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7.1 INTRODUCTION: FOUNDATIONS OF
SATELLITE GEODESY AND THE CREA-
TION OF WORLDWIDE GEODETIC REF-
ERENCE SYSTEMS

7.1.1 Geometric and Geophysical Aspects in
Satellite Geodesy

Artificial satellites in close-to-Earth orbits

have contributed to the field of geodesy a

new technique which, theoretically speaking,
is capable of completely reorienting the
methods and procedures of the geodetic dis-

cipline. Application of newly developed
methods of precision measurements in satel-

lite triangulation confirm early predictions
of a reformation in the domain of classical

geodetic field operations (Schmid, 1966a).
Without entering here into questions con-

cerning the dividing line between geodesy
_.u s=vp-_l_, it can be _a_ud that the
fundamental problem of geodesy is the math-
ematical description of the Earth's gravity
field together with the determination of the
geometry of the physical surface of the
Earth, with unambiguous correspondence
between the Earth-fixed coordinate systems
or datums and the spherical coordinate sys-
tern for a given epoch that serves as reference
frame for metric astronomy. With satellite
geodesy it is possible to find a solution to the
fundamental problem on a synoptical basis,
i.e., with reference to the whole Earth. Fur-

thermore, triangulation with satellites, in
conjunction with position and time deter-
minations of satellite orbits, eventually pro-
vides the necessary link between the geo-
metric and geophysical measuring concepts
of geodesy.

Thus, with the aid of satellite geodesy it
becomes possible to undertake the geometric
description of the surface and the analytical
description of the gravity field of the earth
by means of worldwide measuring systems
and to derive results in the form of three-
dimensional models based on a minimum of a

priori hypotheses.

These mathematical models then represent
the frame of reference into which one can
fit the existing geodetic results from the
various local datums, as well as all geodetic
measurements to be executed in the future.
The relevant necessary adjustment should

not confine itself to the limited, in practice,
classical concept of the treatment of acci-

dental errors, but must, with the aid of a
generalization of the Gaussian algorithm,
take advantage of the increasing knowledge
derived from interdisciplinary research
sources concerning the various geophysical
parameters involved, with a meaningful in-
clusion of the corresponding covariance
matrices.

From a formalistic mathematical point of
view, the significance of artificial satellites

for geodesy consists of the ability to express
the .....ume-pos_uon curve of the orbit of a
close-to-Earth satellite in terms of functions

of certain parameters, which give in turn

information concerning geometric and geo-
physical properties of the earth and its sur-
rounding space. In this development, the
quantities describing the gravitational field
are of prime importance to gravimetry; the
remainder of the geophysical forces affecting
the orbit or arising from the satellite itself
are treated as perturbation sources.

The quantitative determination of the
parameters appearing in the mathematical
simulation of the satellite orbits is accom-

plished by setting up observation equations
which functionally relate the measurements
made for the orbit determination with the

parameters describing the orbit. It is then
apparent that, in addition to these orbital
parameters, these equations will involve the
position coordinates of the Earth-fixed ob-
servation stations which, in the geophysical
content of the problem, represent the position
of these stations relative to the Earth's mass

center. If there is a sufficiently large number
of observations, optimally distributed, it is
possible to determine from the eorresponding
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adjustment not only the geophysical param-

eters affecting the orbit, but also the geo-
centric parameters of the observing stations.

Thus presents itself the opportunity of a

simultaneous solution of the geometric and

gravimetric problems of geodesy in a world-
wide frame.

This, from a purely theoretical standpoint,

attractive train of thought has found great

appeal, among astronomers and geophysicists

in particular, and has already led to impres-

sive results and new insights (Kozai, 1966a).

Being more intimately connected with tri-

angulation measurements proper, however,

the measurement engineer and, in particular,

the practicing geodesist will have certain
reservations, based on the fact that the rela-

tively large number of parameters appearing

in the complex system of equations of such

an adjustment are all more or less strongly

correlated. In direct consequence of the

simultaneous solution there exists, first of all,

correlation among the various parameters

of the same type, e.g., the coefficients of the

harmonic functions describing the gravity

field. In addition, statistical dependence

exists between the gravimetric quantities and

the geophysical parameters introduced to

describe certain orbital perturbations. And,

of course, the coordinates of the observing
stations introduced into the solution and ad-

justed together with the other parameters

are not only correlated among themselves

but also with these nongeometric quantities.

In practice, the number of observations, as

well as their distribution in time and space,

leaves much to be desired, which only serves

to amplify these correlations.

Even when--as a consequence of using a

larger capacity electronic computer--it is

possible to unite a very large number of ob-
servations in a single solution, it may be that

the geometry of the observing stations ob-
tained from such a solution does not neces-

sarily represent the actual spatial relations.

Although the computed parameters in their

entirety are well suited to describe, within

the limits of accuracy of the original observa-

tions, the geometry of the satellite orbits, the

possibility nevertheless exists that an iso-

lated group of such parameters (for example,

the station coordinates) may have only

limited accuracy. Their significance must be

judged in the light of the underlying geo-

physical and astronomical hypotheses. In

short, the geometry of the observation sta-

tions is prejudiced by the specific properties
of the mathematical model chosen to simulate

the geophysical-dynamic nature of the satel-
lite orbit.

This in no way lessens the significance of

the geophysical solution. On the contrary,
dynamic satellite geodesy gains thereby.

Once the three-dimensional geometry of a

sufficiently large number of points of the
Earth's surface has been established with a

purely geometric solution, based only on
Euclidean (flat space) geometry and the

right ascension-declination system of metric

astronomy, orbital observations from these

stations can be used for the exclusive purpose

of determining geophysical parameters. Such

a system will be relieved of the problem of

computing station coordinates in the adjust-

ment.

Thus, the number of unknowns to be

determined from a given available set of
observations is reduced--in itself a desirable

objective--and, in addition, correlation is

eliminated between the geometry and the

geophysics, at least with respect to the sta-
tion coordinates and the orbital elements.

Given the results of the geometric solution,

the opportunity presents itself, by way of a

purely geometric orbit determination, to as-

certain the geometrical shape of the surface

of the oceans by applying laser and radar

techniques to measure the distances between
the satellite and the ocean surface. The in-

fluence of weather and tides on the measured

profiles can be eliminated with measurements

over a sufficiently long period of time. This

would not only help to complete the presenta-

tion of the geometry of the physical surface

of the Earth, but would also give a purely

geometric, hence unconstrained by hypoth-

esis, representation of a large portion of

a surface which, though not quite rigorously,

is a very good approximation to the geoid.

The objection that with the preceding corn-
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ments concerning a purely geometric solution
the information content of the dynamic solu-
tion is not completely exhausted, can be
countered by seeing the eventual solution of
the problem of satellite geodesy as a combina-
tion of the separate, individual geometric and
dynamic solutions. In such a solution the
station coordinates will no longer be treated
as free variables for the dynamic solution,
but will be introduced from the geometric
adjustment together with their associated
covariances.

This will be the real contribution of satel-

lite geodesy to the principal geodetic mission.
The problems of describing the Earth's grav-
ity field and determining the geometry of the
physical surface are solved in a consistent
formulation; optimal results from a geo-
physical hypothetical as well as a metrologi-

cal standpoint are yielded, the geometric and
geophysical concepts mutually supporting
each other. The amalgamation of the outputs
of geometric and dynamic satellite geodesy
must in the end be consummated, from the
theoretical as well as the practical stand-

point, by the inclusion of geuueuc.......... uuL_t meas-
ured on the surface of the Earth. This re-

quirement seems necessary because, although
the significant contribution of satellite geod-

esy to physical geodesy has been to open up
the third dimension in the investigation of
the Earth's gravity field, the fact still re-
mains that the essential tasks of geodesy are
the determination of the geometry of the
physical surface of the Earth and the repre-
sentation of the gravity field in detail and re-
latively close to the crust (Kaula, 1967a).

7.1.2 Development and Organization of a Geo-
detic Satellite Program for Creating a
Worldwide Geodetic Reference System

The history of satellite geodesy and its
theoretical development began with the im-
plementation of an idea that had been for

decades an intermediary goal for scientists
concerned with rocket development: to in-
crease the cutoff velocity of the rocket to the
point where it goes into orbit around the
r.artn.

The realization of this technical goal with

the launch of the first Russian and, shortly
thereafter, of the first American artificial

satellite created renewed interest among ex-
perts in the fields of astronomy and aeronomy
in the theoretical problems concerned with
the description of the track of a body of small
weight orbiting around an oblate mass, spe-
cifically around the Earth. The classical theo-

ries and procedures of physical geodesy being
inadequate to the solution of all these prob-
lems, it has become the practice to apply al-
most exclusively the classical principles of
celestial mechanics together with theories
and results from the fields of aeronomy and
related geosciences, which with the aid of
rocket experiments have already made con-
siderable advances in their studies on the

subject.
This development explains the dominating

influence of dynamic satellite geodesy to this
day, reflected also in the planning and execu-
tion of the first American geodetic satellite
program. The basic requirement for the satel-
lite launched in the first American geodetic

subsequent GEOS satellite program was com-
pact construction and rotation-symmetric
form to the highest possible degree. The re-
sulting mass to cross-section ratio was de-

signed to minimize the perturbing influence
of the atmosphere and other geophysical
forces, such as solar radiation pressure, in or-
der not to complicate unnecessarily the ad-
justment of the orbit relative to the gravita-
tional field.

In order to be able to sense the essential

components of the Earth's gravitational field
while keeping perturbing influences within

bounds, a problem intimately connected with
that of assuring the satellite a sufficiently
long lifetime, the necessary experiments were
executed at heights of 1000 to 1600 km above
the Earth, and the nearly circular orbits were
distributed over as wide a band of inclination

as possible. The equipment for this type of
satellite was characteristic of its purpose, the
instruments on the satellite allowing, when
operated together with instruments on the
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lite distance and direction, and the difference
in distance to the satellite at two points in its
orbit (or equivalently, the frequency of radio
waves received from the satellite; see chs. 2
and 5 and sec. 7.2 of this chapter).

It is apparent that, viewed in the light of
the present state of development, dynamic
satellite geodesy in general faces two com-
plexes of questions requiring further study
in the planning for future geodetic satellite
projects. From the theoretical side, for one,
the question arises: To what extent are the
concepts derived from classical celestial me-
chanics and applicable to spherical fields valid
in the immediate vicinity of an oblate sphe-
roidal mass ? Of perhaps even greater signifi-
cance are the questions regarding the validity

of our concepts with respect to the various
geophysical forces other than gravity that in-
fluence the orbit of an Earth satellite. So far

as practical measuring techniques are con-
cerned (assuming proper professional use of
the equipment), there is little left to be de-
sired with respect to data density and preci-
sion (internal accuracy) of data obtained by
means of Doppler shift in radio frequency.
However, even when care in the necessary
time and spatial distribution of the measure-
ments is exercised, there remains sufficient
reason to suspect that even today occasional
systematic errors creep in, not so much as the
result of lack of reliability in the equipment
but as of uncertainties in the corrections that

are necessary to transform the velocity of
light in vacuo into the wave propagation
velocity existing at the time of observation.
The frequencies in use at the present are par-
ticularly affected by periodic changes in the
ionosphere.

The possibility of calibrating frequency-
measuring equipment by comparison with
data from laser-type DME, by way of posi-
tion and time determination, offers little hope
in a long-term program, if only for sighting
reasons. Particularly ineffective in this con-
nection have been the unsuccessful attempts
to initiate an efficient and sufficiently exten-
sive calibration program in which all the
measuring methods to be used are systemati-

cally examined under typical observation con-

ditions by simultaneous orbit observations
from previously and precisely surveyed ob-
servation sites. The method followed at pres-
ent of judging the metric accuracy of the
various procedures from the internal accu-
racy of, at times, very arbitrarily selected
series of observations, or at any rate of de-
riving absolute accuracy from the differences
between end results of measuring systems
quite different in the techniques used in meas-
uring and adjusting, is unsatisfactory for the
metrological engineer in general and the
geodesist in particular (see ch. 1).

In addition to the previously mentioned
GEOS satellites, serving primarily the pur-
poses of dynamic satellite geodesy, a balloon-
type satellite (PAGEOS) was used exclu-
sively for the purpose of geometric satellite
triangulation within the framework of the
NGSP (see ch. 5). The balloon, with a 30-
meter diameter, is similar in material and
construction to the balloon satellite ECHO-1

and has a casing 0.013 mm thick that specu-
tarly reflects sunlight, unlike the ECHO-2
satellite, whose somewhat thicker casing has
a more diffusely reflecting surface. PAGEOS
(passive geodetic satellite) was launched 23
June 1966, in a nearly circular, nearly polar
orbit at a height of about 4200 km above the
earth. With the launching was established
an elevated target suitable for worldwide
satellite triangulation. The U. S. Coast and

Geodetic Survey (later the National Ocean
Survey within the National Oceanic and At-

mospheric Administration), together with
National Aeronautics and Space Administra-
tion and the Department of Defense, set up a
worldwide network of tracking stations to
take advantage of PAGEOS. The coordinates
of the stations are given in table 1.28; the
network is shown graphically in figure 1.2 of
chapter 1.

The compromise in the distribution of the
stations necessitated by logistic and political
considerations represents a good approxima-
tion to an optimal solution. The open mesh
in the South Pacific Ocean is due to a lack of
any kind of island, whereas the open space
over central Asia obviously results from a
political situation.
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The triangulation method based on photo-

grammetric principles will be described in de-
tail in section 7.4.

7.2 INSTRUMENTATION

7.2.1 Photogrammetric Camera

7.2.1.1 General

The techniques used in the measurement of
rocket trajectories, particularly because of
their high accuracy requirements, had an
early influence on the development of photo-
grammetric data acquisition and evaluation
instrumentation. Characteristic in this field

of application is the necessity to combine a
great number of observations in a single pho-
togram in which each individual observation
is generally registered very accurately
against a time or frequency standard. Con-
sequently, there is a requirement on the pho-
togrammetric instrumentation for great sta-
bility over extended periods of observation.
This requirement led to the development of
the so-called ballistic camera, which, on the
whole, is based on the phototheodolite of ter-
restrial photogrammetry. In order to adapt
the instruments to the unorthodox require-
ments of the geometry encountered in track-
ing rocket trajectories and at the same time
increase the accuracy of the direction deter-
mination, cameras were developed that could
be arbitrarily oriented and that had objec-
tives with long focal lengths. A correspond-
ing decrease in viewing angle is inevitable be-
cause of practical limitations on the size of
the plate. Exact elements of exterior orien-
tation are obtained with the use of elements

from the classical geodetic angle-measuring
instruments, such as precision spindles, cir-
cles, and hypersensitive levels.

The development of instrumentation re-
flecting these concepts reached a high point
in the 1940's with the Askania phototheodo-
lite (Lacman, 1950). This camera had a 370-
mm focal length, f/5.5, 13- by 18-cm plate
format, and a synchronous drive for the ro-

tary shutters, producing 1.5, 3, 6, and 12 ex-
posures per second with a synchronization

accuracy of 10 .3 sec. In addition, a louver
shutter was available to block out certain ex-

posures in the sequence or to generate time-
related star trails. The horizontal and verti-
cal circles could be set to within 3%

These instruments were used in Peene-
mtinde for measuring the V-2 trajectory up

to the point of engine cutoff. On the resump-
tion of similar projects in the United States
after 1945, interest in photogrammetric pre-
cision metrology faded because of, as it
turned out, too-optimistic expectations from
electronic approacheszto the problem of tra-
jectory measurements. When it became
apparent that neither these electronic ap-
proaches nor the capability of the cinetheodo-
lite could do justice to the developing rocket
technique, the author had the opportunity,
in connection with his assigned duties at the
Ballistic Research Laboratories of the Aber-

deen Proving Ground, Maryland, to initiate
plans for improved precision theodolites, re-
sulting, with the active and sympathetic co-
operation of *_ Swiss _ _xr;,,_ _,_ .....
in today's well-known BC-4 phototheodolite
system. At the time, the experience gained
in the various fields of experimentation cre-
ated a demand for the development of a series
of cameras with different angles of view, to
be used interchangeably to a great extent on
the same mount. In addition to the necessary
variation in picture sequence over a wide
range, the requirement for maximum accu-

racy in exposure synchronization was con-
sidered of utmost importance. The develop-

ment of the complete system stretched out
over a period of 10 years, and the general

concept is described in Schmid (1962). The
technical details of the BC-4 phototheodolite
are explained in the literature of Wild-
Heerbrugg.

In the early 1960's the idea of applying the
photogrammetric technique for geometric
satellite triangulation to the establishment of

a continental net began to be seriously con-
sidered (U.S. Department of Commerce,
1965). The technical requirements for such
a project differ from those of conventional
trajectory mensuration in that first, the ex-
terior orientation of the camera is not deter-
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mined with graduated circles, but is deter- 
mined from the photogram itself on the basis 
of the photographed control points (star 
images), and second, the unusually high ac- 
curacy demands require that the parameters 
needed for the reconstruction of the photo- 
grammetric bundle (the generalized model of 
interior orientation) be recomputed for each 
individual plate. This makes i t  necessary to 
effect a compromise between focal length (in- 
crease of intrinsic accuracy) and a field of 
view large enough to enable the observer to 
record a sufficient number of available cata- 
logued stars in any portion of the sky. Ab- 
solute synchronization between the widely 
separated stations is complicated, actually 
impossible in theory, in view of the unknown 
light travel time a t  the instant of observation. 
Hence, in satellite triangulation it is merely 
necessary t o  record the instants of satellite 
observation very accurately (to a t  least IO- '  
see) against the frequency standard at each 
station. However, the station clocks (fre- 
quency standards) must be calibrated with 
respect to a basically arbitrary but uniquely 
defined time sequence. Synchronization of the 
clocks to within about see is attained by 
periodic comparison a t  all stations with a 
traveling calibration clock, which in turn is 
compared at regular intervals with an atomic 
standard (e.g., that of the US.  Naval Obser- 
vatory). Stations with limited accessibility 
are additionally equipped with a cesium 
standard. The transmission, via satellites, of 
time signals for clock comparisons has proved 
quite satisfactory, with accuracies of from 
* 2 to & 10 psec, depending on the electronic 
equipment available a t  the receiving station. 
These procedures assure the elimination of 
the error source due to uncertainties in the 
propagation of light and reduce all other tim- 
ing errors below the overall error level of the 
system. All other residual errors can there- 
fore be neglected in the adjustment. 

E. A. Taylor describes the BC-4 installa- 
tion as modified to the specifications of the 
U.S. Coast and Geodetic Survey from the 
original missile trajectory instrumentation. 
The present BC-4 phototheodolite differs 
from the installation described by E. A. Tay- 

lor mainly in the optic now in use, a special 
objective designed by Dr. Bertele and con- 
structed by the Wild-Heerbrugg Co., which, 
taking all theoretical and practical considera- 
tions into account, represents an optimal so- 
lution for satellite triangulation. The Cosmo- 
tar objective has a focal length of 450 mm 
with a relative opening of 1 :3.4, its chief ad- 
vantage lying in the fact that i t  has minimal 
change of radial distortion within the visible 
spectrum. This practically eliminates differ- 
ences in radial distortion for the centroids of 
images of stars of various colors and of the 
sun's image reflected from the satellite. Fig- 
ure 7.1 shows a camera with the Cosmotar 
objective and the Henson capping shutter 
mentioned in the next section. Figure 7.2 
shows a typical BC-4 station. 

7.2.1.2 Camera Shutters and Their Mechani- 
cal Drives 

When continuously illuminated satellites 
are used for the triangulation, the tracks of 

FIGURE 7.1.-Camera fitted with Cosmotar objective 
and Henson capping shutter. 
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FIGURE S.B.-Typieal BC-4 installation. 

the stars and of the satellites on the photo- 
gram must be chopped into a sequence of in- 
diuidua! timc-related images. The star traiis 
3:'~ the result of the earth's rotation, shared 
by the Earth-fixed camera, whereas the trz& 
of t i e  sateiiite is largely due to its own mo- 
tion, although of course the Earth's rotation 
dur ing  ihP  ~~tp!!ite pass centrihites B coiii- 
ponent t o  the track. The track interrupticxs 
on the plate are effected in the BC-4 camera 
by three rotating disk shutters inserted be- 
tween the lens elements, approximately in the 
principal plane of the lens system. Two of 
the disks rotate at equal rates in opposite di- 
rections to achieve maximum symmetry in 
the exposure and a high degree of efficiency 
(about 70%) of the shutter. The third disk 
subdivides the primary image sequence gen- 
erated by the rotation velocity of the first two 
disks, which in addition fixes the exposure in- 
terval of the individual images. The most 
useful combinations of primary image se- 
quence or exposure interval and actual expo- 
sure sequence in satellite triangulation, 
within the technical limitations of the BC-4, 
are given in table 7.1. 

The shutter is activated by a synchronous 
motor specially developed for a frequency of 
500 Hz. Registration of the image centroid 

is initiated by an adjustable magnetic pickup. 
Further technical details of the shutter drive, 
ueveioped and manufactured by Fred C. Hen- 
scn Co., Pasadena, California, are  given in 

Corresponding to the combination selected 
from table 7.1, the rotating disk shutter gen- 
erates a chronoiogirally regu!zr sequecce cf 
i ~ ~ g e s .  I2 order t o  create iii-biii-sry group- 
ings in this sequence for the purpose of iden- 
tification or to further subdivide the primary 
image sequence, an additional iris-type shut- 
ter  is installed in front of the exchangeable 
filter element of the BC-4 (also made by the 
Henson Co. and known in the trade as a cap- 
ping shutter). This shutter is activated 
through solenoids, and thus it is possible to 
open or close the shutter between two succes- 
sive exposures generated by the rotating 
shutters. Technical details of the shutter 
operation are given in the manufacturer's 
literature. 

Although it would be desirable from the 
photogrammetric standpoint to  register the 
stars, as well as the satellite, by means of a 
shutter located in the principal plane of the 
lens system-i.e., by means of, say, the ro- 
tating disks-a compromise is imposed by 
the limitations of the f-stop. Although it is 

+bo "llb I;+r.rn+..u- I I U b L C I b U I C  VI L L - A  l r l l a L  LuIIIpdlIy. ------:---- 
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possible, even necessary (cf. sec. 7.3.1), to
record stars during the period of the satellite
passage, only low-magnitude stars will regis-
ter adequately, and their number is insuffici-
ent for the adjustment. It is necessary, there-
fore, to expose stars with the aid of the
capping shutter before and after the activa-
tion of the disk shutters; in other words, be-
fore and after the satellite exposure proper.
In order to obtain the correct time correla-

tion for these images, signals for the opening
and closing of this shutter are generated
with the aid of adjustable contacts, so that
the mean of the corresponding two instants
of time is associated with the midpoint of the
segment of the so-called star trail, which is
of finite length even for relatively short in-
tervals of exposure.

7.2.1.3 Electronic Control Instrumentation

The electronic control performs the follow-
ing principal functions :

(1) Drives the 500-Hz synchronous motor
of the rotary disk shutter from the built-in
station frequency standard.

(2) Controls the station clock with the

same frequency standard.

(3) Synchronizes the signal from the mag-
netic pickup of the rotating disk shutter with
the station clock.

(4) Controls both shutter systems.
(5) Illuminates the fiducial marks and the

display of auxiliary data for later identifica-
tion evaluation.

(6) Drives the nine-channel registration
equipment that records the course of the ob-
servation program.

(7) Compares the station clock with an ex-
ternal time standard or signal and monitors

the accuracy of the rate of the frequency
standard of the station by means of a re-
ceived calibration frequency (VLF).

In order to synchronize the rotating disk
shutter with the station clock, the exposure
sequence for a satellite pass is set mechani-
cally by a suitable selection of gear ratio in
the camera control (see table 7.1) with a

similar electronic program in the synchroni-
zation system. This results in a display on
the oscilloscope of a pulse sequence for the
time code generator corresponding to the se-
lected program (for example, two exposures
per second). Simultaneously, the pulses from
the magnetic pickup, indicating the mid-open
position of the shutters, are fed to the oscillo-
graph. By a phase comparison the two, in
time initially different, signals are brought
into coincidence, effecting synchronization
between station clock and exposure. Owing
to practical limitations in the mechanical pre-
cision of the drive, there are slight irregulari-
ties in the shutter rates, causing the signal
returning from the cameras to vary irregu-
larly in time with the comparison signal
originating in the station clock. These devia-
tions are of the order of from ÷20 to ±40

_sec. The actual synchronization process is,
therefore, to give the signal from the station
clock an adjustable bandwidth to each side
of, for example, 100 t_sec. If the signal from
the BC-4 falls within this gate, it is regis-
tered as synchronous on the oscillograph
tape ; otherwise, it is not. The rate of the fre-
quency standard is monitored with a received
frequency (VLF), and absolute time is as-
signed by the method described at the end of
section 7.2.1.1.

When the auxiliary capping shutter is in
operation for star exposure, with the rotating
disk shutters at rest, its opening and closing
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FIGURE 7.3.--BC-4 electronics console schematic.
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are recorded by the oscillograph tape together
with the station clock signals. This record de-
termines time for the star exposures. The ar-
rangement of the console, which at this time

is part of all the BC-4 systems, is shown in
figure 7.3

7.3 DATA

The survey coordinates of the stations
whose observations were used are given in
table 7.2. The distribution of the stations is

shown in figures 7.4 and 7.5 through 7.10.
The set of interstation directions derived

from the observations was associated with a

scalar by including eight interstation dis-
tances computed from ground survey (fig.
7.11). These distances are given in table 7.3;
the sources for the distances are listed in
table 7.4.

Table 7.5 gives the number of photograms
taken and processed for each station. The
geographic distribution of the observations
(location and direction of subsateilite points)
is shown in figures 7.5 through 7.10.

FIGURE 7.5.--Geographic distribution of stations and
observations. Center of view: latitude 0 °, longi-

tude, 90 ° east.

J

loss

t

FIGURE 7.4.--Forty-five-station, worldwide, BC-4 photogrammetric satellite triangulation

...... o,k. (Aitoff-Hamm_ equal area projection.) .
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FIGURE 7.6.--Geographic distribution of stations and

observations. Center of view: latitude 0 °, longi-

tude 0 °.

FIGURE 7.8.--Geographic distribution of stations and

observations. Center of view: latitude 0 °, longi-

tude 90 ° west.

FIGURE 7.7.--Geographic distribution of stations and

observations. Center of view: latitude 0 °, longi-
tude 180 °.

FIGURE 7.9.--Geographic distribution of stations and

observations. Center of view: North Pole.
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and observations. Center of view: South Pole.
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FIGURE 7.11.--Base lines used in adjustment.

7.3.1 Photogrammetric Registration

The size of the effective photographic area
of the BC-4 plates is 18 × 18 cm. The plates
are either 6 or !0 mm thick, and those of best

quality have a flatness of 3 _m. A good com-
promise between sensitivity and grain size is
found in the Eastman Kodak emulsion 103-F.

After accurately controlled developing of the
plate, particular care must be exercised in the
drying process: the plate must be turned
continuously. The essential information con-
tent of an individual photogram consists of
the point-shaped star images and the satellite
trail. For star registration a sequence of five

successive individual images is necessary, for
statistical reasons. In order to obtain uniform

star images independent of star magnitude,
it is necessary to expose several such se-
quences with various shutter speeds. The se-
lection of optimal exposure time is, in addi-
tion, dependent on the range in declination
of the stars. Star photography, using the
capping shutter, is executed before as well as
after the satellite pass. During the satellite
pass, additional images of the brighter stars
in the field of view are generated by appro-
priate programing of the rotating disk shut-
ters. These stcl!ar images are of particular
importance for the exterior orientation, since
they are recorded simultaneously with the
satellite trail. With suitable choice of expo-
sure interval it is possible to obtain a presen-
tation of both stars and the satellite in a ser-

ies of similar point-shaped images.
In measuring the negative itself, one is pre-

sented with the problem of centering a black
measuring mark within a dark point-shaped
image. (To date--1973--ring-shaped meas-
uring marks with a diameter of 20 to 30 _m
are not available.) A series of experiments
has shown that the plate measurement proc-
ess is faster and more reliable if a diapositive
is first produced, so that the black measuring
mark can be set within a white round image.

The negatives are copied in almost mono-
chromatic blue light under vacuum onto a 6-
mm-thick glass plate covered with an exceed-
ingly fine-grained emulsion. Statistical tests
have shown that the copying process intro-
duces no marked deterioration in accuracy.
Figure 7.12 shows the star and satellite im-
ages schematically. The sequences A, B, C,
and D, E, F represent five star images, each
taken with the capping shutter and various
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FIGURE 7.12.--Schematic presentation of star and
satellite images.

shutter speeds, before and after the satellite

pass, the upper star trails representing a

brighter star. The sequences a, b, c symbo-
lize images of the satellite and of stars re-

corded simultaneously by means of the rotat-

ing disk shutter. Because of the limited reso-

lution of the objective and emulsion, only a

single approximately point-shaped star image

b corresponds to the three satellite images

designated b, whereas the star imagery cor-

responding to the satellite exposure intervals

a and c appear as star trails, unresolved into
individual images. Stars that are insuffici-

ently bright produce no measurable image b,

and those of higher magnitude are not re-

corded at all through the rotating disk shut-

ter. Figure 7.13 is a magnified portion of a

plate, showing trails of the balloon satellites

ECHO-1 and ECHO-2 generated by the ro-
tating disk shutter.

7.3.2 Coordinate Measurements on the Com-

parator and Their Reduction

Measurement of the ph0tograms , either of
the original negative or of a diapositive copy,

produces rectangular coordinates in the plate

plane with a basically arbitrary origin. The

comparator used does not have to operate

necessarily on this principle, but can, for ex-

ample, measure polar coordinates instead

(D, C. Brown, unpublished). These must,

however, be transformed to the x, y coordi-

nates needed later in the adjustment, and the

corresponding weight matrix, correlated in

this case, must be computed. Since the meas-

urement of photograms is one of the most es-

sential phases of analytical photogrammetry
and as such has been discussed in detail in the

literature, and since, furthermore, the spe-

cific measuring method used depends not only

on the type of comparator used but also on

the organizational and environmental condi-

tions, only those phases that are typical for

the problem in question but do not necessarily

have applicability for other more or less con-

ventional working procedures will be dis-
cussed.

If a high degree of accuracy in the end re-

sults of geometric satellite triangulation is

to be achieved, it is necessary to bear in mind

from the outset the fact that a large number

of points (600 to 750 star images and up to

600 satellite images) must be measured on

each photogram, and consequently that 5 to

8 hours are required for the measurement.
Special care must therefore be exercised in

the selection of the type of comparator, the

environmental conditions, and the arrange-

ment of working procedures, so that syste-
matic error influences can be held to a mini-

mum or can be corrected computationally. A

description of the current procedures at the

U. S. National Ocean Survey (NOS) follows.

The measurements are made on compara-

tors equipped with independent x and y

screws with a working length of about 225

mm each. The instruments, manufactured by

the firm of David Mann, Lincoln, Massachu-

setts, are equipped with a direct binocular

microscope, magnification adjustable in steps

up to 40×, and a circular measuring mark

(dot) with a diameter of about 30 _m. The

comparators are operated in a controlled en-

vironment (temperature 22 ° C_+ 0.5 °, humid-

ity 50%_+5%) and tested about every 2

months for linear and periodic scale errors
in the x and y screws as well as for ortho-

gonality of the motions. Calibrated grid

plates in each of four positions are measured

for this purpose by each of three observers.
The measured coordinates to the nearest

micron are registered electronically on a
typewriter, punched tape, or card. The ini-

tial operations revealed the fact that the op-

erator's body heat generated an unacceptably



NATIONAL GEODETIC SURVEY 539 

FIGURE 7.13.-Star plate. 
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large systematic error in the measurements,
because the optics of the comparator was not
constructed in accordance with the Abbe

principle. It was necessary, therefore, to
modify the construction to project the meas-
uring mark into the plane of measurement.
Extensive tests have shown that the com-

parators now are stable for operating pe-
riods of from 2 to 3 hours. However, it is still
necessary to subdivide the measurement of a
plate into several such periods.

The first step is to drill eight circular holes
into the emulsion, approximately 40 to 50 _m
in diameter. These are located at the four

corners, the extremities of the legs of the
conventional fiducial marks pointing toward
the center, and at the approximate center of
each edge. These drill holes are measured at

the beginning and end of each measuring ses-
sion, and the differences are used to cheek the
stability of the instrument during that pe-
riod. Before continuing with the description-
of the measuring procedure, some essentials
on the preparation for plate measurement
must be mentioned.

The readings on the circles in the field give
an orientation of the camera in azimuth and
elevation to within 10 to 20'.' With the

time of observation and approximate station
coordinates, a range in right ascension and
declination on the celestial sphere can be
computed. The computer searches the star
catalog tape for all stars in this portion of
the sky, and their coordinates together with
the nominal camera constants and the ap-
proximated orientation data are used to com-
pute plate coordinates for these stars. These

points are projected on a cathode-ray tube as-
sociated with the electronic computer and are
photographed to the scale of the photogram
to produce a star chart. The stars are subdi-

vided into three groups of magnitudes and
labeled accordingly. Another symbol desig-
nates a group of at least eight stars as bright
as possible and located in a circular ring 3 em
wide near the edges of the plate. Since the
registration on the original photogram or
diapositive varies according to magnitude,
it is easy to bring the photogram and the
"computed star chart" into coincidence on a

light table. At the same time, a grid template
is superimposed, dividing the plate format
into 100 equal squares. The photogram is
now examined under the binocular magnifica-
tion of the comparator. In each of the squares
a star of the series, before and after the satel-
lite pass, that coincides with an image on the
star chart is selected and marked. In addi-

tion, all stars recorded during the satellite
pass (cf. fig. 7.12) and the specially selected
bright stars near the edge of the plate are
marked with an identification symbol.

After this preparation, the plate is placed
in the comparator. In order to eliminate as

far as possible the influence of unknown sys-
tematic errors, a subgroup of stars and satel-
lite images covering the whole extent of the
plate is measured at each of the two or three

sessions required. At the completion of the
measurements all premarked stars and satel-
lite images will have been measured. In con-
nection with the satellite trail it should be

added that it crosses the plate within at most
a few millimeters of the center and its im-
ages are measured to a maximum distance of

6 cm from the center, in order to avoid edge
effects in the emulsion. To combine in a con-

sistent system the reading obtained from the
two or three necessary comparator sittings,
the individual sets are translated, rotated,
and stretched with two scale corrections in

adjustment, in accordance with the coordi-
nates of the relevant drill holes to best fit

the configuration of drill holes, showing the
smallest mean error. The residuals of the

reference points after these transformations
are typically 0.3 _m. The entire measuring
process is then repeated with the plate turned
through approximately 180 degrees. Both re-
sults are then meaned by fitting the latter re-
sult to the first, again by means of an adjust-
ment (determination of two components of
translation, a rotation, and two scale fac-
tors). From the residual differences between
corresponding double measurements in this
adjustment, a characteristic mean error of

1.6 _m results as a measure of precision of
the measured coordinates.

In addition, the plate coordinates of all pre-
marked star and satellite images are referred
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to the plate center as determined by the fidu-
cial marks. The coordinates of the above-

mentioned bright stars near the edges of the
plate that are easily identifiable in the cata-
log are now used to compute an approximate
orientation. With this result, right ascen-
sions and declinations are computed from the
image coordinates of all measured stars (cf.
sec. 7.4.6). The same program compares these
values with the tape containing the star cata-
log, identifies the stars, and updates them to
the observation epoch and true equinox (cf.

sec. 7.4.3, eqs. 7.1-7.15).
The step in the overall adjustment pro-

cedure of satellite triangulation under dis-

cussion represents a mutually interacting
combination of human effort and electronic
computing. The contributions from the hu-

man element, such as the execution of the
measurements and evaluation of the statisti-

cal intermediate results, are the critical op-
erations ; the computing system prepares star
charts, presents catalogued data, and makes
the necessary computations.

After completion of this operation, meas-
ured coordinates for all selected stars and

satellite images are available, as well as the
star coordinates reduced up to a certain
point. These data are now further reduced in
a numerical adjustment to be discussed in
section 7.4.6.

7.4 THEORY

7.4.1 Introductory Considerations

In the classical treatment of geometric ge-
odesy, i.e., the part of geodesy that concerns
itself with the derivation of rigorous geomet-
ric results, difficulties arise from the fact that
the measured quantities cannot be rigorously
related to the geometric model that is to be
established. Physical influences are respon-
sible for this dilemma. The so-called measure-

ments of horizontal and vertical angles are
vitiated to an unknown extent by systematic
influences such as anomalies in the gravity
field and refraction. The reduction of base-

line measurements is in principle similarly
affected.

In addition, the classical method of trian-
gulation is forced to adopt a number of com-

plex postulates whose geometric content is
based on certain hypotheses. Typical exam-

ples are the present-day correction methods
generally known as "isostatic reduction pro-
cedures." The physical principle underlying
these procedures is the assumption of homo-
geneity and hydrostatic equilibrium of the
masses within the Earth's crust. The result-

ing corrections to all geodetic observations
will prej udice the end result in favor of Clair-
aut's theory. Aside from the physical assump-
tions, an unavoidable characteristic of classi-
cal geodetic triangulation consists of the
practical limitation of sight length between
points on or near the surface of the Earth.
Not only are such geodetic triangulations in-

capable of making intercontinental connec-
tions, but the first-order nets must be pieced
together with an excessive number of indi-
vidual arcs. The disadvantage of this method
arises not so much from the relatively large
number of stations involved as from the fact

that accuracy is impaired, especially in exten-
sive nets, by error propagation.

As a consequence, geodetic theory has de-
veloped complex methods of adjustment de-
signed to eliminate the contradictions in the
data by iteration, permitting the results of
partly geometric and partly geophysical ad-
justment operations to interact until all re-
sults become internally consistent. Although

they are attractive from a theoretical stand-
point, such methods have practical limita-
tions. For this reason a purely geometrically
defined, three-dimensional worldwide geode-
tic reference system is desired in order to
transcend the shortcomings of the classical

geodetic triangulation method. Moreover,
such a worldwide geometric solution is supe-
rior to a mere connection of the various ge-

odetic datums, which has at times been called
the purpose of satellite geodesy.

The significance of a three-dimensional tri-
angulation method, emphasized repeatedly in
the recent history of geodesy, becomes espe-
cially apparent in connection with the field of
satellite geodesy, which because of its geomet-
ric and geophysical aspects demands a three-
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dimensional solution. Perhaps the greatest
significance of geometric satellite triangula-
tion, however, lies in the fact that with this
method there exists, for the first time in the
history of geodesy, the possibility for the
creation of a worldwide three-dimensional

reference system that is supported by a mini-

mum of a priori hypotheses, in particular
without reference to either the magnitude or
the direction of the force of gravity.

Establishing geometric correspondence
among a number of selected nonintervisible
points of the physical surface of the Earth
can be accomplished with spatial triangula-
tion by means of auxiliary targets elevated
sufficiently above the Earth's surface.

The generation of light signals visible over
large distances is possible by means of arti-
ficial satellites. Because of the high velocity
of such targets, observation of directions to

them can at present be made only with photo-

grammetric precision cameras. Owing to the
physical and chemical properties of the pho-
togrammetric measurement components, the
absolute accuracy as well as the reproduci-
bility of the observation conditions in this
method is limited. To obtain observational

results with maximum absolute accuracy, the
adjustment of the photogrammetric measure-
ments must be based on a method of inter-
polation.

A suitable reference system into which an
elevated target can be intercalated is obvi-

ously the right ascension-declination system
of metric astronomy. This system is all the

more attractive from the geodetic point of
view because one of its axes is parallel to the
Earth's axis of rotation. A large number of
fixed stars are available whose coordinates
are tabulated in catalogs. These control
points being practically at an infinite dis-
tance, it follows that their direction coordi-

hates are insensitive to a parallel displace-
ment of the observer and hence cannot be
used for scale determination. It is therefore
necessary to determine the scale of the satel-

life triangulation independently: for exam-
ple, by measuring the distance between two
adjacent stations. As will be shown later

(sec. 7.4.3), it is necessary to carry out such

scale determinations in several portions of
the worldwide triangulation net.

7.4.2 Geometric Foundations

We turn our attention now to a three-
dimensional method of triangulation that is

based on direction measurement and designed
to determine the coordinates of nonintervisi-
ble triangulation stations.

The relevant geometric solution is not new.

In fact, there is little room for originality in
the field of the application of photogram-
merry to ballistic and related problems. The
use of star photography for the calibration of

photogrammetric cameras is a proven
method, especially with astronomers. The use

of star images to orient photogrammetric
cameras and the corresponding triangulation
of additionally photographed target points
was used successfully in the 1930's by Hop-
mann and Lohmann (1943) in the tracking
of missiles before the method was applied in
the development of the V-2 rocket at Penne-

mfinde, Germany, and subsequently in vari-
ous other countries.

There are several ways to present the
geometric principles of this triangulation
method. V_is_l_'s proposal contains a lucid
geometric explanation. Two rays issuing
from the end-points of a given baseline and

directed at a common point define a plane in
space whose orientation can be determined
from the direction cosines of the rays. When
two such planes have been fixed, the direction

in space of the baseline can be computed as
the intersection of the two planes. The prin-
ciple involved is shown in figures 7.14 and
7.15.

After two directions AB and AC issuing
from station A have been determined in this

fashion, the shape and spatial orientation of
the station triangle ABC is fixed by intersect-
ing AB and AC with a plane whose orienta-
tion is known from observing the satellite

position S_ from B and C. Thus, five planes
are necessary and sufficient to fix the shape
and orientation of a station triangle. Each
of these planes contains two stations and one
point of the satellite orbit; therefore, there
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are five positions of the orbit, together with
the positions of the three stations A, B, C, or
(5+3) × 3--24 unknowns to be determined.

Since each pair of simultaneous observa-
tions of a satellite position--or, in other
words, the determination in space of two in-
tersecting lines--gives rise to four equations,
there are, in all, 5 × 4 = 20 equations available.
Hence, 24-20=4 additional independently
determined geometric quantities are required
for a complete solution of the triangle. The
most obvious of the many theoretically avail-
able choices are the three coordinates of one

of the stations, which, in principle, can be
assumed arbitrarily, for example, as the ori-
gin of the coordinate system. It is equally
logical to choose as the fourth assumption
the length of one of the sides of the triangle,
which fixes the scale for the whole triangula-
tion. For purposes of explaining the princi-
ple of satellite triangulation it is sufficient to
introduce this side-length as the unit of
length.

It is interesting to note that three of the
five necessary planes can be determined with

a single pass of the satellite, if the satellite
subpoint lies near the middle of the triangle
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of stations (see fig. 7.16). For this case, a
unique solution can be obtained with the de-
termination of (3+3) × 3=18 unknowns
from 7 x 2 = 14 available condition equations.

Again, four additional independently deter-
mined parameters must be introduced.

From the viewpoint of analytical pho-
togrammetry, the geometric principle of
satellite triangulation can be explained by
identifying the unknown positions of the tri-
angulation stations and the unknown orien-
tations of the observing cameras with the
corresponding conditions in classical aerial
photogrammetry. The unknown orbital posi-
tions of the satellite correspond to the rela-
tive control points, with the restriction that
they cannot furnish scale, since they lie at an
infinite distance.

The geometric concept of photogrammetric
satellite triangulation must, however, be in-
terpreted in the light of the fact that at each
station the stars (absolute control points) are
used for the determination of the elements of

the interior orientation necessary for the re-
construction of the photogrammetric bundle,

X3 /

/ / / !
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together with the determination of the three
rotation elements of the exterior orientation.

The condition of intersection of the rays re-

sulting for each satellite image observed from

more than one station is used exclusively to
determine the three elements of translation

of the exterior orientation. This circumvents
the unfavorable correlation between the ele-

ments of rotation and translation that is typi-

cal in aerial triangulation, an advantage that

is reflected in the favorable error propaga-

tion characteristics of satellite triangulation

(see sec. 7.3.3).
The geometric content of satellite triangu-

lation, in complete agreement with the corre-
sponding concepts in the general field of ana-

lytical photogrammetry, is thus based on a

multitude of individual rays whose directions

must be determined from the relevant photo-

grams. Hence, the idealized conditions must

be satisfied : that the three points-- objective

(satellite), center of projection (triangula-

tion station), and image (photographed

satellite image)--lie on one straight line.

This condition is the geometric basis for

satellite triangulation, just as it is the neces-

sary and sufficient criterion for any photo-

grammetric triangulation (Schmid, 1958,

1959).

It is obvious that after fixing the first

station triangle in space nothing prevents
the addition of further stations as vertices of

triangles adjacent to the first. Postulating

the possibility of scale determination, either

by direct measurement of a side of one of the

space triangles or, for example, by simul-
taneous distance measurement from at least

four stations to a satellite position, the posi-
tions of a number of points on the physical
surface of the Earth can be determined in a

homogeneous three-dimensional reference

system. In practice, the arrangement of the

stations, and hence the shape of the config-

uration, is to a great extent dictated by the

geographical distribution of islands over the

oceans.

Aside from using the method to determine

a worldwide geodetic reference system, the

same technique can be applied to establish the
frames for continental triangulations. On

the basis of accuracies in the determination

of directions attained even today and of the

basically favorable error propagation char-

acteristic of satellite triangulation, these

frames are equivalent or superior to classical

first-order nets, particularly where such nets

cover extensive areas (see fig. 7.17).

Judging by present technical standards, it

seems unlikely that, because of their limited

life span, satellites with a height above the
earth of under 1000 km will be used. There-

fore, as a consequence of the nearly linear de-
crease in accuracy of the triangulation re-

sults with increased height (see sec. 7.4.3),

the practically acceptable shortest average

distance between points of a continental satel-

lite triangulation net should be 500 to 1000

km. Without changing in any way the geo-

metric principle--although the influence of

the physical parameters is different and not

necessarily more favorable from the stand-

point of measuring technique---the described

method of satellite triangulation becomes a

type of three-dimensional triangulation with

elevated targets, taking into account present-

day capabilities to generate a large number of

light flashes or to burn pyrotechnic signals

on airplanes, which may in the near future be
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FIGURE 7.17.--Satellite-triangulation network

in North America.
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expected to fly at heights of 20 to 25 km. In
addition to the theoretically desirable three-
dimensional character of the triangulation
method, it will be a question of economic
feasibility whether the development of such a
technique will, in part, replace classical first-
order triangulation in certain areas of the
Earth.

Quite independently of the measurements
of the individual spatial triangulation fig-
ures, the basic geometrical concept underly-
ing the method of satellite triangulation re-
quires, at least in principle, simultaneously
executed observations of directions to "the

target (in our case the satellite) from at least
two stations. Clearly, the requirement to

measure directions rather than merely angles
implies the necessity of orienting the ob-
served bundle in each case relative to a

uniquely defined system of reference. This is
otherwise self-evident in view of the fact

that our end result is to represent a con-
sistent spatial reference system.

A spatial coordinate system to which a
direction to a target sufficiently elevated
above the horizon call be --_ ...... _ "- *_^ _'_*

ascension-declination system. This reference
system, surrounding the whole Earth, is
qualitatively as well as quantitatively suita-
ble, a great number of precisely measured
reference points being readily available. Of
especial significance to the photogrammetric

mensuration principle is the abundance of
such absolute control points, since because
of the physical and chemical nature of its

numerous components and procedures the
photogrammetric method can satisfy the re-
quirements for highest accuracy only if the

corresponding observational and adjustment
procedures are executed in a close-interval
interpolation process.

We emphasize here, therefore, that the
claim of satellite triangulation, that it pro-

duces results without the aid of physical hy-
potheses and practically free of systematic
errors, derives chiefly from the fact that pho-
togrammetric direction determination in sat-

ellite triangulation not only operates with the
aid of geometric interpolation within the re-
constructed photogrammetric bundle but rep-

resents equally an interpolation into the phy-
sical process of astronomic refraction (see
sec. 7.4.5). This also means that the absolute

accuracy of photogrammetric satellite tri-
angulation depends primarily on the quality
of the right ascension-declination system,
particularly on its freedom from systematic
errors. On account of the importance of the
astronomic reference system to satellite tri-
angulation, some relevant remarks will be

made in the next section, specifically as they
apply to the data processing in satellite tri-
angulation.

7.4.3 Astronomical Reference System 1,,

In satellite triangulation, photographing
the fixed stars serves to reconstruct and to

uniquely orient in space the photogrammetric
bundle. The problem of reconstructing the
bundle is fundamentally identical with the
problem of calibrating a photogrammetric
camera. The geometric interpretation of the
relevant parameters is independent of the
orientation of the camera. It would therefore

suffice to have given the relative geometric
arrangement of the images of the stars on a
particular plate in an arbitrary coordinate

1 For the proper interpretation of the computa-
tions in this section it is recommended that the

reader first study sections 7.4.6 and 7.4.8.

The s3_bolism used in this chapter is common in

photogrammetric practice, and the author did not

wish it changed. Some of the symbols are used with

different meanings outside of photogrammetry (in

particular in geodesy and astronomy) and even occur

in this chapter with two or more meanings. There-

fore, care should be exercised in interpreting the

equations in this chapter. For this reason, the fol-

lowing ambiguities are indicated by footnotes: (1)

is used in this chapter to denote one of the angles

defining the orientation of a camera and to denote

right ascension; the latter sense is that used in the
rest of the volume. (2) The symbol c is used to de-

note one or (with subscripts) more of the character-

istics of a camera and to denote the velocity of light;

only the latter convention is used in the rest of this
volume. Where used in this chapter in the former

sense and where confusion may occur, the exceptions

are noted by (1) a dagger (t) for a denoting one of

the angles defining the orientation of the camera, and

(2) a double dagger (:_) for c denoting a character-
istic of *_'^ camera, wA_,_
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system. However, the determination of an
unambiguous orientation for all the bundles
of rays serving the triangulation is predi-
cated on the fact that all given control points

(the totality of fixed stars used) are given in
a uniquely defined reference system, which
furthermore can be uniquely transformed to
an Earth-fixed coordinate frame. The right
ascension-declination system of metric as-

tronomy, as was previously mentioned, fur-
nishes the metric basis for geometric satellite

triangulation. The point of departure is the
apparent position coordinates of stars tabu-
lated for a given epoch in star catalogs such
as Apparent Places of 1535 Fundamental
Stars, published by the Astronomisches
Rechen-Institut, Heidelberg; the General

Catalogue (Boss, 1936), with approximately
33 000 apparent star positions; or in prob-
ably the most complete catalog to date, issued
by the Smithsonian Astrophysical Labora-
tory, in which over 250 000 stars with their
apparent places are tabulated (see chs. 1
and 9).

The choice of stars selected for the purpose
of satellite triangulation depends primarily

on the accuracy of their coordinates. Stars
with large proper motions should be avoided
and double stars should not be used at all.

To counteract the influence of spectral
differences of the stars, a special lens was

used (see sec. 7.2). Finally, the selection was
limited by the magnitude registered by the
specific optical system and emulsion used.
With the BC-4 system and the Eastman-
Kodak emulsion 103-F in use today, stars of
the seventh and eighth magnitude still pro-
duced good, measurable images over the en-
tire plate. Using very bright stars at the
same time raised the question concerning the
influence of relative systematic errors in
locating the centroid of the image. With the
focal lengths in use at present for satellite

triangulation purposes, the existence of a
magnitude effect, which is not negligible in
astronomical measurements, has not as yet
been quantitatively demonstrated.

In Bossler (1966), the distribution over
the celestial sphere with respect to right
ascension and declination of the Smithsonian

catalog stars is described from the standpoint
used in the selection.

Geometric satellite triangulation can at
best, therefore, attain the accuracy of the
astronomical reference system (see sec.
7.3.1). Hence, for a critical study of the
theoretical accuracy of satellite triangulation,
the observation and adjustment procedures
used in metric astronomy to establish star

catalogs are of fundamental importance.
Within the frame of this presentation it must
suffice to refer to the literature on these

highly specialized and complex procedures:
Clemence, 1963; Scott, 1957, 1963; Vasilev-
skis, 1963; Dieckvoss, 1963; Woolard and

Clemence, 1966.
To understand geometric satellite trian-

gulation, it is necessary to interpret correctly
the qualitative (geometric) and quantitative
(statistical) data listed in the star catalogs
in order to grasp the reductions necessary to
transform the time- and space-dependent
geometry of the individual photogrammetric
exposures into a homogeneous geometric sys-
tem. The problems arising in this connection
are basically the same as those faced in the
reduction of astronomic geodetic field ob-
servations.

The star catalogs list for apparent places
a pair of spherical coordinates for a specified
epoch, right ascension _ and declination
(see ch. 1). The specification that the cata-
loged values refer to a given epoch (generally
the beginning of the tropical year 1950.0 in
the newer catalogs) means that time-de-
pendent corrections must be added to the star
coordinates before they represent the actual

position at the instant of observation, in our
case the time of exposure.

The reason for these corrections is chiefly

to be found in the dynamics of the universe,
although purely physically based corrections
must also be taken into consideration. Theo-

retical explanations are described in detail in
standard works on geodetic astronomy (e.g.,
KSnig, 1962; Clemence, 1966; Wayman,
1966 ; Fricke and Kopff, 1963 ; Morgan, 1952 ;
Gliese, 1963; Kopff et al., 1964). Neverthe-
less, it seems useful to outline here, in terms
of formulas, the sequence of corrections used.
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For one thing, such a presentation will pre-
sent a computerized method designed to re-
duce a large number of star places, including
circumpolars, that are needed in geometric
satellite triangulation. For another, it helps
to clarify the contribution of the individual
corrections to the overall adjustment proce-
dure of satellite triangulation and to judge

the technical and economical aspects in-
volved.

The following computations are made for
the purpose of deriving, from the star catalog
data for a specific epoch, that unit vector
which designates the apparent geocentric
direction of a star with reference to the true

equinox at the instant T of observation. The
solution shown here is based on the method

now in use at the U. S. Naval Observatory.
The lower indices to the right of the matrices
designate first, the equinox to which the
coordinates are referred, and second, the
epoch. To begin with, the heliocentric unit
vector x..... referred to the epoch and equinox
of the catalog used, is computed with the
catalog entries a and $.

F::I[c++s n lx .... = cos $ sin a (7.1)

LX._Joo sin _ 0o

Then the star coordinates are corrected for

the proper motion of the star. The corre-
sponding correction vector _.,. is computed by

using the proper motion components in right
ascension _ and in declination _+ listed in the
catalog and by differentiating the vector in

equation 7.1), since _.,=dx/dt by definition,

I ]t,x= cosSsina -sin$cos a

0 COS _ oo #_ oo

= , _x: x,(l_xDw, I (7.2)
(1-x_) _/__Joo t_+ oo

with _ and _+ in radians.

A second differentiation yields the com-
ponents of the secular variations. The cor-

responding vector y., is then

_'x= - _'-'Xoowith _: = _, _ 2+ _._ + _,+.+ (7.3)

If the radial velocity of the stars is to be
applied, equation (7.3) is augmented to

_= -_'-'x..-O.OOO205_Vy., (7.4)

in which _ is the parallax of the stars in sec-
onds of arc and V is the radial velocity of the

star in kilometers per second. The second
term in (7.4) is quite small and needs to be
considered for only a few stars.

With (7.1), (7.2), and (7.3) or (7.4) the
unit vector x.r referred to epoch T and the
catalog equinox is

Expression (7.5) is obviously the Taylor-
Maclaurin expression of vector x in time to
second order. The time interval T is in trop-
ical years or centuries, depending on the

+.+u.u,,,+++.v_++ _.,.,.,. _, /_6 ................

particular catalog used; T includes the frac-
tion _ of the year in which the observation is
made. Values for • are taken from the vol-

ume of the American Ephemeris and Nautical
Almanac in question. The result (7.5) can be
transformed for convenience in program-
ming to

xor= (1 _:T2)2 x.,,+ (T-O.OOO1025_.VT) _,.

(7.6)

The next step rotates the vector x,T from
(7.5) or (7.6) in accordance with precession,
so that the transformed rectangular coor-
dinates will be referred to the mean equinox
for the beginning of the Besselian year T'
nearest the date of observation. The trans-
formation is

xr.r=_R (- +_,0,-z) x,,r (7.7)
32 3

in which the rotation matrix has the follow-
ing meaning :
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R(-_, e,-z) =R(-z)R(e)R(-O
32 3 3 2 3

 o C°Zinzil=lsinz eosz

0

[_sin[C°_00-sinll Ic°i_-sin_!1001 cos0 si _ cos0 _

(7.8)

vector of a star for the epoch T, referred to

the mean equinox of T' and including the

aberration, is

X,.r 7,,= X,r,r + +C (7.10)

C tan

with the mean inclination of the ecliptic

23°26'447840-467850T-07003T _

+0_002T :_ (7.11)

The indices under the angles in the rotation

matrices designate the axis around which the

rotation takes place (for direction of rota-

tion see sec. 7.4.6.2.2). When Newcomb's

constants are used, the rotation angles are

= (2304'.'250 + 1'.'396To) + 0':302T _
+ 0,.,018T :_

z= _+ 0'.'791T 2

0= (2004"682 - 0':853To) T- 0':426T'-'
- 0'.'042 T '_

(7.9)

with T as above.

The transformation (7.7) accounts for pre-

cession up to the beginning of the Besselian

year nearest the date of observation. An

additional rotation is necessary to transform

the position coordinates from the correspond-

ing mean equinox to the true equinox at the
time T of observation.

With allowable neglect of terms of second

and higher order that do not contain the
factor tan _ one obtains

The geometric meaning of the angles is

given in Explanatory Supplement to the

Astronomical Ephemeris and the Ame_ican

Ephemeris and Nautical Almanac. To (in

tropical centuries) is the interval between

1900.0 and the epoch of the catalog used; T,

also in tropical centuries, is the difference

between the Besselian year T' nearest the

date of observation and the epoch of the

catalog.

The vector of (7.7) is next corrected for

annual aberration, for which daily values are
listed in the American Ephemeris and Nau-
tical Almanac. Since these tabulated values

are computed from the true motion of the

Earth with reference to the mean equinox at

the beginning of the Besselian year nearest

the date for which they are published, they

can be applied directly to this vector. The
annual aberration corrections must be inter-

polated with first and second differences to
the date of observation. The resulting con-

stants -D, C, and C tan E in radian measure

may be regarded as displacements of the

rectangular coordinates. Thus, the position

X(TT) = R (B,A,--f) X(,r,_., (7.12)
12 3

where A, f, and B in radians are taken from

the American Ephemeris and Nautical Al-

manac and interpolated to second differences.

The rotation matrix (7.12) has the meaning

R(B,A,-f) --R( -f) R (A)R_(B)
12 3 3 2 1

f -sin f 0"_
]

f cos/0|
!

o lj

[_sin A 0 cos

or, with sufficient accuracy,

007cos B sin B

-sin B cos BJ

(7.13)

i -f - (A+Bf)

R(B,A,-f) = 1 (B-Af)
12 3

-B 1

(7.14)
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The rectangular coordinates used up to this
point are heliocentric, and it is necessary to
transform them to geocentric coordinates
whenever the absolute parallax _ appearing
in the General Catalogue of Trigonometric
Stellar Parallaxes (Jenkins, 1952) exceeds
0':010. This last correction is obtained with

XTT_--X(TT)_- COS -_-

sin

(7.15)

with C, D, and • as in (7.10). The aberration
constant k = 20'.'496. The XT.rvector indicates
the apparent geometric direction to a star
for the observation epoch and the corre-
sponding true equinox. The corresponding
apparent right ascension and declination are
obtained with the inversion of (7.1) from
(7.15) as

= arctan xJxl

x '_x 2 ' -'2_/__=arctan 3/t l_-x_t (7.16)

For a comp-ter program a convenient.._e-
quence of operations is obtained by combin-
ing the individual steps chosen in (7.6),
(7.7), (7.10), (7.12), and (7.15). In con-

nection with (7.1), (7.2), (7.3), (7.8), (7.9),
(7.11), and (7.13) or (7.14), auxiliary com-
putations are required based on tabulated

or, where necessary, interpolated values. The
geocentric directions computed with the rec-
tangular coordinates (7.15) or the orthog-
onal spherical coordinates (7.16) can be
adopted without change as topocentric direc-
tions, since the stars are sufficiently remote;
i.e., no additional parallax correction is
needed. The situation is shown in figure
7.18a, where the basically geometric astro-
nomic reference system Xl,2.3 is shown in par-
allel displacement to an arbitrary point of
the earth's surface on a unit sphere sur-
rounding this point.

The orientation of this assumed spatially
stationary astronomic system differs, there-
fore, from the orientation of a geocentric
coordinate system yl,2,3 that rotates with the
I_._rfh hy _. ,n_lo _ that corresponds fn thi._

rotation and is formed by the plane of the
Earth-fixed null meridian of longitude (_'
--0) and the plane of the astronomic null
meridian (a=0). The geometrical meaning
of the angle 0a_ is apparent from figure 7.19.
It is the sidereal time of the null meridian

and is computed from Universal Time (UT)
(mean Greenwich time) by converting mean
to Sidereal Time (i.e., by multiplication with
the ratio 366.2427/365.2427 or 1.002 737 91)
and adding to 0o_. The angle _oo_is listed in
the American Ephemeris and Nautical Al-
manac for 0 _'UT of each day. The introduc-
tion of Universal Time for the instant of

observation makes it necessary to raise cer-
tain questions in connection with the meas-
urement of time. This train of thought is
presented in section 7.4.4.

By studying the further steps in the reduc-
tion it will become apparent that it is ad-
vantageous to change the spatial orientation
of the astronomical reference system x_,2,3
in a way to simplify the form of certain
corrections.

The first is diurnal aberration. In conse-

fixed observation stations with respect to the
right ascension-declination system, assumed
stationary, we must, in addition to the annual
aberration caused by the Earth's movement
around the Sun, consider a so-called diurnal
aberration. This is a function of the true

position (_', x') of the observation site on the
Earth and the angle Oo,. (see fig. 7.18a), as
well as of the direction of observation, i.e., of
the a and _ of the star. After the x system of

figure 7.18a is turned through the angle 0
about the x3 axis (see fig. 7.19), the resulting
x_ direction lies in the meridian plane of the
observation site and x_' points to the east, i.e.,
in the direction of the linear velocity vector

v¢, of the Earth's rotation.
Figure 7.20a shows a unit circle in the

plane that contains the unit vector x5 (direc-
tion to the star) and its x: component, and

hence also the v,, vector.
From this the length of the aberration

vector _ is

= _cos (7.17)
G
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FIGURE 7.18.--Coordinate systems.

in which re, is the linear velocity of the

Earth's rotation in latitude 6' and c is the
velocity of light.

The components of _ in the x;,2.3 directions

(see fig. 7.20 and eq. 7.73) are

4= (1-xJ 2)/.

-x_x_ j

k' (7.18)

with k'=v_,/c, or sufficiently close for the

purpose,

referred through the angle tL This results in

x'_,_, = _R(_) xTr (7.20)
3

where

[cosin'S7R(e)= -sinOcos0
3

0 0

(7.21)

The unit vector x'_,r corrected for diurnal

aberration is, with (7.18) and (7.19),

k'= 0':319 cos _' (7.19)

To compute (7.18), we must rotate the x

system to which the xr_, vector (7.15) is
I X_'X' 1

-- 1 2

x'<_r> =x'_,_+ (1 - x"-') k'

- x:_.x"

(7.22)
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FIGURE 7.19.--Relation of local times to other times.

To account for astronomic refraction, a
further correction is necessary. Since astro-
nomic refraction is most conveniently com-

_Jtlb_(l _,5 a lUll_lUll uJ. b|lq_:_ _Ulll_:;bll_ h_lllbll

distance $ of the observed direction, the x_,r
system (7.20) is rotated through (900-@ ' )
about its x_ axis into the local rectangular y'
system (see fig. 7.20b). The resulting unit
vector from (7.22) is

y' = R (90°- _') x('rr) (7.23)
2

with

i.o.0CO:.1R( 90° -,b') = 1
2

/cos _' 0 sin _'_J

(7.24)

and, correspondingly, with (7.16) from
(7.23) the azimuth A (from south over west)
and zenith distance _ are

v_'Pi _ l x_East

._1 _-:_%/ "I- x,.-.,,
I _ _

_----_._T__.-.-----_\: _._'_. Aberration Vector A

Unit Circle at R in the \_ _\-_

Plane Containln'g v._' and \_:_ _\'_

the Observed D_rectlon _"_, %'_._
to the Star. \-- \o-"

\

FIGURE 7.20

The astronomic refraction r_ is next com-
puted, on the basis of the mathematical model

described in section 7.4.5, as functions of the
weather data obtained during the observa-
":^-_,v.(air temperature, pressure, relative

humidity, etc.). The vector y' of (7.23) is
corrected for this refraction in accordance

with (7.74) of section 7.4.6.2 (cf. also eq.
(7.42)), giving

F-co4,- -cosA)l

sin(_-Y_)

(7.26)

When r, is small in a differential sense in

relation to the expected limit of accuracy,

(7.26) simplifies in accordance with (7.73)
to :

--y' y; ]
y'_--y'+ --y'y' r=

(]--y_)

(1--y_)-½ (7.27)

A = arctan._,
Y_

_=arctan (y ._ y_2)
Y_

(7.25)

where r_ is in radians.
Corresponding spherical coordinates can

be obtained from (7.26) or (7.27) with
(7.25).
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More suitable for further development of

our problem are the rectangular coordinates

and _lin the plane tangent at the zenith of

the observer to a unit sphere, as shown in

figure 7.27 of section 7.4.6.2. These coordi-

nates are commonly designated as standard

coordinates in astronomy and are computed

with the expressions on the left of (7.26) or

(7.27) in accordance with (7.66) and (7.67)
of section 7.4.2.6 :

(7.28)

Hence (cf. eq. (7.64) and (7.65) of sec.

7.4.6.2) :

A = arctan ,j,./_,.

_r= arctan 2 2(_r+_r) '/-_ (7.29)

The correction steps of the preceding para-

graphs can again be combined in a sequence
of steps convenient for programed computa-

tion. From (7.20), (7.22), (7.23), and

(7.26) or (7.27) results the direction vector

y_. in the local coordinate system as derived
from the xrT. vector (7.15) in the astronomic

x system. These directions represent a sta-

tionary oriented bundle of rays at the point

of observation for the instant T, expressed

in UT, of the observation. The rays forming

this bundle pierce the tangent plane of the

unit sphere at the zenith of the observing

station in points whose locations are defined

by their coordinates _,., _,.. The _ system

corresponds in its orientation to the y' sys-

tem. By obtaining the coordinates _,., *l_,
therefore, we have transformed the spherical

coordinates, originally tabulated in a star

catalog for a specified epoch, into three-

dimensional rectangular coordinates such

that all the reference points lie in a plane

tangent to the unit sphere. The coordinates

assigned to these points with reference to the

center of the sphere as origin and axes

parallel to the directions y_._.:_ are therefore

_,, _j,., +1.
The images of the stars corresponding to

these control points lie in the plane of the

photographic plate on which their position is

determined with reference to an arbitrarily
oriented plane rectangular coordinate system

(x, y) introduced into the plate plane (see
fig. 7.32 of sec. 7.4.6.2). There remains the

problem of establishing the projective corre-

spondence between the two sets of points on

the two planes, one set defined by coordinates

(_r, _1,), the other by corresponding image
coordinates (x, y). This principal prob-

lem of the photogrammetric measuring

technique is solved by the application of

the principles of generalized central per-

spective. The mathematical model for this
solution is described in detail in section

7.4.6.3. For the present, it is necessary only

to accept the fact that this step establishes,

either directly or indirectly, the orientation

of the photogram with respect to the coor-

dinate system in which the control points are

given, in our case with reference to the local
y' system. Similarly, all the derived rays

from this oriented bundle, such as the direc-

tions to the additionally photographed indi-

vidual satellite positions (see sec. 7.4.6.5.1),
are obtained in this coordinate system. Since

in the subsequent triangulation (see sec.

7.4.7.2) all directions from the various sta-
tions must be referred to a common coordi-

nate system, one can rotate the locally intro-

duced coordinate systems so as to make their

axes parallel to those of the common system

chosen for the spatial triangulation before

the photogrammetric reduction of the indi-

vidual single cameras. This rotation can also
be effected after the reduction of the single

camera. The rotation matrices which deter-

mine the orientation of the photogrammetric

exposure, and which, as was mentioned, refer

to the local y' systems, are transformed for

this purpose so that they refer with their
elements of orientation to the common coor-

dinate system chosen for the triangulation.

Hence, the next step in the computation is the
transformation of either the local y' system

established at the point of observation P (_',

_') or the local orientation matrix R_ (_ ...... )

obtained in the photogrammetric reduction to

z system selected for the subsequent triangu-

lation (see sec. 7.4.6.2.6). First, the local y'
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system is transformed to the corresponding
geocentric y system. The necessary rotations

are through the angle (270 ° +4,) about the z
axis, and then through the angle (-_o,_st)
about the turned 3 axis. This gives

y= R(-_st) R (270° +4,'y'_
3 2

[c°sX'-sin_' i] [ sin4,' 0 c°s4,' 7LsV 0 0/y 0 -cos 4" 0 sin _,']

(7.30)

or analogously,

_Ry(_, _, K) =_R-#_,_t) R (270 ° +4,')
3 2

' _) (7.31)tR_(_, _,

where _R,(a, _,, K)t corresponds in the y sys-
tem to the photogrammetric orientation
matrix.

Basically, the aim of the reductions so far
_"....... _ is to refer all the photographi-
cally registered directions to stars--observed

from different stations and, in general, at
different times---to a consistent stationary
coordinate system. The computations would
produce a rigorous geometric solution only if
we could assume that the direction of the
Earth's axis of rotation, i.e., the y_ direction
of figure 7.18a labeled instantaneous axis of

rotation, remains invariant in space. We
know, however, that the poles describe more
or less irregular loops in a period of approxi-
mately 430 days about a mean position which
itself possibly has a secular displacement.
From a geometrical point of view it is im-

material whether this so-called polar motion
is treated as an additional motion relative to
the astronomic reference system (a sort of

additional precession and nutation) or
whether one accepts the direction of the rota-

tion axis as invariant and ascribes the phe-
nomenon to a displacement of the crust.

However, in addition to this purely geometric
and computable effect, the influence of polar
motion is coupled with the problem of time
determination at the observation site. For
this reason the discussion of these corrections

will be combined with the questions of time
determination in the following section.

7.4.4 Meaning and Measurement of Time

The significance of time determination for

the problem of geometric satellite triangula-
tion is twofold. First, because of the dynamic

characteristics of the universe, i.e., because
of the Earth's motion in space, we must de-

termine the instant of the photographic ex-
posure of the star image within an interval
based on astronomic observations. In addi-
tion, because of the motion of the satellite
itself, the instants of observation of the satel-

life at all stations observing the pass must be
correlated with respect to an otherwise arbi-
trary measuring frequency, which amounts
to a relative time determination.

With this, one interpolates points along
the satellite track whose images, from a
geometric standpoint, represent basically
arbitrary but uniquely defined points on the
orbit. In registering the pass of a satellite
whose track is marked by short-duration
light flashes this requirement is not neces-
sary. Because of the finite speed of light, part
of the photons emitted in the flash will, in
general, not arrive at the different observa-
tion sites simultaneously, but for that very
reason they will produce images whose posi-
tions on the various photograms correspond
to a single point in space, the origin of the
flash, and thus fulfill automatically the "geo-
metric condition of simultaneity." Following
is a discussion of those problems concerned
with the impact on satellite triangulation of
the time of observation needed for star

imagery. We emphasize again the fact that
the requirement for time correlation in star

observations is, in principle, of a purely geo-
metric nature. This conclusion follows from

the fact that the spatial position of the Earth
with its observation stations changes with

time, relative to the astronomic reference
system. The measurement of time, therefore,
serves to refer the spatial orientation of the
Earth at the instant of observation back to

an orientation assumed as a normal position
and corresponding at a specified epoch.
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For the motion of the Earth around the

Sun it is necessary to refer the Julian day
and fraction of a day, as represented by UT
for the instant of observation, to the begin-

ning of the corresponding tropical year, the
latter representing a point of time independ-
ent of all calendar reckoning and the same
for all meridians (cf. Jordan/Eggert, 1939).
The interval T so determined is needed for
all the reductions described in section 7.4.3.
The interval derived from the time of day
serves as the basis for determining local
sidereal time in accordance with the steps

given in the previous section. There now
arises in satellite triangulation the problem
of the geometrical meaning of the measure of
time known as Universal Time (UT).

As is well known, the time of day is trans-
mitted by radio signals broadcast from nu-
merous stations distributed all over the

world. Abstracting the delays due to physical
causes in the transmitters and receivers and

their antennas and to variations in the propa-
gation velocity of light caused by atmospheric
influences, these time signals represent a se-
quence of extremely regular intervals. They
are monitored by atomic clocks with great
and long-term stability (±10 -l° sec over a

period of months with daily variations of
_10 -1' see).

In principle, these transmitted signals do
not represent a time referred to the Earth's

rotation, but to a definite signal sequence.
For most daily and public purposes, however,
it can be considered directly as the "time of

day." By means of stellar observations at a
group of observatories linked in an inter-
national service, the relation between these
time signals and time referred to the Earth's
rotation is established. In addition, this in-
ternational working group concerns itself
with the determination of the instantaneous

position of the pole. These figures are pub-
lished in the form of preliminary and later
definitive values. One set lists the position of
the instantaneous pole with respect to a

selected null position; other tables give time
corrections for converting the transmitted
signals to Universal Time 1 (UT1) and Uni-
versal Time 2 (UT2). The results from the

various observations (58 are participating at
this time) are combined at the Bureau In-
ternational de l'Heure (BIH) into a "mean
observatory" value. This eliminates neglected
influences such as refraction anomalies, secu-

lar polar motions, and irregular changes in
the Earth's rotation statistically, at least to
some extent. It also smooths out the errors
in the determination of time due to sys-
tematic biases caused by the assumed nomi-

nal longitudes of the various observations
and long-term refraction influences. Uni-
versal Time 2 in this system refers to a

fictitious Earth that is practically independ-
ent of periodic, chiefly seasonally dependent,
changes in the rate of the Earth's rotation.

UT1 is characterized by the fact that it,
like the original observation, contains the
periodic, seasonal variations of the Earth's
rotation and therefore represents a measure
of the instantaneous rate of rotation. Hence,

it is a more suitable time for the present
purpose, even though it is not uniform, and
the time interval so determined can, as was

indicated above, be converted into the corre-

sponding sidereal interval by multiplication
with 1.002 737 91. Since 24 hours of sidereal

time represents exactly one revolution of the
earth relative to the right ascension-declina-

tion system, the so-computed sidereal time
is proportional to an angle of rotation, the
geometric equivalent of our time coordinate,
and is represented in figure 7.19 in a form
convenient to the purpose, as sidereal time
of the null meridian (see also fig. 7-18a). By

introducing two great circles to include this
angle, one obtains a definition valid for all
instantaneous positions of the pole. One great
circle is the meridional trace of the plane con-

taining the instantaneous axis and pole of the
Earth's rotation and the point of the celestial

equator that represents the equinox of the ob-
servational period. The other great circle is
the null meridian, which is the trace of a
plane again containing the instantaneous axis
of rotation plus an arbitrary but uniquely
defined point of the Earth's surface. This
point, by international convention, has the
coordinates longitude _to= 0 and latitude _,)= 0
referred to the mean position of the pole for
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the period 1900-1905. Unfortunately, this
point lies in the Atlantic Ocean, and no direct
obervations are possible from it. This situa-
tion is regrettable from a geodetic stand-
point, but conceivably reveals the foresight
of the specialists involved in the extraordi-

narily complex and difficult problem of re-
ducing astronomical observations made for
the purpose of time determination.

The ultimate refinements in time deter-

mination are not of decisive importance in
the method of geometric satellite triangula-

tion treated here, since the accuracy required
in timing the instant of star exposures is at
most ±3 msec. Consequently, UT1 furnishes
geometric satellite triangulation with a time

coordinate whose geometric equivalent, when
it is transformed into a sidereal interval, is
compatible with the coordinate transforma-
tion (7.20) of the previous section.

In the past the situation described above

was complicated by the fact that UT1 and
UT2 were not referred to the conventional
1900-1905 pole, but were until 1958 referred

to a pole which dropped periodically, and
thereafter these times had as a reference pole
a periodically displaced pole with a so-called
secular motion. Since for all these various

positions of the pole the corresponding null
meridian passed through Greenwich, its in-
tersection with the conventional equator was

correspondingly displaced. As a consequence,
for the period from 1958 to 31 December

1967, UT1 cannot be used as a rigorous meas-

ure for rotation. After 1 January 1968 the
time pole is stationary and identical with the
1900-1905 conventional pole (CIO) as recom-
mended by the International Astronomical
Union 1967.

It should be noted, however, that the classi-
cal null meridian of Greenwich should be re-

placed by either a correspondingly rotated
geodetic meridian or an equivalent discon-
tinuity introduced into universal time on

1 January 1968 (see sec. 1.4). After that,
the situation is clarified, our basic considera-
tions have validity, and UT1 can be accepted
as a measure of the Earth's rotation. Under

these assumptions, the y system obtained
with (7.30) represents a reference system

corresponding to an instantaneous position
of the Earth to which, therefore, the

photogrammetric rotation matrix _R,(a,o,,K)t
computed with (7.31) is referred as well.

From the geometric considerations above, it
follows readily that for the eventual geo-
metric normalization of the observation re-
sults, i.e., for the transformation of these

data into the system chosen for the triangula-
tion of the station coordinates, it will be
necessary to rotate the y system referred to
the observation period into the z system of
the epoch selected for the spatial triangula-
tion.

From figure 7.20 it is apparent that only

two rotational components are needed. First
the y system must be turned about its 2 axis
through the angle -a, and then this turned
system must be turned about its 1 axis
through the angle -b. The 3 axis thus ob-
tained will then define the direction of the

rotation axis for the epoch chosen; the inter-
section of the 1 axis with the sphere will
represent the origin of the system of time
measurement adopted by international agree-
ment, its meridian corresponding to the
classical Greenwich meridian. From figure
7.21, this transformation is

z--R(-a, -b)y (7.32)
2 1

with

R(-a, -b) =R(-b)_R(-a)
2 1 1 2

1 0 0 "]

]= 0 cosb -sinb

0 sin b cos b

[ c°sa 0sin:100 0
-sin a 0 cos

(7.33)

The rotation angles a and b are small and

equal to the differential displacements x and
y published by the BIH for defining the in-
stantaneous pole with respect to the conven-
tional origin (the 1900-1905 pole in our
_j. ,l,_ Lu_lvn (7.33) becomes
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Iventiona/ International Ortgin

(1903- 1905)

;/
FIGURE 7.21.--Relations between instantaneous pole

and conventional pole (1903-1905).

E:°i]R(--x, -y) = 1 - (7.34)
2 1

-x, y

_R_ of (7.31) transforms into the corre-
sponding photogrammetric rotation matrix

R:(=,_,K) =R(-x, -y)Ry(a,o,,_) (7.35) t
2 1

When the satellite triangulation is ad-
justed within a local rectangular coordinate
system, a process which could be entirely
practical within a given geodetic datum, ex-
pression (7.35) must be further rotated. If,
for example, the rectangular Cartesian coor-
dinate system to be used in the final triangu-

lation is to be erected at the point P (_,_t, _,
h= 0), we will have, analogous to the preced-
ing transformations,

z'=R [_t, (90°-_) ]z (7.36)
3 2

with

R [_t, (90° -¢) ] = _R(90° - _) R (_,_a_t)
3 2 2 3

Esin 0c°:]= 0 1 0

cos 4, 0 sin

[co --sin _, cos _,

o 0

(7.37)

and similarly for the transformation of the

photogrammetric orientation matrix

/ o

RR,(¢z,oJ,K)= R[x_._,, (90 -40 ]_R:(a,o,,K)
3 2

(7.38)¢

7.4.5 Additional Geometric and Physical In-
fluences

The preceding section has treated all the
coordinate transformations needed (based on

the given star catalog data) to reconstruct
analytically the photogrammetric bundle of
rays and orient it in space. The analytical
reconstruction is determined by means of
those parameters which simulate interior
orientation and distortion, whereas the ele-
ments of exterior orientation express the
orientation in space of the bundle with re-
spect to a uniquely defined Earth-fixed coor-
dinate system. To reproduce the oriented
bundle, a mathematical model is used (see
secs. 7.4.6.4 and 7.4.7 for a more detailed

description).
For the present, it will be assumed that

this problem has been solved, and we will
pass on to an explanation of the corrections
necessary to derive, from the image coordi-
nates of the satellite points together with the
parameters from bundle reconstruction, those
directions needed later in the triangulation of
the station coordinates. It will be assumed
further that the measured images of the
satellite trail have, by means of the param-
eters obtained in the bundle reconstruction,

been made to conform to the mapping prin-
ciple of a rigorous central perspective. Then,
the direction in space corresponding to any
point image computed with the correspond-
ing elements of interior and exterior orienta-
tion will be tangent at the center of projec-
tion to the ray of light representing the
physical light bundle. The center of projec-
tion in the present case is the center of the
unit sphere. The unit vector y'o_ in this direc-
tion is derived, as will be shown in section
7.4.6.2 with (7.81), from the photogram-
metric bundle vector p. In section 7.4.3 it
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was explained that this direction refers to the

same coordinate system as the photogram-

metric rotation matrix in use. Hence, by
use of the Ry (a,_,K)t matrix mentioned

there, one obtains the unit vector Yor corre-
sponding to an arbitrary image, where in
accordance with (7.61),

Fy 7
yor=|y_'|--y', (7.39)

Ly_J_

(The subscript 0 used to designate a unit vec-

tor will be omitted in what follows, unless its
use is necessary for better understanding.)

This observed direction must first be cor-

rected for refraction. The problem of refrac-
tion is pictured schematically in figure 7.22
for both star and satellite images. Astro-

nomical refraction r_ for zenith distances up
to 85 degrees can be computed to sufficient

accuracy with, for example, Garfinkel's
(1944, 1967) formula :

r_--T_'/2Vv'(rl tan 2+r_ tan_+73 tan_ _

+T, tan_)(7.40)

Zr = Observed

Zenifh D/stonce

/

FIGURE 7.22.--Schematic presentation of star and

satellite refraction.

in which

T= T/To, where To=273.16°K

W= P/To, where P=p/po and po=760 mm
Hg

tan fl= (T'/-'/7) tan z,., where 7=8.7137 and z,
is the observed zenith distance.

If the coefficients T1 to ,7-4 are referred to

geometric zenith distances, then an iteration
loop must be provided for the computation
of refraction from observed zenith distances•

Refraction for a satellite observation re is

"-- r'_'(1 a•s ) (7.41)r, -- d cos zr

where

a--r+H, i.e., the Earth radius plus the height
above sea level of the observing site

s=RTo/r, where R=29.2745, the pressure
height of a homogeneous atmosphere, and
hence s = 0.001255

d=distance between satellite and station in
meters

The unit vector corrected for refraction is

obtained from (7.39) by using (7.25),
(7.26), or (7.27) as

co (zr+;)cos 1

J
• r_

sm_ (7.42)

or, with (7.73) in section 7.4.6,

E ]y----y_+ Y'_y_ r, (1--y_2) -_/_ (7.43)

- (1_ y_)

where re is expressed in radians.

To compute the refraction re for the direc-
tion to the satellite in (7.41), the distance d
between the station and satellite is needed.

This quantity is also necessary for the com-
putation of subsequent corrections. However,
,-,.,1,, good ......_""+_"" for +_e d_+.... isV_AAJ a _ V_*aAa_VAA VAA A_ _A_
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needed, and it will also be sufficient in com-
puting y' from (7.42) or (7.43) to replace r,
with r_.

With (7.79), (7.85), and (7.86) from sec-

tion 7.4.6.2, the relevant coordinates of the
images can be computed; these, in conjunc-
tion with the _R(_,_,K)_ matrix from (7.35)

or (7.38) and the approximated station coor-
dinates, can be used to make a preliminary
triangulation of the satellite positions and
hence to compute the distance d needed. For
the adjustment procedure in practice, see sec-
tion 7.4.6.5.

A further correction is necessary to ac-
count for the fact that the satellite images

are not rigorously common target points. The
flashes emitted by the so-called active satel-

lites (e.g., ANNA, GEOS-1, GEOS-2) can be
treated as uniquely defined target points in
space, but the present-day "passive" geodetic
satellites ECHO-1 and ECHO-2,:' PAGEOS)

are balloons which merely reflect sunlight.
They must be sufficiently large to reflect an
adequate amount of light. Those in use to
date have diameters of 30 m. The surface of

the balloon, active as a mirror, reflects the
image of the Sun, the position of this image

on the balloon sphere being a function of the
geometric arrangement in space of the sun,
satellite, and observing site at the instant of
exposure. The necessary correction is analo-
gous to an eccentric reduction in surveying.

This correction varies not only for every sta-
tion observing the target, but also for each
direction at a given station. The purpose of
the correction is to reduce each observed di-

rection to the center of the balloon; this cor-
rection is called phase correction, because the
position of the Sun's image depends on the il-
lumination phase of the satellite. It is as-
sumed that the satellite retains the spherical

shape it had when it was launched into orbit.
Figure 7.23 shows schematically the geome-
try involved.

It can be assumed that the Sun is at a great
enough distance so that the direction to the

Sun, indicated by the unit vector ! at the

ECHO-1 terminated its orbit on 23 May 1968,
and ECHO-2 on 7 June 1969.

?" : T

/ /_\\

/:o:
/

®

vat/on

FIGURE 7.23.--Phase correction.

satellite, is the same at the point of observa-
tion. In accordance with Snell's law of re-

flection, the points B (balloon center), the
center of the Sun, the image S of the Sun on
the balloon, and the point of observation P_
all lie in one plane, so that the unit vectors
l, m, m*, n and the vector B'B are coplanar.

From figure 7.23 it follows directly that

n = BB_ + BB_ (7.44)

or

.1 1 m) (7.45)n-_ - /+cot 7 m=_--- (l+cos 7
sin 7 sin 7

The scalar product of the unit vectors ! and
-m is

cos y=l. (-m) (7.46)

Again, from figure 7.23,

B'B = - an (7.47)
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The distance between the observer and the

satellite d is large in relation to the balloon
radius, and hence in relation to a, so that to
a sufficient degree of approximation

dm= - (a/d)n (7.48)

or, with (7.45),

dm -- a
dsin7 (/+cos7 m) (7.49)

The displacement a from the center for a re-
flecting satellite with radius _b is, from figure
7.23,

a=_b sin (7/2) (7.50)

For a balloon with a diffusively reflecting
surface it can be argued that the centroid of
the satellite image corresponds to the cen-
troid of the illuminated portion of the balloon
surface as seen from the observation site. In

this case, we have

a = _- (1 -cos 7) (7.51)

Finally, with (7.50) or (7.51), as the case
may be,

m* :m-F dm (7.52)

To compute (7.49), the unit vectors ! and
m are needed. Up to this point we have as-
sumed only that they are referred to an ar-
bitrary but consistent coordinate system. We
set, therefore, with (7.43),

m=y' (7.53)

With the right ascension and declination

values of the Sun an and an interpolated for
the time of observations, the x® vector is
computed with (7.1), neglecting refraction
and other corrections, and then the x_ vector
is computed by using local sidereal time 0=

1.002 739 91 (UTI) -I-_.eastand (7.20), (7.21).
Finally the y_ vector is derived with (7.23)
and (7.24). Then,

y_=/ (7.54)

Similarly, with equation (7.52) the unit
vector y' in the direction of the balloon center
is

y'=m* (7.55)

A detailed explanation of the phase correc-
tion is given in Schmid (1971).

In order to interpret the direction of (7.55)
correctly in a geometric sense, it is necessary
to bear in mind that the satellite serving as a
target and the station site are subject to in-

dependent motions. The satellite, in orbiting
the Earth, shares the motion of the Earth
around the Sun, so that the annual aberration

effect is canceled. However, because of the
Earth's rotation, the linear velocity compo-
nent of the observation stations creates a dis-
placement of the observed directions corre-

sponding to diurnal aberration. In addition,
the relative spatial relation between the satel-
lite and the observing station changes in the
time required for the light to travel from the
satellite to the station. This sit__!ation is
shown schematically in figure " A,.2_ for a flash

emitted from the satellite. The position of
the observing station (¢', _,') and its Earth-

_-___. F/ash at Instant [f)

\\

\\ / \\ ¢ /

/ /
I _ /. / \ slononzocotion

/ y 'o,'oo',,

I 2 !_e Eorth
Photogrammetri e trained Dffecfion

\a = Geomefrlc Dffecf/on Between Gtotion and

/

5_ s_

Fmva_. 7.24.--Influence of diurnal aberration and

earth rotation when recording light fashes origi-

nating at satellite.
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fixed y' reference system (symbolized by the
y:, direction) is shown at the instant t of the
emission. Let the geometric direction at time
t from the station to the flash be indicated by
the direction angle c_. Owing to its finite

propagation velocity c, the light requires an
interval _ to reach the station by traversing
the distance d:

T=d/c (7.56)

During the interval T, however, the station
has reached a position differing from the ini-

tial position by the angle o,_, where o,=15"/
sec is the Earth's angular velocity. From the

aberration theory (cf. Schaub, 1950), it fol-
lows that the apparent direction of observa-
tion differs from the corresponding geomet-

rical direction by the aberration angle ±. The
latter direction is parallel to the geometrical
direction existing between the station and
the satellite at the instant t. This statement

is rigorous to the order to which the Earth's
rotational velocity may be considered linear
and constant. It follows that the flash is ob-

served at the directional angle fl relative to
the local coordinate frame. The angle a
needed in the subsequent treatment of the

problem is therefore obtained from

a = fl +o,. "_ (7.57)

The situation is complicated somewhat for
the case in which satellite triangulation is

carried out not by means of flashes but by
means of a continuously illuminated satellite.
The shutter mechanism of the observing

camera permits the chopping of the satellite
trail into a series of separate images. Thus,
the individual images are formed at times t,,
t2 .... , t,, to which appertain corresponding
light travel durations _j, _, . .., _,,. The ira-
ages corresponding to instants t1+_1, t._+T_,
• .., t,,+_,, must now be interpolated into the
image sequence. Strictly speaking, acording
to figure 7.25, the interpolation should be for
the instants tl + T*, t2+ T*, .... t, + _,*,where

T 2 -- T 1

_=_1+_1, etc.

The difference *T_-_, is, however, negligible.
To effect the interpolation, a time-related
function of position is set up, expressing the
photographic image sequence.

Figure 7.25 shows the relations existing be-

tween the recorded time, the satellite posi-
tion, and the observation station, the symbols
used having the same meaning as in figure
7.24. The principle of interpolation is shown,
in considerably simplified form, for only two
observations occurring at instants t and t
+At. As before, the needed direction angle a
is obtained from the interpolated observed di-
rection fl by means of (7.57).

The direction a thus obtained reproduces
the geometry between station and satellite
existing at the instant t. From a similar
treatment of the observations at other sta-

tions observing the same pass, directions to

the satellite position at the instant t can be
computed. These, then, are geometrically co-
herent directions with which the eventual

i

FIGURE 7.25.--Influence of diurnal aberration and

earth rotation when recording a continuously illu-

minated satellite.
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space triangulation of the observing stations

will be carried out. The interpolation of fic-

titious satellite images referred to above also

serves the purpose of taking into account the

time differences between the station clocks at

the various sites (see sec. 7.3). The time dif-
ferences can be considered as shifts in the

origins of the time bases at the several ob-
servation stations at the same time.

In order to execute the various reductions

just described, it is necessary to derive the

corresponding image coordinates x, y with

(7.85) and (7.86) referred to the vector y'

of (7.55). On the assumption that the expo-
sure sequence has been carefully monitored

(the practice with the BC-4 system is to

monitor to within better than 50 _sec), the

following polynomials can be set up as inter-
polation functions :

= ao + a,t + a_t-" + a:_t_+ a4t' + a._t "_+...

= bo + b,t + b.,t'-' + b:,t _+ b,t' + b_t o+...
(7.58)

The coefficients ao, a, ..... a, and bo, b,,

.... b,, are obtained from an adjustment (see

section 7.4.6.2.1). The degree assumed for

the polynomial depends chiefly on the length

of the recorded satellite trail, i.e., more or less
on the aperture of the camera used. With the

BC-4 system a polynomial of the fifth degree,

at least for the component in the direction of

the trail, is necessary (see sec. 7.4.1). Sev-
eral hundred satellite images are used to

compute the polynomial. The adjustment ef-

fects a smoothing that is of decisive impor-

tance for the accuracy of satellite triangula-
tion, since it eliminates the influence of scin-

tillation. Regardless of its amplitude, which,
depending on local meteorological conditions,

can attain several seconds of arc, scintillation

is always characterized by a nearly ideal nor-

mal distribution and hence can be eliminated

practically completely with a Gaussian ad-

justment, provided a sufficiently large num-
ber of satellite images is available. This con-

dition is not met by the use of present-day
light flashes.

The polynomials (7.58) are now used to

coordinates x, y are computed for the instant

(in station time) that corresponds to the

satellite position at time T. Since, as was in-

dicated above, the times assigned to the vari-

ous observing stations are not necessarily re-
ferred to the same null point, the local t_+r_

values must be reduced to a consistent clock

time by the addition of AT_ (represented sche-

matically in fig. 7.26).

To repeat, the station times t_+_, tj+rj,
t_.+ _,... used for interpolation at station i,

], k .... do not represent the same instant T

at the clock, but fix image coordinates which

are geometrically consistent ; i.e., they satisfy

the "geometric condition of simultaneity"
mentioned in section 7.4.4.

With the image coordinates x, y thus ob-

tained, the corresponding y' vector is recom-

puted from the corresponding bundle vector
p of (7.81). The last correction modifies the

orientation of this vector to account for the

Earth's rotation during the light travel time

_. Theoretically, this is accomplished by ro-
tating the local y' system about its 2 axis

through an angle -(90°-¢'), which brings
the 3 axis into coincidence with the Earth's

rotation axis. Next, the system is rotated

about this latter axis through the angle -o,r.

This rotation cancels the effect of the Earth's

rotation. Finally, the twice-rotated 2 axis is

turned through the angle (90 ° -_), resulting

in a system with the unit vector y_. The nec-

essary computations are, therefore,

y' = R (90° - cA')R (-_or) R - (90°-,h') y
2 3 2

[Sio_' 0 -cos_'-= 1 0

Leos _' 0 sin _'_

cos ,,,r -- sin ,,,r O-
sin,,,r cos ,,,r 0

o 0 1
[ co0 1 y'

-cos _' 0 sin ¢'d

(7.59)

Since ,,,_ is small, (7.59) simplifies to

[ i ]Y#=Y'+ y_ sin ¢ +y_ cos _' .,,,r (7.60)

L --Y2 cua _ j
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t, ..,,,_o:o,,o._: T-aT_. ,c_TaT,>
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?

FIGURE 7.26.--Principle of time interpolation for the

"geometrical condition of simultaneity."

The transformation of the direction of the

unit vector y's into the chosen z or z' system
can now be effected in accordance with (7.30)
and (7.32) or (7.36), as the case may be.

This completes the discussion of all the
steps needed in preparing for the satellite tri-
angulation proper.

7.4.6 Numerical Adjustment

7.4.6.1 Introductory Remarks

In this section the attempt will be made to
present the mathematical concept of the
method of geometric satellite triangulation,
considering the problem, so far as possible,
from the standpoint of analytical photogram-
metry. The principle of the photogrammetric
measuring method is most conveniently iden-
tified with the concept of a direction fixed
within a certain coordinate system. It is

therefore reasonable to expect a clear and
computationally economical solution with a
vectorial presentation. In this connection it
should be borne in mind that the mathemati-

cal expression for a direction in space can be
changed either by rotating the coordinate
system to which the direction is referred or
by making a change in direction within the
fixed reference frame. The latter can be ac-

complished either by rotating the given vec-
tor or by adding a correction vector. From a
mathematical standpoint, rotating the coor-
dinate system and changing the direction are
equivalent. However, in associating this gen-
erally valid geometric concept with a specific
measuring process by forming a mental pic-

ture of the direction and the related coordi-

nate system in object space, definite advan-
tages can be derived from such a specific

interpretation, at any rate, to explain the
measuring process geometrically. One dif-
ference between the two cited operations is
that a rotation of the coordinate system does
not affect the geometry existing between the
object points. The concept of a linear coordi-
nate transformation, including, if necessary,
translations, therefore seems meaningful. A
change in direction within a given coordinate
system, on the other hand, effects a change
of the spatial position of this direction in
object space. The designation "change in
direction" will therefore be reserved for this

operation.

Finally, as simple a representation as
possible will be given of the photogrammetric
measuring method, whose concept rests on
the principles of a central perspective. For
this purpose it is necessary merely to get a
mental picture of a unit vector Xoassigned to
a specified direction in object space, with
reference to an arbitrary but uniquely de-
fined coordinate system. With the assump-
tion that the starting point of this vector
coincides with the center of projection of the
central perspective (e.g., at the center of the
unit sphere), the photogrammetric bundle
vector p in object space, reduced to unit
length, is, geometrically speaking, identical
with the vector Xo, mentioned above. The

photogrammetric bundle vector p being re-
ferred to the coordinate system x, y, c of the
camera, merely a rotation of the coordinate
system is required to transform the vector x0

into vector p or vice versa. This step, de-
scribed above as a coordinate transforma-
tion, represents the fundamental analytical
operation of the photogrammetric measuring

method (see sec. 7.4.6.2.1). It remains now
only to consider those displacements of the
image from the central perspective concept
that are the result of the physical photo-

graphic process. Before an adjustment
algorithm is developed from this line of

thought, the more important mathematical
aids needed in this discussion will be listed
in logical order.
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7.4.6.2 Mathematical Aids

7.4.6.2.1 VARIOUS MATHEMATICAL
EXPRESSIONS FOR THE UNIT
VECTOR

From figure 7.27 directly,

Xl

X0_ X2 ___X_X

fX-Xo-1
=/r-to!

LZ-ZoA

x [ (X-Xo) _-+ (Y- Yo)2+ (Z-Zo) 5]-½

= (_2+_2 + 12)-'_

where either

_= (Y-Yo)/ or x=
(Z-go) l L 1

(7.61)

(7.62)

P_x_x_z)
x3 i

/ /

z _-_\ I-"/ // ""

I Origin of I1z°

,_$ys,em ]

FIGURE 7.27

Furthermore,

- cos _ cos _ i
xo= cos_sina ]sin

where from figure 7.27

tan a= x_ =--_-_
xz

X_

tan 8= (xl + xo)l_ (_ +,7_)-_

(7.63)

(7.64)

(7.65)

where the rotation matrix has the following
meaning :

R (7_72_,3)= R (73)_R(72)R (70 (7.69)
123 3 2 1

The 7 designates the angles through which
rotation takes place in the indicated order,
the indices under the angle showing the axis

around which rotation takes place. Counter-
clockwise rotation (as seen from above) is
positive.

(X-Xo) x_ (7.66)
_= (Z-Zo) - x_

(Y-Yo) x2 (7.67)
'7= (Z-go) - x_

7.4.6.2.3 CHANGE OF DIRECTION

From figure 7.28

x_=xo+aX (7.70)

7.4.6.2.2 COORDINATE TRANSFORMA-
TION

x'=_R (7_7273) (x+Ax) (7.68)
123

The differential dxo of a unit vector Xo is
a vector of infinitesimal length with a direc-
tion perpendicular to Xo, since the length of
the unit vector is constant by definition. The
vector Xo can therefore turn only through an
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FIGURE 7.28

(z)

infinitesimal angle _, whose measure in
radians is equal to the length of the linear
displacement dxo. For small displacements
the following equalities follow, therefore,
from figure 7.28 :

FIGURE 7.29

From (7.68), with ±x=0, follows the
fundamental equation of analytical photo-
grammetry

]Ax] : Idxo] =_=sin _=tan _ (7.71)

and hence

xg=xo+dxo (7.72)

For the special case where dxo is coplanar
with one of the coordinate axes, e.g., with x3,
it follows from figure 7.29 that

po=R_ (a,,,,K) xo (7.77) ¢
213

where

R(a"°'K)=R(_)R(")R(a)=l-rl'21 3 3 1 2 _ r..,r:,, r=r:_=.rl-_r._:_r:_rl:_]:,

(7.78)

--Xl"X3 7

dxo=[ -x2"x3 ]c(1-x_)-_t- _ (7.73)
L+ (1-_)J

in radians. Then Xo follows from (7.72).

Similar expressions for the other axes are
obtained by cyclic permutation of the sub-

scripts and the vector components in (7.73)
in the order (1)-->(2)-->(3)-->(1)

For larger values of c, one obtains from

(7.63)

Fcos cos ]xo=|cos (fl+0 sin (7.74)
L sin (fl+Q

7.4.6.2.4 CENTRAL PERSPECTIVE

From figure 7.30 the photogrammetric

bundle vector p is

p=_.i+y.j+c.k= y (7.75)$
C

and, with (7.61),

P
po= Lpl IPl = (_''+y2 + c2)_/_ (7.76)

The r_jin the orthogonal matrix (7.78) are
actually the direction cosines--in other
words, the components of the corresponding
unit vectors--in the x coordinate system of
the corresponding axes after the indicated
rotations through angles a, ,,1,and _ shown in
figure 7.31. They are found to be

r11----cos _ cos _+sin a sin ol sin

r12----cos oJ sin
r_3 ---- -- sin a cos ,: + cos a sin _ sin

r= = -- cos a sin _ + sin a sin o, cos

'Cen*er of Project,on //

• xt pr,nc,pal /"

FIGURE 7.30.--(Left) The photogrammetric bundle

vector p. (Right) Diapositive as seen from center

of projection.
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J

a_

FIGURE 7.31.--Sense of direction of exterior elements

of orientation.

r22 = cos _ cos K

r_3 = sin a sin K + cos a sin _ cos

r_l = sin a cos co

r32 = -- sin

T3a : COS Ot COS co

(7.79)

For the orthogonal matrix R (_,co,_)

R_-_ (_,_,_) =R_* (a,_,_) (7.80)

so that with (7.77), (7.78), and (7.79),

Xo----_ =R* (_,_,K),P--_ (7.81)-- 213 IPl

Furthermore, trom (7.77) wich (7.78),
(7.61) and (7.65),

r= l|(Y-Yo)
c . __r_ r_ r__j L (Z-Zo)

(7.82)

so that

__ rll (X-Xo) +r,2 (Y- Yo) +r13 (Z-Zo) =m
c -r31(X-Xo) +r32(Y-Yo) +r83(Z-Zo) q

(7.83)

_1_ r2_ (X-Xo) ÷r2_(Y-Yo) ÷r23(Z-Zo) _n
c-r3,(X-Xo) ÷r32(Y-Yo) ÷q%(Z-Zo) q

(7.84)

Finally, for (7.83) and (7.84),

• =cm/q (7.85)

7.4.6.2.5 DEVIATIONS FROM THE
CENTRAL PERSPECTIVE

- BUNDLE

Refraction effects a displacement in direc-
tion which with equation (7.73) (see eqs.
7.26 and 7.27) can be applied to the unit vec-
tor in the direction in question, or which with
(7.74) leads directly to the unit vector cor-
rected for refraction.

We consider next those influences which

displace the image from its central perspec-
tive position and which are due to the con-

structive properties of the camera. It is
known from experience that the image of the
object point P is formed not at P' but at P*,
which is displaced relative to P' by a vector

lying in the plane of the photogram.
From figure 7.32 we have

• =X--Xo--Ax (7.87)

Y=Y--Yo--_Y (7.88)

in which AX and ay are the components of _.
The coordinates x and y are obtained from

the corresponding comparator coordinates,
corrected for the nonorthogonality c of the

comparator spindles as shown in figure 7.32,
from

X_ Xmeas _ _ ¢ [_ on_I . .u_ l

y = y,,,_ (7.90)

Since the vector _ is always small, a suffi-
ciently accurate linear scale correction re-

-- y Coordinote Measurement ----_ F:)"
_-- __ y Compafotor

........................................ -;V_=_-
i///_ l

;-- l&x. !
,.. _- 7 I ! I

- c.m . .E

i ---- " u I

i (_f-.. I Direction of It

FIGURE 7.32.--Diapositive as seen £rom

-_= cn/ q (7.86) projection center.
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sults from replacing the scale factor c in

(7.85) and (786) by cx and % Thu s,

J=cxm/q (7.91)

y = cym/q (7.92)

The required expressions for Ax and Ay

are, from figure 7.32,

A model for the distortion due to the un-

avoidable residual errors in entering the

individual elements of the lens system was

given by Conrady, 1919 (see also Brown,

1966). In figure 7.32 the minimal component

of this distortion is purely tangential and is

designated AT,,. For high-quality objectives,

ATo can be expressed sufficiently accurately

with two terms of an even polynomial in d:

AX = ARx + AT_ (7.93) ATo=K_d-' +K_d _ (7.99)

Ay=AR_+ A T_ (7.94)

The symmetric radial distortion AR is, as

usual, expressed as a polynomial in odd

powers of the distance d. Omitting the first

power, which is equivalent to a scale correc-

tion, one obtains

-- 3 5 7AR-Kld +K2d +K3d (7.95)

where

d= [(J-x,):+ (y-ys)2] _ (7.96)

AR_ AR (J-x,) (_-x_) (K_d2+K_d_+K_d 6)
d

(7.97)

AR, = AR (y- y,)
d

= (Yj-y_) (Kld_+K,,_d_+K3d 6)

According to Conrady, the components of

this nonsymmetric distortion are, using the

designations in figure 7.32, in the tangential
direction

ATt=ATo cos (,_7,+fl) (7.100)

and in radial direction

AT,.=3ATo sin (¢v+fl) (7.101)

Hence,

AT=[ATx]=[ COSfl sinfl] [AT,]ATy --sin fl cos fl ±T,.
(7.102)

Finally, with (7.99), (7.100), and (7.101)

(7.98) one obtains from (7.102)

AT--r AT_]
-LAT,_]

] rsin ]L3(y-y,)_+ (_-x,) _ 2(_-x,) (y-y,) Lcos Or
(7.103)

Figure 7.33 shows schematically the components for radial and decentering distortion for a
certain distance d.

Finally, one obtains with (7.89), (7.90), (7.97), (7.98), and (7.103), in accordance with

(7.87), (7.88), and (7.93), (7.94) and Figure 7.32

J= x + y.c- (J-x,) ( K_d2 + K2d4 + K3d 6 )

- (K,+K_d _) (2 (J-x,) (y-y,) sin _r+ [3 (_-x_)2+ (Y-y_) :] cos Or}-Xo (7.104)

_=y- (_j-y,) (K_d2 + K2d_ + K3d 6)

- (K,+Ksd 2) ( [3 (y-y,) _ + (J-x_) 5] sin ¢pr+ 2 (J- x,) (y-y_) cos _r} -Yo (7.105)
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L /'\ I xT i
I..... _ \

\. _'\ .... 'Princilpol Po_nt x_ _ I ' -I

• ...,.,,, .

Z_R / 1 ATo

RADIAL DISTORTION

,,, r I .
Radial Distance

AR = K,d_+ Kzd% K_d 7

i y

I DECENTERING DISTORTION

...... d I ATo ' ._

Radial Distance

ATo= K4dt+ K_d 4

FIGURE 7.33.--Components of distortion.

where the meaning of d is defined by (7.96)
and x and y are the comparator coordinates
measured on the photogram.

7.4.6.2.6 DESCRIPTION OF THE
RECTANGULAR COORDINATE
SYSTEMS

In order to make the computations for the
adjustment of geometric satellite triangula-
tion as clear and synoptic as possible, three
rectangular coordinate systems are used.
Each of the three systems has a subgroup.
The three principal systems are designated
x, y, and z systems, and the corresponding

subsystems are x', y', and z'. The x system
corresponds to the astronomic reference
system, in that the x3 axis points to the
celestial north pole and the xl axis intersects

the equator at the vernal equinox. The origin
of this system is the center of the unit sphere
which circumscribes the Earth's center (ori-

gin of the rectangular geometric coordinates)
or any arbitrary point of observation.

Turning the x system about its x3 axis
through the hour angle e of the equinox (local
sidereal time at observation site P) results
in the x' system

x'=R (e)x (7.106)
3

(See also (7.20) and (7.21).)
The y system (see fig. 7.18a) designates

the rectangular geocentric coordinate sys-
tem, which corresponds to the orientation of
the earth for a specific epoch and in which the
y._ axis points to the instantaneous north pole.
The intersection of the instantaneous null

meridian with the instantaneous equator de-
termines the direction of the yl axis. The
instantaneous null meridian is defined on the
reference ellipsoid as the trace of the plane
containing the instantaneous axis of rotation

of the Earth and that point whose coordinates
in the reference system (1900-1905 pole) are
_=0, X=0 (see sec. 7.4.4). At an arbitrary
point of observation in the y system, the
corresponding instantaneous coordinates are
_' and X',._._,. If the y system is rotated first
through the angle x',_t about its y, axis, the
local y' system is obtained. In this system

tllil'_ _3 I_l,.zl.l_ IJUlllt,_ I..,u t_ll_;_ _tJl_ll*'lull /.Ar-..ll.l_ll, vv_.lll_

the y/axis lies in the plane of the meridian
as well as of the horizon, and hence points
south. Therefore :

y'=RR_(90 ° - _')R (xt.,t) y=R (90 ° - _') x'
2 3 2

(7.107)

See also (7.23) and (7.30), the latter being
the inverse transformation.

Finally, we have the z and z' systems,
which coincide essentially with the y and y'
systems, except that the z systems are re-
ferred to the conventional (1900-1905) pole
(CI0). If the displacement of the instanta-

neous pole relative to the conventional pole
is given, as is the practice, by the components
x and y (see sec. 7.4.4 and fig. 7.21), the
transformation is effected by

z=R__(-y)R (-x)y (7.108)
1 2
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and

z'=R (90°-_)R(_,,_,)z (7.109)
2 3

(see also (7.32), (7.34), (7.36), and (7.37)).
Coordinates corresponding to the z system

are designated _ and _,.

7.4.6.2.7 TRANSFORMATION OF

GEODETIC COORDINATES _, ),,
h INTO RECTANGULAR
COORDINATES AND
CONVERSELY

Zj

d

EAST '_'---_._ _[/ z

x° ;i

Z,

The astronomical systems x and x' intro-
duced in the previous section are, with

respect to their informational content, essen-
tially two-dimensional, defining merely direc-
tions in three space. On the other hand, the
y, y', z, z' systems are used in the three-
dimensional positioning of points on the
Earth's surface (station coordinates) (e.g.,

see figs. 7.18a and 7.18b). In the course of
reducing the satellite triangulation it is
therefore necessary to transform coordinates
into three-dimensional rectangular coordi-
nates and vice versa. It is also necessary to

make provisions for the introduction of given
coordinates with their weights into the ad-
justment of the spatial triangulation. This
brings up the problem of a purely geometric
solution for transformations. Finally, the
problem of determining ellipsoid constants
arises when one desires to refer the rectangu-

lar station coordinates resulting from an
extended satellite triangulation to a best-
fitting ellipsoid for this area. In consequence
of our assumption that electronic computers
are being used, such computations are rigor-
ously performed with closed formulas rather
than the differential transformation of

classical geodesy.
The designations for the constants of the

reference ellipsoid are taken from figure
7.34 :

FIGURE 7.34

Figure 7.35 represents the plane of the
meridian _,.

To transform the _, _, h into geocentric

rectangular coordinates z,, z_, z:_ (see sec.
7.4.6.2.6 and fig. 7.34), the following formu-

las are used :

z,= [a'-'(a='+b 2tan'-' _)-'/-' + h cos _] cos
(7.111)

z_= [a _ (a"+b 2 tan'-' _)-,/2 + h cos _] sin
(7.112)

z3 = (a s + b'-'tan 2 _)-1/-' b: tan _ + h sin
(7.113)

For the inverse transformation,

tan x= z_/z, (7.114)

tan flo = z_ (z_ + z_ ) -'/; a. b-1 (7.115)

Aft=
tan/_o - ae 2(z_ + z_ ) -]/; sin flo- a-lbz_ (z_ + z_) -_/-'

1+tan=' flo-ae 2(z_ + z'_)-'/-,cos flo
(7.116)

fl= flo + _fl (7.117)

a= semimajor axis
b = semiminor axis

e= eccentricity = (_) _'_

(7.110)
tan _ = ab -_ tan fl

h = 2 1/,,[ (z_+z,_) ,--a cos fl] sec

(7.118)

(7.119)
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Z3

Equations 7.116 and 7.117 are introduced to
avoid the alternative of solving the fourth-

degree equation.

into the adjustment of the spatial satellite
triangulation as additional conditions, it
should be noted that

ZI"

(7.123)
Lz 'j

can be represented as a vector function of _.
Hence we can compute

dz'

66 Oa Oh

Oz.,' Oz.,' Oz.,'
ah

_z:_' Oz:( _z:_'

_¢ _x _h _

(7.124)

tan fl-ae_(z_+z_) -_/-' sin fl
-a 'bz:,(z_+z_)-v_-=O

Their use requires an iteration loop. Trans-
forming _ to reduced latitude fl accelerates
the convergence of the process.

To transform, if necessary, the geocentric
rectangular coordinates into local rectangu-
lar or vice versa, use (7.68) in appropriate
oannortinn with (7._N) or (7.36). Such a

transformation represents the link between
the y and y' or z and z' systems of section
7.4.6.2.6. For example, with the z systems

z'=_R[_.,,, (90°-4,,,)] (Z-Zo) (7.120)
3 2

and

±z'=T,±_ (7.125)

Since, furthermore,

_,=T_ -_ (7.126)

we have

±6=T_-_±z ' (7.127)

From similar considerations we have, in

addition,

E_'= (T_ _)*EcT¢ -_ (7.128)

where the Zo vector is computed from
(7.111), (7.112), and (7.113) with 6o, Xo, ho,
the coordinates of the selected origin of the
z' system.

In introducing certain coordinates

(7.121)

with their given weights

P¢ = P¢ P¢,x P¢,hP¢.x Px Px.h

LP,,_ P_,,_ P,,

(7.122)

The partial derivatives in the T¢ matrix
(7.124) are computed with the coordinates

¢o, ;_,,of the origin of the local system :

-T*=R- [x°' (90° 2 _°) ] d_3 (7.129)

where dz/dO is computed by differentiation
of the expressions (7.111), (7.112), and

(7.113) as follows

dz['-Ic°sx -II sin x cos_cosx-]

L-Isin_ II cosx cos_sinx|I cot _ 0 sin_ A
(7.130)
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where

I= {a'-'b-' tan ¢ [cos'-' _(a"+b'-' tan'-' _) :y.,]-i
+h sin ¢,}t,-' (7.131)

II= [a _ (a'-'+b _ tan _ _)-1/:+ h cos _]p-1
(7.132)

with p=206 264':8.

The ±4 (_¢, ±A, _xh) vector computed with

(7.127) is in seconds of arc for ±¢ and ±x and
in meters for ±h; corresponding values are

substituted in (7.125).

The classical coordinates of the triangula-

tion stations, referred at times---especially in

the world net--to different datums, are most

conveniently recomputed on a common refer-

ence ellipsoid before they are introduced into

the spatial triangulation as initial approxi-

mations, as is described later on. These

purely geometric ellipsoid transformations

can be accomplished with the formulas above

by (1) computing from the given coordinates

¢, A, h with (7.111), (7.112), (7.113), geo-

centric coordinates pertaining to a specific

ellipsoid; (2) translating, if necessary, the
origin--the ellipsoid center--of these rec-

tangular coordinates; and (3) transforming
these rectangular coordinates into coor-

dinates _, A, h, using (7.114) to (7.119),

taking into account the parameters of the

new reference ellipsoid.

This type of transformation is common,

especially in connection with comparison of

the final results of satellite triangulation with

classical geodetic surveys.

The determination of the constants of a

reference ellipsoid which best fits the results

of an extended satellite triangulation is dis-

cussed in the sections immediately following.
Such solutions must include the results of

dynamic satellite geodesy, and the formulas
so far developed serve as the basis for such a

solution, since with (7.110) and (7.119) the

geoid undulation N can be written, after
suitable transformation, as

N= (h-H) = - H - ( z'_ + z_) l/-' sec
-a(1-e'-" sin'-' ¢,) v;

(7.133)

If the leveling height H is assumed to be

free of error, the other partial derivatives are

with

0N
----COSq_COS A

0Z_

0N
= cos ¢ sin _,

0Z_.

0N
- sin

0Z:_

ON
------ --W

0a

ON
_-_ = b sin 2 ¢_W -_

W_= (1-e 2 sin _-_)

(7.134)

(7.135)

By means of an adjustment, three transla-

tion components ±zl, ±z=,, ±z:, and new ellip-

soid parameters a and f=l-(b/a) can be
computed, subject to the condition _v_-=min.

The fundamental concepts for such a solution

are treated in Schmid and Schmid (1971).

7.4.6.3 Setting Up the General Photogram-

metric Observation Equations

The general photogrammetric observation

equations are obtained through combination

of the expressions given in (7.91), (7.92),
(7.104), and (7.105), with reference to the

relations (7.79), (7.83), (7.84), and (7.96).
The mathematical model is

F =-2-yc + (-_- x_) (K_d_ + K2d_ + K_d 6)

+ (2 (_-x_) (y-y_) sin Cr+ [3(_-x_) _

+ (y-y_)-_]cos q_r} (K_+K_d _)

+xo-lx=O (7.136)

G=y+ (y-y_) (K_d_'+ K__d' + K_d _)

+ ( [3 (Y-Y,_):+ (_-x_) _']sin _r

+2 (_-x_) (y-y_) cos _r} (K_+K_d _)

+ yo-ly=O (7.137)

where, according to figure 7.32 and (7.91),

(7.92), and (7.96),

_= c,m (7.138)
q
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y= c_n (7.139)
q

_ \2 / C n \2
d_= c ._ v_.v_

-x_) . ( q y,) (7.140)

and Ix, l, are the measured values of x and y.

The meaning of m, n, and q is apparent

from (7.83), (7.84), the direction cosines r_j

being obtained from (7.79).

Substituting (7.138), (7.139), and (7.140)

in (7.136) and (7.137), taking into account

(7.83), (7.84), and (7.79), results in expres-

sions for the equations F and G which repre-

sent the mathematical model for the general-

ized central perspective.

Since, however, especially at the beginning

of the adjustment, the approximation values
for the exterior orientation parameters are

not necessarily good ones, it is better to adopt
the following computational procedure,

which, in general, converges more rapidly
and leads to a simpler solution with suffi-

ciently close approximation. It should be
noted that the radial distortion (7.95), and

particularly the decentering distortion ±To

(7.99), as functions of d, are small and vary

relatively little with a change in d.

At the b_zinui_ uf _,_c,_, ............. _ _-

the adjustment, • and y are computed by

using the comparator coordinates x and y,

neglecting the influence of their measuring

error, in accordance with figure 7.32 and

(7.87), (7.88), (7.89), (7.90), (7.93), and

(7.94). Since the coordinates x and y are

replaced by the actual measurements l_ and

l,, the designations l_ and l_ will now be in-

troduced for _ and y.

l_=lx+l_._-Xo-±R_-aT_ (7.141)

l_= ly- Yo - AR_- AT_ (7.142)

With this,

(_--x_) = (l_-x_) =d_ (7.143)

The radial and Conrady components of dis-

tortion, ±R_, ±R,, aTe, and _Ty in (7.141)

and (7.142) are computed with (7.97),

(7.98), and (7.103). Since the mathematical

models of the distortion, and hence also the

distance d with its components d_. and dy,

refer to the geometry of the central perspec-

tive (see fig. 7.32), an iteration loop must

be designed for computing all the distortion

components used in (7.141) and (7.142).

In (7.97), (7.98), and (7.103), • and y are

first replaced by

• = l_ _ l_+l,,.e-x,) (7.146)

y= l_ _ l,,-y.. (7.147)

The ±R_, ±R:,, ±T_, and AT,, so computed

are substituted in (7.141) and (7.142) to

give new l_, l_ values, with which distortion

components are again computed, followed by

new l_ and l_ values. This iteration is con-
tinued until the difference between successive

l_ and l_ becomes less than a prescribed
tolerance.

Introduction of l_ and l_, and substitution

for m, n, and q in accordance with (7.83) and

(7.84) changes (7.136) and 7.137) to

F_ --ly'c

cx[r11(X--Xo) +r_(y--y,,) +r:,_ (z--zo) ]
+

r:_, ( x-- xo) + r3_.(Y--Yo) + r3_ (z--z,,)

+ Xo + (l_-- x_) (K_d'2 + K_.d' + K3d 6)

+ {2 (/_-x_) (/_-y_)sin Cr+ [3 (/._-x.0 -_

+ (/_-y,) 2]cos _br} (K,+K:.d _) -/_=0

(7.148)

G= c.[r._,_ (x-x.) + r22(y-yo) + r._(z-z.) ]

with

r_ (x- xo) + r3__(Y-Yo) + r33 (z--z.)

+ Yo + (l_-y_) (Kld2 + K._d' + K_d 6)

+ ( [3 (l_-y.) _+ (l_-x_) _]sin Cr

+2 (l_-x_) (l_-y,) cos _r} (K_+K:,d _-)

-l_--O
(7.149)

d2= (l_-x_):+ (l_-y,) _ (7.150)

(Y-y_) = (l_-y_) =d_ (7.144)

2 2 2d =d_+d_ (7.145)

The meaning of the r_ is apparent from

(7.78) and (7.79), and the l_, l_ are computed

iteratively with (7.141) and (7.142).
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Equations7.148and 7.149are analytical
expressionsfor the generalizedcentral per-
spectiveprinciple. The influencesrequiring
generalizationare:

(1) Skewness_of the comparatorcar-
riage; its effectis simulatedby the term d:,

in (7.148).

(2) Linear scale error, in the measuring

screws of the comparator; their influence is
adequately accounted for with the scale fac-

tors c,. and c_, in (7.148) and (7.149), re-
spectively.

(3) Distortion; the two last terms in

each of (7.148) and (7.149) simulate the
components of the distortion vector _ as the

sum of radial and decentering distortion. In
addition, the actual conditions are more

closely approximated by displacing the origin

(x, y._) of the distortion from the principal
point (Xo, Yo). These relations are shown

schematically in figures 7.32 and 7.33.

For the further treatment of expressions

7.148 and 7.149, it is necessary only to note

that the direction cosines (see (7.62), (7.83),

and (7.84)) in the third term of (7.148) and

in the second term of (7.149) refer to re-
fracted corrections.

The next step is to set up the observation

equations. In the adjustment, a generalized

adjustment algorithm described in Schmid

(1965b) and Schmid and Schmid (1965) is
used. The mathematical model is given with

the two functions F and G of (7.148) and

(7.149), and the general observation equa-

tions are obtained by expanding these func-

tions in Taylor series and neglecting terms

of the second and higher order as

aF
_±u+Fo=0 (7.151)

aG
_±u+G,,=0 (7.152)

in which u is the vector of all parameters in

the mathematical model, including the meas-

ured quantities. Table 7.6 lists the symbols

designating the various partial derivatives

of F and G, where

Jx= Dx Kx= -Ex Lx= -Fx
J, = - D,j Ky = - Ejj Li, = -- F_

(7.153)

The corresponding analytical expressions,

including the necessary auxiliary quantities,
are

_)= (_-x,,) /c_ ®=(_) F-r,:;

®= (Y-yo) /c_, ®=® D-r._.l

(_ = (_ D - rll (_) = Q E - r._,._,

(_) = (j) E - r12 ® = ® r - r._,:_

®=® r._,- @ r_,._,
(7.154)

Ax= cx(O'®+O) A_,= +c_, ®.®

Bx= +cx[(l+O 2) B,,= +c,,[(l+®")

sin _+Q.® cos _+Q.®
cos _] sin _]

C,.= + c,® C, = - c,, (!)

c_ D c ,,
D,.=qQ ,,= q _(5)

c,. __@E,=q_ E,,

Cx F_=_@rx=_-®

Gx=@ G,=®

Hx = 1 + P._. H, = P_

Ix= Q_ I,= I+Q,,

Mx = d,d _ M,= dfl-'

Nx = d_.d"_ N_ = d_d'

Ox = d,d _ O_j= dfl 6

_R
Px = - _ - d_D,.- dxDw cos Cr

-4dx[K_+ (2d_ +d_) K:,]cos ¢_r

- 2d, [K4 + (d_+ 3d_) K:_] sin ¢,r

Py = - dxd_D,- d_D_ sin (br - 2d_( [K_

+ (3d_+d_)K_]cos ¢_r+2dyK_ sin (br}

Qx = - dxdyD,.- dyDw cos _r - 2dx( [K4

+ (d[+3d_)K_.]sin ¢_r

±R
Q'_ = d d_lD,. - d,D,,, sin 4_r- 2dx [K_

+ (d_+ 2d_) K_] cos ¢r- 4d, [K,

+ (d2x+2d_)K_]sin 4r

(7.155)
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where

dx =

Dr=

Ow=

45 =

R_ =

Ru=

89 =

Su=

Tx =

Ty =

Vz

Zx =

(17.-x_) d_= (l_-y,)

[2K1 + 4K._,d 2+ 6K3d _]

[2K_ + 4K._,d _]

d2 . d 2
x _- y

d _ cos _r+2(d_ cos ¢r+d,d_ sin q_r)

d_ sin _r+2 (d_ sin _r+d_d_ cos _r)

d' cos _r+2d 2 (d_ cos _r+d_du sin _r)

d' sin _r+2d _ (d_ sin _r+d_du cos _T)

- sin _r (K_d _+K_d _)

+2(K_+Ksd 2) (d_du cos _r-d] sin _)

cos _r (K_d 2+ Ksd _)

+2 (K, + K,_d _) ( d_ cos 4_r-d_d_ sin _r)

l_ Uu = 0

-1 Zu= -1
(7.155a)

With an arbitrarily selected mean error of

unit weight mo before adjustment the weight

matrix (see (7.196)) assigned to the obser-

vation equations (7.151) and (7.152) is

computed. The adjustment then determines

_u*_P±u = min (7.156)

The required parameters are then

U=Uo+AU (7.157)

where uo are the approximations for the

parameters (see (7.208) to (7.210)).

7.4.6.4 Mathematical Model for the Photo-

grammetric Camera

Each of the various different applications

of the photogrammetric measurement method

requires the development of an appropriate

analytical expression from the general for-

mulation. A special application will now be

shown as the first step in satellite triangula-

tion. As was outlined initially in section 7.4.3,

the parameters needed for the reconstruction

of the bundle from the star images (in this

case, c, c_, c_, x,,, y,,, x, y,, K_, K._,, K_, K_, K:.,

_r) and of the exterior orientation (_,o,,_)

are to be computed.
Since the directions to the fixed stars refer

to the center of the unit sphere at the center

of projection, the coordinates Xo, Y,,, Z,, of

(7.148) and (7.149) are set equal to zero.

Furthermore, it was shown toward the end

of section 7.4.3 that the coordinates express-

ing the direction to a star can be transformed

to standard coordinates _,, _,, +1 (see fig.

7.27 and eqs. (7.66), (7.67) with (7.61)).

This changes (7.148) and (7.14) into

c_(r,,_,.+ r,.,v,.+ r,.D
F= -Ix-ll_.e+

+ xo + (l_- x_) (K,d"- + K_d' + K_d _)

+{2(/_-x_) (l_-y_) sin _r+ [3 (/_-x,0'-'

+ (/_-y_)-_] cos _r} (K_+K:,d _-) =0

(7.158)

G= -lu4 c, (r:_,.+r:_n,.+r:3)
r_,_,. + r:,_,_,.+ r,_._

+ yo + (lz- y.O (Kld_ + K2d ' + K_d _)

+{[3(/_-y_)_+ (l_-x_) _] sin ,+r

+2(/_-x,) (l_-y,) cos +r} (K._+K:.d'-') =0

(7.159)

We note. first of all, that right ascension

and declination a, together with their mean

errors, are given quantities. Consequently, it

is necessary to minimize the sum of the

(v,v, ÷ vavD, weighted in accordance with the

weight matrix P,,_ given for the stars, not

the sum of squares of the vt and v, residuals.
To accomplish this, the _,. and n,- are differen-

tiated with respect to a and a, and the coeffi-

cients in the observation equations used to

compute the ±_ and ±_ are multiplied accord-

ingly. After appropriate arrangement, coeffi-

cients are obtained in the observation equa-

tions which do not refer to the corrections ±_

and an, but to v, and v_. Using (7.66) and

(7.67), one obtains in the y' system

,-y_/ya (7.160)

/' I !
_h -Y_; Y3 (7.161)

from which, when the index r is omitted,
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y_dyl - yldy_
d_ = y_2 --- (7.162)

and, similarly, the intermediate steps having
been omitted,

_,,d_,, o,,d_,,
d,j= ys y2-u2 us

y,., (7.163)
d_

- -cos t (1 +_+*/_) (7.170)
de

From (7.1) with (7.20), (7.23) and figure
7.19, it follows that

[-x 7 [- coss cost-]
x'=]x_'|=|-cosS sint JLx__J [_ sins

[ Sio¢' 0 c°s¢'TFY_ ]
L-cos¢' 0 sin4'J[_y_

(7.164)

Differentiating (7.164), noting that dt=
- da, gives

r -x_' -sinSc°sl][]da°
(7.165)

From (7.23),

dy'=R (90°-4')dx ' (7.166)
2

which with (7.165) gives

dy r_-

[-xgsin#-(x'c°stsin¢'+c°sSc°s¢)lx_ x'sin t
- x' cos ¢' ( - x' cos t cos ¢' + cos S sin ¢') J

[ dd_1 (7.167)

With the relations found in (7.160), (7.161),

and (7.164), the application of (7.167) with

(7.162) and (7.163) yields

d_ -y_'sin¢' _y_' cos¢'
-- _-.=r

da y_ ys

= ,j, (¢_ cos ¢' -sin ¢') (7.168)

d_/=sintsin¢, (1+_+¢) (7.171)
d$

Otner quantities needed are

_F ., . d_ . d,j
as =dx=J,._ +t_r. d_a (7.172)

DF =K_=J,. d_ . d,_
as . . ._+_,,._ (7.173)

aG ., . d2 d_
=d'=d_l'd-aa + K_I" daDa

(7.174)

aG . j . d_ d,_
as =K,,= , d8 +K,._ (7.175)

in which d_/da, d_/dS, d,j/da, and d,j/d8 are
given with (7.168) through (7.171) and J,,

J,, K_., and K_, are computed from (7.153)

through (7.155).

If one accepts the coordinates corrected for

refraction _.,. and _, the corresponding lin-

earized observation equations can be set up

directly with (7.158), (7.159) and the intro-

duction of (7.172) to (7.175). Just as the

central perspective bundle was altered by

additional physical influences, the direction

given with the coordinates 6, _,-can be sub-

jected to a further refraction correction by

further improving the _ constants used for

the original refraction correction.

In consonance with (7.40) one can there-
fore write

±r_=T'/-'W(tan_±_, + tan:' 2B--±__.

+ tan'_-±_ + tan_±_,)(7.176)

Assuming further that refraction does not

affect azimuth, we have _,./v,=constant, and
therefore

d_ Y_ _-¢ cos ¢'
da- y_

=¢,.sin ¢' + (1+_) cos¢' (7.169)

_/±_ = _/v,. (7.177)

and, in analogy with (7.66) and (7.67),
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t 2 r 2

Y' +Y_ (7.178)
_+_=tan: z,.= y._2

Differentiating (7.178) gives

FVq ['tanfl/2 7
ar IW,I|tan:' /21.
 =iXxl=itan m/21",,

LY,,J L tan'/312_]

(7.183)

_,._+_,.±_=tan z, (l+tan2z,.)_z

(7.179)

Substituting (7.171) in (7.179) gives

±z - ±r_ (7.180)

(l+tan -_Zr)
±_ = _" tan z,.

2_,.
Ar_

-- sin 2 z,.

Ar_

r

= Y_AL
Y_ (y_2÷y"-)-v2 Ar_

(7.181)

(1 +tan -_Z,.)
_ =,1,- tan z,. ±r_.

2_?,.
Ar_

sin 2 z,.

_ y"
_ _ (y;_ + y':)-_ ±r_.

Y:_
(7.182)

in which Ar_ is given with (7.176).

When (7.176), (7.181), and (7.182) are
taken into consideration and the designations
of table 7.6 are used, the partial derivatives
of the functions F and G needed in the re-

fraction correction are now introduced, giv-

ing

Fv,,l F tanz/2 7
aG Iw,,I I tan_/2|

_;=/X.|=|tan._ Z/2| "''
LY,,j Ltan__/2J

where

(7.184)

T_z(Jxy_) + (K_y') W2(J_:_,.+K,_, .)
•x=T'_;,,_ F_l+_ _= T'/-' .- - sin 2 z,.

(7.185)

' K ' 2 (J,,_,+K,m,.)Th.(J,,Yl) + ( ,,Y_)_
_,,= T_v.,,, _ (],/, + y..,_ _- T'/-' W sin 2 z,.

(7.186)

with T and W as in (7.40).
The observation equations (7.151), (7.152)

for the single camera are therefore set up in
accordance with (7.158), (7.159), table 7.3,

(7.153) to (7.155), and with (7.172) to

(7.175), (7.183), and (7.184). Since the
skewness e of the comparator axes is always

small, the term v_,_ is negligible. We thus
have the system oI observation equations

Av,,+l=O (7.187)

with the weight matrix, P,, = m_o__, where, in

general, we have for each pair of observation
equations

"V_lr,y

-A_I

V _
u

A

_]A_IB=IC_I--IG_IH4I,,IM.IN,,IO_IP_IQ.IR_IS. IT_I--IV,,IW_IX.IY_
I

q_ being right ascension:

(7.188)
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! is computed (see (7.151), (7.152)) from

the approximation and measured values as

IF,,] (7.189)l=G,,_

o :: o o J

..... i .........

_P-,_I 0 0
........ I .............

0 _ P,, 0

0 0 _P,

(7.190)

PZ,_-[Pz pZ ,,,7 ,.z,- Lpl.r, 
(7.192)

with ,rlx,y:p,,,y,rlx,rly; p,r,y denotes the correla-
tion coefficient which equals 0 for comparator

measurements when the comparator has in-

dependent mechanisms for measuring x and

y.

Measures of Accuracy After Adjustment.

--The mean error of unit weight after the

adjustment is

The P, matrix (7.190) theoretically could

be completely filled, but it is necessary to

normalize all weights with respect to a se-

lected value for m,,, and, in addition, the

mean errors of the rotation parameters must

be in radians. Thus, it becomes possible to

account for all existing correlations. In prac-

tice, however, as is indicated in (7.190),

there are uncorrelated groups, since no cor-

relation exists between the ,_t matrix specify-

ing the accuracy of comparator measure-

ments, the g.,_ matrix specifying the accu-

racy of the star coordinates, the _o matrix

specifying the accuracy of the other, chiefly

photogrammetric, parameters, and the _

matrix specifying the accuracy of the refrac-
tion determination.

Since in what follows it will be repeatedly

necessary to compute accuracy criteria, the
meaning of the various designations used

will now be explained.

Measures of Accuracy Before Adjustment.

--The mean error of unit weight arbitrarily

fixed before the adjustment is m,,. The mean

error of a measurement i is designated m,
Hence

2 2
pi=mo/m, (7.191)

The corresponding weight matrix, e.g., for

the comparator measurements Ix, lu, is

v*Pv y/-'
s,,=k-_u/ (7.193)

and the mean error of an observation after

the adjustment is

si= mS_"m_ (7.194)

With respect to the unknowns u computed

in the adjustment there exists the relation

-- S1/IHI 81/1112 S1/llt n

S1/2112 S1/211 n

8UnU n

J

Covariance matrix

(7.195)

in which s,,v,_=o_js1/_s1/_. With (7.193) and
(7.195) we obtain

P,, = m_d,, -' = _-_ ,,
-- 80

(7.196)

Omitting the index u in order to simplify

the notation, we have s_=p_ss_sj, and the
dimensionless correlation matrix that cor-

responds to (7.195) is then
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Sn -1

Pin

1 p_

pi_ 1

p_s 1

in which all p,=l and the numerical values

of the correlation coefficients pu, as well as

the numerical value of the determinant tPI'
lie between 0 and 1.

Finally, it is desirable to compute the axes

and orientation of error ellipses and of the
error ellipsoids arising in connection with
the spatial triangulation to be discussed

later. In a solution designed for electronic
computation it is convenient to treat the

relatively simple two-dimensional case as a
special case of the three-dimensional solution
given here.

The characteristic co,ration

(7.198)
8_--A Sx,u Sx,y ]

S,_.,v S_-- A Su .. ----0

S.,z Su,z 8_ -- A

becomes, on development of the determinant,
a polynomial equation in _t,the eigenvalues of
the covariance matrix :

(7.199)X3- rX2+ sX- t = 0

The lengths of the semiaxes of the error

ellipsoid are square roots of the roots xl, ,\,_,,
x3 of this equation. To obtain the direction

cosines of the axes, the eigenvectors xl, x,_,,
and x:, are computed in those separate steps

by substituting in turn each of the xl.2.3 values
in (7.198) and solving the three sets of simul-
taneous linear homogeneous equations :

Sj -1

Sn -I

]
(7.197)

=0 (7.200)

Each of the three solutions (x_,, x;_, x_)
contains a free variable with which the vec-

tor x_ can be expressed in length x_ or as a
unit vector, thus defining the direction of the
axis. The procedure is described in Zurmtihl
(1965).

For the two-dimensional case the 2 × 2 co-
variance matrix is extended to a 3 × 3 matrix

by introducing the number 1, or any other
number, as the three-dimensional diagonal
_rm and zeros for the other additional en-
tries to account for the fictitious third dimen-

son. The capacity of the larger electronic

computers makes it attractive to design a
program which can compute eigenvalues and

vectors for the n-dimensional case. However,
the computational effort increases with the
third power of n.

If it is desired to do justice to maximal ac-

curacy requirements in satellite triangula-
tion, it is necessary to recalibrate the camera

for each event. Hence _Pois in general a null
matrix. The need for an additional refrac-

tion correction is questionable because of the
existing correlation between the _ values and

the elements of exterior orientation, espe-
cially when the cameras used are equipped

with objectives requiring relatively small
viewing angles. When the ±_ corrections are

not computed, the _P,,matrix consists of only
the P, and _P_._ portions. As is shown in
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(7.188), _At is always a unit matrix. If we

introduce, for the moment, P_,_ as a null

matrix with P_ from (7.192), the normal

equations system corresponding to the obser-

vation equations (7.187) is

From (7.205), finally, the vector
parameter corrections is obtained as

A (7.206) .=.V -1 ±!

and

A,, of

tll

[_B*_PLB] ,_ + _ [_B*Pzl] i = 0
i=1 i=l

(7.201)

where m is the number of star images.

Each pair of observation equations for an

individual star image i contributes to the

normal equations system (7.201) in the fol-

lowing manner :

B*P_.B_A + B*PJ,=O (7.202)

Subdividing the _Bmatrix further by using

the notations introduced in (7.188) results

in the following scheme for (7.202) :

Vo_,_ _o

(Bg,LPLB_,_)_i(B*,LPzBo)_]+
(B*P,l)_ j

(7.203)

The accuracy of the given a, 8 values ex-

pressed with the P_,_ matrix is, in accordance

with the concepts developed in Schmid

(1965b), taken into consideration by replac-

ing the term (_B*,_PLB_._)_ in (7.203) with

(B*,LP,B,,,_+P,_,_){ (7.204)

Elimination of the v_._ vector reduces the

normal equation system to

0 =0.+ Ao (7.207)

In consequence of the fact that in lineariz-

ing the original functions F and G, terms of

the second and higher order were neglected,

the result of an adjustment must be iterated

until the change in v*_Pv in successive itera-

tions becomes equal to or less than a pre-
scribed tolerance.

The treatment of given right ascension and
declination values in the above manner al-

lows the determination of unknown stellar

coordinates by simply introducing the P_

matrix as a null matrix. It is, of course,

necessary to find in this case adequate ap-

proximation values (a,,, 8.) to replace the

normally given _, 8 values.

Although the determination of unknown

stellar coordinates is merely incidental to

the problem at hand, it should be stated here

that the use of uncataloged stars contributes
to the calibration of the camera whenever the

uncataloged star is photographed at suffi-

ciently large intervals of time, but at least

twice. By means of the associated instants of

time the corresponding angle of the Earth's

rotation can be introduced into the adjust-

ment to help fix the geometry. Thus, the

images of such stars furnish additional data

and contribute in a small way to the deter-

mination of the parameters of interior orien-

tation. In satellite triangulation it is scarcely

possible to gain any advantage from this,

because the total period of observation of an

event, i.e., the elapsed interval between the

N
r

2 [_BoPLBo-_Bo_PLB_._ (B,_,_P,B_,._+ P_,_) _B_.LPtBo] _A,,

X_ @ $ --i $ --

j

-21

(7.205)
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pre- and post-satellite pass star recordings,
is deliberately held to a minimum in order to
minimize the chance of changes in environ-

mental conditions. Experience has shown
that elimination of these changes is not al-

ways possible, especially when the require-
ments for accuracy are high.

For that reason an observation technique
was developed, designed to detect small varia-
tions in camera orientation occurring during
the normal 20- to 30-rain period of observa-
tion. The method provides for stellar obser-
vations during the actual period of transit of
the satellite, as well as before and after.
Since it is reasonable to assume (actually
there is no other choice) that the elements of
interior orientation do not vary significantly
within the period of observation, a mathe-
matically closer simulation of the actual situ-
ation is obtained by computing three separate
and independent exterior orientations, one
for each of the three periods--before, after,
and during the transit of the satellite across
the field of view of the camera. The single
camera observation equations (7.187) are
therefore augmented to include three sets of

corrections to the exterior orientation ±_, _,
_K, instead of just one subset. The first term

in (7.205), schematically represented, will
then have the form shown in figure 7.36.

In order to increase the internal accuracy
of the photogrammetric measuring process,

o

o

///

///

///

///
///
///
///
///
///

///

A:

(_["1)2 ((:l"l)3 I cx cy x o YO K K2 K:) x S YS K4 K, OT ( T I "r2 "T] "_,

o o V/'//////////////////4

Frauds 7.36

particularly to minimize the influence of

the emulsion and shimmer, it is the prac-
tice to measure, for each star, sequences
of generally five consecutive single images.
This means that each of these lx, l_ coordinate
measurements has its individual residuals,
but only one pair of corrections to the right
ascension and declination values of the star
may be postulated. Hence, for a star recorded
n times it is necessary first to construct the
partial normal equations system (7.203) as
the sum of the corresponding n subsystems,
followed by the addition, in accordance with
(7.204), of _P,,_ just once before continuing
the computations with the elimination of the

v, and v_ to set up the final normal equations
(7.205). If ±T corrections are to be computed,
it is advisable to first carry out a solution
without the aT to avoid the unfavorable in-
fluence of existing correlations on the numer-

ical adjustment. In a final iteration step the
±T will then be included as additional un-
knowns to produce the end result. If meas-
urements of unknown stars are included in

the system, it is best not to set up coefficients
for refraction corrections in the relevant

observation equations, because of the limited
geometrical content of such equations.

For example, whenever values for certain
photogrammetric parameters, as determined
from an independently executed camera cali-
bration e, are to be introduced together with
their measures of accuracy into the adjust-

ment, the corresponding weight matrix P%
(cf. eq. 7.196).

m_.
_Po_=Fo_o_ (7.208)

must be added to the normal equations
system (7.205). It must be borne in mind

that this Po_ matrix has reference to the
given values which are appropriately used as
approximation values in the first iteration.

Since in the course of the iteration, however,
the approximation for the 0o vector under-
goes changes, a modification of the vector of
absolute terms in the normal equations sys-

tem is necessary at each iteration step, in
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P,,_l,,_ (7.209)

is added to the M vector for that iteration,

where

Moc= 0_%- 0,, (7.210)

The purpose and effect of this operation
is to initialize the O_ components of the

0o vector to their given values before pro-
ceeding with the next iteration step. For
parameters that are not given, the Aloc vector
has zero components.

It can be argued that the determination of
three different sets of orientation parameters

does not lead to an optimum solution in cases
where the exterior orientation of the camera

does not change at all during the entire
observation, so that only one or two sets
of a, ,,_,K are justified. For this reason, we
first compute directions in space for a number
of fictitious images along the plate diagonal,
using the results of the present solution. For
each of the fictitious point images whose co-
ordinates x,y are assumed free of error, three
unit vectors corresponding to the three orien-
tations are computed by use of (7.81) in the
y' system :

' -R' (a,o,,K) p (7.211) t

where

p_
(7.212)

_- _C. 2

Premultiplication of the y__,..... vectors with
_R(270 °+¢') yields, in accordance with

(7.107), the corresponding x___=:_ vectors.
With y' or x' vectors, as the case may be, one
computes with (7.28) the corresponding
and ,I values, and with (7.29) the azimuths
and zenith distances or hour angles and dec-
linations.

Next, one computes for each pair from the

YS=,.'-'.:_or x_ 1.._.:_the small angle _,: between the
computed directions. For the combination 1,
2 in an x' system, one obtains, for example,

! I'c,== Ix_-x_l (7.214)

or, in radians,

r X' X' _+ ; X' i'-'11A'_,.._,=[ (X..,,--X'_)"-+ ( _o-- 1"-') (X.,:_-- ,:,, _ -
(7.215)

If the differences between corresponding

right ascensions and declinations or azimuths
and zenith distances, so computed from the
three orientations, exceed their confidence

limits, a timing error or camera motion may
be the cause. Before one can decide whether

these computed differences in direction are

significant, one must find the mean errors
either of the direction components (a, _) and

(A, z), or at least of the angles _;_,.,which can
be looked upon as combinations in pairs of

the computed (a, 8) or (A, z).
Since a and $ are parameters of the mathe-

matical model on which the adjustment is

based, the following solution offers itself.
Using (7.204) and taking into account the
considerations leading to (7.202) and

(7.203), we can schematically represent the
first term of the normal equations system

(7.201) as

(B*_P,B_,_+_P_,a _ 0 fl (B* LP,B0 _

o o I
: I

(B__PLB_,a, --- (B*pLB_,a ,,, _(B*_P,Bo),
i=1

L4,* 
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Designate

(7.216) as

the inverse of the matrix

]-' re- -Q:.-.I_a,* _:: =L-Q*'-9---J (7.217)

From (7.216) and (7.217) it is apparent
that for the inverted normal equations sys-

tem of (7.206)

[_A22- _A*2_A_IA,._,]-I-- __='= _Q_2 (7.218)

Furthermore, since

a,_ LQ* Q2_

it follows from (7.217) that

Finally, to compute the accuracy of a direc-
tion defined by a fictitious, errorless point,

the __P-' matrix in (7.222) becomes a null

matrix, resulting in

s:._=so/r_-' B 'V-1B* B -'*__,-_,,_-o_ - o - _._ ) (7.223)

Formula (7.223) is now applied for a

selected fictitious point to the three orienta-
tions obtained from the solution of the system

(7.205). The resulting covariance matrix

s,,_ is of the dimension 6 × 6. The three 2 × 2
submatrices along the diagonal are the three

covariances s-°(_,8)_=,,._.._ associated with the
three sets of a, 8. The analogous covariance
matrices of the azimuth and elevation com-

ponents are obtained with (7.107) as

-_-AliA] 25 A12All (7.220)_11--_A;I -' 7-1 • -,

From the schematic shown in (7.216) it
fallows that the computation indicated with
(7.220) can be performed in independent
steps for each individual pair i of values a, 8.
Hence we can write

+ (B*,£LB.,_ +_P.,D7 (B*.,LP,Bo)_5"-_

(B_P,B.._)_ (B*,£,_B.,_+P.,_)_']

(7.221)

s-"(3,z)j=,.,_,,._=_R (90 ° -_) 1_2 (_f.,8) j=1,2,3

2

x R* (90 ° -_) (7.224)
2

Finally, the variances s_;, s:5, s:2_ of the
*_ ................... di i,.**J-_._ t o.11._1_ v/. [ I.£.J.t)) t;tl'l¢ bll_ agona
terms of the covariance matrix

s_=F*s_._F (7.225)

With (7.221) we obtain the covariance
matrix for the corrected values of a, 8 for the

stars originally selected for the adjustment.
If the star in question was originally un-

"known, it is merely necessary to set the
relevant _P,._ equal to a null matrix and to
introduce the corresponding _Pzmatrix, which
must, of course, relate to the initially chosen
mo value. In the present case a further sim-
plification is present, since the _B,,_matrix is
quadratic and nonsingular, hence invertible.

The covariance matrix for an originally un-
known star is, therefore, from (7.221)

-1 r--! _¢ -1",_,_=So(_B2_P? B2; +B ,_Bo5 Bo B,_)
(7.222)

where

F_

O_ O_

8e a_
0

8_ 8a_

8¢ a,_
0

88_° 88._,

8_ 8_
0

aa3 i_a_

a_ 8_
0

L-- _v3 _Jv3 .._

(7.226)
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In (7.226) for each combination j, k

O_ I
-- i

0_; I

O( I
-- i

aS, I

Oc I
-- i

O0_L. I

Oc I
-- i

_ 081,J

1

X I X t X t X'
".ll 1"2 -- ]'2 'k2

'"'-'_ x' (1 x'-°_'_'x;x_x_3(1 _x_3,2)_.,__x, x, x,,..;2 1,2 1,3(1-x1.() ,=-.j3 - _:_,.-

xP x ' X'X t
J2 1"1 -- )1 1':2

xe.-,_-,/__x_(1 x,.-._,/.X,,l'X'X';,j:,(1 - x/, 2): '/-'+x/2x]_x_,(1-,.: ,_ , -- 3 ] -

(7.227)

If all I_,., :_1exceed the corresponding quantity

K.sq .... (where K is a constant selected on
the basis of personal experience), then it
must be assumed that the camera orientation

has changed during the three observation

periods. In this case the second solution in-

dicated in the schematic of figure 7.36 will be

accepted as definitive, this being the orienta-

tion corresponding to the stars recorded dur-

ing the satellite transit.

On the other hand, if certain values of _ are

less than the corresponding K.s, then these

orientations can be combined. Thus, if

_,_< Ksq2 (7.228a)

combine orientations I and 2 ; if

(7.228b)

(7.228c)

combine orientations 2 and 3 ; if

q._< ksq_

IO0 0 0 -1 0 0 0 0 ]

1010 0-10 0 0 O0

(_j= 0 1 0 0-1 0 0 000 0 1 0 0 -1 0 0

oLOOO OlO Ol0 0 0 0 1 0 0-

(7.230)

where (j is a 6 x 0 matrix (0 being the num-
ber of components of the _,, vector), the first

nine columns being as indicated and the

balance of the matrix consisting of zero en-

tries. The form of the 6 × 9 portion will vary

according to the results of the criteria

(7.228). The form in (7.230) corresponds to

the case of combining all three orientations.

For such a case, furthermore,

Fo o]0"2 -- al

O)0 O)0

i i0 0

I K2 -- K1

/°°/0-3 -- 0-2

CO0 600

/ .,/
K 0 K0I._3--2.._1

(7.231)

combine orientations I and 3.

The result is obtained as shown in Schmid

and Schmid (1965) in the form

A,,= * (',5T']
-\j-'C* -'t] (7.229)

where N-' and ±l are from the last iteration

in the solution of the original system (7.205)

and

The values with the superscript 0 are the

approximation values used in the final itera-

tion in the solution of the system shown in

figure 7.36. The correction vector computed

with (7.229) pertains to these approxima-

tions. The final result is then computed with

(7.229) and (7.207).

The last phase of the computations covers

the partial results, and a summary of these
results now follows. Values for distortion at

a prescribed interval, e.g., in 3-mm steps, are
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computed to a maximal radial distance d ......

dictated by the plate format. If the radial

distortion for a prescribed distance d,, is to be

made equal to 0, the corresponding camera

constant c* is computed with

C* z C.,.-[-C_
2 (l-K,,) (7.232)

in which

K,,=- (Kld_+K._d4o+K:,d_) (7.233)

The radial distortion is then computed

successively for the required distance d with

(7.95). The transformed radial distortion

corresponding to c* is

t

(±R) =d.K,,+AR (7.234)

Values for the decentering distortion are

computed similarly with (7.99).

If it is desired to study the values of

astronomic refraction within the range of

the photogrammetric exposure, they can be

computed from (7.40) as a function of z in

suitable intervals, with either the given or

the newly computed T values.

values is of particular significance when star

observations are evaluated for the calibra-

tion of photogrammetric cameras or used in

error studies of individual photographs. In

satellite triangulation the computation of

such data recommends itself strongly for the

purpose of gaining insight into the behavior
of all cameras in use, in view of the fact that

the photogrammetric registration in a con-

tinental, and especially in a worldwide, net

is exposed to extreme ranges of local and
seasonal environmental conditions. It is

therefore required, on the one hand, to be

informed as to the reliability and metric

quality of the instrumentation used ; it is also

expected that a systematic study of these

results will allow the drawing of conclusions

with respect to the individual photograms.

Finally, we must compute the corrections

to the given values resulting from the ad-
justment, the statistical measures of accu-

racy, such as the mean error of unit weight,

the mean errors of the computed quantities

as well as mean errors of values, computed

as functions of those quantities.

Corrections to the measured images are

computed with (7.189). With the param-

eters obtained in the adjustment one has

Viii= Fi

vl:,i= Gi (7.235)

To get a better picture of the distribution of

these residuals, it is useful to compute the

radial and tangential components of these

corrections. Computation of the corrections

v, and v_ for each given star is carried out

with (7.203) (7.204), where now 4o is a zero
vector :

v(_._)i= - (_B* __PLB,._+_P,._) }'(B*_Pzl) i (7.236)

Wherever quantities introduced by means

of approximations into the adjustment differ

from free variables, in that corresponding

entries in the _P, matrix (7.190) (cf. also eq.
(7.208)) represent a priori given weights,

relevant corrections are computed, by using

the results from the adjustment, from

v,,=u-uo (7.237)

where u stands for the adjusted and u,, for

the initial value of the parameter. Next one

computes

(7.238)

and in accordance with (7.193) the mean

error of unit weight after adjustment so with

I _v*Pv 1½s,,= - (7.239)
n--U

The mean error of the computed param-

eters is obtained by multiplying so by the

square root of the corresponding diagonal
term in N 1 of (7.206). The mcan errors of

the given quantities result from dividing s,,
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by the square root of the weight assigned to
the quantities.

The mean error of the camera constant

(7.232) and the mean error of radial and

decentering distortion are computed as mean

errors of functions of quantities determined

in the adjustment. In general, the mean

error s, of a quantity a

a=F (u) (7.240)

is

s,=s,,(f*:_'-lf,,)l/_ (7.241)

in which f,, is the vector whose components

are the partial derivatives aF(u)/Ou, the

components corresponding to parameters not

present in (7.240) being zero. For the cases

in question here,

Substituted in (7.241), the components

computed with (7.242) now give the mean

error of the camera constant c*, with (7.243),
of the radial distortion at the selected dis-

tances d, with (7.244), of the radial distor-

tions corresponding to camera constants c*,

with (7.245), of the decentering distortion,

and, with (7.246), of astronomic refraction
as function of selected zenith distances.

This concludes the computations in con-
nection with the reduction of the single

camera.

In preparation for the next series of com-

putations the orientation matrix _R_ (a,_,K)t

during the satellite pass must first be trans-

formed from the local y' system into the final

z or z' system that has been selected for the

eventual spatial triangulation. R_ (a,,,,,K)t re-

sults from (7.79), either with the second

group of elements of orientation in the

f,*.=
acx

1 - K,_ 1 - K,,
2 2

a/
aclj aK1 _K_ aK::

__ _ c.,+c,_.d _ c,+c, .d_ c,:+c,, d_
2 2 2

(7.242)

a/

I*A1_---- _K1 IDK.,IaK.,. .

d_ _IId"_ d_

(7.243)

d( d2-d_) Id( d'-d_) ld( d6-d_) l

(7.244)

a/

f'r= aK_ aK,_
d'-' d'

(7.245)

f*=

a/

T_/-'W tan _ T_'/-,W tan:_ _ T'/-,W tan_ _2T_'/-,W tan_ 2

(7.246)
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schematic of figure 7.36, or, in accordance
with the principle of combination of (7.228),
from a group of orientation elements, which
also includes star recordings simultaneous
with the satellite transit.

The necessary transformation is accom-

plished with (7.30) and (7.108) or (7.109),
so that we have

_R'z(_,o,,K) =R (_.,_,),
3

(90 ° -¢)_R ( -x,-y)R (270 ° +q_),
2 2 1 2

(-_e_st) R_ (_,_,K) (7.247)
3

and with (7.79), for example,

COS 0_z, ---- r:_:_/cos o,z, )

sin _.-,= - r.,._

COS Kz, : r._,.,/cos (oz,

(7.248)

The reduction just described, of a single
observation of stars, is on the one hand suit-
able for a camera calibration, and on the
other represents one of the intermediate
steps in the process of photogrammetric
satellite triangulation.

We now list the intermediate results from
the sino'le_mor_ nrn_rnm thnt will h_

needed in the next reduction step.
(1) The parameters set up to reconstruct

the photogrammetric bundle and computed
in the adjustment, namely, (a) the elements

of exterior orientation (a_)y, referring to
the local y' system and (b) in the general
case, the parameters _, c_, c_, xo, yo, x_, y,,
K_, K_, K:,, K_, K_, q_r, rl, r.,, _, r_.

(2) The elements of exterior orientation

referred to the ultimate triangulation coordi-
nate system, i.e., either (a_). or (a_K).-,.

(3) The mean error of unit weight So.
(4) The inverted normal equations sys-

tem N -1.

(5) Meteorological data at the observa-
tion site during the satellite observations.

(6) All data necessary for the identifica-
tion of observation sites and instrumentation.

(7) All supplementary information
needed for time determination of the satellite
images.

7.4.7 Spatial Triangulation

7.4.7.1 Preliminary Computations

The principle problem of geometric satel-
lite triangulation is the determination of
three-dimensional rectangular coordinates

for the observation sites, the triangulation
being executed in either the z or the z' coordi-
nate system introduced in section 7.4.6.2.6.
In preparation for these computations the

treatment of the single camera (as described
at the end of section 7.4.6.4) includes, among
other things, the transformation of the ele-

ments of exterior orientation to (ao,_)= or
(a_)=,?. Now, in order to triangulate, it is
necessary to determine, at each of the sta-

tions which have recorded simultaneously a
specific satellite pass, at least one direction
associated with a specific satellite location in
space. Just as the elements of exterior ori-
entation of all photograms must refer to a

consistent coordinate system, all the direc-
+_° obtained ";+_"...... _..... such an orientation must

be with respect to unambiguously defined
target points in space. This requirement is
filled by reducing all measured image coordi-

nates to a rigorous central perspective and

then applying all the corrections explained in
section 7.4.5.

Reduction of the plate coordinates l,, l_,to
a central perspective is accomplished with

(7.141) and (7.142). The expressions for
±R._, ,xR,,,/xT.,., ±T_, are computed from (7.97),

(7.98), and (7.103) with the use of (7.143)
through (7.147) and with an iteration loop,
as was indicated earlier. The coordinates l_

and l,_so obtained correspond in measuring
to (7.138) and (7.139) and must still be
reduced to a common scale factor. If in

(7.138) we set c_.=c, we obtain, in agreement
with (7.212),

l_c= l_ (7.249)

and

l_c= l_. cx
cy (7.250)
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The image coordinates l_,:, l_ refer to the
principal point and the scale factor c, i.e., to
the idealized central perspective. Before

these fictitious point images ctln be used in a

spatial triangulation, they must be corrected
for the influences cited in section 7.4.5. These

corrections can be classified under the follow-

ing groupings: (1) refraction, subdivided
into astronomic and parallactic refraction;

(2) eccentricity of the target; and (3) time
corrections, subdivided into clock corrections

and light propagation effects.

In the course of the reduction the influence

of scintillation is largely eliminated, at the

appropriate place, by smoothing the sequence
of individual images of the satellite trail with

the aid of polynomials.
The computation of some of these correc-

tions requires an approximation to the dis-

tance between the camera site and the satel-

lite. To effect these corrections, the coordi-

nates l_k, l_: (equations 7.249 and 7.250) and
the _R_(a,o_,K) t matrix from the single camera
are used to produce the unit vector y/ from

(7.81) and the corresponding standard co-

ordinates _,., _/,-with (7.23), and then the ob-
served zenith distance z,. with (7.29). The

astronomic refraction r_ follows from (7.40)

by iteration. The unit vector y' corrected for
astronomic refraction is computed with

(7.42), where r_ is replaced with r_. or, alter-

natively, directly with

for polynomials (7.48) are determined from

an adjustment in accordance with (7.266) to

(7.270). With these polynomials the l_ and

l_, are expressed as functions of station clock
time t. Omitting the subscript c, we have

then, quite generally,

l_-- f ( t ) (7.253)

l_ = g ( t ) (7.254)

With the notation of figure 7.26 we obtain

observation times referred to an unambigu-

ous time designation by adding to each locally

recorded time t the corresponding clock cor-

rection ±T, which rarely exceeds 10 msec.

The normalized instants of time Ti .........
recorded at stations ]1.., ....... will then be

Tj ......... = tj, ........ + ATj ........... (7.255)

In order to obtain an instant of time that

is as close as possible to the range of times
recorded at each station, we form the arith-
metic mean of the T's and convert this mean

to corresponding interpolated times referred
to the individual station clocks. Thus

- ±Tj,_ (7.256)t_._ ..... ,n- m ...... m

z=z_+r_ (7.251)

and (7.74), in the form

[-cosz cosAlY'=I c°szsin sinAz
(7.252)

In this, the azimuth A is derived from

(7.29). With y', new values for ¢ and _ are
derived from (7.28). With these and by using

c=c_., we compute image coordinates from

(7.85) and (7.86), taking the direction co-

sines rz from R_,(a,_,K) and substituting, __,

_, 1 for x-xo, y-yo, and z-z,,, respectively.
After all satellite images of a given photo-

gram have been so reduced, the coefficients

On the basis of the relevant t value at each

station, l_, l_ values are computed with
(7.253), (7.254) for points along the satel-

lite trail, which, since light propagation time

has as yet been neglected, refer to simultane-

ous instants of exposure.

Next, approximate satellite positions are

computed with these data. The camera_site

coordinate approximations (¢0, _o, h o) are,

with (7.111), (7.112), (7.113), transformed

to rectangular coordinates in the z system,

or, if necessary, by the additional transfor-

mation (7.36) are transferred to the z' sys-

tem. With the R__(c¢,_,_) or _R_,(a,_,_) ori-

entation matrices mentioned previously and

the interpolated l_, 19 coordinates, once these

values are available for all stations, approxi-
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mate satellite positions can be computed by
using for an intersection with m rays

m 0
0 m

[ax] [ay]
zs,

[axax + ayay] z_3

+ [by]
+ [a_b_ + a_by]

(7.257)

The z,,. 2...... are the approximated coor-
dinates of a point on the satellite orbit. As
an auxiliary computation, one forms with
(7.79)

(r11/_) + (r_ll_) + (r31c) (7.258)
a_= - (r_3l_) + (r_,31_)+ (r33c)

(rl_l_) + (r.2__l_)+ (r_2c)
a_j= - (r,_l_) + (r._,31_)+ (r_c) (7.259)

bx=- (a_z°+z °) (7.260)

by=- (a,z°+z °) (7.261)

where z°,_,_ are approximated rectangular
station coordinates.

The distances between an observation sta-

tion and the satellite positions are

d-- [(z ° -z°_-_ (z ° -zO)24- (z ° -g%211/2

(7.262)

Instead of storing the large number of
distances corresponding to the 500 to 600
satellite positions, it is preferable to express
d as a function of t. As with the functions

(7.253), (7.254), we again use (7.58), with,
of course, just one expansion for the d. This
results in one polynomial for each station or,
expressed generally,

d=h(t) (7.263)

We now resume the reduction of the re-

sults obtained with (7.249) and (7.250),
computing first the satellite refraction r_
with (7.43) and using (7.263) along with the
previously computed astronomic refraction

r_. Then follows the unit vector y' corrected
for refraction, from the refracted vector y/
by use of (7.42) or (7.252), where now

z=z_+rs (7.264)

Reduction of the y' vector is continued with
the elimination of the influence of eccenti_icity

of the target point.

After the unit vector y_ in the direction
toward the Sun has been computed, in ac-
cordance with (7.54) and the Sun's right
ascension and declination at the instant of

observation and with the use of (7.20),
(7.21), (7.23), and (7.24), one obtains the
unit vector y_j_ to the center of the balloon

with (7.52) and (7.49) in the form

a (y_+cos 7 Y') (7.265)y_M=y'-- d sin 7

in which the needed quantities are derived
from (7.263), (7.50) or (7.51), and (7.46).

With the vector (7.265), corresponding _,

values are again computed with (7.28), as
are l_, l_ coordinates of the corresponding
fictitious satellite images with the use of
_R_,(_,o_,_) matrix. With these values in
(7.58) the final interpolation polynomials
are set up, which, in complete analogy with
the expressions (7.253) and (7.254), repre-
sent l_ and l_ as functions of t (see also sec.
7.4.8.1). l_orma! equatmns corresponmng to
(7.58) are set up in order to determine the
polynomial coefficients, where, to simplify
the numerical calculations, the t values, as-
sumed free of error, are replaced with a se-
quence of integers whose increment corre-
sponds to the greatest common divisor of the
interval recorded at the various stations in-

volved. The normal equations system for
n images has the form

N c lc

P,B,] [Bt_P,t],
i:1 i:1

(7.266)

in which _Pz is expressed with sufficient
accuracy in terms of the weight matrix as-
signed to the original coordinate measure-
ments (cf. eq. 7.192). For an mth-degree
polynomial _B7is, from (7.58), for each of the
n points
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. ....... I ........ 1
2 3 t mi_: 0

1 ti t_ t_ • • - /

....]---!---:.....: ....!....!---->-.....:.....!=!----:-ii (7.267)

c is the vector of coefficients to be determined

¢* = [aoala2a3 a,,,boblb2b3 b,,,] (7.268)

and 7_is the vector with components (l_, l_),
which was obtained with the y_M vector of
(7.265)

The solution for the vector of coefficients ¢

follows from (7.266),

(s_c)'-'= s_c [_BT_";_( B_ ) ] (7.274)

In order to account for all existing correla-

tions, the _B_matrix must be set up for all n
points and is therefore of dimension 2n

× (2m+2).

Interpolation for coordinates of fictitious
satellite images by means of the computed

polynomials is executed, in agreement with
figure 7.26, by forming interpolation times t

corresponding to a selected sequence of
orbital times T with

c=N_lc (7.270) t= T-- AT _-r<T__T) (7.275)

and the covariance matrix associated with

the coefficients cm is, from (7.195),

s_=s_N -_ (7.271)

The mean error s% for the fit to the satellite
trail is, from (7.193),

/
Soc= ..2_ _ +-2-)/

(7.272)

The individual v values are computed with
(7.58) and, with the designations used in
(7.253) and (7.254), are

[v'zl-[f(t) (7.273)
v_= LV_l-Lg (t) -l_ i

If pairs of coordinates lz and l_ for n points
are determined by interpolation in (7.58),

the corresponding covariance matrix is, in
accordance with (7.240), (7.241), (7.272),
and with the use of the designations intro-
duced with (7.267),

The _T-_r are computed with (7.56). The

necessary distances d are computed with suf-
ficient accuracy for the times T-AT from

the polynomial (7.263). Finally, the fictitious
image coordinates are computed by _ubsti-

tuting the interpolated instants t in (7.58),
whose coefficients have been determined from

the solution of (7.270). After the pairs of
coordinates for the selected orbital times T

have been computed, the last reduction is
made, to remove the effect of Earth rotation

that took place during the light travel time.
As before, a new unit vector y' must be com-
puted from the coordinate pairs Iz, l_ just

obtained, using (7.81) and R__,(a,_,_) % Then,
with (7.60) and the _r-Zr values from

(7.56), every y' vector is transformed into

its corresponding y_, vector. The final image
coordinates l_, l_ result from (7.60) and the
use of (7.85) and (7.86), where, as before,

the direction cosines r_j are taken from

R_,/(a,,o,,,)'_ and _ replaces X-Xo, _ replaces
Y-Yo, and the number 1 replaces Z-Zo.
The quantities _ and _ are again derived from

y,, by the application of (7.28).
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For discussion of the needed number of
directions so introduced, see section 7.4.8.1.

In any case, the selection of orbital times T
should be such that one of these instants cor-

responds to a point of the orbit whose image
on the several photograms is as close as pos-
sible to the principal pont.

After these preliminary computations
have been completed, a pair of image coordi-
nates, representing fictitious observations,
will be available for each selected point of the
orbit. These image coordinates simulate
images that would have been obtained had
the following conditions been met :

(1) The photogrammetric camera repro-
duces a rigorous central perspective.

(2) The comparator has no linear scale
errors and measures in two perpendicular
directions.

(3) The origin of the image coordinate
system coincides with the principal point.

(4) The observation was executed in
vacuo, i.e., refraction and scintillation do not
exist.

(5) The images correspond to the center
of the balloon.

(6) Neither Earth nor satellite has a
nrnnor mntlnn r i _ thpr_ i_ nn influence from

aberration or time of light propagation.
(7) All station clocks run without error

with respect to a reference time, and the re-
cording times of the stars are rigorously
UT1.

(8) The images at all stations observing a

specific satellite pass correspond to uniquely
defined positions on the satellite orbital
curve.

After processing all observational data in
the manner described, we have at our dis-
posal for the execution of the spatial triangu-
lation for each of the observing stations and
for all satellite passes observed at such sta-
tions a photogram with a number of fictitious
image point coordinates l_, l_, the relevant
scale factor c, and either the R_(a,_,K) or
the R_,(a,o,,K)t orientation matrix. Since
orientation matrices are referred to the same

coordinate system, either the z or z' system,
the spatial triangulation can now, with the

idealized image coordinates l_, l_ mentioned
above, be carried out in accordance with the
geometrical principles of a rigorous central
perspective. For this last adjustment step
the covariance matrix associated with the

computed image coordinates will also be
needed.

With (7.274) a covariance matrix was ob-
tained relating to the smoothing process of
the orbital curve. The covariance matrix re-

lating to the single camera reduction is com-
puted, with the designations introduced in
(7.188), from (7.195) and the results ob-
tained with (7,206) and (7.239) of the single
camera solution in the form

(%)2 =s_ [Bo_N-I_B*] (7.276)

Since the two error contributions are inde-

pendent of each other, the total covariance
matrix for the values l_, l_ of a specific
photogram is, with (7.274) and (7.276),

(s,)2= (sTc)2+ (sT0)_ (7.277)

with the proviso that allcomputations are
with referenceto a common mean error of

unitweight (cf.sec.7.4.8.1).

For each stationtobe triangulatedand for

allsatellitepassesobserved atthe station,the

followinginformationisnow available:

(1) Approximate stationcoordinates

q_°, ),°, and h ° (7.278)

(2) If given, the weight matrix of these
coordinates

P¢ P¢.x P_.h1_= p_,_ p_ Px,_I
LPo,1, px,_, ph J

(7.279)

(3) Corresponding rectangular coordi-
nates zl,_._ or z'l.__ derived from (7.111),
(7.112), (7.113), and, if necessary, trans-
formed with (7.36).

(4) The relevant weight matrices P_ or _P_,
from (7.128).

(5) The elements of orientation (a_)_
or (a_):, from the single camera program
(cf. eq. 7.248).
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(6) The scale factor c.
(7) The fictitious image point coordinates

l_, l_ corresponding to the selected satellite
positions and associated satellite orbit times.

(8) The covariance matrix (7.277) of
these coordinates.

The information contained in points 1 to
8 above represents the input data for the
spatial triangulation proper, whose solution
and adjustment is treated in the next section
as the final step in the evaluation.

The evaluation procedures of this section

and, in addition, computations relating to
alternative approaches to these problems are
described in all details and with pertinent
flowcharts in R. H. Hanson (unpublished

papers, 1968). The treatment of the subject
to this point has demonstrated that certain
computer operations must be repeated fre-
quently. For this reason the computer pro-
grams have been designed from the stand-
point of optimal economic operation and the
flowcharts (R. H. Hanson, unpublished
paper, 1968) reflect a corresponding organi-
zation of the computations.

7.4.7.2 Adjustment

As was stated above, the spatial triangula-
tion of the station coordinates can now pro-
ceed in accordance with the law of central

perspective. The mathematical model on
which the adjustment is based is given with
(7.85) and (7.86), which, with the present
nomenclature and in accordance with (7.148)

and (7.149), are

c[ (zsl-zl)rl,-_- (Zs2-Z2)r12-_ (Zs3- Z:¢)rla]
F-

(z_,-zl)r3, + (z82-z_)r_2+ (zs - z._)r_3

-l_= 0 (7.280) $

G= c[ (z_ -z_)r..,_+ (z,_-z.,)r,.,2+ (z_3-z_)r._3]
(z_,- zl)r:. + (z_ - z,_,)r_o.+ (z_ -z_)r_

-/,=0 (7.281)$

The z .... denotes the coordinates of a satel-
lite position and the Zl,._,,:,station coordinates.
In case the exterior elements of orientation
(ao,_) t are referred to the z' system, the sta-
tion coordinates are designated as z' without
making any other changes in the algorithm.

With the nomenclature of table 7.6, the
observation equations corresponding to ex-

pressions (7.280) and (7.281) are, according
to (7.151) and (7.152) given in following
inset. F ° and G ° are computed with ap-

proximations for the station coordinates
z_ ,,:, and for the satellite position coordinates

z....... (cf. eq. 7.257). The definition of the
coefficients in (7.282), (7.283) is given in

(7.153) to (7.155). All pairs of coordinates
l_, l_ computed for a given photogram are
correlated, since all directions to the satellite

depend on the orientation matrix derived
from the single camera solution. Further-
more, for a passive satellite all the coordinate

pairs l_, l_ of fictitious satellite images are
correlated, since they are derived from the
smoothing polynomials that are based on an

adjustment involving all coordinate measure-
ments of the original satellite images.

According to (7.277), (sh,_) _ is the co-
variance matrix associated with the n sets of

l_, l_ derived from the photogram taken at
station i observing the event j. The cor-
responding weight matrix is, from (7.196),

_PT_,j= m_ [ (sTi,j) 2] -_ (7.284)

If we now set up observation equations

(7.282) and (7.283) for all the directions in-

AZs* AZ*

_[Z-_Zs1 AZ82 AZ83] [AZl AZ 2

+°"-D_ -E,, -F_,_] L +D,, +E.

v/*

_z_] [v_ x_]

_A_ --!

(7.282)

(7.283)
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troduced into the satellite triangulation net,
i.e., for all the coordinate pairs l_, l_ derived
from measurements of the photograms, tak-
ing into account all existing correlations as
expressed in the _P7matrices, we could form
directly the corresponding system of normal

equations. The unknowns of such a system
would be the coordinates of the observing

stations as well as of the orbital points. To
make the solution economically more feasible,
the corrections to coordinates of the orbital
points are eliminated in the formulation of

the normal equations, thus producing a final
system of normal equations that contains
only corrections to the camera station coordi-
nates. The procedure, which is analogous to
the elimination of relative pass points in
numerical aerial photo triangulation, re-
quires a formulation of partial systems of
normal equations in the following manner.

As was stated above, the n pairs of coordi-
nates l_, l_ for a particular photogram are
correlated by way of the associated _P7matrix.
,,,_h (7.282), (7.283) the 2n observation
equations pertaining to station i and event ]
are formed. The normal equations system is
then formed, which is, with appropriate use
of the designations introduced in (7.282),
(l ._),

AZsJ 1,2,_ ..... n AZi

J
(7.285)

where

I Az81 1

Azs2" /

Azl.2,3....... (7.286)

L_z,.J

Each of the partial vectors _z8,,2...... is
the vector of corrections for a specific satel-
lite position; az_ is the correction vector for
the coordinates of observation station i. The

system of normal equations shown schemat-

ically in (7.285) must be set up as a unit for
all the fictitious points computed for the
photogram in question, since the associated

PT_.s of dimension 2n×2n is an indivisible
unit. If a specific satellite event 7"has been
observed from m stations, the partial sys-
tems (7.285) are set up individually for each
of the m photograms and combined into the
normal equations partial system represent-
ing the event ] as shown on page 592 in the
schematic arrangement in the inset.

With evident simplification, (7.287) can
also be written in the form

C* L Az,1,_..... La/_,l,_......
(7.288)

Now the correction vector az_j_._...... for
the satellite positions is eliminated, and a
partial system of normal equations is left for
corrections to coordinates of the stations that

observed the satellite event ]. This system is

(B- C*A-_C) Azh......... = ( Alz_,,2.......

-- C*A-_AI_j)
(7 _.q_

or simply

N_,2 ...... Azi_,2..... _=!_,_,. o...... (7.290)

When the partial systems (7.290) have
been formed for all events, the final, complete
system of normal equations for the correc-
tions to coordinates of all stations involved in

the satellite triangulation is formed by add-
ing the individual systems (7.290) according
to the station index. The resulting system is

N_±z = !_ (7.291)

In the present form, _N_of (7.291) is singu-
lar and not invertible, since no origin of
coordinates or a scale has as yet been intro-
duced (cf. sec. 7.4.2). To satisfy the first

requirement, the introduction of an origin or
the equivalent, at least three possibilities
worthy of consideration present themselves.
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(B z,P,,_B_. ),:1 0 0 0

.......................... i ............................................. • .................................

(B*,P,, _B_.,),=_ 0 (B*_,P_,,B=,),=_ 0 0
................................................. . ..................... ; ..................................

0 : 0 0
:

• o o (_B*_PT,_B=,),....(B,,P,,_B,_,)_ .... O : _ : _

• fn "_

1:1

(B* P__J,,j)_=,

= (B*,_PT,,/,j),:o

( B_,,P_h,jl,,j) , ....

(7.287)

The simplest is to assume that one of the

stations of the net is given with its initial

coordinates z°(_._,_)_ free of error. This

assumption imposes on the system (7.291)
the condition that the corresponding ±z_
vector be a zero vector in the solution of the

system. This is accomplished by assigning
the approximation coordinates an infinite

weight; i.e., the quantity 10" is introduced

as weight in the relevant diagonal terms of

(7.291), n being as large as the capacity of

the computer allows. This step causes the

Az_ vector to vanish for all practical purposes,
since the corresponding entries in the N -_

matrix will be multiplied by 10-".

A second possibility exists, especially in
connection with triangulation of a continen-

tal satellite net in which the observation

stations are part of an established geodetic

reference system. For such a case, weight

matrices (7.279) and, after appropriate

transformation, corresponding _P= or _P=, mat-

rices (7.128) are available as input data. It

is then necessary only to add these weight

matrices to the system (7.291) where called
for.

A third possibility, which is especially
attractive for error studies, is to introduce

as origin of coordinates the centroid of all

adjusted coordinates. This means adding to
the system the supplementary condition

.X(z° +±z) =Xz:0 (7.292)

This will result, although with modifications

depending on the shape of the net, in a sym-
metrical distribution of mean errors for the

net.

In order not to endanger the accuracy of

the :V= matrix inversion, it has been found

advisable in practice to combine these vari-

ous possibilities. Initially, one of the stations

is held fixed at the origin. After the .V=

matrix inversion, the coordinate system is

translated. The three condition equations

(7.292) are replaced by the condition valid
for each station
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i=s

_,=z, _ (7.293)
8

where s is the number of stations involved

in the triangulation. The matrix of weight
coefficients for the z values are obtained,
since in this case F* =F from

it is merely necessary in the system (7.291)
to add, at the locations corresponding to sta-
tions i and ], including location i], on the left
side, the appropriate portion of the matrix

(fdPdf_)_ (7.298)

and on the right side

_-I=F_Nil_F (7.294)

where the F_ matrix is obtained as a sym-
metric quadratic matrix by differentiating
the right side of (7.293). The coefficients of

F are (s-1)Is along the diagonal and -1Is
in the spaces where the correlation between

the individual components of the station co-
ordinates should appear. A sequence of op-
erations utilizing the symmetry of the F
matrix is described in detail in R. H. Hanson
(unpublished paper, 1968).

The introduction of scale into the triangu-
lation by means of measured distances be-
tween two or more stations of the net is of

prime importance in satellite triangulation.

Such distances can be derived, for example,
from long-line traverses measured with, for
instance, a geodimeter (cf. Meade, 1968;
Wolf, 1967). If the two stations are desig-
nated i and ] and the distance between them
d, then obviously

d_= [(zi-zj,)2+ (z,-zj2)2+ (zi3-zs3)2]½

(7.295)

the weight of the distance d_s being expressed
as

m_ (7.296)
P_J- md_j

where mdtj is the mean error of the distance
d_j in meters. With the designation

where

(f_P'tAld) _S (7.299)

Al_t_= dis- d°,_ (7.300)

and d_j is computed with the approximations
for z_j from (7.295). Any number of scalars
can th.us be introduced into the adjustment.
With the expected development in measuring
distances with lasers it should be possible in
the future to measure distances between the

observing stations and the satellite, which
can then be similarly introduced into the
system of normal equations (7.288) before
the satellite positions are eliminated with
(7.289).

After the system (7.291) has been
amended with the two steps described above
(fixing the origin of coordinates and in-

LI-UU UUIII_ ;3_:tl_ ) , ;ull_ V _w,._ t&) JL UI k, klu Jr. t.i lll_ t¢_;;

corrections for all the stations in the triangu-
lation can now be computed as

hz=N_llz (7.301)

and the final result of the satellite triangula-
tion is

z=z ° +Az (7.302)

From (7.235), using the z vector and ex-
pressions (7.280), (7.281) we compute cor-
rections vT, followed by the determination of
corrections for all additionally introduced
observations. Thus, for example, for a priori
given station coordinates

OZi, OZi2 DZl_ DZ/3

Zi! -- Zjl Zi2 -- Zj_ Zj2 -- Zi2 Zj3 -- Zi3

d ° d o d ° d o

OZi3 _Zj_

Zi 3 -- Z13 Z/l -- Zq

d o d °

(7.297)
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Vzt = AZ i (7.303)

and for distances used as scale control

v% = d u- d u (7.304)

in which d_ is computed with the final coor-

dinates of (7.295) and du is the initially
given measurement.

With these v's and their weights the mean

error of unit weight so for the whole triangu-

lation is computed from

so__ F (v_*_P_v_) + (v*_P_vz) + (_P_V_Vd) 71/2
L

(7.3o5)

where B is the number of observations, Z is

the number of station coordinates, given a

priori with their weights, D is the number of

distances, given with their weights, and S

is the number of all coordinates, station loca-

tions as well as satellite points.

If in the course of the observations, sta-

tions must be moved a relatively small dis-

tance, e.g., for meteorological or logistic

reasons, such dual stations must be coupled.

Corresponding conditions are introduced and
their number is added in the denominator of

(7.305), just as all extraneous metric con-

ditions must be appropriately taken into

account. With the covariance matrix (7.195),

corresponding to the system of inverted nor-

mal equations, and the So of (7.305) the mean

error of the individual z1._,3 is obtained with

the square roots of the diagonal terms of this

covariance matrix and, with (7.198) to

(7.200), the semiaxes of the error ellipsoid
and their direction cosines.

This actually completes the result of the

satellite triangulation, at least from the

standpoint of photogrammetry. Further

processing of the results reverts to a strictly

geodetic point of view, such as the conver-

sion of the computed z values into an ellip-

soidal system, which can be accomplished

with (7.114) to (7.119).

If the approximations _°, _,°, h ° were given

coordinates, a correction vector could be com-

putedwith (7.126) as

v¢=T_lv= (7.306)

and the corresponding station covariance in

analogy with (7.128)

2 2 -1 -i *] F8¢2 8¢'X S¢'h]

s_=so[T¢9_(T_,) =/s,,_ s__ s_
LS(b,h S_,,h Sh 2 J

(7.307)

in which _: is the appropriate 3 × 3 matrix
from N -_. In principle, we can say that the

measures of accuracy for all quantities de-

rived from the z values are to be computed

as mean errors of functions of the adjusted

z's in conformance with (7.241). In R. H.

Hanson (unpublished paper, 1968) the struc-

ture of a computing program for spatial

triangulation is described and the necessary

flowcharts shown, and all supplementary

computations and statistical controls that are
needed for check and that are of significance

to the computations in an extended triangu-

lation program are explained.

7.4.8 Theoretical Considerations of Error

7.4.8.1 Error Budget of Geometric Satellite

Triangulation

As is shown in section 7.1 and at the begin-

ning of this section, the principle of the

method of geometric satellite triangulation is

based on combining a large number of indi-
vidual directions to satellites in a three-

dimensional triangulation. The satellite di-
rections needed at the stations to be tri-

angulated are obtained by interpolating the

individual images of the chopped satellite
trail into the framework of the star back-

ground present on the photograms.
Directions to the star images are first com-

puted, basically as functions of the observing

datum, the time of observation (UT1), and
the instantaneous-pole coordinates. These

directions are referred either to the astro-

nomic right ascension-declination system for

a specific epoch (x system) or, after appro-
priate rotation, to an Earth-fixed three-

dimensional reference coordinate system (y
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or z system) in which the observation station
locations are to be triangulated (see sec.

7.4.6.2).
The satellite images are recorded in an

arbitrary time sequence that is, however,
common for all stations observing an event.
The satellite images are then interpolated
into the directions to the stars, i.e., into the

background of stars, and thus fixed in the
same reference system to which the star
images have been reduced. The three-dimen-
sional position of the observing stations is
found by assigning to them a location such
that the satellite directions emanating from
the various stations lead to the determination
of the three-dimensional geometry of all ob-
served satellite transits.

It is not necessary, aside from the practical
requirements of the field observer, to know
in advance the orbit of the satellite. The

points of the orbit serve merely as elevated

for intersection of corresponding rays is
needed to fix the positions of the observation
sites (cf. sec. 7.4.2). As a consequent require-
ment, such rays must satisfy the "geometric
condition of simultaneity" explained in sec-
tion 7.4.4. This condition is automatically
met, _or example, if the satellite trail is fixed
by the recording of a sequence of flashes
emitted by the satellite.

Since to date in practice not a sufficient
number of such flashes can be generated to
reduce the influence of scintillation ade-

quately (cf. sec. 7.4.5), we photograph the
satellite in the position of its orbit illumi-
nated by the Sun. In this method the trace of

the orbit is chopped by means of a rotating
disk shutter in the camera (cf. sec. 7.3.2, figs.
7.12 and 7.13) into a series of time-depend-
ent individual images. For physical as well
as technical reasons it is, however, impos-
sible to generate satellite images at the sev-
eral observing stations that satisfy initally
the geometric condition of simultaneity.
Basically, it therefore becomes necessary to
fit the bundle of directions to the satellite for

a particular event as closely as possible to the
satellite orbit, which is by its nature continu-
ous. Since only a small portion of the orbit

(about 1-2%) is involved, the observed
curve may be considered as part of an el-
liptical orbit, obeying the Keplerian laws of

motion, which predicate that the satellite
directions are referred to an inertial system

as approximated for instance by the right
ascension-declination system.

On the other hand, a solution based on
satellite directions referred to an Earth-fixed

coordinate system requires, because of the
Earth's rotation, the assumption of a twisted
space curve as a model for the satellite orbit.

In such a procedure, satellite triangulation
is basically subject to five sources of error.
The first source is the uncertainties asso-
ciated with the star-catalog data; the second
is the accidental errors in time determination

for the star and satellite exposures. The
third is the accidental errors in coordinate
measurement of the star and satellite

images; the fourth, the influence of shimmer
acting as an accidental error source; and
the fifth, the irregular distortion of the
photographic emulsion. All these sources
must be taken into consideration.

Such a presentation of the error budget
assumes first, that the corresponding syste-
matic errors are sufficiently small, and sec-
ond, that the mathematical model used to
reconstruct the photographic process is suffi-
ciently close to reality. Furthermore, the
photographed sections of the satellite orbit
must be valid in a qualitative sense as a tool
for interpolation. All these assumptions must
hold within such accuracy limits that the in-
fluence of the remaining imperfections on the
triangulation computations remains a magni-
tude smaller than the propagation of the five
cited basic error sources.

Obviously, all further secondary correc-
tions, such as pole displacement (see end of
sec. 7.4.4), astronomic and parallactic refrac-
tion, satellite phase angle, and light travel
time (for all these corrections see sec. 7.4.5),
correspond to geometric-physical reality with
such accuracy that the effect of remaining
biases is negligibly small.

The rigorous theoretical treatment of

errors of the satellite triangulation method
leads_ even from this point of view, to a
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mutually correlated matrix schematic. The
individual plates are essentially uncorrelated

with respect to the photogrammetric reduc-
tion, so far as processing the measured star
and satellite coordinates is concerned. How-
ever, for all plates introduced into a satellite
triangulation system, only one set of refer-
ence stars, limited in number and distribu-
tion, is available.

Hence, not only does the same group of
stars appear repeatedly on the same plate as
a result of star registration before, during,
and after the event, but also similar groups
are recorded on a number of plates.

In the observations for the world net, stars
up to eighth magnitude and with maximum
mean position errors of 0':4 were selected
from the SAO star catalog. Thus, there were
about 20,000 stars at our disposal (sec. 7.4).
With an average frequency of about 100 stars
per plate and approximately 3000 plates in
the world net, this means that each star ap-

pears, on the average, on 15 plates. Since,
strictly speaking, there can result only one
pair of corrections for each observed star in
the adjustment, the mathematical recon-
structions of all the photogrammetric
bundles and their orientations are correlated

to such a degree that they really should be
adjusted as a unit, even if, for lack of knowl-
edge of existing correlations, one accepts for
the star coordinates independent weight
matrices.

In the spatial triangulation of the observ-
ing stations the satellite directions are now
combined to reconstruct the geometry of
the recorded satellite orbit curve. The inter-

section condition for the rays applied in the
process--either direct or indirect by way of
fitting to a spatial model of the orbit--con-
tains additional orientation information,
similar to the relative orientation in the clas-

sical photogrammetric restitution process.
But, since all photogrammetric bundle
parameters that determine directions to the
satellite and their orientation quantities are

correlated, there results a correlation between
all recorded satellite events; i.e., the deter-
mination of observing station positions

should, together with the determination of

all observed satellite orbital curves, be ob-
tained from one common adjustment with the
use of the covariance matrix involving all re-
constructed photogrammetric bundles and
their orientations.

Processing the approximately 3000 plates
available in the world net requires the com-
putation of nearly 60 000 interpolation
parameters. For the approximately 1400 re-
corded events, more than 8000 orbital param-
eters would have to be determined. A simul-

taneous adjustment of such a large number
of correlated unknowns is at present, even
with the largest available computer, neither
economically feasible nor, because of the re-

quired computational accuracy, capable of
realization.

One has, therefore, to make concessions.
From the error theoretical point of view

probably the most serious compromise is the
necessity of separately determining the
photogrammetric interpolation parameters
for each plate, since these parameters deter-
mine absolute directions to the interpolated
satellite images and are therefore of decisive
significance in fixing the spatial positions cf
the observation stations. In conformance
with the weights given with the star data
there is obtained in this procedure in each
bundle reconstruction adjustment, independ-
ent of the number of images of the particular
star, a pair of corrections for the star co-
ordinates. On completion of all the bundle
reconstructions under consideration there

will therefore be for each star as many cor-
rections available as the number of times
such a star was recorded on the various

plates. On the basis of the observation data
in the world net, this averages out to 15
times. Arguing from the concept that every
adjustment represents in principle a
weighted arithmetic mean, the possibility
presents itself of computing for each star a
unique set of corrections in the form of the
arithmetic mean of the individual pairs. Care
need be taken only to ensure, by use of appro-
priate weights, that the mean error of unit
weight after adjustment is the same for all
the bundle reconstructions. One could then

add this average of the corrections to the
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original star data and repeat the bundle re-
construction computations. With an appro-
priate choice of weights for these corrected
star data, these values could then be held cor-
respondingly fixed in the repeated bundle
reconstruction.

The justification for such an expensive
iteration depends on how close the averaged
star-coordinate corrections come to the solu-

tion from a rigorous adjustment. The sig-
nificance of such a solution hinges, therefore,
on the extent to which these "improved star

coordinates" represent in their totality a
reference system which is superior to the star
catalog originally available. In the process-
ing of the world net the improved star coordi-
nates for the 20 000 stars being used were
computed so that these amended right ascen-
sions and declinations could be presented
to the astronomers for critical evaluation.

Repetition of the computations for bundle

contemplated.
As was mentioned earlier, the accidental

errors of time designations for the star and
satellite recordings must be taken into con-
sideration. In the adjustment for the single
camera this is taken care of automatically by
carrying corrections to the right ascensions.
These corrections being geometrically equiv-
alent to UT1, it is necessary only to compute
weights for the introduced right ascension
values, taking into account the uncertainties
in time associated with the recorded instants
of observation. For the instrumentation

used in the world net, this accidental timing
error amounts to less than a millisecond so

far as the registration of the shutter action
is concerned. Since the available UT1 is in it-

self scarcely better than _+2msec (which acts
as a system error in the orientation for the
individual plate), the assumption of a
_+3-msec overall uncertainty in the determi-
nation of time for the star exposures seems
reasonable. The inaccuracy of a direction

corresponding to this time uncertainty is
_+0':045, a magnitude considerably less than
the photogrammetric measuring accuracy
with the BC-4 system and the 450-mm lens,
and hence negligibla_

A similar conclusion can be drawn about

the influence of random errors of the syn-

chronization procedure on the satellite
images. By means of periodic control of tim-
ing (sec. 7.2.1), the instants of observation
at the various stations are fixed relative to

each other within at least _+100 _sec. The
most critical situation would arise for the

ECHO satellite, with a speed of 8 km/sec and
a minimum distance of 1000 km, for which
100 _sec corresponds to a change in direction
of _+0':16. With the PAGEOS satellite used

in the world net, because of its greater dis-
tance and consequent slower speed, a timing
error of _ 100 _sec results in a maximal di-
rection uncertainty of only _+0'.'04. Although
this error is negligible, a calculation em-
ployed in the adjustment discussed later (a
calculation designed primarily to eliminate
shimmer by polynomial curve fitting)

serves to adjust as well any existing random

Existing correlations between the sepa-
rately reconstructed bundles of directions to
stars are, as detailed above, neglected. Thus,
for each single-camera computation, individ-
ual parameters are determined for the inter-
polation model, including, of course, the co-
variance matrix associated with these param-
eters, which is of basic significance for
further evaluations.

In the step of the adjustment which now
follows, the locations of the observing sta-
tions are computed. Their position in space
is fixed by the condition that the bundles of
directions to the satellite issuing from these
stations must lead to the geometry of all
satellite orbital curves that have been re-
corded. Since each bundle of directions is

obtained basically by the interpolation of the
corresponding satellite images into the rele-
vant interpolation model and since these
models are now no longer correlated, it fol-
lows that the individual satellite orbit deter-
minations are also uneorrelated. This results

in an essential simplification of the data proc-
essing, since the orbit determinations can be
processed sequentially and care need be taken
only that their cumulative effect bears on the
station determination.
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The condition of intersection on which, as
was mentioned previously, the determination
of the geometry of the observed satellite or-

bits was based, either directly or indirectly
by way of a fit to a spatial orbital model,
basically contains additional information for
determining the parameters of the relevant
interpolation models. It follows that not
only the coordinates of the stations and the
parameters specifying the geometry of the
satellite orbit, but also all parameters of all
interpolation models involved together with
their individual variance-covariance mat-
rices referred to above, must appear as un-
knowns in the adjustment.

The resulting system of normal equations
is Bv = ± with a range in weights P from zero
to infinity. If the vector of corrections to
the measured satellite image coordinates is
designated by vz, the correction vector for the

previously computed bundle interpolation
parameters O by v0, the correction vector for

the approximated satellite orbital positions
by vxs, and finally the correction vector for
the approximated station coordinates by vx,
the corresponding system of normal equa-
tions can be written as indicated in figure

7.37. The ,_" are supplementary conditions
that may exist between the stations to be

triangulated, such as, for example, measured
distances for scale determination.

Figure 7.38 shows the system of normal
equations after these functional relations

have been introduced. The corresponding set
of correlates is designated by K. The system
reduced to satellite orbit and station coor-

dinates is given in the lower part of figure
7.38.

Because the image coordinates can be ex-

pressed as functions of the interpolation

FIGURE 7.37.--Basic normal equation system for
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FmURE 7.38.--System of normal equations after in-

troduction of functional relations. (Below) System

reduced to satellite orbit and station coordinates.

parameters describing the photogrammetric
bundle, of the coordinates of the satellite
position, and of the relevant coordinates of
the observing station, it is possible, since
the individual bundle reconstructions are

uncorrelated, to replace the correction vector
to the interpolation parameters by a corre-
sponding correction vector to the image coor-
dinates, thus reducing decisively the number
of unknowns to be carried.

As is apparent from the lower part of
figure 7.38, this computational procedure is
completely rigorous only when the expression
% is carried along on the right-hand side of
the system of reduced normal equations, i.e.,
with the vector of absolute terms; hence a
rigorous elimination of the O parameters is
not possible. However, since in the first
iteration loop the O values as obtained from
the single camera adjustment are introduced
into the triangulation adjustment as approxi-
mation values, ±o is initially a zero vector.
This means that the elimination of the O

parameters is valid to within the first order
of the ±o terms. Moreover, because of the
large number of absolute control points (in
our case about 100 stars per plate), the in-
fluence of the orientation contribution result-

ing from the intersection condition isquite
small, so that the considerable gain in sim-
plicity derived from the elimination of these
parameters in the triangulation adjustment
justifies the procedure.
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This leaves the unknowns that are to be

determined by means of the condition of
intersection of the rays: the coordinates of
the observing station and the parameters
describing the geometry of the satellite or-
bital curves. From a conceptual point of
view, this means that the bundles of direc-

tions to a satellite assigned to a particular
satellite pass must fit themselves as closely
as possible in the sense of an adjustment to
the orbital curve, which is subject first of all
to the geometric consequences of Kepler's
first law, according to which the orbit can
be expressed, in an inertial system, by the
equation of an ellipse.

Furthermore, the fitting process must do
justice to the dynamic content of Kepler's
second law, according to which the true

anomaly is a function of time. It seems con-
venient in the application to develop the true
anomaly as a series in the eccentricity and
the mean anomaly. _,a_icaiiy _peaking, une
can say that Kepler's first law accomplishes
the fit of the bundle perpendicular to the
direction of the orbital curve, and the second
law accomplishes the fit along the orbit curve.
Kepler's third law cannot be used, because,
in the first place, the orbital period of the
observed satellite is not known. Moreover,
the balloon satellite with its typically un-
favorable mass-ratio is exposed to disturbing
influences such as residual atmospheric pres-
sure and the Sun's radiation pressure, so
that the orbital period could yield only limited
information in a geometrical sense. All com-
putational schemes must, furthermore, take
into account the fact that the recorded times

for satellite imagery refer to the instants of
exposure, and these data must therefore be

corrected for light travel time and geo-
metrically _or Earth rotation during the light
travel time before they can be further proc-
essed with the application of the principles
of celestial mechanics.

The practical application of orbital deter-
mination by means of bundle fitting is faced
with two further obstacles. As was stated

at the end of section 7.4.5, a relatively large
number of satellite images is needed in the
adjustment to suffi__cient!y reduce the shim-

mer effect. In the world net, the number
of images averages 300 per plate. Since the
corresponding 300 directions are derived
from one and the same group of interpolation
parameters, they are correlated, which means
that for each of the satellite direction bun-

dles to be introduced into the fit a 600 × 600,
completely filled covariance-matrix must be
taken into consideration. If the event has

been observed by more than two stations,
undesirably large demands are very soon
made on the memory capacity of the com-
puter. Even more decisive is the fact that
the shimmer effect depends on the mete-
orological conditions during the event, which
can be quite different at the contributing
stations. To prevent this "noise" from being
averaged between the contributing stations
to an event in the triangulation adjustment,
the appropriate weight matrices for the in-
dividual direction bundles must be computed
by using _ne mean stammer characteristic
for each station. This quantity is, however,
in the evaluation method under discussion

and is not as yet available.
As an alternative to the bundle-fitting con-

cept, one could also fix the satellite orbital
curve by smoothing the spatial coordinates
of the triangulated satellite points with
polynomials as functions of time (Wolf,
1967). Such a solution assumes that the
orbital curve is designated by a series of
short-duration flashes emitted from the

satellite, the time sequence of the flashes
being sufficiently well known. Only then will
images be recorded on the individual plates,
which lead to the triangulation of the corre-
sponding orbital points. On the other hand,
if, as is necessary for practical reasons at
this time, the satellite images are produced
on the various plates by chopping the trail
of the continuously illuminated satellite with
a rotating disk shutter into separate points,
then one would first have to compute the
necessary light travel times iteratively with
approximated satellite positions. In prin-
ciple, this computation would give sufficient

information to interpolate on each photo-
gram for the event image points that satisfy
the gaometric condition of simultaneity.
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From an error-theoretical standpoint, how-

ever, such interpolation is open to question,

because the position of the individual images
is influenced to a different and unknown

extent by shimmer. From the computa-

tional standpoints, still another disadvantage

accrues to this solution, in that all the satel-

lite directions on the selected plates are

correlated, leading to variance-covariance
matrices whose consideration would require

an intolerable amount of computer memory

space.
The theoretical and practical difficulties of

the above method of solution are circum-

vented by modifying the approach and eval-

uating each plate independently to the great-

est extent possible.

This concept is also valid from the stand-

point of error theory and is based on the fact

that the measurements at a given observing

station, i.e., the photogrammetric registra-

tion of the star images and satellite orbit,

together with the relevant recordings of time,
are self-sufficient in the sense that the in-

formation so obtained is completely inde-

pendent of and not influenced by the fact that

similar operations have been carried out at

other stations. Transforming these measur-

ing data into time-correlated satellite direc-

tions requires only the additional assumption

that the satellite orbital curve is by nature
continuous.

If the geometric-dynamic properties of the
photographed portion of the satellite orbit

as described above are known, it should be

possible to postulate the form of this trail

on the photogram, in the direction of the

trail and at right angles to it, in terms of the

central perspective laws, light propagation

time, and the aberration due to the Earth's
rotation. The formalization would lead to an

infinite-series expansion in which higher-
order terms could be neglected. The orbital

projection could then be adjusted to this
theoretical model by fitting the satellite

images _ to it. Another possibility, the one

adopted here, is to smooth the satellite im-

ages with polynomials. Just as the triangu-

lated spatial coordinates of discrete orbital

points can be fitted to polynomial functions
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of time, the recorded sequence of time-related

satellite images can be similarly smoothed,

resulting in positions of the satellite on the

photogram as a function of time. A poly-

nomial fit is all the more justifiable from the

standpoint of error theory inasmuch as the

simplest conceivable projection model exists

between the orbit, continuous by nature, and

the corresponding satellite image sequence.

The measured satellite image coordinates, by

means of the bundle reconstruction param-

eters, as obtained from an adjustment

based on reference stars and their images,
are therefore first of all reduced to the con-

cept of a rigorous central perspective, i.e.,

the concept of an ideal photograph. Then

one applies the principle of an adjustment to

compute best-fitting polynomials. To the

extent that the central-perspective nature of

the images of the satellite orbital points has

been reproduced, this adjustment has the

function of neutralizing the random errors

of the comparator measurements, random

emulsion shrinkage, and shimmer effects.

In addition, it yields, in the form of statistical

functions, an indication of the accuracy of

the smoothing polynomials.

In order to verify the required degree for

these polynomials, 380 satellite space coor-
dinates for a simulated PAGEOS orbit at

intervals of 0.8 sec were recorded, which

corresponds to the average length of the
PAGEOS arc observed with the BC-4 cam-

era. The satellite orbit was integrated with

a tenth-order Cowell-StSrmer process. The

Earth's gravitational field was introduced by

means of an expansion in spherical functions

to the fourth degree and fourth order by

using the coefficients of the 1966 Smithsonian

Institution Standard Earth (Lundquist and

Veis, 1966). The radiation pressure of the
Sun and the attraction of the Moon and Sun

were also included in the integration com-

putations. The resulting coordinates of satel-

lite positions were then transformed into a

geostationary system.
Six fictitious observing stations (fig. 7.39)

were distributed relative to the computed

orbit to simulate essentially the geometrical

distribution of stations in practice. For each
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FIGURE 7.39.--Schematic representation of satellite

orbit and positions of observing stations.

of the 380 fictitious points of the orbit, by

applying the time of light propagation, cor-
responding plate coordinates were computed
at each of the six stations to reproduce an
exact, central-perspective mapping of the
orbital _ _ *_-"_eo,,,e_,z. These plate coordinates
were then subjected to polynomial curve fits
from the first to the eleventh degree in se-
quence. The resulting mean errors of the
computed coordinates after adjustment are
iis_ed in [able 7.7, _x re_erring [o _he coor-
dinate component in direction of the trail and
av at right angles to the trail.

From table 7.7 it is seen that the required
accuracy can be obtained with a polynomial
of the fifth degree along the trail and of the
fourth degree across the trail. At the same
time no undesirable effect of oversmoothing

is apparent with polynomials of higher
degree, at least up to the eleventh degree.
This degree is of consequence in that from an
adjustment polynomial of the nth degree,
only n+l computed values can be used;
otherwise, the corresponding covariance ma-
trix becomes singular, while the use of fewer
values does not exhaust the available infor-

mation content completely.
In processing the world net, polynomials

of the sixth degree are used in smoothing
both x and y, so that seven fictitious direc-

tions can be used in the final triangulation,
provided that the trace of the portion of the

satellite orbit common with other stations

extends over the whole plate. Thus, the poly.-
nomials provide the adjusted location of the
satellite trace as a function of the recorded

time. This relation is very useful, since it
simplifies the application of the influence of
time corrections, such as clock differences
and light propagation. It is necessary, after
a selected satellite orbital time has been
transformed to a corresponding time of

registration on the plate, merely to compute
from the relevant polynomial with this trans-
formed time the x and y coordinates for the

corresponding fictitious plate image. By
using this procedure on all photograms that
have observed a common event, a fictitious

image that satisfies the geometric condition
of simultaneity is obtained on each photo-
gram (see sec. 7.4.4). An approximate pre-
liminary triangulation of the relevant orbital
points will be needed to determine for each
registered orbital image the variable "propa-
gation time of light. It should be noted in
_,,,s _on,_uon _,,a_ an error of 3 _-_ "

approximated distance will create an error
of only 10 _sec in the time. Along with the
coefficients of the curve-fit polynomials, one
obtains the mean dispersion of the individual
images and, hence, the variance-covariance
of the polynomial parameters. Since the ficti-
tious satellite-image positions correspond-
ing to specified times are computed as func-
tions of the polynomial parameters (cf. eqs.
7.58 and 7.270), the corresponding error
propagation computation will produce their
variance-covariance matrix, which displays
rigorously the correlations among the in-

dividual satellite images resulting from the
polynomial smoothing. If seven such ficti-
tious satellite images are used, as, for ex-

aml_le, in the world net, a 14 × 14 covariance
matrix for these points must also be com-
puted.

At this stage the following evaluation data
are available for each satellite orbit observa-
tion at a station :

(1) The bundle parameters describing
the interpolation model, including the ex-
terior elements of orientation, and the as-
sociated covariance matrix (in this case, of
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dimension 20x20) scaled to an a priori
introduced error of unit weight.

(2) The pairs of coordinates for the

selected fictitious satellite images (in the

present case, seven pairs) together with their

14x 14 covariance matrix, also referred to

the error of unit weight mentioned in (1)
above.

The last processing step, computing the
three-dimensional geometry of the observing

stations, amounts basically to determining

the spatial directions corresponding to the

fictitious satellite images in order to triangu-

late the satellite orbit points and all the

observation sites by means of an adjustment,

subject to the condition that the sum of

squares of weighted corrections to the ficti-

tious satellite-image coordinates be a mini-

mum. The weight matrices of the satellite

direction bundles are compounded at each

station by the joint influence of the covari-

ances of the relevant interpolation param-

eters (statement 1 above) and the covari-

ances of the plate coordinates of the fictitious

satellite images (cf. statement 2 above).

Whenever additional a priori given in-

formation relative to the geometry of the

observing sites, such as spatial distance

between the sites (as for scale determina-

tion), position coupling between adjacent

stations (eccentric reductions), or the like,

is used as input data, such data can be intro-

duced into the adjustment without difficulty

after the necessary functional weights,

referred of course to the a priori selected

error of unit weight, have been computed.

This is true also when additional geometric

data become available through, for example,

distance measurement by laser DME between
satellite and station.

In the world net, such scalars are intro-

duced in the form of measured distances of

edges of the world net polygon in, primarily,

the United States, Europe, Africa, and Aus-

tralia, as shown in figure 7.5, section 7.3.

The basic ideas underlying the error bud-

get of geometric satellite triangulation are

presented here as explanation of the error
theoretical considerations that lead to the

adjustment algorithm described in section
7.4.6. Moreover, by pointing out computa-

tional possibilities that differ from the

present solution and lead eventually to com-
pletely rigorous adjustment and error propa-

gation, it is hoped that impetus will be given

to perfecting the developing method of

geometric satellite triangulation.
In the next section will be reported some

results on the accuracies in the various

evaluation phases obtained in the processing
of the observational data for the world net.

7.4.8.2 Analysis of the Essential Sources of

Error and the Error Propagation Into

the Spatial Triangulation

In section 7.4.8.1 it was shown that, in

essence, the method of geometric satellite

triangulation is subject to five random error
sources. The accidental errors from these

sources arise in connection with :

(1) Comparator measurements of star

and satellite images.

(2) Reference data from the star cata-

logs.

(3) Designated times of the star and

satellite recordings.

(4) Atmospheric shimmer affecting the
directions to the recorded star and satellite

orbit points.

(5) Accidental emulsion shifts generated

in the process of developing the plate.

This idealized situation will, however, exist

only to the degree that, during the field

observations and in the data processing,

sufficient precautions are taken to either
model the following systematical error

sources or eliminate them by corresponding

operational procedures.

Observational Phase.--

(1) Eliminating possible static instabil-

ity of the camera during the average half-

hour period of observation.

(2) Eliminating systematic errors in

recording the instant of shutter operation
that is needed to within a few milliseconds

of Universal Time and, relative to all involved

cameras, to within 1/10 msec.
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Measurement Phase.--

(1) Adhering strictly to the Abbe com-
parator principle.

(2) Correcting for the lack of perpen-
dicularity of the comparator axes.

(3) Accounting for at least linear differ-

ences in the comparator scales.

Adjustment Phase.-

(1) Determining the elements of interior
orientation existing in the operational en-
vironment.

(2) Determining the comparator con-
stants outlined necessary to correct for the

lack of perpendicularity of the comparator
axes and to account for the differences in

comparator scales.

(3) Modeling of astronomic and paral-

lactic refraction, the latter being needed
because of the finite distance of the satellite.

(4) Modeling the phase angle of the
satellite ill,ruination as a function of size and

_-_ 4-shape u_._he satellite, its reflective property,
and the geometric positions of the Sun, satel-

lite, and observing station during the event.

(5) Considering influence of light travel
time on station synchronization and aberra-
tion.

(6) Introducing With sufficient accuracy

the spatial orientation of the instantaneous
rotation axis of the Earth (pole wandering)
with respect to individual camera orienta-
tions as well as with respect to the use of

UT1 (true angle of Earth's rotation).

(7) Reducing star places to time of

observation, involving precession, nutation,

proper motion, radial velocity, annual and
diurnal aberration, as well as the influence
of the spectral characteristics and magnitude

of the star on the photogrammetric imagery.

Quantitative results will now be given with

respect to the above random errors men-
tioned and their propagation into the end

results of the spatial satellite triangulation,
errors in time determination, as was previ-
ously mentioned, being considered negligible
(Schmid, 1965b, 1966b, 1967a, b, 1969).

7.4.8.2.1

603

ACCURACY OF THE COMPAR-
ATOR MEASUREMENTS

We discuss first the result of measuring

1210 photograms, representing practically
half of the observational data from the world
net.

On each photogram, on the average, 100
fixed stars were recorded before and after
the satellite transit and also during the event.
With repeated exposure, 500 to 800 star
images in all are registered. There are, in
addition, about 300 satellite images, so that
on each photogram at least 800 images must
be measured. In order to complete these
measurements in the time alloted to the world

net program, six comparators of similar
design were in operation. Of significance also
is the fact that a group of operators was in-
volved in the measurements. Each photo-
gram was measured on the comparator in two
positions differing by approximately 180
degrees (cf. sec. 7.3.2). By means of a two-
component translation, two scale factors, and
a rotation, the two sets of measurements were
brought into coincidence by an adjustment.
The internal accuracy of the measuring

process (precision of the comparator meas-
urements) can then be judged on the basis
of residual differences from double measure-

ments. From the selected photograms with
their 1 291 744 double measurements there
resulted a mean error for the arithmetic

mean of a double measurement of +__1.63 _m.
No significant differences between the pre-
cision of the x and y coordinates were de-
tected.

It is of interest to group the measurement

of plates by individual operators. The sepa-
rately computed average measuring accuracy
for each of the 34 comparator operators,

arranged in sequence of increasing absolute
amounts, is shown in figure 7.40. The number

at the top of each arrow represents the
number of photograms measured by the

operator, and the ordinates of the arrow-
heads indicate the range over which the mean

errors of the individual plate measurements
vary for that operator.
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FIGURE 7.40.--Computed average measuring accuracies of 34 comparator operators.

(Below) Performance of operator 6.

It can be seen that the mean measuring

precision attained ranges from ± 1.1 _m (for
operator 38) to 2.2 _m (for operator 4). The

best single result was _+0.76 _m by operator

38, and the worst was 2.66 _m by operator 20.
As an explanation of these fairly surprising

differences, one must assume not only the

varying capabilities of the operators, but also
the influence of environmental conditions on

image quality. The lower diagram in figure

7.40 shows for operator 6 in chronological

order the mean error of the 78 photograms

measured by him over a period of 18 months.
Although the average mean error for this

operator of ±1.37 t_m is relatively low, the
dispersion is typical for the behavior of all

operators with respect to the quality of their
individual measuring results. In addition to

displaying the variation in precision from

plate to plate, the diagram indicates a steady

though small improvement in the measuring
operation.

Figure 7.41 shows the histogram of the
1 291744 double measurements. From the

similarity of the histogram with the super-

imposed, theoretical, normal distribution, one

can conclude a sufficiently close absence of

bias errors, all the more so when the fact

that the data for the histogram are composed

of samples with differing mean errors is
taken into consideration. On the basis of

these results one can well imagine that these

measurements were all made by one fictitious

operator on one fictitious comparator, instead

of by 34 operators on 6 comparators. Hence,
for the further error theoretical studies we

shall assume that the internal accuracy of

image coordinates, meaned from double

measurement, is sufficiently well expressed

in their totality by a mean error of ± 1.63 _m.

The mean errors mt computed separately

for each photogram are plotted in figure

7.42 for 500 photograms selected for further
study. The observational data selected are

derived from 35 stations of the world net,
plotted according to latitude. Table 7.8 shows

the number of plates for each station. The

location of the stations is shown in figures
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7.6 through 7.11 of section 7.3. See also
table 7.2 in section 7.1.2.

7.4.8.2.2 ACCURACY OF THE RECON-
STRUCTIONS OF THE PHOTO-
GRAMMETRIC BUNDLES AND
THEIR ORIENTATIONS

The parameters for reconstructing the
bundle and its orientation are obtained by
relating the measured star-image coordinates
to the corresponding star-catalog data with

an adjustment to a mathematical model. The
total of these quantities, previously desig-
nated as interpolation parameters, includes,
in addition to the purely photogrammetric
parameters, a second scale factor and an

angle for correcting for the a priori assumed
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perpendicularity of the comparator spindles.

The introduction of these extra parameters is

justified insofar as one may assume that the
homogeneity of the scale of the astronomic

reference system (unit sphere) and the

orthogonality of its coordinates are superior,
with respect to systematic errors, to the

corresponding mechanical components of the

comparators. After the linear scale differ-

ence between the x and y spindles and the

deviation from perpendicularity has been

determined in this manner, the mean error

of _+1.63 urn, computed as a measure of

precision for the image coordinates, can be

considered a measure of accuracy for the
subsequent treatment. (Periodic screw er-

rors are independently tested for in com-
parator calibrations.) If it is assumed that

the error for the astronomic coordinate a,
of FK-4 stars, reduced to the observation

datum, is ___0':3, and for all other stars _+0':4,
and that the mathematical model for simula-

tion of the bundle is sufficient, then, since

time errors are negligible, the mean error of

coordinate corrections resulting from an ad-

justment executed with appropriate weights

will express the additive influence of the

random errors produced by the comparator

measurement, shimmer, and emulsion shift.

Figure 7.42 shows for the 500 selected

photograms the values for m_ and m_ and

the rms for all the data, mp being the mean

error of the image coordinates for the photo-

gram as obtained from the adjustment for

the photogrammetric bundle reconstruction

and m_ being the expression for the accuracy

of the corresponding comparator measure-
ments. A mean error of _+1.0 m is assumed

for the influence of random emulsion shift

(Altman and Ball, 1961). Hence, the con-
tribution to the total mean error

ms= ± (m_-m_- 1.02) 1/-' (7.308)

This error component is also shown in figure

7.42. The rms values for the 500 plates are

rap=-+3.31 tLm, mz=-+l.81 um, and ms=

_+2.58 _m.

Figure 7.43 shows the histograms of com-

bined x and y coordinate corrections with

corresponding normal distribution curves for

25 single camera adjustments. These were

m.,.4 vm m.,• i v_

FIGURE 7.43
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selected to cover uniformly the range of mean
coordinate errors, after adjustment, actually

obtained, i.e., the range from ±1.88 to
±6.87 _m. The histograms illustrate the
typical behavior of the totality of evaluated
observational data.

7.4.8.2.3 ACCURACY OF THE TRACE
OF THE SATELLITE ORBIT
AFTER THE POLYNOMIAL
FIT

The mean deviation of a measured satellite

point from the smoothing polynomial of de-
gree 6 varies between ±1.6 and ___8.6 _m,
with rms of _ 3.75 _m for the fit in direction
of the satellite trail and between ± 1.3 and

___9.3 _m with an rms of 3.28 _m perpen-
dicular to the trail (fig. 7.44). The corre-
sponding x, y, mean value is 3.52 _m.

The individual mean displacement is a
measure of how well the satellite images on
a given photogram fit the polynomial. These
quantities are the sums of the superimposed
random errors of the comparator measure-
ments, the emulsion shifts, and, again, the
shimmer. The mean deviation in direction

of the satellite trail is, on the average, 0.47
_m larger than that at right angles to the
trail. This difference is not so much due to

random time errors of the recording sequence
which operate in the direction of the trail, as
to the fact that the comparator measure-
ments of the trail images have a larger mean
error in this direction than in the direction

perpendicular to the trail, because of image
blur from the satellite motion.

About 300 satellite image measurements

are available per plate. From the double
measurements, i.e., from their differences,

the accuracy of the comparator measure-
ments is again determined. This is on the

average _+1.79 _m for the x and y measure-
ments, or practically the same value as that
for the star image measurements. Again,

with the assumption of ± 1.0 _m for the mean
random emulsion shift, the opportunity is
given to isolate the shimmer effect as

ms= (3.522-1.792-1.02)]/2- - ±2.86 _m

(7.309)

The treatment of the shimmer as a

random source of error is based on the fact,
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known from astronomical observations

(Hynek, 1960), that the mean amplitude of

shimmer operates as an irregular error

source in all directions. When for each plate
the shimmer effect on the star images is

computed in accordance with (7.308) and

these values are compared with the corre-

sponding values obtained from the curve fit

with (7.309), the correlation coefficient

p = 0.81 ± 0.02 is obtained with the formula

rl=500

Z A81" AS._,

P= _:1 (7.310)
,:5oo -iy,

-_S_] r':_°° ])/2
L i=i .-I

where the ±'s represent deviations of the
individual amounts of shimmer from their

mean value, and the indices 1 and 2 refer

to the shimmer computed from the bundle

reconstructions and the polynomial fit, re-
spectively.

Figure 7.45 shows the mean shimmer at each

observing station, the stations arranged by
latitude. From this figure it is seen that shim-

mer, with an overall mean for all stations of

± 2.58 _m for the star images and ± 2.86 _m
for satellite images, represents a considerable

error contribution to the total error budget.

Also apparent is the increase in shimmer with

increasing latitude, which is to be expected in

consequence of the theory presented by Net-

telblad (1953), according to which shim-
mer is least in warm ocean air masses and

greatest in cold continental climates. The am-

plitude of the shimmer depends, in addition,

on the exposure time, which may be the cause
for the fact that the mean shimmer for the

star exposures of between 0.2 and 3.2 sec is

+_2.58 _m and for the satellite images exposed
from 1/15 to 1/30 sec is ± 2.86 _m. Obviously,

the use of short-duration flashes (1/1000 sec)
will increase the shimmer effect for the indi-

vidual flash, thus making it all the more desir-
able to have a considerable number of such

flashes before an adequately accurate triangu-

lation can be performed.

7.4.8.2.4 ERROR PROPAGATION INTO

THE SPATIAL TRIANGULA-

TION

In sections 7.4.2.1 through 7.4.2.3, quanti-

tative results were given for the significant
random error contributions that must be

considered in setting up an error budget for

spatial triangulation. In table 7.9, average

values from the processing of the selected 500

photograms are presented.
The figure in column 7 of table 7.9 indi-

cates that an average uncertainty of 1':57 in
direction should be associated with a bundle

reconstruction that is not overdetermined.

Actually, this value is a function of the posi-

tion of a ray within this bundle (Schmid,

1967a), and to be completely rigorous, in

accordance with error theory, should be com-
puted with the covariance matrix obtained
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from the individual bundle reconstruction

adjustment. Since the bundles under con-
sideration here are relatively narrow, how-
ever (the angle of vision for the BC-4 cam-
era is about 20 degrees), we can for the
present ignore this fact in a general examina-
tion of the error propagation. In order to
determine uniquely the 20 required inter-
polation parameters of an oriented bundle
reconstruction, at least 10 reference stars are
required, so that the use of an average of 100
stars per plate represents 10 solutions in the
adjustment. Each star being, on the average,
measured five times, it can be expected that
the direction uncertainty for a central ray
after adjustment of the bundle reconstruc-
tion will, from a combination of tabulated
values in table 7.9, result as follows.

The error sources affecting the individual
image coordinates add quadratically to

m,= _ (1.815+1.02+2.582)1/2= +_3.31 _m

(cf. table 7.9, columns 2, 3, 4, and 5). If it is
assumed that the five images for each refer-
ence star are combined into one fictitious

image, then the coordinates will have an

accuracy of 3.31/_J5 = ± 1.48 _m. Combining
tnls with the mean star-catalog uncertainty
of ±0:'4= ±0.87 _m (column 6), we have a

mean uncertainty in direction _+1.72 _m=
±0'.'79. The combination of 10 independent
solutions in one adjustment reduces this error

approximately to 0':79/X/10 = 0'.'25.
The figures of table 7.10 are results from

a bundle reconstruction adjustment with a

mean error of ±3.31 _m for the image coor-
dinates after adjustment involving 648 star
images of 105 reference stars distributed

approximately evenly over the plate. The
results shown are mean accuracies of direc-

tions corresponding to various image posi-
tions on the plate, which are assumed free
of error (Schmid, 1967a).

The mean error ± 0':23 from this table for

the central ray (x=y=O) is in good agree-
ment with the value 0':25 obtined before
from general considerations. When the mean

satellite image error figure of 1':61 from
table 7.9, column g, is used, the sixth-degree

polynomial fit over 300 satellite points will
contribute an uncertainty in direction after

adjustment of ±1":61/\/300/7=0":25. The
error sources being uncorrelated, the total
expected error in direction for the central
ray is (0':25_+0":252)1/'-= ±0'.'35.

The use of sixth-degree polynomials makes
seven directions available for satellite trian-

gulation in each photographed bundle. How-
ever, as we know, these directions are mutu-

ally correlated. One reason is that they are
all obtained with a specific group of inter-
polation parameters from a single camera,
and another is that they all derive from a
single pair of smoothing polynomials. From
a study of the relevant covariance matrices

in a rigorous adjustment whose reproduction
here would far exceed the available space,
it becomes apparent that the use of seven

directions distributed evenly over the satel-
lite trail yields a gain of 32 percent for the

geometry of the bundle_s, as opposed to the
use of a single central direction. This means
that the use of all seven directions has about
the same information content that would be

obtained from two central rays that are not
correlated.

Hence, if we conceive the total information
used in the evaluation of a specific photogram
as being compressed to determine a dentral
fictitious direction, we may expect for such
a direction an accuracy of mr = +_0':35-32 %
( _+0'.'35) ----0'.'24.

According to section 7.4.7.1, the adjust-
ment algorithm is based on the assumption
that the results of bundle reconstructions at
the individual stations are uncorrelated. Con-

sequently, the directions to the satellite for a
given event derived at the individual stations
are also uncorrelated. To obtain a measure

of the mean accuracy to be expected for the
spatial triangulation of the observing sites,
one can assume that the mean accuracy 0':24
of a direction computed above for a fictitious
central direction containing all the informa-
tion content is an uncorrelated function of

the station. In the adjustment algorithm,
this accuracy of triangulation directions
associated with a specific evaluation of a
photogram is expressed in the form of the
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weight matrix associated with the coordi-
nates of the seven fictitious satellite-images,
the weight and matrix being computed from
the corresponding covariance matrix derived
with equation (7.277) of section 7.4.6. In
section 7.4.8.1 it was mentioned that, in the
mathematical formulation to be set up for the
final triangulation, only the satellite and
station positions were to be determined as
unknowns. The basic triangulation geometry
(fig. 7.14) implies that the accuracy of the
triangulation in a direction perpendicular to
the direction station-satellite is proportional
to both the directional accuracy and the dis-
tance station-satellite. This is indicated sche-

matically and reduced to two dimensions in
figure 7.46.

"z.$

f5

The accuracy in direction of the z coor-
dinate is obviously a function of the angle
in which the station-satellite planes intersect.
From analysis of the systems of inverted
normal equations, which contain the geom-
etry of the actual satellite observations, it

follows, quite generally, that the mean error
of the triangulated station in the direction of
the geodetic latitude and longitude is, assum-
ing errorless scale, proportional to the prod-
uct mR'd, where mR is the mean accuracy of
the direction and d is the mean distance

station-satellite ; on the other hand, the aver-

age mean error in the direction of height is
three times as large (Schmid, 1969). These
relations are shown in figure 7.47, in which

_/Q is the error propagation factor (some-
times called the weight reciprocal) for the

position coordinate.
The same result is shown schematically in

another form in figure 7.48, from which, by

comparison of antipodal stations, it is ap-
parent that the uncertainty in height deter-
mination within a world triangulation

eventually has the effect of an uncertainty in
scale. One can expect, therefore, that addi-
tional scale control will have a particularly
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FIGURE 7.48.--Error propagation of the method of

geometric satellite triangulation.

favorable influence on the accuracy of height
coordinates, but will represent no real gain
for the determination of the position coor-
dinates ¢, _. This fact is illustrated in figure
7.47, which shows the effect of from one to
four scale determinations. The lower part of
figure 7.47 shows that even under the as-

sumption of errorless scalars (weight 104 )
only the stations directly involved in the scale
determination show a gain in the determina-

tion of their latitude _ and longitude _. On
the other hand, the error propagation co-
efficient for the height determination reduces

from 3 to 1.8 with the use of four scalars,
even when a more realistic weight of 1 is
used in the scale determination (Schmid,
1969; Rinner, 1966).

In the world net, the PAGEOS satellite

was observed almost exclusively. Its nominal
circular orbit elevated about 4600 km above
the surface of the earth resulted in an aver-
age distance station-satellite of 6000 km.

With a mean direction accuracy of 0"24 and
the propagation factors of figure 7.47, a
triangulation solution based on two satellite

transits or two events per triangle side,
under the assumption of an errorless scale,
produces position coordinates for the observ-

..._, ......... ,, ._,, ...,a,, errors m_=mx = __''_,.,,n

m and m,,= ±21.0 m. At this time, 2350
plates have been reduced for evaluation in
the world net. The distribution of the cor-

responding events is shown in figures 7.6
through 7.11. These observations correspond
to about five independent solutions. There-
fore, adjusting all these events should yield an

accuracy of m_=mx= ±7.0/5= ±3.1 m and
mh= ±21.0/5= ±9.4 m. When the planned
four scalars, measured independently with an
accuracy of at least 1:1 000 000 are intro-
duced, the expected mean error in height
reduces to m1,=±3.1 m×1.8=±5.6 m (cf.
fig. 7.47) and the mean position error of a
station

/ 2 2 2

- = ±4.1 m (7.311)

or m is roughly 1:1 500 000 of the mean dis-
tance station-satellite.

In the next paragraphs the result of the
worldwide geometric satellite-triangulation
program is presented with an associated
error analysis based on the statistical infor-
mation obtained during the final triangula-
tion adjustment.

7.5 RESULTS OF THE WORLDWIDE GEO-
METRIC SATELLITE TRIANGULATION 3

7.5.1 Statement of Results

The quantitative result of the worldwide
geometric satellite-triangulation program
consists of the three-dimensional positions of
45 stations. Their locations can be seen from

figure 7.4 and table 7.2.
The corresponding Cartesian reference

coordinate system has, as was explained be-
fore, one of its axes parallel to the rotation
axis of the Earth for a certain epoch (CIO).
The origin of the system and the selection of

3 NGS used a left-handed coordinate system for

its x, y, z coordinates. The values in tables 7.11 and

7.15 are given in a right-handed system, to permit

comparison with coordinates in other chapters.

Otherwise, the system is left-handed as noted. Great

care should be exercised when values from this and

u_.=L sections are _ '_'-,_en.-- L4_UZ,_ur J
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the x direction is, for reasons inherent to the

method of geometric satellite triangulation,

arbitrary. It was fixed by enforcing for sta-

tion 2, Beltsville, Maryland, the following

coordinates, which are approximate values

for a geometric position :

Spatial Coordinates (m)
1 130 761.500 x

4 830 828.597 y
3 994 704.584 z

As is discussed in the analysis of the results

in the next paragraph, it was decided to

enforce all eight scalars with their measured
values.

Table 7.11 lists the three-dimensional Car-

tesian coordinates for the 45 stations and

their mean errors (one-sigma level) as ob-

tained from the final adjustment. The coor-

dinates refer to the projective center of the

BC-4 cameras. The elevation of this point

above the permanent station mark is in each
case +1.5 m.

7.5.2 Analysis of the Triangulation Adjust-
ment

The input of the triangulation adjustment
refers to the information obtained from the

evaluation of 2350 photographic plates. Spe-

cifically, observations from 856 two-station,

194 three-station, and 14 four-station satellite
events were used. The 1064 satellite events

chosen for evaluation required, in addition

to the determination of the spatial positions

of the tracking stations, the triangulation of

6604 satellite positions. The adjustment pro-

vided for 9162 degrees of freedom. Two

station-to-station couplings were introduced
as additional constraints in order to tie to-

gether stations 6111-6134 (California) and

6012-6066 (Wake Island), where, for tech-
nical reasons, satellite observations were

collected from neighboring observation

piers. Furthermore, eight scalars were rig-

orously introduced. They represent the spa-
tial distances between the stations given in

table 7.3, section 7.3.0. These scalars were

measured and computed by various national

agencies. For references, see table 7.4.
In order to obtain a measure for the pre-

cision of the strictly photogrammetric tri-

angulation, a first triangulation adjustment

was executed with only the scalar between
stations 6002-6003 enforced. This adjust-

ment produced a sum of the squares of the

weighted residuals in terms of plate coordi-

nate, corrections [pvv] = (3.064+_0.045) x

10 -,_ (m2).

A comparison of the measured baselines
with the corresponding triangulation results

provides a first insight into the internal

accuracy of the geometric world net. The
differences between the computed and meas-

ured distances with a complete constraint on

scalar (6002-6003) are shown in table 7.12.
The sum _d of the lengths of the measured

scalars is 17 513 184 m, so that

2±d
--=1:1 911 920

_d

As can be seen from table 7.12, the difference

2±d is only about 0.6 of the standard devia-
tion associated with the sum of the triangu-

lated distances.
It was therefore concluded that the scalars,

at least in their totality, are probably of

higher accuracy than the geometric satellite

triangulation itself, a conclusion which is
further evidenced when the standard errors

for these scalars computed by the various

computing centers are considered.

An adjustment in which all scale lines were

enforced with weights corresponding to an

accuracy of one part in two million of their

respective lengths gave the result shown in
table 7.13.

The [pvv] of this adjustment was 3.068 x

10 -_, or a value which is only 0.004 + 10 -'_ unit

larger when it is compared with the single

scalar adjustment mentioned above. This
difference is only !/1 o of the associated sigma.

It can therefore be safely concluded that the

scalars do not exercise undue constraint on

the triangulation system.
If all eight scalars are rigorously enforced,

the [pvv] sum increases to 3.071x10-% a
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solution which from a statistical standpoint

is equally defensible.
The numerical solution was iterated on the

CDC 6600 computer (generally three times)
until the maximum increments to the tri-

angulated coordinates became _ 1 mm. When

the normal equations matrix pertaining to
the final iteration is multiplied by its corre-

sponding inverse matrix, one obtains, as a

check, the expected unit matrix to within a
unit in the tenth decimal place.

The mean error of unit weight after ad-

justment is for all these solutions 1.830±

0.014, against the expectation of 1.0, indi-

cating the presence of additional unmodeled
error sources. If the increase in the overall

error budget can be ascribed to additional

random-error sources, then the effect is rela-

tively harmless, resulting only in a corre-
sponding increase in the mean errors of the

triangulated station positions. But if the

effect of systematic errors which are dis-

tributed in the adjustment in accordance with

the least-squares principle is involved, the
situation is more serious.

To gain some insight into the stability of

the camera during the average half-hour

period of operation, star photography taken

imme(llately before and alter the satellite

transit was adjusted and sets of camera

orientation parameters computed. Thus, for

each plate the change in azimuth hA and in

AAxcosE
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elevation _t_ of the .......c_n_Ia_ ray with a corre-

sponding rotation component ±x was com-

puted. The hx are random and completely

within the range of their mean errors. The

hA cos h and, especially, the hh component,

however, indicate the lntluence ot a system-

atic error, as shown in figures 7.49 and 7.50.

For an evaluation of these diagrams it should
be added that the individual ± values shown

have an average mean error of ±0':5. Since

star imagery is also available for the satellite

transit period, it is possible to study these

systematic changes in orientation over the

period of observation. A roughly linear
trend with time is indicated.

To eliminate this source of error, orienta-

tion parameters that were based solely on

star images obtained during the period of

actual satellite transi.t were used in the final

adjustment, whenever possible. Still, we

cannot entirely escape the conclusion that the

instability of the camera creates an additional

error which, as the diagrams show, has a

systematic component and acts as a source
of additional accidental errors.

For a further analysis of the results it is

important to realize that, as conseqt!ence of
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the interpolation of each event into the astro-
nomic system, absolute directions are ob-
tained. This means that it is possible to
triangulate the direction of the chord joining
two adjacent stations in the net independ-
ently, i.e., with only the satellite passes ob-
served from these two stations. Such com-

putations were made for all 170 lines of the
world net. In these adjustments, as well as
in the final solution, all covariance matrices
resulting from the individual processing
steps were included, so that all results can
be considered as rigorously derived values.
The line triangulations yield an average mean
value for the ratio of mean error of unit
weight before and after adjustment of
1:1.746, the range being from 1:0.706 to
1:2.429. The theoretical expected average
value is, of course, 1:1. This means that the
observational data do not completely fill the
accuracy expectations computed in the par-
tial analyses cited above, a fact which was
mentioned in connection with the obtained

mean error of unit weight after adjustment
in the final triangulation.

However, it is gratifying to note that this

value increases only slightly, from 1.746 for
the average of all individual line adjustments,
to 1.830 for an adjustment based on the com-
bination of all observations. These figures
indicate that the entire body of data is ap-
parently free of perturbing systematic errors
and satisfies with practically no constraint
the three-dimensional geometrical closure
condition of the world net.

In order to strengthen this conclusion, the
directions derived from the individual line

adjustments and those of the combined solu-
tion were compared. The resulting azimuth
and elevation angle differences are shown in
the diagrams with their three-sigma errors
and combined in histograms of figures 7.51
and 7.52. Although these results do not fully
meet ideal statistical expectations, it is not
really possible to otherwise draw any conclu-
sions regarding the presence of possible sys-
tematic error influences in the triangulations
of the individual lines.

In order to analyze the accuracy of the
shutter synchronization, the following argu-

AA
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ment can be applied to the results of the
individual line adjustments. Simple geo-

nization discrepancies will lead to larger
residual errors in the spatial triangulation

the larger the angle between the orbital plane
of the satellite and the line to be triangulated.

Because the PAGEOS satellite has an ap-
proximately polar orbit, it is sufficient to
plot the mean error of unit weight after
adjustment for the individual line adjust-

ments versus the azimuth (respectively,
azimuth--180 degrees)of the triangulated
line. As figure 7.53 shows, the distribution of

these values is circular, and no dependence
on azimuth can be detected. This test at least

does not indicate the influence of any syn-
chronization errors.

An examination of the statistical distribu-
tion of the 29 104 residuals in the overall

adjustment presents a further and obviously
necessary opportunity to analyze the data.
Figures 7.54 and 7.55 are histograms of the
residuals in events that were observed from

two and three stations, respectively. In order
to compare these distributions with their
4-1. ^^.^_-; _. 1 ..... 1 ..1 ; _I-_;1_..4-; ........... 4-1.^

residuals would have to be normalized, re-
quiring the computation of the covariance
matrix :

]tv=:_-AN-1A*,_) (7.312)

This is, in the present case, a 29 104 × 29 104
completely filled, square matrix, an obvious

impossibility. As a result, we are forced to
neglect the geometric content of the second

term of the expression (7.312) and to nor-
malize the residuals v approximately by di-
viding each by the mean error of the corre-
sponding observation before adjustment. The
greater the number of observations available
for the determination of the position of the
satellites or, in other words, the greater the
number of stations observing the satellite,
the more acceptable is the proposed approxi-
mation for the normalization of the rcsiduals.

This may explain, at least in part, the fact



616 NATIONAL GEODETIC SATELLITE PROGRAM

E&W_

N

±05p_

608

576

544

5_2

48O

446

416

364

352

320

288

256

224

192

160

128

96

64

3_ , , ,

_5.4-4.8-4.1-3.4-2.7-2.0-1.4 _0.7 0.0 0.7 1.4 2.0 2.7 3.4 4.1 4.0 5.4

FIGURE 7.55.--Plate coordinate residuals for

three-plate events. X_-Y values.

that the fit of the normal curve to the histo-

gram is better for the three-station events.
If one accepts the mean error of unit

weight after adjustment as a significant
measure for the inherent observational ac-

curacy, we have mean coordinate errors for
the triangulated stations as shown in figure
7.56. It should be noted that although, quali-

tatively, the material at all stations is uni-
form, the quantity varies somewhat, result-
ing in the variations of the coordinate errors.

FIGURE 7.53.--Event a's versus line azimuths.
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FIGURE 7.54.--Plate coordinate residuals for

two-plate events. X+ Y values.

7.5.3 A Combination Solution

Based on the principles of celestial me-
chanics, the interpretation of the orbital
parameters of satellites as derived from time-
correlated observations permits not only the
determination of the parameters of a mathe-
matical model of the Earth's gravitational
field, but also the three-dimensional positions
of the satellite-observing stations within a
framework of coordinates referred to the
Earth's mass center.

Satellite triangulation, on the other hand,
is a measuring method in which the three-
dimensional positions of a number of points
on the Earth's surface are established by
purely geometric means.

Quite generally, satellite triangulation
produces coordinates for the camera stations
which should, in principle, agree, except for
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Frc.l_an 7.56.--Mean coordinate errors for triangulated stations.

a translation, with the corresponding results
from dynamic satellite geodesy, even though
the methods are completely different in con-

ceptual approach. This difference extends
as well to the determination of scale, which
in geometric satellite triangulation is estab-
lished by measuring the length of at least one
side in the net by space traverse. In dynamic
satellite geodesy the scale is determined from
the physical quantity GM (gravitational con-
stant × mass of the earth).

The fundamental differences of the two

methods provide the logical justification for
the establishment of a worldwide geodetic
system using both approaches, the method of
dynamic satellite geodesy and the method of
geometric satellite triangulatibn. The basic
equivalence of the results with respect to
spatial coordination of the observation sta-
tions suggests a comparison and combination
of such solutions.

R. J. Anderle of the Naval Weapons Lab-
oratory, Dahlgren, kindly furnished the
National Geodetic Survey a list of three-

dimensional coordinates of 37 stations result-

ing from a dynamic solution and referred to
the mass center of the Earth as origin. These

stations are located in close vicinity to BC-4
stations, with the exception of five stations
that are somewhat farther away. In each
case, the relative positions of the two neigh-
boring stations were determined by a local
survey tie. In order to make a valid compari-
son of the two solutions, it is first necessary
to translate the BC-4 coordinate system,
which has an arbitrary origin, into the origin
of the dynamic solution, the mass center, and
to rotate the Doppler result about its z axis
in order to make the two systems compatible
with respect to longitude. However, in the
comparison adjustment, two further rota-
tions and a scale factor were modeled. These

additional rotations give an indication to
what extent the orientations of the conven-

tional, pole-referenced rotation axes differ in
the dynamic and the geometric solutions.
Similarly, the scale factor reveals the differ-
ence in scale, which, as was pointed out
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before, is derived in the one case from the
product GM and in the other from the meas-
ured terrestrial baselines. The seven trans-

formation parameters (three translations,
three rotations, and a scale factor) were
computed subject to a minimum condition
on the sum of squares of residual coordinate
differences, (in the following referred to as
xyz fit).

The resulting mean-discrepancy vector is
14.4 m, a value which is influenced by dis-
crepancies larger than 20 in five stations, as
can be seen from the tabulation of the dis-

crepancy vectors in table 7.14. Anderle gives
for the precision of his positions the standard
deviations _,--_+1.5 m, _=_+1.2 m, and ah
= _+1.6 m, resulting in a station rms of + 1.44
m. Together with the average standard de-
viation of the BC-4 system for these stations,
neglecting for this cursory consideration the
influence of the standard errors of the trans-

formation parameters, the expectation for a
mean discrepancy vector is _+4.35 m.

The difference between the actually ob-
tained mean discrepancy vector of _+14.4 m

and the statistically expected value of ±4.35
m shows that the two systems are not quite
compatible within the range of their stand-
ard deviations.

We cite now the transformation param-
eters obtained in this adjustment.

Translation of BC-4 result into mass cen-

ter (BC-4+ ±=mass centered BC-4 result) :

±x=+19.590 ±y=+17.684 ±z=-14.344
± 1.342 -+1.325 -+1.506

Rotations of Doppler data to conform to
translated BC-4 results (left-handed sys-
tem) :

x to y z to y zto x

+ 0:'6135 + 0':1478 + 0'.'0638
_+0:'0451 -+0:'0572 _ 0:'0563

Scale factor to be applied to original Dopp-
ler data to conform to BC-4 system scale:

s = 0.999 997 723 0_+ 0.000 000 247 6

An adjustment with three scale factors,
which was also executed:

s_= 0.999 997 389 3_+0.000 000 356 0

s_--0.999 997 092 3 _+0.000 000 369 2
s:=0.999 998 972 0_+0.000 000 439 7

The translation and rotation parameters
were essentially the same as those obtained
before.

As can be seen, the scale parameters in x
and y agree with each other within the range
of their standard deviations. The z scalar

shows a significant deviation, which, how-

ever, reduces the average discrepancy vector
after the xyz fit by only 0.9 m. Therefore
the following results were based on the solu-

tion which features only one scale factor. For
this solution, table 7.14 gives the remaining

coordinate differences between the BC-4 sys-
tem (table 7.11) plus the translation param-

eters and the rotated and scaled Doppler
system given above. With the coordinate
differences given in table 7.14 and the trans-
lations and rotations given before, it is a
straightforward matter to compute back-
ward, from the BC-4 result (table 7.11), the
Doppler station data originally given. The
translated BC-4 system itself represents the
strictly geometric result referred to the mass
center of the dynamic solutions.

The problem for a combined solution is
now to average the coordinate values as ob-
tained for the translated BC-4 system and
the rotated and scaled Doppler system. In
recognition that the two transformed systems
differ, as expressed by arms discrepancy
vector of 14.4 m, more than three times the
amount expected from the individual solu-
tion accuracy statements, a combination
solution becomes a question of the weight
ratio between the two solutions. To shed

light on this question, the geometric satellite
triangulation system was adjusted several
times, introducing as constraints the trans-
formed Doppler position coordinates for the
given 37 stations with various weights. The
critical evaluation of these adjustments was
made in relation to the individually obtained
sum of squares of the weighted residuals for
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the geometric solution, a quantity which,
because of its straightforward meaning, is
believed to be a quite reliable indicator.
Figure 7.57 shows the sum of the pvv's versus

the various weight assumptions made for
the Doppler results covering a range from
± 0.1 to +_5.0 m for each of the given Dopp-
ler-derived coordinates. On the left side is

given the pvv sum as obtained from the
strictly geometric solution (without any
Doppler station constraint) for the one- and
eight-scalar solutions mentioned earlier. The
dotted line indicates the standard deviation
associated with the pvv sum.

From the [pvv] curve, one can see, as was
to be expected, that an essentially rigorous
enforcement of the Doppler result (standard
deviation of ±0.1 m) increases the [pvv]
drastically; in other words, the integrity of
the geometric triangulation is impaired. On
the other hand, a weighting in accordance
with a standard deviation of _ 5 m results in
a pvv sum identical to the one obtained from

a _rl_ly geometric adjustment using the
eight scale lines as constraints.

It is now unquestionably a decision of per-
sonal preference which weighting factor for

the dynamic solution to accept as defensible
for a combination result, at least in the range
from ± 2.5 to _+4.0 m. On the other hand, the
resulting differences in the mean station

Rus

ii......
4

2

FIGURE 7.57.--Rationale for combined solution.

coordinate-discrepancy vectors between these
two solutions are rather small, amounting in
latitude to 1.5 m, in longitude to 1.2 m, and
in height to 1.6 m. In order to keep the in-
crease in the [pvv] small, in comparison
with the strictly geometric solution, a weight-
ing in accordance with a standard deviation
of ±3.5 m for all Doppler coordinates was
adopted. The solution was further con-
strained by the scalars, all weighted in ac-
cordance with a standard deviation of 1 part

in 2 million. Table 7.15 gives the result of
this adjustment and the associated standard
deviations for the triangulated coordinates.
Tables 7.16 and 7.17 show coordinate differ-
ences between the combined solution and the

BC-4 and Doppler solutions, respectively.
The mean error of unit weight after ad-

justment is 1.830±0.13 _m, the same as that
for the purely geometric solution.

A comparison between the two sets of
29 104 residual errors from the purely geo-
metric adjustment and the adjustment en-
forcing the Doppler results was made. These
_v values have a mean of 0.001 t_m. Their
distribution is shown in figure 7.58. The

maximum values encountered are -0.587 _m
and +0.451 _m.

each event is computed in each triangulation
adjustment. A comparison of these standard
deviations between the purely geometric and
the combined solution shows that the range

)

_lz*.

z_.

Nll.l_+. ,,/'/

1_
2_

.o .o .z .z .1 ._ ._

Fxau_ 7.58.--Histogram of differences between
two sets of residuals.
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for these values in the geometric solution is

from _+0.281 _m to _+3.462 _m and for the

combined solution from -+0.251 _m to

_+3.468 _m. The distribution of the differ-
ences of those values, which have a mean of

-0.002 _m, is shown in figure 7.59.

This statistical information is presented to

give evidence that in the combined solution
no undue strain on the observational data of

the geometric satellite triangulation is pres-
ent.

7.5.4 Derived Geodetic Parameters

The semimajor axis a and the flattening f

of a reference ellipsoid may be regarded as

the basic parameters for a geodetic world

system, its center coinciding with the Earth's
center of mass. The direction of the z axis,

i.e., the Earth's rotation axis, is fixed by the

conventionally adopted mean pole position

at a specified epoch and the direction of the

x axis through the null meridian by an iden-

tifiable point on the surface of the earth. It

is also possible, although hardly practical,

to postulate a triaxial ellipsoid.
With the establishment of such a reference

system, the xyz coordinates of the combined

solution as given in table 7.15 can be trans-

formed into latitude, longitude, and ellipsoid

height. Furthermore, classical geodetic re-

sults referred to individual datum ellipsoids

can be transformed to such a world system.

zz,.

zo*.

,iz.

iii

FIGURE 7.59.--Histogram of differences between

two sets of event mean errors.

Using the values presented for the deter-

mination of these quantities, we arrive at the
following results.

To begin with, the station coordinates

obtained in the geometric satellite triangula-

tion solution (table 7.11), reduced to sea

level, were adjusted to a best-fitting ellipsoid

of revolution. The significance of such a solu-

tion is somewhat dubious, in view of the fact

that only 43 stations for which leveling

heights were obtained are available, and that

there is no a priori evidence that the mean

of the corresponding geoid heights is close to
zero. The result is shown in the first row of

table 7.18 [left-handed coordinate system--

Editor]. The resulting translations ±x, ±y,

Az on line 1, as well as those shown on lines

2, 6, 7, and 11 for other solutions, are not

significant in themselves, because they de-

pend entirely on the approximation values

for the mass-centered coordinates, introduced

for the origin of the geometric solution

(compare beginning of see. 7.5.1). Only their

consistency in the various solutions is of
interest.

The second solution is a repetition of the

first, with the flattening f=1/298.250 held

fixed, a value which is derived by dynamic

satellite-geodesy methods and is now con-
sidered to be reliable. This result is on the

second line. Furthermore, ellipsoid fits

were executed with the results of the com-

bined solution resembling otherwise the solu-

tions presented on lines 1 and 2. These re-
sults are given on lines 3 and 4, respectively.

Here, as on lines 8 and 9, the ±x, ±y, Az

indicate to what extent the coordinate origin

of the specific solution differs from the mass

center of the dynamic solution. Still another

computation was performed with the com-

bined solution holding the original position
of Anderle's mass-center fixed. In this solu-

tion, only the semimajor axis a was deter-
mined. This result is shown on line 5. With

the same raw material these ellipsoid-fit

solutions were repeated, incorporating the

geoid heights as computed from raw data
from Anderle. The corresponding results are
shown on lines 6 to 10. On the eleventh line

the result of the :ration-to-station least-
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squares fit is shown, based on the matching
of the positions of 37 stations as determined
by the geometric and the dynamic methods.

From the information presented in table
7.18 it was concluded that a reference ellip-

soid with 1/f=298.250 and a semimajor axis
of 6 378 130 m would correspond best to the
available information.

Table 7.19 gives the corresponding lati-
tude, longitude (east), and ellipsoid heights
with their respective standard deviations
computed from the xyz coordinates of the
combined solution (table 7.15).

In table 7.2, section 7.3, the survey data
are given. A comparison of the results pre-
sented in table 7.19 with the results of astro-

nomical position observations and the values
of mean sea level observations, as given with
the survey data, allows the computation of
plumbline deflections and the determination
of geoid heights. The corresponding results
are tabulated in tables 7.20 and 7.21.

The ±x values in table 7.20 refer, in accord-

ance with the given geographic coordinates
in table 7.19, to a system of positive east lon-
gitudes, with the conventional designation:
astro-geodetic=±. The A_ values represent
absolute position deflections in the meridian
o_ tim station, positive to the sou_n. 1he com-

puted _ values, positive to the east, however,
depend quantatively on the chosen position of
the null meridian of the combined solution. In

order to average them out, an additional

rotation in longitude would be necessary,
which would have to be added a_ a constant
to all longitudes tabulated in table 7.19.

Such a correction amounts to

i

_.(XA-_o) _cos _AX=

_cos 6_

= - 07485 (east longitudes positive)
(7.313)

The significance of such a correction is, how-
ever, impaired by the relatively small number
of plumbline deflections available.

Table 7.21 gives the geoid heights as com-
pt!ted from the combined solution (table

7.19) and the msl elevations of the survey
data. For comparison, the geoid heights as
obtained by Anderle from the dynamic solu-
tion are given in the second column and the
corresponding differences in the third col-
umn, labeled aN.

With the exception of stations 6011 (Ha-
waii), 6012 (Wake), 6013 (Japan), and
6043 (Sombrero), these A values are well
within the expected level of accuracy. Obvi-
ously, both sets of N values are also affected
by the uncertainties in mean sea level for the
various datums, to which the leveling data
are referred.

A comparison between the xyz coordinates
given in table 7.15 and the corresponding
information computed from the survey data
(table 7.2) results in the translations AX, _y,
±Z. These translations transform, station by
station, the survey data into a mass-centered
system.

Table 7.22 shows these results, the stations
grouped in terms of specific datums. Large
differences in these translations for stations

within a specific datum suggest distortions in
such a datum.

In column N of table 7.22, the geoid height
used for the computation of the station shift

information was not available from the col-

lected survey data, the corresponding geoid
heights from the combined solution (table
7.21) were used, indicated by an asterisk.

Furthermore, a set of station shift com-
ponents was computed on the basis of astro-
nomical positions of the BC-4 stations when
no other survey data were available. Here
again, the computations were based on geoid
heights obtained from the combined solution ;
furthermore, an ellipsoid with f--1:298.25
and an equatorial radius of 6 378 130 m were
used. The resulting ±x, _y, and _z of shifts
[left-handed coordinate system--Editor] ex-
press therefore only the plumbline deflections
tabulated in table 7.20.

For datums for which more than one sta-

tion is available, datum shift parameters
were computed, allowing for an additional
scale factor and an additional rotation (in
longitude) in addition to the conventional
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three translations. These results are shown

in table 7.23 [left-handed coordinate system
--Editor]. The smaller the indicated coordi-
nate differences, after datum shift, the more
closely the survey result resembles the rela-
tive geometry as determined by satellite
triangulation.

Because of the small number of stations

belonging to a specific datum, it was not pos-
sible to compute meaningful datum shifts
allowing an adjustment in the spatial orien-
tation of the rotation axis of the individual

datum ellipsoids, as desirable as such a test
would be from the theoretical standpoint.
Such a complete set of datum shift param-
eters will be computed for the NAD, when
the results of the satellite densification pro-
gram in the area of the North American
continent are completed.

7.6 SUMMARY AND CONCLUSIONS

The BC-4 world net is the result of a

strictly three-dimensional geometric triangu-
lation, including a scale derived from classic
geodetic surface measurements executed be-
tween several pairs of world net stations.
Because the method of geometric satellite

triangulation is based on absolute directions
as obtained by interpolating the satellite
position into the background of the surround-
ing field of fixed stars, the triangulation
results can at best be only as accurate as the
astronomical system of right ascension-
declination itself. This situation holds for

both the relative accuracy of the" reference
stars and the absolute accuracy of the astro-

nomical reference system in its entirety. The
photogrammetric triangulation, as a result
of the high redundancy of data, should pro-

vide a result valid to about 1 part in 2 million
in terms of the average station to satellite
distance, in other words, station positions
with an accuracy of _ 3 to _+4 m in all three
coordinates. The statistical information ob-

tained as a by-product of the various data
reduction steps indicates that the accuracy
of the final result does not entirely fulfill the
theoretical accuracy expectations. The sta-
tistically proven instability of the BC-4
camera system must be considered as a
possible source of a slight systematic error,
which in the adjustment algorithm is un-
avoidably distributed in accordance with the
minimum principle for residual errors. The
good agreement of the photogrammetric tri-
angulation result with the measured baselines
around the world indicates, however, that the
final result is essentially free of significant
bias errors. A comparison between the result
of the geometric triangulation and the corre-
sponding result obtained by dynamic satellite
geodesy from Doppler data, as computed by
the Navy, shows excellent agreement in an
overall sense, but significant discrepan-
cies in a few places on the globe. A combi-
nation of both results that respects fully the
covariance of the photogrammetrically de-
rived directions becomes possible by assum-
ing a weighting of the dynamically deter-
mined coordinates in accordance with a sta-

tion position mean error of _+3.5 m. The only
significant difference between the Navy-8D
dynamically determined result and the geo-
metric triangulation is in terms of scale, indi-
cating that the dynamic solution is based on
a scale larger by 2 parts in a million. The
geometric solution suggests a value of
6 378 130 m for the equatorial radius a of a
best-fitting ellipsoid.
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APPENDIX

20 1/120 -+20
10 1/60 +-40

:2, :3, :4, :5
5 1/30 -+60
2.5 1/15 +-70

TABLE 7.1

Shutter speed Accuracy of
Images per (100% efficiency) Optimal subdivision timing

second (sec) with third shutter (10 -_ sec)
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TABLE 7.2.--Survey Coordinates of BC-4 Stations

BC-4

sta. no. Station name

Elev. of

Geodetic coordinates Astronomic coordinates ref. pt.

above N

(b_ _; (west) ¢bA hA (west) MSL (m) (m) Datum Ellipsoid

6001

6OO2

6003

6004

6006

6OO7

6OO8

6009

6011

6012

6013

6015
6016

6019

6020

6022

6023

6031
6032

6038

6039

6040

6042

6043

6044

6045

6047

6050

6051

6052

6053

6055

6059

6060

6061

6063

6064

6065

6067

6068

6069

6072
607g

6075

6111

Thule

Beltsville

Moses Lake

Shemya
Wromso

Azores

Surinam

Quito
Maui
Wake

Kanoya
Mashad

Catania

Villa Dolores

Easter Isl.

Pago Pago
Thursday Isl.

Invercargill

Perth

Revilla

Pitcairn

Cocos

Addis Ababa

Cerro Sombrero

Heard Isl.

Mauritius

Zamboanga

Palmer

Mawson

Wilkes (Casey)
McMurdo

Ascension
Christmas Isl.

Culgoora

So. Georgia Isl.

Dakar

Ft. Lamy

Hohenpeissenb.

Natal

Johannesburg

Tristan

Chieng Mai

Diego Garcia

Mah_

Wrightwood

76_30'05':3226N 68_32'33"1709 76¢30' 11'.'67N 68°32'48':91

3iF01'39"003N 76_49'33':058 39O01'37':73N 76"49'24'_65

47Ol 1'07'.'1324N 119O20'11':8815 47°11'03':24N 119O20'17"05

52042'54':8940N 185°52'22":1299 52_43'03'.'48N 185°52'15':08

6iF39'44'.'2901N 341°03'27':6743 69O39'43':24N 341°03'12:96

33O45'36'!7250N 27O05'38"9360 38°45'43':28N 27005'24"59

05°27'04':9824N 55°12'13.'9921 05°26'48'!96N 55°12'21"21

00°05'5ff:4680S 78°25'10'.'7875 00"05'53':09S 78°25'03':09

29O42'38"5610N 156°15'31':4711 20¢42'21':86N 156o15'22:95

19O17'23"2275N 193o23'2ff:2197 19°17'24':40N 193o23'34':82

3 l°23'3ff:13971N 229°07'35':14051 31°23'38':48N 229o07'34':29

36_ 14'29':5269N 300°22'17':2712 36°14'27':82N 300°21'59"20

37O26'4273451N 344°57'12"3041 37O26'38':70N 344°56'56':81

31°56'33':9540S 65°06'18':658 ................................ 608.18

27O10'3_2132S 109O25'42':5051 27°10'39"21S 109°25'42'.'51 230.8

14°20'12":216S 170°42'46':758 14°20'08':34S 170°42'52_:15 5.34

10_35'08':0374S 217°47'24':5045 10_35'06"78S 217O47'25':11 59.6

46°25'03':4908S 191°40'28':8448 46°25'0r:05s 191°40'25"10 0.95

31°50'28':9922S 244001'33':3824 31°50'24':57S 244001'56':28 26.30

13o43'44':93N 110°57'20'!72 18°43'44':93N 1l(r57'2ff:72 23.20

25°04'0T:1461S 139O06'48':1184 25°04'07':15S 13(F06'48':12 339.39

................................ 12_11'57':91S 263°10'12.'92

08_46'08':5013N 321°00'10'.'8355 08¢46'05':74N 321°00'02:81

52_46'52":4683S 69_ 13'3ff'4273 52°46' 59":74S 69o 13'33':56

................................. 53°01' 1Z:0309S 286¢36'3Z!5846

20°13'41':942S 302_34'5T339 20013'37':48S 302°35,07,20

06°55'26':132N 23T55'55':162 06_55' 18':29N 237°55'53':55

................................. 64°46'33':98S 64°03'22':96

.................................. 6T36'03':08S 29T07'35':59

......................... 66°16'45':12S 249_27' 55':39

77O50'46':2487S 193°21'52":4155 77O50'43O32S 193O21'46'!14

07O58'16':6342S 14°24'27"2363 07O58' 18':27S 14°24'39":36

........................... 02_00'35':622N 15T24'38"038

30°18'39':4182S 210o26'23':1079 30°18'36':14S 210_26,28,,89

.................................. 54°16'39":5147S 36°29' 17'!4690

14°44'39":8986N 1T28'5T:5476 14°44'44':23N 17°29'04"41

12_07'51'.'7410N 344°57'53':7659 12¢07' 53':939N 344o57'51':044

47_48'07':009N 348°58'31':4263 47O48'09":54N 348°58'29"!47

05°55'37':4136S 35°09'53':8003 05o55'37"74S 35°09'57703

25°52'56':98S 332_ 17'34':83 25°52'59":06S 332_17'28782

............................... 3T'03'26':2572S 12_ 19'06':4452

13O46'06':149N 261°01'44"877 18°45'47"50N 261°01'51"62

07_20'58':5270S 28T31'27"8444 7°20'58':53S 287°31'27':84

04°40'11':614S 304o31'06-617 4o40'1ff!31S 304°31'06"02

34°22'54':5368N 117o40'5ff:5161 34°23'09"!80N 117O40'35':38

206.0 +32.0 QORNOQ

44.3 -0.4 NAD 1927

368.74 -16.0 NAD 1927

36.76 -46.0 NAD 1927

106.0 +12.6 European

53.26 ......... S. W. Base

18.38 +3.0 Prov. S.A. 1956

2682.1 +24.6 S.A.D. 1969

3049.27 ......... Old Hawaiian

3.46 ........ 1952 Astro

65.90 +27.0 Tokyo

991.05 -38.0 Europe 1950

9.00 - 16.6 European

+13.0 S.A.D. 1969

......... 1967 Astro.

+22.0 Am. Samoa 1962

-4.6 AND

......... Geodetic 1949

+15.4 AND

......... Is. Soc. Astro.

......... 1967 Pitcairn

Astro.

Int'l.

Clarke 1866

Clarke 1866

Clarke 1866

Int'l.

Int'l.

InCl.

S.A.

Clarke 1866

Int'l.

Bessel.

Int'l.

Int'l.

S.A.

InCl.

Clarke 1866

AND

Int'l.

AND

Clarke 1866

Int'l.

4.41 ........ 1965 Anna 1 Astro AND

1886.46 -8.0 Adindan Clarke 1880

80.66 ......... 1963 Prov. South Int'l.

Chile

3.771 ......... 1969 Astro Int'l.

138.2 ......... Le Ponce Astro Clarke 1880

9.391 ........ Luzon Clarke 1886

16.44 ........ 1969 Palmer Astro Clarke 1880

11.3 ........ 1969 Astro

18.0 ......... 1969 Astro

19.09 ......... Camp Area Astro Int'l.
1961-62 USGS

70.94 ......... Ascension Is. 1958 Int'l.

2.75 ......... Christmas Is. 1967 Int'l.

Astro

211.1 +0.7 AND AND

4.180 ......... Astro Int'l.

26.28 +20.7 Adindan Clarke 1880

295.41 +23.6 Adindan Clarke 1880

943.50 -0.6 European Int'l.

40.63 +26.14 S.A. 1969 S.A.

1523.8 ......... Buffelsfont Clarke 1880

24.83 ......... 1968 Astro Int'l.

308.4 ......... Indian Everest

3.85 ......... I.S.T.S. 1969 Int'l.

Astro

58&98 ......... MahA 1971 Clarke 1880

2284.41 -23.0 NAD 1927 Clarke 1866
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TABLE 7.3.--Baselines Used in Adjustment

Stations between which Spatial distances a_
scalars were measured (m) (m)

6002-6003 3 485 363.232 ±3.53

6003-6111 1 425 876.452 ±1.59

6006-6065 2 457 765.810 ±0.80

6065-6016 1 194 793.601 ±1.43
a6006-6016 3 545 871.454 ±1.64

6023-6060 2 300 209.803 ±0.88

6032-6060 3 163 623.866 ±0.98

6063-6064 3 485 550.755 ±2.10

a The scalar 6006-6016 is not a truly independent
scalar.

625
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TABLE7.4.--Documentationa
Scalar

between Measured Computed
stationsb by: by" Documentation
002-003 National National
and Geodetic Geodetic
003-111 Survey Survey

(USA) Triangulation
Branch(USA)

Office memos from NGS Triangulation Br.
to Geodetic Research & Development Lab.
for 002-003--B. K. Meade dated 3/29/71,

for 003-111 John G. Gergen dated 8/5/73.

006-065 Geodetic National

065-016 Agencies Geodetic

006-016 of Norway Survey (USA)
Sweden Triangulation
Denmark Branch

Federal

German

Republic
Austria

Italy

Office memo from NGS Triangulation Br.
to GRDL--B. K. Meade dated 4/9/70.

Office memo from NGS, New Datum Br. to
GRDL--John G. Gergen dated 8/5/73.

Further reference literature, the results
of which were not used here:

Computation of the European Baseline Tromsc-

Catania by R. Kube and K. Schn_delbach,

Deutsches Geod_tisches Forschungsinstitut,

M_inchen (1973).

023-060 Dept. of Division of
032-060 National National

Development Mapping,
Div. of Australia
National

Mapping,
Australia

Dept. of National Development, Div.

of National Mapping, Australia Technical

Report No. 11 by K. Leppert, Canberra,

Australia, March 1972, entitled "Two

Australian Baselines for the Pageos
World Triangulation."

063-064 Dept. of Dept. of Army

Defense, Commanding
Defense Officer

Mapping US Army Engineer

Agency and Topographic
Institute Production

Geographique Center Code

Nationale 14400

(France) Army Topo-

graphic Stations

Wash., DC 20315

Transmittal letters to Dr. H. H. Schmid,

GRDL, NGS, NOAA, Rockville, Md. 20852 USA

dated June 4, 1971, and July 22, 1971.

a The measuring and computation
the above information is given.

b Add 6000 to station numbers.

of these scalars were executed by various national agencies. For reference,
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TABLE 7.5.--Number of Successful Observations a

627

Station-to-
station line b

Number of
successful events

Station-to-
L R station line b

Number of
successful events

L R

1 to

2 to

3 to

2

3
4
6
7

ell

c15

c16

c38

c65

3
c6

7
8
9

38
111

4
11

38
c12

111

c4 to 6

11

13

12

6 to 7
15

16
65

7 to 8
16

c55

63

c64

65

c67

8 to 9

19
c61

63
67

9 to 19

20

38
c43

7 16 "11 to 22 1 2

9 18 38 13 2

4 2 59 21 21

17 15 12 4 2O

5 1 111 15 5
0 1

1 0 12 to 13 1 11

2 1 22 2 5
1 2 23 7 9

3 6 59 9 2
c60 1 0

14 19
1 1 c13 to 15 2 0
4 5 23 0 0

16 8 47 8 5
3 3 72 4 1

4 10 15 to 16 31 37
6 11 c40 7 3

0 4 42 28 15
7 16 _45 9 1
7 13 ¢64 2 12
0 2 65 0 5

24 20 72 4 10
73 12 7

0 2 75 11 1
0 3
5 5 16 to 42 5 0

0 8 63 0 13
64 22 9

2 4 65 7 12
9 7
9 13 19 to 20 7 2
5 8 43 19 30

61 4 14
0 0 67 6 9

18 11 c69 0 2
0 2

23 7 20 to 38 11 2
3 1 39 1 2
6 0 43 4 11
2 2

22 to 23 2 3
7 1 31 14 4
7 15 39 2 5
0 1 59 9 10
0 1 6O 15 4
2 3 78 0 3

4 12 c23 to 31 2 8
2 3 32 19 4
4 6 _40 1 1

2 2 47 6 3
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TABLE 7.5.--(Cont'd)

Station-to-
station line _

Number of
successful events

Station-to-

L R station line b

Number of
successful events

L R

c23 to 60
_72

78

c31 to 32
39

c51

52
53

c59

60

78

32 to 40
44

c45

47
c51

52

¢53

60
_72

38 to 39

59

111

39 to 59

40 to 44
45
47

¢60
72
73

c75

c42 to 45
64

68

c73

75

43 to 50

61

20 32 44 to 45 1 1

0 4 51 3 4
6 1 52 1 1

68 1 0

10 10
c45 to 51 2 5

3 0
68 13 70 1
73 13 186 4
75 22 1110 12

0 1 _47 to 60 0 2
31 25 72 5 11

2 2 _78 1 0

26 6 50 to 51 0 1
4 4 c52 2 0
4 0 53 4 0
9 4 61 2 7

5 0 51 to 52 18 19
5 5 53 13 11
1 1 61 5 1

17 39 68 8 12
0 1

52 to 53 15 13

3 2 60 2 6

1 5 _53 to 60 3 8
3 8 _61 1 0

6 2 55 to 63 21 8
64 7 8

2 0 67 13 7
26 8 68 0 2

4 3 69 6 4

0 3 61 to 67 3 0
1 4 68 1 2
9 4 69 2 2
6 2

63 to 64 9 5
7 8 67 10 3

16 4 ¢69 0 2
8 30
6 0 64 to 68 3 25

2 15 67 to 69 1 0

3 8 68 to 69 4 0
4 9 75 0 3

a For station positions compare figure 7.8.
b Add 6 000 to all numbers

Skip lines.
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TABLE 7.6.--Partial Derivatives of F and G With Respect to u

629

u a _ x XoI"oZocxe, xoyoXY Z K1KsK3x. y, K, Ks_r• lzl.

OF

Ou

OG

Ou A_ B, C_ Du Eu Fy -- Gu H_ I_ Jy Ku L_ My N_ Ou Py Qu R, S_ Tv Uy --Z,

TABLE 7.7.--Curve Fit of 380 Fictitious Satellite Images With

Polynomials of Deoree 1 Throuah 11 (x in Direction of the Trail.

y Normal to It)

Degree of (rx o-_ ax (r_
polynomial a [_m] [_m] [_m] [izm]

1 404 166 215 720 494 437 57 121
Observa- 2 53 445 1 853 Observa- 53 362 0 209
tion sta. 3 1 267 0 289 tion sta. 1 571 0 039

1 4 0 090 0 006 4 0 099 0 000

5 0 003 0 001 0 004 0 000
6 0 000 0 000 0 000 0 000

1 461 861 133 736 356 618 82 163
Observa- 2 54 919 0 964 Observa- 51 751 0 223
tion sta. 3 1 479 0 166 tion sta. 1 116 0 077

2 4 0 099 0 004 5 0 085 0 001
5 0 004 0 000 0 003 0 000
6 0 000 0 000 0 000 0 000

1 226 233 169 385 145 585 157 387
Observa- 2 50 510 0 229 Observa- 48 951 0 476
tion sta. 3 0 709 0 204 tion sta. 0 458 0 184

3 4 0 076 0 002 6 0 070 0 000
5 0 002 0 000 0 001 0 000
6 0 000 0 000 0 000 0 000

For polynomials of seventh to eleventh degree all entries are zero, as they are for

the sixth degree.



630 NATIONAL GEODETIC SATELLITE PROGRAM

TABLE 7.8

Observ. No. of

Seq. sta. processed
no. no. a plates

1 2 1

2 3 1

3 7 3

4 8 17

5 9 17

6 11 10

7 12 14

8 15 3

9 16 4

10 19 39

11 20 1

12 22 5

13 23 2

14 31 16

15 38 10

16 39 2

17 42 14

18 43 23

19 44 2

2O 45 7

21 50 17

22 51 29

23 52 20

24 53 24

25 55 32

26 59 15

27 60 10

28 61 33

29 63 25

30 64 29

31 67 25

32 68 29

33 69 17

34 73 2

35 75 2

Sum: 500

a Add 6000 to station numbers.
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TABLE 7.11.--Three-Dimensional Cartesian Coordinates

X _x Y o'y Z Grz
No. Station name (m) _+ (m) (m) -+ (m) (m) -+ (m)

6001 Thule 546 567.862 2.297 -1 389 990.609 3.447 6 180 239.602 3.960

6002 Beltsville 1 130 761.500 0 -4 830 828.597 0 3 994 704.584 0

6003 Moses Lake -2 127 833.613 .790 -3"785 861.054 2.976 4 656 034.740 2.906

6004 Shemya -3 851 782.861 4.888 +396 404.016 5.654 5 051 347.586 6.673

6006 Tromso 2 102 925.118 3.663 +721 667.562 4.772 5 958 188.868 4.748

6007 Azores 4 433 636.070 4.737 -2 268 143.467 4.362 3 971 656.223 4.945

6008 Surinam 3 623 227.823 4.563 -5 214 231.698 4.502 601 551.302 5.716

6009 Quito 1 280 815.597 4.338 -6 250 955.436 5.800 -10 793.013 5.717

6011 Maui -5 466 020.732 5.045 -2 404 435.198 4.352 2 242 229.885 4.703

6012 Wake -5 858 543.398 5.308 +1 394 489.166 5.281 2 093 807.584 5.391

6013 Kanoya -3 565 865.509 5.200 +4 120 692.866 6.694 3 303 428.249 6.131

6015 Mashhad 2 604 346.389 3.988 +4 444 141.147 5.513 3 750 323.381 4.974

6016 Catania 4 896 383.234 4.080 +1 316 167.822 4.463 3 856 673.791 4.698

6019 Dolores 2 280 603.832 4.190 -4 914 545.588 4.789 -3 355 412.286 6.839

6020 Easter -1 888 616.886 4.845 -5 354 892.780 6.246 -2 895 739.444 7.217

6022 Pago Pago -6 099 954.446 5.392 -997 367.321 4.710 -1 568 567.088 5.883

6023 Thursday Is. -4 955 371.694 4.671 +3 842 221.799 5.689 -1 163 828.451 5.852

6031 Invercargill -4 313 815.856 4.687 +891 322.098 5.238 -4 597 238.676 6.398

6032 Perth -2 375 397.874 4.579 +4 875 524.035 5.746 -3 345 372.936 6.170

6038 Revilla -2 160 983.561 2.008 -5 642 711.612 3.653 2 035 371.417 4.062

6039 Pitcairn -3 724 766.403 6.502 -4 421 236.249 6.480 -2 686 072.609 7.288

6040 Cocos -741 969.205 4.859 +6 190 770.789 6.606 -1 338 530.638 5.843

6042 Addis Ababa 4 900 734.926 4.844 +3 968 226.427 5.481 966 347.675 5.103

6043 Sombrero 1 371 358.188 4.171 -3 614 760.271 4.969 -5 055 928.396 8.156

6044 Heard 1 098 896.432 6.448 +3 684 591.597 7.801 -5 071 838.356 9.919

6045 Mauritius 3 223 422.870 4.472 +5 045 312.452 6.019 -2 191 780.736 6.065

6047 Zamboanga -3 361 946.845 4.909 +5 365 778.338 6.501 763 644.128 6.121

6050 Palmer 1 192 659.730 5.174 -2 450 995.361 7.275 -5 747 040.896 10.171

6051 Mawson 1 111 335.585 5.189 +2 169 243.189 5.456 -5 874 307.692 8.002

6052 Wilkes -902 598.435 4.912 +2 409 507.607 5.700 -5 816 527.805 7.901

6053 McMurdo -1 310 841.759 4.993 +311 248.105 5.500 -6 213 251.231 7.886

6055 Ascension 6 118 325.238 5.260 -1 571 746.070 4.816 -878 595.457 5.507

6059 Christmas -5 885 331.078 5.213 -2 448 376.867 4.435 221 683.837 5.446

6060 Culgoora -4 751 637.577 4.552 +2 792 039.266 5.653 -3 200 142.319 5.866

6061 So. Georgia 2 999 903.036 4.896 -2 219 368.228 6.055 -5 155 246.454 8.547

6063 Dakar 5 884 457.561 4.898 -1 853 492.773 4.257 1 612 863.206 5.072

6064 Chad 6 023 375.533 4.690 +1 617 924.383 4.242 1 331 742.422 4.834

6065 Hohenpeissenberg 4 213 552.554 3.730 +820 823.968 4.444 4 702 787.513 4.620

6067 Natal 5 186 398.560 5.260 -3 653 936.203 4.854 -654 277.651 5.569

6068 Johannesburg 5 084 812.984 5.229 +2 670 319.559 5.065 -2 768 065.639 6.586

6069 De Cunha 4 978 412.958 8.167 -1 086 867.619 6.918 -3 823 159.761 9.443

6072 Thailand -941 692.348 5.593 +5 967 416.884 6.919 2 039 317.530 5.461

6073 Chagos 1 905 130.320 4.345 +6 032 252.624 6.702 -810 711.562 5.751

6075 Mahe 3 602 810.169 4.910 +5 238 217.287 6.393 -515 928.653 5.650

6111 Wrightwood -2 448 854.721 2.088 -4 667 988.213 3.367 3 582 758.969 3.185
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TABLE 7.12

Ad = orof scalaras obtained
meas. - comp. from the triang,adjust.

Scalar_ (m) (m)

002-003 0 0 held fixed
003-111 -7.3 _*2.8
006-065 b-2.0 _*4.9

065-016 +9.3 *-5.1
023-060 +5.8 _*3.9
032-060 +&5 _*4.6

063-064 -5.1 _*5.2

Sum +9.2 ±15.6 (or of Zd)

a Add 6000 to station numbers.
The German Geodetic Research Institute _gives, for

the baseline 006-065, a value which is 1.9 m larger
than the one used here. The corresponding A values
would then be only one decimeter.

TABLE 7.13

Correctionfrom the
Assumed mean error adjustment

Scalar a (m) (m)

2-3 -+1.75 -0.06
3-111 -+0.72 + 1.50

6-16 -+1.78 -0.26

6-65 _+1.23 +0.10
16-65 -+0.60 +0.42
23-60 -+1.15 - 0.98
32-60 -+1.58 -2.76

63-64 _+1.75 + 2.60

aAdd 6000 to station numbers.
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TABLE 7.14.--Coordinate Differences Between Transformed Doppler Solution

and Translated BC-4 Solution After XYZ Fit (A = BC-4 - Doppler)

Resultant

No. a Station name A_b (m) Ak (m) Ah (m) (m)

1

2

3

4

6

7

8

9

11

12

13

15

16

19

20

22

23

31

32

38

40

42

43

45

47

5O

53

55

59

6O

63

64

65

67

68

72

75

Thule ................ 10.198 -2.216 10.464 14.779

Beltsville ............ - 1.254 1.201 -4.516 4.839

Moses Lake .......... -3.072 5.628 -3.670 7.388

Shemya .............. 5.711 13.780 15.061 21.198

Tromso ............... - 1.451 - 17.014 7.566 18.677

Azores ............... - 10.097 - 5.716 4.377 12.401

Surinam .............. 002 1.959 -8.694 8.912

Quito ................. 6.507 10.573 - 7.272 14.388

Maul ................. 4.162 -2.037 8.789 9.935

Wake ................. - 14.550 - 10.924 - 24.453 30.479

Kanoya .............. 6.458 .116 3.956 7.574 "

Mashhad ............. 3.600 4.048 1.256 5.561

Catania .............. 1.740 - 1.638 3.341 4.107

Dolores .............. - 18.425 15.163 -4.296 24.245

Easter ............... 7.924 13.930 3.152 16.333

Pago Pago ........... 4.227 -6.107 -5.317 9.134

Thursday ............ - 1.735 - 7.291 - 15.435 17.159

Invercargill .......... - 7.362 - 9.689 - 5.584 13.389

Perth ................ 3.261 .162 .665 3.332

Revilla ............... - 5.298 .445 3.129 6.169

Cocos ................ 3.360 .864 2.135 4.073

Addis Ababa ......... 14.086 - 1.952 5.724 15.329

Sombrero ............ -20.140 3.173 24.247 31.680

Mauritius ............ 3.838 5.642 1.044 6.903

Zamboanga .......... 3.162 3.466 - 9.571 10.659

Palmer ............... -19.872 -5.176 12.703 24.147

McMurdo ............ -18.103 -1.576 -4.321 18.678

Ascension ............ -7.126 -10.677 .245 12.838

Christmas ............ 4.404 -4.747 -4.207 7.722

Culgoora ............. -12.420 -9.048 -2.916 15.641

Dakar ................. 998 5.593 .304 5.690

Chad ................. 5.889 2.226 5.226 8.182

Hohenpeissenberg ___ 5.497 -8.304 6.434 11.856

Natal ................ - 10.375 - 5.277 3.692 12.212

Johannesburg ........ 1.352 2.525 -8.008 8.504

Thailand ............. 3.350 6.659 -8.712 11.466

Mahe ................ 8.413 .122 -6.102 10.394

rms values -+8.916 -+7.179 -+8.697 -+14.376

Add 6000 to station numbers.
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TABLE 7.15.-- Three-Dimensional Cartesian Coordinates From Combined

Final Solution

635

x crx Y cry Z crz
No. _ Station name (m) + (m) (m) -+ (m) (m) -+ (m)

1 Thule ................ 546 588.043 2.524
2 Beltsville ............. 1 130 783.206 2.464
3 Moses Lake .......... -2 127 810.402 2.337

4 Shemya .............. -3 851 759.714 3.610
6 Tromso .............. 2 102 943.362 2.365
7 Azores ............... 4 433 652.575 3.091
8 Surinam ............. 3 623 251.037 3.166

9 Quito ................ 1 280 842.366 3.158
11 Maul ................. -5 466 002.263 3.288
12 Wake ................ -5 858 531.333 3.287

13 Kanoya .............. -3 565 848.055 3.138
15 Mashhad ............. 2 604 363.535 2.345
16 Catania .............. 4 896 401.374 2.357
19 Dolores .............. 2 280 628.090 2.674
20 Easter ............... -1 888 587.555 3.790
22 Pago Pago ........... -6 099 939.342 3.122
23 Thursday Is .......... -4 955 355.561 2.613
31 Invercargill .......... -4 313 799.508 2.680
32 Perth ................ -2 375 382.732 2.505
38 Revilla ............... -2 160 960.225 2.510
39 Pitcairn .............. -3 724 745.647 6.280
40 Cocos ................ -741 953.040 3.161
42 Addis Ababa ......... 4 900 753.422 2.762
43 Sombrero ............ 1 371 383.334 2.724
44 Heard ................ 1 098 912.818 5.747
45 Mauritius ............ 3 223 440.444 2.656
47 Zamboanga .......... -3 361 931.463 2.812
50 Palmer ............... 1 192 684.033 3.433
51 Mawson .............. 1 111 352.024 4.285
52 Wilkes ............... -902 583.987 3.525
53 McMurdo .......... __ -1 310 828.143 3.356
55 Ascensiolr_ ........... 6 118 342.544 3.108
59 Christmas ........... -5 885 315.086 3.027

60 Culgoora ............. -4 751 621.039 2.483
61 So. Georgia .......... 2 999 924.593 3.745
63 Dakar ................. 5 884 475.772 2.853
64 Chad ................. 6 023 393.960 2.749

65 Hohenpeissenberg ___ 4 213 570.222 2.356
67 Natal ................ 5 186 415.778 3.301

68 Johannesburg ........ 5 084 832.837 3.146
69 Da Cunha ............ 4 978 430.027 7.231
72 Thailand ............. -941 678.219 3.661

73 Chagos ............... 1 905 147.827 2.911
75 Mahe ................ 3 602 828.788 3.024

111 Wrightwood .......... -2 448 831.364 2.679

- 1 389 976.770 2.442 6 180 221.157 3.191
-4 830 812.170 2.853 3 994 691.260 2.979
-3 785 844.188 2.610 4 656 021.673 2.896

396 416.742 3.622 5 051 324.861 4.235
721 679.260 2.697 5 958 170.871 3.090

-2 268 128.968 2.686 3 971 641.629 3.327
-5 214 216.431 3.288 601 536.293 3.489
-6 250 939.190 3.947 -10 807.932 3.487
-2 404 414.762 2.767 2 242 214.785 3.235

1 394 513.654 2.966 2 093 798.651 3.211
4 120 713.101 3.636 3 303 409.134 3.581
4 444 158.701 2.711 3 750 306.588 2.712

1 316 181.910 2.316 3 856 657.080 2.572
-4 914 528.492 2.950 -3 355 416.607 3.163
-5 354 875.392 3.952 -2 895 751.980 3.784

-997 345.983 2.730 -1 568 582.700 3.208
3 842 245.988 2.427 -1 163 843.516 2.534

891 345.724 2.588 -4 597 253.294 2.833
4 875 545.638 2.621 -3 345 387.849 2.728

-5 642 694.520 3.078 2 035 358.416 3.176
-4 421 218.035 5.694 -2 686 087.346 5.255

6 190 790.099 3.069 -1 338 547.676 2.752
3 968 244.643 2.626 966 329.417 2.552

-3 614 745.095 3.157 -5 055 927.530 3.641
3 684 612.693 6.212 -5 071 853.727 7.780
5 045 332.006 2.739 -2 191 798.454 2.698
5 365 800.248 3.094 763 627.375 3.330

-2 450 986.983 4.323 -5 747 037.701 4.672
2 169 264.675 3.238 -5 874 322.862 4.844
2 409 530.660 3.232 -5 816 542.503 4.730

311 271.145 3.073 -6 213 265.956 3.958
-1 571 732.245 2.883 -878 608.379 3.089
-2 448 357.151 2.732 221 669.643 3.145

2 792 063.383 2.372 -3 200 156.628 2.442
-2 219 357.041 4.232 -5 155 247.563 4.886
- 1 853 478.486 2.307 1 612 848.261 2.930

1 617 940.871 2.236 1 331 726.674 2.508
820 837.313 2.346 4 702 769.262 2.758

-3 653 921.575 3.208 -654 288.938 3.072
2 670 338.698 2.580 -2 768 083.655 3.248

-1 086 856.181 5.644 -3 823 164.893 7.581
5 967 438.461 3.337 2 039 300.514 2.969
6 032 272.479 3.482 -810 729.775 3.001
5 238 237.170 3.096 -515 947.433 2.773

-4 667 972.160 3.052 3 582 744.578 3.162

Add 6000 to station numbers.
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TABLE 7.16.--Coordinate Differences Between Translated B C-4 Solution

and Combined Solution After XYZ Fit (h = BC-4 Solution - Combined

Solution)

Resultant
No. a Station name A_b (m) hh (m) Ah (m) (m)

1 Thule ................ 4.905 -0.684 3.289 5.945
2 Beltsville ............ 0.185 2.209 - 1.853 2.889
3 Moses Lake .......... - 1.735 4.091 0.269 4.452

4 Shemya .............. 1.505 4.864 9.935 11.164
6 Tromso ............... - 1.757 - 5.547 4.648 7.447
7 Azores ............... -0.822 -4.204 1.007 4.400
8 Surinam ............. 0.515 2.110 -3.960 4.517
9 Quito ................. 0.156 7.501 -2.580 7.933

11 Maui ................. 0.582 -2.418 1.395 2.852
12 Wake ................. -2.316 -4.665 -8.936 10.343
13 Kanoya .............. .5.430 -0.159 0.670 5.474

15 Mashhad ............. 0.712 1.603 2.850 3.347
16 Catania .............. 0.101 -3.388 3.223 4.677
19 Dolores .............. -10.566 4.851 3.581 12.165
20 Easter ............... -0.379 10.325 4.284 11.185
22 Pago Pago ........... 0.561 -3.868 -2.642 4.718
23 Thursday ............ -0.403 -3.230 -5.313 6.231
31 Invercargill .......... -2.236 -5.096 -1.787 5.845
32 Perth ................ -2.256 1.600 -3.654 4.583
38 Revilla ............... - 1.674 4.430 0.880 4.816
39 Pitcairn .............. 0.968 1.486 1.936 2.625
40 Cocos ................ 1.943 2.522 - 1.498 3.518
42 Addis Ababa ......... 3.113 0.599 1.303 3.427
43 Sombrero ............ -13.364 5.306 10.147 17.598
44 Heard ................ - 1.623 3.003 - 1.282 3.646
45 Mauritius ............ 2.317 1.935 - 1.021 3.187

47 Zamboanga .......... 2.878 0.990 - 4.290 5.260
50 Palmer ............... - 17.711 1.139 12.169 21.519
51 Mawson .............. - 1.968 3.462 - 0.566 4.022
52 Wilkes ............... -5.689 1.977 -1.901 6.315
53 McMurdo ............ -5.707 -3.880 -0.698 6.936
55 Ascension ............ -2.133 -4.243 1.390 4.948
59 Christmas ............ - 0.003 - 2.663 - 1.335 2.978

60 Culgoora ............. -2.556 -4.203 -3.594 6.092
61 So. Georgia ........... -13.290 -3.515 8.088 15.950
63 Dakar ................ -0.078 -3.618 0.264 3.628
64 Chad ................. 0.396 -1.160 1.656 2.060

65 Hohenpeissenberg ___ 0.397 -4.163 4.660 6.261
67 Natal ................ -3.810 -3.519 0.459 5.207
68 Johannesburg ........ 1.930 0.627 -2.082 2.908
69 Da Cunha ............ -7.851 -6.563 6.722 12.243
72 Thailand ............. 3.621 4.358 -2.717 6.284
73 Chagos ............... 3.124 1.925 - 1.213 3.865
75 Mahe ................ 3.651 1.386 -1.143 4.069
78 Vila Efate ............ 0.192 -4.949 -3.148 5.868

111 Wrightwood .......... -0.250 4.706 0.827 4.784
123 Point Barrow ........ -0.378 6.691 4.322 7.974

rms values -+4.817 -+3.974 -+4.183 -+7.516 n = 47

a Add 6000 to station numbers.
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TABLE 7.17.--Coordinate Differences Between Transformed Doppler
Solution and Combined Solution After XYZ Fit (A = Combined

Solution - Doppler)

Resultant
No. a Station name _ _b (m) _ k (m) _h (m) (m)

1
2
3
4
6
7
8

9
11
12

13

15
16
19

20
22
23
31
32
38
40
42
43
45
47
5O

55
59
6O
63
64
65
67
68
72
75

Thule ................ 4.948 - 1.690 7.309 8.987
Beltsville ............ - 2.044 - 0.855 - 2.602 3.418
Moses Lake .......... -1.540 1.573 -3.619 4.236
Shemya .............. 4.433 8.980 5.727 11.537
Tromso ............... -0.062 -11.187 3.029 11.590
Azores ............... -10.072 -1.351 3.282 10.679
Surinam ............. - 1.574 0.269 -4.707 4.970

Quito ................. 5.469 3.704 -4.496 7.991
Maul ................. 3.717 0.755 8.146 8.986
Wake ................. -11.845 -6.005 -14.576 19.718

Kanoya .............. 1.320 0.417 4.100 4.327
Mashhad ............. 2.605 2.585 - 1.262 3.881
Catania .............. 0.976 1.908 0.143 2.148
Dolores .............. -9.064 11.106 -7.536 16.195
Easter ............... 7.860 4.731 -0.514 9.188

Pago Pago ........... 4.182 - 1.580 - 1.630 4.758
Thursday ............ - 0.665 - 3.988 - 8.993 9.860
Invercargill .......... -4.103 -4.126 -2.665 6.400
Perth ................ 6.200 - 1.870 5.400 8.432
Revilla ............... -4.009 -3.528 2.629 5.953
Cocos ................ 1.678 -2.067 4.543 5.265
Addis Ababa ......... 10.339 -2.729 4.697 11.679
Sombrero ............ - 7.959 - 1.174 14.647 16.711
Mauritius ............ 1.132 3.045 2.671 4.206

Zamboanga .......... 0.682 2.454 - 4.308 5.004
Palmer ............... -3.410 -5.423 1.174 6.512
M_M,l_dn - 11 079 2.695 -2.663 11.709

Ascension ............ -6.249 -6.384 - 1.088 9.000
Christmas ............ 4.643 -1.483 - 1.990 5.265
Culgoora ............. -8.968 -4.719 1.850 10.302
Dakar .............. -__ 0.028 9.353 -0.024 9.354
Chad ................. 4.612 3.340 3.648 6.763

Hohenpeissenberg ___ 4.508 -3.934 1.788 6.244
Natal ................ - 7.821 - 1.469 3.266 8.602

Johannesburg ........ - 1.506 1.312 - 5.527 5.876
Thailand ............. - 0.145 2.282 - 5.246 5.723
Mahe ................ 4.334 -1.677 -4.459 6.441

rms values -+5.588 -+4.436 -+5.339 -+8.911

a Add 6000 to station numbers.
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TABLE 7.18

a

Additional Type of 6 378.. • AX AY" AZ
Input data solution (m) 1/f (m) (m) (m)

(1) _BC-4 result,

(2) J 43 stations

(3) _

Combined solu-

(4) tion, 43 sta-

tions

(5)

MSL elevations Unconstrained ellip- 130.17 298.377 +16.20 -14.82 -16.40soid fit

_The same Ellipsoid fit con- 132.80 298.250 +16.29 -15.32 -16.74
strained to dy-

namically deter-
mined 1/f

The same Unconstrained ellip- 133.98 298.246 +1.373 +2.434 -1.844
soid fit

The same Ellipsoid fit con-

strained to dy-

namically deter-

mined 1/f
The same Ellipsoid fit con-

strained to dy-

namically deter-

mined 1/f and to
Anderle mass cen-

ter position

(6) "_ _" MSL elevations as in (1) ab_ove
and Anderle

C-4 result, geoidal

37 stations heights N
(7) _The same as in (2) above

(8) 1Combine d solu- (The same as in (3) above

(9) _ tion, 37 sta- _The same as in (4) above
J tions(10) _The same as in (5) above

(11) BC.-4 result, None XYZ fit between

Doppler result, Doppler and
for 37 stations BC-4 result

133.90 298.250 +1.370 +2.453 -1.835

134.02 298.250 0 0 0

126.47 298.409 +14.702 -19.482 -13.816

129.45 298.250 +15.140 -20.181 -15.252
128.83 298.322 -1.900 -0.378 +1.183
130.21 298.250 -1.756 -0.764 +0.721

130.22 298.250 0 0 0
130.48 .......... +19.590 -17.684 -14.344

-+1.58 -+1.34 -+1.33 -+1.51

Left-handed system: reverse signs.
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TABLE7.19.--GeographicCoordinates From Combined Solution Computed With

a = 6378130 m and f = 1:298.250 m

639

Sta- Latitude Longitude (east) Ellipsoid
tion c% _ height ah
no. a Station name deg min sec (m) deg min sec (m) (m) (m)

1 Thule

2 Beltsville

3 Moses Lake

4 Shemya
6 Tromso
7 Azores

8 Surinam

9 Quito
11 Maui

12 Wake

13 Kanoya
15 Mashhad

16 Catania

19 Dolores

20 Easter

22 Pago Pago

23 Thursday Is.

31 Invercargill
32 Perth

38 Revilla
39 Pitcairn

40 Cocos

42 Addis Ababa

43 Sombrero

44 Heard

45 Mauritius

47 Zamboansta
50 Palmer

51 Mawson

52 Wilkes

53 McMurdo

55 Ascension

59 Christmas

60 Culgoora

61 So. Georgia
63 Dakar

64 Chad

65 Hohenpeissenberg
67 Natal

68 Johannesburg
69 Da Cunha

72 Thailand

73 Chagos

75 Mahe

111 Wrightwood

N 76 30 4.8627 2.184 291 27 59.4280 2.675 219.379 3.236

N 39 01 39.3318 2.540 283 10 27.9765 2.440 -1.458 3.264
N 47 11 6.6534 2.424 240 39 43.5760 2.308 336.069 3.069
N 52 42 48.9705 3.782 174 7 26.0462 3.475 39.745 4.193
N 69 39 44.4978 2.361 18 56 27.5273 2.535 133.357 3.211
N 38 45 36.0847 2.864 332
N 05 26 53.4378 3.457 304
S 0 5 51.7281 3.504 281
N 20 42 26.9218 3.045 203
N 19 17 28.2961 2.947 166
N 31 23 42.5648 3.278 130
N 36 14 25.5340 2.441 59
N 37 26 38.5025 2.158 15

S 31 56 35.5287 2.992 294
S 27 10 36.4176 3.317 250
S 14 19 54.4748 3.141 189
S 10 35 2.9982 2.511 142
S 46 24 58.1142 2.542 168
S 31 50 24.9112 2.482 115
N 18 43 58.2071 3.020 249
S 25 4 6.8403 3.686 229
S 12 11 44.0207 2.682 96
N 8 46 12.5193 2.574 38
S 52 46 52.5872 3.472 290
S 53 1 9.0693 6.472 73
S 20 13 53.1132 2.586 57
N 6 55 20.7741 3.324 122
S 64 46 26.7693 4.870 295
S 67 36 4.8017 3.925 62
S 66 16 44.9811 3.267 110
S 77 50 41.6571 3.445 166

S 7 58 15.4065 3.058 345
N 2 0 18.3902 3.148 202
S 30 18 34.2631 2.339 149
S 54 17 1.1326 3.750 323

N 14 44 42.1988 2.847 342
N 12 7 54.5921 2.520 15

N 47 48 3.9953 2.184 11

S 5 55 39.0642 3.061 324
S 25 52 59.1717 2.975 27
S 37 3 53.6135 6.418 347

aN 18 46 10.5737 2.770 98
S 7 21 6.6304 2.994 72
S 4 40 14.6759 2.753 55
N 34 22 54.4315 2.628 242

54 25.2813 2.652 108.829 3.546
47 40.6928 2.880 -20.115 3.585
34 47.4488 3.163 2694.047 3.937
44 38.3808 2.696 3075.656 3.522
36 39.4948 2.896
52 16.2716 3.390
37 43.9207 2.459

2 44.8491 2.240
53 38.5873 2.579
34 22.7515 3.544
17 8.7112 2.701
12 39.5544 2.341
19 31.6698 2.588
58 31.8154 2.420

2 41.4901 2.515
53 12.6661 4.975
50 3.0512 3.132

4.297 3.589
83.416 3.694

963.436 2.860
45.972 2.800

627.599 3.203
219.755 4.554

35.347 3.223
119.259 2.718
-0.007 2.949
-8.327 2.927

-14.701 3.235
317.220 7.817
-29.827 3.163

59 52.1902 2.607 1872.647 2.766

46 33.7413 2.662
23 35.2173 6.032

25 32.4106 2._34
4 8.8287 2.696

56 53.4936 3.289
52 23.3298 3.829
32 7.4526 3.359
38 30.7416 3.006
35 34.4179 2.943
35 16.2920 2.593
33 41.0676 2.275
30 20.9006 4.454
31 0.2512 2.306

2 7.0547 2.223
1 25.0048 2.296

50 4.6598 3.199

95.214 3.378
39.662 7.314

137.814 2.869

71.335 3.215
26.028 4.184
39.813 4.690
10.755 4.808

-41.095 3.907
83.939 3.092
24.514 3.157

235.088 2.666
19.203 4.659

55.378 2.945
306.766 2.756
977.952 2.928

38.288 3.328
42 23.5867 2.587 1536.885 3.402
41 5.3077 5.714 45.432 8.227
58 2.9441 3.622 259.580 3.545
28 21.1236 2.969 -72.915 3.446
28 48.1258 2.830 545.382 3.298
19 6.1310 2.757 2252.261 3.457

a Add 6000 to station numbers.
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TABLE 7.20.--Components of Vertical

Deflections (A = Astro - Geodetic)

Station

no. a h4" h)," _"= hh" cos_b cos _b

001 6.81 -48.34 -11.28 0.2334

002 - 1.60 7.37 5.72 0.7768

003 -3.41 -0.63 -0.43 0.6796

004 14.51 18.87 11.43 0.6058

006 -1.26 19.51 6.78 0.3475

007 7.20 10.13 7.90 0.7797

008 -4.48 - 1.90 - 1.89 0.9955

009 - 1.36 9.46 9.46 1.0000

011 -5.06 -1.33 -1.24 0.9353

012 -3.90 -14.31 -13.51 0.9439

013 -4.08 9.44 8.06 0.8537

015 2.29 16.88 13.62 0.8066

016 0.20 18.34 14.56 0.7939

020 -2.79 -5.26 -4.68 0.8896

022 -13.87 -0.86 -0.83 0.9689

023 -3.78 -4.66 -4.58 0.9830

031 -2.94 3.23 2.23 0.6894

032 0.34 -28.10 -23.87 0.8496

038 -13.28 -2.21 -2.09 0.9470

039 -0.31 -0.79 -0.72 0.9058

040 -13.89 -15.97 -15.61 0.9774

042 -6.78 5.00 4.94 0.9883

043 1.85 -7.30 -4.42 0.6048

044 -2.96 -7.80 -4.70 0.6016

045 15.63 -39.61 -37.17 0.9383

047 -2.48 -2.38 -2.36 0.9927

050 -7.21 -16.45 -7.01 0.4260

051 1.72 1.08 0.41 0.3811

052 -0.14 -2.84 -1.14 0.4022

053 -1.66 -16.88 -3.55 0.2105

055 -2.86 -4.78 -4.73 0.9903

059 17.23 5.67 5.66 0.0994

060 - 1.88 - 9.96 -8.60 0.8633

061 21.62 21.63 12.63 0.5838

063 2.03 -4.66 -4.51 0.9670

064 -0.65 1.91 1.87 0.9777

065 5.54 5.53 3.71 0.6717

067 1.32 - 1.69 - 1.68 0.9946

068 9.11 7.59 6.83 0.8997

069 27.35 -11.75 -9.38 0.7981

072 -23.07 5.44 5.15 0.9468

073 8.10 11.04 10.95 0.9918

075 4.37 5.85 5.83 0.9967

111 6.37 18.49 15.26 0.8253

Add 6000 to station numbers.
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TABLE 7.21.--Height of Geoid Above Ellipsoid (N) = Ellipsoid Height

(h) Minus Mean Sea Level Elevation (H)

641

Station no. a

(1) (2) (3)
N

Combined solution N
based on 6378130 Anderle solution AN

(m) (m) (m)

1 13.379 7.30 +6.08
2 -45.758 -43.7 -2.05
3 -32.671 -29.70 -2.97

4 2.985 -3.40 +6.38
6 27.357 24.16 +3.20
7 55.569 51.87 +3.70
8 -38.495 -34.25 -4.25
9 11.947 15.90 -3.95

11 26.386 15.81 +10.58
12 0.837 15.08 - 14.24

13 17.516 27.80 -10.28
15 -27.614 -26.80 -0.81
16 36.972 36.42 0.55
19 19.419 26.44 -7.02
20 -11.045 -11.20 0.16
22 30.007 30.83 -0.82

23 59.659 67.88 -8.22
31 - 0.957 0.95 - 1.91
32 -34.627 -40.30 5.68
38 -37.901 -41.20 3.30

39 -22.170 ............

40 -34.237 -39.40 5.16

42 - 13.813 - 18.90 5.09

43 14.554 -0.65 15.20

44 35.891 ............

_ " °°_ -3.54 5.15-_ v._vv

47 61.944 65.56 -3.62
50 9.588 7.84 1.75

51 28.813 ............

52 -7.245 ............
53 - 60.185 - 58.20 - 1.98
55 12.999 13.72 -0.72
59 21.764 22.95 -1.19
60 23.988 21.37 2.62
61 15.023 ............

63 29.098 28.75 0.35
64 11.356 7.35 4.01
65 34.452 34.06 0.39
67 -2.342 -6.09 3.75
68 13.085 17.70 -4.62
69 20.002 ............

72 -48.820 -44.12 -4.70
73 -76.766 ............

75 -43.598 -39.18 -4.42
111 -32.140 ............

Z = +3.33
RMS = -+5.57

Add 6000 to station numbers.
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TABLE 7.22.--Station Shifts (h = Combined Solution - Survey)

AX AY b AZ N

Station a Datum (m) (m) (m) (m) Ellipsoid

002 North American -15.464 -175.238 +170.683 -0.4 Clarke 1866

003 - 15.073 - 168.389 + 176.173 - 16.0

004 -14.839 -224.661 +125.460 -46.0

111 -14.909 -156.030 +174.079 -23.0

023 Australian -124.696 +59.448 +145.870 -4.6 AND

032 -122.122 +61.380 +148.912 +15.4

060 -120.584 +58.544 +140.350 +0.7

006 European -95.289 +87.386 -130.319 +12.6 International

015 -102.814 +116.573 -157.106 -38.0

016 -94.780 +97.941 -128.373 -16.6

065 -98.045 +94.773 -130.038 -0.6

042 Adindan -175.031 +22.702 +207.848 -8.0 Clarke 1880

063 -159.895 +18.666 +211.616 +20.7

064 -162.790 +18.035 +201.089 +23.6

009 S.A.D. 1969 -62.026 -30.896 -38.650 +24.6 South American

019 -84.870 -10.993 -28.779 +13.0

067 -79.113 +2.203 -44.415 +26.14

001 QORNOQ +193.755 -152.336 -179.116 +32.0 International

007 S.W. Base on Int. -146.464 -189.307 -85.530 +55.569 InternationaF

008 Prov. S.A. 1956 -285.742 -124.472 -364.343 +3.0 International

011 Old Hawaiian +89.609 +272.174 -204.940 +26.28 Clarke 1866

012 1952 Astro on Int. +297.342 +62.206 +118.723 +0.837 InternationaF

013 Tokyo -112.208 -476.369 +643.232 +27.0 Bessel

022 Am. Samoa 1962 -75.859 -125.169 +431.583 +22.0 Clarke 1866

031 Geodetic 1949 +86.529 +29.100 +204.364 -0.957 InternationaF

043 Prov. S. Chile 1963 +4.265 -209.046 +104.397 +14.554 InternationaF

045 LePonce Astro on 1880 -750.581 -159.580 -507.541 -0.386 Clarke 1880 c

047 Luzon -72.235 +115.447 -115.971 +61.944 Clarke 1886 c

055 Ascension Is. 1958 -231.471 -111.769 +48.248 +12.999 InternationaF

068 Buffelsfont -153.391 +130.351 -283.829 +13.085 Clarke 1880 c

072 Indian +230.419 -827.968 +291.150 -48.820 Everest _

075 Mahe 1971 +60.571 +197.879 -140.513 -43.598 Clarke 1880 c

007 Astro +12.302 +280.978 -173.013 +55.569 Comb. Solution c

012 Astro 1952 -58.951 +415.588 +113.310 +0.837 a = 6378130 c

020 Astro 1967 +123.534 +85.205 +76.460 -11.045 f= 1:298.25 c

038 Astro Is. Soc. +107.336 -99.244 +386.616 -37.901 f= 1:298.25 c

039 Astro 1967 +14.216 +17.322 +8.608 -22.170 f= 1:298.25 _

040 Astro Anna 1 1965 -490.078 -32.066 +417.173 -34.237 f= 1:298.25 c

044 Astro 1969 -118.468 -111.631 +55.102 +35.891 f= 1:298.25 c

045 Astro LePonce -1058.365 -479.038 -451.105 -0.386 f= 1:298.25 c

050 Astro 1969 +283.896 +86.525 +95.174 +9.588 f= 1:298.25 c

051 Astro 1969 -11.130 +49.721 -20.296 +28.813 f= 1:298.25 c

052 Astro 1969 -34.580 +8.773 +1.786 -7.245 f= 1:298.25 _

053 Astro Camp Area 1961/62 -74.517 +95.634 +10.908 -60.185 f= 1:298.25 _

059 A'stro Christmas Is. 1967 -84.514 -154.619 -528.955 +21.764 f= 1:298.25 _

061 Astro -669.022 -8.101 -390.231 +15.023 f= 1:298.25 c

069 Astro 1968 -434.607 -392.099 -672.974 +20.602 f= 1:298.25 _

073 ISTS Astro 1969 +313.175 +132.303 -246.794 -76.765 f= 1:298.25 c

Add 6000 to station numbers.

b Left-handed system; reverse signs on hy
N obtained from combined solution (table 7.21, col. 1) because of lack of corresponding survey data.
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TABLE 7.23.--Datum Shifts

643

Datum

Residual coordinate
differences after

datum shift

A_b A_ east Ah
Stations [m] [m] [m] Scalar

Datum shift parameters

h k rotation
+ _, east AX
X to Y (m)

Translations

AY AZ
(m) (m)

NAD 002 - 1.9 - 1.9 -2.4

003 +6.1 -0.5 -2.2

111 -2.6 +2.1 +4.6

1.000 000 065 6 -':7680 -31.6 +171.1 + 173.4

AUS 023 +1.2 +1.4 +1,6

032 +2.8 +0.3 -2.8
060 -4.8 -1.9 +1.1

0.999 999 939 9 +'.'0730 -124.1 -61.0 +144.9

Europe 006 -0.1 -0.3 +0.2

016 -0.2 -0.3 +0.9
065 +0.4 +0.4 -1.1

0.999 999 172 0 +'.'7563 -96.4 -78.9 -125.6

South
American
1969

009 +5.4 +10.4 -3.4

019 -2.3 -13.5 -0.4
067 -3.3 +1.1 +3.7

0.999 994 906 7 +_7101 -43.5 -1.9 -44.1

Adindan 042 +1.3 +0.6 -2.2

063 +5.1 -0.2 -0.6

064 -6.5 -0.4 +2.8

0.999 999 979 4 -'.'5231 -162.6 -34.0 +206.9


