........ 0.0410 324. 49. 55.940 -5. 54. 45.410 PRO

838 ........ 0.1418 57. 25. 07.503 -20. 13. 41.720 AST
840 ........ 1.8908 38. 59. 49.242 8. 46. 09.503 ADI

844 ........ 2.6850 281. 34. 50.213 -00. 05. 51.268 SAD

846 ........ 0.2339 250. 34. 18.384 -27. 10. 38.061 EAS

847 ........ 0.0873 290. 46. 29.005 -52. 46. 51.133 SCD

849 ........ 0.0065 202. 35. 21.036 2. 00. 35.575 CHR

Z system means that the coordinates are of the effective position applicable to observa-
tions made with the 150- and 400-MHz antennas at the station, which is a point (1 +
150z/400 _) of the distance from the 150- to the 400-MHz antenna.
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TABLE 3.11.--Horizontal and Vertical Coordinates, ETR Project, NAD 27
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Geodetic Horizontal Height
Camera height sigma sigma

No. station Latitude Longitude (meters) (meters) (meters)

3404 ..... Swan Island 17 _ 24' 16'.'67 N 83 ° 56' 29":87 W 60.4 6.6 6.6
3405 ..... Grand Turk 21 ° 25' 46':93 N 71 ° 08' 46':22 W 9.9 7.4 6.6
3406 .... _Curacao 12 ° 05' 22':24 N 68 ° 50' 17':39 W 36.6 10.0 7.0
3106 .... _Antigua 17 _ 08' 52:69 N 61 ° 47' 22'.'07 W 24.7 10.0 8.7
3407 ..... Trinidad 10 ° 44' 31':95 N 61 ° 36' 37':65 W 282.1 13.3 9.7
3648 ..... Hunter AFB 32 ° 00' 05"87 N 81 ° 09' 13"64 W 15.4 0.0 0.0

3402 ..... Semmes 30 ° 46' 49':35 N 88 ° 15' 07':63 W 76.4 0.0 0.0
3861 ..... Homestead AFB 25 ° 30' 24"69 N 80 ° 23' 17'.'31 W 15.1 0.0 0.0

TABLE 3.12.---AFETR Minus PC-IO00,

NAD 27

Latitude Longitude a Height
Station (meters) (meters) (meters)

Grand Turk .... -4.0 0.3 -6.1

Antigua ........ -0.3 -11.2 -9.5
Trinidad ....... - 16.4 - 3.9 - 10.3

a Differences based on east longitudes positive.

TABLE 3.13.--Horizontal and Vertical Coordinates, Bermuda Project, NAD 27

No.

Geodetic Horizontal
Camera height sigma
station Latitude Longitude (meters) (meters)

Height
sigma

(meters)

3471 ..... Bermuda
3657 .... _Aberdeen

3648 ..... Hunter AFB

32° 22' 58':30 N 64 ° 41' 0if:02 W 38.7 6.6
39 ° 28' 18':97 N 76 ° 04' 15'.'22 W 2.8 0.0
32 ° 00' 05':87 N 81 ° 09' 13':64 W 15.4 0.0

3.4
0.0

0.0

TABLE 3.14.--Bermuda 1957 Datum to

NAD 27

Latitude Longitude

Solution (seconds) (meters) (seconds) (meters)

PC-1000 __ 4.10 126.6 -1.84 -48.0
AFETR___ 4.27' 131.8 -2.02 -52.7

USNOS ___ 4.17 128.7 -1.63 -42.5

Mean ..... 4.18 129.0 -1.83 -47.7
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TABLE 3.15.--Horizontal and Vertical Coordinates, Johnston Island Project, BC-4

World Net _

Geodetic Horizontal Height
Camera height sigma sigma

No. station Latitude Longitude (meters) (meters) (meters)

3475 .... _Johnston Island
6011 ..... Maui (BC-4)
6066 ..... Wake (BC-4)
6059 ..... Christmas (BC-4)

16 ° 43' 45':72 N 169 ° 31' 14':53 W 24.7 5.4 5.8
20 ° 42' 27"09 N 156 ° 15' 21"23 W 3089.5 0.0 0.0
19 ° 17' 28':50 N 193 ° 23' 19"59 W -2.0 0.0 0.0
02 ° 00' 18'.'83 N 157 ° 24' 43':32 W 32.3 0.0 0.0

October 1972 WN adjustment; NWL-8D ellipsoid (a = 6 378 145.0 m; 1/f = 298.25).

TABLE 3.16---Horizontal and Vertical Coordinates, South American Densification Project,

BC-4 World Net

Geodetic Horizontal Height
Camera height sigma sigma

No. station Latitude Longitude (meters) (meters) (meters)

3413 ..... Natal

3414 ..... Brasilia
3431 .... _Asuncibn
3476 ..... Paramaribo

3477 ..... Bogot/t
3478 ..... Manaus
3406 ..... Curacao
3407 .... _Trinidad

6002 ..... Beltsville (BC-4)
6008 ..... Paramaribo

(BC-4)
6009 ..... Quito (BC-4)
6019 ..... Villa Dolores

(BC-4)
6067 ..... Natal (BC-4)

05 ° 54' 57':61 S 35 ° 10' 04"55 W 9.2 5.5 6.7

15 ° 51' 37'.'34 S 4T 53' 59':47 W 1012.5 5.8 6.7

25 ° 18' 57':33 S 57 ° 34' 47'.'59 W 166.0 6.0 6.8

05 ° 26' 53':36 N 55 ° 12' 18':80 W -36.9 5.5 6.4

04 ° 49' 01':23 N 74 ° 04' 27"34 W 2558.9 5.9 7.3

03 ° 08' 44':82 S 59 ° 59' 05':76 W 44.3 9.1 10.1
120 05' 26':32 N 68 ° 50' 16':46 W -24.7 5.6 6.5

10 ° 44' 35'_25 N 61 ° 36' 36"81 W 191.7 5.7 6.6

39 ° 01' 39'.'44 N 76 ° 49' 33':06 W 0.5 0.0 0.0

05 ° 26' 53"93 N 55 ° 12' 20':21 W -34.4 4.7 5.3

00 ° 05' 51':24 S 78 ° 25' 13':50 W 2689.6 5.0 5.9
31 ° 56' 35'.'32 S 65 ° 06' 22"52 W 614.9 4.9 6.1

05 ° 55' 38"72 S 35 ° 09' 56"05 W 16.5 5.3 5.1

TABLE 3.17.--Standard Deviations Assumed for Input Parameters

Camera
Orientation:

a_ = 1" cr, = 1" as = 2"
Timing (interstation):

at = 1 x 10 -4 time sec (active)
Measurement:

a, = 3 microns a_ = 3 microns (plate coordinates)

ak = 10 microns (focal length)

a, = i x 10 -4 sec (interval timing)

Laser

a,, = 10 m (zero set); ar = 5 m (range noise)
or, = I.× 10 -4 sec (interval timing)

SECOR
_,, = 30 meters (zero set)

ar = 5 meters (random range)
a, = 1 × 10 -4 sec (interval timing)

Initial conditions

Position: a_ = a_ = a_ = 10 000 meters
Velocity: a_ =a_ =a_ =5m/sec



DEPARTMENT OF DEFENSE 229

o_

O
O

L)

¢g

g

b
÷1

b
÷1

g
__ "______



230 NATIONAL GEODETIC SATELLITE PROGRAM

TABLE 3.19.---Final SECOR Solutions (C9)

Coordinates Referred to the Geocentric Ellipsoid With a = 6 378 155,

1/f = 298.255

Station Name Latitude Longitude (E) Height (m)

5001 ___ Herndon 38 ° 59' 37':966 282 ° 40' 16'.'992 75.67

5706 ___ Worthington 43 ° 38' 57':907 264 ° 25' 16':392 436.00
5648 ___ Ft. Stewart 31 ° 55' 19:340 278 ° 26' 00'.'110 -21.88
5710 ___ Bermuda 32 ° 21' 45':871 295 ° 20' 24':466 -35.20
5738 ___ Puerto Rico 18 ° 29' 40':141 292 ° 50' 52':685 -26.85

5709 ___ Austin 30 ° 13' 46':740 262 ° 14' 49:182 158.01
5711 ___ Panama 8° 58' 27':262 280 ° 26' 55':476 -4.74
5712 ___ Paramaribo 5° 26' 57'.'946 304 ° 47' 41"841 -40.55
5713 ___ Azores 1 38 ° 45' 36'.'141 332 ° 54' 24"637 65.57
5715 ___ Dakar 14 ° 44' 38'.'309 342 ° 30' 56'.'967 4.32

5735 ___ Natal -5 ° 54' 58':128 324 ° 49' 54':858 -8.81
5739 ___ Azores 2 38 ° 45' 35':728 332 ° 54' 23'.'259 65.57
5736 ___ Ascension -7 ° 58' 14':839 345 ° 35' 32':864 44.51
5717 ___ Ft. Lamy 12 ° 07' 50'.'137 15 ° 02' 07'.'269 255.69
5744 ___ Catania 37 ° 26' 35'.'613 15 ° 02' 43'.'120 -27.97

5719 ___ Cyprus 35 ° 11' 28'.'107 33 ° 15' 51':444 124.44
5740 ___ Rota 36 ° 37' 35':825 353 ° 40' 01':264 -20.75

5741 ___ Roberts Field 6° 13' 52':981 349 ° 38' 24':775 -10.31

5720 ___ Addis Ababa 8° 46' 10':710 38 ° 59' 52':820 1830.43

5721 ___ Mashhad 36 ° 14' 24'.'206 59 ° 37' 42':344 917.10

5722 ___ Chagos -7 ° 21' 08'.'471 72 ° 28' 22':094 -108.83
5723 ___ Chiang Mai 18 ° 46' 09:405 98 ° 58' 03':764 234.33

5724 ___ Singapore 1° 22' 21':996 103 ° 59' 59'.'262 0.50
5725 ___ Hong Kong 22 ° 11' 54':339 114 ° 13' 14':074 121.17

5726 ___ Zamboanga 6° 55' 19:277 122 ° 04' 08'.'752 66.54

5727 ___ Darwin -12O 27' 16"337 130 ° 48' 59':380 71.60
5729 ___ Manus -2 ° 02' 20"992 147 ° 21' 41':309 75.12
5728 ___ Guam 13 ° 26' 21':543 144 ° 38' 05"811 79.92
5730 ___ Wake 19 ° 17' 29:677 166 ° 36' 41"237 14.04
5742 ___ Palau 7° 20' 39"451 134° 29' 28':034 119.52

5731 ___ Guadalcanal -9 ° 25' 41':143 160 ° 03' 07':386 84.22

5732 ___ Pago Pago -14 ° 19' 53':290 189 ° 17' 09':642 72.83
5733 ___ Christmas 2 ° 00' 18':748 202 ° 35' 17':070 56.33
Mll ___ Maui 20 ° 49' 54':868 ' 203 ° 32' 00':651 63.96

5410 ___ Midway 28 ° 12' 43"532 182 ° 37' 53':267 6.03

5734 ___ Shemya 52 ° 42' 48':803 174 ° 07' 25"747 30.20

5201 ___ Larson 47 ° 11' 05"211 240 ° 39' 46':017 328.18
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TABLE3.20a.--Directional Constraints in Final Solution, Directions

From NAD Coordinates
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From To Normal-Section-Azimuth Sigma (m) Elevation Sigma (m)

Worthington ......... Herndon 102 ° 28' 58':13 4 - 7° 13' 52':78 4
Austin ............... Herndon 56 ° 59' 4':30 5 -9o27 ' 9':40 4
Ft. Stewart .......... Herndon 24 ° 54' 44'.'42 3 -3°55'40".06 4
Worthington ......... Austin 188 ° 5' 7"06 4 -6°46'22"99 4
Worthington ......... Ft. Stewart 131 ° 59' 57".92 4 -8 ° 3' 15':60 3
Austin ............... Ft. Stewart 78 ° 55' 19':11 4 -6o59 ' ':60 4
Worthington ......... Larson 290 ° 17' 9".65 4 -8°29'33'.'86 4
Austin ............... Larson 321 ° 29' 50"08 6 - 11°52'26':27 5

TABLE 3.20b.--Directional Constraints in Final Solution, Direction From the WGS

1 BBC-4 Solution

From To Normal-Section-Azimuth Sigma (m) Elevation Sigma (m)

Wake Island .......... Pago Pago
Maui ................. Wake Island
Wake Island .......... Christmas

Island
Ascension Island ..... Natal
Mashhad ............. Catania

Catania .............. Ft. Lamy

144 ° 35' 16"00 8 -20°10'37':33 14
274 ° 19' 33':01 10 -17o28 ' 2"00 12
111 ° 35' 13".77 8 - 19o35 ' 50':34 14

274 ° 17' 38':39 6 - 10°21 ' 11':22 7

285 ° 38' 9':02 6 -17°41'39':33 10
180 ° 1' 26':35 6 - 12°38'35'.'84 8

TABLE 3.21.--Precise Traverse Closures on B + S Solution Minus Survey

Meters Parts per million

Beltsville---Moses Lake ...........

Moses Lake Wrightwood .........

Troms_---Hohenpeissenburg .......

Catania--Hohenpeissenburg ......

Dakar--Ft. Lamy .................

Thursday---Culgoora ..............
Troms0---Catania .................

0 0
8 6

24 10
-28 -23

6 2
1 0
2 1
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TABLE 3.22.--Satellite-Derived Positions of Antennas of BC-4 Sites (NWL 9D System)

Station Longitude (east) Latitude" Height"
number Station

(add 2000) name Deg Min Sec Deg Min Sec (m)

Standard
deviation

(m)

Long Lat Ht

018 ...... Thule Grnlnd 291 13 53.35 76 32 19.76 56.0

019 ...... McMurdo, Ant. 166 40 25.73 - 77 50 51.67 - 20.0

020 ...... Seychelles 55 28 45.69 -4 40 14.31 551.0

115 ...... Pretoria, S. Af. 28 20 51.20 -25 56 48.24 1598.1

117 ...... Amer. Samoa 189 17 2.40 - 14 19 50.38 40.0

708 ...... Wake Island 166 36 38.06 19 17 32.65 24.5

709 ...... Perth, Aust. 115 55 52.06 -31 36 25.52 51.3

717 ...... Seychelles 55 28 45.84 -4 40 13.90 547.9

722 ...... Ascension Is. 345 35 39.69 -7 58 9.99 94.9

723 ...... Cocos Island 96 50 3.02 -12 11 44.34 -30.8

727 ...... Azores 332 54 22.38 38 45 37.95 108.1

738 ...... Washington 240 39 42.48 47 11 7.53 342.5

739 ...... Shemya Is. 174 6 39.72 52 42 55.54 40.9

742 ...... Maryland 283 10 27.59 39 1 39.72 6.1

744 ...... Australia 142 12 40.28 - 10 35 .99 128.0

765 ...... Thailand 98 58 2.07 18 46 11.61 267.0

766 ...... Wake Island 166 36 38.76 19 17 31.97 25.0

805 ...... Culgoora, Aust. 149 33 39.94 -30 18 34.01 236.5

809 ...... New Zealand 168 18 12.76 -46 24 43.70 7.4

811 ...... Hawaii 203 32 1.43 20 49 26.32 47.1

812 ...... Sicily 14 55 2.74 37 24 34.60 65.3

813 ...... Senegal 342 30 57.59 14 44 38.16 56.3

815 ...... Surinam 304 47 40.67 5 26 52.75 - 12.8

817 ...... Iran 59 37 43.48 36 14. 26.12 967.8

818 ...... Norway 18 56 24.17 69 39 44.41 133.5

820 ...... Argentina 294 53 36.52 -31 56 36.09 637.4

821 ...... Zamboanga 122 4 7.15 6 55 21.60 80.3

822 ...... Africa 15 2 5.97 12 7 53.60 305.7

825 ...... Palmer Sta. 295 56 45.20 -64 46 27.77 22.8

830 ...... Germany 11 1 25.69 47 48 5.12 977.2

831 ...... Socorro, Mex. 249 2 42.11 18 43 56.95 - 14.9

832 ...... Japan 129 42 34.64 33 4 58.29 66.7

837 ...... Brazil 324 49 55.44 -5 54 58.11 34.9

838 ...... Mauritius 57 25 31.79 -20 13 52.83 138.3

840 ...... Ethiopia 38 59 51.53 8 46 13.23 1871.9

844 ...... Equador 281 34 47.96 -0 5 52.88 2700.9

846 ...... Easter Is. 250 34 23.14 -27 10 35.65 222.7

847 ...... Chile 290 46 32.49 -52 46 51.17 86.7

849 ...... Christmas Is. 202 35 15.71 2 0 18.20 29.5

20126 ___ Casey, Ant. 110 32 7.59 -66 16 44.70 3.0

Mawson. Ant Doppler observations not available

Tristan Doppler observations not available

Pitcairn Doppler observations not available

Diego Garcia Doppler observations not available

Heard Doppler observations not available

S. Georgia Doppler observations not available

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

1.5 1.2 1.6

With respect to NWL8E ellipsoid semi-major axis 6 378 145 m and reciprocal flattening of 298.25.
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TABLE 3.23.--Datum Shifts for BC-4 Sites Based on

Doppler Observations
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hx hy &z
Datum No. sites (meters) (meters) (meters)

Qornoq .....................

Camp Area 1962 ...........
Southeast Island ...........

Arc 1950 ....................

Samoa 62 ...................

Wake Astro .................
Australian .................

Ascension Is. 58 ............

SW Base Gra. Is ............

NAD 27 ....................

Indian ......................

Geodetic 1949 ...............

Old Hawaiian ...............

European ..................
1967 Yof Astro .............

Prov. SAD 56 ...............

SAD 1969 ...................

Luzon ......................

Adindan ....................
Palmer Astro ...............

Isla Socorro Astro ..........

Tokyo ......................
Mauritius Astro ............

Easter Is. 1967 .............

Prov. Chilean 63 ............
Christmas Is. 1967 Astro ___

1 +196 +132 -142
1 -103 -125 +235
2 -19 -186 -274
1 - 120 - 128 - 296
1 -115 +140 +420
1 +280 -35 +142
1 -120 -33 +144
1 -210 +81 +47
1 -52 +121 + 14
2 -27 +161 +181
1 +253 +791 +358
1 +75 -6 +198
1 +56 -271 -197
3 -79 -105 -121
1 -35 +147 +88
2 -266 +125 -374
2 -77 0 -43
1 - 101 - 39 - 101
2 -150 -31 +199
1 +214 +28 +210
1 +132 +219 +498
1 -135 +528 +676

1 - 788 + 77 - 294
1 +193 +154 +108
1 -4 +194 +95
1 +111 +258 -535

TABLE 3.24.--Effect a of Zonal Coefficients on Z Component of Station

Position-Zonal Gravitational Field

Kozai '69 SAO '71 French '71 Wagner '72 GEM 2 NWL 10D
Station (meters) (meters) (meters) (meters) (meters) (meters)

Brazil .......... -49 -56 -87 -113 1

Japan .......... - 47 - 53 - 84 - 109 1
Alaska ......... -42 -48 -75 -97 1
Greenland ...... -39 -44 -70 -91 2
Antarctica ..... -41 -47 -73 -95 3 0

Texas .......... -48 -54 -85 -109 -3 1

New Mexico .... -49 -56 -87 -112 -4 0

Maryland ...... -41 -47 -77 -101 3 1
Australia ....... -45 -51 -82 -106 -1 4

So. Africa ...... -52 -58 -91 -118 -6 -1

Samoa ......... -50 -57 -91 -117 -1 3

Philippines ..... -48 -55 -89 -117 0 5

England ........ -51 -57 -86 -110 -8 -4

Seychelles ...... -56 -63 -97 -127 -7 -2

'_ Dif_%re,ce fi-oni a nc, minal set 9f stntion coordinates.
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TABLE 3.25.--Comparison of Doppler and B C-4

Station Position Determinations

Doppler minus BC-4 Estimated accuracy

Latitude Longitude Height doppler BC-4
Site (meters) (meters) (meters) (meters) (meters)

Thule ................ - 9

Beltsville ............. 5

Moses Lake .......... 6
Shemya .............. - 5
Troms_b .............. 2
Azores ............... 13
Paramaribo .......... 4
Quito ................. -2
Maui ................. -2
Wake ................. ' 15

Iran -3
Catania .............. 0
Argentina ............ 23
Easter ............... -4
Pago Pago ............ -3
Thursday ............ 2
Invercargill .......... 7
Caversham ........... -4
Socorro ............... 9
Cocos ................. -3

Addis Ababa ......... - 12
Chile ................. 25
Mauritius ............ -3
Zamboanga .......... - 3

Palmer ............... 24
McMurdo ............. 16
Ascension ............ 11
Christmas ............ - 2
Culgoora ............. 12
Senegal .............. 3
Ft. Lamy ............. -3

Hohenpeissenberg .... - 1
Wake ................. 15
Brazil ................ 15
Johannesburg ........ 1
Chiang Mai .......... -3

Mahe ................. -7

-1 -7 2 5
2 6 2 5
6 4 2 5

13 -15 2 6
-16 -6 2 4

-5 -3 2 5

3 9 2 5

12 7 2 6
2 -11 2 5

-11 24 2 5
4 -1 2 4

-1 -2 2 4
16 3 2 5
16 -5 2 7

-5 3 2 5
-7 14 2 4
-8 2 2 4
-1 -3 2 5

1 -3 2 5
0 -4 2 5

-3 -6 2 4
4 -27 2 6
4 -3 2 4
3 8 2 5

-4 -15 2 9
0 0 2 6

-10 0 2 5
-4 3 2 5

-9 0 2 4

6 1 2 5

2 -5 2 4

-7 -1 2 4
-11 24 2 5

-5 -4 2 5

1 7 2 5

-6 8 2 5

-1 6 2 5
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TABLE 3.26.--Coordinates of Stations Involved in Gulf Test

(North American Datum 27)
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Latitude Longitude (W)
Height

Station no. Deg Min Sec Deg Min Sec (meters)

AF640 ............ 29 33 44.801 90 40 44.187 2.0
AF641 ............ 29 35 39.885 95 09 14.040 8.2
AF643 ............ 31 19 15.908 92 31 31.910 26.8
3647 .............. 30 14 48.276 88 04 42.513 1.2
3648 .............. 32 00 05.868 81 09 13.641 12.2
3649 .............. 26 57 12.569 80 04 55.802 6.8
AF650M .......... 30 13 05.457 81 41 47.806 6.4
AF686 ............ 28 34 26.025 81 19 39.070 28.6

TABLE 3.27.--Determinations of Positions of Stations 3640, 641,643,

and 3647 From Positions at Stations 3648 and 3649

Reference stations 3648 and 3649: am = cr_ = _H = 0.03 m

Unknown station: am = 200 m, a_ = 200 m, aH= 5 m

Observations: 33 nets and a total of 142 flash-points

Proportional
Station Ax (m) Ay (m) hz (m) R (m) error

Hunter
(3648) ................ Known station

Jupiter

(3649) ................ Known station

Houma
0.0 -2.2 1.8 2.8

(AF640) .............. ±3.9 ±1.4 +-2.5 -4.8

England - 3.5 - 2.4 3.4 5.3
(AF643) ..............

±4.6 ±1.4 +-2.3 ±5.4

Dauphin 1.0 -4.9 0.6 5.1
(3647) ................ ± 2.9 ± 1.2 +-2.4 ± 3.9

Ellington 1.5 0.4 1.9 2.4
(AF641) ..............

±5.8 ±1.6 +-3.4 ±6.9

1:327 500

1:199 600

1:134 200

1:557 200
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TABLE 3.28.--Comparison of Azimuths

Line Forward azimuth Distance (m)

641-3648 ............ ANNA 75 ° 11' 36'.'7 1 365 165

Normal section 75 ° 11' 37':5

AA, (-) if:8

640-3648 ............ ANNA 71 ° 04' 34'.'1 950 628
Normal section 71 ° 04' 34"5

AA, (-) if:4

643-3648 ............ ANNA 83 ° 01' 11':0 1 080 640

Normal section 83 ° 01' 10":1

hAz (+) 0":9

TABLE 3.29.--NGSP Stations Occupied by GEOCEIVER, NAD 27

Test No. Name of locality

Coordinates

_, _b Near NGSP stations Phase of service

10000 .... Cheyenne, WY 255 ° 07' 57':202 41 ° 08' 00":069
10003 .... Greenville, MS 268 ° 59' 51':486 33 ° 28' 42"470
10006 .... Tipton, KS 261 ° 27' 29:494 39 ° 13' 26'.'686
10008 .... Grand Forks, ND 262 ° 37' 11'.'198 47 ° 56' 38':593
10013 ____Jonestown, TX 262 ° 01' 17':525 30 ° 26' 48"273
10019 .... Frankton, IN 274 ° 10' 27'.'186 40 ° 14' 06'.'956
10020 .... Marysville, IN 274 ° 21' 07':740 38 ° 35' 20':787
10021 .... Summit, KY 273 ° 55' 10'.'384 37 ° 33' 06'.'807
10022 .... Iuka, MS 271 ° 45' 30'.'291 34 ° 47' 15'.'547
10023 .... Mathiston, MS 270 ° 50' 04':504 33 ° 33' 54':655
10024 .... Cheyenne, WY 255 ° 07' 57':264 41 ° 08' 00":025

20000 .... Howard Co., MD 283 ° 06' 11'.'314 39 ° 09' 47':514
20001 .... Beltsville, MD 283 ° 10' 26':756 39 ° 01' 39:492
20002 .... Las Cruces, NM 253 ° 14' 48'.'285 32 ° 16' 43'.'702
20003 .... Wrightwood, CA 242 ° 19' 09':484 34 ° 22' 54':537
20015 .... Woodbine, GA 278 ° 19' 07':845 30 ° 56' 54':982
20016 .... Columbia, MS 270 ° 16' 28':098 31 ° 12' 44':555

30025 .... Bloomfield, OH 278 ° 15' 39":706 40 ° 05' 11'.'583

30026 .... Columbus, OH 276 ° 57' 30':248 40 ° 00' 27'.'648
30027 .... Greenville, OH 275 ° 23' 26':854 40 ° 09' 51':348

30028 .... Metamora, IL 270 ° 42' 40":598 40 ° 49' 20':343

30029 .... Moses Lake, WA 240 ° 39' 48':118 47 ° 11' 07':132

3902
5333

3451, 1034, 7034

3902

2111

3002,2742,6100,7043,1050
2103, 9001

-~_

6002 (Identical)

II (Air Force)
I,II (Air Force)
I,II (Air Force)
II (Air Force)
I (Air Force)
I,II (Air Force)
I (Air Force)
I (Air Force)
I (Air Force)
I (Air Force)
II (Air Force)

I,II (Navy)
I (Navy)
II (Navy)
II (Navy)
I (Navy)
I (Navy)

I (Army)
I (Army)
I (Army)
I (Army)
II (Army)
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TABLE 3.30.--Short-Arc Passes Used in Solutions
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Number of stations
observing pass

Phase I,
days 288-301;

number of passes

Phase II,
days 319-346;

number of passes

Pre-edit Post-edit Pre-edit Post-edit

5 ................... 27
6 ................... 41
7 ................... 33

8 ................... 36
9 ................... 10

22 26 23
45 16 18
31 11 6
22 0 0

5 0 0

Total passes .................. 147 125 53 47

North-to-south passes ........ 56 14

South-to-north passes ........ 69 33

Total single-station

passes ....................... 990 818 303 265

Percentage of data loss
(pre- to post-edit) ............ 17% 13%
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TABLE 3.31.--Constraints Used in the Phase I Solutions

Orbital

Position Velocity

X = 10km X = 5m/sec

Y = 10 km _z = 5 m/sec

Z = 10km 2 = 5m/sec

Baseline

Parameter

Azimuth _ .............. 0,001

Elevation U (angle) ..... 0!'001

Range _ _ ............... 1000 m

Stations Stations Stations
10018 --_ 20001 10006 --) 20016 20000 --, 20001

60,0

0"001

1000 m

0'.'001

0'.'001

0.01 m

Station Coordinates

Greenville
Coordinate (10003)

Latitude ............................... ] 0'.'001

Longitude ............................. 0,001

Geodetic height ........................ 0.01
m

All
other stations

1'.'0

1,0

30.0 m

Error Model Parameters

Greenville
Parameter (10003)

Frequency offset ..................... 7.5 m/sec

Frequency drift ....................... [ 0.2 × 10 3

Frequency bias ....................... 10.1 × 10 _
Time bias ............................. ] 0.1 x 10 -.s sec

I

Refraction ............................ ] 0.2 m
Zero set ...................... 107 m

.........

"Angular and distance constraints between stations.

All
other stations

7.5 m/sec

0.2 × 10 -:_

0.1 × 10 -"

0.1 × 10 :_sec

0.2 m

107 m
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TABLE 3.32.---Differences in GEOCEIVER Station Positions (Modified CCD) Surveyed Minus

Tests Results

GEOCEIVER stations
Phase I Phase II Phases I and II

h_b Ak hH A_b hk hH h_ nk hH
Number Name (sec) (sec) (m) (sec) (sec) (m) (sec) (sec) (m)

10000 ..... Cheyenne, WY -0.05 -0.26 -1.6 -0.04 -0.29 -2.2

10003 ..... Greenville, MS 0.00 0.00 0.0 0.06 -0.04 -2.4 0.03 -0.01 0.5

10006 ..... Tipton, KS 0.00 0.13 -2.1 0.00 0.00 0.0 0.00 0.00 0.0

10008 ..... Grand Forks, ND -0.02 -0.07 -2.0 -0.02 0.11 -0.1

10018 .... _Jonestown, TX -0.03 0.16 -1.9 -0.01 0.01 3.2

10019 ..... Frankton, IN 0.00 0.18 -1.9 0.04 0.25 -1.7

10022 _ ____Iuka, MS 0.01 0.10 1.0 0.05 0.14 1.1

10023 a .... Mathiston, MS 0.01 0.08 -0.8 0.05 0.11 -0.5

10024 ..... Cheyenne, WY -0.05 -0.26 -1.6 -0.04 -0.29 -2.2

20000 ..... Howard County, MD -0.08 0.09 -1.1 -0.05 0.30 2.8
20001 ..... Beltsville, MD -0.08 0.09 -1.1 -0.05 0.30 2.8
20002 ..... Las Cruces, NM -0.05 0.23 1.6 -0.04 0.13 1.0

20003 ..... Wrightwood, CA 0.02 0.17 -7.8 0.04 0.07 -7.5
20015 ..... Woodbine, GA -0.05 -0.13 2.4 0.00 -0.02 4.0
20016 ..... Columbia, MS 0.00 0.03 -0.4 0.04 0.06 0.0
30025 a ____Bloomfield, OH -0.03 0.13 0.4 0.01 0.27 1.7
30026 a ____Columbus, OH -0.05 0.16 -1.3 -0.02 0.28 -0.5
30029 ..... Moses Lake, WA -0.05 0.27 -3.3 -0.01 0.36 -5.5

a Mobile stations.

TABLE 3.33.--Comparison of Relative Positions and Distances as

Determined by GEOCEIVER and by Precise Traverse

GEOCEIVER-Traverse
Dist

From To (km) Passes h_b (m) hk (m) hh (m) Ad (m)

Columbia, MS ....... Greenville, MS 278 122 1.11 1.08 -1.64 0.49

Greenville, MS ...... Meades Ranch, KS 929 39 1.56 -2.16 0.59 2.69

Meades Ranch, KS__Beltsville, MD 1867 24 -1.04 4.25 1.30 4.49
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TABLE3.34.--RecommendedCollocation-Derived Potential Coefficients

and Their Standard Deviations (SD) ( xlO _)

n m C SD 1 SD 2 S SD 1 SD 2

2 0 -484.1718 0.0006 0.0024

2 2 2.4257 0.0023 0.0094 -1.3856 0.0024 0.0097

3 0 0.9577 0.0005 0.0019
3 1 2.0169 0.0052 0.0202 0.2508 0.0015 0.0061
3 2 0.9194 0.0086 0.0309 -0.6265 0.0044 0.0171
3 3 0.7186 0.0079 0.0299 1.4201 0.0096 0.0355
4 0 0.5470 0.0014 0.0058
4 1 -0.5321 0.0019 0.0074 -0.4442 0.0031 0.0121
4 2 0.3544 0.0021 0.0084 0.6617 0.0031 0.0123
4 3 0.9736 0.0060 0.0219 -0.2195 0.0046 0.0175
4 4 -0.1674 0.0090 0.0311 0.3122 0.0044 0.0169
5 0 0.0681 0.0006 0.0024

5 1 -0.0686 0.0014 0.0055 -0.0819 0.0022 0.0086
5 2 0.6568 0.0035 0.0131 -0.3166 0.0048 0.0175
5 3 -0.4719 0.0069 0.0229 -0.2312 0.0161 0.0349
5 4 -0.3150 0.0051 0.0184 0.0282 0.0043 0.0161
5 5 0.1489 0.0020 0.0081 -0.6787 0.0067 0.0236
6 0 -0.1610 0.0023 0.0088
6 1 -0.0889 0.0022 0.0087 -0.0203 0.0040 0.0141
6 2 0.0682 0.0021 0.0080 -0.3680 0.002_ 0.0092
6 3 0.0173 0.0038 0.0140 -0.0238 0.0056 0.0198
6 4 -0.1013 0.0076 0.0237 -0.4525 0.0046 0.0161
6 5 -0.2932 0.0071 0.0216 -0.5082 0.0035 0.0129
6 6 0.0384 0.0051 0.0180 -0.2296 0.0099 0.0278
7 0 0.0923 0.0012 0.0049
7 1 0.2516 0.0027 0.0102 0.1306 0.0023 0.0086
7 2 0.3388 0.0037 0.0129 0.0851 0.0064 0.0187
7 3 0.2590 0.0048 0.0156 -0.2164 0.0102 0.0248
7 4 -0.2700 0.0100 0.0250 -0.0864 0.0021 0.0082
7 5 -0.0071 0.0041 0.0144 0.0531 0.0028 0.0106
7 6 -0.3288 0.0073 0.0208 0.1504 0.0056 0.0179
7 7 0.0645 0.0076 0.0222 0.0363 0.0090 0.0248
8 0 0.0621 0.0028 0.0101
8 1 0.0241 0.0048 0.0156 0.0917 0.0047 0.0145
8 2 0.0486 0.0011 0.0043 0.0656 0.0018 0.0069
8 3 -0.0235 0.0023 0.0087 -0.0744 0.0075 0.0200
8 4 -0.2401 0.0067 0.0193 0.0680 0.0041 0.0138
8 5 -0.0928 0.0038 0.0130 0.0837 0.0033 0.0120
8 6 -0.0372 0.0028 0.0104 0.3010 0.0032 0.0115
8 7 0.0513 0.0039 0.0134 0.0725 0.0022 0.0085
8 8 -0.0909 0.0071 0.0206 0.0974 0.0023 0.0088
9 0 0.0322 0.0023 0.0086
9 1 0.1593 0.0026 0.0094 0.0026 0.0013 0.0052
9 2 0.0258 0.0026 0.0094 -0.0169 0.0053 0.0155
9 3 -0.1522 0.0057 0.0154 -0.1500 0.0028 0.0102

9 4 0.0015 0.0042 0.0139 0.0259 0.0055 0.0159
9 5 -0.0201 0.0013 0.0050 -0.0698 0.0055 0.0165
9 6 0.0756 0.0052 0.0154 0.2248 0.0029 0.0104
9 7 -0.0561 0.0020 0.0075 -0.0098 0.0069 0.0178
9 8 0.1859 0.0037 0.0125 -0.0261 0.0060 0.0165
9 9 -0.0320 0.0034 0.0120 0.0756 0.0017 0.0067
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n m C SD 1 SD 2 S SD 1 SD 2

10 0 0.0399 0.0033 0.0110
10 1 0.0758 0.0028 0.0100 -0.1562 0.0056 0.0145

10 2 -0.0464 0.0030 0.0101 -0.0466 0.0042 0.0130
10 3 -0.0413 0.0017 0.0065 -0.1134 0.0066 0.0156
10 4 -0.0993 0.0042 0.0132 -0.1163 0.0043 0.0138
10 5 -0.1086 0.0022 0.0079 -0.0190 0.0094 0.0199
10 6 0.0001 0.0031 0.0108 -0.1245 0.0072 0.0172
10 7 -0.0070 0.0054 0.0149 -0.0299 0.0048 0.0142
10 8 0.0490 0.0027 0.0096 -0.1294 0.0040 0.0127
10 9 0.1287 0.0078 0.0173 -0.0595 0.0058 0.0155
10 10 0.0682 0.0042 0.0135 -0.0082 0.0033 0.0114
11 0 -0.0597 0.0035 0.0111
11 1 -0.0146 0.0022 0.0081 0.0331 0.0011 0.0045
11 2 0.0360 0.0011 0.0044 -0.1135 0.0015 0.0059
11 3 -0.0136 0.0038 0.0117 -0.1190 0.0012 0.0048
11 4 0.0089 0.0046 0.0130 -0.1018 0.0080 0.0164
11 5 0.0271 0.0006 0.0023 0.0304 0.0070 0.0168
11 6 -0.0377 0.0055 0.0148 0.0577 0.0042 0.0133

11 7 0.0130 0.0025 0.0090 -0.1145 0.0017 0.0064
11 8 -0.0180 0.0061 0.0149 0.0424 0.0042 0.0127
11 9 -0.0063 0.0087 0.0169 0.0470 0.0040 0.0122
11 10 -0.1084 0.0014 0.0053 0.0032 0.0021 0.0076
11 11 0.0840 0.0039 0.0124 -0.0223 0.0019 0.0073
12 0 0.0429 0.0030 0.0100
12 1 -0.0611 0.0047 0.0133 -0.0141 0.0028 0.0094
12 2 -0.0444 0.0057 0.0141 0.0384 0.0040 0.0121
12 3 0.1075 0.0044 0.0128 0.0846 0.0023 0.0081
12 4 -0.0220 0.0023 0.0081 -0.0143 0.0030 0.0101
12 5 0.0301 0.0013 0.0051 -0.0077 0.0037 0.0120
12 6 0.0588 0.0057 0.0150 -0.0089 0.0062 0.0154
12 7 -0.0223 0.0029 0.0099 0.0225 0.0062 0.0151
12 8 -0.0328 0.0022 0.0079 -0.0207 0.0043 0.0129
12 9 0.0239 0.0045 0.0131 0.0333 0.0031 0.0101
12 10 -0.0211 0.0021 0.0075 0.0508 0.0044 0.0124
12 11 0.0106 0.0040 0.0119 0.0290 0.0056 0.0140
12 12 -0.0116 0.0012 0.0045 0.0047 0.0043 0.0129
13 0 0.0428 0.0047 0.0122

13 1 0.0048 0.0144 0.0162 -0.0324 0.0128 0.0150
13 2 -0.0149 0.0151 0.0172 -0.0661 0.0153 0.0168
13 3 -0.0931 0.0148 0.0168 0.0091 0.0151 0.0165

13 4 -0.0396 0.0147 0.0161 -0.0561 0.0147 0.0161
13 5 0.0504 0.0148 0.0160 0.0850 0.0150 0.0171
13 6 -0.0761 0.0155 0.0180 0.0677 0.0156 0.0180
13 7 -0.0453 0.0151 0.0171 0.0939 0.0156 0.0181
13 8 0.0461 0.0151 0.0173 -0.0152 0.0150 0.0178
13 9 0.0260 0.0068 0.0139 0.0705 0.0026 0.0089
13 10 -0.0010 0.0141 0.0160 0.0018 0.0140 0.0159
13 11 0.0004 0.0141 0.0157 -0.0615 0.0142 0.0158
13 12 -0.0304 0.0023 0.0081 0.0988 0.0025 0.0086

13 13 -0.0296 0.0046 0.0126 0.0949 0.0028 0.0094
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n m C SD 1 SD 2 S SD 1 SD 2

14 0 -0.0296 0.0029 0.0094

14 1 -0.0150 0.0008 0.0032 0.0062 0.0043 0.0113

14 2 -0.0383 0.0159 0.0164 0.0139 0.0159 0.0167

14 3 0.0536 0.0159 0.0165 -0.0213 0.0156 0.0164

14 4 0.0271 0.0158 0.0167 -0.0144 0.0158 0.0164

14 5 -0.0189 0.0158 0.0165 -0.0141 0.0160 0.0166

14 6 0.0725 0.0165 0.0176 -0.0196 0.0169 0.0176

14 7 0.0524 0.0169 0.0178 -0.0029 0.0165 0.0173

14 8 -0.0346 0.0167 0.0179 -0.0363 0.0165 0.0177

14 9 0.0404 0.0006 0.0026 0.0614 0.0027 0.0090

14 10 0.0042 0.0148 0.0160 -0.0601 0.0149 0.0163

14 11 0.0263 0.0137 0.0150 -0.0400 0.0138 0.0151

14 12 0.0082 0.0039 0.0108 -0.0233 0.0026 0.0086

14 13 0.0300 0.0020 0.0071 0.0076 0.0048 0.0119

14 14 -0.0517 0.0019 0.0068 -0.0081 0.0005 0.0021

15 0 -0.0008 0.0055 0.0117

15 1 0.0385 0.0141 0.0150 -0.0150 0.0122 0.0135

15 2 -0.0073 0.0146 0.0153 -0.0064 0.0145 0.0152

15 3 0.0250 0.0151 0.0157 0.0432 0.0151 0.0157

15 4 0.0212 0.0148 0.0153 -0.0162 0.0147 0.0152

15 5 0.0732 0.0151 0.0155 0.0251 0.0151 0.0156

15 6 0.0167 0.0154 0.0159 -0.1048 0.0154 0.0158

15 7 0.0149 0.0165 0.0170 0.0698 0.0159 0.0165

15 8 -0.0260 0.0159 0.0165 0.0244 0.0155 0.0162

15 9 0.0317 0.0037 0.0105 0.0493 0.0028 0.6091

15 10 0.0218 0.0150 0.0160 0.0053 0.0148 0.0162

15 11 -0.0197 0.0137 0.0148 -0.0212 0.0137 0.0147

15 12 -0.0327 0.0031 0.0092 0.0165 0.0021 0.0071

15 13 -0.0034 0.0040 0.0105 0.0148 0.0029 0.0089

15 14 0.0026 0.0007 0.0027 -0.0212 0.0004 0.0018

15 15 -0.0474 0.0147 0.0154 0.0310 0.0148 0.0155

16 0 -0.0109 0.0015 0.0055

16 1 0.0022 0.0143 0.0150 0.0315 0.0126 0.0132

16 2 0.0080 0.0136 0.0139 0.0020 0.0130 0.0135

16 3 0.0416 0.0144 0.0148 -0.0183 0.0141 0.0145

16 4 0.0565 0.0143 0.0147 0.0306 0.0139 0.0144

16 5 0.0157 0.0140 0.0143 0.0110 0.0142 0.0147

16 6 -0.0274 0.0144 0.0148 -0.0183 0.0141 0.0144

16 7 0.0186 0.0151 0.0155 0.0018 0.0147 0.0151

16 8 -0.0737 0.0153 0.0158 0.0168 0.0149 0.0155

16 9 -0.0294 0.0130 0.0144 -0.0642 0.0131 0.0142

16 10 -0.0396 0.0146 0.0155 -0.0078 0.0147 0.0161

16 11 0.0276 0.0136 0.0146 0.0012 0.0134 0.0143

16 12 0.0235 0.0003 0.0014 0.0006 0.0025 0.0078

16 13 0.0036 0.0025 0.0078 -0.0221 0.0034 0.0094

16 14 -0.0139 0.0008 0.0033 -0.0375 0.0011 0.0041

16 15 -0.0353 0.0132 0.0139 -0.0525 0.0131 0.0136

16 16 -0.0157 0.0152 0.0156 -0.0272 0.0149 0.0155

17 0 0.0199 0.0052 0.0102

17 1 -0.0204 0.0131 0.0137 -0.0512 0.0116 0.0122

17 2 -0.0102 0.0127 0.0132 0.0066 0.0123 0.0130

17 3 0.0112 0.0131 0.0135 -0.0334 0.0129 0.0134

17 4 0.0032 0.0139 0.0142 0.0259 0.0135 0.0139

17 5 -0.0037 0.0132 0.0135 0.0010 0.0131 0.0136
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17 6 -0.0554 0.0134 0.0137 -0.0212 0.0131 0.0135

17 7 0.0034 0.0138 0.0141 -0.0472 0.0134 0.0137

17 8 0.0334 0.0143 0.0146 -0.0035 0.0140 0.0144

17 9 0.0062 0.0143 0.0149 -0.0223 0.0142 0.0147

17 10 -0.0168 0.0138 0.0146 0.0382 0.0138 0.0147

17 11 -0.0046 0.0138 0.0148 0.0158 0.0133 0.0141

17 12 0.0228 0.0040 0.0098 -0.0003 0.0005 0.0020

17 13 0.0322 0.0026 0.0077 0.0398 0.0042 0.0100

17 14 -0.0159 0.0002 0.0009 0.0033 0.0018 0.0061

17 15 0.0422 0.0117 0.0123 0.0028 0.0116 0.0121

17 16 -0.0087 0.0130 0.0134 -0.0002 0.0132 0.0136

17 17 -0.0521 0.0146 0.0150 0.0120 0.0152 0.0155

18 0 0.0159 0.0016 0.0055
18 1 -0.0559 0.0123 0.0127 -0.0569 0.0105 0.0110

18 2 -0.0076 0.0120 0.0123 0.0294 0.0119 0.0122

18 3 -0.0181 0.0114 0.0117 -0.0091 0.0117 0.0121
18 4 -0.0013 0.0127 0.0130 0.0318 0.0126 0.0129
18 5 0.0179 0.0126 0.0128 0.0029 0.0125 0.0127
18 6 -0.0004 0.0124 0.0127 -0.0003 0.0122 0.0125
18 7 -0.0003 0.0128 0.0131 -0.0053 0.0123 0.0126
18 8 0.0635 0.0131 0.0133 -0.0204 0.0129 0.0132
18 9 -0.0296 0.0133 0.0138 -0.0118 0.0132 0.0137
18 10 0.0480 0.0133 0.0138 0.0103 0.0132 0.0138
18 11 0.0025 0.0133 0.0141 -0.0340 0.0128 0.0136
18 12 -0.0472 0.0044 0.0104 -0.0162 0.0020 0.0064
18 13 -0.0037 0.0008 0.0031 -0.0885 0.0054 0.0106
18 14 -0.0213 0.0014 0.0050 -0.0117 0.0030 0.0080

18 15 -0.0707 0.0105 0.0109 -0.0343 0.0105 0.0110
18 16 0.0097 0.0111 0.0116 -0.0180 0.0111 0.0116
18 17 0.0288 0.0123 0.0127 -0.0315 0.0130 0.0133
18 18 -0_0141 0.0136 0.0138 -0.0231 0.0146 0.0149
19 0 0.0021 0.0038 0.0083
19 1 -0.0206 0.0112 0.0115 0.0007 0.0100 0.0103
19 2 0.0283 0.0111 0.0114 -0.0104 0.0112 0.0116
19 3 0.0161 0.0108 0.0111 0.0019 0.0106 0.0109
19 4 0.0219 0.0116 0.0120 -0.0125 0.0114 0.0116
19 5 -0.0366 0.0118 0.0120 -0.0334 0.0118 0.0120
19 6 0.0573 0.0116 0.0119 0.0334 0.0114 0.0117
19 7 0.0445 0.0119 0.0122 -0.0328 0.0116 0.0118
19 8 0.0301 0.0119 0.0122 0.0230 0.0118 0.0121
19 9 0.0167 0.0122 0.0127 -0.0134 0.0121 0.0125
19 10 -0.0283 0.0124 0.0129 -0.0640 0.0122 0.0128
19 11 0.0161 0.0122 0.0129 0.0683 0.0120 0.0128
19 12 -0.0036 0.0053 0.0098 -0.0173 0.0018 0.0060
19 13 -0.0014 0.0033 0.0082 0.0094 0.0053 0.0104
19 14 0.0007 0.0004 0.0015 -0.0116 0.0016 0.0055
19 15 -0.0416 0.0094 0.0100 -0.0364 0.0094 0.0100
19 16 -0.0143 0.0094 0.0100 0.0419 0.0092 0.0098
19 17 0.0185 0.0102 0.0106 -0.0098 0.0103 0.0107
19 18 0.0549 0.0114 0.0117 0.0203 0.0116 0.0119
19 19 -0.0406 0.0126 0.0128 0.0238 0.0127 0.0130
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20 0 0.0033 0.0005 0.0021
20 1 -0.0062 0.0096 0.0101 0.0054 0.0085 0.0088
20 2 0.0331 0.0093 0.0095 0.0433 0.0095 0.0099
20 3 -0.0084 0.0090 0.0092 -0.0031 0.0091 0.0094
20 4 0.0137 0.0095 0.0097 -0.0526 0.0094 0.0096
20 5 0.0229 0.0095 0.0097 -0.0363 0.0093 0.0095
20 6 0.0077 0.0092 0.0095 -0.0206 0.0093 0.0095
20 7 -0.0501 0.0093 0.0094 0.0090 0.0092 0.0094
20 8 -0.0097 0.0093 0.0095 0.0198 0.0092 0.0094
20 9 0.0076 0.0093 0.0096 0.0243 0.0093 0.0096
20 10 -0.0586 0.0094 0.0097 0.0048 0.0095 0.0099
20 11 0.0095 0.0093 0.0098 -0.0233 0.0093 0.0099
20 12 0.0092 0.0012 0.0043 0.0075 0.0015 0.0050
20 13 0.0295 0.0031 0.0078 -0.0085 0.0064 0.0101
20 14 0.0126 0.0006 0.0023 -0.0027 0.0012 0.0043
20 15 0.0433 0.0082 0.0087 -0.0039 0.0083 0.0088
20 16 0.0141 0.0082 0.0088 -0.0443 0.0081 0.0087
20 17 0.0534 0.0086 0.0090 -0.0194 0.0087 0.0091
20 18 0.0184 0.0095 0.0097 0.0057 0.0096 0.0099
20 19 0.0039 0.0104 0.0105 0.0029 0.0102 0.0104
20 20 0.0176 0.0110 0.0112 -0.0094 0.0111 0.0113
21 0 -0.0018 0.0024 0.0065
21 12 0.0077 0.0046 0.0078 -0.0308 0.0015 0.0050
21 13 -0.0162 0.0019 0.0058 0.0397 0.0036 0.0085
21 14 0.0023 0.0032 0.0073 0.0147 0.0012 0.0041

22 0 -0.0013 0.0024 0.0062
22 12 -0.0527 0.0012 0.0042 -0.0228 0.0038 0.0070
22 13 -0.0170 0.0026 0.0062 -0.0121 0.0006 0.0009
22 14 0.0065 0.0034 0.0069 0.0093 0.0014 0.0045

TABLE 3.35.--RMS Difference (After Adjustment) Between Astrogeodetic
Geoidal Heights and Undulations Computed From Potential Coefficients

North American Datum
1927 Australian Datum

Solution (meters) (meters)

Least-squares collocation (k = _) ......

LQ (k = _s) .............................
GEM 3 .................................

GEM 4 .................................

SAO Standard Earth II ................
SAO Standard Earth III ...............

4.34 1.96
4.39 2.03
5.29 2.11
4.38 3.73
5.21 2.94
6.06 2.64
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TABLE 3.36._RMS Orbit Fit

Solution RMS fit(meters)

Least-squares collocation (k = 1/2) ± 11.6

Least-squares (k = ½) 15.3

Least-squares collocation (k = MS) 5.0

Least-squares (k = MS) 5.2

GEM 3 6.4

GEM 4 7.4

SAO Standard Earth II 4.8

SAO Standard Earth III 7.9
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TABLE 3.37.--Differences in Geoidal

Heights and Anomalies with Respect to

Potential Coefficients Given in Table 3.34

Geoidal heights Anomalies
(meters) (meters)

Solutions RMS Max RMS Max

Least-squares (k = Ms) -+0.5 2 ± 1.7 4

SAO SE II 5.9 22 10.8 40

GEM 3 3.3 12 7.6 28

TABLE 3.38.--Consistency of Solutions for Station Positions From 1964 to 1972

Station

Longitude Latitude Height

No. spans Avgno. Rate Std err Residuals Rate Std err Residuals Rate Std err Residuals
of data passes (cm/yr) (cm/yr) (cm) (cm/yr) (cm/yr) (cm) (cm/yr) (cm/yr) (cm)

Brazil 32 34 -26 17 207 5 16 196 2 13 164

Japan 36 45 54 12 149 -26 11 134 -11 12 142

Alaska 39 88 -4 11 129 -30 12 148 47 13 158

Greenland 36 115 4 9 125 - 17 6 77 - 1 9 127

McMurdo 20 88 38 26 121 0 22 103 50 19 92

Seychelles 36 35 33 17 188 -7 18 196 -71 24 266

Hawaii 63 38 19 13 174 11 13 182 13 8 114

New Mexico 39 38 0 17 228 -25 11 141 40 16 206

England 33 61 -27 26 223 -9 24 203 109 28 242

Maryland 43 45 49 11 146 -8 9 113 63 11 143

Australia 37 43 20 12 153 -31 12 149 10 11 132

So. Africa 32 42 -20 15 157 6 16 162 61 18 186

Samoa 36 37 -6 18 213 -9 12 141 13 13 155

Philippines 34 35 46 16 189 -20 13 151 12 16 188

Maine 39 48 - 1 11 140 - 15 9 108 28 12 142

Minnesota 26 29 11 19 146 -8 12 95 42 17 135

California 49 26 -19 10 152 -16 6 93 23 8 118

Averal_e 167 141 159
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4.1 INTRODUCTION

Determinations of tracking station loca-

tions and the gravitational constant of the
Earth GMe based on Doppler-tracking data
from lunar and planetary spacecraft are pre-
sented in this chapter. The solutions for GM_
are consistent to within 0.4 km3/sec :, and the
tracking station locations are consistent to
within 1 meter for. the coordinates well-de-
termined by these data : the distance from the
rotational axis (spin axis) of the Earth and
the difference in longitude between two sta-
tions.

Participants in the National Geodetic Sat-
ellite Program (NGSP) made considerable
use of the coordinates determined by the Jet
Propulsion Laboratory (JPL) for its Deep
Space Stations (DSS) by using data from
planetary flight missions. The values of
GMe determined by JPL from near-Earth
observations of the Mariner 9 spacecraft
were also used. Because such determinations

were made by JPL as part of other tasks and
not directly as part of the NGSP, they are
independent contributions supporting ma-
terial in other chapters. Therefore they are
discussed separately in this chapter, and the

material is organized to bring out the values
found and their errors, rather than being

organized strictly according to the scheme
used in other chapters.

The DSS instrumentation that JPL used is

described briefly in section 4.2. Detailed

descriptions are given in various JPL re-

ports. The data used by JPL are described
in sections 4.2, 4.3.3 (as used for finding lo-

cations of stations), and 4.5.3 (as used for
finding GMe).

How the stations were located is detailed

in section 4.3, the data used are discussed,

and the results are given, together with an
analysis of the errors in the results. Some

theory pertaining to the determination of the
spacecraft trajectories from such observa-
tions as distance and range rate is used

in the determination of both station loca-

tions and GM¢. This theory is presented in
section 4.4. In section 4.5 the theory and data
for determining GM¢ are briefly described,
and the values found for GM_ are discussed
extensively.

4.2 INSTRUMENTATION AND GENERAL
DATA

Two-way Doppler data obtained by the
Deep Space Network (DSN) of the Jet Pro-
pulsion Laboratory were used to obtain the lo-
cations of the Deep Space Stations (DSS) and
the gravitational constant of the Earth. The
DSN is a global tracking network established
by the NASA Office of Tracking and Data Ac-
quisition for two-way communications with
unmanned spacecraft traveling from Earth
to interplanetary distances. The DSN, which

operates under the system management
and technical direction of JPL, comprises
three main elements: Deep Space Instru-
mentation Facility (DSIF), Ground Com-
munications Facility (GCF), and Space Flight
Operations Facility (SFOF). The tracking
station complexes of the DSIF, identified as
DSS, are situated approximately 120 degrees
apart in longitude to provide continuous cov-
erage of distant spacecraft. The DSS serial
designations and locations are listed in table
4.1: the coordinates are given in chapter 1.

4.2.1 Tracking Station

A simplified, two-way Doppler system is
depicted in figure 4.1. The tracking station
transmits a signal to the spacecraft. The
signal received at the spacecraft is shifted in
frequency by the well-known Doppler effect.
The spacecraft then retransmits the received
signal. The signal recorded at the ground
receiver has been shifted further in frequency
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COUNTED DOPPLER

I _ _ .......... I I DOPPLER TONE _
I f_ _ r_r__u_.,'_.t _

_ _ ,_D_u.__ _ _ DIFFERENCER } - -

TRANSMJTTER RECEJVER

"THE DOPPLER TONE fd IS A MEASURE OF THE RADIAL SPEED VR

FIGURE 4.1.--Simplified Doppler system.

by the radial velocity of the receiver with

respect to the spacecraft. The difference
between the received frequency and the cur-

rent transmitter frequency is called the

Doppler tone.
In practice, the number of cycles in the

Doppler tone is continuously counted, and the

continuous count is sampled usually once each
minute. These continuous-count Doppler

tone samples are differenced to obtain the
kind of clara known as counted two-way

Doppler, which is actually the increase in

range between the DSS and the spacecraft
that occurred during a sampling interval.

In actual practice, the range differences
accumulated over a 10-minute interval are

normally used when the orbit of the space-

craft is being determined and physical con-

stants (such as the DSS locations or GMe)

are being solved for. The higher sampling
rates are used for monitoring the quality of

the data and other special analyses.

4.2.2 Quality of Data

The effective frequency at the counter is
the same as the frequency received from the

spacecraft (i.e., 2.3 MHz). This means that
the length of each counted cycle of range

difference is 65 mm. The typical quality of

counted two-way Doppler data, which is

shown as a function of counting time in

figure 4.2, can be represented by the equation

I I I I I

4 6

COUNT TIME, Tc _ mln

[ T l_---- T----

v = ROUND TRIP TIME

I
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8 10

FIOUrE 4.2.--Counted Doppler quality.

_ (ap) = k_ + ( k2 _/minimum of 7, TO) '-'

= (k._x/Tc)'-'+ (lc_Tc) 2 (4.1)

where

r is the signal round trip time
Tc is the count time, i.e., the period over

which the DSS-spacecraft range change
occurs

kl represents a cumulative counting error
that is independent of T

k2 represents the cumulative count error
that grows as the square root of T

k:_ represents a phase error that is propor-
tional to T_

Errors of the type of kl include quantiza-

tion for roundoff error at the Doppler counter

and phase jitter. For the current S-band

system, k, _ 3 mm (Trask, 1966; Trask and

Hamilton, 1966), which includes receiver

phase jitter and short-term variations in the

path length of the signal as it passes through

the transmission media (troposphere, strato-

sphere, and ionosphere).

For missions since Mariner 4, after the

Doppler resolver (the time from the start of

a Doppler count to the first positive-going
zero crossing is counted with a 100-MHz

counter) was introduced in the DSS, the

quantization errors have been less than_0.4
ram. (The quantization error a,_= (LC/_/6),
where LC is the value of the least count in
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units of distance.) However, at the start of
the Mariner 4 mission, aq=28 mm (where
only positive-going zero crossing was
counted).

The k_ term represents the short-term
(white frequency) noise of the DSS refer-
ence oscillator (Trask and Hamilton, 1966;
Motsch and Curkendall, 1967). For the rubid-
ium standard, k_=3.8 mm/sV_. The k2 term
represents the cycle dropout (add-in) be-
havior that may occur as a result of the
momentary loss of lock of the receiver phase
detector because of excessive phase jitter.
This component is negligible under the strong
signal-to-noise ratios that prevail during the
tracking intervals used for this report.

An example of error of the type of k3 is
the quantization error due to the limited
number of bits available for computing the

spacecraft radial velocity. For the double-
precision program now used at JPL, this
term is negligible. However, for the single-
precision program previously used, when the
spacecraft velocity was between 16 and 32
km/s, k3 = 0.24 mm/s.

The high-frequency noise visible in the
data from the tracking stations is shown in
figure 4.2. However, when DSS locations are
being solved for from several days of data,
long-term errors of a diurnal nature 1 become
more important than this high-frequency
noise.

An extensive effort has been carried out at

JPL to correct the tracking data for these
quantities. The nature and source of these

corrections, as well as their size and/or effect
on the determinations of the DSS locations,
are outlined in sections 4.3 and 4.4. A further

discussion of data used in determining loca-
tions of tracking stations is given in section
4.3.3.

The importance of the diurnal type of error is

explained in section 4.3.1. These diurnal errors are

of two forms: those affecting the computation of the

observables, such as the platform parameters (Uni-

versal Time 1 and polar motion), and those affecting

the observable itself, such'as the transmission media

(the neutral particles of the troposphere and the

charged particles of the ionosphere and space

plasma).

4.3 RESULTS: LOCATIONS OF TRACKING
STATIONS_

4.3.1 Solutions From Individual Flights

The latest determination of the set of loca-

tions of the eight stations in the DSN was

made by processing Doppler radio-tracking
data from three different spacecraft by
means of computer programs and planetary
ephemerides provided for the Mariner Mars
1971 (MM71) mission. The computer pro-
gram was the satellite orbit determination

program (SATODP) version C1.0, whose
theoretical precepts are discussed by Moyer
(1971).

Basic data supplied to the SATODP for
determining station locations involve the

radiometric data and a planetary ephemeris,
from which the positions of bodies, in the
solar system are obtained. Owing to the high
correlation between ephemerides and station
locations, reduction of the data from the
previous missions must be done with the
same ephemeris that the current mission
(MM71 in this case) is using. The planetary
ephemeris designated development ephemeris
78 (DE78) was used during the phase of the
MM71 mission covering the period from
launch to arrival at Mars and hence was used
in the determination of station locations for

use by the MM71 mission.
This section documents the set of station

locations obtained for the DSN by using the
SATODP, ephemeris, and other quantities,
including timing data giving Universal Time
1 (UT1), polar positions for the correction

of polar motion, and data for correcting the
effects on radio waves of both neutral and

charged particles in the Earth's atmosphere.

The solutions derived are for all eight

stations (table 4.1) in the DSN, but for
clarity in discussing them, certain sets of
solutions have been combined. For example,
at the Goldstone, California, and Madrid,
Spain, tracking complexes, there are mul-
tiple-antenna sites whose relative positions

z Theory is discussed in section 4.4; results on

graviLaLional consL_nL,_ are _iveu iu sect_oiL 4.5.
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are known very accurately from geodetic
surveys. At the Goldstone complex, locations
from radio tracking for stations DSS 11,
DSS 12, and DSS 14 have all been referred to
the location of DSS 12, and at Madrid, loca-
tions of stations DSS 61 and DSS 62 have
been referred to that of DSS 61. When this

procedure has been used, a small number in
parentheses is used to indicate the station
that was actually tracking.

The differences shown in figures 4.3 and 4.4
are those for the stations at Goldstone (DSS

11, DSS 12, DSS 14), California; Woomera
(DSS 41) and Tidbinbilla (DSS 42), Aus-
tralia; Johannesburg, South Africa (DSS
51); and Madrid (DSS 61 and DSS 62),
Spain. In these figures, the best estimate
(location set 37) has been subtracted from
the individual solutions to present a nor-
malized plot showing how the solutions corn-
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FIGURE 4.4.--Relative longitude : consistency

among missions.

pare at the different stations. A summary
of the entire solution is given in table 4.2 and
the best estimate, location set 37 (LS37), in
table 4.3.

The various solutions for the spin axis at
Goldstone show agreement to the ± 0.1-meter
level. The Mariner 6 solutions show a definite

bias at all stations, which may be because of
the increased sensitivity of this mission to
declination errors in the ephemeris. The
large declination (-24 deg.) at encounter
makes the solutions of this mission 8.5 times
as sensitive to a declination error in the Mars

ephemeris as those of Marine 4, which en-
counters Mars at - 3-deg. declination.

The Mariner 6 solutions also have the

largest uncertainties associated with them,
primarily because of the inability to use the

data acquired subsequent to the cold gas
cooling (blow-down) occurring 45 minutes
before encounter as required by an onboard
experiment. The solutions from other mis-

sions show a spread of about 3 meters, but
the rms deviation of all solutions except those
of Mariner 6 is 0.8 meter.

Based on the error analysis, the true un-
certainty for r_ values in solution LS37 is
believed to be no better than 0.8 meter and

no worse than approximately 2 meters.
Relative longitudes behave similarly to

the spin axis estimates and are shown in
figure 4.4. Best agreement is approximately
0.2× 10-_ deg (_0.2 meter), whereas others

range upward to 3.8 × 10-_ deg (_4 meters).
Error analysis then shows the uncertainty of
solution LS37 to be 0.5 × 10-_ deg; this may
not be justified from the results shown in
figure 4.4, which shows the rms to be
1.9 × 10-_ deg.

Assessment of the true uncertainty of the
spin axis and relative longitudes is compli-
cated by errors in the determination of plane-
tary ephemerides, polar motion, and atmos-
pheric refraction effects. Uncertainties in the
measurements used to generate these items
can be analyzed to produce statistics of the
random uncertainty associated with each,
but the detection of systematic errors within
one item or between related items may be
very difficult, if not impossible.
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If the error is truly systematic, i.e., is a
constant offset or bias, very consistent loca-
tions may be obtained, and the station lo-
cations may be used successfully when they

are applied to support navigation using the
same systematically pertt_bed item. There-
fore an important criterion for accurate
determination of station locations is that the
locations are consistent from mission to
mission.

Examples of this can be found in the plot

(fig. 4.3) of spin axis solutions for Goldstone,
California. Except for one solution, which
may have been affected by high plasma activ-
ity in space, Mariner 4 and 5 solutions show
a range of about 0.4 m. Marine 6 shows about
a 4-meter mean offset at Goldstone and

slightly smaller offsets at all other stations.
The significance of this offset can be

determined if one knows the true uncertainty
in all the spin axis solutions. Since the true
uncertainty is unknown, approximations to
it are made by examining the known sources
of error. Estimates of the maximum effects
of nine different error sources for the five

mission phases analyzed are shown in Figures
4.5 and 4.6. The first is the contribution of

the white (random) noise in the data. This
is an estimate of merely the true observed
data noise on the station locations. The next

effect is that of errors in the ephemeris ; these
errors apply only to the spin axis and longi-
rude but cancel for relative longitudinal
determination.

Error in planetary declinations converts
into error in r8 via the tangent of the declina-
tion times the error in the declination. For

very small declinations the inability to deter-
mine the spacecraft declination does not
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affect the spin axis estimate. Mariner 6
encounter occurs at -24 deg declination, and
a spin axis value from it is therefore more
likely to show an offset because of declination
error than are spin axis values from the other
spacecraft, which encountered planets at
small declinations or at zero declination.

How does one determine the error in decli-
nation? Discussions with members of the

JPL Ephemeris Development Group indicate
that the best indication may be obtained by
noting the di.fferences in planetary position
as given by various ephemerides.

There is a known error in DE78 that
affected the derived station locations. Radar-

measured distances to Mars taken during the

1971 opposition were erroneously time tagged
because of equipment malfunction. The dis-

tances themselves were correct, but of course
the incorrect time tags resulted in fallacious

ephemeris elements for the planets when the
data were reduced (Lieske et al., unpub-
lished, 1971). Correcting this error resulted
in DE79. Comparison with DE78 indicates
that the r, solutions for Mariner 6 increase
by only 0.03 meter and the Mariner longitude
solutions by 0.45 meter.

Subsequent development of other ephemer-
ides using more radar and Mariner 9 rang-
ing data taken during the orbital phase has
yielded DE80 and DE82. Comparing these
with DE78 shows a maximum effect on the

Mariner 4 spin axis solution of 0.14 meter
when DE80 is used instead of DE78, but of
1.5 meters on the Mariner 6 spin axis solu-
tion. Entries in figures 4.5 and 4.6 are based
on these differences between various ephem-
erides _or the most sensitive mission.
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UT1 does not affect either relative longi-

tudes or spin axis values, as polar motion
does. Henry Fliegel of JPL estimates a 0.7-
meter error in both the X and Y components
of the polar position as a result of errors in
the measurements made by Bureau Interna-
tional de l'Heure (BIH) and of fitting their
data in preparation for use in the orbit
determination program.

Analysis of the errors in atmospheric re-
fraction (ionospheric and tropospheric) is not
easy because of difficulty in predicting the
precise manner in which they cause station
coordinate errors. Equivalent values for the
errors in the ionospheric refraction model
were made by Brendan MuIhall and Ka-Bing
Yip and for the tropospheric refraction model
by C. C. Chao, the JPL engineers who were
responsible for the development of the cor-
rections applied.

Entries for "frequency" and "other" in
figures 4.5 and 4.6 are best estimates of
possible errors caused by temperature effect
on such items as electronic cables in the

tracking system. The "miscellaneous forces"
entry is for Mariner 6, for which data from
the entire planetary fly-by could not be used
because of the release of gas 45 minutes be-
fore encounter. Figures 4.5 and 4.6 show the
worst possible error source cases for the five
missions being analyzed. When the figures
are prepared for each mission, uncertainties
in r, of about 1.1 meters are obtained for
the Mariner 4 and 5 missions and 3.2 for

Mariner 6. An rms of these yields an uncer-
tainty of 0.6 meter for the r, solutions in
LS37. Analysis of relative longitude gives
approximately 1.1 x 10 -_ deg uncertainties for
each rms to 0.5 x 10 -5 deg for LS37. In view
of the scatter of the solutions shown in fig-

ures 4.3 and 4.4, these results do not appear
totally unrealistic for r, but are perhaps
optimistic by a factor of four for relative
longitude.

4.3.1.1 Historical Behavior of the JPL Deep
Space and Earth SatelLite Solutions

Significant changes and improvements
have been made in the station locations

determined by processing radio-tracking data
from deep space probes and in the work done
with data from Earth satellites. In this sec-
tion several different sets of JPL station lo-

cations derived between 1966 and the present

will be compared_with their counterparts
derived from work done at the Smithsonian

Astrophysical Observatory (SAO) and Wolf
Research and Development Corporation
(WRC) in cooperation with the Goddard
Space Flight Center (GSFC).

The solutions originally determined by
SAO were described in the Standard Earth

1966 (Lundquist and Veis, 1966) and were
based on the data from Baker-Nunn cameras.

A second set of locations was derived by SAO
for the Standard Earth 1969 (Gaposchkin
and Lambeck, 1970), which resulted from
more camera data and the addition of laser-

DME data. Only very cursory information
about these differences will be provided here.
The next set (WRC 1971) was prepared by
WRC in cooperation with GSFC (Marsh et
al., 1971). They used a further augmented
set of data from SAO that included not only
more camera data but also more laser-DME

and S-band, Doppler, and ranging data.
Four significant sets of locations derived at

JPL will be compared with their appropriate
counterparts. These sets are summarized
in table 4.4. Certainly, similar tables pre-
pared to show the progress in reducing data
from cameras would show improvements in
the development and application of various
calibrations, constants, or corrections along
with improvements in programs.

Disparity in some quantities such as longi-
tude may be expected between solutions using
camera data and JPL solutions because of

differences in UT1 and discrepancies between
the planetary ephemerides and the stellar
catalogs in the definition of the origin of right
ascension. Comparison of relative longitudes
will remove this cause of conflict because they
are independent of differences in UT1 and
the ephemeris. Absolute longitudes will be
handled separately.

There is another coordinate system in
which the parameters best determined, r_
and relative longitudes, can be compared.
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This system, used in interferometric track-
ing, involves the equatorial base line, which
is the equatorial projection of the distance

between stations. For stations 1 and 2, the
base line rb is given by

[./.2 ..L. T2 _--rb,_= _ ,,-- _--_.'r_, r_ cos AX12)½ (4.2)

where AXl== X.,-- A,, the relative longitude.
The evolution of the solutions for the dis-

tance off the spin axis and relative longitude
made by processing Earth satellite and deep

space probe data can be compared by study-
ing figures 4.7 and 4.8, which show how the
solutions compared with an average of the
1971 LS35 JPL solution and the WRC 1971

solution. In 1966 disparities in the spin axis
solutions ranged from 12 to -18 meters,
approximately. Since that time, solutions
from both sources have been converging, and
in 1971 the total difference was less than 3
meters.

Although the causes for the large change
in the JPL solution for DSS 12 and the small

change for DSS 41 are not known, part of it
may derive from different sensitivities of the

radio data to ionospheric refraction effects.
The data used in 1966, the Ranger data, were
taken at 900 MHz (L-band). The 900-MHz
data are six times more sensitive to iono-
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spheric refraction than the 2200-MHz (S-
band) data available for the 1969 solutions.
Uncertainties of 5 to 10 meters because of
ionospheric refraction could exist in the 1966
solution. The fact that 2200-MHz data were

corrected for the ionospheric effects could
also cause a further shift between the 1966
and the 1969 solutions and at the same time

reduce the uncertainty resulting from re-
sidual ionospheric refraction errors to less
than 2 meters.

Another part of the differences may be due
to seasonal variations in the ionosphere. DSS
12 and 41 are in different hemispheres; this
fact, in conjunction with the seasonal iono-
spheric variations, would 'produce different
effects on the estimated station locations. It

is not known what specific items may be
responsible for changes in the solutions.

The history of relative longitude determi-
nations (fig. 4.8) likewise shows significant
improvement in the agreement between the
solutions from the two sources. As is true

for distance off the spin axis, the charged
particle effects may be responsible to a large
degree for the changes between the 1966 and
1969 deep space solutions. The effect on the
1966 solutions could be in the 10- to 20-meter
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region. For the 1969 solutions it is probably
3 meters or less.

The same type of comparison is shown in

figure 4.9, only for the equatorial base line

project for DSS 12 and DSS 41. Note that
less disparity exists between the 1966 solu-

tions than was noted in either the r_ or the

relative longitude figures just discussed; how-

ever, the 1969 to 1972 behavior is similar to
the behavior of the relative longitudes (fig.

4.8). It is perhaps unexpected that the 1966
solutions should show smaller differences

when they are studied from the base line

viewpoint. Considering the large differences

in longitude and distance off the spin axis

previously studied, one might expect differ-

ences just as large in the base line. Because

this is not the case, the exact cause is un-

known at this time. One might expect that it

is partially a result of the charged particle

effects, which are so potentially significant

to the 1966 deep space mission solutions.

4.3.1.2 Longitude Solutions

Longitude solutions are shown in figure

4.10. In analysis of LS35, a set very similar

to LS37, the longitudes derived from Mariner
4 data were 16 meters east of the estimate

based on combined Mariner 5 and 6 encounter

data. This discrepancy was studied in minute
detail because the individual solutions con-

tained in earlier sets (i.e., LS25 in Mottinger,

1969) were not so disparate. By having the
SATODP use the constants that were used to

produce the Mariner 4 solution used in LS25,
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consistency among missions.

it was possible to obtain better than 1-meter

agreement with those solutions. Thus it is
indicated that the difference between LS25

and LS35 resulted from the changed con-

stants for UT1, tropospheric and ionospheric
refraction, polar motion, planetary ephem-

eris, and Mars pole direction. Since the old
constants were known to be less accurate

than the new constants, there was no choice

but to accept the new solutions. To obtain

longitudes in both LS35 and LS37, it was

arbitrarily decided to de-weight the longi-
tudes derived from Mariner 4 data but retain

the spin axis values and the correlations that

give relative longitudes.

Although this disparity has been reduced

to approximately 14 meters in LS37 because

of the application of the improved iono-

spheric refraction constants, the same basic

policy of de-weighting the longitudes derived
from Mariner 4 data was retained. Error

analysis does not indicate that a 14-meter

difference can be statistically justified. Some
unknown factor is corrupting the solutions

and is currently (1973) under intense in-
vestigation.

The uncertainty in LS35 and LS37 longi-

tudes is difficult to assess. Using LS35 for

Mariner 9 navigation support did not in-
dicate that an error as large as 16 meters
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was present. In fact, until initial post-

flight analysis of the Mariner 9 data provided

station longitudes, it was felt that LS35 may
have been accurate to 3 or 4 meters, or that

a proper decision was made in completely

ignoring the Mariner 4 longitudes when

LS35 was being compiled for use by Mar-
iner 9.

The station longitudes initially determined

from the Mariner 9 phase using data from

5 days before Mars orbital insertion up to
the insertion itself were 5 to 6 meters west

of the LS35 longitudes, or approximately 20
meters from the Mariner 4 results. Iono-

spheric refraction constants have not been

applied in this reduction, but indications are

that the 5- to 6-meter difference may be
reduced in half.

Plotting the uncorrected Mariner 9 longi-

tudes as a function of time together with the

other Mariner solutions suggests a strong

linear relationship, which may be merely

coincidental. Because it probably is coinci-

dental, in reality the longitudes may be much

more widely scattered than was previously

believed. In an attempt to solve this problem,

the computations most likely to affect longi-

tude and right ascension are being thoroughly

checked (1973). The analysis of what the un-
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certainties are for individual longitude solu-

tions is shown in figure 4.11. Specifically, the

root sum square (rss) of all contributing

errors varies from 3.1 × 10 -2 deg for Mariner

4 longitudes to 4.6 × 10 '_ deg for Mariner 6
longitudes and is not sufficient to include the

14-meter difference existing between longi-
tudes derived from different missions.

There may be some random error present,

for example, in UT1 or the planetary ephem-

eris, or there may be programing errors

ranging from an outright mistake to simply

a misunderstanding of how certain quantities
are to be handled when items related to

longitude and/or right ascension are being

computed.

The comparison with the longitudes de-

rived from tracking Earth satellites is shown

in figure 4.12. Although the more recent

solutions are not so disparate as they were in

1966, the difference has not gone below the

18-meter level. The matter of determining

longitudes is difficult because one must rely

on either planetary ephemerides or star

catalogs to determine the position of the

spacecraft or satellite.

The longitudes obtained from the Ranger

missions in 1966 depended on the lunar

ephemeris, whereas those in 1969 depended

on the planetary ephemeris. Part of the
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discrepancy between the solutions has been

explained by Tom van Flandern of the U.S.

Naval Observatory as an inconsistency in

the definition of the origin of right ascension

as given in the two ephemerides.

Similarly, changes in the source of UT1
have also affected the longitudes. SAO has

consistently used UT1 from BIH, but it was
not until 1971 that JPL switched from the

U.S. Naval Observatory to BIH for this in-

formation. The removal of all inconsistencies

between various reference frames is ex-

tremely difficult but, until it is done, exact

agreement cannot be obtained. Ionospheric

refraction effects may also have a strong

influence on the longitudes ; for the 900-MHz

data of 1966, errors of 20 to 30 meters are
believed to result. As was mentioned earlier,

the 2200-MHz data used in 1969 and later

are about one-sixth as sensitive. Actual

ionospheric effects are illustrated in section
4.3.3.

4.3.2 Physical Principles

Why is it that one can accurately determine
certain coordinates of a tracking station that

has obtained Doppler data from a spacecraft

and that this accuracy is almost independent

of how distant the spacecraft is ? The answer

has more to do with the fact that the tracking

station resides atop a spinning Earth than

with any properties of the spacecraft trajec-

tory. The role played by the spinning Earth

can be visualized by referring to figure 4.13,

remembering that the Doppler data are ac-

tually obtained by continuously counting

cycles of the Doppler shift; i.e., they are a
record of the change in range from the track-

ing stations to the spacecraft between times

of taking data samples.
First, consider a plot of only that portion of

the accumulated range change resulting from

the rotation of the Earth for a distant space-

craft lying in the equatorial plane of the

Earth. (The basis for this viewpoint was

first discussed by Hamilton and Melbourne,

1966.) The example assumes a smooth,

spherical Earth and ignores positional paral-

lax due to the displacement of the tracking

station during the tracking pass. The plot
will start at zero and increase as a cosine

curve of diurnal period, reaching a maximum

at the time tM that the spacecraft is on the
observer's meridian. This accumulated range

change will exactly equal r_, the displacement

TARGET PLANET

czT
SPACECRAFT

OSS

X LONGITUDE

a T - (GB)MEAS - (DP)MEAS - _(_ (UT1) + _ - EQ

aS/C

®
MEAN SUN PROJECTION ON TRUE EQUATORIAL PLANE OF DATE

m

FIGURE 4.13.--DSS longitudes derived from tracking data correlated with other parameters.
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of the tracking station from the spin axis
(axis of rotation) of the Earth. After tM,
the accumulated range change following the
cosine curve will decrease until it again
reaches zero at the time the spacecraft dis-
appears below the observer's horizon.

Note that, for the more general case shown
in figure 4.14 in which the spacecraft is at
some angle _/c above the equatorial plane of
the Earth, the amplitude of the accumulated

range change is decreased by cos _s/c. In fact,
if the spacecraft were directly over the north

pole (8s/c=90 deg), there would be no change
in the tracking-station/spacecraft range be-
cause of the rotation of the Earth. From the

standpoint of station location determination,
what is important is that the distance of the

tracking station from the spin axis of the
Earth can be determined from the amplitude.

However, the accuracy of such a determina-
tion is limited, not only by the accuracy of the
measurements, but also by uncertainties in
the spacecraft position; i.e., r, cos _/c is the
quantity actually determined, not re. Conse-
quently, the better solutions for rs are derived

from tracking data when either the space-
craft declination is small ($-_0) and hence

cos _/_ is relatively insensitive to errors in
_/c, or when $_/c is well known.

The _/_ is well known when a spacecraft

passes close by a target planet, such as Mars.
In such a case the influence of the gravita-
tional field of Mars on the spacecraft trajec-
tory allows an accurate determination of the
position of the spacecraft with respect to

Mars, and the _/_ is inferred from the decli-
nation of Mars.

As with solutions for r,, solutions for
longitude ;_ can also be extracted from the

cosine curve shown in figure 4.14. Only the
information on _, comes from the phase of the
curve instead of the amplitude. As the am-
plitude measurement is not a pure measure of
r, neither is the phase measurement a pure
measure of _.

The change in tracking-station/spacecraft
range (±p_R) caused by the rotation of the
Earth can be written as

_pE_=r, cos _._/_sin,_e (t-t_) (4.3)

where

_,_ (t-t_)

t_ time when the spacecraft is on
the meridian plane of the track-
ing station
angle between the meridian
planes of the spacecraft and the
tracking station

_ rotational rate of the Earth

TO ROTATION OF

tM EARTH' APER- km F/'//, l i , [%1
0

tR ISE tM ts ET

iRIS E TIME

PROJECTION OE

EQUATOR IAL PLANE
_PER = rs cos 8S/C cos uJ(_ (t - tM)

/\
J_ _ _ PARALLEL TO

_\ I EQUATOrIAL

_E vIEW P|ANE

FmURE 4.14.--Range change between spacecraft and DSS because of rotation of Earth.
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Although the actual processing of the

tracking data involves searching for the best
values of a number of parameters to satisfy

previously specified criteria (least-squares

criterion nominally being employed), the

part of the process related to the determina-

tion of station locations essentially finds an

r_ cos 8._/,, and t._t that best describe the ApER

portion of the observations. Once the phase

t, of the diurnal Ap_ signature has been
determined, the location of the meridian

plane of the spacecraft is known as a function
of time with respect to the meridian plane of

the tracking station. In addition, the data

reduction process determines the coordinates

of the spacecraft; the spacecraft position
with respect to the planet is well determined

also, as mentioned previously, if the space-

craft trajectory has been significantly altered

by the gravitational influence of the planet.

These two measurements, labeled (DP)m_s

(DP for diurnal phase) and (GB),,_ (GB
for gravity bending), along with the other

quantities involved in deriving the solutions

for x are shown in figure 4.13. From this

figure it can be seen that

x = _rP- (GB),,_as- (DP) ..... - _¢. UT1 +,_- Eq

a_ic ,o_ ( t- t,lr)
(4.4)

where

_TP

UT1

Eq

is the right ascension of the plane-

tary target and is computed from
information contained in an ephem-

eris (JPL DE78 was used for the

solutions in this chapter)

is used as a measure of the angular

orientation of the Earth (Green-

wich) with respect to the mean Sun ;
this angle is zero when it is noon at

Greenwich; hence the angle of in-

terest is _ UT1 -,_

indicates an equation relating the

position of the mean Sun to T, the

direction of the true vernal equinox

of date used as the origin of the
right ascension reference system of
date

UT1 is supplied by BIH, the international

timekeeping service headquartered in Paris.
The equation designated Eq must match the

equation used by BIH in deriving the UT1
data.

As can be seen from equation (4.4), the

extraction of (DP), ...... from the tracking data
is not a determination of ;t alone but of the

combination

a_/<.- _ •UT1 - _ (4.5)

where the right ascension of the spacecraft

a_/c=avp- (GB),,,_,._ (4.6)

The fact that our solution for longitude de-

pends on the ephemeris (as well as the UT1)

used may account for the disappointing lack

of agreement between longitudes found by

JPL and those found by independent investi-

gators, such as SAO (see sec. 4.3.1.1).

However, the differences in longitude, or

relative longitudes, ±As_between two tracking

stations are not functions of a_/_ or UT1 and

do compare well with the values found by

independent investigators, i.e.,

_z_s=x,-hs= (DP)m_,_,- (DP) ...... s (4.7)

where i and 3"represent two tracking stations
that alternately track the same spacecraft.

4.3.3 Tracking Data Used for Station Location

The data used in the latest analysis are

essentially the same set of two-way Doppler

data used for the solution set LS25 (Mot-

ringer, 1969). Pertinent information for

each set analyzed is presented in table 4.5,

including the number of points in the current
solution.

The summary of data used shows data for

points above 15 deg elevation and data for

which ionospheric refraction corrections are

available. Tropospheric refraction correc-

tions, as described subsequently, are based

on empirical models and are believed to be
accurate down to 5 deg elevation. However,
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to be consistent with previous analysis, data

were restricted to points above 15 deg eleva-
tion. Since the ionospheric refraction cor-
rections currently must be derived from
measurements taken at the antenna sites,

only the Doppler data that were taken con-
currently with these measurements can be
used. Data not concurrent are omitted. The
total amount of data that can be used varies

from 70 to 99 percent of the total available.

The missions fall into two general care-
gories. The first includes the encounter situa-
tion in which a set of data is taken bracketing

the time of closest approach (encountering
the target and extending for about 5 days
before and after encounter). Mariner 4 and
5 are of this type; Mariner 6 is also, except
that useful data stopped 45 minutes before
encounter, when compressed gas was released
to cool an onboard experiment. Hence only
data taken during the approach to the planet
are used ; none taken after the time of closest
approach are considered.

The second category covers the time when
the probe is passing through the plane of the
Earth's equator. At this time the estimates

of station distance from the Earth's spin
axis are insensitive to errors in the determi-

nation of the spacecraft declination. For
Mariner 5 this situation occurred twice, once
during the Earth-to-Venus cruise phase and
again following the Venus encounter.

Other parameters in table 4.5 indicate the
Sun-Earth-probe geometry over the range of
data from which these values were reduced.

Such information is useful in evaluating gen-
eral ionospheric and space plasma influences

on the Doppler shift as the signal propagates
through space. Also included is the weight

used in processing the data. This is expressed
in hertz for the Doppler shift counted over 60

seconds. In actuality, the 1-minute count
Doppler shift is further compressed to a

10-minute interval instead, and the weight
is then divided by the square root of 10. It

should be emphasized that, to account for
unmodeled error sources, this weight is about

an order of magnitude larger than the actual
high-frequency noise in the data.

4.3.3.1 Corrections to Data: Platform (Earth)
Parameters

The DSS locations are affected by much the

same errors that affect navigation, namely
the platform (Earth) parameters such as
UT1 and polar motion, and the errors that
affect the observables, such as the effects of
the transmission media. (Parts of the follow-
ing discussion are taken from Fliegel, 1971,
pp. 10-13.)

The case of polar motion is shown in figure
4.15. As far as the tracking data are con-
cerned, the pole of the Earth is on the spin
axis. This means that if the crust of the

Earth slips with respect to the spin axis, for
the case illustrated, r, shortens and the
longitude between Greenwich and a DSS in
the northern hemisphere increases. In the
case of UT1, an error has no effect on r, but
affects the x of all the DSS by the same
(angular) amount ; that is _UT1 = 1 msec will
produce ±x=0.4 meter at the modal latitude
(35 deg) of DSS, as shown in figure 4.13,

in which the tracking senses the angle o,.
(t- to), where

_¢(t-t_) = (as/c-X-_ UTl+_-ao)
(4.8)

Therefore, when x is being determined, any
errors in the other quantities on the right
hand side of equation (4.2) will be reflected
as errors in the solution of x on a one-to-one

(angular) basis.
Estimates of UT1 and polar motion are

provided by BIH. These values are processed
by a computer program described by Fliegel

and Chao (Fliegel, 1971), and a set of poly-
nomial coefficients are yielded that are then
put into the SATODP and used in processing
the radio-tracking data. In table 4.6 the
relationship between International Atomic
Time (IAT) and UT1 and also between IAT

and Universal Time Coordinated (UTC) on
the day of encounter is shown for the three
missions used. UTC as defined in conjunction
with all the time scales used in the orbit

determination process (Moyer, 1971) is
Greenwich Civil Time and is derived from
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oscillations of a cesium atomic clock. Also

shown in the table is the difference between

UT1 and UTC both in milliseconds and in the

equivalent number of meters. The pole posi-

tions, which relate the position of the Earth's

spin axis with respect to the 1903.0 pole, are
also listed for these same dates. When these

corrections are used in the SATODP pro-

gram, they result in the determination of

_ _ _ _ FIXED STARS

SPIN AXIS

MOUNTAIN

AT f0

S MERIDIAN

EFFECT ON DISTANCE

OFF THE SPIN AXIS r
$

EQUATOR

MOUNTAIN_
AT

EFFECT ON LONGITUDE X

station locations with respect to the 1903.0

pole, and thereby all solutions among the
various missions can be made consistent.

4.3.3.2 Correction for Effects of Transmission

Media: Ionosphere

The ionosphere, which was ignored prior

to preparations for the 1969 mission, is an
example of an error source that can produce

systematic errors in the DSS location solu-

tions. The shift in r_ and _,, respectively,

caused by applying the ionospheric correc-

tions to the radio-tracking data is shown in

figures 4.16 and 4.17. Note that, for the data

spans considered, the shift in rs is nearly

always positive and averages 1.8 meters for

the Goldstone complex. (Parts of the follow-

ing discussion were taken from Mulhall,

1969, pp. 11-13.)
The errors in both r, and x caused by

ignoring the ionosphere are significant. The

effect of the ionospheric charged particles on

the tracking is proportional to the number of

charged particles in a column of unit area

that contains the propagation path of the

2 _._IINERVreST

_INER VI ENCOUNTER

2 I_

FIGURE 4.16.--Ionospheric refraction corrections

FIGURE 4.15.--Polar motion, to distances off spin axis.
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FIGURE 4.17.--Ionospheric refraction corrections

to longitude.

radio signal between the DSS and the space-
craft. This columnar content is a function

not only of the ray path, but also of the
time of day, as illustrated in figure 4.18. The
action of the ultraviolet rays of the sun on the
ionosphere dissociates and ionizes the par-
ticles of the upper portion of the atmosphere.
The maximum concentration of charged par-
ticles occurs near the subsolar point, whereas
toward nightfall recombination dominates

and a minimum number of charged particles
exist on the night side of the earth. The

dashed lines in figure 4.18 represent the error
in counted cycles of Doppler shift (_m)
caused by the charged particles. The solid
lines apply to a geostationary satellite at a
constant elevation angle; the lower curve
is for a spacecraft directly over the sta-
tion (7=90 deg) and the upper curve is
for a spacecraft on the observer's horizon

(_/=0 deg). In this case the error is generally
a factor of 3 to 3.5 times greater than the
error in the _=90-deg case. The peaks of
these curves usually occur between noon and
3 p.m. local time; that is, sometimes the rate
of ionization exceeds the rate of the recom-

bination even after high noon. However, the
DSS locations are not derived from tracking
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FIGURE 4.18.--Effect of ionosphere on

radio tracking data.

planetary probes, in which case the Sun-
Earth-probe angle (SEP) and not _ is rela-
tively constant throughout the day. Dashed
lines in figure 4.18 represent the history of

a_z for spacecraft at SEP=0, 90, and 270
deg. Each line starts as the spacecraft rises
on the horizon (7=0 deg), continues to the
peak elevation angle, and then continues on
until the spacecraft sets (7=0 deg) (Ondra-
sik and Mulhall, 1969).

Errors in station locations will arise if the

effect of the ionosphere, as illustrated in
figure 4.18, is ignored. In particular, if the
ionospheric refraction effect on 5pz is a curve
shaped like a cosine wave centered at the
midpoint of the pass, an error % in r_ equal
to the amplitude of the cosine wave will re-
sult. (A similar relationship will exist be-
tween a sine-shaped am and an error in _.)
This means that, for the three cases illus-
trated in figure 4.18, % will be positive for
r_1._1:)_ (IA _ 0_(I _1^_ _1 .... ,.1" .... J-l,.^ _^_..._1
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maximum elevation angle and the time of day

at which the peak ionospheric activity occurs.

For past probes at planetary encounter,

SEP _ 90 to 120 deg for Mars missions and

SEP_ 45 deg for Venus missions. This

means that % will be larger for a Venus
mission than for Mars missions. Exceptions

can occur, however, because the charged

particle content of the ionosphere does vary

as a function of parameters not considered in

the preceding discussion, such as a seasonal

variation and changes in solar activity.

There still may be biases in the DSS solu-

tions because of other error sources, such as

the troposphere and the space plasma, al-

though at present the extent of the effects of
these sources has not been defined. In the

case of the troposphere the current model is

described later in this chapter.

The effect of charged particles in the space

plasma may account for small systematic
errors. Not only does the average number of

charged particles in the column' generally
increase as the Earth-spacecraft distance in-

creases, but, for the relatively small number

of data sets included, the effects of the ran-

dom fluctuations may not have been ade-
quately averaged out. These random fluctua-

tions result from concentrations of charged
particles spewing out from the Sun, as was

demonstrated by the model of charged par-
ticles in the space plasma described by Trask

and Efron (1966). The model includes from

three to five spiral arms that exist at any one

time, each rotating with the solar equatorial

period of about 28 days. Unfortunately,

measurements of the effect of the space
plasma during the periods of interest are

rather sparse. The Mariner Venus-67 mis-

sion yielded the most information. It carried

the Stanford dual-frequency experiment,

which provided measurements of the colum-

nar electron content in the space plasma
during the time the spacecraft was in view

of the Stanford, California, tracking station.

The error caused by the space plasma during

portions of this mission is discussed by
Ondrasik et al. (1967). However, as de-

scribed by Ondrasik et al., the data were not

obtained during all days of interest, and the

fluctuations of the data obtained were of such

a nature that it is difficult to predict what

takes place between the setting of the space-
craft at the Goldstone tracking station and

its rising the following day. An even lesser

amount of data was available during the

Mariner 2 (1962) and Mariner 4 (1964)

missions, which did not measure the total
electron content but only the charge density

at the spacecraft. In the Mariner Mars 1969

spacecraft, no plasma experiments similar to

those of previous missions were carried.

The ionospheric refraction correction
reduces a 2-meter scatter about the mean of

r_ from the Mariner 4 and 5 data to 1 meter
about the mean and moves the mean about

2 meters. Previous analysis in 1969 revealed

a larger net jump of the means and less of a

reduction of the scatter than is currently

observed. The Mariner 6 spin axis solutions

are possibly displaced from the mean because
of errors in the declination of Mars in the

planetary ephemeris. These missions are

especially sensitive to this kind of effect be-

cause of the large declination of -24 deg.

4.3.3.3 Corrections for Effects of Transmis-

sion Media: Troposphere

Corrections for the tropospheric effects on

the Doppler shift in the spacecraft signal as
it travels through the Earth's atmosphere are

calculated by using a model described by

Chao (1971). In this model, zenith range

errors are computed for wet and dry com-

ponents of the atmosphere by means of the

following formulas that were determined

from seasonally averaged data on surface
weather :

Aft:,1,.= 2.276 P,,

exp T.- C

where

Aoz

P,

(4.9)

zenith range correction in meters

surface pressure in bars
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(RH) ,,

7 temperature lapse rate in °K/km
T,, linearly extrapolated surface tem-

perature in °K
surface relative humidity,

0_< (RH)o<_I
A 17.1486
B 4684.1331
C 38.45

where typically

±Pdr,1(7--90deg) _ 2meters

±Pwet (_=90 deg) _ 0.15 to 0.9 meter

To convert the zenith range error to the
error in the line of sight to the spacecraft,
tables have been constructed based on ray

traces using typical refractivity versus
height profiles. These are illustrated in
figure 4.19, in which the total effect on range
of the wet and dry components are shown as
a function of elevation angle (Miller et al.,

1971).

4.4 THEORY _

The results given in sections 4.3 and 4.5
were derived for the most part by using a
theory of spacecraft motion described in de-
tail by Moyer (1971). This theory is in-
corporated in a program called the double-
precision orbit-determination program
(DPODP). The essential parts of the theory
are considered to be (1) a description of the
observables, (2) the corrections made to the
observables, and (3) the differential equa-
tions of motion ; of lesser importance are (4)

the methods used for calculating the ephem-
erides of the bodies in the solar system and
(5) the adjustment procedures. The ephem-
erides are calculated by numerical integra-
tion.

The equations of motion are Newton's
equations plus relativistic perturbative ac-
celerations derived from the one-body metric
of the Brans-Dicke theory (Brans and Dicke,

1961). When the unknown parameter _ ap-
proaches unity, this metric reduces to the
one-body isotropic metric of general relativ-

'_ For additional theoretical discussions, see sections
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FIGURE 4.19.--Tropospheric effect on range.

ity. JPL's ephemeris DE69 is the first to be
based on isotropic relativistic coordinates.
Previous ephemerides were based on the
Schwarzschild coordinates of general relativ-
ity. This permanent change was made so that
the precomputed n-body ephemerides would
be compatible with the DPODP, which is
based on isotropic coordinates.
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DE69 is based on a 60-year backward inte-

gration from the epoch of 2 August 1970,
OhET to 1910. The observations consist of

over 34000 optical observations of the

planets (except Pluto) and the Sun obtained
from the 150- and 230-mm transit circles of

the U. S. Naval Observatory from 1910 to

1968, radar range data for Mercury, Venus,

and Mars from 1964 to 1968, and range ob-

servables for the Mariner 5 spacecraft near

its encounter with Venus (data from 21 June

to 12 November 1967). After being fitted to
these data, the ephemerides were integrated

forward from the 1970 epoch to 1976. DE69

consists of the latter portion of the 60-year

integration from 28 October 1961 to the 1970

epoch and the forward integration from this

epoch to 23 January 1976. The lunar ephem-

eris contained in DE69 is lunar ephemeris

16 (LE16) ; DE69 is described in O'Handley

et al. (1969).

The transmitting station, the spacecraft,
and the receiving station are referred to as

direct participants, and ti, t.,, and t:, respec-

tively, are their epochs of participation. The

solution of the light time problem consists of

these epochs of participation and the helio-

centric position, velocity, acceleration, and

jerk _ of each direct participant evaluated at

its epoch of participation. The rectangular

components of these vectors are referred to

the mean Earth equator and equinox of
1950.0.

Let the subscripts i or ] equal 1, 2, or 3,

where 1 refers to the transmitting station on

Earth at the transmission time t_, 2 refers

to the spacecraft at the reflection time t.,, and

3 refers to the receiving station on Earth at

the reception time t:, The time for light to

travel from point i at ephemeris time (coor-

dinate time) t_ to point 2"at ephemeris time tj

is given by

4.4.1 Observables

The theory used by JPL involves four kinds

of observables: (1) frequency, (2) range,

(3) angle, and (4) range difference. Since

only frequencies (or, more correctly, count

times) were used in deriving the results

given in this chapter, only the theory involv-

ing these observables will be discussed in
detail.

4.4.1.1 Light Time

In this section is given the formulation and

procedure for solution of the light time prob-

lem, which is the first step in the computation

of all observable quantities.
An electromagnetic signal is transmitted

from a tracking station on Earth at time L.
This signal is received by the spacecraft and

retransmitted at time t.,. Alternatively, the

signal may be transmitted directly by the

spacecraft at time t_. All observables are
related to characteristics of this electro-

magnetic radiation, i.e., the angle of the in-

coming ray, the ratio of received to trans-

mitted frequency, or the round trip transit
time.

ti-t,= r_'j+ (l+'/)GM'_ ln(ri+r_+r_i_ (4.10)
c c :_ \_ r_) /

where

r_= II_(t,)I1

and

r_ (t,), r_ (tj)

¢

GM_

heliocentric position vector of
point i at transmission time t_
and point j at reception time t_
speed of light, km/s
gravitational constant of the
Sun, km:_/s 2
unknown free parameter of
Brans-Dicke theory of rela-
tivity; the parameter ,/ is re-
lated to o_, the coupling con-
stant of the scalar field,
through _/= (1+o,)/(2+_)

Solution of the light time equation (4.10)

for a given leg of the light path gives the

transmission time t_ for that leg. The time t_

is used to compute rl (t_) in the evaluation

of the right-hand side of the light time equa-

tion and also appears explicitly in the left-

hand side. The light time equation must be

solved for t_ by an iterative technique. The
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Newton-Raphsonmethod is used in the
DPODP(Moyer,1971).

4.4.1.2 Frequency

Information about the velocity of a space-

craft is contained in the Doppler shift, not

in the carrier frequency; it is the Doppler

shift that is measured. The Doppler shift is

therefore referred to as the Doppler observ-

able. In this section is given the formulation

for computation of Doppler observables,

namely one-way, two-way, and three-way

Doppler observables.

For one-way Doppler, an electromagnetic

signal is transmitted continuously from the

spacecraft and received at a tracking station

on Earth. For two-way Doppler the signal is

transmitted continuously from a tracking

station on Earth, received and retransmitted

by the spacecraft, and received continuously

by the same tracking station. The signal may

also be received by a different tracking sta-

tion; in this case, the resulting observable is

three-way Doppler. For each of these cases,

the frequency of the received signal differs
from that of the transmitted signal because

of the Doppler shift. The observable is the
average value of this frequency shift over

a period of time called the count time, or

count interval, T, It is proportional to the

average range rate along the light path from
the transmitter to the receiver during T_ or,

more accurately, to the change in range along

this light path during Tc. The count intervals
for successive observables are contiguous.

The expression for computing each of these

observables is obtained by expressing the

frequency shift in a Taylor series, with
coefficients evaluated at the midpoint of the

count interval, and integrating term by
term. The odd-order derivatives of the fre-

quency shift vanish and the fourth- and

higher-order even derivatives are ignored.

Thus Doppler observables are computed from

the frequency shift, and the second-order

time derivative is evaluated along the light

path whose reception time at the receiving

station is the midpoint of the count interval.

For observables computed to an accuracy

of 10 -_ m/s, truncation of the Taylor series
limits the count time to values as low as 1 to

10 sec when the spacecraft is very near the

Earth or another planet. When the space-

craft is in heliocentric cruise, count times as

large as 1000 sec may be used.

4.4.1.2.1 GENERAL EXPRESSIONS

An intermediate output from the electronic

equipment at the receiving station on Earth

is a signal whose frequency in cycles per

second of station time (ST) is denoted by f.

This signal contains the Doppler frequency

shift (the transmitted frequency minus the

received frequency, referred to as Doppler)

and a bias frequency whose primary purpose

is to keep f positive when the spacecraft

range rate is negative. For one-way, two-

way, and three-way Doppler, the expressions

for f are

f3=C, -C_fq(t,)\/r/

(4.11)

+C_ (4.12)

(4.13)

where C1 to C5 are constants, defined subse-

quently. The spacecraft auxiliary trans-

ponder oscillator frequency, fs/c, in cycles
per UTC second (cycles of imaginary cesium

atomic clock carried by the spacecraft), is

determined by

fs/c=fro+af_+frl (t2-to) +f_ (t=-to) 2
(4.14)

where

fTo

_f_o,/_1,/_2
to

nominal value of fs/c
unknowns

UTC epoch at start of time
block

t_ UTC value of spacecraft trans-
mission time

In equations (4.11) through (4.13), fR/f_
is the ratio of received to transmitted fre-
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quency (for unity frequency multiplication
at spacecraft). The received frequency f1¢ is
measured in cycles per second of station time
(ST) derived from the atomic frequency
standard at the receiving station. For two-
way or three-way Doppler the transmitted
frequency fT is measured in cycles per second
of ST derived from the atomic frequency
standard at the transmitting station. For
one-way Doppler, fr is measured in cycles per
UTC second of an imaginary cesium atomic
clock at the spacecraft.

The reference oscillator frequencies at the
transmitting station are fq(tl), fq(t3), in
cycles per second of ST (derived from the
transmitted atomic frequency standard),
evaluated at transmission time t, and recep-

tion time t3, respectively. The frequency fq
is reset periodically but remains constant
between settings. The Doppler formulation

presumes that L,(t_) is constant over the re-
ception interval T_ for two-way Doppler and
that Lt (t,) is constant over the transmission
interval. If these intervals overlap for two-

way Doppler, f_(tl) must equal fq(t_).
The Doppler tracking equipment originally

operated in the L-band frequency range
(390 to 1550 MHz). Later the system was
changed to operate in the S-band range (1550
to 5200 MHz). In the interim period, some
tracking data were obtained in the so-called
L-S configuration (modified L-band tracking
stations with an S-band transponder on the
spacecraft). The only change in the Doppler
formulation resulting from changing the
frequency band is the change in the values of
the coefficients Ca through C_, as shown in
table 4.7. In that table, K-=106 and Ki(t3)
[Ks (t_) ] -: the receiver's reference oscillator
frequency at reception time (t_) for L-S
band (S-band) Doppler.

For two-way Doppler the reference fre-
quency and received frequency are derived
from the same atomic frequency standard.
Hence two-way Doppler gives the most ac-
curate measure of the Doppler frequency
shift and the range rate from the tracking
station to the spacecraft.

For one-way and three-way Doppler the
reference signal and received signal are

derived from different atomic frequency
standards. Therefore these data types are
less accurate than two-way Doppler. Fur-
thermore, for one-way Doppler the signal
transmitted from the spacecraft is currently
derived from a crystal oscillator. Because of
the large drift in frequency of this type of
oscillator, one-way Doppler is very inaccurate
and is rarely used in the determination of
accurate spacecraft trajectories.

Define

f_,_= C, - C,_,fTo (4.15)

f.,,,_,=C:;[fq(t:_) -f,,(t,) ] +C_ (4.16)

f:_= C_ - C:,f,, (t,) (4.17)

Hence

//1 - f_ -Co[_fro
fl--flb_ls=C'-'fz/c _ fT ] -

+fr,(t._,-to) +fr_(t.,_-to) _] (4.18)

(4.19)

(4.20)

The signal with frequency f is input to an
electronic counter whose register is incre-

mented by one each time the magnitude of
the signal changes from minus to plus. A
total of N cycles are counted during the count
time T_. The Doppler observable F is

N
F=_ - fb_._ (4.21)

where fb_ is computed from equation (4.15),
(4.16), or (4.17). Since N is the integral of
f over the count time T_,

1 ['t'_m(ST)+I1/')T

F--- _ (ST) (4.22)
- T l(sr)__,/_,_j, (f- fbi,,) dt_

where t3 (ST) is the station time (ST) at the
receiving station, derived from the station

atomic frequency standard, and t_m(ST) is
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the epoch at the midpoint of the count in-
terval To.

The transformation from UTC to ST at

each tracking station is specified by

UTC-ST=a+bt+ct _ (4.23)

where a, b, and c are specified by time block

and t is in seconds past the start of the time

block. Let the coefficients of equation (4.23)

that apply for the receiving station at t_ and

for the transmitting station at tl be denoted

by subscripts R and T, respectively. Also,

define F by

I+F_ (dST/dUTC), (4.24)
(dST/dUTC)3

Then, since dST/dUTC is extremely close to
unity,

F _ b,_(ta) - br(tl) + 2t_cR(t_) --2tlcr(tl)

(4.25)

where the transmission and reception times

tl and t_ are expressed as seconds past the

start of the time blocks for a, b, and c used

at t_ and t_, respectively. Also, define FR/FT

by

F,_ d-t ,dt, dt_,

-(d_) dt..dt_ (4.26)
Fr

Define

(1 F,,_* (1 F,,\ T_/_ ""

where T,, is the count interval. Define F,JFT

for one-way Doppler by

F,_ -_ 2 dr,
(4.28)

The expressions for F1, F2, and F3 are

F,¢ _* +±1Fl=C'-'fs/c[(1- F,r ]

--C_.[afTo+ fr, (t,-- t.) + f% (t:--t,)']

(4.29)

F2= Cafq(t_)

X((1 -F''_* F_'I-(1 F'¢_*]+A}- L
(4.30)

F3= C_,fq(t,)

F,] L 1--(1--F''_*7+A} J
(4.31)

where [1-(F,c/FT)]* is given by equation

(4.27) in terms of [1-(FR/Fr)] and its

second derivative with respect to t:,(ST),

[1-(FR/FT)]", evaluated along the light

path whose reception time at the receiving

station, t_(ST), is the midpoint t_,,,(ST) of
the count interval T_. Expressions for these

quantities are derived from equation (4.26)

for F_,./Fr for two-way and three-way Dopp-

ler and equation (4.28) for one-way Doppler.

Each of these expressions contains an

additive correction, ±, that accounts for the

effects of the troposphere, the ionosphere, and

the motion of the tracking point on the trans-

mitting and receiving antennas during T_.

The computation of _ is described in section
4.4.2.

4.4.1.2.2 DOPPLER FREQUENCY
SHIFT

The expression for [1- (FEFr)] used to

compute two-way and three-way Doppler and

also the expression used to compute one-way

Doppler are derived in this section. The

definitions of FR/Fr are equation (4.26) for

two-way and three-way Doppler and equa-

tion (4.28) for one-way Doppler, evaluated

along the light path whose reception time at

the receiving station, t:, (ST), is the midpoint

of the count interval To. The expressions for

[1- (F,/Fv)] are obtained as expansions in

powers of 1/c. To obtain the desired accuracy
of 10 -'_ m/s for computed Doppler, all terms

to order 1/c '_are retained.

The terms dt,/dt._ and dt:/dt_ are obtained

by differentiation of the light time equations
for the up and down legs of the light path.

The light time equation for a given leg of the

light path is equation (4.10). For the up and
down legs it is given by
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t"-t'=r'_(l+_)GM®-c c:_ In (rl+r2+rl.,)rl+ r._,- rl,;-

(4.32)

t"-t"=r_:'-t(l+7)GM°"- c c:_ In (r2+r:,+r.,_)r._.+ r:,'- r.,:,-

(4.33)

Solution of these equations gives the follow-

ing quantities :

(1) t,, t:, t_ are the ephemeris time (ET)

values of transmission time at tracking sta-
tion on Earth, reflection time at spacecraft

(or transmission time for one-way Doppler),

and reception time at tracking station on
Earth, respectively. The station time (ST)

value of t:, is the midpoint of the count in-
terval To.

(2) r,, r.., r_ are the heliocentric position
vectors of transmitting station on Earth at

t,, spacecraft at t_, and receiving station on

Earth at t_, respectively, with rectangular

components referred to the mean Earth

equator and equinox of 1950.0.

(3) _'i, l'_, i,_ are the heliocentric velocity

acceleration and jerk vectors of participant i

at its epoch of participation t_ (i= 1, 2, or 3).
The dots indicate differentiation of ri with

respect to ephemeris time.

The quantities on the right-hand sides of

equation (4.32) and (4.33) are

r,=,= [(r_-r,). (r_-r,) ]_/; (4.34)

r._:_= [(r3-r2)-(r_-rz)]½ (4.35)

and an identical equation with the substitu-

tions 1 goes to 2, and 2 goes to 3, where

rij = rj -- ri

{12:

rl + r., - r_ =,

r_2
i'12 :--"i'j_

r_,,

r23
r2a = --"/%:_

r23

rl

i': :--'ih
rl

r._

r_

r3

r._

i'_ + i'_ + i__. 1-->2
r_ + r.:- r,: 2 --> 3 (4.40)

The first term of equation (4.40) ap-

proaches 0 + 0 as the distance from the light

path to the center of the Sun approaches 0.
However, because of the finite radius of the

Sun (700000 kin), the limiting indeter-

minacy will not occur.

The quantities (d_/dt), (d_/dt)._,, and

(d_/dt)_ are given by

-dt _= 1 c2 I=1,2, or3

(4.4D

where ¢_ is the Newtonian potential at par-

ticipant i at its epoch of participation t_, and

_ is the heliocentric velocity of participant i

at its epoch of participation t_.

The potential q_ is given by

ri: (r, "rl) _A (4.36)

r=,= (r:.r_) vz (4.37)

r:,: (r:_ •r:,)_/-' (4.38)

Differentiation of equations (4.32) and

(4.33) gives

_,= j_. _ (4.42)

where the summation over ] includes the

Sun, all of the planets, and the Moon, and r_j

is the coordinate distance from the partici-

pant i to the center of the body ]. The velocity

_ is obtained from

lr_ . (I+y)GMQ
dL 1 .... c r_ r_+ c'_ el_
--: (4.39)
dt., 1 1 rl =, _1

C ?'_ .:

_ =i-_._-_ (4.43)

Substituting equations (4.39) and (4.41)

into equation (4.26) and retaining all terms
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to order 1/c 3give the desired expression for [1 - (FI¢/Fr) ] for two-way or three-way Doppler :

1 FR _ 1 1 , . 1 -2--_ }=c (e,_+_'_,_) +

l r .2 .2 I 1(_-_)1

- (1+_) GM+(c,,_,+c_) }

where

(4.44)

• o r23
P*2:r,2 "i', P2a:--'i'._,

r, _ r._3

The expression for [1 - (F,/F_) ] for one-way Doppler is

Fa 1 . 1
+-_ I?__P_ + (_- _:_) +-_- (_] - _) 1

1 2 1 (_i__)l (1++_{+_p_- +_I(¢_- ¢_) + _- v) GM+c::_} (4.45)

4.4.1.2.3 SECOND DERIVATIVE OF

DOPPLER FREQUENCY SHIFT

The computation of Doppler observables

requires an expression for [1-(F_gFr)]".

This term is the second derivative of [1-

(F,¢/Fr)] with respect to the reception time t_

(ST), evaluated along the light path whose

reception time is the midpoint of the count

interval T_. The expression for [1-

(F_¢/Fr]'" for two-way and three-way

Doppler and also the expression for one-way

Doppler are obtained by differentiation of the

corresponding expressions for [1- (FR/Fr)].

4.4.2 Antenna, Tropospheric, and Ionospheric
Corrections to Observables

In section 4.4.2.1 the correction terms are

defined for the Doppler observables that ac-
count for the effects of the offset of the track-

ing point on the moving antenna from the

Earth-fixed station location, the troposphere,

and the ionosphere. The evaluation of these
corrections is described in section 4.4.2.2.

Expressions are given for the antenna correc-

tions. The general procedure for obtaining

the tropospheric and ionospheric corrections
is summarized in section 4.3.3. Details are

given in Mulhall et al. (1970).

4.4.2.1 Definitions of Correction Terms

Equations (4.29), (4.30), and (4.31) for

one-way, two-way, and three-way Doppler
observables contain a term ± that accounts

for the effects of antenna offsets, the tropo-

sphere, and the ionosphere. The expression

for _ is obtained by comparing these equa-

tions to the equivalent differenced range

Doppler formulation that contains correction
terms for these effects.

Differenced range Doppler is computed

from the difference of two range observables

whose reception times are the end and start

of the count interval Tc. Each of these range

observables represents the time for the crest
of a wave to travel from the transmitter to

the receiver. In the presence of charged

particles, the propagation speed for the crest

of a wave is the phase velocity, which is
greater than c.

The range corrections _A_, A_.p, and Aw in

meters divided by 10:'c represent the time
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delay in seconds caused by the antenna offset,

the troposphere, and the ionosphere, respec-

tively. For two-way and three-way range

used to compute two-way and three-way
differenced range Doppler, respectively, each

of these corrections has a value ±_p(t3) for
the down leg of the light path and a value

A_p(tl) for the up leg. For one-way range

used to compute one-way differenced range

Doppler, there are no up-leg corrections.

Comparing the correction terms of the

differenced range Doppler formulation to the

correction term ± of the Taylor series Dopp-

ler formulation (eq. (4.29) through (4.31))

gives, for two-way or three-way Doppler,

1

10:_cTc

× [Ap(t3c)+ Ap(t_)-±p (t_)- Ap(t_)]

(4.46)

where

TC

t:_e

t._s

t_e

Ap (t)

count interval, s

epoch at end of reception interval Tc

epoch at start of reception interval Tc
epoch at end of transmission interval

T;
epoch at start of transmission inter-

val T_'

sum of range corrections in meters

because of the antenna offset, the

troposphere, and the ionosphere for
up leg with transmission time t or for

down leg with reception time t

That is,

±p(t) =±.4p(t) +±rp (t) +Am(t) (4.47)

The antenna and troposphere corrections

are the same as those used for a range ob-

servable; the ionosphere correction has the

same magnitude but the opposite sign (nega-
tive in eq. (4.46) and (4.47)) as that used

for a range observable. For one-way Doppler

the light path consists of a down leg only, and

1

A= 10:_cT _ [Ap(t_)-Ap(t_,)] (4.48)

Given the midpoint t:_,, of the reception

interval T,. in any time scale, the epochs t:_
and t:,_ in the same time scale are given to
sufficient accuracy by

1
t:_ =t:_,, +_Tc (4.49)

1
t_ =t:_,, -_T,, (4.50)

where T_ is given in seconds of station time

(ST). The light time solution for the Dopp-

ler observable has a reception time t3,, and

a transmission time t_,_, which is the mid-
point of the transmission interval T,.. Given

t_,, in any time scale, t,_, and tL_ in the same
time scale are given approximately by

1
t,e_t_,,,+_T_ (4.51)

1
t, _t_,, +_T_ (4.52)

4.4.2.2 Evaluation of One-Leg Range Correc-
tions

This section gives the formulation for com-

putation of corrections to the one-way range

from the tracking station to the spacecraft

resulting from (1) the offset of the tracking
point on the antenna from the station loca-

tion ±Ap; (2) the troposphere Arp; and (3)

the ionosphere Aw.

4.4.2.2.1 ANTENNA CORRECTION

The antennas at the tracking stations of

the DSN, Manned Space-Flight Network

(MSFN), and Air Force Eastern Test Range

(AFETR) have four different types of

mounts: (1) hour angle and declination

(HA-dec), (2) azimuth and elevation (A_-

Ez), (3) X and Y angles (MSFN), and (4)

X' and Y' angles (MSFN). For the 26-meter

(85-ft) HA-dec, A_-Ez, and X'-Y' antennas

the two mutually perpendicular axes do not
intersect. The offset between the two axes
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(the perpendicular distance between them)
is denoted by b and ranges from about 1 to
7 meters. _rhe axis that has a fixed position
relative to the Earth will be denoted as the

primary axis (the HA, A: or X' axis). Owing
to the offset b between the two axes, rotation

of the antenna about the primary axis causes
the secondary axis to move relative to the
Earth.

The two mutually perpendicular axes of an
HA-dec, A:-E, or X'-Y' antenna are shown

in figure 4.20. The primary axis (HA, A_, or
X') is in the plane of the paper, and the
secondary axis (dec, Et, or Y') is normal to
it. The offset between the two axes is b. The

positions of the station location and space-
craft are indicated. The second angle (dec,

E_, or Y') is indicated by 0.
Each range tracking system is calibrated

so that the tracking point lies on the second-
ary (moving) axis. That is, the calibrated
range observable obtained from the tracking
station corresponds to a one-way range
measured from the secondary axis to the

spacecraft. However, the computed range
observable is based on the one-way range

measured from a specific point on the
antenna which is fixed relative to the Earth.

This point is called the station location.
Its geocentric position is represented by

spherical or cylindrical coordinates, which
are solve-for parameters. For all antennas
the station location is the intersection of the

/_x_ACECRAFT

///ANTENNA _

//_ // / .e
/ /

SECONDARYAXI$ _ _/ /

(NORMAL TO PAPER)_ 7/

pRiMARy AXIS_

STATION LOCATION _ \

FIGURE 4.20.--Antenna correction.

primary axis with the plane perpendicular to
it, which contains the secondary axis.

The computed range for the up or down leg
of the light path is rl_ or r._,3(denoted as p in
fig. 4.20) plus ±.4p for that leg. The sum

p ÷ ±.4p must equal _. Hence, the antenna cor-
rection _Apis given by

AAp=fi--p (4.53)

The maximum displacement of the secondary
axis from the tracking station to the space-
craft line is less than 10 m. The maximum

effect of this transverse displacement on _-p
is about 0.5 × 10 :_m (for a spacecraft range
of 10_ m), which is insignificant. Thus the
significant part of ;-p is caused by the com-
ponent of b along the direction to the space-
craft. Since b<10 m and p>10 '_m,

_p- b cos _ (4.54)

to an accuracy of better than 10-3 m and

AAp= ---b cos 6 (4.55)

From equation (4.46) the Doppler ob-
servable formulation includes antenna cor-
rections for the up and down legs of the light

paths which have reception times equal to the
end and start of the reception interval T_.
The tracking point for Doppler observables
is located along the spacecraft-to-secondary
axis line at a constant distance r_ from this
axis. Hence each of the four antenna correc-

tions is given by equation (4.55) plus the
constant re. However, since the round trip

range correction at the beginning of the
count interval T_ is subtracted from the cor-

responding correction at the end of To, the
effect of r_ on A and hence on Doppler ob-
servables is zero. Therefore, equation (4.55)

applies also for Doppler observables.
For the 26-m HA-dec antennag of the

DSN,

±Ap= - b cos _ (4.56)

where _ is the observed declination of the

spacecraft and b=6.706 m. These antennas
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are located at DSN/DSS 11, 12, 41, 42, 51, 61,
and 62.

For the 26-m A:-E_ antenna at DSS 13,

±_p= - b cos y (4.57)

where _/ is the observed elevation of the

spacecraft and b = 0.9144 m.

For the 26-m X'-Y' antennas of the MSFN,

±Ap= - b cos Y' (4.58)

where Y' is the observed angle Y' to the

spacecraft and b= 1.2192 m. These antennas

are located at station MAD at Madrid, Spain ;
DRA at Canberra, Australia; and GDS at

Goldstone, California.
The axis offset b is zero for the 64-m

(210-ft) A_E_ antenna at DSS 14, the 9-m

(30-ft) X-Y antennas of the MSFN, and all

antennas of the AFETR (stations 73 to 77,

79 to 84, and 87). Therefore there are no
antenna corrections for these stations.

4.4.2.2.2 TROPOSPHERE AND IONO-

SPHERE CORRECTIONS

These corrections are discussed in section

4.3.3.

4.4.3 Equations of Motion

The differential equations of motion are

JF_
d2r : _ = j
dr2 _:1 m (4.59)

where r is the location of the satellite and the

F_ are forces acting on the satellite. The

following accelerations (F/m) are accounted

for by JPL: (1) the Newtonian point-mass
acceleration relative to the center of integra-

tion (the point selected as origin) ; (2) the
perturbative acceleration from general rela-

tivity; (3) the direct acceleration of the

spacecraft because of the oblateness of a

nearby planet or the Moon; (4) the indirect

acceleration of the center of integration (if

it is the Earth or the Moon) because of the

oblateness of the Earth and the Moon; (5)

the acceleration resulting from solar radia-

tion pressure; (6) the acceleration caused

by small forces originating in the spacecraft,

such as those from operation of the attitude

control system and from gas leaks; and (7)

the acceleration from motor operation. The

formulation for computation of the first six

of these terms of spacecraft acceleration is
contained in this section.

The total acceleration is integrated nu-

merically to give the spacecraft ephemeris,

with ephemeris time (ET) as the independ-

ent variable. The acceleration is computed

at each integration step and is used to pro-

duce three sum-and-difference arrays, one

for each rectangular component of position.

Each sum-and-difference array contains two
sums and ten differences of an acceleration

component. The arrays may be interpolated

at any ET epoch to give the rectangular

components of position, velocity, acceleration,

and jerk (_) of the spacecraft relative to the

current center of integration. The rectangu-

lar components are referred to the mean

Earth equator and equinox of 1950.0. The x

axis is directed along the mean equinox of
1950.0, the z axis is normal to the mean Earth

equator of 1950.0, directed north, and the y

axis completes the right-handed system.

The center of integration is located at the

center of mass of the Sun, the Moon, or one

of the nine planets. It may be specified as one

of these bodies, or it may be allowed to change

as the spacecraft passes through the sphere

of influence of a planet (relative to the Sun)

or of the Moon (relative to the Earth). For

this case the center of integration will be that

body within whose sphere of influence the

spacecraft lies. At a change in center of

integration the position and velocity of the

spacecraft relative to the old center of inte-

gration are incremented by the position and

velocity, respectively, of the old center rela-

tive to the new center.

The 1950.0 rectangular components of the

spacecraft position and velocity vectors at

the injection epoch are solve-for parameters

(unknowns) and may be referred to any body

(not necessarily the center of integration).
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The injection epoch must be specified in the
A1 (atomic time), UTC, or ST time scales
and transformed to ET. The injection posi-
tion and velocity vectors are transformed to
values relative to the initial center of integra-
tion and are used to start the sum-and-
difference arrays.

The equations for computing each term of

the total spacecraft acceleration relative to
the center of integration are given in the
following paragraphs.

4.4.3.1 Gravitational Acceleration of a Point
Mass

The point mass gravitational acceleration
of the spacecraft S/C relative to the center of
integration C includes all gravitational ac-
celeration except those arising from the
oblateness of the various bodies. The point
mass acceleration is given by

r=_s/c- rc (4.60)

where _s/e, _:c are the inertial gravitational
acceleration of the spacecraft and the center
of integration, respectively, computed by
treating each body of the solar system as a
point mass. These inertial accelerations are
relative to the barycenter of the solar system
and have rectangular components referred
to the mean Earth equator and equinox of
1950.0.

Each of these accelerations is computed
from

The magnitude of (ri--ri) is r_, GMj is the
gravitational constant of body ] in km3/s 2,
and _j is the magnitude of _s.

The 1/c _-term of equation (4.61) is the

Newtonian acceleration. The remaining 1/c _
terms are relativistic perturbative accelera-
tions derived from the Brans-Dicke theory;
these terms revert to those of general rela-

tivity when 7--> 1. The summation over j _ i
includes the Sun, the nine planets, and the
Moon. For each of these perturbing bodies

the user has three options: (1) computing
the Newtonian acceleration and the relativis-

tic perturbative acceleration; (2) computing
the Newtonian acceleration only, or (3)
ignoring the acceleration caused by that
body.

The summation over k_] in equations
(4.61) and (4.62) and over l_i in equation
(4.61) includes all bodies of the solar system
that are treated as specified in options (1) or
(2) and included in the 3" summation of
equation (4.61).

4.4.3.2 Direct Acceleration of Spacecraft Be-
cause of Oblateness

The acceleration of the spacecraft relative
to the center of integration because of the
oblateness of the bodies of the solar system
consists of the direct acceleration of the

spacecraft minus the indirect acceleration of
the center of integration. The direct acceler-
ation of the spacecraft because of the oblate-

_=__GM,(rj-r,)_,r3,i {1 2 (1 +_) _GM,c= . r,, c"l_'GMk '_-'_-----rTk=Jr_, _k("\=--c} + (1+7) (_£)2

2(1+_,) , . )

1 _-, GM_ 3 + 4_/__, GMi_s+_2.,_{j_ , (r_-ri) [(2+27)$_- (1+2_)$j]} (_-_) _ 2c _ j_ r_-_
(4.61)

where the subscript i refers to S/C or center of integration and where r i is the position
vector of body j, _j is the heliocentric (strictly barycentric) velocity vector of body g', and _
is the Newtonian acceleration of body ] computed from

_J= _ GMk (rk-rj) (4.62)- r_k
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ness of a body is computed only when the
spacecraft is within the so-called harmonic

sphere for the body. The radii of the har-

monic spheres may be changed by input; the

nominal values for the Earth, Mars, and the

Moon are 2.5 × 106, 1.0 × 106, and 2 × 105 km,

respectively. The formulation for computing

the direct acceleration of the spacecraft
because of the oblateness of a body is given

in this section. The indirect acceleration of

the center of integration caused by oblate-

ness, computed only when the center of inte-

gration is the Earth or the Moon, accounts
for the oblateness of each of these two bodies.

The formulation is given in section 4.4.3.3.

The direct acceleration of the spacecraft

because of the oblateness of a body is derived

from the generalized potential function for

that body (Proceedings of the Eleventh

General Assembly, Berkeley, 1961, pp. 173-
174, 1962) :

V = 1 + P_ (sin ¢)

(C.,.cosmx+S_,,,sinmx) I (4.63)

where

GM

r,¢,_,

%

gravitational constant of the body,

km3/s 2

radius, latitude, and longitude (posi-

tive east of prime meridian) of the

spacecraft relative to the body

mean equatorial radius of the body
(an adopted constant used for V)

The inertial acceleration of the spacecraft

is computed in a rectangular coordinate sys-
tem (x'y'z') with the x' axis directed outward

along the instantaneous radius to the space-

craft, the y' axis directed east, and the z' axis

directed north. These axes relative to body-

fixed axes x_y_,z_ are shown in figure 4.21,

where xt, is along the intersection of the

prime meridian and equator of the body, z,, is

directed north along the axis of rotation of

the body, and yr, completes the right-handed

system. The transformation from body-fixed

z' Zb

PRIME

MERIDIAN

y'

Yb

x b

EQUATORIAL

PLANE

FIGURE 4.21.--Body-fixed Xb, yb, and Zb axes
relative to x', y', and z' axes.

coordinates rb= (Xb,yb,zb) r to r'= (x',y',z') r

coordinates is given by

where

r'= Rrb (4.64)

R_

COS _ COS _, COS ¢ sin X sin ¢']

,]-sin A cos A 0

- sin _ cos ;t - sin ¢ sin ;t cos

(4.65)

The position vector of the spacecraft relative

to the body (denoted as body i) with rec-

tangular components referred to the mean

Earth equator and equinox of 1950.0 is r-r c,

where r is the position vector of the space-

craft relative to the center of integration

with rectangula'r components referred to the

mean Earth equator and equinox of 1950.0;

that is, the 1950.0 position vector and r_c is

the 1950.0 position vector of body i relative

to the center of integration C. The transfor-

mation from these 1950.0 body-centered co-

ordinates to body-fixed coordinates r_ is de-
noted as

r_ = T r (r- r c) (4.66)

The overall transformation from (r-r / ) to
r' is thus

r'=RT r (r-r c) =- G (r-r c) (4.67)
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The inverse transformation is

(r--r c) :G r r': TRTr ' (4.68)

If rb from equation (4.66) is used, the sines

and cosines of ¢ and _ and the angle ;t are

computed from

sin ¢= zh (4.69)
r

cos ¢- (x]+Y_)'/_ (4.70)
r

Yb (4.71)
sin ),= (x_+y2),/:

Xb (4.72)
COS A:--IX2_ _ 2_V,

The formulation for the transformation T

for the planets, Sun, and Moon is specified

by Sturms (1971).
Let e' denote the inertial acceleration of

the spacecraft because of the oblateness of

any body with rectangular components along
the instantaneous directions of the x', y', and

z' axes. This acceleration can be broken down

into e' (J) due to the zonal harmonics J,,, and

v'(C,S) due to the tesseral harmonics C,,,

and S,,,. Given these terms, the direct ac-

celeration of the spacecraft because of the

oblateness of any body, with rectangular

components referred to the mean Earth equa-

tor and equinox of 1950.0, is given by

where the primes indicate derivatives with

respect to sin ¢.
The Legendre polynomial P, is computed

recursively from

In-l)P,_ 2n-lsin cP, ,- P,__ (4.76)
n

starting with

Po= 1 (4.77)

PI= sin ¢ (4.78)

The derivative of P, with respect to sin ¢,

denoted P_, is given by

P', =sin _ P_-I +riP,_, (4.79)

starting with

P_ = 1 (4.80)

The function see ¢ P_ is computed by first

generating

see qJP_ = (2n-l) cos¢ (secCP_:]) (4.81)

starting with

see ¢ P] =1 (4.82)

and continuing until n=n_,, and then gener-

ating

r=GT_ '-- G r [V(J) +_'(C,S)] (4.73)

The components of _'(J) and _'(C,S) are

given by

GM" (ap)_I(n+o)P" ]
(4.74)

_'(J)=_-_:_J" -r -cos ¢ P'_]

GM .....

[" - (n+ 1)P, _ {C,,,, cos mx+S,,, sin mx}_
/ /

×lm sec C P_ { -C .....sin mX+S,,, cos mx} I

L cosCP, _ {C,,,,cosmx+S .... sinmM 3

(4.75)

2n- 1 _sin
sec ¢ P_=\_/ ¢ (sec ¢ P__,)

n+m-1)n_mm (sec ¢ P,_-2)

(4.83)

For each value of m between 1 and n_, n is

varied from m + 1 to n..,. The general term P

is zero if b>a. The function P_ is obtained

by multiplying (sec _ P_) by cos ¢.

The function cos ¢ P,_', where P_,' is the

derivative of P_ with respect to sin ¢, is

computed from

coscP_'= -nsin ¢ (secCP, _)

+ (n+m) (sec cP, _ ,) (4.84)
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4.4.3.3 Indirect Acceleration of Center of Inte-

gration Because of Oblateness

As was previously mentioned, the indirect

oblateness acceleration of the spacecraft

relative to the center of integration is the

negative of the acceleration of the center of
integration because of oblateness. It is com-

puted only when the center of integration is
the Earth or Moon and accounts for the

oblateness of both of these bodies.

The force of attraction between the Earth

and Moon consists of the following: force 1,

the attraction between the point mass Earth

and point mass Moon ; (2) force 2, attraction

between the oblate part of the Earth and the

point mass Moon; (3) force 3, attraction

between the oblate part of the Moon and the

point mass Earth, and (4) force 4, the attrac-

tion between the oblate part of the Earth and

the oblate part of the Moon.

Force 1 is accounted for in section 4.4.3.1.

The formulation in this section will account

for forces 2 and 3 but will ignore force 4.

Let i%, (E) be the inertial acceleration of the

point mass Moon because of the oblateness of

the Earth and l'_ (M) be the inertial accelera-

tion of the point mass Earth because of the
oblateness of the Moon. These accelerations,

with rectangular components referred to the

mean Earth equator and equinox of 1950.0,

may be computed from the formulation of
section 4.4.3.2. In the computation of r_l (E)

the Moon is treated as the spacecraft of sec-

tion 4.4.3.2, and r-r c in equation (4.66) is

replaced by r_. Similarly, in the computation

of _:(M) the Earth is treated as the space-

craft and r- rc is replaced by r M.
The acceleration of the Earth because of

the oblateness of the Earth and Moon is

GM_
= _',_(M) - _T_'M (E)

tr ln ®
(4.85)

where _._:(E) is the inertial acceleration of

the Earth because of the force of attraction

between the oblate part of the Earth and the

point mass Moon.

Similarly,

_= _.11(E) +_M (M)

GM¢
= i',1, (E) - _, (M)

(4.86)

where _jl(M) is the inertial acceleration of
the Moon due to the force of attraction be-

tween the oblate part of the Moon and the

point mass Earth.

The contribution to the spacecraft acceler-

ation relative to the center of integration is
the negative of the acceleration of the center

of integration, or

[1 1 j_'= ±GM, _--M_r_,(E) --ff_:(M) (4.87)L

where ±GM_= +GM_ if Earth is the center

of integration and ±GM_=-GM¢ if the
Moon is center of integration.

Sturms' algorithm for computation of this

acceleration accounts for J,, C=, and $2_ of

the Earth and Moon. Equation (4.87), evalu-

ated with these harmonic coefficients, is

equivalent to Sturms' formulation.

4.4.3.4 Acceleration of Spacecraft Because of
Solar Radiation Pressure and Small

Forces Originating in Spacecraft

In this section is given the model for rep-

resenting the acceleration of the spacecraft

because of solar radiation pressure and small

forces originating in the spacecraft, such as

those from operation of the attitude control

system (particularly if using uncoupled atti-

tude control jets) or from gas leaks. The

model applies to any spacecraft that has one

axis (the roll axis) continuously oriented

toward the Sun and uses a star or planet

tracker to orient the spacecraft about the roll

axis. The various Mariner spacecraft are of

this type.

The solar radiation pressure model ac-

counts for the acceleration of the spacecraft

because of solar radiation pressure acting

along three mutually perpendicular space-

craft axes, one of which is the roll axis. Nor-

mally, the solar panels are oriented normal



JET PROPULSION LABORATORY 279

to the roll axis so that the largest component
of the force because of solar radiation pres-

sure is along the roll axis. However, the
model can also account for the small forces

acting along the other two spacecraft axes
and arising from departures of the space-

craft shape from rotational symmetry about
the roll axis.

The small-force model accounts in a crude

fashion for the acceleration arising from

small forces originating in the spacecraft.

The component of this acceleration along
each spacecraft axis is represented as a quad-
ratic. The model has been expanded to allow
this acceleration to be represented alterna-

tively as an exponential decay with com-
ponents along each spacecraft axis.

The acceleration of the spacecraft because

of solar radiation pressure and small forces
originating in the spacecraft is represented

by

The value for each .xa_ is obtained by linear
interpolation between input points. The ac-
celeration is started at the epoch of the first
point and ended at the epoch of the last point.

JA 2 I km _- km '_kg
C_=_× 106m _=1.010×10 _ s2m 2

where

J solar radiation constant,
equals 1.3525 × 103 watts/m s
(Plamondon, 1969; 20 July
1970, Plamondon stated that a
more accurate reduction of

the data gave a value of 1.348

× 103 watts/mS), equals
1.3525 × 103 kg/s 3

AE equals 1.496 × 108 km
Ap the nominal area of the space-

craft projected onto the plane
normal to the Sun-spacecraft

line, m s

e= <[at + br (t- TAc1) + cr (t-- TAc1) 2] [u (t -- TACl) -- U (t -- TAc__)]

+±ar+ _G_u*(t-TsRp) tU,_p

+([ax+b..(t-T.lcl) +c_(t--TAcI)2][u(t-- TAcI) --u(t--TAc2) ]

+ Aa_+ _G_u* (t- Ts.p) }X*

+( [a,+ by(t- TAc_) +C_(t--TAcI)5] [u(t-- TAc_) --u(t--TAc2) ]

+_a,,+_Gyu*(t-TsRe)}Y*
mr _

(4.88)

The terms in,this equation are defined as follows:

Usp

X*, Y*

a. b. v_

t

TAC1, TAC',

U(t-- TAca)

Aar, A_x, _a_

the unit vector from the Sun to the spacecraft

the unit vectors along the spacecraft x and y axes (X*× Y*=Usp) (defined sub-

sequently)

solve-for coefficients of acceleration polynomials, where i=r, x, or y, km/s _,

km/s 3, km/s _

ephemeris time

the epochs at which the acceleration polynomials are turned on and off,

respectively

equals 1 for t __TAc. 0 for t _ TAt1, TAc_--_TAc_

known input acceleration, km/s _
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m

rsp

TSRP

u* ( t - Ts,¢,,)

er

e_

GY

the instantaneous mass of the

spacecraft, kg
the distance from the Sun to

the spacecraft, km

the epoch at which accelera-
tion because of solar radia-

tion pressure is turned on

(epoch of solar panel unfold-

ing)

equals 1 for t_TsR, if the

spacecraft is in the sunlight,
or equals 0 for t<Tsl_, if the

spacecraft is in shadow of a
planet or the Moon
the unknown effective area

for acceleration of the space-
craft in the radial direction

because of solar radiation

pressure divided by the no-

minal area Ap
the unknown effective area

for acceleration of the space-
craft in the direction of its

positive x axis (along X* vec-

tor) divided by Ap
the unknown effective area

for acceleration of the space-
craft in the direction of its

positive y axis (along Y* vec-

tor) divided by Ap

The unit Sun-spacecraft vector Usp is com-

puted from

r-r'C (4.89)
u_1,= JIr--r_[r

where r is the position Vector of the space-

craft relative to the center of integration

with the rectangular components referred to

the mean Earth equator and equinox of

1950.0, and r c is the 1950.0 position vector

of the Sun relative to the center of integra-
tion C.

The spacecraft X* and Y* unit vectors are
obtained as a rotation of the tangential T and

normal N vectors through the angle K.

Y* = -sinK cosK (4.90)

The angle K is an input (non-solve-for)

constant. Computation of the unit vectors

T and N requires the unit vector U,, the unit

vector from the spacecraft to the reference

body that orients the spacecraft about the

roll axis (Sun-spacecraft line). The ref-

erence body may be a star, a planet, or the

Moon. If the reference body is a star,

Ur_--

cos _ cos : 1

cos _ sin

sin

(4.91)

where the right ascension a and declination
of the star are referred to the mean Earth

equator and equinox of 1950.0. If the ref-

erence body B is a planet (normally the

Earth) or the Moon,

rC_r

U,= l[rC_r]] (4.92)

where r c is the 1950.0 position vector of the

reference body B relative to the center of

integration C. The unit normal vector N

(normal to Sun-spacecraft-reference body

plane) is computed from

U,, × Usv
N= (4.93)

liUr×UsPII

The unit tangential vector T (tangent to

Sun-spacecraft-reference body plane) is

T=N × Us. (4.94)

Given T and N, the vectors X* and Y* are

given by equation (4.90). The angle K may

be selected to achieve a specific orientation of
X* and Y* relative to the spacecraft.

4.4.4 Application of Theory to Specific Prob-
lems

The precise way in which the preceding

theory is applied to specific problems varies
somewhat according to whether locations of

stations, gravitational constants, or locations

of spacecraft are to be determined. Only the
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first two of these problems concern the

NGSP. The application of theory to these
two is given in sections 4.3.3 (station loca-
cation) and 4.5.2 (gravitational constant).

4.5 RESULTS: GEOCENTRIC GRAVITATIONAL
CONSTANT DETERMINED FROM SPACE-
CRAFT TRACKING DATA

4.5.1 Introduction

Within the last decade, most of the deter-
minations of the geocentric gravitational
constant have been the result of the analysis
of data from the near-Earth phase of lunar

and interplanetary missions. A relatively
recent review of the status of the value of the

universal gravitational constant, G, as well
as the geocentric gravitational constant,
GM,, is presented by Sagitov (1970). In
that paper a small segment of results from
spacecraft tracking is displayed. A general
review of the application of spacecraft-
tracking data to the determination of plane-
tary gravitational constants as well as a
tabulation of recently determined geocentric
and lunar gravitational constants are given
by Melbourne (1970). The purpose of this
section is to present the details of the deter-
mination of GMe using the analysis of
Mariner 9 data as a representative example
and to investigate the major sources of error.
In addition, other GMe values deduced from
the analysis of spacecraft-tracking data will
be reviewed and compared.

4.5.2 Basis of Determination of Geocentric
Gravitational Constant

During the first several days of flight the
gravitational attraction of the Earth domi-
nates the spacecraft motion. It is simply the
variation in the gravitational attraction as
reflected in the spacecraft Doppler shift and

range measurements that enables GM_ to
be determined from the data.

At launch the speed the spacecraft must
have in order to escape from the Earth's

gravitational grasp is given by v = (2_/R) 1/2=

11.2 km/s. The variation of the geocentric
speed, radial speed, and distance during the
first 24 hours after the Mariner 9 launch is

given in figure 4.22. It is evident that both
the velocity magnitude and the radial speed
undergo a large variation within several
hours after launch. It is within this time

interval that one has the most important
data for the direct determination of GM. Of

course, additional data are necessary to
establish the hyperbolic orbit of the space-
craft, determine other quantities pertinent to
the analysis, and allow a separation of GM
from other parameters (e.g., the initial state
of the spacecraft) that enter into the
analysis.

With respect to the cruise phase of an

interplanetary mission, GM¢ is not directly
determined. However, since the Earth re-
volves about the center of mass of the Earth-

Moon system with a period of approximately
27 days, a sinusoidal Doppler shift with an
amplitude of 12 m/s is embedded in the
Doppler data. This particular effect in the
Doppler data can be approximated by

_=n0a_ 1-_cos fl sin (x-_,) (4.95)

where n:, a:, tL, and _,: are the lunar mean
motion, perturbed mean distance from the
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Earth, the ratio of the mass of the Moon to
the mass of the Earth, and the longitude of
the Moon, respectively. In addition, x and fl

represent the longitude and latitude of the
spacecraft with respect to the lunar orbital

plane (Melbourne, 1970). Consequently, the
Earth-Moon mass ratio (t_-1) can be inferred
from the Doppler data from which GMe can
be deduced providing GM, is well known, or
vice versa. A review of the evaluation of t_-1
from the cruise phase of interplanetary
spacecraft is given by Null (1970), and the
Mariner 9 result is given by Wong (1973).

4.5.3 Determination of Geocentric
Gravitational Constant From Mariner

9 Tracking Data: A Representative
Analysis

4.5.3.1 Modeling the Mariner 9 Trajectory

During the first several days of flight the
gravitational attraction of the Earth domi-
nates the spacecraft motion. The Earth's
gravitational coefficients are not estimated,
however; their influence on the trajectory is
calculated. The nominal values of these
coefficients were taken from works by Kozai

(1969) and Gaposchkin and Lambeck (1970).
Since the spacecraft was 20 000 km above
the Earth's surface when the Deep Space
Net first acquired the spacecraft, no attempt
has been made to model atmospheric drag.
However, refraction of the radio signal be-
cause of the troposphere has been modeled
according to an algorithm described by Ber-
man (1970). At present, no ionospheric
corrections have been applied to the data;
however, its expected that the influence of
the ionosphere on the propagation of the
2200-MHz (S-band) radio signal will be
modeled eventually.

The motion of the Mariner 9 spacecraft is
determined by a numerical integration of the
equations of motion. These equations account
for the basic Newtonian motion as well as for

perturbations because of harmonics in the
Earth's gravitational field, solar radiation
pressure, planetary and lunar effects, space-

craft attitude control forces, etc. Perturba-
tions resulting from solar radiation pressure
are modeled as a three-dimensional force

along the pitch, roll, and yaw axes of the
spacecraft. The model is parameterized, and
each component of the force can be esti-
mated. Usually, the spacecraft maintains a
fixed orientation in space by locking onto the
Sun and Canopus by way of star sensors.
However, on occasion, the spacecraft will
drift from this orientation. To rotate the

spacecraft to its original orientation, a pair

of coupled gas jets, located on the ends of
opposite solar cell panels, will fire syn-
chronously. In the process of achieving the
desired orientation, a net translational accel-

eration of magnitude 10 -1' to 10 12km/s'-' may
be imparted to the spacecraft. In addition,
intermittent gas leakage is responsible for a
constant acceleration within the same magni-
tude interval, as was mentioned previously.
These forces generally occur in a random
manner and ordinarily are negligible. How-
ever, when data arcs consisting of one to
several weeks are being analyzed, a pertur-
bation of this type will influence the tra-
jectory and consequently must be modeled.

The motion of the Moon as well as of the

planets is deduced from the analysis of
transit-circle, radar, and previous spacecraft
data. One of the results of such an analysis
is the generation of a planetary ephemeris.
JPL's most recent development ephemeris,
DE80, has been employed in the analysis of
the Mariner 9 data (O'Handley, et al., 1969).
The spacecraft was launched in a direction
away from the Moon and reached a geocen-
tric distance of 400 000 km 30 hours after
launch. Thus the influence of the Moon's

gravitational force on the spacecraft has been
minimized.

Tracking station coordinates are referred
to the mean pole, equator, and prime merid-
ian of 1903.0. Their nominal values, in
cylindrical coordinates (longitude A, distance
perpendicular to the Earth's spin axis r_, and
distance parallel to spin axis z), are given in
table 4.8 (Mulhall et al., 1970). These coordi-
nates can be refined in the analysis of the
Mariner data.
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In summary, the pertinent models and
parameters employed in the analysis along
with their nominal values and a priori stand-
ard deviations are shown in table 4.9. The

initial conditions are in a geocentric space-
fixed reference system and are with respect

to the Earth's mean equator and equinox of
1950.0.

capability of interpreting a priori estimates
of parameters as data. The parameter esti-
mation equation is

AX= (ArWA + _-,1)-I(ArWAz+ _;IY, x) (4.96)

with the estimated parameter covariance
matrix given by

4.5.3.2 Data Analysis Ax= (ArWA + £-_) -1 (4.97)

The data were divided into two groups
consisting of data over a short arc, which
encompassed the first day of data, and data
over a longer arc, which included data from
launch to launch plus 5 days. On 5 June
1971, 22 minutes UTC, the first midcourse
maneuver was performed which, in addition

to imparting a velocity change of 6.7 m/s to
the spacecraft, served as a demarcation point
for the data analyzed. Most of the direct
information on GM comes from the short arc.

However, the longer arc provides additional
information on the gravitational constant,
refines the spacecraft trajectory, and reduces
the correlations between the initial state of
the spacecraft and the Earth's gravitational
constant.

Data were analyzed by way of a classical
least-squares algorithm. In addition to mini-
mizing the sum of squares of the weighted
residuals, the least-squares estimator has the

The residuals (observed data minus com-
puted data) for the Doppler and range data

are represented by _z, corrections to the
estimated parameters are represented by _x,
and corrections to a priori values of estimated

parameters are indicated by £x. A diagonal
weighting matrix, W, is assumed to be the

inverse of the data noise covariance matrix,
and 7% represents the a priori parameter

covariance matrix. Numerically evaluated
partial derivatives of the data with respect
to the estimated parameters are contained in
the A matrix.

The basic set of estimated parameters for
the short arc consists of the location and

velocity of the spacecraft at epoch, station
locations, and the Earth's gravitational con-
stant. A typical set of Doppler shift residuals

resulting from such an analysis is shown in
figure 4.23 and the quantity of data analyzed
has been tabulated in table 4.10. The Dopp-

0.010 I Ie I I . DATA AIxI,_LYZED I I 0.65

• • _ o DATA DELETED =

. .. - J-,,... • .. ,
= o

o w
-0. 004 | _ _e -0.26

o j°u°"SS 51* * DSS 62 DSS 51 DSS 14v9
-0.010 _ I I I DSS12

EPOCH 0 2 4 6 I_ 1/ 12 .0.65

a 5-31-71

TIME IN HOURS FROM START OF DAY
=:

..=.
0.010 I I I I I l

_ °
0.004

0

-0.004

-0.010

12

t

|

u-J

0.65

0

o

DSS 41 DSS 51DSS 14

I I I I I I -0.65

14 16 18 20 22 0 2

6-I-71

TIME IN HOURS FROM START OF DAY

FIGURE 4.23.--Mariner 9 Doppler shift residuals.
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ler shift residuals are confined within a band

of width _+0.004 Hz, which amounts to _+0.26

mm/s in range rate. The DSS 12 data occur
at very low elevation angles (3 to 12 deg)

and have been deleted from the analysis.

However, the residuals are shown and serve
as an excellent reminder of the influence of

the Earth's atmosphere on the propagating

radio signal. On 31 May 1971, 22 hours 32

minutes, there occurs a slight discontinuity

in the residual trend because of a scan plat-

form unlatch on the Mariner spacecraft.

Telemetry information indicates that this

operation imparted a velocity increment to

the spacecraft of about 4 mm/s. This type

of perturbation is being modeled as an im-

pulsive force.

The data analysis involved several se-

quences in which the length of arc, quantity

and type of data, and estimated parameters

were varied. This procedure was adopted to

determine the sensitivity of certain param-

eters in the analysis, establish the stability of

the solution, and investigate possible biases

in the data. Analysis of the 1-day arc reveals

that the expected level of perturbations be-
cause of attitude control forces has a minor

influence on the GM solution. However, in
such a short arc the initial location and

velocity of the spacecraft exhibit moderate to

high correlations with the geocentric gravi-

tational constant. Analysis of the 5-day arc

of data yields a GM solution consistent with

respect to the short arc. However, the cumu-
lative influence of the random attitude con-

trol forces over this long arc, if not modeled

properly, will exert an influence in the orbit
refinement that will affect the GM solution.

Although the results of the short- and long-

arc analyses are basically consistent, the

long-arc analysis requires additional investi-

gation before conclusive results are available.

4.5.3.3 Sources of Error

In addition to the previously mentioned

analysis, the adequacy of a solution has been

investigated by noting trends or patterns in
the residuals, using a converged solution to

predict data outside the data arc analyzed,

and conducting a sensitivity analysis on

parameters designated as "consider" param-

eters. With respect to these parameters,

certain parameters cannot be refined by the

near-Earth data; however, their uncertain-

ties may have an influence on the estimated

parameters, especially GM. These param-

eters are designated as consider parameters

simply because their effects are considered in

the orbit determination. For example, if one
assumes that a reasonable error in J_ is

0.5 x 10 -_, then this uncertainty can be trans-

lated into a corresponding change in the

estimated parameters. In addition, a con-
sider covariance matrix can be evaluated

which will degrade the covariance matrix

obtained from equation (4.97). A change

or error in a consider parameter maps into a

change in an estimated parameter according

to a first-order Taylor series

$_ = S_.,, 8y (4.98)

where the sensitivity matrix is defined as a

matrix of partial derivatives of the estimated

parameters x with respect to the consider

parameters y

S_.,,= D_//D_ ( 4.99 )

The consider covariance matrix is given by

~ T
A, (consider) = A_.[eq. (4.100) ] + S, ,,A ,,S x,,

(4.100)

where ._,, represents a priori covariance ma-
trix on the consider parameters.

Consider-parameters and reasonable un-

certainties are listed in table 4.11, along with

their influence on the value of GM for the

1-day data arc.

The parameters a,, a_, at, represent con-

stant accelerations acting along the space-

craft roll, pitch, and yaw axes. If one assumes

that this type of perturbation was acting

over 1 day, then it can have a relatively large

impact (with respect to the other consider

parameters) on the value of GM. The im-

portance of such a perturbation increases as
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the data arc is extended. Consequently, it
must be modeled in the orbit refinement.

Uncertainties in the Earth's gravitational

harmonics, the Moon's gravitational con-

stant, heliocentric orbital elements of the

Earth, geocentric orbital elements of the

Moon, and the astronomical unit have a

negligible effect on the Earth's gravitational
constant.

A preliminary estimate of GM deduced

from the analysis of the Mariner 9 data is

GM.=398 600.8___0.4. This standard devia-

tion is conservative insofar as the Doppler

data have been weighted by a factor of 4
larger than the rms variation in the resid-

uals. At present, the formal standard devia-

tion deduced from equation (4.97) is 0.15.

This conservative approach is justified inso-

far as the long-arc data (5 days) are still

in the preliminary stage of analysis. Fur-

thermore, analysis has been performed on
data within the interval of launch to launch

plus 20 days, in which the first midcourse

maneuver has been modeled. Preliminary
analysis of this data arc indicates results

consistent with the preceding estimate. With

the completion of the analysis, it is antici-

pated that the uncertainty in GM will be

reduced by a factor of 2.

The Mariner 9 data have been analyzed

with the JPL orbit determination program,

described in detail by Moyer (1971).

4.5.4 Comparison and Critique of Previous
Results

The purpose of this section is to review

the results for GM¢ of previous spacecraft

missions and to comment on the accuracy of

the results. Some of the values for GM have

been abstracted from JPL Flight Path Re-

ports, which are more oriented toward the

engineering aspects of the mission than to a

scientific analysis of the data. This state-

ment is offered as a caution and not as a

criticism; these documents fulfilled their

purpose in an excellent manner. On the other

hand, they are the only source of the GM
values deduced from some of the earlier

spacecraft missions. It is in this spirit that

the following comments pertaining to each of
the individual GM determinations are of-
fered.

With respect to current knowledge of GM,

the results listed in table 4.12 for Ranger 3,

4, and 5 are only of historic interest. These
first evaluations of GM demonstrated a

feasible technology and began a trend that

ultimately led to a revision of the then ac-

cepted current value of the Earth's gravita-

tional constant, i.e., 398 603.2 km3/sL
Solutions from Ranger 6 through 9 are

given individually in their respective flight

path reports. However, a more definitive

analysis was conducted; the results are sum-

marized by Sjogren et al. (1966), and pre-
sented in table 4.12. The results from these

different sources do not differ in any signifi-

cant way. It is noteworthy that the report by
Sjogren et al. (1966), represents a detailed

analysis of the Ranger data, giving a clear

explanation of the method of analysis and
delineating the major sources of error.

The result of a statistical combination of

the data from Ranger 6, 7, 8, and 9 is given

by Vegos and Trask (1967) and is also shown

in table 4.12. Note that the analysis yielded

a standard deviation of 0.4; yet the authors

summarized their result with a realistic

standard deviation of 0.7 km:'/s ". The results

of this overall analysis led to the adoption by
JPL of GM_=398 601.2 km:'/s 2 (Melbourne
et al., 1968).

Lunar Orbiter 2 results exist for GM ; how-

ever, as evidenced by the title of the report,

"Consistency of Lunar Orbiter II Ranging
and Doppler Data" (Mottinger and Sjogren,

1967), the authors were primarily concerned

with a comparison of data types (Doppler

and range). This is the reason why two

results are given for GM: GM(Doppler)=
398 600.9_+2.1 and GM(Doppler+range) _-

398 600.4+_0.7. As a result of this study,
some small biases had been detected in the

range data, which led the authors to increase

their formal standard deviations from 1.23

and 0.26 to those given in the preceding
equations.

The Surveyor results have been described

in flight path reports by Thorton et al.
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(1968), O'Neil et al. (1968), and Labrum
et al. (1968), and have been summarized by

Wong (1968). However, after a close re-
view of these reports, some hesitation is felt
about tabulating these six values, as has been
done for the Ranger results. The reasons for
caution are as follows :

(1) For Surveyor 3, 5, 6, and 7 the GM
values deduced from the analysis (Wong,
1968) are almost identical to two decimal
places (i.e., 398601.11 for Surveyor 3, 6, and
7 and 398 601.10 for Surveyor 5); yet the
standard deviations associated with these
results are 0.8, 0.5, 0.8, and 0.6, respectively.
It would appear that either the standard
deviations are grossly exaggerated, which
seems dubious, or it is a fortuitous coinci-
dence that these results agree exactly.

(2) In the Surveyor 4 determination an
a priori standard deviation of 1.0 km_/s 2
was used for GM. As a result of the analysis,
_(GM) =0.99; which is equivalent to saying
that the data analyzed have no information
about GM to the level of 1.0 km3/s 2.

(3) In the report by O'Neil et al. (1968),
which is a somewhat definitive post-flight
analysis, the values deduced for GM from
Surveyor 1 and 3 are 398 600.6_+0.6 and

398 600.8 _ 0.7, respectively ; yet in the report
by Wong (1968) these values had been re-
vised upward to 398 601.3 ± 0.8 and 398 601.1
± 0.8 without comment on the reasons for the
revision.

(4) And finally, Wong (1968) comments
that all the Surveyor determinations were
analyzed by using an a priori a of 1.0 km3/s 2.
Since the stafidard deviations resulting from

the analysis are not significantly lower, the
solutions were guided by the a priori infor-
mation. Thus it is implied that the resultant

values were not determined by the data alone
but were aided by the somewhat tight a

priori information. As a result of these
conditions, the Surveyor determinations
should be viewed with concern and caution.

Data from Mariner 4, 5, 6, 7, and 9 have

been analyzed for GM. The results from
Mariner 4 and 5 taken from Null et al. (1967)
and Pease et al. (1969) are 398 601.8±1.4

and 398 601.5±0.4, respectively. The error
analysis that exists in these reports is more
in the nature of verification that the space-
craft will arrive at the target planet within
the constraints necessary to ensure a success-
ful mission, as opposed to an analysis of data
strictly to determine GMe. Thus at present
one must satisfy oneself with a tabulation of
results deduced from a navigation or engi-
neering document.

Although the Mariner 6 and 7 near-Earth
data have been analyzed, it appears that no
effective results are available, as is indicated
by the following statement: "Comparison
between the uncertainty of the estimate and
the input a priori indicates that the data has
very little information on the gravitational
constant of the Earth" (Gordon et al., 1970,
pp. 2-205). With all due respect, a reanalysis
of these data has been undertaken to deter-

mine quantitatively the sensitivity of the
Mariner 6 and 7 data to GM.

The analysis of the Mariner 9 data appears
in this report and is essentially the same as
that presented at the International Sympo-
sium on Earth Gravity Models and Related
Problems (Esposito and Wong, 1972). Cur-
rent results (1974) indicate a value in essen-
tial agreement with that presented at the
symposium.

An analysis of the Pioneer 7 data from
GM has been reported in the literature and a
preliminary result given as GM = 398 601.9-+
0.6 (Anderson and Hilt, 1969). The prelimi-
nary nature of this result is further empha-

sized by the fact that the authors of the
Pioneer 7 analysis state that the quoted stand-
ard deviation "... should probably be

multiplied by a factor of 3 at this early stage
of the analysis of data" (Anderson and Hilt,

1969, p. 104a).

Finally, some relatively recent results are
available from the Venera 4, 5, 6, and 7

spacecraft. The results shown in table 4.13
have been taken directly from a similar tabu-

lation in the paper by Akim et al. (1972),
one column having been omitted. As shown

in this table, individual results are available
from each spacecraft; however, no corre-
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sponding measure of uncertainty is listed.
The summarized result is the best estimate

of GM from the analysis, and the associated
error is identified as the maximum possible

error. One notes an inconsistency in the
first row of table 4.13. Using the quoted num-

bers for _ and _, one finds _/_, equals
81.3020, which does not agree with the cor-

responding entry in the last column.

4.6 SUMMARY

The DSS location determinations reported
here were obtained from tracking data from
intervals of approximately 2 weeks when the
Mariner 4 and 6 spacecraft were closest to
Mars and during a like period when Mariner
5 passed by Venus, plus two other periods
when the Mariner 5 spacecraft was at low
declination. One of these low-declination pe-
riods occurred before the closest approach
of the spacecraft to the planet Venus and
one after. The resultant solutions for the
distance off the spin axis r, are probably accu-
rate to better than +_1 meter for the Gold-
stone tracking station; the best determina-

tions for the overseas stations were slightly
less accurate, both because fewer tracking
data are available for these stations and be-

cause high-quality data on corrections for
charged particles, such as exist at Goldstone,
are lacking. The accuracy of the solutions is
reasonably consistent with the accuracy of
the r, solutions when one recalls that two
stations are involved, at least one of which is
an overseas station with the limitations pre-
viously described.

An accurate determination of GM, can
be obtained from the analysis of tracking
data from most lunar and planetary mis-

sions. Two data sets in particular have been
extensively analyzed: the Ranger Block III
Missions (Ranger 6, 7, 8, and 9, which were

the only lunar missions to be tracked from
launch to impact), which yielded GM_--
398 601.2 km3/s _ and the near-Earth data of
Mariner 9 (a spacecraft headed for Mars),
which gave GM,=398600.8 km3/s _. The
Mariner 9 was attractive because the track-

ing data were obtained sooner after injection
than was true for previous planetary mis-
sions.
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APPENDIX

TABLE 4.1.--Deep Space Station Locations

Deep space
communications Deep space Serial

complex Location station (DSS) designation

Goldstone California Pioneer DSS 11
Goldstone California Echo DSS 12

Goldstone California Mars DSS 14

Canberra Australia Woomera DSS 41

Canberra Australia Tidbinbilla DSS 42

................ South Africa Johannesburg DSS 51

Madrid Spain Robledo DSS 61
Cebreros DSS 62

TABLE 4.2.--Station Locations Using Ionospheric Refraction Corrections IC72-1

Distance off Geocentric Distance along
spin axis longitude spin axis a

DSS Data source (km) (deg) (km) Run ID b

12 Mariner 4 encounter ......... 5212.0525 243.194655 3673.763 M4E204-G(DSS 11)
Mariner 5 cruise ............. 525 553 .......... M5C105-F

Mariner 5 encot_nter ......... 529 514 .......... M5E204-G

41

Mariner 5 postencounter .....

Mariner 6 encounter .........

Mariner 5

Mariner 5

Mariner 6

encounter .........

postencounter .....
encounter .........

42 Mariner 4 encounter .........
Mariner 5 cruise .............

51 Mariner 4 encounter .........

Mariner 6 encounter .........

61 Mariner 5 cruise .............

Mariner 5

Mariner 5

Mariner 6

encounter .........

postencounter .....
encounter .........

523 511 .......... (DSS 14)

524 594 .......... M5P105-G

506 603 .......... (DSS 14)
470 528 .......... M6E201-H
477 526 .......... (DSS 14)
525 516 .......... LS37

5450.2015 136.887503 -3302.243 M5E204-G
2016 580 .......... MSP105-G
1993 488 .......... M6E201-H
2019 492 .......... LS37

5205.3504 148.981364 -3674.646 M4E204-G
484 301 M5C105-F
494 264 LS37

5742.9410 27.685_ M4E204-G
9384 3_6 M6E201-H
9400 417 LS37

4862.6084 355.751001 M5C105-F
90 0989 (DSS 62)
81 0972 M5E204-G(DSS 62)
73 1063 M5P105-G(DSS 62)
63 1002 M6E201-H
83 0974 LS37

-2768.744

4114.885

a Not estimated but included for completeness.
b Nomenclature in parentheses shows whether the

ferred by using differences in surveyed values.

solution was obtained for a different station and trans-
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TABLE 4.3.--Location Set 37: DE78, BIH UT1 and Pole, Ionospheric Corrections

Radius Latitude Longitude Distance off Z X Y
DSS (kin) (deg) (deg) spin axis (kin) (kin) (kin) (km)

11 6 372.010 662 35.208 034 7 243.150 585 5 206.340 875 3 673.763 -2 351.429 21 -4 645.079 76
12 6 371.994 953 35.118 657 67 243.194 516 5 212.052 480 3 665.628 -2 350.442 67 -4 651.979 18
14 6 371.993 758 35.244 345 65 243.110 471 5 203.997 795 3 677.052 -2 353.621 05 -4 641.342 59
41 6 372.559 094 -31.211 408 32 136.887 492 5 450.201 884 -3 302.243 -3 978.718 75 3 724.848 67

42 6 371.709 798 -35.219 662 48 148.981 264 5 205.349 415 -3 674.646 -4 460.978 38 2 682.412 05
51 6 375.523 730 -25.739 303 98 27.685 417 5 742.939 970 -2 768.744 5 085.441 737 2 668.265 696
61 6 370.026 548 40.238 900 70 355.750 974 4 862.608 319 4 114.885 4 849.243 171 -360.278 126
62 6 369.967 330 40.263 192 89 355.632 167 4 860.818 070 4 116.908 4 846.700 634 -370.196 262

TABLE 4.4.--Description of JPL Station Location Sets

Location set Description

4 Combination of solutions from Ranger 6, 7, 8, and 9, each of which impacted

the Moon; used lunar ephemeris 3, with UT1 from Richmond, Florida, and

IPMS polar motion; analysis done in 1966 and 1967 on the SPODP (Warner

et aL, 1968)

25 Derived by using DPODP (Moyer, 1971); data from Mariner 4 and 5 ana-

lyzed by using DE69, Richmond UT1, and BIH polar motion, but with

ionosphere calibrations applied; analysis done in 1969

35 Derived by using the SATODP (Moyer, 1071); data from Mariner 4, 5, and

6 analyzed by DE78, BIH polar motion and UT1, the Chao troposphere,

and ionospheric refraction corrections IC71-1; analysis was done in 1971

(Madrid et al., 1973)

37 Same basic data as LS35; used improved ionospheric refraction corrections

(IC72-1 in place of IC71-1); improved combination technique; analysis done
in 1972

TABLE 4.5.--Data Summary by Mission

Number of Sun-Earth
Doppler data Tracking Data weight a probe angle Declination

Mission points span (H2) (deg) (deg)

Mariner 4 encounter ......... 362

Mariner 5 cruise ............. 439

Mariner 5 encounter ......... 759

Mariner 5 postencounter .... 704

Mariner 6 encounter ......... 604

Total ......................... 3268

1965 0.05 77 -3

7/10 to 7/21

1967 0.05 35-20-35 -8 to - 18
7/28 to 9/16

1967 0.05 45 6

10/14 to 10/25

1967 0.05 43 2 to -2

10/28 to 11/21

1969 0.08 117 -24

7/26 to 7/31

4 hr 30 min
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TABLE 4.6.--Timing Relationship and Position of Pole

UT1-UTC Pole (m)

IAT.1-UTC IAT.1-UT1 (msec) (m) X Y

Mariner 4 encounter

(15 Jul 65) ............. 4.027

Mariner 5 encounter

(19 Oct 67) ............ 6.048
Mariner 6 encounter

(31 Jul 69) ............. 7.635

4.020 7 2.8 0.17 14.3

5.946 102 40.8 -0.42 6.58

7.616 19 7.6 3.95 7.15

TABLE 4.7.--Value of Coefficients C1 Through C5

L-band L-S band S-band

C, ................. 930.15K

C2 ................... 31/32

C3 ............... 30 (96/89)
C4 ................... IO-'K

C5 ........... (96/89) (31/32)

9.375K + 30K_ 96 (240/221)K8 + K
30/96 1

............... 96 (240/221)
K

30 (240/221) 96 (240/221)

TABLE 4.8.--Tracking Station Coordinates

Station _, (deg) r, (km) z (km)

DSS 12 ....... 243.194 51 5 212.052 3 665.628

DSS 14 ....... 243.110 46 5 203.998 3 677.052
DSS 41 ....... 136.887 49 5 450.202 -3 302.243
DSS 51 ....... 276.853 92 5 742.942 -2 768.744
DSS 62 ....... 355.632 16 4 860.818 4 116.908

a (a priori) ___ 0.000 1 0.010 0.030
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TABLE 4.9.--Nominal Parameters of the

Mariner 9 Trajectory

Parameter Nominal value A priori sigma

Epoch 30 May 1971, 22 hr
35 rain UTC ___

X, km -6 053.477 10 e

Y, km 267.767 I0_

Z, km 2 475.587 10 _

X, km/s - 1.997 454 1.0
Y, km/s -10.747 680 1.0
Z, km/s -3.388 601 1.0

GM¢, km3/s _ 398 601.20 5.0
GM¢, km3/s 2 4 902.784 0.05
J_ 1 082.628× I0-e __-

J3 -2.538 x 10 -e ___

J4 -1.593 x 10 -6 __-
C_,_ 1.558 x 10 -6 ___

$2,2 -0.881 x 10 -6 __-

291

TABLE 4.10.--Statistical Characteristics of Data Analyzed

Tracking Amount of Tracking Mean RMS
station Doppler interval residual residual
(DSS) data (hr:min) (pHz) (mHz)

51 628 10:11 -11.5 1.89

62 139 2:22 54.2 1.32
12 202 1:02 (Deleted from analysis)
14 288 5:14 -64.2 1.40
41 373 6:36 53.7 1.76

Mean RMS

Tracking Amount of Tracking data residual residual

station range data interval (ns) (ns)

14 127 4:19 0.084 5.97

TABLE 4.11.--Influence of Consider Parameters on GMe Determination

Absolute value of change in
Assumed GM _

Consider parameter uncertainty (km3s 2)

at, ax, a,, km/s 2 0.5 X 10-" 0.06, 0.08, 0.10
Z (DSS 51), m 30.0 0.05

GM¢, km3/s 2 0.05 0.004

J2, J2, J4 0.5 x 10 -7 negligible

C_.2, S_.2 0.5 x 10 -7 0.001, 0.001

Earth orbital elements 1.0 × 10 -7 negligible
(Set III)

Moon orbital elements 0.12 × 10 -5 negligible
(Set III)

Astronomical unit, km 3.0 negligible
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TABLE 4.12.---Earth's Gravitational Constant Determined From Space-

craft Data

GMe+_
standard deviation

Spacecraft (398 xxx.xx kma/s 2) Reference

Ranger 3 ................................ 601.63 +- 2.5

Ranger 4 ................................ 601.87 -+ 13.3

Ranger 5 ................................ 599.20 -+13.2
Ranger 6 ................................ 600.69 -+1.1

Ranger 7 ................................ 601.34 -+1.5

Ranger 8 ................................ 601.14 -+0.7

Ranger 9 ................................ 601.42 -+0.6

Combined Rangers (6, 7, 8, 9) ............ 601.20 -+ 0.7

(a, b)

(b, c)
(b)
(d, e)
(e, f)
(e)
(e, g)

(e, h)

a Sjogren, 1962.
Sjogren et al., 1963.

c Hamilton et al., 1962.
d Sjogren et al., 1964.
e Sjogren et al., 1966.
_Wallenhaupt et al., 1964.
"Vegos et al., 1968.
h Vegos and Trask, 1967.

TABLE 4.13.--GM Deduced From Venera 4, 5, 6, and 7 Data

Data span p_(kmS/s2) iz_(kmS/s2) IZ/Iz_

Before and after trajectory
correction:

Venera 4, 5, 6, 7 .........

Venera 4 ................
Venera 5 ................

Venera 6 ................

Venera 7 ................

Venera 5, 6..............

Before trajectory
correction:
Venera 5 ................

Venera 6 ................

398 600.37 4902.716 81.3005
398 600.89 4902.806 81.3006
398 600.26 4902.702 81.3022
398 600.72 4902.638 81.3033
398 599.45 4902.808 81.3002
398 600.57 4902.682 81.3026

398 599.72 4902.717 81.3018
398 600.73 4902.642 81.3033

Summary 398 600.37-+1.0 4902.716+0.10
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5.1 INTRODUCTION 1

The contribution of Goddard Space Flight
Center (GSFC) to the National Geodetic
Satellite Program (NGSP) is marked by its
breadth and diversity. Goddard developed
and operated all of the major types of track-
ing systems, including those using optical,
electronic range-and-range-rate, and laser
technologies. Even the MINITRACK data
were used to derive geodetic results.

The methods used at GSFC for the analysis
of these data also reflected an unusual di-

versity. For example, general-perturbation
methods were used to determine resonances.

Special perturbations were also used for this
purpose, as well as for gravimetric geodetic
studies. Numerical integration was used
mainly to obtain the general simultaneous
solutions for the gravitational potential coef-
ficients, locations of tracking stations, and
the Earth's equatorial radius. Numerical
integration was also used in the studies of
polar motion, distances between stations, and
solid-Earth tides.

The types of data employed in the solu-
tions were similarly varied. Observations of
some two dozen satellites by Baker-Nunn
cameras gave much of the strength to the gen-
eral solutions. The MINITRACK optical
tracking system (MOTS) cameras obtained

observations of the flashing lights on the sat-
ellites known as GEOS i and 2 and of the

lights on PAGEOS and ECHO, which were
especially useful in the geometric geodetic

1 Chris Massey, of Computing and Software, Inc.,
was responsible for setting up and executing the

many computer runs in the study presented in section
5.6.3.9. Her able assistance is gratefully acknowl-

edged.

The work described in section 5.6.3.10 was under-

taken by Ronald Kolenkiewicz, James G. Marsh, and

Joel Mashbaum of Goddard Space Flight Center, and

Bruce C. Douglas, Peter J. Dunn, Steven M. Klosko,

and Ronald G. Williamson, of Wolf Research and

Development Corporation, Riverdale, Maryland, in
addition to the author.

studies. Electronic range-and-range-rate ob-
servations of medium-altitude satellites were

useful in helping to fix scale and in evaluating
resonance terms associated with their orbits.

Range-and-range-rate observations of syn-
chronous satellites formed the basis for

strength in the solutions for low-order har-
monics. MINITRACK observations of nearly
resonant orbits were also used to obtain bet-

ter values of the corresponding terms of grav-
itational field representation. Scale was fixed
more accurately by the laser system range
measurements. In the later stages of the
NGSP analyses, the satellite data were
blended with surface gravimetry in the gen-
eral solutions for the geopotential and site
locations.

Perhaps the most important use of the
data from the laser systems was the deter-
mination of polar motion, distances between
sites, and solid-Earth tides, since these stud-
ies played a key role in pointing the way to
the NASA Earth and Ocean Physics Applica-
tions Program (EOPAP). The interpretation
of the geodetic results in terms of geophysical
phenomena, such as those associated with

plate tectonics, is another important aspect
of the applications program that has been
pursued at GSFC.

5.2 INSTRUMENTATION

In its development of satellite-tracking
systems, GSFC had to consider two objec-
tives at the same time. The primary objective
was to keep track of the satellites by com-
puting orbits from the tracking-system data,
and it was for this purpose that PRIME
MINITRACK, NASA's first tracking system,
and the Goddard range-and-range-rate sys-

tem (GRARR) were developed. (PRIME
MINITRACK is discussed in sec. 5.2.2.2 and

GRARR is discussed in sec. 5.2.2.3.) How-
ever, this objective could not stand alone:



296 NATIONAL GEODETIC SATELLITE PROGRAM

Unless the tracking-station locations were

known accurately, the orbits themselves
would contain errors. A secondary objective
was therefore adopted : To correct the poorly
known coordinates of the observing stations.

A third objective, similar to the second, was
to calibrate accurately the tracking systems
themselves, since errors in the calibration
constants also affect the orbits.

The first and third objectives had the
greatest effect on development. PRIME
MINITRACK was an electronic all-weather

system accurate enough to keep track of
satellites but not accurate enough for other
purposes such as geodesy. Also, the system
was difficult to calibrate by using natural
radio sources. To solve the calibration prob-
lem, the MOTS camera (sec. 5.2.2.1) was
developed. Placed at the center of the PRIME
MINITRACK array (sec. 5.2.2), it photo-
graphed a flashing beacon carried by an
airplane flying in the near field of the system.
Experience with the camera showed that it
gave sufficiently accurate measurements to
allow it to be used as a geodetic tool for
finding the positions of PRIME MINI-
TRACK, and the design of the camera was
therefore modified to give it geodetic capa-
bilities.

Neither of the other systems, GRARR and
laser distance-measuring equipment (DME),

posed any particular problems in their cali-
bration and were in fact of sufficient accuracy

(the laser DME, particularly) that they, like
the MOTS cameras, could be used geodet-

ically.
It should be remembered that an indis-

pensable part of every tracking system is the
satellite. The MOTS camera can be used for

tracking any satellite that is sufficiently
bright, but PRIME MINITRACK can ob-
serve only those satellites carrying a MINI-
TRACK beacon (about 136 MHz) and
GRARR requires a suitable transponder in
the satellite. In theory, laser DME can track
any satellite reflecting enough light back to
the receiving telescope, and satellites have
been tracked this way in experiments. In
practice, however, laser DME is used only on
satellites carrying corner-cube reflectors.

Descriptions of the geodetically important
satellites carrying corner-cube reflectors are
given in chapters 2 and 9. The satellites
carrying transponders for GRARR (GEOS
2 and 3) are described in chapter 2. (The
satellites carrying MINITRACK beacons are
too numerous to describe.)

A great many observations were made by
the MOTS cameras on flashing beacons car-
ried on satellites ANNA 1B, GEOS 1, and
GEOS 2. These lights are described in chap-
ter 3.

Three satellites, ECHO 1, ECHO 2, and

PAGEOS, were not extensively observed by
NASA for geodetic purposes but were the
basis for NGS's entry into an observational
program. (Of these, PAGEOS was by far the
most important.) These satellites were con-
structed by NASA; they are described in the
following text. The four principal tracking
systems used by GSFC for geodetic purposes
--the MOTS-40 camera systems, PRIME
MINITRACK, GRARR, and laser DME--are
described next. NASA also has a number of

5-cm pulsed radars that have been used
geodetically. These are described in chap-
ter 6.

5.2.1 Satellites
(Soren W. Henriksen)

5.2.1.1 ECHO Satellites

The idea of using balloon-like satellites for
reflectors in communications networks, for
investigation of atmospheric densities, and
as beacons in geodetic projects was conceived
by J. O'Sullivan of NASA/Langley. It was
put into effect on 12 August 1960 with the
launching of ECHO 1, a balloon 30 meters in
diameter (see table 5.1). It was sent into
orbit neatly folded up, but was inflated after
ejection from its container. The method of
inflation was as follows. The sphere was
carefully folded and placed in its container
under low pressure to avoid entrapping air
between the folds, since this air might cause
damage to the sphere during inflation. As
an added precaution against these air pock-
ets, the sphere was punctured by 243 holes
_t; inch (1.59 mm) in diameter.
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To provide enough pressure to inflate the
sphere after it was in orbit, 10 pounds (4.5
kg) of benzoic acid powder and 9 pounds
(4 kg). of anthraquinone were placed in the
sphere. The benzoic acid sublimated to fur-
nish the initial pressure necessary to inflate
the sphere. The anthraquinone, which has a
lower vapor pressure, was used to maintain
a sufficient pressure to keep the sphere in-
flated for approximately seven days, assum-
ing an equivalent micrometeorite impact
aperture growth of 1.4 inch _ (0.22 mm _) per
day. The success of this satellite led to the
launching on 25 January 1964 of a similar
satellite, ECHO 2, which was 41 meters in
diameter (table 5.2). Both satellites carried
MINITRACK beacons (sec. 5.2.2.2) located
at diametrically opposite points on the sur-
face. Figures 5.1 and 5.2 show the structure
of ECHO-2.

5.2.1.2 PAGEOS

PAGEOS (table 5.3) was launched on 24
June 1966. It was very similar in size and
structure to ECHO 1, but lacked the two
MINITRACK beacons. Because its purpose

was entirely geodetic, the satellite was
placed at 4250 km, high enough to allow it to
be seen simultaneously by observers 2000-
to 3000-km apart at optimum distances from
the zenith. Figure 5.3 shows the launching
and inflation of PAGEOS. The description

below was given by J. Rolff (1966).
The SAO Baker-Nunn camera at Olifants-

fontein, South Africa, took pictures first

POLAR CAP (2 EACH) GORE (TOTAL OF 106)
_oo;8,.AL._Or' _o_S"AL-_O_"

MYLAR-JOOOI$"AL MYLAR- gO018" AL

135 FT. OIAMETER_

NOTE: EXTERIOR AND INTERIOR OF SATELLITE COATED WITH ALOOINE 401-45
FOe THERMAL BALANCE. (APPROXIMATELY0.0053 OUNCES PER SQUARE
FOOT OF SURFACE AREA)

FIGt_R_. 5.1.--Echo inflated balloon.
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FIGURE 5.2.--Balloon fabrication detail.

of the ignition of the Agena rocket
booster/payload combination, and then of

the thrust buildup prior to separation of
the payload, of the separation itself, and
finally of the balloon inflation. Times are
Universal Time. The camera was tracking

along a great circle across the sky at the
same angular velocity as the satellite. Stars
are represented by shutter-broken trails.
The satellite was about 4200 km above the

Earth during this event.

The reflected sunlight from the satellite
surface is a function of the camera-satel!ite-
Sun angle, or phase angle _. For a 0 degree

phase angle, the diffuse component accounts
for about 8 percent of the light reflected to-
ward the observer. As the phase angle in-
creases, the diffuse component diminishes
according to the formula given in figure 5.4.
The phase factor F(_,) is unity for ,I,=0
degree, 1/_ for _I,=90 degrees, and 0 for ,I,=
180 degrees. With a 30-degree camera ele-
vation angle and the Sun 18 degrees below the

horizon, the phase angle may vary from 12
degrees minimum to 132 degrees maximum
and result in a variation of the diffuse com-

ponent from 8 to 0.5 percent of the total
reflected light.

5.2.2 Tracking Stations

Tracking stations are the ground half of a
tracking system, the other half being the
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satellite. (The satellite portion is discussed 
in chapters 2 and 3, and the orbital charac- 
teristics are summarized in table 1.10.) The 
tracking station portion as designed and used 
by GSFC is described in the following text. 

As mentioned earlier, the primary re- 
sponsibility and interest of GSFC was to 
determine orbits, and its tracking stations 

were designed primarily with this in mind 
and only secondarily with a view to geodetic 
use. This was definitely true of PRIME 
MINITRACK (sec. 5.2.2.2) and GRARR 
(sec. 5.2.2.3), and its was also true of the 
MOTS camera (sec. 5.2.2.1) which was de- 
veloped first as an instrument for calibrating 
PRIME MINITRACK. The laser DME (sec. 

FIGURE 5.3.-Launching and inflating of PAGEOS as photographed by Baker-Nunn camera. Frame 1 :  
01h24"'37.55578; the first frame that gives an indication of Agena ignition; exposure time, 0.4 sec. Frame 
2:  01h24"39.55578; thrust buildup; exposure time, 0.4 sec. Frame 3: 01h24"'41.555"; thrust buildup; 
exposure time, 0.4 sec. Frame 4:  Olh24"59.5554"; the bright central cone of the rocket exhaust cloud, as 
well as the hemispheric outer cloud, is distinct; exposure time, 0.4 sec. Frame 5: 0lh25"'51.055i'; exhaust 
cloud had moved away from the rocket and was beginning to expand; exposure time, 1.6 sec. Frame 6:  
Olh26"14.2093"; this longer exposure time of 13.2 sec reveals more detail in the exhaust cloud structure. 
Frame 7: 01h27"45.5266"; the tiny dot is the image of the PAGEOS balloon satellite after it had achieved 
orbit, but before the inflation process had begun; a t  this point the satellite was of magnitude +8; exposure 
time, 0.4 sec. Frame 8 : 01h27"55.52688 ; partial inflation; the unfolding balloon is estimated at a stellar 
magnitude of +4 in this frame; expcsure time, 0.4 sec. Frame 9: Olh2F"'Ol.5268g; the satellite had reached 
full inflation by this time; the halo is  caused by the extreme brilliancy of the satellite, a +2 stellar magnitude. 
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5.2.2.4) was developed for very precise track-
ing, although its geodetic application was
certainly considered in the design. The line
of development was nearly linear. PRIME
MINITRACK came first, MOTS was de-
veloped as an adjunct to it, GRARR was de-
veloped for more accurate tracking of satel-
lites at greater distances than PRIME MINI-

TRACK could handle, and the laser DME was
developed to increase accuracy still further.
(It is interesting to note how optical instru-
mentation has alternated with electronics in

the sequence.)
Accuracy of measurement was an ex'

tremely important factor in GSFC's develop-
ment of its tracking systems. But the accu-
racy of an instrument is a function not only
of its design but also of the way the measure:
ments made by the instrument are tied to the

true values of the quantity being measured;
i.e., of the way the instrument is calibrated
(see, e.g., ch. 1). Since an uncalibrated
system is useless if accuracy is needed, the
calibration constants of a system are as im-
portant and indispensable to the system as
the power supply and the timing subsystem.
The calibration procedures are hence de-

scribed along with the system itself. But it
is difficult, in the NGSP at any rate, to sepa-
rate the calibration of the systems from their
evaluation as carried out by GSFC and
Wallops Flight Center. (For further insight
into the problems of calibration, see section

6 of this chapter, and chapters 6 and 11.)

5.2.2.1 MOTS Camera System

(D. Harris)

The MOTS-40 camera, shown in figure 5.5,
utilizes an f/5.0, 40-inch (1-meter) focal-
length lens system previously used in the
K-22 aerial reconnaissance cameras. The

camera, equatorially mounted and sidereally
driven, provides images of tenth-magnitude
stars with exposures of 35 seconds on Kodak
spectroscopic glass plates. The original de-
sign of the plateholder provided an ll-degree
by 14-degree field of view on 8- by 10-inch
plates 0.060 inch thick. (A 24-inch (610-
mm) focal length camera was also built, but
had little use. It was designated the MOTS-
24.)

In this original form, the camera was in-
stalled at each MINITRACK site for the pur-
pose of calibrating the electronic tracking
equipment. An airplane carrying a trans-
mitter and a xenon lamp that flashed in a
time-coded sequence flew through the track-
ing beam of the antennas on a clear night.
The light was photographed against the stel-
lar background by comparing the positions
of the flashing light relati_ce to the star back-
ground with positions determined by the elec-
tronic tracking system to obtain a calibration.
Since the accuracy of the MINITRACK sys-
tern is approximately 20", a camera system
with an accuracy of about 2" was deemed
sufficiently accurate for calibration (Harris
et al., 1963).

In May 1960, the cameras were modified
for the purpose of tracking the brighter
satellites (sunlight-illuminated). By 12
August 1960, the launch date of the ECHO
balloon-satellite, the new MOTS system was

ready to provide useful data on the positions
of the satellite.
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FIGURE 5.5.--The MOTS-40 astrographic camera.

To adapt the camera for tracking, a sole-

noid assembly was attached to it, and a spe-
cial plateholder was designed to allow lateral

motion of the plate when pushed by the
solenoid. By means of an electronic circuit,
the heart of which is a one-shot multivi-

brator, a time-coded pulse was taken from a

digital clock, activating the solenoid and

moving the spring-loaded photographic plate

approximately 0.5 mm for the duration of

the pulse. The time code was thus inscribed

to identify breaks in the trail of the passing

source. By maintaining the solenoid-pulse

duration at 30 per cent or less of the timing

interval between successive pulses, two
images of each star were formed which were

easily identifiable. By measuring the posi-

tions of the breaks in the trial with respect

to the star background, the position of the

source at the time of each break in its trail
could be determined.

The sidereal drive is started by applying a
precise 60-cycle signal to a reversible, 1-rpm

synchronous motor. The 60-cycle frequency

standard supplying 120 volts to the motor is
accurate to ± 1 × 10 6 Hz, and the motor will

operate at the proper frequency with voltages
as low as 90 volts. The motion is transmitted

through the gear train, terminating at a

worm gear. This worm gear, rotating at one

revolution every 89.753 seconds, in turn

meshes with a gear sector of 27 degrees.
This sector was manufactured on the basis

of 2-_ teeth per degree. Thus, in 24 hours

of tracking (assuming a full 360-degree

gear), the camera lags behind the stars by

1.46 seconds, resulting in a delay of 0'.'9125

per hour for stars at the celestial equator.
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Since exposure times are generally limited to
less than 2 minutes (35 seconds for a satellite
such as GEOS 1 or GEOS 2), the error intro-
duced is no more than 0':03.

The above description assumes the perfect
meshing of perfect gears, which does not
occur in the MOTS camera. Analysis of the

drive system reveals that at all stations a
periodic oscillation of the order of 90 seconds
exists in the drive. The peak amplitudes in
right ascension vary between _+2" and _+4"
at the equator for the camera systems tested.

The effect of this oscillation must be con-

sidered in view of the procedure employed in
photographing a satellite. For a flashing sat-
ellite such as GEOS 1 or GEOS 2, the exposure
time is limited to 35 seconds, beginning 5 sec-
onds after the exposure starts. Differences in
results are obtained for the flashing light

positions when the exposure begins at differ-
ent points in the drive cycle. For the worst-
case condition, the beginning and end flash
points exhibit the maximum error of _+2".
For some stations tested, this value may be as
much as ± 4" or at little as _ 1".

Operations on passive satellites such as
PAGEOS require exposures of 60 to 120
seconds and cover more closely the full drive
cycle : They thereby tend to provide an aver-
age displacement close to 0" for star images.
For the broken trail of the satellite, the dis-
placements will approximately equal the
error introduced by the cyclic nature of the
grear train and result in errors of 0" to 3" for
the average camera.

As indicated previously, the original plate-
holder provided an ll-degree by 14-degree
field of view on the 8 × 10 inch (14-cm by
25-cm) glass plates. In preparation for

photographing the GEOS satellites, a new
modification was made to lay the plate

emulsion against the focal plane of the
camera. Accordingly, the new field of view
recorded onto the plate was changed to a
10-degree circle. Also during the operation,
a set of four fiducial marks was photographed
onto the plate to aid in reduction.

Calibration of MOTS Cameras (Soren W.
Henriksen).--Various methods have been

used for calibrating the MOTS cameras.

When the camera was used for calibrating
PRIME MINITRACK, the astrometric
method was used (ch. 1). When the camera
was used for photographing satellites, either
the astrometric method or the photogram-
metric method was used (ch. 7). Bothmeth-
ods were reasonably similar to those used by
the other NGSP participants. A GSFC docu-
ment (X-514-71-19, 1971) describes the
methods in detail and compares their useful-
ness for NASA's purposes.

5.2.2.2 PRIME MINITRACK
(P. Schmidt)

PRIME MINITRACK is an interferometer

(Mengel, 1956 ; Watkins, 1969) that provides
direction cosines describing the position of a
beacon relative to a given tracking station.
The beacon transmits at a nominal 136 MHz.

No ranging information is available, and at
present no attempt is made to utilize the
available one-way Doppler frequency for cal-
culation of range-rate. The relationships
between direction cosines and the conven-

tional definitions of azimuth and elevation
are given in figure 5.6. The calculated direc-

tion cosines do not provide a measure of
either elevation angle of arrival or elevation
of the spacecraft but rather an elevation
angle between the two which, to a first order,
is the angle of arrival corrected for tropo-
spheric refraction.

MINITRACK OBSERVATIONS

ZENITH I ( =coso ) ZENITH

_N

J

C "_j "'i

_E "E

EQUATORIAL TRACKING MODE POLAR TRACKING MODE

(LONG REAM ORIENTED N - $) (LONG BEAM ORIENTED E - W)

_, I - DEPENDENT UPON LONG BEAM ONLY A I - DEPENDENT UPON LONG BEAM & REFRACTION

D. m • DEPENDENT UPON LONG BEAM & REFRACTION A m - DEPENDENT UPON LONG BEAM ONLY

FIGURE 5.6.--Dimensions of fine beam of 136-MHz

MINITRACK antenna array.
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Typical resolution of the MINITRACK

system is 0.1 mrad (20"). Figure 5.7 shows

the layout of the antennas and figure 5.8

shows the internal workings of the system.

The method by which phase differences are

converted to direction is described by

Watkins (1969) as follows.

The electronics of the MINITRACK system
divides the 360 electrical-degree phase-

measurement into 1000 parts of 0.36 elec-
trical degrees each. This measurement

represents the upper precision limit of the
equipment. If it is assumed that the fine-

beam baseline is approximately 100 meters

[see figure 5.9], the resulting accuracy in

terms of space angle can be estimated

approximately by the following procedure.

The direction cosine 1 (considering the

east-west baseline) is related to the elec-

trical phase angle by the equation

d n_, _
l=c°scz= B- B-2_ B

SATELLITE WITH BEACON

/" _ _t

FREQUENCY
STANDARD

FIGuP_ 5.8.--Prime MINITRACK structure.

E.I

where

= electrical angle in radians
_=signal wavelength _2.2 meters at

136.555 MHz
B= antenna separation or base-line length

100 meters
d = phase difference in linear measure
n=phase difference in number of wave-

lengths of signal

_¢4_/_ _'_ -- f XHZENTAA_CeeUelLo_ UOTSCALm_ATIONCA_E_

U(TeR=Z.,_O Feint e_e-

FIGURE 5.7.--Prime MINITRACK antenna layout.

If _ is measured in degrees, the equation
becomes

l=cosa= _ 2.2
360 ° 100

To find the error in l and a,

2.2
al = - sina±a = _-±_

2.2
= 3.-6 × 10-' ±4

Calibration of PRIME MINITRACK

(S_ren W. Henriksen) .--In the very early

days of PRIME MINITRACK, J. A. O'Keefe

suggested that the system might be cali-

brated in the same way that camera-type

tracking systems are calibrated--by using

celestial objects of known direction to estab-

lish the direction reference system of the

system. Of course, using the visible stars

as a reference was out of the question, but a

small number of radio stars (also called radio

sources or radio objects) had recently been
discovered and their directions measured.
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A few minor points may be mentioned.
First, the flashing light is considerably closer
to the observer than a satellite is. The cor-

rection to be made for parallactic refraction
is correspondingly greater. Second, the radio
beacon used for calibration is much closer to

tLe antenna arrays than a radio beacon in a
satellite and the radiation pattern close to

the arrays is different from the pattern at
great distances. This circumstance must be
considered in the calibration. Third, the

measured phase-difference depends not only
on the geometric arrangement of the an-
tennas, but also on the length and tempera-
ture of the connecting cables, on the condi-
tion of the receiver circuits, and on other
factors. A calibration constant therefore

does not really remain constant but changes
slightly with temperature and time. The
correction for temperature of the cables is
given by Watkins (1969). The corrections
for other changes with time have not been

fully determined.

If the data that are now available on radio
stars had been available then and if the Sun

had been a little quieter, the method prob-
ably would have worked. As it was, the
method had to be given up, with recourse
taken to a more expensive and cumbersome
method that used a radio transmitter (bea-

con) carried about the antenna field in an air-
plane (see, e.g., Kahn, 1957; Harris et al.,
1963 ; Berbert et al., 1963.)

The direction of the beacon is found by

photographing a flashing light attached near
the beacon against a stellar background. The
same technique is used in reducing the plates
and data as in reducing the photography of
artificial satellites. The same camera, the

MOTS, is in fact used for both calibration
and satellite tracking. It is located at the
intersection of the fine-array base lines (see

above), this point being assumed to be the
electrical center of the arrays. The differ-
ences between the direction cosines found

photographically and the direction cosines
found by PRIME MINITRACK constitute
the calibration constants for that MINI-
TRACK.

5.2.2.3 Goddard Range and Range Rate
System (GRARR)
(P. Schmidt et al.)

GRARR (also known as GRRR, GRR, or

Gr/R) measures phase and rate of change
of phase. These quantities are easily con-
verted into distance and rate of change of
distance. Figure 5.10 is a block diagram
showing how GRARR functions. (The speci-
fications for GRARR are given in table 5.4.)
A carrier is modulated by frequencies cor-

responding to wavelengths of from 1.874×
l0 s meters to about 3000 meters. The modu-
lated wave is sent to a transponder (fig. 5.11)

in the satellite, where it is shifted in fre-
quency (but not in phase) and sent back to
the receiving station. There, the carrier is
demodulated and the phases of the modulat-

ing waves are compared with the phases of
the transmitted waves. The phase differences

translate directly into distances :

c A¢_ (5.1)
d/=-f 2
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FIGURE 5.10.--Generalized diagram of GRARR.

where dr is the distance corresponding to fre-
quency f at which phase difference ±_ is
measured.

The frequency shift Af caused by motion
of the transponder with respect to the re-
ceiver on the ground is measured on the
carrier frequency. Operation of the system
in terms of frequency-measuring is shown in
figure 5.12.

The range measurement is based on the
measured propagation delay as evidenced by
the zero crossings of the phase-delayed rang-
ing tone. As usual, the assumption is made
that the signal time-delay or phase shift is
equal for transmission from the ground to
the vehicle and from the vehicle back to the

ground. The total two-way time-delay is
equal to the total number of full cycles that
the lowest ranging tone is shifted plus the
relative incremental phase-shift of the tone

as measured at the ground. This measured
time-delay includes, of course, such delays as
those in the cable or wave guide as well as
the time-delay in the transponder. Thus, the
one-way range measurement is given by

cF N T T Tl, lkmR= + _ (5.2)
where R is the range, c is the speed of light
equal to 2.997925×100 km/sec, N is the
number of full cycles of phase shift at the
lowest sidetone frequency Ft. (usually, FL=
8 Hz), Ta is the incremental time-difference
as measured at the ground receiver, Tr is the
delay in the transponder, and TD is the delay
in ground instrumentation.

The ambiguity represented by N/FL can
be resolved by computing an orbit. The time
associated with this range, Universal Time

Coordinated (UTC), is the measured time
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FIGURE 5.11.--Transponder for GRARR.

corrected for propagation time. The time is
presented as day of year, hours, minutes, and
seconds to the nearest microsecond.

In the GRARR system, there is a raw-data
frame time, T_, followed by four frames of

data at a rate Tree. The appropriate time for
subsequent frames is therefore given by

T,_= TF+ kTm¢ sec (5.3)

where To is the frame time, T_. is the basic
frame time, TDR is the data rate, and k=

0,1,2,3,
It should be noted that the time To is

associated with the positive-going zero cross-
ing of the lowest-ranging frequency just
prior to an incremental time-delay Tn. The

time relationships are indicated in figure 5.13.
The time Ts corresponds to the time that
all transmitted range-tones pass upward
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FIGURE 5.12.--Doppler tracking by GRARR.
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FIGURE 5.13.--Timing in GRARR.

AT is the time required to count AN cycles
in the form of number of cycles of a
reference frequency

f_ is the transmitter frequency (both S-
band and VHF are used)

fd is the average Doppler frequency shift

The time associated with the range rate is
UTC (ground measurement time) corrected
for propagation delay and referred to the
center of the count interval. Note that the

Doppler count AT starts at Ts (figure 5.13).
The time, TRM, is therefore given by

T T AT (5.6)

through zero. The ground time of measure-
ment, which is not influenced by ambiguity,
is given by

where AT is the measured Doppler interval
required to accumulate AN cycles of phase
change from the carrier.

TIcM----Ts+ Ta+ Tw (5.4)

where T,¢.,, is the range time tag (ground
measurement time) and Ts is the frame time,
(T,,. is the time increment corresponding to
the difference between the transmitted and

received sidetone frequencies.)
For tracking data recorded after Novem-

ber 1968, correction for propagation time
has been made at the station.

GRARR Range Rate.--The overall elec-
tronics of the GRARR system are such that
it is equivalent to having a coherent trans-
ponder with a turnaround constant of k=l

(see fig. 5.12). The formula for i'd is

where

c

h
_N

- -f_c km/sec

AN--- +2L/c=f,l+2ft
(5.5)

is the average range-rate

equals 2.997925 x 10 _ km/sec
is the inserted bias

represents a fixed number of counted
cycles

Calibration and Evaluation of GRARR

(Soren W. Henriksen).--GZARR is calibrated

in the same way as other phase-measuring
types of distance-measuring equipment. The
transponder is mounted on, but well off
from, a high tower at a suitable surveyed
distance from the tracking equipment. The
distance to the transponder is measured
by the tracking system and compared with
the distance already known from survey. The
difference between the two gives the calibra-
tion constants that concern time-distance

properties of the system. Determination of
the other constants is more difficult and

problematical.
The equation giving the correction to the

measured range r is, as a function of the cali-
bration constants (aJ,

dr d'_r a_ dr
Ar = al + a_r + -- ± -_-- seaa_ dt ' a, dt _ + r dt + a6

where _ is the zenith distance.
Using data from measurements made on

30 passes of GEOS-1 by various camera sys-
tems and the GRARR, Lerch et al. (1969)
evaluated the performance of the GRARR at

Rosman, North Carolina. The results for the
A-channel of the system were (table 5.4)
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aa=±10.3 meters and _,=±0.004 second,
where _a and _t are the standard deviations
in range and time, respectively.

The equation assumed for the range was

dR
RrRuE = RoDs + c_+ d_--ct + 3 sec _ + b - 9.7

where b is a constant and _, and _t are con-
stant or slowly changing over long periods.
The data from cameras were used to estab-
lish the orbit from which distances were
taken to compare with the GRARR data.

5.2.2.4 GSFC Laser DME
(T. S. Johnson, NASA/GSFC)

The instrumentation may be divided into
three major subsystems : (1) tracking ped-
estal and receiver optics, (2) laser trans-
mitter, and (3) ranging and data-control
subsystem. These are connected to form a
digitally controlled optical radar system cap-
able of tracking reflecting satellites (fig.
5.14).

The laser transmitter and receiver detector

are mounted on a modified Nike-Ajax radar
pedestal. All the original mechanical and
electronic equipment designed especially for
radar functions has been removed. The ele-

vation axis was modified to allow mounting
the laser transmitter and a 400-mm-aperture

receiving telescope. A 32-power viewfinder

• \\P.OTOO,OOE
START

6943 A FILTER (lO A WIDTH)

l_ _I_ _Au \_.I_'-1 ",_

FIGURE 5.14.--Mobile laser system.

used for visual observation of the satellites

was mounted parallel to the laser and the
receiving telescope on the top portion of the
elevation axis. The bottom of the elevation

axis carried the counterweight assembly and
affords additional mounting surface for other
instrumentation. One end of the elevation

axis has been modified to permit mounting a
17-bit optical encoder: On the azimuth
axis, the slip-ring assembly was used to
mount the 17-bit azimuth encoder and a co-

axial, rotary water-joint to supply cooling
water to the laser transmitter.

A special-purpose computer was modified

for use in controlling the tracking pedestal.
This computer selects various angular posi-
tions as determined from its control and

compares them with the actual position of
the azimuth and elevation shaft encoders,
generating appropriate servo-error signals
to drive the pedestal to the correct posi-
tion. The primary positional input to the
programmer is through a specially prepared
tape containing the predicted azimuth and
elevation and range for each second of time.
The pedestal may also be positioned manu-
ally. The programmer also serves as the
data-recording terminal, recording time,
angles, station-housekeeping information,
and the measured range.

In the programmed mode of operation, the

tracking precision of the pedestal can be
monitored by recording the programmer

error output, which is the actual difference
between the position of the pedestal as de-
termined by the encoders and the com-

mand position generated by the programmer.
The dynamic positional precision of the
tracking pedestal has been found to be

±0.005 degree peak-to-peak in both axes
with typical drive tapes. On the other hand,
the tracking accuracy of the system with

respect to actual satellite position is affected
by the encoder alignment, deflections, bore-

sight precision, and the accuracy of the pre-
dicted drive tapes for any pass.

The laser transmitter-system includes a
water-cooled ruby laser, a Q-switching mech-
anism, output-beam-sampling unit, and 10-
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power collimating optics with a boresight
viewer, all mounted on an adjustable base
plate.

The water-cooled ruby laser contains a

linear xenon flashlamp and a ruby _/8-inch
(9.4 ram) in diameter by 5-½ inches (140
ram) long positioned at the pseudo-confocal
points of a circular, aluminum-coated, Pyrex
reflector 4 inches (100 mm) in diameter. The
ruby rod, sealed by O-rings, and the flash-
lamp are contained within a single Pyrex
water-jacket. The Q-switching mechanism
at the rear of the laser contains a totally-
reflecting prism rotated at 24 000 rpm and
an optical cell containing a cryptocyanine-
and-methanol solution. A magnetic pickup is
used to sense the position of the rotating
prism with respect to the ruby axis.

An output-beam sampling-unit containing

a quartz pellicle oriented at Brewster's angle
with respect to the output of the ruby is

mounted at the front of the laser. With this,
a small fraction of the ruby's output is re-
flected onto an FWll4A biplaner photodiode,
whose output is used to start the range meas-
urement, and which serves as a remote moni-

tor of the laser output. A 10-power, simple
Galilean optical system then reduces the
divergence of the laser beam from approxi-
mately 10 mrad to a measured 1.2 mrad.

The receiver is based on a 16-inch (400-
mm)-aperture Cassegrainian telescope with
with an effective focal length of 300 inches
(7.6 m). The detector assembly is in a
light-tight housing bolted on the rear of

the telescope with an adjustable iris located
at the focal point to determine the field
of view. An interference-filter holder and

photomultiplier housing follow the adjustable
iris. An AMPEREX 56TVP photomultiplier
is used as the detector. A reflex viewer with a
flip-in mirror precedes the adjustable iris for
boresighting and acquisition of the satellite
during twilight conditions.

The photomultiplier housing contains an
automatic threshold-adjusting unit. Its out-
put is used to terminate the range measure-
ment. This device senses the maximum
amplitude of both the transmitted pulse and
the received pulse, and adjusts the triggering

threshold to one-half that amplitude. If the
pulses are symmetrical, thus will result in

a lens jitter throughout the dynamic range of
the unit. Data taken during routine opera-
tions with this unit and in postflight pulse-
height correction--much less correction is
needed since the half-maximum unit com-
pensates within its dynamic range for varia-

tion in pulse height--have consistently been
better than 40 cm and occasionally have been
as low as 26 cm, even with relatively long
durations of transmitter pulse (fig. 5.15).

The ranging and data-control system con-
trols the operation of the laser transmitter
and detector as well as measures and records

the range. Ranging measurements are made
using a timer with a minimum reading of
1 nsec and with appropriate starting and
stopping pulses from the laser beam-sam-
pling unit and the detector avalanche cir-

cuit. Information contained in the timing
unit is stored and transferred to the output
tape of the programmer before the timer is
reset to zero.

The rotating, Q-switching, TIR prism can-
not maintain exact synchronism with on-time
pulse, and the laser may therefore fire several
milliseconds after the command time. An

uncertainty of this magnitude in the time of
observation is not compatible with the accu-
racy requirements, so a delay-time counter
was incorporated in the data-control unit to

I LASER POWER

SUPPLY _ LASER XMTR _

I_SER1 HEAO I
COOLER 'CONTROL t__J

].....__NOUNTSHAFTI
CENTRALCOMPUTERI_ ENCODERSI
PRED,CT,ON.CONTROL/ I
ANDOATARECORDINGIm.,,NOUNTSERVOI
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_u_l t TRACKING ANGLE CORRECTION
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FIGURE 5.15.--Laser system.
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measure accurately the time of firing with

respect to on-time. This counter is started
by the on-time pulse and stopped by a signal

from the laser beam-sampling unit, giving
the absolute time at which the laser fires to

within 10 _sec. The output of the delay

counter is recorded on the output tape as
indicated above.

The characteristics of the mobile laser sys-
tems are summarized in table 5.5.

Calibration of Laser DME.mPulses are

fired at a target a known distance of 2 to 4

km from each laser, and the round-trip time
is measured. The delays in the systems are

computed from

2DA
/k_i "_ _Ri -- --

C

where At_ is the delay computed from the i th
calibration point, tR_ is the ith measured
round-trip time to the target, D is the dis-
tance between the laser and the target, and c
is the speed of light.

A = (2.753/10000) (288.16/29.92)(P/T) + 1.0

where P is the atmospheric pressure in milli-
bars and T is the local temperature in Kelvin,
or

A = 1.0002919

when the pressure, temperature, or both are
not known.

All At_ that are negative or greater than
200 × 10 -9 sec are rejected as erroneous. The
At_ are averaged and the resultant value is
used as the calibration correction.

N

At = __At_/N
i=1

where N is the number of measurements.

The laser, however, provides an additional
piece of information with each measurement •

the height of the received pulse. The received
energy is a function of the pulse height and
At_ is fitted to a function of the measured
pulse heights.

The function fitted to the calibration data
is half of a Gaussian function.

and

f(p_) - _e _
V 2,ra"-

At, = 8o + M (P_)

where 8 and 8o are constants, p is the return-
pulse height, and _ is the pulse height where
At is a maximum.

The maximum error in time is assumed to

be at zero pulse-height; thus, _ = 0.
In order to set the spread of the function,

the full bell is assumed to be centered at zero.

Since only positive values are possible for
pulse-height, the estimate of _ uses an
imaginary point (-p, At) corresponding to
each point (p, At). Thus, _ is computed

_= _p_-/2N

where N is the original number of points.
The model for the curve is

Y,=So+8f(P_) +_,

where Y, is the error in time.
Points that are 2.645_ from the resulting

function are deleted.

5.3 DATA

The results given in section 5.6 rest basi-
cally on three sets of data corresponding to
the three different major sets of solutions:
(1) the Goddard Earth Model (GEM) series

(sec. 5.6.1.6), (2) Goddard '73 (sec. 5.6.1.2),
and (3) the detailed global geoid (sec. 5.6.2).
In the first solution the largest set of data is
used for determining GEM 5 and GEM 6.

This set is summarized in section 5.3.1, and
the data include average gravity anomalies,
which were used in deriving GEM 6, but not
GEM 5.

The solution for Goddard '73 used only
observations from camera and laser systems
and the gravitational field of GEM 1. The
GEM 1 field is not given here (see Lerch
et al., GSFC X-533-72). This set is sum-
marized in section 5.3.2.
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The detailed global geoid of Vincent and
Marsh used GEM 4 as a basis for the gravi-
tational potential (see Lerch et al., NASA
X-592-72-476, 1972) and average gravity
anomalies from the Aeronautical Chart and

Information Center [now known as the De-
fense Mapping Agency, Aerospace Center
(DMA/AC)] rather than from Ohio State
University, which were used for GEM 6.
The sources are not independent, however,
and most of the values in the two sets come

from the same original data. Because of the
volume of data involved, only the sources are
given in section 5.3.3: The data themselves
can be obtained from GSFC.

In accordance with the scheme adopted for
this report, the procedures used for pre-
processing the various data are described in
section 5.3.4. Although GSFC also handled
data from TRANET, C-band radar and

SECOR (see ch. 3) in its work, it usually
accepted these after they had been preproc-
essed by the observing group. The only ex-
ception to this rule is the preprocessing
applied by Berbert's group (sec. 5.5) as part
of the intercomparison. For the results given
in section 5.6, the only preprocessing done by
GSFC was applied to data from MOTS

cameras, PRIME MINITRACK (sec.
5.3.4.2), GRARR (sec. 5.3.4.3), and NASA's
laser DME (sec. 5.3.4.4).

5.3.1 Data Used for GEM 5 and GEM 6

GEM 5 has been computed from observa-
tions on approximately 350 7-day-long arcs
by camera, electronic, and laser systems on
27 satellites close to the earth. In addition,
data over approximately 100 one- and two-
day arcs of GEOS were employed to improve
the station coordinates. The tracking systems
providing observational data included:
Baker-Nunn cameras (ch. 9), MINITRACK,
MOTS cameras, laser DME, GRARR sys-
tems, C-band radar systems (ch. 6), and
TRANET (Doppler) systems (chs. 2 and 3).
GEM 6 has been computed from a combina-
tion of GEM 5 and surface gravimetric data
and from simultaneous observation by the
BC 4 (chap. 7), laser DME, and MOTS. The

gravimetric data consist of a global collection
of 555- by 555-km, equal-area anomalies com-
puted by Rapp (1972a). Simultaneous ob-
servations from the North American MOTS

and laser systems and from the BC-4 sta-
tions (ch. 7) have been processed by means
of geometric theory and the result included
in the solution for GEM 6.

The data used in the solutions are described

in tables 5.6 through 5.16. In addition, two
figures are used to illustrate certain proper-
ties of the data. The station locations are in

figure 5.16, and base lines to BC-4 stations in
figure 5.17. The stations involved are listed in
table 5.17. Their coordinates on local datums

are given in chapter 1 (table 1.26).

5.3.2 Data Used for Goddard '73

Over 64 000 observations from camera

systems and 7000 observations of ranges by
laser DME on the satellites GEOS 1,
GEOS 2, BE-C, D1-C, and D1-D have been
used in combination to determine the loca-

tions of 75 tracking stations distributed
globally. Dynamical methods were used.

One-hundred-and-fifty arcs 2 days in length
were used. This solution is called Goddard

'73, or GSFC '73, and is given in section
5.6.2.

Table 5.18 presents the number of observa-
tions by station used in Goddard '73. Sta-
tions which were collocated and forced to

adjust in parallel are indicated with brackets.
Figure 5.18 shows the distribution of sta-
tions involved. The coordinates (on local
datums) of these stations are given in
chapter 1 (table 1.26). The gravitational
field used was GEM 1 (Lerch et al., 1972b),

augmented by using coefficients of C,_, S, _
of orders 12, 13, and 14 from the Smithso-
nian Astrophysical Observatory's (SAO's)
1969 Standard Earth II Model (Gaposchkin
and Lambeck, 1970).

5.3.3 Data Used for Detailed Global Geoid
(S. Vincent and J. Marsh)

The detailed global geoid described in sec-
tion 5.6.3 was derived from two kinds of
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data: (1) the coefficients {C,_, S,_} of GEM 4

(Lerch et al., 1972c) and (2) mean gravity
anomalies from a number of different

sources.

5.3.3.1 Data From GEM 4

GEM 4 is a set of tracking-station coor-
dinates and a set of coefficients {C_, ST} that
are derived from about 400 000 observations

on 27 satellites and from 1707 5-degree by 5-
degree mean gravity anomalies. The coeffi-
cients -_C,, S_ are given in table 5.19.

5.3.3.2 Surface Data Used for Detailed Global
Geoid

A compilation of 23 947 records of mean,
free-air, gravity-anomaly values of 1-degree
by 1-degree were obtained from DMA/AC.

This gravity collection was augmented with
data from the worldwide 1-degree by 1-degree
collection of the National Oceanic and Atmos-

pheric Agency (NOAA), from Hawaii Insti-
tute of Geophysics and from many other
sources. Some of the data were in the form of

free-air anomalies at points, Bouguer anoma-
lies, or free-air-gravity contour maps. The
free-air anomalies at points were compiled
into average 1-degree by 1-degree values.
Bouguer anomalies were first converted to
free-air anomalies before averaging.

In general, the DMA/AC and Hawaii 1-
degree by 1-degree mean free-air anomalies
were used as a base in the computations of
the detailed geoid. Whenever possible, local
data collected by local agencies were used in
preference to data supplied by others. When
these data were not sufficient, then DMA/AC
or Hawaii data were used when available to

fill in the voids. Data for specific regions
were as follows.

Canadian data were obtained from the

following sources :
(1) Data were obtained from D. Nagy of

the Gravity Division, Earth Physics Branch,
Department of Energy, Ottawa, Ontario, in
the form of 1-degree by 2-degree means,
which were converted into 1-degree by 1-de-

gree means by assigning equal value to each
of the two squares.

(2) Canadian oceanographic data in the
North Atlantic were obtained from the

Atlantic Oceanographic Laboratory, Bedford
Institute.

(3) Data from R. H. Rapp of Ohio State
University were in the form of 1-degree by
1-degree mean anomalies, which were com-
piled from point gravity data.

Sources of data for the North Atlantic,

United States, and Northeast Pacific were as
follows :

(1) Data for the United States were in
the form of 1-degree by 1-degree values
(Strange and Wollard, 1964).

(2) Continental shelf (east coast) point-
data were obtained from NOAA, and were

reduced to 1-degree by 1-degree values.
(3) Continental shelf point-station data

from the U.S. east coast and U.S. Gulf coast

were obtained from DMA/AC.
(4) Point anomalies and 1-degree by

1-degree data were provided for the North
Atlantic and the Gulf coast. (Bowin, unpub-
lished, 1971; Talwani, unpublished, 1971.)

(5) North Atlantic data were provided
in 1-degree by 1-degree form (Strang Van
Heese, unpublished, 1970).

(6) Data in the North Atlantic were pro-
vided by the Centre National pour l'Exploita-
tion de Oceans (CNEYO), Paris, France.

(7) Pacific Ocean data offshore from
Washington and Oregon were obtained from
NOAA.

(8) A complete SEAMAP data-series in
the northeast Pacific was obtained from
NOAA.

(9) Hawaiian data were provided by the
Hawaii Institute of Geophysics.

Data sources for Eurasia, Africa, and
Australia were as follows:

(1) Data on eastern Europe were pro-
vided in the form of 1-degree by 1-degree

means, 20-minute by 12-minute means, 10-
minute by 6-minute means, and 30-minute by
30-minute means (Arnold, 1964).

(2) A collection of 1-degree by 1-degree
mean gravity data was provided for Europe
(TengstrSm, unpublished, 1965).
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(3) Point anomalies and contour maps
furnished data in the Mediterranean (Bowin,
unpublished, 1971; Morelli, unpublished,

1970).
(4) Data in 1-degree by 1-degree form

were collected in Eurasia and Africa by
ACIC and the Hawaii Institute of Geo-

physics.
(5) Point anomaly data in Kenya (1971)

and Tanzania (1968) were obtained from the
Department of Geophysics and Planetary
Physics, University of Newcastle Upon Tyne,

England.
(6) Mean values in 1-degree by 1-degree

form for Australia were obtained by Mather.
Miscellaneous data were obtained from the

following sources :
(1) Mean values of 1-degree by 1-degree

were obtained in Mexico and South America

(Wollard, unpublished, 1968).
(2) Japanese Sea data in the areas of

seamounts and trenches were supplied by
Tomoda, University of Tokyo.

(3) Several contour maps in Venezuela
were obtained from Dutch oil companies.

5.3.3.3 Constants

The values used were :

Wo= 6263687.5 kgal m
re= 978032.2 mgal
ae= 6378.142 km

1/f= 298.255
GM= 3.986009 × l0 s km:'/sec 2

5.3.4 Data Preprocessing
(Soren W. Henriksen)

To avoid introducing observables such as
temperature and pressure into the observa-
tion equations, the effects of these observa-

bles on distance, direction, and frequency are
computed before setting up the observation
equations and the effects are then removed

from the observations. This preliminary
treatment of observations is called preproces-
sing. GSFC is concerned with preprocessing
of four kinds of data: those from (1) MOTS
cameras, (2) PRIME MINITRACK, (3)

laser DME, and (4) GRARR (sec. 5.2.2).
Although the NASA center also uses data
from other instruments, it accepts such data
as they are preprocessed by the observing
organization.

5.3.4.1 Preprocessing of Data from the MOTS
Cameras

The approximate procedure is outlined in
chapters 1 and 7. The actual procedure
differs in some details, however, and these
details have been changed from time to time
so that actually three different procedures
have been used for MINITRACK, GEOS 1,
and GEOS 2. The general procedure is as
follows:

(1) Measure the photograph to get coor-
dinates z_, yi of the stellar images and x_j, Y,s
of the satellite images.

(2) Correct the x_, yi and z,i, y,j for er-
rors in the measuring engine.

(3) Identify the stars, find their coordi-
nates m, 8_and bring these up to the time T
of observation.

(4) Using {ai, _} and {x, y_}, compute
corrections (in terms of parameters {ak,,,}).

(5) Using {x,j, y,j} and {ak,,,}, compute
{_, _,j},

We will consider these steps as individual
stages :

(1) Measurement stage : About 50 images
of stars of magnitudes 7_. 5 to 92 0 are meas-
ured. Each image is measured five times and
the average of the four closest is taken. Satel-

lite images {x_i, y,j} and the principal point
or fiducial marks are also measured to give
{x,,j, Y,,i}.

(2) Corrections for errors in measuring
engine: Derivation of the correction is cov-

ered in chapter 1, section 3. The result is a
new set {x{, y{} of coordinates.

(3) Determination of m, _ of stars: The
stars are identified, their coordinates located
in the SAO Star Catalog (ch. 1), and the
coordinates are brought up to the time of
observation by the usual procedure: i.e.,
correct for proper motion (eq. (5.16) to
(5.18)) ; apply precession (eq. (5.19)) ; ap-
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ply nutation (eq. (5.20) to (5.22)); and
correct for annual and diurnal aberration

(eq. (5.23) and (5.24)). The time T is UTC.
The result is {si, 8_}.

(4) Correction for nonideality of camera
and atmosphere :

(a) The MINITRACK version is as fol-
lows: Compute from xo, yo the approximate
coordinates so, 8o of the plate center. Com-
pute from (x, y_}, {s_, 8_},and so, 8othe stand-
ard coordinates {_, 7_} and {_o, 7o} (eq.
(5.10)). Then, using the equations

_= _al_zx_y z k= 1 to K
k, l

_ a.:_._x_y_ l= 1 to L
k, l

(5.7)

compute, by least squares, the values of the

(a_,, a._,kz}. Some of the a_._, a,,__._have defined
values as follows: aw_,=O, a_o_=0, a_..,.o=O,
a,_,,=O, a_k_=O for (i+]) _3. The coefficients
a_,,,,and a__ooare corrections to the approxi-
mate plate center coordinates _o, 70. Refrac-
tion is taken care of by the coefficients at
least insofar as it varies quadratically from
the plate center.

(b) The GEOS 1 version is as follows:
The equations used in the MINITRACK ver-
sion (eq. (5.7)) are also used in the GEOS 1
version. However, since the equations are
derived from a projective geometry (see eq.
(5.8) and (5.9)), the coefficients are not in-
dependent, and the conditions on the coeffi-
cients are more complicated. They are given
by setting the following coefficients equal to

zero: a_o_, a_..,1,a_0_, a_4_, a123, ato5, a2ol, 821,_,,

a,_o, a._, a__, a._,,_0,and all a_kt for which
k=/>5. Also,' there are relations between

the coefficients, and these are given by equa-
tions (5.11) through (5.14). (Note that 0
enters nonlinearly.) The rest of the pro-
cedure is the same as for the MINITRACK
version except that instead of using standard
coordinates _, _, the projected coordinates
_, _ are used. They are derived from

_= (afl+a,m+a_n)/D (5.8)

_= (b_l+b._m+bon)/D (5.9)

where

D - c_l÷ c,,_m+ c_n

The a_, b_, and c_are constants computed from
the right ascension and declination using
equations (5.25) and (5.26), and the l, m,
and n are direction cosines of a particular
image computed from equation (5.27). Cor-

rections for refraction are first computed by
using Garfinkel's (1944) formula. They are
then adjusted, along with the {a_z}, during
the adjustment of equation (5.7) (see eqs.
(5.28) to (5.31)).

(c) The GEOS 2 version is similar to
the GEOS 1 version, with the following dif-
ferences: relation (5.13) is not used at all,
with equation (5.15) being used instead ; and
the correction for refraction is not changed
during adjustment.

(5) Computation of (s_, 8_), the satellite

coordinates : These coordinates are computed
from the inverse of equation (5.10) after
refraction has been corrected for. Then

equations (5.18) to (5.22) are applied.
(6) Equations: For plate constants and

other constants, Iet _, y be measured coordi-

nates of image and ._, 7 be standard coordi-
nates of image.

_= cot 8 sin (S-So)/D
7= [cos 8o-COt _ sin 8ocos (S-So)]/D

(5.10)

where

and

D = sin 8o+ cos 8ocot 8 cos (s- ao)

x_=_-xp_ } (5.11)
Y_=y-y_

±y= y_ (Ko+K_r2+K2r _) (5.12)

(J_r _+J2r _)
(5.13)

dy=-[_sin O-(1 +2_)cos 01

(J_r 2+J_r 4)



NASA/GODDARD SPACE FLIGHT CENTER 317

x----xl + ±x + dx

y= yl+Ay+dy

Ax = xl (Klr 2+ K__r4+ K3r e
Ay= y_ (KY" + K__r4+ K3r 6

1

1
_=_+ (_+_A_) AT

(5.14)

(5.15)

(5.16)

where _. and _ are proper motion in right
ascension and declination and Am and AF_are

where

Ate-- 2_,_ tan 8o AT
A_ = --_ sin 8 cos _ AT /

(5.17)

AT=T+t-To (5.18)

T being the beginning of the nearest Bes-
selian year and t being the fraction of a

tropical year T. The value of t is taken from
the Nautical Almanac for the current year.

During the last half of the year, the value of
t will be negative since the tabulated value of
t refers to the beginning of the next Besselian

year.

The nutation is then applied to the precessed
coordinates ap, _p by the following expres-
sions

8= _p+arcsin (A_ sin ap+A_ cos a, sin ,,,)

sin a= (sin ap cos _-A_ sin _p

+A_ cos _,, cos 89cos _p)/cos
cos a= [cos ap cos Sp-A¢ (sin 8p sin _,,,

+ cos 8pcos ,,, sin ap) ]/cos 8 (5.22)

Annual aberration is set equal to 20':47, and

8= 8' +arcsin [-K cos ® cos _,, (tan _,,,cos 8'
-sin a' sin 8') -Kcos a' sin 8' sin ®]

(5.23a)

_= a'+arcsin [(-K cos a' cos ® cos _,,
-K sin _' sin ® )/cos $] (5.23b)

where _', _' are the coordinates before cor-
rection and c¢,8 are the corrected coordinates.
For diurnal aberration,

8= 8'+arcsin (D sin _ sin h) (5.24)
a= a'+arcsin (D cos h/cos _)

_o= [23'.'04948 + 0.00014 (To- 1950) ] AT

+3':0 × 10-sAT _+ 1'.'7 × 10-s ±T _

O= [20"04255 - 0.000085 (To- 1950) ] AT

-4'.'3 × 10 -_ AT _-4.1 × 10 -s AT 3

z= $o+7.9 × 10-5 AT 2 (5.19)

where To is the epoch of the catalog and AT
is the interval in years from To to the epoch
of observation computed as indicated in the
previous paragraph. The "nutation in longi-
tude" is taken from the "Sun, 196X" column
tables in the current Nautical Almanac. The

true obliquity of the ecliptic (_) is taken
from the 10th column of the same table. The

mean obliquity _ of the ecliptic is found
from

•m= 23.445787-- 1.30125 x 10 -_ AT
- 1.64 x 10 -_° AT 2

The nutation is then determined from

(5.20)

A_=_-_ (5.21)

where the primed and unprimed right ascen-
sions denote the uncorrected and corrected

coordinates, respectively, and i5 is equal to
0'.'319 cos ¢, where _ is the station latitude.

al a2 a31
[A]- b_ b_ b_

Cz C_ C_

--sin K cos K
-cos_ --sink

0 0

co :]o
lcos., 0 sin

--

0
1

- sin_ cos_ 0-]
-cos v sin

0 0

(5.25)

where _, _, and _ are the elements of exterior
orientation of the camera and are determined

from the right ascension and declination of
the star, satellite, or plate center, as may be
required, and
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v= arctan [cos _ sin H (cos _ sin _ cos H

-sin _ cos _)-1]

o,= arcsin [cos $ cos ¢ cos H+sin 3 sin _]

K= arccos [sin , sin _ sin H + cos , cos H]

(5.26)

The direction cosines l, m, and n are com-

puted from the measured and corrected

plate coordinates (x, y}.

(5.27)

where xp, yp are the coordinates of the plate

center and k is approximately the principal
distance.

5.3.4.2 Correction of Stellar Coordinates for

Refraction

Corrections for refraction are applied to

coordinates of each star by Garfinkel's

method (1944). The auxiliary angle _ is

computed from cot 2_=_ocot _o, and 7o is

8.1578 (273/T)1/..,. The coefficients 71, *j:, • •., *j_
are determined from

_z=a

_._.=a(2/3+b)

_=a(2/7+17/11 b+2b 2)

_j_= a (1/14 + 87/77 b f
+ 185/44 b: +5 b_)

e:)= a (1/126 + 70/143 b

+3155/748 b2+815/66 b3+ 14b 4)

where

a=2 d_.(l+d)

b = 2d _o

(5.28)

(5.29)

and where d is a function of the index of

refraction n at the observer :

d= (n2-1)/2 n _ (5.30)

The index of refraction n is dependent on the

pressure Po in millibars, the temperature To

in degrees Kelvin, and the wavelength xo in

microns (_m) of the light observed

n=l+ [(77.34+0.44 x'_)Po/To] ×10 -_ (5.31)

In the plate reduction, xo is assumed to be

0.54 t_m and a and b are constants.

After the satellite's zenith-distance _o has

been found, corrections are applied for at-

mospheric refraction to get the corrected

zenith-distance _.

_ = _o+ _

where ±_ is found by the same procedures

used for correcting stellar coordinates. Since

the satellite is not at infinite distance, t,_

overcorrects for refraction, and the correct

is computed from

where

$=arctan [sin fl/ (cos fl-fR) ]

f,=- (Ro+Ho)/(Ro+H,)

fl--- _-arcsin (nfR sin _1)

Here, Ro is the radius of curvature in the

meridian, Ho is the height of the observer

above mean sea level, H_ is the height of the

satellite above mean sea level, and n is the
index of refraction at the observer.

An additional correction A_ is added when

a flash at time t=, is used, but refraction has

been computed for a neighboring flash at

time t_:

_ = 0.3 x 10 -_ sin A_ cos _ cosec _ _ (t2 - tl )

where A_ is the azimuth of the ray.

5.4 THEORY

To understand the theory used by GSFC in
deriving its results, one must remember that

the primary objective of GSFC has been
keeping track of satellites. Even in geodetic

problems, it has principally relied on the

theory of orbits, and the theory for static

satellite geodesy has been "tacked onto" the

dynamics. This dynamic theory, embodied

in a computer program (now called GEO-

DYNE and used also by NASA at Wallops
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Flight Center and a few other nongovern-
mental groups), is described in section 5.4.1
and was used to derive GEM 5, GEM 6, and
Goddard '73 (See results, sec. 5.6.) Those
modifications made to the theory in deriving
GEM 5 and GEM 6, principally by way of
introducing the equations of geometric satel-
lite geodesy, are given in section 5.4.

Besides the general theory, a number of
theories for more specialized purposes have
been used from time to time. One, embodied
in a program called ROAD, was analytic in
nature (the theory of sec. 5.4.1 depends on
numerical integration). Another, derived by
Murphy and Felsentreger, is also analytic
and handles luni-solar perturbations (sec.
5.4.4), and still another (sec. 5.4.5) describes
analytically the effects of solar radiation
pressure.

The detailed global geoid derived by Vin-
cent and Murphy (sec. 5.6.3) does not use
the theory of satellite geodesy at all but
overlaps a geoid derived from satellite geod-
esy (GEM 4) with geops computed by the
Stokes formula (sec. 5.4.3). Similarly, the
theories of M. A. Khan on the hydrostatic
flattening of the Earth (sec. 5.4.5.1), iso-
static gravity anomalies (sec. 5.4.5.2), and
comparisons of the geopotential with other
geophysical quantities (sec. 5.4.5.3) rest pri-
marily on classical gravimetric theory and
only indirectly on the theory of satellite
geodesy.

5.4.1 General Theory for Dynamic Satellite
Geodesy
(B. Putney)

GSFC and Wallops Flight Center (ch. 6)
use the same straightforward theory for
dynamic satellite geodesy. The differential
equations of motion (sec. 5.4.1.4) are inte-
grated numerically (sec. 5.4.1.6) to give the
position of a satellite as a function of time.

The positions are computed for the times of
observation and the approximate positions
of the observers to give computed values for
the observables (sec. 5.4.1.3). The residuals
are computed, the observation equations are

set up, and an adjustment is made (sec.
5.4.1.5) to the assumed values of the ob-
servers' positions, orbital elements, and
other quantities. To incorporate observations

other than NASA's or older solutions, the
adjustment procedure contains special pro-
vision for introduction of such results. This

provision is called Bayesian least squares and
is treated in detail in ch. 6.

The theory is embodied in a program called
GEODYNE.

5.4.1.1 Coordinate Systems

The following three coordinate systems are
used: (1) geodetic coordinates _, ¢, h; (2)
topocentric right ascension and declination;
and (3) topocentric North-zenith coordinates

x, y, z. The first two systems are the standard
ones used by all geodesists and astronomers
(e.g., Bomford, 1962; Smart, 1962).

5.4.1.1.1 GEODETIC COORDINATE
SYSTEM

The system of topocentric North-normal

coordinates has as axes the vectors 17, E, and
2, which are defined in terms of the geodetic
coordinates x and ¢ of a point on the surface
as

-sin ¢ cos x-]_? = -sin ¢ sin _,|
cos ¢ j

/_ = COS

0

Fcos ¢ sin _,-]
2 = |cos ¢ sin ;t /

L. sin ¢ _J

where ¢ is the geodetic latitude and x is the
geodetic longitude of the observer.

This system is the one to which such meas-
urements as azimuth and elevation, X and Y
angles, and direction cosines are related.
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5.4.1.1.2 ASTRONOMICCOORDINATE
SYSTEMS

5.4.1.1.3 VARIATIONS IN THE
COORDINATESYSTEMS

Thechoiceof appropriatecoordinatesys-
temsfor computingtheorbitsis controlledby
severalfactors.

First, in the caseof a satellitemoving in
theEarth'sgravitationalfield,themostsuit-
ablereferencesystemfor computingorbits
is a systemwith its origin at the Earth's
centerof mass,referred to as a geocentric
referencesystem.

Second,the satellite equationsof motion
mustbe integratedin an inertial coordinate
system.Also,the Earth is rotating at a rate
O,j,whichis the rate of changeof the Green-
wichhourangle.

Finally, the Earth both precessesand
nutates,thuschangingthedirectionsof both
the Earth's axis of rotation and the true
equinoxof datein inertial space.

TrueCoordinateSystemof Date.--At any
giventime, the axisof rotation of the Earth
(÷Z) and the directionof the true equinox
of date (÷X) maybeusedto definea right-
handedgeocentriccoordinatesystem. This
systemis knownasthe true coordinatesys-
tem of date. The other coordinatesystems
will bedefinedin termsof this system.The
inertial coordinatesystemis thetrue coordi-
nate systemof date definedat 0_.0of the
referenceday for eachsatellite. This is the
systemin which the satellite equationsof
motionareintegrated.This isaright-handed,
Cartesian,geocentriccoordinatesystem,with
the X axis directed toward the true equinox
of 0¢0 of the reference day and with the Z

axis directed parallel to the Earth's axis of
rotation toward north at the same time. The

Y axis is defined so that the coordinate sys-
tem is orthogonal.

It should be noted that the inertial system

differs from the true system of date by the
variation in time of the directions of the
Earth's axis of rotation and the true equinox

of date. This variation is described by the
effects of precession and nutation.

Polar Motion.--Consider the point P which

is defined by the intersection of the Earth's
axis of rotation at some time t with the sur-

face of the Earth. At some time t+±t the

intersection will be at some point P' which
is different from P. Thus, the axis of rotation

appears to be moving relative to a fixed posi-
tion on the Earth; hence the term "motion

of the pole" is introduced.

A rectangular coordinate system has been
established with its center at a point F fixed
on the surface of the Earth, F being near the

point P around 1900, and measurements have
been taken of the rectangular coordinates

of the point P during the period 1900.0 to
1906.0. It was observed that the point P

moves in roughly circular motion in this
coordinate system with two distinct periods,

one period of approximately 12 months and
one period of 14 months. The mean position

of P during this period is defined to be the
point Po, the mean pole of 1900.0 to 1906.0.

The mean is taken over a 6-year period in

order to average out both the 12-month term
(six periods) and the 14-month term (five

periods) simultaneously. The radius of this
observed circle varies between 5 and 11

meters.

In addition to the periodic motion of P
about Po, by taking 6-year means of P in the

years after 1900 to 1906, there is found a
secular motion of the mean position of the
pole away from its original mean position Po

in the years 1900 to 1906 at the rate of ap-
proximately 0':0032 per year in the direction
of the meridian 60 degrees west, and a

libration with a period of approximately 24

years with a coefficient of about 0':022. The
short periodic motions over a period of 6

years average about 0':2 to 0':3.
This motion of the pole means that the

observing stations are moving with respect

to the .\4, _, 2-coordinate system. The station
positions must be corrected for this effect.
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The position of the instantaneous or true
pole is computed by linear interpolation in a

Bureau International de l'Heure (BIH)
table of observed values for the true pole
relative to the mean pole of 1900 to 1906. The
increment of the table is 10 days. The table
gives the coordinates of the true pole relative
to the mean pole, measured in seconds of arc.

Consider the station vector X in a system
referred to the mean pole and the same vector
Y in the system referred to the true pole of
date. The transformation between Y and X

consists of a rotation _ about the X._ axis and
a rotation _ about the X1 axis ; i.e.,

Y=RI (7) R2 (OX

Ii 0 0 l[CoS_ 0-sin_ 1
= cos _ sin 1 0 X

-sine cos lsin_ 0 cos

Because _ and _/are small angles, their cosines
are set equal to i and their sines equal to their
values in radians. Consequently,

1Y-- 1 X

Greenwich Hour Angle 0_.--The computa-
tion of the Greenwich hour angle is quite
important because it provides the orientation

of the Earth relative to the true system of
date. This angle is the major variable in
relating the Earth-fixed system to the inertial

reference frame in which the satellite equa-
tions of motion are integrated.

The evaluation of t_,_is discussed in detail in
the Explanatory Supplement to the Astro-
nomical Ephemeris and the American

Ephemeris and Nautical Almanac (1961).

_=_,_,,+_t, o,+At2 b.,+A_

where At1 is the integral number of days
since January 0.0 UT of the reference year,
±t_ is the fractional (UT) part of a day for

the time of interest, e,jois the Greenwich hour

angle on January 0.0 UT of the reference

year, 01,is the mean advance of the Greenwich

hour angle per mean solar day, t_ is the mean
daily rate of advance of Greenwich hour

angle (2,_+01), and _a is the equation of
equinoxes (nutation in right ascension).

The initial 0g° is obtained from the proper
table in the Nautical Almanac of values con-

taining the Greenwich hour angle on Janu-
ary 0.0 for each year.

Precession and Nutation.--The inertial co-

ordinate system in which the equations of
motion are integrated is defined by the true
equator and equinox of date for 0h0 of the
reference day. However, the Earth-fixed
coordinate system is related to the true equa-
tor and equinox of date at any given instant.
Thus, it is necessary to consider the effects
that change the orientation in space of the
equatorial plane and the ecliptic plane. These
phenomena are the combined gravitational
effect of the Moon and the Sun on the Earth's
equatorial bulge and the effect of the gravi-
tational pulls of the various planets on the
Earth's orbit. The first of these affects the

orientation of the equatorial plane; the sec-
ond affects the orientation of the plane of
the ecliptic. Both affect the relationship be-
tween the inertial and Earth-fixed reference
systems.

These phenomena cause precession and
nutation, both for the axis of rotation of the
Earth and for the pole of the ecliptic. The
precession and nutation provide the relation-

ship between the inertial system defined by
the true equator and equinox of the reference
date and the "instantaneous" system defined
by the true equator and equinox of date at
any given instant.

The luni-solar effects cause the Earth's

axis of rotation to precess and nutate about
the pole of the ecliptic. This precession will
not affect the angle between the equatorial
plane and the ecliptic (the "obliquity of the

ecliptic"), but will affect the position of the

equinox in the plane of the ecliptic. Thus,
the effect of luni-solar precession is entirely
in celestial longitude. The nutation will affect
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both. Consequently, we have nutation in

longitude and nutation in obliquity.

The effect of the planets on the Earth's

orbit will cause both secular and periodic

deviations. However, the ecliptic is defined

as the mean plane of the Earth's orbit.
Periodic effects were not considered to be a

change in the orientation of the ecliptic;

instead, they were considered to be a per-
turbation of the Earth's celestial latitude.

The secular effect of the planets on the

ecliptic's plane is separated into two parts,

planetary precession and secular change in

obliquity. The effect of planetary precession

is entirely in right ascension. As is the con-

vention, all of the secular effects are consid-

ered under the category of precession. The

periodic effects are nutation in longitude and

nutation in obliquity.

5.4.1.1.4 TIME SCALES

UTC contains discontinuities both in epoch

and in frequency because an attempt is made

to keep the difference between a UTC clock
and a UT2 clock less than ._1. By interna-

tional agreement, adjustments are made in

steps of ._1 and only at the beginning of the

month; i.e., at 01.'0 UT of the first day of the

month. The general formula used to compute

(A1-UTC) is

(A1-UTC) =ao+al (t-to)

Both a,) and al are given in the table. The

values in the table for ao are the values of

(A1-UTC) at the time of each particular

step adjustment. The values in the table for

al are the values for the new rates of change

between the two systems after each step

adjustment. Values for a,) and al are pub-

lished by both the U.S. Naval Observatory

and BIH.

Three principal time scales are currently

used: ephemeris time (ET), atomic time

(A1), and universal time (UT1, UT2, UTC).

These are defined in chapter 1.

The following equation is used by GSFC

to calculate (UT2-UT1) for any year:

(UT2-UT1) -- +._022 sin 2_t--_.012 cos 2_t

-._006 sin 4,_t + _.007 cos 4_t

where t is the fraction of the tropical year

elapsed from the beginning of the Besselian

year for which the calculation is made (1

tropical year equals 365.2422 days).

This difference (UT2-UT1) is known as
the seasonal variation. The time difference

(A1-UT1) is computed by linear interpola-

tion from a table of values. The spacing

for the table is 10 days, which matches the
increment for the "final time of emission"

published by the U.S. Naval Observatory in
the bulletin Time Signals. The differences

for this table are determined from the re-

lation (A1-UT1) -- (A1-UTC) - (UT1-

UTC). The values for (UT1-UTC) are
obtained from "Circular D", BIH. The dif-

ference (A1-UTC) is determined accord-

ing to the following procedure.

5.4.1.2 Observables and Related Derivatives

Measurements.--The observations are geo-

metric in nature. The computed values for

the observables are obtained by applying

these geometric relationships to the computed

values for the relative positions and velocities
of the satellite and the observer at the time

of the observations.

In addition to the geometric relationships,

a timing bias and a constant bias are associ-

ated with a measurement from a given sta-
tion. The model for an observable is therefore

Ct+±t :f, (r,_,rob) + b +It (r,r,rob) At

where C,zt is the computed value of the ob-

servable taken at time t+zt, r is the Earth-

fixed position vector of the satellite, rob is the

Earth-fixed position vector of the station,

ft(r, r, rob) is the geometric relationship

defined by the particular observable at time

t, b is a bias on the observable, and ±t is the

timing bias associated with the observable.

The functional dependence of ft was ex-

plicitly stated for the general case. Many of

the observables are functions only of the

position vectors and hence are not functions

of the satellite velocity _.
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One requires the partial derivatives of the
observables with respect to the quantities
being determined: the true position of date
and velocity of the satellite, the parameters
of the force model, the station positions, and
the biases.

These quantities are implicitly divided into
a set _ which is not concerned with the dy-
namics of satellite motion and a set _ which
is.

The partial derivatives associated with the
at, the station positions and the biases, are

computed for the given times of observation.
The partial derivatives with respect to the
quantities _, the position and velocity and
the parameters of the force model, must be
determined according to a chain rule:

where xt is the vector describing the satellite
position and velocity in true coordinates of

date. The partial derivatives OCt+_t/Dxt are
computed directly at the given times of ob-

sevation, but the partial derivatives Dxt/D [_
may not be so obtained. The _t/D_ relate
the true position of date and the velocity of
the satellite at the given time to the quanti-
ties at epoch through the satellite dynamics.

The partial derivatives 0xt/D_ are called
the variational partials and are obtained by

numerical integration of the variational
equations. These equations are analogous to

the equations of motion.

First, consider the partial derivatives of

the values ,associated with the quantities in
_. We have

_Ct+At _ft _xt

Note that we have dropped the partial
derivative with respect to _ of the differen-

tial product ]tat. We have done so because

we use a first-order approximation in our
model; hence, higher-order terms are as-

sumed to be negligible. This linearization is

tions made in the solution to the estimation
equations.

The partial derivatives _ft/_xt are com-
puted by transforming the partial derivatives
Dft/_r and Oft/O_ from the Earth-fixed sys-
tern to the true system of date.

In summary, the partial derivatives re-
quired for computing the OCt+a,/O_, the par-
tial derivatives of the computed value for a

given observable, are the variational partials
and the Earth-fixed geometric partial deriva-
tives.

The partial derivatives of the computed
values with respect to the station positions
are simply related to the partial derivatives
with respect to the satellite position at time t :

DCt+at _ft : Dft

_rob -- _rob Dr

where r is the satellite position vector in
Earth-fixed coordinates. This simple rela-

tionship is a direct result of the symmetry in
the coordinates of the position.

The partial derivatives with respect to the
biases are

_Ct.ht -1
Db

Ct+At

Let us coinsider the calculation of the

geometric function ft and its derivatives. The
derivatives have been shown to be the partial
derivatives with respect to the satellite posi-
tion and velocity at time t and the rate of
change of the function ft.

The basic types of observation are right
ascension and declination, range, range rate,
direction cosines I and m, angles X and Y, and

azimuth and elevation. The geometric rela-
tionship corresponding to each of these ob-
servations follows. It should be noted that,
in addition to the geocentric or inertial

coordinate systems, topocentric coordinate
systems are used for some of the relation-

._hip,q.
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(1) Range: Consider the station-satellite

vector: _ =r-rob, where r is the satellite
position (x, y, z) in the geocentric Earth-

fixed system and rob is the station position in
the same system. The range S is then the

magnitude of the vector S, which is one of
the measurements.

(2) Range rate: The rate of change of

this vector 0 is _=r, since fob=0. Let us

consider that p=p_ where fi is the unit vector

in the direction of 0. Thus, we have _=#fi

+p_. The quantity # in the above equations

is the value for the range rate and is deter-
mined by # = ft. _.

(3) Right ascension and declination:

These angles are computed from the com-
ponents of the Earth-fixed station-satellite

vector and the Greenwich hour angle 0u:

_¢--tan-l(_) + 8g

_ : sin-1 (_)

where pl, p_, p._are the geocentric coordinates
of the e vector.

(4) Direction cosines: There are three

direction cosines associated with the station-

satellite vector in the topocentric North-

zenith-system. These are l=fi._, m=fi.hT,
and n=it.2.

(5) X and Y angles : The X and Y angles

are computed by

Xa= tan-l(/)

Ya=sin -_ (m)

(6) Azimuth and elevation : The azimuth

and elevation are computed by

Partial Derivatives of the Observables.-

The partial derivatives with respect to satel-
lite position and velocity are given below.

All are in the geocentric, Earth-fixed system.

(The r_ refer to the Earth-fixed components

of r.)

(1) Range :

(2) Range rate :

_ri P L

0#= P_
_ p

(3) Right ascension :

C}O_ --p_

Dr3

(4) Declination :

(5)

_ --pip3

Dri -- p2

_ -- p_p._

Ora p2

Direction cosines :

_l = 1 [E, - ln]
Dr_ p
Dm 1

- [Ni-mm]
Dr_ p

= 1 [Zi - nu_]
OTi p

(6) X and Y angles :

OXa nE_ - 1Z_

Dr-_. - p (1-m _)

Y_ N_-mu_

lr_ -p_/1---_-m _

(7) Azimuth and elevation :

OA_ mE_- IN_

Or_ pIvr_Z_-n_
_E_ Z_- nu_

Or--_- p (1 -n _)
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The derivatives of each observable type
with respect to time are presented below. All
are in the geocentric Earth-fixed system.

(1) Range:

p=fi-i-

(2) Range rate: The range rate-deriva-
tive deserves special attention. Remembering
that _ = _, we write

These transforms are used on the satellite

velocity components _ and y in the true co-
ordinates of date.

It should be noted that all quantities in this
formula except for those in brackets are

values in an Earth-fixed system. The mag-
nitude r is invariant with respect to the

transformations of the coordinate system.
The derivatives with respect to time are:

(3) Right ascension :

Thus,

Because

p=_._

h=d.i+_.'_

we may substitute above for _ :

_= l/p( _. e-_. _) +_. _

or, since p = _- _ we may write

p= z/p( b- i- f +p._).

To obtain "_, we use the limited gravitational
potential

C°°aJP._ ° (sin ¢) )

The gradient of this potential with respect
to the Earth-fixed position coordinates of the
satellite is the part of "e due to the potential

 Mr,ari- r3 L _ \ sin= _-1-2 r_

We must add to this the effect of the rotation

of the coordinate system. (The Earth-fixed
coordinate system rotates with respect to the

true coordinates of date with a rate 0"g,the
rate of change of the Greenwich hour angle.)

The components of "eare then

OU + [2 cos Og+ y sin 0g]8g+ e2 _g#_= Or1

aU+ [__ sin Og+y cos 0g] 0g-?_ 0g
P== ar._

aU aU

(4)

p(_--U])

Declination :

r3 -- tiU3

(5) Direct cosines :

$__-_-_
P

m- _._-m_
P

(6) X and Y angles :

X_= _" (nF,- 12)
p(1-m _)

• .A__ m_

m =

(7) Azimuth :

A:- e" (mS-lb')
_(1-m =)

(8) Elevation :

E__ _ .2-m_

5,4.1.3 Force Model

In a geocentric, inertial, rectangular coordi-

nate system, the equations of motion for a

spacecraft are of the form :

GMr
_= +A (5.32)

where r is the position vector of the satellite,

G is the gravitational constant, M is the mass
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of the Earth, and A is the acceleration caused
by the asphericity of the Earth, extraterres-
trial gravitational forces, atmospheric drag,
and solar radiation.

This equation provides a system of second-
order equations which, given the position and
velocity components at epoch, may be inte-

grated to obtain the position and velocity at
any other time.

There is an alternative way of expressing
the equations of motion given above:

_=- VV+AD+Ae (5.33)

where V is the gravitational potential and AD
contains the accelerations due to solar radia-

tion pressure. This relation is merely a
regrouping of terms coupled with a recogni-
tion of a potential field.

The system in which these equations of
motion are integrated corresponds to the true
system at 0h.0of the reference day.

The accelerations for e are evaluated in

the true system of date. Thus, the inertial
position and velocity resulting from the inte-
gration must be transformed to the true
system of date for the evaluation of the
accelerations and the computed accelerations
must be transformed from the true system
of date to the inertial system.

The variational equations have the same
relationship to the variational partials as the
satellite-position vector has to the equations
of motion. The variational partials are de-

fined as the Dxt/_/_, where xt spans the true
position and velocity of the satellite at a

given time in a true system and _ spans the
epoch parameters.

The variational partials may be partitioned
according to the satellite position and velocity
vectors at the given time. Thus, the required

partials are ar/a_, oe/a _, where r is the
satellite velocity vector (x, y, z) in the true
system of date and e is the satellite velocity

vector, (2, y, 2) in the same system. The first

of these, Dr/D _, can be obtained by the double
integration of

d 2 Dr

dt _ D_

or rather, since the order of differentiation

may be exchanged, De/D_ can be obtained.
Note that the second set of partials, Dr/D_,
may be obtained by a first-order integration

of De/D_. Hence, we recognize that the
quantity to be integrated is De/D _. Using the
second form for the equations of motion (eq.
5.33), we find the variational equations to be

given by

De D ,

where V is the potential due to gravitational
effects, Au is the acceleration due to radiation
pressure, and AD is the acceleration due to
drag. At this point, we must consider a few
items.

(1) The potential is a function only of
position. Thus, we have

/ = ....

(2) The partials of solar radiation pres-
sure are zero with respect to the coefficients
defining the potential, the drag coefficient,
and the satellite velocity, and the partials

with respect to the satellite position are
negligible.

(3) (Drag is a function of position and
velocity.) The partials are zero with respect
to the potential coefficients and the satellite
emissivity, but we have

DA. DA. _xt DA,,OC. DA. D(_'I,

Let us write our variational equations in
matrix form, where the following definitions

apply :

n is the number of parameters in _ at
epoch.

F is a 3 x n matrix whose ]th column vec-

tors are De/0Bj.
Uo_c is a 3×6 matrix whose last three col-

umns are zero and whose first three
columns are such that the i, ]th element

is given by _ U/Dri Dri.
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Dr is a 3 × 6 matrix whose jth column is de-

fined by DAD/OXq.
X,,, is a 6 × n matrix whose ith rOW is given

by Oxt/Dflj. Note that Xm contains the
variational partials.

f is a 3 × n matrix whose first six columns
are zero and whose last n-6 columns

are such that the i, jth element is given
by D/bfls[-(VU+AD+AR]. Note that
the first six columns correspond to the
first six elements of _, which are the posi-
tion and velocity at epoch. (This matrix
contains the direct partials of x with

respect to _.) _gre may now write
F=[U2c+D,.]X,,+f. This is a matrix
form of the variational equations.

Note that U_c, Dr, and f are evaluated at
the current time, whereas Xm is the output of
the integration. Initially, the first six col-
umns of Xm plus the six rows form an iden-
tity matrix; the rest of the matrix is zero

(for i=j, X,,_j=I ; for i_], X,,_j=0).

Potential of the Earth.--The Earth's po-
tential is described by a series of spherical
harmonics, and it is most conveniently ex-
pressed in a coordinate system where f' is the
geocentric latitude of the satellite, x is the
longitude of the satellite, and r is the geo-
centric distance of the satellite.

The Earth's gravitational field is repre-
sented by :

_,[ a_ P_ (sin f')V= 1+ _ --

[C,,,_ cos mx+S .... sin mx] }

where nmax is the upper limit for the sum-
mation (highest degree).

The relationships between the normalized

coefficients (C ..... S,,,,) and the unnormalized
coefficients are as follows :

C,,,,=[ (n-m) !(2n+l) (2-_o,_)-]'/-'z_J ....
where _o,,, is the Kronecker delta (_o,,=1
for m = 0 and _o,,,= 0 for m _ 0). A similar ex-
pression is valid for the relationship between

S,,,,,and S .....

The gravitational accelerations in true co-

ordinates of date (_, _, _) are computed from
the potential, V(r, f', A), by the chain rule;
e.g.,

DV Or , OVOff', OVDx

The accelerations _ and _ are determined in

a similar way. The partial derivatives of V
with respect to r, f', and A are given by

GTM2.E nma_/ a \n n
DV 1 + cos
Dr- _=2_)_=o(C.m m_

.... sin rex) (n+l)P, _ (sin o,/+S

DV-GM"_{ a_" " S( .... cos m_,r
-C.m sin m_)mP_(sin f')

n_ba_ n n

- r _ \-r-] _ (c._ cos mx

+s... sin m),) [Py (sin f')
-m tan f' P_ (sin _')]

The partial derivatives of r, f', and x with
respect to the satellite coordinates {rd are

Dr_ r
Dr' 1 F zr_ 0z-]

DA 1 Voy y Ox]Dr, LDr-L x

The Legendre functions are computed via
recursion formulas.

(1) Zonals: m=0

1 f,
P_ (sin f') =n [ (2n- i) sin P_-_ (sin f')

_ po(n-1) ,-2 (sin f')]
P_ (sin f') =sin f'

(2) Tesserals : mm 0 and m<n

P_(sin f') :Pro-2 (sin f')
+ (2n--1)cos -_'r,,_-_ (sin f')'9" x n-1

P_ (sin f') --cos f'



328 NATIONAL GEODETIC SATELLITE PROGRAM

(3) Sectorials: m=n

t n-1P_= (2n-1)cos + P.__ (sin 4,')

The relationship for the derivatives is

given by

d_P_ (sin _') ) =Pn m+l(sin _')

- m tan _' P_ (sin _')

It should also be noted that multiple-angle
formulas are used for evaluating the sine and
cosine of m),.

The variational equations require the com-

putation of the matrix Uo_c,whose elements
are given by

0_ V
(U2c) _._- 0ri Ori

3 aV
U_,.=C _U,,C_ + ,.=_-"_C_

:=

where ek ranges over the elements r, sin 4,',
and _,, U2 is the matrix whose i, jth element is

given by a_V/Oe_Dei, C1 is the matrix whose i,
jth element is given by ae_/Or i, and C__kis a set
of three matrices whose i, jth elements are
given by O:ek/Or_Drj.

We compute the second partial derivatives
of V with respect to r, 4,', and _ as in inset.

The elements of U2 have nearly been com-

puted. What remains is to transform from

(r, 4,, x). This transformation affects only
the partials involving 4, :

aV aV O#
sin 4,= a4,' _ sin 4,

a_V a4; [a'-'V_ O# a a_4,'
a sin 4,'_-a sin 4,' \ }_ b sin 4,' a4,' a sin# _

where r,= (x, y, z}, the true position of date
of the satellite, where

Because the Earth's field is in terms of r, 34,'
= sec 4,'

sin _', and _,,we write D sin 4,'

a'_V_2GM t_GM X' (n+l) (n+2) (C .... cos mx+S .... sin mx)P_ (sin 4,')
Dr_ r:' r a z_.

_-2 _=0

0r0#- 7 _ (n+l) _:o(C .... cosmx+S .... sin m_,)_-_,[PT_(sin4,')]

O_V _ _ (n+l) m(-C.._sinmx+S.._cosmx)P'2(sin4,')

a4 ''_- r r (C""_c°smx+S""_sinmx)_ [Pro(sin4,')]

 M (ae m(O4'ax- r r -C .... sinmx+S .... cosmx) [P._(sin4,')]

a"V GM nmax / ae \n n

_'.{r) --_m_(C .....cosm;_+S .....sinmX)P_(sin_')Oh:- r
_=0

where

-_a (P._(sin #) ) = P_÷_ (sin 4') - m tan 4,' pmsin 4,9
0_' --"

O: (P_"(sin 4,') ) -P_+_ (sin 4,') - (re+l) tan #P._+_ (sin _') -m tan 4,' [P._+_ (sin 4,')
04,,_ - _.

- m tan 4,' P._ (sin 4,') ] -m see'-' #P._ (sin +')
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0%' -sin _' sect4, '
0 sin 4_'2

For the C1 and C2k matrices, the partials
of r, sin 6', and x are obtained from the
formulas

The partials for S .... are identical except that
cos (rex) is replaced by sin (mx) and sin
(m_,) is replaced by -cos (mx).

These partials are converted to true co-
ordinates of date by means of the chain rule ;
e.g.,

r= _/ x2 + y2 + z 2

sin 6'= z
r

A= tan-X(y) -0g

We have for CI

Dr 7"i

Or_ r

sin6' -zr_ lDz
a-r_ - r 3 _r_r-_

_x 1 [- Dy Dx 7
Or,-- x2 + y2 L X o-_i - Y_(J

The C..k are symmetric. The necessary ele-
ments are given by

O2r _ r_rj _ lOr_
Dr_Drj r _ ' rOr_

D2sin4,' 3zr_rj 1_ Dz Dz Or(]
rj_- + r_- + z-_-|_r_Dri r _ _,._ _j _,j _j

Or_Ori - (x 2+ y2) _L x_-_

1 [-ox Dy oy ox7
J

If coefficients C,_ or S,,, are being esti-
mated, we require their partials in the f
matrix. These partials are :

O ( OV_ (n+l).G_

a -_-- =m---
r

D (OV_ VM(a,,_"
_g,,,,,k_l=-7-kr/ cos (m_,)

[P._+_(sin 6')m tan 6' P._ (sin _') ]

ac.,,,k ax /= _-_,,.\-_ ]_

+
_c,,,,, \ o_' ] Ox

The gravitational potential originating
from solid-earth tides caused by a single
disturbing body is given by

Up (r) -- k__GM,t R_2 R] r _ [3(/_×?)_-1]

=-2 R, \m,J\Rd]

[3(/_a.e)2-1]

and the resultant accelerations on a satellite

due to this potential are

- V U. = k,_,GM,_ R_.
2 _ r ([3-15(/_'_)_]r

+6(R_-_)R_}

where k,., is the tidal coefficient of degree 2,
called the Love number, G is the universal
gravitational constant, M_ is the mass of the
Earth, R_ is the mean Earth-radius, Ma is the
mass of the disturbing body, M_ is the mass
of the Earth, R_ is the distance from the
center of mass of the Earth to the center of

mass of the disturbing body, r is the distance
from the center of mass of the Earth to the
satellite, /_ is the unit vector, and _ is the
unit vector from the center of mass of the
Earth to the satellite.

Third-Body Gravitational Perturbations
(Luni-Solar Forces) .--The gravitational
perturbations caused by a third body on the
orbit of a satellite are treated by defining a
function, R_, which is the third-body disturb-
ing potential. This potential takes on the
form
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R,_ GMm"F( 2r r:)-I/_r S]-
The formulation for Everett's fifth-order

interpolation is :

where m,l is the mass of the disturbing body,
r_ is the geocentric true of date position vec-
tor to the disturbing body, S is equal to the
cosine of the angle between r and rd, and r is
the geocentric true position of date vector of

the satellite. All perturbations are computed
from :

where
rd r, j

d= r--rd

D_ = [r_- 2r r_ S + r =]_/_

Then the matrix U__c,whose i, _'th element is
given by

_2 R_ GMm_F Or_ 3d_ di]

is computed. This matrix is a fundamental

part of the variational equations.

Lunar, Solar, and Planetary Ephemerides.
--Ephemerides in true coordinates of date for

the Moon, the Sun, Venus, Mars, Jupiter, and
Saturn are used. The actual ephemerides are
computed from Everett's fifth-order inter-

polation formula. The tabular interval, h, is
0.5 day for Moon and the equation of the
equinoxes and 4.0 days for the other bodies.

All coordinates are true. The quantities
contained in the ephemerides are the geo-
centric positions of the Moon and the corre-

sponding second and fourth differences, the
positions of the Sun relative to the Earth-
Moon barycenter and the corresponding sec-
ond and fourth differences, the heliocentric
positions of Venus, Mars, Jupiter, and Saturn
and the corresponding second and fourth
differences, and the equation of the equinoxes
and its second and fourth differences. This

ephemeris was prepared from a planetary
ephemeris of Jet Propulsion Laboratory
(JPL) which corresponded to the JPL devel-

opment ephemeris 69 (O'Handley et al.,
1969).

Y (ti+sh) =yjFo (1 -s) +d_F_ (1 -s)
+d}F_ (1 -s) + yj+IF,, (s)
+ d_$_F. (s) + d_?_F_ (s)

where

Fo(s) = sF_ (s)

= [(s-l) (s) (s+ l) ]/6F_(s)
= [(s-2) (s-l) (s) (s+l) (s+2)]/120

The quantity s is the fractional interval for

the interpolation. The quantities dj are ob-
tained from the ephemeris.

Solar Radiation Pressure.--The force due

to solar radiation can have a significant effect
on the orbits of satellites with a large area-
to-mass ratio. The accelerations due to solar

radiation pressure are

An = -- vCI_P_

where , is the eclipse factor, so that ,=0
when the satellite is in the Earth's shadow

and ,= 1 when the satellite is illuminated by
the Sun, C_¢ is a factor depending on the re-
flectivity of the satellite, A_ is the cross-
sectional area of the satellite, m_ is the mass
of the satellite, P, is the solar radiation pres-
sure in the vicinity of the Earth, and i-_ is the
(geocentric) true unit vector of date point-
ing to the Sun.

The unit vector _ is determined as part of
the computations of the luni-solar planetary
ephemeris.

The eclipse factor v is determined as fol-
lows: Compute D=r.f_, where r is the true
position vector of date of the satellite. If D

is positive, the satellite is always in sunlight.
If D is negative, compute the vector PR=r
-D_,. This vector is perpendicular to ?_. If
its magnitude is less than an Earth radius i.e.,
if PR" PRiam, the satellite is in shadow.

The satellite is assumed to be specularly re-
flecting with reflectivity p_; thus, C_+ l+p_-

When a radiation pressure coefficient CR
is being determined, the partials for the f
matrix in the variational equations must be
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computed. The ith element of this column
matrix is given by

1 .. A_F Ov,. Or, DpD ]
D, = - -_-. + + j

A,_

8s= - v.-=-Ps
"ms

Atmospheric Drag.--A satellite moving
through an atmosphere experiences an at-
mospheric drag. Acceleration due to this
force is given by

AD = -- 1//2C D-_s pDVrVr

where CD is the drag coefficient, As is the
cross-sectional area of the satellite, m, is the
mass of the satellite, pD is the density of the
atmosphere, at the satellite position, and v, is
the velocity vector of the satellite relative to
the atmosphere.

Both As and CD are treated as constants.
Although As depends somewhat on the satel-
lite attitude, the use of a mean cross-sectional
area does not lead to significant errors at this
time. The factor CD varies slightly with
satellite shape and atmospheric composition.
However, it has been treated as a satellite-

dependent constant.
The relative velocity vector v, is computed

under the assumption that the atmosphere
rotates with the Earth. The components of
this vector in a true system of date are then

5c,.=2-Ogy, _t,=_)--Ogx, 2,=_

The quantities 2, y, and 2 are the com-
ponents of _, the satellite velocity in true co-
ordinates of date.

The direct partials for the f matrix of the

variational equations when the drag coeffi-
cient CD is being determined are given by

f= 1As
2ms pDVrVr

When drag is present, the D,. matrix in the
variational equations must also be computed.
This matrix, which contains the partial de-
rivatives of the drag acceleration with re-
.... * *^ *_,_ (_;o_ a_-hlf.1 oloments, is

where Xt is (x, y, z, 2, _2,2) ;

V 0 -Og 0 ]

- O,j 0 0

av,._ o o o
_xt -] 1 0 0

t 0 1 0
0 0 1

F --_]rOgXr --YrOgYr --_]rOgZr 1

I 2,o 2, 2tOni1,.

J_v, 1 1 0 0 0

;,/,
L z,.x,. _iI,. Zr;_r

and OpEOxt is the matrix containing the
partial derivatives of the atmospheric den-
sity with respect to xt. Because the den-
sity is not a function of the satellite velocity,
the required partials are Op,/_r.

Atmospheric Density.--The atmospheric
density is the least well-known factor in the
computation of drag. The program uses the
Jacchia-Nicolet model, which gives densities
from 120-1000 km with an extrapolation

formula for higher altitudes (Jacchia, 1965.)
The formula for computing the exospheric

temperature has been modified according to
Jacchia's later papers. The density computed
from the exospheric temperature is based on
data provided in the 1965 report, which pre-
sents density distribution versus altitude and

exospheric temperature.
The model of the atmosphere proposed by

Nicolet considers that the fundamental

parameter is the temperature. Other physical
parameters such as the pressure and density
are derived from the temperature.

To calculate the fundamental parameter,

the exospheric temperature, Jacchia con-
sidered the four factors of solar activity vari-

ation, semi-annual variation, diurnal vari-
ation, and variation in geomagnetic activity.

In addition to the density, the partial
derivatives of the density with respect to the
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Cartesian position coordinates are required.
These partials are used in computing the con-

tribution of drag to the variational equations.
The density is given by

p/,=exp (Co+Clh +C,.,h2 +C:_h _)

where h is the geodetic height and the C_ are
coefficients which are polynomials in tem-
perature as determined by the model. We
then have

Din, 3C_h"-)Dr =m)(Cl +2C.,_h+

where r is the true position of date vector of
the satellite (x, y, z).

5.4.1.4 Adjustment Procedures

Bayesian Least-Squares Method.---It should
be noted that the functional relationships
between the observations and parameters
being solved for are in general nonlinear, and
an iterative procedure is necessary to solve
nonlinear normal equations. The Newton-
Raphson iteration formula is used to solve
these equations.

The Bayesian estimation formula is

dx(,+l) = (BrWB + V-a1) -i [B_Wdm
+ V;_' (x ('' -x_) ]

where xa is the a priori estimate of x, VA is
the a priori covariance matrix associated
with xa, W is the weighting matrix associated
with the observations, x C", is the n th approxi-
mation to x, dm is the vector of residuals
(O-C) from the n th approximation and
dx ('+'' is the vector of corrections to the

parameters ; i.e.,

xn+l :X n + (iX ("+_

B is the matrix of partial derivatives of the
observations with respect to the parameters

where the i, ]t_ element is given by Dm_/Dx i.
The iteration formula given by this equa-

tion solves the nonlinear normal equations
formed by minimizing the sum of squares of
the weighted residuals.

Separation of Bias in Electronic Instru-

ments.--For certain types of electronic
tracking data (e.g., Doppler data), biases
exist that are different from one pass to the
next. In many cases, these biases are of no

interest per se, although their existence must
be appropriately accounted for if the data are
to be used in an orbit or for estimation of

geodetic quantities. In addition, a desired set
of electronics data involving hundreds of
passes of the satellite over various stations

and the complete solution for each bias would
require an excessive amount of storage.

The effects of such biases can be removed

by separating the biases from the other
parameters being adjusted. The forms that
this separation takes can be seen from the
solution of the equation _,,_= B_ Ab + BAx +
where _m is the vector of residuals, ±b is the
set of corrections that should be made to the

biases, B_ is the matrix of partial derivatives
of the measurements with respect to the
biases (the elements of this matrix are either
1 or 0), ±x is the set of corrections to be made
to all the other adjustable parameters, B is
the matrix of partial derivatives of the meas-
urements with respect to the x parameters,
and _ is the measurement noise vector.

The least-squares solution of the above
equation is :

BTW3m

where W the weight matrix (W-_=E (_))
is taken to be completely diagonal. The A2
part can be shown to be

t,k = [BrWB_BrWB_ (B¢rWB_) -1 B rWB]-I

x [BrW3m-BrWB_ (B_rWB_)-I B rWSm]

To remove the effects of bias, the last equa-
tion states that the normal matrix BrWB

must have BrWB_ (B_rWB_)-_ B_rW_m sub-
tracted from it. Because of the assumed in-

dependence of different measurements, it
follows that these quantities which must be
subtracted are a sum of contributions for dif-

ferent passes over various stations
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BTWB_ (B:WBe)-IB:WB =
n b

p=l

BTWB+ (B+rW)-_B :W3m =

n b

__,BvTWpB_p (B_prW_,Be_) B_,rWp_mp
p=l '

where no is the total number of passes during
which there are biases in the data and the

subscript p denotes an array for measure-
ments of pass p. The computation of the
right side of the equations requires the ar-

rays BpVWpBp=na × 1 array, BepTWpBep= 1 × 1

array, Be rW_mp=l × 1 array, where na is
the number of adjusted parameters other
than biases affecting the arc during which
the biases occur. Thus, na+2 storage loca-
tions must be assigned for every bias which
exists at any one time.

The individual biases may be adjusted on
the basis of the orbital elements from the

previous iteration and force model parame-
ters. This bias can then be used along with
the accumulated arrays to correct the sum
of weighted squared residuals properly.

5.4.1.5 Numerical Integration Procedures

The equations of motion and the varia-
tional equations are integrated to obtain the
position and velocity and the attendant vari-
ational partials at each observation time.
Values at the actual observation time are

obtained by interpolation between values at

even-numbered steps in the integration.

Let us first consider the integration of the
equations of motion. These equations are
three second-order differential equations in
position, and would be formulated as six

first-order equations in position and velocity
if a first-order integration scheme were used
for their solution.

For reasons of increased accuracy and
stability, the position vector r is obtained by
a second-order integration of the acceleration
e, whereas the velocity vector e is obtained

_-^ -_'"*;".. ,.¢ _ _-_÷_,_.a,,r _ystem. These

are both multistep methods requiring at least
one derivative evaluation on each step.

Integration of Position and Velocity Com-
ponents.--To integrate the position compo-
nents, the predictor formula

is applied, followed by a Cowell eorrector
formula

rn+l----- :_+ Y f'n-p+_ 2
_. p=O #"

The velocity components are obtained us-
ing the predictor formula

q+l /*,+_= S_+,_,/_l',_p h
p=O

followed by an Adams-Moulton corrector
formula

p=O

where S, and S._ are the first and second sums
of the accelerations.

In these formulas, h is the integration step
size, q has the value order of the integration
less 2, y_, y*, tip, and fl* are coefficients whose
values are given in standard texts on num-
erical integration. Table 5.20 compares the
GSFC formulas with those used by other
participants in the study.

Integration of the Variational Equations.
--Let us next consider the integration of the
variational equations (sec. 5.4.1.3). We may
write these equations as

where

and, partitioning according to position and
velocity partials, we have
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lAB] = [U,,,+D,]

See section 5.4.1.3for definitions of the
matricesinvolved.

BecauseA, B, and f are functions only of
the orbital parameters, the integration can
be and is performed by using only corrector
formulas. (Note that A, B, and f must be
evaluated with the final correction values of

r,,+_and rn+,)
In the above corrector formulas, we sub-

stitute the equation for l_ and solve explicitly
for Y and]_':

Under certain conditions, a reduced form
of this solution is used. It can be seen from

the variational and observation equations
that if drag is not a factor, and there are no
range rate, Doppler, or altimeter rate meas-
urements; the velocity variational partials
are not used. There is then no need to inte-

grate the velocity variational equations. In
the integration algorithm, the B matrix is
zero and (I-H) is reduced to a 3×3 matrix.

Backwards integration involves only a few
simple modifications to these normal or for-
ward integration procedures. The step size
is made negative, and the time completion
test needs to be rephrased. The step size for

these integration procedures can be selected
on the basis of perigee height and the eccen-
tricity of the orbit, if it is desired.

For a starting scheme, a Taylor series
approximation is used to predict initial val-
ues of position and velocity. With these
starting values, the sum array ($1 and S._
variables) is evaluated. The loop is closed
by interpolating for the positions and veloci-
ties not at epoch, and their accelerations are
evaluated. The sums are now again evalu-
ated.

Interpolation.--In this procedure, inter-
polation is used for two functions: (1)
interpolation of the orbit elements and vari-
ational partials to the observation times; and

(2) interpolation for midpoints when the
integrator is decreasing the step size in the
varistep mode of integration.

The formulas used are :

X(t+At)=(S.;(t) + (_--_t-- 1)S, (t)

- )h2
i=0

for positions and

( n ),_'(t+_t)= Sl(t)+__C_(At)f,,_ h
i=0

for velocities. Here $1 and S._, are the first
and second sums carried along by the inte-
gration, the f are the back values of accelera-
tion, h is the step size, and Ct, C' are the
interpolation coefficients.

5.4.2 Theory Used for Obtaining GEM 5 and
GEM 6
(F. J. Lerch)

A Goddard Earth Model consists of a

gravitational potential expressed in a series
of spherical harmonics and tracking station
locations expressed in a geocentric coordi-
hate system. The models described in section
5.6.1, GEM 5 and GEM 6, are part of a series
of solutions derived from an expanding set
of measurements from satellite tracking and
surface gravity. GEM 5 is based upon track-
ing data only, while GEM 6 is based upon a

combination of tracking data and gravi-
metric data. Previous solutions GEM 1 and

2 (Lerch et al., 1972b) are similarly orga-
nized; the odd and even numbers refer, re-
spectively, to models derived from tracking
data and models derived from tracking plus
gravimetric data. The odd-numbered models
are complete in harmonics to degree and
order 12, and the even-numbered models are
complete to degree and order 16. All solu-
tions contain coefficients of higher-degree
zonal harmonics and selected tesseral har-

monics extending to degree 22. The solutions
derived from tracking and gravimetry are
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adjusted for the reference value of equatorial
gravity given in table 5.7.

A brief description of GEM 1 through
GEM 6, including basic data employed, is

presented in table 5.21. A detailed descrip-
tion of the data employed in deriving GEM 5
and GEM 6 is given in section 5.3.1.

The theory used in deriving the GEM's is
essentially the same theory as described in
the preceding section. However, that theory
is based entirely on dynamics, and does not
provide directly for use of geometry or gravi-
metric data. In addition to the theory of sec-
tion 5.4.1, a theory for geometric satellite

geodesy (sec. 5.4.2.1), a theory for conver-
sion of gravimetric values to a form com-

patible with dynamic satellite theory (sec.
5.4.2.2), and a method of combining the
operations of geometric and gravimetric ge-
odesy with the equations given in section
5.4.1 are used in deriving the GEM's. (See

sec. 5.4.2.3.)
The overall design of the geopotential and

station determination warrants discussion,

notably the truncation of the spherical har-
monics in the gravitational potential; the
selection of weekly arc lengths in processing
the orbital data; and the orientation, origin,
and scale for the system of tracking stations.
With regard to truncation, the prime con-

siderations are the frequency spectrum of
orbital perturbations, satellite sensitivity to
terms of high-degree, aliasing effects, rela-
tive contributions of the satellite and gravi-
metric data, and certain deficiencies in the

modeling.
Several factors enter into the resolution of

the potential coefficients in the satellite solu-

tion and govern the truncation in the spheri-
cal harmonic model for GEM 5. Formal

standard deviations of the coefficients defined

in the solution are not altogether dependable.

They tend to be optimistic since observations
and orbital effects are not perfectly modeled.

Although the numerical integration of the
modeled forces provides a formal accuracy
of better than a meter in orbital position,
uncertainties in the forces modeled such as

the drag function and exclusion of other un-

knowns such as tidal effects limit the ability

to resolve the orbital position.

For an average (rms) size coefficient of
degree n, the potential coefficients decrease,
approximately according to the rule of Kaula

of 10 _'/n_-. This condition, coupled with the
fall-off at altitude in the potential itself, re-
sults in greatly diminished effects in orbital
perturbations, employing previous estimates
of the coefficients, and shows relatively little
sensitivity among the satellites to resolve
potential terms beyond degree 12 except for
zonal and satellite-resonant terms. When the

sensitivity level is lowered to take advantage
of stochastic averaging of observation errors,
resolution of potential terms out to degree 16
is seen. However, when the solution is ex-
tended to include higher-degree terms, corre-
lations tend to increase among the higher-

degree coefficients, resulting in some unex-
pectedly large values for the coefficients.
Also, certain aliasing errors become more
pronounced with the increased correlations,
where adjacent terms near the point of trun-
cation tend to absorb effects of the potential

beyond this point.
The truncation of the spherical harmonics

of GEM 5 was designed to be suitable for
satellite applications and as a model for
combination with surface gravity data,
where higher-degree terms complete to de-

gree and order 16 may be more effectively
resolved. The satellite data are considerably
more effective in the determination of the

lower-degree terms than the gravimetry

data, and approximately equal sensitivity is
reached at degree 10.

For the above reasons, the general trunca-
tion in GEM 5 was chosen to be complete

through degree and order 12. Selected
higher-degree resonant and zonal terms, out

to degree 22, were also included because of
their enhanced effects on the orbits.

Satellite data are processed in weekly

orbital arcs. The arc length was found to be
adequate to provide good resolution in the
coefficients including the zonal terms, which

are generally derived from their long-term

orbital perturbations. The potential gives
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rise to a frequency spectrum of harmonics in
orbital perturbations which are adequately
covered among the weekly orbital arcs and
associated data. Perturbations contain many
short-period terms of less than one orbital

revolution, as well as terms of approximately
m cycles per day, where m is the order of the
spherical harmonics. Satellite resonant ef-

fects generally last less than one week. Long-
period and secular zonal effects are appre-
ciable over one week of time. Better reso-

lution of the resonant and zonal terms may
be expected to be achieved with longer arcs.
But in a previous analysis employing 14-day
arc lengths, the observation residuals were
significantly increased over those for the

weekly arcs. This was particularly so for
satellites with large atmospheric drag effects,
even though two empirical drag parameters
were employed.

The spherical coordinates of the potential
and the station coordinates are modeled in a

center-of-mass reference system which is
oriented to the mean pole (CIO) of 1900-
1905, (Bomford, 1971a). Satellite orbital
motion provides the basis of a center-of-mass

origin, particularly for the tracking stations
that are processed dynamically. Orientation
to the CIO pole is provided through use of
polar motion data distributed by the BIH.
Stations processed in the geometrical mode,
as with the BC-4 world triangulation net-
work, are similarly oriented and are tied to
the stations in the dynamic system through
use of local datum coordinates from survey.
The scale for the station coordinates is prin-
cipally determined from the reference value
of GM, which provides the scale for the satel-

lite orbits through the gravitational poten-
tial. However, the eight base-line distances

employed in the geometric analysis for the
BC-4 network will contribute somewhat to
this scale in the combination solution, GEM
6.

In the spherical harmonic model of the
potential, certain low-degree and low-order

coefficients are of interest in the modeling.
Coefficients (_.... C,,, and S,, are set to zero so
as to correspond to a center-of-mass refer-
ence system, and _._,, and S_, correspond to a

shift in position of the mean pole. For an
offset of 5 meters in the mean pole, the
coefficients (C_, S:,) would be on the order
of 10 _', which is below the recovery capabil-
ity. However, values of these coefficients are
estimated in the solution to serve as a meas-

ure of the error for the low-degree coeffi-
cients.

5.4.2.1 Geometric Satellite Geodesy
(J. Reece, Computer Sciences Corp.)

The mathematical analysis leading to the
geometric adjustment of coordinates of
tracking stations is based on (1) two cam-
eras observing the satellite simultaneously,
(2) three cameras observing the satellite

simultaneously, (3) four cameras observing
the satellite simultaneously, and (4) two
cameras and one laser observing the satellite
simultaneously.

Condition equations resulting from a given
set of simultaneous observations are of two

types : (1) coplanarity equations, which re-
quire that the two observing stations and the
satellite lie in the same plane, and (2) length
equations, which require that the observation
satisfying the two-station coplanarity rela-
tionship also agree with the range from a
third station.

Corresponding to each event is an equation

where

ai, bi

c

vi

xj

m

n

m tt

__aiv,+ __bjx_+c=O (5.34)
j

are known constants given by
equations (5.46) through (5.51)
is the discrepancy in the condition
equation
are the residuals

are the unknown corrections to
the station coordinates

is the number of observed quanti-
ties

is the number of unknown coordi-
nares

Additional condition equations are employed
for the solution. Conditions (i.e., con-
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straints) may be either statistical or abso-
lute. Statistical constraints specify coordi-
nate relationships and take the form of equa-
tion (5.34). Absolute constraints fix certain

relationships between unknowns and are of
the form

l

__p_x,, + e = 0
k=l

where

Pk
e

Xk

(5.35)

is a known constant

is the discrepancy
are the unknown corrections to station
coordinates
is the number of coordinates involved in
the constraint

Three types of condition equations may be
applied.

(1) Coordinate equations, which require
a given coordinate value to remain at or near
a given value throughout the adjustment.

(2) Distance equations, which require the
distance between two stations to remain at or

near a given value throughout the adjust-
ment.

(3) Coordinate-shift equations, which re-
quire the differences between coordinates of
two stations to retain a specified relationship.
The equations are set up as follows.

(1) For a two-camera event, one copla-
narity equation is used.

(2) For a three-camera event, three co-
planarity equations are used.

(3) For a four-camera event, five coplan-
arity equations are used.

(4) For a two-camera, single-laser event,
one coplanarity equation and one length
equation are used.
These equations lead to an equation in the
form

Av + Bx +c=O (5.36)

If we let the aggregate of constraints be of
the form

Px +e=O

the resulting expression to be minimized is

vrWv-fkr (Av + Bx + c) -2:_r (Px + e)

(5.37)

where W is the weight matrix for observa-

tions, and k and x are Lagrangian multi-
pliers. Assuming the existence of a matrix of
normal equations

J=Br(AW-1Ar)-'B (5.38)

and defining an intermediate matrix
M=AW-1A r, we find that the value of vector
x is

x = - J-_ [ ( I - pr (pj-1pT) -1pj-IBTM-1 v
+pr (pj-ipr)-O e]

(5.39)

The matrix of normal equations is obtained
in a step-wise manner as each event is proc-
essed. Since the matrix AW-1A r is quasi-
diagonal (i.e., AW-_A r is composed of sym-
metric submatrices located along the prin-
cipal diagonal with each submatrix of the
order of the number of observations in the

event), it is easily inverted. Each symmetric
submatrix is inverted as it occurs, and the in-

verse is placed in the appropriate position in
the (AW-_AT) -1 matrix. This leads to the
normal equations (B r(AW-_A r)-_B) by
forming and summing subsets of the normal
equations. The matrix AW-IA _ required for
a large solution may be on the order of
20 000x20 000, but the largest submatrix

requiring inversion is 5 x 5.
Development of the coplanarity and length

equations is discussed in the following text.

Coordinate System.--The observations in
and _ are transformed from right ascension
and declination _ to earth-fixed angles fl and

v. The conversion of _ and _ as corrected for
precession, nutation, and polar motion to the

angles fl and v is straightforward. The topo-
centric angle _ is measured with respect to
the equatorial plane and is equivalent to _,

i.e., 7 = 3. The angle fl is measured from the
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Greenwich meridian in a plane parallel to the

equator and is

fl=a-GHA (5.40)

where GHA is the Greenwich hour angle at

the epoch of the observation.

Coplanarity Equations.--The coplanarity

equations require that the volume of the

parallelepiped defined by the two station-to-
satellite vectors and the station-to-station

vector and their respective errors be zero.
The two station-to-station vectors are defined

in the local terrestrial coordinates as

p__(x_y_z_) =u_+v_]+wj_ (5.41)

where

Ui _ COS 7i COS Hi

Vi ----COS 7i sin Hi

wi = sin ,/_

The station-to-station vector p:_ is defined in

spherical coordinates by

B_=tan-l(Y-'-Yl_ 0</33<2_ (5.42)
\x_--x_/ -- --

7:_=tan_l[ z.,-z, 1(x_- xl)_ 4- (y_,-yl)'_)I/- '

_T 7T

--__<7_<_ (5.43)

r3= ( (X2--X1)2-_ - (y:--yl)_+ (Z_,--Z_)2)F -'

(5.44)

The volume of the parallelepiped defined by

vectors is given by their triple scalar prod-
uct, which is

COS _//1 COS /_1 COS _//2 COS f12 COS _/3 COS /_3q

Fo= cos "/1 sin fll cos 7: sin fl=, cos 7_ sin fl:,Jsin _21 sin ,/_ sin ,/:,

=C (5.45)

The coefficients of the expansion are

aft,

a, =-_ = cos _ sin 7_ cos 7_ cos (fl_ - fl_ )
-cos v_ cos _=,sin 7_ cos (flo_-fl_)

(5.46)

aF,,

=cos "/1 cos 7'-' cos v:, sin (/33-fl_)

-sin _/_cos ,/_ sin -/_ sin (fl:-fl,)

+sin vl sin ,/_ cos 7:; sin (/3_-fl_)

(5.47)

ar_,

a3 _ _ =cos 7,-, [cos "/1 sin ,/_ cos (fl_,-fll)

-sin _, cos _,:,cos (fl:_-fl,_) ]

(5.48)

aF,.
a_ - av_, - -cos ,/i cos ,/_ cos ,/_ sin (/3_ -fl_)

-sin v, sin ,/_ cos 7_ sin (fl._-fl_0

-cos 7, sin ,/_ sin ,/_ sin (/3_,-/3_)
(5.49)

aF,,
b, -= aB:, -cos 7_ [sin ,/_ cos 7-, cos (fl_-fl,_,)

-cosy, sin,/_cos (fl_-fl,)] (5.50)

aF,,
b: _-- _/:_ -- cos 7. cos v: cos ,/_ sin (ft.. - fl_ )

-sin 71 cos 7: sin 73 sin (fl3-flo_)

+cos 7, sin ,/: sin ,/_ sin (fl3-fll)

(5.51)

Since ill, 7_, fl:, and v_ are observations,

±fl,, _'/1, ±fl_, and ±_/., are residuals and are
designated v,, v.,, v_, and v_, respectively.

The variables to be solved for are correc-

tions to the station coordinates. The trans-

formation of unknowns from interstation

range and directions to coordinates are given

by equation (5.61), providing an equation of

the form of equation (5.34). This equation

makes adjustments to the interstation angles

fl_ and _.

Length Equations.--The length equation

is developed for two cameras and a laser
DME observing the satellite simultaneously.

Assume the existence of two cameras (A and

B), a laser DME (L), and a satellite (S),
when directions from the cameras to the

satellite are observed simultaneously (A to S

and B to S) and a range is observed at the

same time from L to S. These quantities and

auxiliary vectors and angles are shown in
figure 5.19. Assumed values of coordinates

of the cameras and the laser system are used
to calculate initial estimates of the directions

and distances between the cameras and the

laser. By taking scalar products of the sta-
tion-to-station and station-to-satellite vec-
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(5atelhte)

L (Loser)

FIGURE 5.19.--Geometry for two camera and one laser

DME observing simultaneously.

and the law of sines will give for b above

sin _j
b=a - . (5.56)

sm

Through the use of equations (5.52) through
•(5.54), we expand F linearly about the values
of a, r, f13, "/3,/_,, 74, obtained from the initial
station coordinates, and the values of/31, ./,
ft._,,./_, and so obtained from the observations.
Then, we have using differentials as adjust-
ments (d-a)

OF OF OF OF
F = F,, + _-_ da + -_- dr + -_. dfl:_+ . . . + -_-ds

=0 (5.57)

Divide F through by q=2(r-bcos_) and
denote the result by

aldfll + a2d71+ a3dfl__+ a4d./2 + a..,ds+ bld./_

+ b=,dT_+ b3da + b4dfl4 + b_d./4 + b_dr + C = 0

(5.58)

tors, the cosines of the angles, ¢, */, and _ are
obtained as follows :

COS _----- pl"p-°

=sin ./1sin ./2+ cos ./1 co_./_ cos (fl__-ill)
(5.52)

COS _/= pl"p3

= sin ./1sin ./3+ cos ./1cos ./3cos (fl3-fl_)
(5.53)

COS _= po_'p4

= sin ./_osin ./4_- cos ./2cos ./_ cos (fi_ -fl_)
(5.54)

where

t_l, ./1,/_, ./o-
tis, ./3

fi4, ./_

are directions to the satellite
are the interstation angles for
the two cameras
are the interstation angles for
one camera and the laser sys-
tem

From figure 5.19, the law of cosines will

give, corresponding to the laser length s

F=r_+b_-2br cos _-s_=0 (5.55)

where C=Fo/q, and the differentials on the al
coefficients are the observation residuals v_

for i= 1 to 5. This represents the laser length

equation. The coefficients and C are evalu-
ated from the initial values, where Fo is ob-
tained from the misclosure of equation
(5.55). The coefficients in equation (5.58)
are obtained as follows :

P_= b cot _[cos ./,_,sin (___-fl_) ]

P: = b cot _ [cos ./! sin ./:
-sin ./1 cos ./._,cos (fl__-fl_) ]

P9

-P_

b cot _[sin "/1cos ./_
-cos ./_ sin ./_ cos (/32-fll) ]

acos _[cos ./1cos ./_sin (_-_1) ]
sin

a cos _ [cos "/1sin ./_
sin

- sin ./_ cos ./:_cos (_ -fil) ]
-P5

a cos _ [sin _,1cos ./3
sin

-cos ./_ sin ./._cos (_-_1) ]

br sin _ [cos ./.,cos ./_ sin (fl,-fl_D ]
b-r cos _



340 NATIONAL GEODETIC SATELLITE PROGRAM

br sin _ [cos 7'-, sin 74
Rio= b-r cos

-sin _ cos w cos (fl_-B2) ]

PI_ = - P:,

br sin _ [sin 7: cos w
PI"_= b-r cos

-cos -/_ sin 74 cos (f14-f12) ]

a, = P1/sin _-P._/sin

a_= P,_,/sin _-P6/sin

a3= Pl/sin _-P_/sin

a_ = P,/sin _- Pxo/sin

as= -s/(b-rs cos _)

bl = P_/sin

b2= -P_/sin _/

b3 = sin _/sin

b,= P,,/sin

b_= - P,.,/sin
bo= (r-b cos _)/(b-r cos _)

The coplanarity and length equations are

transformed from 7, fl, r variables to x, y, z
variables by using the relationships

x2-x_=rcosTcosfl }

Y-'- Y' = r c°s T sin fl t (5.59)z.__- z, = r sin y

Differentiating these expressions yields equa-

tion (5.60). Inverting equation (5.60) pro-

duces the transformation equation (5.61).

Equations (5.60) and (5.61) are found in
inset below.

Other Condition Equations.--The three

types of condition equations derived for the

geometric solution are: (1) coordinate equa-

tions, (2) distance equations, and (3) coor-

dinate-shift equations. These equations may

be applied either to effect an absolute con-
straint or a statistical constraint.

The coordinate equation computes one of

the following: (1) it fixes the coordinates of

one or more stations exactly at some a priori

values, or (2) it statistically weights coor-

dinates of one or more stations according to

some a priori assessment of errors.

The distance equation for the absolute
constraint fixes the distances between two

stations in the adjustment. For the statisti-

cally weighted constraint, a distance betv<een

two stations is weighted according to its

estimated uncertainty from a priori informa-
tion.

The absolute constraint form of the coor-

dinate-shift equation causes rectangular

space coordinates of a pair of stations to

assume a given difference relationship. As is

true with the coordinate and distance equa-
tions, the statistically weighted constraint

form of the coordinate-shift equation causes

the differences in coordinates of pairs of

stations to shift together in accordance with

a variance obtained from an a priori model.
(1) Coordinate equation: Assume the

input coordinates of the ith station are the

coordinates about which a priori information

is available. Let the input values of x_, y, z,

be X_o, y,o, z_0. Error increments are applied

to write the following constraint equations:

x_,, + dx = xo

y_,)+ dy = yo

z,,) + dz = z,,

or

rdy:_ dxlqdy_ I

L dz._,-dZl J

[-- r cos _ sin fl

=h r co? cos fl

-r sin 7 cos fl

-r sin 7 sin fl

r cos

cos v cos fl-1
cos v sin B]sin ./

d7
dr

][dy =

dr

- sin fl

r cos 7

-sin _ cos fl
r

cos 7 cos fl

1

cos/_ 0 /
r cos y

-sin_sinfl c os_
r

cosTsinfl sinai

dx'-'-dx_ 1dY._,-dyl I

dz., - dzl J

(5.6o)

(5.61)
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where

dx + Cl =O

dy + Co.=O
dz + C_=O

C1 -_ xio - Xo

Co_= y_o- y,
C3 _ Z_o - zo

(5.62)

In conformity with previous notation, replac-
ing dx, dy, dz by x31__,x3i-1, x3_ results in

x__._.-C_=O }
X3i_ 1 -- C 2 : 0

x3_-C3=0
(5.63)

as absolute constraint equations for the sta-
tion coordinates. The constraints fix the
station coordinates at their input values.

If statistically weighted constraints are to be
applied, the above equations are modified to
the following :

In conformity with the previous notation, the
terms dx,, dye, dz,, dxr, dy,., and dzr are re-

placed by x___, xs_l, x., xr__o,x,._, and x,. to
obtain the distance equation

cos y cos fl (x,_._-x,._._,) +cos y sin fl
(x,__-x,.__) +sin7 (x,-xD +C=0

(5.67)

To convert this to the statistically weighted
form, an unknown difference, v, is added to
the above equation, yielding

v+cos 7 cos _ (x,_o_-x,._o_)+cos 7 sin/_
(x,__-x,._,) +sin _ (x,-xD +C=0

(5.68)

(3) Coordinate-shift equation: If local

surveys have established the geometric rela-
tionship between two tracking stations on a
local datum, quantities

v_+x3__._,-Cx=O }
V2-}- X3i_1--C2=O

V:_ + X3s --C3=0

(5.64)

(2) Distance equation : The absolute con-
straint form of the distance equation fixed
the distance between a pair of stations. The
statistically weighted constraint form of
equation treats a distance from ground sur-
veys or other sources in a statistically
weighted fashion according to its estimated
uncertainty. The distance equation is:

-dr+cos 7 cos fl (dx._,-dx_)
+cos 7 sin fl (dy._,-dy_)

+sin 7 (dz:-dz_) =0

(5.65)

d_=x.,-x, }
d,_= y.. - y_
d3=z._, -z_

(5.69)

may be known with substantial accuracy.
The coordinates x,, y_, z,, xo_,y.., and zo_may

not be well known in a barycentric coordinate

system. If the coordinates of the two stations
do not reflect the survey information, the
differences x._,-x,, y..,-y, and z2-z_ are not

the same as those given by the local survey.
The coordinate shift is an equation requiring

the corrections to corresponding coordinates
of the f" and k 'h stations to reproduce the

differences in surveyed coordinates. Differ-
entiating equation (5.69) results in

If the stations are the correct distance apart,
dr=O, but if not, let C=dr. If the r th and s 'h

ground stations are involved, the equation is
written as

cos 7 cos fl (dx_-dx,.) +cos _ sin fl
(dy,-dy,.) +sin y (dz,-dz,.) +C=0

(5.66)

dx.,-dx =D,- (xo_-x,) computed}
dye-dye=Do.- (y._,-y_) computed
dz... - dz, = D_ - (z._,- z, ) computed

(5.70)

After replacing dxo_, dy._,,dz._.,dx, dy, and dz,,

by dx_,_:, dx_._, dxk, dx__._.,dxj_,, and dxj, re-

spectively, the coordinate-shift equations are
written as
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dXk_.z -- dxj., -_ cl )
dXk_l -- dxj 1z c.,

dx_. - dxj = c:_

(5.71)

If an uncertainty is to be attributed to the

local surveys, an unknown difference v_ is

added to each of the above equations to ob-

tain the statistically weighted constraint

form of the coordinate-shift equations:

where the subscript R stands for reference.

Equations (5.73) and (5.74) are used to

convert Rapp's data from the equal-area

system to the GSFC system through the
relationship

Agl¢= ±gL'._+TEA--VI¢ (5.75)

which becomes

v, +dxk_.;-dx_ "2_Cl

v.; + dxl_ _ - dxj_l z c.:

V._+ dXk -- dx i = c_

(5.72)

5.4.2.2 Surface Gravity
(J. Richardson, Computer Science Corp.)

Conversion of Rapp's Gravity Formula to

the GSFC Formula.--The anomalies pub-

lished by Rapp (1972a) were referred to a

gravity formula consistent with the follow-
ing constants :

a_= 6 378 137.8 meters

f= 1/298.258

GM = 3.986 013 × 10 _ m:_/sec _

The gravity formula given by Rapp which is
consistent with these constants and includes

a term of -0.87 mGal for eliminating the

mass of the atmosphere is

7_A=978 033.5 (1+.005 302 43 sin 2

--0.000 005 87 sin_2¢ (mGal)

(5.73)

where the subscript EA stands for equal
area.

The parameters used in the GEM 6 solu-
tion are

a_= 6 378 155meters

f= 1/298.255

GM= 3.986013 × 101'm_/sec _

_= 0.7292115146 × 10 -_ rad/sec

The parameters above yield the gravity for-
mula

_,R=978 029.1 (1+0.0053025 sin _

- 0.00000585 sin'-' 2_) (5.74)

Ague = ±gEa + 4.4 (5.76)

With this conversion, the equal-area anoma-
lies were used to generate a set of data used

for computing normal equations, as described

in the following section.

Normal Equations Using Surface Gravity.

--Mean free-air gravity anomalies are used

to estimate potential coefficients describing

the Earth's gravitational field. The analysis
required to perform this estimation is as

follows. The gravity potential at a point p on

the Earth's surface is expressed as

W(p) =V(p) +_(p) (5.77)

where

GM _ "
V (p)=--_1 + _ _ V(a':YP_(sin %)

rp ( _=_ ,,,:o L\ r_ /

(Cr_cos(mxp)+Sr_sin(mx_));} (5.78)

(p) = ½ _-_r_cos _ Cp (5.79)

The earth's equatorial radius is a,, and r, is

the geocentric distance to p. The gravity
anomaly (±g) at the point p is expressed in

terms of potential coefficients as

_gp= (g.)p-- (g(,),

i _ n

: 1)• rp L.:=

(C*_cos (m_) +S_sin (mx_))P_ (sin ¢')1
...$

(5.80)

where

g. is observed gravity derived from the re-

lationship go = Ag + 7o
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70 is normalgravity on the reference sur-
face of the observation

gc is an estimate of gravity computed from

the a priori coefficients, to a sufficient

approximation

Ago

C,m

 (DW 2+ 1 (5.81)

is a constant term representing the

variation of mean gravity from the

reference system

represents the difference between the
values of the coefficients and values

consistent with the flattening of the

ellipsoid to which the anomalies are
referred

The observation equations are formed from

equation (5.80) as follows :

Agp = Koo + K__oAC,_,o+ • " + K,,,AC'2cos (mxp)

+... + K,,,±S_sin (m),p) (5.82)

where

goo

AC.

AS,

=the constant coefficient of ag,, for all
observations, which is used to esti-

mate ±g,, simultaneously with the
spherical harmonic coefficients

GM 1)(a_"
=--_y(n-_ k_/ P,_(sin _p) (5.83)
__(s) _ _(o)-_
_q(s) .¢(o) _ (5.84)
--"."nm--_nm)

where "(') R(s),_ ...... are the coefficients of the

spherical harmonics for the solution model of

the gravity field, and the superscript 0 indi-

cates coefficients of the a priori model of the

gravity field.

The set of a priori coefficients used in

computing the coefficients p(o) and .q(o) corre-

sponds to the coefficients used in the orbital

computations, thereby allowing the results

from the computations of gravity anomaly to

be combined with normal equations derived

from satellite-tracking data.

In matrix notation, the set of observation

equations is

Ax=Sg (5.85)

where A is an l-by-k matrix (for l observa-

tions and k coefficients) of the form

sin} (iX,) (5.86)aii= K,,, + K, cos

where K_j is defined in equation (5.83), where
the choice of sine or cosine factor is deter-

mined by the occurrence of a sine or cosine

term in the ]tL row of x, and

x is a k-element solution vector of cor-

rections to the coefficients of the

spherical harmonics

_g is an /-element vector representing 1

residuals in observations of gravity

The associated system of weighted least-

squares normal equations may be written as

(ArWA)x -- (ArW)_g (5.87)

where W is a matrix of weights and is usually

inversely proportional to the variance of the

measurements (_,j).

5.4.2.3 Combination of Different Sets of Data

(Mark Sandson, Computer Sciences Cor-
poration)

For GEM 5, the gravitational potential and

the station coordinates are computed by

using only the orbital (dynamic) theory. For

GEM 6, the orbital theory is combined with

geometric theory and gravimetric theory.

The dynamic theory is used to generate
systems of arc-specific normal equations ; i.e.,

one system of normal equations is generated

for a given week-long arc. These systems of

normal equations are written in terms of

arc-dependent variables (orbital elements)

and arc-independent variables (gravitational

potential and station parameters). Process-

ing continues by reducing these systems of

normal equations to systems written in arc-

independent variables only. Once this is done,

normal equations using any number of arcs

and/or surface and geometric data are com-
bined. The elimination of orbital elements

from satellite-specific systems of normal

equations is described in this section.
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The normal equations formed for individ-
ual arcs are of the form

where

E ,iB lrx,r= (5.88)

B1 is the k x k matrix of coefficients involv-
ing partial derivatives with respect to
arc-independent variables only

B_ is the (n-k) x (n-k) matrix of coeffi-
cients involving arc-dependent partial
derivatives only

B3 is the (n- k) x - k matrix of coefficients
involving product term partial deriva-
tives of arc-independent and arc-de-
pendent variables

X1 is the k-dimensional vector X1 ..... X_
involving arc-independent variables
(gravitational parameters and tracking
station coordinates)

X_ is the (n- k) -dimensional vector Xk+,

• . . , X,, involving arc-dependent vari-
ables (satellite vectors, tracking system
biases, and drag and radiation pressure
coefficients)

bl is the k-dimensional portion of the right-
hand vector associated with the arc-

independent and product-term partial
derivatives (B, and B r )

and

2 is the (n- k) -dimensional portion of the
right-hand vector associated with the
arc-dependent and product term partial
derivatives (B_ and B3)

which yields the equation

(B1-BrB]'B,)XI=bl-BrB;_,lb; (5.91)

Equation (5.91) is the reduced system of
normal equations in arc-independent vari-
ables only. A reduced set of normal equations
is formed for each arc prior to its aggrega-
tion to form a multiarc solution for the arc-

independent variables• Once equation (5.91)
is solved, the result is substituted into equa-
tion (5•89) to produce an estimate of X_, the
arc-dependent variables.

A notational simplification is obtained by

B* =BI - BrB_IB_
b* =bi-B_B_lb__

X* =X_
(5.92)

which produces a reduced set of normal equa-
tions of the form

B*X*=b* (5•93)

The combined, reduced, normal equations are
formed by simple matrix addition, where

N

C= _Bi*
i=l

N

_=1

and where N is the number of systems of
normal equation to be combined• In the GEM
solutions, each of the N normal equations is
weighted by a factor (1/rms:), where rms is
the weighted rms of residuals for the system
of normal equations used. The resulting com-
bined normal equations are of the form

The back substitution solution for X,_, gives CX* = c (5.94)

X:=B; _ (b:-B_X_) (5•89)

Using this result to find X1 produces the
expression

_X_+B_ [B_I(b2-B_X1)] :bl (5•90)

Solving equation (5.94) yields

X* C-_c (5.95)

from which X* is used to obtain estimates of
the gravitational potential and the coordi-
nates of the stations.
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5.4.3 Theory Used to Derive the Detailed
Global Geoid
(S. Vincent and J. Marsh)

In section 5.6.3, a model is presented of
the geoid which covers the entire earth with
a contour interval of 2 meters. This model

was derived by first computing geoidal
heights using a gravitational potential de-
rived by dynamic satellite geodesy and add-
ing to these additional geoidal heights de-
rived from gravimetric data.

The geoidal height at any point P on the
Earth can be computed by means of the
well-known formula of Stokes :

R f 2_r f 7r/2

N(#, X) --4_?J×,:o J _,:-_ Agr(¢" X')

S(O) cos #' de' dX' (5.96)

where

_', x'

N(¢, x)

R

_7

±gr (¢', X')

and

are the geocentric latitude and
longitude of the fixed point

are the geocentric latitude and
longitude of the variable point

is the geoidal height at _, x

is the mean radius of the Earth

is the mean value of gravity over
the Earth

is the free-air gravity anomaly
at the variable point

1
S(O = sin (0/2)

-6 sin (_/2) +1+5 cos 6

-3 cos OIn sin (_/2) +sin s (_/2)

where

O= cos -_ [sin ¢ sin ¢' + cos p cos _' cos (X- X') ]

(5.97)

In order to combine surface data and data

derived from GEM 4 (Lerch et al., 1972c) for
computing the geoidal height at point P, the
Earth is divided into two areas, a local area
(A1) surrounding the point P, and the re-
mainder of the Earth (A_). Also, each grav-

ity anomaly in each area is partitioned into
two parts, Ag_ and Ag=.. The Ag8 value is de-
fined as that part of the gravity anomaly
which can be represented by the coefficients
in a spherical harmonic expansion of the
gravitational potential derived from satellite
observations. The Ag_ value is defined as the
remainder of the gravity anomaly. Using
this division, one can write equation (5.96)
in the form :

N(¢,X) =N_+N..,+N_ (5.98)

where

Yl: _f 27T /: [Ags(_/,_')S(O)COs_td_'d_' ]

N R [Ag.,(¢,Z)S(O)cosC d¢' dZ]

f d¢' dx']

(5.99)

How each of the three components pre-
sented in equation (5.99) is handled in the

computations is now considered.
Given a set of coefficients C,,_ "_S,,_ a num-

ber of methods exist for computing the N1
component of the geoidal height.

In the present case, N1 was not computed
by using the integration indicated in equa-
tion (5.99). Instead, the procedure described
by Bacon et al. (unpublished, 1970) was
used. Briefly, this procedure consists of fix-
ing a value of the potential Wo and comput-
ing the component N1 as

N_=r-r_ (5.100)

where r is the radial distance to the equipo-
tential surface defined by Wo and the poten-
tial coefficients of the GEM 4 gravitational
potential model and r_ is the radial distance

to a selected reference--an ellipsoid defined
by a semimajor axis a_ and flattening f.

The radial distance r to the equipotential
surface Wo at a particular latitude and longi-
tude _, x is determined by using the equation
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Wo= a (r,¢,x) = --r-[ 1 + ____ -_- (C_,cosmX+X_'sinmx)P_(sin¢)J+_--cos_¢
(5.101)

where r is the geocentric radius, the only un-
known in this equation. Values of rl=R + _,
r_=R-_, and r3= (rl+r._)/2 are chosen for
substitution into equation (5.101) for evalu-
ation of the functions a, (r1,¢,_), as(r_,¢,x),
and a_ (r3,¢,x).

The r_ for which la_- Wof is a maximum is
identified and eliminated from consideration.

The two remaining values of r_ are labeled rl
and r2 and are used for calculation of r_= (rl
+r_)/2. The potential functions are evalu-
ated with these arguments and the worst-

value elimination process is repeated. The
process continues until an r is chosen so that
la(r, ¢,x)-WoI<_lO -_. With this value of r
and the value of r_ computed from the input

values of a_ and f of the reference ellipsoid, a
component N_ is computed. The area A1 for
a point at which the geoid was being com-
puted was defined to consist of a 20-degree by
20-degree area centered on the point. The
formula used was

R 400 --

N,_.= _7_5j___±g.,(¢_ ,x _) S (0j)

where

Ag2 (¢_,X _)

S(e),

is the mean value of ±g._,within
the ]th 1-degree by 1-degree

square
is the value of Stokes' function

at the center of the ]th 1-degree
by 1-degree square

±¢' = Aa.'= 1°

The value of Ag2 used for each 1-degree by
1-degree square was computed from the
formula

Ag 2= ±g_-- Ag_

The _-g_values are mean 1-degree by 1-degree
free-air anomalies provided by surface grav-
ity data. Values of ±g_ for each 1-degree by
1-degree square were computed by carrying
out the computation

Ag_= _g_F + "t_F+ P.C. - "tN

AgIF

B.C.

"y.v

where

is the mean value of free-air anomaly
referred to the International Gravity

Formula (1924)

_rF is the value of surface gravity as com-
puted from the International Gravity
Formula (1924)
is the Potsdam correction, 13.7 mGal

= 978 032.2 (1 + 0.0053025 sin s ¢
-0.00000585 sin _ 2¢ mGal (Rapp,
1969)

In carrying out the computations, _F and _,_
were evaluated at the center of each 1-degree

by 1-degree square.

The Ag, values are that part of the mean
1-degree by 1-degree free-air anomalies rep-
resented by the GEM 4 harmonic coefficients

used in computing N_. The _g, values are
obtained by evaluating the following equa-
tion at the center of each 1-degree by 1-
degree square :

k

+S_sin mx']P_ (sin ¢') (5.103)

where ? is the mean value of gravity over
the Earth in milligals.

In equation (5.103), the C2 and C4 terms
do not represent the complete coefficients,
but rather the difference between the com-

plete coefficients and the coefficients compat-
ible with the ellipsoid used in computing N_.

A oThe differences used were C2=0.01954

× 10-G and aC_ = - 0.2417 × 10-6 (fully nor-
malized). For the procedure described above

to produce correct results, the quantities ±g_,

ag,, and the a and f which define the ellipsoid
used to compute N, must all be compatible.
Compatibility implies that the values of
Cg and C{ used to compute the values of

theoretical gravity needed to obtain ±g_ and

Ag, are the same as the values of Ca and
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C_, implied by the reference ellipsoid. Cor-

rect results in the absolute sense also depend
upon the value of Wo chosen to represent the
true value of the potential of the geoid.

The effects of not making Age, Ag,, ae, and f
compatible are twofold. First, all the com-

puted geoidal heights may be in error by a
constant. In addition, there will be a sys-
tematic error as a function of latitude. The

effect of selecting an incorrect value of Wo
would be to introduce a constant error in all
geoidal heights.

In the calculations described here, the term
N3 in equation (5.98) was set equal to zero.
This is equivalent to assuming that the GEM
4 values for gravitation are adequate for the
area A2 at a distance of more than 10 degrees
from the computation point.

5.4.4 Theory Used for Special Purposes

The theory presented in sections 5.4.1 and

5.4.2 is satisfactory for determining orbits,
tracking station locations, and gravitational
potential. For other purposes, theories hav-

ing special applications are preferred. It may
be remembered that the theory of section
5.4.1 involves numerical integration of the
differential equations of motion. Such a pro-
cedure is excellent from a computational
point of view, but it does not give any ad-
vanced insight into the physical results.
When this is needed, an analytic theory must
be used. GSFC found that an analytic theory
was particularly needed to account for

the luni-solar and solar-radiation pi'essure
perturbations of the orbits of near-earth

satellites. This theory is given in the next
two sections. Note that the equations are
truncated. The full expansion, too lengthy to
be given here, will be found in Murphy and
Felsentreger (1966) for luni-solar perturba-
tions. The theory for perturbation by solar
radiation pressure is given in various in-
ternal publications by GSFC. In sections
5.6.4.1 and 5.6.4.2, typical perturbations are
evaluated by means of these theories.

In order to get a better grip on the rela-
tions between dynamic satellite geodesy and

the structure of the solid earth, M. A. Khan
developed the theory of the hydrostatic flat-
tening of the earth as far as terms to the sec-
ond order in J2. This theory is given in sec-
tion 5.4.4.3. The new figure and the constants
needed to convert from the International

Gravity Formula (1924) to the formula ap-
propriate to the hydrostatic figure are given
in section 5.6.4.3.

Because dynamic satellite geodesy uses the
Earth's gravitational field in the form of a
series of associated Legendre polynomials,
whereas gravimetric geodesy adds on the
centrifugal force and expresses the result as
gravity anomalies, conversion from one form
to the other is laborious. Khan used the

theory of isostatic gravity anomalies and an
expression of the Earth's topography in
spherical harmonies to expand the isostatic
potential into spherical harmonics. This
theory is given along with the results in
section 5.6.4.4.

5.4.4.1 Luni-Solar Gravitational Perturbations
(J. Murphy and T. Felsentreger)

The disturbing function for the Sun (or
Moon) is

R GM'[r_-- r3 1=_--L_2'2 (S) +_P_ (S) + ......

which can be e)/panded in terms of artificial
satellite orbital elements and solar (lunar)
ephemeris quantities. In this expression,

m' is the ratio of the mass of the Sun (or
Moon) to the mass of the Sun (or
Moon) plus the mass of the Earth

r' is the geocentric distance of the Sun
(Moon)

r is the geocentric distance of the satel-
lite

S =cos (r r').

Only secular and long-period terms from
the second and third Legendre polynomials
are considered (i.e., only those terms not de-
pendent upon the mean anomaly of the satel-
lite). In addition, terms from the third
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Legendre polynomial having the eccentricity of the disturbing body as a multiplier
neglected. The Earth's equatorial plane is adopted as the fundamental plane.

The secular and long-period part of the disturbing function then, is

are

3 _\ 15 2_7 ar[15 45 _k 175 .,_7_

where

3 _ 3 . 5.,\
P=l(1-_sin'i)(1-_sm_)[l+3e'cos(x'-_'-_')]

+3sin 2isin2i'[cos(_'-_)+3e cos (x'-_'-_)+3e' cos (W-o,'-2a'+_)l+ ..

]Q=cos'_cos4_ cos(2x'-2o,-2_)-21-e' cos(x'+_'+_'-2_-2_)+ e' cos(3x'-_,'-_'-2_-2_)

12( 3"2'''_- 28'_sm )LCOS _+_e 3_ ]+_sin i 1 .... cos (X'-_'-_'-2o,)+2e' cos (X'-d-_'+2_) +

3.
Y = - #sin i (1 - 5 cos -_i) sin i' (1 - 5 cos _ i') cos (x' - _' + o,)

1 _i.. i'
+ _cos _ [ l + 10 cos i - 15 cos _-i) sin2_ ( 1 - 10 cos i - 15 cos 2 i) cos (a' - 2_' + o,+ _})

1 _i i' i'-
+_sin _ (l +10 cos i-15 cos_ i) sin2 _(l+10cos 15 cos2 i') cos(X'+,,,-_)

-5sin i(1-2 cos i-3 cos _/)sin i' (1+2 cos i'-3 cos _ i') cos (x'-3_' +,,,+ 2_)

5.
-gsm i(1+2 cos i-3 cos 2/)sin i' (1-2 cos i'-3 cos _ i') cos (W+.q'+o,-2_) +...

and

Z = 3 sin. _ i sin i' (1 - 5 cos: i') cos (x' - _' + 3,0)

i.._i' i'sin _ i cos'-'_sm _ (1-10 cos -15 cos _ i') cos (X'-2_'+3o,+_)

3 i _i' i'
- l_sin'-' isin s _cos _ (1+10 cos -15 cos _ i') cos(X'+3_,-_) +...

The disturbing function R is substituted into the variation equations for de/dt and di/dt,
and these equations are integrated to obtain perturbations _e and _i. Then, the following
equations are integrated :

d (_M) dM d/l'l dM
dt- dt -n+_-_Se+_i

d (&,,) do, d_, dz, _.
= +_e+-_dt dt

d ( _ )dt- d_ + _e _e +dt_i _i
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where M, ,;,and (t are expressed by

3C°a_ 3 (C °) .'a_• I=-n 1 4a2(l_e._)v_(1-3cos2i)-_ 128a4(l_e2)W

[10-25e2+ 16_/1-e 2 - 6 (10-15e.'+ 16x/l- e2) cos 2 i+ (130-25e2+ 144_/1--e2-) cos 4 i]

042 }

45C4aee
128a_ (1_ e._) v_ (3-30 cos 2 i +35 cos 4 i)

3C°a_ 31C O_2a2
k 21 e

_,=n 4a" (1-e'_) _ (1-5 cos.' i) + 128a_ (l_e.') 4

[- 10-25e.' + 24\/1- e.' - 6 (6-21e2+32X/1-e.') cos .' i + 5 (86- 9e_ + 72Vri-Ze2) cos _ i]

15C°a_ [3 (4+3e.') -18 (8+7e_) cos .' i+7 (28+27e2)cos , i] }128a' (1 - e=') 4

_COa2.^._, 2 e,.u_i 3(C_2)2a_cosi[4_9e.'÷12__(40_5e._+36_)cos_i]_=n 2a2(l_e.') 2 ÷ 32a4(l_e.')_

15C°a_ (2 + 3e.') cos i }32a_ (l_e.') _ (3-7 cos.' i)

Integration of the variation equations is accomplished by assuming that a, e, i, a', e', and i'
are constants and that _, _, _', o,', and a' are linear functions of time. The secular motions

for o, and _ are ,;, and _ as expressed above. Thus

$e = _l - e."A
na.' e ""

cos i 1
$i= A4

na _ V 1 - e _sin i na _ V_ - e.' sin i A...

cos i

_o,= - na.' V_-e_ sin /-A'_

1 dfi d_
A_ + _-A_ +

na -__1 - e _sin i ae _'az A_

Vl-e.'4 + _e_eA_+d_oAna "_e ._4 di

_ 2 . 1 - e-' dM dM A
M= - _ A _- -_-y-_A_ + _- A_ + -d-(

Expressions for the various A_ are as follows:

= - _-n e.' { - 4 sin.'-' 3

2cos2o, 3e,COS (x'-o,'-fr-2_,) _ ,cos (x'-o,'-a'+2_)']+_e - _--_
2_, k'-_,'--_'-2,_ k -,_ -_ _ J

+3 sin.' i sin _ i'_ 2 cos (2;_'-2fl'-2o,)
[_ 2 ()_'- _t'- _,)

3 sin" i sin _ i' [2 cos (2_' - 2_' + 2_)
w

2 (_'-_'+_,)

÷..-

(_'+_'-_'--2_,) 7e, COS (3A'-o/-3_t'--2_)7
e' c°sk, + ,_,,_ _, _ 26, + 3k' - _,' - 3_' + 2_

e,COS (A'+_'-_'+2_) . ,cos (3_'-_'-3_'+2_)'],1+_e - _ , ,
k'+_,'-_'+26, 3k __- _l)

(See following page.)
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a_[15 45 ._l- 3 .
-m'_;(_4e+_e, )]-_sln i (1-5 cos _ i) sin i'(1-5 cos 2 i')

(z-_'-_)3 cos
-_sin i (1-5 cos _ i) sin i' (1-5 cos -_i')

+5sin i (1-5 cos-' i) sin:' /,cos (3x'- 3_' + o,)
3X'- 3ft'+ _,

.5._ sin:_ i, cos (3;_'-3_'-_) 1, _smi (1-5cos2i) 3X' - 3_' - _, + " " "

--_-m175 '_ea 3F 9 . _ k'-_'+3_,IY6sm ' i sin i'(1-5 cos 2 i') cos (x'-o'+3_)
L.

+9sin:_ i sin i' (1-5 cos 2 i')
cos (X'-_'-3_)

k'-_'-3_

15 • ._ i, cos (3h'-3_' + 3o,)
_sm' i sin '_ 3k' - 3ft' + 3_,

cos (x'-_'+_)

15 . ._ .,cos(3X'-3_'-3o,)7
--_sm" isin:_z _¢t'-_, ]+""

aR
A._-= f -_dt

= 3_2n"-'m'a2(X+3e '-")

{ [ (_'-_) cos (x'-o,'-_) _3e,COS (_,'-o/-2_'+_)]-sin 2i sin 2i' 2 c°s_,_d +3e' ),__,,__ k'- _,'- 2_'+ _t

.., .,F2cos (2ft'-2_) _ ,cos (x'-o,'+_'-2_) , ,cos (_,'-_'-3_'+2ft)7

-2sin_ism-zL 2(_) +he k_/,_ _e kv____ J

-4sin'-'icos' 2cos (2X'-2_) e, COS (X'+o,'+_'-2_) _ ,cos (3;_ -o,-ft -2 )-]
2(k'- ft) k'-6,'+ a'-2_ +'_e 3k_- _,_ _, _22(_ J

+2sin2isini, cos_ 2cos (2;_'-_'-_) e, COS (x'+,,,'-_) 7e, COS (3;_ -_,-2_ -_)']
2k'-a'-_ k' + 6,'-_ _- - -3_-_,' L2_2_' _ J

• ,i'F2 (2x'-4_'+2_) e,COS (;_'+o,'-3_'+2_t)+7e, COS (3x'-_,'-5_'+2_) 1+4sin _ism2L cos2 (k'- 2¢t' + ¢t) k' + 6,'- 3_' +2¢t 3_'- 6,'- 5¢t' + 2ft

+2 sin 2i sin i' sin _i'
2

× [ 2cos (2_,'- 3_Y + _t)
L 2__'_

f DR dt
A:_= j_-

2n,._,m,a{I(l+3e.,)f pd t 15 f Qdt 1= +_-e'-'

3ar[15 )f Ydt+l  4_ e:,f Zdt]_L_,y6e + 245_6e:' }

_ e, COS (x' + o,'- 2f_' + ft)
k'+6,'- 2_'+ ft + 7e' c°s -3_ 4_ _(3x' - o,' - 4_' + _) ] } +""

and

f DR dt
A,=j_

=3n"-'m'a'-'{e[/Pdt+5 f Qdtl-_I(_--4+ _6e'_)f Ydt+ l_54 e" f Zdtll

where
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f Pdt= _--_(1-3sin_ i)a_ +3sin_ i(a..,) + 3sin_ i(¢¢_)

f 1 +i _6sin_ i ((_) +Tisin -_t_+) +Ttsm _ cos _(aO +Tisin ism _(a+)Qdt=vicos-2(a+)+ 1 +i, , 1 . . _i 1 . _i

f 1. 1 2iYdt = _sm i (1 - 5 cos _ i) (ag) + _cos _ (1 + 10 cos i- 15 cos _ i) (alO)

1. 2i,_ 5 . 2.. 2i
+Tisln _(1-10 cos i- 15 cos _ i) (a_) +_sln +sm _ (_,._)

fZdt=_-_sin_i(a_+)+ff_sin_icos-_(o_)+_-_sin isin _ (_z_+)

3 +i 3 . +i 1 6i 1 _i
+_sin i cos -_ (a_,) +_sin i sm -_ (__+o) +_cos -_ (a21) +_sin_ (a_.+)

where

a6_ =

a+.+=

and so

4a_ + 3a62

3 . _., sin (_t'-_'-fl')
(1-2sin _)[l+3e' X'-_'-_' 1

sin s i'[ 2 sin (2X'-2_') _ e' sin (X' +_'--e') +7e,Sin (3X'-_'-3e') 7
k 2 (k'-Ct') k'+_,'-Ct' 3k'- _)'- 3_' l

on, the other a+ being similar functions of terms a_ similar to a6, and a6_.

= _--_n':m' a_(l +3e_)[sinicosi (-al+a3) +cos2i (a+_)]+ ...

A6= f $e dt

_ dt

15 n ''_ {--__ m,e_/l_e _ -4 sin_ i
128 n

( 3 _ )'4 sin 2,o 6e, Sin (X'-o]-_'-2_) +oe" ,sin_ _(_'-°_'-_'+2°')-],,1-_sin i' 4_ _ (k'-_'-a'-2_) _ (k __ J

+3 sin s i sin s i'-4 sin (2A'-2_'-2_o) 2e,Sin (X' +o,'-_'-2_,) .... sin (3X'-o/-3_'-2o,)']
' 4(k'-a'-,_) 2 (k'+_'-CY_ -e_ae (3:ffZ_-_-_-_3--drL-__) _ J

-3 sin 2 i sin 2 i'-4 sin (2A'-2_'+2o,) _ ,sin (X'+_'-_'+2_) ._ ,sin (3X'-¢o'-3_'+2o,)']

+ 8 (a,,o - a_+_+- a_+_+ a_,+ - a_,6 - a_+s) + 4 (a_,l - a_,_ ) + 16 (a_+_ + al,9 + a_o + a_ ) } +--.

where

4i 4i'
a_+o=COS _cos -_

4 sin (2X'-2_o-2a)
• _-[U __ N_

sin (X'+o,'+_'-2_-2a)
2e' (k,÷_,+_,_2__2_) _

._ , sin (3X'-_'-_'-2,o-2_)l
+ lae -(3_2---_-_) _ j
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_i . "'i'
a,_l----cos _sln-

I4sin4 (__} '-'(2_'-- 2o,-- 2_) +_e_ ,sin(_,.,(_'-- ,,,' + _'-- 2o,--2_D_,;,.,+¢t-" -- 2(;,-- 2_)_- --6e' sin(),, -- (;,'-- 3f_' + 2_, + 2_) '-'(2" -- _" -- 3_' + 2_" + 2_2) 1

• , i , i'
a,4., = sin _cos

4sin (2,2,'+2ol--2_)_2e, Sin (_,'+_'+_'+2_--2_) __ ,sin (3)_'--o}--_'+2o,--2_)__(k,_-_L_.v (_,+_,,+¢t,+2_,_2_)_ +14e - ._-._7.

etc.

A_= f _i dt

cos/ j 1 f=na2_/l_e._sin i A_dt-na..,_jl_e2sini A...dt

cot i 3
e A _ n,_ m'

=- 1-e _ 32 n x_sini

(( 3 .,){ [ sin(_'-_) _,sin(A'-,,,'-_)l+_.e- -sin2isin2i' 2 _-D,L_))_ +3e (k,__, _) _

.,F4 sin (2a'-2_) 6e, Sin (_,'-o,'+_'-2_)
-sin_isin'-'z L T(_-_); + (k,-_,+ct,-2_).-,

3e, sin (_'- o,' -- 2D' + D) 1( k'--,;/ -- 2(_' + _ ) '-'

,sin (X'--oJ-- 3_'+2_)31
j/)+

In these expressions,

a' is the semimajor axis of the Sun's (Moon's) orbit relative to the Earth

e' is the eccentricity of the Sun's (Moon's) orbit relative to the Earth

i' is the inclination of the Sun's (Moon's) orbital plane to the Earth's equatorial plane

n' is the mean motion of the Sun (Moon) relative to the Earth

)4 is the mean longitude of the Sun (Moon) measured in the Earth's equatorial plane from

the mean equinox of date to the mean ascending node of the Sun's (Moon's) orbit, and then

along the orbit

_' is the longitude of mean ascending node of the Sun's (Moon's) orbit on the Earth's equator

measured from the mean equinox of date

_' is the argument of perigee of the Sun's (Moon's) orbit measured from the mean ascending

node on the Earth's equator

Murphy and Felsentreger (1966) have shown that these luni-solar forces can produce per-

turbations in orbits which are comparable in size to long-period, zonal harmonic effects. (See

Results and Analysis.)

As is true of gravitational potential harmonic effects, luni-solar resonances can occur

which cause unusually large perturbations in satellite orbits. Felsentreger (1966) has shown

that a 550-year-period perturbation, caused by a nearly constant longitude of perigee, is ob-

servable in the eccentricity of the Relay 2 satellite. This perturbation can be explained by two

terms in the luni-solar gravitational disturbing function presented previously; namely,

15
F_=_a"-e'-' (l+cos i) -_

[n®_m® sin _/®cos 2 (_®-_-_) +n_m_ sin _ i_ cos 2 (gt_-_-e) ]

where
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io_ i¢

is the mean motion of the Sun (Moon) relative to the Earth

is.the ratio of the mass of the Sun (Moon) to the mass of the Sun (Moon) plus the
mass of Earth

is the inclination of the Sun's (Moon's) orbital plane to the Earth's equatorial plane
is the longitude of the mean ascending node of the Sun's (Moon's) orbit on the
Earth's equator measured from the mean equinox of date

Direct analytical integration of the second (lunar) term cannot be performed because the
motions of io _,, and _+_ are all commensurate. However, a transformation made to the

ecliptic as the basic reference plane makes analytical integration possible. The disturbing
function F_t then becomes

15 2
F_= _-4a e (l+cos i)_{no_mosinSiocos 2 (_®-_,-_)

+ n,2m, [sinS/® (cos_i '' - ½ sinS/'') cos 2 (_ + _)
-sin i" cos i" sin io (1 -cos io) cos (_"+ 2_+2_)
+sin i" cos i" sin io (1 +cos io) cos (_"+ 2o,- 2_)
+1/_ sin si" (1-cos io) s cos2 (_"+,o+_)
+ ¼ sin -_i"(1 +cos io) _ cos 2 (a"-_+_) ] }

where

i" is the inclination of the Moon's orbital plane to the ecliptic=571453964
_" is the longitude of the mean ascending node of the lunar orbit on the ecliptic measured

from the mean equinox of date

Then, the perturbation in eccentricity is

15__ {(_e)_=_-2aVae_fi-e2(l+cosi) s n_m®sin_-i° cos 2(_®-_-_)2 (_,+_)

sin si®cos _-i" 1 . 2i,,
-- 9. sln

+n_mc 2(_+_) cos 2(_+_t)

+ sin i" cos i" sin i_ (1-cos io) cos (_" + 2o,+ 2gt)
_" + 2 (_+ ¢t)

+ sin i" cos i" sin i® (1 + cos io) cos (_" - 2_,- 2fD
_"-2 (,_+_)

sin s i" (1 -cos i®) _.cos 2 (_"+ _,+_)
8(_"+_+_)

sin s i" (1 +cos i®)_cos 2 (_t"- o,- ft) ]_+
8 (_"-_,-_)

The accuracy of this expression in explaining the observable perturbation in e is shown in

_,IIU z'xaa_ay olo.
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5.4.4.2 Solar Radiation Pressure
(J. Murphy and T. Felsentreger)

The force of solar radiation pressure on
the surface of a satellite causes a long-period

perturbation of the orbit• This perturbation
can be significant for satellites having appre-
ciable area-to-mass ratios• The long-period

part of the solar radiation-pressure disturb-
ing function is (Murphy and Felsentreger,
1966)

R _3aer _i . _i_
_= -ryLCOS _sm _cos (,,,+_+x®)

2 4 240
+cos _cos _cos (_+a-xo)

• 2 _ 2 _0

+ sin _cos _cos(_-a+x®)

1
2sin i sin io cos (_+x o)

1 . . ]
+_sin i sin 4o cos (_-Xo) J

where

and

A

F= (4.63 x 10-6 kg/msec 2) (A/m)

is the effective area of the satellite in the

direction of the Sun, and

m is the mass of satellite•

The perturbations in the orbital elements
are

Se- _1 - e_
na.2e B_

cos i 1
_i= B_-

na _Vq - e2 sin i na 2_- e_ sin i

B_ - 1 - e_ _ dM dM8M -_ _ + _-_B_+ _B_

_= cos/ B_4 _/1- e_B_
na_lffi_-e _ sin i na_e

d__ d_

1 B_ + -7-d_ + _-.da
na _sini aeB_ a_B_

B2

where

..,3aeF =i . _ cos(o,+_+x_)
=--/_'--_-LCOS _Sln i_:,2 _'+_+)'o

_i 2i® cos (o)+ gt-Xo)
+cos  cos

• 2 _ 2 _O

+sin _cos _-cos(_-a+xo)_-5+ko
• =i . =io cos(o,-a-Xo)

+sin _sm _- _-a-X

1 .... cos (_+Xo)
2sin z sin t o 6)+)t

1 cos (_- Xo)
+_sinisinio _,-C_ ° ]

f aRv
B_ = ]_-dt

..3aer 2 i . _ cos
=-_ -_-LCOS _sm i_2 _+5+ko(°'+_+x°)

i _i® cos (o,+_-xo)
+ c°s22 c°s 2 _ + _ +),e

• o , 2i_ cos(o_-_+x o)
-sm-_cos _- _-5+X®

• =i . =i_cos(_-_-xo) ]
-sin _sm _ 2__o J

[aR, dt
Ba = j aa

_3eF zi . insin(o,+_+xo)

i o i_ sin (.,+_-xo)
+ cos _cos- 2 _ + _ - Xo

• _ i =i® sin (.,-a+xo)
+ sin _eos _ _,- f_+ Xo

• 2 4 • 246)

+ sin _ sin _ sin (_-T _ - xo)
_--_ --h o

1 .... sin(_+xo)
-_sm_s]n_® _+Xo

1 .... sin (o,-x®) ]
+ _sm, sin 4o __ J

=aB_
e
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=F 3aer sin / sin _ in sin (_+a+Xo)
4L

+sin i cos 2 ia sin (_+a-x°)
2 _ +'a -Xo

- sin i cos2_ sin (_ - fl + xe)

- sin i sin_ sin- (.-a-xo)
r

Z

• . . sin(_+xo)
+ cos _ sm _o _ +)t °

io sin (_-_o) 1
- cos i sin _- Xo J

B6 = [ Se dt

-- _ f _ia_

3,-V1-e2[- 2i • oio

_" z__" sin (o)+a_),o)
+cos _cos _ _j___)

• _i i_
+sin _cos 2

.:i . i_)
+sm _ sin 2

sin (_+a+xo)
(_+a+X_) _

sin(_-a+xo)
(_-a+X_) _

sin (_- ft-ho)
(_-a-Xo) _

1 .... sin(_+x_)
-_sm _ smlo (_+Xo) 2

1 sin (o, - xo)_
+_sinisinio (__X_) 2 j

f dt

co__s_/ [B_dt
- na __ _ sin i J

/_ 1 B_,dt
na_-x/1-e'-' sin i

e cot i B 6
-- 1-e"

e+ Fna_-V_l-e'-' sin/

I 2 i . i_ (.,+a--;%)
cos gsm ° _ sin(,_+a+X_):

+cos _cos _ __-X_) _
L i _i_ sin(o,-a+Xo)

-sm2_cos _- (_,__+Xo)_

• oi . oi_ sin(_-a-xo)
-sm-gsm-g _ N-ZVS__ 1

.A

An indirect, long-period variation in the
orbit is caused by passage of the satellite in
and out of the Earth's shadow• This effect is

best observed in the semimajor axis, which
undergoes no long-period motion from any
other source. The perturbation in the semi-
major axis is

a s 1El_aR= - 2--FC COSE + Dx/1 -e _ sin E
/_ J_,

where

C=-cos:_cos _cos (_+a-_)

• _ _ (_-_-_o)-sin 2c°s_c°s

-cos _sm _- cos (,,,+a+_o)

" 2 z . 2_® (,o-_2--ho)-smgsm_ cos

• i
-½ sin i sm_ [cos (,o-x®) -cos (,o+_o) ]

D _ i zi_ .
=cos- _cos _sm (.,+a-;%)

• 2_ 2_ •
+sm _cos _sm (.,-ft+_o)

_ _/ • . i® .
, cos gsm'-'_-sm (_,+a+,_o)

+ sin_2sin_sin (o,-_-_o)

+_ sin i sin io [sin (_-Xo)
- sin ('+_o) ]

and where E is the eccentric anomaly of the
satellite and E_, E_ are the eccentric anom-
alies of the satellite at the exit from and en-

trance into the Earth's shadow. Thus, Sao is
the perturbation after one revolution.

The TELSTAR 2 satellite provides a good
subject for a study of this effect• A long-
period variation with an approximate ampli-
tude of 0.0000140 Earth radii and a period of
about a year was observed in the semimajor
axis• (See Results and Analysis.)

5.4.4.3 Tidal Deformation of the Earth

The deformation of the Earth caused by
lunar and solar tides can produce observable
perturbations of satellite orbits• The magni-
tude of these tidal effects depends upon the
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elastic properties of the Earth as described

by Love numbers. The Love numbers appear

as coefficients in the expansion of the exterior

tidal potential in terms of spherical har-
monics.

The assumption is usually made that the

Love numbers are "global" ; i.e., that they are
constant over the whole Earth. Musen and

Felsentreger (1973) have derived a per-

turbation theory, assuming that the Love

numbers are not global constants, but vary
along the parallels of latitude ; i.e.,

k, = k._.,)+ k:1 Plo (,') + k,_,P.:,) (v) +...

k:_=k:_,)+k_lPlo(V)...,

where v is the latitude. The theory is devel-

oped by performing a single averaging along

the parallels of altitude.

The tidal disturbing function on the sur-
face of the Earth has the form

where the A'j, B'j are functions of lunar

(solar) coordinates, the aj are functions of
the k._. Love number and coordinates on the

surface of the Earth, and the bj are functions
of the k:_ Love number and coordinates on the

surface of the Earth. Also, r' is the distance

of the Moon (Sun) from the center of the

Earth and a' is the semimajor axis of the
lunar (solar) orbit defined in such a manner

that the constant part in the expansion of
a'/r' is equal to 1.

The expansion of the exterior tidal poten-
tial is obtained from Dirichlet's theorem,

and differential equations for tidal perturba-

tions of satellite elements are obtained by

taking into account the deviation of k,_,and k3

from constants along the parallels of lati-

tude. The perturbations are obtained by nu-

merically integrating these differential equa-
tions. Terms for short periods (equal to

the periods of the satellite or less) were re-
moved from the differential equations by

averaging over the instantaneous orbit of
the satellite.

The perturbative equations are

sin/ dt - + 2(1-e0_X-M -X V"71'\r'/ '

dt - 2(1-e'-')'-' x_-× V¢_:\r'/ '

d&,_ 3na'-'a ':_ m'
dt - -_ (1-e'-') i× M

/a'\3 . i, d&_,_
X_,7) v_°+2sm22 x dt

d$,_,e = 0
dt

d&,L 6_tq.2_Zr:_ m'
(1_ e0:7: X M

(a,)3 e da,,,X _ xV_,,i+_/l_e_X dt

i d&,n
+2_/1-e'_ sin_ 2 clt

na:_a':_e m'

= + (1-e_) :_× M

/a'V(x_,_) V:,o sin ,,,

1V,,. , 1. _,, cos ,,,_
32 sin 0,+ _v32 /

d$:,i na:'a':_e m'
dt - +(i--_-') _X M

d&,e

d&,L

dt -

dt -

x( a'Y ( V:'° c°s `'+lVi_'kr' ] coso,

IV'"' o_)+_ 3', sin

+ (l_e_):,e ×_-x x\r']

(1+4 e"-) (V_' cos o,+V;]' sin ,,,)

+ 2 sin" i d&,_
2 dt

na'_a ':' m'

+ (l_e_) : x_-

t 3 Is){a_ (V" sin ,,,-V3, cos (,,)
X\r, ) 3,

8 Tt6c:_oc':_e 7"n'

+ (1-e'-') '/-' × M

X (V;i" cos ,,,+ V_ _ sin,,,)

e d3:ar
1+\_ X dt

+ 2X/]__ e._,sin._,/d3:,____
2 dt
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where

A,t_,

L

tz

= equatorial components of the
unit vector r '° directed from the

center of the Earth toward the

Moon (Sun)

= the eccentricity of the meridian
of the Earth

= the longitude of perigee of the
satellite

= mean anomaly +_ =the mean

longitude of the satellite

= 1 _,/ tb

a'=R'/a' = the lunar (solar) parallactic
factor

M = mass of the Earth

m' = mass of the Moon (Sun)

R = equatorial radius of the Earth

The v(_, V(,) are trigonometric functions of
--_Y ' --t

i, n, _', X', ,', g', and the k_. Also,' indirect

effects are represented by

where

no

?
75

"_4 =- 8 a _

: V' 1 - e'-'
0 : cos i,

d_._o
dt - (n. _, tani) $i

dS:._
dt - ( +5 sin/-tan i) no _ $i

d_.L
- ( +8 sin/-tan i) no _ 8i

dt

= mean motion of the satellite

-- / 3 _5 r

=-37_,0+_72 [ (-5+12_+9_ 5) 0

+ (-35-36_-5_ 5) 05]

5 ,
+_7_ [(5-3_ _) (30-70_)]

1 C°R _

3 C_R 2
r]-s

This theory has been used to compute theo-

retical tidal perturbations for various satel-

lites. These theoretical effects have agreed

quite well with observations. (See Results

and Analysis.)

5.4.4.4 Hydrostatic Figure of the Earth
(M. H. Khan)

If the Earth were a fluid body, it would

respond instantaneously to any stresses, in-

cluding those caused by its rotation, until it

attained a state of zero stress. The figure that
the Earth would assume if it were in such a

state is called the hydrostatic-equilibrium

figure, or simply a hydrostatic figure or an

equilibrium figure• Because hydrostatic

shape indicates a state of zero stress, any
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departuresfrom this state are particularly
interesting,sincethey show the extent of
availablestressesin the interior of theEarth
which can be invokedto explain any geo-
physicalmechanismsthat may be found or
assumed to exist in the Earth's interior.

Apart from its traditional appeal, the prob-

lem is particularly interesting for this reason

to modern geophysicists.

The ma_thematical theory of hydrostatic

equilibrium for the Earth, to the first order

of small qualities, was originally developed

by Clairaut (1743). Radau (1885) simpli-
fied the solution of Clairaut's differential

equation by making an important substitu-

tion. The original purpose of the theory was

that, with the then-known data, the theory

would provide useful information about the

distributior_ of density in the Earth. It was

found, however, that with the then-known

data, the theory led to no discrimination

between widely varying laws of density. But

it did yield more accurate values of flattening

for the Earth (assuming, of course, hydro-

static equilibrium) than were likely to be

obtained by geodetic surveys.
This result stimulated further interest in

the theory, and its development was extended

to the second order by Callandreau (1889)

and later by Darwin (1900). DeSitter (1938)

modified the development and studied its

actual application to the Earth. Subsequent

applications of the second-order theory have

been made by Bullard (1948) and Jeffreys
(1963).

With the advent of artificial Earth satel-

lites, it became possible to determine the
actual flattening of the Earth directly from

the second-degree harmonic coefficient of

geopotential. The same coefficient, coupled

with the precessional constant of the Earth,

also yields accurate values of the Earth's

polar moment of inertia, and hence the hy-

drostatic theory can now be used to yield the

hydrostatic flattening as distinct from the ac-

tual flattening of the Earth. Thus, one could
study the departures of the actual Earth from

its equilibrium state. Such studies were con-

ducted by O'Keefe (1960), Henriksen (1960),

Caputo (1965), and Khan (1967) in the

post-artificial Earth satellite era. Since there

is a fundamental difference in the pre- and

post-artificial Earth satellite applications of

the hydrostatic theory, Khan (1968, 1969)

revised and extended the second-order theory

to suit readily the new applications and data

types.

Theory of the External Field.--The exter-

nal gravitational potential V of a body sym-

metrical with respect to its equatorial plane

and polar axis is given by equation (1.14).

This equation reduces to

V=-G_-II+(_:)2C.°_,P._, (sin ¢)

la_\4 ]+_-_-) C°_P.., (sin ¢) -0(f :_)
(5.104)

if accuracy is wanted only to the order of the

square of flattening F.

The potential of gravity is

o

W=V+-3_2r _ [1 -P._ (sin ¢)]

(5.105)

where _ is the rate of rotation of the body.

Let the equation of an equipotential sur-
face be

ae=l+
r f 3.z\ . z 1.o . ,+_ )sin' ¢-_f-sin ¢0(/_)

(5.106)

which in terms of the mean radius ac and

Legendre's polynomials is expressible to the

second degree as

r = ac ( 1 + a2P,_,+ a,P4)

r=aeIl_(2 f 23 2\+ _f )P=, (sin ¢)

12o
+-3_f-P4 (sin ¢)1 (5.106a)

Substitution of equations (5.104) and

(5.106) (or (5.106a)) in equation (5.105)

yields
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CO 2. 1.. 1 2
__=--_T+-_f-' + _m-_mf -O(f _) (5.107a)

4 o 4mf_O(f_) (5.107b)

where

Ja_(1-f)
m= GM

Theory of the Internal Field.wThe condi-

tion of hydrostatic equilibrium for any point

in the earth's interior is given by

dp dW (5.108)
dr =-P dr

where the pressure p and the density p are

related to the point under consideration.

Thus, surfaces of constant W are also sur-

faces of constant p and p ; i.e., the surfaces of

equal density are equipotential surfaces. Let

one such surface with a uniform density p'

be expressed as

r=a' (1 +_,P,) (5.109)

where a, and p' are functions of a'. Let rl be
the value of a for the surface of constant

density a point. Then, the potential W(rl)

on this surface is the sum of potentials from

(1) matter inside the shell r,, (2) matter

outside the shell rl, and (3) rotational poten-

tial ; i.e.,

4 fr, 0

W(r_)=_G]o p'_

2n+l r "+l a"P" da'

4 fa , a
+ _G jrl P _a'

( 3 ,2 "_'_ 3 r" _oP,)d a,_a +2'2n+ 1 a'"-_ -
+ 1/2'Jr_ (1 - sin 2@') (5.110)

The mean density po within the surface r_ is

3 fr_p,a,2da,Po=V_3 (5.111)

Development of the first-order theory can

be found in Jeffreys (1962). The principal

results of this theory are the following equa-
tions

[ d2a__ 6_2 . 6p/ da__ a._,'_ ,

(5.112)

This is Clairaut's (1743) differential equa-
tion. -_

Let a new dependent variable _ be

where

d log a___ rdaz
= dlogr a_dr

d(po r_Vl+_) =5po r4_(_)

1 1 o
1 + _--_]"

_(_) =

(5.113)

(5.114)

(5.115)

and po(a) is the mean density of the mass

bounded by a. This is Radau's equation, as

the substitution in equation (5.113) was

conceived by Radau (1885). The importance
of the substitution lies in the fact that, for

any reasonable law of density variation, the

function _(_) has the remarkable property
of never departing from 1 by more than 8

parts in 10 _. Then to an accuracy of this
order

d(po r_lV_) =5po r_ (5.116)

To the same degree of accuracy, the polar
moment of inertia C is

fa

8 (r)r,d r (5.117)C=_- p

which, on integration by parts, becomes

or

2 2 l_Ma_/l__C=_Ma (a) (5.118)

F_- 15 C 12_?(a)-- 4 Ma 2 -1 (5.119)
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But from equation (5.113) the value of ,/at
r=a is

°(), (a) - _., (a) _' o

which is

5 m

_(a)- 3 a.:(a) 2 (5.120)

In the choice of this coefficient a._,(a), the

external potential theory is linked to the

hydrostatic theory. Equations (5.106) or

(5.106a), (5.107), and (5.108) of the exter-

nal potential theory are derived without any

assumption about the density distribution

inside the Earth. Hence, these are valid

whether or not hydrostatic equilibrium exists

in the Earth. Thus, if the Earth were in

hydrostatic equilibrium, the exterior surface

defined by equation (5.109) must match the

surface defined by equation (5.106) or

(5.106a). This should be obvious by intui-

tion: if the hydrostatic theory were true for

the Earth, the surfaces defined by the theo-
ries of the external and internal fields must

be coincident at the outer boundary. To the

first order, equation (5.106a) becomes

r=r.I1- 2 _)l+O(f2)-_ f I,P._,(sin

(5.121)
and

2

where the subscript h refers to hydrostatic

flattening. Consequently, it can be shown
that

f"=5m/[l+( 5 15da_)14

(5.122)

The development of the second-order

theory is somewhat complicated but follows

exactly the procedure given by Jeffreys

(1962). Now all terms _O(f") must be

retained and the simplifying assumptions

modified accordingly. The treatment given

below follows deSitter (1938) and Khan

(1968, 1969).

Development of the second-order theory

becomes somewhat simpler if we choose as an

independent variable the mean radius of a

surface of equal density (deSitter, 1938).

Further simplification is possible by express-
ing the mean radius in terms of the mean

radius of the outer surface as unity and the

density in terms of mean density of the body

as unity. With these modifications the poten-

tial W at any point (r, ¢) within the Earth

(equation 5.110), correct to the second order,
is

4 _p

il2rnp d .....

+ 32 r'l, d ( ') dfl}P,(sin

1
+_-'r' [1 -P, (sin ¢') ] (5.123)

where fl is the mean radius of an arbitrary

surface of equal density, expressed in terms
of the mean radius of the outer surface as

unity, and p is the density, expressed in terms

of the mean density as unit. Units of p are

different from the previously used p'. In this

notation, p(fl) the mean density within the

surface fl (corresponding to equation (5.111))
is

3 #

P(fl) =_fo pfl_dfi (5.124)

so that for the surface r=a; i.e., fl=l,

p(r) =p(1) =1 (5.125)

The equivalent of equation (5.109), which

defines a surface of equal density, also in

this case an equipotential surface (equation

(5.106)), becomes
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t 4 ,j

P._,(sin _') +_3_ a'-'P_(sin ¢') (5.126)

where for convenience of algebraic manipu-

lation, the quantity a' is introduced:

5

In the second-order theory, a,_=a2. Substi-
tution of

1 1 1
r' r_' 7' r-' and r'

yields

-
(5.130)

where

B dp(fl) 3(1_ p )_= p(fl) dfl p-_
(5.131)

as yielded by the differentiation of equation
(5.124). Also,

_=7m(fl) (1+ 0 -3a(l+.q)-°-4_
(5.132)

from equation (5.127) in equation (5.123)
and the condition that the resulting equation
must define an equipotential surface, yields

L_ + _ (fl)

3f_d 2 2 _ 4

d
ft3p_(_, ___'-)16 _do_4czm(rl)p =0

(5.127)
where

and

m (rl) - ,,;-'r_
GM

with /3 and r, denoting the radius of the
same surface in different units. Also

asL_ 3 f_ d r

8_r' d. _.
+ -_ fl J_ p -_ ( fl- ) d fl

6_ f' d F[ , 2 )fl_ldfl =Jo" Lk 0 (5.128)

The manipulation of equation (5.128) and
the introduction of the variable _ which is
now defined as

dlog a'_ fl da' (5.129)
7= dlogB- _' dfl

For r=a--i.e., fl = 1--it yields after simplifi-
cation

a ' , 6 2 4
7( )f,_=3fh--_-fh+_mfh

20
-Jn(5+_lf,,+-_m ) (5.133)

where _(a) denotes the value of _ for the
outer surface on which _ and _' also become

a', (a) =f_[ and _(a) =f_,; i.e., fh denotes the
value of hydrostatic flattening for the outer
surface and JT_is the hydrostatic counterpart

3 o
of J = - _C2.

Equation (5.130) yields the second-order
counterparts of equations (5.114) and
(5.115); i.e.,

d

dfl [p(fl)fl_'\/l+9] - 5p (/3) fl'¢(O (5.134)

where

¢(0 =

1 1 _ 2
1+ _,-_6, +y65_ _

\/-1 + n
(5.135)

Integration of equation (5.135) yields

L_o(/3) fl_ (n) dfl=5_ (fl) fl_/1 +7

or
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which for the outer surface yields

fo 1 3M _/1 +_ (a) (5.136)p(#)fl'dfl--_,r l+A(a)

where 1+_, is the average value of the func-

tion ¢(v) over the range of integration and
_(a) denotes the value of x for the outer
surface.

The polar moment of inertia C is given by

the second-order counterpart of equation

(5.117) ; i.e.,

8 t3 2(C_A)C= _ _ fo pfl_dfl+ (5.137)

where A is the moment of inertia of the body

around its equatorial diameter. Integrating

the above equation by parts, we have

2 j
[l+x(a) ]_I5(1-_f,,+ _7,

23_a") (1-- 2 f" )-l 12 - 1

6.,1. 2 4 .... 1 3
=3- _I_- f_+_mr,j_- -2

J_7,f'h-_ ( 5 + 10 20_/_+_m)

(5.142)

whereas the polar moment of inertia is de-

termined by

where

and

C C_
Ma-' -H (5.143a)

C-A
H-

C

2. 16 f' (fl)fl,dfl+2
C =-3-_u-9-=Jo p _ (C-A)

(5.138)

and, substituting equation (5.137) in equa-

tion (5.138), we find

2 _ 2
C=_Ma (1-_fl,)

2_ _\/l+,l(a) +_(C-A)_5Ma'-'(1-3 "' ] l+_a)

(5.139)

where a is now the equatorial radius. Con-

sequently,

or

2, 2[_ 2¢_/1+_(a)
_.-3.,-5\1-_.,] _-+_C_ +J:"

(5.140)

,/(a) = [l+;_(a) ] 2 1-_f,,

3 C
+J..,,_ 2M_.,)(1 2'-'q2-_fh) J -1 (5.141)

and from equation (5.133)

The quantity Co is directly determinable from
the orbital motion of an artificial Earth satel-

lite to a high degree of accuracy. The quan-

tity H is determined also with high accuracy

from the precession of the Earth's axis.

Thus, in equation (5.142), if X(a) can be

assigned an appropriate value, a knowledge

of C_h should yield f_,, since the polar moment
of inertia has already been determined by

equation (5.143). But C_h_C] in the case of
the Earth, and thus C_h is not known. We

have reasoned earlier, however, that the solu-

tions of external potential and internal po-
tential theories must match at the outer

boundary; i.e., equations (5.104a) and

(5.142) must be simultaneously satisfied for

the outer boundary. To avoid any confusion,

rewrite equation (5.107a) as

2 . 1.2_1 2 ..
C_ = -_,, + _, 3.m- _-m_,,

(5.143b)

Equation (5.142) can then be solved im-

mediately with the help of equation (5.143a).

However, equations (5.133) and (5.141),

or equation (5.142) can be recast to obtain a

i
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more convenient expression, which gives f_,

explicitly in terms of other parameters. To

do this, write equation (5.141) as

where

25 ...... / l--A1 \
_l(a) =--4-_-q -(_)--1

C 3
q = Ma _ 2

q'=l-q

2 22 I

±_- q,

F=l+h(a)

(5.144)

(5.145)

and

A- 14 _42v''-

_ = 2__F_,q,jh 4 10,- _m + _iJ_,
(5.149)

2O
_.= _-1 mJh

Note that ,_, is approximately of the order

of f_,, whereas 8._.is of the order of f_.

Equation (5.148) gives the required ex-

pression for f_ which, correct to the second

order of small quantities, is

fh = 3_1/,, I (5J_, + $.-.)
+ (5J,,+_)_1 25AJ_ ]

3-_o ÷ (3-_o)'J
(5.15o)

Also, from equation (5.143b)

It is instructive to note that A1 and ±o. are

both of the order of flattening. Simplifying

equation (5.144), one obtains

,1(a) -- Y_F-'q"-' [1 + 2 (±.. - ±_ )

+ (_ + 3t,_ - 4±1A.) ] -- 1

where

_/,,= _F_q'_- 1

25 ......

2 2
-=_-F'-'q'(J,,-qfh+_qfh)

and

72 = 2_5AF-'q"-'(A_ + 3±_ -- 4±_a2)

(5.146)

(5.147)

Note that the quantity _ is of the order of

f,,, whereas *r-.is of the order of f_.

With this value of _/(a), equation (5.133)
can be written as

w 1 IUJL

Aft,+ (,l.-3+8,)fh+5d,,+_._,=O

(5.148)

fl,=Yl,_1 5 1. \_1 _m ++_m+_J,,) , _--_m 2

(5.151)

Simultaneous solution of equations (5.150)

and (5.151) would then yield the correct
value of f_,.

5.5 COMPARISON OF TRACKING SYSTEMS

(J. H. Berbert)

The NGSP compared the observations

from the different types of geodetic observa-

tion systems used by NASA (MINITRACK,

MOTS, GRARR, C-band radar, and laser),

the Smithsonian Astrophysical Observatory

(Baker-Nunn, laser), the Air Force (PC-

1000), the Army (SECOR), the Navy

(TRANET), and the Coast and Geodetic

Survey (BC-4). These comparisons were

made to aid decisions on how to weight and

combine the data properly from the different

systems for the World Datum and Earth

Gravity Field Model, and to indicate which

systems would be most useful for future

geodetic research and applications. An in-

vestigation was designed to determine the

relative accuracy and precision of these sys-
tems to better than 10 meters.
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5.5.1 Methods Used

If reference orbits accurate to better than

10 meters were available, then these orbits
could be used to determine the errors in the
systems. However, because of errors in the

survey and gravity field, the most accurate
orbits at the time this investigation was
initiated were estimated to be in error at 100
to 1000 meters.

Therefore, a collection technique was used
to minimize the effects of uncertainties in the
relative station locations and in the Earth's

gravitational field by installing accurate
reference tracking systems close to the sys-
terns to be compared and precisely determin-
ing their relative positions. This approach
also allowed local synchronization of the sys-
tem clocks. The laser and camera systems
available at GSFC, which were thought to be
acccurate to 1 to 2 meters and 1" to 2", re-
spectively, were chosen as the reference sys-
terns for the investigation.

The GSFC laser and camera systems were
shipped to selected sites, where they tracked
the GEOS satellite simultaneously with the
other systems. A reference orbit was deter-
mined by a least-squares fit of the reference
data (R) on each pass and used to compute
reference quantities (C) for the systems to
be compared. The actual observations (0)

from the systems being compared (called
comparison systems) were first preprocessed
to remove the known errors and to achieve

compatibility with the reference quantities
(C), and then differenced with the reference
quantities to form the residuals (O-C).

Measurement biases (B) and timing biases
(T), both relative to the reference systems,
were then derived from the residuals (O-C)
by means of the relationship

(O-C) _=B- T C_+E_

(1) The orbit program corrects for the
parallax errors due to the different locations
of the systems.

(2) Errors in the reference trajectory
due to errors in the gravitation are held to
within +-1 meter during the 15-minute dura-
tion or less of a single pass (table 5.22, ref.
1). These errors are not inherent in the

observations (R), but are inherent in the
quantities (C) computed for the comparison
systems, owing to imperfect smoothing of
the observations by the orbit.

(3) By local synchronization of the clocks

of the reference and comparison systems,
timing errors due to clock differences are held
to +_0.1 msec or less. This is equivalent to
+-0.5 meter or less in range measurement for

the maximum range rates. The program
corrects for known time differences between

the observations (R) and the comparison
system observations (O) when the quantities
(C) for the comparison systems are gen-
erated.

(4) Except for the small errors cited
above, the reference orbits produce reference
quantities (C) and residuals (O-C) for
nearly collocated systems, which are as ac-
curate as the data (R) to which these orbits
are fitted. Thus, the reference orbits pro-
duce quantities which are accurate to the
1- to 2-meter accuracy of the laser data. This

level of derived range accuracy produces a
derived range rate accuracy of 0.5 to 2.0 cm/
sec. Likewise, the reference orbits produce
angles (C) for nearby systems, which are ac-

curate to 1" to 2", the accuracy of the camera
systems (R) within the camera data span.
Thus, to the extent that measurement and
timing biases, assumed constant over one
pass, are adequate error models, the bias
differences are determined to at least the
accuracy of the point-by-point accuracies
quoted above for the reference systems.

where C_ is the time rate of change of the

quantity (C_) and Ei is the noise component
in the observations.

This procedure has the following charac-
teristics :

5.5.2 Tests Performed

During this investigation, one comparison
of cameras and a series of five comparisons
of laser systems were performed to determine
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whether these reference systems were con-
sistent to within their estimated accuracies

of 1" to 2" and 1 to 2 meters, respectively.

Other systems were compared against col-
located, reference laser systems and/or cam-
eras in the following tests: (1) GRARR, at

Rosman, North Carolina; (2) Two C-band
radars, SECOR and TRANET, at Wallops
Flight Center, Virginia; (3) GRARR and
C-band, at Carnarvon, Australia; and (4)

MINITRACK, at all sites.

5.5.2.1 Camera Comparison Test

An intercomparison of some of the differ-
ent types of cameras was conducted at Ju-
piter, Florida, where the MOTS-40, MOTS-
24, and PTH-100 cameras were located
within 30 meters of each other. They oper-
ated simultaneously with the Baker-Nunn
and K-50 cameras and with a PC-1000 and

a BC-4 camera (300-ram focal length) from
November 1965 to May 1966 to track
GEOS 1. Details are given in table 5.22,
reference 2.

Combined Data Orbits.--The flashing
lights (ch. 3), were programmed in sequences
of seven flashes. The first flash fell on the

even minute and subsequent flashes were
spaced at 4-second intervals for a total dura-
tion of 24 seconds.

For each seven-flash sequence, observed
simultaneously by two or more of the cam-
eras, an initial set of orbital elements was
differentially corrected to obtain a least-
squares fit over the 24-second span of data
to all the observations made by these cameras.

For each participating camera, an rms of the
seven right-ascension residuals and an rms of
the seven declination residuals were calcu-

lated for each sequence. The mean rms,
averaged over the indicated number of se-

quences, is given on the left side of table 5.23
for each camera.

These results tend to verify the accuracy
estimates of 1" to 2" for the MOTS-40 and

PTH-100 reference cameras, since data from
these cameras are consistent with data re-

duced from different camera systems by inde-
pendent organizations.

The larger rms values for the MOTS-24
and the BC-4 cameras are probably due to
both the shorter focal length and the smaller

aperture of these cameras. The shorter focal
length makes the observations more sensitive

to measuring errors and the smaller aperture
makes the flashing light and stellar images
less distinct and more difficult to center on

the measuring system crosshairs. Also, some
of the BC-4 right-ascension observations
may have been affected by timing problems
(table 5.22, ref. 2).

5.5.2.2 Biases Relative to the MOTS-40

To determine whether there were any

consistent angular biases, orbits computed
from observations by MOTS-40 and at least
one other camera were selected for further

analysis. For each 24-second orbit from

MOTS-40 data, the means of the seven right-
ascension residuals and of the seven declina-
tion residuals were subtracted from those

for the other participating cameras. The
resulting differences in the means arc a close

approximation to the angular biases for the
comparison cameras relative to the MOTS-
40. These differences in means are averaged
over the indicated number of sequences and
the average (B) is given on the right side of
table 5.23 for each camera, along with the
rms fluctuation (_) of each set of differences
about its average value. The total rms

(VBf+a =) is also given.
These results support the accuracy esti-

mates for the cameras, since the average of
the mean differences (B) is generally less
than 1" and the rms fluctuation (_) of these
mean differences about their average is gen-
erally less than 2".

5.5.2.3 Comparison of Laser Systems

Five tests were performed during the two
years from October 1968 to October 1970.
Three of the tests were conducted at the

Goddard Optical Research Facility (GORF)
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between the prototype Goddard laser system
(GODLAS) and the transportable Goddard
laser system (MOBLAS, MOBLA2, or
MOBLA3). The other two tests were at the
Smithsonian Astrophysical Observatory site
at Mt. Hopkins, Arizona, between the SAO
laser system (HOPLAS) and the MOBLAS
(called HOMLAS or HOMLA2 in these

tests). Details on all five tests are given in
table 5.22, reference 3.

In each test, the range, azimuth, and eleva-
tion (RAE) observed by MOBLAS were used
to form a reference orbit on each pass by
adjusting an initial set of orbital elements by
least squares. The adjustment results in a
zero mean for the residuals in range and
azimuth. The mean of the residuals in eleva-

tion was usually different from zero by a few
seconds, owing to correlation with the ranges,
which were more heavily weighted. The
residuals appear random, no systematic
effects remaining except, the nonzero mean
of the residuals in elevation. Therefore, the
rms of the residuals in range and azimuth
may be interpreted as noise.

The residuals obtained from the MOBLAS

orbit for the other laser systems were then
used to determine a measurement bias (B)
and a time bias (T) for each pass, as de-
scribed earlier. After fitting this error model
to the residuals, the remainders E_ appear
random with zero mean, and may therefore
be interpreted as the noise in the observa-
tions from the comparison laser systems.

The results of all five tests are shown in

table 5.24 and figure 5.20.

GORF-1 Test.--GODLAS was compared
with MOBLAS at the Goddard Optical Re-
search Facility in October and November
1968. The assembly of MOBLAS had been
completed just before this experiment, and
this test included some of the first passes
taken by MOBLAS. Five passes were ob-
served simultaneously in this test.

The initial analysis of the GORF-1 data
indicated that GODLAS and MOBLAS had

average rms errors in the range of 1.86 and
1.23 meters, respectively, after a reference
orbit had been fitted to the ranges from

GORF-I

GODLAS-,MOBL_S_o_o_c _
AVG " 4.09+ 0.58

5

SEP OCT 1958 NOV DEC

GORF-II
GODLAS-MOBLA2

I t I I

01 AVG ffi"1'19 ± 1'25 l_ _ i_y. iF,l

_ 1970MAY '°"
GORF-III

GOD LAS-MOBLA3
I I I I

AVG - 0.86 + 0.32 _,,_.

_o i i
SEP OCT NOV DEC

1970

ARLACO PHASE I ARLACO PHASE II
HOPLAS-HON_.LAS HOPLAS-HOMI A2

5r , , _ ' ' I

I 1.45 ........................

OCT NOV DEC JAN FEB
1969 1970

FmURE 5.20.--Summary of four laser/laser inter-

comparison tests: relative range bias versus date.

MOBLAS on each pass and GODLAS range
and time biases had been solved for on each

pass. The average bias in range of GODLAS
with respect to MOBLAS was 4.1 meters for
the five passes, and the rms fluctuation of the
five biases about this average was +_0.6
meter.

The GSFC Optical Systems Branch an-
alyzed the calibration technique used with
MOBLAS during this test. They established
that MOBLAS was calibrated at a signal
level that was two orders of magnitude

larger than the level expected for the re-
turned signal. It was later determined that
MOBLAS reads short by 4.6 meters under
these conditions.

If the MOBLAS data are corrected by
adding 4.6 meters to each range measure-
ment, the bias of GODLAS (with respect to
the orbit computed from MOBLAS data as
shown in the second line of table 5.24) is
reduced from 4.1___0.6 meters to -0.5+__0.6
meters. The noise remains the same.
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In all tests conducted after the GORF-1

test, MOBLAS was calibrated for the level
expected from the returned signal.

ARLACO Laser Test.--The Arizona laser

collocation (ARLACO) test was conducted
from October 1969 through January 1970.
MOBLAS was collocated with the SAO laser

system, HOPLAS, at the Mt. Hopkins Ob-

servatory in Arizona. Halfway through the
test, MOBLAS was moved 10 meters to the
west, thus breaking the experiment into two

tests, ARLACO-1 and ARLACO-2.
An analysis of the data from the first two

passes revealed a range bias of 5.5 meters
and a time bias of 100 msec for HOPLAS

with respect to the orbit computed from
MOBLAS data. Of the 5.5 meters, 4.8 meters

were traced to a change in the internal delay
in the HOPLAS system since the last calibra-
tion. The 100-msec time bias was due to an

intentional offset in the times of HOPLAS
observations to avoid interference with ob-

servations by MOBLAS, but the offset was
overlooked in the preprocessing. After these
discrepancies were corrected, the comparison
was continued.

For the 14 passes observed during October
and November 1969, the HOPLAS ranges
had an average noise of 1.34 meters and the
MOBLAS ranges had an average noise of
1.06 meters. The average bias of the HOP-
LAS ranges with respect to the orbit from
the MOBLAS data was -1.6__ 1.5 meters.

During the second phase of ARLACO,
December 1969 and January 1970, data were
taken on 11 passes. The noises for HOPLAS
and MOBLAS were 1.09 and 1.00 meters,

respectively, and the average bias of the
HOPLAS ranges with respect to the orbit
computed from MOBLAS was 1.3±1.7
meters.

GORF-2 Test.--The GORF-2 test was
conducted between March 1970 and May

1970. At that time, MOBLAS was the same
as it was during the Carnarvon laser colloca-

tion (CALACO) experiment. Data were
taken on _1 passes. GODLAS AND MOBLAS

had an average noise level of 1.00 and 1.06
meters, respectively, and an average bias of
-1.2__ 1.3 meters for the GODLAS ranges
with respect to the orbit computed from the
MOBLAS data.

GORF-3 Test.--Between the GORF-2 and

GORF-3 tests, both the MOBLAS and GOD-

LAS systems were modified to incorporate
a more sophisticated pulse-detection scheme.
Pulse height was measured and the pulse
threshold detection level was set at one-half

the measured pulse height. In addition, a
quantitative measure of the MOBLAS pulse
height was made, recorded, and used in a
programme correction of the range measure-
ments on the MOBLAS. This feature was

present in the GODLAS during earlier tests.
The results of the GORF-3 tests, although

not applicable to the earlier laser compari-
sons with GRARR, C-Band, SECOR, and
TRANET, show significant reductions in the
laser system noise and relative range bias,
with all quantities at the submeter level.

Summary of Laser Results.--The tests
support the estimated single-pass accuracy of
1 to 2 meters for the Goddard reference-laser

systems. The average of the biases derived
on each pass for the GODLAS ranges with
respect to the orbit computed from MOBLAS
data lies between -1.2±1.3 meters and
0.9___0.3 meters for the three GORF tests.

The average of the biases for the SAO
HOPLAS with respect to the orbit computed
from MOBLAS data lies between - 1.6_ 1.5
meters and 1.3___1.7 meters for the two
ARLAC0 tests.

5.5.3 Comparison of Other Systems With the
Laser and Camera Systems

Besides the tests described above, three

other comparisons were conducted between
a laser system and other systems during this
investigation. These were: (1) the Rosman
laser collocation test (ROLACO) to compare
GRARR on GEOS 1 (table 5.22, ref. 4), (2)
the Wallops Island collocation experiment
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(WICE) to compare the FPQ-6 and FPS-16

C-band radars; (3) a SECOR system and a
TRANET system on GEOS 2 (table 5.22,
refs. 5 and 6) ; and (4) the Carnarvon laser
collocation experiment (CALACO) to com-
pare another GRARR and FPQ-6 radar on
GEOS 2 (table 5.22, ref. 7). GODLAS was
used as the reference laser for the ROLACO
and WICE tests, and MOBLAS was used for
the CALACO test.

The data were analyzed in these tests as in
the laser intercomparison tests. The residuals

in range, azimuth, and elevation (RAE) from
laser systems were minimized in the least-
squares sense by adjusting a set of orbital
elements for each pass to form a reference
RAE orbit. The mean and rms of the com-

parison system residuals about the RAE orbit
were computed for each type of observation

and for each pass. In the tables accompany-
ing this section, the average mean and the
average rms are given over the number of

passes indicated. These are designated as
"mean before" and "rms before," since they
are determined from residuals before fitting
an error model. In addition, the rms fluctua-
tion of the means for each pass about the
average mean for all passes and the fluctua-
tion of the rms's for each pass about the
average rms are given in the same columns.

On each pass, the residuals for the com-
parison systems were used to determine a
measurement bias (B) and a station time

bias (T) relative to the laser system. The
term "station time bias" is used to indicate

that each type of observation from a given
comparison system contributes to the deter-

mination of the time bias of that system. In
these tables, only the average B and T over

the indicated number of passes is given,
along with the rms fluctuation of the single-
pass B and T about the given average. Since
T is usually small, the average bias B is
almost the same as the mean before fitting
the error model. The mean after fitting the
error model is not given in the tables, since
it is always zero. The column headed "rms
after" is the rms of the average residual
after fitting the error model, along with the

rms fluctuation in the rms's for each_ pass

about the average rms. These numbers rep-
resent the noise in the observations by the
comparison system.

The reference RAE orbits closely fit the
observations from the laser system within the
laser data span; they therefore produce
reference ranges and angles for nearby sys-
tems with essentially the same accuracy or
bias as the laser system data. From the

previous laser intercomparison tests, the
range biases for the laser system are below
2 meters with respect to other laser systems.
As will be shown later, in tests involving
camera observations, the biases in the laser
system angles with respect to camera obser-
vations are below 30". Error analyses indi-
cate the range-rate accuracies from the laser
system RAE orbits are within 0.5 to 2.0
am/sea.

To evaluate the observed angle from data
supplied by camera, observations from a
collocated camera are used instead of the
laser system azimuth and elevation observa-

tions in forming reference orbits. These
orbits are designated range, right ascension,
and declination (RRD) orbits. The RRD
orbits closely fit the laser system range and
camera angle observations and therefore pro-
duce reference ranges and range rates for
nearly collocated systems with essentially the
same accuracy as the RAE orbits. However,
they produce improved angles with the 1" to
2" accuracy of the camera data.

5.5.3.1 ROLACO Test

The results of the July through December
1966 GEOS 1 ROLACO test of the Rosman
GRARR versus GODLAS are summarized in

table 5.25 and in the plot of the derived
GRARR relative range biases against date in
figure 5.21. After an orbit was fitted to the

data from the laser system, the remaining
rms noise was 1.8 meters for the system.

An earlier evaluation of the Rosman
GRARR by means of short-arc reference
orbits of GEOS 1 which were generated with
data taken the first week of January 1966
from four eastern U.S. SECOR stations in-

dicated this GRARR had a range bias oe
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FIGURE 5.21.--Rosman GRARR range bias versus

date, GEOS 1 transponder channel A laser

(GODLAS) reference orbits.

-20.5_+4.9 meters (table 5.22, ref. 8). Inves-
tigations into the cause of this bias led to the
discovery of several small errors in the
GRARR calibration and preprocessing pro-
cedures which accounted for -9.7 meters of

the GRARR range bias (table 5.22, ref. 9),
leaving a net bias of -10.8_+4.9 meters for
the Rosman GRARR at that time.

For the ROLACO test, the GRARR cali-
bration and preprocessing procedures were
changed to add the above corrections, result-
ing in an average single-pass bias in the
GRARR range data relative to the laser orbit
of -5.3 meters with an rms fluctuation of

12.4 meters about this average value for the
10 bias values obtained. The average GRARR
time bias relative to the laser was -2.1±1.2

msec. All 10 passes were on GRARR chan-
nel A. More details are given in reference
4 of table 5.22.

In an independent comparison of the Ros-
man GRARR observations with accurate

orbits obtained from camera observations,

Lerch, Marsh, and O'Neill (table 5.22, ref.
10) reported average range and time biases
on channel A of -10.0_+8.8 meters and

-2.4_+2.4 msec on 12 passes relative to a
5-day orbit, and - 5.6_ 1.6 meters and .- 1.9
_+5.1 msec on 14 passes relative to another
5-day orbit a week later. These results in-
cluded the correction for bias of - 9.7 meters.
The -10.0-meter GRARR channel A bias
obtained here is in remarkable agreement
with the -10.8-meter GRARR channel A

bias obtained with respect to SECOR orbits
during the same first week in January 1966.
The long-arc GRARR results obtained for
the second week of January 1966 are con-
sistent with the ROLACO test results for
data taken 6 to 12 months later. Lerch et al.

also reported average biases on channel C of
18.1 meters and -1.4 msec on 3 passes dur-
ing the first 5-day orbit.

5.5.3.2 WICE Test

The WICE statistics for the two C-band

radars, the SECOR, TRANET, and laser sys-
tems and the camera systems are summarized
in tables 5.26 and 5.27. Table 5.26 gives the

results for all the available passes, using

GODLAS data to generate reference RAE
orbits. Table 5.27 gives the results for those

passes which had collocated data from the
PTH-100 camera combined with the laser

system data to generate reference RRD or-
bits. Both the RAE and the RRD orbits pro-
vide reference ranges with essentially the ac-

curacy of the laser system data. The accuracy

of the angles from the RAE orbit is deter-
mined by the accuracy of the laser system

angles (about 30"), whereas the accuracy of
the reference angles from the RRD orbit is
determined by the camera angles (1" to 2").

In figures 5.22, through 5.25, the pass-to-

pass variations in the derived biases in range,
range rate, azimuth, and elevation are shown
for the participating systems. More details

may be found in references 5 and 6 of table
5.22. The tables and figures show the char-
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versus date, laser (GODLAS) reference orbits.

acteristics of the participating systems, as
outlined below.

RMS and Bias in Range for WICE.--The
rms noise in data from GODLAS was reduced

in this test from the earlier ROLACO value
of 1.8 meters to 1.3 meters. After error

modeling, the rms noise in the C-band radar
and SECOR ranges was also less than 2
meters. The data from the FPQ-6 receiver

were the smoothest, averaging 1.0 meter over
the 34 RAE orbits and 0.8 meter over the 21
RRD orbits.

In the 34 simultaneous trackings by laser
systems and by the FPQ-6 on a beacon (trans-
ponder), there were 10 passes in which the
radar tracked both beacon and satellite sur-

face on the same pass; i.e., the beacon was
tracked on the first third of the pass, the sur-
face on the middle third of the pass, and the
beacon again on the last third of the pass. For

these passes, the bandwidth of the FPQ-6 re-
ceiver was optimized to receive a 1.0-_sec-

wide pulse rather than the 0.6-_sec-wide pulse
used in tracking beacons. The pulse-width
mismatch resulted in the ranges from the bea-

con tracking being short by approximately 30
meters, and these ranges were corrected by
adding 30 meters. If these 10 passes are ig-
nored, the remaining 24 passes (beacon only),
shown in figure 5.22, yield essentially the same
results as all 34 passes, except the average
bias in range is changed from -1.6+_2.6
meters to -2.0_+2.7 meters (see table 5.26).

In the 27 sets of data from FPS-16 on a

beacon, the average of the range biases is
5.7+_4.1 meters, resulting in a net difference
between the biases of 7.3 meters in the two
radars.

The radar calibration techniques used in
WICE were analyzed by Wallops Flight
Center. The results of the analysis and tests
verifying the analysis indicated that the
FPQ-6 and FPS-16 (see ch. 6) were miscali-
brated and their range data should be cor-

rected by algebraically adding -0.6 meter



NASA/GODDARD SPACE FLIGHT CENTER 371

WICE

200 I I I

150-

o LASER (GODLAS)

A FPQ-6 {NWALI3)

o FPS-16 (NWALI8)

lOC-

/i _,
z_ " i", !_,,

_ ' "....'_

_.. ,_. ........X',."

_ o

': i ].o,.<; / -i

I 6 L L
-200 1 1 1

APR MAY 1968 JUN

1

JUL

m

m

..>,

-100

WICE

<Z-"...,
/ ',,.A

z_

R

I I I

0 LASER (GODLAS)

A FPQ-5 (NWALI3)

0 FPS-16 (NWALI8)

A

3 1
_5

I I I I
1 1 1 1

APR MAY JUN JUL
1968
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FIGURE 5.25.--Elevation bias versus date for the

Goddard laser, FPQ-6 radar, and FPS-16 radar

collocated at Wallops Island, Virginia. WALMOT

camera/GODLAS range reference orbits.

to the FPQ-6 and - 7.9 meters to the FPS-16
measurements.

If this correction is made, the range bias

on the FPQ-6 of -1.6_+2.6 meters shifts to
-2.2+_2.6 meters, as shown in table 5.26.
The average FPQ-6 range noise of 1.0_+0.3
meters and time bias of 0.3-+ 0.3 msec remain

unchanged. If the FPS-16 data are corrected
for the -7.9-meter calibration error, the
average range-bias changes from 5.7-+4.1
meters to -2.2-+4.1 meters. The two col-

located C-band, average range-biases of the
beacon track then agree with each other to
better than 0.1 meter. The results in tables

5.26 and 5.27 were obtained before the post-
test calibration analysis and hence do not
include these corrections except where in-
dicated.

FPQ-6 skin-track data (data obtained by
reflection from the satellite surface) were
successfully taken on 8 of the 10 passes

where skin tracking was attempted. No
FPS-16 skin-tracks were attempted. The
average range rms noise and average range
bias for the skin-track portion of the eight
FPQ-6 passes were 8.6___2.0 meters and
-5.2_+2.7 meters, respectively. The corre-
sponding averages for the beacon track por-
tion of the same eight passes were 1.1-+0.4
meters for range noise and - 1.8-+ 2.2 meters
.for range bias. Thus, the FPQ-6 skin track
range bias is 3.4 meters more negative than
the FPQ-6 beacon track range bias on the
eight common passes.

There were 16 passes that were common to
the 24 FPQ-6 and 27 FPS-16 beacon-only

passes. If the derived biases for the two
radars are differenced on each of the 16

common passes, the average range bias differ-
ence of the FPS-16 relativd to the FPQ-6

is 6.3 *_5.6 meters. If the calibration analysis
corrections of -0.6 and -7.9 meters are ap-
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plied, this average range bias difference is
reduced to - 1.0 _+5.6 meters.

Note that the pass-to-pass variation in

range bias in the radars (table 5.26) was
_+2.6 meters for the 34 FPQ-6 biases and
_+4.1 meters for the 27 FPS-16 biases when

taken relative to the laser system. The pass-
to-pass variation in range bias increased to
_+5.6 meters when the FPS-16 biases were

taken relative to the FPQ-6 biases, indicating
the uncorrelated nature of the range bias in
the two radar systems. The correlation co-

efficient between the FPQ-6 and FPS-16
range bias values for the common 16 passes
is -0.22, indicating the pass-to-pass varia-
tions in bias are probably not due to the
laser system.

The difference in FPQ-6 average range
bias obtained with all 20 beacon-1 (ll2-meter
delay) tracks relative to the bias obtained

with all 14 beacon-2 (740-meter delay)

tracks is -1.6 meters (see table 5.26). A
similar comparison with the FPS-16 for 14
beacon-1 and 13 beacon-2 tracks leads to a

value of +2.6 meters. Thus, if a consistent
range bias exists between beacon-1 and bea-

con-2 tracks for both radars, it is obscured
by the pass-to-pass fluctuations in range bias
for the two radars.

The average range bias of -17.5__4.0
meters in SECOR appears realistic to within
the estimated laser-system accuracy of 1 to 2

meters, especially since the analysis of the
radar calibration discovered the -7.9-meter

error on the FPS-16 and reduced its bias
relative to the laser system from 5.7 to -2.2
meters. An analysis of the SECOR calibra-

tion and preprocessing procedures by the
Army Map Service led to correction of sev-

eral minor preprocessing errors, which
changed the derived biases by 1 or 2 meters
in earlier submissions of these data. How-

ever, the analysis failed to account for the
large bias shown in table 5.26 for the latest
submission.

The temporal variation in the biases shown

in figure 5.22 suggests that the delay char-
acteristics of the satellite transponder may
have been changing slowly with time. A

linear extrapolation of the SECOR range

bias values in figure 5.22 intersects the zero
bias about one month before the launch of

GEOS 2 on 11 January 1968, when presuma-
bly the last calibration of the transponder
could have been made.

Range Rate RMS and Bias for WICE.--

The FPQ-6 radar obtained range rate skin-
track observations on four of the laser passes.
These data were relatively noisy because of
the low signal levels involved in skin-tracking
GEOS 2. However, the average range-rate
bias of +2.4 cm/sec is not unreasonable, con-
sidering the estimated orbit accuracy of _+0.5
to ± 2.0 cm/sec in range rate.

The WICE TRANET station could track

on the two lower GEOS 2 Doppler beacon
frequencies (162 and 324 MHz, designated by
TRAN-59) or on the higher pair (324 and
972 MHz, designated by TRAN-35). In order
to conserve spacecraft power, the 972-MHz
beacon was turned off part way through these
tests, so fewer passes were obtained by
TRAN-35.

The initial analysis of the TRANET data
yielded range-rate positive biases of 21.2 ± 7.7
cm/sec and 18.4_+5.5 cm/sec for TRAN-59
and TRAN-35. An analysis of the editing
and preprocessing procedures of the Naval
Weapons Laboratory (NWL) indicated that
at least some of this bias was due to the
omission of time correction for satellite-to-

station transit and the tropospheric refrac-
tion correction prior to solving for a per-
pass bias, which were then provided with the
observations on each pass.

This per-pass bias absorbs the bias com-
ponent of the error due to neglecting the two

corrections. When the user applies the per-
pass bias provided as well as the two omitted
corrections, he overcorrects by the amount
of the bias component absorbed in the per-
pass bias provided by NWL. Since the cor-
rection for transit time is always a negative
time correction, which adjusts the observa-
tion times back to when the signals left the
satellite, the net result is always a positive
range rate bias.

Agreen and Marsh (table 5.22, ref. 11)
compared observations from 5 TRANET sta-
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tions against 13 optical-reference 2-day orbits
generated from worldwide camera data. They

reported a positive average range rate bias
for all five participating TRANET stations

of 8.2 to 10.2 cm/sec _ 2.4 to 3.4 cm/sec rel-
ative to the optical orbits. It has not yet
been explained why the TRANET positive
range rate biases found in this analysis were
only about half the magnitude of those found
in the WICE test.

As a result of the WICE analysis, NWL

again preprocessed the early WICE TRA-
NET data. This time, the two corrections
mentioned were made before solving for the

per-pass bias. These final results are also
given in table 5.26, where it is shown that the
biases with respect to the RAE orbits are
now reduced to 1.4 ± 3.5 cm/sec for TRAN 59
and -3.2_+7.5 cm/sec for TRAN 35. The re-
sults with fewer RRD orbits are slightly
better.

The TRANET biases for a single pass are
plotted against time in figure 5.23, where the
wider fluctuations in derived biases at the

beginning of the test may reflect a learning
period for the operators.

Angle RMS and Bias for WICE.--The bi-
ases in azimuth and elevation from pass to
pass relative to the angles from RRD orbit
based on camera data indicate that the angle

biases of the laser system are substantially
less than the angle biases of the radar. How-
ever, the rms values indicate the radar point-
to-point angle data are smoother than the
laser system data.

In the angle residuals statistics, the camera
right-ascension residuals are multiplied by
cos (declination) and the laser and radar
azimuth residuals are multiplied by cos (ele-

vation) in order to compare these residuals
on the same sky-angle scale as the declina-
tion and elevation residuals. The sky-angle
scale is also more useful for interpreting the
results as radar boresight error or for relat-
ing the angle observation errors to target

position errors.
The average angle biases in the laser sys-

tem and the radars derived from the RRD
orbits differ from those derived from the

RAE orbits by less than 6". The average angle
rms's derived from the RRD orbits differ
from those from the RAE orbits by less than

10". Thus, the RAE orbits based on data from
the laser system appear adequate for deter-
mining average angle biases and rms to 10" or
better in tests such as WICE.

The average azimuth and elevation biases
in the laser system data changed, respec-
tively, from 0" ± 0" and - 6" ± 13" for the RAE
orbits to 5"_+21" and 0"±15" for the RRD

orbits, indicating that the RAE orbits are
adequate for determining pass-to-pass angle
biases to about 22" or better (in the 1-_ sense)
in such tests.

The FPQ-6 and FPS-16 average station
time biases derived from the beacon track
are both 0.3 ±0.3 msec relative to the laser,

indicating the laser might have a -0.3-msec
timing error. However, the FPQ-6-derived
time bias of 0.1_+0.7 msec on eight range
data skin tracks and the SECOR-derived time
bias of -0.6±0.5 msec are not consistent

with this interpretation.
The larger derived TRANET time biases

evident on the RRD range rate evaluations
_-_ _"^ to the high correlation between thed,J[_ UU_ ......

derived range-rate and time biases and to re-

laxing the a priori constraint on time bias
from 0.2 msec on the RAE orbits to 2.0 msec
on the RRD orbits.

5.5.3.3 CALACO Test

The CALACO test results for the collo-
cated GRARR, FPQ-6 C-band radar, MOB-

LAS laser, and PTH-100 camera are sum-
marized in tables 5.28 and 5.29 and figures
5.26 through 5.30. The statistics derived
from the laser RAE orbits are given in table
5.28 and those from the RRD orbits in table
5.29. The temporal variation in the derlved

C-band range and timing biases and in the
GRARR range, range rate, and timing biases
are given in figures 5.26 through 5.30.

After sending the preprocessed C-band ob-
servations, the radar coordinator at Wallops
Station advised us of an equipment problem
that caused a time error of an unknown in-

tegral, multiple of 10 msec. This error was
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constant within a pass, but varied from pass
to pass. It was not feasible to determine the
unknown integers by comparison with the
worldwide, long-arc orbits. However, com-
parison of the radar observations with the
laser system observations enabled us to de-
termine these integers and to correct the ra-
dar observation times by the proper multiple
of 10 msec before the normal intercompari-
son procedure.

Range RMS and Bias for CALACO.--The
MOBLAS range average-rms noise remain-
ing after fitting the orbits is 1.3_+ 0.2 meters,
which is similar to the rms noise of 1.2

meters observed in the prior GORF-1 test.
The FPQ-6 C-band range rms noise, after

removing a measurement and timing bias, is
1.1_+0.4 meters, similar to the previous re-
sults for the two C-band radars at Wallops
Station.

The Carnarvon GRARR range rms noise
of 3.0_+0.2 meters on GEOS 2 is smoother
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laser (CRMLAS) reference orbits.

than the 6.8_+2.1-meter value obtained for
the Rosman GRARR on GEOS 1. The differ-

ence could be due to the setup of the ground
systems, the different transponders, or the
greater height of GEOS 1.

An average range bias of -15.0_+6.5 me-

ters was initially found for the FPQ-6 rela-
tive to the laser system. In attempting to ex-
plain this large bias, it was determined that
the radar range calibrations were performed
on a distant range target without correction
for the delay introduced by the atmosphere.
By using values of atmospheric pressure,
temperature, and humidity collected for the
laser system and camera passes, the actual
delay through the atmosphere to the range
calibration target was calculated to be 20.0
_+0.7 meters larger than the assumed value.
Thus, the radar calibration preprocessing for
this station produced ranges that were too
short by 20.0__ 0.7 meters on each pass.

A post-test calibration correction for this
refraction bias was computed for each pass
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and applied to the range bias previously de-
rived for that pass. As shown in table 5.28,
this step improved the average range bias
from -15.0_+6.5 meters to 5.0_+_6.7 meters.
Users of these radar data should make cer-

tain that this refraction bias correction is

applied.
Correction by the user of the remaining

radar average range-bias of 5.0 meters rela-
tive to the laser system reduces the pass-to-
pass total rms error of that radar at that
time from _+8.4 meters to _ 6.7 meters. This

assumes the following definition of total rms
error :

total rms error = B_/_÷a2

where a is the pass-to-pass bias fluctuation
about B (a= +_6.7 meters in this case) and B
is the average range bias (B=5.0 meters in
this case).

When the FPQ-6 average range biases for
the two C-band beacons are compared, the
beacon-1 bias minus the beacon-2 bias is - 1.7
meters before the above refraction correction
is made and -1.5 meters after it is made.
This difference is similar in magnitude and

consistent in sign with the - 1.6-meter differ-
ence obtained between beacon-1 and beacon-2

for the Wallops FPQ-6, but it is not consist-
ent with the +2.6-meter difference obtained

with the Wallops FPS-16.

Similarly, a 3.2-meter difference in average
range bias was noted between channels A and
C of GRARR. This range bias difference was

significant at the 1 percent level in a statis-
tical test on the probability of a chance oc-
currence of such a difference. Application of
the derived range bias corrections of -1.7
meters for channel A and -4.9 meters for

channel C reduces the total rms range error
from +_4.0 meters to +_3.6 meters for chan-
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nel A and from _+8.9 meters to _+7.4 meters
for channel C.

Range Rate RMS and Bias for CALACO.

--The Carnarvon GRARR range rate rms
noise of 1.4 ± 0.7 cm/sec is smoother than the
values obtained during the WICE test for the
C-band skin track data or for the TRANET
Doppler data.

Without regard to channel, the GRARR
average range rate bias of 0.5_+2.4 cm/
sec and the values for the individual channels
are all smaller than the values for the WICE
range rate systems and are within the esti-
mated accuracy of the orbits based on laser
system data. Correction for the derived
range rate biases for GRARR in this test or
for the FPQ-6 or TRANET in the WICE
test (after the preprocessing correction
noted) is not justified, since this does not im-

prove the accuracy of the pass-to-pass range
rate data significantly, owing to the varia-
bility in the derived pass-to-pass biases.

Angle RMS and Bias for CALACO.--Re-
sults for the 14 CALACO passes, with camera
angle data added to the laser data to form
RRD reference orbits, are given in table 5.29.
The zero means and small rms for the resid-

uals in laser range and the camera angle
observation indicate that the RRD orbits
have adjusted closely to these observations

(R). Then, the RRD orbits produce observa-
tions (C) having essentially the same bias
as R for evaluation of observations (0)
from nearly collocated systems.

For both the radar and the laser systems,
the angle-residual average rms in table 5.29
lies between 31 and 38 arc seconds. The aver-
age of the angle residual means is 30 arc sec-
onds or less for both systems and is smaller
for the laser system than for the radar.

Station Time Bias for CALACO.--The

Carnarvon FPQ-6 radar-derived average sta-
tion time bias of 0.3 to 0.5 msec relative to
MOBLAS is consistent with the 0.3-msec
value derived for both radars relative to
GODLAS in WICE. This result might indi-

cate that a systematic error, having the ap-

pearance of a time bias, exists in the laser
systems, were it not for the -0.6 msec value
obtained for SECOR in WICE and the 0.0-

msec value obtained for GRARR in the CAL-
ACO test.

Comparison of MINITRACK With MOTS-
40 Cameras.--The MOTS-40 calibration cam-
era at the center of each MINITRACK site

observed GEOS flash sequences within the
MINITRACK beam. The 24-sec reference
orbits from these cameras were used to de-

termine a per-pass bias for simultaneous
MINITRACK observations. The results indi-
cated that the MINITRACK observation of

per-pass biases relative to the camera orbits
were about 10" to 20" (table 5.22, ref. 12).

A long-arc comparison of MINITRACK
observations relative to a 5-day camera orbit

indicated an rms for the MINITRACK per-
pass angle biases of about _+40" (table 5.22,
ref. 13).

It was noted in these studies that the
MINITRACK biases were smaller when the
refraction corrections normally introduced

in the orbit differential correction (DC) pro-
gram were suppressed or when only those ob-
servations near the base-line bisecting-plane,
which are therefore nearly immune to refrac-
tion error, were used. This effect was traced
to an overcorrection for refraction in the DC

program resulting from use of a single-path
refraction correction rather than a differen-

tial two-path refraction correction required
for an interferometer (table 5.22, refs. 14
through 17).

5.5.4 Summary and Conclusions

In this investigation, it has been assumed
that the most important indicators of accu-
racy in the observations are the per-pass
measurement bias (B), the time bias (T),
and the pass-to-pass fluctuations (_) in these
biases. The point-to-point noise within a pass
has little effect on the results, since these so-

lutions are determined by the orbit adjusted
to the observations, and this orbit smooths
out the nearly random noise of the data
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points within a pass, provided there are
enough data points.

If the pass-to-pass fluctuation (_) in the
measurement bias (B) is random, then this
parameter also is averaged out to some ex-
tent in the results, provided enough passes
are used in the solutions. The stable com-

ponent of the pass-to-pass bias has the most
damaging effect on the solutions.

A composite error indicator used to help

summarize the intercomparison test results
is the total rms error, which equals _/B-_+_ _.
This error probably best estimates the rela-
tive accuracy of the GEOS observation sys-
tems for NGSP applications.

The pass-to-pass biases (B) were deter-
mined relative to orbits determined from the

reference laser systems and cameras. Esti-
mates of the accuracy of the reference sys-
tern observations were supported by a test of
collocated camera and by five collocated-laser
tests. Other GEOS observation systems were
evaluated against collocated lasers and cam-
eras in three major tests performed at Ros-
man, North Carolina, at Wallops Flight Cen-
ter, Virginia, and at Carnarvon, Australia.
Summaries of the various tests are available

in a single document in reference 18 of table
5.22.

5.5.4.1 Cameras

The Jupiter camera-intercomparison test
results support the 1" to 2" accuracy per
seven-flash sequence for most of the cameras
tested, since for all but the MOTS-24 and

BC-4 (300 mm) cameras, which have shorter
focal lengths and smaller apertures, the mean
rms with respect to the combined data orbits

were within 2" or better (table 5.23).
A few NASA sites originally had MOTS-

24 cameras, but these were all replaced by
MOTS-40 cameras prior to GEOS 1.

The NGS World Geometric Survey project
(ch. 7) at first used the 300-mm focal-length
BC-4 cameras, but later converted to the 450-

mm focal-length version, thereby improving
the BC-4 plate scale by 50 percent. Also, the
C&GS observations were shutter chops of the
relatively bright, continuous trails of the

ECHO and PAGEOS balloons rather than of

the GEOS flashes, thereby increasing the
number of observations available for averag-
ing and improving the detectability and
measurability of the images on the photo-
graphic plate.

5.5.4.2 Laser Systems

The results support the 1- to 2-meter ac-
curacy over one pass, since, except for the
initial few passes with the new systems in
the GORF 1 and ARLACO 1 tests, the total

rms error of the comparison systems with
respect to the reference systems was within

2.2 meters (table 5.30).
After the calibration error on the first few

passes for MOBLAS was corrected, the total
rms error for the GODLAS ranges with re-

spect to an orbit computed from MOBLAS
data was only 0.8 meter for GORF 1. The to-

tal rms error for GODLAS with respect to
MOBLAS for GORF 2 was 1.8 meters, and
for GORF 3, the error was 0.9 meter.

5.5.4.3 Accuracies of Ranging Systems

Unsuspected systematic errors were dis-
covered in the observations from most of the

systems. The systematic errors identified
were usually traced to the calibration or pre-
processing procedures rather than to faults
in the system.

Table 5.30 summarizes the average and
standard deviation of the range biases for

each pass derived for the comparison systems
with respect to the reference systems.

The total rms error, before applying cor-
rections discovered as a result of the tests,
represents typical system accuracy for a pass
under normal operating conditions. How-
ever, an extra effort was made to remove
known errors from the calibration and pre-
processing procedures.

The probable sources of the identified bi-
ases and their measured corrections are also

given in table 5.30, along with the improved
average range biases and total rms errors
after these corrections had been applied.
These improved, total rms errors represent
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potential system accuracies for one pass only
if the effort is expended to detect and correct
the small calibration and preprocessing er-
rors, such as those discovered in these tests.

The normal error estimates are probably
best for relative data weighting for the
NGSP solutions. The potential error esti-
mates are useful for simulations investigat-
ing what is possible with these systems if the
extra effort is made.

5.5.4.4 Accuracies of Range Rate Systems

The range rate observations by GRARR
and radar are probably unbiased, within the
ability of these tests to detect a bias.

The TRANET data originally submitted
for WICE, as well as all other TRANET
data in the Geodetic Satellite Data Service

(GSDS), are affected by per-pass negative
Doppler-frequency biases, equivalent to the

positive range rate biases resulting from the
NWL preprocessing procedures.

These biases could be removed by reproces-
sing all the TRANET data and applying the
corrections to transit time and tropospheric
refraction before solving for the per-pass
base-frequency bias provided by NWL. This
was done for the WICE TRANET observa-

tions on all 26 passes; the range rate av-
erage bias (B±a) and the total rms error

( VB _+,,_) were reduced from 21.2 ± 7.7 cm/
sec and 22.6 cm/sec to 1.4±3.5 cm/sec and
3.8 cm/sec, respectively, for TRAN-59 rela-
tive to the laser. Similarly, for TRAN-35,
the total rms error was reduced from 19.2

cm/sec to 8.2 cm/sec.
Alternatively, the use of the TRANET ob-

servations could be improved by recognizing
the existence of an a priori, positive, range
rate bias and solving for this bias, under an

appropriate a priori constraint, along with
the orbit, survey, and gravity field parame-
ters.

A more exact procedure would be to deter-
mine, with the use of a nominal orbit, the
transit time and tropospheric-refraction
Doppler-frequency correction-profile versus
time in each pass. Then the mean posi-

tive-frequency bias component in this profile

should be solved for and the result used to re-
move the positive bias component from the
base frequency (F,) provided by NWL. This

should remove the net negative Doppler fre-
quency bias component or the net positive
range-rate bias component from the TRA-
NET observations.

Range rate (/_) was related to the TRA-
NET observations by means of the following

equation :

/_± c (F,-FM)
FM

where FM is the measured frequency provided
by NWL, F_ is the base frequency provided
by NWL, and c is the speed of light

(2.997925 × 10 s m/sec).

5.5.4.5 Accuracies of Angle Systems

No obvious angle biases were detected in

the Jupiter camera test. The camera angles
appear to be accurate to 1" to 2" whereas the
laser angles appear accurate to better than
30" and the C-band angles appear to be accu-
rate in the region of 30" to 70".

The MINITRACK angles appear accurate
to 10" to 20", provided the correct refraction
theory is applied.

5.5.4.6 Station Time Biases

The time bias in the Rosman GRARR of
-2.1 ± 1.2 msec relative to the laser was not

supported by the 0.0±l.2-msec value found
for the Carnarvon GRARR relative to the
laser.

The time biases in Wallops FPQ-6 and
FPS-16 of 0.3±0.3 msec relative to the laser

were supported by the 0.4±l.l-msec value
found for the Carnarvon FPQ-6. It seems
likely that either the C-bands or the lasers
have a systematic error, which behaves like
an 0.3-msec time bias for the C-bands or like
a -0.3-msec time bias for the lasers.

5.5.4.7 General Remarks

The measurement biases discovered in
these tests are recommended for correcting
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the observationsonly in thosecaseswhere
theprobablesourceof thebiashasbeeniden-
tified andmeasured,andonlyfor thespecific
laserandC-bandobservationsaffected,asin-
dicatedin table 5.30.

All theTRANET andMINITRACK obser-
vationswereaffectedbythebiasesdiscussed;
hence,all thesedata shouldbecorrectedas
indicated.

The sourcesof the GRARRand SECOR
rangebiasesonGEOS2 werenot identified,
soit is notknownwhetherthesevaluesapply
only to the specificGRARR'sand SECOR's
testedin collocationor to all GRARR'sand
SECOR'sat all times.

Thecameraangleaccuraciesof 1"to 2"are
far moreaccuratethan the laser or C-band
angleaccuraciesof 30"to 70". However,at a
satellitedistanceof, say,1.5million meters,
an angleaccuracyof 1" is equivalentto only
7.3metersinsatellitepositioncomponentnor-
maltothelineof sight.

Thelaserrangeaccuraciesof 1to 2meters
during GEOS1 and 2 were alreadybetter
than the range accuraciesof the C-band,
GRARR,and SECORelectronicsystemsor
thetotal rmserrorsof 3to 18meters,assum-
marizedin table5.30. Improvementsnowbe-
ing madein the lasersindicatean increasein
accuracyof an order of magnitudeshould
soonbeachieved.

Results obtained with Doppler observa-
tionsappearcompetitivewith thoseobtained
sofar with laserobservations.Improvements
in the GRARR,unified-S-band,Dopplersys-
temsand the TRANET GEOCEIVERDop-
pler systemswouldenablea readoutof the
Dopplercyclecountwithout destroyingthe
continuityof thecountoverlongerintervals.
This shouldincreasethe accuracyof results
obtainedwith the Dopplerobservations.

5.6 RESULTS

As explained previously, the primary ob-
jective of determining and predicting the po-
sitions of satellites led inevitably to a second
objective of determining better values for the
geodetic quantities that affected the accuracy
of the orbital determinations. The secondary

objective has been attained by the determina-
tion of GEM 5, GEM 6, and Goddard '73.
These three sets of results provide coordi-
nates of tracking stations and values for the
gravitational potential and geoid, and the ac-
curacies of these quantities strongly affect
the accuracies of predicted orbits.

GEM 5 and GEM 6 (sec. 5.5.1) were de-
rived by using a vast amount of data (sec.
5.3.1) and by combining both static and dy-
namic satellite geodesy. (The adjustment for
GEM 6 also used data on gravity anomalies.)
Goddard '73 was derived from data recorded

by the MOTS, Baker-Nunn, and some Euro-
pean cameras and from the laser systems of
NASA, SAO, and Groupe de Recherches de
Geodesie Spatiale (GRGS).

A more fundamental difference between
GEM and Goddard '73 than the set of data
used is the difference in the theories used.

Both were derived from the dynamic theory
presented in section 5.4.1, but GEM was also
derived from geometric theory (sec. 5.4.2),
whereas Goddard '73 was not.

One of the most useful results from dy-
namic satellite geodesy, to the geodesist at
least, is the figure of the Earth (the geoid).
It is the only connection between heights
measured by leveling (most of the measured
heights throughout the world) and geodetic
heights found by satellite geodesy. Lerch
et al. (sec. 5.6.2.1) derive a geoid from GEM
5 and GEM 6. But these geoids do not show
the small variations in the geoid. The small
variations (to within +_0.5 meter) are given
by the geoid of Vincent and Marsh (sec.

5.6.2.2), which was derived from gravity
anomalies to provide the fine detail (sec.
5A.3).

Results of two other investigations of geoid

and the gravitational field are given in sec-
tions 5.6.4.3 and 5.6.4.4. In the former, the
contribution to the geoid given by C_2 terms
alone is derived on the basis of the theory of

hydrostatic flattening (sec. 5.4.4.3); in the
latter, the effect of isostatic compensation on
the potential derived from satellite geodesy
is given.

Orbital perturbations resulting from luni-
solar gravitation and from solar radiation
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pressure (secs. 5.4.4.1 and 5.4.4.2) have been
determined, and typical values are given in
sections 5.6.4.1 and 5.6.4.2.

In accordance with the scheme used

throughout this volume, the results are or-
ganized according to their geodetic nature.
Section 5.6.1 deals with geometric results
(point coordinates) and contains tracking
station coordinates from GEM 5, GEM 6, and
Goddard '73. Section 5.6.2 deals with the

geoid--a partly geometric, partly dynamic
concept--and gives the geoids derived from
GEM 5 and GEM 6 and from a combination

of GEM 4 with gravity data. Section 5.6.3
treats the gravitational potential, and con-
tains the {C,_, S_ } coefficients of GEM 5 and
GEM 6. Section 5.6.4 contains a number of

results of special applications.

5.6.1 Coordinates of Tracking Stations

Two sets of coordinates are presented. Set
1, for GEM 6, was derived by a combination
of dynamics and geometry (secs. 5.4.1 and
5.4.2). The second set, for Goddard '73, was
derived by using only data from optical track-
ing systems and using only dynamics (sec.
5.4.1).

5.6.1.1 Station Coordinates in GEM 5 and
GEM 6
(J. Reece and J. Brownd, Computer

Sciences Corp.)

5.6.1.1.1 PRESENTATION OF RESULTS

In conjunction with the derivation of the
GEM 6 gravitational field, positions were de-
rived for some 138 tracking stations. Posi-
tions for all stations except the BC-4 were
derived with the use of dynamic satellite
geodesy. The positions of the BC-4 stations
were derived by using geometric theory of
simultaneous observations between BC-4

cameras and constraints on relative positions
from ground surveys to tie a subset of BC-4

stations to other camera and Doppler sta-
tions.

In addition, constraints were applied to the
relative positions of other closely spaced

pairs of stations. These relative-position con-

straints (sec. 5.4.2.1) reflect results of sur-
veys on local datums for 47 pairs of stations.

In our judgment, such ties for these stations
would strengthen the solution. Table 5.31

lists the ties, the _x, ±y, AZ survey differ-
ences, an estimated uncertainty in meters
used for weighting, and the residual from the
solution. Except for Doppler stations, uncer-
tainties were estimated in a formal way from
Simmons rule :

= 0.029D _/:_

where D is the distance between the stations

in kilometers. The Doppler stations are un-
certain by an additional 3 meters, owing to a
lack of information concerning the relation-
ship of the surveyed point to the electrical
(phase) center of the Doppler antennas. The
weighting is not critical. A wide variation in
weights results in nearly the same solution.

In arriving at the station positions, a set of
chord distances between BC-4 stations and
associated error estimates were also en-

forced. These chord distances, taken from
Mueller (unpublished, 1973), with the error
estimates assigned in this solution are pre-
sented in table 5.32. The observations used
in the solution are described in section 5.3.2

and the theory used in section 5.4.2. The co-
ordinates were derived as part of GEM 6 and
are given in table 5.33.

This solution for 741 unknowns required
some attention to numerical analysis to ob-
tain a numerically correct solution of the
combined normal equations. The solution was
obtained by Cholesky's method and an itera-
tive improvement method. Of the unknowns,
327 were corrections to assumed coefficients

of the Earth's gravitational potential and 414
were corrections to assumed coordinates of

138 stations, not all of which are independent.
The final results are presented in table 5.33

in the form of latitude, longitude, and geode-
tic height with respect to an ellipsoid having
a semimajor axis of 6 378 155 meters and a
flattening of 1/298.255.

Before discussing the results, the conse-
quences of the applied constraints should be
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examined. First, comparisons of GEM 6 sta-
tion coordinates with GEM 4 station coordi-

nates, as well as with other solutions not in-
volving the BC-4 stations, indicate that most

positions derived dynamically are essentially
unaffected by inclusion of the BC-4 network.
The only exceptions are Doppler stations
2019, 2722, 2723, and 2738. Only a small
number of Doppler data were available to de-

termine the positions of these stations, and
they are very weakly determined from calcu-

lations using dynamics. These four Doppler
stations do not have any substantial effect on
the positions of the BC-4 stations; rather,
these positions are to a large extent a func-
tion of the BC-4 and base-line data used in
the solution.

It should also be noted that this solution

contains a number of Doppler stations whose
latitudes exceed in absolute value the inclina-
tion of the orbits of the satellites observed

(GEOS 1, GEOS 2, BE-B, and BE-C). At
these stations, the observations are unevenly
distributed about the local zenith. Conse-

quently, the along-track error typical of well-
distributed data is not canceled. As can be

expected, then, the positions of these stations,
especially in longitude, are coupled to the po-
tential more than they would be if observa-
tional data on high-inclination or polar orbits
had been used.

The validity of attempting to enforce in a

single solution both a value of GM, which
would serve to scale the dynamically derived

positions, and chord distances, which could
represent a scale not compatible with the GM
scale, may be questioned. As a practical mat-
ter, the effect of enforcing the base lines is
rather small except for a few stations tied to

the base lines. A comparison of solutions
with and without base lines showed that only
8 of the 47 BC-4 stations in the solution had

their positions changed more than 5 meters.
Of these stations, five were tied directly to
base lines and the remaining three were di-
rectly adjacent to one of the five. Since the
base lines are considered accurate to at least

1 ppm, this solution was retained as being

better for stations 6003, 6006, 6007, 6008,

5.6.1.1.2 COMPARISON WITH OTHER
RESULTS

The JPL deep-space system (DSS) solu-
tion (Mottinger, 1969) does not yield the
complete position of a station. The well-de-

termined parameters are distances from spin
axis and differences between the longitudes
of the stations. In order to compare GEM 6
with the JPL solution, only the x, y coordi-
nates were used (table 5.34). The GEM 6 co-

ordinates for the DSS sites were obtained by
using connections on the local datum between
the camera stations and the DSS stations. In

table 5.35, direct comparisons are given with
spin axis distance (D) and longitude (;t).
Tables 5.34 and 5.35 show good agreement
between the two solutions after a 1.4-ppm
difference in scale is removed. The scale dif-
ference is probably due to the value of GM
used in the GEM 6 dynamic solution. The 3-
meter rms is within the estimate of random
error given for both GEM 6 and JPL DSS
solutions.

Very long base-line interferometry (VLBI)
has been used to determine the projection of
the chord distance between the Goldstone,
California, and the Rosman, North Carolina,
antennas on the equatorial plane using sig-
nals from 15 quasars (Ramasastry, unpub-
lished, 1973). Repeated VLBI measurements
yielded estimates of the projection of the
chord distance on the equatorial plane which
are consistent to within a few centimeters.

Comparison of the equatorial projection of
the chord distance obtained from VLBI with
that inferred from the determination of the

distance between two nearby camera stations
using GEM 6 gives agreement within 3 me-
ters (table 5.36).

In tables 5.37 through 5.41, GEM 6 is com-
pared with five other solutions. The solutions

are (1) GEM 4 (Lerch et al., 1972c), (2)
Goddard '73 (sec. 5.6.2), (3) the SAO Stand-

ard Earth III Model (ch. 9), (4) the NWL
9D (ch. 3) (Anderle, 1973), and (5) the
Ohio State University WN 4 solution (Muel-
ler, 1973). Systematic differences between

the solutions were estimated using positions
common to both by solving for a translation
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in space to make the origins coincide, and by

using three rotations about coordinate axes
to orient the coordinate systems and a scale

difference. The systematic quantities are in-

dicated in tables 5.37 through 5.41 together
with the rms of the random differences after

the seven systematic parameters were re-
moved.

The comparison of GEM 6 with GEM 4,

shown in table 5.37, was carried out by solv-
ing for 7 parameters using 62 common sta-
tions of GEM 6 and GEM 4. Three additional

7-parameter solutions were made with sub-
sets of the 62 stations common to the solu-

tions. These included 23 MOTS-SPEOPTS

camera stations, 13 Doppler stations, and 19
Baker-Nunn cameras. The comparison indi-

cates that the coordinate systems of GEM 6

and GEM 4 are referred to the same center

of mass for all practical purposes and that
there are negligible differences of scale and

rotation. Hence, the coordinate systems of

GEM 6 and GEM 4 are nearly identical. The

solutions from subsets of stations indicate,

however, a significant shift of the z axes of

the Baker-Nunn camera network of nearly 4

meters between GEM 4 and GEM 6.

Table 5.38 presents results from 7-parame-
ter solutions comparing GEM 6 with Goddard

'73. First, a solution using 47 stations shows

that a significant difference occurs in rota-
tion about the z axis of 0.2". The translation

of origin, scale difference, and other rotation

parameters are negligible.

Three solutions were made to compare

GEM 6 with the positions in SAO's Standard
Earth III Model. One solution was carried

out with all 68 stations; the second was car-

ried out with only 17 Baker-Nunn camera

stations, and a third was carried out with

only the 47 BC-4 camera stations. The re-
sults are shown in table 5.39.

The first solution using 68 stations shows

significant magnitudes for the parameters
used to transform from the GEM 6 coordi-

nate system to the SAO coordinate system.

The apparent displacement of the center of
mass is nearly 11 meters, the scale difference

is -0.5 ppm, and significant rotations are

found, particularly about the z axis. The sec-

ond solution using 17 Baker-Nunn cameras

shows a large translation in z of 15 meters,
whereas the shifts in x and y are somewhat

smaller than those found with the 68-station

solution. The rotation angles are negligible

except for _,, a result that also agrees well
with the first solution.

In conj unction with the other two solutions,
the third solution using 47 BC-4 cameras

may be interpreted to show that the BC-4

cameras were successfully tied into their re-

spective center-of-mass systems, although the

shift along the z axis is half that of the sec-
ond solution. The rotation _ about the x axis

is large in this solution, and apparently domi-
nates the rotation of the second solution in

obtaining the first solution. The rms of the

solutions are 10, 7.7, and 10 m, respectively.

Two comparisons made with the NWL 9D

coordinate system are displayed in table 5.40.

One was obtained by using the Doppler sta-
tions of GEM 6 that are common with the sta-

tions of NWL 9D. The other uses surveys

connecting Doppler stations with BC-4 sta-

tions to place the BC-4 stations in the NWL

9D system. The BC-4 station positions for

GEM 6 are used in conjunction with the BC-

4 positions derived from NWL 9D to obtain

the solution.

The first solution uses 12 Doppler stations

and shows a displacement of 10 meters, the z

component being nearly 8 meters, a scale dif-

ference of -0.3 ppm, and a significant rota-
tion _ about the z axis. The other two rota-

tions are negligible.

The second solution using 20 BC-4 cameras

to compute the relationship between the
NWL 9D and the GEM 6 coordinate systems

shows a translation of nearly 6 meters, a

scale difference of -0.5 ppm, and significant

rotations about the x and z axes of c= 0.3 arc

second and _=0.66 arc second, respectively.

The principal agreement between the solu-
tions is the rotation about the z axis, a negli-

gible rotation about the y axis, reasonably
close scale differences, and compatible values

of the y translation. The translations in x

differ in sign and in magnitude by 9 meters,
and the translations in z disagree by nearly

4 meters but have the same sign.
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Table 5.41 presents the 7 parameters ob-
tained from a solution using 45 BC-4 stations
in GEM 6 and the Ohio State University WN
4 solution (Mueller, 1973). (This model dif-
fers slightly from WN 14, ch. 8.) These re-
sults show a scale difference of 1.9 ppm, while
the solutions have negligible differences in
orientation, as indicated by the estimates of
the three rotations. The translation between

origins has a magnitude of 25 meters. In the
World Net (WN) 4 solution, Ax=12 meters,
Ay=12 meters, and Az=-6.0 meters were
used to transform to the geocenter. The signs
of the OSU translations and the sign given in
table 5.41 agree, but the Ax and Az terms dif-
fer by 8 and 3 meters, respectively. The rms
of the position differences is ± 10 meters. Ex-

amination of residuals reveals a systematic
trend between GEM 6 and the WN 4 solution

in a series of stations in Europe, Africa, and
the South Atlantic.

Table 5.42 compares Ay differences from
the seven-parameter solutions for nine BC-4

stations in these areas. In these comparisons,
Ay is nearly equivalent to longitude. Other
±y differences shown in table 5.42 are from
GEM 6 SAO Standard Earth III and the

GEM 6 BC-4 stations tied to NWL 9D by
ground ties. Systematic differences are evi-

dent, but the dispersion of results is so large
that it is difficult to form any reasonable hy-
pothesis to account' for the differences.

5.6.1.1.3 COMPARISON WITH HEIGHTS
ABOVE MEAN SEA LEVEL

Heights of stations above the geoid as de-
termined from GEM 6 are compared in figure
5.31 with heights above mean sea level as de-
termined by survey. The following difference
is plotted for each of 138 tracking stations:

_,H= (h-N) -MSLH (meters)

where h is the height of the station above the

ellipsoid used in GEM 6. based upon a ref
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erence of a,=6378144 meters and l/f=

298.255, N is the geoidal height derived from
GEM 6, and MSLH is the height above mean
sea level from survey.

The differences ±H are shown in figure 5.31

by a symbol signifying the tracking system
providing the data. A key for the symbols is
given with the figure.

Table 5.43 shows solutions that estimate
four systematic differences in the coordinate

system based upon a comparison of heights.
Three of the parameters constitute a transla-
tion of the origin, and the fourth is a change
to the semimajor axis ac. Five solutions are

presented in table 5.43. Results are given
first for 114 stations representing a combina-
tion of the various tracking systems used in
GEM 6, with results next given from subsets
of stations by data type, as follows: 29
MOTS-SPEOPTS camera stations, 40 BC-4
camera stations, 19 Baker-Nunn camera sta-

tions, and 18 Doppler stations. The geoidal
heights used in the solution were computed

from GEM 6, the geodetic heights were from
GEM 6, and the MSLH were from various
geodetic surveys.

The first solution (114 stations) shows a

displacement of the origin of nearly 2.3 me-
ters and a best-fitting equatorial radius a, of
6 378 144 meters. The next four solutions use

subsets of stations to estimate the systematic
differences. The derived semimajor axis

ranges from 6 378 141 to 6 378 149.3 meters,
or a total excursion of nearly 8 meters. The

solutions using MOTS-SPEOPTS cameras
and the Baker-Nunn cameras give the largest

semimajor axes, and the BC-4 network re-
sults in the smallest semimajor axis, the Dop-
pler station solution occupying a central po-
sion.

It may be recalled from table 5.41 that the
WN 4 solution for GEM 6 gave a scale differ-

ence of 1.9 ppm, which results in a derived
semimajor axis of 6 378 129 meters. This
agrees with an independent geometric adj ust-
merit we have made using the BC-4 camera

data. Apparently, the ties made between the
BC-4 cameras and other tracking stations
dominated the terrestrial base lines in the
solutions for the station heights away from

the base lines. The range of 8 meters in de-

terminations of a, apparently reflects possi-
ble systematic differences between the data
from the tracking systems for which the

comparisons were made.
Displacement differences for the Baker-

Nunn and Doppler solutions agree in sign
and to better than 2 meters in magnitude of

each component of the shift. The MOTS
camera displacements agree in sign with the
Baker-Nunn and Doppler solutions, but the

magnitude of the x components disagrees by
6 to 8 meters. The z component agrees with

the Doppler solution, but differs from the
Baker-Nunn solutions by 2 meters.

These differences reflect errors in the com-

puted geoid from GEM 6 and in the selection
process due to spacing of the stations as well
as the error in station height. Thus, there
tend to be uncertainties in the origin greater
than the formal uncertainties and discrepan-
cies in certain areas between derived station

heights and the derived geoid.

5.6.1.1.4 COMPARISON WITH POSI-
TIONS ON NATIONAL OR IN-

TERNATIONAL DATUMS

Station coordinates in the GEM 6 system

are compared with coordinates in national or
international datums by first computing the
datum shifts involved and then using these
to transform the coordinates. We refer to
coordinates in the national or international

datums as surveyed coordinates.
Let _,, ¢3, h_ be the geodetic coordinates of

a particular station as determined by survey
on the ground. These are converted to rec-
tangular coordinates x, y., z_ by using the
specifications of the datum. Here, x., y._, z_
will be referred to as "surveyed" coordinates.

The surveyed coordinates are transformed to
the system of GEM 6 by the equation

x;\ lAx+x,,\
y J=l 'y+y,,J
z_/ \AZ+Z,,/

+ (l+s) -,,, _ lY_--Y,,)

(5.152)
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where

x" \
y']
Z r\_/

g_
Zs

Yo
Zo

8

I0

0

are surveyed coordinates transformed
to the GEM 6 system

are surveyed coordinates in the origi-
nal datum

are surveyed coordinates of
adopted datum origin

is the scale difference
is the rotation about the z axis

is the rotation about the y axis
is the rotation about the x axis

the

Table 5.44 shows the adopted origins _o, _o,
ho, which lead to xo, Yo, Zo for the calculations
outlined above. With the exception of the
North American Datum 1927 (NAD 1927),
the adopted origins for our calculations do
not agree with the origins of the four datums
whose solutions are derived.

D.. :-.1.._ the o-o-_-ate_ of the nriuin

of the datums, the translation parameters
(±x, _y, _z) are then exactly equal to the
shift of the local datum at the datum origin.
Also, the correlations between translation
and rotation parameters are minimized.

Table 5.45 presents solutions for seven pa-
rameters of four major datums using the co-
ordinates of cameras and the rms of the dif-

ferences in the station coordinates. In each
solution, individual stations are weighted
equally. The average rms error for each
datum is 4.5 meters. Coordinate differences
for each solution are shown in table 5.46.

A special comment is warranted on the so-

lution for the European datum 1950, known
as ED50. The solution uses only five stations
for its determination. A number of other

stations connected to ED50 were rejected be-
cause they did not fit with any reasonable hy-
pothesis concerning the accuracy of the tri-
angulation on ED50.

5.6.1.1.5 SUMMARY AND CONCLU-
SIONS

Coordinates of the 138 tracking stations in
GEM 6 provide datum shifts for establishing

a unified world geodetic system for 11 differ-

ent datums. Results with respect to an ellip-
soid having a semimajor axis of 6 378 155

and a flattening of 1/298.255 are presented
in table 5.33. Table 5.47 shows the transla-

tions for transforming 11 datums to the GEM

6 system, and table 5.45 gives the translation,
scale difference, and three rotations for
transforming four major datums to the GEM
6 system.

Radial positions and heights above mean
sea level from a survey of the stations indi-
cate a mean radius a_ for the Earth of 6 378

143.7 meters. Results have been presented in
table 5.43 and figure 5.31, where variations
ranging from 6 378 141.0 to 6 378 149.3 me-

ters can been seen for subsets of the tracking
systems. Also, an independent geometric so-
lution using the BC-4 data gives an a, of

6 378 129.0 meters based upon DME base
lines.

Systematic differences of coordinates in
dynamic solutions such as GEM 6, Goddard
'73, NWL 9D, and classical geodetic triangu-
lation may be removed by estimating seven
parameters. _ ,_m_,_ _r_ _ransla-x.,ree ,,,_, ............
tions, three are rotations, and one is a scale
change. After the systematic differences are
removed, coordinates of major tracking sys-
tems in GEM 6, such as the MOTS-SPEOPTS
cameras, Baker-Nunn cameras, and laser
DME stations, agree with the Goddard '73
solution and with classical geodetic triangu-
lations so well that the coordinates of major
tracking stations in GEM 6 are believed to

be known with an rms accuracy of 5 meters
or better in each coordinate. In the GEM 6

system, coordinates of Doppler stations are
known to an rms of 8 meters or better and
BC-4 coordinates of cameras are known to
an rms of 10 meters or better.

A significant difference of nearly 12 meters
exists between the coordinate origins (center

of mass) derived from station positions of
the GEM 6 (or Goddard '73) and Standard

Earth III Model, and an ll-meter systematic
difference exists between GEM 6 and NWL

9D. There are systematic differences in the

rotation parameters, especially about the z
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ordinates derived by geometric or dynamic
theory. Pending a resolution of the differ-
ences in the rotation parameters estimated
from the various solutions, the rotation
parameters associated with the datum trans-
formations need not be interpreted as datum
tilts or absolute deflections in the classical

geodetic sense.
Figure 5.32 shows displacements of the

Greenwich meridian (the angle _ converted
to meters) and the mean pole (the angles
and ¢ converted to meters at the pole) with
respect to the zero meridian and pole of
GEM 6.

Coordinates of BC-4 cameras derived by
different investigators through geometric

theory give relatively large dispersions in the
magnitudes of the seven parameters used to
estimate systematic differences in the solu-
tions in comparison with corresponding re-
sults from dynamic solutions. In addition,

relatively large rms differences exist after
systematic differences are removed. The
BC-4 camera network has fewer observations

per station on the average, than the stations
in dynamic solutions.

Stations derived through dynamic proc-
essing of observations are connected through

orbital constraints with many other stations,
compared with the relatively few BC-4 sta-
tions connected by observations.

In the comparison of independent solutions
by different investigators, the GEM 6 solu-
tion is especially useful. It contains obser-
vational data of many different classes.
Hence, solutions of other investigators can
be compared with GEM 6 and can be indi-
rectly compared with each other, even when
direct comparisons are not possible.

5.6.1.2 Station Coordinates in Goddard '73

(J. Marsh)

Displacement of Greenwich Meridan

as compared to GEM 6 _

- _u o
_0

-, 0 0_0 •

-20 -10 0 10 20

Displacement Positive East (meters)

Displacement of the pole as

compared to GEM 6

• NWL 9D

I
-1 0

*GEM 61

I •

10-

-5 GSFC '73 •

OSU WN-4 •

*GEM 61 is an independent

BC-4 solution -5-

-10-

• Comparisons of dynamic

solutions

• Comparisons of geometrical

BC-4 solutions

z:
• SAO SE Trr

x

GEM 4

_"zeoNWL 9D X-AXIS (meters)
I I

• _ 5 10

SAO SE Tl'r

FIGURE 5.32.--Relations of coordinate system of

GEM 6 and various other models.

5.6.1.2.1 PRESENTATION OF RESULTS

Table 5.48 presents the values determined
for our stations, which are referred to in this
text as Goddard '73 or GSFC '73. The co-
ordinates are in a center-of-mass system

oriented with the z axis parallel to the axis
through the CIO pole and the x axis in the
zero meridian defined by BIH's longitudes.
The solutions were derived through the use

of the equations described in section 5.4.1.
A total of 150 two-day arcs were used in

the final solution. Experience with observa-
tions of the GEOS flash and laser DME data
has indicated that two-day arcs are short

enough to accommodate errors in the model
and yet long enough to provide adequate
strength. The dominant source of error was
uncertainty in the values of the 12th- and
13th-order resonance coefficients of the gravi-
tational model. Resonance produces an orbital

perturbation of about 600 meters, primarily
along track, on the GEOS satellites with a
period of about six days. Resonance-caused
errors on the order of a few tens of meters
were for the most part absorbed in the
orbital elements of two-day arcs. To reduce
unmodeled errors in the orbit further, passes
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were selected in all directions on all sides of

the stations. When the solution is designed
properly, this geometry leads to favorable
cancellation of errors.

In order to utilize accurately surveyed ties
between adjacent stations, the coordinates

of certain stations were constrained to adjust
together. A list of the stations with con-

strained coordinates is presented in table
5.49. It is noted that no other constraints

were employed in the solution, since it was
believed that the laser system data could be
used to reveal systematic differences (due to
the incompatibility of parameters such as
scale) which might otherwise be obscured.
Also, the camera data provide a direct meas-

ure of latitude and longitude with proper
modeling of UT1 and polar motion.

The goal was to produce a global solution

accurate to 5 meters. Our previous work
employed the gravitational coefficients of
SAO 1969 Standard Earth II (Gaposchkin
and Lambeck, 1970), which was found to be
the best available at that time. Lerch et al.
(1972 b, c) at GSFC have produced the GEM
series of ..... "*-"^ 's,,_v,_,vna_ models, which are
considered in section 5.6.1. Our solution was
computed first, with GEM 1 modified with
the resonance coefficients in SAO's Standard
Earth II and repeated using all the coeffi-
cients in SAO's Standard Earth II. Gen-
erally, the results using GEM 1 gave a more
consistent set of coordinates, a smaller rms
of fit to the data, and the best overall results.
We have adopted the solution with GEM 1
and the 12th-, 13th-, and 14th-order terms
resonance coefficients) of SAO's Standard
Earth II for the Goddard '73. The results
obtained with these two models are compared
in section 5.6.5.

A total of 65,000 camera observations and

some 350 passes from laser systems were
used in our final simultaneous solution. The

data from NASA and CNES (Centre Na-
tional d'Etudes Spatiales) laser systems were
sampled, leaving from 10 to 20 points per
pass where possible. For those systems with
slower data rates, all data available were
used. The formal rms of fit to this set of data

5.6.1.2.2 THE RELATIONS OF MAJOR
GEODETIC DATUMS TO A
GEOCENTRIC REFERENCE
SYSTEM

The relations of North American Datum

1927, European Datum 1950, South Ameri-
can Datum 1969, and Australian Geodetic
Datum to the geocentric reference of God-

dard '73 have been established through the
derivation of values for seven parameters
(three translation, three rotation, and one

scale) for each datum. For the Arc Datum,
the two available stations have been used to

derive the translation parameters.
Surveyed coordinates were obtained pri-

marily from the "NASA Director of Obser-

vatiton Station Locations" (1971).

North American Datum (1927).--Four-
teen stations (12 on the continent and 1 each

on the islands of Jamaica and Puerto Rico)
have been used to establish the orientation

of North American Datum 1927 with respect
to a geocentric reference system established
_z .......... Figure 5._ presents values
for the seven orientation parameters, their
correlation coefficients, associative residuals
in X, Y, and Z, and chord-length differences.
The scale difference indicates that North
American Datum 1927 is smaller than the

geocentric solution by 0.9_+0.2 ppm. This
value is in good agreement with the 0.8 ppm
derived from the comparison of Goddard '73
with JPL's spin-axis distances. The residuals

in X, Y, and Z have rms values of 3.4, 2.6,
and 3.8 meters, respectively.

European Datum (1950).--Nine stations
have been used in relating European Datum
1950 to this global reference system. Figure
5.34 presents information for the European
datum similar to that presented in Figure
5.33 for North American Datum 1927. The
comparison of our solution with that of
CNES indicated a mean scale difference of

0.3 ppm for chords to San Fernando, Spain.
The overall scale difference derived in the

seven-parameter solution was 5.0__0.4 ppm.
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to a systematic scale error in European
Datum 1950 resulting from the unavailability

of the geoidal heights throughout the system
at the time of its reduction in 1950. The

values used for the chords derived have been

modified to account for this error. After cor-

rection, 23 of a total of 36 chords show differ-
ences of 5 meters or less.

The residuals in X, Y, Z have rms values

of 3.0, 3.6, and 4.3 meters, respectively.

South American Datum (1969).--Five

stations tied to the South American Datum

1969 were used in this study. A scale differ-

ence of -1.8 ± 0.2 ppm was derived. Curacao
was omitted from the analysis, since chords

from this station to Natal, Brazil, and Are-

quipa, Peru, differed from survey values by
-16.1 and 21.7 meters, respectively. How-

ever, the differences between our values and
those of GEM 4 and SAO's Standard Earth

II were on the order of a few meters. The

differences in X, Y, Z for this datum are

somewhat larger than for the North Ameri-

can and European datums, their rms values

being 4.6, 4.0, and 8.2 meters, respectively.

Figure 5.35 presents these results.
Australian Geodetic Datum (1965) and

Arc Datum.--Only three separate locations

were available for comparison in Australia.

Figure 5.36 presents the results for Austra-
lian Geodetic Datum 1965. The translation

and orientation parameters showed high

correlations, which might be expected be-
cause of the small number of stations. The

correlation coefficients for scale were in gen-

eral less than 0.3; therefore, it is concluded

that the scale difference of 1.9 ± 0.4 ppm is a

well-determined value.

Translation parameters (in meters) are

presented below for the two stations on Arc
Datum which were independently adjusted

in our solution.

AX Ay ±Z

Johannesburg,
Republic of
South Africa --124.2 --108.8 --296.2

Olifantsfontein,
Republic of
South Africa --125.2 --107.8 --300.8

Comparison of the satellite-derived chord

connecting these two stations with the sur-

veyed value indicated a difference of 1.9

meters.

5.6.1.2.3 ANALYSIS OF RESULTS

Comparison of Coordinates in Goddard '73
With Coordinates Determined by JPL and

McDonald Observatory.--In any analysis,

evaluation of the results is one of the most

difficult and important tasks. In satellite

geodesy, it is useful to compare the results

of several investigators, but in many cases
the solutions are not truly independent. For-

tunately, the results of JPL for spin-axis
distance and longitudinal differences are both

highly accurate and are obtained without

using near-Earth satellites.

As noted by Mottinger (1969), JPL's data

from interplanetary spacecraft do not yield

a complete position for a station. The well-

determined parameters are the distance of a
station from the Earth's spin axis and the

differences between longitudes of the sta-

tions. The Earth-fixed Z component of the

station position is poorly determined. Thus,

complete positions of DSS stations rely on

independent determinations (see ch. 4).
In no case is a camera or laser tracking

station precisely contiguous to a DSS station.

In all cases except in Spain, the stations are

very close, so close that significant survey

error can generally be regarded as unlikely.

The procedure used to infer coordinates of

a camera-type tracking station from the DSS
solutions follows. The local- to center-of-

mass shift for the DSS radar was calculated

and then applied to the local coordinates of

the nearby camera-type tracking stations.
In cases where two cameras were nearby and

their coordinates independently determined,

coordinates of both are presented. The re-

sulting camera coordinates were then used to
calculate spin-axis distances and longitudinal

differences. A comparison of the spin-axis

distances is given in table 5.51 for the God-

dard '73 and JPL LS25.

In previous solutions that used SAO's
Standard Earth II (1969) gravitational
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model, we found little systematic difference

in the spin-axis distances for the cameras
and nearby JPL radars (Marsh et al., 1971).

This was probably due to two factors. First,
SAO's coordinate._ of 1969 contained some

constraints based on JPL's results, and we
held SAO's coordinates as fixed initially in

our previous work. Second, the orbital semi-
major axes were able to accommodate an
error in GM.

In our recent work, we included scale-
providing data from laser systems. Also, no
a priori constraints were employed on sta-
tion coordinates. These solutions produced

spin-axis distances which were systematically
larger than those of JPL when a value of
GM = 3.986013 x 10 _ km3/sec °-was used. How-
ever, when GM was changed to the more
recent value of 3.986008x 10 _ km3/sec 2 (Es-
posito and Wong, 1972), this disagreement
was reduced.

The spin-axis distances obtained when the
value of GM=3.986008x10 _ km_/'seC was
used indicated a scale difference of +0.8x

10 -_ for these distances. The GM implied by
this scale difference would be about 3.986000

x 10_ km_/sec 2. Allowing for this scale dif-
ference, the rms difference between JPL and
Goddard '73 results is 2.6 meters. (The rea-
son for this scale difference is not known at

this time.)
Analysis of measurements by laser systems

to the lunar retro-reflectors, recorded at
McDonald Observatory by the Lunar Laser

Group (Williams et al., 1972, unpublished),
has yielded the distance of the observing site
from the spin axis of the Earth with an

accuracy of ± 3 meters. Table 5.52 presents a
comparison of the Lunar Laser Group results
and those obtained from recent solutions

using camera and laser system data, includ-

ing Goddard '73. When the 0.8-ppm scale
factor as determined from the comparison
with JPL's values is subtracted from the

scale factor of Goddard '73, the agreement

with the Lunar Laser Group is 30 cm.

Table 5.51 also presents the longitudinal
differences between JPL's stations and God-
dard '73 after removal of a longitudinal ro-

tation of 0.27" (8 meters at the equator). It
is noted that both SAO's Standard Earth II

and GSFC 1971 were rotated in longitude by
about 0.75" with respect to JPL's solution. In
our present solutions using the potential of
Standard Earth II, with no a priori informa-
tion being supplied by SAO's station coordi-
nares, our longitudes rotated into agreement
with JPL's longitude. With the use of GEM 1,
a rotation of 0.27" in longitude again ap-

peared. When this rotation is removed, the
rms agreement in longitude is 2.6 meters.
The rotation may be related to least-squares
accommodation of errors in the coefficients
of tesseral harmonics.

Comparison With the Station Coordinates
of Standard Earth III (1973) and GEM 4.--
Lerch et al. (1972c) of GSFC published a
set of potential coefficients and station coordi-
nates of GEM 4. Gaposchkin (1973) of SAO
solved for a gravitational potential and sta-
tion coordinates, using an iterative process.
This section will assess the level o2 agreement
between Goddard '73 and these models.

The accuracy of coordinates derived by
means of dynamic techniques varies. In a
least-squares determination of orbital posi-
tion, larger errors normally occur over areas
with limited or no tracking for near-Earth
satellites. Therefore, the isolated stations
with limited sets of data have the poorest
determinations of coordinates. In order to

assess more realistically the difference be-
tween Goddard '73 and the GEM 4 and

Standard Earth III, seven stations with
known larger uncertainties in position were
omitted from the analysis.

GEM 4 used GM=3.986013 x 10 _ km_/sec -_.
To compare these values with our own, a
transformation with seven parameters was
computed using 34 independent common sta-
tions. Table 5.53 presents the results of this
solution. The scale difference of 0.46 ppm is
very close to the expected value, since the
Goddard '73 solution used a value of GM=

3.986008 x 10 _ km_/sec "-. The translational
parameters, aX, AY, and AZ are 50 cm or
less in each case. A rotation of about 0.3 arc

second in longitude is noted in the table.
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The rms of fit for the 34 stations, as shown
in Table 5.53, indicates agreement to better
than 5 meters between Goddard '73 and

GEM 4. This agreement is especially sig-
nificant in that GEM 4 used a different tech-

nique than Goddard '73 by simultaneously
solving for a gravitational model complete
with zonals and the station coordinates, and

a different gravitational model was employed.

A similar analysis was performed using
24 stations common to Goddard '73 and

Standard Earth III (ch. 9). Here, the dif-
ferences were larger. The rms of fit for the
24 stations was 8.9, 10.5, and 13.4 meters in
X, Y, and Z, respectively. A comparison
of Standard Earth III with respect to geoidal
height indicated a 25-meter discrepancy be-
tween the heights in Europe and those of

North America and Australia. This discrep-
ancy largely accounts for the greater differ-
ences between Goddard '73 and Standard
Earth III.

Evaluation of Radial Positions.--The com-

parisons of longitudinal differences and spin-
axis distances presented in the preceding
section provide an excellent means of assess-

ing the precision of the geocentric X and Y
coordinates. This precision has been shown
to be a very few meters. These comparisons
are insensitive to the values of the Z coordi-

nate. Systematic errors as large as 5 meters
can occur in Z due to errors in zonal har-

monics (Anderle, 1973). Other errors are
also present, primarily due to uncertainties in
modeling tesseral and sectorial harmonics.
Errors in Z will be propagated into errors in

the heights above the reference ellipsoid for
stations not on the equator.

Certain gravimetric geoids have been used

to evaluate the radial coordinates. On a global
basis, we have used the geoid (Marsh et al.,
1973) corresponding to the gravitational field

of GEM 4. Comparisons of this geoid with
detailed gravimetric geoids indicated that the
accuracy is generally on the order of 5 to
10 meters.

The detailed gravimetric geoid of Vincent
and Marsh (sec. 5.6.3), which is based upon

a combination of surface gravity data and
satellite data, has been used in the areas of
North America, Europe, and Australia. The
accuracy of the detailed geoid has been
estimated at about 2 meters.

Figure 5.37 presents a plot of Ah versus
station latitude :

±h= (h_z-h,,_l) -N

where h_ is the height of the station above
the reference ellipsoid, h,,,_t is the height of
the station above mean sea level obtained

from survey data, and N represents the
geoidal heights from GEM 4.

Thus, the differences shown in figure 5.37
represent the sum of errors in the height
dynamically determined, the surveyed height
above mean sea level, and the satellite geoid
height. The rms difference for this compari-
son is 5.6 meters, after removal of the sys-
tematic difference. This systematic differ-
ence is due to the difference in semimajor

axes used for the geoidal heights (6 378 142
meters) and the reference figure for the
station coordinates (6 378 155 meters). This
result agrees well with those of Mueller (un-
published, 1973) and Lerch (1972c), who
both indicated that a reference ellipsoid of
6 378 155 meters is too large by at least
10 meters. This plot indicates no significant
trend in the residuals as a function of lati-

tude, which means that displacement of the
origin of the coordinate system along the Z
axis must be less than a few meters.

Figure 5.38 presents a comparison of the
station heights in North America, Europe,

and Australia versus the heights from the
detailed gravimetric geoid. The overall rms
difference for these three areas is 4.1 meters,

reflecting the increased accuracy of the de-
tailed geoid over the global satellite geoid.
The ellipsoid implied by this more accurate
comparison would have a semimajor axis of
6 378 142 _ 2 meters. It is also important to
note that no significant scale differences are
indicated for these areas. This indicates that

a small value is an upper bound to the sys-
tematic error in the definition of mean sea
level for these three continents.
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Both noise and systematic errors in the
Z coordinates are assessed to be less than 4
meters rms for the Goddard '73.

Comparison of Chord Lengths on the North
American and European Datums.--This sec-
tion presents a comparison of chord lengths
computed from the Goddard '73 coordinates
with chord lengths computed from coordi-
nates of Reece and Marsh (1973) for North
America, Cazenave et al. (1972a) for Europe,
and the VLBI solution coordinates of

Ramasastry et al. (1973, unpublished).
Simultaneous observations of the GEOS 1

and GEOS 2 flashing lamps taken by NASA's
lgOTS and SPEOPT cameras were used by
Reece et al. to find coordinates of 13 sites
on the North American Datum. Scale was
provided by using data of laser systems at
Greenbelt and Wallops Island simultaneously
with camera data. Goddard '73 also pro-
vided coordinates for these stations. Fig-
ure 5.39 presents a histogram of the agree-
ment between the two solutions. Of the 77

common chords, 63 agree to 5 meters or
better.

?0 --

CNES in France (Cazenave et al., 1972)
used purely geometric techniques with data
from cameras and laser systems to find the

chord lengths between San Fernando, Spain,
and eight other sites in Europe.

Table 5.54 compares the chord lengths ob-
tained from Goddard '73 with the geometric
solution of CNES. The agreement between
Goddard '73 and CNES is good, six of the
eight chords agreeing to 4.5 meters. The
disagreement of the chord to Greece may
be due to the fact that this station is on the

periphery of the geometric network and
therefore is constrained in only limited di-
rections in the CNES solution. However, the
mean difference between CNES and God-

dard '73, including Greece, is still only a few
meters. When Greece is eliminated, the mean
scale difference between Goddard '73 and

CNES is 0.3 ppm.
Goddard '73, when compared with these

independent geometrical solutions of Reece
and Cazenave and the VLBI solution of

Ramasastry, indicates agreement to better
than 5 meters in almost all cases. This is

consistent with our error analysis, which
indicated that the coordinates of Goddard

'73 in North America and Europe are accu-
rate to 3 meters (1_).

m

50

gJ

_- 30 --

z 20 m
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-_ I I 1
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METERS OF AGREEMENT

FIGURE 5.39.--Histogram of agreement in North

America of chords calculated from Reece's solution

and the Goddard 1973 solution.

5.6.1.2.4 SUMMARY

Table 5.55 presents final estimates for the
uncertainties in coordinates of Goddard '73

stations, based upon error analyses and com-
parisons. For most stations, a standard
deviation of 5 meters (1 o) in each coordinate
is estimated.

5.6.2 The Geoid

5.6.2.1 The Geoid From GEM 5 and GEM 6
(J. Richardson, Computer Sciences Corpo-

ration)

Contour maps of geoidal heights deter-
mined with the potentials of GEM 5 and
GEM 6 are presented in figures 5.40 and 5.41,
respectively. The major features of high and
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low points on these geoids are exhibited in
table 5.56 for eight main features.

There is good agreement between the two
models in the major features. The largest
difference, 8 meters, occurs at the northeast
Pacific low. A profile of geoidal height found
with the use of zonal coefficients from GEM 6

is given in figure 5.42. An rms of differences
between geoidal heights computed from the
zonal harmonic coefficients of Cazenave et al.

(1971) and from those of GEM 6 is 0.2
meter; the maximum difference is less than
1 meter. The zonal terms of the two models,
which agree very well in individual coeffi-

cients, are seen to have little effect on differ-
ences in geoidal height. In general, a global
rms of differences in geoidal height AN be-
tween two models may be estimated from the
Bruns formula (Heiskanan and Moritz,

1967) (N= T 7) as follows

I _ " 2 11/-'rmszx._-= RJ __,(±_',,2,,,+±S,,,,) (5.153)
,_=o

where ±C, ab' are differences in the normal-
ized coefficients of degree n and order m
between the two models, Re is the mean
radius for the Earth, 'and N is the highest

degree in the models.
With the use of equation (5.153), com-

parisons of the rms differences of geoidal
heights determined with GEM 6 and various
other models are as follows:

EXP

GEM 2 GEM 4 GEM 5 (20 × 20)

3m 3m 5m 4m

The average rms difference for these models
is seen to be 4 meters, whereas the GEM 5
geoid has an average rms difference of 5

30

IC

[ I I I I I I I I

30

20

I I I I [ L I I
-80 -60 -40 -20 0 20 40 60

Latitude (_egrees}

FIOURE 5.42.--Profile of geoidal heights using only zonal harmonics in GEM 6.
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meters. The relative magnitude of the differ-
ence for GEM 5, which is complete to degree
and order 12, is due to the omission of some
higher-degree terms, from degree 13 through
degree 16. (The model EXP is defined in sec-
tion 5.6.3).

To estimate the error in the GEM 6 geoid,
a comparison was made with a detailed geoid
in North America, Eurasia, and Australia
(Vincent et al., 1972) where data on 1-degree
by 1-degree gravity anomalies were used.
The rms of geoidal height differences for
these areas was about 3.5 meters. However,

large variations in geoidal height exist in
certain areas. For example, a difference of
12 meters exists in the vicinity of the Puerto
Rican Trench.

Based upon these tests, an estimate of the
rms error in geoidal height when GEM 6 is
used is approximately 4 meters.

5.6.2.2 Detailed Global Geoid
(S. Vincent and J. Marsh)

From data obtained mainly from DMA/AC
and the Hawaiian Institute of Geophysics,
but supplemented by data collected from
many other sources (see sec. 5.3.2), and with
the use of the theory described in section

5.4.3, a detailed global geoid was constructed
using GEM 4 as a source of values for long-
wavelength harmonics. Comparisons with

45
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FIGURE 5.43.--Comparison between Bomford's astro-

geodetic geoid and the detailed global geoids

(GEM 4 and SAO Standard Earth II) integrated

10 ° around computation point for Europe.
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FIGURE 5.44.--Comparison between the astrogeodetic
geoid for Australia by Mather et al. and the de-

tailed global geoids (GEM 4 and SAO Standard

Earth II) in Australia.

Bomford's geoid for Europe (Bomford,
1971b) (fig. 5.43) and with Mather's geoid
for Australia (Mather, 1970) (fig. 5.44)
showed that the geoid based on GEM 4 agreed

much better than did the geoid of Standard
Earth II.

The detailed global geoid is shown in fig-

ure 5.45 on the Miller projection with 2-meter
intervals. It is compared in figure 5.46 with
the GEM 4 geoid.

Analysis of Results.--To evaluate the accu-

racy of the detailed global geoid for the areas
computed, a number of comparisons were
made. The first comparison was made with
the astrogeodetic geoid data of D. A. Rice
(personal communication, 1973) for the
United States. Rice supplied 1100 points
distributed over the United States, of which

200 well-distributed points were selected for
comparison. Before any comparisons could
be made, Rice's data were transformed from
the North American Datum 1927 to a geo-
Centric coordinate system. The rms differ-
ence between Rice's values and values from

the Goddard geoid is on the order of ±2
meters.

As a means of evaluating the scale of the
geoid, detailed geoidal heights and reference
ellipsoid parameters were used together with
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heights above mean sea level taken from the
NASA Directory of Observation Station
Locations (1971) to compute geocentric radii
for 32 satellite-tracking stations. These radii
were then compared with geocentric radii
derived from satellite observations. (See

table 5.57). No systematic difference was
detectable. This level of agreement must be

considered excellent, especially when the un-
certainties in the various data used in deriv-

ing the parameters are taken into account.
Of the various sources of the differences, the

most probable are (1) errors in values of
re, Wo, and at, (2) errors in station coordi-
nates obtained from dynamic theory, (3)
errors in mean sea level heights for some
tracking stations, and (4) errors in geoidal
heights at tracking stations due to the use of

simple free-air anomalies rather than ter-
rain-corrected free-air anomalies.

Theoretically, terrain-corrected free-air
anomalies provide more accurate estimates of
geoidal height than simple free-air anoma-
lies. The effect of using the simple anomalies

is to produce geoidal heights which are
.... v^_o÷;c_11_r _an nezative in the vicinity of
land areas with rugged relief. Dimitrijevich

(1972) has shown that the value of the
difference in the United States ranges from
in excess of +3.5 meters in the rugged
mountains of the west to about +0.2 meter

in the east. Since most tracking stations

used in the comparisons are on large land
masses and several are in areas of rugged

relief, 1- to 2-meter differences may arise.
It should be noted that differences due to this

source are not the result of errors in basic

parameters but the result of using a slightly
incorrect form of surface gravity anomalies

in the computations.
Another evaluation of scale was conducted

by comparing Mather's (1970) gravimetric
geoid with our geoid. Mather's geoid was

computed on the basis of Rapp's model com-
plete to (12, 12). The comparisons were

made along two latitudes, -24 degrees and
-26 degrees (table 5.58). In both instances,
there was a variation of less than 2 meters
rms and no systematic scale differences.

Conclusions.--The geoid presented here
has an accuracy of ± 2 m. over the continents
and 5 to 7 m. where data are sparse.

The use of a consistent set of parameters
refers this geoid to an absolute datum. Com-

parisons of the detailed global geoid with
astrogeodetic geoids and station positions
derived by dynamic satellite geodesy show no

systematic scale differences.
There seems to be no conclusive evidence

of a rotation with respect to North American
Datum 1927. However, a slight rotation,

which is prominent along the east-west pro-
file, exists in the European and Australian
datums. This rotation could be attributed to

long-wavelength errors in coefficients in

GEM 4, a rotation of the astrogeodetic geoid,
or a combination of both.

5.6.3 Gravitational Potential of GEM 5 and
GEM 6

5.6.3.1 Presentation of Results

The gravitational potential in terms of
normalized associated Legendre polyomials,

(, and _,,, isas defined by the coefficients _m _,m

given in table 5.59 for GEM 5 and in table
5.60 for GEM 6.

5.6.3.2 Analysis of Results

Zonal Harraonics ,¢_.... T,_rch., GSFC).--

Coefficients of the zonal harmonics have
been determined by Cazenave et al. (1971)
and Kozai (1969) by analyses of orbital

perturbations of long periods, whereas
GSFC, in its work on GEM, determined the
coefficients of the zonal harmonics by analy-
sis of orbital perturbations of short period

(7 days). Table 5.61 compares the zonal
coefficients in GEM, Standard Earth II, and
the solution of Cazenave et al. (1972b). The
solution of Cazenave et al. resulted from a
combination of Kozai's normal equations

(used in Standard Earth II) with corre-
sponding equations for three low-inclination
satellites (SAS, PEOLE, and DIAL). The
rms differences from the coefficients of
Cazenave et al. are as follows :
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Sobttions with

data on satellite._

of low inclinatio_

(rms X 10 _)

Solutio_ts without

data from satellites

of low inclination

(rms X 10 _)

GEM 3 9.5 SE-II 16.3

GEM 4 7.6 GEM 1 22.5

GEM 5 8.9 GEM 2 9.1

GEM 6 7.4

Solutions without low-inclination satellite

data employ satellites whose inclinations are
greater than 28 degrees.

The rms agreement with the values of
Cazenave et al. is much better for the solu-
tions that contain the data on low-inclina-
tion satellites than for the solutions which
lack these data. The comparisons of the co-
efficients of Cazenave et al. with the coeffi-

cients of GEM 1, 3, and 5 show progressively
better agreement, as do the comparisons
with the coefficients of GEM 2, 4, and 6.

The rms difference of 7.4x 10 '_ between
the values of GEM 6 and the values of Caze-

nave et al. is approaching the accuracy given
by the standard deviations from each of the
solutions. The rms of the standard deviations
is 5 x 10 -_' for the GEM 6 solution and 4.5x
10 _'for the Cazenave et al. solution. Secular

and long-period zonal perturbations were
computed from these models and are pre-
sented in a subsequent section. In this analy-
sis, the solutions that include low-inclination

data yield improved results over solutions not
including these data.

Comparison With Gravity Anomalies (F.
Lerch, GSFC, and J. Richardson, Computer
Sciences Corporation).--Data on surface
gravity were employed for testing models
derived only from tracking data as well as
models derived by adding gravimetric data.

Rapp's 5-degree equal-area (555-km squares)
average gravity anomalies were employed in
the comparisons. These consisted of 1654
blocks of anomalies, of which 1283 blocks
were based upon actual measurements of
gravity. For these 1283 blocks, mean square
differences E [(G,_,-G_,) _] between the 5-
degrees average gravity anomaly (Gv) and

the value (G_) computed from the potential
given in various models are listed in table
5.62.

Three subsets of the 1283 blocks are also

presented in table 5.62. These subsets are
based upon the number (n) of l-degree
equal-area anomalies in a 5-degree block that

were based directly upon observations. The
four samples selected for the comparisons
consist of the 1283 blocks for n>_l, 1044
blocks for n_5, 563 blocks for n_>15, and
211 blocks for n= 25.

Models are listed in table 5.62 in the order
of increasing agreement with the data on
surface gravity. The average reduction in
E[(Gr-Gs)'-'] between GEM 1 and GEM 5
is about 8 mGal 2 for the four samples. This
improvement is significant for satellite mod-
els, considering that the total reduction for
this quantity is about 32 mGaF when surface
gravity data are included, as in the case of
the GEM 4 and 6 models.

GEM 6 was computed with the gravity
data from Rapp included in its solution. For
this reason, GEM 6 is in better agreement

with the data than GEM 4. The improvement
in GEM 3 and GEM 5 relative to GEM 1 is
attributed to the inclusion of electronic and
laser DME data.

The result in table 5.62 for Standard Earth

II is somewhat unexpected, since this model
used a set of average gravity anomalies in
its solution. However, these data were based
upon an earlier collection and were fewer
than Rapp's data.

Gravity anomalies were computed for
GEM 5 and GEM 6 with the use of equation
(5.41). The results are plotted in figures
5.47 and 5.48.

The value E(Gr-Gs) o for the mean square
gravity anomaly differences is due to: (1)
errors (es) of commission caused by errors
in the potential coefficients in the solution,
(2) errors (_T) in the data, and (3) errors
($,,) of omission caused by excluding higher-
degree coefficients from the solution. The

solution (EXP in table 5.62) is derived in a
manner similar to that for GEM 6 except
that the EXP solution is complete to degree
and order 20 in spherical harmonics. This
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extension is obtained from the contributions

of the surface-gravity data. The EXP model
shows a considerable reduction in E(Gr-

Gs) o_relative to GEM 6. Also, since 5-degree
mean gravity anomalies correspond ideally
to a model complete to degree and order 36 in
harmonics, the primary source of the value

(total error) is due to the omission er-
rors _.

Kaula (1966a) provided a statistical tech-
nique for estimating the mean square of the
errors (_r, _s, _g) in E(Gr-Gs) _-for a given
solution and the data. The following quan-
tities are defined for the statistical error esti-
mates :

E [ (G_- Vs) 5] mean square difference be-
tween the terrestrial anomaly
Gr and the anomaly Gs com-
puted from the solution
mean square of the terrestrial
anomalies

mean square of anomaly com-
puted from the solution
estimate of the variance of

Gm the true contribution to Gs
mean square value of error in
terrestrial anomaly
mean square value of ne-
glected higher-degree terms in
the Gs set (omission error)

E (_s_) mean square error in the solu-
tion Gs (commission error)

For a given argument Q, the preceding
quantities E(Q) are computed from

E(Q) = _ g

where the subscript i corresponds to a 5-
degree equal-area block and K is the number

of blocks, containing terrestrial gravity
anomalies Gr.

E (_) =E (G__) -E (G. _)

E(_) =E ( (G_- G_)2) -E(_ 2) -E(_ 2)

where n is the number of 1-degree anomalies
in a 5-degree block.

E(Gr _)

E(Gs 2)

E(Gr Gs)

E(cr _)

E($g 2)

The statistical estimates were applied to
three samples of the 5-degree test anomalies
for the GEM 5, GEM 6, and EXP models.
The resulting estimates are listed in table
5.63. Samples of the 1283 blocks of observed
data were chosen for n>_10, 15, and 20. The
error estimates are expected to be most valid
for GEM 5, since the solution is independent
of the test data.

The estimate for E(_g 2) represents the
amount of information that remains to be

extracted from the gravity data correspond-
ing to a given solution. For the three models
in table 5.63, the E(Sg 2) averaged over the
three samples reduces from 119 mGaF for
the 12 × 12 GEM 5 model to 93 mGal _ for the

16×16 GEM 6 model, and to 70 mGaF for
the 20 × 20 EXP model. These omission (or

truncation) errors are decreasing by about
25 mGal 2 as the maximum degree increases

by 4. At this rate, the truncation error would
be exhausted for a field complete to degree
32. Ideally, this _.xhaustion would occur at
degree 36 for a global set of 5-degree
anomalies.

The mean square errors of commission
E(G'), due to errors in the ....... :nlpu_11_ coe_-

cients in the solution, are estimated more
realistically for the GEM 5 satellite model,
since its solution is independent of the test
data. The rms error for GEM 5 is about

6 mGal for the three samples. Corresponding
errors for GEM 6 and EXP are about 5 and

4 mGal, respectively.

Gravity anomaly degree variances for the
GEM 5, GEM 6, and EXP models are listed
in table 5.64. Values are quite consistent
from degree 2 to 12 for the three solutions.
For these coefficients, a maximum difference
of 3 mGaF is seen at degree 7 between GEM
5 and each of the combination solutions.

Degree variances are listed beyond degree 12
for the GEM 5 satellite model, but these
include only the effects of the zonal and
selected satellite resonant terms. Similarly,

the results agree very well between the GEM
6 and EXP model through degree 16. The
sharp rise in the EXP (20×20) result for

degrees 19 and 20 is possibly related to the
so-called aliasing effect. This effect is due to
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the truncation of the spherical harmonics.
Some of the remaining information in the

gravity anomaly (4) for higher-degree terms

(>20) is absorbed into adjacent degree

terms in the solution due to relatively com-

mon frequency components.

Table 5.64 includes a value corresponding

to the harmonic of degree zero, Ago, which
was derived in the combination solutions as

an adjustment for the reference value of

equatorial gravity _/c. Since Ago= 3 mGal, the

reference value of _/cgiven in the introduction

is adjusted to 978 032.1 mGal (7%) so as to

correspond to the observed gravity data. The
observed and computed gravity anomalies

used in the comparisons above referred to

normal gravity with the adjusted _'c.

Effects of Different Models of the Gravi-

tational Potential on Satellite Observation

Residuals (F. Lerch, GSFC, and J. Brownd,
Computer Sciences Corporation) .--Orbits

have been derived from several sets of track-

ing observations with the use of various

models of the gravitational field. The rms

of the residuals found by using the different

models is used as a measure for comparing
them. Results are presented in the following

areas of data analysis: (1) unified S-band

(USB) tracking data on 11 daily arcs of the

ERTS-1 satellite (table 5.65) ; (2) 7-day arcs

of camera data on 23 satellites (table 5.66) ;
(3) BE-C laser DME data on 22 short arcs

(table 5.67); and (4) long-term zonal per-

turbations on 21 satellites (table 5.68).

The USB tracking data were processed for
11 stations using each of the GEM models

and the Standard Earth II Model. The re-

sults are listed in table 5.65. These data pro-

vided global coverage for the orbit on 11 day-
long arcs of the ERTS 1 satellite. For each

day-long arc, the number of two-way range
rate observations and station passes is listed.

The rms of the residuals is given for each
arc along with the average for the 11 arcs

corresponding to each of the models. The

average rms is least for GEM 6. In general,
the GEM's yield an rms of from 30 to 45

percent relative to Standard Earth II. GEM

4 shows the largest rms among the GEM's.

Table 5.66 presents the weighted rms of

residuals for a week-long arc on each of the

23 satellites that contain data from cameras.

The rms values are weighted corresponding
to the standard deviation of 2", representing

the accuracy of the camera data. Ideally, then,

the rms values should be close to unity (they

may be scaled by a factor of 2 for conversion

to arc seconds). The average rms value per
satellite is listed at the bottom of table 5.66

for each of the models. Models GEM 1 and 3

and GEM 6 all agree to within 0'/37 with the

GEM 5 value of 2':37 in the average rms value
per satellite. The GEM 4 and Standard

Earth II values are 0'/63 and 1'.'07 larger than
the GEM 5 value. This average rms of 2'/37

per satellite for the GEM 5 solution ap-
proaches the ideal value of 2".

Twenty-two short arcs measured by the

laser system on BE-C, which is independent

of the solutions, have been processed using
each GEM. The BE-C arcs are three revolu-

tions in length ; each consists of four consecu-

tive passes with data which were collected

by GODLAS at Greenbelt, Maryland during

a 5-month period starting in July 1970. The
rms of the residuals are listed in table 5.67

for the individual arcs, along with an average

rms per arc. The results agree to within 0.3

meter for the GEM 1, GEM 5, and GEM 6
models.

These average rms values range from 1.33

to 1.65 meters. As shown in table 5.67, some-

what larger average rms values have been

obtained for GEM 3 (2.0 meters) and for

Standard Earth II (2.51 meters), and a value
as large as 4.05 meters has been obtained for

GEM 4. On a single pass, all the above

models generally give rms values of about 50

cm, corresponding closely to the estimate of

the accuracy of GODLAS.

A preliminary solution (PGS 2) for the

gravitational potential, which is based upon

camera data as is GEM 1 but which is com-

plete to degree and order 16 in harmonics

and includes a number of selected higher-

degree terms, gave an average rms value of

1.06 meters for the 22 four-pass arcs. Results
for individual arcs for PGS 2 are listed in

table 5.67 along with the results for the
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other models. These results more closely ap-
proach the accuracy of the data.

Solutions for zonal coefficients were tested

by Wagner (1972) on 21 satellites, including
the low-inclination satellite SAS and PEOLE

for their secular and long-period effects on
mean elements obtained from week-long arcs.
Wagner uses as a test criterion the rms of

the weighted variations in the mean element
of each solution. These rms values are listed

with those of other solutions (not included
in his work) for comparison in table 5.68.
Only about half of the 21 satellites used in
Wagner's work were used in the other
models.

The models that contain the data from the

low-inclination satellites, GEM 3 through 6
and the Cazenave et al. (1971) model com-
pare favorably in this test. Considering that
the GEM's were based upon week-long orbital
arcs and the model of Cazenave et al. (1971)
was based upon satellite long-term zonal
effects, it verifies that good zonal recovery
may be achieved from short-term zonal ef-

fects. The Standard Earth II, GEM 1, and
GEM 2 sobJ_tions do not compare as well in
these tests because they do not contain the

effects of low-inclination satellites. Wagner's
result is expected to have the lowest rms,
since his solution is based entirely upon the
test data.

A summary of the results in tables 5.65

through 5.68 and table 5.62 is presented in
table 5.69. The rms values of residuals for

the different categories of data show, on the
average, better results for GEM 5 and GEM

6. In ordering the models for evaluation, a
simplified ranking scheme is used, where the
rank as given in the table is derived from the
sizes of the rms values from the different
comparisons.

5.6.3.3 Geodetic Parameters

The reference values of the Earth's ellip-
soid and normal gravity are listed below,
along with the corresponding adjusted values
based t:pon the GEM 6 solution.

Reference Adjusted
Value Value

a, (equatorial

radius) 6 378 155 m 6 378 144 m

f (flattening) 1/298.255 1/298.256
g, (equatorial

gravity) 978 029.1 regal 978 032.1 mGal

The adjusted value of ae was derived in
sec. 5.6.1.1 from an analysis of the GEM 6
station coordinates and heights of stations

above mean sea level. Another estimate of ae
may be derived from the reference value of

GM=398601.3 km:_/sec -_ and the adjusted
value of go, as derived from surface gravity
data (Lerch et al., 1972). This value for a_
is 6 378 142 meters and is well within the
variational results associated with the above

value of ae, as shown by table 5.43.

5.6.4 Other Results

5.6.4.1 Luni-Solar Gravitational Perturbations
(J. Murphy and T. L. Feisentreger)

The magnitudes of luni-solar perturbations
relative to the zonal harmonic effects are

indicated in table 5.70, which gives the am-
plitudes and periods of some of the principal
terms in the eccentricity perturbation of the
TELSTAR 2 satellite.

The results of analyzing the orbital eccen-
tricity of TELSTAR 2 are shown in figure

5.49. In this figure, the dots represent the
"mean" values of eccentricity derived from
an orbital theory containing Earth's zonal

harmonic effects through C]. If no perturba-
tions are left in the elements, the mean values
should be fairly constant. As indicated in

figure 5.49, a quite substantial long-period
variation remains in the eccentricity. How-
ever, after removal of the long-period and
solar gravitational effects and solar radiation
pressure, this variation is reduced to almost
nothing. Similar results were obtained for

the inclination, the argument of perigee, and
the longitude of the node.

Figure 5.50 illustrates the effect of remov-

ing the resonant perturbation (_e) a from the
eccentricity of the RELAY 2 satellite. The

resultant mean eccentricity is practically a
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constant, as it should be if all perturbations
have been removed.

The remaining variation in ec- (ae)n is in
phase with the argument of perigee, with a
period of about 325 days. The values of ec
- (ae) 1_were fit by means of least squares to
an expression of the form

e.-FB1 sin ,o+B._ cos o,

indicating that this variation can be ex-
plained by a trigonometric term with a pe-
riod of 325 days and with an amplitude of
B_ +B_ =0.00004242. The closeness of the

fit is indicated in figure 5.51. The peturbatio n
formula for e due to Earth zonal harmonic

C_contains such a term :

C,: sin i sin o,
ae=- ½ C° a

A value of C_ of -2.285×10 -° was used in

the orm_ _,uu_. However, the re_alnlng
variation in e indicates that a value of
-2.504×10 -° should have been used. This
value is more in line with recent determina-
tions.

5.6.4.2 Solar Radiation Pressure

The TELSTAR 2 satellite provides a good
subject for study of the solar radiation pres-

sure effect (sec. 5.4.4.2). A variation with ap-
proximate amplitude of 0.0000140 Earth
radii and a period of about a year was ob-

served in the semimajor axis, as depicted by
the dots in figure 5.52. Inclusion of the shad-

owing radiation-pressure successfully ac-
counted for this variation, as shown in figure
5.52.

5.6.4.3 Tidal Deformation of the Earth

Figure 5.53 shows the theoretical tidal
perturbation on the BE-C satellite using a
value of 0.3 for k__oonly (Musen and Felsen-

treger, 1973). This perturbation agrees quite
well with observational data.

5.6.4.4 Figure of the Hydrostatic Earth

(M. A. Khan)

The following data are adopted in the com-
putation of/h :

0 23790 / I ] I I .i I I I I I 1 ] i • •
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FIGURE 5.51.--Eccentricity of Relay 2 orbit.
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Therefore,

C °- 1082.646x10 -o

H=3273.64 x 10 -6

C
= 0.33071598

m = 3449.80 x 10 -°

x(a) =0

The resulting value of the hydrostatic flat-
tening is

1
fh = 299.75 ___0.05

The corresponding value of hydrostatic C._?is

C ° = - 1071.66 x 10 -6
2 h

The value of actual flattening f correspond-

ing to C_,= - 1082.692 x 10 -'_ is

1
f= 298.25±0.05

and therefore

f- fh = 16.722 x 10 -D

The choice of k (a) = 0 needs some justifica-

tion. The value of _,(a) lies between 1.3x 10 6

(Bullard, 1948), as calculated from the
known density distribution of the Earth.

Thus, it may appear at first sight that the

choice of _, is not compatible with the second-

order theory. However, selection of x(a) =0

instead of ;, (a) = 1.3 x 10-' results in fj, being

|
v
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FIGURE 5.53.--Tidal perturbations in orbit of BE-C.

greater by 6 x 10 _ only, whereas the differ-

ence f-h,=16.722x10 -,3. Hence, our choice

of A(a)=0, and consequently ¢(_/)=1, does

not affect the value of fh to any significant

degree. This is demonstrated in figure 5.54.

Size of the Hydrostatic Earth.--The size

of the ellipsoid of the hydrostatic Earth can

be computed by assuming that it is volu-

metrically equivalent to the actual Earth.

Thus, if a and b are the equatorial and polar

radii of the actual Earth and a_, and b_, their

hydrostatic counterparts, we have

( 1-fV'
ah=a \l-fh]

For a=6 378 140 meters and C=6 356 755

meters (corresponding to f=1/298.255), we
obtain

• F , • T i v ¸ , v ¸ _

1 9231940 THEORY iNCLUDiNG ZONAL

DATA BASED HARMONICS

ON BROUWER PRESSURE,T, 19231900 ELEMENTS GRAVITATIONAL FORCES.
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- RADIATION PRESSURE
(_ 1 9231860 --- ...... DUE TO SF _,DOWING

l 9231820

THEORY INCLUDING ZONAL

=E HARMONICS DIRECT SOLAR

RAOIATION PRESSURE SOLAR

AND LUNAR GRAVITATIONAL

FORCES, ANO AIR DRAG

I00 140 180 220 260 300 340 380 420 460 500 540 580 620

TIME (DAYS SINCE 08/18/63 11 NRS 55 MIN U T )

FIGURE 5.52.--Semimajor axis of Telstar 2 orbit

versus time.

a_= 6 378 104 meters

bh=6 356 826 meters

which result in

- a_,= 36 meters

b- bh= --71 meters

Gravity Field Referred to the Hydrostatic

Figure.--As discussed earlier, since the hy-

drostatic figure is a figure of zero stress, it

constitutes a geophysically meaningful refer-

ence figure for gravity anomalies for use in
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studying the internal state of the Earth.

These gravity anomaly maps are generally
available with reference to either the Inter-

national Gravity Formula or Gravity For-
mula 1967. Table 5.71 lists the conversion

_pp,,_u to ,.ese . ..............

order to refer them to the hydrostatic ref-
erence figure. Note that these are the con-

version factors for the gravity anomalies

alone. To convert absolute gravity values

from the International Gravity Formula to

values on the hydrostatic ellipsoid, the Pots-
dam correction must also be taken into ac-

count. The geoid referred to the hydro-

static Earth is shown in figure 5.55.

5.6.4.5 Earth's Isostatic Gravity Anomalies
(M. A. Khan)

If gravity anomalies are to be used for

deriving information on the mass distribu-

tion of the Earth, the gravity effect of the
obvious surface features must first be re-

moved. One such important effect is the

surface topography and its subsurface com-

pensation. When the gravity effect, which is

likely to result from a compensated topo-

graphic feature (on the basis of an assumed

compensation model), is removed from the

free-air gravity anomalies, th_ isostatic

gravity anomalies result. These anomalies

are the most suitable for use in geophysical
interpretation of subsurface features.

The conventional methods of applying the

isostatic correction, the gravity effect which

would result from a compensated topographic

feature, are time-consuming, cumbersome,

and not too gracefully computerized, though

they have the advantages of greater preci-

sion, a factor important in accurate gravity

surveys such as those made for exploration

of natural resources. But for purposes of

global geophysical interpretation, the iso-

static correction is most easily computed by

treating the Earth's topography as a vari-

able-surface-mass layer which is compensated

by a variable-mass layer of opposite sign at

an appropriate depth of compensation. The

basic isostatic model in such computations is

the same as the conventional Airy-Heiskenan

model of isostatic compensation.

Theory.--The theory o_ the method is

summarized by Jeffreys (1962) and Khan

(1972). The gravitational potential of a
mass anomaly represented by a surface den-

sity a,,, S,_ at r=R is

V,,,_ 4_G cmR "+=
2n_ 1_""_'" r"_7_ (5.154)

where G is the gravitational constant and S,_

is the surface spherical harmonic of degree
n and order m.

The compensation of this surface density

layer, located at r=R-d, where d is the

depth of compensation, produces a potential

VL,,= V ..... [ (R-d) /R]" (5.155)

Hence, the potential due to the isostatic re-
duction is

2n+14=G R"+=Fr"*__ (_-)'1
--0" _--v.',,,_ .....S. Jl-

(5.156)

The gravity effect of this potential must

be accounted for in converting free-air grav-

ity anomalies to isostatic gravity anomalies.
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For a reasonable depth of compensation,
the factor in the brackets stays close to zero.
For a high-altitude satellite, the effect of
equation (5.156) will be further attenuated
because of the large distance of the satellite
from the source of anomaly. But for low-alti-
tude satellites, the isostatic reduction effect
must be taken into account.

Equation (5.156) is used to compute spher-
ical harmonic coefficients of isostatic reduc-

tion potential.

Data Used.--The set of spherical harmonic
coefficients of global topography on which
the isostatic reduction potential coefficients
are based is reported by Balmino et al.

(1973). Their analysis of global topography
is based on the data used by Lee and Kaula

(1967). However, Lee and Kaula's analysis
had errors of incorrect dimension and in-

correct contribution of ice to equivalent rock,
--._ _ .... h_n _nrrected in more recent
analysis.

The basic gravity model in computing the
free-air gravity anomalies, which are then
used to compute the isostatic gravity anomaly
field in conjunction with the model gravity
anomalies, is GEM 4 (Lerch et al., 1972c),
which was obtained from a combination of

orbital data and surface gravity data.

Results.--On the assumption that the com-
pensation for the topographic load is achieved
in the manner of the Airy-Heiskenan hy-
pothesis at a compensation depth of 30 km,
the spherical harmonic coefficients of the iso-

static reduction potential U are computed
using equation (5.156). Values are given
in table 5.72. The degree power spectra of
these coefficients are compared in table 5.73
with the power spectra of the isostatic reduc-
tion coefficients given by Uotila (1964).

5.6.4.7 Estimation of Accuracy of Various

Computed Gravitational Potentials

(C. Wagner)

One of the goals of NGSP was to determine

the gravitational potential through degree
and order 15, but the accuracy with which

this should be accomplished was not specified.
However, a widely quoted goal (Strange,
1968, (unpublished) of no more than 0.2

reGal at the Earth's surface per spherical
harmonic coefficient would provide about a
3-mGal error over the full set through degree
15. These requirements are more severe for
the high-degree coefficients (being inversely
proportional to n-1) because of the greater
sensitivity of gravity anomalies to the short-
wavelength terms. For example, with the
error above, the requirements on fully nor-
malized coefficients range from 20 × 10 _ for
second-degree to only 1.4 × 10-s for 15th-de-
gree terms.

How severe is the total error budget? A
simple calculation using Kaula's rule for the

normalized potential coefficients (10-5/deg 2)
shows that the rms anomaly for this full set
is only 18 mGal. To leave an error of 3 mGal
implies an overall determination to an ac-

curacy of about 20 percent, which is quite
modest. Yet comparisons of recent satellite-

gravimetry combination models and compari-
sons of them with unused surface data show
u_c_cp_,,_,es of 8 ma_l on the average

(Gaposchkin, 1970 and Wagner, 1970, un-
published). In terms of potential coefficients
(fully normalized), these comparisons show

differences (Lerch, 1972, unpublished) on
the order of 5 × 10 -_ (rms), which meets the
accuracy requirements for only as high as

fifth-degree harmonics. It is clear that, over-
all, the determination of the (15, 15) field is

still far from adequate. Nevertheless, it is
reasonable to inquire whether some parts of
the field are better determined than others
compared to the apparent overall average
accuracy figure of 5 x 10-s.

In general, there are only two classes of
harmonic terms for which we can make

judgments with accuracy. These are the zonal
harmonics, which alone have secular effects
on all satellite orbits, and the resonant har-
monics (of specific orders), which have char-
acteristic long-period effects on orbits whose
periods are commensurate with the Earth's
rotation. A previous study (Wagner, unpub-
lished, 1972) has shown that the coefficients
of .... _ harm--_*_ ne 1_ than degree 11 areLIUII_I L_V.A ..........
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now known individually to an accuracy of bet-
ter than 2x10 _. This satisfies the stated

accuracy requirements for the NGSP.

The orbits examined here have periods of

24 hours, 12 hours, 2_'40 '', and 1t'43 '''. The

orbits of the highest satellites are dominated

by resonance with the (2, 2) harmonic, al-

though the effects of terms of higher degree
and order are observable. The other orbits

are not dominated by any single resonant

harmonic. Only the 24-hour period orbits

are examined here in detail [but see Wagner,

unpublished, 1972]. The results for orbits

with a 24-hour period are given in detail in
this section and are summarized in table 5.74.

For an orbit of 12 hours the result is given

in table 5.75, for an orbit of 2_'40 ''', in table

5.76, and for an orbit of 17'43 "' period in table
5.77.

The potentials evaluated are representa-
tive of the best satellite and combined

satellite-surface fields produced up to 1973,

using a variety of satellites, types of data,
and methods of solution. Their characteris-

tics are summarized in table 5.78. The SAO

Standard Earth I is the M1 field of the first

Smithsonian Standard Earth (Lundquist and

Veis, 1966.) It is complete through degree

and order 8 with selected higher degree

terms to (16, 14). This field includes the
strong ninth-order resonance from TEL-

STAR 1, but only its influence on (15, 9).

The APL 5.0 (1967) is perhaps the best

field yet published using Doppler data alone

(ch. 2). It is nearly complete through (12,

12) with selected higher-degree resonant

terms (none of ninth order). The Standard
Earth II field is the second Smithsonian

Standard Earth Model (Gaposchkin and

Lambeck, 1970), complete through (16, 16)

with selected higher-degree terms to (22,

14). However, it does not contain data from

the strong, ninth-order, resonant TELSTAR
orbit. The fields of GEM 3 and 4 contain this

orbital information. GEM 3 is complete

through (12, 12) and GEM 4 through (16,

16), both having selected higher-degree

terms to (22, 14).

The data used are mainly sets of Keplerian
mean elements of long arcs for the resonant

orbits, determined by various organizations

from different kinds of tracking data. Arcs

vary in length from 1 month to over 6 years.

The idea was simply to see how much of the

total resonance could be explained by the

five chosen potentials. The unexplained

amount, expressed as a percentage of the

total, should be a direct measure of the error
in the set of resonance coefficients for that

potential.

24-Hour Satellites.--For the deeply reso-

nant (librating) 24-hour satellites, most of
the arcs have nearly stationary ground

tracks. The best of these allow precise ac-
celerations to be calculated by fitting the

semimajor axis and longitude to a model

which adjusts the (2, 2) coefficients by a

least-squares process. The trajectories are

calculated by numerical integration of La-

grange's planetary equations expressed in

mean elements. Subsequently, the longitu-

dinal accelerations (i) are calculated from
the adjusted values by a formula for orbits

with stationary ground tracks (i.e., see

Wagner, 1968b). It should be noted that this

formula shows that coefficients (2, 2) account

for about 80 percent of the resonant accelera-

tion on the 24-hour satellite. The longitude

(1) is defined as (M+o,)/s+_-_, where M

is the satellite mean anomaly, ,,, is the argu-

ment of perigee, s is the commensurate num-

ber of revolutions per day, _ is the right

ascension of the ascending node, and 0_ is the

hour angle of Greenwich.
Accelerations from measurement were

compared with values computed using the

five potentials. The results are given in table

5.74. The data on SKYNET (R. H. Merson,

unpublished, 1972) are from radar range and
angle tracking using a program which ad-

justs, by least squares, the (2, 2) coefficient

directly to the tracking data. The ATS 3

data were derived in a similar way directly

from range and range rate data.

Where the orbits are not sufficiently sta-

tionary, the full resonance effect is taken to
be the rms residual in longitude, mean anom-

aly, or semimajor axis from a trajectory

fitted by least squares to these observed
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elements by a model without resonance co-
efficients. The results of these tests on two

very long (nonstationary) arcs of SYNCOM
2 and 3 are shown in table 5.79. For SYN-

COM 2, the longitude varies over an ampli-
tude of only 10 degrees, providing a fairly
local test of the field. For SYNCOM 3, on
the other hand, the longitude span is world-
wide. In both tests, the superiority of the
GEM 4 solution is evident.

Summary of Results.--The resonance
terms in GEM 3 and GEM 4 explain all but
about 0.3 percent of the data (table 5.75).
If this difference were distributed among the
resonance terms according to their domi-
nance, a shift of the order of 0.5 × 10 in the
normalized coefficient of the (2, 2) harmonic
would be necessary to explain the accelera-
tions completely. These accelerations are
worldwide.

GEM 3 and GEM 4 can explain all but
about 1 percent of the resonant effect in the
long arcs of SYNCOM 2 and 3. A shift of
from 2 to 4x10 -s in coefficient (2, 2) is
• Cq.,_,..,., to ,-,v,-,1,_;_, ;4-_ n_-r,r_awfinn af tha _rror

(80 percent). The lower number applies to
the worldwide sample on SYNCOM 3. How-

ever, the SYNCOM 2 sample is for a very
limited libration with small acceleration. In
addition, the SYNCOM 3 data are so poor
that the "noise only" (resonant) solution is

only marginally superior to the GEM solu-
tions. Therefore, the overall results of the

24-hour satellite imply an error of no more
than 2x10 -s in the dominant low-order co-
efficients.

Conclusions.--Current values for fully

normalized coefficients of order 2, 3, 4, 9, and
14 as judged by independent, resonant satel-
lite data range in accuracy from 2 to 5 x 10-s.
Except for order 9, these accuracies satisfy
the modest requirements of the NGSP.

5.6.4.8 Polar Motion and Earth Tides
(David E. Smith)

With the increase in man's knowledge of

tions of tracking stations, our ability to com-
pute the orbital behavior of geodetic-type
satellites has steadily improved. This ad-
vance in capabilities has enabled the rela-

tively small orbital perturbations caused by
the Earth and ocean tides to be observed and

the variation of latitude of the tracking
stations to be detected. The early work in

the area of tides was done by Newton (1968)
and Kozai (1968b) and by Anderle (1970,
unpublished) for polar motion. Since 1970,
work has been in progress at GSFC to im-
prove the identification of the tidal perturba-
tions of three satellites, Beacon Explorer C,
GEOS 1, and GEOS 2. Efforts are also being
made to measure the variation in latitude of

a station with greater precision over shorter
averaging times than has so far been possible.

The theoretical analysis of tidal perturba-
tions on a satellite orbit began with Kozai in
1965, with a simple first-order development
of the perturbations of the Keplerian ele-
ments (Kozai, i965), in this analysis, the
tidal disturbing function was represented by
a second-degree spherical harmonic. More

recently, Musen and Estes (1972) and Musen
and Felsentreger (1973) have conducted
combined numerical analytical developments
in which the effect of more complex tidal
potentials have been investigated.

To a person on the Earth's surface, the
apparently dominant motions of the Sun and
Moon are the daily passages of these bodies
across the sky, arising from the Earth's
rotation. To a satellite orbiting the Earth,
the dominant motions of these bodies are

their much slower motions across the celestial
sphere. Similarly, the major frequency of the
Earth tides as seen on the surface of the
Earth is semidiurnal, caused by the Earth's

rotation. To a satellite, this frequency is non-
existent. Viewed from space, the satellite
sees the gravity field elongated slightly in the
direction of the Sun and Moon--possibly
offset slightly--but (to first order) is un-
affected by the rotation of the Earth when
the tides are considered. Thus, to a satellite,
the dominant tidal periods are much longer
than those of the surface tides and are deter-
mined by the relative rotations of the satellite
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orbit with respect to the orbit of the Moon
and the "apparent" orbit of the Sun.

In contrast to some of the earlier work, the

approach taken at GSFC to observe the tides
was exclusively numerical, and only the orbit
inclinations were analyzed. The differencing
of long and short orbital arcs was the prin-
cipal technique used in all the investigations.
In this technique, the short orbital arc ad-
justs to absorb the perturbation, whereas the
long orbital arc, because of its length, is
unable to adjust and, in effect, ignores the
perturbation. Subtracting the long-arc orbits
from the short-arc orbit reveals the perturba-
tion together with any other badly modeled
long-period effects.

This approach has the advantage that very
complex perturbing forces which cannot
easily be represented analytically can be
taken into account in the numerically inte-

grated long arc. The major disadvantage
is that numerical integration of very long

arcs (several hundred days) requires special
care and considerable computer time.

5.6.4.8.1 TIDES

Beacon Explorer C.--The time orbit of

Beacon Explorer C (BE-C) is nearly circular
at an altitude of about 1000 km and inclined

to the equator at 41 degrees. During the
latter part of 1970 and most of 1971, a laser
tracking system at GSFC tracked BE-C as
part of a polar-motion experiment (Smith
et al., 1972b) and an international satellite
geodesy experiment (ISAGEX). From the
data collected during these experiments, the
orbital inclination of BE-C was determined

on 36 occasions over the 17-month period.
The latitude of the tracking station is

about 39 degrees north, and, because this is
similar to the maximum northerly latitude

reached by the satellite, there are four con-
secutive observable passes each day. Orbit
parameters were fitted through each four-
pass arc and an ephemeris generated through
the observations. From the ephemeris, the
four maximum northerly latitudes were
determined (Dunn et al., 1973, unpublished)
for each four-pass arc. At the position of

maximum latitude, the argument of latitude

of the satellite is _/2, by definition, and the
latitude is equal to the inclination of the
osculating orbit.

A "long" orbital arc was then fitted
through 3 weeks of data and an ephemeris

generated through the observations and pro-
jected for a total of 5 months. From the
ephemeris, the values of maximum latitude
(inclination) during the short four-pass arcs
were derived. In all the orbital computations,
the effects of terrestrial, lunar and solar grav-
ity, solar radiation pressure, and air drag
were included. When the long-arc maximum
latitudes were subtracted from the short-arc

maximum latitudes, a distinctive pattern in
the residuals was evident. This pattern was
subsequently shown to be the perturbation
of the inclination by the Earth and ocean
tides.

By adopting a second-degree spherical
harmonic expansion for each tidal potential,
the residual pattern could be almost com-
pletely explained throughout the 5-month

period when Love's number (k2) for the
Earth was taken as

k._,= 0.245 ± 0.005

and a phase lag

_=3.2 _+0.5 degrees

was introduced (Smith et al., 1973a).
The 5-month analysis containing 28 days of

measurements was then extended to 17

months by including a further 8 days of data.
The same long arc derived from 3 weeks of
data was extended for the full 17-month

period. Although only isolated days of data

were available, the additional data were
equally well satisfied by the results of the
5-month analysis (Kolenkiewicz et al., 1973,

unpublished).
Figure 5.56 shows the tidal perturbation of

the BE-C orbital inclination for the full

17-month period. It is interesting to note
that the last point in Figure 5.56 is at a local
minimum on the perturbation curve and that
the third point is at a local maximum: both
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FIGURE 5.56.--Tidal perturbation of BE-C inclination for k_=0.245, _3.2.

Solid dots, laser data ; solid line, theory.

points appear to agree with the theoretical
curve, indicating that the amplitude is quite
well defined. The rms deviation of the ob-
served points about the theoretical curve is
0.045 arc second. The GEODYN program
system was used for this analysis.

GEOS-1.--Optical measurements (i.e., by
camera) of 7700 flash observations of
GEOS 1 over a 65-day period in 1966 were
used m _,._ .....
obtained by the worldwide camera networks
of SAO and NASA and supplemented by sev-
eral international cameras.

The perturbation of the inclination of
GEOS 1 by the Earth and ocean tides has a
peak-to-peak variation of about 2", and dur-
ing the period being investigated, March 11
to May 15, it changed by about 1'.'5 (Douglas
et al., 1972, unpublished).

In order to circumvent a resonance prob-
lem with terms of 12th order in the field,
the length of the short-arc orbital deter-

mination was chosen at 6.5 days, equal to
the beat period of the resonance. Seven of
these short arcs could be derived from the

observational data• A single long arc was
fitted through the 65-day period, and the
values of the long-arc osculating orbital in-
clination were subtracted from the short-arc

osculating inclination. In this analysis, the
Earth and ocean tides were represented by
second-degree spherical harmonics, and the
computations were repeated for different
values of Love's number, k_.

Figure 5.57 shows the residuals between
the short- and the long-arc inclinations of
GEOS 1 for several values of k_, with zero
phase lag. The short and long arcs were
differenced every six hours of the short arc,
and figure 5.57 shows that the differences
are largely constant during a short arc. Thus,
the short arc must be averaging through the
resonance errors and unmodeled tidal effects,

as had been anticipated.
The residual patterns in figure 5.57 in-

dicate that the trends reverse between k_

=0.21 and 0.24 and, by interpolation, that the
pattern almost disappears for k_ = 0.22 _+0.02.

The standard deviation of 0.02 assigned
to this result is considered a rather arbitrary
value and reflects the difficulty of assessing

the true accuracy of the result from the
technique being applied. This value is, of
course, somewhat smaller than that obtained
from BE-C, and from figure 5.57 it is ap-

parent that applying a value of k__near 0.25
(BE-C value) would leave residuals in the
GEOS 1 inclination of at least 0.2 arc sec-

ond. This apparent discrepancy is discussed
elsewhere in this section. This analysis was

conducted using the GEODYN program
system.

GEOS 2.--The data used in this investiga-
tion were mean orbital elements over a 2-year

period derived from optical flash data ob-
tained by worldwide tracking stations
(Douglas etal., 1973). The short-arc orbits
were 2 days in length, and the mean elements
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were derived by a combined analytical-
numerical averaging technique from osculat-
ing elements obtained with the GEODYN
program. The parameters investigated for
the tidal effect were the variations in mean
orbital inclination.

The ROAD computer program, which
simultaneously integrates all long-period and

secular effects on the orbit, was used to
analyze the inclination values. In essence,
ROAD uses the mean orbital parameters as
data, and adjusts epoch orbital or other
parameters such as tidal constants to best

fit the data (elements). The absence of high-
frequency terms in the perturbing function

permits integration step sizes of 1 to 2 days,
with consequent saving in computer time.

Figure 5.58 shows the residuals in inclina-
tion for the 2-year GEOS 2 arc when the

tides are neglected (k2=O) and after k__has
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FIGURE 5.58.--GEOS 2 residuals in

orbital inclination.

been solved for (see the lower graph of the
figure). The recovered value of k2 was

k2 = 0.31 ± 0.01

The amplitude of the tidal perturbation in
inclination is very large, with about 10 arc
seconds of variation, and the recovered best

fit value of k_ reduces the spread in residuals
to about 1.2 arc seconds; that is, to about
12 percent. The lower part of figure 5.58
suggests that the final residuals are not com-

pletely random and that the signature of
some unknown or poorly modeled perturba-
tion may still remain. The phase angle was
not recoverable from these data except to
confirm that it was very small.

Discussion.--If the values of k_ derived
from the analyses of the BE-C and the
GEOS 1 and 2 orbits are accepted, then
they strongly suggest that k._ is dependent on
the satellite and its orbit and, consequently,
that our model of the tides is inadequate.
The present model, a second-degree spherical
harmonic, is probably the simplest possible
model, which can in principle be made more
complex by increasing the degree and order
of the spherical harmonic expansion. Such
an expansion could satisfy any potential
arising from the tidal response of the Earth

if the response were independent of rotation
of the Earth; or, in other words, if the
response potential were only a function of
the location of the point on the Earth's sur-
face with respect to the rising body of the

tide. Such a situation would imply that the
tides were stationary in a coordinate system
rotating with the rising body of the tide.

In reality, this situation does not exist,
principally because the Earth's surface is

composed of both continents and oceans, and
the distribution of the continents signifi-
cantly affects the tidal response of the oceans.
Thus, the representation of the Earth and
ocean tides must allow for a variation in

response with geographical position. In
effect, this implies making the coefficients of

the spherical harmonic expansion a function
of time.
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Lambeck and Cazenave (1973) have as-
sessed the contribution that the oceans could

make to the tidal perturbations of satellites.

Although their appraisal is not definitive,
they find significant perturbations from cer-

tain components of the ocean tides that might
explain the divergence of values described

here for k_. It therefore appears to be in-

correct to recover k_ from these analyses, and

in the future, it may be more appropriate to
determine the perturbations of the orbit due

to the ocean tides. By assuming a value of k,
from, say, seismicity, it may be possible to

deduce the phase and amplitude of certain

components of the ocean tides from these

types of data. This approach implies that we

know the solid Earth tide (not completely
true) and that, if we can measure the total

tidal perturbation, any residual can be

ascribed to the oceans. This approach is

both exciting and promising, and will surely

receive considerable attention in the years
to come.

5.6.4.8.2 POLAR MOTION

Originally, the BE-C laser data used in the

tidal analysis were obtained for the purpose

of trying to detect polar motion, and the first

part of this investigation was the determina-

tion of the tidal perturbations. The basic

concept of the experiment was to use the
orbital plane of the satellite as an external

reference for determining motions of the

Earth. In particular, changes in the latitude

of the tracking station would look like

changes in the orientation of the orbital

plane. Further, if the observations from

which the orbit is determined are in the

region of the maximum northerly (or south-

erly) latitude reached by the satellite, then

the station latitude changes would appear
as changes in the orbital inclination. How-

ever, since the orbital plane of the satellite is

not fixed in space but undergoes significant

perturbation, the major problem of the analy-

sis is the complete modeling of the per-

turbations of the orbit, including those of
the Earth and ocean tides.

After the tides, the perturbing force of

greatest magnitude is the Earth's gravita-

tional field (the higher-degree and order

harmonics), but the perturbing force of solar

radiation pressure is the most difficult to

model. Fortunately, the technique of measur-

ing the inclination at the apex of the orbit

(maximum latitude) and analyzing the in-

clination with a "short-arc minus long-arc"

approach tends to minimize the gravitational

model errors. Further, the radiation pres-

sure perturbations of the inclination of BE-C

cover both short periods (_35 days) on the

order of 8 meters in amplitude and long

periods (thousands of days) of very large

amplitude. The larger perturbations arise

because there is almost no motion of perigee

with respect to the Sun. Neither of these
periods gets confused with the annual or

14-month periods of polar motion, even

though the amplitudes of the perturbations

are at least as large as those of polar motion.

Figure 5.59 shows the inclination perturba-
tions of BE-C for tides and solar radiation

pressure on the same scale as the latitude

variation arising from polar motion of the

Goddard tracking station according to BIH.

Figure 5.59 (Dunn et al., 1973, unpublished)

indicates that a detailed knowledge of the

tides and solar radiation pressure is essen-

tial for computing polar motion at the sub-

meter level. Indeed, as discussed by Dunn

et al., it was necessary to include the varia-

tions in cross-sectional areas of BE-C arising

from spacecraft attitude changes for the

present results to be obtained.
In order to observe the variation of latitude

of the Goddard station in the laser range

data, it was necessary to compute the short,

four-pass orbital arcs without including polar

motion in the orbit determination program,

GEODYN. As already noted, this approach
causes the actual variation in latitude of

Goddard to be forced into the computed value
of the orbital inclination of BE-C. If all

other perturbing forces are properly mod-

eled, then the differences between the short-

and long-arc values of maximum latitude
reveal the variation in latitude of the track-

ing station (Smith et al., 1972c). Figure
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5.60 shows this variation obtained from the

laser data over the 17-month period.
In a direct comparison with the BIH

smoothed variation of the Goddard latitude,
the laser data had an rms deviation of 0':045

or 1.38 meters (Kolenkiewicz et al., 1973, un-
published). A careful examination of these

laser residuals about the BIH curve suggests
that they are not just noise, but probably con-
tain more information about polar motion or
about the perturbations of the orbit. It is also
of interest to note that the rms deviation of
the polar motion is almost identical to the

average rms deviation (1.32 meters) of the
laser ranges about the short, four-pass orbital
arcs. From the analysis of data collected on a
single pass, it is known that the actual rms
noise of the laser data is on the order of 50 cm

and that the larger fit through four passes is
caused by errors in the field.

The field used throughout this analysis
..... •_^ p_a# ..,h;._ is field aor;..d

from optical tracking data complete to degree
and order 12 with selected higher resonance
and zonal terms (Smith et al., 1973b; Lerch
et al., 1972, unpublished). No laser tracking
data were used in the GEM 1 solution, and it
can be presumed that these data would have

improved the solution and, in particular, the
fit to the laser data used in the polar motion
analysis. Thus, it is probable that the polar
motion residuals will decrease with a better
field.

5.6.4.8.3 CONCLUSIONS

The orbits of three satellites have been an-

alyzed to provide values for the second-degree
Love number for the Earth. The differences

between these values, which are considerably
larger than the projected standard errors,
strongly suggest that the perturbations ob-
served arise not only from the tidal deforma-
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Solid dots, determined from laser data ; solid line, BIH smoothed values.

tion of the solid Earth but also from the
oceans. For a definitive description of the

ocean tidal components of these perturba-
tions, it will be necessary to investigate the
tidal perturbations of several other satellites
in slightly different orbits. Thus, it appears
that the study of Earth tides from satellite
perturbations may be leading us toward in-
creasing our knowledge of the ocean tides,
which had not been anticipated a few years

ago.
The determination of polar motion (varia-

tion in latitude) from laser tracking of near-
Earth satellites to an accuracy of 1 to 1.5
meters has been accomplished in an environ-
ment in which the basic orbit determination

capability is still at the 5- to 10-meter level.

The conception and exploitation of technique
that has enabled consistent results to be ob-

tained over a reasonably long period of time
suggest that monitoring the pole of rotation
of the Earth at the 10-cm level from laser

tracking should be realizable in a few years.
Further, since these results were obtained

with only one tracking system, it seems that
the contribution of a single tracking station
ought not to be underestimated. At the level
of about 10 cm, a single station will have the
basic capability of monitoring its own secu-
lar motion in latitude, and therefore can
contribute to our understanding and deter-
mination of tectonic motions and sea-floor

spreading as well as to our knowledge of the
rotation of the Earth.
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APPENDIX

TABLE 5.1.--Characteristics of ECHO 1 (1960 1)

Launch:

Date: 12 August 1960

From: Atlantic Missile Range
Rocket: Thor-Delta, three-stage

Orbital Elements

a, km e i p h_ km h_ km

8226 0.012 47°2 118m3 1752 1943

Structure: 82 gores, 2 polar caps of Mylar polyester, 243 holes 1/10" in diameter in surface

for escape of gases

Diameter: 100 ft (30 m)

Area: 31 400 ft 2 (2920 m 2)

Thickness: 13 p (0.5 mil)

Coating: Aluminium (1-_ thick), vapor-deposited
Totalweight: 76 kg

Reflectivity: 98 percent for radio waves up to 20 GHz (see also data on PAGEOS, table 5.3).
Beacons: Two, 107.94 MHz
Power: 70 solar cells, 5 to 8 mW

References: Bryant (1961); Jakes (1961)

TABLE 5.2.--Characteristics of ECHO 2 (1964 $A, ECHO A-12)

Launch:

Date: January 25, 1964

From: Western Test Range

Rocket: Thor-Agena B

Orbital Elements

a, km e

7727 0

Structure

Diameter:
Thickness:
Coating:
Weight:

Beacons:

Power:

i P ha, km h_ km

81°.5 108_.8 1189 1509

135 ft (41 m)

0.00035 mil (9.8/z)
Aluminum foil with Alodyne coating 4.5-_ thick (see fig. 5.2)

281 kg (618 lb)

Two, 136.170 MHz and 136.020 MHz

35 mW output per beacon
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TABLE5.3.--Characteristicsof PAGEOS (1966 56A)

Launch

Date: 24 June 1966

From: Western Test Range
Rocket: Thor Agena D

Orbital Elements: 01h34.m00, 24 June 1966

a, km e i

10 614.79 0.00248 86°.974

Structure:

fD

3770.125 248°.328

84 gores, 2 polar caps, vent holes (0.1587 mm in diameter) in caps
Diameter: 30 m

Thickness: 12 _z

Coating: vapor-deposited aluminum
Weight: 53 kg

Reflectivity: 0.36 h to 0.7 h

Rs_ular 0.862 -+0.0046
Rdl_use 0.029 --- 0.0046

R_taj 0.891 _+0.0032

Reference: Bowker (1967); Roloff (1966); Teichmann (1968)

TABLE 5.4.--Characteristics of GRARR

Transmitter

Operating frequency:

Type of emission:

Type of modulation:

RF power output:

Power amplifier:

Antenna

Reflection and feed:

Frequency:

Beamwidth:

Gain:

Receiver

Carrier frequency:

Intermediate frequencies:
Noise figure:

Dynamic signal range:

2270.1328 MHz, channel C

2271.9328 MHz, channel A
CW

Phase (by coherent range tones)
1 kW to 10kW

Klystron, 5-cavity, liquid-cooled

14-foot (4.6 m) parabola with Cassegrainian feed

1705 MHz nominal, receiving

2271 MHz nominal, transmitting
2.5 degrees, transmitting

33 dB, receiving

35 dB, transmitting

1705.000 MHz

60 MHz and 10 MHz (dual conversion)
3 dB, max
-70 to -151 dBm

Distances are measured by measuring the phase shift in 8 (6) frequencies phase-modulated

onto the UHF carriers. The modulating frequencies are

f(kHz) h (km) f(Hz) ). (km)

500 0.6 800 375

100 3.0 160 1 875

20 15.0 32 9 375

4 75.0 8 37 500
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•TABLE 5.5.--Characteristics of Mobile

Laser System

Laser energy/pulse
Pulse width

Repetition rate
Beam divergence

Receiver aperture
Receiver field-of-view

Spectral filter
Range resolution
Timing accuracy

0.5 Joule

15-25 nanoseconds

1 pps
_a milliradian

16 inches (40.6 cm)
Va milliradian
10 _, at 6943 _,

10 nanoseconds (1.5 meters)
-+ 50 microseconds to USNO

TABLE 5.6.--Satellites

Sateiiite a i Perigee hgt Period
t.1 .... _name (meters) e _tt_, _esi (kin) (rev/day)

TELSTAR-1 .........
TIROS-9 .............

GEOS-1 ..............

SECOR-5 ............

OVI-2 ................

ALOU-2 .............

ECHO-1RB ..........

D1-D ................

BE-C ................
D1-C .................

ANNA-1B ...........
GEOS-2 ..............

OSCAR-7 ............

5BN-2 ...............

COURIER-1B .......

GRS ..................

TRANSIT-4A ........

BE-B ................

OGO-2 ...............

INJUN-1 ............

AGENA-R ...........

MIDAS-4 ............

VANGUARD-2 ......

VANGUARD-2S .....
VANGUARD-3S .....

SAS__I ..............
PEOLE ..............

9 669 530.1 0.2421 44.79 951.3 9.13
8 020 761.2 0.1167 96.42 706.7 12.09

8 067 353.6 0.0725 59.37 1107.5 11.98
8 154 869.9 0.0801 69.23 1140.1 11.79
8 314 700.2 0.1834 144.27 414.8 11.45
8 097 474.4 0.1508 79.83 502.0 11.91
7 968 879.1 0.0121 47.22 1501.0 12.20
7 614 681.9 0.0842 39.45 589.0 13.07
7 503 563.5 0.0252 41.17 941.9 13.36
7 344 163.4 0.0526 40.00 586.6 13.79
7 504 950.8 0.0070 50.13 1075.8 13.35
7 710 806.6 0.0308 105.79 1114.2 12.82
7 404 041.3 0.0242 89.70 847.7 13.63
7 463 226.9 0.0058 89.95 1062.5 13.47
7 473 289.0 0.0174 28.34 966.5 13.44
7 228 289.3 0.0604 49.72 421.3 14.13

7 321 521.7 0.0079 66.83 896.0 13.86
7 304 785.0 0.0143 79.70 901.8 13.74

7 345 633.6 0.0739 87.37 424.8 13.79
7 312 542.4 0.0076 66.81 895.0 13.88
7 297 251.5 0.0010 69.91 920.2 13.93
9 995 760.5 0.0121 95.84 3504.8 8.69
8 306 759.8 0.1645 32.89 566.7 11.47
8 309 120.5 0.1648 32.87 562.2 11.46
8 511 504.6 0.1906 33.35 517.9 11.06
6 922 505.3 0.0030 3.03 523.5 15.07
7 006 154.9 0.0162 15.01 515.4 14.80
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TABLE 5.7.--Constants Describing the Coordinate System and Gravity a

Mean equatorial radius

Flattening
Rotation rate

Geocentric gravitational constant

Mean equatorial gravity

ae --6-378 155 m

f = 1/298.255
oJ = 0.7292115146 × 10 -4 rad/sec

GM = 3.986013 × 10 TM m3/sec 2

Ge = 978 029.1 mGal

The z-axis is parallel to that passing through the CIO, and the x-axis is defined
by the BIH's conventional longitude.

TABLE 5.8.--Weights Assigned to the Observations

Observation Standard deviation

GRARR: range ....................................................... 8 meters

range-rate .................................................. 3 cm/sec
Laser: range ......................................................... 8 meters
Camera: declination (8) ............................................... 2"

right ascension (a cos 8) ..................................... 2"
MINITRACK-direction cosines ....................................... 3 × 10 -4
NWL Doppler: range-rate ............................................ 4 cm/sec
C-band radar: range ................................................. 10 meters
Surface-gravity data ................................................. See table 5.7
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TABLE 5.9.--Assumed Values of Normalized Gravitational Potential (× l0 s)

Zonals

Index Index Index Index Index

n m Value n m Value n m Value n m Value n m Value

2 0
7 0

12 0
17 0

Index

n m

-484.1669 3 0 0.9593 4 0 0.5310
0.0935 8 0 0.0286 9 0 0.0229
0.0084 13 0 0.0237 14 0 0.0136

-0.0144 18 0 0.0380 19 0 0.0346

Sectorialsandtesserals

Value Index Value

S nm C

5 0 0.0693 6 0 -0.1392

10 0 0.0772 11 0 -0.0421
15 0 0.0313 16 0 -0.0328
20 0 0.0008 21 0 -0.0220

Index

n m

Value

2 2 2.3796 -1.3509 3 1 1.9359 0.2557 3 2 0.7349 -0.5387
3 3 0.5608 1.6207 4 1 -0.5724 -0.4691 4 2 0.3300 0.6619
4 3 0.8517 -0.1908 4 4 -0.0530 0.2300 5 1 -0.0791 -0.1030
5 2 0.6303 -0.2317 5 3 -0.5207 0.0070 5 4 -0.2646 0.0640
5 5 0.1560 -0.5930 6 1 -0.0470 -0.0269 6 2 0.0690 -0.3657

6 3 -0.0540 0.0310 6 4 -0.0441 -0.5178 6 5 -0.3135 -0.4585
6 6 -0.0400 -0.1549 7 1 0.1967 0.1558 7 2 0.3644 0.1626
7 3 0.2499 0.0180 7 4 -0.1321 -0.1022 7 5 0.0760 0.0540
7 6 -0.2089 0.0630 7 7 0.0550 0.0970 8 1 -0.0757 0.0655
8 2 0.0260 0.0390 8 3 -0.0370 0.0040 8 4 -0.2122 -0.0120

8 5 0.0530 0.1182 8 6 -0.0170 0.3180 8 7 -0.0087 0.0310

8 8 -0.2479 0.1020 9 1 0.1170 0.0121 9 2 -0.0040 0.0349
9 9 0.1854 0.2099 10 1 0.1050 -0.1261 10 2 -0.1049 -0.0420

10 3 -0.0650 0.0300 10 4 -0.0740 -0.1110 10 9 0.1036 -0.0644
11 1 -0.0530 0.0149 11 11 0.0257 0.0560 12 1 -0.1630 -0.0707

12 2 -0.1030 -0.0050 12 11 -0.0541 -0.3107 12 12 -0.0327 -0.0054
13 12 -0.0697 0.0751 13 13 -0.0552 0.1243 14 1 -0.0150 0.0053
14 11 0.0002 -0.0001 14 12 0.0033 -0.0276 14 13 0.0231 0.0550
14 14 -0.0458 -0.0254 15 9 -0.0009 -0.0018 15 12 -0.0764 -0.0012
15 13 -0.0225 0.0306 15 14 0.0021 -0.0222 16 14 -0.0168 0.0007
17 13 0.0365 0.0491 17 14 -0.0135 -0.0017
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TABLE 5.I1.--Observations in Seven-Day Arcs Used for Potential and Station
Coordinate Estimation u

Station GEOS- GEOS-2 BE-B BE-C DI-C DI-D PEOPLE

Arcs Passes Arcs Passes Arcs Passes Arcs Passes Arcs Passes Arcs Passes Arcs Passes

R and RR

1122 Tananarive ........

1123 Tananarive ........

1126 Rosman ...........

1128 Fairbanks .........

1152 Carnarvon .........

Doppler

2014 Anchorage ......... 12
2017 Tafuna ............ 9

2018 Thule ..............

2019 Antarctica ......... 9

2100 Wahiawa .......... 12

2103 Las Cruces ........ 12

2106 Lasham ........... 12

2111 Howard County .... 12
2115 Pretoria ...........

2117 Tafuna ............

2203 Wallops ............

2722 Ascension .........

2723 Cocos Is ............

2738 Moses Lake ........

2739 Shemya ........... 1

2742 Beltsville .......... 2

2745 Stoneville_ ........ 2
2815 Paramaribo ........

2817 Mashhad ..........

2820 Vii|a Dolores ......

2822 Ft. Lamy ..........

2837 Natal ..............

C-band

4050 Pretoria ...........

a.082 .._el_itt Ig .........

4740 Bermuda ..........

4741 Tananarive ........

4760 Bermuda ..........

4840 Wallops ............

4860 Wallops ............

4946 Woomera ..........

Laser

7050 Greenbelt ..........

7052 Wallops ............

7053 Greenbelt ..........

7054 Carnarvon .........

7060 Guam ..............

9020 Dakar .............

9901 Organ Pass ........

9907 Arequipa ..........

9929 Natal ..............

472
245

122

352

407

476

513

40

75
70

3 8

2 5

11 85
11 125

11 53

11

4

10

5

528

108

145

67

15

74

48

24

68

3

15

12

4

12

16

25

12

12

15

4

4

120 4 150

263

39

4 143

4 132

4 127

63 4 160

62 1 2
4 128

2 7 2 5 1 7

1 5 2 6 2 13 1 20

19

47
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TABLE 5.11.--(Cont'd)

Station GEOS- 1 GEOS-2 BE-B BE-C DI-C DI-D PEOPLE

Arcs Passes Arcs Passes Arcs Passes Arcs Passes Arcs Passes Arcs Passes Arcs Passes

Optical

1021 Elossom Pt ........ 9 20 1 3

1022 Ft. Myers ......... 9 49 9 40

1024 Woomera ........ 3 17

1028 Santiago ........ 1 2 9 26

1030 Goldstone ........ 9 47 11 68

1031 Johannesburg .... 4 11 9 21

1032 St. John's ....... 1 1 1 3

1034 E. Grand Fk ....... 6 28

1035 Winkfield ......... 1 3 8 19

1036 Fairbanks ...... 3 6

1037 Rosman .......... 12 56

1038 Orroral .......... 7 27

1042 Rosman .......... 7 25 5 20

1043 Tananarive ....... 3 6 5 8

7034 E. Grand Fk ..... 10 30

7036 Edinburg .......... 6 30 10 37

7037 Columbia ........ 6 21 10 50

7039 Bermuda .......... 5 16 10 31

7040 San Juan ......... 3 7 10 27

7043 Greenbelt ....... 6 14

7072 Jupiter ........... 3 11

7075 Sudbury ......... 6 18 9 25

7076 Kingston ....... 3 14 9 27

9001 Organ Pass ....... 10 82 1 6

9002 Olifants ......... 8 27 7 27

9004 San Fernando ..... 11 58 4 41

9005 Tokyo ........... 5 11

9006 Naini Tal ....... 8 82 2 7

9007 Arequipa ........ 5 19 6 20

9008 Shiraz ........... 5 25

9009 Curacao ........ 3 14

9010 Jupiter ........... 9 _44 1 1

9011 Villa Dolores ..... 6 27

9012 Maul ........ 4 30

9023 Woomera ....... 7 34 6 19

1 6 2 14 2 29 1 29

1 2 1 3

1 4 2 5 2 13 1 15

2 6 1 4

1 6 2 15 1 15 1 25

1 5 1 3

1 2 2 8 2 14 1 16

1 2

1 5

" Minitrack data from SAS satellite not included in this listing
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TABLE 5.12.--Seven Day Electronic-Optical Arcs Used in GEM

Solutions (by Satellite and Time Period)"

433

Number of stations O and station passes O used

Satellite Time period GRARR Doppler Laser Camera

@ ® 0 ® ® @ ® ®
DIC 4/22/67 to 4/28/67 2 6 6 25

DIC 4/30/67 to 5/ 8/67 2 12 8 68

DID 5/ 9/67 to 5/17/67 2 27 7 98

BE-B 12/23/64 to 12/29/64 4 113

BE-B 1/ 2/65 to 1/ 8/65 4 122

BE-B 1/25/65 to 1/31/65 4 124

BE-B 2/24/65 to 3/ 3/65 4 85
BE-B 3/21/65 to 3/28/65 3 108

BE-B 5/12/67 to 5/19/67 1 2 1 5 4 18

BE-C 6/29/65 to 7/ 6/65 6 203

BE-C 7/ 9/65 to 7/15/65 6 216

BE-C 7/25/65 to 7/31/65 6 221

BE-C 8/29/65 to 9/ 5/65 6 200

BE-C 4/ 2/67 to 4/10/67 2 6 5 30

BE-C 4/20/67 to 4/27/67 2 7 6 23

GEOS-1 11/17/65 to 11/24/65 8 271 10 39
GEOS-1 11/25/65 to 12/ 1/65 8 237 16 70

GEOS-1 1/21/66 to 1/27/66 8 311 16 59

GEOS-! 1/28/66 to 2/ 5/66 8 213 22 68

GEOS-1 4/17/66 to 4/24/66 7 284 27 ,_o1oo

GEOS-1 5/11/66 to 5/18/66 6 243 13 67

GEOS-1 6/16/66 to 6/23/66 6 234 6 6

GEOS-1 7/ 2/66 to 7/ 9/66 7 258 7 16

GEOS-1 7/23/66 to 7/30/66 7 _"o: 15 94
GEOS-1 8/13/66 to 8/21/66 6 217 17 68
GEOS-1 10/29/66 to 11/ 5/66 6 208 3 7
GEOS-I 11/15/66 to 11/22/66 6 142 12 55
GEOS-2 2/25/68 to 3/ 1/68 3 12 4 47 1 1 23 81
GEOS-2 3/16/68 to 3/24/68 4 29 3 50 23 82
GEOS-2 3/28/68 to 4/ 4/68 4 23 4 40 1 2 24 92
GEOS-2 4/22/68 to 4/29/68 4 25 3 116 1 3 27 82
GEOS-2 6/ 3/68 to 6/10/68 3 29 5 110 1 4 22 73
GEOS-2 6/13/68 to 6/19/68 1 2 6 141 1 3 27 132
GEOS-2 6/21/68 to 6/28/68 3 33 5 136 1 3 28 140
GEOS-2 7/12/68 to 7/18/68 3 45 4 107 1 2
GEOS-2 7/25/68 to 8/ 1/68 4 30 4 92 15 41
GEOS-2 8/ 9/68 to 8/16/68 3 18 4 131 8 15
GEOS-2 8/31/68 to 9/ 7/68 3 20 3 31 1 5 22 67
GEOS-2 10/19/68 to 10/26/68 3 20 2 51 1 4 22 73
GEOS-2 b 2/ 5/69 to 2/12/69 2 10
PEOLE _ 6/ 3/71 to 6/ 5/71 4 13
PEOLE 6/ 6/71 to 6/10/71 1 9
PEOLE 6/11/71 to 6/15/71 2 41
PEOLE 6/16/71 to 6/19/7] 2 13

" In addition to the above arcs, four SAS-A arcs, nine TIROS arcs, and two ALOUETTE
arcs with MINITRACK data only were used in the GEM solutions

"C-band tracking data from 8 stations with 105 station passes are also included.
"MINITRACK data were also used with each PEOLE arc.
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TABLE5.13.--MOTSand SPEOPTS Camera Observations

in Seven-Day Arcs Used for GEM Gravitational and

Station Solutions

Station GEOS-1 GEOS-2

1021 Blossom Pt .............. 636
1022 Ft. Myers ............... 1737 1021
1024 Woomera ................ 616

1028 Santiago ................ 233 382
1030 Goldstone ............ 1569 1405

1031 Johannesburg ........... 690 328.
1032 St. John's ............... 46 56
1033 Fairbanks ............... 129
1034 East Grand Forks ....... 1531
1035 Winkfield ................ 145 263
1036 Fairbanks ............... 434
1037 Rosman ................. 112 1179
1038 Orroral .................. 617
1042 Rosman ................. 861 421

1043 Tananarive ............. 95 170
7034 East Grand Forks ....... 564

7036 Edinburg ................ 1272 704
7037 Columbia ................ 1765 1074
7039 Bermuda ................ 651 555
7040 San Juan ................ 914 472
7043 Greenbelt ............... 601
7045 Denver .................. 1349 999
7071 Jupiter .................. 145
7072 Jupiter .................. 615
7073 Jupiter .................. 108
7074 Jupiter .................. 151
7075 Sudbury ................. 484 47
7076 Kingston ................ 638 20
7077 Greenbelt ............... 90 41
7079 Carnarvon .............. 14
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TABLE 5.14.--Station Passes in Two-Day Arcs Used for GEM Station Position Solutions

Station GEOS 1 GEOS 2 Station GEOS 1 GEOS 2

MOTS

1021 Blossom Pt ............ 49

1022 Ft. Myers ............. 68 50
1024 Woomera ............. 31

1028 Santiag O .............. 12 35
1030 Goldstone ............. 76 87
1031 Johannesburg ........ 26 28
1032 St. John's ............. 6 15
1034 East Grand Forks .... 70
1035 Winkfield ............. 4 16
1036 Fairbanks ............ 53
1037 Rosman ............... 78
1038 Orroral ............... 31
1042 Rosman ............... 60
1043 Tananarive ........... 4 13

GRARR
1123 Tananarive ........... 14
1126 Rosman ............... 34
1128 Fairbanks ............ 95
1152 Carnarvon ............ 43

Doppler
2014 Anchorage ............ 149
2017 Tafuna ............ 81

2018 Thule .................
2100 Wahiawa ............. 119

2103 Las Cruces ........... 135

2106 Lasham ............... 139

2111 Howard County ....... 152
2115 Pretoria ..............

2117 Tafuna ...............

253

26
81

2817 Mashhad

2822 Fort Lamy ............

2837 Natal .................

SPEOPTS
7034 East Grand Forks ....

7036 Edinburg ............. 45
7037 Columbia ............. 78
7039 Bermuda ............. 25
7040 San Juan ............. 47
7043 Greenbelt ............. 42
7045 Denver ............... 63
7050 Greenbelt (laser) ......

7052 Wallops (laser) ........
7054 Carnarvon (laser)
7072 Jupiter ............... 36
7075 Sudbury .............. 13
7076 Kingston .............. 18

Baker-Nunn

9001 Organ Pass ........... 47
9002 Olifantsfontein ....... 44
9004 San Fernando ........ 42

9005 Tokyo ................. 31
9006 Naini Tal ............. 51
9007 Arequipa ............. 24
9008 Shiraz ................ 48

9009 Curacao .............. 26
9010 Jupiter ............... 39
9_11 Villa Dolores .......... 35
9012 Maui .................. 50
9023 Woomera ............. 41

84
26
27

35
33
4O
28
30

37
25
13
33

14
22

38
62

11
45

4

32
42

TABLE 5.15.--Summary of Simultaneous Obser-

vations used for Geometrical Station

Asjustment

Event Type Number of events

MOTS-SPEOPTS-LASER system

data (U.S. area)
Two-camera 3870

Three-camera 1614
Four-camera 584
Laser/two-camera 42

BC-4 World geometric network data
Two-camera 5896
Three-camera 1332
Four-camera 99
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TABLE 5.17--Stations Involved in GEM 5 and GEM 6

441

Name Number Name Number Name Number

BC-4 Baker-Nunn Doppler

BELTSV 6002 1ORGAN 9001 ANCHOR 2014
MOSELK 6003 10LFAN 9002 TAFUNA 2017
SHEMYA 6004 WOOMER 9003 THOLEG 2018
TROMSO 6006 ISPAIN 9004 MCMRDO 2019
TRCERA 6007 1TOKYO 9005 WAHIWA 2100
PARMBO 6008 1NATAL 9006 LACRES 2103

QUITO 6009 1QUIPA 9007 LASHM2 2106
MAUIO 6011 1CURAC 9008 APLMND 2111
WAKE IS 6012 1SHRAZ 9009 PRETOR 2115
KANOYA 6013 1JUPTR 9010 ASAMOA 2117
CATNIA 6016 1VILDO 9011 WALDOP 2203
MASHAD 6015 1MAUIO 9012 ASCION 2722
VILDOL 6019 HOPKIN 9021 COCOSL 2723
EASTER 6020 AUSBAK 9023 MOSLAK 2738
TUTILA 6022 DODAIR 9025 STNVIL 2745
THRUSD 6023 DEZEIT 9028 MESHED 2817
INVERC 6031 COMRIV 9031 FRTLMY 2822
CAVERS 6032 JUPGEO 9049 NATLDP 2837
SOCORO 6038 AGASSI 9050

PITCRN 6039 GREECE 9091 MOTS

COCOSI 6040 COLDLK 9424 IBPOIN 1021
AO_

ADISBA 6042 EDWAFB 9_._. iFTMYR 11_,_._""'_
CERROS 6043 OSLONR 9426 IOOMER 1024

HEARDI 6044 JOHNST 9427 IQUITO 1025
MAURIT 6045 ISATAG 1028

ZAMBGA 6_47 Laser !MOJAV 1030

PALMER 6050 GODLAS 7050 1JOBUR 1031

MAWSON 6051 WALLAS 7052 1NEWFL 1032
WILKES 6052 CRMLAS 7054 1GFORK 1034

MCMRDO 6053 1WNKFL 1035
ASCENS 6055

GRARR 1ULASK 1036
XMASIL 6059 1ROSMN 1037
CULGDA 6060 MADGAR 1122
SGAISL 6061 MADGAS 1123 1ORORL 1038

DAKAR 6063 ROSRAN 1126 1ROSMA 1042

FORTLY 6064 ULASKR 1128 1TANAN 1043
1UNDAK 7034

HOHNBG 6065 CARVON 1152 1EDINB 7036
NATALB 6067 1COLBA 7037

JOBURG 6068 Radar 1BERMD 7039

TRSUNA 6069 ETRPRE 4050 1PURIO 7040

CHIMAI 6072 ETRMRT 4082 1GFSCP 7043

DGOGRA 6073 NBER34 4740 IDENVR 7045

MAHE 6075 NWALI8 4840 1JUM24 7071

PRTVLA 6078 NWAL I3 4860 1J U M40 7072

WRIGHT 6111 NBERO5 4760 1JUPC1 7073

PRBARW 6123 WOO38 4946 1JUBC4 7074
WRIGHT 6134 1SUDBR 7075

1JAMAC 7076

1GFSCN 7077

WALMOT 7078
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TABLE5.18.--Number of Observations by

Station Selected for Goddard '73

Station Number of Station Number of
number observations number observations

1021 918 7050 1812
1022 3969 7052 17_

1024 624_ a 7054 2141
9023 2938J 7079 194J
1028 1234 7060 1078

1030 4266 7071 202_
/

1031 2236 7072 976J
1032 148 7075 1350

1033 230 7076 1412

2194 I 8820;7820 3261034

7034 893J 8009 472
1035 632 8010 1290

1036 558 8011 458

1037 1832] 8015 802_

1042 1436J 7815 503 I
1038 1186 8809 1233J
1043 504 8019 516

7036 2364 8030 236

7037 4168 9001 1844
7039 1568 9002 2770

7040 1868 9902 346
7045 3078 9004 3193"

9009 310 80;8804 939
9011 1318 9005 58 ffi

9012 1296 9025 84
9021 854_ 9006 366

9921 197J/ 9007 1506-
9028 398 8907 300

9029 386_ 9008 174

9929 135J 9031 508
9050 156 9426 b28

9091 1322] 9427 166
i

9930 60] 9431 660
9424 78 9432 522
9425 1026 8435 250

Bracket indicates constrained stations
b Only one pair of observations for each pass was

reduced precisely.



NASA/GODDARDSPACEFLIGHTCENTER

TABLE 5.19.--Coefficients in GEM 4

443

n m GEM 4 n m GEM 4 n m GEM 4

C
S

C
S

C

S

C
S

C
S

C
S

C
S

C

S

C

S

C

S

C
S

C

S

C
S

C
S

C

S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

2 0 -484.1690 C 6 1 -0.0905 C 16 2 0.0108
2 0 0.0 S 6 1 0.0084 S 16 2 0.0217

3 0 0.9570 C 7 1 0.2553 C 3 3 0.7063
3 0 0.0 S 7 1 0.1334 S 3 3 1.4231

4 0 0.5412 C 8 1 0.0297 C 4 3 0.9713
4 0 0.0 S 8 1 0.0578 S 4 3 -0.2187

5 0 0.0692 C 9 1 0.1536 C 5 3 -0.4701
5 0 0.0 S 9 1 0.0088 S 5 3 -0.2506

6 0 -0.1528 C 10 1 0.0757 C 6 3 0.0169
6 0 0.0 S 10 1 -0.1438 S 6 3 -0.0127

7 0 0.0910 C 11 1 -0.0199 C 7 3 0.2558
7 0 0.0 S 11 1 0.0371 S 7 3 -0.2281

8 0 0.0515 C 12 1 -0.0592 C 8 3 -0.0262
8 0 0.0 S 12 1 -0.0466 S 8 3 -0.0809

9 0 0.0312 C 13 1 0.0183 C 9 3 -0.1700
9 0 0.0 S 13 1 -0.0753 S 9 3 -0.1049

10 0 0.0502 C 14 1 -0.0453 C 10 3 -0.0483
10 0 0.0 S 14 1 0.0371 S 10 3 -0.0976

11 0 -0.0561 C 15 1 0.1043 C 11 3 -0.0205
11 0 0.0 S 15 1 0.0419 S 11 3 -0.0887

12 0 0.0389 C 16 1 -0o0314 C 12 3 0.1389
12 0 0.0 S 16 1 0.0082 S. 12 3 0.0429

13 0 0.0477 C 2 2 2.4237 C 13 3 -0.0335
13 0 0.0 S 2 2 -1.3895 S 13 3 0.0301

14 0 -9.0266 _ _ o 0.9164 C 14 3 0.0386
14 0 0.0 S 3 2 -0.6322 S 14 3 -0.0157

15 0 -0.0050 C 4 2 0.3511 C 15 3 0.0150

15 0 0.0 S 4 2 0.6652 S 15 3 0.0552

16 0 -0.0093 C 5 2 0.6620 C 16 3 0.0306

16 0 0.0 S 5 2 -0.3145 S 16 3 -0.0160

17 0 0.0174 C 6 2 0.0679 C 4 4 -0.1811

17 0 0.0 S 6 2 -0.3795 S 4 4 0.3153

18 0 0.0113 C 7 2 0.3305 C 5 4 -0.3107

18 0 0.0 S 7 2 0.0748 S 5 4 0.0321

19 0 0.0090 C 8 2 0.0511 C 6 4 -0.1005
19 0 0.0 S 8 2 0.0739 S 6 4 -0.4601

20 0 0.0090 C 9 2 0.0534 C 7 4 -0.2939

20 0 0.0 S 9 2 -0.0171 S 7 4 -0.1064

21 0 -0.0076 C 10 2 -_0457 C 8 4 -0.2480
21 0 0.0 S 10 2 -0.0667 S 8 4 0.0466

22 0 -0.0038 C 11 2 0.0158 C 9 4 0.0212
22 0 0.0 S 11 2 -0.1250 S 9 4 0.0139

2 1 -0.0078 C 12 2 -0.0449 C 10 4 -0.0934
2 1 -0.0004 S 12 2 0.0532 S 10 4 -0.1177

3 1 2.0164 C 13 2 0.0194 C 11 4 0.0027
3 1 0.2498 S 13 2 -0.1477 S 11 4 -0.0937

4 1 -0.5330 C 14 2 -0.0370 C 12 4 -0.0423
4 1 -0.4614 S 14 2 0.1169 S 12 4 -0.0168

5 1 -0.0741 C 15 2 0.0008 C 13 4 -0.0543
5 1 -0.0786 S 15 2 -0.1010 S 13 4 -0.0737
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TABLE 5.19.--(Cont'd)

n m GEM4 n m GEM4 n m GEM4

C 14 4 0.0346 C 7 6 -0.3230 C 13 7 -0.0526
S 14 4 0.0064 S 7 6 0.1664 S 13 7 0.1473

C 15 4 0.0099 C 8 6 -0.0476 C 14 7 0.1313
S 15 4 -0.0254 S 8 6 0.2841 S 14 7 -0.0797

C 16 4 0.0308 C 9 6 0.0651 C 15 7 -0.0214
S 16 4 0.0733 S 9 6 0.2210 S 15 7 0.0968

C 5 5 0.1700 C 10 6 -0.0178 C 16 7 0.0298
S 5 5 -0.6845 S 10 6 -0.1220 S 16 7 -0.0462

C 6 5 -0.2964 C 11 6 -0.0211 C 8 8 -0.1075
S 6 5 -0.5115 S 11 6 0.0443 S 8 8 0.1158

C 7 5 0.0035 C 12 6 0.0634 C 9 8 0.2182
S 7 5 0.0321 S 12 6 -0.0252 S 9 8 0.0052

C 8 5 -0.0884 C 13 6 -0.t284 C 10 8 0.0418
S 8 5 0.0848 S 13 6 0.0378 S 10 8 -0.1256

C 9 5 -0.0320 C 14 6 0.0534 C 11 8 0.0011
S 9 5 -0.0548 S 14 6 -0.0323 S 11 8 0.0639

C 10 5 -0.0682 C 15 6 -0.0174 C 12 8 -0.0317
S 10 5 -0.0070 S 15 6 -0.0481 S 12 8 0.0060

C 11 5 0.0736 C 16 6 -0.0407 C 13 8 0.0412
S 11 5 0.0332 S 16 6 -0.0189 S 13 8 -0.0192

C 12 5 0.0399 C 7 7 0.0752 C 14 8 0.0007
S 12 5 -0.0048 S 7 7 0.0130 S 14 8 -0.0605

C 13 5 0.0418 C 8 7 0.0494 C 15 8 -0.1600
S 13 5 0.0548 S 8 7 0.0679 S 15 8 0.0290

C 14 5 0.0428 C 9 7 -0.0685 C 16 8 0.0301
S 14 5 -0.0311 S 9 7 -0.0212 S 16 8 -0.0248

C 15 5 0.0237 C 10 7 0.0110 C 9 9 -0.0273
S 15 5 -0.0175 S 10 7 -0.0337 S 9 9 0.0801

C 16 5 0.0160 C 11 7 0.0223 C 10 9 0.1062
S 16 5 0.0334 S 11 7 -0.1104 S 10 9 -0.0724

C 6 6 0.0313 C 12 7 -0.0335 C 11 9 -0.0505

S 6 6 -_2348 S 12 7 0.0005 S 11 9 0.0857
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n m GEM4 n m GEM4 n m GEM4

C 12 9 0.0081 C 16 11 0.0046 C 18 13 -0.0027
S 12 9 0.0208 S 16 11 -0.0064 S 18 13 -0.0834

C 13 9 0.0137 C 12 12 -0.0117 C 19 13 -0.0068
S 13 9 0.1196 S 12 12 0.0049 S 19 13 -0.0012

C 14 9 0.0116 C 13 12 -0.0306 C 20 13 0.0312

S 14 9 0.0460 S 13 12 0.0994 S 20 13 -0.0637

C 15 9 0.0066 C 14 12 0.0098 C 21 13 -0.0190
S 15 9 0.0769 S 14 12 -0.0268 S 21 13 0.0257

C 16 9 0.0409 C 15 12 -0.0341 C 22 13 -0.0137
S 16 9 -0.0608 S 15 12 0.0153 S 22 13 -0.0348

C 10 10 0.0786 C 16 12 0.0256 C 14 14 -0.0521
S 10 10 -0.0232 S 16 12 -0.0076 S 14 14 -0.0074

C 11 10 -0.0727 C 17 12 0.0261 C 15 14 0.0025
S 11 10 -0.0063 S 17 12 -0.0011 S 15 14 -0.0216

C 12 10 -0.0057 C 18 12 -0.0568 C 16 14 -0.0108
S 12 10 0.0312 S 18 12 -0.0229 S 16 14 -0.0374

C 13 10 -0.0128 C 19 12 -0.0256 C 17 14 -0.0155
S 13 10 0.0171 S 19 12 -0.0203 S 17 14 0.0060

C 14 10 0.0273 C 20 12 0.0121 C 18 14 -0.0234
S 14 10 -0.1311 S 20 12 -0.0023 S 18 14 -0.0043

C 15 I0 0.0503 C 21 12 0.0072 C 19 14 ..v_,O_,""'__

S 15 10 0.0345 S 21 12 -0.0347 S 19 14 -0.0109

C 16 10 -0.0602 C 22 12 -0.0537 C 20 14 0.0117
S 16 10 -0.0093 S 22 12 -0.0333 S 20 14 -0.0035

C 11 11 0.0900 (3 13 13 -0.0274 C 21 14 0._042

S 11 11 -0.0255 S 13 13 0.0930 S 21 14 0.0134

C 12 11 0.0052 C 14 13 0.0318 C 22 14 0.0215

S 12 11 0.0305 S 14 13 0.0087 S 22 14 0.0071

C 13 11 -0.0443 C 15 13 -0.0023 C 15 15 -0.0788

S 13 11 -0.0215 S 15 13 0.0107 S 15 15 0.0308

C 14 11 0.0980 C 16 13 0.0064 C 16 15 -0.0544

S 14 11 -0.0331 S 16 13 -0.0213 S 16 15 0.0090

C 15 11 -0.0567 C 17 13 0.0319 C 16 16 -0.0048

S 15 11 0.0568 S 17 13 0.0423 S 16 16 -0.0036
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TABLE5.20.--Comparisonof Formulas Used by GSFC With Those Used

by DOD, JPL, and APL

Name Used by Type General Form a

Runge-Kutta .........

CowelP ...............

Stormer _ .............

Adams-Bash ford b ....

Adams-Moulton b .....

Second-sum ..........

Second-difference ....

APL ...... Onestep ............ Yn+l = Yn + h¢(X_,Yn, h)

NASA .... Multistep .......... Y_+I = 2Y_-Yn__ +h2_ y.Vmf.+_
m

NASA .... Multistep .......... Y_+_ = 2Y_-Yn-_ +h2_TmVmf_
m

NASA .... Multistep .......... Y_+_ + Yn + h _7.Vmf_

NASA .... Multistep .......... Y.+I + Y_ + h _ymV_f.+_
rn

/2 sum\
JPL ...... Multistep (10 diff_ Moyer (1971)

/
DOD/NWL Multistep • Herrick (1971)

h = step-size
]an = constant
fm= given function
¢ = adjustment function

b Note that Cowell's and StSrmer's methods apply to functionf without first derivative,
whereas the Adams-type equations apply to first-order equations.

TABLE 5.21.--Description of Goddard Earth Models

Extent of
spherical Station

Solution harmonics coordinates Tracking data Gravimetric data

GEM 1__ 12 x 12 120 000 camera obs. on 23

satellites, MINITRACK
obs. on 2 satellites ......

16 x 16 GEM 1 data ...............GEM 2__ 46 stations

GEM 3__ 12 × 12

GEM 4__ 16 x 16 61 stations

GEM 5__ 12 x 12

GEM 6__ 16 × 16 134 stations

400 000 camera, laser DME
and electronics obs. on 27

satellites including data
from SAS and PEOLE at

low inclination ..........

GEM 3 data ...............

GEM 3 data with different

weighting ...............
GEM 5 data plus data from

BC-4 cameras ..........

1707 5° x 5° mean gravity-

anomalies based on 21 000
1° × 1° values ............

1705 5° x 5° mean gravity-

anomalies based on 21 000
1° x 1° values ............

Rapp's 5° equal-area mean

gravity anomalies based
on 23 000 1° x 1° values __
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1. Brown, D. C.: Short Arc Optical Survey of the GEOS North American Tracking Net-

work. NASA/GSFC X-550-68-439, Nov. 1968.

2. Rawlinson, F. G.; Harris, D. W.; Berbert, J. H.; and Oosterhout, J. D.: The Jupiter
Camera Intercomparison Test. NASA/GSFC X-590-73-344, Nov. 1973.

3. Berbert, J. H.; and Carney, D. V.: Five Laser/Laser Intercomparison Tests. NASA/
GSFC X-590-73-345, Nov. 1973.

4. Berbert, J. H.; Maresca, P.; Norris, P.; and Reich, R.: Intercomparison of Collocated
Laser Optical and GRARR Radio Ranging System Tracks on GEOS-A. NASA/GSFC
X-514-67-447, Sept. 1967.

5. Berbert, J. H.; and Parker, H. C.: Comparison of C-band, SECOR, and TRANET with
a Collocated Laser on 10 Tracks of GEOS-2. NASA/GSFC X-514-68-458, Nov. 1968.

6. Berbert, J. H.; Parker, H.; and Carney, D.: Comparison of C-band, SECOR, and
TRANET with Collocated Laser and Camera on 35 tracks of GEOS-2. NASA/GSFC

X-550-72-451, Nov. 1972.
7. Berbert, J. H.; Hlavin, J. M.; and Carney, D. V.: Carnarvon Laser Collocation Experi-

ment (CALACO). NASA/GSFC X-550-72453, Dec. 1972.
8. Berbert, J.; Reich, R.; and Stephenson, J.: Evaluation of Range Accuracy for the

Goddard Range and Range Rate System at Rosman. NASA/GSFC X-514-66-513, Oct.
1966.

9. GSFC Operations Evaluation Branch et al.; Final Report on GRARR/GEOS-A Data
Validation. NASA/GSFC 1-514-68-111, June 1968.

10. Lerch, F. J.; Marsh, J. G.; and O'Neill, B.: Evaluation of the Goddard Range and
Range Rate System at Rosman by Intercomparison with GEOS-1 Long Arc Orbital
Solutions. NASA TN D-5036, June 1969.

11. Agreen, R. W.; and Marsh, J. G.: An Intercomparison of Navy TRANET Doppler
Data and Optical Data from the GEOS-1 Satellite. NASA/GSFC X-552-69-539, Dec.
1969.

12. Be_bei-t,J. H.; ^-_ '_...... n. __l_gt__[_P._/I_TNTTTWACK Collocation Study. NASA/

GSFC X-514-69-102,Dec. 1973.

13. Marsh, J. G.; Doll,C. E.; Sandifer, R. J.; and Taylor, W. A.: Intercomparison of the

MINITRACK and Optical Tracking Networks using GEOS-1 Long Arc Orbital

Solutions.NASA TN D-5337, Feb. 1970.

14. Schmid, P. E.: NASA MINITRACK Interferometer Refraction Corrections. NASA/

GSFC X-551-69-434, Oct.1969, and NASA TN D-5966, Mar. 1971.

15. Berbert, J.H.; and Parker, H. C.:GEOS SatelliteTracking Corrections,for Refraction

in the Troposphere. NASA/GSFC X-514-70-55,Feb. 1970.

16. Berbert, J.H.; and Parker, H. C.:GEOS SatelliteTracking Corrections for Refraction

in the Ionosphere, NASA/GSFC X-514-70-467,Dec. 1970.

17. Mallinckrodt, A. J.:Refraction Errors of Short Horizontal Baseline Interferometers.
NASA/GSFC X-514-70-465, Dec. 1970.

18. Proceedings of the GEOS-2 Program Review Meeting 22-24 June 1970, vol. 2, Tracking

System Intercomparison with GEOS-2, edited by CSC, Nov. 1970.
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TABLE 5.23.--Camera Intercomparisons at Jupiter

Combined data orbits MOTS 40 orbits

mean rms (arc sec) mean difference (arc sec)

Camera _ _2

No. of No. of B -+ a Tot B -+ cr Tot

seqs Aa cos 8 A 8 seqs Aa cos 8 rms A 8 rms

SA0 Baker-Nunn .... 35 1.39 1.38 31 -0.74 -+ 1.25 1.45 0.08 - 1.14 1.14

SA0 K-50 ............ 12 1.41 1.57 10 -0.42 -+ 2.07 2.11 -0.82 ± 1.26 1.50

Air Force PC-1000 ___ 28 1.62 1.42 19 -0.11 ± 1.69 1.69 -0.72 ± 1.50 1.66

NASA MOTS-40 ...... 53 1.61 1.47 53 0 -2_ 0 0 0 -+ 0 0

NASA MOTS-24 ...... 20 2.30 1.96 18 -0.85 - 1.95 2.13 0.60 ± 1.56 1.67

NASA PTH-100 ....... 18 1.87 1.54 14 -1.03 -+ 2.14 2.37 0.52 ± 1.57 1.65

NASA BC-4--300 .... 22 6.07 4.27 15 -3.95 ± 7.96 8.89 1.06 -+ 2.95 3.13

TABLE 5.24.--Comparison Laser Versus MOBLAS Laser Tests

No. of Comp

Test Date passes laser

RMS range noise Avg range bias (B -+ Sigma)
(meters) (meters)

Comp laser MOBLAS Comp laser--MOBLAS

GORF-1 a .......... Oct-Nov. 1968 ........... 5 GODLAS 1.86 1.23

GORF-1 .......... Oct.-Nov. 1968 .......... 5 GODLAS 1.86 1.23

4.1 -+ 0.6

-0.5 -+ 0.6

ARLACO-1 ....... Oct.-Nov. 1969 .......... 14 HOPLAS 1.34 1.06 -1.6 -+ 1.5

ARLACO-2 ....... Dec. 1969-Jan. 1970 ..... 11 HOPLAS 1.09 1.00 1.3 -+ 1.7

GORF-2 .......... Mar.-May 1970 ......... 21 GODLAS 1.00 1.06 -1.2 -+ 1.3

GORF-3 .......... Oct. 1970 ................ 4 GODLAS 0.59 0.59 0.9 -+ 0.3

MOBLAS had a calibration error of 4.6 meters

TABLE 5.25.--ROLACO RAE Statistics

Station time

System Name Measurement No. Mean RMS RMS Measurement bias (T)
passes before before after bias (B) (milliseconds)

Reference system

Laser GODLAS Range (meters) 15 ....... 1.8 -+ 0.8 ...............................

Azimuth (arc sec) 15 ....... 91 -+ 62 ...............................

Elevation (arc sec) 15 ....... 37 -+ 25 ...............................

Comparison system

GRARR Rosman Range (meters) 10 .............. 6.8 _+ 2.1 -5.3 ± 12.4 -2.1 -+ 1.2

Range rate (cm/sec) 9 ....... 6.9 ± 5.8 ................................
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TABLE 5.29.--CALACO (RRD Orbit) Statistics

No. Mean RMS
System Name Measurement passes before before

Laser ............. CRMLAS ....... Range (meters) ................. 14 0.0 ± 0.0 1.3 ± 0.2

C-band ........... NCARVN ....... Range (meters) ................. 5 -9.3 ± 4.2 9.5 -+ 4.1

GRARR .......... CARVON ....... Range (meters) ................. 12 -6.4 ± 7.0 8.9 ± 5.2

GRARR .......... CARVON ....... Range rate (cm/sec) ............ 12 0.3 -+ 1.3 1.7 ± 0.7

Laser ............ CRMLAS ....... Azimuth x cos el (arc-sec) ...... 14 10. +- 24. 35. ± 23.
C-band ........... NCARVN ....... Azimuth x cos el (arc-sec) ...... 5 -28. ± 8. 38. ± 10.

Laser ............ CRMLAS ....... Elevation (arc-sec) ............. 14 -26. ± 11. 31. ± 9.
C-band ........... NCARVN ....... Elevation (arc-sec) ............. 5 30. ± 6. 35. ± 5.

Camera .......... 1CARVN ........ Rt. asc x cos dec (arc-sec) ...... 14 O.0 ± 0.0 0.9 ± 0.3
Camera .......... 1CARVN ........ Declin (arc-sec) ................. 14 0.0 ± 0.8 1.4 ± 0.7

TABLE 5.30.--Range System Accuracies, Typical and Potential (in Meters)

Before correction After correction

Range Avg bias Total rms Bias Added Avg bias Total rms
Test system B ± _ (B 2 + o_) "_ source correction B ± a (B _ + _2)1_2

GORF-1 MOBLAS -4.1 ± 0.6 4.1 Cal sig 4.6 0.5 ± 0.6 0.8
level

(2 passes) (14 passes)
ARLACO-1 HOPLAS 5.5 ± 0.6 5.5 Cal change -4.8 -1.6 ± 1.5 2.2

ROLACO GRARR (A) -15.0 ± 12.4 19.5 Cal 9.7 -5.3 ± 12.4 13.5

CALACO GRARR (A) -1.7 -+ 3.6 4.0 Unknown

CALACO GRARR (C) -4.9 ± 7.4 8.9 Unknown

WICE FPS-16 5.7 -+ 4.1 7.0 Cal, survey -7.9 -2.2 ± 4.1 4.7

WICE FPQ-6 -1.6 ± 2.6 3.1 Calib -0.6 -2.2 ± 2.6 3.4

CALACO FPQ-6 -15.0 ± 6.5 16.3 Cal refr 20.0 ± 0.7 5.0 ± 6.7 8.4

WICE SECOR -17.5 ± 4.0 18.0 Unknown
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TABLE 5.31.--Constraints on Relative Position

Station
pair

Est
stand

Relative positionconstraints dev
(meters) (meters)

Ax Ay Az cr

Differences
with respect to

constrained values
(meters)

8x 8y 8z

2017 2117 -3.75 6.28 -2.02 4.23 6.03 3.19 10.73

2018 2018 0.00 0.00 0.00 5.12 17.39 -17.12 -0.68
2822 6064 -12.06 13.60 23.74 3.00 - 1.66 2.03 1.07
2837 6067 46.13 290.25 -1248.20 3.00 -10.56 0.71 3.59
1038 6060 304 147.18 114 912.15 494 900.60 2.04 -6.45 12.01 6.91
2019 6053 -130.35 808.62 87.15 3.00 -0.48 9.33 -3.28
2722 6055 -78.06 -172.20 -160.45 3.00 7.44 -6.64 2.98
2723 6040 19.71 0.69 14.10 3.00 1.93 -1.73 -3.74
1152 6032 -47 149.40 -424 141.91 676 055.82 2.50 10.97 2.19 -3.32
6019 9011 -52.01 -37.07 18.82 0.01 0.01 0.00 0.00
1021 7043 12 681.43 44 984.51 51 158.99 0.49 -1.48 -2.67 -2.86
1022 7071 168 409.91 50 582.89 45 732.81 0.93 0.60 6.44 2.51
1034 7034 0.08 0.66 -0.74 0.01 0.00 0.00 0.00
1037 1042 -7.58 -0.59 0.50 0.01 0.00 0.00 0.00
7043 7050 -38.21 -36.26 -31.23 0.01 0.00 0.01 0.01
7043 7052 130 836.64 -50 256.13 -100 969.38 0.90 3.61 -2.64 2.65
7043 7077 -652.92 -1710.84 -1877.61 0.06 0.01 0.00 0.00
7043 7078 130 867.90 -50 025.41 -100 693.72 0.90 -0.77 -0.53 0.42
7071 7072 4.08 5.48 11.42 0.01 -0.20 0.04 0.72
7071 7073 10.32 6.62 9.32 0.0i 0.19 -0.03 -v.,_"_

7071 7074 11.03 8.97 15.81 0.01 0.00 0.00 O.00

2738 6003 3.96 -23.90 21.87 3.00 8.19 -16.28 -4.58

1025 6009 17 214.35 4034.43 58 089.41 0.46 -0.01 0.05 0.04
2817 6015 7.76 -_.v,,A,_ _in..........on .qNO -11.17 --3.60 11.18
6111 6134 -53.77 -90.12 -305.26 0.01 0.00 0.00 0.00

6002 7043 -56.27 -499.54 -568.43 0.02 0.00 0.00 0.00

6011 9012 -49.58 118.93 -35.81 0.01 0.00 0.00 0.00
7071 9010 19.05 3.07 " 3.92 0.01 0.01 0.01 0.01

9003 9023 6011.64 -17 986.56 -27 467.42 0.30 -0.02 -0.04 0.42

4740 7039 -674.06 699.92 1476.31 0.04 0.00 0.00 0.00

4760 7039 -683.27 706.55 1488.25 0.04 0.00 0.00 0.01
1037 1126 -334.06 -403.53 -571.31 0.02 0.01 0.00 -0.01

1152 7054 54.96 -51.86 -135.62 0.01 0.00 0.00 0.00
2203 7052 -116.78 -336.48 -389.60 3.00 5.76 2.27 0.02

2115 4050 354.70 970.65 296.73 3.00 1.51 -3.76 3.73

4082 7071 65 691.26 62 291.57 1 377 355.55 0.87 -0.74 -0.31 -1.78

4840 4860 -2384.64 711.85 1660.19 0.06 0.00 -0.01 0.00

4840 7052 -2425.68 685.03 1630.22 0.06 -0.01 0.00 0.01
1024 4946' -21 762.84 24 680.80 54 300.42 0.46 0.28 -0.20 -0.60

1031 6068 59.69 -55.46 51.19 0.01 0.00 0.00 0.00

6068 9002 28 722.17 46 167.12 -7673.38 0.42 0.50 -0.44 0.47

7072 9049 4.82 -3.60 -12.97 0.01 0.01 0.01 0.00

6111 9425 -1159.33 43 554.59 52 281.60 0.48 0.38 0.07 0.09

6042 9028 2992.55 -3032.66 -2462.26 0.08 0.00 0.01 0.00
2100 6011 38 128.97 -180 272.68 -83 071.46 3.04 -12.07 1.62 5.85
9005 9025 36 256.49 10 061.56 30 386.63 0.38 0.27 -0.11 0.52
7901 9001 0.00 0.00 0.00 4.23 -20.28 -1.41 7.34
2106 1035 -22 330.33 23 266.93 17 999.44 3.03 -2.97 21.42 -1.57
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TABLE 5.32.--Constraints on Surface Distance

Station

pair

Estimated relative Residual after

Distance standard deviation adjustment

(meters) (ppm) (meters)

6002

6006

6006

6016

6023

6032

6063

6003

6003

6016

6065

6065

6060

6060

6064

6111

3 485 363.23 1.00 6.58

3 545 871.56 1.00 1.68

2 457 765.81 0.70 -1.04

1 194 793.60 0.85 2.92

2 300 209.80 0.50 -1.72

3 163 623.87 1.00 -5.54

3 485 550.76 0.85 -2.32

1 425 876.45 0.90 -2.03
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TABLE 5.33.--GEM 6 Station Coordinates
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Station Latitude Longitude

Name Number Deg Min Sec Deg Min Sec
Height

(meters)
Sigma _
(meters)

Station positions for BC-4

BELTSV 6002
MOSELK 6003
SHEMYA 6004
TROMSO 6006
TRCERA 6007
PARMBO 6008

QUITO 6OO9
MAUI(} 6011
WAKEIS 6012
KANOYA 6013
CATNIA 6016
MASHAD 6015
VILDOL 6019
EASTER 6020
TUTILA 6022
THRUSD 6023
INVERC 6031
CAVERS 6032

SOCORO 6038
PITCRN 6039
COCOSI 6040
ADISBA 6042

CERROS 6043
HEARDI 6044
MAURIT 6045
ZAMBGA 6O47
PALMER 6050
MAWSON 6051
WILKES 6052
MCMRDO 6053
ASCENS 6055
XMASIL 6059
CULGDA 6060
SGAISL 6061
DAKAR 6063
FORTLY 6064
HOHNBG 6065
NATALB 6067

JOBURG 6068
TRSUNA 6069
CHIMAI 6072
DGOGRA 6073
MAHE 6075
PRTVLA 6078
WRIGHT 6111
PRBARW 6123
WRIGHT 6134

39 1 39.706 283 10 27.538
47 11 6.660 240 39 43.768
52 42 48.985 174 07 26.363
69 39 44.108 18 56 29.299
38 45 36.426 332 54 25.707

5 26 53.866 304 47 40.707
- 0 5 51.408 281 34 47.674

20 42 27.235 203 44 38.433
19 17 28.643 166 36 39.443
31 23 42.733 130 52 16.579
37 26 38.374 15 2 45.352
36 14 25.459 59 37 43.740

-31 56 35.317 294 53 38.999
-27 10 36.330 250 34 22.636
-14 19 54.394 189 17 8.692
-10 35 3.276 142 12 39.420
-46 24 58.309 168 19 31.502
-31 50 25.036 115 58 31.671

18 43 58.568 249 2 41.347
-25 4 6.765 229 53 12.572
-12 11 43.990 96 50 2.460

8 46 12.504 38 59 52.089
-52 46 52.600 290 46 34.090
-53 1 9.425 73 23 34.212
-20 13 52.901 57 25 31.944

6 55 20.395 122 4 8.907
-64 46 26.371 295 56 53.697
-67 36 4.268 62 52 22.242
-66 16 44.937 110 32 7.169

-77 50 41.846 166 38 31.279
- 7 58 15.213 345 35 34.770

2 0 18.617 202 35 16.306
-30 18 34.411 149 33 40.993
-54 17 0.709 323 30 21.877

14 44 42.292 342 31 0.697
12 7 54.697 15 2 7.246
47 48 3.758 11 1 25.916

- 5 55 38.935 324 50 4.707
-25 52 58.963 27 42 23.644
-37 3 53.227 347 41 5.670

18 46 10.593 98 58 2.372
- 7 21 6.513 72 28 20.592
- 4 40 14.620 55 28 47.950
-17 41 31.834 168 18 24.472

34 22 54.548 242 19 5.990
71 18 48.393 203 21 8.504
34 22 44.455 242 19 5.765

0.1
331.6

38.3
109.3

99.9
-30.2

2685.5
3057.8
- 15.6

76.1
38.6

947.7
625.1
199.6

15.5
107.9

-11.5
-18.1
-23.0
295,2

-47.8
1865.2

78.3
34.8

133.1

59.3
23.1
28.8

-5.5
-56.0

70.1
2.3

226.2
2.0

44.3

296.4
970.1

13.2
1539.2

25.3
245.9

-77.9
534.4

54.4
2247.7
-34.0

2161.8

3
9

22
15
11
15

17
4

12
17

9
9
4

22
11

10

9
7

10
25
11

5
11

16
ii

14
15
11
11
10

9
11

7
12

9

7
12
10

3
9

14
12
12
37

6
26

6
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TABLE 5.33.--(Cont'd)

Station Latitude Longitude

Name Number Deg Min Sec Deg Min Sec
Height

(meters)
Sigma"

(meters)

Station positions for Laser

GODLAS 7050 39

WALLAS 7052 37

CRMLAS 7054 -24

Station positions for Baker-Nunn

1ORGAN 9001 32

IOLFAN 9002 -25

WOOMER 9003 -31

ISPAIN 9004 36

1TOKYO 9005 35

1NATAL 9006 29

1QUIPA 9007 - 16

1CURAC 9009 29

1SHRAZ 9O08 12

1JUPTR 9010 27

1VILDO 9011 -31

1MAUIO 9012 20

HOPKIN 9021 31

AUSBAK 9023 -31

DODAIR 9025 36

DEZEIT 9028 8

COMRIV 9031 -45

JUPGEO 9049 27

AGASSI 9050 42

GREECE 9091 38

COLDLK 9424 54

EDWAFB 9425 34

OSLONR 9426 60

JOHNST 9427 16

Station positions for GRARR

MADGAR 1122 - 19

MADGAS 1123 - 19

ROSRAN 1126 35

ULASKR 1128 64

CARVON 1152 -24

Station positions for C-Band

ETRPRE 4050 -25

ETRMRT 4082 28

NBER34 4740 32

NWALI8 4840 37

NWALI3 4860 37

NBERO5 4760 32

WOOR38 4946 -30

1 14.387 283 10 18.638

51 36.199 284 29 23.965

54 15.965 113 42 58.252

11.1

-42.4

-3.5

25 25.079 253 26 48.996 1619.1

57 35.837 28 14 52.459 1559.0

6 2.124 136 47 3.319 155.5

27 46.818 353 47 36.958 60.0

40 22.968 139 32 16.563 84.9

21 34.781 79 27 27.517 1871.0

27 56.628 288 30 24.604 2484.7

38 13.839 52 31 11.372 1580.3

5 25.186 291 9 44.532 -23.2

1 14.120 279 53 13.357 -24.8

56 34.597 294 53 36.609 625.1

42 26.175 203 44 33.983 3042.8

41 3.302 249 7 18.599 2341.0

23 25.694 136 52 43.649 134.0

0 20.304 139 11 31.565 883.7

44 51.242 38 57 33.407 1904.1

53 12.290 292 23 9.413 192.5

1 13.948 279 53 12.993 -28.1

30 21.542 288 26 30.583 129.9

4 44.849 23 55 58.658 487.2

44 34.634 249 57 23.125 669.4

57 50.677 242 5 8.030 748.9

12 39.200 10 45 2.938 617.0

44 38.879 190 29 9.343 18.8

1 16.314 47 18 15.185

1 14.392 47 18 11.335

11 45.528 277 7 26.240

58 18.964 212 29 12.728

54 11.015 113 42 59.302

1349.6

1387.6

828.1

338.8

2.5

56 37.592 28 21 28.937 1588.6

25 28.943 279 20 7.649 -30.7

20 53.337 295 20 46.909 -26.9

50 29.160 284 30 53.007 -39.4

51 37.279 284 29 25.864 -36.4

20 52.837 295 20 47.119 -24.9

49 5.877 136 50 17.532 124.3

4

3

4

3

5

4

4

6

5

3

4

4

7

4

5

5

6

3

22

5

15

6

17

8

5O

7

3

3

4

12

5

4

4

4

4

6
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TABLE 5.33.--(Cont'd)
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Station Latitude Longitude

Name Number Deg Min Sec Deg Min Sec
Height

(meters)
Sigma a

(meters)

Station positions for Doppler

ANCHOR 2014 61

TAFUNA 2017 - 14

THOLEG 2018 76

MCMRDO 2019 -77

WAHIWA 2100 21

LACRES 2103 32

LASHM2 2106 51

APLMND 2111 39

PRETOR 2115 -25

ASAMOA 2117 -14

WALDOP 2203 37

ASCION 2722 - 7

COCOSL 2723 - 12

MOSLAK 2738 47

STNVIL 2745 33
MESHED 2817 36

FRTLMY 2822 12

NATLDP 2837 - 5

Station positions for MOTS

1BPOIN 1021 38

1FTMYR 1022 26

1OOMER 1024 -31

1QUITO 1025 - 0

1SATAG 1028 -33

1MOJAV 1030 35
1JOBUR 1031 -25

1NEWFL 1032 47

1GFORK 1034 48

lWNKFL 1035 51

1ULASK 1036 64

1ROSMN 1037 35

1ORORL 1038 -35

1ROSMA 1042 35
1TANAN 1043 - 19

1UNDAK 7034 48

1EDINB 7036 26

1COLBA 7037 38

1BERMD 7039 32

1PURIO 7040 18

1GFSCP 7043 39

1DENVR 7045 39

1JUM24 7071 27

1JUM40 7072 27

1JUPC1 7073 27

1JUBC4 7074 27
1SUDBR 7075 46

1JAMAC 7076 18

1GFSCN 7077 38

WALMOT 7078 37

17 0.168 210 10 29.035 63.9
19 49.937 189 17 3.046 27.4

32 20.047 291 13 52.647 47.4
50 52.257 166 40 25.770 -33.1

31 15.531 202 0 10.436 395.6

16 44.522 253 14 45.428 1150.7

11 9.367 358 5_ 25.532 217.8

9 48.588 283 6 11.907 96.0

56 48.272 28 20 52.046 1582.6

19 50.265 189 17 2.891 39.5

51 52.094 284 29 32.286 -38.0

58 9.757 345 35 40.701 88.6

11 44.560 96 50 3.054 -44.3

11 7.247 240 39 43.766 338.3
25 32.087 269 5 9.799 -2.5

14 26.485 59 37 44.239 950.8

7 53.927 15 2 6.787 298.5

54 57.998 324 49 55.950 3.9

25 50.253 282 54 48.699

32 53.359 278 8 4.161

23 24.970 136 52 15.455

37 21.567 281 25 16.401

8 58.448 _"°" 1_..... _2_76
19 47.931 243 5 59.055

53 0.843 27 42 26.404

44 29.838 307 16 46.121

1 21.344 262 59 19.513

26 46.148 359 18 8.330

58 37.046 212 28 31.715

12 7.388 277 7 41.321

37 32.106 148 57 14.825

12 7.408 277 7 41.021
0 31.860 47 17 59.360

1 21.344 262 59 19.513

22 46.743 261 40 7.459

53 36.207 267 47 40.940

21 49.826 295 20 35.069

15 28.817 294 0 23.584

1 15.716 283 10 20.528

38 48.056 255 23 38.640
1 14.010 279 53 12.657
1 14.388 279 53 12.844
1 14.372 279 53 13.060

1 14.570 279 53 13.107
27 21.306 279 3 10.514

4 34.700 283 11 27.038
59 57.438 283 9 37.906
51 47.543 284 29 27.717

-38.2
-35.9

128.6

3571.8
709.3
886.2

1537.2
64.2

216.4
97.3

284.1
864.1
943.5
864.1

1362.2
215.4

20.9
227.4
-14.9
-10.4

10.1
1757.8
-26.9
-26.1
-26.6
-25.9
235.5
417.9

7.1
-39.6

5

5

10

11

4

5

4
4

6

5

12

10

16

15

46

5

7

6

3

3
5

19

5

3
3
8

3

5

8

3

4

3

6

3
3

3
4

3

3
3

3
3

3

3

5
5
3

5

a Estimated error of Cartesian coordinates
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TABLE 5.34.--Comparisons With JPL' s DSS

Four-parameter solution (GEM 6--JPL): ,,
Scale = 1.42 x I0-e Ah = -0.50

Ax = -3.2 m _y = -0.8 m

Site Differences

Goldstone, Cal ...........

Woomera, Aus ...........

Tidbinbilla,Aus .........

Johannesburg, RSA .....

Madrid, Spain ...........

ax (m) ay (m)
+1.4 +6.9

-3.3 +1.1

+1.6 -3.0

+1.6 -2.3
0.0 -2.1

rms(m) 3.0

TABLE 5.35.--Direct Comparisons of Spin Axis Distance (D)

and Longitude (h) (GEM 6--JPL)

AD AD/D hh At)-AD Ah-A_
Site (m) (xl0s) (see) (m) (see)

Goldstone, Cal ............ 2.8 0.5 -0.67 -5.1 -0.19

Woomera, Aus ............ 12.7 2.2 -0.35 4.8 0.16
Tidbinbilla, Aus ........... 6.7 1.3 -0.34 - 1.2 +0.17
Johannesburg, RSA ...... 5.4 0.9 -0.57 -2.2 -0.06
Madrid, Spain ............ 4.4 0.9 -0.63 -3.5 -0.12

Average 7.9 1.2 -0.51
(AD) (A_)

TABLE 5.36.--GEM 6--VLBI

Using x,y Coordinates

Goldstone, Cal. to Rosman, N.C.

Equatorial baseline
Solution (meters)

VLBI 3 050 034.8
GEM 6 3 050 035.5
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TABLE 5.37.--Comparison of GEM 6 With GEM

459

62 23 MOTS-SPEOPTS 19 BN 13 Doppler
stations camera stations camera stations stations

Ax (m) 0.54 ± 1.4 -0.58 ± 2.7 0.30 -+ 2.4 0.85 ± 3.1

Ay (m) -0.44 ± 1.4 -0.13 ± 2.7 0.03 ± 2.4 -0.50 -+ 3.3
Az (m) 0.22 ± 1.4 -0.56 ± 2.8 3.8 ± 2.4 -1.5 ± 3.1
s (xl0 _) -0.02 + 0.22 -0.01 ± 0.42 0.07 ± 0.37 -0.01 ± 0.48

c (") 0.00 ± 0.05 0.02 ± 0.10 0.02 ± 0.09 -0.10 ± 0.14

_b(") -0.02 -+ 0.05 -0.08 ± 0.13 0.02 ± 0.10 -0.07 +- 0.11
v(") 0.04 ± 0.05 0.04 ± 0.12 0.00 ± 0.86 0.06 ± 0.12
rms (m) ±3.3 ±2.8 _+0.12 ±3.7

TABLE 5.38.--Comparison

of Coordinate Systems

of GEM 6 and Goddard '73

45 BC-4
stations

hx (m) +20-+ 1.5

Ay (m) +12-+ 1.5

Az (m) -9 -+1.5

s (xl0_) +1.9 -+0.23
(") -0.07 -+ 0.06

_b(") +0.07 -+ 0.06
o_(") +0.08 + 0.06

rms (m) ± II

TABLE 5.39.--Comparison of Coordinate Systems of GEM 6
and Standard Earth IIl

68 stations 17 BN stations 47 BC-4 stations

hx (m) +4.2 ± 1.22 1.9 ± 2.4 +4.8 ± 1.46
Ay (m) -5.3 ± 1.22 -3.5 ± 2.4 -6.2 ± 1.46
Az (m) +9.5 ± 1.22 15.0 -+ 2.4 +7.4 ± 1.46

s (×10 e) 0.49 ± 0.05 0.84 ± 0.38 +0.23 ± 0.05

(") +0.19 ± 0.05 -0.01 ± 0.09 +0.23 ± 0.05

_b(") -0.08 _+0.05 -0.10 ± 0.11 -0.09 -+ 0.06
¢o(") -0.46 ± 0.05 -0.51 ± 0.09 -0.47 _+0.06

rms (m) ±10 _+8 ±10
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TABLE 5.40.--Comparison of Coordinate

Systems of GEM 6 and NWL 9D

12 Doppler 20 BC-4
stations stations

Ax (m) -6.2 ± 1.3 4.3 -* 2.3

Ay (m) 3.1 ± 1.5 1.4 ± 2.3
Az (m) 8.3 ± 1.4 1.9 ± 2.3
s (xl06) -0.30 ± 0.21 -0.41 ± 0.35

(") 0.01 ± 0.06 0.30 ± 0.09
_b(") -0.03 ± 0.06 0.15 ± 0.09
oJ(") -0.59 ± 0.06 -0.65 -* 0.09

rms (m) _*2.8 _*7.9

TABLE 5.41.--Comparison of Coordinate

Systems of GEM 6 and WN-4

43 Stations

hx (m) 0.5 _* 0.7
5y (m) 0.6 _* 0.6

&z (m) 2.1 _* 0.7
s (xl06) 0.44 _* 0.1

(") 0.00 _* 0.03

_(") 0.04 -+ 0.03
oJ(") 0.35 _* 0.03

rms (m) -+4.6

TABLE 5.42.--Comparison of Shifts ay in Origins of Coordinate

Systems of GEM 6, WN-4, Standard Earth III, and NWL-9D

6006 6065 6007 6016 6063 6064 6055 6067 6069

GEM 6--WN-4 32 28 26 24 26 12 22 12 20
GEM 6---Standard Earth III 22 21 8 17 11 8 9 -2 11

GEM 6--Doppler BC 4 Ties 23 1 9 4 -2 -3 13 4
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TABLE 5.43.--Diameter and Origin of Best-Fitting Spheroid

(f = 1/298.255)

29 MOTS-
SPEOPTS 40 BC-4 19 BN 18 Doppler

114 stations cameras stations stations stations

5x (m) -1.5 ± 0.18 -0.85 ± 0.58 3.2 ± 0.26 -8.9 ± 0.40 -6.8 ± 0.40

5y (m) -1.3 ± 0.18 0.52 ± 0.51 -1.1 ± 0.27 -0.85 ± 0.36 0.4 ± 0.52
_z (m) -1.5 ± 0.19 -4.8 ± 0.58 0.49 ± 0.30 -2.7 ± 0.49 -4.8 ± 0.49
An. (m) -11.32 ± 0.10 -8.0 ± 0.30 -14.0 ± 0.16 -5.7 ± 0.25 -11.70 ± 0.27
rms (m) ±7.7 ±4.3 ±8.3 ±4.3 ±7.5

ae (m) 6 378 143.7 6 378 147.0 6 378 141.0 6 378 149.3 6 378 143.

461

TABLE 5.44.--Origins Used in Solution for Relation of GEM 6 to

North American Datum 1927, South American Datum 1969, European

1950, and Australian 1965

ho _6o ho
Datum Longitude Latitude Height

NAD1927 26F 27' 29?494 3_ 13' 26?686 0
SAD1969 290 0 0 -20 0 0 0
Europe 15 0 0 40 0 0 0
Australia 124 0 0 -33 0 0 0

TABLE 5.45.--Relation of GEM 6 Coordinate System to North American Datum1927,

South American Datum 1969, European 1950, and Australian 1965

GEM 6--NAD 1927 GEM 6--AUS 65 GEM 6--SAD 1969 GEM 6--ED 1950

No. stations" 33 10 9 5

Ax (m) -24 ± 2.1 -135 ± 4.0 -63 ± 3.7 -83 ± 5.1

Ay (m) 151 ± 2.3 --39 ± 4.0 0 ± 3.6 --116 ± 5.1
hz (m) 187 -+2.1 133 ± 3.9 --32 ± 3.5 -120 ± 5.7

s (x 10 _) 1.7 ± 1.2 2.4 ± 2.2 --1.3 ± 1.2 -0.3 +- 1.6

• C) -0.2 ± 0.5 -1.0 ± 0.7 0.6 ± 0.3 0.6 ± 0.6
0 (") 0.1 ± 0.3 -1.2 ± 0.6 -0.2 ± 0.3 0.4 ± 1.0

oJ C) -0.8 +- 0.3 0.4 ±0.5 0.0 -+ 0.4 -0.6 -+ 0.4
rms (m) 4.0 ±4.9 ±6.0 ±2.6

"The signs of 5x, Ay, Az should be reversed to find the displacement of the coordinate origin
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TABLE 5.46.--Differences Between Coordinates of

Stations in GEM 6 and Coordinates of the Same

Stations in North American Datum 1927, South

American Datum 1969, European 1950, and

Australian 1965

Meters

Station hx Ay hz

North American Datum1927

1021 4 0 -5
1022 -1 -2 3
1030 1 -4 3
1034 -2 1 3

1037 -1 0 7
1042 -1 0 7

1126 -1 0 7

2203 0 7 -5

4082 0 5 7

4840 6 -4 -5

4860 6 -4 -5

6002 2 -2 -7

6111 -2 2 -4

6134 -2 2 -4
7034 -2 1 3

7036 2 0 1

7037 0 1 5

7043 2 -2 -7

7045 -3 -5 2

7050 2 -2 -7

7052 6 -4 -5

7071 -1 5 5

7072 -1 5 6

7073 -0 5 5
7074 -1 5 5

7075 -2 -2 -1

7077 2 -2 -7

7078 2 -2 -8

9001 -8 2 -2

9010 -1 5 5

9021 -5 -5 -4
9049 -1 5 6

9425 -1 2 4

rms 4.0

South American Datum 1969

1025 -8 -8 -3

1028 13 -9 -4
2837 17 4 -5

6008 0 3 -1

6009 -7 -8 -3

6019 -3 3 8

6067 6 4 -2

9009 -9 8 -10

9011 -3 3 8

9031 -7 0 12

rms 7.3
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TABLE 5.46.m(Cont'd)

Meters

Station Ax hy Az

Australian 1965

1024 3 -7 -3
1038 -3 0 -5

1152 -6 -1 4
4946 4 -7 -3
6023 3 5 9
6032 0 4 -3
6060 -7 10 6
7054 -6 -1 4
9003 6 -2 -5
9023 6 -2 -5

rms 4.9

European 1950
1035 -6 -4 -8
6015 10 2 11
9004 6 1 10
9008 -8 -1 -9
9091 -1 1 -5

rms 2.6

463

TABLE 5.47.--Shifts of Various Datums to Co-

ordinate System of GEM 6

Meters"
No. of

Datum sites Ax Ay Az

NAD 1927 .......... 33 -22 155 187
SAD 1969 ........... 10 -66 3 -33

Europe 1950 ........ 4 -81 -115 -122
Australia 1965 ...... 10 -130 -41 134
ADIND ............. 5 -147 -3 211
Old Hawaiian ....... 4 61 -284 - 182
ARC ................ 5 -126 -110 -296

Tokyo ............... 3 - 147 509 686
Samoa .............. 1 - 114 124 426

Madagascar ........ 2 -172 -237 -119
Johnston Island .... 1 177 -80 -209

aThe signs of Ax, Ay, Az should be reversed to find
the displacement of the coordinate erigin
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TABLE 5.48.--Locations of Tracking Stations in Goddard '73 Model

Geodetic coordinates" Standard deviation

East

Geodetic longitude
Station latitude (deg, (deg, rain, Height Lat Lon Ht

Name Number rain, sec) sec) (meters) (sec) (sec) (m)

1BPOIN 1021 38 25 49.826 282 54 49.027 - 50.26 0.061 0.066 1.93

1FTMYR 1022 26 32 53.336 278 8 4.582 - 36.87 0.046 0.036 0.81

1OOMER 1024 -31 23 25.041 136 52 15.828 123.10 0.044 0.041 0.89

1SATAG 1028 -33 8 58.452 289 19 53.702 705.21 0.052 0.049 1.33

1MOJAV 1030 35 19 47.914 243 5 59.462 886.09 0.043 0.037 0.85

1JOBUR 1031 -25 53 0.900 27 42 26.547 1534.93 0.047 0.041 1.01

1NEWFL 1032 47 44 29.639 307 16 46.883 67.64 0.088 0.153 4.08

1COLEG 1033 64 52 18.268 212 9 37.190 156.20 0.121 0.363 5.46

1GFORK 1034 48 1 21.332 262 59 20.064 213.47 0.038 0.047 1.10

lWNKFL 1035 51 26 45.970 359 18 8.895 100.80 0.044 0.065 1.76

1ULASK 1036 64 58 36.948 212 28 31.733 287.51 0.078 0.197 3.05

1ROSMN 1037 35 12 7.330 277 7 41.756 861.79 0.044 0.039 0.90

1ORORL 1038 -35 37 32.012 148 57 14.927 941.43 0.052 0.054 1.45

1ROSMA 1042 35 12 7.345 277 7 41.456 861.92 0.044 0.039 0.90

1TANAN 1043 -19 0 31.858 47 17 59.420 1356.32 0.061 0.056 1.64

1UNDAK 7034 48 1 21.332 262 59 20.064 213.47 0.038 0.047 1.10

1EDINB 7036 26 22 46.733 261 40 7.840 20.35 0.049 0.039 0.95

1COLBA 7037 38 53 36.179 267 47 41.417 225.04 0.042 0.039 0.91

1BERMD 7039 32 21 49.787 295 20 35.615 - 16.84 0.050 0.043 1.12

1PURIO 7040 18 15 28.771 294 0 24.034 - 9.46 0.053 0.039 1.03

1DENVR 7045 39 38 48.065 255 23 39.119 1759.45 0.042 0.041 1.01

GODLAS 7050 39 1 14.268 283 10 18.955 2.46 0.044 0.051 0.74

WALLAS 7052 37 51 36.191 284 29 24.506 - 49.68 0.056 0.055 1.00

CRMLAS 7054 -24 54 15.609 113 42 58.681 - 1.46 0.063 0.065 0.92

GMILAS 7060 13 18 33.581 144 44 13.951 126.82 0.055 0.077 0.80

1JUM24 7071 27 1 13.868 279 53 13.092 - 31.04 0.061 0.055 1.60

1JUM40 7072 27 1 14.277 279 53 13.272 - 30.89 0.061 0.055 1.60

1SUDBR 7075 46 27 21.352 279 3 10.907 230.50 0.044 0.056 1.33

1JAMAC 7076 18 4 34.515 283 11 27.437 415.28 0.056 0.042 1.12

1CARVN 7079 -24 54 22.615 113 43 16.381 - 9.46 0.063 0.065 0.92

DAKLAS 8820 14 46 3.458 342 35 28.210 28.69 0.115 0.123 2.21

DELFTH 8009 52 0 6.468 4 22 16.292 56.54 0.053 0.076 1.95

ZIMWLD 8010 46 52 37.225 7 27 54.171 941.68 0.048 0.063 1.63

MALVRN 8011 52 8 36.002 358 1 54.808 145.02 0.058 0.092 2.69

HAUTEP 8015 43 55 57.739 5 42 45.360 691.16 0.040 0.046 0.77

HAULAS 8809 43 55 56.787 5 42 44.871 690.13 0.040 0.046 0.77

HAUTLS 8815 43 55 55.780 5 42 44.465 690.14 0.040 0.046 0.77
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TABLE 5.48.--(Cont'd)
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Geodetic coordinates a Standard deviation

East
Geodetic longitude

Station latitude (deg, (deg, min, Height Lat Lon Ht
Name Number rain, sec) sec) (meters) (sec) (sec) (m)

NICEFR 8019 43 43 32.980 7 17 59.324 415.51 0.052 0.062 1.59

MUDONI 8030 48 48 22.175 2 13 46.696 205.89 0.059 0.087 2.60

1ORGAN 9001 32 25 24.805 253 26 49.169 1615.84 0.052 0.047 1.24
1OLFAN 9002 -25 57 36.013 28 14 52.626 1558.13 0.045 0.040 0.78

OLILAS 9902 -25 57 36.013 28 14 52.626 1555.92 0.045 0.040 0.78
1SPAIN 9004 36 27 46.764 353 47 37.190 56.48 0.041 0.038 0.71

SAFLAS 8804 36 27 45.516 353 47 36.388 55.88 0.041 0.038 0.71

SAFLAS 80 36 27 45.516 353 47 36.388 55.88 0.041 0.038 0.71

1TOKYO 9005 35 40 22.708 139 32 17.258 78.41 0.112 0.131 3.46
1NATOL 9006 29 21 34.473 79 27 27.796 1863.09 0.077 0.081 2.21

1QUIPA 9007 -16 27 56.834 288 30 24.664 2476.01 0.049 0.040 0.83
ARELAS 9907 -16 27 56.834 288 30 24.664 2476.53 0.049 0.040 0.83
1SHRAZ 9008 29 38 13.786 52 31 12.030 1566.93 0.116 0.139 4.39
1CURAC 9009 12 5 25.109 291 9 44.992 - 20.72 0.105 0.098 3.28
1VILDO 9011 -31 56 34.777 294 53 36.556 622.71 0.052 0.052 1.28
1MAUIO 9012 20 42 26.097 203 44 34.433 3040.82 0.054 0.045 1.22
HOPKIN 9021 31 41 2.993 249 7 18.799 2338.61 0.054 0.052 0.98
HOPLAS 9921 31 41 3.191 249 7 18.792 2338.00 0.054 0.052 0.98
AUSBAK 9023 -31 23 25.788 136 52 43.828 131.50 0.044 0.041 0.89
DODAIR 9025 36 0 20.012 139 11 32.248 877.29 0.112 0.132 3.46
DEZEIT 9028 8 44 51.256 38 57 33.837 1897.72 0.068 0.066 1.79
NATALB 9029 - 5 55 40.252 324 50 7.373 28.52 0.066 0.061 1.20
NATLAS 9929 - 5 55 40.252 324 50 7.373 _9.14 0.066 0.061 1.20

COMRIV 9031 -45 53 12.463 292 23 9.539 186.85 0.062 0.079 1.98

AGASSI 9050 42 30 21.759 288 26 30.541 131.07 0.126 0.183 4.50

GREECE 9091 38 4 44.567 23 55 59.285 489.38 0.047 0.050 1.10
GRELAS 9930 38 4 42.473 23 55 57.668 496.42 0.047 0.050 1.10

COLDLK 9424 54 44 34.260 249 57 23.234 665.23 0.133 0.234 6.11

EDWAFB 9425 34 57 50.648 242 5 8.202 745.29 0.063 0.062 1.75

OSLONR 9426 60 12 39.545 10 45 4.869 593.98 0.187 0.360 9.74

JOHNST 9427 16 44 38.967 190 29 9.707 3.33 0.105 0.108 3.36

RIGALA 9431 56 56 55.437 24 3 32.470 11.11 0.050 0.094 1.92

UZHGOR 9432 48 38 1.831 22 17 55.471 216.12 0.050 0.071 1.79

HELSIK 8435 60 9 43.199 24 57 7.633 41.59 0.080 0.153 2.66

a ae = 6378155.m, 1/f = 298.255
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TABLE 5.49.--Stations Constrained To

Adjust in Parallel

Station Pair

Mt. Hopkin, Arizona ...............

Woomera, Australia ...............

Carnarvon, Australia ..............

Natal, Brazil ......................

Jupiter, Florida ....................

Haute Provence, France ...........
Dionysis, Greece ...................

Tokyo, Japan ......................

Rosman, North Carolina ...........

Olifantsfontein, Republic of
South Africa .......................

Arequipa, Peru ....................

San Fernando, Spain ..............

9921-9021
1024-9023
7054-7079

9929-9029
7071-7072

8809-8015

9930-9091

9005-9025

1037-1042

9902-9002
8907-9007

8804-9004

TABLE 5.50.--RMS of Fit to the Data

Number of
observations RMS of fit

Right ascension ___ 32 122 1':62
Declination ....... 32 301 1':54

Range ............. 7 043 4.6 m

TABLE 5.51.--Comparison of Distances and Longitudinal Differences

Spin-axis distance
JPL Station (Goddard '73)-[JPL (LS25)]

Code hX, bY Used
Location number for solution a (meters) (ppm) [At - (_rppm x r)]

Longitudinal
difference

(Goddard '73)-
[JPL (LS25)] (b)(c)

(arcsec) (meters)

Goldstone, California ..... 1030 DSN 12 3.2
Edwards AFB, California_ 9425 DSN 12 6.3

Woomera, Australia ...... 9023 DSN 41 8.1

Johannesburg, Rep of
S. Africa ................ 1031 DSN 51 2.6

Olifantsfontein, Rep of
S. Africa ................ 9002 DSN 51

Orroral, Australia ........ 1038 DSN 42

San Fernando, Spain ..... 9004 DSN 61

1.3

7.0

1.6

_r pprn

0.61 -1.0 m 0"00 0.0
1.20 2.1 m 0':11 -3.2

1.49 3.7 m 0':18 4.9

0.45 -2.0 m 0':02 0.6

0.23 -3.3 m -0"03 -0.8

1.35 2.8 m -0"13 -3.1

0.31 -2.5 m 0':03 1.0

0.8

" 5X, Ay is the difference between survey X, Y and JPL-determined X, Y
b Ah is the difference between surveyed longitude and JPL-determined longitude
c A mean longitudinal rotation of 0':27 has been applied to GSFC's value
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TABLE 5.52.--Spin Axis Distance of the

McDonald Observatory

Goddard '73 5 492 420.7 m

Goddard '73 a 5 492 416.3 m
Lunar Laser 5 492 416.0 m

Standard Earth II 5 492 417.0 m
Standard Earth III 5 492 413.4 m

a Modified to account for scale difference of 0.8 ppm
as determined from comparison of Goddard '73 and
JPL values

467

TABLE 5.53.--Solution for Orientation between GEM 4 and Goddard '73

Using 34 Common Stations

AX AY AZ Al ¢0 _
(meters) (meters) (meters) (ppm)

-0.5 -- 0.2 -0.1 -+0.2 0.5 -+ 0.2 0.45 0':26 0"11 ft.'01

-+0.03 -+0.01 -+0.01 -+0.01

Correlation coefficients

AX AY AZ Al _ _b

AY 0.012

AZ -0.019 0.057
hl -0.140 0.415 -0.242

0.426 0.194 0.073 0.462 × 10 -16

0.236 -0.079 -0.259 -0.186 x I0-Is
0.015 -0.303 -0.495 -0.124 x 10 -z5

RMS of fit (meters)

X Y Z

3.8 4.3 3.6

-0.216
-0.067 0.141

TABLE 5.54.--Comparison of Chord Lengths From Station 9004 (San

Fernandol Spain) (European Datum of 1950) a

Survey Survey
SAT (m) SAT (ppm) GSFC--CNES

Number CNES GSFC '73 CNES GSFC '73 (m) (ppm)

9432 - 20.5 - 22.5 - 7.7 - 8.5 - 2.0 - 0.8
9431 -21.5 -14.9 -6.8 -4.7 6.6 2.1

9091 -26.1 -12.6 -9.8 -4.7 13.3 5.1
8019 - 14.7 - 12.7 - 10.5 - 9.1 2.0 1.4
8015 - 16.8 - 17.9 - 12.9 - 13.7 - 1.1 -0.8
8011 -12.2 -8.3 -6.9 -4.7 3.9 2.2
8010 - 17.6 - 19.8 - 10.8 - 12.2 - 2.3 - 1.4
8009 -6.5 - 10.8 -3.3 -5.6 -4.3 -2.3

L___j ^ ,h,_ 1_71 Bomford geoid'_The local survey vaiue_ az'_ o_=_ _n ......
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TABLE 5.55.--Estimated Uncertainty in the Coordinates

Uncertainty Uncertainty
in each coordinate in each coordinate

Stations (m) Stations (m)

1021 5 7072 3
1022 3 7075 3

1028 5 7076 3
1030 3 8820 10

1031 3 8009 3

1032 7 8010 3

1033 10 8011 5

1034 3 8015 3

1035 3 8019 3

1036 5 8030 5

1038 5 9001 3

1042 3 9002 3
1043 5 9004 3

1037 3 9005 7

1039 3 9006 7

1040 3 9007 3

1045 3 9008 10

9009 7 9031 5

9011 3 9050 7

9012 3 9091 3
9021 3 9424 10

9028 5 9425 3

9029 5 9426 10

7050 3 9427 10

7052 7 9431 3

7054 5 9432 3

7060 7 8435 5

TABLE 5.56.--Major Features of the Geoid

Approximate Height

Latitude Longitude
Number Geographic name (°) (°) GEM 5 GEM 6

1 Solomon Island high - 10 150 73 77
2 Indian low 0 80 - 110 - 110

3 British Isle high 50 350 64 70

4 Bahama low 30 290 -53 -55

5 Antartica high -55 50 46 50
6 North East Pacific low 20 240 -47 -55

7 Antartica low -70 200 -60 -57

8 South America high -20 290 32 35
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TABLE 5.57.--Comparison Between Station Heights Derived by Dynamic Satellite Geodesy

and Gravimetric Geoid (meters)

Geoid
Station height a Geoid height Geoid height

Station name no. (GEM 4) _ (Goddard '73) _ (gravimetric) 1-3 2-3

United States

St. Johns .......... 1032 12 13 - 1

Blossom Point ..... 1021 -43 -34 -9
Ft. Myers ......... 1022 -28 -29 -31 3 2
Goldstone ......... 1030 - 34 - 30 - 35 1 5
E. Grand Forks ___ 1034 -25 -27 -28 3 1
Rosman ........... 1042 -30 -34 -32 2 -2

Edinburg ......... 7036 - 24 - 27 - 25 1 - 2
Columbia .......... 7037 - 32 - 35 - 34 2 - 1
Greenbelt ......... 7050 - 40 - 34 - 6
Denver ............ 7045 - 19 - 18 - 18 - 1 0

Organ Pass ....... 9001 -22 -23 1
Mt. Hopkins ....... 9021 -30 -29 -1
Jupiter ............ 7072 -32 -32 -36 4 4
Cold Lake ......... 9424 -27 -29 2

Sudbury 7075 - 34 - 32 - 37 - 2 5

Caribbean
Bermuda .......... 7039 - 36 - 35 - 39 3 4
San Juan .......... 7040 - 45 - 46 - 50 5 4

Europe
Malvern ........... 8011 45 47 - 2
Winkfield ......... 1035 49 47 48 1 - 1
.... oaaa a._ 43 2
Zimmerwald ...... 8010 52 50 2
Haute Provence___ 8015 45 52 -7
Nice ............... 8019 52 51 1
San Fernando ..... 9004 43 43 50 -7 -7
Naini Tal ......... 9006 -51 -60 9

Dionysos .......... 9091 28 35 40 - 12 -5
Oslo ............... 9115 35 36 -5
U zhgorod ......... 9432 40 40 0
Helsinki ........... 9435 15 13 2

Riga .............. 9431 16 16 0

Australia
Woomera .......... 1024 12 6 0 12 6
Orroral ............ 1038 25 23 20 5 3
Carnarvon ........ 7054 -25 -20 -17 -8 -3

"Geoid height equals height of
above mean sea level

Lerch et al. (1972)
" (Sec. 5.6.2.)

rms=-+5.5m -+4.1m
tracking station above reference ellipsoid minus height of tracking station



470 NATIONAL GEODETIC SATELLITE PROGRAM

TABLE 5.58.--Comparison Between the Geoid of Mather et al. (Mather

1970), and the Detailed Global Geoid for Australia

Longitude Mather's geoid Detailed geoid Difference

Latitude (-24°S)

114 -16 -15 -1

116 -11 -9 -2

118 -8 -6 -2

120 -4 -2 -2

122 -2 -1 -1

124 -1 -1 0

126 -0 1 -1

128 3 4 -1

130 4 6 -2

132 7 8 -1

134 12 14 -2

136 20 20 0

138 26 26 0

Latitude (-26°S)

114 -18 -17 -1

116 -14 -13 -1

118 -11 -10 -1

120 -9 -8 -1

122 -8 -8 0

124 -6 -7 1

126 -5 -5 0

128 0 -1 1

130 0 0 0

132 -1 0 -1

134 6 6 0

136 12 12 0

138 18 17 1

140 22 21 1

Absolute mean = -+0.87
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TABLE 5.59.--Normalized Coefficients in GEM 5 (× 10 _)

471

Index

nm Value

Zonals

Index Index Index

n m Value n m Value n m Value

Index

n m Value

2 0 -484.1662 3 0

7 0 0.0956 8 0

12 0 0.0338 13 0

17 O 0.0215 18 0

22 0 -0.0121

Index

n Ill

Value

0.9605 4 0 0.5363 5 0 0.0659 6 0 -0.1457

0.0430 9 0 0.0272 10 0 0.0587 11 0 -0.0547

0.0498 14 0 -0.0260 15 0 -0.0081 16 0 -0.0046

0.0052 19 0 0.0031 20 0 0.0152 21 0 -0.0101

Sectorials and tesserals

Index Value

n m _" _

Index

n m

Value

2 1 -0.0012 -0.0087 2 2 2.4282 -1.3802 3 1 2.0055 0.2449

3 2 0.9296 -0.6126 3 3 0.7285 1.4052 4 1 -0.5396 -0.4525

4 2 0.3495 0.6719 4 3 0.9794 -0.2201 4 4 -0.1691 0.3026

5 1 -0.0579 -0.0893 5 2 0.6533 -0.3110 5 3 -0.4403 -0.2440

5 4 -0.2996 0.0261 5 5 0.1373 -0.6577 6 1 -0.0756 -0.0145

6 2 0.0595 -0.3560 6 3 0.0284 -0.0095 6 4 -0.1018 -0.4537

6 5 -0.2858 -0.5174 6 6 0.0307 -0.2265 7 1 0.2535 0.1244

7 2 0.3409 0.1049 7 3 0.2740 -0.2104 7 4 -0.3044 -0.1071

7 5 0.0028 0.0708 7 6 -0.3299 0.1584 7 7 0.0275 0.0661

8 1 0.0099 0.0836 8 2 0.0469 0.0719 8 3 -0.0289 -0.0721

8 4 -0.2410 0.0562 8 5 -0.0814 0.0773 8 6 -0.0545 0.3172

8 7 0.0685 0.0604 8 8 -0.0976 0.0826 9 1 0.1598 0.0063

9 2 0.0170 0.0023 9 3 -0.1269 -0.1234 9 4 0.0056 0.0347

9 5 -0.025_ 0.0839 9 6 0.0_30 0.2220 9 7 -0.07!1 -0.0387

9 8 0.1595 -0.0350 9 9 -0.0389 0.0884 10 1 0.0883 -0.1740

10 2 -0.0434 -0.0300 10 3 -0.0503 -0.1219 10 4 -0.0740 -0.1015

10 5 -0.1163 -0.0480 10 6 -0.0056 -0.0795 10 7 -0.0135 -0.0247

10 8 0.0304 -0.1288 10 9 0.1117 -0.0542 10 10 0.0696 -0.0405

11 1 -0.0203 0.0215 11 2 0.0326 -0.0883 11 3 0.0052 -0.1343

11 4 0.0390 -0.0657 11 5 0.0181 0.0310 11 6 0.0003 0.0478

11 7 0.0125 -0.1086 11 8 -0.0246 0.0534 11 9 0.0195 0.0630

11 10 -0.0972 0.0036 11 11 0.0632 -0.0245 12 1 -0.0831 -0.0302

12 2 -0.0280 0.0225 12 3 0.0842 0.0576 12 4 0.0033 -0.0201

12 5 0,0100 0.0146 12 6 0.0681 0_0404 12 7 -0.0149 0.0160

12 8 -0.0230 -0.0160 12 9 0.0289 0.0426 12 10 -0.0071 0.0359

12 11 0.0036 0.0389 12 12 -0.0125 -0.0090 13 9 0.0952 0.0851

13 12 -0.0282 0.1002 13 13 -0.0598 0.0689 14 1 -0.0150 0.0053

14 9 0.0378 0.0644 14 11 0.0002 -0.0001 14 12 0.0070 -0.0366

14 13 0.0145 0.0264 14 14 -0.0455 -0.0045 15 9 0.0643 0.0588

15 12 -0.0348 0.0154 15 13 -0.0226 -0.0022 15 14 0.0037 -0.0191

16 12 0.0269 -0.0088 16 13 0.0009 -0.0132 16 14 -0.0217 -0.0406

17 12 0.0167 -0.0009 17 13 0.0104 0.0188 17 14 -0.0133 -0.0022

18 12 -0.0599 -0.0212 18 13 -0.0225 -0.0619 18 14 -0.0109 -0.0033

19 12 -0.0290 -0.0289 19 13 -0.0244 -0.0300 19 14 0.0002 0.0007

20 12 0.0073 -0.0000 20 13 -0.0020 -0.0317 20 14 0.0078 -0.0087

21 12 -0.0217 -0.0226 21 13 -0.0270 0.0108 21 14 0.0096 0.0073

22 12 -0.0399 -60053 22 13 -0.0412 -0.0159 22 14 -0.0080 0.0024
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TABLE 5.60.--Normalized Coefficients in GEM 6 (x l0 s)

Index

nm Value

Zonals

Index Index Index

n m Value n m Value n m Value

Index

Value

2 0 -484.1661 3 0 0.9607 4 0 0.5362 5 0 0.0661 6 0 -0.1451

7 0 0.0961 8 0 0.0426 9 0 0.0264 10 0 0.0606 11 0 -0.0528

12 0 0.0306 13 0 0.0470 14 0 -0.0206 15 0 -0.0045 16 0 -0.0077

17 0 0.0192 18 0 0.0091 19 0 0.0044 20 0 0.0143 21 0 -0.0098
22 0 -0 0138

Index

nm

Value

Sectorials and tesserals

Index Value Index

n m _ _ n m

Value

2 1 -0.0009 -0.0032 2 2 2.4251 -1.3883 3 1 2.0021 0.2482

3 2 0.9332 -0.6311 3 3 0.6969 1.4260 4 1 -0.5403 -0.4648

4 2 0.3461 0.6695 4 3 0.9655 -0.2073 4 4 -0.1636 0.3051

5 1 -0.0684 -0.0842 5 2 0.6651 -0.3112 5 3 -0.4656 -0.1947

5 4 -0.2485 0.0360 5 5 0.1845 -0.7119 6 1 -0.0734 0.0150

6 2 0.0643 -0.3740 6 3 0.0115 0.0099 6 4 -0.0867 -0.4655

6 5 -0.2747 -0.5464 6 6 0.0173 -0.2627 7 1 0.2501 0.1385

7 2 0.3463 0.0875 7 3 0.1988 -0.1844 7 4 -0.2807 -0.1408

7 5 0.0265 0.0228 7 6 -0.3074 0.1213 7 7 0.0624 0.0048

8 1 0.0102 0.0579 8 2 0.0610 0.0860 8 3 -0.0378 -0.0667

8 4 -0.2311 0.0284 8 5 -0.0570 0.0622 8 6 -0.0947 0.2528

8 7 0.0658 0.0819 8 8 -0.0832 0.0701 9 1 0.1426 0.0137

9 2 0.0552 -0.0216 9 3 -0.1299 -0.0727 9 4 -0.0125 -0.0147

9 5 -0.0036 -0.0686 9 6 0.0163 0.1267 9 7 -0.0566 -0.0037

9 8 0.2519 -0.0101 9 9 -0.0275 0.0873 10 1 0.0927 -0.1343

10 2 -0.0419 -0.0703 10 3 -0.0383 -0.0998 10 4 -0.0699 -0.1247

10 5 -0.0525 -0.0377 10 6 -0.0550 -0.1342 10 7 0.0174 -0.0237

10 8 0.0473 -0.1213 10 9 0.0960 -0.0749 10 10 0.1365 -0.0391

11 1 -0.0087 0.0431 11 2 -0.0123 -0.1176 11 3 -0.0334 -0.0841

11 4 -0.0263 -0.1033 11 5 0.0842 0.0406 11 6 -0.0421 -0.0353



NASA/GODDARD SPACE FLIGHT CENTER 473

TABLE 5.60.--(Cont'd)

Index

nm

Value

Sectorials and tesserals

Index Value

n m _

Index

n m

Value

11 7 0.0041 -0.1123 11 8 -0.0204 0.0714 11 9 -0.0349 0.0393

11 10 -0.0464 -0.0333 11 11 0.0696 -0.0356 12 1 -0.0717 -0.0477
12 2 -0.0530 0.0621 12 3 0.0694 0.0371 12 4 -0.0488 -0.0158
12 5 0.0624 0.0230 12 6 0.0531 0.0280 12 7 -0.0261 0.0127
12 8 -0.0187 -0.0031 12 9 -0.0002 0.0251 12 10 0.0231 -0.0012

12 11 0.0066 0.0359 12 12 -0.0123 -0.0103 13 1 -0.0157 -0.0216
13 2 -0.0454 -0.0867 13 3 -0.0460 0.0454 13 4 0.0298 -0.0670
13 5 0.0586 0.0469 13, 6 -0.0848 0.0577 13 7 -0.0414 0.0482
13 8 -0.0055 -0.0347 13 9 0.0271 0.0588 13 10 -0.0240 -0.0044
13 11 -0.0576 -0.0830 13 12 -0.0261 0.0991 13 13 -0.0543 0.0722

14 1 -0.0038 0.0480 14 2 -0.0150 0.0429 14 3 0.0653 0.0032
14 4 0.0019 0.0010 14 5 -0.0144 -0.0216 14 6 0.0166 -0.0442
14 7 0.0426 0.0030 14 8 -0.0007 -0.0414 14 9 0.0140 0.0552
14 10 -0.0380 -0.0797 14 11 0.0614 -0.0313 14 12 0.0047 -0.0413

14 13 0.0211 0.0281 14 14 -0.0448 -0.0016 15 1 0.0333 -0.0224

15 2 0.0370 -0.0641 15 3 -0.0457 0.0279 15 4 -0.0070 0.0163
15 5 0.0136 0.0358 15 6 -0.0130 -0.1076 15 7 0.0751 0.0668
15 8 -0.0261 -0.0242 15 9 0.0116 0.0385 15 10 0.0351 -0.0480
15 11 -0.0090 -0.0106 15 12 -0.0338 0.0145 15 13 -0.0191 -0.0000
15 14 0.0036 -0.0189 15 15 -0.0444 0.0356 16 1 0.0321 -0.0091

16 2 -0.0200 0.0639 16 3 -0.0083 -0.0205 16 4 0.0252 0.0306
i6 5 v.v_.v"_toa N......N172 16 6 0.0321 0.0136 16 7 --0.0003 --0.0286

16 8 -0.0456 -0.0046 16 9 -0.0652 -0.0676 i6 16 0.9118 N0386
16 11 0.0189 -0.0078 16 12 0.0197 -0.0195 16 13 0.0034 -0.0139
16 14 -0.0172 -0.0430 16 15 -0.0475 -0.0378 16 16 -0.0376 -0.0119

17 12 0.0137 -0.0012 17 13 0.0145 0.0204 17 14 -0.0111 -0.0013
18 12 -0.0636 -0.0269 18 13 -0.0137 -0.0580 18 14 -0.0127 -0.0006
19 12 -0.0309 -0.0300 19 13 -0.0205 -0.0291 19 14 -0.0006 0.0011
20 12 -0.0056 -0.0154 20 13 0.0114 -0.0282 20 14 0.0055 -0.0098
21 12 -0.0324 -0.0175 21 13 -0.0241 0.0108 21 14 0.0094 0.0078

22 12 -0.0435 -0.0065 22 13 -0.0324 -0.0151 22 14 -0.0077 -0.0007
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TABLE 5.61.--Comparison of Zonal Coefficients (Normalized Coefficients x 106)

Cazenave et al. Standard
Degree 1971 GEM 1 GEM 2 GEM 3 GEM 4 GEM 5 GEM 6 Earth II

2 -484.170 -484.177 -484.167 -484.171 -484.169 -484.166 -484.166 -484.166

3 0.961 0.962 0.955 0.958 0.957 0.961 0.961 0.959

4 0.540 0.557 0.537 0.547 0.541 0.536 0.536 0.531

5 0.068 0.062 0.073 0.068 0.069 0.066 0.066 0.069
6 -0.155 -0.178 -0.145 -0.162 -0.153 -0.146 -0.145 -0.139

7 0.094 0.105 0.087 0.092 0.091 0.096 0.096 0.094
8 0.051 0.080 0.040 0.062 0.051 0.043 0.043 0.029

9 0.027 0.008 0.033 0.030 0.031 0.027 0.026 0.023

10 0.051 0.021 0.065 0.040 0.050 0.059 0.061 0.077

11 -0.049 -0.020 -0.055 -0.056 -0.056 -0.055 -0.053 -0.042

12 0.038 0.059 0.021 0.046 0.039 0.034 0.031 0.008
13 0.039 0.002 0.043 0.049 0.048 0.050 0.047 0.024

14 -0.016 -0.037 -0.009 -0.030 -0.027 -0.026 -0.021 0.014

15 0.015 0.047 0.004 -0.007 -0.005 -0.008 -0.005 0.031
16 -0.008 -0.013 -0.026 -0.012 -0.009 -0.005 -0.008 -0.033

17 0.005 -0.035 0.007 0.020 0.017 0.022 0.019 0.014

18 0.023 0.018 0.023 0.016 0.011 0.005 0.009 0.038

19 0.018 0.045 0.015 0.008 0.009 0.003 0.004 0.035

20 0.014 -0.002 -0.001 0.003 0.009 0.015 0.014 0.001

21 -0.016 -0.031 -0.012 -0.008 -0.008 -0.010 -0.010 -0.022
22 -0.001 -0.004 -0.012 -0.014

TABLE 5.62.--Comparisons of Terrestrial 5-Degree Anomalies (Gr)

With Anomalies (Gs) Computed from Various Models a

E[(Gr - Gs) 2] mGal 2

1283 blocks 1044 blocks 563 blocks 211 blocks
Model (harmonics) n/> 1 n >I 5 n _> 15 n/> 25

GEM 1 (12 × 12) 170 177 183 182

SE-II (16 × 16) 174 182 180 179

GEM 3 (12 × 12) 164 169 172 175
GEM 5 (12 x 12) 161 168 174 176

GEM4 (16 x 16) 161 151 142 131

GEM6 (16 x 16) 143 142 139 125

EXP (20 x 20) 131 125 105 86

" Satellite-derived solutions--GEM 1, 3, 5; combination solutions (satellite/gravimetry)--
SE-II, GEM 4, 6, EXP; all solutions contained higher-degree zonal and selected reso-
nance terms extending to degree 21 or 22.
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TABLE 5.63.--Statistical-Error Estimates for Gravity Models Derived

From 5-Degree Terrestrial Anomalies G T and Anomalies Gs Obtained

from Potential Coefficients (reGal 2)

n t> (blocks) E(Gr - Gs) z E(GTGs) E(Gs 2) E(Gr 2) E(_s 2) E(ev 2) E(Sg 2)

GEM5 (12 x 12)

10 (771) 165 190 228 318 37 19 109

15 (563) 174 193 228 330 36 16 122

20 (401) 171 182 214 322 32 14 125

GEM6 (16 x 16)

10 (771) 136 214 246 318 32 19 85
15 (563) 139 218 244 330 26 16 97

20 (401) 134 210 232 322 22 14 98

EXP (20 x 20)
10 (771) 109 236 264 318 28 19 62

15 (563) 105 240 256 330 15 16 74

20 (401) 95 235 242 322 8 14 73

TABLE 5.64.--Gravity Anomaly Degree

Variances (mGal 2)

Degree n GEM 5 GEM 6 EXP

0 - 9.0 9.0
2 7.3 7.3 7.3
3 33.5 33.6 33.5
4 19.5 19.3 19.3
5 20.4 21.6 21.1
6 18.6 20.0 19.7
7 20.1 17.4 17.1
8 10.5 8.4 8.4
9 10.0 8.8 8.5

10 10.8 11.4 10.7
11 7.1 7.7 7.5
12 4.0 4.1 4.2
13 5.2 10.6 9.3
14 1.7 5.9 6.2
15 1.9 8.5 6.7
16 0.7 6.8 7.5
17 0.3 0.3 5.5
18 2.4 2.4 7.7
19 1.0 1.0 12.5
20 0.5 0.5 10.9
21 0.8 0.9 0.8
22 1.6 1.5 1.5
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TABLE 5.65.--RMS (cm/sec.) Value of Residuals of Two-Way Doppler

from USB Tracking on Daily Arcs of ERTS1 a

Daily arc No. of obs.
(1972) (passes) GEM 1 GEM 3 GEM 4 GEM 5 GEM 6 SE-II b

7/23 2610 (27) 4.9 6.2 10.3 5.6 6.4 9.1

7/28 1924 (19) 4.9 5.5 4.7 5.5 4.0 9.4

7/29 1183 (18) 5.3 5.3 4.8 5.5 4.3 11.2

7/30 1167 (17) 5.4 6.2 5.6 6.1 3.7 8.7

7/31 989 (15) 5.9 5.7 5.4 5.7 6.2 9.8

8/1 1280 (19) 6.8 5.9 6.0 6.0 6.1 10.4

8/2 1239 (20) 6.4 5.3 6.1 5.2 4.9 11.7

8/4 1176 (18) 7.4 6.0 6.3 6.4 5.5 13.0

8/8 1026 (17) 6.1 6.0 9.1 6.4 6.3 9.1

8/9 1309 (20) 6.2 7.0 10.5 6.8 6.3 10.4

8/10 1686 (20) 5.8 6.1 9.9 6.1 6.9 10.1

Average rms 5.9 5.9 7.2 5.9 5.5 10.3

a Orbital elements: a = 7 283 207 m, e = 0.0001, i = 99.12°; 11 USB Stations: ACN3, BDA3,

CRO3, CYI3, GDS8, GDSA, GWM3, HAW3, HSK8, MAD8, and MIL3; average of 7 stations

participated per arc.
b Standard Earth (II) Gaposchkin and Lambeck (1970).

TABLE 5.66.--Weighted RMS of Residuals in Camera Observations for a

Week-Long Arc on Each of 23 Satellites (_ = 2")

Satellite GEM 1 GEM 2 GEM 3 GEM 4 GEM 5 GEM 6 SE-II"

TELSTAR ....... 0.9 0.9 0.9 0.9 0.9 1.0 2.5

GEOS-1 ......... 0.8 1.0 0.8 0.8 0.8 0.8 1.0

SECOR .......... 1.3 1.2 1.3 1.2 1.3 1.2 1.3

OVI-2 ........... 2.0 2.3 2.0 2.3 2.0 2.2 2.1

ECHO ........... 1.1 1.1 1.1 1.3 1.1 1.1 1.3

DI-D ............ 1.5 1.7 1.5 1.7 1.4 1.7 2.5

BE-C ............ 0.9 1.0 0.9 1.0 0.9 1.0 1.1

DI-C ............. 1.1 1.5 1.2 1.8 1.0 1.3 1.9

ANNA-1B ....... 1.1 1.3 1.3 1.5 1.1 1.3 1.3

GEOS-2 ......... 0.9 0.9 0.8 0.9 0.9 0.9 1.2

OSCAR .......... 1.0 1.2 1.4 1.6 1.0 1.1 1.2

5BN-2 ........... 2.5 1.6 4.1 3.3 1.4 1.8 2.7

COURIER ....... 1.2 1.4 1.3 1.3 1.2 1.2 1.1

GRS ............. 1.9 2.3 2.0 2.6 1.8 2.0 4.3

TRANSIT ........ 1.0 1.0 1.0 1.1 1.0 1.1 1.1

BE-B ............ 1.2 1.3 1.4 1.6 1.3 1.6 1.4

OGO-2 ........... 1.6 2.9 1.3 2.9 1.4 2.6 2.9

INJUN .......... 1.1 1.3 1.1 1.6 1.0 1.3 1.5

AGENA .......... 1.7 1.6 1.6 1.8 1.6 1.5 2.4

MIDAS .......... 0.8 0.8 0.8 0.8 0.8 0.8 0.8

VANG-2R ....... 0.8 0.8 0.8 0.8 0.8 0.9 0.8

VANG-2S ........ 1.5 1.7 1.4 1.6 1.4 1.7 1.5

VANG-3S ........ 1.3 1.3 1.2 1.3 1.2 1.4 1.7

Averagerms

(unweighted) 2_54 2_79 2_71 3_10 2_37 2_74 3_44

" Gaposchkin and Lambeck (1970)
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TABLE 5.67.--RMS Value (m) of Residuals of Laser-System Measure.

ments from Short Arcs of BE-C

477

Date Time No.
YYMMDD HHMMSS pts. GEM1 GEM3 GEM4 GEM5 GEM6 SE-II a PGS2

700706 205829 493 1.2 3.4 3.9 2.0 1.4 1.4 0.9

700818 040000 1712 2.1 1.4 1.3 1.8 2.1 1.4 1.2

700822 040435 1777 1.7 2.3 5.2 2.2 1.2 3.7 0.8

700824 024423 1338 1.5 1.2 1.8 1.2 1.8 0.9 1.1

700825 035555 1197 1.2 2.4 5.5 1.3 3.0 1.4 1.3

700826 031510 1072 0.9 2.3 6.0 1.3 2.2 2.5 0.9

700827 023425 1498 1.3 2.7 5.3 2.0 1.3 3.1 0.8
700828 015324 1269 1.3 1.5 3.3 1.6 1.0 2.7 0.7

700829 011340 1579 1.3 0.9 0.8 1.1 1.2 1.1 1.0

700831 014527 1008 0.7 2.0 5.1 1.0 2.5 1.6 1.0

700901 010340 2001 1.2 3.3 7.5 2.0 2.4 3.6 1.0

700902 002214 1875 1.4 2.4 5.3 2.0 1.1 3.5 0.8

700902 230000 1567 1.2 1.1 2.1 1.4 0.7 1.9 0.8

700907 221312 1349 1.5 2.0 4.0 1.4 1.1 3.6 1.0

700911 193306 775 1.1 2.8 5.4 1.7 1.9 2.7 0.9

700929 140000 615 1.0 1.1 1.9 1.0 1.0 2.5 1.1

701001 130000 690 1.9 0.8 1.7 1.4 1.7 1.7 1.7

701003 135548 818 0.9 2.0 7.3 1.0 2.6 3.0 2.2
701017 080000 568 2.2 1.9 3.2 2.2 1.3 4.0 1.1

701116 222815 506 1.1 2.9 5.1 1.7 2.3 2.1 1.2

701117 214802 723 1.1 1.9 5.0 1.3 1.6 3.4 1.0

701124 185600 1285 1.5 1.6 2.5 1.6 0.9 3.4 0.9

Average rms 1.33 2.00 4.05 1.54 1.65 2.51 1.06

a Gaposchkin and Lambeck (196_)

TABLE 5.68.--Comparison of Models for

Long-Term Orbital Perturbations Due to

Zonal Coefficients

Solution RMS

Standard Earth II 5.49
GEM 2 4.80
GEM 1 3.62
Cazenave et al. 3.28

GEM 3 2.92
GEM 4 2.89
GEM 5 3.13
GEM 6 2.97

Wagner 1.50
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Table 5.69.
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TABLE 5.69.--Summary of Comparisons of Various Models: RMS

of Residuals

Model

Camera data on USB Doppler" Laser data" Long-term zonal 5 ° average
week-long arcs data on 11 day- on 22 BE-C perturbations on gravity ano-
for 23 satellites long ERTS-1 arcs short arcs 21 satellites malies

(arc sec) (cm/sec) (meters) (relative measure) (mGal) Rank

GEM 1 ........... 2'.'54 5.9 1.33 3.62 13.3

GEM 3 ........... 2!'71 5.9 2.00 2.92 13.0

GEM 4 ........... 3'.'10 7.2 4.05 2.89 12.1

GEM 5 ........... 2'.'37 5.9 1.54 3.13 13.0

GEM 6 ........... 2'.'74 5.5 1.65 2.97 11.7

S.E. II ........... 3!'44 10.3 2.51 5.49 13.3

_' Data in these two categories were independent of the solutions for all models.

TABLE 5.70.--Principal Long-Period Terms in Zonal Harmonic and

Luni-Solar Perturbations in Eccentricity of Telstar 2

Source Amplitude Argument Period (days)

cyc_ .......................

c_/c_ .......................

c_ ..........................

c_/c_ .......................

c_/c_ .......................

Lunar gravitation ...........

Lunar gravitation .........

Lunar gravitation ..........

Lunar gravitation ..........

Lunar gravitation ..........

Lunar gravitation ..........

Solar gravitation ...........

Solar gravitation ...........

Solar gravitation ...........

Solar gravitation ...........

Solar gravitation ...........

Solar gravitation ...........

Solar gravitation ...........

Solar gravitation ...........

Solar radiation pressure ___

Solar radiation pressure ___

373 x 10 -6 oJ 296

-60 2_ 148

17 2_ 148

5 oJ 296

- 1 3o_ 99

-220 2(11 -(o-11) 1121

192 il¢-2o)-tl 261

-95 2_ 148

33 2(h_-oJ-ll) 14

11 2h¢-ll t - 2(o- II 14

-11 _.+2o_-_ 103

245 2(hC¢o-_) 219

221 2_G- llo- 2oJ- il 607

- 106 2(11o-_-11) 1111

90 l]_-2w-l_ 261
-42 2oJ 148

-35 2(h.o- _ a-- oD 781

8 ko-- _o- 2_- gl 917

-6 11o+2_-11 103

42 oJ+ll-_, o 437

-24 ¢o--AkG 1562
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TABLE 5.71.--Corrections in Milligals for the Interconversion of the International (1967)

and Equilibrium Reference Ellipsoids

Latitude Latitude

(deg) 4(1) b(2) c(3) (deg) a(1) b(2) c(3)

90.00 9.10 -9.00 -18.11 45.00 2.31 -2.28 -4.59

89.00 9.10 -9.00 -18.10 44.00 2.07 -2.04 -4.11

88.00 9.09 -8.99 -18.07 43.00 1.83 -1.81 -3.64

87.00 9.07 -8.97 -18.03 42.00 1.59 -1.57 -3.16

86.00 9.04 -8.94 -17.97 41.00 1.35 -1.33 -2.69

85.00 9.00 -8.90 -17.90 40.00 1.12 -1.10 -2.22

84.00 8.95 -8.86 -17.81 39.00 0.88 -0.87 -1.75

83.00 8.90 -8.80 -17.71 38.00 0.65 -0.64 -1.29

82.00" 8.84 -8.74 -17.59 37.00 0.42 -0.41 -0.82

81.00 8.77 -8.68 -17.45 36.00 0.09 -0.18 -0.37

80.00 8.70 -8.60 -17.30 35.00 -0.04 0.04 0.08

79.00 8.61 -8.52 -17.13 34.00 -0.27 0.26 0.53
78.00 8.52 -8.43 -16.94 33.00 -0.49 0.48 0.97

77.00 8.42 -8.33 -16.75 32.00 -0.70 0.70 1.40

76.00 8.31 -8.22 -16.53 31.00 -0.92 0.91 1.83

75.00 8.20 -8.11 -16.31 30.00 -1.13 1.12 2.25

74.00 8.08 - 7.99 - 16.06 29.00 - 1.34 1.32 2.66

73.00 7.95 -7.86 -15.81 28.00 -1.54 1.52 3.06

72.00 7.81 -7.73 -15.54 27.00 -1.74 1.72 3.45

71.00 7.67 -7.58 -15.26 26.00 -1.93 1.91 3.84

70.00 7.52 -7.44 -14.96 25.00 -2.12 2.09 4.21
69.00 7.37 -7.28 -14.65 24.00 -2.30 2.27 4.57

68.00 7.21 -7.12 -14.33 23.00 -2.48 2.45 4.92

67.00 7.04 -6.96 -14.00 22.00 -2.65 2.62 5.26

66.00 6.87 - u._"",_ _v..vl_ _ ___1nO -2.81 2.78 5.59
65.00 6.69 -6.61 -13.30 20.00 -2.97 2.94 5.90
64.00 6.50 -6.43 -12.93 19.00 -3.12 3.09 6.21
63.00 6.31 -6.24 -12.56 18.00 -3.27 3.23 6.50
62.00 6.12 -6.05 -12.17 17.00 -3.41 3.37 6.77
61.00 5.92 -5.85 -11.77 16.00 -3.54 3.50 7.03

60.00 5.72 -5.65 -11.37 15.00 -3.66 • 3.62 7.28
59.00 5.51 -5.45 -10.96 14.00 -3.78 3.74 7.52
58.00 5.30 -5.24 -10.54 13.00 -3.89 3.84 7.73
57.00 5.08 -5.02 -10.11 12.00 -3.99 3.95 7.94
56.00 4.87 -4.81 -9.67 11.00 -4.09 4.04 8.13
55.00 4.64 -4.59 -9.23 10.00 -4.18 4.12 8.30
54.00 4.42 - 4.37 - 8.79 9.00 - 4.25 4.20 8.46
53.00 4.19 -4.14 -8.33 8.00 -4.32 4.27 8.60
52.00 3.96 -3.91 -7.87 7.00 -4.39 4.33 8.72
51.00 3.73 - 3.68 - 7.41 6.00 - 4.44 4.39 8.83
50.00 3.50 - 3.45 - 6.95 5.00 - 4.49 4.43 8.92
49.00 3.26 - 3.22 - 6.48 4.00 - 4.53 4.47 9.00
48.00 3.02 - 2.99 - 6.01 3.00 - 4.56 4.50 9.06
47.00 2.79 -2.75 -5.54 2.00 -4.58 4.52 9.10
46.00 2.55 -2.51 -5.06 1.00 -4.59 4.53 9.12

0.0 -4.59 4.54 9.13

"ColUmn (1): For change from the "Reference Ellipsoid 1967" to the International Reference Ellipsoid, add the
correction to the gravity anomaly. For reverse operation subtract the correction.

Column (2): For change from the "Reference Ellipsoid, 1967" to the Equilibrium Reference Ellipsoid, add the
correction to the gravity anomaly. For reverse operation subtract the correction.

Column (3): For change from the International Reference Ellipsoid to the Equilibrium Reference Ellipsoid,
add the correction to the gravity anomaly. For reverse operation subtract the correction.
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TABLE5.72.--SphericalHarmonic Coefficients of Isostatic Gravity

Anomaly Potential

n m Cm Sm n m Cnm S,,m

2 0 -0.104 19D-06 0.0 10 0 0.707 41D-07 0.0

2 1 -0.938 39D-07 -0.979 87D-07 10 1 0.552 00D-07 -0.125 77D-06
2 2 0.254 15D-05 -0.137 54D-05 10 2 0.103 49D-07 -0.457 72D-07
3 0 0.100 25D-05 0.0 10 3 -0.172 02D-07 -0.74145D-07
3 1 0.206 21D-05 0.213 93D-06 10 4 -0.574 94D-07 -0.132 10D-06
3 2 0.106 04D-05 -0.769 73D-06 10 5 -0.948 51D-07 -0.146 63D-07
3 3 0.673 45D-06 0.126 50D-05 10 6 -0.434 84D-07 -0.101 14D-06
4 0 -0.326 10D-06 0.0 10 7 0.599 03D-08 -0.452 llD-07
4 1 -0.462 275D-06 -0.385 97-06 10 8 0.241 86D-07 -0.967 29D-07
4 2 0.480 97D-06 0.646 57D-06 10 9 0.562 34D-07 -0.711 98D-07
4 3 0.859 25D-06 -0.173 02D-06 10 10 0.504 08D-07 -0.259 34D-08
4 4 -0.167 64D-06 0.173 28D-06 11 0 -0.357 55D-07 0.0
5 0 0.234 08D-06 0.0 11 1 -0.665 8D-07 0.544 14D-07
5 1 -0.578 46D-06 -0.484 76D-07 11 2 0.294 86D-07 -0.112 19D-06
5 2 0.674 31D-06 -0.263 82D-06 11 3 -0.175 24D-07 -0.756 64D-07
5 3 -0.518 21D-06 -0.251 86D-06 11 4 -0.102 39D-07 -0.707 64D-07
5 4 -0.477 73D-06 0.605 95D-07 11 5 0.522 32D-07 0.276 68D-07
5 5 0.193 84D-06 -0.764 30D-06 11 6 -0.257 48D-07 0.431 25D-07
6 0 -0.219 37D-06 0.0 11 7 0.307 48D-07 -0.814 47D-07
6 1 -0.859 78D-07 0.590 80D-07 11 8 -0.226 51D-07 0.420 19D-07
6 2 0.534 99D-07 -0.346 70D-06 11 9 -0.353 7D-07 0.546 00D-07
6 3 -0.665 26D-08 -0.703 91D-07 11 10 -0.959 05D-07 -0.247 79D-07
6 4 -0.168 78D-06 -0.403 87D-06 11 11 0.104 36D-06 -0.136 15D-07
6 5 -0.262 17D-06 -0.451 98D-06 12 0 0.503 54D-07 0.0
6 6 0.24164D-07 -0.242 57D-06 12 1 -0.651 70D-07 -0.305 45D-07
7 0 0.156 83D-06 0.0 12 2 -0.383 68D-07 0.457 47D-07

7 1 0.238 85D-06 0.790 46D-07 12 3 0.138 97D-06 0.668 75D-07
7 2 0.264 61D-06 0.687 69D-07 12 4 -0.298 94-07 -0.180 41D-07
7 3 0.277 06D-06 -0.236 00D-06 12 5 0.412 41D-07 0.105 97D-07
7 4 -0.224 21D-06 -0.121 01D-06 12 6 0.362 89D-07 -0.181 57D-07
7 5 0.497 42D-08 0.253 43D-07 12 7 -0.290 33D-07 0.148 96D-07
7 6 -0.302 50D-06 0.199 31D-06 12 8 -0.128 43D-07 -0.452 07D-08
7 7 0.894 48D-07 0.473 06D-07 12 9 -0.141 68D-07 0.122 09D-07
8 0 0.494 33D-07 0.0 12 10 -0.216 66D-08 0.362 34D-07
8 1 0.369 098D-07 0.689 24D-07 12 11 -0.725 84D-09 0.104 58D-08
8 2 0.157 10D-08 0.732 52D-07 12 12 0.264 17D-07 0.280 66D-07
8 3 -0.429 30D-07 -0.103 42D-06 13 0 0.131 67D-07 0.0
8 4 -0.241 55D-07 0.269 61D-07 13 1 0.278 07D-07 -0.740 15D-08
8 5 -0.641 17D-07 0.773 02D-07 13 2 0.225 46D-07 -0.118 89D-06
8 6 -0.751 22D-07 0.253 43D-06 13 3 -0.504 19D-08 0.159 36D-07
8 7 -0.181 60D-07 0.553 16D-07 13 4 -0.516 59D-07 -0.692 80D-07

8 8 -0.252 92D-07 0.159 58D-06 13 5 0.407 51D-07 0.419 15D-07

9 0 0.831 07D-07 0.0 13 6 -0.118 90D-06 0.414 81D-07

9 1 0.134 29D-06 -0.177 67D-07 13 7 -0.480 19D-07 0.165 60D-06

9 2 0.546 12D-07 -0.318 12D-07 13 8 0.521 32D-07 -0.188 02D-07
9 3 -0.168 50D-06 -0.111 60D-06 13 9 0.116 70D-07 0.853 60D-07
9 4 0.267 24D-07 -0.750 35D-08 13 10 -0.178 52D-07 0.482 16D-07
9 5 -0.475 21D-07 -0.804 59D-07 13 11 -0.265 11D-07 0.363 07-08
9 6 0.72195D-07 0.157 59D-06 13 12 -0.166 08D-07 0.786 61D-07
9 7 -0.709 52D-07 0.179 04D-07 13 13 -0.220 05D-08 0.910 34D-07
9 8 0.172 33D-06 -0.238 5D-07 14 0 0.988 51D-08 0.0
9 9 -0.155 08D-07 0.107 08D-06 14 1 -0.508 00D-07 0.164 22D-07
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TABLE 5.72.--(Cont'd)

n m C,,m S,,,n n m Cn,,, Sn,,

14 2 -0.232 06D-07 0.135 47D-06 16 6 -0.250 89D-07 -0.145 09D-07

14 3 0.346 57D-07 -0.106 48D-07 16 7 0.321 21D-07 -0.356 68D-07

14 4 0.204 12D-07 0.262 44D-07 16 8 -0.120 20D-07 -0.283 37D-07

14 5 0.526 09D-07 -0.271 00D-07 16 9 0.480 61D-07 -0.344 38D-07
14 6 0.590 95D-07 -0.436 47D-07 16 10 -0.829 02D-07 -0.428 19D-08

14 7 0.129 43D-06 -0.722 97D-07 16 11 0.237 91D-08 -0.120 18D-07
14 8 0.609 06D-08 -0.682 48D-07 16 12 0.998 66D-08 -0.860 36D-08
14 9 -0.50149D-08 0.450 78D-07 16 13 -0.631 05D-08 -0.350 28D-07
14 10 -0.271 03D-08 -0.127 59D-06 16 14 -0.847 97D-08 -0.183 34D-07
14 11 0.990 35D-07 0.304 86D-10 16 15 -0.536 14D-07 0.866 99D-08
14 12 0.726 69D-08 0.270 52D-08 16 16 0.565 09D-08 0.414 25D-08
14 13 0.160 43D-07 0.125 51D-07 17 0 0.194 10D-07 0.0
14 14 -0.334 79D-07 -0.477 72D-08 17 12 0.121 85D-07 -0.275 58D-07
15 0 -0.300 95D-07 0.0 17 13 0.111 73D-07 0.358 63D-07
15 1 0.995 59D-07 0.503 38D-07 17 14 -0.25139D-07 -0.101 37D-07
15 2 0.133 32D-07 -0.946 98D-07 18 0 0.358 81D-08 0.0

15 3 0.529 43D-08 0.233 04D-07 18 12 -0.560 34D-07 -0.714 79D-08
15 4 0.327 13D-07 -0.135 68D-07 18 13 -0.559 07D-08 -0.633 67D-07
15 5 0.245 60D-07 -0.175 69D-07 18 14 -0.232 71D-07 0.183 60D-07
15 6 -0.249 01D-07 -0.318 33D-07 19 0 0.230 79D-07 0.0
15 7 -0.368 7D-07 0.802 14D-07 19 12 -0.285 36D-07 -0.164 82D-07
15 8 -0.152 38D-06 0.112 23D-07 19 13 -0.694 54D-08 0.118 67D-07
15 9 0.271 01D-08 0.624 73D-07 19 14 -0.319 29D-08 -0.133 46D-08
15 10 0.582 45D-07 0.320 33D-07 20 0 -0.112 03D-08 0.0
15 11 -0.663 03D-07 0.444 04D-07 20 12 0.175 15D-07 0.152 20D-08
15 12 -0.194 89D-07 -0.137 70D-07 20 13 0.144 48D-07 -0.58146D-07
.......... r, ,o n,)la _n_n7 20 14 0.203 48D-07 0.129 48D-07J[O £0 U. _O g.. _o_J--vu v .........

15 14 -0.197 80D-07 -0.530 94D-08 21 0 0.18136D-08 0.0

15 15 -0.786 10D-07 0.364 91D-07 21 12 0.976 46D-09 -0.344 15D-07
16 0 0.108 14D-07 0.0 21 13 -0.532 62D-08 0.267 51D-07

16 1 -0.211 71D-07 -0.449 67D-08 21 14 -0.794 27D-08 0.826 36D-08

16 2 0.152 09D-07 0.225 77D-07 22 0 0.125 84D-08 0.0
16 3 0.516 14D-07 -0.21138D-08 22 12 -0.562 75D-07 -0.330 49D-07

16 4 0.384 17D-07 0.569 03D-07 13 -0.125 78D-07 -0.444 35D-07

16 5 0.233 91D-07 0.385 16D-07 14 0.191 61D-07 0.308 58D-08
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TABLE 5.73.--Power Spectra of

the Isostatic Anomaly Potential

n Khan's Uotila's

2 0.05 0.13
3 0.27 1.02

4 0.61 2.25

5 1.06 3.69

6 0.60 2.26

7 0.71 2.16

8 0.65 2.03
9 0.91 3.11

10 1.08 3.60

11 0.87 2.97

12 0.75 2.38

13 1.17 3.75

14 1.16 2.93
15 1.22 3.42

16 1.04 4.04

TABLE 5.74.--Precise Accelerations on 24-Hour Satellites

Semimajor axis = 6.6105 Earth radii
Eccentricity = <0.001
Mean motion - 1 rev/day

Weighted residuals, (0 - C)/a, computed
from:

_, a 0_)

h i (105 rad/ (108 rad/ Resonant

Satellite (deg) (deg) sid day s) sidday 2) GEM 4 GEM3 SEII APL SEI field

SKYNET 1, 1 ...... 39.58 2.17 3.0553 5.0 4.0 2.9 6.4 5.4 15.4 0.3

SKYNET 1, 5 ...... 45.64 1.36 2.8409 1.6 11.4 8.1 16.2 8.4 32.1 0.4

SKYNET 1, 7 ...... 50.04 1.21 2.5865 1.8 7.4 4.6 9.8 -0.4 15.4 0.5

ATS 3, 1 ........... 314.90 0.29 -2.3140 4.0 -6.3 -4.7 -10.0 -3.0 -31.2 0.5

INTELSAT 2 F4, 1 181.20 0.90 1.9139 14.8 1.4 1.8 3.1 5.6 0.5 0
ATS 5 ............. 105.04 1.05 -0.0112 0.4 12.0 -8.8 -1.5 -108.8 154.8 1.5

INTELSAT 2 F3, 1 350.00 1.00 0.1395 2.6 -1.1 1.2 8.0 14.0 17.5 -1.9

INTELSAT 2 F3, 2 347.50 1.10 -0.0925 4.6 1.0 2.4 5.7 9.3 9.1 1.1

SYNCOM 3, 11 .... 167.40 0.60 0.6084 5.0 0.7 1.4 6.0 16.5 1.3 -2.6

SYNCOM 2, 8 ..... 65.90 31.85 0.9763 28.4 -1.0 -1.1 -1.3 -2.4 -2.2 -1.0

SYNCOM 3, 14 .... 158.40 2.50 -0.3834 7.2 1.1 1.5 4.2 11.9 3.5 -0.2
ATS 3, 4 ........... 265.20 0.50 -0.8387 2.4 -3.8 -7.3 -9.1 -21.7 4.0 -4.7

Statistics:
RMS measurement 2.25

RMS residuals (108 rad/day 2) 7.4 5.9 10.0 41.9 59.9 2.2

Comments:
RMS measurement _ = 1.2 x 10 -_ rad/day 24 [12/_ (1/cr)_] '_2
RMS residual = [_ (weighted residuals) 2 _ (1/_)2] _
SKYNET measurements are from R. H. Merson. SYNCOM, INTELSAT, and ATS 5 measurements were

computed by the ROAD program from Kepler element data. ATS 3 measurements were computed by the
GEODYN program from radar range and range rate data. The resonant field includes all relevant terms through
(5, 5) and uses data from all the above satellites except ATS 3, 4.
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TABLE 5.75.--Tests on INTELSAT 2F1, 1328-Day Arc

Orbit: a = 4.165 Earth radii, e = 0.64, i = 18°, n _ 2 rev/day

483

RMS mean RMS
RMS RMS resid x 100/ along

Field used semimajor axis mean anomaly nonres track
in orbit residual residual RMS mean residual

determination (m) (degs) resid (kin)

GEM 4 (1972) ....... 241 0.26 0.33 120

GEM 3 (1972) ....... 237 0.25 0.32 118

SAO SE II (1970) .... 247 0.47 0.60 217
APL 5.0 (1967) ...... 696 1.58 2.03 730
SAO SE I (1966) .... 507 1.25 1.60 580
Nonresonant ....... 9650 78.00 100.00 36100
Resonant ........... 228 .04 0.05 17

Comments: Data span: MJD 40059-41387. Orbit data used: 131 sets of Brouwer mean

elements from MINITRACK observations over about one week of observations per set.
Radiation pressure effects included; CR = 1.08, A/M = 0.1 cm2/g for resonant fields,
all potential effects are included giving at least 0.005 of maximum acceleration
(1_) due to (2,2): from (2,2)--*(11,2), (4,4)--*(11,4), and (6,6)--*(13,6). The resonant field is

GEM 4 with adjusted coefficients for (2,2), (3,2), (4,2) and (5,2).

TABLE 5.76.--Tests on COSMOS 382 Rocket (1970 103B) Data

RMS
RMS RMS along

Field Used Semimajor Axis Mean Anomaly Track
in Orbit Residual Residual Residual

Determination (m) (deg) (kin)

GEM 4 (1972) ...........

GEM 3 (1972) ...........

SAO SE II (1970) .......

APL 5.0 (1968) .........

SAO SE I (1966) ........
Nonresonant ...........

Resonant ..............

11.6 0.162 27.5

11.3 0.158 26.8
55.0 0.690 116.5

68.5 1.460 247.0

26.3 0.438 74.2

26.4 0.444 75.1

7.9 0.023 3.9

Comments: Data are mean Kepler elements from DOD (North American Air
Defense Command), MJD 40928-41355. "Mean" off-resonant beat-period = 125
days. Orbit inclination = 51.5 °, eccentricity = 0.18. Minimum perigee height =

1600 km. Resonant field has adjusted (9,9), (10,9), (11,9) and (12,9) coefficients

(with some high correlations) and GEM 4 (13,9)-*(16,9) and zonal coefficients. SAO
SE I has no si_rnificant resonant effects on this orbit
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TABLE 5.77.--Tests on ERTS 1 (58 = day arc)

Orbit: a = 1.142, e = 0.0015, i = 99.1 °, n _ 14, primary beat period = 19 days.

RMS RMS Axis

Field Used Semimajor Axis Resid x 100/ RMS Inclination
in Orbit Residual Nonres RMS Axis Residual

Determination (m) Resid (10 4 deg)

GEM 4 (1972) ........... 1.48 37 5.95

GEM 3 (1972) ........... 1.49 37 5.95

SAO SE II (1970) ....... 1.31 33 6.70

APL 5.0 (1967) ......... 4.58 114 9.25

Nonresonant ........... 4.03 100 9.00

Resonant ............... 30 8 --

TABLE 5.78.--Potentials Used

in Comparisons

Potential

Total Number of
number reasonant

of distinct satellites
orbits of order

9 14

SAO SE I (1966) ....... 14 1 7

APL 5.0 (1967) ........ 7 0 1

SAO SE II (1970) ...... 19 1 8

GEM 3 (1972) ......... 25 2 9

GEM 4 (1972) ......... 25 2 9

TABLE 5.79.--Tests on Two Long 24-Hour Satellite Arcs

Orbits tested

SYNCOM 2 SYNCOM 3

(Data span: 1300 days, i = 31 °) (Data span: 1900 days, i _ 4 °)

Field used PMS longitude RMS along RMS longitude RMS along
in orbit residual RMS x 100/ track residual residual RMS x 100/ track residual

determination (deg) nonres RMS (kin) (deg) nonres RMS (kin)

GEM 4 (1972) .... 0.096 1.2 71 0.187 .8 138

GEM 3 (1972) .... 0.101 1.3 74 0.200 .8 148
SAO SE II (1970) 0.236 3.1 174 0.307 1.2 227

APL 5.0 (1967) ___ 0.502 6.5 370 0.750 3.0 554
SAO SE I (1966) _ 0.574 7.4 422 0.254 1.0 188

Nonresonant ..... 7.75 100.0 5680 25.0 100.0 10300

Resonant ........ 0.040 .52 30 0.134 .5 99

Comments: Only semimajor axis and longitude 0W + ¢0 + N - 0e) data used in orbit determinations. All resonant effects
through (5,5) used except for nonresonant field test. resonant field has adjustment for terms through (4,4).

Data are from DOD, range and range rate Data are from DOD, range and range rate
tracking tracking (MJD 39665-40175), NASA X-Y angle

tracking (of beacon), MJD 40833-41580
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6.1 INTRODUCTION
(N. A. Roy, Wolf Research and Development

Corporation (WRC), and H. R. Stanley, Na-

tional Aeronautics and Space Administration/

Wallops Flight Center (NASA/WFC))

6.1.1 Object!yes

The major accomplishments of the GEOS-
B, C-band systems project may be assessed in

terms of the project objectives. The objec-
tives of the project were grouped into three
categories : (1) primary objectives that must
be met for the project to be successful;

(2) secondary objectives that were suffi-
ciently important to warrant serious consid-
eration in the project effort; and (3) other
objectives that were important to the project
and for which additional effort would be de-

sirable if sufficient time, data, and funding
were available.

The first of five primary objectives was to
calibrate and evaluate .........._ne_-u_,u_ l,_u_L-__ ......_a _-
tems. The noise level of the various radars

were evaluated by analyzing data from many
short-arc passes of GEOS-2 over a single
station. The results of these analyses showed
that AN/FPQ-6 radars typically had a preci-
sion of _0.8 meter in range and 10" to 15"

in angle. The AN/FPS-16 radars typically
had a precision of of --'1.5 meters in range and
20" to 25" in angle.

Special tests were performed to evaluate
the retroreflector (Van Atta Array) on
GEOS-2 and to provide estimates of compar-
ative range accuracy of retroreflector and
transponder tracking. During these tests it

was found that a pulsewidth/bandwidth-de-
pendent bias existed when the radars were

calibrated by using one pulsewidth but were

tracked by use of another pulsewidth. The
correction to be applied to these data was
found to be about half the difference (in me-
ters) between the pulsewidth used during
calibration and pulsewidth received from the

transponder. The radar ranges were also
• 1- L _1

compareu Wl'Jlt, ll -t J-^ *_ ^._ I_T_UlJ.'eCbly l;ang-es v_,_.,vu *-,a

the Goddard Space Flight Center (GSFC)
laser distance measuring equipment (DME)
located at Wallops during a Wallops Island
collocation experiment (WICE). The agree-
ment between the two systems averaged 0.2

meter, with a _ of 2.9 meters. A range bias
resulting from the use of a non-point-source

target for reference was discovered for AN/
FPS-16 at Wallops. This turned out to be a
constant + 7.9 meters.

Data from many revolutions and passes

over many stations were reduced and an-
alyzed to determine biases in azimuth and
elevation. These analyses showed no indica-
tion that lag, droop, or other dynamic errors
were significant contributors to angular er-
ror. However, most radars exhibited an azi-
muth bias that was dependent on the secant
of the elevation angle. The proper correction
factor was determined and applied to the
data.

,r_,_ second _,,._m_,.,_ nhioetlvo, was to deter-

mine the adequacy of specific mathematical
models for the C-band system. A detailed
and comprehensive mathematical error model
for the radar was developed. The detailed
model was tested and evaluated, and a simple
deterministic model was developed for use in

the data reduction procedure. This simplified
model has been evaluated and found to be

adequate for describing the form and func-
tion of systematic radar errors. The ade-
quacy of the model has been further corrobo-
rated, if somewhat indirectly, by the quality
of the geodetic results obtained during the
network evaluations.

The third primary objective was to evalu-
ate the feasibility of using satellites and C-
band systems for geodetic as well as calibra-
tion purposes. Data from 3 weeks of concen-
trated tracking in January and February
1969 from more than 20 globally distributed
radar stations were reduced and analyzed.
The results demonstrated clearly that it was
possible to determine ranging and timing
biases, to removo, atmospheric and trans-
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ponder-induced biases, and to identify and re-
move errors induced in data handling from
the data collected at the various remote sites

while obtaining high-quality geodetic results.
In most instances, biases determined at Wal-
lops were confirmed by the controlling agen-
cies. Station positions, distances between sta-
tions, and gravitational potential coefficients
were estimated during the project.

The fourth primary objective was to pro-
vide scale for solutions using only angular
data and to confirm surveyed locations o£
sites. The C-band radar data were used
to provide scale for geometric solutions at

Ohio State University, with excellent results
reported. Improved center-of-mass station
positions were obtained for more than 20

globally distributed stations to an accuracy
of 10 meters or better. Distances between

these stations were compared with distances
surveyed to first-order accuracy, and agree-
ment was generally found to be better than 3
meters.

The fifth primary objective was to deter-
mine the short- and long-term stability of the
radar system. Tests covering periods of 1
hour to 3 years have shown that the radar
and satellite systems are stable over exten-
sive periods of time. System drift is negligi-

ble provided sufficient time (2 to 3 hours) is
allowed for warming up the radar.

The secondary study objective was to
study long- versus short-arc methods of re-

ducing orbital data as applied to calibration
problems. Short-arc methods have been
shown to be adequate for determining preci-
sion. However, biases in the measurements
tend to be hidden in the least-squares fit.
Relative timing biases, relative station posi-
tion errors, and relative biases in the meas-
urements (and, therefore, relative accuracy)
may be recovered from short-arc solutions
that involve data from two or more stations,
where one station has been chosen as the ref-
erence or datum station.

Long arcs (up to 2 days) allow for more
accurate orbit determinations from which es-

timates of measurement accuracy can be
made. Error analyses have shown that orbi-
tal accuracy degrades after 2 days because of

uncertainties in the gravitational potential
models. Improved station coordinates were
determined along with radar measurement
and timing biases by means of 2-day arc solu-
tions.

A sixth objective was to study the feasi-
bility of using satellites both to evaluate ship-
borne instrumentation and to locate ships.
Ships were located by means of orbital solu-
tions determined by data from land-based
radars. The principal error source was found
to be the ship's inertial navigation system
(SINS), which was used for determining the
ship's motion during the satellite tracking.

A seventh objective was to investigate the
feasibility of contributing to the knowledge
of the gravitational potential model and to de-
termine the adequacy of existing models for
specific purposes in missile and space-vehicle
testing. The usefulness of C-band radar data
for determining gravitational potential coeffi-
cients was clearly demonstrated during these

studies. Effective resonant coefficients C_

and $11_were determined using data from
four, geographically well-distributed radar
sites. The coefficients have been verified in

subsequent orbital solutions.
An eighth objective was to determine and

analyze the spectral content of the radar
data. The spectral content of the range, azi-

muth, and elevation data of the Wallops ra-
dars were evaluated by performing power
spectral density analysis of typical tracking
data. The results indicate that the perform-
ance of the radars is consistent with design
criteria. Specifically, the results demonstrate

that the precision of the data can be improved
by low-pass digital filtering to remove most
of the random error while preserving the sig-
nal content.

A ninth objective was to develop and im-
plement a data-compaction scheme compati-
ble with C-band data to be sent to various

users. A spectral analysis study was con-
ducted to determine the optimum data record-
ing and sampling rates for C-band radars and
to determine an optimum method of filtering

and sampling the data.
It was determined that the signal content

of range, azimuth, and elevation measure-
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ments made by a C-band radar was concen-
trated at frequencies below 0.05 Hz. The op-
timum method of filtering and sampling to
preserve the statistical information content
of the data consisted of filtering the data us-
ing a low-pass filter with a sharp cutoff at 0.5
Hz, then sampling the data at one sample
every 10 seconds. It was also determined that
filtering is not necessary for data that are to
be used in long-arc orbital determinations,
because data selected without filtering yielded
essentially the same orbit, with the same re-
sidual rms, as data filtered before selecting.

A tenth and final objective was to deter-
mine the effectiveness of using C-band radar
for checking out remote-site instrumentation.
The determination of improved geodetic coor-
dinates for ships and isolated land-based ra-
dars and the associated calibration constants
of such radars is a clear indication of the ef-

fectiveness of C-band radar data.

6.1.2 Agencies and Radar Systems Involved

Agencies participating in the GEOS-2 C-
band tests are listed in table 6.1, along with
the number of GEOS-2 missions scheduled
for each agency. The total amount of usable
data obtained by each agency is also shown.

supported by a two-axis (azimuth-elevation)
pedestal, featuring a low-friction hydrostatic
azimuth bearing, antibacklash drive gearing,
and precision, single-speed, 20-bit angle-shaft
encoding subsystem. The acquisition-system
features reflect test range needs; a diverse
complement of aids facilitate detection and
lock-on.

A 46-meter boresight tower for calibration
is also part of the system. It comprises ra-
diation antenna, optical targets, and a C-band
test source. The angle or antenna-positioning
subsystems are high-torque-to-inertial elec-
trohydraulic servo loops. Tracking signals
are supplied to the antenna positioning and
ranging servos by a low-noise broadband
three-channel receiver subsystem. An all-
electronic, digital, ranging subsystem affords
unambiguous range coverage to __60 000 km
(32 000 n. mi.) at high pulse repetition rates
with a granularity (least significant bit in the
range) of about 2 meters. The data process-
ing system contains a 4096-word stored pro-
gram for a militarized computer (RCA FC-
2101).

6.2.1.1 Target Tracking System

6.2.1.1.1 ANGLE SERVOS

6.2 INSTRUMENTATION

6.2.1 Functional Description of Radar Sets
AN/FPQ-6 and AN/TPQ-18

The fixed and transportable versions of

MIPIR (AN/FPQ-6 and AN/TPQ-18) have
identical performance characteristics. The
radar subsystems may be functionally

grouped under microwave system (transmit-
ter, antenna, and receiver), target acquisi-
tion system, target tracking (angle and range
servos) system, data-processing system, and
system-control system. An ultrastable fre-

quency synthesizer and multiplier unit, a
power amplifier, and a modulator form the
transmitter. A solid-surface 8.8-meter para-
boloidal reflector illuminated by a monopulse,
polarization-diversified feed comprises the
Cassegrainian antenna. This structure i_

Commutated-error video, either local or re-
mote in origin, is converted to hydraulic-value
control signals in the azimuth and elevation
servo loops. These dc signals, with amplitudes
and polarities dependent on the magnitude
and direction of the antenna pointing error,
determine the slew rate of the antenna and
direction of rotation about each axis.

Two angle servo preamplifiers, similar ex-
cept that the gain in the azimuth channel de-
pends on the secant of the elevation angle,

provide initial received-signal gain for the
servo errors. Two angle error amplifiers pro-
vide additional gain as well as demodulate the
error signals. Phase compensation and band-
width control networks follow. A variable
bandwidth is available in the tracking mode.
A pedestal-velocity-feedback loop, employing

a tachometer generator, affords rate compen-
sation. Current feedback around the valve
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driver stage stablizes gain in this loop. The

technique of modulation, ac amplification, and

demodulation permits less complex circuitry

than drift-stablized dc amplifier control.

6.2.1.1.2 RANGE SERVOS

Digital techniques in the range system pro-

vide an unambiguous measurement interval

of _60 000 km (32 000 n. mi.) with high

pulse-repetition rates, about 2-meter granu-

larity, and excellent precision. In a conven-

tional pulse-type radar, the unambiguous

range is inversely related to the pulse repeti-

tion frequency (prf), severely curtailing the

sampling rate at longer ranges. Range exten-

sions in the AN/FPQ-6 are achieved by re-

ducing the repetition rate. A low repetition

rate, i.e., 2.5 pulses per second (pps), pro-

vides the time scale, and a relatively high one

(160 or 640 pps) is the ranging-pulse repeti-

tion frequency. The maximum range is estab-

lished by the 2.5-pps repetition rate.

By dividing this time base into either 64 or

256 zones, depending on the prf employed, as

many transmissions as zones may occur be-

fore the first pulse is received. True range is

determined by locating a return within a zone

(apparent or ambiguous range) and adding
it to the rf transmission that caused it. Am-

biguity resolution is a two-step process called

find and verify. Verification is attempted im-

mediately following target lock-on and, if not

successful, the system switches to the find

process.

The find process determines the target loca-

tion zone, and the verify process confirms
that the correct zone is found. In the find

mode, two successive transmitter pulses are
delayed about 14 630 meters. Concurrently,

double range gates are generated in each

pulse repetition period, the second gate being
about 14 630 meters from the first. The num-

ber of pulses following the two delayed pulses

are counted until two video pulses are de-

tected in the delayed range gates.

The verify process is then started. For veri-

fication, one transmitter pulse and the range

gate in the assumed zone are delayed _14 630

meters. The gate is then checked for the pres-

ence of a target return. The verify process

is repeated until four video pulses are de-

tected. Failure to verify causes the find proc-

ess to repeat.
To avoid interference between received and

transmitted pulses (because the transmitted

pulse cannot be excluded by the receiver), the

system is capable of delaying alternately the

transmitter pulse time and the range gate de-

lay time. This technique enables time separa-

tion of the transmitter pulses and target re-

turns, without changing the sampling rate,

when the received signals are in the prede-

termined interference region. To exclude sig-

nals caused by ground reflections, a blanking

region of __14 630 meters about the time po-

sitions of the transmitted pulses is also
allowed.

Automatic tracking is accomplished in a

type-2 servo loop. Split gates are superim-

posed on the gated video and coupled with a

time discriminator to derive range errors.

The magnitude of the range error is depend-

ent on the time position of the target return

with respect to the center of the tracking

gate. The sign of the range error is estab-

lished by the relative energy levels bracketed

by the split gates (early and late). The range

error voltage is integrated, converted to a

ramp voltage with a slope and sign equivalent

to the magnitude and direction of the range

error, and then changed in an analog-to-

digital converter to a series of pulses propor-

tional to this error. The pulse rate depends

on the slope of the ramp voltage and conse-

quently on the magnitude of the range error.

These pulses are then used to correct the

range counter and reposition the track gate.

The range tracker also generates precise

timing signals for its internal operation, as

well as the system triggers. A prf sequencer
is included to eliminate interference caused

by the nearly simultaneous arrival at the

transponder of interrogation pulses from sev-

eral radars in a tracking chain.

6.2.1.2 Data System

The data system enables the collection,

processing, display, and transmission of data.
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For explanatory purposes, this system has

been divided into three sections: angle, data
handling, and data processing. The angle
section consists of azimuth and elevation en-

coders (transducers) and their associated
digital circuits. The data handling section ac-
cepts data from various sources to enable

communication in the form of digital data
and control commands with the data proces-
sor, other portions of the radar, and external
sources.

Inputs to the data handling section include
the outputs from the angle section, range in-
formation from the range tracking subsys-
tem, and analog angle-servo-error informa-
tion from the angle tracking subsystem. The
servo-error data are converted to digital form

and supplied to the data processing section,
where these signals are processed and
summed with the outputs of the angle encoder
outputs to compensate for dynamic lag in the

angle subsystem. The data processor is pro-
gramed to correct, in addition to dynamic
lag, the encoder for certain systematic errors

such as nonorthogonality, antenna droop, en-
coder bias, and pedestal-leveling error. After

correction the angle and range data are sup-
plied to the console for display and to output
circuits for immediate use by external equip-
ment.

The transducer signal processor is a corre-
lating, resolving, and pulse counting tech-
nique to form a 20-bit binary word for each
coordinate. Basically, the encoder circuit am-

plifies and shapes a reference marker, repre-
senting the zero reference position of the
boresight axis, and uses it to start and syn-
chronize a 20-stage high-speed counter.

A variable marker is amplified, shaped, and
used to stop the high-speed counter tempo-
rarily; it represents the angular position of
the boresight axis at that instant.

The signal processing circuit for each coor-
dinate contains the following: an automatic-
frequency-control (AFC) sample pulse gen-
erator; a marker-pulse shaping and syn-
chronizing circuit; the high-speed counter
and its control circuit, including an auto-

matic-check signal generator and sequencer
and delayed reference marker generator ; and

the up-down counter and its control circuit,
including the up-down signal processing cir-
cuit, the read control circuit, and the output
buffer.

An angle-error signal-processing section

(or analog section) and digital circuits com-
prise the data handling section. In combina-

tion with the data processor, these circuits
correct the raw pedestal-position data for
known errors and make the result available
to the user as serial readout from either three

parallel lines or a single line. The analog sec-
tion translates the pedestal tracking-error
voltages (commutated ac) from the angle

servo preamplifiers into filtered, dc error sig-
nals. The dc signals are then sent to the digi-

tal portion of the data handling section,
where they are converted into digital form
and applied to the data processor.

The data processor uses these error data to
correct the pedestal angular-position raw
data for dynamic tracking lag. The elevation
error signal is the output of the elevation
servo preamplifier. The azimuth error signal
is picked off in the azimuth servo preamplifier
and represents the error in the antenna trav-
erse plane rather than the error iu ..........bli_ llUl l-

zontal plane. Also included in the data han-
dling section are converters and decoders for
decimal readout of the data at the console and

signal processing for meter displays of the
dynamic tracking lag and noise components
of the angle servos.

6.2.1.3 Coherent-Signal Processing Modifica-

tion

The coherent-signal processing (csp) mud-

ification enables tracking at radial velocities
up to __18 000 m/sec, radial accelerations up
to _1800 m/sec 2 and radial rates of accelera-
tion (jerk) of _1200 m/sec _. In addition,
target radial rates of acceleration of _9150
m/sec :_may be tracked for a duration of 0.03
sec at a prf of 640 pps. At target velocities
up to __18 000 m/sec and target accelerations
between 0 and __910 m/sec _, acquisition time
will be between 1.5 and 5.0 sec at a prf of
640 pps. With a prf of 160 pps and target
velocity up to _18 000 m/sec and a target
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accelerating up to __450 m/sec 2, acquisition
time will be between 6 and 10 sec. When a

csp modification is incorporated in the radar,
the tracking range is improved by at least a
factor of 2 at aprfof 640 pps. At 160 pps
the improvement is at least a factor of 1.9.

6.2.2 General Performance Characteristics of

Radar Set AN/FPS-16

The tracking accuracy of the AN/FPS-16
is 0.1 mil rms in azimuth and elevation and

_4.5 meters rms in range.
Three types of output data are provided

for azimuth, elevation, and range: digital,
potentiometer, and synchro. However, only
the digital data are of interest for missions

requiring precise data.
Digital data are available for serial read-

out in binary form with least significant digit
first. For azimuth and elevation coordinates,

17-bit data with a granularity of 0.0488 mil
for the least significant digit are supplied.
For the range coordinate, 20-bit data with a
granularity of __1.8 meters for the least sig-

nificant_ digit are supplied.
The accuracy of the digital output is better

than 0.1 mil rms in angle (azimuth and ele-
vation) and better than 3.5 meters rms in

range.
The full range of the range tracking sys-

tern is from 0 to __475 000 meters. The ac-
tual usable range coverage is determined by
radar-receiver recovery time, target echo

area for skin tracking, and transponder char-
acteristics (sensitivity, power, and antenna)
for transponder tracking. The useful range
tracking coverage is from 450 to 275 000 me-
ters on a 1.0-m'-' skin target and from 450 to
475000 meters on a transponder-assisted

target.
The coverage in azimuth is a full and con-

tinuous 360 deg. The elevation coverage is
from - 10 deg to + 190 deg. The plunge (an-

gles in excess of 90 deg) is very useful as a
calibrating feature. The radar will track
through -90 deg elevation provided that azi-
muth and elevation lag errors do not exceed
the antenna beamwidth. The maximum
tracking rates are 7300 m/sec in range, 750

mils/sec in azimuth, and 400 mils/sec in
elevation.

The radar has the capability for echo

(skin) or transponder (beacon) tracking at
operator option with provisions for monitor-
ing either the transponder signal when echo
tracking is being performed or the echo sig-
nal when transponder tracking is occurring.
An adjustment is provided to allow compen-
sation in the range data for any transponder-
induced delay. This compensation is neces-
sary to allow switching from transponAer
tracking to echo tracking, or vice versa, with-
out loss of track.

Aided tracking is available at operator op-
tion for azimuth, elevation, and range. Either
automatic frequency control or manual fre-
quency control is provided for both echo and
transponder tracking receivers at operator
option.

The receiver-frequency coverage is 5400 to
5900 MHz, tunable from operator console for
both skin and beacon. The transmitter fre-

quency is from 5400 to 4900 MHz tunable at
250 kW, and at 5480_+ 30 MHz fixed at 1 mW.
Acquisition may be either automatic or semi-
automatic. One of 12 pulse repetition fre-
quencies is available at operator option. The

frequencies are 285, 341, 366, 394, 467, 682,
732, 853, 1024, 1280, 1364, and 1707 pps. The
prf can be changed without loss of track.

One of the three following pulsewidths is

available at operator option: 0.25, 0.5, and
1.0 _sec. The pulsewidth can be changed with-
out loss of track.

6.2.3 GEOS-2 C-Band Transponder 1

Selection of the GEOS-2 C-band trans-

ponder was based on criteria that satisfied as
many of the requirements of the individual
participants as was practical while still meet-
ing the requirements of off-the-shelf availa-
bility and the constraints placed on it by the
spacecraft. To this end, the GEOS-2 satellite
contains two Vega, model-313C, radar trans-

1 j. T. McGoogan, A. R. Selzer, H. R. Stanley, C. L.

Davis, and W. D. Stevenson, all of NASA/WFC, con-

tributed greatly to this section.



NASA/WALLOPS FLIGHT CENTER 493

ponders (modified version of the Vega model
302C-2). The two model-313C transponders
are identical except for internal delay time.

One transponder, known as the long-delay
transponder or transponder 2, has a nominal
internal delay of 4.96 _sec; the other, known
as the short-delay transponder or transpon-
der 1, has a nominal internal delay of 0.75
_sec. This difference is intended to make real-
time identification of the transponders easier
for all users.

The following characteristics are common
to both model-313C transponders.

(1) Receiver system: recovery time, less
than 70 _sec; interrogation frequency, 5690
MHz ; stability, better than _ 2 MHz ; band-
width, 10 to 14 MHz; sensitivity, -70 dBm
for 99-percent reply; pulse code, two-pulse

with 8-_sec spacing (leading edge to leading
edge; pulsewidth, 0.5 _sec (nominal) ; pulse
rise time, 0.1 _sec (nominal).

(2) Transmitter system: output fre-
quency, 5765 MHz; stability, _3 MHz; maxi-
mum prf, 2600 pps ; pulse delay jitter for sig-
nal level 0 to - 55 dBm, less than 20 nsec, and
for signal level -55 dBm to -65 dBm, less
than 50 nsec; pulsewidth, 0.5 _sec; power
output, 400 watts (nominal).

(3) Antenna system: the antenna is a
small, quartz-loaded, cavity-backed helix; its
polarization is right-handed and circular, and
its beamwidth is 120 deg.

6.2.4 GEOS-2 Reflector

Even though the transponder-delay varia-
tion resulting from variations in received sig-
nal strength can be corrected with calibration
curves, there exist long-term variations that
are not amenable to this method of correction.
During the expected life of the satellite, aging

of components was expected to cause slow
variations in the signal delay in the trans-
ponder. In addition, components such as the
silicon-controlled rectifier used with the fixed-

delay multivibrator are very susceptible to de-
lay changes because of radiation. Therefore

a means of measuring these long-term
changes in delay during the satellite life was
required so that corrections could be made.

The use of a passive reflecting array to en-
hance the radar-skin return signal so that
both echo and transponder tracking might be

accomplished on the same satellite pass was
the most promising solution to this problem.
Either direct measurements of the time dis-

placement between the signal returned by the
reflector and the signal returned by the trans-
ponder or the differencing of the range meas-

urements acquired from both modes of opera-
tion yields the delay corrections needed.

Characteristics of the passive reflecting ar-
ray are summarized as follows: (1) fre-
quency range is 5690___20 MHz (nominal) ;
(2) polarization is left-handed and circular
for receiving, and right-handed and circular
for transmitting; (3) coverage angle is 3 dB
down from peak value at _ 35 ° from normal
to array in any plane containing normal ; and
(4) effective radar scattering cross section,
9 dB above a 1-m 2target.

6.3 DATA
(R. L. Brooks, WRC, and C. D. Leitao, NASA/

WFC)

6.3.1 Stations Involved

The tracking stations involved in the cali-
bration and geodetic investigation projects
are given in table 6.2. Those involved particu-
larly in the calibration project are listed in
table 6.3, together with the number of passes
made by each station and the average range
rms for each station from short-arc orbits
fitted to the radar data. The data are from a

3-week period of intensive tracking from 28
January to 17 February 1969. The coordi-
nates of the stations that contributed data
used in the National Geodetic Satellite Pro-

gram (NGSP) for geodetic purposes are
given in chapters 1 and 8. The data were re-
duced by using the following models and data
restrictions : -_

-"The A/OMEGA program was developed by WRC

for NASA. It is a definitive orbit and geodetic pa-

rameter estimation program capable of simultane-

ously processing observations from multiple arcs and
many satellites.
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(1) Station coordinates (from SAO 1969

Standard Earth Datum) : ao=6378155, f= 1/

298.26, and GM = 3.986013 × 10 -"°cm_/sec<

(2) Gravitational model: SAO 1969
Standard Earth.

(3) Data rate: one observation every 20
seconds.

(4) Data type: range data where eleva-
tion was greater than 10 deg ; the correspond-

ing angle data were given zero weight in the
solution.

(5) Timing: UTC time corrected to UT1
time.

6.3.2 Data Handling

The generalized flow of radar data is shown

in figure 6.1. The radar data are recorded on

tape at the radar site, generally at a rate of

10 or 20 samples per second. These data are

usually totally uncorrected except that the

AN/FPQ-6 radar instrumentation includes

an RCA 4101, general-purpose computer,

which corrects for the following: (1) servo

lag (optional), (2) RF axis shift, (3) en-

coder bias, (4) droop (applied to elevation

only), (5) secant error (applied to azimuth

only), (6) nonorthogonality; and (7) pedes-
tal mislevel. The form and function of the

error corrections are shown in figure 6.2.

C-BAND

RADAR

PASS 2 PROGRAM

CALIBRATION CORRECTIONS

REFRACTION CORRECTIONS

DATA SAMPLING

DATA VALIDATION

SIIORT-ARC LONG-ARC

ORBITAL ORBITAL

SOLUTIONS SOLUTIONS

ON-SITE DATA HANDLING

RCA 4101

DATA DATA

CORRECTIONS RECORDING

(if applicable) (MAGNETIC TAPE)

+

 AS IP OGRAM1REFORMATTING

T'IFTN_--uTFa_FON
-- (if .__kn own ) --

DATA ANALYSIS |

p REpROCESSED DATA

OUTPUT TO

OUALIFIED USERS

FIGURE 6.1.--C-band data preprocessing.

Note that no corrections to range are made

and that no mission-by-mission calibration

corrections are applied at the radar site.

The purpose of the pass-1 handling of the

raw data is as follows: (1) to apply appro-

priate bit weights to the information on the

data tapes received from the radar site;

(2) to compute first differences of the raw

data; (3) to correct radar data time tags by

applying time corrections, if they are known

a priori ; (4) to put out data in a format suit-

able for further computer processing; and

(5) to perform preliminary data analysis.

Pre- and post-mission calibration measure-

ments are printed as a part of the output.

Three corrections are applied to the data

during pass-2 handling : (1) refraction cor-

rection, (2) propagation time correction, and

(3) combined range corrections.

The tropospheric refraction correction uses
an index of refraction measured at the

Earth's surface and a dependence on the cose-

cant of the elevation angle. The refractive in-

dex _ is computed from

t__ 1= [103.49( P-e )

+8_6( l+_e)l
x 10 '_

where P is the total atmospheric pressure

(mm Hg), e is the partial pressure of water

vapor (mm Hg), and T is the absolute tem-

perature (°C). If temperature, pressure, and

relative humidity are not known, a nominal

value of 0.2919× 10 3 for _-1 is assigned.
The refraction-corrected ranges Rc are

Rc=Ro- [(_-1) (s)/(sin E_+0.026)]

where E_, the corrected elevation angle meas-
urement, equals Eo- (t_-1)/[0.01644+0.93

(tan Eo)], Eo being the observed elevation
angle ; Re is the corrected range ; Ro is the ob-

served range; s is the scale height of the at-

mosphere, approximately 7.6 km; and 0.026

equals the Earth's curvature correction.

The measurement-time tags are corrected

in the propagation-time correction step to the
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FIGURE 6.2.--AN/FPQ-6 error correction program.

time the radar pulse left the satellite by the

relationship

Tc = To- Rc/c

where Tc is the corrected time of observation

in sec, To is the time of sample at radar and c,

velocity of light, equal 299 792.5 km/sec.

The total combined range correction is cal-
culated from

Rro=R,-Rc-Rr-RR

where RTc is the total correction to range, R,

is the surveyed distance to the calibration
target, R, is the radar distance to calibra-

tion target, and Rr is the nominal delay in the

transponders (transponder-1 delay is 112 me-

ters, transponder-2 delay is 739 meters).

6.3.3 Data Validation

The internal consistency of each set of

trac__ing data is checked by making single-

station,single-pass,Ul--'t':*-lu*b_* SOI_/+;'_*__._.._ ....C-rn,_s

errors,such as assignment of the wrong cor-

rection for transponder delay, will become

apparent at this stage. Long-arc, multiple-

station,orbitalsolutionsare then found toas-

certain data accuracy. These solutions may

be used to solve for measurement and timing

biases, if they exist.

6.4 THEORY :_

(C. F. Martin and Keith Guard, WRC)

6.4.1 Rationale of the Reduction Process

The basic problem in orbit determination

is to calculate, from a given set of observa-

tions of the spacecraft, a set of numbers spe-

cifying the orbit of the spacecraft. Because

there are generally more observations than

unknowns, the unknowns are over-deter-
mined. Therefore a statistical estimation

The material in this section was assembled with

the help of T. V. Martin and Clyde Goad, both of
WRC.
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scheme is necessary to estimate the best set
of unknowns. The unknowns include not only
the orbital elements but also station coordi-
nates and instrumental errors. The scheme
selected is a partitioned, Bayesian, least-

squares method. The complete development
of this procedure is presented later in this
section.

It should be noted that the relationships be-
tween the observations and unknowns are in

general nonlinear; thus an iterative proce-
dure is necessary to solve the resultant non-
linear equations. The Newton-Raphson itera-

tion formula is used to solve these equations.
The procedure used in the determination of
the orbit and estimation of the unknown is as
follows :

(1) An orbit is computed by the methods
of numerical integration given in section
6.4.6, with the functions given later in this
section for the forces and with a set of as-
sumed elements.

(2) The quantitities corresponding to each
observation are computed from appropriate
geometric relationships.

(3) The observations are corrected for
timing and measurement biases, as well as
for propagation time and station position
error.

(4) A linear equation relating the obser-
vations 0_, the corresponding computed val-

ues Ci, and the vector of the unknown to be
determined P is defined. The relationship is
given by

_C_

O_-C_= _p_jdPj-dOi (6.1)

where i denotes the i th observation or associa-

tion with it, dP_ is the correction to the jth
unknown, and dO_ is the error of observation
associated with the i th observation. The basic

problem of estimation for these unknowns is
to determine a solution to these equations.

The procedure adopted for solving the prob-
lems is now shown.

(5) Using the method of least squares,
with the best estimate for orbital elements
and other unknowns to be determined as the

known a priori, solve equation (6.1) for dP_.

(6) Adjust the a priori parameter-vector
by the correction dPs, and, using the cor-
rected value with its variance/covariance
matrix as known a priori, repeat the proce-
dure.

A Bayesian solution has the advantage that
any known, a priori, information such as esti-
mates of the orbital elements and other un-
knowns and their variances can be included
in the solution. In the absence of valid esti-

mates of any parameter, the associated vari-
ance can be designated as a very large num-
ber, indicating ignorance of the value. The
resulting reduction, if a state of ignorance is
assumed for all parameters, is equivalent to
a weighted least-squares solution of the line-
arized equations. Also, constraints on the
values of the parameters can be realized by
use of the a priori covariance matrices.

A number of schemes can be used for esti-
mation. One method is a batch scheme that

uses all observations simultaneously to esti-
mate the set of unknowns. An alternative
would be a scheme that uses the observations

sequentially to calculate an updated set of
parameters from each additional observa-
tion. Although batch and sequential schemes
are essentially equivalent, practical numeri-
cal problems often occur when sequential
schemes are used, especially when highly ac-
curate observations are being processed.
Therefore a batch scheme was chosen.

6.4.2 Equations

6.4.2.1 Equations of Motion

In a geocentric, inertial, rectangular coordi-

nate system, the equations of motion for a
spacecraft are of the form

GM r
_- FA

_:_

where r is the position vector of the satellite,
G is the gravitational constant, M is the mass
of the Earth, and A is the acceleration caused
by the asphericity of the Earth, extraterres-
trial gravitational forces, atmospheric drag,
and solar radiation. This provides a system of



NASA/WALLOPS FLIGHT CENTER 497

second-order equations which, given the po-

sition and velocity components at the epoch,
may be integrated to obtain the position and
velocity at any other time. Throughout this
discussion, if a vector, such as r, has been de-

fined, then the appearance of that symbol in
italics, as r, indicates the Euclidian norm
(magnitude) of the vector.

There is an alternative way of expressing
the equations of motion :

i'=V V+AD+A_

where V is the potential field of gravitation,
A. contains the drag acceleration, and AR con-
tains the acceleration resulting from solar
radiation pressure. This equation is, of
course, just a regrouping of terms coupled
with a recognition of the existence of a poten-
tial field.

6.4.2.2 Force Model

ing potential. This potential takes on the
following form :

R': GM'r(r,L\ 1-2r s+-_-v" --_ S]rar, /

where M_ is the mass of the disturbing body,
r_ is the geocentric true position of date vec-

tor to the disturbing body, S is the cosine of
the enclosed angle between r and r_, and r is
the geocentric true position of date vector of
the satellite.

The third-body perturbations considered in
A/OMEGA are for the Sun and the Moon.
Both are computed by

_,,[-d j_ 1 rd7

6.4.2.2.3 SOLAR RADIATION PRES-
SURE

6.4.2.2.1 EARTH FORCES

_1 P 11 • _ ..... J__J
i ne EarLh's graviLai, ion nero m repru_un_uu

by the gradient of the potential of a solid
body having the form of an ellipsoid of revo-
lution with small irregular variations ex-
pressed by a sum of spherical harmonics as
follows :

The force resulting from solar radiation
can have a significant effect on the orbits of
_ato.llite_ with a largo, area to mass ratio.
The acceleration from solar radiation pres-
sure is formulated as

V= 1+ _ a_ p,_(sin¢')
n=2

(C,,, cos mx+S,_ sin mx)1

where r is the geocentric distance to the satel-

lite, nmax is the upper limit for the summa-
tion (highest degree), and a_ is the Earth's
mean equatorial radius.

6.4.2.2.2 SOLAR AND LUNAR GRAVI-
TATIONAL PERTURBATIONS

The perturbations caused by a third body
on a satellite orbit are treated by defining a
function Ra which is the third-body disturb-

where

v eclipse factor such that v=0 when the
satellite is in the Earth's shadow and

v=l when the satellite is illuminated by
the Sun

C_ factor depending on the reflective char-
acteristics of the satellite

A_ cross-sectional area of the satellite

m_ mass of the satellite

P_ solar radiation pressure in the vicinity
of the Earth

r_ geocentric true unit vector of date point-
ing to the Sun

The unit vector _ is determined as part of
the lunisolar ephemeris computations.
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6.4.2.2.4 ATMOSPHERIC DRAG

A satellite moving through an atmosphere

experiences drag. The acceleration because
of this force is given by

where

CD
A,

ms

pD

1 A_
AD= - _.Co _-p, v,. v, (6.2)

satellite drag coefficient
cross-sectional area of the satellite
mass of the satellite
density of the atmosphere at the satellite

position
velocity vector of the satellite relative to

the atmosphere

Both A_ and Co are treated as constants.
Although A_ depends somewhat on satellite

attitude, the use of a mean cross-sectional
area does not lead to significant errors for
geodetically useful satellites. The factor CD
varies slightly with satellite shape and atmos-
pheric composition. However, for any geo-
detically useful satellite, it may be treated as
a satellite-dependent constant. The velocity
vector vr is computed under the assumption
that the atmosphere rotates with the Earth.

The atmospheric density is the factor
which is least well-known in the computation
of drag; however, it is essential to the com-
putation of realistic perturbations from drag.
The solution is to use the Jacchia-Nicolet

model of the atmosphere, which is perhaps
the best model currently available. In this
model, densities between 120 and 1000 km
are given with a formula for extrapolating
to higher altitudes.

The formulas for computing the exospheric
temperature have in some cases been modified
according to Jacchia's later papers (Jacchia,
1965, 1971). The computation of the density
from the exospheric temperature is also
based on data from Jacchia's later report.

6.4.3 Measurement Model

The measurement model is

Ct+At: ft (r, i-, rob) +b+/, (r, r, rob) At (6.3)

where

Ct+zt computed equivalent of the ob-
servation taken at time t+±t

r Earth-fixed position vector of
the satellite

rob Earth-fixed position vector of
the station

ft(r, _, rob) geometric relationship defined
by the particular observation

type at time t
b constant bias on the measure-

ment

At timing bias associated with the
measurement

The functional dependence of ft was ex-

plicitly stated for the general case. Many of
the measurements are functions only of the

position vectors and are hence not functions
of the satellite velocity-vector _. For nota-
tional convenience, ft will appear without the

explicit functional dependence.
The current types of observation are right

ascension and declination, range, range rate,
direction cosines l and m, angles X and Y,

azimuth and elevation, and altimeter height.
The radars used in the calibration and evalu-
ation effort measure range, range rate,

azimuth, and elevation angles; therefore
only these measurements will be described.

6.4.3.1 Range

Consider the station-to-satellite vector

o=r--rob (6.4)

where r is the satellite position vector

(x, y, z) in the geocentric Earth-fixed system
and rob is the station vector in the same sys-
tem. The magnitude of this vector o is one of
the measurements.

6.4.3.2 Range Rate

The time rate of change of 0 is

=_. (6.5)
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The velocity of the observer in the Earth-
fixed system is zero. Consider that

0=P# (6.6)

where _ is the unit vector in the direction
of O.

6.4.3.3 Angle

The azimuth and elevation angles are com-

puted by

As-- tan-_(_ -) (6.7)

E,-- sin -1 (n)

where l, m, n are the direction cosines of _.

6.4.3.4 Error Model

6.4.3.4.1 EFFECTS OF SYSTEMATIC
ERRORS ON RANGE DATA

the identification of sources of systematic

errors, a series of radar experiments de-
signed to assist in determining the magnitude
and sign of systematic errors in the range
data was performed. The identified errors
are listed in table 6.4. It should be noted that

this tabulation is by no means comprehensive
or general in nature. It gives errors that
have been identified and measured at Wal-

lops. Some of the errors are inherent in the
procedure used to gather and process the
data.

6.4.3.4.2 ANGULAR ERROR

The theoretical model for azimuth and ele-

vation errors contains the following terms:

(1) Azimuth errors: zero-set bias, dynamic
lag, nonorthogonality, pedestal leveling, skin/
beacon collimation, and encoder nonlinearity ;

and (2) Elevation errors: zero-set bias, dy-
namic lag, droop, pedestal leveling, skin/bea-
con co]!imatio_n, and e_n_coder nnnlinearity.

Corrections for all of these errors are ap-
plied to the WFC AN/FPQ-6 data obtained
during GEOS-2 tracking missions, with the
exception of the encoder nonlinearity cor-
rections and the dynamic-lag corrections.
The azimuth and elevation lag errors are
computed in real time, but the results are
recorded rather than applied in real time.
The recorded corrections can, of course, be
applied during post-mission data reduction,
and therefore the magnitudes of lag error
presented in the tables are based on the as-

sumption that such a correction will be car-
ried out after the mission.

6.4.3.4.3 REFRACTION CORRECTIONS

The refraction correction z_p appiied to
range observation is computed as follows :

2.77n, (6.8)
Ap_ 328.5 (0.026 + sin E,)

where E_ is the elevation angle computed
from the initial estimate of the satellite posi-
tion and n_ is the index of refracHnn at the
surface. If the value n_ is not specified, it is
assumed to be 1.

For range rate the correction ,xp is derived
from the range correction :

2.77 n, cos E, Ez
328.5 (0.026 + sin E,)

(6.9)

where E, is the computed rate of change of
elevation. For observations of range or
range rate from certain stations, there is a
correction to account for the mean daily
variation of the index of refraction at the

surface. This correction, which is a correc-
tion to the product (2.77/328.5) n_, is com-
puted by linear interpolation in an hourly
table.

For elevation observations the correction

_E_ is computed as follows :

n'10_ (6.10)
hE,= 16.44+930 tan E,

Azimuth is not affected by refraction.



500 NATIONAL GEODETIC SATELLITE PROGRAM

6.4.3.5 Data Preprocessing

The function of data preprocessing is to

convert and correct the data. These correc-

tions and conversions relate the data to the

physical model and to the coordinate and time
reference systems used. The corrections and

conversions are (1) to transform all observa-

tion times to Atomic Time (A1) at the satel-

lite, (2) to correct range measurements for

transponder delay, and (3) to correct for
refraction.

The transponder delay correction _e_ is

computed as a polynomial in the range rate:

Ap_=ao+al _+a=, h_ (6.11)

where ao, al, and a_ depend on the char-

acteristics of the particular satellite.

6.4.4 Adjustment Equations: Bayesian Least-

Squares Estimation

Consider a vector z of N independent ob-

servations whose values can be expressed as

known functions of M quantities denoted by

the vector x. The following nonlinear regres-

sion equation holds :

z=f(x) +6 (6.12)

where d is the N vector denoting the noise on

the observations. Given z, the functional

form of f, and the statistical properties of

_, the estimate of x that is "best" in some
sense must be obtained.

Bayes' theorem in probability holds for

probability density functions and can be
written as follows :

p (xlz) - p (x)p(_.) p (_lx) (6.13)

where p (x!z) is the joint conditional proba-
bility density function for the vector x, given
that the data vector z has occurred, p (x) is

the joint probability density function for the

vector x, p (z) is the joint probability density

function for the vector z, and p (z]x) is the

joint conditional density function for the

vector z, given that x has occurred.

Often p(x) is referred to as the a priori

density function of x, and p (xlz) is referred

to as the a posteriori conditional density

function. In any Bayesian estimation scheme

this a posteriori density function must be
determined and from this function determine

a best estimate of x, which can be denoted _.

To obtain the a posteriori conditional

density function, an assumption must be

made concerning the statistical properties of
the noise on the observations: the noise

vector _ has a joint normal distribution with
mean vector 0 and a variance-covariance

matrix _:. _: is an N×N matrix agd is

assumed diagonal; that is, the observations

are considered to be independent and uncor-
related. The best estimate of x, _, is defined

as that vectur maximizing the a posteriori

density function; this is equivalent to choos-

ing the mean value of this distribution. An

estimator of this type has been referred to as
the maximum likelihood estimate in the

Bayesian sense.
A further assumption is that the a priori

density function p (x) is a joint normal dis-
tribution and is written as follows:

M

Det(_]) exp -_ (x-xA) rp(x) = 2_

×_ (x-x,_) ] (6.14)

where xA is the a priori estimate of the pa-

rameter vector and F_A is the a priori vari-
ance-covariance matrix associated with the

a priori parameter vector. F_A is an M×M
matrix, which may or may not be diagonal.

The conditional density function p(zlx)

can be written as

N

rpet(E
p(z[x)= L 2= ]:-exp( - l[z-f(x)]T

It can be shown that maximizing the a pos-

teriori density function p(xlz) is equivalent

to maximizing the product p(x)p(zlx) be-

cause the density function p (z) is a constant
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valued function. Further, this reduces to
minimizing the following quadratic form:

where 2 ".) is the n t'' approximation to the
true solution 2. Now

(x--xa)
+ [z-f(x)]T_: -I Ez-f(x)] (6.16)

This results in the following set of M non-
linear equations :

B Z?Ez f( )l +Z:'(x-xA):0 (6.17)
where B is an N×M matrix with elements

B_M-- DfN(x) x=£ (6.18)
DXM

This equation defines the Bayesian least-
squares estimation procedure. It has not been

stated how the a priori parameter vector and
variance-covariance matrix were obtained.

In practice, these a priori values are almost
always estimates that have been obtained
from some previous data. In these cases the

..... :- ^_*_-+-_ _._ identical to the classi-
cal maximum likelihood estimates that would

be obtained if all the data were used; in this
context the a priori quantities can be con-
sidered as additional observations.

The variance-covariance matrix of £, V is
given by

(6.22)

Then differentiating and neglecting second
derivatives gives

OF(2)_

Substituting equation (6.23) in equation
(6.21) gives

--X .... _-(BT_.dzlB'_-_-A1)-I{B T

[z-f(2) (,,)]

Now let 2("+_'A2 '"', the correction to the n'"
approximation, be denoted by dx (_-_), and let
z-f(2("'), the vector of residuals from the

n th approximation, be denoted by dz ("). Equa-
tion ...... '- -- _"......

(IC}.._'ql:) IJlll¢ll k/_:;k, ull,ltvo

d,-,+ (,.....x,)]
(6.25)

V=[Br__-_B+__-A_] -_ (6.19)

6.4.5 Iteration Method

A set of M nonlinear equations in M un-
knowns 2 has been defined in equation

(6.17) ; these equations are solved by means
of the Newton-Raphson iteration formula.

Equation (6.17) can be written as

F(2) =0 (6.20)

The iteration formula is

2_(9'+1)----_ ('/) --[_F(2--)_--1 _'_(2 (_)) (6.21)
\ a2 /

6.4.6 Computational Methods

Direct numerical integration of both the
equations of motion and the variational equa-
tions is used to obtain the position, the
velocity, and the attendant variational par-
tials at each observation time. The integrator
output is not required at actual observation
times; it is given on an even integration
step. An interpolation technique is used to
obtain values at the actual observation time.

The specific numerical methods used for this
integration and interpolation are now pre-
sented.

First consider the integration of the equa-
tions of motion. These equations are three
second-order differential equations in posi-
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tion and may be formulated as six first-order

equations in position and velocity if a first-

order integration scheme is used for their
solution. For reasons of increased accuracy

and stability, the position vector r is obtained

by a second-order integration of the accelera-

tions ¢, whereas the velocity vector _ is ob-

tained as the solution of a first-order system.

These are both 10-point multistep methods

requiring two evaluations of the derivative

on each step.

To integrate the position components, a

StSrmer predictor

q

rn+l--2rn--rn-1 + (ah)'-'_*pi%-p (6.26)
p=0

is applied, followed by a Cowell corrector,

q

rn+,:2r,_-rn-_ + (Ah)_-_7(lpi',,-p+, (6.27)
p:0

The velocity components are integrated by

using an Adams-Bashforth predictor,

q

_,,+, =_n+±h__,fl_ r_-p (6.28)
p=l)

followed by an Adams-Moulton corrector,

q

i'n+_=r,_+Ah__,flqp _,,_p+_ (6.29)
p=O

In these integration formulas, ±h is the inte-

gration step size, q has the value 9, and 7q_,

_*p, fl*,, and fl_ are coefficients.

6.4.7 Unmodeled Errors

The assumptions inherent in the least-

squares orbital solution are never completely

satisfied, primarily because of various sys-

tematic errors existing in the measurements

and force model. Various procedures can be
used to minimize these errors, such as careful

data preprocessing, use of the best available

set of gravitational coefficients, inclusion of

all significant perturbative forces, and esti-

mation of model errors. However, the num-

ber of such model errors that can be success-

fully estimated is limited by computer storage

and running time considerations, as well as

by the information contained in the data

themselves. Furthermore, there are limita-
tions on our knowledge of the most significant

errors and on our ability to model certain

types, particularly force model errors.

It follows that the assumptions underlying

the least-squares orbital solution can never

be completely correct. As a corollary, this
means that solution accuracy estimates,

which assume that all systematic effects have

been modeled, will give overly optimistic
error estimates.

Realistic estimates of the accuracy of a

least-squares orbital solution can be calcu-

lated, provided that error estimates for the

ignored quantities are available. As a by-

product of this calculation, the effects on the
orbithl solution of each individual error

source are available and may be used to iden-

tify the importance of various error sources

on a particular solution.

6.4.8 Extension of Error Analysis (ORAN)

The mathematics used to calculate the

effects on an orbital determination (and/or

instrumentation calibration) of certain in-

accurate assumptions made in the minimum-

variance type reduction of orbital tracking
data are outlined in this section; in particu-

lar, the effects of ignoring the presence of

various systematic errors are discussed. In

general, the order in which the operations are

performed is not specified.

Consider first the propagation of unmod-
eled errors into the orbital elements and bias

parameters estimated for a single arc. The

measurements may be related to the orbital

elements and biases by the matrix equation

(m) ..... _= (A) .... 6 (a)6×_+ (K) ....... (_)_la×l

+ (B) ........ (7) .... _+ (E)..... 1 (6.30)

where

m column vector representing the devia-

tion of the actual measurement from

that for some approximate orbit

(Also called the discrepancy vector)
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A matrix giving the partial derivatives

of the measurements with respect to
the epoch orbital elements, evaluated
along the approximate orbit

a column vector representing the devia-
tion of the true orbital elements at

epoch from those for the approximate
orbit

K matrix giving the partial derivatives

of the measurements with respect to
those biases that are adjusted

B same as K but with respect to param-
eters that are not to be adjusted

k deviations of the adjusted quantities
from their approximate (or esti-
mated) values

7 same as k but refers to quantities lhat
are not to be adj usted

c column vector representing the ran-
dom noise on the measurements

nm total number of measurements

na number of adjustable biases

nu number of unadjusted biases

With 7 known, the minimum-variaiice _^1_
tion of equation (6.30) for a and k is

= KrWA KrWK_] LKTW_] (m-B_,)

[ioMo,7[A W7M_ MI:J LKrW_] (m-BT)
(6.31)

where

W -1 = E (c _r) (6.32)

Var (a) mo_=M_

Var (]¢) ,,od= Mk

and the covariance is given by

Cov (dk T) mo_= M_k

(6.36)

(6.37)

The contribution of the unadjusted quantities
to the total variance will be computed as

_h
-- = --M_ArWB- MkKrWB (6.38)

With the use of equations (6.34) and (6.35),
equation (6.38) may be rewritten in the more
convenient form

_5 (ArW A)_I[ArWB+ArWK__]-_=-
(6.39)

As such, the total variance of the d esti-
mate is not computed. To see the expression
that should be used to compute the total

variance nf /_ compute the expected value

Var ]¢=E (]_ fc_)

= E [MrA_W + MkKrW]

(m-BT) (m-BT) r

× [MrArW + MkKrW] r (6.40)

If it is assumed that

E(m m r) =E(, _T) =W-_ (6.41)

E(mTr)=0 (6.42)

M_= [KTWD-KrWA (ATWA)-,ArWK]-_

(6.33)

M,_= -QMk, with Q= (A_WA)-_A_WK

(6.34)

M_= (ArWA) -_ + QMkQT (6.35)

The variances of these estimates, if the un-

modeled quantities are neglected, are given
by

E(7 7_) =Var _ (6.43)

then equation (6.40) may be written as

Var k= (M_Ar+ MkK _) (MrATW

+ M_KrW) _+ (MrATWB
+ MkKrWB) Var 7 (Ma_ ArWB
+ MkKrWB)

=M,:+_Var./(_)

(6.44)
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6.5 RESULTS

6.5.1 Introduction

(C. D. Leitao, NASA/WFC,

Brooks, WRC)

and R. L.

The most significant instrumental and

geodetic accomplishments have been the fol-

lowing :

(1) The range accuracy of properly op-
erated and ground-calibrated C-band radars

was ascertained. The WFC station results

indicate that the AN/FPS-16 and AN/
FPQ-6 radars are capable of providing

ranges to satellites with an accuracy of 1 to 4
meters.

(2) The pulse Doppler system of WFC's

AN/FPQ-6 was used to derive ranges from

range-rate measurements. The resulting

ranges exhibit noise values as low as 0.0006
meter.

(3) Radar data were filtered to reduce

storage requirements and computer time, but
statistical content was retained.

(4) Range, angle, and timing biases were
determined.

(5) Coordinates and intersite distances

for participating radars were determined.

(6) Geoidal profiles and geodetic posi-

tions of Apollo tracking ships were deter-

mined from data acquired with ship-borne
and land-based radars.

(7) A set of resonant geopotential co-
efficients was estimated from C-band radar

data on GEOS-2.

(8) Geodetic positions for underwater,

acoustic-transponder arrays were deter-
mined.

6.5.2 Description of Results

6.5.2.1 Achievable Range Accuracy
(H. R. Stanley NASA/WFC and D. J.

I)empsey, RCA)

Generally speaking, the C-band radars are

unmatched as geodetic instrumentation in

terms of dependability, consistency, and pre-
cision. To evaluate their accuracy, the foi-

lowing comparisons were made :

(1) Radar parameters were varied dur-

ing the tracking of GEOS-2. Residuals from

short-arc reduction show effects on the range

measurements of changing parameters such

as pulsewidth, bandwidth, and prf. Some of

these effects are shown in figure 6.3. The
increased measurement noise in the 180- to

280-sec time interval is because of skin

tracking of GEOS-2. The remainder of the

data is from transponder tracking.

(2) Range residuals from collocated

radars were compared to assess relative ac-

curacies. Eight meters of the observed-range

differences WFC AN/FPS-16 minus AN/

FPQ-6 (shown in fig. 6.4) are attributable

to the AN/FPS-16 use of a water tank for

calibration, rather than a point source.

(3) Range residuals from collocated ra-

dars and lasers have been compared as an

independent check (table 6.5). The average
range difference in the WICE was only 0.5

meter (laser minus AN/FPQ-6).
(4) Unweighted WICE radar and laser

range measurements were compared with

12
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FIGURE 6.3.--Effects on range measurements of

radar parameter variations.
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ranges to an orbit determined from camera
observations. The results are shown in tables
6.6a and 6.6b.

6.5.2.2 Spectral Analysis and Data Compac-
tion
(Keith Guard, WRC)

The goals were to evaluate and analyze the
spectral content of the data and to develop
a data compaction scheme for supplying C-
band data to the National Space Science Data
Center (NSSDC). (See ch. 1.)

6.5.2.2.1 SPECTRAL ANALYSIS

Determination of spectral content, or
power spectral-density estimation, is con-
cerned with decomposition of the time do-

main signal into periodic components, as a
function of frequency, and determination of
the average power in each component. The
term "power" used in this context refers to

the mean squared amplitude of the compo-
nent, in analogy to the mean squared ampli-

rude of a sinusoidal voltage passed through
a unit resistance.

The spectral density of the signal com-
ponent of the data from range, azimuth,
and elevation measurement when a satellite

is being tracked is concentrated at frequen-
cies lower than 0.05 Hz. A low-pass filter,
with sharp cutoff at 0.05 Hz, will retain all

signal content of the data and reject almost
all noise content.

6.5.2.2.2 DATA COMPACTION

For much geodetic work, such as the
estimation of potential coefficients or the

determination of station positions, long arcs
of data must be processed. At the sampling
rate of 10 observations per second an exces-
sive number of observations must be proc-
essed. The solution is not necessarily simply
to discard data. A method based on selecting
each N 'h point and discarding N-1 of every
N points will throw away information with

the discarded points. In the frequency do-
main representation this method of data
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compaction introduces aliasing or frequency

foldover of the higher-frequency noise com-

ponents into the lower-frequency signal

components of the spectrum.

A data smoothing or filtering scheme must

be used so that the frequency of observations,

or sampling rate, is significantly reduced

while most of the original information is

retained. The design goal is to reduce to a

minimum the amount of data necessary to
maintain the statistical-information content

of the noncompacted data. The filtering

operation must decrease the bandwidth of the

noise content of the data, so that the cutoff
frequency L is reduced. Then the data selec-

tion interval can be chosen to avoid frequency
foldover effects and to minimize serial cor-

relation of the data.

Filtering before selection of data improves
the rms of the residuals in a short-arc fit,

over simply selecting raw data. In one typical

test (data from WICE test 80) the rms of

the residuals from the unfiltered range data
was 0.762 meter and from the filtered range

data 0.388 meter; noise with an rms value of

0.656 meter has thus been filtered out of the
data.

Data filtered before selection produce es-
sentially the same orbital elements as data

selected without filtering, for both short-arc
and long-arc orbital reduction. This result

demonstrates that filtering does not change

the statistical content of the data and that

the accuracy of the data is unaffected by

filtering.

6.5.2.2.3 TIMING TRUNCATION PROB-

LEM IN NSSDC FORMAT

In the course of this investigation, a

time truncation problem with the NSSDC

format was covered. After a digital filtering

program was applied to C-band range data
on the GEOS-2 satellite, an orbit was fitted

to the data and residuals with respect to the

orbit were computed. A plot of the residuals

showed a number of discontinuities, or

jumps.
Investigation revealed that the jumps re-

sulted from a truncation of the timing data

on the input to the orbital program. The

times were given to four decimal places, in

seconds, as specified in the NSSDC format.

When the fourth digit changed, the computed

range jumped. These orbital data were the

first with sufficient precision to detect this

jump of less than _/./,meter in a range of over
three million meters. A segment of the

plotted residuals is shown in figure 6.5.

6.5.2.2.4 CONCLUSIONS

On the basis of the preceding results, it
was concluded that the radar data that were

to be stored for general scientific use be

filtered with a low-pass filter, with cutoff

frequency at 0.1 Hz, then sampled at one

sample per 10 sec. The 0.1-Hz filter would

reduce the random noise content essentially

to zero and provide for negligible error con-

tribution caused by frequency folding or

aliasing when the data were sampled at one

sample per 10 sec. The one sample per 10 sec
is recommended as the smallest sampling

that simultaneously provides negligible serial
correlation for short-arc residuals and negli-

gible effects of frequency folding for a 0.1-Hz
cutoff filter.

Data that are to be used only for long-arc

reductions can be compacted by simply select-

cL

t

cL

T
I

I

I1 II II IIIIII

I

',_ 17 SEC

TIME

FIGURE 6.5.--Effect of truncation of timing data.
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ing data at one point per 10 sec or one point
per 20 sec. The slight increase in bias and
low-frequency error, which can theoretically
be expected to result from frequency folding,
apparently does not appreciably affect the
orbital reduction.

Data should not be sampled at greater than

20-sec intervals, pending further investiga-
tion, since the frequency folding of the low-
frequency noise might appreciably affect the
data.

bias, in increments of 10 msec, during this

period of concentrated tracking. As a result,
the January-February 1969 NCARNV data
were not usable. The cause of this error has
also been corrected.

The remaining timing biases listed in table
6.7 are presumed to have their origin in the
site timing hardware and are considered to
be stable. There were no apparent timing
biases at the two Bermuda radars or at

Tananarive, Ascension, Antigua, or Merritt
Island.

6.5.2.3 Determination of Biases 4

Data from several stations and throughout

eight arcs were reduced to determine range
biases, timing biases, and improved station
coordinates on the SAO 1969 Standard Earth
Datum. The biases and coordinates were

estimated in an iterative solution, the range
time tag, the bias should be subtracted alge-
by-arc basis.

6.5.2.3.1 TIMING BIASES

The estimated timing biases are listed by
station in table 6.7. To correct the recorded

time tag, the bias should be subtracted alge-
braically from the time tag.

At the request of NASA/WFC, the Weep-
ons Research Establishment personnel in-
vestigated and verified that a software error
(one record skip at 40 pps) had caused a
- 0.025-sec time bias in the WOOMERA data.
The software error has since been corrected.

The timing error at WFC did not result
from timing at the radar but was caused by
a freak occurrence of a -0.1000-sec error in

the time generated by Wallops Station Cen-
tral Timing. The cause of this error has been
removed, and this timing bias is not expected
to reoccur.

Unfortunately, the radar at Carnarvon,
Australia (NCARNV), had a variable timing

' These investigations relied heavily on the help of

Renzo Mitchell, RCA; J. T. McGoogan and W. F.

Townsend, NASA/WFC; W. T. Wells, WRC; and
S. K. Gareutte, AFWTR.

6.5.2.3.2 RANGE BIASES

The recovered range biases are listed by
station in table 6.8. To correct the range
observations from a particular station, the
estimated bias should be algebraically sub-
tracted from the observation. All the biases

listed in table 6.8 may be explained on the
basis of pulsewidth mismatch.

The GEOS-2 transponder transmitted
pulsewidth was determined by NASA/WFC
personnel to be 0.____u._ _sec. The _Lim_t_d
range biases are valid only for C-band radar
tracking of GEOS-2 or for other trans-
ponders that return a 0.6-_sec pulsewidth.
However, unless the radar pulsewidths are
changed, the same relative biases may be
used for other transponder tracking.

6.5.2.3.3 ANGLE BIASES

In an effort to estimate angle biases, the
azimuth and elevation measurements of the

radars were compared with an orbit deter-
mined by range measurements from several
stations and six arcs. The angle biases were

determined on a pass-by-pass basis, and these
values were in turn averaged. Those biases
are listed in table 6.9.

There is no practical means of verifying
the angle biases except to see them reoccur in

independent orbital solutions. The Wallops
C-band radar angle biases have been observed
to be stable for 4 years.
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6.5.2.3.4 REMARKS ON CALIBRATION

(D. J. Dempsey, RCA)

6.5.2.3.5 WHITE SANDS MISSILE
RANGE INVESTIGATIONS

(Arturo Borrego, WSMR)

It was of course anticipated that each
radar could have time or measurement biases

or that the station coordinates might be in
error. In the course of this study, several

other problem areas were encountered and
resolved. The most significant of these were

pulsewidth mismatch and refraction.
Since the radar can only be calibrated by

using its own transmitter-output pulsewidth,
a transponder-generated return pulse will

introduce some pulsewidth-dependent range
bias. The range bias Bp caused by the pulse-
width mismatch is approximately

Bp= 0.5 (P1;-P(_) (150 m/_sec)

where Pj_, is the received pulsewidth from
transponder in _sec and Pc is the radar nom-

inal pulsewidth in _sec.
The effect of the pulsewidth mismatch was

made particularly noticeable when it was
observed that a 15-meter range discrepancy

existed between Bermuda AN/FPS-16 and
AN/FPQ-6 radars, the AN/FPQ-6 measur-

ing longer. On request, Bermuda personnel
measured the radar pulsewidths and found
that their norminal 0.5-nsec pulsewidths

actually were 0.38 t, sec (AN/FPQ-6) and

0.55 _sec (AN/FPS-16).
Radar range measurments are made on a

well-surveyed calibration target, both before
and after each track to obtain zero-set cor-
rections. The multistation reductions cur-

rently being performed have promoted the
realization that significant range errors (in
that indicated range measurements are

short) will result if refraction effects are not
taken into account during the calibration.
This error is nominally as large as 13 meters

for the Carnarvon AN/FPQ-6 radar, because
their range calibration target is approxi-

mately 48 km distant. For other radars, this
error is normally I to 2 meters.

White Sands Missile Range (WSMR)
started tracking the GEOS satellite early in
1969 and obtained data intermittently
through 1972. Some of the data were turned
over to NASA and other missile ranges in

support of their experiments, and some were
utilized to measure instrumentation per-
formance. The instruments used were the

AN/FPS-16 radars.
The most significant finding uncovered

through use of the GEOS-2 tracking data
was a timing error in several WSMR radars.
By processing the data through the NASA-

developed ORAN program the error mag-
nitude was identified as 50 msec.

WSMR was not able to fully utilize the
calibration potential of the GEOS-2 C-band
project. Participation in the C-band project
was rather limited considering the number
of C-band radars in use at WSMR. Never-

theless, some significant error sources were
uncovered, and it is expected that the ex-
perience gained will allow WSMR to make
more effective use of future calibration

satellite programs.

6.5.2.3.6 PACIFIC MISSILE RANGE IN-
VESTIGATIONS: SOURCES OF
ACCURACY DEGRADATION
(John Belgin, PMR)

Some of the sources that were found to

affect the accuracy of the radars tracking
the GEOS-B satellite are as follows.

(1) Pulsewidth matching: Some of the
radars have been directed to use a pulse-
width of 1 _sec. While the actual transponder
reply is 0.6 _sec, there is a difference of 0.2
t_sec between the two centroids when the
same leading edge is referenced. The 0.2-
_sec difference results in a range bias that
represents __ 30 meters of range error that
must be added to the data to maintain cali-
bration.
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(2) Timing: A constant timing error of

approximately 2 to 3 msec in the range ma-
chine in radar 003004 (Point Mugu) was still

present when it was transferred to radar
003002 (also at Point Mugu) in December

1968. There was also a variable timing error

because of the trigger being nonsynchronous

with the 10-sample/sec read pulse. Although
the Engineering Section was cognizant of the

error, the values from the regression tech-

niques gave a more exact value of the error

magnitude.

(3) Angular bias : Radar 003002 has con-

sistently exhibited a large bias in azimuth
and elevation. It has been determined that

a combination of survey, zero set, and rf
collimation errors is the reason for the large

bias.

(4) Transponder delay setup: After ex-

amination of the transponder delay inserted
into each radar and conversations with the

radar personnel, it was concluded that there
were several different methods being used for

transponder delay setup. It was also noted
that not all the methods had a high degree

(5) Downrange timing/survey error:

There is an indication that a timing error

and/or survey error exists at the Johnston

Island radar tracking sites. This is under

investigation (1972).

(6) AN/FPQ-10 cyclic error: On all

GEOS-B operations the AN/FPQ-10 radar

data had a cyclic error in slant range. The

error was a function of range rate and had

a maximum magnitude of _ 35 meters (peak

to peak) at a slant range of __ 6500 m/sec

and was present in data from all AN/FPQ-

10 radars. A significant portion of the error

was because of the lack of the velocity cir-

cuit in the range register.

6.5.2.4 Determination of Tracking Station
Coordinates

(R. L. Brooks, WRC, and C. D. Leitao,
NASA/WFC)

With the assumption that the uncertainty

in (_, A, h) of all stations except NWALI3
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was 10 see in latitude and longitude and 10

meters in geodetic height, the data were

reduced by means of the theory given previ-
ously to estimate the geodetic coordinates.

The WFC AN/FPQ-6 radar, NWALI3,
was chosen as the origin because there was

greater familiarity with its data, there was
confidence in its accuracy, it is located on

the North American Datum (NAD), and it

is easily transformed to the SAO 1969

Standard Earth Datum (Lundquist and Veis,

1966). The estimated station coordinates on
the datum used for SAO 1969 Standard Earth

Datum are given in table 6.10.

6.5.2.4.1 INTERSITE CHORD

DISTANCES

Intersite chord distances have been com-

puted using NAD coordinates, and the results

have been compared with the recovered inter-
site chord distances on the Common World

Datum. This comparison is shown in figure
6.6.

WTRVAN'   __ 4< ALl3

°°..
RAOA.I .YPEIISITE DATUO WTRVAN

N.Am. 3 960 251

NWALI3 C-Band 3 960 243

C.C.

N.Am. q 997 851

4 997 854

3 770 614

NBER34

ERTMR,.._..._T

C-Band

N.Am.

C-Band 3 770 612

ETRMRT NBER34

1 149 602 I 160 594

l 149 614 i 160 599

1 149 612

1 593 091

1 593 106

CHORD DISTANCES

IN METERS

FIGURE &&--Comparison of intersite chord dis-
tances: North American datum versus C-band
datum.
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6.5.2.4.2 LATITUDE, LONGITUDE, AND
HEIGHT

Jury (unpublished, 1972) has analyzed
several sets of results from satellite geodesy
to ascertain their agreement at Antigua, Ber-
muda, and Ascension in the Atlantic Ocean
area. The C-band results compare favorably
(agreement within 5 meters), with one ex-
ception; there was a 10-meter difference for
Bermuda, which has one of the best-deter-
mined station positions.

Jury's results are affected not only by
uncertainties or inconsistencies in the local

surveys, _but also by uncertainties in the
parameters required to transform from the
various datums to the common datum used
for comparison. AFETR has adopted the
transformed C-band position of Ascension
as its standard for the AFETR Coordinate
Manual.

Vincent et al. (unpublished, 1971) have
determined the precision of several investiga-
tors' solutions for geoid height on a world-
wide basis. These results are shown in table
6.11. It can be seen from this table that C-
band results are consistent with current and

past geoid determinations.

6.5.2.4.3 EASTERN TEST RANGE IN-
VESTIGATIONS

(Milton Hillhouse, AFETR)

Eastern Test Range investigations with
GEOS-2 C-band radar data have been pri-
marily concerned with geodetic survey im-
provements and transponder array position-
ing in ocean areas. In this section the role
played by C-band tracking radars in reducing
survey uncertainties for the MISTRAM/
MRS system is described. This special effort
was undertaken because survey uncertainties
at the MISTRAM/MRS sites at Grand Turk,
Antigua, Bermuda, and Trinidad affected the
MINUTEMAN-3 (MM-3) velocity accura-
cies after burnout. The flight interval of
interest was between 300 and 900 sec. This

circumstance led AFETR to place the MIS-
TRAM/MRS vans at new locations. It had
been shown that, if a survey improvement

could be effected for these four X-band sites

relative to the Florida mainland, a significant
contribution would be made toward improv-
ing the MM-3 velocity accuracies.

Theoretical studies performed early in the
calibration satellite effort had indicated that,
even with a moderate amount of data, a
significant improvement over existing uncer-
tainties could be obtained. The limitation on
studies of this type is that the physical situa-
tion assumed in the study may not completely
describe the actual situation under which the
data are collected relative to data availa-

bility, noise in the data, and the significant
parameters in the solution. The last two
limitations apply to the error propagation
obtained from the actual reduction.

This study was the first attempt at AFETR
to use C-band pulse radar data from satellites
in short-arc solutions for survey improve-
ment. The conclusions reached were :

(1) The method can properly determine
any major inconsistencies.

(2) Weaknesses in the adjustment will
be identifiable from internal comparisons.

(3) When the results were internally
consistent, comparison with adjustments ob-
tained by other means were, for the most
part, consistent within the uncertainties
quoted.

(4) The results were obtained relatively
quickly, in comparison to results using bal-
listic cameras.

6.5.2.5 Geoidal Profile Above Puerto Rican
Trench
(N. A. Roy, WRC, and H. R. Stanley,

NASA/WFC)

The object of the experiment was to deter-
mine whether it would be possible to use ship-
borne radar tracking of a satellite to position

a ship precisely enough to measure the de-
pression (with respect to a fitted ellipsoid)
of the sea surface believed to exist across the

Puerto Rican Trench.
Heights of the USNS Vanguard, and thus

the heights of the sea surface across the
Puerto Rican Trench, were estimated from
the orbital parameters of the GEOS-2 satel-
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lite as determined by land-based and ship-
borne C-band radars. The estimated ocean

surface profile has been compared with a
profile determined in 1966 by von Arx using
different techniques. As will be shown, the
results indicate that a depression (with re-
spact to a fitted ellipsoid) of the sea surface
exists over the trench, and that ship positions
may be accurately determined in open ocean
areas. A calibration area for satellite-borne

altimeters has been provided also.
Extensive error analyses performed before

the experiment showed that ground-based
range tracking of the satellite from two
stations, Antigua and Grand Turk, in addi-
tion to the ship, on two consecutive revolu-
tions of the GEOS-2 satellite would be

sufficient for ship height determination to
within 2 to 3 meters. Precise height deter-
ruination is more difficult than estimation of

latitudes and longitudes with comparable
accuracies.

The error analyses showed that the ship
height estimation is sensitive to nearly all
measurement, timing, and navigation biases

that might occur. This result indicated that
two consecutive revolutions of the satellite

were necessary to lessen the effects of any
biases and that a very precise navigation
system would be needed if only range meas-
urements from the ship were to be used.

During the period 25 June through 5 July
1970, tracking data were acquired by land-
based radars and the radar aboard the Van-

guard as the ship cruised in the test areas
shown in figure 6.7. Test 9 was made dock-
side at San Juan.

The experiment plan was as follows: (1)
use the land-based C-band radar to refine
the position of Grand Turk relative to

Antigua to obtain the best base line possible;
(2) determine the GEOS-2 orbital param-
eters using the range data from Antigua
and Grand Turk for each pair of consecutive
revolutions; and (3) then, holding the
determined GEOS-2 orbit fixed, use the ship's

radar range data to determine the ship's
latitude, longitude, and height (height above
the spheroid) at the beginning of the first
GEOS-2 pass.

O GRAND TURK

0o

I T
66 ° 63 °

TEST 3CO TEST 5

z____ TEST i

TEST 8L_.)

OTEST 6
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_i 8 °_
o
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FIGURE 6.7.--Ship test location for ocean surface profiling experiment.
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The results are compared with the results
of von Arx (1966) in figure 6.8. The von

Arx results were obtained from both gravi-
metric and astrogeodetic measurements dur-
ing his experiment in 1966, and the results
are shown by the solid and dashed lines. Since

von Arx used a different reference spheroid,
his results have been transformed to the SAO

Standard Earth II Ellipsoid.
The results of this experiment conclusively

show that it is possible and feasible to use
shipborne radar tracking of satellites to posi-
tion a ship precisely enough to measure
geoidal profiles in areas of rather severe
geoidal undulations, such as the Puerto Rican
Trench.

6.5.2.6 Estimation of Resonance Coefficients
(C. F. Martin, WRC)

A set of 13th-order resonance coefficients

for the SAO M-1 model was estimated by the
use of only C-band radar data. These co-

efficients are listed in table 6.12. As another
test of the coefficients, camera data from 5
days in the 28 April to 4 May 1968 period
were reduced both with and without the use
of the estimated coefficients. The solution
with the coefficients had an rms of fit of 3.95

arc sec, compared with an rms of fit of 6.16
arc sec obtained when the coefficients were
not used.

Although the model (SAO Standard Earth
I, Gaposchkin, 1966 a, c) used to obtain these
results has since been supplanted, the tech-
niques used are still valid.

6.5.2.7 Positioning Transponder Arrays in the
Bahamas and Off Puerto Rico
(G. Mourad and N. M. Fubara, Battelle

Memorial Institution)

The use of shipboard C-band radar for
positioning (locating) arrays of underwater
acoustic transponders was investigated in
two experiments, one in the Bahamas and
the other over the Puerto Rico Trench.
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The Bahamas experiment was conducted in
September 1969 in an area where a trans-
ponder array was already implanted on the
ocean bottom at a depth of about 5000 meters
by the U.S. Navy. The location of the array,.
which consisted of four transponders form-
ing a quadrangle of about 5 km on each side,
is shown in figure 6.9.

The location of the Puerto Rico Trench

experiment, which was conducted during

July 1970, is shown in figure 6.10. A traverse
about 200 km long consisting of eight stations
across the Puerto Rico Trench was made and

the profile measured. Four transponders
were emplaced in about 5000 meters of
water at the northern end of the traverse

to provide the necessary geodetic control for
the traverse.

The following accurately-timed simultane-
ous measurements were made: (1) acoustic
measurement ranges between ship and trans-
ponders as the ship made various predeter-
mined tracks over and around the array; (2)

77 °

/
/

-- 26 °

FIGURE 6.9.--The Bahama_ experimcnL.

determination of the ship's position by the
three land-based LORAC transmitters (Ba-
hamas experiment only) ; (3) radar measure-
ment of ranges between ship and GEOS-2
satellite during its passes; (4) measurement
at the ship of the Doppler shift in the satellite
signal; and (5) determination of the astro-
nomic position using a special star-tracking
device, INS.

6.5.2.7.1 REVIEW OF DATA REDUC-
TION AND ANALYSIS

The determination of three-dimensional
coordinates of geodetic control on the ocean

bottom involves the solution of two problems :
(1) accurate determination of geodetic posi-
tions of the survey ship, and (2) the simul-
taneous determination of the ship's position
relative to the transponders by acoustic
ranging. The solution of the first problem is
the main purpose of the measurements from
the C-band radar, Doppler receivers, and/or
LORAC receivers as in steps (2), (3), and
(4) of the preceding paragraph.

The most commonly used technique for
locating transponders on the bottom trom
measurements on the surface is that of line

crossing. However, this technique has seri-
ous accuracy limitations, requires stringent
control of ship's heading and speed, and also
requires accurately determined transponder
depth. Details of this technique are described
in Mourad (1970), Mourad et al. (1972),
and Fubara (1971). To overcome these limi-
tations and meet the objectives of the two
experiments, several new high-precision tech-
niques were developed. These techniques are
described in detail by Fubara and Mourad
(unpublished, 1972).

6.5.2.7.2 RESULTS OF THE BAHAMAS
EXPERIMENT

In table 6.13 are given the adjusted geo-
detic coordinates of the transponders and
their standard errors in geographic coordi-
nates (based on the 1960 Fischer Ellipsoid
a=6 378 166 and 1/f=298.3) as determined
by using the two available sound-velocity
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FIGURE 6.10.--The Puerto Rican Trench experiment.

profiles. The influence of variations in the
velocity of sound on the coordinates was
significant. However, the standard errors
for each transponder did not vary greatly.
This was'expected, because the same set of

"observed" ranges and weighting criteria
were used, and sound velocity is only a scal-
ing parameter. The data used to obtain these
coordinates included approximately 1500
acoustic ranges from the ship to the three
transponders. The ship positions used were
derived from the LORAC positioning system.
SINS data were used in the line crossing
computations. Several corrections made to

the raw data in an attempt to eliminate sys-
tematic errors included the corrections for
effects of the ship's velocity on the acoustic
data and for antenna offset from the bathy-
metric navigation system (BNS) transducer.
As was expected, increase in the number of
observations improved the precision of the
adjusted coordinates of the transponders.

6.5.2.7.3 RESULTS OF THE PUERTO
RICO TRENCH EXPERIMENT

The results are shown in tables 6.14 and
6.15. The maximum error was in side 2-4,
which had only one pair of usable coplanar
ranges instead of the ideal minimum of three

pairs. Such precision indicators are con-
sistent with the type of data involved in the
computations; they are as expected from
earlier simulation studies (Fubara and Mou-
rad, unpublished, 1972). It should be noted
that the lengths of sides are small relative to
the average depth, whereas the theory
showed that optimum results should be ob-
rained when the ratio is between 2 and 2.5.

The geographic coordinates and the ellip-
soidal height of each transponder as deduced
from the computations are shown in table
6.16.

6.5.2.8 Positioning Transponder Arrays in
Open Ocean
(Milton Hillhouse, AFETR)

This study was directed toward the prob-
lem of determining the geodetic position of a
transponder array in the open ocean. The
transponder array is used for scoring the ac-
curacy of impact of missiles; hence the loca-
tion of the array must be known quite
accurately. The approach used in the inves-
tigation was to have a ship locate itself by
tracking a satellite whose orbit is accurately
determined by land-based sensors. Then the
ship may interrogate the transponders in the
target array and thus locate the geodetic
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position of the array. This discussion is
confined to the methods and accuracy
achieved in ship location only.

All data were obtained by tracking the

transponder in the GEOS-B satellite. The
orbit of GEOS-B was determined in every
case from tracking data obtained by AFETR
pulse radars. Three methods of determining
ship motion were investigated: (1) direct
solution for average ship velocity vector in
least-squares solution; (2) use of SINS data
for relative ship position; and (3) use of
ocean-bottom-transponder interrogation data

for relative ship position.
The land-based radar range data and the

ship's radar range data were used to estimate
the orbit and to locate the position of the ship
simultaneously. Results for this limited ser-
ies of tests indicated no significant improve-
ment when radar range bias was also ad-
justed. The results also indicated that a
one-revolution fit is about equal to a two-
revolution fit. Because the ship moves during
the test, it was not considered feasible to
constrain the survey adjustment in the same
n_anncr a_ a fixed radar site is constrained.

The actual survey accuracy achieved and
the number of separate satellite passes re-
quired depend to a large extent on the ac-
curacy of the reference orbit, the accuracy of
the ship's tracking data and ship's motion
determination, and the geometry of the dif-
ferent passes used. Where unknown and
unmodeled errors exist, it will be essential
to obtain sufficient passes to examine the
errors present for each test. It is always
desirable to obtain satellite passes on each

side of the ship for which the geodetic survey
is desired.

6.6 CONCLUSIONS
(H. R. Stanley, NASA/WFC, and N. A. Roy,

WRC)

The results show that the Wallops radars
and the laser system are of comparable ac-
curacy and that this accuracy is achievable
by all similar types of radar. System relia-
bility for the radars is nearly 99 percent, and
stability of the systems is excellent over both
the short and the long term. A radar cali-
bration technique that allows for the remote
calibration of radar sets on a global scale has
been demonstrated.

The geodetic results obtained during the
project were quite good but were certainly
not indicative of ultimate performance capa-
bilities. A good first effort is represented by
10- to 15-meter station positioning, since
most other tracking networks did not yield
such good results in their calibration stages.
The analyses indicate that a well-designed
experiment with good geographic distribu-
tion of radars can yield posi_io,_ ........ _ *_
+_5 meters relative to the center of mass.

The system performance throughout the
experiment was exceptional. The radars
performed according to specifications in
every instance. None of the problems en-
countered (range biases, timing errors, etc.)
are traceable to radar hardware malfunc-
tions. The system reliability has also proved

to be exceptionally high throughout the
project.
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APPENDIX

TABLE 6.1.---Agencies Participating in GEOS-2 C-Band Tests

Number of
GEOS-2 tracks Usable data

Agency scheduled (sec)

Eastern Test Range __.................
SAMTEC .............................

Manned Space Flight Center .........

Wallops Flight Center ................

PacificMissileRange .................

White Sands Missile Range ...........
Edwards Air Force Base ..............

Flight Research Center ...............

CNES ................................

Weapons Research Establishment ....

Royal Aircraft Establishment ........

Totals ..........................

265 155 876
70 45 799

844 465 756
648 452 713
107 36 853

5 830
2 626

32 15 267
4 1 790

36 11 168
19 1 783

2 O32 1 188 461
(330 hours)
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TABLE 6.2.--Radar" Stations Involved in Calibration of AIVDIOR Geodetic Projects

Radar system NGSP NGSP
and serial number number designation

White Sands Missile Range
Talos Site ...............................

"C" Station..............................

Halloman (KING-l) .....................

"C" Station..............................

Halloman (KING-l) .....................

Stallion .................................

PhillipsHill.............................
Stallion .................................

Green River, Utah .......................

"C" Station .............................

Green River, Utah ......................
Tularosa ................................

Blanding, Utah .........................

Blanding, Utah .........................

Eglin Gulf Test Range
SiteA-20 ................................

SiteA-20 ................................

SiteD-3 .................................

SiteD-3 .................................

SiteA-20 ................................

SiteD-4 .................................
SiteD-4 .................................

SiteA-20 ................................

Instrumentation Ship

Range Tracker (WIR) ...................
Watertown (WTR) .......................

Huntsville (WTR) ........................

Wheeling (PMR) .........................

Vanguard (WTR) ........................
Redstone (WTR) .........................

Mercury (WTR) ..........................

Twin Falls (ETR) ........................

Air Force Flight Test Center
Edwards AFB ...........................

Edwards AFB ...........................

Edwards Catsite ........................

Eastern Test Range

GBI .....................................

Cape Kennedy ...........................
Ascension Island ........................

PAFB (storage) ...... _*_.................
PAFB (storage) .........................
Pretoria So. Africa ......................

Patrick AFB ............................

Antigua .................................
Asunci6n ................................

Grand Turk .............................

Merritt Island ...........................

GBI .....................................

FPS-16 (XN-3) 4140 WSMTAL
FPS-16 (S/N-l) 4141 WSCl12
FPS-16 (S/N-4) 4142 WSH122
FPS-16 (S/N-6) 4143 WSCl13
FPS-16 (S/N-9) 4144 WSH123
FPS-16 (S/N-12) 4145 WSS127
FPS-16 (S/N-16) 4146 WSP124
FPS-16 (S/N-22) 4147 WSS128
FPS-16 (S/N-26) 4148 WSC218
FPS-16 (S/N-28) 4149 WSCl14
FPS-16 (S/N-33) 4150 WSC219

FPS-16 (S/N-40) 4151 WST125
MPS-25 (XN-1) 4152 WSBLU1
MPS-25 (XN-2) 4153 WSBLU2

FPS-16 (S/N-17) 4340 EGLA21

FPS-16 (S/N-20) 4341 EGLA23

FPS-16 (S/N-23) 4342 EGLD31
FPS-16 (S/N-27) 4343 EGLD32
FPS-16 (S/N-31) 4344 EGLA22
FPS-16 (S/N-32) 4345 EGLD42
FPS-16 (S/N-39) 4346 EGLD41
FPS-16 (S/N-42) 4347 EGLA24

FPS-lC, (_/N-37) 4940 ISTA01

CAPRI (S/N-l) 4910 ISTA06
CAPRI (S/N-2) 4911 ISTA07

FPS-16 (S/N-46) 4941 ISTA08

FPS-16 (V) (S/N-47) 4942 ISTA19

FPS-16 (V) (S/N-48) 4943 ISTA20

FPS-16 (V) (S/N-49) 4944 ISTA21

FPS-16 (S/N-25) 4945 ISTAll

FPS-16 (S/N-38) 4540 EDAFB3

FPS-16 (S/N-41) 4541 EDAFB4

MPS-9 4592 EDAFB2

FPS-16 (XN-2) 4040 ETRGB5

FPS-16 (S/N-11) 4041 ETRCAK

FPS-16 (S/N-14) 4042 ETRAS6
FPS-16 (S/N-19) 4043 ETRPA1

FPS-16 (S/N-43) 4044 ETRPA2

MPS-25 (S/N-5) 4050 ETRPRE

FPQ-6 (S/N-l) 4060 ETRPAT

FPQ-6 (S/N-2) 4061 ETRANT

TPQ-18 (S/N-l) 4080 ETRAS8
TPQ-18 (S/N-2) 4081 ETRGRT

TPQ-18 (S/N-3) 4082 ETRMRT

TPQ-18 (S/N-4) 4083 ETRGB8
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TABLE6.2.--

Radar system NGSP NGSP
and serial number number designation

Western Test Range

Vandenberg .............................
Pillar Point ..............................

Tranquillon .............................

Tranquillon .............................
Pillar Point ..............................

Pacific Missile Range
Point Mugu .............................

Point Mugu .............................
San Nicolas .............................

San Nicolas .............................

San Nicolas .............................

San Nicolas .............................

San Nicolas .............................

Point Mugu .............................
Point Mugu .............................

Barking Sands ..........................
Johnston Island .........................

Johnston Island .........................

Makaha Ridge ..........................

Makaha Ridge ..........................

Barking Sands ..........................

Point Mugu .............................

Point Mugu .............................

Naval Research Laboratories

Chesapeake Bay Annex .................

Atomic Energy Commission

Tonopah, Nevada ......................

Elec. Environment Test Range
Ft. Huachuca ...........................

Rome Air Development Center
Verona, N.Y ............................

Verona, N.Y ............................

Weapons Research Laboratories Australia
Red Lake ................................

Mirikara ................................

Royal Aircraft Establishment U.K.

Aberporth ...............................

Aberporth ...............................

NASA

Canary Island ...........................
Bermuda ................................

Wallops Flight Center ...................
Bermuda ................................

Wallops Flight Center ...................
Carnarvon ..............................

Tananarive ..............................

Ely, Nevada .............................

Kauai, Hawaii ...........................

Ely, Nevada .............................

CNES, France
French Guiana ..........................

TPQ-18 (S/N-5) 4280 WTRVAN
FPS-16 (S/N-5) 4240 WTRPPS

FPS-16 (S/N-18) 4241 WTRTB2

FPS-16 (S/N-21) 4242 WTRTB1

FPQ-6 (S/N-6) 4260 WTRPPQ

FPS-16 (S/N-2) 4440 PMRPM1

FPS-16 (S/N-3) 4441 PMRPM2
FPS-16 (S/N-7) 4442 PMRSN2

FPS-16 (S/N-13) 4443 PMRSN3

FPS-16 (S/N-15) 4444 PMRSN4

FPQ-19 (S/N-l) 4400 PMRSN5

FPQ-19 (S/N-4) 4401 PMRSN6

FPS-16 (S/N-10) 4445 PMRPM3

FPS-16 (S/N-24) 4446 PMRPM4

MPS-25 (S/N-2) 4450 PMRBK1

MPS-25 (S/N-3) 4451 PMRJI3
MPS-25 (S/N-4) 4452 PMRJI4

FPQ-10 (S/N-2) 4402 PMRMR1

FPQ-10 (S/N-3) 4403 PMRMR2
MPS-26 4420 PMRBK2

MPS-26 4421 PMRPM5

MPS-26 4422 PMRPM6

FPS-16 (X/N-I) 4950 NRLCBA

MPS-25 (S/N-I) 4951 AECTON

FPS-16 (S/N-29) 4952 EETRFH

FPQ-4 (S/N-l) 4970 RADCV1

FPQ-4 (S/N-2) 4971 RADCV2

FPS-16 (S/N-35) 4946 WOOR38

FPS-16 (S/N-36) 4947 WOOR39

FPS-16 (S/N-44) 4948 RAEAB4
FPS-16 (S/N-45) 4949 RAEAB5

MPS-26 4720 NCANIS

FPS-16 (S/N-34) 4740 NBER34

FPS-16 (S/N-8) 4840 NWALI8

FPQ-6 (S/N-5) 4760 NBERO5

FPQ-6 (S/N-3) 4860 NWALI3

FPQ-6 (S/N-4) 4761 NCARNV
CAPRI 4741 NTANAN

MPS-19 4690 NELYNV

FPS-16 (S/N-30) 4742 WTRKAU
CAPRI 4610 NELHAR

4953 KOUROU
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Average
NGSP Number of range rms

Site number Radar type GEOS-2 passes (m)

Wallops Flight Center ....... 4860 AN/FPQ-6 51
Wallops Flight Center ....... 4840 AN/FPS-16 32

Bermuda .................... 4760 AN/FPQ-6 45
Bermuda .................... 4740 AN/FPS-16 44
Kauai, Hawaii ............... 4742 AN/FPS-16 23
Tananarive .................. 4741 CAPRI 9

Ascension Island ............ 4080 AN/FPQ-18 8
Carnarvon .................. 4761 AN/FPQ-6 27
Antigua ..................... 4061 AN/FPQ-6 37

Merritt Island ............... 4082 AN/TPQ-18 26
Vandenberg AFB ........... 4280 AN/TPQ-18 8
Canary Island ............... 4720 MPS-26 28
Ely, Nevada ................. 4610 HAIR (CAPRI) 4
Woomera .................... 4946 AN/FPS-16 10
Pretoria ..................... 4050 MPS-25 9

Makaha Ridge ............... 4402 FPQ-10 14

1.2
1.4

1.4
1.4
2.1

1.6
1.8

1.3

1.4

1.4

1.4

5.1

3.1

2.4
1.7
5.3

TABLE 6.4.--Identification and Magnitude of Sources of Systematic

Range Errors for the Wallops Flight Center AN/FPQ-6 Radar

Range Skin track Beacon no. 1 Beacon no. 2
error corrections corrections corrections

source (m) (m) (m)

Local oscillator mode select ........ 0
Range target size

(fsr assumed) ................... 0

Propagation error

(fsr assumed) ................... +0.9
PRF select ......................... 0

Beacon track mismatch

(cal. in 0.5 _sec, 2.4 MHz; and
track in 2.4 MHz) .......... 0

Beacon pulsewidth-dependent error

(interrogate with 0.5 _sec) ..... 0

Computed GEOS-2 transponder
delay error ..................... 0

Total track correction ........ +0.9

0 0

0 O

+0.9 +0.9

0 0

"-6.2 "-5.0

0 0

-2:7 +1.2

-8.0 -2.9

"These values are a function of the radaVs actual ......pulsewtu_l.
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TABLE6.5.--DifferencesBetween Ranges Measured by AN/FPQ-6

and by Laser System (WICE)

Range Range
Date difference Date difference

YYMMDD (m) YYMMDD (m)

68403 0 680426 +3
680405 -1 680503 0

680410 +2 680507 +1
680412 -5 680508 -2
680413 -1 680521 0
680418 +4 680522 0
680420 +2 680523 +4
680426 +2 680614 -2

TABLE 6.6a.--Range Measurements: Solution from Camera Data

Measurement Number of RMS
Site type observations _ (arc sec)

Tananarive, Malagasy .............

Johannesburg, South Africa ........

Santiago, Chile .....................

Columbia, Missouri .................

Mojave, California .................

Fort Meyers, Florida ...............

Rosman, North Carolina ...........

Edinburg, Texas ...................

Declination ......

Right ascension __
Declination ......

Right ascension __
Declination ......

Right ascension __
Declination ......

Right ascension __
Declination ......

Right ascension __
Declination ......

Right ascension __
Declination ......

Right ascension __
Declination ......

Right ascension __

20 2.9 '

21 2.8
23 5.9

22 5.0

25 1.6

19 6.6

28 3.4

26 8.4
68 4.6
63 4.9
63 5.3
55 4.7
53 1.4
53 3.9
14 5.1

9 8.4

All measurements 562 4.7

" Arc of 51/2 days, 28 April to 4 May 1968.

TABLE 6.6b.--Range Measurements: Mean Residuals (Unweighted)

Number of Mean
Site Measurement type observations" (m)

Wallops AN/FPQ-6 radar .... Range ............ 776 1.6

NASA/GSFC laser ............ Range ............ 248 0.6

" Range measurements were throughout 5V2 -day period.
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Estimated
timing bias

Radar site (sec) Verified

Woomera .................

Vandenberg AFB .........

Makaha Ridge ............

Canary Island ............

Ely, Nevada ..............
Pretoria ..................

Kauai .....................

WFC ......................

WFC ......................
carnarvon ................

AN/FPS-16 ___ -0.0249 Yes

ANfrPQ-18 ___ +0.0243 Yes
FPQ-10 ....... -0.0087 ........

MPS-26 ...... +0.0065 ........

HAIR ......... +0.0126 Partial

MPS-25 ...... +0.0046 ........
AN/FPS-16 ___ +00.58 ........

AN/FPQ-6 .... -0.1000 Yes
AN/FPS-16 ___ -0.10O0 Yes

AN/FPQ-6 .... -0.010, -0.020, -0.030 Yes

TABLE 6.8.--Estimated Range Biases

Estimated Pulsewidth (PW)
range bias mismatch

Site Radar (m)

Canary Island .......
WFC ................

Antigua .............
WFC ................

Ely, Nevada .........
Ascension ...........

Merritt Island ......

Makaha Ridge ......

Vandenberg AFB ___
Bermuda ............
Tananarive .........

Bermuda ............
Woomera ............

Pretoria .............

Kauai ...............

MPS-26 +9.7 ............................

AN/FPQ-6 0 measured 0.60 _sec

AN/FPQ-6 -22.6 nominal 1.0 _sec

AN/FPS-16 0 measured 0.60 _sec
HAIR -6.5 ............................

AN/TPQ-18 -30.0 nominal 1.0 /zsec

AN/TPQ-18 -21.0 nominal 1.0 /zsec

FPQ-10 -50.3 nominal 1.0 /zsec

ANfrPQ-18 +20.1 ............................

AN/FPQ-6 +14.9 measured 0.38 /_sec
CAPRI + 13.8 ............................

AN/FPS-16 0 measured 0.60 /zsec
AN/FPS-16 -29.6 ............................
MPS-25 3.8 ............................

AN/FPS-16 -27.9 nominal 1.0 /zsec



522 NATIONAL GEODETIC SATELLITE PROGRAM

TABLE 6.9.--Angle Biases From Multistation Long-Arc Solutions

Azimuth Elevation
bias bias

Site Radar (arc sec) (arc sec)

WFC ................ AN/FPQ-6 29.8 43.2

WFC ................ AN/FPS-16 - 17.5 - 11.5

Bermuda ............ AN/FPQ-6 49.2 68.5

Bermuda ............ AN/FPS-16 3.4 10.1

Antigua ............. AN/FPQ-6 15.3 18.1

Merritt island ...... AN/TPQ-18 17.9 -11.4

Canary Island ....... MPS-26 129.9 457.7

Woomera ............ AN/FPS-16 10.4 - 50.9

Kauai ............... AN/FPS-16 -8.8 -42.5

Makaha Ridge ...... FPQ-10 66.0 - I00.0

Tananarive ......... CAPRI - 10.9 - 123.6

Ascension ........... AN/TPQ-18 31.9 45.1

Pretoria ............. MPS-25 96.6 - 3.8

Ely, Nevada ......... HAIR 11.0 -20.0

Vandenberg AFB ___ AN/TPQ-18 - 34.9 82.0

TABLE 6.10.--Estimated Station Positions

Geodetic

height

Station Number Latitude Longitude E (m)

ETRPRE 4050 _25o56,38,:7 28°21'28'.'3 1584.7

ETRANT 4061 17o08,36,8 298°12'26'.'0 - 18.6

ETRAS8 4080 -7o58'21"2 345°35'54"6 120.9

ETRMRT 4082 28°25 '28"9 279°20 '07"2 - 35.0

WTRVAN 4280 34°39'57,,4 239025'06':7 83.9

PMRMR1 4402 22°08 '02"6 200°16'18':3 477.6

NELHAR 4610 39o18,30,:2 244o54'47"1 2761.8

NCANIS 4720 27045'46"6 344021 '58':1 186.2

NBER34 4740 32°20,52-9 295°20'46"8 -41.4

NTANAN 4741 _ 19000,07,:0 47018'52"6 1328.8

WTRKAU 4742 22o07 '23"4 200°20 '03':1 1157.7

NBERO5 4760 32°20'52"4 295°20'47"0 -39.7

NCARNV a 4761 -24°53'47':4 113°43'01':7 39.3

NWALI8 4840 37°50,28':9 284°30'53"1 -54.4

NWALI3 4860 37°51'37"0 284°29'25"9 - 51.8

WOOR38 4946 -30°49'06"9 136°50'17':8 98.4

a This position was

completed.

obtained from the October 1969 data analyses; results are not yet
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Absolute averages
Investigator Number of stations (m)

Marsh, Douglas, and
Klosko ...............

Mueller (orbital) .......

Mueller (geometric) ....
SAO ...................

Hadgigeorge ...........
Berbert ................
C-band __- .............

Mancini ...............

ACIC ..................

NWL ..................

46 10

22 12

22 9
42 14

25 5

11 6
12 9

14 18
11 8
42 9

TABLE 6.12.--Residuals Before and After Estimation" of C_j_, S_j_

RSS before RSS after
Number of weighted adjustments adjustment

Station measurements (m) (m)

WFC .......... 144 58.7 14.8

Carnarvon .... 84 44.2 26.5
Tananarive ___ 46 72.2 14.8
Kauai ......... -e5 86.4 49.4

Total ....... 339 64.2 _'1.8

-21. 13"Estimated values of 13th-order resonance coefficients: C_4_ = 1.176 x 10 ,S _4 = 6.549 x
10-2,.

TABLE 6.13.--Transponder Coordinates Using Different Sound Velocity

Profiles"

Transponder Navy sound Standard Average sound Standard
number velocity profile b erroV velocity profile '_ error"

2
h

_h

3
h

_h

4
h

_h

27008 '14'.'75 0'.'24

- 76023 ' 14'.'60 0"19
-5018.0 m 3.38 m

27°08'22".05 0':23
- 76°20'03".73 0'.'19
-5016.6 m 2.76 m

27°05'44':92 0".19
- 76°21'35".51 0"20
-5016.6 m 1".99 m

27008 '14".43 0"24
- 76023 '13"93 0"10
-4998.3 m 3.38 m

27°08'21"21 0"24
- 76°20 '04".13 0".21
-4998.7 m 2.89 m

27°05'45".45 0':19
- 76°21'35".44 0'.'20
-4995.2 m 2.98 m

a 1960 Fischer Ellipsoid, a = 6 378 166 mi; if = 298.3.
Compass Island curve.

c Precision estimates relative to LORAC network coordinates.

_A geoidal height of -60 m (i.e., geoid is 60 m below _the el!ipaeid) wag assumed.
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TABLE6.14.--Horizontal Distances

Between Transponders

Length Standal'derrors
Side (m) (m)

1-2 ...... 7172.2 -+ 6.8

2-3 ...... 5697.1 ---14.8
3-4 ...... 6435.9 -- 5.3
4-1 ...... 6418.1 -- 7.6

1-3 ...... 9135.3 -- 9.6
2-4 ...... 9364.1 -+15.5

TABLE 6.15.--Computed Depths of Transponders

Transponder

Mode of computation and precision

FIXCOR LESSA

Depth Stand ard error Depth
(m) (m) (m)

Standard error
(m)

1 ............ 5663.8 -+3.7 5668.7 -+28.6
2 ............ 5683.0 -+4.6 5691.3 -+24.3

3 ............ 5630.0 -+4.2 5638.4 -+19.2
4 ............ 5682.5 -+5.3 5709.3 -+18.3

TABLE 6.16.--Geographic Coordinates of Transponders

Geodetic height

Latitude (N) Longitude (W) standard error"
Transponder standard error" standard error" (m)

1 ............ 20°29'53'_84 66°14'51"34 -5720.7
-+1':10 -+1"18 -+20.2

2 ............ 20 °27'3y:36 66°18'3E37 - 5743.3
-+(1'90 -+(1:76 +16.0

3 ............ 20o30 ' 15'.'50 66°20'36:28 - 5690.4
-+(1_87 -+(1_25 +10.5

4 ............ 20°32'33_:47 66°17'46'64 -5761.3
-+(1:62 + 1"32 -+12.7

a Precision estimate relative to SINS coordinates.
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