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9.1 HISTORICAL INTRODUCTION
(C. A. Lundquist and F. L. Whipple)

9.1.1 Initial Objectives of the SAO Satellite-
Tracking Program

As the principal objective of its participa-
tion in the International Geophysical Year
(IGY), the Smithsonian Astrophysical Ob-
servatory (SAO) conceived of and estab-
lished a systematic program to observe posi-
tions of artificial satellites and to derive

geophysical information from these observa-
tions (Whipple and Hynek, 1956, 1958a,b).
The fundamental concepts for this program
existed in the minds and studies of SAO Di-

rector Fred L. Whipple and his colleagues
(see Ryan, 1952) well before President
Eisenhower announced in 1955 that the

T T_ .* J- _ CI J. _ .L ....... 1 1 _ " ", ,,,,,_d ,_,_,vs _,,,,_,d ,aunch a ._clentlfic satel-

ilte during the iGY. These plans originated
with Project Orbiter, followed by Project
Vanguard, which in turn was superseded by

its orbit on January 30, 1958, the SAO ob-
servation network and analytical apparatus
were ready with partial operational status.

As stated in 1957, the principal objectives
of this early SAO activity were (1) "to tie

together the observing stations and the
center of the geoid to a precision of the order
of 10 m .... to, (2) add appreciably to our
knowledge of the density distribution of the
earth, particularly in crustal volumes," and
(3) to provide "the value of the [atmos-
pheric] density a few kilometers above the
initial perigee distance, and periodic effects
or predictable cyclic effects that may occur
in the earth's high atmosphere" (Whipple
and Hynek, 1958a). The first two objectives
evolved into similar, but more demanding,

ones for subsequent programs, such as
the National Geodetic Satellite Program

(NGSP) (Rosenberg, 1968).

9.1.2 Establishment of the Baker-Nunn Net-
work

To establish the required satellite observa-
tion capability, SAO initially developed a
photographic system (Whipple and Hynek,

1958b). The basic tracking camera, named
Baker-Nunn after its optical and mechanical
designers, has f/1 Schmidt optics. During
the first several years of field operation, a
Norrman time standard, also named for its
designer, provided epoch measurements. The
Baker-Nunn tracking system has accuracies
in the arc-second and millisecond range.
Twelve stations with this equipment went

lIlt, U U UUJ[_t, blUII as a _lUU_l llt2bWUl-l_, uUl-lll_

the IGY.

With the passage of time, the Baker-Nunn

changes (Whipple and Lundquist, 1967).
The modes of camera operation required
slightmodification to accommodate a variety

orbits: A new, more accurate, time standard
replaced the Norrman standard.

It is a tribute to the designers of the
Baker-Nunn system that for nearly a decade
the accuracy of the Baker-Nunn data ex-
ceeded the accuracies of the analytical treat-
ment of these data and of the geodetic param-
eters derived from them. Indeed, Baker-
Nunn observations contributed appreciably
to the NGSP results reported here. By about
1966, however, the accuracy of the derived
geodetic parameters began to approach that
of the observations, thus motivating signifi-
cant moves toward deployment of new track-

ing systems of superior accuracy.

9.1.3 Introduction of Laser Systems

When the accuracy of photographic meth-
ods began to pose a serious limit on future
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geodetic investigations, laser systems to
measure Earth-to-satellite ranges offered the
best prospect for substantial reduction of
measurement uncertainties. Range measure-
ments with pulsed laser systems became pos-
sible in 1964 after the BE-B satellite

(6406401), which carried an array of optical
retroreflectors, was launched (Plotkin,
1964). In 1965, SAO and the General Elec-
tric Company began laser ranging experi-
ments in conjunction with the Baker-Nunn

system at Organ Pass, New Mexico (Ander-
son et al., 1966).

Experience with the equipment at Organ
Pass led to the specification and development
of a greatly improved instrument, and the
prototype model of this ruby-laser system
began operating in late 1967 at Mt. Hopkins
Observatory, Arizona (Lehr et al., 1968).
After appropriate tests of this prototype and
after identification of design modifications
indicated by them, SAO procured three addi-
tional laser ranging systems. In late 1970,
these three units began operating at the SAO

sites in Arequipa, Peru; Natal, Brazil; and
Olifantsfontein, South Africa. The proto-
type remained at Mr. Hopkins.

These SAO instruments, and similar laser

systems deployed by other groups, con-
tributed the major data base used in the
final NGSP results presented here. It is the
improved accuracy of these data, relative to
earlier observations, that allows further re-
finements of geodetic parameters.

9.1.4 Evolution of International Cooperation

The network of Baker-Nunn satellite-

tracking stations was conceived by SAO as
a cooperative international enterprise dur-
ing the IGY. Its implementation depended
crucially on agreements between SAO and
appropriate scientific organizations in the
nations hosting the stations. Many of these
agreements have continued to the present,
with occasional renewals and modifications
as needed. The viability and success of such
a network stem from a recognition that little

can be accomplished on global problems by a
single station working in isolation, whereas
a well-coordinated global network can achieve
much.

The cooperative aspects of the efforts co-
ordinated by SAO naturally extend to the
analysis and interpretation of the data.
First, it has been a policy that data gen-
erated by the network are available to all
network participants. Also, SAO data are
eventually published or otherwise made
available to the general scientific community.
Second, several visiting scientists from host
countries have been deeply involved at SAO
in geodetic investigations that employ the
network data (in particular, Veis, 1960,

1961, 1963a,b, 1965c, 1966a,b; Kozai, 1960,
1962a,b, 1963a,b, 1964; Giacaglia, 1973).

In recent years, cooperative efforts have

increased further through various inter-
national observing campaigns. These cam-
paigns involve a concerted effort among the
several existing networks, as well as be-
tween individual stations. Such campaigns
have been responsible for some of the most
valuable data used in the analyses reported
here. Thus, credit for the basic support be-
hind these results must go to many nations,
organizations, and individuals.

9.1.5 Cooperative Observing Programs

The first of the inter-network cooperative

observing programs occurred in the spring of
1967 (Lundquist, 1967). The timing of this
campaign followed the launch of Diademe-1
(D1C, 6701101), and Diademe-2 (D1D,
6701401), which carried retroflectors for
laser ranging. The major participants--
Centre National d'Etudes Spatiales (CNES),

Goddard Space Flight Center (GSFC), and
SAO--arranged an observing schedule to be
followed by the stations of these three orga-
nizations. The arrangements emphasized the
need to coordinate observations taken by
the small number of laser instruments in

operation at that time. Lasers were located
at three CNES stations, in Haute Provence,
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France; Colomb-Bechir, Algeria; and Ste-
phanion, Greece ; at a GSFC station in Green-
belt, Maryland; and at the SAO station in
Organ Pass. The Baker-Nunn and other
camera systems also participated.

For this observation campaign, intervals
of favorable satellite visibility lasting several
weeks were selected for the five satellites
with retroreflectors. During each selected

interval, all participating stations were dedi-

cated to obtaining maximum tracking cov-

erage of the designated satellite. This became
known as the saturation-tracking mode.

Such periods of high-density data are par-

ticularly valuable in determinations of longi-
tude-dependent coefficients in the gravity
field of the Earth.

SAO took the initiative in organizing a

second, international, geodetic-satellite track-

ing effort in 1968, following the launch of

_u_-z (6800201). GEOS-2 was the sec-
ond satellite launched under the aegis of the
NGSP and equipped with retroreflectors.

Again, intervals of several weeks were desig-

nated for saturation tracking of the six retro-
reflector satellites. By 1968, a few more laser
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Provence and at the SAO station in San

Fernando, Spain; two NASA lasers were at

Greenbelt and at Rosmund, North Carolina;
and an SAO laser was located at Organ
Pass.

A two-laser collocation experiment was
conducted at the SAO Mt. Hopkins Observa-

tory in 1969. A GSFC mobile laser system
and the SAO prototype obtained simultane-

ous observations on GEOS-2, enabling an
evaluation of system performance to be made.

The next observation campaign in this
series was the International Satellite Geod-

esy Experiment (ISAGEX), organized by

CNES in conjunction with the launch of

PEOLE (7010901), a new retroreflector
satellite in a low-inclination orbit. This ef-

fort extended from January 5 to August 31,
1971.

9.1.6 Evolution of Results

The results presented here by SAO, cor-
responding to the completion of the NGSP,
are but the latest in a sequence of advances
in the determination of geodetic parameters.
This sequence started with the early works
of Izsak (1963, 1964, 1966), Kozai (1963a,b,
1964), and Veis (1965c).

A major effort in 1966 resulted in the first
Smithsonian Institution Standard Earth

(SE) (Lundquist and Veis, 1966), the com-
bined work of many authors. This was the
first solution for geodetic parameters based
on a combination of dynamical and geo-
metrical data and analyses. The 1969 SE
II (Gaposchkin and Lambeck, 1970) was
the next milestone in the SAO series. This

solution for geodetic parameters not only
combined dynamical and geometric data, but
also ;,_,.._+_,t _,,,._,_,,,__,..._._+,, informa-

tion and results from Jet Propulsion Labora-
tory's (JPL) Deep Space Net (DSN). This

......... ,.,._.,y some
laser range data, resulting irom _he i967
and ]968 obsorvation campaigns. Finally,
the solution presented here is again a combi-

data are more complete then they were in
1969 and, hence, bear strongly on the final
results. Survey data are also included.

9.2 INSTRUMENTATION
(M. R. Pearlman, J. M. Thorp, C. R. H.

Tsiang, D. A. Arnold, C. G. Lehr, and J.

Wohn)

9.2.1 Baker-Nunn Camera

9.2.1.1 Description of Technique

The Baker-Nunn camera photographs
satellites against a star background. It can

Also included in this part is material originally

prepared by G. Veis, K. Lambeck, and K. L. Hara-

mundanis. We are grateful to them for their con-

tributions.



798 NATIONAL GEODETIC SATELLITE PROGRAM

photograph either passive, Sun-illuminated
satellites or active-satellite flashes under

night-sky conditions. The Smithsonian Astro-

physical Observatory Star Catalog has an

average standard deviation in star position
of 0"5 (epoch of 1963.5) (Staff, Smithsonian

Astrophysical Observatory, 1966). The SAO

field timing system is kept within 100 t_sec
or better of Universal Time Coordinated

(UTC) as maintained by and referred to the

United States Naval Observatory (USNO) ;

hereafter, we shall express such time as

UTC(USNO). With the use of the catalog

and the timing system, the reduction tech-

nique can provide an accuracy of 2". Ob-

servations are routinely reduced at the ob-

serving station to an accuracy of 40" to 60".

The camera was originally designed to

photograph very small satellites in poorly
known orbits without the aid of active sys-

tems on the satellites themselves. For this

reason, it has a fast optical system and a

wide field of view. Pointing predictions need

an accuracy of only several degrees.

9.2.1.2 Instrument Description

The Baker-Nunn is a three-axis camera

designed according to the specifications of

SA0 for satellite tracking. The optical sys-

tem was designed by James G. Baker; the

mounting and mechanical system, by Joseph

Nunn. The camera is approximately 2.5 m

high and 3 m wide and weighs about 9000 kg.

It combines an extremely fast f/1 optical

system with a sophisticated film transport,

and currently uses 55.6-mm Royal X ex-

tended red film (Kodak S0-338). It is best

known for its light-gathering power and can

photograph stars 3x 10' fainter than those

visible to the naked eye. The camera, which

operates only at night, can photograph Sun-

illuminated satellites as well as satellites With

flashing lights.

9.2.1.2.1 CAMERA OPERATION

The Baker-Nunn camera (see fig. 9.1) is
basically a Schmidt telescope with refine-

ments designed to improve its optical per'-

formance. The focal ratio of the system is

f/1 with an aperture of 508 mm (20 inches).
This focal length gives a film scale of
406" mm 1.

Light enters the camera through the three-

element lens assembly (two positive and one

negative), which corrects for spherical and
chromatic aberrations, and is reflected from

the 787-mm (31-inch) diameter, spherical

pyrex mirror onto the photographic film.

During exposure, tension is applied to the

film to force it to conform to the shape of

the backup plate, which is figured to the re-
quired aspherical focal surface.

A clamshell-type focal-plane shutter be-

gins and ends the exposure, which is preset

for 0.2, 0.4, 0.8, 1.6, or 3.2 sec. A barrel-

type shutter rotating in front of the focal

surface chops the star trails or satellite trail

(depending on the operating mode) and

provides five reference breaks for measure-

ment. The chopping shutter is coupled to a

set of timing points that close at the third

break and trigger a time presentation, read-

able to 0.1 msec, which is recorded on the

film. When the exposure is completed, the
film is advanced until the next frame is

positioned against the backup plate. For a

15 ° x5 ° field, including time presentation,
one frame is 152 mm of film. The film-trans-

port mechanism, chopper shutter, and clam-
shell shutter are mechanically synchronized.

The camera is supported on a massive

altitude-azimuth mount (see fig. 9.2) with a

third mechanized tracking axis normal to the

altitude axis. Both altitude and azimuth are

manually set, normally to ± 0.°2, and clamped
into position during photography. The cam-

era then tracks along a great circle about

the tracking axis at a prescribed rate. This

motion approximates the apparent satellite

motion over a short arc. Movement about

the azimuth axis is limited only by the

length of the power and slave-clock cables,
which permits approximately 400 ° of free-

dom. Altitude is limited by stops at 20 ° and

160 °, and track angle is limited by micro-

switches at 27 o and 153 °. Continuously
variable angular velocities of 0 to 7000"
sec ' are available.
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FIGURE 9.1.--Crosssectionof the }]aker-Nunn camera.

9.2.1.2.2OPTICS

The modified Schmidt optical system was
chosen because it has a fast speed and a wide
field of view and it yields good images over
the entire field of view. To compensate for
aberrations introduced by the spherical pri-
mary mirror, the camera has a three-element
lens assembly, or corrector cell, mounted at
the aperture stop. The cell has little focusing

power but a strong spherical aberration ap-
proximately equal to and opposite that of the
mirror. This permits a large field, fast speed,
and good images, in the Baker-Nunn, no

attempt has been made to flatten the focal
surface: Instead, the film is made to conform
to the curved focal surface. Chromatic aber-

ration is minimized in the corrector cell by
the use of two types of glass : Schott K2FS-2
glass on the two outer elements and Schott
SK-14 glass on the inner element. The outer
glass is subject to etching in the presence
of water, and care must be taken in the field
to keep the outer surface dry.

The mirror is very accurately supported
by 12 counterweights and a center collimat-
ing post to position the mirror at the correct

Ulbb/:tllL_ ll'Unl bll_ ,,m. 1,._ _uppv.,,_ o_o-
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:FIGURE 9.2.--Top and side views of the Baker-Nunn camera, showing three axes of rotation.
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tern was designed to minimize image degrada-
tion due to temperature change and me-
chanical flexure.

9.2.1.2.3 MECHANICS

The operation of the camera depends on
the synchronous operation of a gross (clam-
shell) shutter and a fast (chopping) shutter.
These shutters and the film transport are

mechanically linked and driven by a syn-
chronous motor and a cycle-speed-selector
transmission. Speeds of 2, 4, 8, 16, or 32 sec
per cycle can be selected. There are two ex-

posures per cycle with an effective exposure
time of one-tenth the cycle. The system was
originally designed to have both a tracking
and a stationary exposure on each frame.
However, this complicated the problems of
reduction, and the camera is now operated
either in the stationary mode or in the track-
ing mode for the entire arc photographed.
The latter is used for faint satellites, and the
*urm_r. lu, _,m brighter_ I"v,sual"") satellites.

The film is transported from a supply reel
to a takeup reel by means of two drums
and a system of idler rollers. The drums are

powered by a system that applies tension,
transports, and holds to the film during the
camera's operation cycle. The drive that

operates the shutters also operates the film
transport in such a way that as the cycle
period is decreased, the speed of transport
increases. For example, for a 2-sec cycle,
the film is exposed and transported at 1
frame sea -1.

Timing of an event on the Baker-Nunn

camera requires exact knowledge of the posi-
tion of the chopping shutter at the moment
the time display is triggered. The camera

timing points are adjusted so that an epoch
corresponding to the third passage of the
shutter through the field of view is recorded

on the film. The break in the image caused
by the passage of the shutter is called a

"chop." Figure 9.3 is a Baker-Nunn photo-
graph in which the satellite, shown by the
arrow, is being tracked by the camera and
the star trails are chopped five times. Dur-

ing the third passage of the shutter, a strobe
lamp with a collimating lens, located in the
body of the camera, illuminates the chopping
shutter, whose shadow is recorded on the
film. The length of this shadow on the film

is measured and used in the reduction process
to calculate the angular position of the
chopper.

The track-angle axis of the Baker-Nunn

camera mount is driven by a reversible

synchronous motor, a Graham variable-speed
drive, and a multiplier transmission. The
Graham drive allows a variation in speed
from 0 to 70" sec -1. The transmission has

three gearing ranges of 1, 10, and 100, allow-
ing a total variation of 0 to 7000" sec -1. The

lower the gear range, the more accurately
the angular velocity can be set.

9.2.1.2.4 ELECTRONICS

For a proper sequencing of events, ac-
curate exposure times, and accurate angular

60-Hz power. _ince this frequency is not
availablein many countries,the camera is
operatedon an amplified60-Hz phase-shift-

ame relerence slgnaJ irom the station clock.

up or slowed down. This procedure allows

the center(third)chop to occur at a preset

firingtimeand the camera tobe synchronized

for satellite-flashphotography.
A displayof the stationclockismounted

on each camera at the point where film

leavesthe camera tube. On a demand pulse

from the timing points,epoch is displayed
and photographed by the camera. With the

EECo clock,manufactured by the Electronic

Engineering Company (EECo) of Santa

Ana, California,time isdisplayedon the film

in hours,minutes, seconds,and fractionsto
0.0001 sec.

9.2.1.3 Accuracy and Error Budget

The accuracy of a satellite-position meas-
urement with the Baker-Nunn camera is
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FIGURE 9.3.--Baker-Nunn photograph of satellite 6506301 (EG-RS-5). The satellite is

indicated by the arrow, and the chopped star image tracks are in the background.

dictated primarily by (1) the film measure-
ment and reduction procedure, (2) the
accuracy of star positions, (3) atmos-
pheric influences, and (4) the accuracy of
timing maintained by the station clocks. In
those cases where the great-circle approxi-

mation is an accurate representation of the
satellite's apparent motion, the instrumen-
tation introduces very minor errors in meas-
urement. In those cases where the great-
circle approximation may no longer be
accurate, the accuracy of the observation is
degraded because the satellite image may be

spread. This condition may occur when
long exposure times are required to obtain
images of very faint satellites, or when the
satellite angular velocity is very large.

9.2.2 Laser Ranging System

9.2.2.1 Description of Technique

A laser ranging system is an optical radar
used to measure the distance from a ground
station to a satellite. When accurate timing
and appropriate corrections for range bias
caused by the atmosphere are incorporated,
this is one of the most accurate satellite-

tracking techniques available.
The technique is made possible by the

availability of Q-switched lasers that produce
sharply defined pulses of nearly monochro-
matic high energy in a beam with a very low
angle of divergence. Equally important is
the availability of nanosecond-risetime elec-
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tronics instrumentation to handle these opti-
cal signals. The fast-risetime, small-width
pulses make time-interval measurements at

nanosecond resolution possible on the basis of
a single observation. The high degree of
collimation enables the laser beam to hit the

satellite with a significant amount of radiant
energy. Finally, the technique requires opti-
cal retroreflectors on the satellite to ensure

measurable return signals. The monochro-

matic nature of the laser output allows for
efficient filtering to improve the signal-to-
noise ratio.

The basic ranging system consists of a

laser transmitter, a photoreceiver, a mount
for the transmitter and receiver, and a time
interval counter. The observed range time is
the two-way time of flight of the laser pulse,
measured by the time interval counter.

In operation, the laser beam is pointed

to th_.._ _-_+_A_-_ satellite position and is
pulsed at specified times. During a normal
satellite pass, the system makes many range

measurements in arder to take advantage of

the satellite geometry and to permit ac-
cumulation of data for analysis.

9.2.2.2 Instrument Description

9.2.2.2.1 SMITHSONIAN ASTROPHYSI-

CAL OBSERVATORY LASER
SYSTEM

The SAO laser system (see fig. 9.4) was
designed for the particular requirements and
needs of the observatory's program in satel-
lite geodesy. The system has a static-point-
ing mount (or pedestal) that is aimed by

means of computed predictions of satellite
azimuth and altitude. This method of steer-

ing permits the system to operate when the
station is in daylight or the satellite is in the

Earth's shadow, i.e., 24 hours per day. The
static-pointing mount was selected because it

is economical and operationally simple, The
system operates routinely at 4 pulses rain -_
and is capable of operating at rates as high
as !0 pulse_ .*nia

MOTORIZEDMOUNT [

LASER ELECTRONICS

MOUNT ELECTRONICS j_

START

TIME INTERVAL

GATE

i

=i CLOCK

%
-I

p

RANGE GATE I

I LASER CONTROL I-V

I TAPE CONTROL

FIGURE 9.4.--Block diagram of the laser system.
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The laser, built in an oscillator-amplifier

configuration, generates an output of 5 to

7 joules in a 20-nsec pulse (half-power, full

width). The laser transmitter system was

produced by Spacerays, Inc., of Englewood,

Colorado. The system uses a Pockels cell and

a Brewster stack for _ Q-switch and can

maintain a pulse repetition rate of 10 ppm.

Both the 0.85-cm (3/8-inch) diameter oscil-

lator ruby rod and the 1.59-cm (5/8-inch)

diameter amplifier rod are mounted in

15.24-cm (6-inch) double elliptical cavities,

each containing two linear fiashlamps. The

optical cavity of the oscillator is formed by a

flat rear mirror, with a reflectivity of 99.9

percent, and the uncoated front of the oscilla-
tor rod.

The oscillator output of 1 to 2 joules is

coupled into the amplifier through a small

, 'beam-expanding telescope. The amplifier has

a single-pass gain of about 4. Both ends of

the amplifier rod are antireflective-coated.

The amplifier output is expanded to fill the

12.7-cm (5-inch) objective lens of a Galilean

telescope. The telescope optics allows ad-

j ustment of the output beam divergence from
a diameter of 0.5 to 5.0 mrad. Mounted at

the output of the laser, ITT FW128 photo-

diodes pick up atmospherically scattered

light from the outgoing pulse and send an

electrical start signal to the time interval
counter.

The optical elements of the laser are

mounted on the machined upper surface of

an aluminum I-beam, so that dimensional

stability between the optical components will

be maintained for all pointing orientations.

Separate water-cooling systems are provided

for the ruby rods and for the flashlamps.

The coolant for the ruby rods is maintained

at a temperature of 10°_+1 ° by thermo-

statically controlled cooling or heating ele-

ments. The lamp coolant is maintained within

10 ° C of the ambient air temperature. There

is provision for applying nitrogen under

pressure to the cavities, but experience has
shown that this is not necessary. A cover

over the I-beam is sealed, and desiccated air

under slight pressure is circulated through

the system.

The electronics of the laser transmitter are

basically power supplies and pulse trigger

circuits. The 1875-_f capacitor bank for the

oscillator and amplifier lamps can be operated
from 2000 to 4000 volts dc. Serial triggering

of the lamps begins the discharge, which

lasts slightly over 1 msec. Approximately

800 t_sec after the lamp pulse begins, the
system is Q-switched by quickly switching

to ground the high-voltage input to the

Pockels cell.

The ranging-system electronics consist of a

clock, a firing control, a range gate control,

and a time interval counter. The clock,

synchronized to within ± 1 _sec of the station

master clock, controls the firing time of the

laser and provides the epoch of observation.
The firing rate and the time of the laser firing

are controlled by the laser control unit. The

laser firing time can be shifted by a multiple

of 0.001 sec, with a maximum of ± 10 sec, to

account for the early or late arrival of a

satellite at a predicted point in its orbit. The

range gate control sends a delayed pulse

of adjustable width to the counter so that

the counter can be stopped only during a

small interval of time about the predicted

range time. The range gate provides protec-

tion against triggering by sky-background

noise. The Eldorado 796 range counter is a
time interval counter with 1-nsec resolution.

It uses leading-edge, voltage, threshold dis-

criminators on the start- and stop-signal

lines. A start signal ranging from 5 to 20

volts is produced by the photodiode at the

laser output. This signal is not processed

or amplified before it reaches the start

channel of the counter. The photomultiplier

tube (PMT) output passes through a 0- to
50-db variable-step attenuator and a 32-db

fixed-gain pulse amplifier before it reaches

the stop-channel discriminator.

Stepping motors that point the mount are

driven by position control electronics manu-

factured by Zehntel, Inc., Berkeley, Cali-
fornia. Position information is maintained

in the control units, which generate the

appropriate number of drive pulses for the
motors once a new azimuth or altitude posi-

tion is demanded of the system.
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The laser ranging system has a data sub-

system that reads predicted satellite posi-
tions from punched paper tape and sends the
information to the mount and laser control

electronics and to the range gate. Azimuth
and altitude pointing angles are given in
thousandths of a degree; the range gate
setting is specified in microseconds. The
epoch for a predicted observation is dis-

played. Once the predictions start, operation
continues automatically until the satellite

pass is completed. Operation of the punched
paper-tape reader is synchronized with the
rest of the system by the laser control unit.

Output data are also handled automatically
by the data subsystem. The binary-coded-
decimal (BCD) form of the epoch of firing
and the range-time interval in nanoseconds

is serialized, converted to Baudot code, and
printed by an ASR32 Teletype machine•
ASR32 punched tape can be fed directly into
the radio communications system once a

heading is put on each data pass• The input/
,_,,,_,,,,_ ,.1,_,,t, ...,,_ ,,..h.,_l _,,o,,.._ ,,,_._ de-

signed and constructed by SAO.
The receiving telescope, made by Tinsley

Laboratories, Inc., Berkeley, California, is a
oo.o-cln [ ZU-lIICIl) "''wassegram system With

v_ rue prln]aiy r£11iror on _I._ _I._.^^^_I._.i_bll_ _J l 1 U [_U LS_:t _lIU U _:_

of the PMT. The optics following the fiat
secondary mirror pass the collimated return
signal through a 7-k filter that is both tilt-

and temperature-dependent. A micrometer

tilt adjustment tunes the filter to compensate
for effects of age and temperature. Adjust-
able field stops and a provision to insert
combinations of neutral-density filters are
available.

The photodetector, an RCA 7265, was
chosen for its quantum efficiency of 4 percent
or greater at 6943 h. This PMT has a gain
of 5x10 _ and a risetime of approximately
3 nsec as operated in the SAO system.

The azimuth-altitude static-pointing
mount, also built by Tinsley, has a pointing
accuracy of better than ±30". Verification

of the mount position is made by viewing a
goniometer in the mount; but under normal

operations, the system is driven in an open-

loop fashion from the electronic control unit.

The stepping-motor drive-system gearing
allows for slewing speeds of 2 ° sec -_ and
positioning increments of 0.°001. The unit

can be hand-cranked, but this limits the pulse
repetition rate to 2 ppm, whereas the laser
and the data subsystem have the capability
to go to 10 ppm.

9.2.2•2.2 ATHENS LASER SYSTEM

The laser system in Athens was built as a

cooperative project between the National
Technical University and SAO and began
operation in 1968.

The laser transmitter is a Q-switched

ruby laser, manufactured by the TRG Com-

pany, now Hadron, Inc•, Westbury, Long
Island. The laser transmitter has a l-joule,
24-nsec (half-power, full width) output

pulse. The Q-switch is a _,,_ roof prism
with a b!eachab!e dye. The roof prism is

driven by a synchronous motor at a speed of

Kodak Cryptocyanine, a metal pthalocyanine,
in an alcohol solution. The laser beam di-

vergence of 5 mrad is reduced to 1 to 2 mrad

WILL1 _ O--(_IIl-Ul_lIleber _'DAII_2_LII LeleSt;ope.

voltage of 975 volts (960 joules). A typical
threshold is 560 joules when all optical com-
ponents are in good condition and accurately
aligned.

Photosensitive monitors are used both to

start the ranging counter when the laser
pulse leaves the transmitter and to monitor

the output power. An RCA 931 PMT senses
the light reflected from a glass plate oriented
45 ° to the beam. Its output is used to start

the range counter. The power monitor is an
EG&G SGD-100 semiconductor photodiode
that senses the laser light scattered from the
back of the rotating-prism Q-switch. The
output of the photodiode is monitored on a
high-speed oscilloscope.

The receiver of the system is a Cassegrain
telescope with a 40.6-cm (16-inch) para-
bolic primary and a hyperbolic secondary.
The system has a focal !en_h of 6.55 m and
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a focal ratio of 16. Incoming light first

passes through a 10' field stop at the focal
plane and through a 20-A interference filter
and then falls directly on the PMT (RCA

7265), which is uncooled and operates at an
anode voltage of 2400 volts.

The laser and photoreceiver are mounted
on a modified surplus 3-inch gun mount,
which is hand-cranked in altitude and azi-
muth by two observers. One observer tracks
in azimuth and the other in altitude by ob-
serving the sun-illuminated satellite in the
illuminated reticle of a 2.7-cm (5-inch)
elbow telescope. Both observers sit directly
on the mount and move with it as a system.
This method of aiming the laser limits opera-
tions to times when the satellite is in sun-

light and the station in darkness. Pulse de-
tection is by leading-edge fixed-threshold
discriminators.

The outgoing laser pulse starts a counter
with 1-nsec resolution. The light pulse re-
flected from the satellite enters the receiving

telescope and goes through the optical chain
to the PMT, whose output is amplified and

used to stop the counter. A range gate be-
tween the pulse amplifier and the ranging
counter reduces the possibility of erroneous
range measurements due to sky-background
noise.

During operation, the laser fires every
30 sec--on the even minute and at 30 sec
after the minute. Both the exact firing time

of the laser and the range measurement are
recorded with a camera system that auto-
matically photographs the counter readings.

9.2.2.3 Accuracy and Error Budget

The accuracy of the laser systems can be
discussed in terms of random and systematic

error components. The former are those
that are uncorrelated and appear as range
scatter on a point-to-point basis, while syste-
matic errors are correlated and vary regu-

larly over a single pass or longer.
The random noise level of the systems has

been computed from data on short-arc
analyses taken during the International

Satellite Geodesy Experiment (1971) and
the Earth Physics Satellite Observation
Campaign (1971 to 1973). This type of
analysis generally detects only random

errors, because systematic errors tend to be
absorbed into the orbit parameters when

they are adjusted in the least-squares-fitting
procedures. The best-fitting curves for single
transits were obtained by varying the mean

anomaly, its first derivative, and the right
ascension of the node. The standard devia-
tion of the data varied from 30 to 120 cm,
with a median of less than 60 cm. The domi-

nant random-error component is due to the
variation in size and shape of the return
signals. The fixed-threshold, leading-edge
pulse-detection system we are now using is
very susceptible to such irregularities in re-
turn pulses. The return signals from the
PMT may contain as few as 1 to 10 photo-
electrons. They also may vary widely in
size and shape during a single transit, owing
primarily to scintillation from the satellite
retroreflector array, irregularities in the
laser beam pattern, and the statistical nature
of the PMT detector. The expected random
variation in the triggering times of the
leading-edge threshold is a few nanoseconds
(50 cm) for our transmitted pulse width of
20 nsec. Other random influences in the

data, such as the least-count error in the
counter and the random variability of the
atmosphere, have smaller effects.

Systematic errors are considerably more
difficult to grasp. However, the size of the
systematic errors, per pass, has been esti-
mated from performance and field tests. The
_+50-_sec uncertainty in epoch timing could
be responsible for a systematic error of as
much as 35 cm for some satellite-pass ge-
ometries. The models used by SAO and

others compute the optical range correction
due to tropospheric refraction from ground-
based data. These models have an estimated

systematic error of a few centimeters at
zenith, with an approximate secant depen-
dence for zenith angles down to about 70 °.
The residual error in current tropospheric-

propagation-correction models is, on the
average, probably about 4 cm per pass. The
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geometry of the satellite and the placement
of the retroreflectors relative to the satellite's

center of mass are responsible for a syste-
matic contribution of about 10 cm. This

error is the result of uncertainties (1) in
satellite attitude, (2) in retroreflector optical
properties and placement, and (3) in the
resultant return-signal shape and size from
the entire satellite retroreflector array. The
fixed-threshold, leading-edge detection sys-
tem is probably responsible for systematic
errors of about 3 nsec (50 cm) for a 20-nsec
pulse width. This is in addition to the ran-
dom variations and arises from systematic
differences in the triggering point on the out-
going and the return pulses. Calibration on

a fixed target is also an area where sys-
tematic infuences are introduced through
survey error and inaccuracies in the time
interval measurement. It is estimated that

systematic errors of about 10 cm may be in-
troduced during calibration. If the sources
of these errors are assumed to be inde-

pendent, the total estimated influence, or root
sum squarcd, is about 57 cm.

A two-laser collocation test was performed
on satellite 6800201 (GEOS-2) at SAO's
........ _..... Observatory, Arizona, from
_cwuer l_,v to January 1970. SAO's laser

I there and a mobile laser system operated byNational Aer,..am._s and Space Administra-
tion ,NASA, ]0articipated. The objective

was to determine the relative accuracy of
two laser systems that were being used in
the routine collection of satellite geodetic
data. Since the two systems were built, cali-

brated, and operated by independent groups
and since the instrumentation designs were
different, the experiment gave a good esti-
mate of the system-induced bias errors that

can be expected. During the experiment, the
two systems demonstrated a relative ranging
accuracy of 1 to 2 m. In half the satellite

passes, the difference in the range measure-
ments of the two systems had a bias of less

than 1.2 (see fig. 9.5). The sign of the bias
changed several times during the 4-month
experiment. At the time, it was felt that
these bias components were primarily intro-
duced into one or both of the systems during
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the calibration procedure, which involved a

determination of the system delay by rang-
ing on a target at a known distance from each

laser. Both systems have undergone sig_.
nificant modifications since the time of the

collocation, and the systematic error in each
has been substantially reduced.

9.2.3 ":-:--, ..;-':_, System

Each station has a timekeeping system
tn provide precise epoch data for each ob-

servation. The station clock is basically a
crystal oscillator, a time accumulator, and

a system of time and frequency monitoring
aids. The clock has a dual-channel redun-

dancy and a battery-backed power system

to guard against loss of time continuity.
The clocks that were used in the Baker-

Nunn network until the mid-1960's relied on

a WWV-emitted time pulse and tone refer-
ence for both time and frequency settings.

The active electronic components were vac-
uum tubes, and the time readout was in the
form of rotating mechanical indicators and
a rotating spot on an oscilloscope. Limita-
tions on the stability and reading accuracy
of the oscilloscope display led to the use of a
fully electronic system featuring solid-state
digital circuitry and a high-stability fre-
quency standard.

The present clock has a Sulzer 5-MHz

crystal oscillator stable to 1× 10-_° day -_ and
is generally kept within 5x 10 -_° of UTC
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(USNO). It can be adjusted to 1×10 -1°.
The frequency of the oscillator is maintained

through frequency and phase comparisons
with stable VLF transmissions from stations

such as NAA and NLF.

A locally generated 100-kHz signal is

phase-locked to the VLF signal and then

compared in phase to a 100-kHz reference
signal from the clock. A relative phase posi-

tion record is kept, which helps maintain

station time to greater accuracies than is

possible with the HF timing pulses.

The components of the EECo timing sys-

tem are the clock's accumulator, the Sulzer

oscillator, a VLF tracking receiver, a WWV

receiver, a chart recorder to display the VLF/

clock phase relationship, an oscilloscope

(Tektronix 561A), and an ac-dc-ac battery-

backed power system. Some stations have a

secondary timing system, made up by dupli-

cating most of these same elements. Other

stations have a backup dock, consisting

simply of an oscillator and a miniaturized

digital counter.

The accumulator of the master clock sys-

tem is a 100-kHz digital counter that offers

a visual display of time in hours, minutes,

seconds, and fractions of seconds to 10-_sec

steps for precise timing control.

Timing at the stations is checked primarily

by means of portable-clock trips. Although

the VLF tracking receiver does not give

epoch information, it does provide an accu-
rate method of maintaining a record of time

position relative to the setting obtained from

the portable-clock comparison. Maintenance

of accurate time between trips is facilitated
in some locations by using the time tick of

WWV and times sources of other agencies.

The HF time signals offer the station a con-

venient time reference, but accuracies are

limited to -0.5 msec at best, owing to varia-

tions occurring over the long propagation

paths to the stations.

At the laser stations, clocks routinely pro-

vide epoch to _+_50 _sec (UTC) by means of

portable-clock trips, which are conducted

once a year on the average. During specific

experimental periods, time has been cor-

rected to ±25 _sec through extra care in

VLF monitoring, more frequent checks by

portable clocks, or other means of reference.

The less stringent timing requirements at the

camera stations (±100 _sec) are achieved

through less frequent portable-clock trips.

9.2.4 SAO Satellite-Tracking Network

9.2.4.1 Sites

The first Baker-Nunn camera was sent to

Organ Pass, New Mexico, at the observing
site of the Harvard Meteor Program. The

first successful observation was made No-

vember 26, 1957, just a month and a half
after the launch of the first artificial earth

satellite. The network had expanded by the

following August to 12 operating Baker-
Nunn stations. Table 9.1 shows the history

of the Baker-Nunn sites to date.

After 8 years, it became apparent that

higher accuracies were needed for future

scientific projects. By March 1966, SAO had

assembled, tested, and operated its first laser

system. It consisted of a rented General

Electric laser mounted on a 3-inch gun mount

with a searchlight as receiver. This system

operated successfully for over a year at the
New Mexico site, during which time plans

were formulated for a prototype laser system

with components designed and built specifi-

cally for that purpose.

The prototype system was operating at

Mt. Hopkins in December 1967. Three pro-
duction laser systems, based on the design

and experience gained with the prototype,
were fielded in late 1970. In 1972, the Mt.

Hopkins prototype was reworked to make it
similar to the three production systems.

Table 9.2 shows the history of the lasers to

date. Figure 9.6 shows the present global
distribution of stations, including the loca-

tion of laser systems.

The present SAO sites that contain both a
laser and a Baker-Nunn camera are Mr.

Hopkins, South Africa, Peru, and Brazil.
The last three stations are staffed and

operated by SAO personnel with logistic sup-

port provided by cooperating agencies in

each country: the Council for Scientific and



SMITHSONIAN ASTROPHYSICAL OBSERVATORY 809

_)', \ "ii'< s

oo_: !,_

_- !_

01,,

0
°_

©

I.

;4

r.



810 NATIONAL GEODETIC SATELLITE PROGRAM

Industrial Research in South Africa, the
Instituto Geofisico del Peru and the Uni-

versidad Nacional de San Agustin in Peru,
and the Instituto Nacional de Pesquisas

Espaciais in Brazil.
The Baker-Nunn site in Maui, Hawaii, is

staffed and operated by SAO personnel in
conjunction with the University of Hawaii.
The camera in Australia is operated by the

Department of Supply of the Australian
government. The stations in Spain, Ethiopia,
and Greece are supported and operated
jointly by the Smithsonian and cooperating

agencies: the Spanish Naval Observatory in
Spain, the Haile Selassie I l_lniversity in

Ethiopia, and the NTU in Greece. NTU also
operates a laser system. A laser system be-
longing to the Centre National d'Etudes

Spatiales (CNES) is currently located at
Addis Ababa, Ethiopia.

The tracking station in Japan is operated
by the Tokyo Astronomical Observatory and
has, in addition to the Baker-Nunn camera,
a laser system designed and built in Japan.
The Baker-Nunn camera in India is operated
by the Uttar Pradesh State Observatory.

A Baker-Nunn camera on loan to CNES

has been used at several locations in Africa;
it is currently in operation in Ouagadougou,
Upper Volta.

Beginning in 1964, several Baker-Nunn
cameras operated by the 7th Aerospace
Squadron at ENT Air Force Base have par-
ticipated in SAO satellite-tracking programs.
The sites are listed in table 9.3. SAO sched-

uled observing times and provided predic-
tions for simultaneous observations. These

data have been included in the SAO analysis
and are incorporated in the SAO data file.

9.2.4.2 Operations

The SAO Baker-Nunn cameras and laser

systems receive new satellite predictions each
week. The predictions are computed from
up-to-date observations provided by the SAO
network and by camera, MINITRACK, and
laser system observations made by other
agencies (see table 9.4).

The predictions for the Baker-Nunn
camera consist of azimuth- and altitude-

pointing angles, which need be accurate to
only a few degrees, and tracking-angle rates
to simulate the satellite motion (Cherniack

and Gaposchkin, 1963). These predictions
are generated from orbits computed with a
simple model of the earth's gravity field. The
short-periodic terms due to C2 and the long-

period terms due to the odd zonal harmonics
are included. The secular rate of the apsidal
line and the argument of perigee are deter-
mined from the data for each orbit. The

orbits are generated with the Smithsonian's

Differential Orbit Improvement (DOI) pro-
gram (Gaposchkin, 1964) from observations
covering a period of about 2 weeks.

The laser, on the other hand, requires
azimuth- and altitude-predicted pointing
angles accurate to within several minutes of

arc and a predicted range propagation time
accurate to within 20 _sec for a given epoch.
Orbits for laser tracking predictions are also
generated with the DOI program by using a
gravity field with most of the tesseral har-
monics through degree and order 16 and with
a number of higher resonance terms. Lunar

perturbations are also included. Again,
orbits are computed from data covering a
period of about 2 weeks. Predictions for
satellites equipped with retroreflectors are
made for passes that reach altitudes greater
than 25 °.

The success of the network has depended
on the timely flow of data from the field, the
development of pointing predictions from
up-to-date data, and the use of these fresh
predictions at the field stations. The rapid
data-prediction cycle is most critical for the
laser, which has stringent pointing require-
ments; however, it is also an important fac-
tor in the Baker-Nunn operation, especially
for simultaneous observations between sta-

tions for geometric geodesy.
Until 1968, direct links by teletype between

the field stations and Cambridge provided
real-time communications. Since then, a
combination of means has been used to give
real-time or near real-time communications

at each site. Peru and Brazil receive predic-
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tions and send their camera and laser data

by direct radio-teletype link operated by
SAO personnel. These stations have pre-
arranged contact times for data transmis-
sion. Atmospheric disturbances severe
enough to affect the link are infrequent.
The tracking sites in Hawaii, Japan, Spain,
Greece, and Arizona use facilities of the

United States military communications net-
work for transmission and receipt of data.
The first three stations have direct access to

this network, while those in Greece and
Arizona must pick up and deliver messages
at local military bases. The stations in
Australia and South Africa use the NASA

data network (teletype). Predictions for the
Ethiopia station are sent via NASA teletype
link to CNES in France and are retrans-

mitted on their lines to Ethiopia. CNES
generates and sends predictions for their
laser, located in Ethiopia, as well as predic-
tions for the 12th Baker-Nunn camera, now
,:.-.Upper Volta. Data are currently returned
to Cambridge by Embassy mail. The site in
India receives predictions from SAO via the
United States Embassy in New Delhi and
sends its data back by way of commercial
cable.

For the _aker-Nunn camera, predictions

in case of transmission delays. At present,

an average of 10 arcs is predicted per station
per night. In the past, as many as 50 arcs
were predicted for each station. Observa-
tions are reduced in the field to an accuracy

of 40" to 60" and sent to Cambridge immedi-
ately for use in the prediction cycle. The
camera film is sent by commercial mail for
subsequent precise reduction (photoreduc-
tion).

Predictions for the laser system are in

the form of punched paper tape, which is
used directly to point the laser. Each
predicted arc contains from 10 to 90 sepa-
rate points (4 rain-0, depending on the
geometry of the pass. Stations receive 40 to
100 predicted arcs per week for three satel-
lites currently being tracked: GEOS-1,
GEOS-2, and BE-C. All seven retrore-
flector-equipped satellites have been tracked.

Satellite ranging data, system calibration
data, and ground-based meteorological data
are sent to SAO.

9.3 DATA AND DATA REDUCTION
(S_ren W. Henriksen)

This section summarizes the data used in

(1) deriving coordinates for the locations
of various tracking stations (sec. 9.5.1) and

in (2) determining the Earth's gravitational
potential (sec. 9.5.2). Data relating to the
former are summarized in section 9.3.1;
those relating to the latter are summarized in
section 9.3.2. The section also describes (sec.
9.3.3) the preprocessing applied to data from
Baker-Nunn cameras and laser systems.

9.3.1

9.3.1.1

Data Used in Determining Coordinates
(G. M. Gaposchkin, J. Latimer, and G.

Veis)

Geometric Method

The geometrical solution included two net-

works: 27 stations of the SAO network, in-
cluding the U.S. Air Force's Baker-Nunn

cameras and several European stations; and
48 stations of _the National Ocean Survey
(r_SCJ._l _C-4 _fwnri_ CJf rh_ ,_AC_ c_rann

namical solution. The SAO data block con-

sisted of 5200 pairs of synthetic simultaneous
observations (table 9.5), or about 50000

individual direction observations processed
at SAO. The satellites observed were

6102801 (MIDAS-4), 6303004, 6508901
(GEOS-1), 6605601 (PAGEOS), 6800201
(GEOS-2), and 6305501. The BC-4 data

consisted of 2157 pairs of simultaneous
events (photographs of PAGEOS). Each
event generally consisted of seven directions
and a covariance matrix from each of the
two stations. When more than two stations

observed the satellite simultaneously, we
treated each station pair separately. The
BC-4 data were obtained from the National

Space Sciences Geodetic Satellite Data Serv-
ice at the National Aeronautics and Space
Administration/Goddard Space Flight Cen-
ter (NASA/GSFC) (see ch. 1). The data
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were acquired, reduced, and processed by the
NOS. The standard deviations assigned to
the directions are given in table 9.26b.

In geometric work, SAD observations re-
fer to the equator and equinox of 1950.0.
They are corrected for the effects of annual
aberration, diurnal aberration, parallactic
refraction, and planetary aberration and
then converted to the terrestrial system of

SAO, which is fundamentally defined by the
mean pole of 1900-1905 of the International
Polar Motion Service (IPMS) and by the
meridian of the Mean Observatory and UT1
of the Bureau International de l'Heure

(BIH). The BC-4 data are in the same refer-
ence system.

9.3.1.2 Data Used in Dynamic Method

The stations whose data were used in the

dynamic method are listed in table 9.6; the

observations used are from the satellites
listed in table 9.7. The distribution of these

satellites (inclination versus height) is

plotted in figure 9.7. Satellite arcs were
chosen from satellites whose orbits were rela-

tively uncorrupted by errors. Specifically,
we eliminated satellites with drag model

errors (large area-to-mass ratio and low
perigee height) particular sensitivity to
gravity-field model errors (resonances), or
poor orbital distribution (less than six sta-
tions observing the satellite). The data were
kept in two parts. Before 1970 most of the
observations were directions. A number of

laser system ranges were made, and where
it was possible to do so, they were included
in the orbits. In 1971, the International
Satellite Geodesy Experiment, ISAGEX, a
cooperative tracking program with 10 laser
stations, was carried out and provided for
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the first time relatively complete orbital and
geographical coverage with laser data. From
these ISAGEX data, 15 orbits were selected
and used in the dynamical determination of
station coordinates.

The assumed accuracies of the instruments
are given in table 9.8. Camera data were

given an assumed accuracy of 4". When five
or more observations were made within a

few minutes, e.g., of GEOS flashes, a
smoothed or synthetic observation was de-
termined. The same calculation was used to

generate simultaneous observations, since in
general one cannot make exactly simultane-
ous observations. These synthetic observa-
tions were given an accuracy determined
from the polynomial fit. If the computed
uncertainty was less than 2", then 2" was
used. In the reduction of camera data, annual
aberration and parallactic refraction which
were determined from mean nighttime tern-
perature and pressure for each station, in
addition to precession and nutation, were
applied.

The distance measurement in range data
used in this analysis has a precision of 1 to
2 m. The accuracy, including timing errors,
_ -'11

wm noL be so goud. in .......aOtllLIOll, OLIler errors,

_..._:r_ thCkq_ dll/a tO thCa ¢ernvifni:innnl fi_id nro

that !argo. Therefore, the assumed accuracy
of the laser system data was taken to be
5 m Som_ l_.qer ,_y._t_m d_t_ t_ken i, !967
appear to have errors in timing of a milli-
second, and these data were given an as-
sumed accuracy of 10 m. Furthermore, cer-
tain laser systems provide a larger volume of
data than is useful here (e.g., more than

400 points per pass). Therefore, for passes
containing more than 25 points, approxi-
mately 25 evenly distributed observations
were selected. Numerical experiments indi-

cated no improvement in the results by
smoothing the points or calculating synthetic
observation.

The laser system data were corrected for
tropospheric refraction with the use of ob-

served values of pressure, temperature, and

relative humidity. In addition, the observa-
tions were reduced to the center of mass of

the satellite by means of the formulas pre-

sented in table 9.9. These formulas relate

the range correction _ in meters to the
angle _ in degrees between the satellite's axis
of symmetry and the line of sight to the ob-
serving station. The corrections made in this

manner are relatively small but systematic.
The tropospheric correction is 2.1 m at
zenith, and the reduction to the center of
gravity is 80 cm for GEOS-1.

Table 9.8 summarizes the adopted un-
certainties. Table 9.10 gives the number of
observations selected from the data.

The dynamical solution used data taken
between 1962 and 1969 on 140 arcs of 15
satellites and ISAGEX data taken in 1970 on
15 arcs of 3 satellites. These two sources of

data were kept separate, and several solu-
tions were made.

Since the ISAGEX data are of a new type,

we examined the origin of the node and the
relative weighting in order to find the best

treatment° Two iterations were performed
as part of the larger computation of station
coordinates. The pre-ISAGEX data were in
arcs from 4 to 30 days, as appropriate, and
the ISAGEX data were in 10-day arcs.

The length scale in a dynamical solution

is, for all practical purposes, fixed by the
val_,c of (_M, which directly enters the caieu-

r= ( 1 - cos E) (1 + perturbations)

With camera directions, no further infor-
mation in scale is available. With range data,
both scale and GM can, in principle, be de-
termined. The unit of distance then is de-

fined by the speed of light and becomes the
"light second." In this analysis, GM was
assumed to be the value given in table 9.11.
Our dynamical scale is therefore defined by
GM. If this value of GM is far from the

true value, some deterioration of the co-
ordinate will result. We return to this
question in the discussion and evaluation of
results.

Table 9.11 gives the values adopted, in this
computation, for GM, c, and k_.
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9.3.1.3 Data Combined With Both Methods

9.3.1.3.1 INFORMATION FROM DEEP-

SPACE PROBES

JPL operates the Deep Space Net (DSN),

eight stations for tracking deep-space probes.
Data from the DSN have been used to obtain,

among other parameters, the longitudes
(relative and absolute) of each station and
the distance of its antennas to the Earth's

instantaneous axis of rotation (Vegos and

Trask, 1967; Trask and Vegos, 1968). The
DSN data are particularly interesting be-

cause (1) they constitute a unique, comple-
mentary, and independent determination of
geocentric locations, and (2) they provide a

very strong determination of scale.
Comparisons of the JPL and SAO results

were made by Veis (1966a) and Vegos and
Trask (1967) from data from the Ranger

missions and from SE I (Lundquist and Veis,
1966). More refined JPL solutions were

combined with satellite-tracking data in the
determination of SE II. The combination

was made with Location Set (LS) 25, as

determined by Mottinger (1969), by using
data from the Mariner 4 and 5 missions.

Continued refinement of the DSN data has

provided LS 37, which is used in the present
analysis.

Each DSN site is located near other sta-
tions whose coordinates were determined

in the analysis presented here. Surface-
triangulation data, in the form of geodetic

coordinates, can be used to relate the DSN
coordinates to the SAO coordinates.

The ephemeris r of a deep-space probe is
assumed known. For a distant spacecraft,

the observed range rate _ can be expressed
approximately as

k=_+_r, cos _ sin (c¢8-ao)

where _ is the earth's rotation rate, r8 is the

spin-axis distance of the observer, _ and ao
are the declination and right ascension of

the spacecraft, and a_ is the right ascension
of the observer. Each station observes a

diurnal variation in _, the amplitude and
phase depending on r, and _,, respectively.

Generally, any data can be analyzed. How-
ever, cruise data seem less reliable than
close-encounter data for determining _, and

they are used only for the determination of
r,. In any case, refraction (tropospheric
and ionospheric) and orbit computation must
be done with great care, and recent improve-
ments come from refinements in the treat-

ment of refraction. The ephemeris r, ($, _o)
will be determined in the system of the JPL
planetary ephemeris. We can expect to find
a systematic difference in the definition of
longitude between the planetary ephemeris
and the astronomical reference system
(FK4) used for analysis of close-earth satel-
lites. The DSN data reduction used numeri-

cal values for pole position and UT1 from
BIH, as was done for the close-Earth-satellite
analyses.

The data for LS 37 are summarized in table

9.12. The main improvements over LS 25
are as follows: (1) better treatment of re-

fraction, particularly ionospheric; (2) inclu-
sion of more data because of (1) ; (3) inclu-
sion of Mariner-6 encounter data; (4)

revision of the planetary ephemeris ; and (5)
use of BIH polar motion and UT1. Realistic
estimates of accuracy are 2 m for r,, 4 m for

absolute longitude, and 2 m for relative longi-
tude (Mottinger, private communication,
1972).

Mottinger provided a solution and covari-
ance matrix for rs, x, in addition to the
masses of Venus, Mars, and the Moon and
the oblateness of Mars. This system was
transformed by SAO for corrections in co-

ordinates X, Y of the station. These con-
verted equations were then added to the
larger system of normal equations, which
included the other stations sought.

The LS 37 coordinates for the DSN sta-

tions are given in table 9.13. In LS 37, the
relative coordinates of DSS 11, DSS 12, and
DSS 14 and of DSS 61 and DSS 62 were

constrained to agree with the survey data.
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9.3.1.3.2 INFORMATION FROM SUR-
FACE TRIANGULATION

Extensive surface-triangulation data exist

that relate station positions. These data are
generally given in terms of datum coordi-

nates and occasionally in terms of intersta-
tion vectors for collocated stations. We have

used this information in four ways:

(1) For stations in the same datum, the
geodetic coordinates are used as observations

relating the positions of the stations in the
general combination adjustment.

(2) For collocated instruments, these
datum coordinates are used as a constraint

relating the two sites• These cases could be

treated as in (1) above.
(3) The geodetic coordinates are utilized

as a check on the accuracy of the final co-
ordinates.

(4) The geodetic coordinates are em-

ployed to determine the relation of each
datum to a geocentric reference system.

Evaluating geodetic coordinates is the
most difficult aspect of this analysis. When
_"-_'_ *_"...... very accurate; but prob-
!e_.m_soften exist in relating the local survey
_6. 4.L.^ _4-_4-.'^_ 4-^ ,IJb, A d_4-.._

in (i), (2), and (3) above, care must be
taken to ensure that datum tilts, distortions,

sults. For most uses, limiting the application
of geodetic coordinates to lengths of 100 km

or less is satisfactory. Otherwise, the datum
orientation must be determined and applied
before the geodetic coordinates can be used
with geocentric satellite-based coordinates.

The use of datum coordinates as observa-
tions of relative station positions assumes

no correlation between X, Y, and Z. If we
have datum coordinates for station i, X _
Y_, Z_, and initial values for the geocentric

coordinates that are to be corrected, XL YL
ZL we can write observation equations for

each component of the vector between two
stations :

Xd "_d _Tit a-._ _-.,_ _- X }+ _X_- _Xy

with similar expressions for Y and Z. If
these are given weights W_y, we can immedi-
ately write the normal system as

_o'ij • . .

L 1

_,j[ (x,-x_) - (x_,-x_)
i

"x" r ,x_, Xa_ (X_-X_)
_,vO'ij k Ik, j -- (]

J

where z_y= (1/W_j) 2. This system can aug-
ment a normal system for determining ±X,

AY, _Z.
The weight Wv of the geodetic ties

chosen is given in table 9.14. Table 9.15 pre-
sents the geodetic coordinates for all the sta-
tions used in the 1973 Smithsonian Standard

Earth (SE III).

9:3.2 Data Used for Potential
(V;. IVl. ta_poscnaln, _w. _. _,V.,,_,,._,, Y.

ikOz&i. &n_ L.. l_2ci!_t_

The potential was divided into two parts:

other by tesseral (sec. 9.4.3). The data used
for the two parts were different. In the de-
termination of the zonal coefficients, secular

changes in the Keplerian elements were ex-
pressed as functions of the zonal coefficients.
(The "observed" quantities in secs. 9.3.2.1,
9.4.3, and 9.5.2 are not observations but
values of _, _, etc., computed from observa-

tions.)

9.3.2.1 Data Used in Determining Coefficients
of Zonal Harmonics

Table 9.16 gives the orbital elements for
the 14 satellites of this analysis. Gaps still
exist in inclinations around 20 ° and 40 °. The
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values of (O-C) for the secular motions

and the amplitudes of sin f o) terms based
COS

on 1964 values (Kozai, 1964) follow:

,_ day -1 _ day -1 A_
DIAL -0.°01806 0?01012 -0?070

___9 ___7 _+5

PEOLE - 0.0022 0.00516 0.045
_+8 __10 _+30

An AI Ac
DIAL -07019 0?0043 -9.1 x 10-5

_+3 _+3 ___6
PEOLE -0.002 - 0.0017 2.8 x 10 -5

__5 ±30 _+2.0

The large values of (O-C) for these two
satellites show that the previous sets of zonal-
harmonic coefficients were inadequate.

The data for DIAL were derived from

orbital elements from March 18 to July 16,
1970; during that period, the argument of
perigee made four revolutions. The orbital
elements for PEOLE were obtained for

January 9 to March 13, 1971, and for March

28 to August 30, 1971. These data are not so
accurate as those for DIAL, since there were
not enough observations and there was a

period during which no orbital elements were
available.

In this new determination, the (O-C)
values for satellite 6000902 are a revision

by Gaposchkin for February 10, 1961, to
April 21, 1963.

The other satellites included in this de-

termination are 6001301, 5900101, 6202901,
6302601, 6206001, 6508901, 6101501,
6400101, 6406401, 6508101, and 6102801.
The data for these satellites are the same

as those given by Kozai (1964). The
(O-C) values were computed from the
1964 values of coefficients as given in table
9.17.

The following values have been used for
the geocentric gravitational constant and the

equatorial radius of the Earth :

GM= 3.986 01 x 10°-0cm 2 sec -2

ae= 6.378 16 x 10 _ cm (9.1)

Table 9.18 lists the values of (O-C), based
on the coefficients from Kozai (1964), for the
secular motions of the 14 satellites and their
standard deviations. The latter are used to

compute weights assigned to the data. The
columns headed I and II represent the differ-
ences computed by 12 unknowns and 11 un-
knowns, respectively, and the dates refer to
previous Kozai solutions. Kozai (1969) in-
tentionally increased some of the standard
deviations, since he thought that neglect of
higher order terms would cause errors larger
than the standard deviations of the observed

values: For the same reason, we have in-
creased the standard deviation (10 -6 degree
per day) to 3°x 10.6 day -1 for _ of satellite
5900101 and ¢t of satellites 5900101, 6000902,
6302601, 6206001, 6101501, and 6508101.
The standard deviation assigned to the secu-
lar motions of 6508901 was erroneously given

in the previous paper.
In the determination of even-order har-

monic coefficients, we have used the secular

motions and the amplitudes of c°s2_ termssm
for selected orbital elements of those satel-
lites for which the eccentricities are small.

We could not use data from the other satel-

lites, since the orbital elements available
for them were not of sufficient accuracy.

The (O-C) values and their standard devia-
tions for the amplitudes of the long-periodic
terms are given in tables 9.19 and 9.20. The
longitude of the ascending node and the in-
clination have been omitted for some of the
satellites in tables 9.19 and 9.20 because

their amplitudes are extremely small. The
differences for o, of 6508901 and 6101501 and

for e of 6400101 computed after the de-
termination were found to be much larger
than their standard deviations computed
from observations. Also, since the inclina-
tions of these satellites are near the critical
inclination, higher degree interaction terms
neglected in the computations--such as

C_/C2 and CJ C3/C4--might have affected
the data reduction. For these reasons, we
increased the standard deviations assigned

to these data from 1.5, 2, and 1 to 4, 5, and 3,
respectively; the increased values are given
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in table 9.20. One misprint appeared in
table 2b of Kozai (1969): (O-C) for _ of
6508901 should be (6__2)×10 -3 instead of

(6___2) xl0 -4.

9.3.2.2 Data Used in Determining Coeffi-
cients of Tesseral Harmonics

9.3.2.2.1. SATELLITE TRACKING DATA

Laser data from ISAGEX provided global
coverage with 2-m data for the first time.
Table 9.7 lists all the satellites used in the
analysis, including those from which

ISAGEX and earlier observing programs ob-
tained laser data, and figure 9.7 shows their
distribution in inclination and height. Sepa-
ration of the station-coordinate and the

gravity-field determinations allowed a better
selection of satellite data. For the former,
high satellites less affected by the anomalous

gravity field were emphasized, while for the
1_4-4-__ 1 ........ 4-_11q4a_ with a h,_++,,, distri-

bution, were stressed. Certain satellites with
unmanageable, long-period resonances (e.g.,

I lel i-i iult-b I.H ,-,, i i i i p_L.

blUll Of _[A_EIUII _UUIUlII_:_D, LIIU.y llaY_ *otawll a

_'!Cli #,._LIL[y Li! u.!_.b_i. (._i_i..i, i_-_.i2i.i,i%¢i_.ii aiii.il-i,-_rb

orbits (4 days) could be derived for this
purpose.

Each observation was given an a priori
weight (detailed in table 9.21 so that when
the normal equations were combined, each
type of data could be scaled. The scale fac-
tor for surface-gravity data was arrived at
by experiment. The scale factors for the
550 km × 550 km anomalies and for the zero

anomalies were chosen so that the resulting

solution improved the satellite orbit, the sur-
face-gravity residuals, and the errors in the
surface-gravity comparison and did not in-
troduce spurious short-wavelength detail

where no surface-gravity data were avail-
able.

All available optical data were used for
the orbital arcs chosen. For each pass of
laser data containing more than 30 points,
approximately 30 uniformly distributed ob-
servations were selected.

9.3.2.2.2 TERRESTRIAL GRAVITY DATA

The primary objective of the analysis of
terrestrial gravity data was to obtain mean
anomalies for regions 550 km × 550 km.
When these data are combined with the

satellite-perturbation analysis, the spherical
harmonics representing the geopotential can
be determined. A set of gravity data with
known (and preferably simple) statistical
properties is needed. Our approach is based

on covariance analysis, following the ideas
of Wiener (1966) and Kolmogoroff. When
this technique is used in communications
engineering, it is sometimes known as filter-
ing theory. The ideas here are an extension
of a one-dimensional time series to the two-

dimensional surface of a sphere (Kaula,
1967d).

Estimation of gravity by covariance meth-
ods hinges on the stationarity of gravity
data; that is. the statistical properties of
the data are independent of location. There

is some _v,u,,,._,, ..... _,..... , ............
stationary; however, if some subsets of the
total gravity population are stationary, then

I_v aud _v, ......................

The l°xl ° Data Available.--A set of

l°xl ° mean free-air anomalies, contain-
ing 19 115 measured means, was obtained
from ACIC (1971), and another set, of 1454
1 ° ×1 ° means for Australia, from Mather
(1970). The two sets were combined, with
the lgather data being used for all areas
they covered. Figure 9.8 shows the geo-

graphical coverage of all the data. The com-
bined data set contained 19 328 means. A

complete set of 1°×1 ° mean topographic
heights, used to define oceanic and continental
areas, was obtained from Kaula (Kaula and

Lee, 1967). The distribution of 1 ° × 1° mean
gravity data is summarized below:

Depth of Ocean Continent

boundary Meas- Meas-

(km) ured Total ured Total

0 9213 42 918 10 115 21 882

--i 7015 "_ _" 12 °_3 o_ _n_
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FIGUaE 9.8.--Distribution of 1 °

--- f

X 1° surface gravity data.

The estimated uncertainty given with each
gravity anomaly for 99.9 percent of the data
is less than 25 mGal. Comparing the Mather
data with the ACIC data at the 1241 common

points, we find that the average difference is
1.7 mGal and the root-mean-square differ-
ence is 20 mGal. At a number of points, the
discrepancy between the two sets exceeds
100 mGal.

T h e E s t i m a t i o n Procedure.--Kaula

(1967d) has developed a procedure that
greatly simplifies the calculation of covari-
ance function which is called the block co-

variance function, and the gravity estimates.
This method has both advantages and dis-

advantages. The disadvantages are (1) the
estimate of gravity does not make use of all
the gravity information (i.e., the estimates
are not as good as possible); and (2) the
covariance function must be determined by

using only the combinations of anomalies
within blocs and therefore is not determined

with all possible combinations of the data.
The advantages of Kaula's method are as

follows: (1) it greatly simplifies calculation
of the covariance function and the gravity
estimates; (2) it produces mean anomalies

550 km x 550 km with uncorrelated errors;

and (3) the statistical properties of data
within a block may be closer to stationarity
since the method involves primarily the
short-distance covariance.

If gravity were a stationar_ process, then
it would have the same statistical properties
everywhere. Possible nonstationarity was
investigated by determining the covariance
function for subsets of gravity data. A sepa-
ration of oceanic from continental gravity
was used. A 0- and a 1-km depth were used
to define the ocean-continent boundary, which
was determined from topographic data. The
boundary was also expanded to a width of
400 km for the 1-km depth, and the covari-
ance functions were computed without the
gravity data in that region. Finally, gravity
data were divided into an equatorial set,

]_t<_/4, and a polar set, [¢1>_/4. The co-
variance functions for all the gravity data
and the four sets of split data and the block
covariance function are plotted in figure 9.9.

Since the differences between the covari-

ance functions are significant, we conclude
that gravity is not stationary. Any estima-

tion procedure that makes that assumption
must be carefully examined.
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The different estimates of gravity from the
global covariance estimator, from the split
covariance estimators with a 0- and a - 1-km

ocean-continent boundary, and from the
Kaula estimator were obtained and com-

pared. At the equator, the Kaula-type units
and the 1°×1 ° areas coincide, so that the
four estimates can be compared directly.
Figure 9.10 shows a few blocks at the equa-
tor. Large differences are in blocks with few
observed points. In the combination with

satellite data, these points will have a small
effect due to the weighting, which is propor-
tional to the number of units contributing

to the average. Therefore, by using the
block covariance estimator of Kaula, we ob-

tained a statistically independent set of
550 km × 550 km averages with no loss of

accuracy. Block covariance provides the
optimum set of gravity anomalies to be used
in combination with satellite observations.

Of course, of all the methods used here, the
split covariance estimator is preferable for
the prediction of 1°×1 ° mean gravity
anomalies.

The gravity anomalies are given with re-
spect to the International Gravity Formula

(Heiskanen and Moritz, 1967, p. 79) and
must be corrected to refer to the best-fitting
ellipsoid defined by C2 and the adopted values
of ae, GM, and _,e. We must also include the
Potsdam correction of -14 reGal. Using the
following initial values :

C2= -484.170 × 10 "
as= 6.378 140× 104 cm

GM= 3.986 013 × 10_° cm _ sec -:

o,s= 7.292 115 085 × 10-_ sec -1

we have

1/f= 298.256

and the correction

8gsAo - 8gint ---- 1.3 -- 13.8 sin _ @reGal

9.3.3 Preprocessing
(M. R. Pearlman, J. M. Thorp, C. R. H.

Tsiang, D. A. Arnold, C. G. Lehr, and J.

Wohn)

9.3.3.1 Baker-Nunn Camera Data

9.3.3.1.1 STAR CATALOG

The stellar reference system used for the
Baker-Nunn reductions is defined by the SAO
Star Catalog (Staff, Smithsonian Astro-
physical Observatory, 1966) which contains
approximately 260 000 stars. The average
standard deviation of the positions in the
SAO catalog is of the order 0':5 for the cur-
rent epoch, although individual values may
range from 0 to 2'.'5. The SAO catalog is in
the FK4 system, which has possible sys-
tematic errors of 0":2 ; further, in the compila-
tion of the other star catalogs into this

fundamental system, substantial systematic
differences may have resulted for some re-
gions of the sky. Until more observational
data become available from new catalogs,

there is no means of determining the magni-
tudes of these errors; and as these discrep-
ancies will be systematic over large parts of
the sky, they cannot be detected from the
film reduction. The best safeguard against
systematic errors is to observe the satellite
in as many regions of the sky as possible.
This means that more observations are re-

quired for a specific problem than would be
indicated by a simple theory based on random
errors.
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9.3.3.1.2 PRECISE REDUCTIONS

Methed_ and Rationa!e.--The reduction

procedure of SAO's Baker-Nunn .....UU_I"Y_-

a_za" II.-aezn.-._'_4. and Martin (1966)', the latter
presents, with some minor modifications, the
atandard red,action proced,).res _nnw in use

at SAO. Our reduction procedure is based
on astrometric principles, which differ sig-
nificantly from the photogrammetric meth-
ods widely used in conjunction with ballistic
cameras.

Because of the differences in the data-

acquisition and reduction techniques, a direct
comparison of the astrometric and photo-
grammetric methods is not valid. A brief
generalization, however, can be made : Astro-
metric methods are most suitable where nar-

row fields (<5 °) are used; the photogram-

metric methods are most applicable to wide
fields (20 ° to 30 °) ; and in the intervening
range, a compromise between the two meth-

ods will often provide the most practical
solution. The reduction procedure to be

employed is the one that is most economical

•,_* C-mm_n_,--'_f_ with th_ nhvsical char-
acteristics of the camera and with the ex-

ternal phenomena affecting the observations.
• " " _,_ _4-4,_,_1o _,1_This econOiiiiC leqiiirement 13 _ ..........

during the program.
The chief advantage of the astrometric

nomena affecting the relative positions of the
satellite and the star images need not be
corrected for explicitly. The method de-
scribes an affine transformation between

the standard coordinates and the plate co-
ordinates. It assumes that (1) the two co-
ordinate planes are parallel and (2) a small
field is used. This first requirement is ade-
quately satisfied by the design of the camera,
the principal ray at any point being normal
to the backup plate. The second requirement
is met by using only those reference stars
that lie within 2 ° to 2.°5 of the satellite image.
The reductions are valid for any small area
away from the physical film center, although
residual distortions at the outer parts of
the field mean that the satellite image should
lie "';*_; "_'""* 10 ° of the ,o,_r
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Transformations.--The relationship be-
tween the stellar coordinates and the stand-

ard coordinates is expressed by the azimuthal
equidistant projection. Let Do and Ao, re-
spectively, denote the declination and right
ascension of the adopted film center, and

and a, the declination and right ascension
of the satellite position. Then

0vz = sin Do cos Do

v3 -cosDo sin Do/

!)-eo;Ao -SinoAo

sin a cos
sin

and the standard coordinates ($, _) of a
reference point become

Vl 0

V.2 0

where f is the camera focal length and 0 is
the angle between the plate center and the
star; that is,

O= tan -1 ( _/ Vl_)
\ v3 /

D = tan 0

Such a projection is valid for any region
of the film. The adopted choice for the film
"center" is the geometric center of the se-
lected images of reference stars. With well-
distributed reference points, the separation
between this center and the satellite image
is less than 0?5. The projection preserves
the azimuth and scale in the radial direction

from the adopted film center, but distortions
in other directions will occur. These distor-

tions, however, are small, and the average
distortion over the small field used is less

than 0.5 _.

Corrections.--In the process of precise re-
ductions, a number of corrections must be

applied to the data.
(1) Shutter corrections: During the ex-

posure of the Baker-Nunn film, the satellite
image and the star images trail along the
film. These trails are periodically broken into
six segments by the two diametrically op-
posite staves of a rotating barrel shutter.
The third break corresponds to the satellite
position to be measured, and its time is not
directly recorded; the other breaks are not
currently used. At some instant during the
stave passage, its position and time are
recorded on the film. The time of the image
and the time of the stave passage are related
by the shutter-sweep correction. Thus, if fl
is the_angle of rotation of the shutter about
its axis between the two events, the sweep
correction At is given in the first instance by

being the angular velocity of the shutter.

The situation is somewhat complicated be-
cause the time is not necessarily displayed
when the stave passes over the film center.
However, if the stave displacement Aft is
not excessive, the camera has a device for
measuring Aft, and the total sweep correc-
tion becomes

Zadunaisky (1960) gives the equations

necessary to compute the angles fl and Aft.
These formulations are based on a number

of simplifying assumptions whose effects
on the accuracy of the time determination
can be investigated.

(2) Aberration corrections: The film
reduction is carried out for the epoch of

1950.0, and the only aberration correction
applied at this stage is for annual aberra-
tion. Owing to the small field, the correction

is applied to the satellite position, rather
than to each star position individually. The
formulas used are the closed expressions:
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20"47 sin _ sin ® + 18'.'87 cos a cos ®
A0_=

COS

A$= -- [20'.'47 sin _ cos _ sin ® + 18'/87
(0.433 666 1 cosS-sin _sin c¢) cos ®]

where ® is the geocentric longitude of the

sun. Though not rigorous, these expressions
will always be correct to better than 0':1
(Scott, 1964).

(3) Atmospheric-refraction corrections :

In the film-reduction process, atmospheric-
refraction corrections are not applied to in-
dividual star positions, since it is assumed

that the atmospheric-refraction correction
varies linearly over the 4 ° to 5 ° field used in
the reduction. This condition is nearly always
satisfied since observations are seldom made

at zenith distances of greater than 70 °. At
this zenith distance, the average departure
of the differential refraction from linearity is
about 1", and with eight well-distributed

stars, the uncertainty in the satellite position
(all other factors being ignored) will be at
most 0:'4.

A parallactic-refraction correction is ap-
plied to the satellite position during analysis.
The value for the refractivity constant in
this correction is based not on the atmos-

uu'_ ,':_nu;' un _nc _vcragc ycar-i'otind, night-

time conditionsfor the stationfrom which

Baker-Nunn camera locations, the error in

the refraction correction is less than 20 per-
cent of the value of the correction itself. As

this correction is always small, the error is
minimal.

Of greater importance than uncertainties
in the parallactic-refraction correction is the

random-image displacement caused by micro-
turbulence in the atmosphere. When the
Baker-Nunn camera is used in the stationary
mode, this image motion will exist in both
the along-track and the across-track direc-

tions, with the greater deviations occurring
in the former because of the different time-

integration effects. The satellite position will
not be seriously affected when the camera

is used in the tracking mode, but each star
........;_o m_,_ _ displaced. The .,_r.ge one-

dimensional deviation from the mean, _,, can
be approximately formulated (Lambeck,
1968) as follows :

.,= {(o.o3)

[ 4.5 sec'/-° _ (1_0.35 log At) ]_} _/_+ _/D

ht<1000 msec

where D is the aperture in centimeters and
At, the exposure time in milliseconds.

(4) GEOS flash corrections: The star
and satellite images of Baker-Nunn films of
passive objects refer to the same instant of
time. This is not the case for observations
of flashing satellites, so a correction must be

applied to the observed position to ensure
that both the star images and the satellite
image refer to the same time instant. For

operational reasons, the star-trail exposure
is offset by _0.1 sec from the flash time.

The correction is computed by precessing
the satellite position to the date of observa-
tion, adding the correction

_a= 1.0027 x (time difference between

and precessing the corrected position back
4._ 4-1`_ ^_1_ ^_ "t C_t_g_ I-_ D^_ .... ^4_ 4.1, .... n

time interval between the star exposures
and the flash observation, nutation need not
be considered.

9.3.3.1.3 SYNTHETIC OBSERVATIONS

The arcs formed by several successive ob-

servations can be used to create synthetic
observations at some intermediate time by
interpolation. Simultaneous observations
used in the geometrical satellite solution rely
almost entirely on such synthetic observa-

tions, and they are also used in the dynamical
solution whenever four or more successive
frames are available.

Since it is virtually impossible to observe

a passive satellite at exactly the same
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instant from two or more distant stations,

the only practical way of obtaining simul-
taneous observations is to observe the satel-

lite from the participating stations for ap-

proximately the same time interval and to
interpolate for a fictitious simultaneous
instant. In orbital analysis, use of synthetic
observations reduces the amount of data to
be handled without any significant loss of ac-
curacy and resolution. But probably the most

cogent reason for using synthetic observa-
tions is that a better accuracy or reliability

estimate can be associated with the synthetic
observation than with a single observation.
Only average values can be assigned to the
errors in a single observation. Some of these
errors vary more or less randomly from ex-
posure to exposure and will be reflected in
the residuals resulting from a least-squares
interpolation procedure for a synthetic ob-
servation.

A second-degree polynomial is adequate
for the majority of observations. Since a
seven-frame arc generally subtends less than
10 ° of arc, the object's orbit can be ade-
quately approximated by quadratic functions.
When there are more than seven or eight
frames in a sequence, a third-degree poly-

nomial may be required, but proper con-
straints must be placed on the coefficients to
ensure that the curve approximates the orbit
and does not reflect characteristics of the

image-forming process for the points in the
sequence. If higher degree polynomials are

used without such constraints, the accuracy
estimates of the interpolated positions be-
come optimistic, although the mean position
of the satellite is not seriously affected.

The interpolation procedure is based on
several assumptions: (1) that the errors in
successive positions in the arc are uncor-
related, (2) that the along- and across-track
errors for each position are uncorrelated, (3)
that the along-track uncertainties are equal
for all frames, and (4) that the across-track
uncertainties are equal for all frames. Since
systematic errors in timing would destroy
the first assumption, timing uncertainties
are not included in the uncertainty of each

position. Other correlations between succes-

sive Baker-Nunn images are much smaller

than with ballistic cameras, where images lie
on a single frame. For the Baker-Nunn,

plate constants are derived independently for
each frame, so that the influence of such fac-
tors as measuring uncertainties, nonlinear
lens and film distortions, and short-period
atmospheric effects (on each satellite posi-
tion) will be random from frame to frame.
Since the same reference stars may be used
in two or even three successive frames, errors
in stellar coordinates could introduce some
correlated errors between successive frames.

Synthetic simultaneous directions are cor-
rected for parallactic refraction, diurnal
aberration, and light travel time between
the station and the satellite (see Haefner

and Martin (1966) for the corrections used)
and refer to the terrestrial system defined by

the mean pole of 1900 to 1905 and by the
meridian plane at 75°03'55':94 east of the
mean meridian of the USNO. The time of

the observations is expressed in Smithsonian
Atomic Time as defined in table 9.22. The
directions are given as direction cosines, and
their standard deviations are given in the
along- and across-track components. Timing
uncertainties have been introduced in the
former. The angle the satellite trail makes

with the right-ascension axis is also com-
puted so that the accuracy of the direction
in the right-ascension and declination com-
ponents can be determined.

9.3.3.1.4 ACCURACY AND ERROR
BUDGET FOR DATA FROM
BAKER-NUNN CAMERA

A summary of the principal error sources
in the determination of star positions and
an estimate of the total influence are given

below (Lambeck, 1968) :

Measuring errors

Calibration of

comparator
Film and emul-

sion distortion

1'.'2 (6 measure-
ments)

0':2

0':8
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Atmospheric
refraction

1':1 (image motion
for tracking
camera)

0':8 (differential
refraction)

0':3 (wandering)

Approximations in
reduction method

Star positions
from SAO

catalog

0':2

0':5 (random)
0':2 (systematic)

Total standard
deviation of
each star

position

1':8 (stationary
mode)

2_1 (trackingmode)

The principal error sources in the deter-
mination of satellite position and an estimate
of the total influence are summarized below

(Lambeck, 1968) :

VHF. The root-mean-square (rms) accu-
racy of an observation epoch was about
1 msec, with excursions of several milli-
seconds in some cases.

Installation of the EECo clock system in
1964 and use of frequency broadcasts on
VLF and of portable clocks improved the

timing situation. All the stations had _ 100-
_sec clock accuracies by 1967.

A summary of the overall accuracy of a
single Baker-Nunn observation for different

topocentric velocities of a satellite is given in
table 9.23.

Before the installation of the EECo clocks,
the average accuracy of the synthetic ob-
servations was about 1':1 in each component.
Now, with the improved timekeeping pro-
cedures, the average accuracy of the syn-
thetic observation is about 0':9 along track
and 0':7 across track.

9.3.3.2 Data From a Laser System

i

Maa,_uring errors

Calibration of

Film an,.! emu!-

_i_!! "-J. "-_ "-'-Ji "--.?.'--".!I

X_ _IIIU_ IJllt/:_A It:,

refraction

Contribution of
standard devia-
tion of 8 stars

0'.'8 (12 measure-
ments)

0'Y2

4W8

1"."1 (image motion

along track, or

0':5 (image motion

across track)
0':3 (wandering)

0':1 (parallactic
refraction)

•0':8 (stationary)
0':9 (tracking)

Total standard
deviation of

satellite position

1':8 (stationary,
along track)

1':5 (stationary,
across track)

1'.'6 (tracking)

Before 1965, time was maintained at the
stations by the Norrman clock and by the
............. g of WWV broadcasts at HF and

9.3.3.2.1 CALIBRATION

The laser systems are calibrated by rang-

known d%tance from the laser, The system

uhtereilce uebwccn b_ic raw target range
time measured by the system, •.... and the
..... 4-;_.*a 4-n 4-N,_ 'l'_'_aa'i- onmnlll-Od frNYlq

the surveyed distance between the laser and
the target and corrected for local atmos-

pheric refraction. The targets, which are
8 ft x 8 ft wooden surfaces painted flat white,
are 0.5 to 2.0 km distant from the laser sys-
tem. The exact placement is usually dictated

by local terrain.
The routine calibration of the system is

performed nightly and consists of 20 meas-
urements on the target. For these measure-

ments, the return-pulse intensity is con-
trolled by use of neutral-density filters to
produce signal levels similar to satellite
echoes.

Computation of a calibration correction
factor _, which must be added (algebrai-
cally) to all satellite range-time observa-
tions, is obtained from
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T c _ T 8 -- TTI t

where T,, is the average of the 20 range-time
measurements. The computed range time to
the target is given by

ds [1+ (N × 10_6) _ (6.917 x 10__) ]
TS_

where d_ is the surveyed distance to the
target and N is the local atmospheric re-
fractivity

N = 80.29---_ -11.9 T

in which P is the measured barometric pres-
sure in millibars, e is the partial pressure
of water vapor, and T is the temperature in
degrees Kelvin.

The effect of local variations in barometric

pressure on the value of Ts for distances of
less than 1 km was found to be small enough
so that a constant value of the atmospheric
refractivity could be defined for each station.

This value was taken from a chart prepared
to give a direct conversion from station alti-

rude in kilometers to values of N (Gaposch-
kin, 1972, unpublished).

During individual nightly (or daily) cali-
bration sequences, the range scatter from
one measurement to the next is seldom more
than a few nanoseconds. The variation in

the target-range averages is rarely more
than a few tenths of a nanosecond from cali-

bration to calibration, giving a stability of
better than 10 cm. The target surveys at the
stations currently have an estimated ac-
curacy of about 10 cm.

9.3.3.2.2 ATMOSPHERIC CORRECTIONS

Ranges determined by using the vacuum
velocity of light must be corrected for the
fact that the laser pulse travels at a lower
velocity in the earth's atmosphere. We used
the following correction during this program
(G. Thayer, 1967, private communication) •

2.238 + 0.0414 PT -1 -- 0.238 h_
r,,=rv sin a+10 -3 cot

where r,. is the uncorected range in meters,
r,, is the corrected range in meters, P is the
atmospheric pressure at the laser station, T
is the temperature at the laser station, h_
is the laser's height above mean sea level in
kilometers, and a is the elevation angle of
the satellite. The formula holds for a ruby
laser, which operates at 694 rim.

The formula was derived from a regres-
sion analysis based on a large sample of
radiosonde balloon flights from a number of
locations that were chosen to give a reason-
able sampling of anticipated atmospheric
conditions. The error in range correction
is estimated to be about 2 to 3 cm at zenith.

9.3.3.2.3 TRANSFER FUNCTIONS OF A
SATELLITE-RETROREFLEC-
TOR ARRAY

Range erors now present in routine track-
ing by laser systems are actually smaller
than the satellite dimensions. Since we must
relate all observations to the satellite center

of mass (both for dynamic and for purely

geometric analyses), it is necessary to derive
some means for reducing each range observa-
tion to the distance from the ground-based

laser to the satellite center of mass, which,
in all cases, is displaced from the reflecting
elements. For this purpose, we have de-
veloped and applied in our geodetic analyses
a set of retroreflector-array transfer func-
tions for each of the United States satel-
lites with cube corners now in orbit. These

transfer functions are computed from the
geometric and optical parameters of each
retroreflector array and take into account the
satellite geometry and position. The func-
tions for 6508901 (GEOS-1), GEOS-2,
6406401 (BE-B), 6503201 (BE-C), 6701101
(DIC), 6701401 (DID), and 7010901
(PEOLE) were computed.

The computer model includes both inco-
herent and coherent return signals for arrays
of retroreflectors whose faces are cut in the

form of a circle, triangle, or even-sided poly-
gon (such as a hexagon). Diffraction,
including changes in amplitude and polariza-
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tion of the reflected laser beam, and influ-
ences of dihedral-angle errors can also be ac-
counted for. The model accommodates

obscuration of retroreflectors by satellite and

subsystem structure, a particular problem
with the two GEOS spacecraft and with
PEOLE. When the position of each reflector
is being computed, the model accounts for

the dielectric properties of the retroreflectors
in terms of ray bending and propagation
velocity. Once the return signal has been
constructed, the relationship of the centroid
of the signal to the satellite center of mass is
determined and then applied as a range cor-
rection to the laser data used in the geodetic
analyses.

The major limitation on the accuracy with
which transfer functions can be determined

for the existing satellites with retroreflec-
tors is the lack of precise information on

the beam patterns of the retroreflectors in
relation to the large size of the arrays. With

the existing uncertainties in retroreflector

and satellite attitude, we estimate that the
range corrections for these satellites have an
accuracy of about i0 cm. it should be noted
J-]_ _,4- _l_t ......... • ___ L_ _

Network Time Base

STATION-CLOCK SYNCHRO-
NIZATION

Use of a portable clock is the principal
method of synchronizing with a source

of reliable timing. The comparison of the
portable clock with the clock at the station
gives a correction relating the station time
to the source time, and published comparison
values relate the source time to UTC

(USNO). Therefore, each field-station clock
is referred to a common time scale with an

accuracy dependent on the reliability of the
portable-clock comparison and on the ac-
curacy of the published comparison value.

The trips to the field stations have been
conducted with a Sulzer A5 portable crystal
clock that carries time related to UTC

(USNO). These trips have been run by
SAO or, in some instances, by other agencies
(such as NASA, USNO, Naval Research
Laboratory, and NBS) who have either car-
ried an SAO clock or been in the vicinity of
an SAO field station with a clock of their

own. Portable-clock comparisons are made
with each station on a biennial basis. How-
,_.._ 4-_ m,_-,_ l_,_ 1,_,,_1_ ,YIe _,',,.,,,_.,-,..

and reliability, a portable-clock comparison
is made at least once a year at the laser sta-
tions. Time corrections, determined to be
........... 1.. ...... 4-_ 1.. 1 ^ ^1^_1.
n_c_=_.y u.y pu*_am=-u*u_._ comDarlsons or

i i-i i.i:_}_i!i-ili] ii_i } _ ] _i i]-i i iv:_ i, _ s:_:_i-s ,'_ i ._. i.] i-i ii - i _ i iii', i_ _i iiii

v b_'-monitor readings, are documented and
applied directly to the station clocks. Cor-
rections for the difference between the VLF

stations and USNO are applied in Cambridge
during data preprocessing.

Synchronization of the station clocks
throughout the network is achieved by re-
lating all the time and frequency references
to UTC as maintained by USNO. The field
stations steer their clock frequencies with
VLF transmissions from stations NAA and

NLK, and in some cases, WWVL or WWVB.
Crude epoch checks are made at many of the

stations by monitoring HF/VHF time sig-
nals. The USNO and the National Bureau

of Standards (NBS) timing bulletins, which
give the relative phase values of VLF stations
and time intercomparisons with other tim-
ing services, are used to relate all field timing
values to TTrp_{TrOXv_

9.3.3.3.2 ACCURACY AND ERROR
BUDGET

The accuracy of station timing depends on

(1) the success of the portable-clock trips,
(2) the ability to trace the relationship of
the time references back to USNO, (3) the
ability of the station to maintain the time
setting with the aid of the VLF tracking

receiver, and (4) the uncontrollable varia-
tions in propagation path of the VLF sig-
nal. The requirements for system timing

originally called for the station clocks to be
.,,;+-+1+.,__ ,1 ..... _ WWV _"_'° of -"+ devia_



828 NATIONAL GEODETIC SATELLITE PROGRAM

tion from UTC (NBS) over a month). This
requirement was tightened to _+100 _sec UTC
(USNO) for the camera stations and _+50

_sec for the laser stations. This improvement
was made possible by the installation of the
EECo timing systems in the mid-1960's and
was realized by 1967. In practice, many of
the camera stations have been operating
within -+50 _sec of UTC (USNO).

The synchronization accuracy by use of a
portable clock depends on the amount of
unpredictable time drift experienced during
the period spent traveling to and from the

field station. Most of the trips to the field
stations use a crystal clock and provide a

time set accurately to within 5 to 25 _sec of
USNO. The least reliable results have been

in India and South America, where the sta-
tions are fairly remote and long travel times
are involved.

USNO publishes a weekly bulletin, "Daily
Phase Values, Series 4," giving the emitted
phase values of the major VLF transmitting
stations to 1 _sec. The time differences be-

tween UTC as maintained by USNO, NBS,
and the Bureau International de l'Heure

(BIH) are well documented by each agency
to microsecond accuracy. The relationships
between the HF time broadcasts of foreign
countries and UTC(USNO) are generally
less precisely known.

Timing accuracy at the field station is
maintained by controlling the clock drift with

the aid of VLF monitoring equipment. In
cases of minor clock failures, time has often

been recovered with fair accuracy by re-
ferring to backup clocks and to VLF and
HF monitor references. The clock-time drift

is a product of oscillator frequency offset and
is generally controlled to keep the station
epoch within 50 _sec of the VLF reference
position.

The accuracy of VLF-derived time is a

function of receiver and propagation-path
stability. The uncertainties of the day-to-day
and seasonal path variations added to the
error contribution of the receiver amount to

less than 5 _sec in epoch uncertainty. The
system timing accuracy is a composite figure
encompassing setting accuracy, uncorrected

drift of the clock, and inaccuracy of the VLF
monitor.

The degree of accuracy in setting a port-
able clock gives the initial accuracy of the
station epoch, and VLF monitoring permits
the clock to maintain time. When subsequent
incidents of minor clock failure that affect

time and frequency increase the epoch un-
certainty to -+50 _sec, another portable-
clock comparison is considered. When re-

quirements are stringent, additional efforts
are made to obtain more accurate time com-

parisons, to reduce the oscillator drift, and
to minimize the acccrual of uncertainty due
to repeated clock resets. This extra effort is
the key to maintaining station epochs at the
-+50-_sec level with a minimum of clock
trips.

9.4 THEORY

The following three sections provide the
theory used for determining (1) coordinates
of ground tracking systems and (2) the
gravitational potential of the Earth. The
coordinates were determined both by a purely
geometric method (sec. 9.4.2.1) and by the

dynamic method (sec. 9.4.2.2), which uses
the equations of motion of satellites, together
with the geometric. The gravitational po-
tential can be determined with the help of
the equations of motion alone, the gravi-
metric theory alone, or the two together. The
zonal harmonics of the gravitational po-
tential of Standard Earth III were deter-

mined by using the equations of motion alone
(sec. 9.4.3.2); the tesseral harmonics were
determined by using both the equations of
motion and the gravimetric theory (sec.
9.4.3.3). Because the equations of motion
have been used for determining both coordi-

nates and the potential, their theory is dis-
cussed first.

9.4.1 Orbital Theory
(E. M. Gaposchkin)

The theory used to connect the position of
a satellite to the time of observation at a

single station is the dynamics of a particle
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in an approximately central field of force.
The theory is presented in this section. It is
used to find both the coordinates of the track-

ing station and the constants that determine
the field of force. The coordinates, the con-

stants, or both may be determined at the
same time as the six constants of integration

that, together with the time, determine the
orbit.

The symbolism used in this chapter differs
from that used throughout the rest of this
volume. The major deviations are as follows :

J, for - C_
P,,, CI,,, SI,,, for P_, C2, S,_

I for i
for GM
for ¢

cos¢ 0 -sin_l
R2= 0 1 0

sin _ 0 cos
(9.4)

about the y axis. Here, R,, R2, and R3 are
matrices, and their mathematical properties
are the subject of linear algebra. We need
know only that these quantities have the fol-

lowing properties :
(1) The length of a vector is unchanged

by rotation.
(2) Multiplication of matrices does not

commute ; that is,

R_ (+) Rs (x)=_R s(x) R_ (4)

(3) Multiplication does satisfy the asso-
ciative rule ; that is,

9.4.1.1 Transformation and Coordinate Sys-
tems

Consider the coordinate system xl, y,, zl,
a point

rD,_[{l
•--,-i_,,_ i

I,n. I

R_ (RsRk) = (R_ s) Rk

(4) Rotation about the same axis is addi-
tive; that is,

R_ (_) R_ (_) = R_ (_ + X)

,,q.r,dtr_,n._pos_ are ro.Jated by

and a second coordinate system rotated about
the z axis by an angle a. The coordinates of

p in L}m x2, y2, _2 _ysi_eui ............_D, II IUt2 tL,_Jlt_dU

with the matrix operation

where

[P_] =R3 (a) [P_]

F cosf_sinnO']
Etcos _t 0 |n 0 lj

(9.2)

(R,Rs)-_= R-_,R-,_

(7) Differentiation and integration are
performed on each element.

Although multiplication does not commute,
for small rotations around the x, y, and z
axes--that is, _, _, _--we can define the
infinitesimal rotation matrix

In an analogous way, we can define rotation
around any axis with

{i0 0]R_= cos I -sin
sin I cos

(9.3)

about the :caxis and

1
m _y

(9.5)

which does commute.

In satellite geodesy, dynamical astronomy,
and astrometry, we are concerned with four
reference frames : (!) the terrestrial system,
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(2) the inertial system, (3) the celestial
(sidereal) system, and (4) the orbital
system. Since a systematic account of these
systems and their relationships to one an-

other can be found in Veis (1960, 1963) and
elsewhere, we confine ourselves to a descrip-
tive summary.

The terrestrial system is fixed to the
Earth. Positions on the surface can be con-

sidered invariant in time if we ignore tides
and crustal motions for the moment. The
representation of the terrestrial system can
be in terms of geocentric coordinates or
datum coordinates. The datum can be de-
fined in a geocentric system with the follow-

ing seven parameters : the three datum origin
coordinates, the three orientation param-
eters, and a scale factor. Datum coordinates

can be determined from precise knowledge
of the geocentric coordinates. One of the

objectives of satellite geodesy is to determine
coordinates in a geocentric system. Through
coordinates common to geocentric and datum
systems, the relation of the datum to the geo-
centric system is determined.

The inertial system is fundamental to dy-

namics, and all orbit theory is ultimately
developed in this system. We hope to ma-
terialize the inertial through the celestial
system. The latter is defined by the stars

and, it is hoped, with respect to the distant
galaxies. The distant galaxies define an
inertial reference frame.

The celestial system is represented by co-
ordinates of stars insofar as we can treat

proper motion accurately. Individual star
catalogs are similar to compilations of geo-
detic coordinates in that the positions are
relative. Positions can be combined into a

uniform system by use of stars common to
any two catalogs. This technique was used
to compile the SAO Star Catalog (Staff,
Smithsonian Astrophysical Observatory,
1966), which is in computer-accessible form,
covers the whole sky, and contains about
250 000 stars with their positions and proper
motions reduced to the FK4 system.

The equations of motion are most easily
given in an inertial reference frame. How-
ever, in this system, the Earth is moving in

an irregular manner, and the gravitational
field, assumed static in an Earth-fixed system,
has an irregular time dependence. This ir-
regular temporal variation will give rise to
perturbations.

For this reason, we have adopted an inter-
mediate, quasi-inertial reference frame. This
orbital system has a fixed equinox (the mean
equinox of 1950.0) and a moving equator
(the instantaneous equator of date), and the
gravitational field is rotating about the z axis

at a constant rate. This orbital system has
been shown by Kozai (1960) and Kozai and
Kinoshita (1973) to be optimum for our work.
That is to say, short-period terms are un-
affected by the change, and the effects of
being noninertial and those of variations of

the gravity field are minimized. We can then
proceed with the theory for periodic per-
turbations as if we had an inertial reference

frame and make some corrections (section
9.4.1.7). A further result of this choice is
that the Earth is rotating uniformly in this

system, thus giving a particularly simple
expression for the sidereal angle.

The relation between the celestial system
and the terrestrial is established in two steps.
A general theory of precession and nutation
deals with the secular and periodic parts, re-
spectively, of the forced motion due to the
gravitational attraction of the Sun and Moon.

A general reference for these effects is
chapter 2 of the Explanatory Supplement to
the Astronomical Ephemeris and the Ameri-
can Ephemeris and Nautical Almanac (here-
after called ESAENA). The instantaneous
orientation of the Earth is described to

2 x 10-_ rad with these formulas. The irregu-
lar fluctuations of the Earth's orientation

with respect to this computed orientation are
routinely measured as three angles and pub-
lished by the Bureau International de
l'Heure. The free nutation of the Earth is

the motion of the adopted reference point
of the z axis about the spin axis in the ter-
restrial system. The spin axis, of course,
moves owing to precession and nutation, and
that axis defines the astronomical equator.
The rotation rate has small fluctuations, re-
sulting in irregular fluctuations in the true
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sidereal angle. The coordinates of the refer-

ence pole (x,y) and the change in the sidereal
angle (hUT1) are observed quantities and
provide the relationship between the celestial
and the terrestrial systems.

The variations of pole position are not
strictly periodic. There is considerable un-

certainty about the actual properties of the
polar motion. As a result, an arbitrary refer-
ence point was adopted by the International
Union of Geodesy in 1967. This point was
the mean pole for the time 1900.0 to 1905.0,
and all pole coordinates are now given with

respect to it. The mean pole today is about
10 m west of the adopted pole.

In summary, we now give the relations be-

tween the orbital system and the others. If
Xo is the position of a station in an Earth-

fixed system, then X is the position in the
orbital system :

X=R_(-0)R(y, x, 0)Xo (9.6)

where _ is the sidereal angle computed from

t_=0.277 987 616+1.002 737 811 91
dr/_ 09 000 (1_ , _TTml [--_.'l

\L,.I ]

.......... _: are -__:_

_i16 pole.

in general, camera observations provide

To. To express this direction in the adopted
orbital system, we must apply precession
_, _, _ from To to 1950.0, and then apply _, _,

to the motion of the equator, thus preserv-
ing the origin of 1950.0. If K(b,a) is the
amount of precession in right ascension from
dates a to b, and if similar expressions are
given for _ and _, then

[1] =R(-Ae, ¢ sin _, 0)R_ [_ (T, 1950)]

R_[v(T, 1950) ]R_[ -_ (T, 1950) ]
R_ [-_(1950, To)]R_[-_(1950, To)]

R_[-_ (1950, To)] [lo]

(9.8)

expresses the direction in the orbital system.
The nutation (_, _ sin _) must also be ap-
plied to the original direction if the true

coordinates are given. The reader is referred
to the ESAENA for numerical values. It has

been found satisfactory to use the quadratic
expressions for precession and to retain all
terms in nutation such that the total ne-
glected part is less than 0.5 m.

9.4.1.2 Two-Body Motion

The first approximation for satellite mo-

tion is two-body motion, which forms the
reference for all subsequent analysis. Two-
body motion can be completely solved in
closed form by simple methods. (See, e.g.,
Brouwer and Clemence, 1961.)

If the origin of coordinates is taken at the
center of mass of the system, then the paths
of both bodies lie in a common plane through
that point and the path of each body is an
ellipse with one focus at that point. When
the mass of one body is immensely greater
than that of the other, only the mass M of the
larger body need be considered. The equation
for the motion of a point with unit mass
moving in the gravitational field of such a
large body is

"--_t&--6COS,L_j _,a.a!
L ; GCO'_%,

with

r sin v=a(1 - e_)_A sin E
r cos v=a(cos E-e)

The angles are defined in figure 9.11. By
comparing the constants, we find that

(e= 1+2_

/_ N _

a= 2_-/_(1_e_)

(9.10)

where _ is the Hamiltonian of the system, N
is a constant of integration, and _-GM.
From these equations, it is easy to derive the
relation between mean motion n and semi-
major axes a •
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FIGURE 9.11.--Geometry of ellipse.

PERIGEE

which is equivalent to Kepler's third law.

We proceed to find v (t) by differentiating

(9.9) :

dr EdE a (1- e2 ) e sin v dv
d_ = ae sin __- = 1 + e cos v dt

(9.12)

- sin v -]

Je+cos v
0

-sinE 1
_ na (l-e-) v-' cos E

1 - e cos E 0

(9.16)

We have given the analysis of two-body

Keplerian motion in a plane. To refer the

position to the orbital system, we per-

form the coordinate transformation

[X] =R3(-_)RI(-I)R3(-_)

(9.17)

The angle o, corresponds to Vo. The angles gt

and I specify the orientation of the orbital
plane.

Given the position and velocity, we use the

constancy of the angular momentum to deter-

mine the angles _, I, Ol. The direction of the

angular momentum is computed from

This equation reduces to EL,] = [,V] x [_]/I.XIIXI (9.18)

dE [ I_ y/-' 1 _/" (9.13)
dt-=\_] 7=a_(l_ecosE)

which integrates to

E-e sin E=n(t-to) -M (9.14)

which is Kepler's equation.

Given a time, (9.14) must be solved by

iteration. Using (9.9), we obtain the true

anomaly v and the radius vector r. The posi-
tion is calculated from

and the inclination is obtained from

cos I= [L] × (9.19)

If L: is negative, the convention is to take
•--I for the inclination. The node is defined

by a unit vector in the direction of the node:

_=[:io _]=[il x [L ] (9.20)

y =r[:ioV =a (1

cos E- e 7

J-e_) _ sin E
0

(9.15)

To find _, we must determine the satellite

position in the orbital plane referred to the

node. Using

[X'] =R_ (I)R_ (_) [X]

The velocity is obtained directly, we have
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cos (v + _,) = X'/r

sin (v+ o,) =X_/r

which determine v+_. With v from (9.9),
we immediately have _.

We give here the equations for a hyper-
bolic orbit. The position is

d_/dt = - _ [(':i,_k] D_/Od_k (9.22)
k

where _ is the Hamiltonian for the system.
In addition, if _= gf,,+_l and if we can

obtain a solution

x=r cos v=-a(e-cosh F) •o ko, t_

y= r sinv= -a(e_- 1) _ sinh F

r= -a( e2-1) =a(e cosh F-l)
l+e cos v

where a<0. We still have

(_ being constant) for _o, then by selecting

(:_ to be a_, we can write

d6,/dt = - _ [(S,_4_.]xo.._oD_/b_k
k

(9.23)

n: (-a) _=_

Kepler's equation becomes

n( t-to) =e sinh F-F

and r_V-N is still a constant of the motion.

The final question in the discussion of two-
body motion concerns the development of

ier's equation. (9.i4). is transcendental, and

c;ct, t_zpiul 5 ¢OllVC_gillg series are available.

They are needed for the development of per-
h*rh_flnn% a ÷n_;o _-h._- ..,;il bc ,...,.A _..
itself in a later section.

9.4.1.3 Equations of Motion

For conservative forces, rectangular coor-
dinates are canonical, and the Poisson
brackets have the values

[2.2s] = 0

[x.x s] = 0 (9.21)

[x_,2_] = &_

The equations of motion can be written in

any set of variables {_d by using Poisson
brackets :

where LOi, ;_-__o.Doare evaluated for the solva-
ble problem. In what follows, we will use

4- 4-only variables _ha_ are the solution of the
two-body problem (section 9.4.1.2). This
choice is not unique, for one could select, any
combination of _ that had a solution; e.g.,

"/ V l
-' n=l _- " / --I

(9.24)

which is due to Vinti (1959) and has been

explored by Izsak (I 96°h).
The Kepler elements a, e, 1, M, _, _ are the

most commonly used. Using (9.17) in the ex-
pression for the Lagrange brackets and em-

ploying the time independence of (_, _}_o._o,
we obtain for the Lagrange brackets

{a,I} = - {I,a} = - (ga)V_(1-e_) _/_sin I

{o,a} = - {a,a}= (1-e:)_/_[cos(I/2)] (_/a)V:

{a,e) = - {e,a} = [- (_a) _/_cos I]/(1-e'*) v_

{_,a} = - {a,o))= [ (1- e_)1/'/2] (g/a) _/_

{_,e} = - {e,?,} = - (t_a)_/_e/(1--e2) _/_

{a,M} = - (M,a} = - ½ (_/a) _
(9.25)
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the other combinations being zero. By in-

verting the matrix implied by (9.25), we

obtain for the Poisson brackets

[a,M] = - [M,a] =2 (altO i/_

If we consider all occurrences of a in co-

efficients of trigonometric terms and all oc-

currences of n in the trigonometric argu-

ment, then the differential equation for M

becomes

[e,_,] =- [o,,e] = - (1-e2)l/_/(_a)I/_e

[I,_] = - [_,I] = - 1/[tLa) _A(1 - e 2) _Asin I]

[e,M] =- [M,e] = (1-e2) / (_a) '/2e

[1,_] = - [_,I] = (cos I) / (_a) 1_

(1- e_) _/_sin I
(9.26)

Now

- \/_/ ida ......... t

D_I{ dM dn ], + 1- e2 D_
+ DM dn -d-a f (-_ _/_e De

da=dt -2(a) _/2DMD_

Equations (9.26) inserted into (9.23) can
be integrated numerically. They remain a

set of coupled differential equations. Analyti-

cal solutions are obtained by approximate

methods. A particular difficulty arises if

these equations are used in a straightforward
manner.

It is customary to express the Hamiltonian

1 2 1 2
_=_V' +u=_V -_-Rr (9.27)

where R<_/a and is called the disturbing

function. Then R is expressed in a trigo-
nometric series of the form

and

giving

that is,

dM
----t
dn-

Da -2a Da n:const

a_ DR
De - De

_ DR

DM - aM

__A (a,e,l) sin [aM +flo,+v_+_(t) ]
COS

with M = Mo + nt, where n is the mean motion.

Straightforward use of (9.26) introduces

_-- .A (a,e,I) sin [_M+flo,+7_+4) (t) ]
Da cos

1_ .dn _[ a \I/2DR [ 1-e "_ DR

=n--_--_k_-) _-I ...... t (_a)_/2e De

where n= (t0 _/_/a_'_and is not constant.

With the previously described separation

of a and n, we can write the Lagrange plane-

tary equations (LPE) in their usual form.

giving

DA sin [aM+fl_+_f_+6 (t) ]
Da cos

since n'-a _ is a constant. The occurrence of t

outside a trigonometric argument leads to

terms that are not periodic.

da 2 aR

dt na DM

de 1-e 2 DR (1-e_) _/_DR
-_= na2e DM na2e D_

d_ cos I DR

dr- na _ (1 -e_) 1/_sin 1 al

(1-e_) '/_ DR
na_e De
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dI cos I DR

dt - na _(1 - e_) '/, sin I 0_
1 OR

na _(1 - e_) lz2sin I On

d_ 1 OR
-_=na2(1-e2)l/-'sinl OI

h=e sin (5 a=a

k=e cos g, ft=gt (9.31)
_=X I=I

These variables have the following Poisson
brackets, written for convenience in terms
of e:

dM (l-e01/2 OR 2 OR
dt =n na_e De na Oa

n_a 3= _ (9.28)

Kepler elements are used extensively. They
have the advantage over Cartesian coordi-
nates in that five of the elements are constant

for two-body motion and the sixth (M) in-
creases linearly with time. In addition, each
element has a geometrical interpretation.
However, any five constants could be chosen,
as long as they lead to a unique calculation of
position and velocity.

As e-+0, the element _ ceases to have any
gcometricai meaning. Since the position of
the satellite depends on v + o,, we can consider
the new- variables

_=M+a, e=e

a=a I=I

IN ON\

with the Poisson brackets

[h,k] =- [k, h]- (1-e0V2
n_ 2

-h(1 -e2) _/-'
[h, _] =- [_,h] = na_[l+ (l_e0V=]

k tan (I/2)[h, 1] = - [I, h] -
na" ( 1 - e_) _/2

(9.32)

D,x] = - Ix, k] =
-k (1- e=)_/_

na_[l+ (1- e2)_]

[k,I] =- [I, k] = -h tan (1/2)
na 2( 1 - e" ) ,/2

't_.7{f1"1l'a _1 [_ 11 rn !1 ,a_ o";v¢.'o{'n (Q qS}

Of course, these equations hold for all eccen-
l:rlCll:les.

A further modification would be to use the
variables

p=tan i sin _ k=k
4- i r_

h=h a=a

[a, X] = - Ix, a] 2
na

These have the following Poisson brackets,
written for convenience in terms of e and I:

[x, e] = - [e, _] = (1 -e_) _ [1- (1-e_) _]
na2e

cos 1
[P, q] = _ [q, P] -

na " ( l _ eO _/.,

[A, I] = - [Z, X] =

[e, (o]= - [_, e] -

tan (I/2)
na2 (1- e_) _/_

(1-e=),a
no, 2e

(9.30)

[n, I] = - [I, n] = 1
na _(1 - e_) _Asin I

[I, _o]= - [&, I] = [I, _]

It has also been found useful to eliminate e
and _ by use of the variables

k 1[p, _] = - [x, p] = [p, h] = - _-[h, p]

1
= hEk, P]= -_[p, k]

p cos I
2na _(1 - e=) '/acos = (I/2)

(9.34)

_1 =-- [A, q] =k[q, h] =-k[h, q][q,

1 =ilk '= --_- [q, k] q]

q cos I

-- 2na=(1--e_)_/_cos_ (I/2)



836 NATIONAL GEODETIC SATELLITE PROGRAM

[q, P] =
cos I

na 2( 1 - e '_) 1/:

wttere [h, k], [h, x], [k, X] are the same as
(9.32) and where we take [a, x] from (9.30).
The variables p and q should not be confused

with generalized coordinates. These expres-
sions are valid for all e and I but are espe-

cially valuable for small e and/--for example,
in the planetary theory.

It is possible to construct other combina-
tions. For example, one could use

x =M +,o a=a

_=e sin o_ _=_

,/=e cos o) I=I

(9.35)

We now turn to sets of canonical variables

that have the simplest form of Poisson brack-
ets. We have observed that Cartesian coordi-

nates are canonical. We give two other sets,
the Delaunay and the Hill.

The combination of coordinates and conju-
gate momenta for Delaunay variables are
the following :

Coordinates Momenta

l=M L= (_a)I/2
g=_ G= [_a(1-e "_)]_/2
h=_ H= [t_a (1-e 2) ] 1/2cos I

(9.36)

Now, l, g, h are new labels for three familiar
Kepler elements, in order to provide a sym-
metric notation. We see that G is the angular-
momentum constant N in the two-body
motion given by (9.10) and that H is the
projection of the angular momentum on the
z axis.

Another set of canonical variables intro-

duced into satellite theory by Izsak (1962)
and used to great advantage by Aksnes
(1970) consists of the Hill variables, as fol-

lows :

Coordinates Momenta

r=a (1 -e sin E) /'= (e/r)L sin E
u=v+_ G=G
h=_ H=H

(9.37)

These are natural coordinates, with the im-
portant advantage that there is no singularity
for small eccentricity--in contrast to the
situation with Delaunay variables, which
complicates their use.

Finally, we consider the equations of LPE
type, which contain the forces explicitly.
Consider the forces with components S, T,
and W, which are, respectively, along the
radius vector, in the orbital plane normal to
the radius vector (along track), and per-
pendicular to the orbital plane (cross track).
The direction cosines of satellite position are

ls=R3(-_)Rl (-!) R_(-u)I i 1

(9.38)

We can define the direction cosines along
track and cross track with

_lr= R_(-_)Rl (-I)

l'w= l_r× ls (9.40)

where 2, _t are obtained from (9.16). If we
let _ be any variable, then

DR DR Dx DR Dy DR Dz
_C_- Dx a_ + ay D6}_t- az aC_

_R aR DR
But -_-, _-, b_ are the components of force

along x, y, z given by

-aR-
_x

aR

aR
_ az _

-Sn
I

I
_wJ

(9.41)

With expressions x=x(CJ, say, (9.17), we
can form _x/ad and substitute the result in
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(9.23). This could be done for any set of
variables. We give here the results for the
Kepler elements, since they are widely used.
We have

dr-n(1 e_)__ Sesinv+T

de (1-e2)I/_
dt - na

×{Ssinv+T[cosv+l(1-r)l }

dI 1 Wrcos (v+_)
dt - ha(l-e=) 1/_ a

dfl 1 wrsin (v +o_)
-dT = na (1- e_ ) l/_sin I a

d_ d_ 1 (1- e2) _
= - cos I-_ _ na e

v÷ v]

is facilitated by use of these functions, and

we give here a short summary of their prop-
erties. Hobson (1955) is an excellent refer-
ence for mathematical proofs, and texts on

mathematical physics (e.g., Jeffreys and
Jeffreys, 1956; Morse and Feshback, 1953)
provide many useful formulas. Legendre
functions are extensively used in quantum
mechanics, and its literature is recommended
for the transformation properties.

For numerical computation, an expansion
of P,,, in power series in z can be used. This
expression can have large roundoff errors,
and direct use may require multiple-precision
computation. One alternative device is to

employ the recurrence relationship

P_,,,+..(z) +2(m+l) [z/ (1-z2)_]
P_.,,,+l(z) + (l-m) (l+m÷ l)Pz,,(z) =0

(9.43)

where z = sin ¢, and use

do)dM _ 2 _r (1- ._/_/d_ !_dt -'_- nasa _ " -_ dt +cos

p=a(1-e _) (9.42)

These expressions are known as the LPE

by using a force derived from a potential.
However, the equations would have the same
Iorm for any force, and they can be so used.
These expressions are especially useful in
numerical integration and with nonconserva-
tive forces such as air drag and radiation
pressure.

9.4.1.4 Spherical Harmonics

P:z (z) -- [ (2/) !,/2_I!] cos _
P_.__,(z) =z P, (z)

P:,,_(z) from (9.43). in genera], we. ro.q, ir_

as well as accu_-ate :'" .... "' -- - _ ",, -" " "i¥ _ Will ii_I,,l ¢,u ..........

expression for P_,, (z)_";"'\in a coordinate sys-

results given here are taken from Jeffreys
(1965). We can write

l

P,,,, (sin (b) e''x= _ (i) .... E,,,,_(I) P,,

(sin ¢') e_('(x'+_')÷':_

(9.44)

Legendre functions and associated Le-

gendre functions arise naturally in the
solution of Laplace's equations in spherical
coordinates. They also constitute a set of

orthogonal base functions for mapping arbi-
trary functions in spherical coordinates. In
dynamical astronomy and satellite geodesy,
spherical coordinates are the natural ones.

We find that much of the subsequent analysis

with

E,,,,,(I)=N,,,, _ (-1) '_-_
0

(9.45)
where
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,!= cos (I/2)

(_= sin (I/2)

(l-s) !(l+s) !_,,,
Nz_,,8- (l-m) !(l+m) !_._

Further, if _'= 0, we can write this in a more

compact form as

l

Pl,, (sin ¢) ei'x = _(i) l-"Dz,,,p( I ) e _t"-2p) (,x,+_,_,,q]
19=0

(9.46)

Fl,,,(I) = __, t!(l-t) !(/-m-2t) !2 :t-_t
t:0

8:o\S/ _\ c

(m-Sp_t_c) (-1)''-'_ (9.50)

where S= sin I and C=cos I. Kaula gives

tables of F,,,p(I) through 4,4,4. Since (9.50)
has three summations, whereas (9.47) has

only one, the latter is somewhat more eco-
nomical for computing numerical values.

for l>m> l, where

N_,,,I (/+m) vm_']z2,1v . ....zp ( )lD,.,p(I) = Z (--1)_ .....• P
r..... ]

\--l\ ,._--i

(9.47)

where

r= cos (I/2)

_= sin (I/2)

2 _ (l+m) !
Nt,,_- e,,(2/+1) (l-m) !

We note that

Pl.,,_(z) = (-1)_P_.lmlz (9.48)

If we make the association v=X, we see

that (9.46) is a natural expression of spher-

ical harmonics in Kepler elements. The de-

velopment has been carried out by Kaula

(1966b) on other considerations for conven-

tional harmonics• The D,,,p(I) here are re-

lated to the inclination functions of Kaula by

D..p (I) = [ ( - 1) _(t-")/_/Nz._]F_.,p (I)
(9•49)

9.4.1.5 Elliptic Expansions

In section 9.4.1.2, we found the relation be-

tween the mean anomaly M, the eccentric

anomaly E, and the true anomaly v. Whereas

E and v have geometric significance and are

related by

tan (v/2) = [(l+e)/(1-e)]_/-'tan (E/2)
(9.51)

the mean anomaly has dynamical signifi-

cance, increasing proportionally with time;

that is,

M=Mo+nt (9.52)

The connection between M and E and hence

v is made through Kepler's equation (9.14) :

M=n(t-to) =E-e sin E (9.53)

Equations (9.51) to (9.53) are sufficient for

all computations in two-body motion. Equa-

tion (9.53) is transcendental for E in terms

of M and can easily be solved numerically by
iteration. The obvious iteration is

Eo_-M

E,÷_=M+e sin E, (9.54)

The two developments are equivalent. We

give here the expressions for calculating

Fz,,p(I) as derived by Kaula, since they are
extensively used :

which converges very quicky for small eccen-

tricity. Typical geodetic satellites have

e>0.1, for which (9.54) is quite sufficient.
There are numerical methods to speed con-
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vergence, and in cases where efficiency is
important, methods like Newton's have been
successful.

In developing complete solutions by use of,
for example, LPE, we are faced with inte-
grals of the following forms :

We see that fl_e/2.
By using the Bessel function J,, (x), we can

write

E-M=2 Js(se) sinsM
=

(9.61)

f f(v)dt /f(E)dt (9.55)

It is therefore useful to be able to express
functions of v and E in terms of t or M.

These expressions generally involve infinite
series in powers of eccentricity.

A particularly useful device for transform-
ing (9.55) is to use

dv = (a/r) 5(1 - e2) l/_dM= (a/r) 2 (1 - e2) 1/-'ndt
(9.56)

dE = (a/r) dM = (a/r) ndt

By use of (9.56), integrals in t can be con-
vcrted to intcgrals in v or E. Where neces-
sary, a/r can be expressed in v or E by (9.9),
repeated here for convenience :

a/r= (l+e cos v)/a(1-e 2) =1/(1--e cos E)

(.,.._7)

Transformation (9.56) is useful when M is

absent from the integral. Generally, this is
not the case, and we must explicitly make the
conversion. More general expressions are
used, complete developments being carried
out on computers either numerically or alge-
braically. In the following, we develop some
of these formulas.

If, following many authors (e.g., Plummer,
1918), we define the variable fl(e) by

(1 +fl)/(1-fl) = [ (1 +e)/(1- e) ]J/-'
(9.58)

we have

e=2fl/(l+B 2) (9.59)

fl=e/[l+ (1- e_) _/2] (9.60)

oo

- }+ ___Be[Js ,(se) +J_+p(se) ] sin sM
p=l

(9.62)

The first few terms of (9.61) and (9.62) are

E-M=( 1 :_e-8e' +

\ 4

'\4 ....
113 3

+_,_e +.

• )sin M

sin 2M

•)sin 3M (9.63)

.....

_lll /.Jzr_
\

)sin 3M (9.64)
/

Brouwer ---" _'........(_""_' -:-- _̂:^-^_t lltl I.J IUIII(:_ | 1 Ut:_ -t _)U.t ) _lYt: L 11 v/::_b qC:::

I_,l_llI I"%_?%l¢|ll_"_ I|| _*I_VI_III.II I|l lll_ll Ill I_l'l'l_lll.l ,i'II,V.

We have need of similar expressions when
v or E occurs in the argument of a trigono-
metric function. There are several methods

to obtain such expressions. We give two here.
The first is due to Kaula (1966b) and taken
from Tisserand (1960). Kaula investigates
the conversion of

t+:/c°s\_'l 2 "v "r) ksin) [( - p) +_J

where ¢ does not depend on v, and gives it
in the form

9sin [ (l-2p)v+¢]= G_pq(e)

(c°9sin [ (l-2p+q)m+_] (9.65)

This form is natural for the computation of
perturbations due to tesseral harmonics. The
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formulas have two forms. The first is for

"long-term" terms, i.e., those terms in (9.65)

independent of M--that is, q=2p-l. These

can be obtained by integrating (9.65) with

respect to M from 0 to 2_. Using the trans-

formation (9.56), we obtain

1G,p,_p_z(e)- (1_ e_) z_(1/.., 2d+l-2p'

in which

p'=l-p for p>I/2

p' = p for p <_1/2

where

h= k for q'> 0

h=k-q' for q<0

p'q,=l_q-p } for p>I/2

The transformation (9.65) is a doubly

infinite sum over q. However, it is important
to note that

Gzpq (e) _ fllql _ (e/2)I<

For the short-period terms, l-2p + q_ 0,
we have

Z T I 2k
G,pq (e) = ( - 1)Iql (1 +f12) fl_q,__.P,pqketpqa.,8

k=O

(9.67)

where

/_=e/[l+ (1-e2) 1/-']

(9.68)

h=k+q for q'> 0

We can choose a desired accuracy and select
a finite number of terms. For small e, the

number can be very limited. This selection

can be made numerically or analytically.

A second and more general method for this

development, given in Plummer (1918, p.

44), involves the Hansen coefficients X_ m,

defined by

Q0

(r/a) "e i..... _" X'"' e"l._,- L _ (e) (9.70)
q=--_:)

where the X'_'_(e) are polynomials in eccen-

tricity. We have

h= k for q'<O X'_" (e) = (l+fl2)-("+_)__Jp(qe)Xq"_

and (9.71)

h

h-r]-_.[ 2fl e l' (9.69)
and

X .... (_fl),__p_,,,(n+l-m)= F(q-p-n-1,-m-n-1, q-p-m+1, fl_)
qP \q-p-m

for q-p-m>O

X ..... = (_fl)-v+p+,,_( n+l+m _FqP -q+p+m/ (-q+p-n-l,m-n-1, -q+p+m+l, fl_-)

for q-p-m<O

(9.72)

X""' =F(m-n-1, -m-n-l, 1, [_2) £or q-p-m=O
qP
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We have the Bessel function

J,(z)=(zl2)" - z 2 [k!(n+k) l]

(9.73)

and the hypergeometric function

a¢

F (a,b,c,z) = __, [ (a), (b) ,I (c) ,] (z"ln l)
tt=0

(9.74)

where Pochhammer's symbol is

(a),=a(a+l) (a+2) ... (a÷n-1))
(a) o=l I (9.75)

We see by comparing coefficients that

Glpq (e ) -- X -a÷l),z-'_p--1-2p+q (e) (9.76)

However, formulas (9.67) to (9.69) are
valid only for /+1>0, whereas (9.70) to
/('i t-/px ....... 1-'_1 /I , I \ 1-)_4.1_
io.,o! ,_i,= v,_liu for any i_----• t,_T ±). _ot, n

forms have been used. With recent develop-
ments in the computing of elementary func-
tions, the latter seems more economical for
numerical calculation. For use with com-

polynomials in eccentricity with rational
fractions as coeNcients. This has been done

through a recurrence relation originated by
Andoyer (1903) and introduced into satellite

work by Izsak et al. (1964). The method
starts with the observation that

(r/a) "-"e_('_) = X'-,. "-m= (X'-_, o) , (Xo, _-_) m

We compute X -'',°, Xo, "-_by any method, and
all other combinations are determined by
simple polynomial multiplication. Cherniack
(1972) gives these polynomials to 12th order
in e. Kaula (1966b) gives a table through
4,4,2. Cayley (1961) gives more extensive
tables.

9.4.1.6 First-Order Perturbations Due to the
Potential

We have seen that the potential can be
expressed in terms of associated Legendre

functions (sec. 9.4.1.4) and a set of numer-
ical constants,

- _P,,,, 4) e"xx 1+_ _?,,, (sin

(9.77)

where 4, _, r are the coordinates of a point in
the terrestrial or Earth-fixed system. The
terms _.o, _,,, _._,,_are missing owing to the
orientation and origin of the system chosen.
In fact, the elastic Earth introduces the terms
C_,,, which will be discussed along with other
questions relating to the Earth's elasticity in

section 9.4.1.7. Selecting Kepler elements,
we now use (9.77) in (9.28) for the dis-
turbing function r, omitting, of course, GM/r.

The conversion of R (r,4,x) to R (a,e,I,v,_,
- 0) is accomplished as follows. We express

R (r,4,z) in the orbital system by rotating by
-O. Thi_ in[reduces )t-d in place uf it hi
(9.77). From the formula (9.46), we have

M _ i _ l

\ " / /=2 m=o \ ' /

i

F D!;;;;; (l) e i [' l-2p, (F ........ :[).-0, ]

_=o

(9.78)

where i= \/- 1 and D_,,,v(I) are polynomials

in cos (l/Z), sin (]/v.). This is further con-
verted to the mean anomaly with (9.67) or
(9.70), giving

z¢ 1 1 zo _ _x_ _l

R=_eGME Y Z Z (11__( a_
_:2 _=g=o_:o q=-_\ a / \ a ]

(i) _-mDb,,p(I) Gtpq (e) e'_ (9.79)

where

¢= (l-2p)_+ (l-2p+q)M+m(_-O)

Equation (9.79) can also be written in terms
of Hansen coefficients with (9.76).

The first-order secular rates can be deter-

mined by selecting terms in R independent of
_,_,M,O. These arise for m=0---that is, only

zonal harmonics and l- 2p = q = 0. By use of
algebra, we find secular terms only in _, _, M.
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A corollary is that the size a of the orbit, its

shape e, and its orientation can have only

periodic perturbations. We have shown it to
first order only, but it is true for any order

(Kozai, 1959c). We obtain for the first-order
secular rates

_,=n(3\/5/4) _[(,:,,)/(1- e_) : ] (ae/a) 2
(1-5cos:I)

_t= n (3_J5/2) [C_.o/(1-e"-) _] (ac/a) 2 cos I

where

_,z,,,pq= (/-2p)6,+ (1-2p+q)n+m(Ct-O)

After the substitution of (9.44), these

formulas agree with Kaula (1966b).

The final calculation necessary is to deter-

mine fndt for the perturbation in M accord-
ing to (9.28). We see that for l-2p+q_O,

we have a perturbation in a from the first

equation of (9.82). From n:a3=GM, we have

M= n{1- (3_/5/4) [C2.o/(1 - e°-) _]

(a_/a)'-'(3 cos _ I-1) } (9.80)

First-order periodic perturbations are

easily obtained by assuming that a, e, I are

relatively constant on the right-hand side of

(9.28) and that _, _, M, 0 have linear rates;

that is,

o, ----o)o+ _t

gt---- _o + _%t

M= Mo+nt

6= t_o+ dt

(9.81)

The equations are integrated as a linear har-

monic oscillator for those terms containing

any of the variables in (9.81). In actual

computation, we would use the values of _, _t,

n, _ derived from observations.

Letting _ be a generic element, we have the

following :

An_,,,pq= - (3/2) (n/a)±a_,,_pq (9.83)

Therefore, to the last equation of (9.82), we
must add the term

f

±Mt,,,pq = ±nl,,,p_flt
J

L a'*_(¢,,,,_,)_
X Dl,,,pGzpq (l- 2p + q) @l,,,e_¢.....

(9.84)

We can combine both parts and obtain

.GMa_D_,,,p _ (1-e_) _/-'aG,pq
AMz,_pq=_e L ne¢_,,vq _e

3G_,q (l- 2p + q)2(/+1) Glpq

/=2 m=O p=O q=--_

GMa_ (i) ,-m 2
Aaz,,,pq_ _J_e nat.. ., ¢_,,,.qD.,,p (I) G_pq (e) (l- 2p + q) @_,,_e_ .....

GMa'ti_ _.....
-- _'_'-- D 1-e_-)v_[ (1-e2)_(l-2p+q) (l-2p) ]@_,,e _ ......

±e_,,,_q- _e na_+3e¢_,,,_q _,,,_G_q (

VMa:(_):- "_ D,.,.G,_.[ (l-2p)cosI-m]@-_,S_ ......
±I_"_q=_fena_÷_ (1 -e ) I/"¢lmp q

GMa:(i),_ .... [(l_e',)_/_aG_,,_coslG,,,_a_i,, ;±_'_=_ena_+_(1-e_)V'_-sinlc_,,,_q e D_,,,_ ae sin/ (l-e2) _/-' _ C_'_e_ .......

GMa_ (i) _.... _G_q aD_,,,, _,_e_ _ .....
±gt_"'_q=_ena_+3 (1-e_) _/_sin I ¢_,,,_q _I

GMa __i_ _-,,,-_r- 1-_e _'_'-- / (l-e2) _/_DG_q _(l+l)G_,q D_,,,,_,,_e _*....

(9.82)
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This completes the first-order theory. If we

take as our goal an accuracy of 10 -_, then it is
quite satisfactory unless IC_m]is larger than
10-' or ¢_,,,pq is very small. From observa-

tions, we find that C._,.o_ 10-:_and that all the

remaining IC,,,] _ 10-6. Therefore, this

theory is inadequate for the effects of C,_,,o

=-J_./V_, and so other methods are used,
as described in section 9.4.1.8. The discus-

sion of small ¢_,,,pq goes by the name of
resonance, which will be dealt with shortly.

If we consider the rate

¢,,pq= (/-2p)6,+ (l-2p+q)n+m((_-O)
(9.85)

and 6,, (_ from (9.80), we see that (_, _) _ 10-3
n. The rotation rate of the Earth, _, is once
per day, and n for geodetic satellites is 12±2
revolutions per day. Therefore, the period
of a perturbation is primarily determined by

periods (_ 10 days), and the linear theory
seems to work well enough.

A second class of long-period perturba-
tions is due to the zonal harmonics (m=0,
l-2p+q=O). These have the principal
period of the rotation of perigee, as given b3_
(9.80). The period of these terms can go to
zero for the so-called critical inclination--

that is, when (1-5 cos _-I) =0 or I --_ 63.°4.
The theory given here is not valid near that
region of inclination. It has variously been

viewed as a resonant phenomenon and as a
physically important effect. Izsak (1963c),
Garfinkle (1963), and others have discussed
this question.

Table 9.24 gives here for a typical geodetic
satellite a short table of amplitudes of the
perturbations due to the Earth's field.

Pertu, u,_t,ons, Elasticity,9.4.1.7 Third-Body "'-_'^*:
and Tides

2=/'P= (i-2p+q)n-md (9.86)

We ._oe fhnt in gonoral the largest perf_urba-
tio.".s-- that is, the smallest divisors--arc for

r............. _._.n _-.._._._._,_ ,_.rr_:r_ with the

near-commensurability of (l-2p+q)n and
,,,_,. , ha,. me_n._ ,,,at wh__n the mean motio_n_

of the satellite is approximately equal to the
order of the tesseral harmonics, we can have

arbitrary long periods and large amplitudes.
When analyzing terms with small divisors,
we must include the effects of ,_ and _ to ob-

tain meaningful results. Resonance has yet
to be treated completely. For a single reso-
nant term, a solution in terms of elliptic
functions can be obtained, and these have
played an important role in the study of
synchronous satellites. For close-Earth satel-

lites, the problems are more difficult, since
the satellite will be resonant with the whole

set of harmonics of order m. In addition, if
the drag changes n appreciably during one
resonant oscillation, the theory is not even

approximately correct. Fortunately, geodetic
satellites have had relatively short resonant

There is an extensive literature on third-

body perturbations. The principal effect of
the Moon is a perturbation _ 120 m, and that
affho ,qnn nhnnt _ firn_ fhflt flmnnnf. Cnn-

tinuousana]:¢sishas been necessarybecause
ofthreefactors:

cated, making integration of the equations of
motion di.m__cu_!tThe i_nclln_tk, n of th_ Mnn,}'_,

orbit is not constant in the adopted orbital
system. There is a rich spectrum of periodic
terms in the lunar longitude.

(2) The Moon and Sun deform the elastic
Earth. This variation in mass distribution

has significant orbital effects. Improved geo-
physical information is needed in order to
account for them.

(3) The Sun and Moon cause precession
and nutation. These motions are the reason

for our adopting a quasi-inertial reference
system. We must include in the theory terms
to compensate for the noninertialness. These
terms Can be viewed as an indirect effect of

the lunisolar perturbations.
There are two avenues to be taken. The

first is to eliminate periodic perturbations
with periods commensurate with the length
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of orbit we wish to determine--that is,

periods<20 days. We take an analytical ap-
proach by assuming linear variation of the
orbital elements o£ the disturbing body. The
second avenue is for long-period analysis,
in which we obtain averaged equations--that

is, ones not depending on the mean anomaly
of the satellite. These can be integrated
numerically and are used for study of all

long-period effects.
In the following, we develop the disturbing

function for the Moon; that for the Sun has
the same form. We assume that the semi-

major axis o£ the satellite is small with re-
spect to that of the Sun or the Moon. This
disturbing function can be averaged and

then numerically integrated with (9.28), or
if a, e, I' of the Moon are assumed constant,
it can be integrated approximately.

We introduce the elastic deformation of

the Earth at this point, as it is most easily
incorporated into the theory from the be-
ginning. Following A. E. H. Love (Munk
and MacDonald, 1960, ch. 5), the additional
potential Cbl_due to the deformation from a
potential o£ degree n is

(Lt'_=kn(ac/r)2_+%[,, (9.87)

where k,, are numerical constants depending
on the elastic properties of the Earth. The
total potential acting on the satellite is then

[l+k,(ae/r)2"+_]_C_ (9.88)

Now the direct potential acting on the satel-
lite due to the Moon (or Sun) can be written

_.._'/tr'l "_. Thus, we have for the third-body
potential, including the tidal deformation,

QI=GM'_e__, 1 [ r z
_ _=o2l+lLr'Z+'

k a _Z_ q_z_/r_,,, (sin _) Pz,_ (sin _')
-F (r'r)Z+_l

To include the effects of tidal phase lag, we
introduce a fictitious Moon lagging the real

Moon by At and separate (9.90) into two
parts. In this case, the disturbing potential
cannot be written in such a compact form.
We proceed by assuming ±t=0, the revision
of the theory being straightforward if the
effect of lag is desired.

By introducing the rotation operation
(9.45) and Hansen coefficients (9.70), we
can write the disturbing function as

R=_e_,_,_,_, _, _ Rl,,,pp.qq.
/=2 7/t=O p-O p'=O q=--_¢ q'=--_Z

(9.91)

where

Rlmpp'qq' --

GM' (_/) t+m
2/+1 Dz,,,p(I)D__,,_,p.(I')

[ a' x.,,,,(e)X_p _....
x o (e')

k _21+1 1

lt_ e

(a,a)_+_X-Z-_'_(e)XgP"(e') e_

(9.92)

in which

_=qM+q'M'+ (/-2p)o,+ (/-2p')E
+m(a-a')

_=GM' [(l/A) -- (9.89)

where f and Y' are the positions of the satel-
lite and of the disturbing body, respectively,
M' is the mass of the disturbing body, and ±
is the distance between r and r'. As is well

known, we can write 1/± in spherical har-
monics. To calculate orbital perturbations,
we use the gradient of @i with respect to
the satellite position, and we can drop the
l--0 term in 1/±. The l=l term just cancels

We can integrate the LPE (9.28) by utilizing
the disturbing function (9.91) and the same
techniques used for the tesseral harmonics.
Considerable simplification is achieved by the
following steps :

(1) We delete all terms containing M--
that is, q=0. These short-period effects are
about 1 m and can be ignored for some prob-
lems. A consequence is that ±a=0.

(2) For the second-degree terms, we can
use, for the Moon,
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and

2 3GM¢ =n, a, (9.93a)

GM' = GM_ (MJM¢) = 2 a(MJM¢)n,a,

(9.935)

where MJM¢ = 1/81.53 and, for the Sun,

GM' =n®ao2a (9.93c)

J_ L-8 -- 3 .5 )In '_m, 1-_sm I'4n

×(1-3sin 2 I)(1+_e3 ,2\)

where, for the Moon, m'=M_/Me=1/81.53,
and, for the Sun, m'=l, and where

(3) The third-degree terms from the Sun
are negligible, and those from the Moon are
_1 m and can be ignored for some problems.
However, the third-degree terms and the

short-period terms in the second-degree de-
velopment must be included for future work.
The interaction between Js and the lunar
perturbations is the same size and must also

be added, that is, the contributions to • and
from

,,* u w

de Ae + _-AI

dO d¢_
....deAe +-_-A1

dr4 dif/I .

¢(,_., (.b.I

(9.94)

where _;,,_, and _ are g,:ven by (9.80).
A number of formulas have been used

(e.g., Kozai, 1973; GaDoschkin, 1966a). We

give here just the secular rates in _, _, and M
and a representative periodic term. The com-
plete expressions for lunar perturbations are
developed by computer algebra and are de-
scribed in section 9.4.1.11. We have

, 1
sinS/=_sin J(l+cos _ c) +sin s

1 .
+-_sm 2c sin 2J cos N

1 • s
_sln J sin 2 ccos 2N

• cos s J

(9.96)

Here, J is the lunar inclination, N is the lunar
longitude referred tQ the ecliptic, and • is the
obliquity. Although I is not constant, it is a
reasonable approximation for a year or so.
We note that J=5':145 396. The other de-
ments can be taken from the ESAENA. For

the S .... _ _,,- T-a _ _ p_,_,,a_.

perturbation, we give as an example, for the
second degree,

_" "-',_'_,7,_ _ .':.7 -- _,_,. _ r.,,_.y _.- ., _ '. ,,, _, _- ,

x |x_ ,._"(e)X>" (e')
L.

(a) ° i
c -3,m

+ ks a X_ (e)X_,m(e ')

× [2(1-p) cos I-m] cos¢
(9.97)

where

• 3 n '2 , 1
(°L-S=-_ --m (1__ eS) :/s

×(2-2sin_/+les)(1-_sm3 " 5I')

1
3 n '_ cos I

m'
_L-S-- 4 n (1-e_)_/_

×(1+3e=)(1 3. _.,\--_sln I ) (9.95)

.ae 2×(l+3e'=)il+ks(a) 1

ip=2(1-p),_+2(1-p')_' +qn+q'n'
+m(f_--_')

We note that the secular rates depend on
ks, which corresponds to that part of the
oblateness resulting from the permanent tidal
deformation. Conventionally, this term is

omitted from the lunar theory and is effec-
tively included in the numerical value of Js.
A slight error will arise since, in the lunar

theory, ks occurs multiplied by a_/a _, whereas
J_ is multiplied by a_/a _. Furthermore, the
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secular term in M must be included in the

definition of the semimajor axis.

The adopted reference system for orbit

computation is the equinox of 1950.0 and the

equator of date. The equations of motion

must be modified to include the motion of the

reference system. There is no need to modify

the short-period perturbations in the linear

theory described above. However, for the

complete set of LPE with (9.92) for long-

period perturbations or in terms of coordi-
nates (Kozai and Kinoshita, 1973), we can

include the following factors :

where

di/dt = ... ai/at

d_/dt .... a_/at

d_/dt = ... am:at

O/ d(0cos a)
cos

at - dt

d(0 sin a) sin
dt

a,o r d(O sin a)
_- = cosec iL dt cos

d(O COSdte).sin a]

a_ -cot i[ d(Osin a)a--{= dt cos a
t_

_d(O COSdt_) sin f_]

+l[d(0sin_)dt 0cosa

d(O cos a) 0 sin a]
dt J

(9.98)

0 sin cz= (0.3979+c1-_o) sin _ / (9.99)
0 cos _=0.3651 (1-cos _) -c1+_o )

¢= -17724 sin N+0721 sin 2N

- 1':27 sin 2L o + 0':13 sin l®

- 0720 sin 2L_ + 0707 sin l_

+ 0':137 914 6 t

el-Co= 9':21 cos N- 0':09 cos 2N

+ 0':55 cos 2L® + 0'.'09 cos 2L_

-0':001 281 t

where l®, l_, L®, and L_ are the mean anomalies

and mean longitudes of the Sun and the

Moon, respectively; t is the number of days

from 1950.0; and N is the lunar ascending

node referred to the ecliptic. We have

d(Osina)dt =0"9175 sin cdG'-_°)+0.3979cos Cdtdcdt ]

d(O cos a) (0.1583 (9.100)[dt

+ 0.8418 cos ¢) d (_t _'_) /

/+0.3651 sin _d_t

de
dr-

d(c_-co)

dt -

--- - 17':24 N cos N

+ 0':42/_ cos 2N

-2754 n® cos 2Lz

+ 0'.'13 n o cos l®

-0':40 n_ cos 2L,

+ 0':07 n_ cos l,
+ 0':137 914 6

-9':21 N sin N

+ 0':18 N sin 2N

- 1':10 no sin 2L®

- 0'.'18 n_ sin 2L_
-0':001 281

(9.101)

where l_=dN/dt, n® is the mean motion of

the Sun, and n_ is the mean motion of the
Moon.

We have incorporated the effects of body

tides on satellite motion. There remain to be

included ocean and atmospheric tides. The

former, expressed in spherical harmonics, is

not yet very well known and so we give only

a qualitative analysis. The M_ tide has been

studied by Pekeris and Accad (1969) and by

Hendershott (1972) and we will examine it.

If we develop the tide in an Earth-fixed sys-
tem as

$=_e_ (o_l,,,Pz,,_(sin 40 e "''x+°t) (9.102)
lm
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then the tide will appear static in the inertial
reference frame of the satellite. The exter-

nal potential due to this tide, including the
loading effect, is

cU= _e'_'-( 1 + k',) 4_.Gpwa _,2
(_-_ _))_ E_,,Pz,,_(sin ¢) e"x)

(9.103)

where k is the loading Love number (Munk
and MacDonald, 1960) and p_, is the density
of ocean water. This can be developed in
terms of orbital elements along the lines of
the tesseral harmonics ; we have

cU_- Zculmp
Imp

in which

CUlmp

= r!., (a_2/r l*_)D,mp (I) e_[(_-2p><v+._>+,.<._-,,'-_'-_')J
(9.104)

where

[.z.,=4,rGpw(i+k_)C_.,/(21+l) (9.105)

We can develop equation (9.104) into
perturbations_ giving, for example,

_,,_z;= ..... = G)_ ('1_ z m i[" ..... ! ¢_;'-__ ./_etv P tUh.p t• ! ! WJ

x_-_ (e) ,--°_X_,_ (e')
× [(l-2p) cos I-m]e _ (9.106)

where

¢= qM +q'M' + (l-2p)o,+ mUt-fy-,J)

¢= qn +q'n' + (1-2p)co' + m(5-(_'-co')

It is useful to note characteristics of lunar

and solar perturbations in addition to the
secular terms given in (9.95). The principal
periodic terms from the Moon have a 14-day
period and an amplitude of about 120 m. The
principal solar term is of 6-month period
and about 800 m. The tidal effects are of the
order of 10 percent of the direct effect, or
about 15 m for the lunar tides. Therefore, it

is essential to compute lunar effects when
orbits are being determined for more than a
few days. The solar effects can be absorbed

in the orbital elements. There are also very

important long-period perturbations from
the Moon. Of greater difficulty in the treat-
ment of long-period perturbations is the
solar radiatior_ pressure, which is yet to be
satisfactorily computed (section 9.4.1.9).

It is instructive to determine the ocean-tide

equivalent of the body tide. We can do this
only approximately. The correspondence is
made by comparing the potentials in (9.92)
and (9.106) for a particular Imp combina-
tion. We have

q lbod; GM' ( --1) l+m '_Z_el"m+l

h,,p - 21+ 1 r'_+_rl+i
l

D_,,,p(1) __O,(_,,,,p,(l')e _¢'
p'=0

(9.107)

where ¢= (/-2p) (v+_) + ([-2p') (v'+d)
+m(_-_') ; and

cU_ _ 4_Gp_(l+kl) a_ '2-
_"P- 2/+1 r '+IC_''(i)'-"_Dt"'p(I')e_¢"

", ..... z

where ¢= _e-_p_ (v+,,,) -_'_ "'"+o,' ......
We note that the lunar inclination is I'=23 °

_+5° and that D= _,,o_ 0.925, D_.__._--_0.160,
and D..2,._-0.0036. So, Zor the orincipa]
semidiurnai term, we can take i=_, 'm.=_,

- m z_ •k_ _..rGpJ_ 2,'_, _ o _ na _

1+ _ _n a_D_, _.,o(I')

-- k; _n'_a_D_,_2,o(I ')
C_,_.= 1 +Ict 4,rGp,_ (9.110)

where k_ would have a complex value. Using
nominal values, we have

k:=O.O114C,_/D:_:.o(I') (9.111)

From K. Lambeck (1972, private com-
munication), the Pekeris and Accad (1969)

solution with dissipation gives (in cm)

C_ 2- 4 4e -_°'/_s°- - 2.19 - 3.81i

We then have/c_ ..... = -0.026- 0.047i. Adding
this to the body tide, we obtain the effective
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Love number that a satellite would sense.

Choosing k_°dY=0.29 with no dissipation, we
have

]_effective ___kbody __ k!}(. ...... : 0.264 - 0.047 i
2 - .

Therefore, a satellite would sense a Love

number of 0.268 with a phase lag of 10709 or
40 m. Conversely, by adopting a value for

kbody and determining k_ ff'`'ti''' from satellite2

observations, the height of the ocean tide
could be calculated.

We have analyzed perturbations due to the
P2.2 component of the ocean tide and note that
they have the same dependence on the satel-
lite inclination as does the body tide. There-
fore, it is not possible to separate the second-
degree body and ocean tide with satellite per-
turbation analysis. The ocean tides have a
much richer spectrum in spherical harmonics
than do the body tides (Hendershott, 1973).
Selected terms of equation (9.102) are im-

portant, principally, P4.._,and P_,_,. Although

they result in orbital perturbations with the

same frequency spectrum as does P2.2, the

inclination dependence allows the determina-
tion of these coefficients by use of several
satellites, in an analogou_ "-_v to the geo-
potential.

Finally, we consider another effect of the
Earth's elasticity. The orbital system we
have adopted is not precisely a system of the
principal axis of inertia. Rather, we use a
mean pole. There is a free nutation of the
Earth called polar motion, which introduces

the tesseral harmonics C_,,,= C,,-i _,,. There
are two effects that to some extent cancel
each other: The first is the motion of the

axis of the principal moment of inertia; the
second, the deformation due to the rotation

about a moving axis. If we let _, _ be the co-
ordinates of the principal moments with
respect to the mean pole and let I, l_ be the
coordinates of the instantaneous rotation

axis, then we can write

_._= - _2.0V_ (_-i_)

- lc, (,o_a_/V-_ GM) ( l- il2)

where o,,= _. This harmonic is a slowly vary-
function of time with a 14-month period. If
we assume _=l,, ,_=l_--that is, that we know
where the principal axes are--then we have

(_72,1_ - -- 75" -- 2 3 --L._.,,A/3-kz(o,_a_/ V15 GM) ] (_-i_)

Using these values, we know

C._,._= (0.838-kex0.893) (_-i_)

the elasticity reducing the effect by about one-
third. The perturbations for the seven retro-
reflector satellites are all about 1 m.

9.4.1.8 Higher Order Perturbations Due to
Oblateness; Methods of Von Zeipel
and Lie-Hori

Although a linear first-order approxima-
tion to the equations of motion proved ade-
quate to obtain 1-m accuracy for the tesseral
harmonics and the zonal harmonics exclud-

ing J2 and J:, we must have a more thorough
treatment for the oblateness perturbations.
Various solutions and formulas have been

used (Brouwer, 1959; Kozai, 1959c, 1962b,
1966c ; Izsak, 1963b ; Aksnes, 1970), but only

the last has proved completely satisfactory.
Except for Kozai's (1959c), the methods de-
pend on a canonical transformation. We
sketch the basic ideas here. There are

two equivalent approaches. The first, based
on a device employed by Von Zeipel (1916)
and known by his name, utilizes expansions
in the form of Taylor series. It was intro-
duced into the satellite problem by Brouwer
(1959). The second, from a transformation
due to Hori (1966), is based on expansions
in Lie series and is known as the Lie-Hori
method.

In both developments, we use canonical
variables,

l= M L= (tLa)_A )

g=,o G=L(1-e'-')_; t (9.112)h = _ H= G cos I
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In the Aksnes theory, use is also made of the
Hill variables introduced into satellite theory
by Izsak (1963d) :

formation to eliminate g' and obtain a third
set of variables, L",G",H",l",g",h", where the
Hamiltonian is

r, v+_, h, _, G, H (9.113) J(** (L",G",H") = _l* (L',G',H',g)

In the mathematical problem we are dis-
cussing, the Hamiltonian is

i__ 1_4J._,a_fF 1 3/ H\2"l/ a \ 3

3 3H 2 a _
+[_-_(_) ](r) c°_ '_'v' }

(9.114)

Since t and h are both absent from _¢/, we
therefore have immediately

H=G cos I-- const (9.115)

and _=const. We have limited this discus-

sion to J_., and all the developments men-
tioned above have carried the analysis to
hlooho_ • _.rl_r_

The method of Von Zeipel (1916) was
proposed by Poincar_ (1893). The latter

i_llUWlCU blli:tb _ bli::tIl_J.Ul'lll_l, blUll WaS i::tlWi;t_vD

".,._oo_l"dr, _,.,+ "h_ .,-.,,,,,..'; +l-,n+ +1,__.......... , ...... was not ...... nced ........ e

has discussed this question further. We look
for a determining function S(L',G',H',I,g,h)

j[T:I ___I J_; .... _1 .... J 1 • •: 2 IUli:tblll_ bill2 llt2W lIlOIll_lll_a _tllU UIU co-

ordinates, such that the new Hamiltonian

Jf* does not depend on l; that is,

_¢_(L,G,H,I,g) = _* (L ,G ,H ,g) (9.116)

We then have

t'= aSlaL' L = aslal )
g'= aS/aG' G = aS/ag }
h'= aS�OH' H = aS�Oh)

(9.117)

Since this is a canonical transformation, we
have

dL'/dt-- a_*/a/' }dl'/dt_- - a_*/aL' (9.118)

and four similar equations. Having solved
..... _-........ , _,-,. v_ .... a second +_"_

We proceed by expressing _/ and S in a

Taylor series in terms of a small parameter
a, which will be proportional to J2 :

_= 5_ + a,_ }
S= So + aS_ + c¢_S._+-.. (9.119)

_* = ,_&*+ a_,* + _: _* +...

We want an identity transformation for
a = 0 ; therefore,

So=L'l+G'g+H'h (9.120)

We proceed by using expression (9.117) in
(9.116) to give

_, /_s\ , _ /as as as , _.\

/ ., as\= V',
'_)\

(9.121)

If w'p a_rn_nrl (_q 1'2.1_ infn _ Tsvlnr _ri_ _nrl

..2

_to (L') = _*(L')

O_l_ aS1 O,_L aS_ _,_t*a_*-aS_
+ aL' al + OG' ag _

(9.122)

Kozai (1962b) correctly gives the third-order

expression.
We now separate J_ into a part independ-

ent of _ (called _/_) and a part dependent
on 1 (called J_) and then make the associa-
tion

OL' al _-¢_= 0 (9.123)
672 -- C_2.*
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The expression for $1 obtained from (9.123)
can be used in the last line of equation
(9.122), again separating the parts depend-
ent on l or not. We obtain a solution for S__,

and so on. Through equations (9.117), we
obtain

l'-- l' (L',G',H',I,g)

L = L (L',G',H',I,g)

and four similar expressions for g',h',L,H.
These expressions must be inverted to obtain

l=l(L',G',H',l',g') }L=L (L',G',H',I',g') (9.124)

which is accomplished by Taylor expansion
to the desired order and is very tedious.

The Lie-Hori method is developed along
somewhat different lines. Hori (1966) con-
sidered a transformation from p,q to P,Q

given by

as 1I- as q

as LFas ]qi= Oi- aPi 2L aPi' s +. • •

(9.125)

where [a,b] are Poisson brackets. In this
notation, any function can be written

f (p,q ) = f (P ,Q ) + [f,S] +11 [f , S] ,S I + " "

(9.126)

The canonical equations are

dP_/dt= a_*/aQi } (9.127)dQi/dt = -- aJ[*/aP_

We further assume that S and 5_ can be
written in terms of a small parameter

S=$1+$2+'" } (9.128)_*= _*+_*+...

If a parameter r defined by

dP_/dr=aJfo/aQ_ } (9.129)dQ_/dr= -a_g[o/aP_

is eliminated from _*, we have

_=const_=const } (9.130)

This development led Hori to the following
formulas :

_* = _o

5_* = ,_lsoe
$1 = f J(ipdr

_*= _._,s_e+ 213_+ J(*, Sd_¢

1 ¢_ S_]p_dr
S_= f(_,+_[_ _+J/*, /

(9.131)

Here we designate the subscripts sec and p
to mean the parts independent of and de-
pendent on l, respectively, as in the Von
Zeipel method. These formulas are given by
Aksnes (1970).

The Lie-Hori method has a number of

advantages. The transformation is com-
pletely in terms of the new variables, and no
inversion of series is necessary. The formu-
las are all canonically invariant, so they hold

for any canonical variables. Aksnes could
then make two fundamental advances in the

treatment of oblateness perturbations. First,
he chose as an intermediate orbit a precessing

ellipse that incorporated all the first-order
secular terms and most of the periodic terms.
That is to say, in the analogous process of

finding a_/aq_, he discovered another solu-
tion, q°, p0, that included a part of the dis-
turbing function instead of a Kepler ellipse.
Second, with a canonically invariant formu-
lation, he employed appropriate variables.
For long-period and secular effects, Delaunay
variables were used. The results agree with

the Von Zeipel method. For short-period
perturbations, Hill variables were used, a
procedure that eliminates the difficulty with
small eccentricities.

The first-order determining functions for
the Lie-Hori and the Von Zeipel methods are
the same, as can be seen by comparing the
defining equations or the results (Kozai,
1962b; Aksnes, 1970). In fact, this must be
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so because both formulations work for De-

launay variables and have been shown to be
equivalent. Therefore, the first-order per-
turbations are the same.

Space does not permit us to give a more
detailed account of this beautiful theory or
the detailed formulas, for which we refer the

reader to Aksnes (1970).
We summarize the status of oblateness

perturbations:
(1) Two complete second-order develop-

ments, one by the Von Zeipel method (Kozai,
1962b) and the other by the Lie-Hori method,
have been compared. For short-periodic per-
turbations, the agreement is 10 cm. The
secular rates predicted by the two theories
can be reconciled to within their given accu-
racy (Aksnes,d972).

(2) The second-order development of
Aksnes has the advantages of compactness
and efficiency of computation, and no singu-
larity for small eccentricity. The small-
eccentricity problem is avoided by the use of
Hill variables.

(3) For long-period and secular perturba-
tions to 10 cm, further work is necessary.
T_r,-_ _r, I" T, T T , ,_'1-,_ *'m_+ h_ _,_h_r]_ ,_

well as interaction with all other forces--

We cannot give the complete set of formu-

and second-order secular perturbations as
developed by Aksnes (1970), although we
have dropped the primes :

±?= ( -_G_/2t_r _) Is" sin 2u

1 1_D s_e sin (2u-v)

ar= (vG_/4_) [1-3c_+s _ cos 2u

- 41D s_e cos (2u-v) 1

_G= (vG/4) I3s_e cos (2u-v)

+s_e cos (2u+v)

1 s_e: (2u-2v)-- _D cos

5u= (-v/4) { (2-12c_)e

_h=

where

sin v

1 (4+D e_)s _ sin 2u- (2-5c _
8

+lDs_) e sin (2u-v)

+c_e sin (2u+v)

-l[D-D,_s_] c_e_sin (2u-2v) }

16e sin v-3e sin (2u-v)( _ _C_4_

- e sin (2u+v)

+l[D-D(_)s_]e_sin (2u-v) ]

D= (1-15c_)/(1-5c _)

D(_ = 3D/3c _

c= cos I

_,:-rdnI

y -.: .,/':/fl,_.V _

_= 1-e s

The secular rates can be obtained from letting

_3_----_-6ULU_T _ \.--uu. /J

with

_ = J_/J_
3

i_I=n+_n _ _[8 (1 - 6c_+ 5c0

-5(5-18c_ +5c0e _-
- 15 _ (3 - 30c _+ 35c _) e_]

_= g+g_(g+_)

= -- l_-_n _ [44- 300c _

+ (75 - 378c _+ 135c0 e_-

+60 _ (3- 36c_ +49c0

+ 135 v_ (1 - 14c_ + 21c0 e_]

_=h+g..(_+M)

3
h=_nc_ [2-10c _- (9-5c_)e _

-5,m(3-7c _) (2+3e_)]
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As was discussed in section 9.4.1.5, periodic

perturbations for J,., were developed by using
computer algebra. The expressions were
employed in orbit computation, and the or-
bital fits were identical. This agreement
validates both sets of formulas since they are

based on quite different methods. The mean
elements in the two developments are differ-

ent by factors of order J:. Aksnes (1970)
has given the formulas relating the two
theories and a numerical verification. If we
let a subscript 0 designate the Von Zeipel

element, then the elements of a, e, I are re-
lated by

11/a= (1/ao) 1 - _o7o (1-3 cos 2 Io)

1 2
+_,wo[l+6_0- (6+367o) cos 2 Io

+ (45+5470) cos' Io] +.-. }
/

[' ]G=Go 1+_,,(1-3eos'-'Io) +.--

cosl=cosIo=Ii+3_,o(1-cos2Io);+. . .

7_= 1-e 2
G e= 7 2 t_a

7 = Jo-/a2 7'

9.4.1.9 Atmospheric Drag and Radiation
Pressure

the atmospheric density is critical; it has
been studied extensively from its orbital ef-
fects. The parameters controlling density
variations are becoming known, and one can
probably predict a posteriori the mean-
density structure to within a factor of 2.
However, the satellite aspect and the drag
coefficient must also be known. Radiation-

pressure effects involve similar problems:
What is the value of the solar constant and
is it constant ? How much is diffuse and how

much specular reflection? How do the reflec-
tive properties change with time ? How vari-
able is the albedo radiation? How does the

satellite aspect change? And how is the
boundary of the Earth's shadow defined ? For
some satellites, this information is available,
though difficult to obtain. Some of these ques-
tions are subjects of current research.

The following treatment of radiation pres-
sure developed by Kozai (1963c) and ex-
tended by L_la (1968, 1971) and L_la and
Sehnal (1969) assumes, for one revolution,
the following: (1) the satellite is spherical,
with constant reflective properties; (2) the
solar parallax can be neglected ; (3) the solar
flux is constant; and (4) there is no albedo
radiation.

The natural vehicle for treating forces

directly is the Lagrange planetary equations
in Gaussian form (9.42). The forces are

expressed as

For several reasons, atmospheric drag and
radiation pressure are treated by different
methods than are gravitational perturba-
tions. First, they are not conservative forces
derivable from a potential function. Second,

they involve considerably more unknowns.
Whereas the geopotential may be considered
unknown and require improvement, we can
assume that the main field is constant in

time, that tidal variations are known, and
that the geopotential has a known mathe-
matical and physical form. Similarly, for
lunar and solar perturbations, we assume
sufficient knowledge of the mass and position
of the Moon and the Sun. With drag and

radiation pressure, we are in a much less
favorable position. In drag perturbations,

where

S=n°-a3FS(v) }
T=n_-a 3 F T(v)

W = n"-a3 F W
(9.132)

F= (A/M) (K/GM) _ 0.5 × 10-_ (A/M)

with A (area)/M (mass) in cm -°g-1. We have

S(v) = - cos 2 (I/2) cos 2(c/2) cos (X®- L - a)
- sin s (I/2) sin s-'(_/2) cos (X®+ a - L)

1 .
-_-sm I sin _ [cos (x®-L)

-cos (-x®-L) ]
-sin s (I/2) cos 2(_/2) cos (f_-_,®-L)
-cos 2(I/2) sin s (_/2) cos (-x®-L-_)

(9.133)
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_7'(v) = -cos 2 (I/2) cos 2 (_/2) sin (:`o-L -_) -sin 2 (I/2) cos 2 (_/2) sin (:`o+ _-L)
1

-- _sin I sin c [sin (:`o- L) - sin ( - :`®- L) ]

-sin 2 (1/2) cos 2 (_/2) sin (f_- :`o-L) -cos 2 (I/2) sin 2 (c/2) sin ( -:`o -L-a)

W= sin I cos 2 (e/2) sin (:`®- f_) -sin I sin _-(c/2) sin (:`o+ f_) -cos I sin c sin :,0

(9.134)

(9.135)

where L=v+_, :`o=the longitude of the Sun, and _=the obliquity. We have the LPE

(l_e_)l/,F S(v)esinv+T(v) p=a(1-e _)

d_ na 2 dI na 2
sin I _ - ( 1 - e2) 1/2WFr sin La dt - (1 -e2) _ WF--aC°Sr L

de _ { I 1( r)]}_=na (1-e2)_/2F S(v)sinv+T(v) cosy+ 1- ( (9.136)

d_ .d_ _(1 -_)'/; F[ +T(v)(l+p)Sinv]_= -cos J-8_ +na e -e -S(v)cosv

dM FS(v)rn_(l_e ) _2_/+ cos i_d_ )= n - 2a 2 2. _.[ d,o d_

Since radiation pressure is a discontinuous force, it is difficult to obtain analytical solutions

for it. Two approaches have been used successfully. The first, by Kozai (1963e), is to

determine numerically the time of shadow exit E, and shadow entry E_ in terms of the eccen-

tric anomaly. Then, by assuming everything else constant for one revolution, Kozai obtains
_:h,_ tnll_v;ng a,_Lo,a e. perturbations after one ..... 1,,+; ..... h .... q--.¢1¢_1 T--Tin'_ _..,_

written for their values at L =_:

8a= za°_ I[_ cos _- 1 ti - e-)-_ sm _Jl I
I IE_ I

_. Yll / I \!E_ 2 f _-ll

W {[_I= (l+e 2) sinE-Zsm2E eos,_ !a2F (1--e2):_ ,,

( )sine o,m 3 f }+(1-e2) V2 cosE-_-cos2E r-_e cos_dE

{[ e. ]W (1+e _) sinE-_-sm2E sin_,sin I $_= a_F-(l_e2)_/_

-(1-e2)_/_(cosE-4cos2E)cos_l_-_e'_ 3 /sino, dE}

&o=-eosIS_+a_F(1y2)_[ S(esinE+lsin2E)

-t (1_e_)_/2 ecosE-_cos2E - SdE
2_t

f aM_
SM= 2J a (1-e2) _ $o_- (1- e2)_/_cos I _ -2a2F

o

{ S[(l+e 2) sinE--4sin 2E]

T(1-:)  2(cosE- coseE)  efS aE}-- E1 --2

(9.137)
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If the satellite does not enter the shadow,
then the terms evaluated at E1 and E. vanish.

How the perturbations after part of a revo-
lution can be computed is obvious. These
expressions provide the differential equations
to be integrated for mean elements--that is,
dS_/dt=_a/_t=n_a, and so on. This is the
method used to calculate the long-term effects
due to radiation pressure in the determina-
tion of zonal harmonics and tidal parameters.
In addition, one can determine quite reason-
able mean reflectivities for the satellites.

An alternative approach was taken by L_la

(1968, 1971) and L_la and Sehnal (1969).
They developed the shadow function in Four-
ier series in E and found solutions for the

periodic perturbations. They required 36
terms in the development to obtain agreement
with the above special perturbation formulas.

These periodic perturbations were formally
integrated. For further details, the reader is
referred to the L_la and Sehnal papers.

The development of drag perturbations by
Sterne (1959) follows the same lines. As-
suming a rotating atmosphere with an oblate
planet, he considers the drag force per unit
mass

1 A V_ (9.138)

where C,) is a drag coefficient, AIM is the
area-to-mass ratio, p is the atmospheric
density, and V is the satellite velocity with
respect to the atmosphere. Now, C_), A/M,

and p are all difficult to know. Sterne adopts
C_)_ 2.2. If precise values of A/M are not
known, then the average A is taken as one-
fourth the total surface area. He then gives

the forces acting on the satellite as

LWJ Lt_rsinlcos (v+o_)

and after calculation, the velocity as

(9.139)

V [ t_Y/'[l+ec°sE_]/-'
=\a] \l-ecosE] (1-d

1 - e cos E'_
l+e cos

(9.140)

where

d= 0 (l_e=,)l_:cosl (9.141)

and the forces per unit mass are

_-- -- aV

[- e sin E E -]

_ (1 _ e'-') 1/_,[ 1-d(1-_le_E)_-----_'-, J

[-_-(1-e cos E) _sin Icos (v+_)E ]E

(9.142)

With these equations, the LPE can be inte-
grated numerically. Alternatively, if we can
specify how CD, A/M, and p vary, we could
attempt a formal solution. We make the
analogous solution to that for radiation pres-
sure, assuming C_) and A/M constant, and
obtain formal quadrature formulas for the

perturbations after one revolution. These
formulas are given in the inset on page 855.
We see from the last two expressions of

(9.143) that the direct perturbation in M+_
is quite small, the major change in M coming
from

_n= (-an/2a) _a

These expressions are used with numerical

quadrature to obtain the evolution of mean
elements. The implementation is done by
Slowey (1974) for studying drag. Alterna-
tively, taking Jacchia's (1960, 1964) density

model, Sehnal and Mills (1966) have devel-
oped p in harmonic functions and obtained
formulas for the periodic terms. These are
sometimes used in analyses of satellite orbits.

However, since for geodetic satellites the
short-period drag terms are always less than
1 m, we can ignore them. The secular part
is more conveniently absorbed in some con-
stants of our orbital model. Therefore, the

principal use of these formulas is in the
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A _ f2_ (l+ecosE),_(l_ l_ecosE):dE6a=-_,_a Jo p(E) (l_ecosE)1_\_ dl+ecos

A (1-e2)l_a r2_ /l+ecosE_'/_[ 1-ecosE)6e= -(;._ _ /0 p (E) (_L_ 1-dcos E ] \ 1 + e cos

I d cos E)(2 cos E e-ecos_E)ldEcosE 2(l_e_ ) (1-e

lfo2"A a . p(E) (1-ecosE)_ (l+ecosE) 1/-'61= C._n0 sin I (1 2) I/42

x(i_di-ecosE) Ii+cos2co(2-e2) cos 2 E-l+2e2-2e-2ecosE 1l+e cos (1-e cosE) _ dE

_--_ A a _-sin 2°'_ f _'__=- C_)M n (l_e_)l/_jo p(E) (v-e_cos2 E) _/_

cos S
(1-dl-ecosE)[2el+e -1-2e cosE+ (2-e 2) cos 2 E]dE

6,,= -cos 1 61_

SM= - (1- e2) I/'_d_+f6n dt

(9.143)

-_-"-o;_ _ long-period cffects by numerical
integration of these mean elements, along
the same lines as those used for radiation

pressure. In this case, we are able to make a
reliable determination of drag factors, which

model, or an estimate of CD or A/M. These

IPCI:I,LPJ[_..... L-"tl't_ _VHII('_I'_LIIV_ [AeLWeeN I,!._'D HI'I(] i .e")_

which is less than the uncertainty of these
parameters.

9.4.1.10 Computer Algebra

A great deal of the analysis used for satel-
lite-perturbation theory involves considerable
tedious algebra. One is led to do some of this

work on a computer. A major support of the
development of analytical theories has been

the computer program Smithsonian Package
for Algebra and Symbolic Manipulation
(SPASM), described by Hall and Cherniack
(1969), and Cherniack (1973) has contrasted
it with other algebra systems. Since the sub-

ject of computer algebra is beyond the scope
of this discussion, we confine ourselves to a

few remarks and the description of two
problems in satellite theory.

Algebra programs perform the elementary
operations of addition, multiplication, sub-

gration of a certain class of functions. We

can define functions, make substitutions, and
truncate on powers of designated param-
eters. We can examine expressions term by

Numerical coefficientsare kept as rational

numbers where !)o_ih]_ _ne c_n rent] ex-

pressions in,printthem out,or punch them

as FORTRAN cards for subsequent numer-
icalcomputation. We have two forms of

internal representation--expressions and

Poissonseries.Each has itsadvantages. An
expressionmay be

(ETA**2-R)/E

The Poisson series are of the form

/ sin \B
A'[cos)

where A_ and B_ are any expressions. All the
operations described apply to both expres-
sions and Poisson series.

Poisson series have three advantages:
(1) all trigonometric identities are auto-

matically applied; (2) because of the highly
structured nature of Poisson series, multi-
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plication and addition can be optimized, and

further, secondary computer storage can be

used for long Poisson series; and (3) the

bulk of problems in celestial mechanics is

solved by developing the disturbing function

in Poisson series and integrating term by
term.

In addition to the operations described

above, we can convert from expressions to

Poisson series, and then back. Great efficiency

is gained by judiciously choosing the form.
Consider

(cos2Ox) 30_ (cos30x) 2o

As a trigonometric polynomial, this opera-

tion is trivial; as a Poisson series, it is not.

We have here two very important features

of computer algebra: the noncommutativity

of operations with respect to time, and inter-

mediate swell. The above expression is obvi-

ously zero, but one has two 50-term Poisson

series along the way. Neither of these prob-
lems occurs in numerical work.

SPASM is 99 percent in FORTRAN;

storage management is accomplished with

SLIP, which is accessible from FORTRAN

programs. We are concerned with the effi-

ciency of SPASM and with the size and speed

of the FORTRAN code generated. These are

part of the more general problem of expres-

sion simplification.

Although general simplification seems to
be very difficult, we have had some success

with the following approach. We assume
that the coefficients of Poisson series can be

factored as the product of polynomials. Fur-
ther, we want to consider the choice of vari-

ables. In developing perturbation theories,

we convert to Poisson series all angle vari-
ables except the inclination. Therefore, we
have the side relations

variables--in this case, the elements of the

disturbing body (see sec. 9.4.1.7). We try
each substitution, as indicated. It would be

more direct to convert each coefficient of the

Poisson series to a Poisson series, using

e=sin ¢, _=cos ¢, in order to obtain all

simplifications, and then to convert back to

an expression. However, the substitution and

the test for length of expression are easily

done. We retain the expression that has the
fewest terms and remove all common factors.

Next, we assume that the remaining expres-
sion can be written

[ e SI eP SIP_
f _ _,' CI',]P' CIP]

=p_(e_p /SI\ /eP'_p [SIP'_
\ 7 / '% cI )Pe'_ _P ] ,'_ CiP]

where P_ is just a polynomial. In turn, by

setting all the variables but one equal to zero,

we obtain each polynomial. The results of

factorization are then verified by expanding
and subtracting. We have found that in this

way we obtain all the simplifications that

would have been obtained by hand.

SPASM has been used for a wide variety of

problems. We describe here two of particular

relevance to satellite theory: development of

oblateness perturbations in Delaunay vari-

ables by the method of Von Zeipel, and third-

body perturbations in Kepler elements by use
of LPE.

Von Zeipel's method is described in section

9.4.1.8. Two features can be pointed out.

First, once the determining function S is

known, the perturbations are obtained by

differentiation. Second, the first- and second-

order determining functions can be obtained

in closed form, as was done by Kozai (1962b)

by a change of variable using

_/2+e2= 1 dv= (1/,f _) (a/r) _ dl

SP + CP = SIP 2+ CIP 2= 1

where we have substituted SI for sin (I),

CI for cos (I), SIP for sin (IP), and CIP

for cos (IP). The P designates the primed

Both these operations are within the scope
of SPASM, and the problem proved tractable.

The necessity of an accurate theory for J,_,

was discussed in section 9.4.1.8. The develop-
ment by Kozai (1962b) had been used, but
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with such a complicated development that
further verification was necessary. The de-
tails of the work are recounted by Gaposch-

kin et al. (1971, unpublished). The impor-
tant results are the following :

(1) The problem proved tractable with

an algebra program.
(2) The determining function of Kozai

(1962b) has been verified, and the problem
solved to second order.

(3) The accuracy of the theory and the
inversion have been verified against numer-
ical integration. The inversion was checked
by use of the numerical inverse from (9.124).

(4) The difficulty with the small eccen-
tricity remains. The third-order periodic
perturbations were developed and were
shown to contain 1/e terms. Numerical tests
indicate 1/e 2 terms in the fourth order. We
conclude that this is due to the Delaunay
variables we had selected.

(5) The development of computer algebra
enabled us to obtain the third-order pertur-
bations in 3 weeks; w_ would probably not

have attempted it by hand.
(6) The perturbation theory was used in

bllt¢ UIUIbIGUIII_UL_:t_IUII [Jl_xattt. xxi_ vAA_j

n£ Al.-'a'n,c,a flQ"7_ [eaa _oo q ,4 ] _) WD.S _|,_

posiLion, Lhu_ vei:ifying both _ ..... _........ _
The second problem attempted is the per-

buru_tt, lUll UIAf¢ bU I_ bllll_l UUU.,y. JEll t, atAO i...(._,

we start with equation (9.89) (sec. 9.4.1.7
analytically develops that expression). Using
the algebra program, we now determine 1/a
by analytical inversion. The basic idea, due
to Broucke (1971), allows the inversion of
invertible expressions ; that is,

(E)-a/_=Z

An iterative scheme is developed, with each
iterant

Zn+I__Zn=AZn= a b/a--6(EZ_ -1) Z_

This is enormously powerful. Since we can
invert any expression without division, it is

applicable to computers without a divide in-

struction. In the case of lunar perturbations,
we have a/b = ½, where

E = (X- Y). (X- Y)

Here, X is the position of the satellite, and Y
is the position of the Moon. We have

Fcos u cos _-sin u sin _ cos I-_

X=r|cos u sin a + sin u cos a cos IJL sin u sin I

A similar expression for Y uses r', u', _', I'.
With this expression, we perform the ana-

lytical inversion, starting with Zo-1/r' and
truncating on r:L We have a simple check:

The r/r" are all canceled by the (X. Y)/IYp
term. The effects of body tides are easily
introduced at this point by the substitution

a 2n.1

r" --->r" + k.
_,n+l

Next, the expressions are expanded with use
of Hansen coefficients as described in section
9.4.1.5. The resulting expressions are then

put in the LPE and integrated on the as-

the inclinations, have a linear change with

fled as described above.
In ^ .1,,.,;c_n ..... on. we can say that computer

algebra has been a successful tool for satel-
lite-dynamics problems. It balances efficiency
and expediency. The lunar perturbations
were being used in the orbit computation

program a month after the work started with
SPASM, and we developed the third-order

perturbation due to J2 in 3 weeks. We can
develop even more efficient programs by care-
ful analysis (cf. formulas of Kozai (1962b)

and Aksnes (1970)).

9.4.1.11 Orbit Determination and Parameter
Estimation

The elaboration of an orbital theory, the

main objective of the preceding sections, is
but one of the four aspects of using satel-

lite-tracking data to obtain ephemerides and
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other information. We also have the data
reduction, the relation between the observa-

tions and the parameters sought, and the
estimation procedure.

We adopt Kepler elements as the orbital
parameters to be determined. However, we
choose to determine n, the mean motion,
rather than a, as n is the best known of
the orbital parameters. In addition, we
recognize that the coefficients of the grav-
itational field and the nongravitational forces

are imperfectly known, thus introducing
model errors. We can reduce these errors

to some extent by determining secular rates

for each of the elements. Therefore, the un-
certainty in the orbital model will be limited
to the short-period perturbations.

The polynomial representations of the ele-

ments account for the bulk of the nongravita-
tional forces, including the long-period effect

of gravitational perturbations. The poly-
nomials (mean elements) can be analyzed to

obtain the zonal harmonics of the gravity
field, some long-term resonant terms, and the
reflective and drag properties of the satel-
lites.

The basic relation used here is

O=observation=A_=Af -AR (9.145)

In principle, any parameter that enters
(9.145) can be determined from the observa-

tions, but it may not be unique.

There are basically four distinct types of
observation to be considered: (1) optical
directions given in a celestial reference

frame (e.g., Baker-Nunn data); (2) direc-
tion observations in a topocentric reference
frame (e.g., MINITRACK); (3) range ob-
servations (e.g., laser); and (4) range-rate
observations (e.g., TRANET Doppler). The
transformations for each type are as follows :

(1) Right ascension and declination :

I cOS_A(Z l

I-c°sasin_-sina sin_ cos_l_ _-= -sin _ cos a 0

(2) Altitude (a), azimuth (A_), range

(p) are given in the inset below with ¢, x as
the latitude and longitude of the observer,

and p_.,py, p: as the components of _.
(3) Range :

_=_t _=f_ _ (9.144) (4)

/,p =a. Ap= (a/I _[) Ap

Range rate :

where _ is the topocentric station-to-statellite

vector, f is the satellite position, and R is the
station position. It is convenient to use this

equation in the orbital system; therefore, R
is given by (9.7) and f by (9.17). We gen-
erally observe A_, where A is a transforma-
tion matrix. So we have

The domain of parameters to be deter-
mined can be expanded to include gravita-

tional coefficients, station coordinates, GM, a
scale factor for all stations, and the position
of the Earth's pole of rotation. For unique

tl -sin A. sin a -cos A: sin a cos a
= cos A. sin Az 0

px/p p_/p p__/p ] [-sin(x+O) cos(x+O) 0 ]}]-cos (x+O) sin ¢ -sin (x+O) sin ¢, cos ,/,
L sin (x+O) cos6 sin (x+O) cost, sin¢,
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and meaningful results to be obtained, sev-
eral orbits may have to be combined. This is
most conveniently done by dealing with
normal equations, which will be discussed
later.

If we wish to determine any parameter p_
from observations, we use our elaborated
theory for _ and our initial estimate for p,

pO and compute

C=A_ (9.146)

expressed in the orbital system. For example,
if p_=o,o, the constant of perigee is then

a_/ap_--1, the other being zero. If p_=C,m,
then with Cz,, = 1

a./ac,,,,=Z
q

In general, the dependence of C on p_ is non-
linear and we must linearize. We want to

find a correction to p_ that will reduce the
difference between 0 and C ; that is,

E
q

and so on. If p_= GM, then

O-C-- (a/ap,)A_Ap, (9.147)

Now if A can be determined from the obser-

vation, we need only aWOp_. For range rate,
A depends on p_, and the expressions are
more involved. For those parameters in-
fluencing C through the orbit, we obtain

ap_ = ao, ap_+agt _-_ aI ap_
• a_ ae . a_ aM 2a 0"_ an

-t- i

_ _lJf _._r.L _lJ.$ 0 7b V($ _)lJi

_v ....

(1_66a, p. 107), we have

_/aI = r sin u_,

_/ae= (a.x_) (a/r) [sin E/ (1-e_)_A] -5

_/aa = _/a

where

_/a (GM) = I_/GM
$

If we want to determine station coordinates,
we have

R = R_ ( - O)R (y,x,O) Xo

giving

Fr_x7 F_x7 F_77
I I _1 I _ I I -_ I I

Ll_axj, La_'j, LaZjj

F] o o]=--R:,(-O)R(y,x,O)[_ 01 O]

If we want a scale factor _ for all stations--

that is, _R = aRo--We have

a_/a_ = - R_ ( - 0) R (y,0) Xo

To determine the polar motion, we have

sin t_Zo ]a_ -cosOZo|
ay Yo J

U=V+m

F sin I sin ]
_,,= / - sin I cos .q "

"L cosI J If

rcosOZo]a_ |sin OZo
ax L -Xo

we have the instantaneous coordinate
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of the station, then

Xo = X cos 0 + Y sin

Yo = - X sin 0+ Y cos 0

gong

The data reduction falls into two parts:
those reductions necessary for all data, and
those related to particular data types.

All data must be expressed in the same
time system. For orbital computation, we
need a uniform time system, and so we have
chosen AS, an atomic time sS"stem, as a
standard. The differences between AS and
A3 and between AS and A1 are

AS- AI= 0.8983 msec

AS- A3 = 35.4 msec

We must use the actual value of UT1 to com-

pute the sidereal angle in (9.7). The time
associated with the station is the received

time for optical observations, but it is the
satellite time for range observations. The
satellite time corresponds to the average
position of the station during the round trip
of the signal.

Data from cameras must be reduced to the

adopted reference system by use of (9.8).
In addition, we must apply annual aberration
and parallactic refraction. The first is usu-

ally applied during film reduction, and paral-
lactic refraction is computed from

±R= [ (0.435 x 0.484813 x 10-_)/p]

(tan z/cos z) [1 -exp ( - 138.5 p
cos z) ]

where p is the topocentric range in mega-
meters, z is the zenith angle, and /_R is the
correction in radians. Now we have

±_ = - AR cos q

Although these values change slowly, the
adopted constants are sufficient for data
taken between 1965 and 1971. Numerical
values of AS-UTC are given in the form of

polynomials and are published (e.g., Gapos-
chkin, 1972).

We must also know the physical point to
be associated with each time. For optical
data, the time detected is that of receiving
the light. The orbital position corresponds
to an earlier time, the difference being the
travel time of light. For a flashing-light satel-
lite, the flash times are given at the satellite.
Nominal values of range are sufficient for
correcting the time associated with the satel-

lite position. With ranging data, we often
have the time of firing of the laser---that is,
the time of transmission--and therefore the
satellite time is later by the travel time. In
all cases, we must know precisely what the
satellite position time is.

We have a similar situation with the sta-
tion position. The position of the Earth is a
measured quantity given in terms of UT1.

Aa = _ AR sin q/cos

where q is the parallactic angle measured in
a positive (clockwise direction) from the ob-
ject to the great circle through the pole (Veis,
1960, p. 119). This correction is based on
standard pressure and temperature. If meas-
ured values are available, a better value can
be obtained by taking mean nighttime data.
A table of corrections is given in Gaposchkin
(1972).

For laser range observations, we make a
correction for the tropospheric refraction
and for the geometry of the satellite. The re-
fraction correction becomes (Lehr, 1972)

Ar z
2.238 + 0.0414 (P/T) - 0.238 hs

sin a+10 3cota

where P is the atmospheric pressure (rob)
at the laser station, T is the temperature
(K), h_ is the elevation above mean sea level

(km), and a is the elevation angle of the
satellite. This formula holds true for light
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from a ruby laser at 694 nm when the appar-
ent elevation angle is greater than 5 °.

The accuracy of data from laser systems
is connected with the physical size of the

satellite equipped with corner reflectors.
Arnold (1972) (unpublished) gives in tabu-
lar form a correction to reduce the observed

range to the center of mass of the satellite as
a function of angle of incidence. By use of
these data, all observations by laser systems
can be reduced to the center of mass.

Equation (9.147) will, in general, be over-
determined, and so we use the method of
least squares to obtain an estimate of the
unknowns. The general references are Arley
and Bach (1950) and Linnik (1961). By
collecting normal equations, we can merge
the observations from many orbital arcs.

In the least-squares estimate, the weight
or accuracy of each observation must be
established a priori. For the estimation
process, only the relative accuracy is impor-
tant; however, one can have greater con-
fidence if the standard error of unit weight

comes to be unity.
For the weighting, we assume that the

errnrs _r_ uncorrelated, probably not a bad
[OLi .......... I.......... 1assam on Wlbll IAD.b_t bi;th_ll over o_v_x_,

-J_r_ V_7_ hnve _iven each observation an

"-_,'..'._,,_, .... _h* _o described in table 910.

In addition, where there were more than 30
points in a pass of ]a,_r data, 30 points were
chosen, evenly distributed through the pass.
Some numerical tests indicate this was no

worse than if we had averaged the points.

Finally, the process of parameter estima-
tion must be iterative, for two reasons: The
model is nonlinear, and gross observation
errors must be discarded. On each iteration,

the computation discards data on a 3¢ cri-
terion; that is, a point is discarded if

m

(O-C) Vw>3_ .

where w is the weight, and _ is the standard
deviation at the last iteration. The process is
said to converge or stabilize when

I (o-,,- o-,,_,)/o-,,{< O.Ol

9.4.2 Coordinates
(E. M. Gaposchkin, J. Latimer, and G. Veis)

A number of approaches can be used to
determine the position of points on the
Earth's surface. Of these, we have chosen
tracking of close-Earth satellites, deep-space

probes, and surface-triangulation measure-
ments for this analysis. The data and the
method of analysis have been selected to
optimize the results for a global network of
reference points.

The satellite methods separate nicely into
two distinct types of analysis: geometrical

and dynamical. The former hinges on mak-
ing simultaneous observations of a satellite
from two or more points on the earth's sur-
face. When these are camera observations,
the vector connecting the two stations must
lie in the plane defined by the two observed
directions. A number of independent simul-
taneous observations will define the direction
between fho two stations. The Smithsonian

Astrophysical Observatory (SAO) has ob-
_alnetl a _Ulll_J_llb IIUlIIU_I UJ. _x_x_xvc_xx,_.,v_

observations to determine a network for its

stations. The National Ocean Survey (NOS)
of the National Oceanic and Atmospheric
Administra[ion ....... '......... "_ ^"*I_lNkY/-k._] ll_t_ tzctlll_u uuv a

era to establish a global geometrical network.
Alternatively, the dynamical analysis as-

sumes ttaat the sateiiite's orbit is known, and

computes the location of the observing sta-
tion from individual observations. In prac-
tice, the orbit is determined from the same
observations. The orbital mode has been

used by SAO to analyze tracking data on
close-Earth satellites and by the Jet Propul-
sion Laboratory (JPL) to analyze tracking
data on deep-space probes.

Surface-triangulation measurements are
reduced by organizations such as the U. S.
Coast and Geodetic Survey (now NOS) and
the Army Map Service (now DMA/TC), who

publish coordinates of given points referred
to a datum that, in general, has an arbitrary
origin, orientation, and scale. The relative

positions of stations are determined from
these data.
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The main objectives of this analysis were
the following :

(1) To improve the accuracy of the funda-

mental stations. Heretofore (SE II), the

accuracy was estimated as 5 to 10 m.

(2) To improve the distribution of refer-

ence points or tracking sites. In SE II, co-

ordinates were obtained for 39 independent
sites.

(3) To use the latest available data. New

data included the complete BC-4 network and

all the laser tracking data taken during the

International Satellite Geodesy Experiment

(ISAGEX) program. Surface-triangulation
data were used as observations rather than

as constraints.

The analysis assumes that the stations

form a fixed system (i.e., there is no relative

motion), that the pole position and the in-

stantaneous position of the Earth are known

without error from numerical values pub-
lished by the International Polar Motion

Service (IPMS) and the Bureau Interna-

tional de l'Heure (BIH), that the error in
observing time is random, and that Atomic

Time is a satisfactory system for ephemeris
calculations.

9.4.2.1 Geometrical Solution

In deriving a geometrical solution, the ob-

jective was to produce a system of normal

equations for use in combination with other
data. The data consisted of direction observa-

tions only, and there is no scale information

in the geometric net. Nor is there any infor-

mation to locate the origin of a geometrical

network. Hence, any purely geometrical

solution with these data would require an

arbitrary scale and origin. The combination

of normal systems avoids this problem, as

other data sets contain scale and origin in-

formation. The result of an unscaled, purely
geometrical solution is a set of interstation

directions, independent of the arbitrary
scale and origin introduced.

The computation was divided into two

stages. First, all data between pairs of sta-
tions were used to determine, by least

squares, the interstation direction and its co-

variance matrix for each pair. The mathe-

matical model for determining this direction
uses the condition that the interstation di-

rection (u:,) and the two directions from the

stations to the satellite (u,, u,) must be co-
planar :

_1 "U2 X U3_--0 (9.148)

A system of first-order Taylor expansion ap-

proximations to equation (9.148) is solved
by least squares to determine u:_ and its 2 x 2

covariance matrix. In order for truly simul-

taneous directions (u,, us) to be obtained, syn-

thetic observations were computed by inter-
polation from a series of observations over-

lapping in time from two stations (Aardoom
et al., 1966).

The synthetic observations (ul, u2) were

weighted according to the quadratic fit of the
individual observations used to determine the

synthetic ones. The weight was modified ac-

cording to SEII to account for the possibility

of systematic errors, principally in station

timing. Separate synthetic observations were

considered to be uncorrelated. For BC-4

data, the NOS has derived seven simultane-

ous observations from each photographic
plate (event) with the associated 14x 14
covariance matrix for each set of directions.

These were the data provided and used to de-
termine u3.

The data were then screened. When the

adjustments to u, and u._, (corrections to the

observations) were judged to be too large

with respect to the remaining data for that

interstation direction, those points were de-
leted and the direction redetermined. For

the SAO block, 68 directions were deter-

mined, and for the BC-4 group, 152.

The second stage consisted of a network

adjustment for each data block. The mathe-

matical model for stage two is that of varia-
tion of coordinates :

_II--U2--U3 _--0

where ul is the vector from station 1 to the

satellite, u._,, is that from station 2 to the

satellite, and u3 is the interstation vector.
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Satellite positions are eliminated, and we
obtain a solution for station coordinates,
thus deriving adjusted interstation direc-
tions. This is equivalent to adjusting the
directions directly by using the coplanarity
condition for each triangle formed by ob-
served directions between three stations. The

advantage of this normal system is that it
refers to coordinates, not directions, and can

be readily combined with other normal sys-
tems for station coordinates. These direc-

tions are given in table 9.25.
We had available for comparison the

interstation directions and their accuracy
estimates o21 resulting from Simultaneous-
observation data and also the new direc-

tions and accuracy estimates 0._ resulting
from the network adjustment. Table 9.26b

2 and the square of the differencelists a_, 0"2,

82 between the two estimates of the intersta-
tion direction.

We expected that, on the average, for the
interstation direction adj ustment 8,

82<_(0._+a_) /2

/U _I_UI_.Ly UIII_ I_UIIUlt_IUll, W_: lllU.Ob IIIUI_JLI,)I_V

the variance estimates by a factor

5 2

(0._+0_)/2

From table 9.26b the average value for k = is
2.65, and the accuracy estimates for the geo-
metrical solution are scaled by this number.
A similar analysis of the BC-4 network (see
table 9.26a) gives an average value for k = of
2.60.

9.4.2.2 Dynamical Solution

An observation 6 of direction, right ascen-
sion and declination, or range can be related
to the satellite position ¢(t) and to the sta-
tion position X by

0= [A] [_(t) -R(O,x,y)X] (9.149)

In general, A is an easily computed trans-
formation matrix. Further, the orbit ._(t)

depends on the orbital elements, the gravita-
tional field, the atmospheric density, solar and
lunar gravitational attraction, and radiation
pressure. Finally, equation (9.149) depends
on UTl--i.e., the sidereal angle e--and on
the pole position x and y. None of these quan-
tities is known without error and each, in
itself, provides a number of difficult prob-
lems. For a certain class of satellites, the
Earth's gravitational field presents the major

source of error but is improved as part of the
analysis described above.

Two types of data have been used in the
dynamical solution. Observations of direc-
tion are made by photographing the satellite
against a star background. The star posi-
tions then define the direction from the ob-

serving station to the satellite in the coordi-
nates of right ascension and declination. The
star positions are taken from a catalog and
refer to its epoch. Precession and nutation
are therefore applied to refer the observation
to the reference system desired. For reasons

chosen to work in the quasi-inertial refer-
ence system defined by the equinox of 1950.0
and the equator of date. in addition, UT1
and pole---:_-: .... are ---_'^_ *^ t._-_~ the

Conventional international Origin and the
zero meridian of the BIH, into this system.

Therelore, orbital elements and station posi-
tions are expressed in this quasi-inertial

reference system when determined with di-
rection observations. Specifically, the right

ascension of the ascending node of the satel-

lite (hereafter called the node) is unam-

biguously defined.
Observations of range relate the relative

position of the satellite to the observer and
not to the reference system; i.e., the observa-

tion is unchanged if the reference system is
transformed by translation or rotation. Spe-

cifically, the node is defined only relative to
the adopted value of ÷ UT1. Therefore, when

only observations of range (and velocity)
are used, a correction for the longitude must
be allowed for in each orbit. This is accom-

plished with the following device. In gen-
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eral, the normal system for each orbit has
the form

(9.150)

where ±X are the corrections to the station

coordinates, and ±p are the corrections to the
orbital elements.

It has been observed that with direction
observations, B_0, and so the interactions
between orbital elements and station co-
ordinates can be ignored. For observations
of range, we form the set of reduced normal
equations

[N-BCBr]AX=5 -BCb (9.151)

These equations eliminate the correction

Ap while preserving the interactions between

Ap and AX. This set of reduced normal equa-
tions can be added to another set, and the

solution for AX can be used to determine ±p

if so desired. The complete set of Ap was
computed and found to be very small. The
same device is used in processing simultane-
ous observations to eliminate the satellite

position from each simultaneous observation.

In summary, orbits determined by direction
observations were processed directly by as-
suming B=0. Those orbits based primarily
on range data were reduced by means of
equation (9.151).

where M is the mass of the Earth,
including the atmosphere; G is the univer-

sal constant of gravitation ; d'_,,_= Cz,,- iS_,,, ;

(_to=-J1/\/21+l; !f_e { } designates the real

part of { }; Pl,,(sin _) are fully normalized

associated Legendre polynomials; and r, ¢,
x are the coordinates of the test particle. It
is possible to choose a coordinate system such
that

C_oo= C-_,1= _- =0+i0_2,1

and we assume that the instantaneous spin
axis as defined by the International Polar

Motion Service and the center of gravity of
the Earth are that system. This assumption
is not strictly true, but the departures are
small and are ignored in this analysis.

It is observed that for the Earth the ampli-

tude of E(ICz,,,I) decreases uniformly accord-
ing to

10-'
E(IC_,,,[) - l_ (9.153)

Although for theoretical reasons E(l_..I)
must decrease more rapidly than equation
(9.153) at some point, and individual coeffi-

cients can be arbitrarily large, this rule seems
valid throughout the range of 1 used in this
investigation.

We use two types of data on the Earth's
gravity field : those derived from gravimeters
and those obtained from the motion of arti-

ficial satellites. The gravity calculated from
the gradient of equation (9.152) is

9.4.3 Gravitational Field

9.4.3.1 Analysis of Satellite Orbital Data
(E. M. Gaposchkin, M. R. Williamson,

Y. Kozai, and G. Mendes)

The external potential of the Earth is
represented by a set of orthogonal functions :

cU= _e_--_ CI,,_P_,,_(sin _)e i''x

(9.152)

Ag = 7!1_e__, a_ _-, __(/--1) C_,,_pt,,,(sin4)e,,_x
/=2 m=0

(9.154)

where 7= GM/r _ and C[,,, are Cz,,_modified to
accommodate those effects of the reference

ellipsoid (or gravity formula) that change
the definition of C_oo, C_,0, and C_.o. Compar-

ing equations (9.152) and (9.154) makes it
apparent that Ag is more influenced by C_,,_
of high degree and order than is cU and that
measurements of Ag are more useful for
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determining these high-degree and high-
order coefficients.

Determination of Cz,,, from analysis of
satellite observations requires a theory for
satellite motion. General solutions for the

motion in an arbitrary potential field have

not yet been found. We must therefore
restrict ourselves to approximate solutions,
which are quite sufficient for the following
reasons. It is observed that for the Earth,

the second-degree zonal harmonic C__.omakes
the largest contribution to the anomalous
potential and is 10 -3 of the main term. The
remaining anomalous potential is 10-3 of C2,o,
or 10-° of the main term. Therefore, to

calculate the trajectory to 10-° (our objec-
tive), we require at least a second-order
theory for C._,.o(i.e., one including C_oo), but
only a first-order linear theory for the re-
maining C_,,. Although there are notable
exceptions--resonances and some zonal har-
monics-these considerations provide a work-
able base.

The Earth's motion is complicated because
of precession, nutation, polar motion, and
rotation. A convenient reference frame is

defined by the stars and, in practice, is defined

_IIIII3UI£UCI.I_V ] 111 LU&III_ U£ a _L_tl tS_tt_,lu_ _tt,

some epoch. On the other hand, in an inertial

poral variation that significantly complicates
the construction of an analytical theory. For
this reason, a compromise quasi-inertial ref-
erence frame referred to an equinox (epoch
1950.0) and an equator (epoch of date) has

been adopted. Veis (1960a) knew, Kozai
(1960) proved, and we have used the fact
that this coordinate system minimizes the
additional effects required to account for the

temporal variations of the gravity field and
the noninertial property of the coordinate
system.

Accordingly, the determination of C_,,,from
analysis of satellite observations uses the

elaboration of a satellite perturbation theory.
This elaboration is too lengthy to detail here,
so we confine ourselves to a few remarks.

The perturbation theory is developed by ex-
pressing equation (9.152) in terms of satel-
lite coordinates (a, the semimajor axis; e,

the eccentricity; I, the inclination; _, the
argument of perigee; _, the right ascension
of the ascending node; and M, the mean

anomaly). If we express equation (9.152) as

l

l=o m=o

we can write

l

cUz,,--._e_ _ C_,,,Az,,pq(a,e,I) e'_ (9.156a)
p=O q=-_

where

Al,,pq(a,e,I)= GM (a_
a \a/

and

l

D1,,p (I) Gzpq(e)

(9.156b)

_= (/-2p)o_+ (l-2p+q)M+m(_-O)

(9.156c)+ (l-m) _.

These four equations are the exact equivalent
of equation (9.152). Exoressed in this way,

_z, M) are separated from those with only
periodic -'_ ..... :'-. _' _'_ '_h_ro_r_ _'n_
functions A.,,,,_(a,e,I) can, with sufficient
accuracy, be .... ;_. ,_...... ere_ constant. In addi-

tion, G_(e) _ 0(elq[). Since satellites of
interest have small or modest eccentricity,
only a few terms in the sum over q are neces-
sary. The number of terms is selected auto-
matically for each satellite by means of a

numerical test; typically, Iq[ < 5 is sufficient.
The differential equations relating the dis-

turbing potential and the changes in orbital
elements are known as the Lagrange plane-
tary equations, a set of simultaneous ordinary
differential equations of the form

d k k

-d_ C=.£ (a,e,I) cU (9.157)

where c__ is a generic element, .L'_(a,e,l) is a

linear differential operator, and %_ is the
disturbing potential. If we assume that the
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interaction of perturbations can be ignored,
then we can write

¢o= (/-2p)_+ (1-2p+q)n+m(_-O)
(9.162b)

o0 l

Ck= Cko+_ _ 8d?_,, (9.158)
/=2 m=o

where Cok is the unperturbed element. This
is an excellent assumption except for C__.o.
The secular changes in _, _, and M due to

C_.0 interact significantly with all the per-
turbations, and so for these angles variables,
we use

Ck= _'ok+_kt+ _ _C_m (9.159)
Z=2 m=0

Substituting (9.155), (9.156), (9.158), and
(9.159) into (9.157), formally expanding
the resulting equation, and discarding all
interactions on the right-hand side, we obtain

C_m= _e f_ (ao,eo,Io)
l

Czm l,n_q(ao,eo,Io) ei_°
10:0 q:--oO

(9.160a)

where

_0= (/-2p) (_o+_t) + (l-2p+q) (Mo+nt)
7r

+m(_o+flt-O) + (l-m)y (9.160b)

Here, _, n, and _ are the secular rates of _,
M, and _. The rotation of the Earth is suffi-
ciently uniform so that we can write

O=Oo÷_t (9.161)

Finally, $C_ is the perturbation in element
C_ due to the potential coefficient Czm. Equa-
tions (9.160) are now uncoupled differential
equations, which can be integrated immedi-

ately to

kCtm= _e .£k (ao,eo,Io)

l ._ ei[¢o-(_r/2) ]
_ Cz,nAzmpq (ao,eo,Io)

v_ q=--oO

(9.162a)

The general properties of the solution are
now apparent. We see that ¢ can be exactly
zero only when m=0. Therefore, only even
zonal harmonics Czo can cause secular pertur-
bations. The period of the periodic terms is
given by equation (9.162b), and we see from
equation (9.162a) that the longer the period
is, the larger the perturbation. Thus, when
m=O, long-period terms with argument _,
2_, 3_,... occur when q= -1, -2, -3 .....
For nonzonal harmonics, long-period, large-
amplitude perturbations arise when ¢_ 0.

Since n( _-13 rev day -_) >$( _ 1 rev day -_)

>>_, _ _ C__.on= 10-_n, this resonance condition
occurs when n _ m_--that is, when the mean
motion n is approximately an integral num-
ber (the order m) of revolutions per day.

In fact, resonant conditions always exist to
some extent. Resonant terms occur in both

satellite theory and planetary theory, and
there is extensive literature on the subject

(e.g., Kaula, 1966b; Hagihara, 1961a), but
as yet there is no completely satisfactory
treatment. It is true, for example, that a
solution such as that employed here by using
linearized equations can be invalid for some
cases, since the series are not uniformly con-
vergent; fortunately, this does not occur
here. The occurrence of resonances between

the field of the Earth and a satellite has

been viewed as an opportunity to deter-

mine particular harmonics to high precision.
In fact, some of the low-degree harmonics

have been studied extensively with syn-
chronous satellites, and many harmonics of
orders 12, 13, and 14 have been determined

by SAO and others. Long-period terms in _,

2_, 3_ .... from the zonal harmonics are
resonant perturbations in the sense of the
term as discussed here. Satellites with strong
resonances interact with the field to I=35

and higher. Finally, we have seen that

the largest perturbations result when equa-
tion (9.162b) is smallest. With m=0, the

largest terms are for l-2p+q=O---that is,
there is no dependence on M. Therefore,
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long-period terms can be analyzed. For
m_ 0, the largest effects are also without M.
In this case, the frequency is m oscillations
per day, and the first-order term will be the
largest. Terms for m = 8---that is, eight oscil-
lations per day--become very difficult to

determine, and reliable values for m__10 can
be obtained only by the study of resonances
or from terrestrial gravimetry.

The formal theory, equation (9.162), ac-
counts for both resonances and short-period
terms. For example, the resonant perturba-
tion in mean anomaly for satellite 5900701 is

aM=C,,ll{-1.387×102cosI3_.8 (t-to) 1

[ .  o,1+}- 1.798 × 10 _cos 1124.8

(9.163)

with similar terms for $11,]1, 012,11 ..... The
l124-day term is much longer than any span
of data for one orbit. Because we have im-
............ th.... "IBI'I _- 1_ i-,_ t _(i O" _ I]_ e l% i_l_ i% 1 _)_ _

the empirically determined orbit will absorb

the residual 1124-day term into the mean
^1 ...... _~ mm,_ _ • ..... •

........ v ............. _o .,.e .,,_.u .,, _.,,_ same way
, .... ;,, ,; ...... 4% ........ ] _ .

,_0 iO _Vii_, &,Ji _giiO, i iiainionlcA_.

_ecause mosL of the zonal harmonics give
rise to short-period perturbations, the re-
__._i__ _ 1_
51UU_Ib Of _ -," _-_ • 1 a.mmwuuul ou_ervaLmn_ are ana-

lyzed to determine these field coefficients.
Since we are dealing with instantaneous ob-

servations of position, the observation equa-
tion is of the form

OM OC,,, + _ _C_,, +"" ±C,,,

(9.164)

As an example, the perturbations in M for
satellite DID are given on page 868 for only
the principal terms, with m = 1,2; l= 3,4,5,6,
7,8. For this satellite, a=7614 km, e--0.0843,
and I = 39 ?455.

Even if we assume the satellite to be a

perfect filter, uncontaminated by other model
errors, and the tracking data and analysis

process to be perfect, we see that with one
satellite, we can determine only spectral com-
ponents that are linear combinations of the

gravity field (Ct,,,) and functions of orbital
elements [A,,p,_ (a,e,I) ]. From each satellite,
we obtain one or two linear combinations of
harmonics for l odd and for 1 even. With

additional data, we can only refine the nu-
merical value of these linear combinations.

The coefficients of the relations will depend
on the orbital elements, so that other linear
combinations can be determined only from
additional distinct orbits. Generally, this is
achieved by selecting satellites with different
inclinations, but independent linear relations

can also be obtained with changes in eccen-
tricity or semimajor axis.

As the degree increases, the perturbations
become negligible, and so the linear relation

does not involve an infinite number of param-
eters. Of course, the spectrum analysis gives
both amplitude and phase, or, as generally
written, C_....

linearcombinationof C_,.C_,I,C_,_.... can

be determined from the -1.001-day period

term and another of equal .,_izefrom the
-0.971-day term. The thirdterm isa factor

cantly as an observation equation; there are
also many smaller terms. The linear com-

bination of C_._, C_.._, C_,_, has only one
significant spectral component for the
- 0.327-day period.

The linear relations are not determined

with equal accuracy; for example, the reso-
nant harmonics have a very large effect and
the spectral component is strongly deter-
mined. However, the resonant period is
commensurate with the arc length, which
will cover only a small number of cycles. This
makes it difficult to separate nearly commen-
surate periods.

If we consider equations (9.162) as ex-
pressing the spectral decomposition of the
perturbation, we see that each harmonic C_,,
of order m causes the same spectrum of
perturbations. Further, the spectrum has
several lines close together. With a short
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_M= C:,,_ [-7.1 sin (,,,+_-0) +0.8 sin ((,,+ 2M +_]-0) -63.3 sin (-<,,+_-0) +" "]

+ C:_,_[ -42.5 cos [o,+2 (_- 0) ] +10.5 cos [,,,+ 2M+ 2 (_-0) ] - 13.6 cos [ -0,+2 (_-0) ] +.-. }

+U,., [7.0 cos (-M+_-O) -8.2 cos (M+_2-O) +5.1 cos (-2,,,+_-0) +...]

+(7_,=,{-10.3sin [-M+2(_-O)] +14.2 sin [M+2(_]-O)] +'"}

+U:,,,[-87.4sin (,,,+_-O) +6.9 sin (<,,+2M+_-O) +87.9 sin (-,o+_-0)+-"]

+(7:,,_{8.6cos [,,,+2(gt-O)]-l.4cos [o,+2M+2(_-O)]+43.9eos [-,,,+2(_-0)]+...}

+C_.l[5.1cos (-M+_-O) -6.0 cos (M+_-O) -16.2 cos (-2o>+gt-O) +-..]

+(7,w_,{5.4 sin [-M+2 (_-0) ] -7.4 sin [M+2(_-O) ] +-" "}

+U;.,[33.1sin (,,,+_-O) +O.Osin (o_+2M+_-O) + l.4sin (-o,+_-0) +...]

+(7;,=.{40.0 cos [,,,+2(_-0)] -5.5 cos [o,+2M+2(_-0)] -40.3 cos [-,,,+2(_-0)] +...}

+C_,,[-6.8 cos (-M+_-O) +7.9 cos (M+_-O) +19.1 cos (-2_,+_-0) +.-.]

+ (-7_,_{4.1 sin [-M+2 (_-0) ] - 5.7 sin [M+2 (_- O) ] +... }

(9.165)

We can rearrange this expression in terms of the same frequency (with the period P of each

term in days given in parentheses) :

_M= ( - 7.1C:_,_ - 87.4C_._ + 33.1U_,_ +... ) sin (,,, + _- O)

+ (0.8C:,,, + 6.9(7_,_ + O.OUT,, +-.. )sin(o,+2M+_-O)
+ ( - 63.3U:,._ + 87.9C_, + 1.4C_,_+ • • • ) sin ( -o,+ _- 0)

+ (7.0U,., + 5.1C,_., - 6.8 U,_., +-.- ) cos ( -M + _ - O)

+ ( - 8.2C_._ - 6.0C6,, + 7.9 C_,, +-.. ) cos (M + gt - O)

+ (5.1_._-16.2C6., + 19.1C_ _+... )cos( - 2o,+fi-O)

+ ( - 42.5U_._ + 8.6C-, _-_ 40.0 (_._ +--- ) cos [,,, + 2 (_ - 0) ]

+ (10.5C:,,_- 1.4C_,,_, - 5.5C_,_ + -.- ) cos [,,, + 2M+ 2 (_- 0) ]

+ ( -13.6C:__,+43.9C:,._,-40.3C_,.:+... ) cos [-o,+2 (_-0) ]

+ ( -10.3U_,_+5.4C,_,,..,+4.1C_..,+... ) sin [-M+2 (_- 0) ]

+ (14.2C_._-7.4C_,_-5.7C.,._ +...) sin[M+2 (_]-0) ]

+ • . .

( - 1.001 day)

(o.040)
(-0.971)

(-0.071)

(o.083)
(-0.958)

(-0.497)

(0.041)

(-0.327)

(-0.066)

(0.091)

(9.166)

span of data, these spectral components are

difficult to separate.

The large number of harmonics affecting

a satellite is related by a linear equation

similar to equation (9.166). For one satel-

lite, only a linear combination of coefficients
can be determined. In those cases where an

insufficient number of satellites is observed,

additional assumptions are necessary in order

to obtain independent equations. The usual

assumption is to set some of the higher

degree terms to zero, leading to lumped
coefficients that are useful for orbit deter-

mination but that may be unrelated to the

actual field.

In summary, the process of field deter-

mination begins with the evaluation of the

secular and long-period perturbations to

determine the J,,. The perturbations accumu-
late for weeks and months, and the effects

are very large. The mean orbital elements,

determined from overlapping 4-day arcs,
constitute the basic data used in the analysis.

Data and reference orbits of moderate accu-

racy are adequate for the J,, determination.
The unbiased recovery of the J,, requires

painstaking evaluation of the long-period and

secular perturbations from other sources,

principally solar radiation pressure, atmos-

pheric drag, and lunar and solar attraction.



SMITHSONIAN ASTROPHYSICAL OBSERVATORY 869

This phase of the analysis is accomplished
first. The tesseral harmonics are determined

from the short-period (1 revolution to 1 day)
changes in the orbit. The detailed structure
of the orbit must be observed, and each

observation provides an observation equa-
tion. Data of the highest possible precision
are needed. The unbiased recovery of (7_,,
requires the evaluation of the periodic terms
from other sources that have periods similar

to those arising from the potential coeffi-
cients. The most important are the short-
period terms due to J,, and the lunar attrac-
tion. Because they are smaller than 1 m for
the satellites used in this analysis, the peri-
odic effects of air drag and radiation pressure
can be ignored. The nonperiodic terms are
empirically determined and hence accounted
for. The short-period terms due to J._,must
be carried to second order.

9.4.3.2 Coefficients of Zonal Spherical
Harmonics in the Potential

9.4.3.2.1 INTRODUCTION

Coegicients of zonal spherical harmonics
in the potential determined from secular
,._:-.-:.,-.,,_.-.z -J._ _,_,--._.,i ,,.ali_uie_ arid from

amplitudes of long-periodic terms with the
argument c,f p_r,gee _.,in the orbits of arti-
ficial satellites are more accurate than are

coefficients derived by classical terrestrial

methods. The reason is that the component
of geoid height represented by the zonal har-
monics is amplified by a factor of 1000 when

they appear as secular and long-periodic
perturbations of satellites. However, because
these perturbations are averaged effects,
contributions from the harmonics in each

are not very different from one satellite to
another unless their orbital elements are

quite different. Also, few satellites with in-
clinations below 30 ° have been employed in

the determination of the coefficients, since
accurate observations of such satellites have

been scarce. It was also found that many
more terms than expected were necessary to
represent the potential. Therefore, it has

usually been very difficult to separate the
contributions from each harmonic in the
observed values of the secular motion and of

the amplitudes of the long-periodic terms.

In other words, different sets of coefficients
could represent these observations within
observed accuracies for satellites with incli-
nations larger than 30 ° .

9.4.3.2.2 EQUATIONS OF CONDITION

A computer program has been developed
to calculate coefficients of J,,(n<55) in ex-
pressions of secular motion and of the ampli-

tudes of c°s2,,, and c.°so, terms. Numerical
sin sin

values for n_<37 are given in tables 9.27 to

9.29 for 14 satellites. Since secondary effects
due to the interaction with the J_ secular
terms were not included, the values here for

the coefficients of the amplitudes of the long-
periodic terms in the argument of perigee
and the longitude of the ascending node are
_lhrhf]v diFFerent frr, m tl-,c,_ _y_ g_Ta n_'_.

viously.

For the two angular variables _, and fl, the
..... 1 ...... ^1 _ ..... • 1- _. _ _ 1 A. 1

bCGLllal d_ilU IUllg-pt_llt)GIIG pt_l'bUl'IJl:tblOll_ IIRV_

d(o,,_)
dt (,',,fi) + A sin ,, + B cos 2_, (9.167)

where _, and a, the secular parts, are func-
tions of the semimajor axis, inclination, and
eccentricity, which are not constant and,
except for the semimajor axis, have long-
periodic terms. The inclination and the ec-

centricity cannot be assumed constant in
expressions for _,, _t in equation (9.167) but
must include long-period terms. The effects
of these long-period terms are of the same
order as A and B and produce secondary
effects. Therefore, if constant values for
secular motions are adopted in order to
analyze the data, the secondary effects in

expressions for the long-period terms must
be included in equation (9.167). In earlier
papers by Kozai, the secular motions were

determined from observation by assuming
they were constant. Corr_.ctions to the sect,_-
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lar motions and the amplitudes of the long-

periodic terms were derived in recent papers
by fitting the observed orbital elements with
the integrated results of equation (9.167) by

using assumed values of J, and the instan-
taneous observed mean values of the semi-

major axis, inclination, and eccentricity.
Thus, it is not necessary to incorporate the
interaction terms, as they have already been
included numerically and subtracted from
the observed data.

As tables 9.27 to 9.29 show, the decrease
of the coefficients with degree of the har-
monics is slow, particularly for low-altitude
and for low-inclination satellites. For

DIAL and PEOLE, the coefficients of the
secular motions for lower harmonics are not

independent, as ,_, is almost twice as large
as -_t.

For low-inclination satellites, the signs of
the coefficients change continually as the
degree of the harmonics is increased, while

for high-inclination satellites, they change
only rarely. TherefQre, to reduce correlations
between the coefficients in the determination

of zonal spherical harmonics, it is necessary
to use data for satellites with well-distributed

orbital elements. However, such data are
usually not available.

9.4.3.3 Determination of Tesseral Harmonics

Tesseral harmonics were computed by com-

bining satellite perturbations and terrestrial

gravimetry. In the computation of the nor-
mal system, terms with small contributions
have been omitted. Therefore, the normal

system determined from orbit analysis is
complete through /--m=12. In each higher

order, terms have been omitted--for ex-
ample, 13,6 through 13,9 and 14,5 through
14,11. Resonance harmonics through 23,14

have been incorporated. Of course, all terms
were included in the computation of the
residuals. In the same way, for surface

gravity all available potential coefficients
have been used, but no partial derivatives
for the zonal harmonics or tesseral har-

monics less than ninth degree wer e computed,
since they are negligibly small.

For each orbital arc, a set of six mean

elements, C'i, is determined. The linear rates
are derived empirically, as is the mean
anomaly. In addition, higher polynomials in
the mean anomaly are employed, where ap-
propriate, to account for the nonperiodic, yet
nonsecular, effects of air drag and radiation

pressure. Twelve or more orbital elements
are determined for each arc, and the arcs

range in length from 4 to 30 days. Therefore,
with the more than 100 orbital arcs used in

this solution, over 1500 additional parameters

need to be determined. By use of a device
described in section 9.4.2.2 for reducing the
normal equations, this can be accomplished
without dealing with 2000×2000 matrices.
For systems of 2000 unknowns, the time re-
quired to compute reduced normal equations
is much greater than that for the adopted
method, which is a block Gauss-Seidel itera-
tion. Reduced normal equations are used
with more limited problems--e.g., in a solu-
tion for resonant harmonics--because they
rigorously account for the interaction of the
elements and unknowns.

The determination of orbital elements and

of geodetic parameters (potential and sta-
tion coordinates) was done separately and
iterations were performed alternately; this
method improves first one set and then the

other. As the iterations proceed, the choice
of unknowns is modified : Satellite data were

either deleted or augmented, depending on
whether coefficients (and station coordi-

nates) appeared to be ill-determined or sig-
nificant.

Equations (9.162) lead us to the method of

selecting those coefficients that affect the
orbit and that therefore can be determined

from observing the orbit. We know that C_....
a, e, and I determine the size of -k_cJ,,,p_, which
can be computed by using an estimate of
[C_ml and the value of the mean elements.

We estimate lC_,,,l=al-_ to test for signifi-
cance, and only terms greater than al-_ are
retained. All the $c_k are calculated and com-

bined into a shift of position _/d_.d_; they
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are given in table 9.24 for satellite 6701401

with 1=11,12 ..... 20. The units are adjusted
so that with C,,,, expressed in units of 10-6

(e.g., C2.2-2.4), the perturbation in position
is in meters. Conservative values for a and

B are used, and more terms are carried than
are perhaps necessary. For example, for

/=11, m=5, and Cz,,=lO-_/12=O.083, the per-
turbation is 0.083×38_3 m. From such

tabulations for each satellite, we can choose
the coefficients that affect the motion of the

satellite and ascertain how many satellites
contribute to the determination of a coeffi-

cient. In addition, the accuracy of the avail-
able data controls the size of the effect that
can be detected. The choice of coefficients is

made by balancing the amount and precision
of the data available for a particular satellite
against the sensitivity of that satellite to
particular coefficients. Further, it is apparent
that the surface-gravity data are stronger
than the satellite information for some coeffi-

_:^_,_ __a *_ that reason some higher
coefficients have been dropped from the satel-
lite solution.

Table 9.24 illustrates two points referred
to earlier. The amplitudes for m=13 are

large size of the effects continues well into
(h._ _0th-degree terms. The _ - 12 and _ = 14
harmonics also have sizable effects because
the:¢ are adjaccnt to a resonant harmonic.

Apart from the resonant harmonics, terms
higher than /=12, m=12 are weakly deter-
mined by the satellite data, but it had been
demonstrated in earlier iterations that the

surface gravity could determine these higher
harmonics. The satellite solution was limited

to those harmonics that have an effect greater
than 3 to 4 m on the orbit. The resulting

terms were complete through /=12, m=12.
The higher order terms selected were

C/S(I,1) 13</<16; C/S(I,2) 13</<15;

C/S(14,3); C/S(I,12) 13</<19; C/S(1,13)
13<l<23; and C/S (l,14) 14<l<24.

The m=9, 12, 13, 14 terms are resonant
with some satellites, which are listed in

table 9.30 along with their resonant periods.
Several satellites are resonant with more

than one order. For example, 6701101 has
a 1.6-day period with the 13th order and a

2.6-day period with the 14th a the latter being
the principal effect. Other resonances have
several periods, as illustrated by equation
(9.163) for 5900701 (which was not used
in the final solution) and in table 9.30 for
6701401. The multiple periods are due to
the nonzero eccentricity, which causes the
frequency splitting.

9.5 RESULTS

As was explained in section 9.4, the process
used by SAO in solving for station coordi-
nates and the gravitational potential is such
that station coordinates and the potential are
determined both independently and in com-
bination. These quantities are therefore
easily discussed and analyzed separately. The
station coordinates are discussed in section

9.5.1. The potential, in terms of coefficients

9.5.2. The geoid derived from this potential
is discussed in section 9.5.3.

The analysis was divided into two parts be-
cause of the initial high accuracy of the ge-

types of observational material, and the re-
_LUL!:-urn _.apo_cn_m an,a tmm_e,.'_ (19701
indicating that the interaction between the
potential and the station coordinates is

relatively small. The determinations of the
potential and of station coordinates were

carried out in parallel. In an iterative proc-
ess, the improved coordinates were used in

the next iteration for the potential, and
then the improved potential was used in

the subsequent iteration for the station co-
ordinates. This process, known as the block
Gauss-Seidel iteration, will rigorously con-
verge.

9.5.1 Coordinates
(E. M. Gaposchkin, J. Latimer, and G.

Veis)

Each subset of data was treated to pro-
vide a system of normal equations and
residuals. These systems are combined
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with their relative weights. In addition,

each system may have a different origin,
orientation, and scale, but these differences

should not occur if each system had been

referred to the defined system without error.

In the combination, additional parameters

as necessary were introduced into the com-

bined normal system to account for possible

systematic errors. The SAO dynamical, pre-
ISAGEX data were taken as the reference.

Since the geometrical networks have no

scale, only translation and rotation param-

eters were introduced. For practical pur-

poses, the SAO geometrical network covers

only one hemisphere in an east-west orienta-

tion, so only the rotation about the z axis

(_:) may be meaningful. This corresponds

to a correction to UT1. The polar orientation

(_,, _,) for the SAO geometrical network
turned out to be smaller than the formal un-

certainty. The JPL net had only a scale and

_- parameter as it is not sensitive to (x, _, or

to the origin. Experiments with determining

corrections (±_) to the node for each arc of

ISAGEX data indicated that (1) the correc-

tions were small, generally less than 1 _rad,

and (2) they were satisfactorily included

through the reduced normal equations.

Therefore, formally, the combination solu-

tion contained 14 additional parameters. The

final values of these parameters are given
in table 9.31. The translation of the two

geometrical networks is the correction to the

station used as the origin. Excellent agree-
ment occurs between these translations and

the coordinates determined from an a pos-

teriori geometric adjustment. The formal

uncertainty for the translation of the SAO

geometrical network is not given, because

the origin, station 9051, has very few observa-

tions and is not determined very well.

Two iterations were completed, the first

starting with the coordinates given in Gapo-

schkin and Lambeck (1970). Examination of

the solutions indicated problem stations; in

particular, the geodetic coordinates were

sometimes seriously in error.
The strategy used to determine the relative

weights and the formal uncertainty was

based on the geometrical solutions, and all

other solutions were referred to them. Geo-

metrical solutions are relatively uncompli-

cated and free from assumptions. Further-

more, the statistics are straightforward.

The accuracy of each station-to-station

direction was computed. This estimate can

be verified by comparison with the direction

determined in the network adjustment. The

adjustment essentially enforces the co-

planarity condition for any three directions

that connect three stations. By comparing

these estimates of the direction, we can

compute a scale factor that isa measure of

the agreement between the formal statistics

of the adjustment and the actual errors. This
scale factor turned out to be k-'= 2.65 for the

SAO geometrical network and k'-'=2.60 for
the BC-4. Since the difference between

these estimates of k-' is not significant, we

adopted an overall scale factor of k_=2.625

for the geometrical networks. It is interest-

ing to note that when only the 12 SAO Baker-

Nunn cameras are used, the scale factor be-

comes k_=l.03, indicating excellent control

of systematic errors.

In the combination of the six types of data,

the geometrical networks, the JPL network,

and the geodetic survey data were used with

a priori variances. The pre-ISAGEX dy-

namical data were given a weight of 0.25 for

the combination of the normal equations,

which effectively doubles the assumed ac-

curacy. In addition, the assumed accuracy of

the pre-ISAGEX laser data was further

multiplied by a factor of 1/\/10, and thus the

assumed accuracy of the laser data was

multiplied by 6. The ISAGEX data were

given an overall weight of 0.0625; i.e., the

assumed accuracy was multiplied by 4. Thus,

the reference orbits were computed by using

the assumed accuracy in table 9.8, but the

normal system was scaled by these factors.

These adjustments were necessary in order
to accommodate the enormous volume of data

used for the dynamical solutions. Large vol-
umes of well-distributed data lead to can-

cellation of errors, which is desirable, but

give optimistic estimates of variance. The

balance of weights presented here leads to

an internally consistent solution, which has
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acceptable agreement with independent de-
terminations.

Table 9.32 lists the geocentric coordinates
for the stations determined in SE III to-

gether with their uncertainties scaled by
k_=2.625. Station 8820, Dakar, Senegal,

is not given, the poor agreement and paucity,
of data precluding reliable results.

The solution for coordinates from the com-

bination scaled by k2=2.625 gave estimates
of variance of 2 m for the best stations. Since

no comparison exists that can verify this
accuracy for geocentric coordinates, we are
limited to consistency checks. The coordi-
nates should agree with the standard at least
as well as the accuracy of the standard. A
number of internal checks (e.g., between
geometrical and dynamical solutions) can be
performed. Comparisons can be made with
surface data, but they test only the relative
position and not the geocentric position of
the coordinates. Nevertheless, these compari-
sens 'are ,:nstructive and indicate that the

computed variances (uncertainties) are
realistic estimates. Further, the general
agreement internally in the satellite data--
and externally with the terrestrial data--indi-
cates that, as a rule, discrepancies are within
the expected uncertainties. The large dis-

survey data, and further analysis is needed.
Comparisons with satellite orbits are in-

conclusive at best, because of the large num-
ber of error sources. In section 9.5.2.3

numerical results are given for orbit compu-
tations with laser data by using the latest
potential and station coordinates. This

comparison indicates that the orbit comput-
ing system (data, theory, physical param-
eters, and station coordinates) has an ac-
curacy of 5 to 10 m, which is not consistent
with a 2- to 5-m accuracy for the station
coordinates.

The typical direction is determined with

an accuracy of 5 _rad, equivalent to a rela-
tive position of 10 m. For selected sets of sta-

tions, figure 9.12 compares the determined
direction (both before and after the eo-

p!anarity condition is applied), the dynam-
ical solution, and the combination solution. In

some cases, a direction from the SAO geo-
metrical net and another from the BC-4

geometrical net are available. These compari-
sons are perhaps unfavorable in that the
errors of both stations are reflected in the

figures. The error ellipses for all the direc-
tions are scaled by the factor k_=2.625. In
order to express all the directions in the

same coordinate system, the plotted direc-
tions are rotated by the parameters given in
table 9.35.

When the origin and scale are provided,
the BC-4 network of 48 stations gives a
geometric solution that can be compared
with the combination solution. Table 9.33

gives the results of such a comparison,
with differences in X, Y, and Z and North,
East, and height. The geometrical solution
has an average uncertainty of 5 m for each
coordinate, while the combined solution has
the uncertainty given in table 9.32. The ad-
justment uses a weight computed from the
two ,_nlntions. The root mean square of 12 m

and the standard error of unit weight ¢,,,= 0.8

ordinates and the estimated uncertainties. A
number of the individual coordinates are too
large. The North-South difference of -_.u"" m

8L_I, LIUII OUO0_ _,'IIIUII iS Lll:_lti _'JqLt_E_Ll%C:tllff LV

The J FL coordinates given by the LS 87
solutions, rotated and scaled by the results in
table 9.3i are compared in table 9.34 wiLh Lhe
coordinates determined in the combination
solution.

Comparisons within each datum are pos-
sible. The four major datums where this
was done are North American datum (NAD
1927), South American datum (SAD 1969),
Australian datum (AGD), and European
datum (EU50).

As described earlier, the use of datum co-
ordinates in the combination solution has
been restricted to nearby stations, primarily
in order to relate different types of observa-
tions. Therefore, datum coordinates consti-
tute a relatively independent set of data.
However, each datum has an arbitrary
origin, orientation, and scale, and the rela-
tion between each datum and the geocentric
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system must be determined. One can there-
fore determine up to seven parameters, but
depending on the size of' the datum and the
distribution of stations on the datum, some
of these transformation parameters may not
be significant. The seven transformation
parameters are three translations, three rota-
tions, and one scale. We have elected to ex-
press the rotations as rotations of the datum
origin about the normal to the ellipsoid and
around two axes in the tangent plane ori-
ented north-south and east-west. These rota-

tions have a physical interpretation since
they express an error in the azimuth of ori-
entation of the datum and a tilt of the ellip-
soid. Accordingly, the transformation will
be given by

tween 5 and 16 m. It is apparent that the

European and the South American datum co-
ordinates do not agree very well with the
satellite solution. The European datum is
rather inhomogeneous and its extension into
Africa and Asia, which we used, makes it
rather weak.

Further checks with datum information
can be obtained with station heights. The

height above the reference ellipsoid (h,,n)
should be equal to the mean height above sea

level (H,.,_), which is approximately the
height above the geoid plus the geoid height

N; i.e., the disagreement between these two
estimates, ±h, is

I

ah = h,,ll - H.,._I- N - ndnt ..........

X.<,,= X,,,,t + T+ (I+K)R(Xe, t-X,,)

where :V_<,land ?V<_,.are the coordinates from
the satellite solution and the datum, respec-

tively, T is the vector of the three translation
p._..._.l_f...% _ ;_ th,_ ,..._la ,.,_,.,.oofh_. S'. are

the coordinates of the datum origin, and l_
is a rotation matrix depending on the three
rotational parameters and the latitude and

IUllglLLltlt_ [11 LIIIZ:_ IA_tLLIIII Ull_ln.

i i'_i ii_i_ i]ii-iri. ]_(p i,iTk i,] c_]'i

and scale parameters for four major datums
as computed from the adjustment of the
datum coordinates to the satellite solution. A

positive scale here means that the datum

scale has to be increased in order to agree
with the satellite scale. The table also gives
the number of stations used in each datum.

In the computation of datum shifts, each sta-
tion was assigned a weight computed from
the standard deviation of the satellite solu-
tion and the standard deviation of the

datum coordinates, which was taken as
_(m)=5x (Sxl0-_)_-/_(m), where S is the
distance of the station from the datum origin
in meters. In all cases, the standard deviation
of unit weight ,_,, (given in table 9.35) after
the adjustment is smaller than 1, which
means that the weights are somewhat pessi-
mistic. The rms, _(m), of the final differ-
ences for each datum in table 9.36 is be-

If we use the satellite geoid to calculate N,
we can make this comparison for all stations
but we lose the detailed variation in geoid

height. The computation does provide a
value for the semimajor axis of the best-

fitting ellipsoid used to calculate h<:,. We get

a,.= 6 378 140.4 +_1.2 m

.... £-2 .... *_.... _ ...... • • 1 • l 11 fi .,i pw

we must rei'er the coordinates to the datum

origin by using the datum shifts in table
_.00. I _I, UII¢ _.0_) ll_b_ LIIU _bi_llUi:tiU UeVli::tUlUll_*

of the heights calculated for each datum. The
average of 3.98 must be considered excellent

in view of all the uncertainties in calculating
±h. Figure 9.13 shows these heights residuals
as a function of latitude.

The results by Gaposchkin and Lambeck
(1970) were derived in the same manner,
by combining several types of data, estab-
lishing relative weights, and verifying the
accuracy by intercomparison. Their accu-
racy was 7 to 10 m for the fundamental
stations. In table 9.37 we give the corrections
derived in this analysis for selected stations.
The overall agreement of ,_=10 m and a
standard error of unit weight <_,,=0.662 indi-
cate excellent agreement in the derived co-
ordinates and the accuracy estimates; if any-
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thing, the accuracy estimates are pessimistic.
The very small shift in origin indicates that
the whole reference system has not changed.

Williams et al. (1972) have determined
the spin-axis distance of McDonald Observa-
tory from lunar-laser observations. Table
9.38 compares this distance with that de-
duced by means of the coordinates of station
9001 from survey data. The agreement of
-3.51 m must be considered acceptable.

The scale of the combination solution is de-

fined by the value of GM adopted in the
dynamical solution, given in table 9.11. We
found a scale difference of 0.18___0.55 ppm
between the JPL and the SAO coordinates,
the JPL ones being slightly larger. If the

discrepancy with lunar laser is attributed to
scale, the scale difference would be 0.7 ppm.

The scale obtained for the four major
datums is given in table 9.35. It appears
from the NAD 1927, EU50, and AGD

datums that the datum scale is smaller than

the satellite scale by approximately 2_+1
ppm, while from the SAD 1969 datum, it is
larger by 1_+ 1 ppm. Since the survey scales
are not expected to be established to better
than a few ppm, the weighted mean of 1.6 ± 1
ppm is not considered to be significantly
different from zero.

Each geometrical network has an arbi-
trary origin specified by the intial coordi-
nates of one station, a station not explicitly
determined in the combination solution. The

translation parameters in table 9.33 corre-
spond to the correction to the origin of the
network, i.e., the correction to the initial
coordinates of the reference station.

In principle, the orientation of the two
geometrical systems and that of the dynam-
ical system should be identical, Orientation
parameters (_, _y, _z) are determined to ac-
commodate possible systematic differences in
the actual representation of the three sys-
tems. Since the SAO geometrical network

covers only one hemisphere in an east-west
orientation, the orientation of its pole (cx, Cy)
may be poorly determined.

The polar orientation of the BC-4 system
with respect to the SAO dynamical system is

1.88_-_/1.76_+0.65__+1.16 _rad. This sys-
tematic difference is obtained by comparing
the observed BC-4 directions with directions
determined from eleven stations in the com-
bination solution with characteristic inter-
station distances of 2 to 3 Mm. In metric

terms, the orientation difference is 1.88 × 10-_
× 2× 10_ 4 m. The accuracy of the mean
station for the 11 stations is approximately
4 m. It is assumed that the value of 1.88 _rad
results from differences in pole-position data
or in processing methods.

The rotation in longitude (_) corresponds
to a correction in UT1. Figure 9.14 indicates
the relative position of the zero meridian of
each system. We note almost the same rela-
tion between SAO and the JPL systems that
we found in SEII, which was 4.0 _rad. The
difference between the SAO geometrical and
the SAO dynamical systems is -0.40_+1.43,
and that between BC-4 and the SAO dynam-
ical is -2.20_+0.82. The relative rotation in
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longitude between the JPL and the SAO sys-
tems is probably due to a difference between
the JPL's planetary ephemeris and the FK4
system used by SAO, while that between the

geometrical and dynamical nets most likely
results from differences in the UT1 data or in

the processing methods.
The results described above, the pro-

cedures, the tests and comparisons, and the
experience of carrying out the work have
led to the following conclusions about the use
of artificial satellites for the determination
of station coordinates :

(1) Observations of close-Earth satellites
have been successfully combined with obser-

o nguiAt, ion enabling us to determine the co-

_iiliOl'_i .[iu.[.ilu,_ii_J_.;5s_'sten].

(2) The combination of these data pro-

from each set of data separately, because
more complete coverage results and because
the combination enables us to overcome

weaknesses in each system.

(3) The methods of processing each type
of data are sufficiently understood to make a
rational combination.

(4) Successive solutions have resulted in
improvements. When compared with the
previous solution, each new one has agreed

to within the estimated uncertainty, and that
uncertainty has steadily decreased from 10
to 20 m in 1966, to 5 to 10 m in 1969, to 2 to
8 m in 1973.

(5) Formal statistics are generally opti-
mistic, and therefore the uncertainty in co-
ordinates is established by intercomparison,
a method that has proved reliable.

(6) A comparison between coordinates
indicates an accuracy of 2 to 4 m for funda-
mental stations and 5 to 10 m for most others.

(7) The body of data available from laser

systems, though small, has made a signifi-
cant contribution. The laser data dominate

the solution through the relatively great
weight assigned and thereby essentially es-
tablish the reference frame for the station's
coordinates.

(8) The use of a variety of orbits span-
ning a considerable period of time is very
important. Data from such orbits average
over error sources with a slow variation such

as UT1 or epoch timing and eliminate poor
orbital geometry. The laser data suffered

from both problems.
(9) Geometrical data require a minimum

of assumptions, and geometrical solutions
have relatively straightforward statistics.
Geometrical data are more difficult to obtain

owing to the necessity of simultaneous ob-
servations. Dynamical da_a are mor_ pm, u-
ful, but their processing requires an elaborate
orbit-computation program that may intro-
duce model errors. The well-behaved statis-

tical properties of the geometrical data al-
lowed the use of the .............' ........ _'_ *^
establish the uncertaintle._.

ferences in scale and orientation are found
!:,etwo_n _tellite. coordinate systems. These
differences may result from variations in

data-processing methods or from fundamen-
tal and obscure differences in the definition

of reference systems, e.g., the FK4 system
and the JPL planetary ephemeris.

(11) Satellite determinations of site loca-
tion are now sufficiently accurate to verify
terrestrial survey data. The most trouble-
some part of the analysis was finding the
erroneous survey coordinates. Considerable
effort remains in providing global geodetic
coordinates with sufficient reliability.

(12) Scale obtained for the four major
datums is systematically smaller than the
satellite results by 1.6 +_1 ppm. Since survey
scales are not expected to be established to
better than a few ppm, this result is not

significantly different from zero.
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9.5.2 Potential
(E. M. Gaposchkin, M. R. Williamson,

Kozai, and G. Mendes)

V.

The Smithsonian Astrophysical Observa-
tory has published a series of Standard Earth
models based on satellite-tracking and other
data (Kozai, 1964, 1969; Gaposchkin, 1967,
1970a; K6hnlein, 1967; Veis, 1967a,b; Whip-
ple, 1967; Lundquist and Veis, 1966; Lam-
beck, 1970; Gaposchkin and Lambeck, 1970).
There has been a steady advance in the ac-
curacy of the analytical treatment, in both
the accuracy as well as the completeness of
the data, and in the significance of the
results.

Each Standard Earth model consists of

(1) a set of geocentric coordinates for sta-
tions observing satellites and (2) a set

of spherical harmonics representing the
potential. These two sets of unknowns can
be correlated, and both sets of parameters
have been determined in the same computa-
tion. This led, for example in Gaposchkin
and Lambeck (1970), to solving a system
with 428 unknowns--i.e., for 39 stations

and potential coefficients complete through
degree and order 16. Evaluation of the
Gaposchkin and Lambeck (1970) results
indicated that the remaining errors in these

parameters were small; that is, the correc-
tions to the parameters would be small.
Therefore, the effect of errors in the adopted
station coordinates on the determination of

the potential, and vice versa, would be
small. Because these effects are small the

two sets of parameters could be computed
separately.

A general revision of the parameters for
SE III was undertaken because of new and

improved data for almost all types of obser-
vations. Observations by cameras have been
augmented by a considerable number of data
from laser DME with global coverage from
ISAGEX. Two satellites with inclinations

significantly lower (5 ° and 15 ° ) than pre-
viously available have been launched since
1970. Available surface-gravity data have

been significantly improved by the distribu-
tion of a compilation of gravity anomalies by

the Aeronautical Chart and Information
Center (ACIC). Determinations of station
coordinates have been improved by data from
the worldwide BC-4 geometrical network.

Finally, among these improved data is the
information on site locations from JPL's
DSN which has been revised with the
addition of new data and improved process-

ing techniques.

Gaposchkin (1970a) has shown that, ex-
cept for isolated harmonics, the terms be-
yond 18th or 20th degree have a negligible
effect on a satellite. The only exceptions are
some zonal harmonics that give rise to secu-

lar and long-period effects, and the resonant
harmonics. Therefore, one cannot hope to
obtain from analysis of satellite perturba-
tions much more detail beyond 16th degree
and order than is already available. Greater
detail will have to come from other methods,

such as terrestrial gravimetry. Many of the
harmonics between 10th and 18th degree are

not very well determined from satellite-
perturbation analysis, but terrestrial gravim-
etry provides a good determination of the
coefficients when combined with satellite

data. So, our objectives are to improve the

low-degree and low-order harmonics from
satellite data and the higher harmonics from
terrestrial data that best represent the

gravity field.

Since the terms beyond 18th degree do
not give rise to an observable change in

satellite position, the satellite observations
could be modeled with the use of a poten-

tial complete through degree and order 18,

including, of course, some additional reso-
nant and zonal harmonics. Therefore, there
is no model error due to neglected higher

harmonics. However, the surface-gravity
data are given in area-means of 550 km x 550

km squares. This surface distribution of
gravity would require a spherical harmonic

development to l--m-36. Therefore, using
a potential through degree and order 18
will have a significant model error that must

be taken into account in establishing weights
and making comparisons with surface-

gravity data.
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9.5.2.1 Coefficients of Zonal Harmonics 2

The equations of condition were solved by
least squares for both the even-degree and the
odd-degree harmonics. They were solved first
with 11 unknowns, J, (n --<23), and then with
12, the 12th being J,(24_n_49). Eight
solutions were obtained. The solutions, given
in tables 9.39 and 9.40, include the sums of
the squared differences from the assumed
values. The values for coefficients of degrees

lower than 14 express corrections to those in
table 9.16.

Tables 9.39 and 9.40 show that the solu-

tions are quite stable, especially for lower
degree coefficients, and that the data can be
expressed quite nicely by including J3_ and
J36. The sum of the squared differences drops
from 114 to 39 when J36 is included for the
even degree and from 53.7 to 40.6 when J3_ is
incorporated for the odd degree. Although

there is some uncertainty as to whether J35
and J._ can have such large values, the 12-
unknown solutions that include them are

regarded as the best. The sum of squared
residuals cannot be reduced much further
even if the number of unknowns were in-

creased beyond 12.

Lau,es _._1, 9.42, and 9.43, *_^ _:_"-

ences compuLeu ior L_ie ±_ nn _,,,,wn_ ann T_-)r

the 11 unknowns are given under the head-

ings I and II, respectively. Solution I for
even orders can express the secular motions
of all the satellites except 7010901 and

6202901. Since only in table 9.43 is the
difference between difference I and difference

II much larger than the standard devia-

tion for the data on 7001701, 6508901, and

6508101, it can be said that J_6 is determined

essentially from the data on these three satel-
lites. If more accurate data become available

for 7010901, so that the standard deviations

for this satellite become smaller than the dif-

ferences, a more definite conclusion regarding
J_6 can be obtained. Table 9.43 shows no essen-

tial difference between differences I and II;
for odd degrees, the 12-unknown solution is

not yet much better than the ll-unknown one.

2 Note that J. ------- C..

For comparison, five previous solutions
(Kozai, 1959b, 1961a, 1963a, 1964, 1969) are
given in table 9.44. These solutions were
derived from the following numbers of satel-
lites with inclinations ranging from 28 ° to
96 ° :

Inclination

Number range
Date of satellites (deg)

1959 1 34
1961 3 33 to 50
1963 13 32 to 65
1964 9 33 to 96
1969 12 28 to 96

Except for some from the 1963 determination,
the standard deviations in the first three

determinations are more than 10 times larger
than the present ones; therefore, the differ-
ences computed by these solutions are very
large even for satellites within the indicated
inclinatien ranges. The differences from the
1964 solution are listed as (O-C) in tables
9.41, 9.43, and 9.44. Both the 1964 and Lhe
1969 solutions give very large differences for
PEOLE and DIAL. Table 9.44 also includes

a solution by C_zp.nave_ Forestier, Nouel, and
Piepiu (1971, unpublished), who incorpo-

(7010701; I=3 °) in addition to the satel-

lites used by Kozai (1969). Their solution
agrees quite well with ours except for the
odd higher degree coefficients.

9.5.2.2 Tesserals

The results of the dynamical solution must
be discussed in the context of the combination

solutions. A summary of the data is given in
table 9.7. The selection of data and unknowns

evolved through the analysis. The number
of satellites used ranged from 21 to 25, and
the number of arcs in the largest solution was
203. Arcs were added or rejected on the
basis of their contribution to the normal

equations, the number of observations for a
particular station, the improvement of dis-
tribution for a resonant harmonic, and the
quality of the orbital fit.
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Two iterations were performed to find the

potential. The first employed the potential
and station coordinates determined by

Gaposchkin and Lambeck (1970) as initial

values ; and the second used the results of the

first iteration for the potential and the sta-

tion coordinates determined earlier in this

chapter.

For each iteration, several solutions were
obtained. Orbital arcs were added or deleted

to improve the satellite distribution and the

variance-covariance matrix.

Several weights for the surface gravity

were used. For areas without surface-gravity
data, we had four choices of treatment :

(1) We could make no assumptions about
unobserved areas.

(2) We could use a zero anomaly with a

very large variance; that is, the expected

value of gravity would be zero.

(3) We could use a reference gravity field

with a very large variance; that is, only the

higher harmonics would have an expected
value of zero.

(4) We could use a model anomaly, for

example, one determined from topography.

Adoption of method (1) would introduce

very large short-wavelength features into

those regions where no gravity is measured.

In addition, the statistical comparisons dis-

cussed later are very poor, although the (O-

C) values and the satellite orbits are good.

Therefore, (1) had to be discarded. Gaposch-

kin and Lambeck tried methods (2) and (4)

and found them equivalent. Choice (3) is an
improvement over (2) because the low-

degree and low-order terms are well deter-

mined by means of satellite data. Therefore,

(3) was adopted, with the weight given in

table 9.21. Comparing the results of choices

(1) and (3), we found that satellite com-

parisons are identical, the (O-C) for the

surface gravity is marginally improved, and
the statistical comparisons of the surface

gravity are quite acceptable.

The fully normalized spherical-harmonic

coefficients of the adopted solution are given

in table 9.45. Figure 9.15 shows the mean

potential coefficient by degree, extended by
numerical quadrature.

i(_ 7 °

Io-B

,6 9

× × x ×
• x x

x x x x x

• COMBINATION SOLUTION

x SURFACE GRAVITY

-- 10-5//2

DEGREE J

FIGURE 9.15.--Mean potential coefficient by degree.

9.5.2.3 Results of Comparison

9.5.2.3.1 ORBIT DETERMINATION BY

USE OF SE III

A detailed evaluation of SE III results

with satellite orbits is difficult. Although

other effects--such as lunar and solar per-

turbations, body tides, radiation pressure,

and air drag--are all included in the orbit

computation, none of these is known without

error, and each, in itself, provides a number

of problems. Also, the coordinates of the

tracking stations are not known without

error. Furthermore, incomplete orbital cov-

erage can result in overoptimistic estimates

of orbital accuracy from formal statistics.

Finally, the tracking data contain errors.
A few comparisons are given here to indicate

approximately the accuracy of the total orbit-
computation system. The potential is cer-

tainly one of the larger contributors to the

error budget.

From ISAGEX data, consecutive orbits

were computed every 2 days, by using 4 days
of data (except for 6800201, where 6 days

of data were employed). This type of analy-

sis is especially valuable for (1) detection of
bad observations, since each observation is
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used in two orbits, and (2) evaluation of the
reliability of the orbital elements by com-
parison of adjacent orbits.

Results for 6508901, 6800201, and 6701401
are given in table 9.46, together with the
number of observed points used in the final

iteration. All calculations were performed
by using the final station coordinates and the

tidal parameter k2 = 0.30 ; radiation-pressure
perturbations were calculated with a fixed
area-to-mass ratio.

We see that with good orbital coverage, we
can expect to have rms residuals of between
4 and 10 m.

Satellite 6701401 has a relatively low peri-
gee, and the poorer orbits from MJD 41072 to
41078 coincide with increased solar activity
resulting in increased drag.

Of the 4- to 10-m rms residuals, 2 to 3 m
come from station coordinates and 1 to 4 m

could be attributed to the orbital theory.

There£ore, Lhe accuracy of the gravity field
for orbit computation may actually be some-
what better than indicated by table 9.46.

9.5.2.3.2 COMPARISON WITH GRAVITY

To compare a model (g_) with observed
V_tlU_ o ,'_UI'ID.C_ gl'avIby I.+Jt)_ bile2 ]_Ltll()Wlllg

quantities defined by Kaula (1966b) can be
computed :

<g_>

<g_>

(gtg,)

the mean value of g_, where gt is
the mean free-air gravity anom-

aly based on surface gravity,
indicating the amount of infor-
mation contained in the surface-

gravity anomalies
the mean value of g_, where g,
is the mean free-air gravity
anomaly computed from the po-
tential model, indicating the
amount of information in the

computed gravity anomalies
an estimate of gh--i.e., the true
value of the contribution to the

average gravity anomaly of the
potential model and the amour,_
of information common to both

gt and g,

<(gt-g,)2>

E(E_)

E(c_)

E ($g2)

the mean-square difference of gt
and g8
the mean-square error in the
gravity anomalies
the mean-square error of the
observed gravity
the mean square of the error of
omission--that is, the difference
between true gravity and gh;
this term is then the model error

If the potential model were perfect, then

<g_>=<g_>, which in turn would equal <gtgs)
if gt were free from error and known every-
where. Then, _ would be zero even though g,_
would not contain all the information neces-

sary to describe the total field. The informa-
tion not contained in the model field--i.e.,
the error of omission, _g--then consists of

the higher order coefficients. The quantity
<(gt-g.02> is a measure of the agreement

equal to

((gt--g_)")=E(E_) +E(,E_) +E($g 2)

Another estimate of g;_ can be obtained
from the gravimetric estimates of degree
y_Jl_l l_%llt;q_ I+r_'l I. I_Cl, t+I+I+IC_ JLdUUUf :

if- zt+l

where n_ is the number of coefficients of de-
gree 1included in gT,,and

_?_C2 ,_2,_=_(l-1) __,t _,,_-_,mt
m

We also have

and

E (,_) = (g_>-'<g,,gt>

E(e_)=<g_>/<n>

Table 9.47 summarizes the above quanti-
ties for SE III. The improvement over SEII
in the coverage of surface-gravity data is
evident. The more limited gravity coverage
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used for SEII resulted in accuracy estimates

that were consistently optimistic. The re-

vised set of average gravity anomalies has

greater coverage and is more independent of

the model used for the potential. Even so,

line 2 represents an estimate of the accuracy,

E (d) = 52 mGal'-', that is more optimistic than

that based on independent gravity data for

SE II, which was 99 mGaF (Gaposchkin and

Lambeck, 1970).

We used the 306 average gravity anomalies
with more than 19 observed units in each

average for the comparison. There is very

good agreement between (g,g._>, (g'i}, and D,

which would be equal for a perfect solution.

In E(Sg°-), we have a measure of the infor-

mation remaining in the higher harmonics.

The formal statistics give an error in the

combination reference field of E(c_)=15
mGaF.

An alternative is to eliminate 8g by use of

I ±C,,,, 1 f (g,-g,,.r)
±S,,,, J - 4_./(1-1) .L,,h,.,,.

(P,,,'sin'rC°SmXq,T>d,_( qa) [sin ma j

where

(P,,,, (sin_) [c°s m_]>

is the mean of

_n/t
P,,,, (sinq_) LsinFC°Sma ]

over the area defined for the gravity anomaly.

We can compute any harmonic with respect

to a reference gravity field, but care must be

used in treating" areas where no observed

gravity is available. A gravity field defined

by g,..r and the ±C_,,,, ±St,,, will have an error of

((g,_g) 2)=E (,_) +E (_) +E (Sg"-) + E (,_u._a)

where E(e_) is the error in the composite

field and E(_,,,,,_) is the error due to the

inexact quadrature and imperfect distribu-
tion of the data.

Table 9.48 gives the results of this numeri-

cal quadrature with reference fields defined

by the first l degrees of SE III. Computing

all the potential coefficients to /=m=36, i.e.,

the null reference field, we get E(d) -0, and

E (c_) + E (Sg -°) + E (c_._d) = 29 mGaF

Using an increasingly detailed reference

field, we obtain an estimate of E(_) as a

function of degree. As expected, the mean-

square error for the low-degree and low-order

harmonics estimated from a comparison with

terrestrial gravimetry is quite small. The

satellite data provide accurate values, and
the low harmonics have a smaller effect on

gravity anomalies. The mean-square error

for the 8th to 18th degrees is relatively con-

stant, as expected, since these harmonics are

determined largely by surface-gravity data.

The mean-square error E (,_) estimated from

the quadrature is in good agreement with

that obtained from statistical analysis. For

comparison, the values are given in table 9.49.

The estimate of E(,i) assumes that g, and

g, are independent; i.e., they have uncorre-

lated errors. Since the terrestrial gravity

(g,) was used to determine the combination

solution (g,), this assumption is certainly

incorrect, and therefore, the estimate of

E(_,) =15 mGal'-' is definitely optimistic. A

better test could be made with independent

data for gr. Since the mean gravity anomalies
used in the combination solution were com-

puted, two compilations of 1°× 1 ° anomalies

have been published: the North America

and the North Atlantic (Talwani et al., 1972)

and for the Indian Ocean (Kahle and Tal-

wani, 1973). These compilations were pub-
lished after the set of mean anomalies used

here became available, but some basic data

are probably common to both. The processing

methods used by Talwani and his coworkers

were different from those of ACIC, and addi-
tional data were included. It is true that

these two new compilations may not be

completely independent of the data used in
the combination solution.

Two comparisons are nevertheless instruc-

tive. A simple 5 ° x 5 ° average was computed
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for these data since all 1°x1 ° areas had

values given in the region of interest. These
5 ° x 5° averages, with the mean of the whole

region subtracted, were used to compute the
same statistical quantities given in table 9.49.
The number n is the number of points, cen-

tered in a l°xl ° area, for which a 5°x5 °
mean was computed. Therefore, we have a

moving 5 ° x5 ° mean calculated every 1 °.

Most of the gravity data in these ancillary

compilations were taken at sea, and the esti-

mate E(4) of their variance may be opti-
mistic. The weighted mean of E(4) is 65

mGal _, equivalent to 3.1 m in geoid height.

The remaining gravity information in the

higher harmonics, _g, equals 68 mGal _. We

notice that _g +for the Indian Ocean is larger

than _g for North America and the Atlantic

and is probably due to the very sharp low
below the Indian subcontinent, which cannot

be modeled very well by the generalized
geoid. Further, <(gt-g+)-_>, <g_>,<g_>,and <g,g.,),
which are all in good agreement with the

global values from Table 9.47. Therefore, we

feel reasonably certain that for comparison

purposes, both the North America and North
Atlantic region and the Indian Ocean region

are typical. Thus, we conclude that the gen-
eralized geoid has an accuracy of _+3 m in

geoid height and ±8 mGal for the whole

earth. Figures 9.16 to 9.19 give north-south

and east-west profiles for both North Amer-
ica and the Indian Ocean.
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Figure 9.20 was selected because of the
large change in the values at the India low
from those given in SEII. However, the
terrestrial gravity and the combination solu-
tion are in good agreement there. A further
point is the disagreement, east of Borneo,
between the observed gravity from the ACIC
compilation and the anomalies used in 1969.

The results described above, the proce-

dures, the tests and comparisons, and the
experience of carrying out the work have
led to the following conclusions about the
use of artificial satellites for the determina-

tion of the geopotential :

(1) Satellite-tracking data from 25 satel-
lites have been combined with terrestrial

gravity data to determine the spherical-
harmonic representation of the potential
complete through degree and order 18, plus
several higher harmonics to which satellite
orbits are sensitive.

_9) q-_ ..... ] harmonics are ,_ucce._sfullv
\ ............

determined from analysis of long-period and
secular per_uroauons, the ue_e_ai and sec-
torial harmonics are obtained from short-pe-

riodic satellite perturbations and terrestrial
.._.._,,,;mah..,_r T .a'_r_,,qar'r'ra,o, _nrt law-riffler I 'm.<'R

are primarily determined from satellite per-
i-urb_ti_.n_ _nd _he ....... 8.s_n_ort-wave!engbn t.'m, t-"

primarily from terrestrial gravity data.

(3) The principal improvements over
Gaposehkin and Lambeck (1970) are due to
the addition of two low-inclination satellites
for the determination of the zonal harmonies,

the use of a sizable number of precise laser

observations, and the use of an improved set

of terrestrial gravity anomalies.
(4) In the combination of satellite and

surface-gravity measurements, some at-

tention must be given to the unobserved
areas.

(5) The unobserved areas were treated by
using anomalies computed from a satellite-
determined reference field and by taking the
expected value of this residual field as zero,
with a large variance.

(6) The accuracy of the solution is estab-
lished by comparison with satellite orbits
and with terrestrial gravity data not used in
the solution.

(7) The lower harmonics have been im-
proved such that the total orbit-computing
system has an rms error of between 5 and
10 m for 4-day arcs.

(8) The accuracy of the generalized geoid

is _ 64 mGal'-', or 3 m.
(9) The geoid is very similar to that found

by Gaposchkin and Lambeck (1970) ; no new
features have been found, and none has dis-

appeared. Therefore, geophysical analyses
from these results remain valid (see, e.g.,

Kaula, 1970, 1972; Gaposchkin et al., 1970,

9.5.3 The Geoid

1' lgure a._'± bllUW_ bll_ _:_ulu _'t.'nllJu_bu

from f.he {U, .... &_.} given in section 9.5.2.
ml. ...... -a -.-._ +_..... 9 2! is with respect
to a best fitting ellipsoid of flattening

!,/?9g 25g; the geoid in fig. 9.21b is with re-
spect to a hydrostatic ellipsoid of flattening
1/299.67 ; and the geoid in figure 9.21c is with
respect to a surface computed from only those
coefficients (found for the potential) which

have l,m less than or equal to 5. In figure 9.22
are plotted the "gravity anomalies" calculated

from the potential and with respect to the
same ellipsoids as in figure 9.21.
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APPENDIX

TABLE 9.1.--History of the SAO

Satellite
camera COSPAR number First successful Last successful Transferred to
number and station location observation observation number and station

SC-1 ....... 9001 Organ Pass,
New Mexico

SC-2 ....... 9002 Olifantsfontein,
South Africa

SC-3 ....... 9003 Woomera,
Australia

SC-4 ....... 9004 San Fernando,

Spain

SC-5 ....... 9005 Tokyo, Japan

SC-6 ....... 9006 Naini Tal, India

SC-7 ....... 9007 Arequipa, Peru

SC-8 ...... 9008 Shiraz, Iran

SC-9 ....... 9009 Curaqao,
Netherlands Antilles

SC-10 ..... 9010 Jupiter, Florida

SC-11 ..... 9011 Villa Dolores,

Argentina

SC-11a _ ___ 9040 Dakar, Senegal

SC-12 ..... 9012 Maui, Hawaii

November 26, 1957 March 18, 1968 9021 Mt. Hopkins,
Arizona

March 18, 1958 December 17, 1970 9022 Olifantsfontein,
South Africa

(new building)

March 11, 1968 June 1964 9023 Island Lagoon,
Australia

March 18, 1958 ................................

April 5, 1958 May 24, 1968 9025 Dodaira, Japan
August 29, 1958 ................................

July 4, 1958 May 30, 1970 9027 Arequipa, Peru

(new building)
May 20, 1958 July 15, 1966 9088 Addis Ababa,

Ethiopia

June 22, 1958 July 10, 1966 9029 Natal, Brazil

June 10, 1958 October 12, 1967 9091 Dionysos, Greece

July 10, 1958 October 28, 1966 9031 Comodoro Rivadavia,

Argentina

December 1970 September 1971 9040 Ouagadougou,

Upper Volta
July 4, 1958 ................................

a On loan to CNES.
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Baker-Nunn Satellite-Tracking Cameras

First successful Last successful Transferred to First successful Last successful
observation observation number and station observation observation

March 31, 1968 ............

January 5, 1971 ............

July 1964 April 13, 1973

........................

May 24, 1968 ............

........................

June 1, 1970 ............

August 15, 1966 ............

September 27, 1966 May 5, 1970

December 7, 1967 June 25, 1969

May 1972 ............

........................

9043 Orroral Valley,
Australia

9039 Natal, Brazil

(new building)

9030 Dionysos, Greece
(new building)

Scc SC !!a

January 1974 (est)

May 7, 1970

July 3, 1969
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TABLE9.2.--LaserSites

Station number
NGSP SAO Station location Period of operation

9901 ..... 7901
9912 ..... 7912

9902 ..... 7902
9907 ..... 7907
9921 ..... 7921
9921 ..... 7921
9929 ..... 7929
9991 ..... 7991
9930 ..... 7930
9925 ..... 7925

Organ Pass, New Mexico

Maui, Hawaii

Olifantsfontein, South Africa
Arequipa, Peru
Mt. Hopkins, Arizona (prototype)

Mt. Hopkins, Arizona (rebuilt system)
Natal, Brazil

Athens, Greece

Dionysos, Greece

Tokyo, Japan

March 1966 to July 1967
May 24, 1968 to March 27, 1969

February 1971 to present

December 1970 to present

December 1967toJune 20,1972

November 1972 to present

November 1970 to present

September 1968 to June 1969

July 1969 to present

November 1972 to present

TABLE 9.3.--Air Force Baker-Nunn Sites

Station number

NGSP SAO Station location Period of operation

9425 ..... 9113
9424 ..... 9114

9426 ..... 9115
.......... 9116
9427 ..... 9117
.......... 9118

9119 ..... 9119
9120 ..... 9120

.......... 9124

.......... 9010 a

Edwards AFB, California (Rosamund)
Cold Lake, Canada (I)

narestua, Norway
Santiago, Chile

Sand Island (Johnston Island), Pacific

Kwajalein Island

Mt. John, New Zealand

San Vito, Italy

Cold Lake, Canada (II)

Jupiter, Florida (AF)

December 1960 to present

January 1963 to June 1971

December 1959 to July 1967
September 1960 to May 1964

September 1963 to present

Not operational for

satellite photography

October 1969 to present

March 1971 to present

July 1971 to present

June 1968 to July 1971

a Site previously occupied by SAO Baker-Nunn camera (see figure 9.10).

TABLE 9.4.--Sources of Data Used in

the Orbit-Generation Program

Agency Instrument

SAO .................... Baker-Nunn caineras

Lasers
MOONWATCH

NASA/GSFC ............ PRIME MINITRACK
Lasers

U.S. Air Force .......... Baker-Nunn cameras
CNES .................. CNES cameras

Lasers
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TABLE 9.5.--Number of Observations

Line n Line n

8015-8019 ......... 29
8015-9004 ......... 122

8015-80!0 ......... 133
8015-9431 ......... 25

8015-8011 ......... 67

8015-9091 ......... 30
8019-9004 ......... 301

8019-9091 ......... 61

9001-9009 ___ ...... 183

9001-9010 ......... 154

9001-9012 ......... 187

9001-9425 ......... 20
9001-9424 ......... 74

9006-9091 ......... 10
9006-9426 ......... 19

9007-9009 ......... 263

9007-9010 ......... 86
9007-9011 ......... 437

9007-9029 ......... 74
9007-9031 ......... 32

9008-9028 ......... 25
9008-8011 ......... 8
9008-9426 ......... 38
9009-9010 ......... 248
9009-9011 ......... 201

9009-9424 ......... 13

9001-9427 ......... 16

9002-9008 ......... 7
9002-9028 ......... 25
9004-9006 ......... 14
9004-9008 ......... 139
9004-9009 ......... 43
9004-9010 ......... 41
9004-9028 ......... 35
9004-9029 ......... 42
9004-8010 ......... 192
9004-9431 ......... 65
9004-8011 ......... 164
9008-9091 ......... 442
9004-9426 ......... 60
9005-9006 61 II

9005-9012 ___:::::: 25 t
_5 9427 ......... iG ii

9006-9008 .........172 [
B

r

9010-9029 ......... 6
9010-9424 ......... 38
9011-9029 ......... 7
9011-9031 ......... 9
9012-9021 ......... 29
9012-9425 ......... 14

9012-9424 ......... 24
9012-9427 ......... 216
9021-9425 ......... 57
9021-9427 ......... 8

9028-9091 ......... 37
9029-9031 ......... 26
8010-9431 ......... 13

8010-8011 ......... 27
943!-9_32 ......... 42
9431-9091 ......... 43

8425-9424 ......... 30

895

TABLE 9.6.--Stations Whose Coordinates
Were Determined by Orbital Theory

Orbital theorY Orbital plus
alone geometric theory

8818 9003
9020
9023

1021 9001
1030 9002
1042 9004

9006

7050 9007
8815 9009
8816 9010

9011

8015 9012
8019

9021
9028
9029
9031
9050
9091

9113

9114
9115

91!7
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TABLE 9.7.--Dynamical Data Used in SE III

Satellite

Number Name

a Perigee
Inclination Eccentricity (kin) (kin) Z_

7001701 ....

7010901 ....

6001301 ....
5900101 ....

5900701 ....

6100401 ....

67O1401 ....

6701101 ....
6503201 ....

6202901:___
6000902 ....

62060O1 ....

6302601 ....

6508901 ....

6101501 ....

6101502 ....

65O63O1 ....

6400101 ....

6406401 ....

6508101 ....

6600501 ....

6304902 ....
6102801 ....

6800201 ....
6507801 ....

DIAL
PEOLE
COURIER 1B 1970vl
VANGUARD 2 1959 al

1959 _1
1961 81

DID
D1C

Explorer 24 BE-C
TELSTAR 1 1962 ael

1960 L2

ANNA-1B 1962 fl_zl
Geophysical

Research
Explorer 29 GEOS-1
TRANSIT 4A 6101
INJUN-1 6102
SECOR-5

Explorer 22 BE-B
OGO-2
OSCAR-07
5BN-2
MIDAS-4 1961 a81

Explorer 36 GEOS-2
0V1-2

0.088 7344 301
15 0.017 7070 635
28 0.016 7465 965
33 0.165 8300 557
33 0.188 8483 515
39 0.119 7960 700
39 0.053 7337 569
40 0.052 7336 579
41 0.026 7311 941
44 0.241 9672 962
47 0.011 7971 1512
50 0.007 7508 1077

X

X

X

X

X

X

X

X

50 0.062 7237 424

59 0.073 8074 1121 x x
67 0.008 7318 885
67 0.008 7316 896
69 0.079 8159 1137 x
70 0.002 7301 921
80 0.012 7362 912 x x
87 0.075 7344 420
89 0.023 7417 868 x
90 0.005 7473 1070 x
96 0.013 10005 3503 x

106 0.031 7709 1101 x x
144 0.182 8306 416 x

X

X

X

X

X

X

4
7
7

18

4
10

9
13

4

10
12

6
56
10

9
2
4

6
5
1
5
6

13
4
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TABLE 9.8.--Assumed Accuracy for Data Used in SE III

897

Data Weight Remarks

Baker-Nunn ....................
Smoothed Baker-Nunn .........

SAO laser ......................
CNES laser.....................

GSFC laser.....................

ISAGEX laser ..................

_F

2"

5m

10 m

5m

5m

Observed before 1970

Observed before 1970

Observed before 1970

1971 International Campaign

TABLE 9.9.--Satellite Center of Mass a

BE-B and BE-C

D1C and D1D

GEOS-1

GEOS-2

PEOLE

h = 0.3493 - 1.09183 × 10 -a × _b + 2.9222 x 10 -6 × _b2 - 1.5338 x 10 -7 × 4)3
(h = 0 for _b > 120 °)

A = 0.164612 - 2.824 × 10 -3 × 4) + 2.0639 × 10 -5 × _'-+ 8.1214 × 10 -7 × _3
- 5.81302 x 10 -_ x cb4

(A = 0 for 4, > 120 °)

A = 0.3972 cos 4)

h = 0.4298 cos _b

A = 0.48 - 1.108 x 10 -2 × _b + 4.19267 x 10 -4 x _bz - 3.619 × 10 -e × _ba

+ 8.12555 × 10 -_ × _b4
(A = 0.768 for _ > 96 _)

a From D. Arnold and J. Latimer
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TABLE 9.10.--Number of Observations Used in the Dynamical Solution

Station no. No. of observations

Pre-ISAGEX Data (15 satellites,140 arcs)
7050 ............................................... 274

8818 ............................................... 1223
8015 ............................................... 612

8815 ............................................... 1970

9001 ............................................... 4357

9002 ............................................... 2120

9003 ............................................... 349

9023 ............................................... 2630

9004 ............................................... 3343

9005 ............................................... 945
9006 ................................................ 3170

9007 ............................................... 1646

9008 ............................................... 2301

9009 ............................................... 1825

9010 ............................................... 2424

9011 ............................................... 1637

9012 ............................................... 3088

9028 ............................................... 525
9029 ............................................... 261

9031 ............................................... 467

9021 ............................................... 81

9066 ............................................... 809

9025 ........................:...................... 9

9080 ............................................... 47

9091 ............................................... 143
9921 ............................................... 9
8816 ............................................... 2382
8804 ............................................... 200
9901 ............................................... 761

ISAGEX Data (3 satellites, 15 arcs)
7050 ............................................... 1425
7060 ............................................... 1514

8804 ............................................... 625
8809 ............................................... 1178
8820 ............................................... 296
9902 ............................................... 1484
9907 ............................................... 746
9921 ............................................... 225
9929 ............................................... 213
9930 ............................................... 89
9030 ............................................... 172
9021 ............................................... 29

TABLE 9.11.--Adopted Constants

GM =3.986 013 × 1020 cm 3 sec -2

c = 2.997 925 × 101° cm sec -1

k2 = 0.30

(velocityof light)

(Love number)
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TABLE 9.12.--DSN Data Used in LS 37
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Flight Tracking time period 8 (deg)

Mariner 4 encounter July 10-21, 1965 -3

Mariner 5 cruise July 28-September 16, 1967 -8 to +8
Mariner 5 encounter October 14-25, 1967 6

Mariner 5 post October 28-November 21, 1967 +2 to -2
encounter

Mariner 6 July 26-31, 1969 -24

TABLE 9.13.--LS 37 Coordinates, From Mottinger (1973)

r X Y
Station (Mm) k (Mm) (Mm)

DSS 11 5.206 340 9 243?15059 -2_351 428 8 -4.645 080 0

DSS 12 5.212 052 5 243°.19452 -2.350 442 4 -4.651 979 4
DSS 14 5.203 997 8 243°.11047 -2.353 621 1 -4.641 342 5

DSS 41 5.450 201 9 136788749 -3.978 718 6 3.724 848 8
DSS 42 5.205 349 4 148798126 -4.460 978 2 2.682 412 4

DSS 51 5.742 939 9 27°.68542 5.085 441 5 2.668 265 9
DS,_ 61 4,862 608 3 3550.75097 4,849 243 1 -0.360 278 5
DSS 62 4.860 818 1 3550.63217 4.846 700 7 -0.370 196 0

TABLE 9.i 4.--The Stations Related by cue...... _u'rvvy

i/or _

Location Station pairs (m -2)

Hawaii ................ 9012-6011

Argentina ............. 9011-6019

Japan .................. 9005-6013
Spain .................. DSS 61-DSS 62

9004-DSS 61

Central Europe ........ 9066-8015
9066-6065

8816-9030
Brazil ................. 9029-6067

California .............. DSS 14-DSS 12
DSS 14-DSS 11

9113-DSS 14

9113-6111

6111-6134

Ethiopia ............... 9028-6042
Australia .............. 6060-DSS 41

9003-DSS 41
9003-9023

DSS 41-DSS 42
9002-6068
9002-DSS 51

South Africa ...........

1.0
1.0

1.0

0.1
5.0
O.20
0.25

0.0025

0.01

1.0
5.0
5.0
0.7

2.0

5.0
2.0

1.0
1.0
1.0
0.04
1.0
0.1
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TABLE 9.15.--Geodetic Coordinates Used in SE-III

Sta. Hwl H_ll GH X Y Z
Agency no. Latitude Longitude (m) (m) Datum (m) Name (megameters)

a = 6 378 388.0 m 1/f = 297.0000

JpL_____DSS61 +40 25 47.717 355 45 06.178 788.4 766.4 EU5O -22.0 MADRI1 4.849 332 01 .360 171 92 4.115 005 79

JPL ..... DSS62 +40 27 15.273 355 38 00.572 738.3 716.3 EU5O -22.0 MADRI2 4.846 789 68 -.370 090 30 4.117 028 98

NOAA_-_006 +69 39 44,2698 018 56 31.9076 106.0 119.0 EU50 +13.0 TROMSO 2.103 040 80 .721 762 62 5.958 301 35

NOAA __6012 +19 17 23.227 166 36 39.780 3.5 3.5 ASTR 0. WAKEIS -5.858 825 61 1.394 575 85 2.093 679 89

NOAA--6015 +36 14 29.527 059 37 42.729 991.0 959.0 EU5O -32.0 MASMAD 2.604 467 55 4.444 277 33 3.750 465 44

NOAA--6016 +37 26 42.628 015 02 47.308 9.24 -6.8 EUS0 -16.0 SICILY 4.896 494 12 1.316 269 43 3.856 792 86

NOAA_-6020 -27 10 39.213 256 34 37.495 230.8 230.8 EI67 0.0 EASTER -1.888 796 16 -5.355 03180 -2.895 877 21

NOAA--6031 -46 25 03.491 168 19 31.155 0.9 NZ49 . INVERC -4.313 886 56 .891 374 93 -4.597 458 23

NOAA--6039 -25 04 07.146 229 53 11.882 339.4 339.4 PITC 0.0 PITCAN -3.724 932 90 -4.421 406 20 -2.686 144 64

NOAA--6043 -52 46 52.468 290 46 29.573 80,7 CH63 . SOMBRO 1.371375 97 -3.614 945 94 -5.056 020 37

NOAA--6044 -53 01 12.031 073 23 27.415 3.8 3.8 HR69 0.0 HERDIS 1.099 079 48 3.684 862 62 -5.071 987 40

NOAA--6050 -64 46 33.98 295 56 37,04 16.44 PLMR PALMER 1.192 460 38 -2.451 024 27 -5.747 260 40

NOAA--6053 -77 50 46.2487 166 38 07.5845 19.0 CA62 MCMURD -1.310 740 80 .311 405 86 -6.213 514 12

NOAA __6055 -07 58 16.634 345 35 32.764 70.94 . AS58 ASCENS 6.118 581 51 -1.571 840 78 -.878 654 81

NOAA__6065 +47 48 07.011 011 01 29.378 943.2 942.4 EU50 -0.8 PEISEN 4.213 684 69 .820 948 44 4.702 898 97

NOAA__6069 -37 03 26.2572 347 40 53.5548 24.8 24,8 TR68 0.O DACUNA 4.979 075 44 -1.087 294 30 -3.822 545 43

NOAA __6073 -07 20 58.5270 672 28 32.1558 3.9 GRAC CHAGOS 1.904 935 20 6.032 722 80 -.810 502 73

NOAA__6078 -17 41 46.956 168 17 57.921 15.2 EFAT NWHBRD -5.952 163 90 1.232 696 45 - 1.926 425 29

CNE8 __8804 +36 27 50.1191 353 47 41.2862 25.40 -9.6 EU50 -3510 SFRLAS 5.105 702 63 -.555 125 50 3.769 769 71

CNES __8809 +43 56 00.190 005 42 48.788 657.82 649.4 EU50 -8.4 HTPRVL 4.578 434 82 .458 082 30 4.403 291 78

CNES __8809 +43 56 00.190 005 42 48.788 657.82 647.8 EU50 -lO.O HTPRVL 4.578 435 96 .458 082 42 4.403 292 89

CNE8 __8815 +43 55 59.183 005 42 48.382 657.83 649.4 EU50 -8`4 HTPRVL 4.578 458 32 .458 075 55 4.403 270 50

CNES __8816 +37 45 17.043 022 49 43.313 803.11 788.7 EUS0 -14.4 STPHNL 4.654 421 39 1.959 282 40 3.884 501 87

CNES __8818 +31 43 19.25 357 34 54.06 855.65 813.7 EUS0 -42,0 BECHRL 5.426 419 14 -.229 172 16 3.334 728 56

SA0 .... 9930 +38 04 46.147 023 55 59.991 473.02 466.62 EU50 -6.4 DIOSLS 4.595 303 76 2.039 557 34 3.912 743 97

CNES __8015 +43 56 01.142 005 42 49.277 658.85 650.4 EU50 -3.4 HTPROV 4.578 415 31 .458 091 32 4.403 314 74

CNES __8019 +43 43 36.496 007 18 03.309 377.42 369.4 EU50 -8` NICEFR 4.579 557 55 .586 729 53 4.386 538 88

SAO .... 9004 +36 27 51.3666 353 47 42.0891 26.00 -9.0 EU50 -35.0 S.FERN 5.105 682 54 -.555 103 20 3.769 801 00

SA0 .... 9006 +29 21 38.97 079 27 25.51 1927. 1827. EU50 -100. NA.TAL 1.018 269 70 5.471 218 80 3.109 759 10

SA0 .... 9008 +29 38 18.112 052 31 11.445 1597.4 1549.4 EU50 -48.0 SHIRAZ 3.376 963 53 4.404 102 29 3.136 405 45

SA0 .... 9028 +08 44 56.39 038 57 33.61 1923.2 1820.2 EU50 - 105. ETHIOP 4.903 855 04 3.965 304 21 ,964 021 18

SA0 .... 9030 +38 04 46.564 023 56 00.130 472.64 466.24 EU5O -6.4 DIOSBN 4.595 294 86 2.039 557 10 3.912 753 85

SAO .... 9051 +37 58 40.31 023 46 42.89 187.9 180.9 EU50 -7.0 ATHENG 4.606 949 19 2.029 849 75 3.903 882 23

INT ..... 8010 +46 52 40.318 007 27 58.238 903.44 900.3 EU50 -3_1 ZIMMWL 4.331 391 50 J567 637 49 4.633 236 85

INT ..... 9431 +56 56 54.98 024 03 37.81 8.0 2.4 EU50 :-5.6 RIGALT 3.183 998 49 1.421 638 06 5.322 893 86

INT ..... 9432 +48 38 04.56 022 17 57.88 189.0 187.5 EU50 -1.5 UZGROD 3.907 492 64 1.602 532 61 4.764 032 96

INT ..... 8011 +52 08 39.116 358 01 59.492 113.19 108`6 EU50 -4.6 MALVRN 3.920 249 42 -.134 624 34 5.012 850 24

SAO .... 9091 +38 04 48.215 023 56 01.587 466.25 460.85 EU5O -6.4 DIONBN 4.595 247 88 2.039 575 10 3.912 790 60

AF ..... 9426 +60 12 40.38 010 45 08.74 575.92 581.7 EU50 +5.8 HAREST 3.121 368 36 .592 747 33 5.512 829 59

AF ..... 9427 +16 44 45.39 190 29 05.59 5.0 5.0 JI61 0.0 JOHNST -6.007 589 42 -1.111 801 81 1.825 951 15
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TABLE 9.15.--(Cont'd)

901

Sta. Hwt Heu GH X Y Z
Agency no. Latitude Longitude (m) (m) Datum (m) Name (megameters)

a = 6 377 397.2 m 1/f = 299.1528

NOAA__6013 +31 23 30.1397 130 52 24.8595 65.9 46.9 TKYO -19. KANOYA -3.565 710 19 4.120 207 06 3.302 74197

SAO .... 9005 +35 40 11.078 139 32 28.222 59.77 59.8 TKYO +0.0 TOKYOJ -3.946 555 04 3.365 774 71 3.698 152 01

SAO .... 9025 +36 00 08.606 139 11 43.159 855.89 855.4 TKY0 -0.5 DODRAJ -3.910 298 61 3.375 836 40 3.728 538 81

GSFC___1021 +38 25 49.628

JPL ..... DSSll +35 23 22.346

JPL ..... DSS12 +35 17 59.854
JPL ..... DSS14 +35 25 33.340

NOAA__6001 +76 30 03.4106

NOAA__6002 +39 01 39.003

NOAA__6003 +47 11 07.132

NOAA__6004 +52 42 54.89

NOAA__6011 +20 42 38.561

NOAA__6022 -14 20 12.216

NOAA__6038 +18 43 44.93

NOAA__6047 +06 55 26.132

NOAA__6111 +34 22 54.537

NOAA__6123 +71 18 49.882

NOAA__6134 +34 22 44.444

GSFC___7050 +39 01 13.676

GSFC___7060 +13 18 28.6136

SAO .... 9901 +32 25 24.56

SAO .... 9912 +20 42 37.23

SAO .... 9921 +31 41 02.87
RA(} _(_1 _-32 25 25.56

SAO ....9010 +27 01 12.882

SAO __ -9012 +20 42 37.50

SAO__ 9021 +31 41 02.67

AF 9425 +34 57 50.742

AF .....9424 +54 44 33.858

282 54 48.225 5.76 6.7 NA27

243 09 05.262 1036.3 1014.3 NA27

243 11 43.414 988.9 966.9 NA27

243 06 40.850 1031.8 1009.8 NA27

291 27 51.8867 206.0 238. NA27

283 10 26.942 44.3 43.9 NA27

240 39 48.118 368.74 356.2 NA27

174 07 37.87 36.8 -9.2 NA27
203 44 28.529 3049.27 3041.3 OHAW

189 17 13.242 5.34 5.3 AS62
249 02 39.28 23.2 23.2 ISOC

122 04 04.838 9.39 10.1 LZll

242 19 09.484 2284.41 2258.11 NA27

203 21 20.720 8.3 -6. NA27

242 19 09.259 2198.37 2172.07 NA27

283 10 18.035 54.812 56.1 NA27

144 44 05.3744 85.873 85.9 GUAM

253 26 51.17 1651.33 1648.93 NA27

203 44 24.03 3034.14 3026.1 OHAW

249 07 21.35 2383.14 2370.4 NA27

253 26 51.17 1651.3 1648.9 NA27

279 53 13,008 16.13 26,5 NA27

203 44 24.08 3034.14 3026.1 OHAW

249 07 21.35 2383.12 2370.4 NA27

242 05 11.584 784.231 760.4 NA27

249 57 26.389 704.6 701.7 NA27

a = 6 378 206.4 m 1/f = 294.9787

+0.9 IBPOIN 1.118 06122 -4.876 472 15 3.942 793 54

-22.0 GOLDS1 -2.351415 01 -4.645 228 10 3.673 582 42

-22.0 GOLDS2 -2.350 428 27 -4.652 127 55 3.665 447 06

-22.0 GOLDS4 -2.353 607 04 -4.641 490 95 3.676 870 68

+3Z THULEG .546 580 65 -1.390 107 20 6.180 059 57

-0.4 BELTVL 1.130 798 67 -4.830 987 41 3.994 520 58

-12.5 MOSELK -2.127 796 49 -3.786 014 63 4.655 848 03

-46.0 SHEMYA -3.851 745 00 .396 192 09 5.051 199 36

-8. HAVAII -5.466 062 54 -2.404 129 70 2.242 407 61
0.0 PAGOGO -6.099 842 41 -.997 467 71 -1.569 008 83

0.0 GIGEDO -2.161 114 55 -5.642 916 48 2.034 864 29

+0.7 ZAMBOA :3.361 826 92 5.365 864 13 .763 735 96

-26.3 WRWDBA -2.448 815 18 -4.688 125 78 3.582 568 64

+1.3 PTBRRW -1.881 756 24 -.812 583 99 "6.019 403 56
-26.3 WRWDBB -2.448 868 89 -4.668 215 79 3.582 263 30

+1.2 GODLAS 1.130 704 28 -4.831 524 29 3.993 921 50

0. GUAMLS -5.068 867 06 3.584 334 33 1.458 509 59

-Z4 ORGN L -1.535 725 37 -5.167 146 55 3.400 867 41

-8. MAUIHL -5.466 115 22 -2.404 010 58 2.242 363 93

-12.7 MHSAOL -1.936 750 26 -5.077 855 96 3.331 744 02

2.4 GRGN F -i,535 725 37 -5.i67 ia6 55 3.400 _'_ 41

+11.4 JUPITE .976 312 16 -5.601 550 92 2.880 064 23

8. MAUI,H 5.466 ill 95 2.404 010 72 2.242 371 70

- 12.7 MTHPBN -1,936 751 41 - 5.077 858 98 3,331 738 78

-23.8 ROSMND -2.449 975 02 -4,624 572 36 3.634 851 19

-2.9 CLALBC -1.264 825 81 -3,467 044 42 5.185 275 10
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TABLE 9.15.--(Cont'd)

Sta. H _,l H ,.u G H X Y Z

Agency no. Latitude Longitude (m) (m) Datum (m) Name (megameters)

a - 6 378 249.145 m 1/f = 293.465

JPL ..... DSS51 -25 53 21.15 027 41 08.53 1391.0 1399.0 ARCC +8. JOHANG 5.085 580 65 2.668 370 93 -2.768 408 99

NOAA__6042 +08 46 08.501 038 34 49.164 1886.46 1857.5 ADDN -29.0 ADDABA 4.900 912 36 3.968 254 30 .966 118 39

NOAA__6063 +14 44 44.228 342 30 55.594 26.3 26.3 YO67 0. SENGAL 5.884 522 66 -1.853 639 29 1.612 760 05

NOAA__6064 +12 07 51.750 015 02 06.151 295.4 316.4 ADDN +21.0 FTLAMY 6.023 554 50 1.617 955 70 1.331 525 26

NOAA__6068 -25 52 56.98 027 42 25.17 1523.8 1531.8 ARCC +8. JOHANS 5.084 982 16 2.670 466 91 -2.767 797 68

NOAA __6075 -04 40 07.23 035 28 50.38 588.98 SEIL MAHE IS 3.602 875 32 5.238 427 44 -.515 676 27

CNES __8820 +14 46 04.878 342 35 22.462 28.48 28.5 YO67 010 DAKARL 5.886 315 60 -1.845 836 00 1.615 157 50

SAO .... 9902 -25 57 33.851 028 14 53.909 1543.88 1551.9 ARCC +8. OLIFTL 5.056 260 03 2.716 634 10 -2.775 471 14

SAO .... 9002 -25 57 33.85 028 14 53.91 1544.1 1552.1 ARCC +8. OLFSFT 5.056 260 19 2.716 634 22 -2.775 471 20

CNES __9020 +14 46 05.975 342 35 22.936 24.59 24.6 YO67 0.0 DAKARS 5.886 308 05 -!.845 818 78 1.615 189 11

SAO .... 9022 -25 57 33.815 028 14 54.351 1543.34 1551.3 ARCC +8. OLIFTS 5.056 254 16 2.716 644 91 -2.775 469 88

SAO .... 9028 +08 44 47.23 038 57 30.48 1925.2 1896.2 ADDN -29. ETHIOP 4.903 904 76 3.965 221 35 .963 656 06

a = 6 378 160.0 m if = 298.25

JPL ..... DSS41 -31 22 59.4305 136 53 10.1244 148.28 147.3 AUGD -1.0 WOOMAU -3.978 581 94 3.724 896 03 -3.302 323 84

JPL ..... DSS42 -35 24 08.0381 148 58 48.2057 656.08 664.5 AUGD +8.4 TIDBIN -4.460 848 00 2.682 461 57 -3.674 729 47

NOAA__6008 +05 26 55.325 304 47 42.832 18.38 +8.7 SA69 -9.7 SURNAM 3.623 335 39 -5.214 222 41 .691 599 57

NOAA__6009 -00 05 50.468 281 34 49.212 2682.1 2706.7 SA69 +24.6 ECUADR 1.280 904 38 -6.250 970 09 -.010 769 28

NOAA__6019 -31 56 33.9540 294 53 41.3415 608.18 621.2 SA69 +13.0 DLORES 2.280 712 97 -4.914 539 60 -3.355 387 84

NOAA__6023 -10 35 08.0374 142 12 35.4955 60.5 61.7 AUGD +1.2 THURIS -4.955 236 08 3.842 309 46 -1.163 990 61

NOAA__6032 -31 50 28.992 115 56 26.618 26.30 32.5 AUGD +6.2 PERTHA -2.375 257 20 4.875 599 99 -3.345 53190

NOAA__6060 -30 18 39.4182 149 33 36.8921 211.08 211.8 AUGD +0.7 CULGOR -4.751500 46 2.792 121 93 -3.200 296 97

NOAA__6067 -05 55 37.414 324 50 06.200 40.63 66.7 SA69 +26.1 BRAZIL 5.186 494 84 -3.653 919 32 -.654 244 53

SAO .... 9907 -16 27 55.085 288 30 26.814 2452.274 2486.5 SA69 +34.2 ARQUPL 1.942 859 44 -5.804 087 19 -1.796 876 89

SAO .... 9929 -05 55 38.616 324 50 08.660 45.6 71.7 SA69 +26.1 NATALL 5.186 539 40 -3.653 858 15 -.654 281 78

SAO .... 9003 -31 06 07.2608 136 46 58.6988 159.21 158.1 AUGD -1.1 WOOMER -3.983 657 92 3.743 132 37 -3.275 676 47

SAO .... 9007 16 27 55.085 288 30 26.814 2451.86 2486.1 SA69 +34.2 AREQUI 1.942 859 32 -5.804 086 83 -1.796 876 77

SAO .... 9009 +12 05 25.912 291 09 46.078 7.44 -3.4 SA69 10.8 CURACA 2.251 890 08 -5.816 918 37 1.327 200 69

SAO .... 9011 -31 56 33.228 294 53 38.949 608. 621.0 SA69 +13.0 V.DLOR 2.28_ 660 87 -4.914 576 54 -3.355 368 76

SAO .... 9023 -31 23 30.8163 136 52 39.0156 137.91 136.9 AUGD -1.0 LAGOON -3.977 646 16 3.725 145 80 -3.303 143 65

SAO .... 9027 -16 27 54.365 288 30 26.578 2450.23 2484.4 SA69 +34.2 AREQU2 1.942 854 16 -5.804 093 46 -1.796 855 06

SAO .... 9029 -05 55 38.616 324 50 08.660 45.34 71.4 SA69 +26.1 NATLBR 5.186 539 16 -3.653 857 98 -.654 281 74

SAO .... 9031 -45 53 11.028 292 23 12.215 186.54 172.5 SA69 -14.0 CHDRVD 1.693 869 60 -4.112 339 51 -4.556 606 80

SAO .... 9039 -05 55 38.616 324 50 09.401 41.6 67.7 SA69 +26.1 NATAL2 5.186 549 28 -3.653 837 23 -.654 281 36

Sta. H_l Het_ GH X Y Z
Agency no. Latitude Longitude (m) (m) Datum (m) Name (megameters)

a = 6 378 140.0 m 1/f = 298.258

NOAA__6007 +38 45 36.725 332 54 21.064 53.3 53.3 GRAC 0.0 AZORES 4.433 563 44 -2.268 197 74 3.971 629 06

NOAA __6040 -12 11 57.91 096 49 47.08 4.4 4.4 ASTR 0.0 COCOIS -.741 462 10 6.190 800 89 -1.338 974 41

NOAA__6045 -20 13 50. 057 25 15. 149.4 NSPC MAURIT 3.223 895 00 5.045 104 82 -2.191 716 44

NOAA__6051 -67 36 03.08 062 52 24.41 11.3 11.3 ASTR 0.0 MAWSON 1.111 359 85 2.169 307 95 -5.874 285 99

NOAA__6052 -66 16 45.12 110 32 04.61 18.0 18.0 ASTR 0.0 WILKES -.902 551 77 2.409 545 73 -5.816 560 60

NOAA __6059 +02 00 35.622 202 35 21.962 2.75 XM67 XMASIS -5.885 219 81 2.448 507 30 .222 198 23

NOAA__6061 -54 16 39.515 323 30 42.531 4.2 SGRG SOGEOR 3.000 591 10 -2.219 363 27 -5.154 853 86

NOAA__6072 +18 46 10. 098 58 15. 319.3 NSPC TILAND -.942 038 16 5.967 454 08 2.039 306 54
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TABLE 9.16.--Orbital Elements

of Adopted Satellites

n

Satellite (rev day-') i e

7001701 ........ 13.800 57410 0.0880

7010901 ........ 14.811 157040 0.0165

6001301 ........ 13.454 28?330 0.0166

5900101 ........ 11.460 32?880 0.1650

6202901 ........ 9.126 44?800 0.2428
6000902 ........ 12.197 47?230 0.0114

6302601 ........ 14.108 49?740 0.0600

6206001 ........ 13.345 507140 0.0070

6508901 ........ 11.968 59?380 0.0717

6101501 ........ 13.870 66?820 0.0080

6400101 ........ 13.920 697910 0.0015

6406401 ........ 13.746 79?700 0.0129

6508101 ........ 13.805 87?370 0.0743

6102801 ........ 8.677 95?850 0.0121

903

TABLE 9.17.--Coefficient._ qf C_.

Br,.Q_d on Kozai_._ /' 'J_'.' Va!uvs a

C2 = -1082.639 C3 = 2.546
C4 = 1.649 C5 = 0.210

Ce = 0.646 C7 = 0.333

C8 = 0.270 C9 = 0.053

C1o = 0.054 Cn = -0.302
C,2 = 0.357 C,3 = 0.114

C,4 = -0.179

a Given in units of 10 -e.
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TABLE 9.18.--(O-C) for Secular Motion and Their Differences a

Satellite (O-C) I II 1969 1962 1961 1959

7001701 & ..... -18060 ± 90 -57 271 29090 9540 18250 18840

..... 10120 ± 70 -51 258 -17400 -5390 -9950 -10240

7010910 & ..... -2200 ± 800 -1530 -857 -4700 100 6200 6900

..... 5160 ±100 -83 99 -2160 -1450 -5560 -5900

6001301 & ..... 170 ± 100 43 61 40 -300 -670 -90

..... -125 ±5 -4 -10 -1 59 -611 -928

5900101 & ..... 32 ± 3 1 3 1 18 -129 278

..... -9 ±3 2 7 0 10 -248 -488

6202901 _ ..... 40 ± 6 11 10 2 300 827 1013

..... 7 ±3 5 8 2 -39 -247 -395

6000902 _ ..... 170 ± 50 0 21 47 -287 770 1070

..... -1 ±3 1 5 4 -43 -342 -594

6302601 & ..... 920 ± 10 -1 -6 -52 2650 4900 5290

..... 1 ±3 0 -2 19 261 -2 -352

6206001 _ ..... 600 ± 60 16 84 60 2230 4180 4500

..... -42 ±3 1 2 8 -56 -437 -740

6508901 _ ..... -110 ± 10 -i -29 -26 1460 3180 3285

..... -70 ±3 0 -6 -7 -670 -1465 -1670

6101501 _ ..... -300 ± 80 14 97 65 -81 1900 2500

..... 22 ±3 -1 -i 3 -1252 -2815 -3057

6400101 _ ..... 600 ± 800 729 718 620 -600 580 -500

..... 56 ±8 i0 6 9 -1073 -2703 -2921

6406401 _ ..... -400 ± 100 -95 -231 -ii0 -2000 -4000 -4300

n ..... 90 ± I0 9 9 15 -220 -1351 -1467

6508101 & ..... 620 ± 30 15 100 -8 300 -3290 -3630

..... 50 ±3 -2 -9 -27 35 -306 -337

6102801 & ..... -35 ± 50 -47 -47 -47 -340 -915 -1008

..... -2.9 ± 0.5 0.6 _7 0.6 62.7 192.3 212.6

Given in units of 10 -_ degrees per day.
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_.C08_
TABLE 9.19.--(O-C) for Amplitudes oj sin _ 2oJ Terms

I
and Their Differences a

905

Satellite (O-C) I II 1969 1962 1961 1959

5900101 oJ ....... 0.3 -+ 0.5 -0.2 -0.2 -0.3 -0.6 1.5 1.4

12 ...... -2 ± 2 -1 -2 -2 -1 -4 -4

i ....... -3 ± 6 -4 -4 -5 -4 3 3

e ....... 0 -+ 1 1 1 1 1 -4 -4

6202901 ¢o ....... -0.1 -+ 0.3 -0.2 -0.2 -0.2 -0.8 -2.5 -2.7

fl ...... -1 ± 1 1 1 1 -8 -14 -14

i ....... 4 ± 4 5 4 4 -3 -14 -15

e ....... 0 ± 1 0 0 0 5 12 1_

6000902 _o ....... -3 +- 4 -2 -2 -2 -6 -10 -10

e ....... 0±1 0 0 0 0 1 1

6302601 ¢o ....... -6 ± 2 -1 0 0 -14 -23 -23

...... 2 - 2 3 3 3 -2 -3 -3.

i ....... -1 - 3 1 1 1 -4 -6 -6

e ....... 3 -+ 2 -3 -3 -3 12 20 20

6205001 _ ....... 3 +- 6 7 6 6 -5 -13 -13

e ....... 1+-1 1 1 0 2 3 3

6508901 oJ ....... 6 -+ 2 1 2 2 -22 -49 -50

12 ...... 4 ± 2 2 2 0 9 10 10

i ....... 5 +- 5 4 4 4 -3 -11 -11

e ....... -4 ± 1 2 1 1 30 62 63

6101501 _ob ...... -1 -- 2 -1 0 0 -3 0 0

e ....... 1±2 0 0 -i 3 -i -I

6406401 oJb ...... 0 ± 2 0 0 0 - 1 - 1 - 1

e ....... 4+_4 3 4 3 5 7 7

6508101 ¢o ....... 7 ± 3 3 4 3 12 0 0

f_ ...... 1±1 1 0 0 2 2 2

i ....... -2 ± g -2 -_ -_ -2 -2 -2

v ....... 6 ± 2 1 2 -1 -11 3 3

"'Gi¥_i-iin units o[ ill":degree._ i;-,,-,.:ii)_ d_g,_..._ &.- _)._i5: ,i_g,-_._ &,,-,;,_,,d !O z degrees

fur _ pe, day.

b For these satellites, _ is in units of 102 degrees.
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_C08_
TABLE 9.20.--(O-C)for Amplitudes o] sin?CO Terms and Their Differences a

!

Satellite (O-C) I II 1969 1962 1961 1959

7001701 o_ ..... 70 - 5
12 .... -190 -+ 30

..... 430 -+ 30
e ..... -91 -+ 6

7010901 co ..... 45 - 30
12 .... -18 -+ 45

..... -170 -+ 300
e ..... 28 - 20

6001301 co ..... 4 +- 1
12 .... 0 - 3

..... 0 - 30
e ..... 1.6 -+ 1.0

5900101 co ..... -1.7 +- 0.3
12 .... -2 -+ 2

..... 1 -+ 5
e ..... -3.1 - 0.5

6202901 co ..... -0.1 -+ 0.2

_l .... 2 + 3
..... -2 -+ 3

e ..... +-- 0.8

6000902 oJ ..... - 19 - 3
12 .... 1 -+ 1

..... -2 -+ 6
e ..... -2.0 - 0.6

6302601 co ..... - 17 -+ 2
fl .... -6 -4- 1

..... 14 - 15

e ..... -12 -+ 1

6206001 co ..... -59 - 4

12 .... -2 -+ 2

..... 0 +- I0

e ..... -8 -+ 1

6508901 co ..... 3 --- 4

12 .... 10 -+ 2

..... -8 -+ 8

e ..... -4 -+ 1

-2 0 -126 -104 -85 -87

0 -28 -248 -570 -168 -237

-34 -31 740 900 480 550
-5 -5 -149 -179 -99 -112

9 41 160 -411 232 112
-44 -48 0 10 9 7

-166 -170 -181 -120 -190 -177

18 27 61 -102 83 49
0 0 0 46 314 241
2 2 0 3 -10 -7
0 0 0 -2 -16 -12
_5 _5 _6 13.5 9_7 69.8

0.0 _3 0.0 4.8 22.4 17.2

2 1 2 -7 -87 -58
-3 -3 -4 -8 -64 -57
-0.3 -0.7 -0.1 3.2 40.0 35.6

0.0 _0 -_1 -1.2 -4.0 6.1

2 3 3 16 5 31
-5 -4 -4 -11 -26 -78

0.2 0.0 0.2 4.2 15.2 49.7
-4 -4 -10 42 1 315

1 1 0 3 4 6

-2 -2 -6 -3 -2 -6
1.0 1.0 0.3 10.5 2.4 64.8
0 -4 -1 9 -17 86
0 0 1 20 52 60

10 11 10 6 12 -19

0 -1 2 16 -6 99

0 5 0 187 122 931
-2 -2 -2 0 3 4

0 0 0 -1 0 -4

-1 0 -1 22 14 113

7 7 0 119 264 486

3 3 2 -10 8 -29

-9 -9 -7 -40 -80 -144

0 0 -2 127 292 555
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TABLE 9.20.--(Cont'd)

907

Satellite (O-_ I II 1969 1962 1961 1959

6101501 w _ .... -19 ± 5 -11 -11 -8 -46 -265 -413

.... -3 ± 4 2 2 0 7 17 29

i ..... 0 ± _ 0 0 0 1 7 11
e ..... -11 ± I 0 0 4 -48 -354 -560

6400101 _ .... -200 ± 10 6 3 1 -72 -445 -593

e ..... -58 ± 3 -4 -5 -9 -24 -122 -161
6406401 _ ..... -110 ± 20 23 36 30 23 510 930

.... 6 ± 3 1 1 1 5 11 1_
i ..... 0±8 0 O 0 0 -2 -3
e ..... -34 ± 5 -4 -2 -2 -4 106 199

6508101 _ ..... 60 ± 2 1 -1 3 64 197 296

.... 20 ± 1 0 2 2 16 26 32
i ..... -10 ± 10 -9 -9 -10 -10 -13 -16
e ..... 60 ± 3 -4 -5 -2 67 231 354

6102801 w ..... -30 ± 50 -48 -47 -40 15 390 663
.... -2±2 -2 -2 -2 -2 -3 -4

i ..... -6±7 -6 -6 -6 -6 -6 -5

e ..... 3.0± 1.5 -0.7 -0.6 _0 12.5 91.8 149.2

a Given in units of 103 degrees for o_, 104 degrees for _l, 105 degrees for i, and l0 s degrees
for e per day.

b For these satellites, _ is in units of 102 degrees.

Data

Baker-Nunn

Smoothed Baker-Nunn

SAO laser

CNES laser

GSFC laser

ISAGEX laser

Gravity anomalies

Model (zero)
anomalies

Weight

4"

2"
5m

10 m

5m
2m
13.5

(.4) _ mGal

27
(A) _ mGal

Remarks

Taken before 1970, observed before 1970
Taken before 1970, observed before 1970

Taken before 1970, observed before 1970
1971 International Campaign

n is the number of 1° x 1° squares in each
5 ° x 5o mean

A is the area
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TABLE 9.22.--Smithsonian Atomic Time Defined With Respect to WWV

and UTC (USNO) ''b

A B To
Interval (sec) (sec/day) (mod. J.d.)

(A.S - WWV) = A + B (T - T_) before September 20, 1967

1961 Jan. 01.0--1961 Jul. 01.0

1961 Jul. 01.0--1961 Jul. 13.0

1961 Jul. 13.0--1961Aug. 01.0

1961 Aug. 01.0--1961 Sep. 21.0
1961 Sep. 21.0--1961 Oct. 01.0

1961 Oct. 01.0--1961 Nov. 01.0
1961 Nov. 01.0--1962 Jan. 01.0

1962 Jan. 01.0--1962 Apr. 01.0

1962 Apr. 01.0--1962 Jul. 01.0
1962 Jul. 01.0--1963 Jan. 02.0

1963 Jan. 01.0--1963 Nov. 01.0

1963 Nov. 01.0--1964 Jan. 01.0

1964 Jan. 01.0--1964 Apr. 01.0

1964 Apr. 01.0--1964 Jul. 01.0

1964 Jul. 01.0--1964 Sep. 01.0

1964 Sep. 01.0--1964 Oct. 01.0
1964 Oct. 01.0--1965 Jan. 01.0

1965 Jan. 01.0--1965 Mar. 01.0

1965 Mar. 01.0--1965 Jul. 01.0

1965 Jul. 01.0--1965 Sep. 01.0

1965 Sep. 01.0--1966 Jan. 01.0
1966 Jan. 01.0--1967 Jan. 01.0

1967 Jan. 01.0--1967 Sep. 20.0

[A.S - UTC (USNO) = A + B

1967 Sep. 20.0--1968 Jan.
1968 Jan. 01.0--1968 Feb.

1968 Feb. 01.0--1969 Jan.

1969 Jan. 01.0--1970 Jan.

1970 Jan. 01.0--1971 Jan.

1971 Jan. 01.0--1972 Jan.

1972 Jan. 01.0--1972 Jul.

1:458 858 + 0:001 296 000 (T - 37 300.0)

1.693 434 + 0.001 292 000 (T - 37 480.0)

1.694 215 + 0.001 245 000 (T - 37 480.0)
1.643 160 + 0.001 280 000 (T - 37 480.0)

1.641 500 + 0.001

1.642 184 + 0.001

1.643 272 + 0.001

1.865 000 + 0.001

1.864 620 + 0.001

1.864 704 + 0.001

2.292 725 + 0.001

2.392 725 + 0.001

2.800 962 + 0.001

2.900 766 + 0.001

2.901 518 + 0.001
3.001 518 + 0.001

3.001 589 + 0.001

3.575 732 + 0.001

3.675 732 + 0.001

3.775 732 + 0.001

300 000 (T - 37 480.0)

290 764 (T - 37 480.0)

289 444 (T - 37 480.0)

123 200 (T - 37 650.0)

126 800 (T - 37 650.0)

126 370 (T - 37 650.0)

118 458(T - 38 030.0)

118 458(T - 38 030.0)
293 560 (T - 38 395.0)

295 716(T - 38 395.0)

292 659 (T - 38 395.0)

292 659 (T - 38 395.0)

296 048 (T - 38 395.0)

296 000 (T - 38 761.0)

296 000 (T - 38 761.0)

296 000 (T - 38 761.0)

3.875 732 + 0.001 296 000 (T - 38 761.0)

3.348 772 + 0.002 592 000 (T - 39 126.0)

5.294 852 + 0.002 592 000 (T - 39 491.0)

(T - TQ)] after September 27, 1967

01.0 5:294 688 + 0:002 592 000 (T - 39 491.0)

01.0 6.240 768 + 0.002 592 000 (T - 39 856.0)

01.0 6.140 768 + 0.002 592 000(T - 39 856.0)

01.0 7.089 440 + 0.002 592 000 (T - 40 222.0)

01.0 8.035 520 + 0.002 592 000 (T - 40 587.0)

01.0 8.981 600 + 0.002 592 000 (T - 40 952.0)
01.0 10.035 280 + 0.000 000 000 (T - 41 317.0)

a From M. R. Pearlman, J. M. Thorp., C. R. H. Tsiang, D. A. Arnold, C. G. Lehr, and

J. Wohn.
b Since September 20, 1967, SAO's satellite observations have been referred to

UTC(USNO). Before that date, observations were referred to time of emission of WWV sig-
nals (WWV-emitted). Both timing systems are readily available for use in the field, yet
both have occasional discontinuities which make them inappropriate for analysis.

When the satellite-tracking program began in the late 1950's, uniform time standards
such as A1 and their differences from WWV emitted (and later UTC) were not available
in a timely fashion. However, the intended relations between WWV (and later UTC)
and the uniform time standard A1 were published regularly. SAO has used these in-

tended relations to generate a facsimile of A1 from WWV and UTC data.
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TABLE 9.23.--Accuracy of an Observation as a Function of

Topocentric Angular Velocity

909

With VLF
and portable

Associated clocks With VHF
topocentric velocity

Cycle rate of object Along Across Along Across
(sec) (arc-sec sec-') track track track track

32 0- 250 1':8 1':8 1':8 1':8

16 .250- 500 1':8 1':8 2'.'1 1':8
8 500-1000 1':9 1':8 2':3 1':8
4 1000-2000 1':9 1'.'8 2"7 1':8

2 > 2000 2'.'0 1':8 3':7 1':8

TABLE 9.24.--Sensitivity Coefficients for Satellite 6701401a

e = 0.084 313 0 A = 7614 km

I = 39:.454 59 perigee = 594 km
,_ = 13.0_4 31)8 a_oa'ee - i8'78 krn

m_ 11 12 13 14 15 16 17 18 19 20

1 ...... 154 229
2 ...... 113 43
3 ...... 52 78
4 ...... 66 34
5 ...... 38 28
6 ...... 65 48
7 ...... 68 62
8 ...... 46 62
9 ...... 21 30

10 ...... 0 0
11 ...... 0 0
12 .......... 0
13 .................

121 75 139 160 66 69 118 67

61 94 58 35 59 46 0 33
65 25 54 43 12 18 39 26
19 39 38 14 10 27 0 0
51 29 0 23 10 0 0 18
42 14 27 19 0 17 0 0
61 45 10 0 18 16 0 0
45 37 18 12 0 0 18 0
46 64 55 53 23 0 0 0
29 44 43 58 37 32 0 0

8 16 27 48 47 57 48 44
0 21 44 64 89 101 75 99

425 1203 2987 4758 8014 9531 12277 11613
0 0 20 47 77 111 145

0 0 0 16 20
0 0 0 0 0

17 .................................................. 0 0 0 0
18 .......................................................... 0 0 0

0 0
0

14 ........................

15 ................................. 0

16 .........................................

19 ...................................................................

20 .........................................................................

"Given in units of meters, with !_._ ! × l0 s.



910 NATIONAL GEODETIC SATELLITE PROGRAM

TABLE 9.25.--Results of Complete Network Adjustment

Interstation
direction

Direction cosines

cr_ a_ a_,_ No.
x y z (t_rad) 0trad) 0_rad) obs.

8015-8019 ........ 0.008 826 76

8015-9004 ........ 0.403 688 17

8015-9066 ........ -0.696 237 98

8015-9074 ........ -0.723 132 48

8015-9080 ........ -0.612 142 61

8015-9091 ........ 0.010 166 06

8019-9004 ........ 0.375 702 50

8019-9091 ........ 0.010 266 10

9001-9007 ........ 0.553 303 12

9001-9009 ........ 0.867 353 66

9001-9010 ........ 0.965 435 98

9001-9012 ........ -0.795 296 06

9001-9113 ........ -0.839 865 57

9001-9114 ........ 0.109 263 14

9001-9117 ........ -0.716 762 03

9002-9008 ........ -0.263 480 98

9002-9028 ........ -0.038 627 03

9004-9006 ........ -0.559 029 19

9004-9008 ........ -0.326 789 15

9004-9009 ........ -0.441 426 33

9004-9010 ........ -0.627 485 32

9004-9028 ........ -0.037 913 83

9004-9029 ........ 0.014 976 95

9004-9051 ........ -0.189 212 79

9004-9066 ........ -0.479 672 65

9004-9074 ........ -0.607 317 21

9004-9080 ........ -0.670 338 78

9004-9091 ........ -0.192 739 02

9004-9115 ........ -0.689 044 82

9005-9006 ........ 0.915 236 02

9005-9012 ........ -0.247 353 66

9005-9117 ........ -0.390 770 14

9006-9008 ........ 0.911 043 75

9006-9028 ........ 0.828 975 55

SAO Network

0.991 566 88 -0.129 295 09 4378.25 3682.33 409.04 29

-0.775 736 75 -0.485 044 69 29.21 17.80 7.03 122

0.308 764 57 0.648 010 12 552.99 204.51 -61.20 133

0.499 652 76 0.476 892 59 54.68 21.55 -18.85 25

-0.551 268 92 0.566 907 41 90.07 42.32 18.81 67

0.955 062 10 -0.296 231 40 24.96 25.68 0.97 30

-0.815 399 14 -0.440 422 38 8.99 5.46 2.27 301

0.950 679 22 -0.310 005 84 23.46 12.23 -1.87 61

-0.101 336 83 -0.826 792 90 7.19 4.91 -1.16 35

-0.148 829 84 -0.474 918 21 5.08 6.60 -3.13 183

-0.166 946 59 -0.200 155 43 12.00 14.31 -7.74 154

0.559 031 40 -0.234 495 37 9.01 9.63 6.26 187

0.498 415 57 0.214 959 85 119.75 227.49 110.69 20

0.685 666 26 0.719 668 92 41.57 18.51 -0.64 74

0.649 994 62 -0.252 505 81 8.64 19.81 7.90 16

0.264 768 12 0.927 618 25 23.08 145.74 -37.94 7

0.316 476 94 0.947 813 43 52.37 119.71 21.28 25

0.824 219 14 -0.090 272 72 8.87 8.85 -3.97 14

0.937 481 22 -0.119 740 60 13.50 8.84 -6.96 139

-0.813 880 96 -0.377 810 25 25.76 27.96 20.26 43

-0.766 807 91 -0.135 158 44 26.73 28.14 18.57 41

0.849 029 88 -0.526 982 74 18.85 15.61 -1.99 35

-0.573 627 21 -0.818 979 56 68.03 29.79 21.05 42

0.980 621 32 0.050 797 07 2160.68 2169.11 -1375.13 47

0.695 552 78 0.534 902 31 22.93 10.64 -5.24 192

0.624 696 01 0.490 836 73 18.11 7.63 -4.83 65

0.237 785 34 0.702 925 36 29.78 9.92 0.41 164

0.979 763 41 0.053 993 83 3.29 3.55 -1.53 442

0.398 593 75 0.605 260 49 74.58 28.34 -8.14 60

0.388 002 15 -0.108 615 64 44.80 34.23 32.36 61

-0.939 455 40 -0.237 149 14 106.27 176.50 -114.45 25

-0.849 194 96 -0.355 199 42 182.41 189.44 -154.07 16

-0.412 181 49 0.010 281 02 37.46 20.76 16.35 172

-0.321 287 02 -0.457 792 73 22.65 23.59 10.19 28



SMITHSONIAN ASTROPHYSICAL OBSERVATORY

TABLE 9.25.--( C ont'd)

911

Interstation
direction

Direction cosines

y z (_rad) (_rad)
Or_

(_rad)

9006-9091 ........ 0.712 325 15

9006-9115 ........ 0.360 690 12

9007-9009 ........ 0.098 443 23

9007-9010 ........ -0.202 184 39

9007-9011 ........ 0.185 005 71
9007-9029 ........ 0.799 740 13
9007-9031 ........ -0.076 686 54

9008-9028 ........ 0.567 329 00

9008-9051 ........ 0.442 138 26

9008-9080 ........ 0.109 946 43

9008-9115 ........ -0.056 819 15

9009-9010 ........ -0.631 057 97
9009-9011 ........ 0.006 033 03

9009-9029 ........ 0.707 260 24

9009-9114 ........ -0.614 261 56

9010-9029 ........ 0.721 923 97

9010-91i4 ........ -0.580 737 58

9011-9029 ........ 0.698 052 66

9011-9031 ........ -0.376 336 08

9012-9021 ........ 0.774 021 22

9012-9113 ........ 0.754 823 45

9012-9114 ........ 0.801 985 13

9012-9117 ....... -0.370 330 01

9021-9113 ........ -0.685 370 68

9021-9117 ........ -0.692 362 28
9028-9091 ........ -0.087 279 58

9029-9031 ........ -0.664 370 01

9066-9074 ........ -0.722 598 68

9066-9080 ........ -0.457 869 96

9074-9091 ........ 0.675 716 06

9077-9091 ........ 0.583 629 63
9113-9114 ........ 0.522 340 91

9113-9117 ........ -0.669 105 98

-0.683 388 19 0.159 917 O1 20.83
-0.836 686 48 0.412 138 77 16.89

-0.004 084 91 0.995 134 28 4.04
0.042 403 31 0.978 429 06 4.88
0.487 139 75 -0.853 503 22 17.65

0.530 146 21 0.281 710 37 14.15

0.521 089 04 -0.850 050 22 31.70
-0.163 038 12 -0.807 190 42 69.25
-0.853 475 28 0.275 850 87 7168.06
-0.918 531 30 0.379 752 59 38.24
-0.847 191 43 0.528 240 73 30.33

0.106 627 28 0.768 372 60 10.73
0.189 216 50 -0.981 916 86 7.28
0.521 304 13 -0.477 519 59 39.98
0.410 481 04 0.673 934 76 8.47
0.333 948 56 -0.606 056 22 22.19
0.553 105 20 0.597 342 87 19.62
0.302 858 53 0.648 844 50 52.36
0.514 540 22 -0.770 467 07 198.44

-0.586 319 09 0.239 000 17 75.78
-0.555 631 45 0.348 590 37 23.64
-0.202 846 07 0.561 848 14 22.01

0.884 135 37 -0.284 886 53 49.17
0.605 320 O1 0.404 789 73 175.96
0.674 539 06 -0.256 186 51 50.43

-0.544 704 02 0.834 074 22 105.67
-0.087 213 96 -0.742 297 93 23.64

0.53q 777 49 0.434 342 89 94.27

-0.782 06608 0.422 762 05 120.67

0.194 165 54 -6.599 681 77 453._1

0.295 891 28 -0.675 171 21 45.42

0.370 871 86 -0.722 378 38 187.65

0.660 671 02 -0.340 310 14 16.21

36.31

16.71

9.65

5.94

9.35

32.67

22.18
59.45

6510.27
25.92

16.42

18.06

2.47

35.77

10.52

20.40

15.65

41.72

140.41

18.83
21.19

17.31

46.84

211.14

26.94

28.64

25.10

33.43
109.92

147.36

22.62

121.07

!9_.79

29.22

14.13
7.12

2.17

1.92

5.14

2.56

1.86

15.59

6102.56

-8.53
8.31

6.43
0.50

2.00

3.09

2.74

5.54

-13.65

27.09

-12.52

14.81

-0.17

27.96
9.22

19.65

-3.90
-2.78

-29.i2

26.05

-165.47

6.25

-53.33
38.12

10.95

10

19

263

86
437

74

32

25

13

8

38

248

201
12

13
6

38

7

9

29

14

24

216

57
8

37

26

i3

27

43

3O
QN

16



912 NATIONAL GEODETIC SATELLITE PROGRAM

TABLE 9.25.--(Cont'd)

Interstation
direction

Direction cosines

y z 0zrad) 0zrad) (_rad)

6001-6002 ........ 0.141 867

6001-6003 ........ -0.685 613

6001-6004 ........ -0.901 363

6001-6006 ........ 0.591 183

6001-6007 ........ 0.853 151

6001-6016 ........ 0.773 269

6001-6065 ........ 0.809 558

6001-6123 ........ -0.970 854

6002-6003 ........ -0.934 936

6002-6007 ........ 0.790 059

6002-6008 ........ 0.589 564

6002-6009 ........ 0.035 287

6002-6038 ........ -0.840 626

6002-6111 ........ -0.992 430

6002-6134 ........ -0.992 422

6003-6004 ........ -0.379 650

6003-6011 ........ -0.768 297

6003-6012 ........ -0.542 340

6003-6038 ........ -0.010 322

6003-6111 ........ -0.225 140

6003-6123 ........ 0.075 002

6003-6134 ........ -0.225 131

6004-6012 ........ -0.540 783

6004-6013 ........ 0.069 330

6004-6123 ........ 0.786 132

6006-6007 ........ 0.544 571

6006-6015 ........ 0.115 085

6006-6016 ........ 0.787 806

6006-6065 ........ 0.858 757

6007-6016 ........ 0.127 976

6007-6055 ........ 0.325 134

6007-6063 ........ 0.518 127

6007-6064 ........ 0.320 536

6007-6065 ........ -0.069 163

6007-6067 ........ 0.154 021

6008-6009 ........ -0.889 382

6008-6019 ........ -0.320 491

6008-6067 ........ 0.615 252

6009-6019 ........ 0.267 472

6009-6020 ........ -0.723 867

6009-6038 ........ -0.849 821

6009-6043 ........ 0.015 902

6011-6012 ........ -0.102 697

6011-6022 ........ -0.154 186

57 -0.835 578 65 -0.530 737 14 4.88

65 -0.614 208 86 -0.390 744 68 5.55

80 0.366 090 55 -0.231 346 07 7.88

24 0.802 114 53 -0.084 348 41 10.68

78 -0.192 741 70 -0.484 750 12 6.83

54 0.481 076 40 -0.413 061 40 2.81

20 0.488 080 94 -0.326 178 66 3.99

20 0.230 905 62 -0.064 223 96 19.08

56 0.299 816 54 0.189 746 36 3.10

49 0.613 005 38 -0.005 513 94 7.15

10 -0.090 689 02 -0.802 614 27 4.37

76 -0.333 951 82 -0.941 929 38 9.39

18 -0.207 333 06 -0.500 360 51 4.85

15 0.045 147 _5 -0.114 210 70 6.70

07 0.045 119 01 -0.114 292 19 6.19

63 0.921 024 95 0.087 054 20 10.44

61 0.317 940 94 -0.555 546 88 4.80

66 0.753 078 57 -0.372 477 21 3.33

05 -0.578 100 31 -0.815 900 41 5.50

91 -0.618 652 34 -0.752 715 65 34.64

12 0.906 419 74 0.415 665 66 11.48

46 -0.618 590 94 -0.752 768 94 31.12

78 0.268 965 14 -0.797 001 04 18.71

48 0.903 078 62 -0.423 842 30 9.58

00 -0.482 393 72 0.386 384 23 35.88

14 -0.698 573 02 -0.464 153 00 7.50

63 0.854 379 21 -0.506 745 95 5.03

62 0.167 660 50 -0.592 664 06 4.78

69 0.040 345 30 -0.510 791 05 7.60

51 0.991 267 29 -0.031 798 92 5.87

21 0.134 399 75 -0.936 068 62 2.37

69 0.148 082 01 -0.842 386 74 7.86

02 0.783 539 87 -0.532 279 94 2.68

60 0.970 784 14 0.229 770 66 13.69

10 -0.283 547 61 -0.946 508 46 3.36

39 -0.393 627 48 -0.232 500 28 10.72

21 0.071 535 74 -0.944 546 46 3.83

90 0.614 120 14 -0.494 287 69 15.83

01 0.357 525 69 -0.894 781 60 6.28

36 0.204 650 56 -0.658 888 60 10.08

14 0.150 178 73 0.505 223 10 7.40

71 0.463 052 32 -0.886 188 27 4.27

51 0.993 954 29 -0.038 834 06 7.10

69 0.342 233 00 -0.926 878 11 2.36

2.13

2.03

2.47

2.69

2.27

0.81

1.22

6.47

2.95

6.25

3.76

4.10

4.12

6.52

5.00

3.59

3.85

1.88

2.64

18.77

8.39

17.64

5.13

8.25

8.81

3.40

3.21

1.88

3.14

4.76

2.18

3.39

2.70

6.15

2.86

17.99

3.77

20.35

5.31

11.65

9.49

1.63

6.36

4.39

0.12

0.41

1.52

-1.90

-0.37

-0.44

-1.02

-1.12

1.48

-1.91

-2.32

0.51

1.11

2.33

1.27

0.62

2.16

0.59

-0.78

12.08

0.56

-4.62

-2.83

3.02

-4.98

-0.04

0.14

0.10

0.19

-1.86

-0.80

-2.96

-0.75

-0.88

1.14

8.22

-1.25

1.79

3.34

-1.01

3.01

0.70

2.10

0.66



SMITHSONIANASTROPHYSICALOBSERVATORY 913

TABLE 9.25.--(Cont'd)

Interstation
direction

Direction cosines

Y z (_rad) Ozrad) Ozrad)

6011-6038 ........ 0.713 571 02

6011-6059 ........ -0.203 146 66

6011-6111 ........ 0.753 727 27

6011-6134 ........ 0.753 729 93

6012-6013 ........ 0.609 450 15

6012-6022 ........ -0.055 106 45

6012-6023 ........ 0.216 399 64

6012-6059 ........ -0.006 268 11

6013-6015 ........ 0.996 026 91

6013-6040 ........ 0.485 672 28

6013-6047 ........ 0.071 906 80

6013-6072 ........ 0.760 880 82

6013-6078 ........ -0.370 956 05

6015-6016 ........ 0.590 837 46

6015-6040 ........ -0.528 142 99

6015-6042 ........ 0.630 855 74

6015-6045 ........ 0.103 102 95

6015-6064 ........ 0.676 713 19

6015-6065 ........ 0.394 666 49

6015-6072 ........ -0.839 965 71

........ 9.143 282 86UULO--UVdO ........

6015-6075 ........ 0.224 226 76

6016-6042 ........ 0.001 109 29

6016-6063 ........ 0.246 574 17

6016-6064 ........ 0.405 181 93

6016-6065 ........ -0.571 507 16

6919-6020 ........ -0.988 544 61

6019-6043 ........ 0.390 990 19

iiiii_-i;ii{;i ........ 0.2iG 6'70'72

6019-6067 ........ 0.698 038 94

6019-6069 ........ 0.573 249 08

6020-6038 ........ -0.055 058 66

6020-6039 ........ -0.886 798 99

6020-6043 ........ 0.761 603 48

6022-6023 ........ 0.229 398 44

6022-6031 ........ 0.447 512 00

6022-6039 ........ 0.550 539 48

6022-6059 ........ 0.092 732 48

6022-6060 ........ 0.310 640 87

6022-6078 ........ 0.065 258 85

6023-6031 ........ 0.140 307 20

6023-6032 ........ 0.730 220 42

6023-6040 ........ 0.872 900 05

6023-6047 ........ 0.544 131 75

6023-6060 ........ 0.088 571 50

6023-6072 ........ 0.722 203 86

-0.699 157 90

-0.021 289 30

-0.565 465 17

-0.565 502 25

0.724 692 18

-0.545 974 12

0.586 471 64

-0.898 976 36

0.052 213 03

0.356 024 41

0.439 043 73

0.535 459 13

-0.449 044 19

-0.806 324 68

0.275 666 07

-0.130 742 05

0.100 120 56

-0.559 380 10

-0.888 635 25

0.360 824 97

0.325 434 15

0.178 325 99

0.676 082 54

-0.790 990 05

0.108 489 72

-0.414 589 06

-0.104 406 02

0.558 928 98

_.811 $60 39

0.302 827 21

0.813 330 71

-0.058 182 22

0.450 925 46

0.406 532 67

0.969 946 65

0.473 203 10

-0.793 608 11

-0.626 945 87

0.873 041 83

0.985 289 47

-0.645 359 19

0.292 459 45

0.486 554 80

0.520 276 13

-0.456 559 81

0.382 400 25

-0.044 661 29 4.93 4.11 -1.83

-0.978 916 85 12.93 3.89 1.67

0.334 879 59 8.14 8.17 -2.05

0.334 810 98 5.65 5.50 -2.71

0.321 545 90 13.41 8.85 4.80

-0.835 987 76 2.57 4.53 0.36

-0.780 526 88 4.01 7.30 0.90

-0.437 952 29 2.41 3.97 -1.42

0.072 140 17 3.28 3.62 0.01

-0.798 353 97 2.08 3.88 0.87

-0.895 583 62 8.33 7.00 4.50

-0.366 529 53 4.36 8.55 1.81

-0.812 865 87 0.94 12.01 -3.04

0.027 415 57 2.95 2.82 1.04

-0.803 164 49 1.65 2.08 -0.07

-0.764 805 57 2.44 2.82 0.60

-0.989 618 94 1.27 0.81 0.32

-0.478 699 44 1.74 1.85 0.53

0.233 593 13 5.57 2.35 -0.21

-0.405 293 67 2.98 4.19 -1.46

-0.934 645 73 2.72 1.85 -0.69

-0.958 082 57 2.84 1.86 0.81

-0.736 825 06 4.38 3.04 -0.43

-0.559 942 79 3.84 2.99 1.33

-0.907 776 18 5.65 3.07 0.89

0.708 163 45 25.62 8.62 1.65

0.108 990 57 8.63 9.11 -4.07

-0.731 248 97 _.16 '2.4'2 -0.23

0.648 873 89 3.70 6.55 o 3 A

0.099 391 40 14.67 10.84 5.58

0.996 786 52 9.75 3.90 -1.14

0.101 261 01 46.24 84.34 -48.70

-0.504 669 51 12.13 7.22 2.77

0.081 116 30 3.97 4.22 0.22

-0.758 822 66 6.38 3.96 -1.71

-0.259 022 11 9.48 15.45 6.00

0.773 524 12 3.29 6.17 -0.26

-0.375 899 20 4.53 5.01 -0.95

-0.157 942 84 70.31 78.59 53.19

-0.750 883 09 1.84 1.15 0.56

-0.617 450 90 4.71 2.62 -0.99

-0.036 192 95 3.22 4.69 -0.30

0.658 204 67 7.08 11.72 1.73

-0.885 272 97 2.49 2.26 1.09

0.576 360 68 2.75 3.73 1.36



914 NATIONAL GEODETIC SATELLITE PROGRAM

TABLE 9.25.--(Cont'd)

Interstation
direction

Direction cosines

y z _rad) (_rad) (_rad)

6023-6078 ........-0.344 213 95 -0.901 266 78
6031-6032 ........ 0.421 012 31 0.865 343 95

6031-6039 ........ 0.103 770 02 -0.935 883 55
6031-6051 ........ 0.948 773 86 0.223 489 34
6031-6052 ........ 9.869 470 44 0.386 519 64
6031-6053 ........ 0.868 120 23 -0.167 691 87
6031-6060 ........ -0.182 484 01 0.792 220 53
6031-6078 ........ 0.519 787 53 0.108 042 39
6032-6040 ........ 0.562 738 04 0.453 120 81
6032-6044 ........ 0.856 098 02 -0.293 452 46
6032-6045 ........ 0.978 994 41 0.029 690 27
6032-6047 ........ -0.231 903 26 0.115 244 64
6032-6052 ........ 0.388 697 91 -0.650 824 51
6032-6060 ........ -0.751 113 54 -0.658575 02

6038-6039 ........ -0.305 337 11 0.238 502 97
6038-6059 ........ -0.711 967 36 0.610 648 24
6038-6134 ........ -0.155 550 27 0.526 537 55
6039-6059 ........ -0.523 780 88 0.478 273 00
6040-6045 ........ 0.940 828 58 -0.271 770 48
6040-6047 ........ -0.757 459 32 -0.238 511 17
6040-6060 ........ -0.719 063 73 -0.609 502 87
6040-6072 ........ -0.058 895 96 -0.065 862 14
6040-6073 ........ 0.979 007 93 -0.058 625 46
6040-6075 ........ 0.960 512 05 -0.210 583 46
6042-6045 ........ -0.449 127 82 0.288 406 76
6042-6064 ........ 0.426 834 35 -0.893 595 14

fi042-6068 ........ 0.046 510 08 -0.327 935 56
6042-6073 ........ -0.739 897 12 0.509 802 26
6042-6075 ........ -0.553 708 69 0.541 789 04
6043-6050 ........ -0.130 891 08 0.852 415 41
6043-6061 ........ 0.758 559 97 0.649 959 05

-0.263 125 35 38.04 54.65 -32.36

0.271 897 94 2.21 2.25 -0.79
0.336 680 52 7.68 9.08 3.79

-0.223 339 85 3.13 1.18 -0.29
-0.310 421 76 5.11 2.65 -1.05

-0.467 168 82 6.20 2.29 0.62

0.582 311 10 5.04 2.87 1.64

0.847 436 O0 16.60 7.33 1.37

0.691 380 81 14.56 10.49 -4.02

-0.425 419 60 11.72 9.87 -1.56

0.201 713 74 2.66 3.32 -0.96
0.965 887 96 2.44 5.19 1.81

-0.652 182 02 7.61 2.97 0.06

0.045 906 50 3.72 3.86 1.59

-0.921 892 39 3.38 10.38 -1.16

-0.346 714 88 3.44 3.33 1.84

0.835 800 41 7.65 3.15 1.93

0.704 917 39 7.29 16.49 -6.47

-0.202 441 09 2.41 3.92 -1.07

0.607 756 37 6.92 9.42 -0.49

-0.333 846 68 2.87 3.23 0.49

0.996 089 08 8.00 9.57 0.10
0.195 208 96 8.03 11.93 -2.38

0.181 854 89 3.21 4.45 -1.29
-0.845 639 25 2.23 2.36 0.15

0.138 925 02 7.17 8.16 -0.92

-0.943 554 49 2.02 3.55 -0.14

-0.438 923 58 2.79 3.51 -0.32

-0.632 353 80 5.24 9.84 1.47

-0.506 216 84 39.52 14.49 -6.23

-0.046 260 24 21.33 11.80 1.07



SMITHSONIANASTROPHYSICALOBSERVATORY

TABLE 9.25.1( Cont'd)

915

Interstation
direction

Direction cosines

Y z (_rad) Ozrad)
or_

(_rad)
No.

obs,

6044-6045 ........ 0.554 878
6044-6051 ........ 0.007 253

6045-6051 ........ -0.411 896
6045-6068 ........ 0.605 912
6045-6073 ........ -0.613 372
6045-6075 ........ 0.219 418
6047-6072 ........ 0.863 993
6050-6053 ........ -0.666 360
6050-6061 ........ 0.943 372

31
12
51
70
05

94
41
22
93

6051-6052 ........ -0.992 556 05
6051-6053 ........ -0.788 602 68
6051-6061 ........ 0.390 885 48
6051-6068 ........ 0.783 976 60
6052-6053 ........ -0.187 775 83
6052-6060 ........ -0.824 242 87
6053-6060 - -0.661 296 78
6055-6063 ........ -0.092 868 60
6055-6064 ........ -0.024 459 13
6055-6067 ........ -0.406 559 49
6055-6069 __ -0.356 833 86
_vu1-_vo, ........ 0.420 033 59

6061-6068 ........ 0.357 797 96

6061-6069 ........ 0.749 334 62
6063-6064 ........ 0.039 855 27

6063-6067 ........ -0.234 403 11

6064-6068 ........ -0.216 482 33

6068-607.5 ........ -0.398 041 64

............. 070_ 617 35
6072-6075 ........ 0.863 257 60

6073-6075 ........ 0.894 816 33

0.355 385 18 0.752 204 38 14.61
-0.883 713 18 -0.467 972 66 67.30

-0.560 884 05 -0.718 157 61 4.08
-0.773 097 59 -0.187 589 76 4.79

0.459 201 80 0.642 579 51 7.17
0.111 565 29 0.969 230 89 13.52
0.214 776 50 0.455 397 01 8.25
0.735 231 19 -0.124 093 36 26.19
0.120 914 00 0.308 913 11 44.80
0.118 412 41 0.028 477 98 20.63

-0.604 920 10 -0.110 351 64 7.70
-0.908 327 49 0.148 827 80 12.32

0.098 864 04 0.612 867 51 3.95
-0.965 112 61 -0.182 477 11 12.18

0.081 916 08 0.560 279 80 4.14
0.476 791 55 0.579 099 64 2.98

-0.111 882 65 0.989 372 37 6.33
0.821 692 72 0.569 405 67 2.34

-0.908 368 02 0.097 861 77 7.36
0.151 782 89 -0.921 754 60 32.27

-0.275 587 72 0.864 652 07 5.97

0.839 136 75 0.409 670 76 7.54

0.428 916 57 0.504 507 89 53.39

0.995 945 04 -0.080 653 84 3.07

-0.604 571 06 -0.761 281 16 4.17

0.242 737 19 -0.945 628 92 2.77
--N Q_O AN1 _ --N O_N O_N 1Q O_ QQ

0.689 693 01 0.604 885 45 5.43

a_6 091 77 -5 707 4_ _7 _ 5x

-0.138 517 63 -0.485 385 60 2.94
-0.418 523 78 0.155 375 66 14.38

15.53
23.18

2.14

5.03
7.74
7.81
9.11
5.54

21.02
11.42

3.72
4.36
1.37
5.73

1.63
1.20
6.52
4.58
8.80

18.85
4.53

3.33

28.14

3.81
7.76

4.03
1Q _Q

5.59

3.89

17.76

-2.69
-2.08

-0.29

-1.35
2.24

-2.45
3.04

3.75

-11.51

4.14
0.10

-0.77
-0.67

1.01
0.39

-0.48
1.12
0.72
0.44
3.97
1.70
0.91

16.96

-1.04

-0.64
1.71

--O O_

0.88

0.66
-0.98
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TABLE 9.26a.--Accuracy Estimates for BC-_ Geometrical Network

Station-Station Vectors"

Line Ozrad) _rad) _rad) k _

6002-6003 ..... 3.0 36.73 26.52 1.34

6002-6007 ..... 14.8 6.70 51.48 4.79

6002-6008 ..... 3.8 4.07 4.03 1.02

6002-6009 ..... 15.4 6.74 7.65 0.69

6002-6038 ..... 12.0 4.48 10.71 1.30

6002-6111 ..... 13.0 6.61 7.63 0.78

6003-6004 ..... 15.1 7.01 112.06 10.14

6003-6011 ..... 6.9 4.33 6.83 1.22

6003-6012 ..... 298.0 2.61 62.48 0.42

6003-6038 ..... 5.3 4.07 7.99 1.71

6003-6111 ..... 17.1 26.70 1.38 0.06

6003-6123 ..... 10.0 9.94 0.45 0.05

6003-6134 ..... 195.7 24.38 232.13 2.11

6004-6012 ..... 31.0 11.92 104.81 4.88

6004-6013 ..... 8.8 8.92 15.37 1.73

6004-6123 ..... 37.9 22.34 88.76 2.95

6006-6007 ..... 27.9 5.45 41.13 2.47

6006-6015 ..... 13.7 4.12 15.36 1.72

6006-6016 ..... 6.4 3.33 52.79 10.85

6006-6065 ..... 4.5 5.37 4.49 0.91

6007-6016 ..... 14.4 5.32 24.89 2.52

6007-6055 ..... 77.9 2.27 21.76 0.54

6007-6063 ..... 5.2 5.62 4.86 0.90

6007-6064 ..... 38.5 2.69 178.65 8.67

6007-6065 ..... 33.2 9.92 31.07 1.44

6007-6067 ..... 17.7 3.11 61.90 5.95

6008-6009 ..... 16.5 14.36 12.03 0.78

6008-6019 ..... 2.7 3.80 4.78 1.47

6008-6067 ..... 21.0 18.09 0.82 0.04

6009-6019 ..... 10.3 5.79 2.96 0.37

6009-6020 ..... 17.3 10.87 32.65 2.32

6009-6038 ..... 16.0 8.45 20.84 1.70

6009-6043 ..... 20.6 2.95 28.89 2.45

6011-6012 ..... 12.5 6.73 54.35 5.66

6011-6022 ..... 165.6 3.38 2.70 0.03

6011-6038 ..... 20.5 4.52 22.72 1.82

6011-6059 ..... 6.0 8.41 1.17 0.16

6011-6111 ..... 86.6 8.16 8.05 0.17

6011-6134 ..... 9.3 5.57 0.83 0.11

6012-6013 ..... 23.3 5.09 4.10 0.29

6012-6022 ..... 7.1 3.55 9.71 1.82

6012-6023 ..... 8.0 5.66 9.95 1.46

6012-6059 ..... 4.0 3.19 10.43 2.90

6013-6015 ..... 195.8 3.45 174.15 1.75

6013-6040 ..... 17.3 2.98 53.68 5.29

6013-6047 ..... 7.3 7.66 7.18 0.96

6013-6072 ..... 8.0 6.46 2.09 0.29

6013-6078 ..... 25.1 6.48 46.25 2.93

6015-6016 ..... 5.3 2.88 9.40 2.30

6015-6040 ..... 9.8 ' 1.87 3.89 0.67

6015-6042 ..... 2.7 2.63 3.56 1.34

6015-6045 ..... 11.1 1.04 2.47 0.41

6015-6064 ..... 8.9 1.79 49.22 9.21

Line Ozrad) (/zrad) (/zrad) k 2

6015-6065 ..... 6.6 3.96 34.65 6.56

6015-6072 ..... 3.3 3.59 8.29 2.41

6015-6073 ..... 4.3 2.28 2.00 0.61

6015-6075 ..... 7.0 2.35 32.89 7.04

6016-6042 ..... 84.3 3.71 247.16 5.62

6016-6063 ..... 17.2 3.42 90.14 8.74

6016-6064 ..... 3.9 4.36 1.47 0.36

6016-6065 ..... 14.8 17.12 30.86 1.93

6019-6020 ..... 31.4 8.87 159.21 7.91

6019-6043 ..... 2.8 4.29 3.84 1.08

6019-6061 ..... 5.3 5.67 6.77 1.23

6019-6067 ..... 6.8 5.12 13.95 2.34

6019-6069 ..... 82.0 12.76 6.34 0.13

6020-6038 ..... 11.0 6.82 30.71 3.45

6020-6039 ..... 113.8 65.29 11.62 0.13

6020-6043 ..... 11.9 9.68 1.02 0.09

6022-6023 ..... 17.5 4.09 83.06 7.69

6022-6031 ..... 12.5 5.17 18.19 2.06

6022-6039 ..... 29.0 12.46 15.01 0.72

6022-6059 ..... 3.1 4.73 0.72 0.18

6022-6060 ..... 16.3 4.77 36.84 3.50

6022-6078 ..... 808.0 74.45 2970.60 6.73

6023-6031 ..... 11.1 1.49 11.13 1.77

6023-6032 ..... 4.9 3.66 52.75 12.32

6023-6040 ..... 30.2 3.96 65.25 3.76

6023-6047 ..... 17.8 9.40 63.17 4.64

6023-6060 ..... 1.6 2.38 2.09 1.05

6023-6072 ..... 94.9 3.24 268.78 5.48

6023-6078 .... = 663.6 46.34 1521.11 4.29

6031-6032 ..... 4.2 2.23 4.71 1.47

6031-6039 ..... 122.9 8.38 153.07 2.33

6031-6051 ..... 139.4 2.16 136.70 1.93

6031-6052 ..... 8.9 3.88 4.46 0.70

6031-6053 ..... 4.6 4.25 3.86 0.87

6031-6060 ..... 3.3 3.96 2.36 0.65

6031-6078 ..... 13.3 11.97 0.10 0.01

6032-6040 ..... 31.0 12.53 20.85 0.96

6032-6044 ..... 10.1 10.79 0.52 0.05

6032-6045 ..... 41.3 2.99 233.71 10.55

6032-6047 ..... 7.1 3.81 3.72 0.68

6032-6052 ..... 21.4 5.29 191.15 14.32

6032-6060 ..... 5.6 3.79 9.99 2.13

6038-6039 ..... 9.2 6.88 2.18 0.27

6038-6059 ..... 19.6 3.38 205.25 17.86

6038-6134 ..... 3.6 5.40 0.82 0.18

6039-6059 ..... 26.4 11.89 4.27 0.22

6040-6045 ..... 3.8 3.16 1.67 0.48

6040-6047 ..... 18.2 8.17 21.08 1.60

6040-6060 ..... 73.6 3.05 12.64 0.33

6040-6072 ..... 21.3 8.79 25.05 1.67

6040-6073 ..... 22.5 9.98 37.66 2.32

6040-6075 ..... 17.6 3.83 31.92 2.98

6042-6045 ..... 2.7 2.30 0.53 0.21
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TABLE 9.26a.--( Cont'd )

a_ _i 8_ a_ _ 52
Line (_rad) (_rad) _rad) k z Line Ozrad) _rad) (_rad) k 2

6042-6064 ..... 9.6 7.67 8.74 1.01
6042-6068 ..... 2.8 2.78 1.55 0.56
6042-6073 ..... 162.0 3.15 720.92 8.73
6042-6075 ..... 15.5 7.54 23.07 2.00
6043-6050 ..... 19.1 27.00 58.35 2.53
6043-6061 ..... 29.9 16.57 78.65 3.38
6044-6045 ..... 74.5 15.07 19.43 0.43
6044-6051 ..... 38.3 45.24 0.16 0.00
6045-6051 ..... 8.2 3.11 1.14 0.20
6045-6068 ..... 5.0 4.91 0.50 0.10
6045-6073 ..... 6.5 7.46 0.53 0.08
6045-6075 ..... 7.6 10.67 6.83 0.75
6047-6072 ..... 8.2 8.68 13.27 1.57
6050-6053 ..... 51.3 15.86 512.41 15.26

6050-6061 ..... 32.7 32.91 174.32 5.31
6051-6052 ..... 22.2 16.02 11.87 0.62
6051-6053 ..... 4.8 5.71 6.28 1.20
6051-6061 ..... 20.4 8.34 32.94 2.29
6051-6068 ..... 2.5 2.66 8.36 3.24

6052-6053 ..... 7.1 8.96 1.59 0.20
6052-6060 ..... 6.2 2.88 3.66 0.81

6053-6060 ..... 27.8 2.09 6.33 0.42
6055-6063 ..... 6.0 6.42 2.28 0.37
6055-6064 ..... 4.6 3.46 11.38 2.82

6055-6067 ..... 5.9 8.08 0.71 0.10
6055-6069 ..... 23.5 25.56 4.41 0.18
6061-6067 ..... 238.0 5.25 1099.08 9.04
6061-6068 ..... 29.9 5.44 51.15 2.89
6061-6069 ..... 53.0 40.76 40.50 0.86
6063-6064 ..... 3.3 3.44 1.29 0.38
6063-6067 ..... 10.8 5.97 0.86 0.10
6064-6068 ..... 18.8 3.40 35.10 3.16
6068-6069 ..... 297.5 22.99 27.68 0.17
6068-6075 ..... 128.7 5.51 339.50 5.06
6072-6073 ..... 27.8 5.41 61.70 3.72
6072-6075 ..... 240.5 3.41 397.15 3.26
6073-6075 ..... 31.7 16.07 16.28 0.68

k 2 ave = 2.60

-(r_ and _r_ are accuracy estimates before and after network adjustment, 8_ is "_-_,,=squarc ..^_ +_................a;_......
between the estimates, and k 2 is the scaling factor.
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TABLE 9.26b.--Accuracy Estimates for SAO Geometrical Network Station-Station Vectors _'

_, (ri 8 "_ _ ai 82
Line n 0zrad) (_rad) Ozrad) k 2 Line n (_rad) (_rad) (_rad) k _

8015-8019 ..... 29 1514.4 4031.7 3114.8 1.12 9006-9091 ..... I0 30.0 28.6 38.6 1.32

8015-9004 .....122 7.2 23.4 44.9 2.93 9006-9115 ..... 19 5.9 16.8 201.5 17.75

8015-9066 .....133 79.2 378.5 258.9 1.13 9007-9009 ..... 263 1.1 6.9 1.5 0.38

8015-9074 ..... 25 37.2 38.1 487.9 12.96 9007-9010 ..... 86 2.3 5.5 0.6 0.15

8015-9080 ..... 67 20.8 66.2 217.4 5.00 9007-9011 ..... 437 1.7 13.5 0.i 0.01

8015-9091 ..... 30 10.6 25.3 0.01 0.00 9007-9029 ..... 74 1.2 24.1 10.6 0.84

8019-9004 ..... 301 0.9 7.2 0.6 0.15 9007-9031 ..... 32 3.5 27.0 0.4 0.03

8019-9091 ..... 61 4.0 17.9 2.3 0.21 9008-9028 ..... 25 16.7 64.3 6.4 0.16

9001-9009 ..... 183 1.0 5.8 1.3 0.38 9008-9080 ..... 8 233.1 32.1 453.1 3.42

9001-9010 ..... 154 ._2.1 13.1 6.8 0.89 9008-9115 ..... 38 6.4 23.3 33.4 2.25

9001-9012 ..... 187 1.6 9.4 0.8 0.15 9009-9010 .....248 2.2 14.4 0.1 0.01

9001-9113 ..... 20 32.3 174.1 195.2 1.89 9009-9011 .....201 1.3 4.9 0.2 0.06

9001-9114 ..... 74 5.8 30.0 11.7 0.65 9009L9114 ..... 13 21.5 9"5 13.8 0.89

9001--9117 ..... 16 11.7 14.4 85.3 6.54 9010--9029 ..... 6 59.6 24.9 79"9 1.89

9002--9008 ..... 7 19.3 84.3 369.4 7.13 9010--9114 ..... 38 7.4 17.6 146.4 11.71

9002--9028 ..... 25 11.0 86.0 40.6 0.84 9011--9029 ..... 7 734.0 47.9 6252.8 15.99

9004--9006 ..... 14 43.2 8"9 44.9 1.72 9011--9031 ..... 9 141.1 169.9 78.5 0.50

9004--9008 ..... 139 2.8 11.2 20.8 2.97 9012--9021 ..... 29 12.5 47.4 10.6 0.35

9004--9009 ..... 43_ 8.0 27.0 0.6 0.03 9012--9113 ..... 14 8.2 22.6 8.0 0.52

9004--9010 ..... 41 6.9 27.5 1.8 0.10 9012--9114 ..... 24 9.8 19.7 31.8 2.16

9004--9028 ..... 35 8.2 17.2 83"5 6.57 9012--9117 .....216 5"8 48.2 3"3 0.12

9004--9029 ..... 42 18.0 49.7 0.7 0.02 9021--9113 ..... 57 23.1 193.3 4.9 0.05

9004--9066 ..... 192 3.3 16.8 24.2 2.41 9021--9117 ..... 8 126.0 39.1 800.1 9.69

9004-9074 ..... 65 7.3 12.8 90.0 8.96 9028-9091 ..... 37 13.3 67.1 290.4 7.22

9004-9080 ..... 164 3.4 19.8 7.2 0.62 9029-9031 ..... 26 12.6 24.6 2.6 0.14

9004-9091 ..... 442 0.6 3.4 0.7 0.35 9066-9074 ..... 13 89.9 63.9 461.7 6.00

9004-9115 ..... 60 7.7 51.4 21.0 0.71 9066-9080 ..... 27 34.1 115.3 68.3 0.91

9005-9006 ..... 61 4.8 89.5 0.01 0.00 9074-9077 ..... 42 41.0 299.8 15.6 0.09

9005-9012 ..... 25 35.0 141.6 98.0 1.11 9074-9091 ..... 43 11.7 34.0 204.3 8.94

9005-9117 ..... 16 45.5 186.4 108.2 0.93 9077-9091 ..... 30 22.6 154.1 11.9 0.13

9006-9008 ..... 172 4.2 29.1 0.9 0.05 9113-9114 ..... 30 45.0 116.7 424.6 5.25

k _ ave = 2.65

an is the number of observations, a_ and q_ are accuracy estimates before and after network adjustment, 6 _ is

the square of the angular difference between the two estimates, and k 2 is the scaling factor (q,, q2, and 6 are in
microradians).
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TABLE 9.30.--R esonant Periods

Resonant
with order Inclination Period

(m) Satellite (deg) (days)

9 .............. 6102801 95 2.90

12 .............. 6100401
12 .............. 6000902
12 .............. 6508901
12 .............. 6506301
12 .............. 6507801

13 .............. 6701401
13 .............. 6503201
13 .............. 6701101
13 .............. 6206001
13 .............. 6800201
13 .............. 6600501
13 .............. 6304901

14 .............. 6701101
14 .............. 6302601
14 .............. 6101501
14 .............. 6101502
14 .............. 6400101
14 .............. 6406401
14 .............. 6408101
14 .............. 6600501

39 15.0
47 15.5
59 7.2
69 3.3

144 2.3

39 9.4,
41 5.6
40 1.6
50 5.3

105 6.3
89 1.8

90 2.5

40 2.6
50 12.2

67 3.84
67 3.76
70 4.9
80 2.9
87 3.8
89 2.2

10.9, 13.1 ....

TABLE 9.31.--Additional Parameters Determined

Relation to the
dynamical system

Rotation
Translation parameters
parameters about the axis

(m) (_rad) Scale parameter

SAO geometrical ..... X = - 6.66
Y = -14.88
Z =- 9.90

BC-4 geometrical .... X = -11.25 + 9.60
Y = -16.63-+ 9.58
Z = - 6.79-+ 13.74

•x= 0.70-+ 1.56
%= 0.84-+ 1.24
•z = -0.40 -+ 1.43

•x= 1.76-+ 0.96

_ = -0.65 -+0.65
•z = -2.20 -+0.82

JPL ........................................ _z = -3.43 -+ 1.02 0.18 × 10 -e -+ 0.55 × 10 -e
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TABLE 9.32.--Geocentric Coordinates

Station X (Mm) Y (Mm) Z (Mm) Gr(m) Location

7050 ........ 1.130 673 9 -4.831 373 5 3.994 101 0 1.81 Greenbelt, USA

1021 ........ 1.118 030 8 -4.876 321 3 3.942 973 0 1.81 . Blossom Point, USA

7060 ........ -5.068 964 1 3.584 106 1 1.458 744 3 2.88 Guam, USA

8816 ........ 4.654 336 9 1.959 179 0 3.884 358 5 2.26 Stephanion, Greece

8818 ........ 5.426 328 1 -0.229 326 6 3.334 606 4 6.07 Colomb-Bechar, Algeria

8015 ........ 4.578 327 7 0.457 974 8 4.403 179 7 2.07 Haute Provence, France

8815 ........ 4.578 370 7 0.457 959 1 4.403 135 5 2.07 Haute Provence, France

8809 ........ 4.578 348 4 0.457 965 9 4.403 157 9 2.07 Haute Provence, France

9001 ........ -1.535 768 6 -5.166 989 0 3.401 042 5 2.44 Organ Pass, USA

9901 ........ -1.535 768 8 -5.166 989 0 3.401 042 5 2.44 Organ Pass, USA
9002 ........ 5.056 126 7 2.716 513 6 -2.775 788 3 1.79 Olifantsfontein, Rep. S. Afr.

9902 ........ 5.056 126 5 2.716 513 5 -2.775 788 3 1.79 Olifantsfontein, Rep. S. Afr.

9022 ........ 5.056 120 7 2.716 524 3 -2.775 787 0 1.79 Olifantsfontein, Rep. S. Afr.

9003 ........ -3.983 778 3 3.743 093 9 -3.275 561 0 2.49 Woomera, Australia

9023 ........ -3.977 766 8 3.725 106 1 -3.303 028 3 2.16 Island Lagoon, Australia

9004 ........ 5.105 591 9 -0.555 230 0 3.769 662 5 3.06 San Fernando, Spain

8804 ........ 5.015 612 0 -0.555 252 3 3.769 631 2 3.06 San Fernando, Spain

9005 ........ -3.946 690 6 3.366 295 7 3_698 833 4 6.26 Tokyo, Japan
9025 ........ -3.910 434 2 3.376 357 4 3.729 220 2 6.26 Dodaira, Japan

9006 ........ 1.018 204 4 5.471 104 5 3.109 621 9 2.77 Naini Tal, India
9007 ........ 1.942 776 9 -5.804 089 4 -1.796 931 1 2.11 Arequipa, Peru

9907 ........ 1.942 777 0 -5.804 089 8 -1.796 931 2 2.11 Arequipa, Peru
9027 ........ i.942 771 8 -5.804 096 1 -1.796 909 4 2.il Arequipa, Peru

9008 ........ 3.376 892 9 4.403 982 3 3.136 257 8 5.08 Shiraz, Iran

9009 ........ 2.251 823 7 -5.816 915 7 1.327 163 5 4.42 Curacao, Antilles

9010 ........ 0.976 287 0 -5.601 394 7 2.880 234 7 2.86 Jupiter, USA

9011 ........ 2.280 591 3 -4.914 573 5 -3.355 423 0 3.19 Villa Dolores, Argentina

9012 ........ -5.466 059 8 -2.404 278 8 2.242 180 5 2.72 Maul, USA

9021 ........ -1.936 773 8 -5.077 708 3 3.331 902 4 3.16 Mt Hopkins, USA

992! -1 _*_6 772 7 -5.077 705 3 3.331 907 6 :_ 16 Mt Nop]ein.% ii._A

9028 ........ 4.903 765 2 3.965 216 0 0.963 868 0 4.85 Addis Ababa, Ethiopia
9029 ........ 5.186 459 7 -3.653 866 0 -0.654 334 7 3.86 Natal, Brazil
9929 ........ 5.186 459 9 -3.653 866 2 -0.654 354 8 3.86 Natal, B,a_il

9039 ........ 5.186 469 8 -3.653 845 2 -0.654 334 4 3.86 Natal, Brazil

9031 ........ 1.693 805 4 -4.112 332 6 -4.556 653 1 5.24 Comodoro Rivadavia, Arg.

9091 ........ 4.595 167 5 2.039 466 0 3.912 658 7 4.11 Dionysos, Greece
9930 ........ 4.595 223 4 2.039 448 2 3.912 612 1 4.11 Dionysos, Greece

9030 ........ 4.595 214 5 2.039 448 0 3.912 622 O 4.11 Dionysos, Greece
8019 ........ 4.579 476 7 0.586 618 8 4.386 412 7 10.40 Nice, France
8010 ........ 4.331 304 7 0.567 521 8 4.633 101 2 3.67 Zimmerwald, Switzerland

9431 ........ 3.183 884 5 1.421 475 3 5.322 802 1 20.57 Riga, Latvia
9432 ........ 3.907 436 6 1.602 441 7 4.763 886 4 83.31 Uzhgorod, USSR
8011 ........ 3.920 168 9 -0.134 732 3 5.012 714 3 13.26 Malvern, U.K.
9425 ........ -2.450 008 9 -4.624 414 9 3.635 028 8 3.70 Rosman, USA
9424 ........ -1.264 845 1 -3.466 879 7 5.185 454 1 10.87 Cold Lake, Canada
9426 ........ 3.121 276 0 0.592 642 3 5.512 710 9 12.63 Harestua, Norway
9427 ........ -6.007 407 9 -1.111 859 1 1.825 736 9 7.25 Johnston Is., USA
DSS11 ...... -2.351 447 1 -4.645 070 6 3.673 760 0 3.80 California, USA

DSS12 ...... -2.350 460 6 -4.651 969 9 3.665 624 7 3.80 California, USA

DSS14 ...... -2.353 639 3 -4.641 333 2 3.677 048 3 3.77 California, USA

DSS41 ...... -3.978 702 1 3.724 858 7 -3.302 208 1 2.78 Australia
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TABLE9.32.--(Cont'd)

Station X (Mm) Y (Mm) Z (Mm) _ (m) Location

DSS42 ...... -4.460 966 9 2.682 428 4 -3.674 613 8 6.05 Australia

DSS51 ...... 5.085 447 5 ° 2.668,250 2 -2.768 726 1 4.73 So. Africa

DSS61 ...... 4.849 241 1 -0.360 297 2 4.114 867 3 3.64 Spain

DSS62 ...... 4.846 698 7 -0.370 214 9 4.116 890 5 3.66 Spain

6001 ........ 0.546 586 2 -1.389 973 0 6.180 232 9 11.15 Thule, Greenland

6002 ........ 1.130 768 8 -4.830 836 0 3.994 700 2 2.38 Beltsville, USA

6003 ........ -2.127 825 1 -3.785 847 4 4.656 027 9 7.52 Moses Lake, USA
6004 ........ -3.851 769 9 0.396 430 5 5.051 335 4 19.38 Shemya, USA

6006 ........ 2.102 948 2 0.721 679 1 5.958 176 5 13.56 Troms0, Norway
6007 ........ 4.433 654 6 -2.268 140 7 3.971 641 0 12.86 Azores, Portugal

6008 ........ 3.623 253 6 -5.214 231 1 0.601 517 4 12.95 Paramaribo, Netherlands

6009 ........ 1.280 845 5 -6.250 943 5 -0.010 827 7 15.17 Quito, Ecuador

6011 ........ -5.446 010 4 -2.404 397 9 2.242 216 3 3.12 Maui, USA

6012 ........ -5.858 525 1 1.394 529 5 2.093 790 2 13.96 Wake Is., USA

6013 ........ -3.565 847 0 4.120 728 3 3.303 421 8 7.56 Kanoya, Japan

6015 ........ 2.604 378 6 4.444 166 7 3.750 317 1 10.37 Mashhad, Iran

6016 ........ 4.896 413 6 1.316 178 8 3.856 666 2 10.87 Catania, Italy
6019 ........ 2.280 642 9 -4.914 536 6 -3.355 441 9 3.54 Villa Dolores, Argentina
6020 ........ -1.888 600 6 -5.354 864 7 -2.895 771 6 19.81 Easter Is., Chile
6022 ........ -6.099 943 6 -0.997 320 8 -1.568 598 2 12.65 Tutuila, Am. Samoa

6023 ........ -4.955 351 8 3.842 266 6 -1.163 859 8 8.96 Thursday Is., Australia
6031 ........ -4.313 801 0 0.891 364 6 -4.597 282 7 9.29 Invercargill, New Zealand
6032 ........ -2.375 370 7 4.875 567 2 -3.345 405 6 10.59 Caversham, Australia
6038 ........ -2.160 977 9 -5.642 694 7 2.035 352 3 8.65 Revilla Gigedo, Mexico
6039 ........ -3.724 752 5 -4.421 198 5 -2.686 105 0 22.12 Pitcairn Is., U.K.
6040 ........ -0.741 936 4 6.190 810 5 -1.338 557 8 13.24 Cocos Is., Australia
6042 ........ 4.900 772 8 3.968 249 0 0.966 330 3 4.93 Addis Ababa, Ethiopia
6043 ........ 1.371 393 5 -3.614 735 8 -5.055 969 1 12.76 Cerro Sombrero, Chile
6044 ........ 1.098 926 5 3.684 646 5 -5.071 883 5 23.43 Heard Is., Australia
6045 ........ 3.223 459 4 5.045 345 3 -2.191 811 9 9.30 Mauritius, U.K.
6047 ........ -3.361 922 1 5.365 826 1 0.763 621 4 12.76 Zamboanga, Philippines
6050 ........ 1.192 697 6 -2.450 987 7 -5.747 074 4 19.81 Palmer Sta., Antarctic
6051 ........ 1.111 361 9 2.169 282 1 -5.874 353 0 13.95 Mawson Sta., Antarctic
6052 ........ -0.902 571 8 2.409 550 0 -5.816 569 5 13.80 Wilkes Sta., Antarctic
6053 ........ -1.310 821 8 0.311 286 0 -6.213 299 2 13.45 McMurdo Sta., Antarctic
6055 ........ 6.118 349 5 -1.571 738 4 -0.878 618 1 11.14 Ascension Is., U.K.
6059 ........ -5.885 323 7 -2.448 337 7 0.221 658 4 10.63 Christmas Is., U.K.
6060 ........ -4.751 620 6 2.792 084 7 -3.200 181 2 3.19 Culgoora, Australia
6061 ........ 2.999 939 6 -2.219 352 6 -5.155 279 4 15.33 So. Georgia, U.K.
6063 ........ 5.884 483 9 -1.853 489 1 1.612 843 2 11.17 Dakar, Senegal
6064 ........ 6.023 411 3 1.617 937 3 1.331 725 4 9.89 ' Fort Lamy, Chad

6065 ........ 3.213 585 2 0.820 835 9 4.702 766 2 12.59 Hohenpeissenberg, W. Ger.
6067 ........ 5.186 415 4 -3.653 927 5 -0.654 297 7 4.13 Natal, Brazil

6068 ........ 5.084 848 9 2.670 346 3 -2.768 114 4 2.38 Johannesburg, Rep. S. Afr.
6069 ........ 4.978 443 0 -1.086 860 7 -3.823 181 6 26.56 Tristan Da Cunha, U.K.
6072 ........ -0.941 663 5 5.967 461 5 2.039 307 2 13.65 Chiang Mai, Thailand
6073 ........ 1.905 165 3 6.032 287 8 -0.810 736 5 12.02 Chagos, Archipelg
6075 ........ 3.602 847 1 5.238 244 8 -0.515 950 7 11.39 Seychelles, U.K.
6078 ........ -5.952 304 1 1.231 941 2 -1.925 939 0 22.93 New Hebrides, U.K.
6111 ........ -2.448 849 2 -4.667 968 5 3.582 746 1 3.83 Wrightwood, USA
6123 ........ -1.881 781 5 -0.812 422 7 6.019 588 6 17.73 Point Barrow, USA

6134 ........ -2.448 902 9 -4.668 058 6 3.582 440 8 3.89 Wrightwood, USA
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TABLE 9.33._Comparison of BC-$ Geometrical Solution With the

Combination Solution _

Differences

Station Weight AX AY AZ North East Height

600! ........ 12.22 -0 - 0 4 0 - 0 4

6002 ........ 5.54 12 -13 9 1 -15 13

6003 ........ 9.03 0 - 4 - 0 - 2 2 2
6004 ........ 20.01 2 - 9 1 3 9 - 0
6006 ........ 14.45 -6 -12 4 11 -10 0

6007 ........ 13.80 -6 - 5 - 1 1 - 7 - 3
6008 ........ 13.88 2 - 4 - 4 - 5 0 4
6009 ........ 15.97 5 - 5 - 1 - 1 4 6

6011 ........ 5.89 15 4 4 9 2 -13
6012 ........ 14.83 7 - 2 1 4 0 - 6

6013 ........ 9.06 -1 - 8 12 13 6 1
6015 ........ 11.51 -5 - 9 7 12 0 - 4
6016 ........ 11.96 -5 -11 3 8 -10 - 4
6019 ........ 6.13 13 3 - 5 - 3 13 5
6020 ........ 20.43 3 5 - 6 - 8 1 - 2
6022 ........ 13.60 7 6 - 1 - 3 - 4 - 8
6023 ........ 10.26 -2 3 0 1 - 1' 4
6031 ........ 10.55 -2 4 - 9 - 4 - 4 9
6032 ........ 1i.71 1 7 - 4 - 0 - 4 6

6038 ........ 9.99 4 5 - 1 0 2 - 6
6039 ........ 22.68 4 7 - 4 - 7 - 2 - 5

6040 ........ 14.15 -1 - 0 - 0 - 0 1 - 0

6042 ........ 7.02 -3 - 7 5 6 - 3 - 6
6043 ........ 13.70 11 8 - 8 - 8 13 4
6044 ........ 23.96 4 7 - 5 3 - 2 10
6045 ........ 10.56 -5 - i - 7 - 8 3 - i
6047 ........ 13.70 -0 - 0 5 5 0 1

.... _v._o _v 2 - 6 - 0 "^ 6........ IU
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TABLE 9.33.--(Cont'd)

Differences

Station Weight AX AY AZ North East Height

6051 ........ 14.82 5 4 -10 1 - 2

6052 ........ 14.68 4 5 - 9 - 0 - 5

6053 ........ 14.35 3 5 -12 - 5 - 5

6055 ........ 12.21 -9 0 11 10 - 1

6059 ........ 11.75 9 5 - 2 - 2 - 1

6060 ........ 5.93 -3 3 - 8 - 5 - 1

6061 ........ 16.12 8 3 - 4 1 8

6063 ........ 12.24 -8 - 2 0 2 - 4

6064 ........ 11.08 -6 -12 5 7 -10

6065 ........ 13.55 -6 -12 4 9 -11

6067 ........ 6.49 -5 13 10 9 7

6068 ........ 5.54 -4 - 3 -24 -24 - 0

6069 ........ 27.03 -8 2 5 - 0 0

6072 ........ 14.54 -3 - 1 9 9 4

6073 ........ 13.02 -7 - 2 0 0 6

6075 ........ 12.44 -4 - 2 1 1 1

6078 ........ 23.47 -8 3 9 12 - 1

6111 ........ 6.30 3 2 7 8 2

6123 ........ 18.42 1 -13 2 - 3 12

6134 ........ 6.33 4 12 6 12 - 1
rms: 7.35 6.33

Total rms: 12.02

Parameters determined

X Y Z

Translation (m) 16.32 -+ 1.22 23.21 -+ 1.22 -4.68 -+ 1.22

Rotation (arc-sec) -0.101 -+ 0.050 0.086 -+ 0.050 0.368 -+ 0.046

Scale (ppm) = 1.17 -+ 0.19

12

10

11

-11

-11

8

6

- 7

-7

- 2

-13

5

-10

1

- 4

- 4

5

1

3

- 7

7.10

a Given in units of meters. The standard error of unit weight, _o, is 0.823.
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TABLE 9.34.--JPL-SAO Differences

Rotation: -3.43 -+ 1.02/_rad
Scale: 1.8 × 10 -7 _+5.5 × 10 -7

R h
Station (m) (m)

DSS 11 ............. -0.81 2.69
DSS 12 ............. -0.66 2.63

DSS 14 ............. -0.86 2.57
DSS 41 ............. 4.31 -0.21
DSS 42 ............. 0.51 1.66
DSS 51 ............. 0.96 -3.03
DSS 61 ............. -0.26 2.10
DSS 62 ............. -0.31 2.31

929

TABLE 9.35.--Translation, Rotation, and Scale Parameters for the Four Major Datums

Number Translation (m) Rotation (arc-sec) Scale
of correction

Datum stations X Y Z Azimuth E-W N-S (ppm) _o _ (m)

NA27 ___ 10 -31.4 154.0 176.3 0.09 -0.62 -0.23 1.78
0.67 8

-+1.9 -+2.2 -+1.9 -+0.24 -+0.69 -+0.24 -+1.13

EU50 ___ 17 -85.4 -111.1 -131.9 0.56 -0.51 -0.22 2.60
0.59 16

•+2.0 -+1.9 -+2.0 -+0.21 -+0.35 -+0.22 -+0.92

SA::.9 .... _ -75.3 -3.3 52.2 -0.33 9.13 -9.33 -1.39
..u_ 14

-+2.5 -+2.6 -+2.5 -+0.21 -+0.27 -+0.33 -+0.99

AGD .... 7 -118.2 -38.6 +119.6 0.23 0.82 -0.22 2.33
0 35 -_

-+ 1.5 -+1.4 -+1.4 -+0.26 -+0.41 -+0.31 -+ 1.22

TABLE 9.36.--Standard Deviations of

Datum-Height Comparisons

O*

Datum (m)

NAD27 ................ 3.07
SAD69 ................. 2.69
AGD ................... 1.25
EU50 .................. 8.90

Average ............... 3.98
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TABLE 9.37.--Comparison of Coordinates Determined in Both SEII

and SE III"

Difference

Station Weight X Y Z North East Height

7050 ........ 7.23 1 - 6 - 9 -12 0 - 0

8015 ........ 5.41 -0 7 0 0 7 0

9001 ........ 5.58 -8 4 0 1 - 9 - 1

9002 ........ 7.23 1 - 0 - 3 - 2 - 1 2

9003 ........ 6.50 0 0 4 3 - 0 - 1

9004 ........ 5.86 3 - 3 - 4 - 5 - 3 0

9005 ........ 11.80 3 - 8 - 1 3 4 - 7
9006 ........ 9.42 0 - 2 - 2 - 1 - 1 - 3
9007 ........ 7.31 5 -10 3 6 1 10
9008 ........ 10.33 -1 2 6 5 2 4
9009 ........ 8.28 -2 1 4 5 - 1 - 1
9010 ........ 5.76 -1 1 - 4 - 3 - 1 - 3
9011 ........ 9.55 5 - 2 5 7 3 1
9012 ........ 7.51 -3 - 1 8 6 - 0 6
9021 ........ 15.33 11 - 6 -13 -13 12 - 5
9023 ........ 6.38 1 - 2 5 3 0 - 5
9028 ........ 12.94 14 11 - 4 - 6 0 17
9029 ........ 12.61 0 -11 - 7 - 7 - 9 7
9031 ........ 15.89 5 - 7 - 1 5 2 7
8010 ........ 7.90 -5 8 7 8 9 2
8011 ........ 16.03 -9 4 5 11 3 - 1
9425 ........ 7.92 4 3 - 6 - 2 2 - 8
9424 ........ 16.19 -5 2 -13 - 7 - 5 -11
9426 ........ 21.18 -4 - 2 8 8 - 1 5

9427 ........ 16.66 -2 - 4 5 4 4 4
rms: 6.62 5.02 6.37

Total rms: 10.47

Parameters determined

X Y Z

Translation (m) -1.69 ± 1.19 3.76 ± 1.18 0.04 ± 1.18
Rotation (arc-sec) -0.039 ± 0.047 -0.043 ± 0.049 -0.059 ± 0.044

Scale (ppm) _ -0.26 ± 0.18

The systematic translation, rotation, and scale differences were removed before the
differences were computed (in units of meters). The standard error of unit weight ao,
is 0.662.

TABLE 9.38.--Comparison of Spin-Axis

Distances

Using SAO station 9001 and geo-
detic tie ....................... 5 492 412.489 m

Using McDonald lunar laser ....... 5 492 416.0 ± 3 m
Difference ......................... -3.51 m
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TABLE9.39.--Solutionsfor Even-Order Harmonics"

931

J2 J4 J6 Js J,o J,2 J,4 J,6 J,8 J2o J22 J. n _ (residuals) 2

-3 30 -94 66 -178 161 -78 43 -77 -108 75
±1 ±2 ±3 ±4 ±4 ±3 ±8 ±7 ±9 ±9 ±13 114

-3 31 -97 68 -178 155 -74 30 -75 -104 72 31
±1 ±2 ±3 ±4 ±4 ±5 ±7 ±10 ±6 ±9 ±12 ±17 24 106

-3 30 -94 67 -177 161 -76 43 -74 -108 73 -9
±1 ±2 ±3 ±4 ±4 ±3 ±8 ±7 ±9 ±9 ±13 ±20 26 113

-2 30 -89 61 -181 162 :80 35 -83 -132 80 94

±1 ±2 ±3 ±3 ±3 ±2 ±6 ±6 ±5 ±8 ±9 ±17 28 67

-3 28 -92 61 -178 167 -80 44 -75 -104 97 -61

±1 ±2 ±3 ±4 ±4 ±4 ±7 ±7 ±6 ±9 ±15 ±28 30 103

-3 29 -94 67 -176 159 -82 41 -76 -111 75 33
±1 ±2 ±3 ±4 ±4 ±3 ±8 ±7 ±6 ±9 ±12 ±25 32 110

-3 30 -94 66 -178 162 -78 40 -78 -107 74 14
±1 ±2 ±3 ±4 ±4 ±3 ±7 ±9 ±7 : ±9 ±12 ±33 34 113

-2 31 -94 65 -183 165 -74 34 -102 -119 92 199

±1 ±1 ±2 ±2 ±2 ±2 ±4 ±4 ±5 ±5 ±7 ±22 36 39

" In units of 10 -9. Co,'rections are given for n < 14. Note that J. = -Cn.

TABLE 9.40.--Solutions for Odd-Order Harmonics"

J3 J5 J7 J9 J,, J,3 J,5 J,7 J,, J2, J23 J. n _. (residuals) =

6 -20 -12 -109 15 -222 104 -227 83 -70 111
53.7

±3 ±5 ±7 ±8 ±7 ±7 ±11 ±11 ±12 ±14 ±21

8 -23 -8 -106 10 -210 88 -210 78 -83 137 -41
25 49.4

±3 ±4 ±7 ±7 ±7 ±10 ±13 -+13 ±11 ±13 ±18 ±20

3 -15 -18 -98 19 -226 121 -237 101 -78 101 -58
27 44.7

±3 ±4 ±7 ±8 ±6 ±7 ±11 --11 -+12 ±11 ±13 ±20

5 -19 -12 -107 17 -222 107 -227 84 -64 103 -16
29 53.0

±3 ±5 ±7 ±8 -+7 ±7 ±11 ±11 ±12 ±14 ±17 ±23

6 -20 -11 -109 15 -220 106 -227 87 -72 115 -23
31 52.8

±3 ±4 ±7 ±8 ±7 ±8 ±10 ±11 ---12 ±12 ±14 ±28

7 -22 -11 -109 13 -219 102 -218 78 -69 124 -47
33 51.1

±3 ±4 ±7 ±8 ±7 ±8 ±10 ±12 -+12 -+12 ±16 ±32

5 -18 -19 -101 10 -225 105 -220 99 -83 145 -134
35 40.6

±3 ±4 ±7 ±7 ±6 ±7 ±9 ±10 ±11 ±11 -+15 ±36

6 -21 -11 -109 15 -222 102 -225 86 -66 110 -30
37 53.1

±3 ±4 ±7 ±8 ±7 ±7 ±11 ±11 ±13 ±13 ±13 ±44

" In units of 10 -9. Corrections are given for n < 13. Note that J. = -C..
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TABLE 9.41.--(O-C) for Secular Motion and Their Differences _

Satellite (O-C) I II 1969 1963 1961 1959

7001701 _ ....... -18 060 ± 90 -57 271 29 090 9 540 18 250 18 840
....... 10 120 ±70 -51 258 -17 400 -5 390 -9 950 -10240

7010901 & ....... -2 200 ± 800 -1 530 -857 -4 700 100 6 200 6 900
....... 5 160 ± 100 -83 99 -2 160 -1 450 -5 560 -5 900

6001301 & ....... 170 ± 100 43 61 40 -300 -670 -90
....... -125 ±5 -4 -10 -1 59 -611 -928

5900101 & ....... 32 ± 3 1 3 1 18 -129 278
....... -9 ± 3 2 7 0 10 -248 -488

6202901 & ....... 40 ± 6 11 10 2 300 827 1 013
....... 7 ± 3 5 8 2 -39 -247 -395

6000902 & ....... 170 ± 50 0 21 47 -287 770 1 070

....... -1 ±3 1 5 4 -43 -342 -594

6302601 & ....... 920 ± 10 -1 -6 -52 2 650 4 900 5 290
....... 1 ± 3 0 -2 19 261 -2 -352

6206001 & ....... 600 ± 60 16 84 60 2 230 4 180 4 500
....... -42 ± 3 1 2 8 -56 -437 -740

6508901 & ....... -110 ± 10 -1 -29 -26 1 460 3 180 3 285
....... -70 ± 3 0 -6 -7 -670 -1 465 -1 670

6101501 & ....... -300 ± 80 14 97 65 -81 1 900 2 500
....... 22 ± 3 -1 -1 3 -1 252 -2 815 -3 057

6400101 & ....... 600 ± 800 729 718 620 -600 580 -500
....... 56 ± 8 10 6 9 -1 073 -2 703 -2 921

6406401 & ....... -400 ± 100 -95 -231 -110 -2 000 -4 000 -4 300

....... 90 ± 10 9 9 15 -220 -1 351 -1 467

6508101 _ ....... 620 ± 30 15 100 -8 300 -3 290 -3 630
....... 50 ± 3 -2 -9 -27 35 -306 -337

6102801 & ....... -35 ± 50 -47 -47 -47 -340 -915 -1 008
....... -2.9 ± 0.5 0.6 0.7 0.6 62.7 192.3 212.6

"Given in units of 10 -6 per day.
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of COS_TABLE 9.42.--(O-C) for Amplitudes _ s_n. 2_ Terms and Their Differences a
b _

933

Satellite (O-C) I II 1969 1963 1961 1959

5900101 co....... 0.3 -+ 0.5 -0.2 -0.2 -0.3 -0.6 1.5 1.4
£_....... -2 ±2 -1 -2 -2 -1 -4 -4
I ....... -3 +-6 -4 -4 -5 -4 3 3
e ....... 0 -- 1 1 1 1 1 -4 -4

6202901 (o ....... -0.1 -+ 0.3 -0.2 -0.2 -0.2 -0.8 -2.5 -2.7
ft ....... -1 -+1 1 1 1 -8 -14 -14
I ....... 4 -+ 4 5 4 4 -3 -14 -15
e ....... 0 +- 1 0 0 0 5 12 12

6000902 co ....... -3 -+4 -2 -2 -2 -6 -10 -10
e ....... 0 +-1 0 0 0 0 1 1

6302601 co ....... -6 -+ 2 -1 0 0 -14 -23 -23
....... 2 +- 2 3 3 3 -2 -3 -3

I ....... -1 -+ 3 1 1 1 -4 -6 -6
e ....... 3 -+2 -3 -3 -3 12 20 20

6206001 co ....... 3 -+ 6 7 6 6 -5 -13 -13
e ....... 1 +-1 1 1 0 2 3 3

6508901 co ....... 6 -+ 2 1 2 2 -22 -49 -50
....... 4 -+ 2 2 2 0 9 10 10

I ....... 5 -+ 5 4 4 4 -3 -11 -11
e ....... -4 -+ 1 2 1 1 30 62 63

6101501 b_ ...... -I +-2 -i 0 0 -3 0 0

e ....... 1 -+2 0 0 -1 3 -1 -1
6406401 bco ...... 0 -+ 2 0 0 0 -1 -i -1

e ...... 4 -+4 3 4 3 5 7 7
6508101 oJ ....... 7 +- 3 3 4 3 12 0 0

/I....... 1 -+I 1 0 0 2 2 2

I ....... -2 + 8 -2 -2 -2 -2 -2 -2

e ....... -6 -+2 -1 -2 -1 -11 3 3

" Given in units of 10 3 degrees for co, 10 4 degrees for fl, 10 5 degrees for I, and 1(_6 for _._ per day.
................... w ,o ,,, ,,,,_ v, _v degrees.
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of cos _ oo Terms and Their Differences a
TABLE 9.43.--(O-C) for Amplitudes _ szn )

Satellite (O-C) I II 1969 1963 1961 1959

7001701 m ....... -70 ± 5 -2 0 -126 -104 -85 -87

....... -190 ± 30 0 -28 -248 -570 -168 -237

I ....... 430 ± 30 -34 -31 740 900 480 550

e ....... -91 ± 6 -5 -5 -149 -179 -99 -112

7010901 _ ....... 45 ± 30 9 41 160 -411 232 112

....... -18 ± 45 -44 -48 0 .10 9 7

I ....... -170 ±300 -166 -170 -181 -120 -190 -177

e ....... 28 ± 20 18 27 61 -102 83 49

6001301 _ ....... 4 ± 1 0 0 0 46 314 241

....... 0 ± 3 2 2 0 3 -10 -7

I ....... 0 ± 30 0 0 0 -2 -16 -12

e ....... 1.6 ± 1.0 _5 0.5 0.6 13.5 90.7 69.8

5900101 w ....... -1.7 ± 0.3 0.0 0.3 0.0 4.8 22.4 17.2

....... -2 ± 2 2 1 2 -7 -87 -58

I ....... 1 ± 5 -3 -3 -4 -8 -64 -57

e ....... -3.1 ± 0.5 -0.3 -0.7 -0.1 3.2 40.0 35.6

6202901 _ ....... -_1 ± 0.2 0.0 0.0 -0.1 -1.2 -4.0 6.1

....... 2 ± 3 2 3 3 16 5 31

I ....... -2 ± 3 -5 -4 -4 -11 -26 -78

e ....... 1.5± 0.8 0.2 0.0 0.2 4.2 15.2 49.7

6000902 w ....... -19 ± 3 -4 -4 -10 42 1 315

....... 1±1 1 1 0 3 4 6

I ....... -2 ± 6 -2 -2 -6 -3 -2 -6

e ....... -2.0± 0.6 1.0 1.0 0.3 10.5 2.4 64.8

6302601 _ ....... -17 ± 2 0 -4 -1 9 -17 86

....... -6 ± 1 0 0 1 20 52 60

I ....... 14 ± 15 10 11 10 6 12 -19

e ....... -12 ± 1 0 -1 2 16 -6 99

6206001 w ....... -59 ± 4 0 5 0 187 12_ 931

....... -2±2 -2 -2 -2 0 3 4

1 ....... 0 ± 10 0 0 0 -1 0 -4

e ....... -8 ± 1 -1 0 -1 22 14 113

6508901 _ ....... 3 ± 4 7 7 0 119 264 486

....... 10 ± 2 3 3 2 -10 8 -29

I ....... -8 ± 8 -9 -9 -7 -40 -80 -144

e ....... -4 ± 1 0 0 -2 127 292 555

6101501 _ ...... -19 ± 5 -11 -11 -8 -46 -265 -413

....... -3 ± 4 2 2 0 7 17 29

I ....... 0 ± 5 0 0 0 1 7 11

e ....... -11 ± 1 0 0 4 -48 -354 -560

6400101 % ...... -200 ± 10 6 3 1 -72 -445 -593

e ....... -58 ± 3 -4 -5 -9 -24 -122 -161

6406401 w ....... -110 ± 20 23 36 30 23 510 930

....... 6 ± 3 1 1 1 5 11 16

I ....... 0±8 0 0 0 0 -2 -3

e ....... -34 ± 5 -4 -2 -2 -4 106 199

6508101 _ ....... 60 ± 2 1 -1 3 64 197 296

....... 20 ± 1 0 2 2 16 26 32

I ....... -10 ± 10 -9 _ -9 -10 -10 -13 -16

e ....... 60 ± 3 -4 -5 -2 67 231 354

6102801 _ ....... -30 ± 50 -48 -47 -40 15 390 663

...... -2 ± 2 -2 -2 -2 -2 -3 -4

I ....... -6±7 -6 -6 -6 -6 -6 -5

e ....... 3.0 ± 1.5 -0.7 -0.6 0.0 12.5 91.8 149.2

a Given in units of 10 a degrees for co, 104 degrees for fl, 10 _ degrees for 1, and 106 for e, per day.

b For these satellites, oJ is in units of l0 s degrees.
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TABLE 9.44.--Comparison of Results a

Solution J2 J4 J6 Js J,o J12 J,4 J,s J,8 J20 J22 J36

1959 1082.1 -2.15
1961 1082.19 -2.13

-+3 -+5
1963 1082.48 - 1.84 0.39 - 0.02

-+4 -+9 -+9 -+7

1964 1082.639 -1.649 0.646 -0.270 -0.054 -0.357 0.179
-+6 -+16 -+30 -+50 -+50 -+44 -+63

1969 1082.628 -1.593 0.502 -0.118 -0.354 -0.042 -0.073 0.187 -0.231 -0.005

-+2 -+7 -+14 -+20 -+25 -+27 -+28 -+26 +22 -+22

1973 I 1082.637 -1.618 0.552 -0.205 -0.237 -0.192 0.105 0.034 -0.102 -0.119 0.092 0.199

-+1 -+1 -+2 -+2 -+2 -+2 -+4 -+4 -+5 -+5 -+7 -+22
1973 II 1082.636 -1.619 0.552 -0.204 -0.232 -0.196 0.101 0.043 -0.077 -0.108 0.075

-+1 -+2 -+3 -+4 -+4 -+3 -+8 -+7 -+9 -+9 -+13
Cazenave 1082.637 -1.619 0.558 -0.209 -0.233 -0.188 0.085 0.048 -0.137 -0.087

et al. -+4 -+10 -+17 -+24 -+26 -+27 -+34 -+43 -+44 -+52
(1971)

Solution J3 J5 J7 J9 Jll Jz3 Jts Ji7 Jl9 J_l J23 J35

1959

'96'

1963

1964

1969

1973 i

• _,o II

Cazenave

e_ a!.

(1971)

-2.20

-+8

o _ 0.23
•+2 -+2

-2.562 -0.064 -0.470 0.117

-+7 -+7 -+10 -+11

-2.546 -0.210 -0.333 -0.053 0.302 -0.114

-+20 -+25 -+39 -+60 -+35 -+84

-2.538 -0.230 -0.361 -0.100 0.202 -0.123 -0.174 0.085 -0.216 0.145

-+4 -+7 -+15 -+23. -+35 -+49 -+61 -+65 -+53 -+29

-2.54i -0.228 -0.352 -0.i54 0.312 -0.339 0.i05 -0.220 0.099 -0.083 0.145 -0.134
-+3 -+4 -+7 -+7 -+6 -+7 -+9 -+10 -+11 ±11 ±15 ±36

........ 0 345 .... 0 317 0 33C, ....................
--_.,.U_U --U.I.,OU -- * --U.J- IJK-, . -- . U.J.u't --u._._m u.uoo --u.uIu v..I..t.t

-+3 -+3 -+7 -+8 -+7 -+7 -+11 -+11 -+12 -+17 -+21

-2.543 -0.226 -0.365 -0.118 0.236 -0.202 -0.081 -0.027 -0.112 0.106
-_ -_ -I-10 _-IQ _-10 J,-1A +01 -t- ¢)Q +9Q -+- 1 ¢;

Given in units of 10 -_.
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TABLE 9.45.--Fully Normalized Tesseral-Harmonic Coefficients for the Potential a

Harmonic Value Harmonic Value Harmonic Value Harmonic Value

C--2.2 2.3799 ,-06 $2.2 -1.3656 -06 C---3., 1.9977 -06 "_3., 2.2337 -07

-C3. 2 7.7830 -07 $3.2 -7.5519 -07 Ca.3 4.9011 -07 S3.a 1.5283 -06

C,., -5.1748 -07 -S,., -4.8140 -07 C4.2 3.4296 -07 S_.2 6.7174 -07

"C4.3 1.0390 -06 "$4.3 -1.1923 -07 "C4.4 -1.0512 -07 "_4.4 3.5661 -07

-C5., -5.3667 -08 -$5., -7.9973 -08 C5.2 5.9869 -07 Ss.2 -3.9910 -07

_5.a -5.8429 -07 -$5.3 -1.6338 -07 -C5,4 -1.1583 -07 _'_.4 -4.5393 -08

-C_,_ 1.3956 -07 -S_,5 -8.6841 -07 -Ce., -7.2166 -08 -$6., 1.7756 -08

-C_,2 2.4670 -08 $6.2 -4.0654 -07 -C6.3 4.4139 -09 _'6.3 2.9055 -08

-C6. 4 - 1.0003 -07 -$8.4 -3.0297 -07 -C6.5 - 1.3504 -07 _6.5 - 6.0964 -07

-C6.s -2.9136 -08 _6,6 -2.6327 --07 "67,1 2.3532 -07 S',., 5.5634 -08

C--',.2 2.0425 -07 S,,2 1.7321 -07 'C7.3 2.1994 -07 _,.a -3.4644 -07

"-C7., -2.8617 -07 --87,4 -2.7738 -07 -C7.5 3.4727 -08 S',.5 8.7014 -08

-_7,_ -2.7496 -07 $7.6 8.5865 -08 -C,., -2.4856 -08 $7., -8.8968 -09

-C8., 1.0946 -08 Ss., 4.8429 -08 -Cs.2 1.1084 -07 Ss.2 1.0359 -07

-Cs,3 -8.8578 -08 $8.3 -5.0715 -08 -C8.4 -2.2315 -07 Ss.4 2.6511 -07

C--8.5 1.5318 -07 Ss.5 8.1158 -08 C--s.6 -9.7542 -08 S--s.6 2.8082 -07

-C8. ' 2.0498 -07 -Ss.7 2.4592 -07 -Cs,s 1.6967 -07 -$8._ 9.3261 -08

-C9,_ 1.8099 -07 -$9,, 4.1091 -08 -C9.2 -2.2013 -08 _.2 2.4215 -09

-Cg.a -9.9252 --08 --S9,3 -2.3085 -08 --69.4 -4.0867 -08 S9.4 -3.8525 -08

-C9._ -5.8957 -08 -$9._ 3.6834 -09 "C9.e 4.8812 -08 "S9,6 1.1115 -07

C'9., - 1.9880 -07 "S'9,7 -- 1.4978 -07 'C-9.s 2.3523 -07 '_9.s 9.6355 -09

-C_ -3.4533 -08 39.9 5.9502 -08 C,o., 8.9008 -08 "_,o., -6.0157 -08

-C,o._ -3.7256 -08 -S,o._ -6.3676 -08 _,o.3 -1.3307 -07 _,o,3 -7.2728 -08

C',6_4 -2.1887 -08 'S,o., -7.8408 -08 -C,o._ -6.1509 -09 S_o.5 -1.1904 -07

"C,o,6 -9.4142 -08 "S,o._ -1.1728 -08 "C,o._ 1.8525 -07 "S,o., 2.1656 -08

"-C,o._ 1.0887 -09 S-,o._ 7.0781 -09 "C_o._ 7.8473 -08 "_',o.9 5.6381 -09

"C,o,,o 1.3321 -07 "Slo,|o 9.8839 -08 --Cll,I -1.2194 -08 S,,., 7.5463 -08

-C,,._ -2.0255 -08 "S,,.= -6.2998 -08 -C,,._ -1.0988 -09 S,,,_ -3.8098 -08

-C,,.4 1.5676 -08 S,,.4 -1.9551 -07 -C,,.s -1.8591 -09 S,,.5 6.1113 -08

_,,.6 6.3601 --08 -S,,,_ -2.6457 -08 -C,,., -3.3761 -08 _,,.7 -1.2825 -07

-C',_._ -1.3634 -08 S,,._ 4.5229 -08 C,,._ 2.1256 -08 S,,,_ 6.6721 -08

-C,,.,6 5.2555 --08 --Sll.|O --7.7401 --08 --C11,11 8.6996 -08 S,,.H -2.5691 -08

-C,_., -5.6935 -08 S_., -6.6159 -08 _,_._ -9.7424 -08 -S,_.2 4.6341 -08

--C12.3 1.5555 --07 "S,_.a --4.8666 --08 --C'2.4 --5.0379 --08 "812.4 5.3568 --08

"C,2._ 8.1834 -08 -S,2._ 2.7932 -08 "C,2.e -2.1177 -08 "_12.6 3.5034 -08

-C,2, 2.9751 -08 S,2._ 3.1783 -08 C,2._ 4.0190 -08 S,_.s 5.6877 -08

-C,_.9 -1.1503 -07 S,2.9 1.4508 -08 -C,z.,o -4.5921 -08 S,2.,o -4.3264 -08

"_,_.,, -7.8443 -09 S,2,,, -4.7858 -08 -C,2.,_ -2.7617 -08 -_,2.,2 -1.6808 -08

-C,3., 8.6136 -09 -S',3., -3.2401 -08 "C13.2 -1.0679 --08 -_13.2 --9.0670 --08

-C,3.z -3.2361 -08 S,a,a 4.9286 -08 --613,4 3.9852 -08 S,_.4 -1.0608 -07

_,_,_ 4.0047 -08 S,3._ 3.8114 -08 _,3._ -2.1906 -08 "_13,6 -1.1321 -08

-C,_., -7.6933 -08 -S,3._ 1.1140 -08 -C,_.s -2.7448 -09 -_3.s 1.4309 -08

-C,_._ -1.1588 -08 S,3._ 7.2989 -08 -C,_.,0 4.1979 -09 :Av,_.,s 7.6769 -09

-C,a.,, -5.4381 -08 "Sl3,ll 1.3450 -08 --C13,12 -4.6633 -08 "S,a.,2 7.9963 -08

C,a,,3 -6.8944 -08 S,a.,3 7.1891 -08 C14.1 --1.4359 -08 S,,., 5.2390 -08

Values given as coefficient and exponent of 10.
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TABLE 9.45.--(Cont'd)

937

Harmonic Value Harmonic Value Harmonic Value Harmonic Value

C14.2 -1.5908 --08 S14,2 -2.7374 -09 C,4.3 9.6915 -08 S,4_ -2.5631 -08

C,4,4 -2.9864 -08 S,4.4 -3.8189 -09 C,4.5 -1.3828 -09 S,4.5 -5.8680 -08

C,4.s -1.3872 -08 S,4.6 -2.7976 -08 C,,., 7.1056 -08 _,,., 2.4043 -09

C,4.8 - 1.8779 -08 S,4., -5.8750 -08 C,4.9 -2.4322 -08 S,,.9 6.0461 -08
C,4.,o 2.8985 -08 S,4.,o -3.4224 -08 C,4.. 8.2611 -08 S,4.. - 1.9627 -09
C,,.,2 1.1751 -09 S,4.,2 -3.0967 -08 C,,.m 3.0793 -08 S,,.m 4.7620 -08
C,4.,4 -6.5969 -08 S,_.,4 3.3030 -09 C,5., 2.9358 -08 S,5., -1.6691 -08
C,5.2 -1.2291 -08 S,5.2 -6.8963 -08 C,s., -5.8921 -08 S,5.3 4.477 2 -08
C,5,4 1.4876 -08 S,5.4 7.0359 -09 C,s,5 3.6806 -08 -_',5.5 -8.4051 -09
C,5.e 1.0081 -08 S,5.e -3.0473 -08 C,5., 3.0439 -08 -_,s., 1.5775 -08
C,5.8 -6.8884 -08 S,5.s 6.0808 -08 C,5.9 -4.5169 -08 -_-,5.9 5.5556 -08
C,5.,o 6.2126 -08 S,5.,o -7.1799 -09 C,5.. -4.4724 -08 S,5.. -3.4391 -09

C,5.,2 -4.2025 -08 S,5,12 5.9072 -09 C,s.,3 -4.1654 -08 S,5.,3 -5.5892 -09

C,5,,_ 9.5654 -09 S,5.,_ -2.7145 -08 C,5.,5 -5.6358 -08 S,s.,5 3.4895 -08
C,_., -9.9588 -09 S,e., 5.4160 -08 C,_.2 5.5086 -09 S,_.2 4.9455 -08
C,_.3 5.4189 -08 S,e.3 5.4887 -09 C,_._ 4.6176 -08 S,e., 3.6270 -08
C,e.5 -2.4432 -08 S,e._ 2.9671 -08 C,,.e -3.7203 -09 S,e., -2.0786 -08

C,_., -2.2794 -09 S,e., 3.0609 -09 Cm.a -1.0459 -07 S,e.s -4.4731 -08

C,e.9 2.4845 -08 S,e.9 -8.6262 -08 C,_.,o -3.9928 -08 S,e.,o -4.5058 -09

C_.. -2.0848 -08 S,e.l, 2.9738 -08 C,_.,_ 1.5930 -08 S,e.,_ -1o2703 -08

C,e.m 2.5280 -08 Sle.m 6.6240 -09 Cm.,, -1.4852 -08 _,e.,, -8.1713 -09
C_o:_ -7.7425 -08 S,_,_ -2.6491 -08 _,_,_ -1.8538 -08 S,_m -2.2310 -08

C,_., 8.6593 -09 S,,., -4.1093 -08 C,,2 -9.0769 -09 S,_.2 -2.7205 -08
C,_.a -7.7864 -09 S,_.a -1.7913 -08 C,_., -4.3231 -08 S_:., 6.8203 -08

C,,.s 4.1513 -08 S,_._ -2.5453 -08 C,_.e -4.5453 -08 S,,., - 1.7273 -08

C,,., 1.6938 -08 S,,., -3.3752 -08 C,,.s 4.1231 -08 S,,.s 5.8792 -09
C,_.9 -4.3119 -08 S,,., -1.5974 -08 Cm,o -1.0844 -08 Smlo 5.5628 -08

C,_.. -4.4136 -08 S,;.. -4.3123 -09 C,_.,_ 3.1661 -08 S,,.,2 6.2982 -09

C,_.,_ 2.5147 -08 S_.m 9.7728 -09 C,_.,_ -5.5945 -09 .S,_._ 7.2604 -09
A (_11e_ _,_ _ "_ 10_ _ _ --0 '_AN _N_ _ + --1 _9 --N_

_a n,o, 08 _ -a 4_ 5 09 -C-_,, -_ _ _am _ , -7+4536 -08u. ii'+i +' v,_x_,x _,7+17 _'" ' + ......... l_,

C,s._ -9.4249 -09 S,s,_ 3.0353 -08 C,,._ -3.5003 -08 Sm.._ -2.0464 -08

Cm._ 2.9433 -08 Sm._ -4.4672 -08 Cm.5 1.7511 -09 $1_._ -6.0367 -09

C'm.e 2.3931 -08 *_,a,_ -4.4966 -09 C,s., -7.8040 -i0 '_,s., -8.20i0 -o_
C,s.s 5.3819 -08 S,s.s -2.2106 -08 C,s.9 -3.6120 -10 S,s.9 -5.0562 -09 .
C,s.,o 4.2146 -08 Sm.,o 7.8924 -09 Cm.,, 2.4981 -08 Sin.,, 2.3183 -08

C18.12 -6.2242 -09 S,s.,2 6.6025 -09 C,s.m -2.6685 -08 S,s.,a -4.2500 -08

Cm.,4 9.1191 -09 Sin,,4 -3.3129 -08 Cm,,5 -4.1521 -08 $18,15 -1.7610 -08
C,a.,_ 2.4850 -08 Sm.,_ -4.8182 -09 Cm.,, 3.5357 -08 S,a.,, -4.7166 -08

Cm.m -3.4701 -i0 S,8.,B 5.0554 -08 C,_.,_ 3.6058 -08 S,_.,_ -3.4421 -09

el9,13 9.6876 -09 S,9.m -6.6095 -08 C,_.,_ 7.6389 -09 819,14 -2.7649 -08
C_o.m 2.7630 -08 $2o.,_ 3.2389 -08 C2o,,_ 3.3687 -08 $2o.,, -6.5741 -08

C2,.m -1.9799 -08 S_,.m -3.0711 -08 C2,.,, 1.6623 -08 $2,.,_ 8.7215 -09

C22.13 -7.9435 -09 S_.,3 4.1452 -09 C22,14 2.8516 -09 S_.,4 -4.2148 -08
C23,13 -1.3236 --08 $23.13 -4.8892 -09 C2_.,4 -2.1148 -08 $2_.,, 2.2010 -08
C2_.,_ 3.4668 -09 $2_.,_ 2.2983 -08



938 NATIONAL GEODETIC SATELLITE PROGRAM

TABLE 9.46.--Comparison of SE III With Satellite Observations a

Epoch (MJD) q(m) n Epoch (MJD) _(m) n

6508901 (GEOS-A)Aim = 0.05

41 000 ................. 4.1 289 41 010 7.7 523

41 002 ................. 5.5 367 41 012 9.8 577

41 004 ................. 3.2 314 41 014 9.2 715

41 006 ................. 8.9 601 14 016 4.1 425

41 008 ................. 10.6 696 41 018 3.6 221

6800201 (GEOS-B)Aim = 0.05

41 038 ................. 2.4 249 41 048 3.8 304

41 040 ................. 6.5 533

41 042 ................. 7.8 681 41 052 2.8 388

41 044 ................. 6.3 651 41 054 6.6 602

41 046 ................. 2.7 441

6701401 (DID) A/m = 0.1

41 072 ................. 10.3 467 41 080 7.4 621

41 074 ................. 9.9 332 41 082 6.9 764

41 076 ................. 16.3 341 41 084 4.9 427

41 078 ................. 17.0 254 41 086 3.6 519

a n is number of observations used.

TABLE 9.47.--Comparison of SE III Combination Solution With Surface Gravity _

Solution d,m ((gt- g,)2) (gigs) <g_) D (g_) E (e_) E (_) E (6g _) n

SE IIb ...... 16 75 184 186 163 253 2 11 63 I>20

SE II ....... 16 187 177 229 203 311 52 13 122 (306 anomalies) c

SE III ...... 18 105 221 236 237 311 15 13 77 ............

SE III ...... 10 195 150 192 163 302 42 24 129 I> 1

14 174 174 220 198 302 47 24 103 (1183 anomalies)

18 156 202 258 237 302 56 24 75 ............

SE III ...... 10 184 183 205 163 345 22 19 143 I>10

14 151 215 236 198 345 20 19 111 (659 anomalies)

18 117 255 281 237 345 26 19 63 ............

SE III ...... 10 186 151 176 163 311 25 (24) 13 148 _>20

14 146 182 200 198 311 17 (21) 13 116 (306 anomalies)

18 105 221 236 237 311 15 (18) 13 77 ............

Given in mGal _.

b From the available data, there

c Here, n is the number of 1 ° x

were 935, 369, and 136 gravity anomalies with n/> 1,10, and 20 1 ° × 1° anomalies.
1° mean gravity anomalies used to obtain 5 ° × 5 ° mean gravity anomalies.
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TABLE 9.48.--Surface-Gravity Residuals

for an _ = m = 36 Potential

From Numerical Quadrature a

Degree of ((g, _ g,)2) <(qs _ grel)2)

reference field n = 1 n = 20 n = 0 E (e_)

0 ............ 28 29 12 .....

6 ............ 38 39 12 I0

8 ............ 53 54 20 25

10 ............ 56 53 21 24

14 ............ 61 50 19 21

18 ............ 70 48 16 18
Anomalies

used ......... 1183 306 471 .....

" Given in mGal 2.

TABLE 9.49.--Comparison With Independent Surface-Gravity Data"

Comparison Maximum

SE III .... 18 3726 147 209 284 237 282 75

SE III ...... 18 1794 145 188 232 237 290 44

A_erages _ _v_

_3m

E(e_) E (s_) Region

13
13

59 North Atlantic
88 Indian Ocean

68

" Given in mGal 2.


