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9.1 HISTORICAL INTRODUCTION
(C. A. Lundquist and F. L. Whipple)

9.1.1 Initial Objectives of the SAQ Satellite-
Tracking Program

As the principal objective of its participa-
tion in the International Geophysical Year
(IGY), the Smithsonian Astrophysical Ob-
servatory (SAO) conceived of and estab-
lished a systematic program to observe posi-
tions of artificial satellites and to derive
geophysical information from these observa-
tions (Whipple and Hynek, 1956, 1958a,b).
The fundamental concepts for this program
existed in the minds and studies of SAQO Di-
rector Fred L. Whipple and his colleagues
(see Ryan, 1952) well before President
Eisenhower announced in 1955 that the
TUnited States would launch a scientific satel-
iite during the iGY, These plans originated
with Project Orbiter, followed by Project

Vanguard which in turn was superseded by
thnd Tosanmelad Tlenlawas T
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its orbit on January 30, 1958, the SAO o

servation network and analytical apparatus

were ready with partial operational status.
Asg stated in 1957, the principal objectives

of this early SAO activity were (1) “to tie

w

‘together the observing stations and the

center of the geoid to a precision of the order
of 10 m,” (2) “to add appreciably to our
knowledge of the density distribution of the
earth, particularly in crustal volumes,” and
(3) to provide ‘“the value of the [atmos-
pheric] density a few kilometers above the

initial perigee distance, and periodic effects

or predictable cyclic effects that may occur
in the earth’s high atmosphere” (Whipple
and Hynek, 1958a). The first two objectives
evolved into similar, but more demanding,
ones for subsequent programs, such as
the National Geodetic Satellite Program
(NGSP) (Rosenberg, 1963).

9.1.2 Establishment of the Baker-Nunn Net-
work

To establish the required satellite observa-
tion capability, SAO initially developed a
photographic system (Whipple and Hynek,
1958b). The basic tracking camera, named
Baker-Nunn after its optical and mechanical
designers, has f/1 Schmidt optics. During
the first several years of field operation, a
Norrman time standard, also named for its
designer, provided epoch measurements. The
Baker-Nunn tracking system has accuracies
in the arc-second and millisecond range.
Twelve stations with this equipment went
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the IGY.
With the passage of time, the Baker-Nunn
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changes (Whipple and Lundquist, 1967).
The medes of camera operation required
shght modlﬁcatlon to accommodate a varlety
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orbits: A new, more accurate, time standard
replaced the Norrman standard.

It is a tribute to the designers of the
Baker-Nunn system that for nearly a decade
the accuracy of the Baker-Nunn data ex-
ceeded the accuracies of the analytical treat-
ment of these data and of the geodetic param-
eters derived from them. Indeed, Baker-
Nunn observations contributed appreciably
to the NGSP results reported here. By about
1966, however, the accuracy of the derived

. geodetic parameters. began to approach that

of the observations, thus motivating signifi-
cant moves toward deployment of new track-
ing systems of superior accuracy.

9.1.3 Introduction of Laser Systems

When the accuracy of photographic meth-
ods began to pose a serious limit on future



796 NATIONAL GEODETIC SATELLITE PROGRAM

geodetic investigations, laser systems to
measure Earth-to-satellite ranges offered the
best prospect for substantial reduction of
measurement uncertainties. Range measure-
ments with pulsed laser systems became pos-
sible in 1964 after the BE-B satellite
(6406401), which carried an array of optical
retroreflectors, was launched (Plotkin,
1964). In 1965, SAO and the General Elec-
tric Company began laser ranging experi-
ments in conjunction with the Baker-Nunn
system at Organ Pass, New Mexico (Ander-
son et al., 1966).

Experience with the equipment at Organ
Pass led to the specification and development
of a greatly improved instrument, and the
prototype model of this ruby-laser system
began operating in late 1967 at Mt. Hopkins
Observatory, Arizona (Lehr et al., 1968).
After appropriate tests of this prototype and
after identification of design modifications
indicated by them, SAQ procured three addi-
tional laser ranging systems. In late 1970,
these three units began operating at the SAQ
sites in Arequipa, Peru; Natal, Brazil; and
Olifantsfontein, South Africa. The proto-
type remained at Mt. Hopkins.

These SAO instruments, and similar laser
systems deployed by other groups, con-
tributed the major data base used in the
final NGSP results presented here. It is the
improved accuracy of these data, relative to
earlier observations, that allows further re-
finements of geodetic parameters,

9.1.4 Evolution of International Cooperation

The network of Baker-Nunn satellite-
tracking stations was conceived by SAO as
a cooperative international enterprise dur-
ing the IGY. Its implementation depended
crucially on agreements between SAQO and
appropriate scientific organizations in the
nations hosting the stations. Many of these
agreements have continued to the present,
with occasional renewals and modifications
as needed. The viability and success of such
a network stem from a recognition that little

can be accomplished on global problems by a
single station working in isolation, whereas
a well-coordinated global network can achieve
much.

The cooperative aspects of the efforts co-
ordinated by SAO naturally extend to the
analysis and interpretation of the data.
First, it has been a policy that data gen-
erated by the network are available to all
network participants. Also, SAO data are
eventually published or otherwise made
available to the general scientific community.
Second, several visiting scientists from host
countries have been deeply involved at SAO
in geodetic investigations that employ the
network data (in particular, Veis, 1960,
1961, 1963a,b, 1965¢, 1966a,b; Kozai, 1960,
1962a,b, 1963a,b, 1964; Giacaglia, 1973).

"In recent years, cooperative efforts have
increased further through various inter-
national observing campaigns. These cam-
paigns involve a concerted effort among the
several existing networks, as well as be-
tween individual stations. Such campaigns
have been responsible for some of the most
valuable data used in the analyses reported
here. Thus, credit for the basic support be-
hind these results must go to many nations,
organizations, and individuals.

9.1.5 Cooperative Observing Programs

The first of the inter-network cooperative
observing programs occurred in the spring of
1967 (Lundquist, 1967). The timing of this
campaign followed the launch of Diademe-1
(D1C, 6701101), and Diademe-2 (D1D,
6701401), which carried retrofliectors for
laser ranging. The major participants—
Centre National d’Etudes Spatiales (CNES),
Goddard Space Flight Center (GSFC), and
SAO—arranged an observing schedule to be
followed by the stations of these three orga-
nizations. The arrangements emphasized the
need to coordinate observations taken by
the small number of laser instruments in
operation at that time. Lasers were located
at three CNES stations, in Haute Provence,
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France; Colomb-Bechir, Algeria; and Ste-
phanion, Greece; at a GSFC station in Green-
belt, Maryland; and at the SAO station in
Organ Pass. The Baker-Nunn and other
camera systems also participated.

For this observation campaign, intervals
of favorable satellite visibility lasting several
weeks were selected for the five satellites
with retroreflectors. During each selected
interval, all participating stations were dedi-
cated to obtaining maximum tracking cov-
erage of the designated satellite. This became
known as the saturation-tracking mode.
Such periods of high-density data are par-
ticularly valuable in determinations of longi-
tude-dependent coefficients in the gravity
field of the Earth.

SAO took the initiative in organizing a
second, international, geodetic-satellite track-
ing er“t"ort in 1968, following the launch of
GEOS GEOS-2 was the sec-
ond satellite launched under the aegis of the
NGSP and equipped with retroreflectors.
Again, intervails of several weeks were desig-
nated for saturation tracking of the six retro-
reflector satellites. By 1968, a few more laser
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Provence and at the SAO station in San
Fernando, Spain; two NASA lasers were at
Greenbelt and at Rosmund, North Carolina;
and an SAO laser was located at Organ
Pass.

A two-laser collocation experiment was
conducted at the SAO Mt. Hopkins Observa-
tory in 1969. A GSFC mobile laser system
and the SAO prototype obtained simultane-
ous observations on GEOS-2, enabling an
evaluation of system performance to be made.

The next observation campaign in this
series was the International Satellite Geod-
esy Experiment (ISAGEX), organized by
CNES in conjunction with the launch of
PEOLE (7010901), a new retroreflector
satellite in a low-inclination orbit. This ef-
fort extended from January 5 to August 31,
1971.

9.1.6 Evolution of Results

The results presented here by SAO, cor-
responding to the completion of the NGSP,
are but the latest in a sequence of advances
in the determination of geodetic parameters.
This sequence started with the early works
of Izsak (1963, 1964, 1966), Kozai (1963a,b,
1964), and Veis (1965¢).

A major effort in 1966 resulted in the first
Smithsonian Institution Standard Earth
(SE) (Lundquist and Veis, 1966), the com-
bined work of many authors. This was the
first solution for geodetic parameters based
on a combination of dynamical and geo-
metrical data and analyses. The 1969 SE
II (Gaposchkin and Lambeck, 1970) was
the next milestone in the SAO series. This
solution for geodetic parameters not only

combined dynamical and geometric data, but
also xhcovr\nv«ﬁ'nﬂ cnvfor-o_gravﬂ'v informa-

tion and results from Jet Propulsion Labora-
tory’s (JPL) Deep Space Net (DSN). This
was also the first solution to cmploy some
laser range data, resuiting Ifrom the 1967
and 1968 observation campaigns. Finally,
the solution presented here is again a combi-
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data are more complete then they were in
1969 and, hence, bear strongly on the final
results. Survey data are also included.

9.2 INSTRUMENTATION
(M. R. Pearlman, J. M. Thorp, C. R. H.
Tsiang, D. A. Arnold, C. G. Lehr, and J.
Wohn)

9.2.1 Baker-Nunn Camera

9.2.1.1 Description of Technique
The Baker-Nunn camera photographs
satellites against a star background. It can

1 Also included in this part is material originally
prepared by G. Veis, K. Lambeck, and K. L. Hara-
mundanis. We are grateful to them for their con-
tributions.
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photograph either passive, Sun-illuminated
satellites or active-satellite flashes under
night-sky conditions. The Smithsonian Astro-
physical Observatory Star Catalog has an
average standard deviation in star position
of 0”5 (epoch of 1963.5) (Staff, Smithsonian
Astrophysical Observatory, 1966). The SAO
field timing system is kept within 100 usec
or better of Universal Time Coordinated
(UTC) as maintained by and referred to the
United States Naval Observatory (USNO) ;
hereafter, we shall express such time as
UTC(USNO). With the use of the catalog
and the timing system, the reduction tech-
nique can provide an accuracy of 2”. Ob-
servations are routinely reduced at the ob-
serving station to an accuracy of 40” to 60”.

The camera was originally designed to
photograph very small satellites in poorly
known orbits without the aid of active sys-
tems on the satellites themselves. For this
reason, it has a fast optical system and a
wide field of view. Pointing predictions need
an accuracy of only several degrees.

9.2.1.2 Instrument Description

The Baker-Nunn is a three-axis camera
designed according to the specifications of
SAO for satellite tracking. The optical sys-
tem was designed by James G. Baker; the
mounting and mechanical system, by Joseph
Nunn. The camera is approximately 2.5 m
high and 3 m wide and weighs about 9000 kg.
It combines an extremely fast f/1 optical
system with a sophisticated film transport,
and currently uses 55.6-mm Royal X ex-
tended red film (Kodak S0-338). It is best
known for its light-gathering power and can
photograph stars 3x10* fainter than those
visible to the naked eye. The camera, which
operates only at night, can photograph Sun-
illuminated satellites as well as satellites with
flashing lights.

9.21.21 CAMERA OPERATION

The Baker-Nunn camera (see fig. 9.1) is
basically a Schmidt telescope with refine-
ments designed to improve its optical per-

formance. The focal ratio of the system is
f/1 with an aperture of 508 mm (20 inches).
This focal length gives a film scale of
406” mm-,

Light enters the camera through the three-
element lens assembly (two positive and one
negative), which corrects for spherical and
chromatic aberrations, and is reflected from
the 787-mm (31-inch) diameter, spherical
pyrex mirror onto the photographic film.
During exposure, tension is applied to the
film to force it to conform to the shape of
the backup plate, which is figured to the re-
quired aspherical focal surface.

A clamshell-type focal-plane shutter be-
gins and ends the exposure, which is preset
for 0.2, 0.4, 0.8, 1.6, or 3.2 sec. A barrel-
type shutter rotating in front of the focal

. surface chops the star trails or satellite trail

(depending on the operating mode) and
provides five reference breaks for measure-
ment. The chopping shutter is coupled to a
set of timing points that close at the third
break and trigger a time presentation, read-
able to 0.1 msec, which is recorded on the
film. When the exposure is completed, the
film is advanced until the next frame is
positioned against the backup plate. For a
15°x5° field, including time presentation,
one frame is 152 mm of film. The film-trans-
port mechanism, chopper shutter, and clam-
shell shutter are mechanically synchronized.

The camera is supported on a massive
altitude-azimuth mount (see fig. 9.2) with a
third mechanized tracking axis normal to the
altitude axis. Both altitude and azimuth are
manually set, normally to =092, and clamped
into position during photography. The cam-
era then tracks along a great circle about
the tracking axis at a prescribed rate. This
motion approximates the apparent satellite
motion over a short arc. Movement about
the azimuth axis is limited only by the
length of the power and slave-clock cables,
which permits approximately 400° of free-
dom. Altitude is limited by stops at 20° and
160°, and track angle is limited by micro-
switches at 27° and 153°. Continuously
variable angular velocities of 0 to 7000”
sec' are available.
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FIGURE 9.1.—Cross section of the Baker-Nunn camera.

9.2.1.2.2 OPTICS

The modified Schmidt optical system was
chosen because it has a fast speed and a wide
field of view and it yields good images over
the entire field of view. To compensate for
aberrations introduced by the spherical pri-
mary mirror, the camera has a three-element
lens assembly, or corrector cell, mounted at
the aperture stop. The cell has little focusing
power but a strong spherical aberration ap-
proximately equal to and opposite that of the
mirror. This permits a large field, fast speed,
and good images. In the Baker-Nunn, no

attempt has been made to flatten the focal
surface: Instead, the film is made to conform
to the curved focal surface. Chromatic aber-
ration is minimized in the corrector cell by
the use of two types of glass: Schott K2FS-2
glass on the two outer elements and Schott
SK-14 glass on the inner element. The outer
glass is subject to etching in the presence
of water, and care must be taken in the field
to keep the outer surface dry.

The mirror is very accurately supported
by 12 counterweights and a center collimat-
ing post to position the mirror at the correct
distance from the film.
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tem was designed to minimize image degrada-
tion due to temperature change and me-
chanical flexure.

9.2.1.23 MECHANICS

The operation of the camera depends on
the synchronous operation of a gross (clam-
shell) shutter and a fast (chopping) shutter.
These shutters and the film transport are
mechanically linked and driven by a syn-
chronous motor and a cycle-speed-selector
transmission. Speeds of 2, 4, 8, 16, or 32 sec
per cycle can be selected. There are two ex-
posures per cycle with an effective exposure
time of one-tenth the cycle. The system was
originally designed to have both a tracking
and a stationary exposure on each frame.
However this complicated the problems of

exther in tbe stationary mode or in the track-
ing mode for the entire arc photographed.
The latter is used for faint satellites, and the
former, for the brighler {(visual) satellites.

The film is transported from a supply reel
to a takeup reel by means of two drums
and a system of idler rollers. The drums are
powered by a system that applies tension,
transports, and holds to the film during the
camera’s operation cycle, The drive that
operates the shutters also operates the film
transport in such a way that as the cycle
period is decreased, the speed of transport
increases. For example, for a 2-sec cycle,
the film is exposed and transported at 1
frame sec.

Timing of an event on the Baker-Nunn
camera requires exact knowledge of the posi-
tion of the chopping shutter at the moment
the time display is triggered. The camera
timing points are adjusted so that an epoch
corresponding to the third passage of the
shutter through the field of view is recorded
on the film. The break in the image caused
by the passage of the shutter is called a
“chop.” Figure 9.3 is a Baker-Nunn photo-
graph in which the satellite, shown by the
arrow, is being tracked by the camera and
the star trails are chopped five times. Dur-

ing the third passage of the shutter, a strobe
lamp with a collimating lens, located in the
body of the camera, illuminates the chopping
shutter, whose shadow is recorded on the
film. The length of this shadow on the film
is measured and used in the reduction process
to calculate the angular position of the
chopper.

The track-angle axis of the Baker-Nunn
camera mount is driven by a reversible
synchronous motor, a Graham variable-speed
drive, and a multiplier transmission. The
Graham drive allows a variation in speed
from 0 to 70” sec’. The transmission has
three gearing ranges of 1, 10, and 100, allow-
ing a total variation of 0 to 7000” sec'. The
lower the gear range, the more accurately
the angular velocity can be set.

9.21.24 ELECTRONICS

For a proper sequencing of events, ac-
curate exposure times, and accurate angular
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the phase, the camera motors c:
up or slowed down. This procedure allows
the center (third) chop to occur at a preset
firing time and the camera to be synchronized
for satellite-flash photography.

A display of the station clock is mounted
on each camera at the point where film
leaves the camera tube. On a demand pulse
from the timing points, epoch is displayed
and photographed by the camera, With the
EECo clock, manufactured by the Electronic
Engineering Company (EECo) of Santa
Ana, California, time is displayed on the film
in hours, minutes, seconds, and fractions to
0.0001 sec.

9.2.1.3 Accuracy and Error Budget

The accuracy of a satellite-position meas-
urement with the Baker-Nunn camera is
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F1Gure 9.3.—Baker-Nunn photograph of satellite 6506301 (EG-RS-5). The satellite is
indicated by the arrow, and the chopped star image tracks are in the background.

dictated primarily by (1) the film measure-
ment and reduction procedure, (2) the
accuracy of star positions, (3) atmos-
pheric influences, and (4) the accuracy of
timing maintained by the station clocks. In
those cases where the great-circle approxi-
mation is an accurate representation of the
satellite’s apparent motion, the instrumen-
tation introduces very minor errors in meas-
urement. In those cases where the great-
circle approximation may no longer be
accurate, the acecuracy of the observation is
degraded because the satellite image may be
spread. This condition may occur when
long exposure times are required to obtain
images of very faint satellites, or when the
satellite angular velocity is very large.

9.2.2 Laser Ranging System

9.2.2.1 Description of Technique

A laser ranging system is an optical radar
used to measure the distance from a ground
station to a satellite. When accurate timing
and appropriate corrections for range bias
caused by the atmosphere are incorporated,
this is one of the most accurate satellite-
tracking techniques available.

The technique is made possible by the
availability of Q-switched lasers that produce
sharply defined pulses of nearly monochro-
matic high energy in a beam with a very low
angle of divergence. Equally important is
the availability of nanosecond-risetime elec-
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tronics instrumentation to handle these opti-
cal signals. The fast-risetime, small-width
pulses make time-interval measurements at
nanosecond resolution possible on the basis of
a single observation. The high degree of
collimation enables the laser beam to hit the
satellite with a significant amount of radiant
energy. Finally, the technique requires opti-
cal retroreflectors on the satellite to ensure
measurable return signals. The monochro-
matic nature of the laser output allows for
efficient filtering to improve the signal-to-
noise ratio.

The basic ranging system consists of a
laser transmitter, a photoreceiver, a mount
for the transmitter and receiver, and a time
interval counter, The observed range time is
the two-way time of flight of the laser pulse,
measured by the time interval counter.

In operation, the laser beam is pointed
to the predicted satellite position and is
pulsed at specified times. During a normal
satellite pass, the system makes many range
measurements in order to take advantage of
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the satellite geometry and to permit ac-
cumulation of data for analysis.
9.2.2.2 Instrument Description
9.2.2.21 SMITHSONIAN ASTROPHYSI-

CAL OBSERVATORY LASER
SYSTEM

The SAO laser system (see fig. 9.4) was
designed for the particular requirements and
needs of the observatory’s program in satel-
lite geodesy. The system has a static-point-
ing mount (or pedestal) that is aimed by
means of computed predictions of satellite
azimuth and altitude. This method of steer-
ing permits the system to operate when the
station is in daylight or the satellite is in the
Earth’s shadow, i.e., 24 hours per day. The
static-pointing mount was selected because it
is economical and operationally simple. The
system operates routinely at 4 pulses min—!
and is capable of operating at rates as high
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FIGURE 9.4.—Block diagram of the laser system.



804 NATIONAL GEODETIC SATELLITE PROGRAM

The laser, built in an oscillator-amplifier
configuration, generates an output of 5 to
7 joules in a 20-nsec pulse (half-power, full
width). The laser transmitter system was
produced by Spacerays, Inc., of Englewood,
Colorado. The system uses a Pockels cell and
a Brewster stack for a Q-switch and can
maintain a pulse repetition rate of 10 ppm.
Both the 0.85—cm (3/8-inch) diameter oscil-
lator ruby rod and the 1.59-cm (5/8-inch)
diameter amplifier rod are mounted in
15.24—-cm (6-inch) double elliptical cavities,
each containing two linear flashlamps. The
optical cavity of the oscillator is formed by a
flat rear mirror, with a reflectivity of 99.9
percent, and the uncoated front of the oscilla-
tor rod.

The oscillator output of 1 to 2 joules is
coupled into the amplifier through a small
. ‘beam-expanding telescope. The amplifier has
-a single-pass gain of about 4. Both ends of
the amplifier rod are antireflective-coated.

The amplifier output is expanded to fill the
12.7-cm (5-inch) objective lens of a Galilean
telescope. The telescope optics allows ad-
justment of the output beam divergence from
a diameter of 0.5 to 5.0 mrad. Mounted at
the output of the laser, ITT FW128 photo-
diodes pick up atmospherically scattered
light from the outgoing pulse and send an
electrical start signal to the time interval
counter.

The optical elements of the laser are
mounted on the machined upper surface of
an aluminum I-beam, so that dimensional
stability between the optical components will
be maintained for all pointing orientations.
Separate water-cooling systems are provided
for the ruby rods and for the flashlamps.
The coolant for the ruby rods is maintained
at a temperature of 10°=1° by thermo-
statically controlled cooling or heating ele-
ments. The lamp coolant is maintained within
10° C of the ambient air temperature. There
is provision for applying nitrogen under
pressure to the cavities, but experience has
shown that this is not necessary. A cover
over the I-beam is sealed, and desiccated air
under slight pressure is circulated through
the system.

The electronics of the laser transmitter are
basically power supplies and pulse trigger
circuits. The 1875—uf capacitor bank for the
oscillator and amplifier lamps can be operated
from 2000 to 4000 volts de. Serial triggering
of the lamps begins the discharge, which
lasts slightly over 1 msec. Approximately
800 pusec after the lamp pulse begins, the
system is Q-switched by quickly switching
to ground the high-voltage input to the
Pockels cell.

The ranging-system electronics consist of a
clock, a firing control, a range gate control,
and a time interval counter. The clock,
synchronized to within +1 usec of the station
master clock, controls the firing time of the
laser and provides the epoch of observation.
The firing rate and the time of the laser firing
are controlled by the laser control unit. The
laser firing time can be shifted by a multiple
of 0.001 sec, with a maximum of +10 sec, to
account for the early or late arrival of a
satellite at a predicted point in its orbit. The
range gate control sends a delayed pulse
of adjustable width to the counter so that
the counter can be stopped only during a
small interval of time about the predicted
range time. The range gate provides protec-
tion against triggering by sky-background
noise. The Eldorado 796 range counter is a
time interval counter with 1-nsec resolution.
It uses leading-edge, voltage, threshold dis-
criminators on the start- and stop-signal
lines. A start signal ranging from 5 to 20
volts is produced by the photodiode at the
laser output. This signal is not processed
or amplified before it reaches the start
channel of the counter. The photomultiplier
tube (PMT) output passes through a 0- to
50-db variable-step attenuator and a 32-db
fixed-gain pulse amplifier before it reaches
the stop-channel discriminator,

Stepping motors that point the mount are
driven by position control electronics manu-
factured by Zehntel, Inc., Berkeley, Cali-
fornia. Position information is maintained
in the control units, which generate the
appropriate number of drive pulses for the
motors once a new azimuth or altitude posi-
tion is demanded of the system.
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The laser ranging system has a data sub-
system that reads predicted satellite posi-
tions from punched paper tape and sends the
information to the mount and laser control
electronics and to the range gate. Azimuth
and altitude pointing angles are given in
thousandths of a degree; the range gate
setting is specified in microseconds. The
epoch for a predicted observation is dis-
played. Once the predictions start, operation
continues automatically until the satellite
pass is completed. Operation of the punched
paper-tape reader is synchronized with the
rest of the system by the laser control unit.
Output data are also handled automatically
by the data subsystem. The binary-coded-
decimal (BCD) form of the epoch of firing
and the range-time interval in nanoseconds
is serialized, converted to Baudot code, and
printed by an ASR32 Teletype machine.
ASR32 punched tape can be fed directly into
the radic communications system once a
heading is put on each data pass. The input/
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signed and constructed by SA().
The receiving telescope, made by Tinsley
Laboratories, Inc Berkeley, California, is a
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of the PMT. The optics following the ﬂat
secondary mirror pass the collimated return
signal through a 7-A filter that is both tilt-
and temperature-dependent. A micrometer
tilt adjustment tunes the filter to compensate
for effects of age and temperature. Adjust-
able field stops and a provision to insert
combinations of neutral-density filters are
available.

The photodetector, an RCA 7265, was
chosen for its quantum efficiency of 4 percent
or greater at 6943 A, This PMT has a gain
of 5x10" and a risetime of approximately
3 nsec as operated in the SAO system.

The azimuth-altitude static-pointing
mount, also built by Tinsley, has a pointing
accuracy of better than =30". Verification
of the mount position is made by viewing a

goniometer in the mount; but under normal
operations; the system is driven in an open-
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loop fashion from the electronic control unit.
The stepping-motor drive-system gearing
allows for slewing speeds of 2° sec® and
positioning increments of 0°001. The unit
can be hand-cranked, but this limits the pulse
repetition rate to 2 ppm, whereas the laser
and the data subsystem have the capability
to go to 10 ppm.

9.22.22 ATHENS LASER SYSTEM

The laser system in Athens was built as a
cooperative project between the National
Technical University and SAO and began
operation in 1968.

The laser transmitter is a Q-switched
ruby laser, manufactured by the TRG Com-
pany, now Hadron, Inc., Westbury, Long
Island. The laser transmitter has a 1-joule,
24-nsec (half-power, full width) output
pulse. The Q-switch is a rotating roof prism
with a bleachable dye. The roof prism is

driven by a synchronous motor at a speed of
30 000 rpm (500 rps). The bleachable dye is
Kodak Cryptocyanine, a metal pthalocyanine,
in an alcohol solution. The laser beam di-
vergence of 5 mrad is reduced to 1 to 2 mrad
WlLﬂ a D—LIII umzneber Udllleall te}e‘bcope
r supply has a 900—uf
-uJ.a.Auu.um \,halglug
voltage of 975 volts (960 joules). A typical
threshold is 560 joules when all optical com-
ponents are in good condition and accurately
aligned.

Photosensitive monitors are used both to
start the ranging counter when the laser
pulse leaves the transmitter and to monitor
the output power. An RCA 931 PMT senses
the light reflected from a glass plate oriented
45° to the beam. Its output is used to start
the range counter. The power monitor is an
EG&G SGD-100 semiconductor photodiode
that senses the laser light scattered from the
back of the rotating-prism Q-switch. The
output of the photodiode is monitored on a
high-speed oscilloscope.

The receiver of the system is a Cussegrain
telescope with a 40.6-cm (16-inch) para-
bolic primary and a hyperbolic secondary.
The system hag a focal length of 6.55 m and
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a focal ratio of 16. Incoming light first
passes through a 10’ field stop at the focal
plane and through a 20-A interference filter
and then falls directly on the PMT (RCA
7265), which is uncooled and operates at an
anode voltage of 2400 volts.

The laser and photoreceiver are mounted
on a modified surplus 3-inch gun mount,
which is hand-cranked in altitude and azi-
muth by two observers. One observer tracks
in azimuth and the other in altitude by ob-
serving the sun-illuminated satellite in the
illuminated reticle of a 2.7-cm (5-inch)
elbow telescope. Both observers sit directly
on the mount and move with it as a system.
This method of aiming the laser limits opera-
tions to times when the satellite is in sun-
light and the station in darkness. Pulse de-
tection is by leading-edge fixed-threshold
discriminators.

The outgoing laser pulse starts a counter
with 1-nsec resolution. The light pulse re-
flected from the satellite enters the receiving
telescope and goes through the optical chain
to the PMT, whose output is amplified and
used to stop the counter. A range gate be-
tween the pulse amplifier and the ranging
counter reduces the possibility of erroneous
range measurements due to sky-background
noise.

During operation, the laser fires every
30 sec—on the even minute and at 30 sec
after the minute. Both the exact firing time
of the laser and the range measurement are
recorded with a camera system that auto-
matically photographs the counter readings.

9.2.2.3 Accuracy and Error Budget

The accuracy of the laser systems can be
discussed in terms of random and systematic
error components. The former are those
that are uncorrelated and appear as range
scatter on a point-to-point basis, while syste-
matic errors are correlated and vary regu-
larly over a single pass or longer.

The random noise level of the systems has
been computed from data on short-arc
analyses taken during the International
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Satellite Geodesy Experiment (1971) and
the Earth Physics Satellite Observation
Campaign (1971 to 1973). This type of
analysis generally detects only random
errors, because systematic errors tend to be
absorbed into the orbit parameters when
they are adjusted in the least-squares-fitting
procedures. The best-fitting curves for single
transits were obtained by varying the mean
anomaly, its first derivative, and the right
ascension of the node. The standard devia-
tion of the data varied from 30 to 120 cm,
with a median of less than 60 cm. The domi-
nant random-error component is due to the
variation in size and shape of the return
signals. The fixed-threshold, leading-edge
pulse-detection system we are now using is
very susceptible to such irregularities in re-
turn pulses. The return signals from the
PMT may contain as few as 1 to 10 photo-
electrons. They also may vary widely in
size and shape during a single transit, owing
primarily to scintillation from the satellite
retroreflector array, irregularities in the
laser beam pattern, and the statistical nature
of the PMT detector., The expected random
variation in the triggering times of the
leading-edge threshold is a few nanoseconds
(50 cm) for our transmitted pulse width of
20 nsec. Other random influences in the
data, such as the least-count error in the
counter and the random variability of the
atmosphere, have smaller effects.

Systematic errors are considerably more
difficult to grasp. However, the size of the
systematic errors, per pass, has been esti-
mated from performance and field tests. The
+50—usec uncertainty in epoch timing could
be responsible for a systematic error of as
much as 35 e¢m for some satellite-pass ge-
ometries. The models used by SAO and
others compute the optical range correction
due to tropospheric refraction from ground-
based data. These models have an estimated
systematic error of a few centimeters at
zenith, with an approximate secant depen-
dence for zenith angles down to about 70°.
The residual error in current tropospheric-
propagation-correction models is, on the
average, probably about 4 cm per pass. The
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geometry of the satellite and the placement
of the retroreflectors relative to the satellite’s
center of mass are responsible for a syste-
matic contribution of about 10 ecm. This
error is the result of uncertainties (1) in
satellite attitude, (2) in retroreflector optical
properties and placement, and (8) in the
resultant return-signal shape and size from
the entire satellite retroreflector array. The
fixed-threshold, leading-edge detection sys-
tem is probably responsible for systematic
errors of about 3 nsec (50 ecm) for a 20-nsec
pulse width. This is in addition to the ran-
dom variations and arises from systematic
differences in the triggering point on the out-
going and the return pulses. Calibration on
a fixed target is also an area where sys-
tematic influences are introduced through
survey error and inaccuracies in the time
interval measurement. It is estimated that
systematic errors of about 10 em may be in-
troduced during calibration. If the sources
of these errors are assumed to be inde-
pendent, the total estimated influence, or root
sum squarced, is about 57 cm.

A two-laser collocation test was performed
on satellite 6800201 (GEOS-2) at SAO’s
Mt. Hopkins Observatory, Arizona, from
Gcelober 1969 to January 1970. SAO’s laser
there and a mobile lager system operated by
National Aeronautics and Space Administra-
tion (NASA) participated. The objective
was to determine the relative accuracy of
two laser systems that were being used in
the routine collection of satellite geodetic
data. Since the two systems were built, cali-
brated, and operated by independent groups
and since the instrumentation designs were
different, the experiment gave a good esti-
mate of the system-induced bias errors that
can be expected. During the experiment, the
two systems demonstrated a relative ranging
accuracy of 1 to 2 m. In half the satellite
passes, the difference in the range measure-
ments of the two systems had a bias of less
than 1.2 (see fig. 9.5). The sign of the bias
changed several times during the 4-month
experiment. At the time, it was felt that
these bias components were primarily intro-
duced into one or both of the systems during
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FIGURE 9.5.—Distribution of relative system biases.

the calibration procedure, which involved a
determination of the system delay by rang-
ing on a target at a known distance from each
laser. Both systems have undergone sig-
nificant modifications since the time of the

rcde ~An o

collocation, and the systematic error in each
has been substantially reduced.

9.2.3 Timing System

Each station has a timekeeping system
to provide precise epoch data for each ob-
servation. The station cleck is basically a
crystal oscillator, a time accumulator, and
a system of time and frequency monitoring
aids. The clock has a dual-channel redun-
dancy and a battery-backed power system
to guard against loss of time continuity.

The clocks that were used in the Baker-
Nunn network until the mid-1960’s relied on
a WWV-emitted time pulse and tone refer-
ence for both time and frequency settings.
The active electronic components were vac-
uum tubes, and the time readout was in the
form of rotating mechanical indicators and
a rotating spot on an oscilloscope. Limita-
tions on the stability and reading accuracy
of the oscilloscope display led to the use of a
fully electronic system featuring solid-state
digital circuitry and a high-stability fre-
quency standard.

The present clock has a Sulzer 5-MHz
crystal oscillator stable to 1x10-° day* and
is generally kept within 5x10-° of UTC
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(USNO). It can be adjusted to 1x107"".
The frequency of the oscillator is maintained
through frequency and phase comparisons
with stable VLT transmissions from stations
such as NAA and NLF.

A locally generated 100-kHz signal is
phase-locked to the VLF signal and then
compared in phase to a 100-kHz reference
signal from the clock. A relative phase posi-
tion record is kept, which helps maintain
station time to greater accuracies than is
possible with the HF timing pulses.

The components of the EECo timing sys-
tem are the clock’s accumulator, the Sulzer
oscillator, a VLF tracking receiver, a WWV
receiver, a chart recorder to display the VLF/
clock phase relationship, an oscilloscope
(Tektronix 561A), and an ac—dc-ac battery-
backed power system. Some stations have a
secondary timing system, made up by dupli-
cating most of these same elements. Other
stations have a backup clock, consisting
simply of an oscillator and a miniaturized
digital counter.

The accumulator of the master clock sys-
tem is a 100-kHz digital counter that offers
a visual display of time in hours, minutes,
seconds, and fractions of seconds to 10—psec
steps for precise timing control.

Timing at the stations is checked primarily
by means of portable-clock trips. Although
the VLF tracking receiver does not give
epoch information, it does provide an accu-
rate method of maintaining a record of time
position relative to the setting obtained from
the portable-clock comparison. Maintenance
of accurate time between trips is facilitated
in some locations by using the time tick of
WWYV and times sources of other agencies.
The HF time signals offer the station a con-
venient time reference, but accuracies are
limited to = 0.5 msec at best, owing to varia-
tions occurring over the long propagation
paths to the stations.

At the laser stations, clocks routinely pro-
vide epoch to =50 usec (UTC) by means of
portable-clock trips, which are conducted
once a year on the average. During specific
experimental periods, time has been cor-
rected to +25 usec through extra care in

VLF monitoring, more frequent checks by
portable clocks, or other means of reference.
The less stringent timing requirements at the
camera stations (=100 usec) are achieved
through less frequent portable-clock trips.

9.2.4 SAO Satellite-Tracking Network

9.2.4.1 Sites

The first Baker-Nunn camera was sent to
Organ Pass, New Mexico, at the observing
site of the Harvard Meteor Program. The
first successful observation was made No-
vember 26, 1957, just a month and a half
after the launch of the first artificial earth
satellite. The network had expanded by the
following August to 12 operating Baker-
Nunn stations. Table 9.1 shows the history
of the Baker-Nunn sites to date.

After 8 years, it became apparent that
higher accuracies were needed for future
scientific projects. By March 1966, SAO had
assembled, tested, and operated its first laser
system. It consisted of a rented General
Electric laser mounted on a 3-inch gun mount
with a searchlight as receiver. This system
operated successfully for over a year at the
New Mexico site, during which time plans
were formulated for a prototype laser system
with components designed and built specifi-
cally for that purpose.

The prototype system was operating at
Mt. Hopkins in December 1967. Three pro-
duction laser systems, based on the design
and experience gained with the prototype,
were fielded in late 1970. In 1972, the Mt.
Hopkins prototype was reworked to make it
similar to the three production systems.
Table 9.2 shows the history of the lasers to
date. Figure 9.6 shows the present global
distribution of stations, including the loca-
tion of laser systems.

The present SAO sites that contain both a
laser and a Baker-Nunn camera are Mt.
Hopkins, South Africa, Peru, and Brazil.
The last three stations are staffed and
operated by SAO personne] with logistic sup-
port provided by cooperating agencies in
each country: the Council for Scientific and
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Industrial Research in South Africa, the
Instituto Geofisico del Peru and the Uni-
versidad Nacional de San Agustin in Peru,
and the Instituto Nacional de Pesquisas
Espaciais in Brazil.

The Baker-Nunn site in Maui, Hawaii, is
staffed and operated by SAO personnel in
conjunction with the University of Hawaii.
The camera in Australia is operated by the
Department of Supply of the Australian
government. The stations in Spain, Ethiopia,
and Greece are supported and operated
jointly by the Smithsonian and cooperating
agencies: the Spanish Naval Observatory in
Spain, the Haile Selassie I University in
Ethiopia, and the NTU in Greece. NTU also
operates a laser system. A laser system be-
longing to the Centre National d’Etudes
Spatiales (CNES) is currently located at
Addis Ababa, Ethiopia.

The tracking station in Japan is operated
by the Tokyo Astronomical Observatory and
has, in addition to the Baker-Nunn camera,
a laser system designed and built in Japan.
The Baker-Nunn camera in India is operated
by the Uttar Pradesh State Observatory.

A Baker-Nunn camera on loan to CNES
has been used at several locations in Africa;
it is currently in operation in Ouagadougou,
Upper Volta.

Beginning in 1964, several Baker-Nunn
cameras operated by the Tth Aerospace
Squadron at ENT Air Force Base have par-
ticipated in SAQ satellite-tracking programs.
The sites are listed in table 9.3, SAO sched-
uled observing times and provided predic-
tions for simultaneous observations. These
data have been included in the SAO analysis
and are incorporated in the SAO data file.

9.2.4.2 Operations

The SAO Baker-Nunn cameras and laser
systems receive new satellite predictions each
week., The predictions are computed from
up-to-date observations provided by the SAO
network and by camera, MINITRACK, and
laser system observations made by other
agencies (see table 9.4).

The predictions for the Baker-Nunn
camera consist of azimuth- and altitude-
pointing angles, which need be accurate to
only a few degrees, and tracking-angle rates
to simulate the satellite motion (Cherniack
and Gaposchkin, 1963). These predictions
are generated from orbits computed with a
simple model of the earth’s gravity field. The
short-periodic terms due to C. and the long-
period terms due to the odd zonal harmonics
are included. The secular rate of the apsidal
line and the argument of perigee are deter-
mined from the data for each orbit. The
orbits are generated with the Smithsonian’s
Differential Orbit Improvement (DOI) pro-
gram (Gaposchkin, 1964) from observations
covering a period of about 2 weeks.

The laser, on the other hand, requires
azimuth- and altitude-predicted pointing
angles accurate to within several minutes of
arc and a predicted range propagation time
accurate to within 20 usec for a given epoch.
Orbits for laser tracking predictions are also
generated with the DOI program by using a
gravity field with most of the tesseral har-
monics through degree and order 16 and with
a number of higher resonance terms. Lunar
perturbations are also included. Again,
orbits are computed from data covering a
period of about 2 weeks. Predictions for
satellites equipped with retroreflectors are
made for passes that reach altitudes greater
than 25°,

The success of the network has depended
on the timely flow of data from the field, the
development of pointing predictions from
up-to-date data, and the use of these fresh
predictions at the field stations. The rapid
data-prediction cycle is most critical for the
laser, which has stringent pointing require-
ments; however, it is also an important fac-
tor in the Baker-Nunn operation, especially
for simultaneous observations between sta-
tions for geometric geodesy.

Until 1968, direct links by teletype between
the field stations and Cambridge provided
real-time communications. Since then, a
combination of means has been used to give
real-time or near real-time communications
at each site. Peru and Brazil receive predic-
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tions and send their camera and laser data
by direct radio-teletype link operated by
SAO personnel. These stations have pre-
arranged contact times for data transmis-
sion. Atmospheric disturbances severe
enough to affect the link are infrequent.
The tracking sites in Hawaii, Japan, Spain,
Greece, and Arizona use facilities of the
United States military communications het-
work for transmission and receipt of data.
The first three stations have direct access to
this network, while those in Greece and
Arizona must pick up and deliver messages
at local military bases. The stations in
Australia and South Africa use the NASA
data network (teletype). Predictions for the
Ethiopia station are sent via NASA teletype
link to CNES in France and are retrans-
mitted on their lines to Ethiopia. CNES
generates and sends predictions for their
laser, located in Ethiopia, as well as predic-
tions for the 12th Baker-Nunn camera, now
in Upper Volta, Data are currently returned
to Cambridge by Embassy mail. The site in
India receives predictions from SAO via the
United States Embassy in New Delhi and

sends its data back by way of commercial
cable.

in case of transmission delays At present
an average of 10 arcs is predicted per station
per night. In the past, as many as 50 arcs
were predicted for each station. Observa-
tions are reduced in the field to an accuracy
of 40” to 60” and sent to Cambridge immedi-
ately for use in the prediction cycle. The
camera film is sent by commercial mail for
subsequent precise reduction (photoreduec-
tion).

Predictions for the laser system are in
the form of punched paper tape, which is
used directly to point the laser. Each
predicted arc contains from 10 to 90 sepa-
rate points (4 min'), depending on the
geometry of the pass. Stations receive 40 to
100 predicted arcs per week for three satel-
lites currently being tracked: GEOS-I1,
GEOS-2, and BE-C. All seven retrore-
flector-equipped satellites have been tracked.

Satellite ranging data, system calibration
data, and ground-based meteorological data
are sent to SAO.

9.3 DATA AND DATA REDUCTION
(Seren W. Henriksen)

This section summarizes the data used in
(1) deriving coordinates for the locations
of various tracking stations (sec. 9.5.1) and
in (2) determining the Earth’s gravitational
potential (sec. 9.5.2). Data relating to the
former are summarized in section 9.3.1;
those relating to the latter are summarized in
section 9.3.2. The section also describes (sec.
9.3.3) the preprocessing applied to data from
Baker-Nunn cameras and laser systems.

9.3.1 Data Used in Determining Coordinates
(G. M. Gaposchkin, J. Latimer, and G.
Veis)

9.3.1.1 Geometric Method
The geometrical solution included two net-
works: 27 stations of the SAO network, in-
cluding the U.S. Air Force’s Baker-Nunn
cameras and several European stations; and
48 stations of the National Ocean Survey
{NOS) RC-4 network., Of the SAQ group
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namical solution. The SAQO data block con-
sisted of 5200 pairs of synthetic simultaneous
observations (table 9.5), or about 50 000
individual direction observations processed
at SAO. The satellites observed were
6102801 (MIDAS-4), 6303004, 6508901
(GEOS-1), 6605601 (PAGEOS), 6800201
(GEOS-2), and 6305501. The BC-4 data
consisted of 2157 pairs of simultaneous
events (photographs of PAGEOS). Each
event generally consisted of seven directions
and a covariance matrix from each of the
two stations. When more than two stations
observed the satellite simultaneously, we
treated each station pair separately. The
BC-4 data were obtained from the National
Space Sciences Geodetic Satellite Data Serv-
ice at the National Aeronautics and Space
Administration/Goddard Space Flight Cen-
ter (NASA/GSFC) (see ch. 1). The data
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were acquired, reduced, and processed by the
NOS. The standard deviations assigned to
the directions are given in table 9.26b.

In geometric work, SAO observations re-
fer to the equator and equinox of 1950.0.
They are corrected for the effects of annual
aberration, diurnal aberration, parallactic
refraction, and planetary aberration and
then converted to the terrestrial system of
SAQ, which is fundamentally defined by the
mean pole of 1900-1905 of the International
Polar Motion Service (IPMS) and by the
meridian of the Mean Observatory and UT1
of the Bureau International de I’'Heure
(BIH). The BC—4 data are in the same refer-
ence system.

9.3.1.2 Data Used in Dynamic Method

The stations whose data were used in the
dynamic method are listed in table 9.6; the

NATIONAL GEODETIC SATELLITE PROGRAM

observations used are from the satellites
listed in table 9.7. The distribution of these
satellites (inclination versus height) is
plotted in figure 9.7. Satellite arcs were
chosen from satellites whose orbits were rela-
tively uncorrupted by errors. Specifically,
we eliminated satellites with drag model
errors (large area-to-mass ratio and low
perigee height) particular sensitivity to
gravity-field model errors (resonances), or
poor orbital distribution (less than six sta-
tions observing the satellite). The data were
kept in two parts. Before 1970 most of the
observations were directions. A number of
laser system ranges were made, and where
it was possible to do so, they were included
in the orbits. In 1971, the International
Satellite Geodesy Experiment, ISAGEX, a
cooperative tracking program with 10 laser
stations, was carried out and provided for
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the first time relatively complete orbital and
geographical coverage with laser data. From
these ISAGEX data, 15 orbits were selected
and used in the dynamical determination of
station coordinates.

The assumed accuracies of the instruments
are given in table 9.8. Camera data were
given an assumed accuracy of 4”. When five
or more observations were made within a
few minutes, e.g., of GEOS flashes, a
smoothed or synthetic observation was de-
termined. The same calculation was used to
generate simultaneous observations, since in
general one cannot make exactly simultane-
ous observations. These synthetic observa-
tions were given an accuracy determined
from the polynomial fit. If the computed
uncertainty was less than 27, then 2" was
used. Inthe reduction of camera data, annual
aberration and parallactic refraction which
were determined from mean nighttime tem-
perature and pressure for each station, in
addition fo precession and nutation, were
applied.

The distance measurement in range data
used in this analysis has a precision of 1 to
2 m. The accuracy, including timing errors,
will notl be so good. In addition, other errors,
Thﬂ\@ dHP fﬂ tne gram'mﬂr_\nal ﬁplﬂ are

Iarge. Therefore, the assumed accuracy
of the laser system data was taken to be
5 m. Some laser system data taken in 1967
appear to have errors in timing of a milli-
second, and these data were given an as-
sumed accuracy of 10 m. Furthermore, cer-
tain laser systems provide a larger volume of
data than is useful here (e.g., more than
400 points per pass). Therefore, for passes
containing more than 25 points, approxi-
mately 25 evenly distributed observations
were selected. Numerical experiments indi-
cated no improvement in the results by
smoothing the points or calculating synthetic
observation.

The laser system data were corrected for
tropospheric refraction with the use of ob-
served values of pressure, temperature, and
relative humidity. In addition, the observa-
tions were reduced to the center of mass of
the satellite by means of the formulas pre-

sented in table 9.9, These formulas relate
the range correction A in meters to the
angle ¢ in degrees between the satellite’s axis
of symmetry and the line of sight to the ob-
serving station. The corrections made in this
manner are relatively small but systematic.
The tropospheric correction is 2.1 m at
zenith, and the reduction to the center of
gravity is 80 cm for GEOS-1,

Table 9.8 summarizes the adopted un-
certainties. Table 9.10 gives the number of
observations selected from the data.

The dynamical solution used data taken
between 1962 and 1969 on 140 arcs of 15
satellites and ISAGEX data taken in 1970 on
15 arcs of 3 satellites, These two sources of
data were kept separate, and several solu-
tions were made.

Since the ISAGEX data are of a new type,
we examined the origin of the node and the
relative weighting in order to find the best
treatment, Two iterations were performed
as part of the larger computation of station
coordinates, The pre-ISAGEX data were in
arcs from 4 to 30 days, as appropriate, and
the ISAGEX data were in 10-day arcs.

The length scale in a dynamical solution

is, for ail practical purposes, fixed by the
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rantne thy 1
Us veluor tnrsugn

1QUCHS 01 T4

re ( (inM ) (1—cos E) (1+perturbations)

With camera directions, no further infor-
mation in scale is available. With range data,
both scale and GM can, in principle, be de-
termined. The unit of distance then is de-
fined by the speed of light and becomes the
“light second.” In this analysis, GM was
assumed to be the value given in table 9.11.
Our dynamical scale is therefore defined by
GM. If this value of GM is far from the
true value, some deterioration of the co-
ordinate will result. We return to this
question in the discussion and evaluation of
results,

Table 9.11 gives the values adopted, in this
computation, for GM, ¢, and k..
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9.3.1.3 Data Combined With Both Methods

9.3.1.3.1 INFORMATION FROM DEEP-
SPACE PROBES

JPL operates the Deep Space Net (DSN),
eight stations for tracking deep-space probes.
Data from the DSN have been used to obtain,
among other parameters, the Ilongitudes
(relative and absolute) of each station and
the distance of its antennas to the Earth’s
instantaneous axis of rotation (Vegos and
Trask, 1967; Trask and Vegos, 1968). The
DSN data are particularly interesting be-
cause (1) they constitute a unique, comple-
mentary, and independent determination of
geocentric locations, and (2) they provide a
very strong determination of scale.

Comparisons of the JPL and SAQO results
were made by Veis (1966a) and Vegos and
Trask (1967) from data from the Ranger
missions and from SE I (Lundquist and Veis,
1966). More refined JPL solutions were
combined with satellite-tracking data in the
determination of SE II. The combination
was made with Location Set (LS) 25, as
determined by Mottinger (1969), by using
data from the Mariner 4 and 5 missions.
Continued refinement of the DSN data has
provided LS 37, which is used in the present
analysis.

Each DSN site is located near other sta-
tions whose coordinates were determined
in the analysis presented here. Surface-
triangulation data, in the form of geodetic
coordinates, can be used to relate the DSN
coordinates to the SAO coordinates.

The ephemeris r of a deep-space probe is
assumed known. For a distant spacecraft,
the observed range rate s can be expressed
approximately as

p=1+ o7, cos 8 Sin (ot;—cto)

where « is the earth’s rotation rate, r, is the
spin-axis distance of the observer, 8§ and a,
are the declination and right ascension of
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the spacecraft, and a, is the right ascension
of the observer. Each station observes a
diurnal variation in p, the amplitude and
phase depending on 7, and a, respectively.

Generally, any data can be analyzed. How-
ever, cruise data seem less reliable than
close-encounter data for determining o, and
they are used only for the determination of
r.. In any case, refraction (tropospheric
and ionospheric) and orbit computation must
be done with great care, and recent improve-
ments come from refinements in the treat-
ment of refraction, The ephemeris », (8, ao)
will be determined in the system of the JPL
planetary ephemeris. We can expect to find
a systematic difference in the definition of
longitude between the planetary ephemeris
and the astronomical reference system
(FK4) used for analysis of close-earth satel-
lites. The DSN data reduction used numeri-
cal values for pole position and UT1 from
BIH, as was done for the close-Earth-satellite
analyses.

The data for LS 37 are summarized in table
9.12. The main improvements over LS 25
are as follows: (1) better treatment of re-
fraction, particularly ionospheric; (2) inclu-
sion of more data because of (1) ; (3) inclu-
sion of Mariner—6 encounter data; (4)
revision of the planetary ephemeris; and (5)
use of BIH polar motion and UT1. Realistic
estimates of accuracy are 2 m for r,, 4 m for
absolute longitude, and 2 m for relative longi-
tude (Mottinger, private communication,
1972).

Mottinger provided a solution and covari-
ance matrix for 7, A, in addition to the
masses of Venus, Mars, and the Moon and
the oblateness of Mars. This system was
transformed by SAO for corrections in co-
ordinates X, Y of the station. These con-
verted equations were then added to the
larger system of normal equations, which
included the other stations sought.

The LS 37 coordinates for the DSN sta-
tions are given in table 9.13. In LS 37, the
relative coordinates of DSS 11, DSS 12, and
DSS 14 and of DSS 61 and DSS 62 were
constrained to agree with the survey data.
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9.3.1.3.2 INFORMATION FROM SUR-
FACE TRIANGULATION

Extensive surface-triangulation data exist
that relate station positions, These data are
generally given in terms of datum coordi-
nates and occasionally in terms of intersta-
tion vectors for collocated stations. We have
used this information in four ways:

(1) For stations in the same datum, the
geodetic coordinates are used as observations
relating the positions of the stations in the
general combination adjustment.

(2) For collocated instruments, these
datum coordinates are used as a constraint
relating the two sites. These cases could be
treated as in (1) above.

(3) The geodetic coordinates are utilized
as a check on the accuracy of the final co-
ordinates.

(4) The geodetic coordinates are em-
ployed to determine the relation of each
datum to a geocentric reference system.

Evaluating geodetic coordinates is the
most difficult aspect of this analysis. When
iabl arc very accurate but prob-

f
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#
i
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n
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o

in (i), (2), aud (3) above, care must be
taken to ensure that datum tllts, distortions,

sults. For most uses, limiting the application
of geodetic coordinates to lengths of 100 km
or less is satisfactory. Otherwise, the datum
orientation must be determined and applied
before the geodetic coordinates can be used
with geocentric satellite-based coordinates.

The use of datum coordinates as observa-
tions of relative station positions assumes
no correlation between X, Y, and Z. If we
have datum coordinates for station ¢, X¢
Y4, Z¢, and initial values for the geocentric
coordinates that are to be corrected, X9, YY,

9, we can write observation equations for
each component of the vector between two
stations:

X4_ —X%+AX,— X,

with similar expressions for Y and Z. If
these are given weights W;;, we can immedi-
ately write the normal system as

ZO’{]‘ ... — Oy AX;

—0i . . Zm] A.-Xj
Zo'ii[(Xd_ - (Xi—-X9)]
ZWJ‘[(X';"“ 1) — (X5-X19)]

where o;;= (1/W;;)2 This system can aug-
ment a normal system for determining AX,
AY, AZ.

The weight W, of the geodetic ties
chosen is given in table 9.14. Table 9.15 pre-
sents the geodetic coordinates for all the sta-
tions used in the 1973 Smithsonian Standard
Earth (SE I1I).

9.3.2 Data Used for Potential
(F. 1V1 Gaposchkin, M. R. Williamson, Y

T A ATandach
AGZai, and G, Jaenucs;

The potential was divided into two parts:

vlie expressed by zonal harmonies and the

other by tesseral (sec. 9.4.3). The data used
for the two parts were different. In the de-
termination of the zonal coefficients, secular
changes in the Keplerian elements were ex-
pressed as functions of the zonal coefficients.
(The “observed” quantities in secs. 9.3.2.1,
9.4.3, and 9.5.2 are not observations but
values of , @, etc., computed from observa-
tions.)

9.3.2.1 Data Used in Determining Coefficients

of Zonal Harmonics

Table 9.16 gives the orbital elements for
the 14 satellites of this analysis. Gaps still
exist in inclinations around 20° and 40°. The
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values of (O-C) for the secular motions
and the amplitudes of f:g;%w terms based
on 1964 values (Kozai, 1964) follow:

o day! Q day A,
DIAL —0201806 0°01012 —0°070
+9 =7 +5
PEOLE —0.0022 0.00516 0.045
+8 +10 +30

AQ AI Ac

DIAL —02019 0°0043 —9.1x10°
+=3 =3 +6
PEOLE —0.002 —0.0017 2.8x10°°
=5 +30 +2.0

The large values of (O-C) for these two
satellites show that the previous sets of zonal-
harmonic coefficients were inadequate.

The data for DIAL were derived from
orbital elements from March 18 to July 16,
1970; during that period, the argument of
perigee made four revolutions. The orbital
elements for PEOLE were obtained for
January 9 to March 13, 1971, and for March
28 to August 30, 1971. These data are not so
accurate as those for DIAL, since there were
not enough observations and there was a
period during which no orbital elements were
available.

In this new determination, the (O-C)
values for satellite 6000902 are a revision
by Gaposchkin for February 10, 1961, to
April 21, 1963.

The other satellites included in this de-
termination are 6001301, 5900101, 6202901,
6302601, 6206001, 6508901, 6101501,
6400101, 6406401, 6508101, and 6102801.
The data for these satellites are the same
as those given by Kozai (1964). The
(O-C) values were computed from the
1964 values of coefficients as given in table
9.17.

The following values have been used for
the geocentric gravitational constant and the
equatorial radius of the Earth:

GM =3.986 01 x 102 cm? sec2

a,=6.378 16 x10° cm (9.1)

Table 9.18 lists the values of (0O-C), based
on the coefficients from Kozai (1964), for the
secular motions of the 14 satellites and their
standard deviations. The latter are used to
compute weights assigned to the data. The
columns headed I and II represent the differ-
ences computed by 12 unknowns and 11 un-
knowns, respectively, and the dates refer to
previous Kozai solutions. Kozai (1969) in-
tentionally increased some of the standard
deviations, since he thought that neglect of
higher order terms would cause errors larger
than the standard deviations of the observed
values; For the same reason, we have in-
creased the standard deviation (10-¢ degree
per day) to 3°x10-¢ day* for « of satellite
5900101 and © of satellites 5900101, 6000902,
6302601, 6206001, 6101501, and 6508101.
The standard deviation assigned to the secu-
lar motions of 6508901 was erroneously given
in the previous paper.

In the determination of even-order har-
monic coefficients, we have used the secular

motions and the amplitudes of 2?320) terms

for selected orbital elements of those satel-
lites for which the eccentricities are small.
We could not use data from the other satel-
lites, since the orbital elements available
for them were not of sufficient accuracy.
The (O-C) values and their standard devia-
tions for the amplitudes of the long-periodic
terms are given in tables 9.19 and 9.20. The
longitude of the ascending node and the in-
clination have been omitted for some of the
satellites in tables 9.19 and 9.20 because
their amplitudes are extremely small. The
differences for «» of 6508901 and 6101501 and
for e¢ of 6400101 computed after the de-
termination were found to be much larger
than their standard deviations computed
from observations. Also, since the inclina-
tions of these satellites are near the critical
inclination, higher degree interaction terms
neglected in the computations—such as
C%/C, and C3% C,/C,—might have affected
the data reduction. For these reasons, we
increased the standard deviations assigned
to these data from 1.5, 2, and 1 to 4, 5, and 3,
respectively; the increased values are given
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in table 9.20. One misprint appeared in
table 2b of Kozai (1969): (O-C) for o of
6508901 should be (6=+2) x10-® instead of
(6+2) 10,

9.3.2.2 Data Used in Determining Coeffi-
cients of Tesseral Harmonics

9.3.2.2.1. SATELLITE TRACKING DATA
Laser data from ISAGEX provided global
coverage with 2-m data for the first time.
Table 9.7 lists all the satellites used in the
analysis, including those from which
ISAGEX and earlier observing programs ob-
tained laser data, and figure 9.7 shows their
distribution in inclination and height. Sepa-
ration of the station-coordinate and the
gravity-field determinations allowed a better
selection of satellite data. For the former,
high satellifes less affected by the anomalous
gravity field were emphasized, while for the
latter, lower satellites, with a better distri-
bution, were stressed. Certain satellites with
unmanageable, long-period resonances (e.g.,
1) \!YQV‘Q 11Qn,

used only for the determina-
uuu of smuu 1 coordinates; the;

1
I" g

rici IIIIII\I Of dala Lnal ©

orbits (4 days) could be derived for this
purpose.

Kach observation was given an a priori
weight (detailed in table 9.21 so that when
the normal equations were combined, each
type of data could be scaled. The scale fac-
tor for surface-gravity data was arrived at
by experiment. The scale factors for the
550 km x 550 km anomalies and for the zero
anomalies were chosen so that the resulting
solution improved the satellite orbit, the sur-
face-gravity residuals, and the errors in the
surface-gravity comparison and did not in-
troduce spurious short-wavelength detail
where no surface-gravity data were avail-
able.

All available optical data were used for
the orbital ares chosen. For each pass of
laser data containing more than 30 points,
approximately 80 uniformly distributed ob-
servations were selected.

9.3.2.2.2 TERRESTRIAL GRAVITY DATA

The primary objective of the analysis of
terrestrial gravity data was to obtain mean
anomalies for regions 550 km x 550 km.
When these data are combined with the
satellite-perturbation analysis, the spherical
harmonics representing the geopotential can
be determined. A set of gravity data with
known (and preferably simple) statistical
properties is needed. Our approach is based
on covariance analysis, following the ideas
of Wiener (1966) and Kolmogoroff. When
this technique is used in communications
engineering, it is sometimes known as filter-
ing theory. The ideas here are an extension
of a one-dimensional time series to the two-
dimensional surface of a sphere (Kaula,
1967d).

Estimation of gravity by covariance meth-
ods hinges on the stationarity of gravity
data; that is, the statistical properties of
the data are independent of location. There
is some cvidence that gravity data are not
stationary; however, if some subsets of the
total gravity population are stationary, then
'*ravny covariance funciions between sels
and within each set can

The 1°x1° Data Available.—A set of
1°x1° mean free-air anomalies, contain-
ing 19115 measured means, was obtained
from ACIC (1971), and another set, of 1454
1°x1° means for Australia, from Mather
(1970). The two sets were combined, with
the Mather data being used for all areas
they covered. Figure 9.8 shows the geo-
graphical coverage of all the data. The com-
bined data set contained 19 328 means. A
complete set of 1°x1° mean topographic
heights, used to define oceanic and continental
areas, was obtained from Kaula (Kaula and
Lee, 1967). The distribution of 1°x1° mean
gravity data is summarized below:

Depth of Ocean Continent
boundary Meas- Meas-
(km) ured Total ured Total
0 9213 42918 10 115 21 882
—1 7015 36 195 12313 28 601
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FIGURE 9.8.-—Distribution of 1° X 1° surface gravity data.

The estimated uncertainty given with each
gravity anomaly for 99.9 percent of the data
is less than 25 mGal. Comparing the Mather
data with the ACIC data at the 1241 common
points, we find that the average difference is
1.7 mGal and the root-mean-square differ-
ence is 20 mGal. At a number of points, the
discrepancy between the two sets exceeds
100 mGal.

The Estimation Procedure.—Kaula
(1967d) has developed a procedure that
greatly simplifies the calculation of covari-
ance function which is called the block co-
variance function, and the gravity estimates.
This method has both advantages and dis-
advantages. The disadvantages are (1) the
estimate of gravity does not make use of all
the gravity information (i.e., the estimates
are not as good as possible) ; and (2) the
covariance function must be determined by
using only the combinations of anomalies
within blocs and therefore is not determined
with all possible combinations of the data.

The advantages of Kaula’s method are as
follows: (1) it greatly simplifies calculation
of the covariance function and the gravity
estimates; (2) it produces mean anomalies

550 km x 550 km with uncorrelated errors;
and (8) the statistical properties of data
within a block may be closer to stationarity
since the method involves primarily the
short-distance covariance.

If gravity were a stationary process, then
it would have the same statistical properties
everywhere. Possible nonstationarity was
investigated by determining the covariance
function for subsets of gravity data. A sepa-
ration of oceanic from continental gravity
was used. A 0- and a 1-km depth were used
to define the ocean-continent boundary, which
was determined from topographic data. The
boundary was also expanded to a width of
400 km for the 1-km depth, and the covari-
ance functions were computed without the
gravity data in that region. Finally, gravity
data were divided into an equatorial set,
|¢|<=/4, and a polar set, |¢|>n/4. The co-
variance functions for all the gravity data
and the four sets of split data and the block
covariance function are plotted in figure 9.9.

Since the differences between the covari-
ance functions are significant, we conclude
that gravity is not stationary. Any estima-
tion procedure that makes that assumption
must be carefully examined.
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The different estimates of gravity from the
global covariance estimator, from the split
covariance estimators with a 0- and a —1-km
ocean-continent boundary, and from the
Kaula estimator were obtained and com-
pared. At the equator, the Kaula-type units
and the 1°x1° areas coincide, so that the
four estimates can be compared directly.
Figure 9.10 shows a few blocks at the equa-
tor. Large differences are in blocks with few
observed points. In the combination with
satellite data, these points will have a small
effect due to the weighting, which is propor-
tional to the number of units contributing
to the average. Therefore, by using the
block covariance estimator of Kaula, we ob-
tained a statistically independent set of
550 km x 550 km averages with no loss of
accuracy. Block covariance provides the
optimum set of gravity anomalies to be used
in combination with satellite observations.
Of course, of all the methods used here, the
split covariance estimator is preferable for
the prediction of 1°x1° mean gravity
anomalies.

The gravity anomalies are given with re-
spect to the International Gravity Formula
(Heiskanen and Moritz, 1967, p. 79) and
must be corrected to refer to the best-fitting
ellipsoid defined by C, and the adopted values
of a,, GM, and o,. We must also include the
Potsdam correction of —14 mGal. Using the
following initial values:

(.= —484.170 x 10"
a,=6.378 140 x 10° em

GM = 3.986 013 x 102° cm? sec™?
o= "7.292 115 085 x 10-° sec™

we have
1/f=298.256
and the correction

89sa0—8gmt=1.3—13.8 sin? ¢ mGal

9.3.3 Preprocessing
(M. R. Pearlman, J. M, Thorp, C. R. H.
Tsiang, D. A. Arnold, C. G. Lehr, and J.
Wohn)

9.3.3.1 Baker-Nunn Camera Data

9.3.3.1.1 STAR CATALOG

The stellar reference system used for the
Baker-Nunn reductions is defined by the SAO
Star Catalog (Staff, Smithsonian Astro-
physical Observatory, 1966) which contains
approximately 260 000 stars. The average
standard deviation of the positions in the
SAO catalog is of the order 0”5 for the cur-
rent epoch, although individual values may
range from 0 to 2”5. The SAO catalog is in
the FK4 system, which has possible sys-
tematic errors of 072 ; further, in the compila-
tion of the other star catalogs into this
fundamental system, substantial systematic
differences may have resulted for some re-
gions of the sky. Until more observational
data become available from new catalogs,
there is no means of determining the magni-
tudes of these errors; and as these discrep-
ancies will be systematic over large parts of
the sky, they cannot be detected from the
film reduction. The best safeguard against
systematic errors is to observe the satellite
in as many regions of the sky as possible.
This means that more observations are re-
quired for a specific problem than would be
indicated by a simple theory based on random
errors.
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yvet commensur ate with the nthmal char-
acteristics of the camera and with the ex-
ternal phenomena affecting the observatlons

This economic requiremen
"nportam be eause a total
o} L:

aurmg the program.

The chief advantage of the astrometric
\1urne1 b) method is that a v'ar"‘ty of ,,he-
nomena affecting the relative positions of the
satellite and the star images need not be
corrected for explicitly. The method de-
seribes an affine transformation between
the standard coordinates and the plate co-
ordinates. It assumes that (1) the two co-
ordinate planes are parallel and (2) a small
field is used. This first requirement is ade-
quately satisfied by the design of the camera,
the principal ray at any point being normal
to the backup plate. The second requirement
is met by using only those reference stars
that lie within 2° to 225 of the satellite image.

at SAO. Our reductlon procedure is based
on astrometric principles, which differ sig-
nificantly from the photogrammetric meth-
ods widely used in conjunction with ballistic
cameras.

Because of the differences in the data-
acquisition and reduction techniques, a direct
comparison of the astrometric and photo-
grammetric methods is not valid. A brief
generalization, however, can be made : Astro-
metric methods are most suitable where nar-
row fields (<5°) are used; the photogram-
metric methods are most applicable to wide

fields (20° to 30°); and in the intervening
range, a compromise between the two meth-
ods will often provide the most practical
solution. The reduction procedure to be
employed is ihe one that is most economical

The reductions are valid for any small area
away from the physical film center, although
residual distortions at the outer parts of
the field mean that the satellite image should

lie within gbout 10° of the center,
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Transformations.—The relationship be-
tween the stellar coordinates and the stand-
ard coordinates is expressed by the azimuthal
equidistant projection. Let D, and A,, re-
spectively, denote the declination and right
ascension of the adopted film center, and
5 and ¢, the declination and right ascension
of the satellite position. Then

v, 1 0 0
v, |=[ O sin D, cos D,
<?}3) <0 —cos D, sin D0>
—sinAd, cosd, 0
—cos A, —sind, 0
0 0 1

COS o COS &
sin o cos 8
8in § )

and the standard coordinates (¢, ») of a
reference point become

_v 6
C—-vz -t
v, 6
=2, 'ﬁf

where f is the camera focal length and 6 is
the angle between the plate center and the
star; that is,

f—tan-t (Vv?+v§>
V3
D=tan¢

Such a projection is valid for any region
of the film. The adopted choice for the film
“center” ig the geometric center of the se-
lected images of reference stars. With well-
distributed reference points, the separation
between this center and the satellite image
is less than 0°5. The projection preserves
the azimuth and scale in the radial direction
from the adopted film center, but distortions
in other directions will occur. These distor-
tions, however, are small, and the average
distortion over the small field used is less
than 0.5 p.
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Corrections.—In the process of precise re-
ductions, a number of corrections must be
applied to the data.

(1) Shutter corrections: During the ex-
posure of the Baker-Nunn film, the satellite
image and the star images trail along the
film. These trails are periodically broken into
six segments by the two diametrically op-
posite staves of a rotating barrel shutter.
The third break corresponds to the satellite
position to be measured, and its time is not
directly recorded; the other breaks are not
currently used. At some instant during the
stave passage, its position and time are
recorded on the film. The time of the image
and the time of the stave passage are related
by the shutter-sweep correction. Thus, if g
is the.angle of rotation of the shutter about
its axis between the two events, the sweep
correction At is given in the first instance by

at=8

w

» being the angular velocity of the shutter.

The situation is somewhat complicated be-
cause the time is not necessarily displayed
when the stave passes over the film center.
However, if the stave displacement Ag is
not excessive, the camera has a device for
measuring aAg, and the total sweep correc-
tion becomes

B—AB

w

At =

Zadunaisky (1960) gives the equations
necessary to compute the angles g and Ag.
These formulations are based on a number
of simplifying assumptions whose effects
on the accuracy of the time determination
can be investigated.

(2) Aberration corrections: The film
reduction is carried out for the epoch of
1950.0, and the only aberration correction
applied at this stage is for annual aberra-
tion. Owing to the small field, the correction
is applied to the satellite position, rather
than to each star position individually. The
formulas used are the closed expressions:
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207747 sin o sin © 418787 ¢0s o cOS ©
cos &
A== — [207747 sin § cos ¢, sin © + 18787
(0.433 666 1 cos §—sindsine) cos O]

A= —

where © is the geocentric longitude of the
sun. Though not rigorous, these expressions
will always be correct to better than 071
(Scott, 1964)

(3) Atmospheric-refraction corrections:
In the film-reduction process, atmospheric-
refraction corrections are not applied to in-
dividual star positions, since it is assumed
that the atmospheric-refraction correction
varies linearly over the 4° to 5° field used in
the reduction. This condition is nearly always
satisfied since observations are seldom made
at zenith distances of greater than 70°. At
this zenith distance, the average departure
of the differential refraction from linearity is
about 17, and with eight well-distributed
stars, the uncertainty in the satellite position
(all other factors being ignored) will be at
most 074.

A parallactic-refraction correction is ap-
plied to the satellite position during analysis.

The value for the v-of'v-qnfnn‘hr constant in

this correction is based not on the atmos-

nheorie rondit:

nt 4—‘1:\ +imo n'F nkmov‘ynf;nh

but rather on the uverage year-round, mght-

time conditions for the station from which
the cbservationg are mads, sent
Baker-Nunn camera locations, the error in
the refraction correction is less than 20 per-
cent of the value of the correction itself. As
this correction is always small, the error is
minimal.

Of greater importance than uncertainties
in the parallactic-refraction correction is the
random-image displacement caused by micro-
turbulence in the atmosphere. When the
Baker-Nunn camera is used in the stationary
mode, this image motion will exist in both
the along-track and the across-track direc-
tions, with the greater deviations occurring
in the former because of the different time-
integration effects. The satellite position will
not be seriously affected when the camera

is used in the tracking mode, but each star
|m90'n mav ba dis ] ad The onarage one-

......... M u;u TRA. @wyvyo

an +'ha pvnanh‘l-

dimensional deviation from the mean, oy, can
be approximately formulated (Lambeck,
1968) as follows:

w:{(o.os)z

|:45sec 2

= . 035logAt):|}1/2

At<<1000 msec

where D is the aperture in centimeters and
At, the exposure time in milliseconds.

(4) GEOS flash corrections: The star
and satellite images of Baker-Nunn films of
passive objects refer to the same instant of
time. This is not the case for observations
of flashing satellites, so a correction must be
applied to the observed position to ensure
that both the star images and the satellite
image refer to the same time instant. For
operational reasons, the star-trail exposure
is offset by =~0.1 sec from the flash time.
The correction is computed by precessing
the satellite position to the date of observa-
tion, adding the correction

P o d

Aao=1.9027 x (time difference between
satell

ellite and gtar axnosure)

and precessing the corrected position back
+A 4+ha arnanthh AF 10:[\ n Dhrnns

VY vaaw CIJVUAA Vi A v A

time interval between the star exposures
and the flash observation, nutation need not

be considered.

vwen A€ 4lan ~1
Clause OL uiic smiau

9.3.3.1.3 SYNTHETIC OBSERVATIONS

The arcs formed by several successive ob-
servations can be used to create synthetic
observations at some intermediate time by
interpolation. Simultaneous observations
used in the geometrical satellite solution rely
almost entirely on such synthetic observa-
tions, and they are also used in the dynamical
solution whenever four or more successive
frames are available.

Since it is virtually impossible to observe
satellite same

Savel

a na QQ'I‘")

BISDA Y

at exactly the

CAIL LY vid
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instant from two or more distant stations,
the only practical way of obtaining simul-
taneous observations is to observe the satel-
lite from the participating stations for ap-
proximately the same time interval and to
interpolate for a fictitious simultaneous
instant. In orbital analysis, use of synthetic
observations reduces the amount of data to
be handled without any significant loss of ac-
curacy and resolution. But probably the most
cogent reason for using synthetic observa-
tions is that a better accuracy or reliability
estimate can be associated with the synthetic
observation than with a single observation.
Only average values can be assigned to the
errors in a single observation. Some of these
errors vary more or less randomly from ex-
posure to exposure and will be reflected in
the residuals resulting from a least-squares
interpolation procedure for a synthetic ob-
servation,

A second-degree polynomial is adequate
for the majority of observations, Since a
seven-frame arc generally subtends less than
10° of arc, the object’s orbit can be ade-
quately approximated by quadratic functions.
When there are more than seven or eight
frames in a sequence, a third-degree poly-
nomial may be required, but proper con-
straints must be placed on the coefficients to
ensure that the curve approximates the orbit
and does not reflect characteristics of the
image-forming process for the points in the
sequence. If higher degree polynomials are
used without such constraints, the accuracy
estimates of the interpolated positions be-
come optimistic, although the mean position
of the satellite is not seriously affected.

The interpolation procedure is based on
several assumptions: (1) that the errors in
successive positions in the arc are uncor-
related, (2) that the along- and across-track
errors for each position are uncorrelated, (3)
that the along-track uncertainties are equal
for all frames, and (4) that the across-track
uncertainties are equal for all frames. Since
systematic errors in timing would destroy
the first assumption, timing uncertainties
are not included in the uncertainty of each
position. Other correlations between succes-

sive Baker-Nunn images are much smaller
than with ballistic cameras, where images lie
on a single frame. For the Baker-Nunn,
plate constants are derived independently for
each frame, so that the influence of such fac-
tors as measuring uncertainties, nonlinear
lens and film distortions, and short-period
atmospheric effects (on each satellite posi-
tion) will be random from frame to frame.
Since the same reference stars may be used
in two or even three successive frames, errors
in stellar coordinates could introduce some
correlated errors between successive frames.

Synthetic simultaneous directions are cor-
rected for parallactic refraction, diurnal
aberration, and light travel time between
the station and the satellite (see Haefner
and Martin (1966) for the corrections used)
and refer to the terrestrial system defined by
the mean pole of 1900 to 1905 and by the
meridian plane at 75°03'55794 east of the
mean meridian of the USNO. The time of
the observations is expressed in Smithsonian
Atomic Time as defined in table 9.22. The
directions are given as direction cosines, and
their standard deviations are given in the
along- and across-track components. Timing
uncertainties have been introduced in the
former. The angle the satellite trail makes
with the right-ascension axis is also com-
puted so that the accuracy of the direction
in the right-ascension and declination com-
ponents can be determined.

9.3.3.1.4 ACCURACY AND ERROR
BUDGET FOR DATA FROM
BAKER-NUNN CAMERA

A summary of the principal error sources
in the determination of star positions and
an estimate of the total influence are given
below (Lambeck, 1968) :

Measuring errors 1”72 (6 measure-

ments)
Calibration of 072
comparator
Film and emul- 078

sion distortion




Atmospheric 1”71 (image motion
refraction for tracking
camera)
078 (differential
refraction)

0”73 (wandering)

Approximations in 072
reduction method

Star positions 0’75 (random)
from SAO 072 (systematic)
catalog

Total standard 178 (stationary
deviation of mode)
each star 271 (tracking mode)
position

The principal error sources in the deter-
mination of satellite position and an estimate
of the total influence are summarized below
(Lambeck, 1968) :

Measuring errors /8 (12 measure-
ments)
Calibration of 072

H78

171 (imagc motion
along track, or

i‘ flash 1mage="
0”75 (image motion
across track)
073 (wandering)
071 (parallactic
refraction)
Contribution of 0”8 (stationary)
standard devia- 079 (tracking)
tion of 8 stars
Total standard 178 (stationary,
deviation of along track)
satellite position 175 (stationary,

across track)
176 (tracking)

Before 1965, time was maintained at the
stations by the Norrman clock and by the
monitoring of WWYV broadcasts at HF and
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VHF. The root-mean-square (rms) accu-
racy of an observation epoch was about
1 msec, with excursions of several milli-
seconds in some cases.

Installation of the EECo clock system in
1964 and use of frequency broadcasts on
VLF and of portable clocks improved the
timing situation. All the stations had +100-
psee clock accuracies by 1967.

A summary of the overall accuracy of a
single Baker-Nunn observation for different
topocentric velocities of a satellite is given in
table 9.23.

Before the installation of the EECo clocks,
the average accuracy of the synthetic ob-
servations was about 171 in each component.
Now, with the improved timekeeping pro-
cedures, the average accuracy of the syn-
thetic observation is about 079 along track
and 0”77 across track.

9.3.3.2 Data From a Laser System
9.3.3.21 CALIBRATION

The laser systems are calibrated by rang-
" G l] lanAd. hoqnﬂ +9vrrn+ Qlfllﬂfpd 21’ a

prvaELvy

nown (_i_jsf hce from the laser. The system
ealihratinn constant ig the

11

¢ the raw target range
time measured by the system, r,, and the
rangs time to the target, -, computed from
the surveyed distance between the laser and
the target and corrected for local atmos-
pheric refraction. The targets, which are
8 ft x 8 ft wooden surfaces painted flat white,
are 0.5 to 2.0 km distant from the laser sys-
tem. The exact placement is usually dictated
by local terrain.

The routine calibration of the system is
performed nightly and consists of 20 meas-
urements on the target. For these measure-
ments, the return-pulse intensity is con-
trolled by use of neutral-density filters to
produce signal levels similar to satellite
echoes.

Computation of a calibration correction
factor r,, which must be added (algebrai-
cally) to all satellite range-time observa-
tions, ig obtained from

w233, 28 VULl
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Te=Tsg— Tm

where -, is the average of the 20 range-time
measurements. The computed range time to
the target is given by

rem %o [14 (NX10) = (6.917x10-) ]
0.15
where d, is the surveyed distance to the
target and N is the local atmospheric re-
fractivity
P e
N= 80.297 — 11'97
in which P is the measured barometric pres-
sure in millibars, ¢ is the partial pressure
of water vapor, and T is the temperature in
degrees Kelvin,

The effect of local variations in barometric
pressure on the value of =, for distances of
less than 1 km was found to be small enough
so that a constant value of the atmospheric
refractivity could be defined for each station.
This value was taken from a chart prepared
to give a direct conversion from station alti-
tude in kilometers to values of N (Gaposch-
kin, 1972, unpublished).

During individual nightly (or daily) cali-
bration sequences, the range scatter from
one measurement to the next is seldom more
than a few nanoseconds. The variation in
the target-range averages is rarely more
than a few tenths of a nanosecond from cali-
bration to calibration, giving a stability of
better than 10 em. The target surveys at the
stations currently have an estimated ac-
curacy of about 10 cm.

9.8.3.2.2 ATMOSPHERIC CORRECTIONS

Ranges determined by using the vacuum
velocity of light must be corrected for the
fact that the laser pulse travels at a lower
velocity in the earth’s atmosphere. We used
the following correction during this program
(G. Thayer, 1967, private communication) :

B 2.238+0.0414 PT—0.238 he
sin g+ 102 cot ¢,

m="Tv

where 7, is the uncorected range in meters,
7 18 the corrected range in meters, P is the
atmospheric pressure at the laser station, T
is the temperature at the laser station, &,
is the laser’s height above mean sea level in
kilometers, and « is the elevation angle of
the satellite. The formula holds for a ruby
laser, which operates at 694 nm.

The formula was derived from a regres-
sion analysis based on a large sample of
radiosonde balloon flights from a number of
locations that were chosen to give a reason-
able sampling of anticipated atmospheric
conditions. The error in range correction
is estimated to be about 2 to 8 em at zenith.

9.3.3.2.3 TRANSFER FUNCTIONS OF A
SATELLITE-RETROREFLEC-
TOR ARRAY

Range erors now present in routine track-
ing by laser systems are actually smaller
than the satellite dimensions. Since we must
relate all observations to the satellite center
of mass (both for dynamic and for purely
geometric analyses), it is necessary to derive
some means for reducing each range observa-
tion to the distance from the ground-based
laser to the satellite center of mass, which,
in all cases, is displaced from the reflecting
elements. For this purpose, we have de-
veloped and applied in our geodetic analyses
a set of retroreflector-array transfer funec-
tions for each of the United States satel-
lites with cube corners now in orbit. These
transfer functions are computed from the
geometric and optical parameters of each
retroreflector array and take into account the
satellite geometry and position. The func-
tions for 6508901 (GEOS-1), GEOS-2,
6406401 (BE-B), 6503201 (BE-C), 6701101
(D1C), 6701401 (D1D), and 7010901
(PEOLE) were computed.

The computer model includes both inco-
herent and coherent return signals for arrays
of retroreflectors whose faces are cut in the
form of a circle, triangle, or even-sided poly-
gon (such as a hexagon). Diffraction,
including changes in amplitude and polariza-
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tion of the reflected laser beam, and influ-
ences of dihedral-angle errors can also be ac-
counted for. The model accommodates
obscuration of retroreflectors by satellite and
subsystem structure, a particular problem
with the two GEOS spacecraft and with
PEOLE. When the position of each reflector
is being computed, the model accounts for
the dielectric properties of the retroreflectors
in terms of ray bending and propagation
velocity. Once the return signal has been
constructed, the relationship of the centroid
of the signal to the satellite center of mass is
determined and then applied as a range cor-
rection to the laser data used in the geodetic
analyses.

The major limitation on the accuracy with
which transfer functions can be determined
for the existing satellites with retrorefiec-
tors is the lack of precise information on
the beam patterns of the retroreflectors in
relation to the large size of the arrays. With
the existing uncertainties in retroreflector

Aanticonl shavrantars

Oplicar cnaracier AauCS geuxucuru, l.uauculc.ut,
and satellite attitude, we estimate that the
range corrections for these satellites have an
accuracy of about 10 cm. It shouid be noted
that this error is guite systematic.

9.3.3.3 Network Time Base

9.3.3.3.1 STATION-CLOCK SYNCHRO-
NIZATION

Synchronization of the station clocks
throughout the network is achieved by re-
lating all the time and frequency references
to UTC as maintained by USNO. The field
stations steer their clock frequencies with
VLF transmissions from stations NAA and

NLK, and in some cases, WWVL or WWVB, .
Crude epoch checks are made at many of the

stations by monitoring HF/VHF time sig-
nals. The USNO and the National Bureau
of Standards (NBS) timing bulletins, which
give the relative phase values of VLF stations
and time intercomparisons with other tim-
ing services, are used to relate all field timing
values to UTC {USNO) )

QLULD LU U AUy

Use of a portable clock is the principal
method of synchronizing with a source
of reliable timing. The comparison of the
portable clock with the clock at the station
gives a correction relating the station time
to the source time, and published comparison
values relate the source time to UTC
(USNOQ). Therefore, each field-station clock
is referred to a common time scale with an
accuracy dependent on the reliability of the
portable-clock comparison and on the ac-
curacy of the published comparison value.

The trips to the field stations have been
conducted with a Sulzer A5 portable crystal
clock that carries time related to UTC
(USNO). These trips have been run by
SAO or, in some instances, by other agencies
(such as NASA, USNO, Naval Research
Laboratory, and NBS) who have either car-
ried an SAO clock or been in the vicinity of
an SAQ field station with a clock of their
own. Portable-clock comparisons are made
with each station on a biennial basis. How-

avar 40 maintain hichor lavalae af acenracy
CVEer, 6 Mmainialll Aignir Veis G alluraly

and reliability, a portable-clock comparison
is made at least once a year at the laser sta-
tions. Time corrections, determined ito be

-1 =
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VLF -monltor reaamgs are documentea and
applied directly to the station clocks. Cor-
reciions for the diiference beiween the VLI
stations and USNO are applied in Cambridge
during data preprocessing.

9.3.3.32 ACCURACY AND ERROR
BUDGET

The accuracy of station timing depends on
(1) the success of the portable-clock trips,
(2) the ability to trace the relationship of
the time references back to USNO, (3) the
ability of the station to maintain the time
setting with the aid of the VLF tracking
receiver, and (4) the uncontrollable varia-
tions in propagation path of the VLF sig-
nal. The requirements for system timing
originally called for the station clocks to be
mann of ‘X7'ﬂ'7"7 Iv-ma Af noat devia=

writhin o1
Wiuiilli = 1 (sl Ca YIS UL v
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tion from UTC (NBS) over a month). This
requirement was tightened to =100 usec UTC
(USNO) for the camera stations and =50
usec for the laser stations. This improvement
was made possible by the installation of the
EECo timing systems in the mid-1960’s and
was realized by 1967. In practice, many of
the camera stations have been operating
within +50 usec of UTC(USNO).

The synchronization accuracy by use of a
portable clock depends on the amount of
unpredictable time drift experienced during
the period spent traveling to and from the
field station. Most of the trips to the field
stations use a crystal clock and provide a
time set accurately to within 5 to 25 usec of
USNO. The least reliable results have been
in India and South America, where the sta-
tions are fairly remote and long travel times
areinvolved.

USNO publishes a weekly bulletin, “Daily
Phase Values, Series 4,” giving the emitted
phase values of the major VLF transmitting
stations to 1 usec. The time differences be-
tween UTC as maintained by USNO, NBS,
and the Bureau International de I’'Heure
(BIH) are well documented by each agency
to microsecond accuracy. The relationships
between the HF time broadcasts of foreign
countries and UTC(USNO) are generally
less precisely known.

Timing accuracy at the field station is
maintained by controlling the clock drift with
the aid of VLF monitoring equipment. In
cases of minor clock failures, time has often
been recovered with fair accuracy by re-
ferring to backup clocks and to VLF and
HF monitor references. The clock-time drift
is a product of oscillator frequency offset and
is generally controlled to keep the station
epoch within 50 psec of the VLF reference
position.

The accuracy of VLF-derived time is a
function of receiver and propagation-path
stability. The uncertainties of the day-to-day
and seasonal path variations added to the
error contribution of the receiver amount to
less than 5 usec in epoch uncertainty. The
system timing accuracy is a composite figure
encompassing setting accuracy, uncorrected

drift of the clock, and inaccuracy of the VLF
monitor.

The degree of accuracy in setting a port-
able clock gives the initial accuracy of the
station epoch, and VLF monitoring permits
the clock to maintain time. When subsequent
incidents of minor clock failure that affect
time and frequenecy increase the epoch un-
certainty to =+50 usec, another portable-
clock comparison is considered. When re-
quirements are stringent, additional efforts
are made to obtain more accurate time com-
parisons, to reduce the oscillator drift, and
to minimize the accerual of uncertainty due
to repeated clock resets. This extra effort is
the key to maintaining station epochs at the
+50-psec level with a minimum of clock
trips.

9.4 THEORY

The following three sections provide the
theory used for determining (1) coordinates
of ground tracking systems and (2) the
gravitational potential of the Earth. The
coordinates were determined both by a purely
geometric method (sec. 9.4.2.1) and by the
dynamic method (sec. 9.4.2.2), which uses
the equations of motion of satellites, together
with the geometric. The gravitational po-
tential can be determined with the help of
the equations of motion alone, the gravi-
metric theory alone, or the two together. The
zonal harmonics of the gravitational po-
tential of Standard Earth III were deter-
mined by using the equations of motion alone
(sec. 9.4.3.2) ; the tesseral harmonics were
determined by using both the equations of
motion and the gravimetric theory (sec.
9.4.3.3). Because the equations of motion
have been used for determining both coordi-
nates and the potential, their theory is dis-
cussed first.

9.4.1 Orbital Theory
(E. M. Gaposchkin)

The theory used to connect the position of
a satellite to the time of observation at a
single station is the dynamics of a particle
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in an approximately central field of force.
The theory is presented in this section. It is
used to find both the coordinates of the track-
ing station and the constants that determine
the field of force. The coordinates, the con-
stants, or both may be determined at the
same time as the six constants of integration
that, together with the time, determine the
orbit.

The symbolism used in this chapter differs
from that used throughout the rest of this
volume. The major deviations are as follows:

I for —~C,
le, (7"”,7 Slm for P17) Crrln.- SZL

1 for )

» for GM

¢ for ¥

9.4.1.1 Transformation and Coordinate Sys-

tems

Consider the coordinate system x,, ¥, 2,
a point

r-|
I_-l

Il
e

3 ’tS'S

v

1

and a second coordinate system rotated about
the 2 axis by an angle ©. The coordinates of
p in e @, Y, 2. system can ve expressed
with the matrix operation

[P.] =R, () [P:]

where
cos 2sinQ 0
R;=] —sinQcosQ0 (9.2)
0 0o 1

In an analogous way, we can define rotation
around any axis with

1 0 0
R,=|0 cosI —sinl (9.3)

0 sinlI cosl!

cos¢ 0 —sing
R.=| 0 1 0 (9.4)

sing 0 cos¢

about the v axis. Here, R, R,, and R, are
matrices, and their mathematical properties
are the subject of linear algebra. We need
know only that these quantities have the fol-
lowing properties:

(1) The length of a vector is unchanged
by rotation.

(2) Multiplication of matrices does not
commute; that is,

Ri(¢)R;(\)5~4R;(A\) Ri(¢)

(3) Multiplication does satisfy the asso-
ciative rule; that is,

R;(R;R:) = (R.R)) Ry,

(4) Rotation about the same axis is addi-
tive; that is,

Ri(¢)R:(rx) =Ri(¢+2)
(5) For rotation matrices, the inverse
and transpose are related by

(R.R;)*=R; R}

(7) Differentiation and integration are
performed on each element,

Although multiplication does not commute,
for small rotations around the 2z, y, and z
axes—that is, ¢, ¢, ¢—we can define the
infinitesimal rotation matrix

1 € —€
R(em €ys ez) =] —¢& 1 €z (9-5)

o - 1

which doeg commute.

In satellite geodesy, dynamical astronomy,
and astrometry, we are concerned with four
reference frames: (1) the terrestrial system,
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(2) the inertial system, (8) the celestial
(sidereal) system, and (4) the orbital
system. Since a systematic account of these
systems and their relationships to one an-
other can be found in Veis (1960, 1963) and
elsewhere, we confine ourselves to a descrip-
tive summary.

The terrestrial system is fixed to the
Earth. Positions on the surface can be con-
sidered invariant in time if we ignore tides
and crustal motions for the moment. The
representation of the terrestrial system can
be in terms of geocentric coordinates or
datum coordinates. The datum can be de-
fined in a geocentric system with the follow-
ing seven parameters: the three datum origin
coordinates, the three orientation param-
eters, and a scale factor. Datum coordinates
can be determined from precise knowledge
of the geocentric coordinates. One of the
objectives of satellite geodesy is to determine
coordinates in a geocentric system. Through
coordinates common to geocentric and datum
systems, the relation of the datum to the geo-
centric system is determined.

The inertial system is fundamental to dy-
namics, and all orbit theory is ultimately
developed in this system. We hope to ma-
terialize the inertial through the celestial
system. The latter is defined by the stars
and, it is hoped, with respect to the distant
galaxies. The distant galaxies define an
inertial reference frame.

The celestial system is represented by co-
ordinates of stars insofar as we can treat
proper motion accurately. Individual star
catalogs are similar to compilations of geo-
detic coordinates in that the positions are
relative. Positions can be combined into a
uniform system by use of stars common to
any two catalogs. This technique was used
to compile the SAO Star Catalog (Staff,
Smithsonian  Astrophysical Observatory,
1966), which is in computer-accessible form,
covers the whole sky, and contains about
250 000 stars with their positions and proper
motions reduced to the FK4 system.

The equations of motion are most easily
given in an inertial reference frame. How-
ever, in this system, the Earth is moving in

an irregular manner, and the gravitational
field, assumed static in an Earth-fixed system,
has an irregular time dependence. This ir-
regular temporal variation will give rise to
perturbations.

For this reason, we have adopted an inter-
mediate, quasi-inertial reference frame. This
orbital system has a fixed equinox (the mean
equinox of 1950.0) and a moving equator
(the instantaneous equator of date), and the
gravitational field is rotating about the z axis
at a constant rate. This orbital system has
been shown by Kozai (1960) and Kozai and
Kinoshita (1973) to be optimum for our work.
That is to say, short-period terms are un-
affected by the change, and the effects of
being noninertial and those of variations of
the gravity field are minimized, We can then
proceed with the theory for periodic per-
turbations as if we had an inertial reference
frame and make some corrections (section
9.4.1.7). A further result of this choice is
that the Earth is rotating uniformly in this
system, thus giving a particularly simple
expression for the sidereal angle.

The relation between the celestial system
and the terrestrial is established in two steps.
A general theory of precession and nutation
deals with the secular and periodic parts, re-
spectively, of the forced motion due to the
gravitational attraction of the Sun and Moon.
A general reference for these effects is
chapter 2 of the Explanatory Supplement to
the Astronomical Ephemeris and the Ameri-
can Ephemeris and Nautical Almanac (here-
after called ESAENA). The instantaneous
orientation of the Earth is described to
2x10-¢ rad with these formulas. The irregu-
lar fluctuations of the Earth’s orientation
with respect to this computed orientation are
routinely measured as three angles and pub-
lished by the Bureau International de
I’'Heure. The free nutation of the Earth is
the motion of the adopted reference point
of the z axis about the spin axis in the ter-
restrial system. The spin axis, of course,
moves owing to precession and nutation, and
that axis defines the astronomical equator.
The rotation rate has small fluctuations, re-
sulting in irregular fluctuations in the true
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sidereal angle. The coordinates of the refer-
ence pole (x,y) and the change in the sidereal
angle (AUT1) are observed quantities and
provide the relationship between the celestial
and the terrestrial systems,

The variations of pole position are not
strictly periodic. There is considerable un-
certainty about the actual properties of the
polar motion, As a result, an arbitrary refer-
ence point was adopted by the International
Union of Geodesy in 1967. This point was
the mean pole for the time 1900.0 to 1905.0,
and all pole coordinates are now given with
respect to it. The mean pole today is about
10 m west of the adopted pole.

In summary, we now give the relations be-
tween the orbital system and the others. If
X, is the position of a station in an Earth-
fixed system, then X is the position in the
orbital system:

X=R.(—9)R(y,z,0) X, (9.6)

6=0.277 987 616 +1.002 737 811 91

(T-33282.0) +AUT

general camera observations provide

Aivastinna in a anlnats L2 ] na
direetions in o celestial system at some epoch

T,. To express this direction in the adopted
orbital system, we must apply precession
x, o, v from T, to 1950.0, and then apply «, o,
v to the motion of the equator, thus preserv-
ing the origin of 1950.0. If x(b,a) is the
amount of precession in right ascension from
dates a to b, and if similar expressions are
given for » and v, then

[I1=R(—Aq ¢ sin ¢, 0) Ry [« (T, 1950) ]
R.[+(T, 1950) 1R, [ —« (T, 1950) ]
Ry[-»(1950, T,) JR,[ —v (1950, T,) 1]
R,[ —« (1950, T,) 1[4,

(9.8)

expresses the direction in the orbital system.
The nutation (Ae, y sin ¢) must also be ap-
piied to the originai direction if the true

coordinates are given. The reader is referred
to the ESAENA for numerical values. It has
been found satisfactory to use the quadratic
expressions for precession and to retain all
terms in nutation such that the total ne-
glected part is less than 0.5 m.

9.4.1.2 Two-Body Motion

The first approximation for satellite mo-
tion is two-body motion, which forms the
reference for all subsequent analysis. Two-
body motion can be completely solved in
closed form by simple methods. (See, e.g.,
Brouwer and Clemence, 1961.)

If the origin of coordinates is taken at the
center of mass of the system, then the paths
of both bodies lie in 2 common plane through
that point and the path of each body is an
ellipse with one focus at that point. When
the mass of one body is immensely greater
than that of the other, only the mass M of the
larger body need be considered. The equation
for the motion of a peint with unit mass
moving in the gravitational field of such a
large body is
(1

PAY
’

n
(&

by

~
_—
o
W

-
[\
/2]

'

P
. U
=

i

I reeos v
with

rsinv=a¢(l—e?)%sin K
rcosv=a(cos F—e)

The angles are defined in figure 9.11. By
comparing the constants, we find that

1
(1+2g€7')
. (9.10)
kN
CTEETLA=e)

where & is the Hamiltonian of the system, N
is a constant of integration, and .=GM.
From these equations, it is easy to derive the
relation between mean motion n and semi-
major axes a:

3
X
2
W
~
=]
iy
[y
~—
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FIGURE 9.11.—Geometry of ellipse.

which is equivalent to Kepler’s third law.
We proceed to find v () by differentiating
(9.9) :

@_a(l—ez)esinv@_

dr .
——=aesin K

dt dt—  1l+ecosv dt
(9.12)
This equation reduces to
% Y
@=(5) Frmatem 619
which integrates to
E—esinE=n(t—t,)=M (9.14)

which is Kepler’s equation.

Given a time, (9.14) must be solved by
iteration. Using (9.9), we obtain the true
anomaly v and the radius vector ». The posi-
tion is calculated from

x cos v cosF—e
Yy |=r| sinv |[=q| (1—e*)%sin E
z 0 0

(9.15)

The velocity is obtained directly,

x —sin v
3 = e+cos v
R ins o2

Z (1—e) 0

na —sin K
=Ml (1_e)®
l—-ecos K a e)O cos &

“

(9.16)

We have given the analysis of two-body
Keplerian motion in a plane. To refer the

x
position I:y} to the orbital system, we per-
0

form the coordinate transformation

X
[X]=R:(-Q)R.(-)R;(~0)| ¥

0

(9.17)

The angle «» corresponds to v,. The angles Q
and I specify the orientation of the orbital
plane.

Given the position and velocity, we use the
constancy of the angular momentum to deter-
mine the angles @, I, o. The direction of the
angular momentum is computed from

[L1=[XIx [X1/IX]X]  (9.18)
and the inclination is obtained from
0
cosI=|[[]1x]|© (9.19)
1

If L. is negative, the convention is to take
=—1I for the inclination. The node is defined
by a unit vector in the direction of the node:

cos Q 0
éQZI:Sin Q:IZ,:O:'X [L] (9.20)
0 1

To find », we must determine the satellite
position in the orbital plane referred to the
node. Using

[X']=R,(I)R;(Q) [X]

we have
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cos(v+ov)=X/r
sin(v+o) =X}/r

which determine v+ o.
we immediately have o.

We give here the equations for a hyper-
bolic orbit. The position is

With » from (9.9),

r=7rcosv=—a(e—cosh F)

Yy=7rsinv=—a(e*—-1)%sinh F
:;a(ez——ll:a(e coshF-1)
1+ecosv

where ¢ <0. We still have
n(—a)’=p
Kepler’s equation becomes
n(t—t,) =esinh F—F

and r*v— N is still a constant of the motion.

The final question in the discussion of two-
body motion concerns the development of

.
(9.9) and itg "enerallz°+'on in °°r1°° ¥ep

er’s equaﬁion,

closad ayy “M"

auable
They are needed fox the development of per-

turbationg,

itself in a later section.

a tonie fhat will ha Fvantad her
« WAt udau Wi OC WAt Oy

9.4.1.3 Equations of Motion

For conservative forces, rectangular coor-
dinates are canonical, and the Poisson
brackets have the values

["i:iydzi] = 0
[xi,xj] :0 (9.21)
{,,%;] =8§;;

The equations of motion can be written in
any set of variables {&;} by using Poisson
brackets:

d&i/dt=— > [&,EJ0H /G, (9.22)
k

where & is the Hamiltonian for the system.
In addition, if &f=#,+&#, and if we can
obtain a solution

0=z (o;,t)
#=a(ait)

(o; being constant) for &%, then by selecting
&; to be a;, we can write

d&i/dt=— 3 [EuErl 4o 40 0FH:/0Er
k
(9.23)

where [&,E “r] ;0 ;0 are evaluated for the solva-
ble problem. In what follows, we will use
only variables that are the solution of the
two-body problem (section 9.4.1.2). This
choice is not unique, for one could select any
combination of &¥ that had a solution; e.g.,

there is a separable solution for a potential:
hd n
Q= —’ir1 T‘/ac\ (_TAnD  (aiem .\-I
o ] *T LA ) VT Y2 L m\RlL @)
o n=1\ " 7 |
(9.24)

which is due to Vinti (1959) and has been
explored by Tzsak {1963h).

The Kepler elements a, ¢, I, M, », @ are the
most commonly used. Using (9.17) in the ex-
pression for the Lagrange brackets and em-
ploying the time independence of {&,, Ei} 0,500
we obtain for the Lagrange brackets

{1} =—{10}=— (pa)%(1—e?)%sin [
{2,0}=—{a,Q} = (1-¢*)%[cos (I/2)] (n/a)"
{Qe}=—{e,0}=[— (na)*cos I]/(1—e?)%
{00} =—{a,0} =[(1—e*)%/2] (n/a)*
{oe}=~{ew}=— (ua)¥e/(1—e?)%

{o,M}=—~{Ma}=—Y% (n/a)”
(9.25)
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the other combinations being zero. By in-
verting the matrix implied by (9.25), we
obtain for the Poisson brackets

[a,M]=— [M,a]=2(a/u)*

[e,0] = — [we]l = — (1—€*) %/ (na) e
[7,0] =~ [I]1= —1/[na)*(1-¢*)*sinI]
[e,M]=— [M,e]=(1—¢*)/(pa)%e

[1,0] = — [w, 1= (cos ) / (pa) %
(1—e?)%sinl
(9.26)

Equations (9.26) inserted into (9.23) can
be integrated numerically. They remain a
set of coupled differential equations. Analyti-
cal solutions are obtained by approximate
methods. A particular difficulty arises if
these equations are used in a straightforward
manner.

It is customary to express the Hamiltonian

Ly Ll w
G=5Vi+u=5V:-E_R (927)

where R<u/a and is called the disturbing
function. Then R is expressed in a trigo-
nometric series of the form

sin
cos [

D A(ael) ] [aM+Bo+yQ+¢(t)]

with M =M,+nt, where n is the mean motion.
Straightforward use of (9.26) introduces

7] sin
EA (a,e,I) oS [a,M+ﬁu)+'yQ+¢ (t)]
giving

0A sin

B aon M +oty2+4(8)]

cos on
+Asin [aM+/3w+79+¢>(t)]a—aEt

since n2a® is a constant. The occurrence of ¢
outside a trigonometric argument leads to
terms that are not periodic.

If we consider all occurrences of a in co-
efficients of trigonometric terms and all oc-
currences of n in the trigonometric argu-
ment, then the differential equation for M
becomes

a\" {OCK
M—z(z) {aa

n=const

oK dM dn 1-e¢* oK
oM dn da (na)% e Qe
Now
da _ _,(a\%:0oK
dt — w) oM
and
au _,
dn —
giving
oK _p OR
oa “2(1 oa n=const
9k _ OR
Jde = Qe
o _ OR
oM — oM
that is,
dn a\"2oR 1—e* OR
M —"—tm—z(:) 30 | nconse  (p@) % € O€

where n= (r)%/a% and is not constant.

With the previously described separation
of a and n, we can write the Lagrange plane-
tary equations (LPE) in their usual form.

da_2 oR

dt ~ na oM

de_1-¢'0R _(1-¢)%0R

dt ~ na*e oM na*e  Ow

do _ cos ] ok

dt —  na*(l—e?)%sinl 21
_(-e)%eR

nate oe
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al cos oRr
dt " na*(l—e?)%sinl dw
_ 1 oR
na*(l—e?)%sinl 00
do_ 1 R
dt ~ na*(l—e?)%sinl oI
aM_, (1-e)%2R_ 2 oR
dt =" na*e de mna da
n2a3:# (928)

Kepler elements are used extensively. They
have the advantage over Cartesian coordi-
nates in that five of the elements are constant
for two-body motion and the sixth (M) in-
creases linearly with time. In addition, each
element has a geometrical interpretation.
However, any five constants could be chosen,
as long as they lead to a.unique calculation of
position and velocity.

As e—0, the element » ceases to have any
geometrical meaning. Since the position of
the satellite depends on v +«, we can consider
the new variables

A=M+a e=e
=0 Q=0 (9.29)
a=a 1=1
with the Poisson brackets
[a, Al=— [A, a] = 2

[\, e]=—[e, 2] = 1 =€)* Ezlaz—e(l_ez)vz]
(9.30)
[e,&]:—[é,e]:_%ﬁ
, ’ na®(1—e*)%sin I
[1,a]=—[&11=[I,A]

It has also been found useful to eliminate e
and & by use of the variables

h=esin & a
k=e cos & Q
A=A I

(9.31)

nonl
~D e

-

These variables have the following Poisson
brackets, written for convenience in terms
of e:

[k k1= — [k, =122
_ _ —h(—e%
[, A== D, h]_na2[1+ (1-—e2)¥%]
[h,I]1=— 1[I, h]:% (9.32)
_ _ —k(Q-e)*%
[k:)‘] _— [A, k]_na2[1+ (l_eg)]/z]
Uk 11 = = [, k) = tgn /%)

with Tg )], r\ I, fa, T] as given in /0 20,

L2248, Lesy ~ 4 Tal aas peRED LY

Of course, these equdtlona hold for all eccen-
tricities.

A further modification would be to use the
variables

p=tan i sin Q k=k
N—tawn §F ang () Y — ) {0 9%
Y = vaii 2 COS v A=A Qv Iyy)
h=h a=a

These have the foliowing Poisson brackets,
written for convenience in terms of e and I

p, 1= lg, p) =22
1 1

[p, M=~ [rn 1= 10, k] = — [, ]

= — [0, K1 = -1k, p]

_ peosl

2na* (1 —e?)% cos?® (1/2)
(9.34)

[g,2]=~ [\, a1 = [a, k] = —~h, ]

= [0k =1k q)

qcosl
e®) % cos? (1/2)

T 2na*(1—
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[q, 1= — cos I
TPI= " (A _e)%

where [k, k1, [k, A1, [k, A] are the same as
(9.32) and where we take [a, A] from (9.30).
The variables p and q should not be confused
with generalized coordinates. These expres-
sions are valid for all ¢ and  but are espe-
cially valuable for small e and I—for example,
in the planetary theory.

It is possible to construct other combina-
tions. For example, one could use

X:M+w a
é=esino Q
n=€cos v 1

(9.35)

~N O R

Il

We now turn to sets of canonical variables
that have the simplest form of Poisson brack-
ets. We have observed that Cartesian coordi-
nates are canonical. We give two other sets,
the Delaunay and the Hill.

The combination of coordinates and conju-
gate momenta for Delaunay variables are
the following:

Coordinates Momenta
=M L= (pa)*
g=o G=[pa(1—e*)]*%
h=0 H={[pa(1—e?)]%cosl

(9.36)

Now, [, g, h are new labels for three familiar
Kepler elements, in order to provide a sym-
metric notation. We see that G is the angular-
momentum constant N in the two-body
motion given by (9.10) and that H is the
projection of the angular momentum on the
z axis.

Another set of canonical variables intro-
duced into satellite theory by Izsak (1962)
and used to great advantage by Aksnes
(1970) consists of the Hill variables, as fol-
lows:

Coordinates Momenta
r=a(l—esin E) #=(e/r)Lsin E
U=V +o G=G

(9.37)

These are natural coordinates, with the im-
portant advantage that there is no singularity
for small eccentricity—in contrast to the
situation with Delaunay variables, which
complicates their use.

Finally, we consider the equations of LPE
type, which contain the forces explicitly.
Consider the forces with components S, T,
and W, which are, respectively, along the
radius vector, in the orbital plane normal to
the radius vector (along track), and per-
pendicular to the orbital plane (cross track).
The direction cosines of satellite position are

1
zS:Rs(—Q)Rl(_I)Ru(—u)[O
0

(9.38)

We can define the direction cosines along
track and cross track with

lr=Ri(~2)R. (=) .
xRab—Q)[S]//(¢?+yﬂ%
’ (9.39)
b= 1Iprxls (9.40)

where &, ¥ are obtained from (9.16). If we
let &; be any variable, then

R _oR ox o oy, oR 5

o9R oR °oR
But % 2y % are the components of force

along %, ¥, z given by

[OR7} [ - S 7

o |

oR A A oA

@ =| €g € €y T (941)
or

52 ] L JLwl

With expressions T=%Z(&;), say, (9.17), we
can form 9z/2& and substitute the result in
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(9.23). This could be done for any set of
variables. We give here the results for the
Kepler elements, since they are widely used.
We have

da _ 2 . ¥
Tlt—_ml:seSlnv+TT]
de _ (1-en)%
dt —  na

{Ss1nv+T[cosv+ (1_E>]}
dl 1

7
W—mW'gCOS (’U+w)

do 1

r .

G na(I—eyksinl "V S0 (v+e)

do de 1 (1—e?)%

R T e
x[——Scosv+T(1+—;—>sinv]

aM 2 .7 R /
— __Q_._ _,).\3/, A n

at - " (1-¢) \dt heos Iy )
p=a(l—e?)

hese expressions are known as the LPE

1 ": 11 farm T how ava haon nal in
n '\,"MSSlan orm, A7 A\.o" nuve oeen Caltuliattd

by using a force derived from a potential.
However, the equations would have the same
form tor any torce, and they can be so used.
These expressions are especially useful in
numerical integration and with nonconserva-
tive forces such as air drag and radiation
pressure.

9.4.1.4 Spherical Harmonics

Legendre functions and associated Le-
gendre functions arise naturally in the
solution of Laplace’s equations in spherical
coordinates. They also constitute a set of
orthogonal base functions for mapping arbi-
trary functions in spherical coordinates. In
dynamical astronomy and satellite geodesy,
spherical coordinates are the natural ones.
We find that much of the subsequent analysis

is facilitated by use of these functions, and
we give here a short summary of their prop-
erties. Hobson (1955) is an excellent refer-
ence for mathematical proofs, and texts on
mathematical physics (e.g., Jeffreys and
Jeffreys, 1956; Morse and Feshback, 1953)
provide many useful formulas. Legendre
functions are extensively used in quantum
mechanics, and its literature is recommended
for.the transformation properties.

For numerical computation, an expansion
of P, in power series in z can be used. This
expression can have large roundoff errors,
and direct use may require multiple-precision
computation. One alternative device is to
employ the recurrence relationship

Pl,mi-?.(z) +2(m+1) [Z/(l—-zz)%]
Pl,m+1 (Z) + (l—m) (l+m+ l)le(z) =0
(9.43)

where z=gin ¢, and use

P, (z) =[(21) 1/241] cos! ¢
Piy.(2) =2 Py(2)

-1 4+ vl thao
iid J.u..\_u VO i ine

expression for P,,,, {z) " in a coordinate sys-

tam wrotated hv the Eunlar ancolas 7 0 .. Tha

results given here are taken from Jeﬁ'reys
(1965). We can write

1

I_)Im (Sin ¢) em = z (i)s_mElms (I)Pls

8=—1

(sin ¢r) eils(\V+w") +mQ]

(9.44)

with

min ;‘8
Eps(D=Niwe Y, (=1t
':"‘ﬂxl~(1§]z+s) .
< l+m )(l+m)72r+m+so.2(l—r>—m-8
m-+8s-+r r

(9.45)

where
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y=cos (1/2)
o=sin (1/2)

(l——S) !(l+S) !6,,,

2
Nlms*—(l_m) T{+m) le,

Further, if ¢'=0, we can write this in a more
compact form as

i
Poo (sin @) €= (i) FnDy, (1) €112 Vel
p=0
(9.46)

forl>m>1, where

| 1-m
1 (I4m)! <
D) =5 =gqr— 2

r=max |

l
_1 -m-r
ey
2p-l-m

2p 2l—2p Lem+2r=2p 1-m-2r+2p
(7)GZnZ,

’ (9.47)
where
r=cos (1/2)
o=sin (I/2)
; (A+m)!
2
Niw= e (21+1) (I—m) !
We note that
P, (2) = (=1)"P,,.2 (9.48)

If we make the association v=A, we see
that (9.46) is a natural expression of spher-
ical harmonics in Kepler elements. The de-
velopment has been carried out by Kaula
(1966b) on other considerations for conven-
tional harmonics. The D,,,(I) here are re-
lated to the inclination functions of Kaula by

Dlmp (1) = [ ( - 1) {(ZATM/Z}/NIM]Flmp(1)
(9.49)

The two developments are equivalent. We
give here the expressions for calculating
F,,,(I) as derived by Kaula, since they are
extensively used:

’ {(—m) [2}
»

min (2l——2t) !
Fup()= 2 §1(1=t) [(l—m—20) 12t

St-m—2t ¢ Z </';L> C»;Z<l— m —c 2t + S)

pile) D

(9.50)

where S= sin I and C=cos I. Kaula gives
tables of Fi,,(I) through 4,4,4. Since (9.50)
has three summations, whereas (9.47) has
only one, the latter is somewhat more eco-
nomical for computing numerical values.

9.4.1.5 Elliptic Expansions

In section 9.4.1.2, we found the relation be-
tween the mean anomaly M, the eccentric
anomaly E, and the true anomaly v. Whereas
E and v have geometric significance and are
related by

tan (v/2) =[(1+e)/(1—e)]%tan (£/2)
(9.51)

the mean anomaly has dynamical signifi-
cance, increasing proportionally with time;
that is,

M=M,+nt (9.52)
The connection between M and E and hence
v is made through Kepler’s equation (9.14):

M=n(t—t,) =E—esinE  (9.53)
Equations (9.51) to (9.53) are sufficient for
all computations in two-body motion. Equa-
tion (9.53) is transcendental for E in terms

of M and can easily be solved numerically by
iteration. The obvious iteration is

E():M

E,..=M+esinkE, (9.54)
which converges very quicky for small eccen-
tricity. Typical geodetic satellites have
e>0.1, for which (9.54) is quite sufficient.
There are numerical methods to speed con-
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vergence, and in cases where efficiency is
important, methods like Newton’s have been
successful.

In developing complete solutions by use of,
for example, LPE, we are faced with inte-
grals of the following forms:

/f(v)dt

It is therefore useful to be able to express
functions of v and E in terms of ¢ or M.
These expressions generally involve infinite
series in powers of eccentricity.

A particularly useful device for transform-
ing (9.55) is to use

/f (E)dt (9.55)

e?) “ndt
(9.56)

dv=(a/r)*(1—e?)%dM= (a/r)*(1—

dE = (a/r)ydM = (a/r)ndt
{oee Gapuschikin, 1973.)

By use of (9.56), integrals in ¢ can be con-
verted to integrals in v or E. Where neces-
sary, a/r can be expressed in v or E by (9.9),
repeated here for convenience:

a/r=(l+ecosv)/a(l—e*)=1/(1—ecos E)
(9.57)

Transformation (9.56) is useful when M is
absent from the integral. Generally, this is
not the case, and we must explicitly make the
conversion. More general expressions are
used, complete developments being carried
out on computers either numerically or alge-
braically. In the following, we develop some
of these formulas.

If, following many authors (e.g., Plummer,
1918), we define the variable g8(e) by

(1+8)/A=B)=[(1+e)/(1—e) 1%

(9.58)

we have
e=28/(1+p%) (9.59)
B=e/[1+ (1—e*)*] (9.60)

We see that g~e/2.
By using the Bessel function J, (2), we can
write

E—M:ZZl—Js(se) sin sM (9.61)

5:3 [ p(s€) +dsp (se)]}sin sM
N (9.62)

The first few terms of (9.61) and (9.62) are

E_M:<e—%e~"‘+ . ,)sinM
+<%2+ o )sin 2M
+g(ea+ N .>sin 3M  (9.63)
a»-M—“(?o’%—l":{-‘L \'Sin M
(5 : /
g ey ain 9
(e >° 2M
13
+Higet sin 3M  (9.64)

<xrav N momm v o~ Foh Y o]
Bzuuwcz and Clemence \J.QUL) bx've th ae

We have need ot 51m11ar expressmns wnen
v or E occurs in the argument of a trigono-
metric function. There are several methods
to obtain such expressions. We give two here.
The first is due to Kaula (1966b) and taken
from Tisserand (1960). Kaula investigates
the conversion of

SN (OS\[(1_2p) v+ y]
(£)"()

where ¢ does not depend on v, and gives it
in the form

(%)’ (g’j)[(z 2p)v-+41= > Giyg (€)

g=—o0

(g’s)[(z 2p+q)m+y]  (9.65)

This form is natural for the computation of
perturbations due to tesseral harmonics. The
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formulas have two forms. The first is for
“long-term’’ terms, i.e., those terms in (9.65)
independent of M—that is, ¢=2p—1. These
can be obtained by integrating (9.65) with
respect to M from 0 to 2=. Using the trans-
formation (9.56), we obtain

G (e)_—_l__""‘ -1
. 2p-1 —(1_62)1-(1/_..2 2d+1—2p'

d=0
2d+l_~2p' e 2d+1-2p”
d 2 (9.66)
in which
p=l—p for p>1/2
P'=p for p<l/2

For the short-period terms, [—2p+¢q=0,
we have

G (e) = (=1)lal(1+82) 'Bld Z P Qupan B
k=0
(9.67)

where

B=e/[1+(1—e*)%]

o~ (20 -2\ (=)' Td-2p+q)e |
P’”“k—z( h—r ) 7! { 28 ]

r=0

(9.68)
h=k+q forq>0
h=1Fk for ¢'< 0
and
“f -2\ 1 [ (1-2p'+q)e]

n+l—m

an: _ q-p—m
w= (g0

n+l4+m

Xﬂm: _ —g+p+m
= (=R (—q+p+m

Xm—F(m-n—1, —m—n—1,1,)

)F(q—p—n—l,—m—n—l, g—p-—m+1,s*)

)F‘(—qﬂo—n—l,m—n—l, —q+p+m+1,8%)

where

h=k for ¢>0

h=k—q for g<0

p=0n } for p<1l/2

!

qa=q

r

p=1-p
for /2
7= —q } or p>1/

The transformation (9.65) is a doubly
infinite sum over q. However, it is important
to note that

Glpq(E) o« ﬂ'ql ~ (6/2)1‘”

We can choose a desired accuracy and select
a finite number of terms. For small e, the
number can be very limited. This selection
can be made numerically or analytically.

A second and more general method for this
development, given in Plummer (1918, p.
44), involves the Hansen coefficients Xnm,
defined by

o0

(T/a) ﬂeinw: Z sz (e) eiq.l[

q=—0

(9.70)

where the X" (e) are polynomials in eccen-
tricity. We have

X (e) = (14820 37, (qe) X35
(9.71)

and

forg—p-—m>0
(9.72)

forg—p—-—m<0

forg—p—m=0
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Wehave the Bessel function

J.(2) = (2/2)" Z(——zZ) etk 1
(9.73)

and the hypergeometric function

F(@5,62) = 3@} (0)./ ()] (/n)

(9.74)
where Pochhammer’s symbol is
(@)n=a(a+1) (a+2) - (a+n—1)

(a),=1 (9.75)
We see by comparing coefficients that
Glpq(e) =X _(21;311 = (e) (9.76)

However, formulas (9.67) to (9.69) are
valid only for l+1>0 whereas (9 70) to

070N

{ ~12 4l
(0.76) are valid for any iv= — \L-rl) Both

forms have been used With recent develop-

tions, the latter seems more economical for

numerical calculation. For use with com-
£ o)) nwafawr 4+~ ~Ahédain
i 4
b

tor aloahwra Ann =13
W a:glora, ont wouid preier o optain

olynomials in eccentricity with rational
fractions as coefficients. This has been done
through a recurrence relation originated by
Andoyer (1903) and introduced into satellite
work by Izsak et al. (1964). The method
starts with the observation that

(,,-/a) npi(=mv) — X:n,:m: (X:1,o) n (Xo,n) m

We compute X:.°, X°*t by any method, and
all other combinations are determined by
simple polynomial multiplication. Cherniack
(1972) gives these polynomials to 12th order
in e. Kaula (1966b) gives a table through
4,4,2. Cayley (1961) gives more extensive
tables.

9.4.1.6 First-Order Perturbations Due to the
Potential

We have seen that the potential can be
expressed in terms of associated Legendre

functions (sec. 9.4.1.4) and a set of numer-
ical constants,

GM
U= d\e< r)

0 1 _ i
X [ 1+ 2@,,,,(%) P, (sin ¢) efmx:l

=2 m=0
(9.77)

where ¢, A, 7 are the coordinates of a point in
the terrestrial or Earth-fixed system. The
terms @, ,, @,.,, @., are missing owing to the
orientation and origin of the system chosen.
In fact, the elastic Earth introduces the terms
@,,,, which will be discussed along with other
questions relating to the Earth’s elasticity in
section 9.4.1.7. Selecting Kepler elements,
we now use (9.77) in (9.28) for the dis-
turbing function r, omitting, of course, GM/r.

The conversion of R (r,¢,A) to R(a,e,l,v,0,
Q—6) is accomplished as follows. We express
R (r,¢,0) in the orbital system by rotating by

—6. Tuls lntroduces A—6 in place vl A il

(9.77). From the formula (9.46), we have
! 4
R=Re ( GM)ZZ@I,,L( @Y (iyrn
/ =2 m=0 a4

S

ANy pitd=2p) (vswiom(Q-6) (978)

P
2=0

where i=\ —1 and D,,,(I) are polynomials
in cos ({/2), sin (I/2). This is further con-
verted to the mean anomaly with (9.67) or
(9.70), giving

R= peGMzzzz( )( )

=2 m=0 p=0 g=—o0

(1')1 Dlmn (I)Glpq(e)e"p (9.79)

where

y=(1-2p)o+ (I-2p+q)M+m(Q—0)

‘ Equation (9.79) can also be written in terms

of Hansen coefficients with (9.76).

The first-order secular rates can be deter-
mined by selecting terms in R independent of
»,Q,M,4. These arise for m=0—that is, only
zonal harmonics and [—-2p=¢9=0. By use of
algebra, we find secular terms only in o, Q, M.
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A corollary is that the size a of the orbit, its
shape e, and its orientation can have only
periodic perturbations. We have shown it to
first order only, but it is true for any order
(Kozai, 1959¢c). We obtain for the first-order
secular rates

o=n(3V5/4) [Ts./(1—e*)](ac/a)*
(1-5cos*1)

O=n(3V5/2) [C./(1—e)?] (a,/a)? cos I

M=n{1—(3V5/4) [C.,/(1-e*)*]
(a./a)?(3 cos* I—1)} (9.80)
First-order periodic perturbations are
easily obtained by assuming that a, ¢, I are
relatively constant on the right-hand side of
(9.28) and that », @, M, 6 have linear rates;
that is,

o= w,+ ol

Q=0Q,+Qt
M= M, +nt (9.81)
9: 00+ét

The equations are integrated as a linear har-
monic oscillator for those terms containing
any of the variables in (9.81). In actual

SATELLITE PROGRAM
where
l//'lmpq: (l_zp)‘“+ (l_2p+q)n+m (Q_g)

After the substitution of (9.44),
formulas agree with Kaula (1966b).
The final calculation necessary is to deter-
mine (ndt for the perturbation in M accord-
ing to (9.28). We see that for [—-2p+q=0,
we have a perturbation in a from the first
equation of (9.82). From n*a®>=GM, we have

these

Alppe= — (3/2) (n/@) Adpyp,  (9.83)

Therefore, to the last equation of (9.82), we
must add the term

AMLuzpq:
—Re [— 3GMal (i) I]

al+3 (‘i’lmpq) 2 4
X DlmpGlpq (l_ 2p + q) @lmeiw'"‘m
(9.84)

ANppdt

We can combine both parts and obtain

GMa::lDlzizp - (1—62)1/2 8G,pq

computation, we would use the values of , €, AMipg = ERe a? Nefimpg  O€
n, § derived from observations. L2041 @ 3Gy (1-2p+ Q):l
Letting &; be a generic element, we have the n‘/}lngq v ($impa) ®
fOllOWing M X /L'1~))L—l@lmeiwln11)q
© 1 1 0
A(Qi: Z z Z Z A((’l:lmpq
=2 m=0 p=0 ¢g=—w
GMal(i)r™ 2 -
St = ReEEL DTS2 D (1) G () (120 +9) Trntimn
GM el *\ 1—m . —
Alipg= Qe?(w%—ef;h)ijlanlm (1—e*)%:[(1—e2)%(I—2p+q) — (I—-2p) ] @1V
GMal (i)™ .
AIlmp(I = (‘g\)e nat® ( 1-— 532) ]/25['11'11){1 Dl”'pGlP(I[ (l_ zp) cOS I- m] @lmelw“"” (9'82)
GMal (i) [(1—e?)% oGy, cosI G, oDy | = .
® — p € . _ m mp mp 7 - u[/lmpq
Avinpg = RE s (1—-e*)%sin gy € 3¢ sinl (1—e2)% al Cine
GMal(t) "Gy, 0Dy =
== l"blmpq
Mg =R [ — ey hsin I gmgg 0T O
GMal (i) 1-e?)%2G =
AMI"“’(I:QQ nal+:i(¢l)’)'pq [_ ( ee ) - aaépq+2(l+1) Glpq]Dlmp@lmew“"l’q
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This completes the first-order theory. If we
take as our goal an accuracy of 10, then it is
quite satisfactory unless |@,,| is larger than
10~ or Y.y is very small. From observa-
tions, we find that C,, ~ 10-* and that all the
remaining |@| ~ 10-%.  Therefore, this
theory is inadequate for the effects of C.,
=—J,/V5, and so other methods are used,
as described in section 9.4.1.8. The discus-
sion of small y,,, goes by the name of
resonance, which will be dealt with shortly.
If we consider the rate

l!/.Impq: (l—2p)")+ (l_2p+Q)n+m(Q_0)
(9.85)

and o, @ from (9.80), we see that (&, Q) « 103
n. The rotation rate of the Earth, 4, is once
per day, and n for geodetic satellites is 12+2
revolutions per day. Therefore, the period
of a perturbation is primarily determined by

2r/P={(1—2p+q)n—mé (9.88)
We see that in general the largeqf perturha-

HUHS'—'Lth 1b, the smaliest divis ors—are for
I—2p+4=0, and we have periodic terms with

ney : curs with the
”xwr-bommengmablhty of (I-2p+¢)n and
#6. That means that when the mean motion
of the satellite is approximately equal to the
order of the tesseral harmonics, we can have
arbitrary long periods and large amplitudes.
When analyzing terms with small divisors,
we must include the effects of o and Q to ob-
tain meaningful results. Resonance has yet
to be treated completely. For a single reso-
nant term, a solution in terms of elliptic
functions can be obtained, and these have
played an important role in the study of
synchronous satellites. For close-Earth satel-
lites, the problems are more difficult, since
the satellite will be resonant with the whole
set of harmonics of order m. In addition, if
the drag changes n appreciably during one
resonant oscillation, the theory is not even
approximately correct. Fortunately, geodetic
satellites have had relatively short resonant

periods (= 10 days), and the linear theory
seems to work well enough.

A second class of long-period perturba-
tions is due to the zonal harmonics (m =0,
l-2p+¢=0). These have the principal
period of the rotation of perigee, as given by
(9.80). The period of these terms can go to
zero for the so-called critical inclination—
that is, when (1—-5co0s*1)=0 or I = 63°4.
The theory given here is not valid near that
region of inclination. It has variously been
viewed as a resonant phenomenon and as a
physically important effect. Izsak (1963c),
Garfinkle (1963), and others have discussed
this question. '

Table 9.24 gives here for a typical geodetic
satellite a short table of amplitudes of the
perturbations due to the Earth’s field.

9.4.1.7 Third-Body Perturba
and Tides

tions, Elasticity,

There is an extensive literature on third-
body perturbations. The principal effect of
the Moon is a perturbation =~ 120 m, and that
of the Sun_ about 6 times that amount. Con-

a3,

tinuous analysis has been necessary because
of three factors:

I Y mL.
{i; i€

cated, making mteg1at10n of the equations of
motion difficult. The inclination of the Moon’s
orbit is not constant in the adopted orbital
system. There is a rich spectrum of periodic
terms in the lunar longitude.

(2) The Moon and Sun deform the elastic
Earth. This variation in mass distribution
has significant orbital effects. Improved geo-
physical information is needed in order to
account for them.

(3) The Sun and Moon cause precession
and nutation. These motions are the reason
for our adopting a quasi-inertial reference
system. We must include in the theory terms
to compensate for the noninertialness. These
terms ¢an be viewed as an indirect effect of
the lunisolar perturbations.

There are two avenues to be taken. The
first is to eliminate periodic perturbations
with periods commensurate with the length
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of orbit we wish to determine—that is,
periods <20 days. We take an analytical ap-
proach by assuming linear variation of the
orbital elements of the disturbing body. The
second avenue is for long-period analysis,
in which we obtain averaged equations—that
is, ones not depending on the mean anomaly
of the satellite. These can be integrated
numerically and are used for study of all
long-period effects.

In the following, we develop the disturbing
function for the Moon; that for the Sun has
the same form. We assume that the semi-
major axis of the satellite is small with re-
spect to that of the Sun or the Moon. This
disturbing function can be averaged and
then numerically integrated with (9.28), or
if @, e, I' of the Moon are assumed constant,
it can be integrated approximately.

We introduce the elastic deformation of
the Earth at this point, as it is most easily
incorporated into the theory from the be-
ginning. Following A. E. H. Love (Munk
and MacDonald, 1960, ch. 5), the additional
potential Qf, due to the deformation from a
potential of degree n is

Uy =k, (ac/r) 2 QU, (9.87)
where k, are numerical constants depending
on the elastic properties of the Earth. The
total potential acting on the satellite is then

[1+F. (ae/7) > 1Un (9.88)
Now the direct potential acting on the satel-
lite due to the Moon (or Sun) can be written

U=GM' [ (1/A) — (F-7/ (9.89)

[5)]

where 7 and 7 are the positions of the satel-
lite and of the disturbing body, respectively,
M’ is the mass of the disturbing body, and A
is the distance between r and 7. As is well
known, we can write 1/A in spherical har-
monics. To calculate orbital perturbations,
we use the gradient of Qf with respect to
the satellite position, and we can drop the
=0 term in 1/A. The [=1 term just cancels

7-#/|7'|>. Thus, we have for the third-body
potential, including the tidal deformation,

U=EH RS S o o] P

=2 m=0
+M:|sz (sin ¢) Py, (sin ') €™\
(7-’7-)“1
(9.90)

To include the effects of tidal phase lag, we
introduce a fictitious Moon lagging the real
Moon by At and separate (9.90) into two
parts. In this case, the disturbing potential
cannot be written in such a compact form.
We proceed by assuming At=0, the revision
of the theory being straightforward if the
effect of lag is desired.

By introducing the rotation operation
(9.45) and Hansen coefficients (9.70), we
can write the disturbing function as

© 12 1 1 0 0
RS SS S S R

1=2 m=0 p=0 P'=0 q=—0 Q'=—

(9.91)
where
GMI _l Lm ,
Rllupp‘qq’ = Tl(—}-l—)—_Dl"m (I) Dl,—m,p’ (I )
[ T le (e)X—I~1 ,m (e )
kla —I-1,m —l-1,m
B Xm0 X (&) o
(9.92)
in which
y=qM+q'M'+ (1-2p) v+ (I-2p") o’
+m(Q—Q')

We can integrate the LPE (9.28) by utilizing
the disturbing function (9.91) and the same
techniques used for the tesseral harmonics.
Considerable simplification is achieved by the
following steps:

(1) We delete all terms containing M—
that is, ¢=0. These short-period effects are
about 1 m and can be ignored for some prob-
lems. A consequence is that aa=0.

(2) For the second-degree terms, we can
use, for the Moon,
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GM =nla? (9.93a)

and

GM'=GMo (M /My) = (M/Mo)nia;
(9.93b)

where M /M,=1/81.53 and, for the Sun,

GM' =na} (9.93¢)

(3) The third-degree terms from the Sun
are negligible, and those from the Moon are
~1 m and can be ignored for some problems.
However, the third-degree terms and the
short-period terms in the second-degree de-
velopment must be included for future work.
The interaction between J, and the lunar
perturbations is the same size and must also
be added, that is, the contributions to & and
@ from

dA+8II

do
d T etard
ar - dir

Aa
we

b 4

where &, Q, and M are given hy (9.80),

A number of formulas have been used
(e.g., Kozai, 1978 ; Gaposchkin, 1966a). We
give here just the secular rates in o, 0, and M
and a representative periodic term. The com-
plete expressions for lunar perturbations are
developed by computer algebra and are de-
scribed in section 9.4.1.11. We have

. _38n? 1
“’L-S‘_' m (1 62)%
(2—~s1n21+1e2)(1—§sm2I’)
2 2

(1+3e'2 [1+k (“) :l

3 n? mw cos
A=e)% ez)lf‘2

()
x(1+3e) 14k 2 ]

Qps=—

(9.95)

Al (9.94)

1n? 3 .
ML_s——-Z%-m’ I—ESIHZI’)

3., 3,
x(l—gsm I>(1+§e )

2
x[7+3e2~3(1+4e2)k2(%ﬁ”

where, for the Moon, m'=M,/M,=1/81.53,
and, for the Sun, m'=1, and where

sin? I’:%sin2 J (14 cos? ¢) +sin? ¢ cos® J

+%sin 2¢sin 2J cos N

—-%sin2 J sin? e cos 2N (9.96)

Here, J is the lunar inclination, N is the lunar
longitude referred ta the ecliptic, and ¢ is the
obliquity. Although I is not constant, it is a
reasonable approximation for a year or so.
We note that J=57145 396. The other de-
ments can be taken from the ESAENA. For
the Sun, of course, m/=J=0. For the periodic
perturbation, we give as an example, for the
second degree,

ne (:_1)‘“

'/'\“,'—’ mpp gy T = D:"~ '{I)D—(II\
x| Xy (€ X (¢)
+k2< >X~3 m(e)XA% m(e )J
X [2(1—p) cos I—m] cos ¢
(9.97)
where

y=2(1-p)o+2(1—p') &' +qn+q'n’
+m(Q—')

We note that the secular rates depend on
k., which corresponds to that part of the
oblateness resulting from the permanent tidal
deformation. Conventionally, this term is
omitted from the lunar theory and is effec-
tively included in the numerical value of J..
A slight error will arise since, in the lunar
theory, k. occurs multiplied by a./a°, whereas
J. is multiplied by a./a?. Furthermore, the
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secular term in M must be included in the
definition of the semimajor axis.

The adopted reference system for orbit
computation is the equinox of 1950.0 and the
equator of date. The equations of motion
must be modified to include the motion of the
reference system. There is no need to modify
the short-period perturbations in the linear
theory described above. However, for the
complete set of LPE with (9.92) for long-
period perturbations or in terms of coordi-
nates (Kozai and Kinoshita, 1973), we can
include the following factors:

di/dt= ---2i/0t
do/dt=---3u/0t
do/dt=---20/0t
where
9t d(fcosa)
R__————dt Ccos
d(6sin o)
Mdt sin Q
dw Jd(8sin a)
3¢ = cosec 1L——dt _cosﬂ
_dsa) g, g
- (9.98)
oQ [d(8sin a)
—a—t—_—cotzL——dt cos
d (8 cos o) i
- da nQ_
1[ d(6sin a)
E[Tecosa
d(6cosa) , .
——dt——asma]
fsin o= (0.3979 +¢, —¢) Sin
a=(03979+4—c) siny (9.99)
0 cos 0=0.3651 (1—cos y) —e;+e

y= —17724 sin N+ 0721 sin 2N
— 1727 sin 2L+ 0713 sin [,
— 0720 sin 2L+ 0707 sin I,
+071379146¢
o —eo= 9721 cos N —0709 cos 2N
+ 0755 cos 2L+ 0709 cos 2L,
—07001281¢

where 1, I, L,, and L are the mean anomalieg
and mean longitudes of the Sun and the
Moon, respectively; ¢ is the number of days
from 1950.0; and N is the lunar ascending
node referred to the ecliptic. We have

d (6 sin o)
dt

(51 Eo)
dt

+0.3979 cos l//%

=0.9175 sin y————+

d (6 cos a)

9.100
7t ( )

=—(0.1583

d(e—en)

+ 0.8418 cos y) ———= i

+0.3651 sin ‘”%

W 17794 N cos N

dt
+0742 N cos 2N
—2"54 n, cos 2L,
+0713 n, cos I,
—0740 n cos 2L,
+ 0707 n cos [,

+07137 914 6 (9.101)

dla-a) (‘:i; “) _ _9721 N'sin N
+0718 N sin 2N
—1710 n, sin 2L,
— 0718 n sin 2L,
—~07001 281

where N=dN/dt, n, is the mean motion of
the Sun, and », is the mean motion of the
Moon. ‘

We have incorporated the effects of body
tides on satellite motion. There remain to be
included ocean and atmospheric tides. The
former, expressed in spherical harmonics, is
not yet very well known and so we give only
a qualitative analysis. The M, tide has been
studied by Pekeris and Accad (1969) and by
Hendershott (1972) and we will examine it.
If we develop the tide in an Earth-fixed sys-
tem as

{=4Re> P (sin ¢) eioneo

im

(9.102)
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then the tide will appear static in the inertial
reference frame of the satellite. The exter-
nal potential due to this tide, including the
loading effect, is

(1+ k’;) 41erwa ?2 = . .

U=Re i CinPr (Sin ¢) ™)
> @D CmPu(sing

(9.103)

where k& is the loading Love number (Munk
and MacDonald, 1960) and p,, is the density
of ocean water. This can be developed in
terms of orbital elements along the lines of
the tesseral harmonics; we have

CIj: ijlmp
imp
in which
Cl]lmp
=T, (ai+2/',,-l+1) D’mp (I) ei[(l—'lp) () +m(Q-v'—w'—Q") ]
(9.104)
where
Flm:47"GPw(1+k"t)(jlm// (2l+1) (9.105)
We can develop equation (9.104) into
erturbations, giving, for example,
A"”"iﬁg‘--’jq' —_ E,‘)P {,,", lm 11-&‘” (lb ')/l”’a'u& {Dlmp( ; Il(},l:i
Xt (e) X% m ()
x [ (I1-2p) cos I—m]e"‘” (9.106)

where
y=gM+ M + (I-2p) o+ m(Q—Q —0o')
y=qu+q'n' + (I-2p) o' +m(Q—Q —ao')

It is useful to note characteristics of lunar
and solar perturbations in addition to the
secular terms given in (9.95). The principal
periodic terms from the Moon have a 14-day
period and an amplitude of about 120 m. The
principal solar term is of 6-month period
and about 800 m. The tidal effects are of the
order of 10 percent of the direct effect, or
about 15 m for the lunar tides. Therefore, it
is essential to compute lunar effects when
orbits are being determined for more than a
few days. The solar effects can be absorbed
in the orbital elements. There are also very

important long-period perturbations from
the Moon. Of greater difficulty in the treat-
ment of long-period perturbations is the
solar radiatior pressure, which is yet to be
satisfactorily computed (section 9.4.1.9).

It is instructive to determine the ocean-tide
equivalent of the body tide. We can do this
only approximately. The correspondence is
made by comparing the potentials in (9.92)
and (9.106) for a particular Imp combina-
tion. We have

GMI ( _ 1) T+m klahl
body __ [
CZJ mp — 2l+ 1

1
Dlmp (I) z Dl(—m)p' (I’) eid)
p'=0

I+ 1apl+1
e

(9.107)

where ¢=(1-2p) (v+) + ({—2p") (v +0o')
+m(Q-Q’) ; and

e AnGpo (14 K1) @b N
’U;‘mp— l%l—f——lﬁ)rhl(/l"‘\?) IDImp(Il)el‘p

(0 1(\Q\

where y={I—2p) (v+o) —m{v +o +§ —Q).
We note that the lunar inclination is I'=23°
+5° and that D,_,,==0.925, D, _.,,==0.160,
and D, ..==0.0036. So, tfor the principai

1

emxdxulnal term, we can take (=2, m=2,

i V\I“ "M —
—2p=2, p=v,anap =4, gl‘."“g

k. 4rGpuCs.. (9.109)
1+k§ #nmac 2.—2.0(1,) .

— /2 !

C kg oy acD2,~2,0 (I) (9110)

2277 1k} 4xGp,

where k. would have a complex value. Using
nominal values, we have

k.=0.0114Cy, /D, .o (I')  (9.111)
From K. Lambeck (1972, private com-
munication), the Pekeris and Accad (1969)
solution with dissipation gives (in cm)
Ca.=4.4e-330m/180— _2 19 3,814

We then have ko= —0.026 -- 0.047i. Adding
this to the body tide, we obtain the effective
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Love number that a satellite would sense.
Choosing k%4 =0.29 with no dissipation, we
have

k;ff(é('ti\'c — kl:;m]y + kg('(’:lll — 0.264 _ 0_047 .i

Therefore, a satellite would sense a Love
number of 0.268 with a phase lag of 10209 or
40 m. Conversely, by adopting a value for
kb and determining kgt from satellite
observations, the height of the ocean tide
could be calculated.

We have analyzed perturbations due to the
P, . component of the ocean tide and note that
they have the same dependence on the satel-
lite inclination as does the body tide. There-
fore, it is not possible to separate the second-
degree body and ocean tide with satellite per-
turbation analysis. The ocean tides have a
much richer spectrum in spherical harmonics
than do the body tides (Hendershott, 1973).
Selected terms of equation (9.102) are im-
portant, principally, P,. and P,.. Although
they result in orbital perturbations with the
same frequency spectrum as does P, the
inclination dependence allows the determina-
tion of these coefficients by use of several
satellites, in an analogouz way to the geo-
potential.

Finally, we consider another effect of the
Earth’s elasticity. The orbital system we
have adopted is not precisely a system of the
principal axis of inertia. Rather, we use a
mean pole. There is a free nutation of the
Earth called polar motion, which introduces
the tesseral harmonics (Cp=Cp—1 Sim. There
are two effects that to some extent cancel
each other: The first is the motion of the
axis of the principal moment of inertia; the
second, the deformation due to the rotation
about a moving axis. If we let & 5 be the co-
ordinates of the principal moments with
respect to the mean pole and let [,, I, be the
coordinates of the instantaneous rotation
axis, then we can write

22,1: —Z)_z,o\/g('f—i"])
—Fk.(w2a3/ V15 GM) (1—1il,)

where o, =6§. This harmonic is a slowly vary-
function of time with a 14-month period. If
we assume ¢=1,, n=L—that is, that we know
where the principal axes are—then we have

EE,I - - Ez,rw\/—g - kz (“’%ai/ \/ﬁ GM) ] (5_1/'7)
Using these values, we know
Cai = (0.838 — k,20.893) (£—1iy)

the elasticity reducing the effect by about one-
third. The perturbations for the seven retro-
reflector satellites are all about 1 m.

9.4.1.8 Higher Order Perturbations Due to
Oblateness; Methods of Von Zeipel
and Lie-Hori

Although a linear first-order approxima-
tion to the equations of motion proved ade-
quate to obtain 1-m accuracy for the tesseral
harmonices and the zonal harmonics exclud-
ing J., and J,, we must have a more thorough
treatment for the oblateness perturbations.
Various solutions and formulas have been
used (Brouwer, 1959; Kozai, 1959¢, 1962b,
1966¢; Izsak, 1963b; Aksnes, 1970), but only
the last has proved completely satisfactory.
Except for Kozai’s (1959¢), the methods de-
pend on a canonical transformation. We
sketch the basic ideas here. There are
two equivalent approaches. The first, based
on a device employed by Von Zeipel (1916)
and known by his name, utilizes expansions
in the form of Taylor series. It was intro-
duced into the satellite problem by Brouwer
(1959). The second, from a transformation
due to Hori (1966), is based on expansions
in Lie series and is known as the Lie-Hori
method.

In both developments, we use canonical
variables,

=M L= (pa)*
Jd=o G=L(1—-e*)* (9.112)
h=0Q H=Gcos!
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In the Aksnes theory, use is also made of the
Hill variables introduced into satellite theory
by Izsak (1963d) :

r, V+o, h, ¥, G, H (9.113)

In the mathematical problem we are dis-
cussing, the Hamiltonian is

H= 2;»]; ‘éﬁa l[ 1+3(Ié)2](%)?
[ ( )]( )COS (29 +2v)

(9.114)

Since ¢ and % are both absent from 4, we

therefore have immediately
H=G cos I=const (9.115)

and Y{=const. We have limited this discus-

sion to J., and all the developments men-

tioned above have carried the analysis to
hioher orders,

diagmiacl O

The method of Von Zeipel (1916) was
proposed by Poincaré (1893). The latter
showed that a transformation was always
poss*”c, but he was not ccnvinced that the

.13 £I070N
SHAPaisivil wiuiG Tonver s'.\-

Barrax Livivj
has discussed inis question further. We look
for a determining funection S(L',G',H'l,g,k)
={, velating the new momenta and old co-
ordinates, such that the new Hamiltonian
9(* does not depend on I; that is,

j‘[(L,G,H,l,g) = (_q{* (L ,G ,H ,g) (9.116)
We then have
—28S/oL L=28/al
g’ =08/0G’ G=09S/o¢9 (9.117)
h'=0S/oH’ H=03S/2n

Since this is a canonical transformation, we
have

(9.118)

dL'/dt=2.9(* /ol
dl/dt= —2.9* /oL l

and four similar equations. Having solved
this problem, we can perform a second trans-

formation to eliminate ¢’ and obtain a third
set of variables, L”,G",H",l",g”,h", where the
Hamiltonian is

S**(L",G",H") =4*(L',G'"H',9)

We proceed by expressing 4 and S in a
Taylor series in terms of a small parameter
o, which will be proportional to J.,:

= o+aH
S So+a.Sl+a. S')
I*= HF +adf+a? J[é"+

(9.119)

We want an identity transformation for

a=0; therefore,
So=L'l+Gg+Hh (9.120)

We proceed by using expression (9.117) in
(9.116) to give

4 4,(285,9538 , 1\
l”\aL } “\at'agan " Y)
HE+ Jt’i‘( L, G H aag ) (9.121)

(L) = L) = o

aj{,n aSl -+ (ﬂ[lz L%T

3L ol 0129

0.1, 3., 199605, Y - (9122)
3L’ 2 T2 3L\ al :

a‘ﬂ{l aSl aj{l aS1 .

*3L 3l YaG 29 -

L2438,
* 99 oG

Kozai (1962b) correctly gives the third-order
expression.

We now separate .4, into a part independ-
ent of [ (called 91,,) and a part dependent
on [ (called .9{,,) and then make the associa-
tion

(9.123)
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The expression for S, obtained from (9.123)
can be used in the last line of equation
(9.122), again separating the parts depend-
ent on [ or not. We obtain a solution for S.,
and so on. Through equations (9.117), we
obtain

U=v(L\G,H'Lg)
L=L(L',G".H',L,9)

and four similar expressions for g',k’,L,H.
These expressions must be inverted to obtain

I=u(L,GH,l,g")
L=L(L,¢Hlg) | 17
which is accomplished by Taylor expansion
to the desired order and is very tedious.

The Lie-Hori method is developed along
somewhat different lines. Hori (1966) con-
sidered a transformation from p,q to P,Q
given by

oS 1 aS
pi_Pi+5Q—i+§l:a_Qi’ S:|+ T

_ aS 1 aS
¢:= i—a—Pi—g[—aﬁ,S]-i-

where [a,b] are Poisson brackets.
notation, any function can be written

(9.125)

In this

F00) =1 (P.Q) + 17,51+ 11,518 |+

(9.126)
The canonical equations are
dP;/dt=0.9(* /oQ:

dQ,/dt= —d.9(*/oP; } (9.127)

We further assume that S and 4 can be
written in terms of a small parameter

S=8:+8:+---
= I+ } (9.128)
If a parameter r defined by
dP;/dr=209,/0€Q:
dQ,/dr= —2.9,/P; } (9-129)

is eliminated from .4*, we have

Js=const

J{=const (9:130)

This development led Hori to the following
formulas:

L%’(l)‘: o
T: Hisee
Si= f4,,dr

= St LI+ I S e (9.131)

S2:/<(%2p+%[L4{1+‘ﬂ{f’ S']P)dT

Here we designate the subscripts sec and p
to mean the parts independent of and de-
pendent on [, respectively, as in the Von
Zeipel method. These formulas are given by
Aksnes (1970).

The Lie-Hori method has a number of
advantages. The transformation is com-
pletely in terms of the new variables, and no
inversion of series is necessary. The formu-
las are all canonically invariant, so they hold
for any canonical variables. Aksnes could
then make two fundamental advances in the
treatment of oblateness perturbations. First,
he chose as an intermediate orbit a precessing
ellipse that incorporated all the first-order
secular terms and most of the periodic terms.
That is to say, in the analogous process of
finding 9.9(/2q;, he discovered another solu-
tion, ¢°, p°, that included a part of the dis-
turbing function instead of a Kepler ellipse.
Second, with a canonically invariant formu-
lation, he employed appropriate variables.
For long-period and secular effects, Delaunay
variables were used. The results agree with
the Von Zeipel method. For short-period
perturbations, Hill variables were used, a
procedure that eliminates the difficulty with
small eccentricities.

The first-order determining functions for
the Lie-Hori and the Von Zeipel methods are
the same, as can be seen by comparing the
defining equations or the results (Kozai,
1962b; Aksnes, 1970). In fact, this must be
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so because both formulations work for De-
launay variables and have been shown to be
equivalent. Therefore, the first-order per-
turbations are the same.

Space does not permit us to give a more
detailed account of this beautiful theory or
the detailed formulas, for which we refer the
reader to Aksnes (1970).

We summarize the status of oblateness
perturbations:

(1) Two complete second-order develop-
ments, one by the Von Zeipel method (Kozai,
1962b) and the other by the Lie-Hori method,
have been compared. For short-periodic per-
turbations, the agreement is 10 cm. The
secular rates predicted by the two theories
can be reconciled to within their given accu-
racy (Aksnes,.1972).

(2) The second-order development of
Aksnes has the advantages of compactness
and efficiency of computation, and no singu-
larity for small eccentricity. The small-
eccentricity problem is avoided by the use of
Hill variables.

(3) For long-period and secular perturba-
tions to 10 cm, further work is necessary.

Tarme in J.J. J.J. atno wanet ha inclidad ac
2ary €UC., Mmust e mciudeq, as

A5 Al O uu gy Uouu gy
well as interaction with all other forces—

himar and Inr offeets tegaoral harmanies

TR TR TR
Oiao. 41 Fadinl ton Froagiipo
Ulag, alili faldiauilil pressure.

We cannot give the complete set of formu-
lac bt wa nrocant the fArcet.ardow namndin
fas, but we present the first-order periodic
and second-order secular perturbations as
developed by Aksnes (1970), although we

have dropped the primes:

AT= (—yG?/2ur?) lis2 sin 2u

1
8

Ar= (yG*/4p) [1 —3c?+ 52 cos 2u

D s%e sin (2u—v)]

——z]i— D s%e cos (2u—v)i|
AG= (yG/4) [3826 cos (2u—v)
+5s%ecos (2u+v)

-

—%D s%e? cos (2u—2v) l

Au=(—y/4) 1 (2—-12¢?) e sin v

—%(4+D €*) s* sin 2u— (2—5¢?

1
2

+c’esin (2u+4v)

+—=Ds?)e sin (2u—v)

—2[D-DWs] ¢*e sin (2u—2v) }
Ah= (—yc/4) 1 6e sin v—3esin (2u—v)

—esin (2u+v)

—i—%[D—D“)s?]e2 sin (2u~v)]

where
D= (1-15¢%)/(1—5¢?)

D =23D/3¢*
c=cosl
~ ~yw T
N = .]n,ﬂ nt
2/
P=1—¢

gn= = y{1=5¢") — oy {41+30¢°—135¢%)
o 7_,'3, ATQ o 2fr7 90231
Yzz— 16°L°)’Tl \8 T edLTy g
with
')’4:J4/J§
M= n+13%ny2n[8(1—602+5c4)

—5(5—-18¢*+5¢) e?
—15 v, (3 —-30¢*+35¢*) €2]
®:g+921(g+M)
1 ,
_ = 2 _ Qct
=—1og" 7 [44—-300c
+ (75—878c%+135¢*) ¢?
+60 v, (3—-36¢2+49¢*)
+135 v, (1 —14¢%+21¢*) e2]
Q:h+gsz(d’+M)
k:;’—zncf [2—10c¢%— (9—5¢2)e?
~5y,(3—-Tc?) (2+3¢e2) ]
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As was discussed in section 9.4.1.5, periodic
perturbations for J. were developed by using
computer algebra. The expressions were
employed in orbit computation, and the or-
bital fits were identical. This agreement
validates both sets of formulas since they are
based on quite different methods. The mean
elements in the two developments are differ-
ent by factors of order J,. Aksnes (1970)
has given the formulas relating the two
theories and a numerical verification. If we
let a subscript 0 designate the Von Zeipel
element, then the elements of a, ¢, I are re-
lated by

1/a= (1/(10){1——%7)0‘)10(1—3 cos?l,)
+ g nA L+ 60— (64363,) cost I,
+ (454-54n,) cos* I,] +--- }
G:GO[1+:11~y(.(1—3 cos?® L.)]+"'

cos I=cos 10:[1+£3—170(1_cosz Io)jl"f- -

772: 1—e?
G:= 7]2 na
y=J./a% 4

9.4.1.9 Atmospheric Drag and Radiation
Pressure

For several reasons, atmospheric drag and
radiation pressure are treated by different
methods than are gravitational perturba-
tions. First, they are not conservative forces
derivable from a potential function. Second,
they involve considerably more unknowns.
Whereas the geopotential may be considered
unknown and require improvement, we can
assume that the main field is constant in
time, that tidal variations are known, and
that the geopotential has a known mathe-
matical and physical form. Similarly, for
lunar and solar perturbations, we assume
sufficient knowledge of the mass and position
of the Moon and the Sun. With drag and
radiation pressure, we are in a much less
favorable position. In drag perturbations,

the atmospheric density is critical; it has
been studied extensively from its orbital ef-
fects. The parameters controlling density
variations are becoming known, and one can
probably predict a posteriori the mean-
density structure to within a factor of 2.
However, the satellite aspect and the drag
coefficient must also be known. Radiation-
pressure effects involve similar problems:
What is the value of the solar constant and
is it constant? How much is diffuse and how
much specular reflection? How do the reflec-
tive properties change with time? How vari-
able is the albedo radiation? How does the
satellite aspect change? And how is the
boundary of the Earth’s shadow defined ? For
some satellites, this information is available,
though difficult to obtain. Some of these ques-
tions are subjects of current research.

The following treatment of radiation pres-
sure developed by Kozai (1963c) and ex-
tended by Lala (1968, 1971) and Lala and
Sehnal (1969) assumes, for one revolution,
the following: (1) the satellite is spherical,
with constant reflective properties; (2) the
solar parallax can be neglected; (3) the solar
flux is constant; and (4) there is no albedo
radiation.

The natural vehicle for treating forces
directly is the Lagrange planetary equations
in Gaussian form (9.42). The forces are
expressed as

S=n*a*F S(v)
T=n*e*F T (v)
W=n*a*F W

(9.132)

where
F=(A/M) (K/GM) ~0.5x10*(A/M)

with A (area)/M (mass) in cm? g~t. We have

S(v) = —cos*(I/2)cos?(¢/2) cos (A, — L —Q)
—sin?(1/2)sin? (¢/2) cos (A, +Q—L)
—%Sinl sin e [cos (A,—L)
—cos(—r,—L)]
—sin2(I/2)cos®(e/2)cos(Q—Ar,—L)
—cos2(I/2)sin?(¢/2)cos(—A,— L —Q)

(9.133)
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I'(v) = —cos?(1/2)cos?(e/2)sin (A, — L — ) —sin?(I/2) cos?(e/2) sin (A, +Q—L)
— L ginIsin e[sin(\,—L) —sin(=r,—L)]

2
—sin?(I/2)cos?(e/2)sin (@ —A,—L) —cos?(1/2)sin?(¢/2) sin(~ar,— L —Q) (9.134)
W =sin I cos?(e/2) sin (A, — ) —sin I sin?(e/2) sin (A, + Q) —cos I sin e sin A, (9.135)

where L =v+ o, A,—=the longitude of the Sun, and «=the obliquity. We have the LPE

da_ 2na? . __2 _ 2
T d_e)% ez)%FI:S(v)esm v+ T (v) r] p=a(l—e?)
sin I dn (Tng,ele/;WF sin L dI (T’n*e——)‘?WF cos L
%:nw(l—e?)%F{S(v)sinv-i-T(v)[cosv+%—(1—;):“ r (9.136)
_e) %
% coslgl—9+na2—(%ﬁ’|:—8(v)cosv+T(v)<1+%>sin vil
am do dQ
—_—=n—- —_n— — Wl = ot
=" 2a2FS(v)an (1—e?) (dt +cos1dt> |

Since radiation pressure is a discontinuous force, it is difficult to obtain analytical solutions
for it. Two approaches have been used successfully. The first, by Kozai (1963c), is to
determine numerically the time of shadow exit E, and shadow entry E, in terms of the eccen-

tric anomaly. Then, by assuming everything else constant for one revolution, Kozai obtains
the following first-order perturbations after one revolution, where S=S(0), T=T(0) are

ATVYULUVLIULLy YYLILL U A —iAI\V )y 4 L \Vy v
written for their values at L=o:

S Ty L
ba=20°F |[Scos E—T(1—e*)*sin £]|

i |E1
o erie evel Lo Y A AU LA I
A€ — (i~ ) — &1 20 N — s 72008 ZH 40 LT <in R S S L Y L 1] —-—— 3
2 LI L W X I |4~ L €=} COS s& A e R b H.79i i

Li \ = /i = -
|

=*F e | (1+e?) sin E———sm 2E [cos o

1 e) \Il_ =

+(1—62)’/2(cosE——cos 2F }sin o 12—§e]cos(»dE}
4 P 2
sin ] §Q= azF—L{H: (1+e€*) sin E—Ssin 2E:|sin "
(1-e*)% 4
— (l—ez)’/z(cos E—-ﬁcos 2E>COS¢» Ez—ge/sinwdE}
4 B 2 r - (9.137)

So= —cosISQ+a2FM—[ ’ S(e sin E+ism 2E)

T 1 3
+m<e cos E‘—Zcos 2E> E1~§/S dE:I
sM= _§ _dM (1—€2)% 50— (1—e*)%cos I 52 — 20°F

0

{' S[(1+e2) sin E—Z—sin 2E:|

—T(1-—-¢?) 1/2<cos E’—Zecos 2E>

E: 3
-2 S dE
Ey 26/ }
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If the satellite does not enter the shadow,
then the terms evaluated at E, and E, vanish.
How the perturbations after part of a revo-
lution can be computed is obvious. These
expressions provide the differential equations
to be integrated for mean elements—that is,
da/dt=38a/8t =nda, and so on. This is the
method used to calculate the long-term effects
due to radiation pressure in the determina-
tion of zonal harmonics and tidal parameters.
In addition, one can determine quite reason-
able mean reflectivities for the satellites.

An alternative approach was taken by Lala
(1968, 1971) and Lala and Sehnal (1969).
They developed the shadow function in Four-
ier series in E and found solutions for the
periodic perturbations. They required 36
terms in the development to obtain agreement
with the above special perturbation formulas.
These periodic perturbations were formally
integrated. For further details, the reader is
referred to the Lala and Sehnal papers.

The development of drag perturbations by
Sterne (1959) follows the same lines. As-
suming a rotating atmosphere with an oblate
planet, he considers the drag force per unit
mass

%C})%p V2 (9.138)
where C), is a drag coefficient, A/M is the
area-to-mass ratio, p is the atmospheric
density, and V is the satellite velocity with
respect to the atmosphere. Now, C,, A/M,
and p are all difficult to know. Sterne adopts
C),=~22. If precise values of A/M are not
known, then the average A is taken as one-
fourth the total surface area. He then gives
the forces acting on the satellite as

S 7
T |[={ ro—ércosl (9.139)
w 6rsin I cos (v+w)

and after calculation, the velocity as

(14 ecos E\% l—ecos K
_{* i P Bl btoidiondl
V”(@) (1—ecosE> (1 d1+ecosE‘)

(9.140)

where
g .
d:%(l—el)‘«‘:cosl (9.141)
and the forces per unit mass are
S
1, A
T :EC”M”(LV
w
esin F E
., (l-ecos E)?
(1YW 1 gl s )
(1—e?) [1 d 1 ¢ E
———%(1—6 cosE)zsinlcos (v+e)E
(9.142)

With these equations, the LPE can be inte-
grated numerically. Alternatively, if we can
specify how Cp, A/M, and p vary, we could
attempt a formal solution. We make the
analogous solution to that for radiation pres-
sure, assuming C, and A/M constant, and
obtain formal quadrature formulas for the
perturbations after one revolution. These
formulas are given in the inset on page 855.
We see from the last two expressions of
(9.143) that the direct perturbation in M+ o
is quite small, the major change in M coming
from

n=(—3n/2a) sa

These expressions are used with numerical
quadrature to obtain the evolution of mean
elements. The implementation is done by
Slowey (1974) for studying drag. Alterna-
tively, taking Jacchia’s (1960, 1964) density
model, Sehnal and Mills (1966) have devel-
oped p in harmonic functions and obtained
formulas for the periodic terms. These are
sometimes used in analyses of satellite orbits.
However, since for geodetic satellites the
short-period drag terms are always less than
1 m, we can ignore them. The secular part
is more conveniently absorbed in some con-
stants of our orbital model. Therefore, the
principal use of these formulas is in the
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(1+ecos E)%(

l—-ecos F

A [ i
da= —leﬂaﬁ p(E) (1_ecosE)‘/z\1_d1+eCOSE) &

e 2 %
Se:—CDA(l e?) a,/ P(E)(1+ecosE) (1

M 2 l—ecosF

d

|:cos E~m)—(1—e cos EY(2 cos F —e—ecos E):ldE

_leAa, ., 1 (7 % %
SI—SWCI;MnesmI(l_ez)%ﬁ p(E) (1—ecos E)*% (1+ecos E)

" "1+ecosE

(9.143)

l+ecos

—_ —p2 2 _ 2 __ _
X(l—dl ecos B [1+cos2w(2 e®) cos®* B —1+42¢>—2e¢ ZecosE]dE

6 sin 20
m:_i A a 6sin

1_ l—-ecos E
l+ecos E

So= —cos I sQ
M= —(1—-¢*)"dow+ [5n dt

(l1—ecosE)?
2
iRt ——— _p2 2 1
SFCDMn (1_62),/2/; p(E) (V—e?cos? E)

)[262—1—26 cos K+ (2—¢e?) cos? E1dE

analysis of long-period effects by numerical
integration of these mean elements, along
the same lines as those used for radiation
pressure. In this case, we are able to make a
reliable determination of drag factors, which
could be systematic errors in the density

model, or an estimate of C, or A/M. These

which is less than the uncertainty of these
parameters.

9.4.1.10 Computer Algebra

A great deal of the analysis used for satel-
lite-perturbation theory involves considerable
tedious algebra. One is led to do some of this
work on a computer. A major support of the
development of analytical theories has been
the computer program Smithsonian Package
for Algebra and Symbolic Manipulation
(SPASM), described by Hall and Cherniack
(1969), and Cherniack (1973) has contrasted
it with other algebra systems. Since the sub-
ject of computer algebra is beyond the scope
of this discussion, we confine ourselves to a
few remarks and the description of two
problems in satellite theory.

Algebra programs perform the elementary
operations of addition, multiplication, sub-

traction, division, differentiation, and inte-
gration of a certain class of functions. We
can define functions, make substitutions, and
truncate on powers of designated param-
eters. We can examine expressions term by
term and parenthesize and expand them.
Numerical coefficients are kept as rational
numbers where possibie. One can read ex-
pressions in, print them out, or punch them
as FORTRAN cards for subsequent numer-
ical computation. We have two forms of
internal representation—expressions and
Poisson series. Each has its advantages. An
expression may be

(ETA**2—-R) /E

The Poisson series are of the form

sin
2 A (cos )Bi

where A; and B; are any expressions. All the
operations described apply to both expres-
sions and Poisson series.

Poisson series have three advantages:
(1) all trigonometric identities are auto-
matically applied; (2) because of the highly

structured nature of Poisson series, multi-
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plication and addition can be optimized, and
further, secondary computer storage can be
used for long Poisson series; and (3) the
bulk of problems in celestial mechanics is
solved by developing the disturbing function
in Poisson series and integrating term by
term.

In addition to the operations described
above, we can convert from expressions to
Poisson series, and then back. Great efficiency
is gained by judiciously choosing the form.
Consider

(cos2%x) 3 — (cos®'x)°

As a trigonometric polynomial, this opera-
tion is trivial; as a Poisson series, it is not.
We have here two very important features
of computer algebra: the noncommutativity
of operations with respect to time, and inter-
mediate swell. The above expression is obvi-
ously zero, but one has two 50-term Poisson
series along the way. Neither of these prob-
lems occurs in numerical work.

SPASM is 99 percent in FORTRAN;
storage management is accomplished with
SLIP, which is accessible from FORTRAN
programs. We are concerned with the effi-
ciency of SPASM and with the size and speed
of the FORTRAN code generated. These are
part of the more general problem of expres-
sion simplification.

Although general simplification seems to
be very difficult, we have had some success
with the following approach. We assume
that the coefficients of Poisson series can be
factored as the product of polynomials. Fur-
ther, we want to consider the choice of vari-
ables. In developing perturbation theories,
we convert to Poisson series all angle vari-
ables except the inclination. Therefore, we
have the side relations

1]2 + 62 — 1
SI*+CI*=8SIP*+CIP*=1
where we have substituted SI for sin (1),

CI for cos (I), SIP for sin (IP), and CIP
for cos (IP). The P designates the primed

variables—in this case, the elements of the
disturbing body (see sec. 9.4.1.7). We try
each substitution, as indicated. It would be
more direct to convert each coefficient of the
Poisson series to a Poisson series, using
e=sin ¢, n=cos ¢, in order to obtain all
simplifications, and then to convert back to
an expression. However, the substitution and
the test for length of expression are easily
done. We retain the expression that has the
fewest terms and remove all common factors.
Next, we assume that the remaining expres-
sion can be written

e SI eP SIP
(n'CI’v,P'CIP>
e SI eP SIP

‘Pe<n>P’<01>Pe’<nP>P”<CIP>
where P, is just a polynomial. In turn, by
setting all the variables but one equal to zero,
we obtain each polynomial. The results of
factorization are then verified by expanding
and subtracting. We have found that in this
way we obtain all the simplifications that
would have been obtained by hand.

SPASM has been used for a wide variety of
problems. We describe here two of particular
relevance to satellite theory: development of
oblateness perturbations in Delaunay vari-
ables by the method of Von Zeipel, and third-
body perturbations in Kepler elements by use
of LPE.

Von Zeipel’s method is described in section
9.4.1.8. Two features can be pointed out.
First, once the determining function S is
known, the perturbations are obtained by
differentiation. Second, the first- and second-
order determining functions can be obtained
in closed form, as was done by Kozai (1962b)
by a change of variable using

dv=(1/") (a/r)*dl

Both these operations are within the scope
of SPASM, and the problem proved tractable.

The necessity of an accurate theory for J.
was discussed in section 9.4.1.8. The develop-
ment by Kozai (1962b) had been used, but
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with such a complicated development that
further verification was necessary. The de-
tails of the work are recounted by Gaposch-
kin et al. (1971, unpublished). The impor-
tant results are the following:

(1) The problem proved tractable with
an algebra program.

(2) The determining function of Kozai
(1962b) has been verified, and the problem
solved to second order.

(3) The accuracy of the theory and the
inversion have been verified against numer-
ical integration. The inversion was checked
by use of the numerical inverse from (9.124).

(4) The difficulty with the small eccen-
tricity remains. The third-order periodic
perturbations were developed and were
shown to contain 1/e terms. Numerical tests
indicate 1/e* terms in the fourth order. We
conclude that this is due to the Delaunay
variables we had selected.

(5) The development of computer algebra
enabled us to obtain the third-order pertur-
bationsg in 3 weeks; we would probably not
have attempted it by hand.

(6) The perturbatlon theory

The second problem attempted is th e per-

turbation due to a third body. In this case,

we start with equation (9.89) (sec. 9.4.1.7
analytically develops that expression). Using
the algebra program, we now determine 1/A
by analytical inversion. The basic idea, due
to Broucke (1971), allows the inversion of
invertible expressions; that is,

(E)—=*=2Z

An iterative scheme is developed, with each
iterant

Dy~ Zy=0Zy=—3(EZY*-1) Z,

This is enormously powerful. Since we can
invert any expression without division, it is
applicable to computers without a divide in-

struction. In the case of lunar perturbations,
we have a/b="1, where

E=(X-Y)- (X-Y)

Here, Y is the position of the satellite, and ¥
is the position of the Moon. We have

cos % cos Q—sin u sin Q cos [
X =r| cos usin Q+4sinucos Qcos I
sinu sin [l

A similar expression for Y uses #, v/, @', I'.
With this expression, we perform the ana-
lytical inversion, starting with Z,—1/7" and
truncating on 7*. We have a simple check:
The r/r* are all canceled by the (X-Y)/|Y|?
term. The effects of body tides are easily
introduced at this point by the substitution

2n4+1
™=t kr——o;';m
Next, the expressions are expanded with use
of Hansen coefficients as described in section
9.4.1.5. The resulting expressions are then
put in the LPE and integrated on the as-
sumption that the angular variables, except
the inclinations, have a linear change with
time. "’:ﬂ V‘PQ“IT]!\Q‘ PY“]"PQ\"\T‘\ “are \l"ll)ll-
fied as described above.

In conclusion, we can say that computer
algebra has been a successful tool for satel-
lite-dynamics problems. It balances efficiency
and expediency. The lunar perturbations
were being used in the orbit computation
program a month after the work started with
SPASM, and we developed the third-order
perturbation due to J. in 3 weeks. We can
develop even more efficient programs by care-
ful analysis (cf. formulas of Kozai (1962b)
and Aksnes (1970)).
9.4.1.11 Orbit Determination and Parameter
Estimation

The elaboration of an orbital theory, the
main objective of the preceding sections, is
but one of the four aspects of using satel-
lite-tracking data to obtain ephemerides and
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other information. We also have the data
reduction, the relation between the observa-
tions and the parameters sought, and the
estimation procedure.

We adopt Kepler elements as the orbital
parameters to be determined. However, we
choose to determine 7, the mean motion,
rather than a, as n is the best known of
the orbital parameters. In addition, we
recognize that the coefficients of the grav-
itational field and the nongravitational forces
are imperfectly known, thus introducing
model errors. We can reduce these errors
to some extent by determining secular rates
for each of the elements. Therefore, the un-
certainty in the orbital model will be limited
to the short-period perturbations.

The polynomial representations of the ele-
ments account for the bulk of the nongravita-
tional forces, including the long-period effect
of gravitational perturbations. The poly-
nomials (mean elements) can be analyzed to
obtain the zonal harmonics of the gravity
field, some long-term resonant terms, and the
reflective and drag properties of the satel-
lites.

The basic relation used here is

p=7T—R
Cod. (9.144)
p=ggp=T—R

where 5 is the topocentric station-to-statellite
vector, 7 is the satellite position, and R is the
station position. It is convenient to use this
equation in the orbital system; therefore, R
is given by (9.7) and 7 by (9.17). We gen-
erally observe Ap, where A is a transforma-
tion matrix. So we have

()=observation=Ap=AF—-AR (9.145)
In principle, any parameter that enters
(9.145) can be determined from the observa-
tions, but it may not be unique.

There are basically four distinct types of
observation to be considered: (1) optical
directions given in a celestial reference
frame (e.g., Baker-Nunn data); (2) direc-
tion observations in a topocentric reference
frame (e.g., MINITRACK); (3) range ob-
servations (e.g., laser); and (4) range-rate
observations (e.g.,, TRANET Doppler). The
transformations for each type are as follows:

(1) Right ascension and declination:

AS
Cosd Aq

[ —cosasiné —sinasind coss AT
= —sin cos g, 0 P

(2) Altitude (@), azimuth (A.), range
(p) are given in the inset below with ¢, A as
the latitude and longitude of the observer,
and p,, py, p- as the components of 7.

(3) Range:

Ap=p-Bp=(3/|p]) Ap

(4) Rangerate:
Ap=p-dp

The domain of parameters to be deter-
mined can be expanded to include gravita-
tional coefficients, station coordinates, GM, a
scale factor for all stations, and the position
of the Earth’s pole of rotation. For unique

da
—cosa d(A.)
@
P

—sin A.sina —cosA.sina cosa
= ; cos 4, sin A, 0

pa/p pu/p p/p

—sin (A40)
—co0s (A+0) sin ¢ —sin (A+0) sin ¢ cos ¢

cos (A+0) 0

Ap
sin (A+0) cos ¢ sin (A+0) cos ¢ sin 4>:|}
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and meaningful results to be obtained, sev-
eral orbits may have to be combined. This is
most conveniently done by dealing with
normal equations, which will be discussed
later.

If we wish to determine any parameter p;
from observations, we use our elaborated
theory for # and our initial estimate for p,
p% and compute

C=Ap (9.146)
In general, the dependence of  on p; is non-
linear and we must linearize. We want to
find a correction to p; that will reduce the
difference between © and C; that is,

(9/0p;) Apap;

Now if A can be determined from the obser-
vation, we need only 9p/2p;. For range rate,
A depends on p;, and the expressions are
more involved., For those parameters in-
fiuencing ¢ through the orbit, we obtain

O-C= (9.147)

OF ©°F 0w  oOF 00 . oF al

2p; dw Op; " 90 2p, " oI op,
. OF de . oF oM 2a OF On
3¢ 3p, ' oM Op. 3n ou op

NGO 1rain { I9R7
NOw, av U

(19664, 7) e hav

Toan
7  aaa

or/ol =rsin ué,
or/oe= (é,xT) (a/7) [sin E/(1—e?)%] —a
oF /oM = 2.7/n
of/oa=7/a
where
U=V+o
sin 7 sin Q@

é,=| —sinJcos O
cos I J

-

expressed in the orbital system. For example,
if pi=w, the constant of perigee is then

dw/dp;=1, the other being zero. If p;=Cipn,
then with C;,, =1

aw/acm - Z zA‘Dlmpq
4 q

aQ/aClm: Z ZAlepq
14 q

and soon. If p,=GM, then
_ 1.
or/0(GM) = 37/GM
.

If we want to determine station coordinates,
we have

R=R,(—8R(y,x,0) X,

11
3z | |
ri
:—Rg(—f))R(y,x,O)LO
0

-~
“

(=2
-
| I

If we want a scale factor ¢ for all stations—
that is, AR =« R,—we have

%/da=—R;(—6)R(y,0) X,

To determine the polar motion, we have

- singZ,]
a—;’ —cos b Z,
S A
- Fcos8Z, 7
—=£ | singZ,
ox
L. "‘Xo

If we have the instantaneous coordinate
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of the station, then
Xo=Xcos6+Y sin ¢
Y,= —Xsin6+Y cos¥
Zy~Z7

The data reduction falls into two parts:
those reductions necessary for all data, and
those related to particular data types.

All data must be expressed in the same
time system. For orbital computation, we
need a uniform time system, and so we have
chosen AS, an atomic time dystem, as a
standard. The differences between AS and
A3 and between AS and Al are

AS—A1=0.8983 msec

AS—A3=235.4 msec

Although these values change slowly, the
adopted constants are sufficient for data
taken between 1965 and 1971. Numerical
values of AS—UTC are given in the form of
polynomials and are published (e.g., Gapos-
chkin, 1972).

We must also know the physieal point to
be associated with each time. For optical
data, the time detected is that of receiving
the light. The orbital position corresponds
to an earlier time, the difference being the
travel time of light. For a flashing-light satel-
lite, the flash times are given at the satellite.
Nominal values of range are sufficient for
correcting the time associated with the satel-
lite position. With ranging data, we often
have the time of firing of the laser—that is,
the time of transmission—and therefore the
satellite time is later by the travel time. In
all cases, we must know precisely what the
satellite position time is.

We have a similar situation with the sta-
tion position. The position of the Earth is a
measured quantity given in terms of UTI.

We must use the actual value of UT1 to com-
pute the sidereal angle in (9.7). The time
associated with the station is the received
time for optical observations, but it is the
satellite time for range observations. The
satellite time corresponds to the average
position of the station during the round trip
of the signal.

Data from cameras must be reduced to the
adopted reference system by use of (9.8).
In addition, we must apply annual aberration
and parallactic refraction. The first is usu-
ally applied during film reduction, and paral-
lactic refraction is computed from

AR=[(0.435x0.484813 x10") /]
(tanz/cos z) [1—exp(—188.5,
cos z)]

where p is the topocentric range in mega-
meters, z is the zenith angle, and AR is the
correction in radians. Now we have

AS= —ARcosq
Ao= —AR sin q/cos 8

where ¢ is the parallactic angle measured in
a positive (clockwise direction) from the ob-
ject to the great circle through the pole (Veis,
1960, p. 119). This correction is based on
standard pressure and temperature. If meas-
ured values are available, a better value can
be obtained by taking mean nighttime data.
A table of corrections is given in Gaposchkin
(1972).

For laser range observations, we make a
correction for the tropospheric refraction
and for the geometry of the satellite. The re-
fraction correction becomes (Lehr, 1972)

_2.238+0.0414 (P/T) —0.238 &,

AT= sin g +10% cot ¢

where P is the atmospheric pressure (mb)
at the laser station, T is the temperature
(K), h, is the elevation above mean sea level
(km), and o is the elevation angle of the
satellite. This formula holds true for light
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from a ruby laser at 694 nm when the appar-
ent elevation angle is greater than 5°.

The accuracy of data from laser systems
is connected with the physical size of the
satellite equipped with corner reflectors.
Arnold (1972) (unpublished) gives in tabu-
lar form a correction to reduce the observed
range to the center of mass of the satellite as
a function of angle of incidence. By use of
these data, all observations by laser systems
can be reduced to the center of mass.

Equation (9.147) will, in general, be over-
determined, and so we use the method of
least squares to obtain an estimate of the
unknowns. The general references are Arley
and Buch (1950) and Linnik (1961). By
collecting normal equations, we can merge
the observations from many orbital arcs.

In the least-squares estimate, the weight
or accuracy of each observation must be
established a priori. For the estimation
process, only the relative accuracy is impor-
tant; however, one can have greater con-

fidence if the standard error of unit weight

comes to be unity.

For the weighting, we assume that the
errors are uncorrelated, probably not a bad
assumption with data taken over several
vears. We have given each observation an

ividual weight, as deseribed in tabie 9.10.

In addition, where there were more than 30
points in a pass of laser data, 30 points were
chosen, evenly distributed through the pass.
Some numerical tests indicate this was no
worse than if we had averaged the points.

Finally, the process of parameter estima-
tion must be iterative, for two reasons: The
model is nonlinear, and gross observation
errors must be discarded. On each iteration,
the computation discards data on a 3¢ cri-
terion; that is, a point is discarded if

(O-C)Vw>38s .
where w is the weight, and ¢ is the standard

deviation at the last iteration. The process is
said to converge or stabilize when

| (U'n— U'n—l) /O'ni <001

9.4.2 Coordinates
(E. M. Gaposchkin, J. Latimer, and G. Veis)

A number of approaches can be used to
determine the position of points on the
Earth’s surface. Of these, we have chosen
tracking of close-Earth satellites, deep-space
probes, and surface-triangulation measure-
ments for this analysis. The data and the
method of analysis have been selected to
optimize the results for a global network of
reference points.

The satellite methods separate nicely into
two distinct types of analysis: geometrical
and dynamical. The former hinges on mak-
ing simultaneous observations of a satellite
from two or more points on the earth’s sur-
face. When these are camera observations,
the vector connecting the two stations must
lie in the plane defined by the two observed
directions. A number of independent simul-
taneous observations will define the direction
between the two stations. The Smithsonian
Astrophysical Observatory (SAO) has ob-
tained a sufficient number of simultaneous
observations to determine a network for its
stations. The National Ocean Survey (NOS)
of the National Oceanic and Aimospheric
Administration {N OAA) has carried uut a

nwraoe
ylvﬁram l\r I\l\\“l va I_ll_l!!: Wi

era to establish a global geometrlcal network.

Alternatively, the dynamical analysis as-
sumes that the sateilite’s orbit is known, and
computes the location of the observing sta-
tion from individual observations. In prac-
tice, the orbit is determined from the same
observations. The orbital mode has been
used by SAO to analyze tracking data on
close-Earth satellites and by the Jet Propul-
sion Laboratory (JPL) to analyze tracking
data on deep-space probes.

Surface-triangulation measurements are
reduced by organizations such as the U. S.
Coast and Geodetic Survey (now NOS) and
the Army Map Service (now DMA/TC), who
publish coordinates of given points referred
to a datum that, in general, has an arbitrary
origin, orientation, and scale. The relative
positions of stations are determined from
these data.

L—% Cam-
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The main objectives of this analysis were
the following :

(1) To improve the accuracy of the funda-
mental stations. Heretofore (SE II), the
accuracy was estimated as 5 to 10 m.

(2) To improve the distribution of refer-
ence points or tracking sites. In SE II, co-
ordinates were obtained for 39 independent
sites.

(3) To use the latest available data. New
data included the complete BC—4 network and
all the laser tracking data taken during the
International Satellite Geodesy Experiment
(ISAGEX) program. Surface-triangulation
data were used as observations rather than
as constraints.

The analysis assumes that the stations
form a fixed system (i.e., there is no relative
motion), that the pole position and the in-
stantaneous position of the Earth are known
without error from numerical values pub-
lished by the International Polar Motion
Service (IPMS) and the Bureau Interna-
tional de ’'Heure (BIH), that the error in
observing time is random, and that Atomic
Time is a satisfactory system for ephemeris
calculations.

9.4.2.1 Geometrical Solution

In deriving a geometrical solution, the ob-
jective was to produce a system of normal
equations for use in combination with other
data. The data consisted of direction observa-
tions only, and there is no scale information
in the geometric net. Nor is there any infor-
mation to locate the origin of a geometrical
network. Hence, any purely geometrical
solution with these data would require an
arbitrary scale and origin. The combination
of normal systems avoids this problem, as
other data sets contain scale and origin in-
formation. The result of an unscaled, purely
geometrical solution is a set of interstation
directions, independent of the arbitrary
scale and origin introduced.

The computation was divided into two
stages. First, all data between pairs of sta-
tions were used to determine, by least
squares, the interstation direction and its co-
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variance matrix for each pair. The mathe-
matical model for determining this direction
uses the condition that the interstation di-
rection (u,) and the two directions from the
stations to the satellite (u,, #.) must be co-
planar:

-

Uy U XUy =0

(3

(9.148)

A system of first-order Taylor expansion ap-
proximations to equation (9.148) is solved
by least squares to determine %, and its 2x2
covariance matrix. In order for truly simul-
taneous directions (u,, %) to be obtained, syn-
thetic observations were computed by inter-
polation from a series of observations over-
lapping in time from two stations (Aardoom
et al., 1966).

The synthetic observations (u,, u#.) were
weighted according to the quadratic fit of the
individual observations used to determine the
synthetic ones. The weight was modified ac-
cording to SE II to account for the possibility
of systematic errors, principally in station
timing. Separate synthetic observations were
considered to be uncorrelated. For BC-4
data, the NOS has derived seven simultane-
ous observations from each photographic
plate (event) with the associated 14x14
covariance matrix for each set of directions.
These were the data provided and used to de-
termine u..

The data were then screened. When the
adjustments to u, and u. (corrections to the
observations) were judged to be too large
with respect to the remaining data for that
interstation direction, those points were de-
leted and the direction redetermined. For
the SAO block, 68 directions were deter-
mined, and for the BC—4 group, 152.

The second stage consisted of a network
adjustment for each data block. The mathe-
matical model for stage two is that of varia-
tion of coordinates:

w,—u,—u;=0
where u, is the vector from station 1 to the
satellite, u,, is that from station 2 to the
satellite, and u, is the interstation vector.
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Satellite positions are eliminated, and we
obtain a solution for station coordinates,
thus deriving adjusted interstation direc-
tions. This is equivalent to adjusting the
directions directly by using the coplanarity
condition for each triangle formed by ob-
served directions between three stations. The
advantage of this normal system is that it
refers to coordinates, not directions, and can
be readily combined with other normal sys-
tems for station coordinates. These direc-
tions are given in table 9.25.

We had available for comparison the
interstation directions and their accuracy
estimates ¢? resulting from simultaneous-
observation data and also the new direc-
tions and accuracy estimates o% resulting
from the network adjustment. Table 9.26b
lists o?, o2, and the square of the difference
82 between the two estimates of the intersta-
tion direction.

We expected that, on the average, for the
interstation direction adjustment s,

(ot+03)/2

From table 9.26b the average value for k2 is
2.65, and the accuracy estimates for the geo-
metrical solution are scaled by this number.
A similar analysis of the BC—4 network (see
table 9.26a) gives an average value for k? of
2.60.

9.4.2.2 Dynamical Solution

An observation 4 of direction, right ascen-
sion and declination, or range can be related
to the satellite position 7(¢) and to the sta-
tion position X by

0=[A][7(t) —R(4,z,y)X] (9.149)

In general, 4 is an easily computed trans-
formation matrix. Further, the orbit 7(t)

depends on the orbital elements, the gravita-
tional field, the atmospheric density, solar and
lunar gravitational attraction, and radiation
pressure. Finally, equation (9.149) depends
on UTl—i.e., the sidereal angle &—and on
the pole position # and y. None of these quan-
tities is known without error and each, in
itself, provides a number of difficult prob-
lems. For a certain class of satellites, the
Earth’s gravitational field presents the major
source of error but is improved as part of the
analysis described above.

Two types of data have been used in the
dynamical solution. Observations of direc-
tion are made by photographing the satellite
against a star background. The star posi-
tions then define the direction from the ob-
serving station to the satellite in the coordi-
nates of right ascension and declination. The
star positions are taken from a catalog and
refer to its epoch. Precession and nutation
are therefore applied to refer the observation
to the reference system desired. For reasons
related to the orbital theory for 7{¢), we have
chosen to work in the quasi-inertial refer-
ence system defined by the equinox of 1950.0
and the equator of date. In addition, UT1
and pole positions are applied to bring the
Conventional International Origin and the
zero meridian of the BIH, into this system.
Therefore, orbital elements and station posi-
tions are expressed in this quasi-inertial
reference system when determined with di-
rection observations. Specifically, the right
ascension of the ascending node of the satel-
lite (hereafter called the node) is unam-
biguously defined.

Observations of range relate the relative
position of the satellite to the observer and
not to the reference system; i.e., the observa-
tion is unchanged if the reference system is
transformed by translation or rotation. Spe-
cifically, the node is defined only relative to
the adopted value of + UT1. Therefore, when
only observations of range (and velocity)
are used, a correction for the longitude must
be allowed for in each orbit. This is accom-
plished with the following device. In gen-
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eral, the normal system for each orbit has

the form
N B aX a
= 9.150
[ o] {5 )3 e

where AX are the corrections to the station
coordinates, and Ap are the corrections to the
orbital elements.

It has been observed that with direction
observations, B~0, and so the interactions
between orbital elements and station co-
ordinates can be ignored. For observations
of range, we form the set of reduced normal
equations

[N—-BCBT]aAX=a—-BCb (9.151)

These equations eliminate the correction
Ap while preserving the interactions between

Ap and AX. This set of reduced normal equa-
tions can be added to another set, and the

solution for AX can be used to determine ap

if so desired. The complete set of Ap was
computed and found to be very small. The
same device is used in processing simultane-
ous observations to eliminate the satellite
position from each simultaneous observation.
In summary, orbits determined by direction
observations were processed directly by as-
suming B=0. Those orbits based primarily
on range data were reduced by means of
equation (9.151).

9.4.3 Gravitational Field

9.4.3.1 Analysis of Satellite Orbital Data

(E. M. Gaposchkin, M. R. Williamson,
Y. Kozai, and G. Mendes)

The external potential of the Earth is
represented by a set of orthogonal functions:

GME ~fa\'5 i ‘
CU: .(ReTg mzzo(a?) €l:zzplrtl (Sln 4’) e[m)\
(9.152)

where M is the mass of the Earth,
including the atmosphere; G is the univer-
sal constant of gravitation; Cp.=C.—iS,.;
Cro=—J,/V2+1; Re { } designates the real
part of { }; I_),m(sin ¢) are fully normalized
associated Legendre polynomials; and », ¢,
A are the coordinates of the test particle. It
is possible to choose a coordinate system such
that

62,0251,1: (?2‘1204—1.0

and we assume that the instantaneous spin
axis as defined by the International Polar
Motion Service and the center of gravity of
the Earth are that system. This assumption
is not strictly true, but the departures are
small and are ignored in this analysis.

It is observed that for the Earth the ampli-
tude of E'( 1?,,,,[) decreases uniformly accord-
ing to
(9.153)

- 10°
E( Clm[) :T

Although for theoretical reasons E (1(71,,,|)
must decrease more rapidly than equation
(9.153) at some point, and individual coeffi-
cients can be arbitrarily large, this rule seems
valid throughout the range of I used in this
investigation.

We use two types of data on the Earth’s
gravity field : those derived from gravimeters
and those obtained from the motion of arti-
ficial satellites. The gravity calculated from
the gradient of equation (9.152) is

© 1] .
Ag:yiRez (l—— 1)(%) ()I,mp-lm (Sin ¢) eim\
=2 m=0
(9.154)

where y=GM/r* and Cf, are C;, modified to
accommodate those effects of the reference
ellipsoid (or gravity formula) that change
the definition of C.,, C.., and Cs,. Compar-
ing equations (9.152) and (9.154) makes it
apparent that Ag is more influenced by Ci.
of high degree and order than is 9/ and that
measurements of Ag are more useful for




SMITHSONIAN ASTROPHYSICAL OBSERVATORY 865

determining these high-degree and high-
order coefficients.

Determination of (;, from analysis of
satellite observations requires a theory for
satellite motion. General solutions for the
motion in an arbitrary potential field have
not yet been found. We must therefore
restrict ourselves to approximate solutions,
which are quite sufficient for the following
reasons. It is observed that for the Earth,
the second-degree zonal harmonic (., makes
the largest contribution to the anomalous
potential and is 10~ of the main term. The
remaining anomalous potential is 10~ of (..,
or 10-¢ of the main term. Therefore, to
calculate the trajectory to 10-° (our objec-
tive), we require at least a second-order
theory for C,, (i.e., one including C.,), but
only a first-order linear theory for the re-
maining C... Although there are notable
exceptions—resonances and some zonal har-
monics—these considerations provide a work-
abie base.

The Earth’s motion is complicated because
of precession, nutation, polar motion, and
rotation. A convenient reference frame is
defined by the stars and, in practice, is defined
\xi‘ﬂpﬁ;ectx_'y') in terms of a star t,a.u.awg at
some epoch. On the other hand, in an inertial
frame, the Farth’s gravity field has a tem-
poral variation that significantly complicates
the construction of an analytical theory. For
this reason, a compromise quasi-inertial ref-
erence frame referred to an equinox (epoch
1950.0) and an equator (epoch of date) has
been adopted. Veis (1960a) knew, Kozai
(1960) proved, and we have used the fact
that this coordinate system minimizes the
additional effects required to account for the
temporal variations of the gravity field and
the noninertial property of the coordinate
system.

Accordingly, the determination of (y,, from
analysis of satellite observations uses the
elaboration of a satellite perturbation theory.
This elaboration is too lengthy to detail here,
so we confine ourselves to a few remarks.
The perturbation theory is developed by ex-
pressing equation (9.152) in terms of satel-
lite coordinates (a, the semimajor axis; e,

the eccentricity; I, the inclination; », the
argument of perigee; @, the right ascension
of the ascending node; and M, the mean
anomaly). If we express equation (9.152) as

14
ch]lm

Ms

U= (9.155)
=0 m=0
we can write
i 0
CI_]lm: -.(Rez Z glmAlmpq (a,e,I) ei'// (91563,)
p=0 Q@=-c0
where
GM
Almpq(a/;eyl) —T( ) Dlmp(l) Glpq(e)
(9.156b)

and

y=(1-2p)o+ (I-2p+q)M+m(Q—0)

+(l—m) 3 (9.156¢)
These four equations are the exact equivalent
of equation (9.152). Expressed in this way,
the variables with 1 iarge secular phange (m,
Q, M) are separated from those with only
pericdic changes (g, ¢, I). Therefore, the
functions A,,,,{(a,e,]) can, with sufficient
accuracy. be considered constant. In addi-
tion, Gyq(e) ~0(elq|). Since satellites of
interest have small or modest eccentricity,
only a few terms in the sum over ¢ are neces-
sary. The number of terms is selected auto-
matically for each satellite by means of a
numerical test; typically, |¢|<5 is sufficient.

The differential equations relating the dis-
turbing potential and the changes in orbital
elements are known as the Lagrange plane-
tary equations, a set of simultaneous ordinary
differential equations of the form

%Ek:.f"(a,e,l)clj (9.157)
where &* is a generic element, *(a,e,) is a
linear differential operator, and 9/ is the
disturbing potential. If we assume that the
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interaction of perturbations can be ignored,
then we can write

(3 l

=+ Y > 8

=2 m=0

(9.158)

where &f is the unperturbed element. This
is an excellent assumption except for (...
The secular changes in », @, and M due to
C,, interact significantly with all the per-
turbations, and so for these angles variables,
we use

o i
=i &S ack,

=2 m=0

(9.159)

Substituting (9.155), (9.156), (9.158), and
(9.159) into (9.157), formally expanding
the resulting equation, and discarding all
interactions on the right-hand side, we obtain

%sgﬁn: Re L*(o,e0,10)
1 ©

X pzo qZ;o ElmAlmpq (@o,80,1,) €¥°
(9.160a)

where

yo= (1—2p) (wo+at) + 1—2p+q) (M,+nt)
+m(Q+Qt—8) + (l—m)% (9.160b)

Here, o, n, and Q are the secular rates of o,
M, and Q. The rotation of the Earth is suffi-
ciently uniform so that we can write
6=0,-+6t (9.161)
Finally, 8}, is the perturbation in element
&% due to the potential coefficient ;.. Equa-
tions (9.160) are now uncoupled differential

equations, which can be integrated immedi-
ately to

sg;cm: Re L* (aO)eO’IO)

! gilvo-(m/2)]

Z z ElmAlmpq (ao,eoylo) -
p=0 @=—0 ‘I/O

(9.162a)

go=(1—2p)o+ (1-2p+q)n+m(Q—6)
(9.162b)

The general properties of the solution are
now apparent. We see that ¢ can be exactly
zero only when m=0. Therefore, only even
zonal harmonics Cj, can cause secular pertur-
bations. The period of the periodic terms is
given by equation (9.162b), and we see from
equation (9.162a) that the longer the period
is, the larger the perturbation. Thus, when
m=0, long-period terms with argument o,
20, 8w, . .. occur when ¢= -1, -2, -3,....
For nonzonal harmonics, long-period, large-
amplitude perturbations arise when ¢ ~ 0.
Since n( ~ 13 rev day ') >6(~1 rev day™?)
>, @« Cy n=10"*n, this resonance condition
occurs when n ~ mé—that is, when the mean
motion n is approximately an integral num-
ber (the order m) of revolutions per day.
In fact, resonant conditions always exist to
some extent. Resonant terms occur in both
satellite theory and planetary theory, and
there is extensive literature on the subject
(e.g., Kaula, 1966b; Hagihara, 1961a), but
as yet there is no completely satisfactory
treatment. It is true, for example, that a
solution such as that employed here by using
linearized equations can be invalid for some
cases, since the series are not uniformly con-
vergent; fortunately, this does not occur
here. The occurrence of resonances between
the field of the Earth and a satellite has
been viewed as an opportunity to deter-
mine particular harmonies to high precision.
In fact, some of the low-degree harmonics
have been studied extensively with syn-
chronous satellites, and many harmonics of
orders 12, 18, and 14 have been determined
by SAO and others. Long-period terms in o,
2w, 8w, . . . from the zonal harmonics are
resonant perturbations in the sense of the
term as discussed here. Satellites with strong
resonances interact with the field to =35
and higher. Finally, we have seen that
the largest perturbations result when equa-
tion (9.162b) is smallest. With m =0, the
largest terms are for !—2p+g=0—that is,
there is no dependence on M. Therefore,
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long-period terms can be analyzed. For
m=0, the largest effects are also without M.
In this case, the frequency is m oscillations
per day, and the first-order term will be the
largest. Terms for m =8—that is, eight oscil-
lations per day—become very difficult to
determine, and reliable values for m>10 can
be obtained only by the study of resonances
or from terrestrial gravimetry.

The formal theory, equation (9.162), ac-
counts for both resonances and short-period
terms. For example, the resonant perturba-
tion in mean anomaly for satellite 5900701 is

M=C, 1 { —1.387x 102 cos[ 353 (t— to)]

B 2r
—1.798 x 10 cosl: 11948 (t— to)}
(9.163)

with similar terms for 8.1, Ci211, . ... The
1124-day term is much longer than any span
of data for one orbit. Because we have im-

nﬁl fact

MTIU\M!Q'}(IH n'f fhe luum: 'Ith (

11,11y

the empirically determined orbit will absorb
the residual 1124- day term into the mean

€ICTIICILs. 1 ne ineai ewmeuw call UU cuuuyaeu
for ‘mprovcn‘onts to the L.cld in the same way

as is done for zonal harmonics.

Because most of the zonal harmonies give
rise to short-period perturbations, the re-
siduals of individual observalivus are ana-
lyzed to determine these field coefficients.
Since we are dealing with instantaneous ob-
servations of position, the observation equa-
tion is of the form

or oM  oF 9% _
X _<aM 3T T 0w 00 )AC’"”

(9.164)

As an example, the perturbations in M for
satellite D1D are given on page 868 for only
the principal terms, with m=1,2; 1=3,4,5,6,
7,8. For this satellite, a=7614 km, e=0.0843,
and I =39°455.

Even if we assume the satellite to be a
perfect filter, uncontaminated by other model
errors, and the tracking data and analysis

process to be perfect, we see that with one
satellite, we can determine only spectral com-
ponents that are linear combinations of the

gravity field (C,,) and functions of orbital
elements [A;,,,(a,e,])]. From each satellite,
we obtain one or two linear combinations of
harmonics for I odd and for ! even. With
additional data, we can only refine the nu-
merical value of these linear combinations.
The coefficients of the relations will depend
on the orbital elements, so that other linear
combinations can be determined only from
additional distinct orbits. Generally, this is
achieved by selecting satellites with different
inclinations, but independent linear relations
can also be obtained with changes in eccen-
tricity or semimajor axis.

As the degree increases, the perturbations
become negligible, and so the linear relation
does not involve an infinite number of param-
eters. Of course, the spectrum analysis gives
both amplitude and phase, or, as generally
written, (.

From equation (
linear combination of C,,, Cs,, C.ay ... can
be determined from the —1.001-day period
term and another of equal size from the
—0.971-day telm 1ne third term is a Iactor

1il grmaiinwy an nn
CI AU Smaealicy and will not contrivute uL;.AAAAx—

cantly as an observation equation; there are
also many smaller terms. The linear com-
bination of Cs., C;., C.., ... has only one
significant spectral component for the
—0.327-day period.

The linear relations are not determined
with equal accuracy; for example, the reso-
nant harmonics have a very large effect and
the spectral component is strongly deter-
mined. However, the resonant period is
commensurate with the arc length, which
will cover only a small number of cycles. This
makes it difficult to separate nearly commen-
surate periods.

If we consider equations (9.162) as ex-
pressing the spectral decomposition of the
perturbation, we see that each harmonic Ci,
of order m causes the same spectrum of
perturbations. Further, the spectrum has
several lines close together. With a short
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SM=C,,[—7.1sin(o+2—6) +0.8sin (o+2M +Q~0) —63.3sin (—0+Q—6) + -]
+Cy{—42.5 cos [w+2(2—6)]+10.5 cos [o-+2M +2(2—6) ] —13.6 cos [—o+2(Q—6)]+---
4y, [T.0cos (M +Q—6) —8.2cos (M+Q—6)+5.1cos (—20+0—6) +---]

+0C,.{—103sin [-M+2(2—6)] +14.2sin [M+2(Q—6)]+--}
+C,,[-87.4sin (w+Q—6) +6.9sin (0+2M+Q—6) +87.9sin (—o+0—6) +---]
+C5.{8.6cos [0+2(2—0)]—1.4cos [o+2M+2(2—0)]1+48.9cos [—0+2(2—60)]+"-}

+Ce [5.1cos (—-M+9Q—6) —6.0cos (M+Q—6) —16.2cos (—20+Q—0) + - ]

+C.{b4sin [-M+2(Q—-60)]—T4sin (M+2(Q—0)]+"--}

+(C; 1[331sm (0+Q2—0) +0.0sin (0+2M+0Q—60) +1.4s8in (—0+Q—0) +--]
+(;..{40.0 cos [w+2(2—60)1—5.5cos [0+2M+2(2—6)]—-40.3cos [—w+2(Q— )1+---}
+(_1[ 6.8 cos (—M+9—6) +7.9cos (M+Q—6) +19.1cos (—20+Q—6) + -]
+Cs.{41sin [— M+2(Q—0)] 57s8in [M+2(Q—-6)]+---}

(9.165)

We can rearrange this expression in terms of the same frequency (with the period P of each

term in days given in parentheses) :

M= (-17.1C,,—87.4C,,+833.1(";, + -
+ (0.8, +6.9C; ,+0.0C"; , + -~
+(—63.30,,+87.97,,+1.4C; 4 -
+ (7.0F.;_1 +5.1ﬁ‘;,1 - 6-8Fs.1 + -
+(—8.20,,—6.00,,+7.9C,+ -
+(5.10,,—16.2C, , +19.1C 1+ -
+(—42.5C, . +8.6(..+40.00; .+
+(10.5C,.—1.4C, . —55C; .+
+(—18.6C,.+43.9C,.—40.3C; .+
+(—10.30.+5.4C, . +4.1C .+
+(14.20,,-T4C,.—5.7C .+
+ PR

-)sin(o+Q—6)
-)sin(o+2M +Q—6)
')Sin(—-0)+9—0)
-Yeos(—M+Q—0)
-)cos(M+Q—6)
')COS(—20)+Q—0)
--)cos[ow+2(Q—0)]
~-)cos[w+2M+2(Q—6)]
-)eos[—w+2(Q—6)]
- )sin[—-M+2(Q—-6)]
--)sin[M+2(Q—6)]

(—1.001 day)
(0.040)
(—-0.971)
(—0.071)
(0.083)
(—0.958)
(—0.497)
(0.041)
(~0.327)
(—0.066)
(0.091)

(9.166)

span of data, these spectral components are
difficult to separate.

The large number of harmonics affecting
a satellite is related by a linear equation
similar to equation (9.166). For one satel-
lite, only a linear combination of coefficients
can be determined. In those cases where an
insufficient number of satellites is observed,
additional assumptions are necessary in order
to obtain independent equations. The usual
assumption is to set some of the higher
degree terms to zero, leading to lumped
coefficients that are useful for orbit deter-
mination but that may be unrelated to the
actual field.

In summary, the process of field deter-
mination begins with the evaluation of the
secular and long-period perturbations to
determine the J,. The perturbations accumu-
late for weeks and months, and the effects
are very large. The mean orbital elements,
determined from overlapping 4-day arcs,
constitute the basic data used in the analysis.
Data and reference orbits of moderate accu-
racy are adequate for the J, determination.
The unbiased recovery of the J, requires
painstaking evaluation of the long-period and
secular perturbations from other sources,
principally solar radiation pressure, atmos-
pheric drag, and lunar and solar attraction.
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This phase of the analysis is accomplished
first. The tesseral harmonics are determined
from the short-period (1 revolution to 1 day)
changes in the orbit. The detailed structure
of the orbit must be observed, and each
observation provides an observation equa-
tion. Data of the highest possible precision
are needed. The unbiased recovery of Cin
requires the evaluation of the periodic terms
from other sources that have periods similar
to those arising from the potential coeffi-
cients. The most important are the short-
period terms due to J, and the lunar attrac-
tion. Because they are smaller than 1 m for
the satellites used in this analysis, the peri-
odic effects of air drag and radiation pressure
can be ignored. The nonperiodic terms are
empirically determined and hence accounted
for. The short-period terms due to J, must
be carried to second order.

9.4.3.2 oefficients of Zonal Sphericai

Co
Harmonics in the Potential
9.4.3.2.1 INTRODUCTION

cal harmonics

eri
mi “‘d from <ecular

ar oL variables and from
amphtudes of long-periodic terms with the
argument of perigee o in the orbits of arti-
ficial satellites are more accurate than are
coefficients derived by classical terrestrial
methods. The reason is that the component
of geoid height represented by the zonal har-
monics is amplified by a factor of 1000 when
they appear as secular and long-periodic
perturbations of satellites. However, because
these perturbations are averaged effects,
contributions from the harmonics in each
are not very different from one satellite to
another unless their orbital elements are
quite different. Also, few satellites with in-
clinations below 30° have been employed in
the determination of the coefficients, since
accurate observations of such satellites have
been scarce. It was also found that many
more terms than expected were necessary to
represent the potential. Therefore, it has

usually been very difficult to separate the
contributions from each harmonic in the
observed values of the secular motion and of
the amplitudes of the long-periodic terms.
In other words, different sets of coefficients
could represent these observafions within
observed accuracies for satellites with ineli-
nations larger than 30°.

9.4.3.22 EQUATIONS OF CONDITION

A computer program has been developed
to calculate coefficients of J,(n<55) in ex-
pressions of secular motion and of the ampli-

cos
tudes of . 2w and
sin

values for n<387 are given in tables 9.27 to
9.29 for 14 satellites. Since secondary effects
due to the interaction with the J. secular
terms were not included, the values here for
the coefficients of the amplitudes of the long-
periodic terms in the argument of perigee
and the longitude of the ascending node are
slightly different from those we gave pre-
Vlously

For the two angular variables » and @, the

cos .
sin terms. Numerical

secular and long-periodic perturbations have
}\DOY\ ROV;‘Y(\I‘] 'Fv-nm
been derived from
d (0,8)
\d;t —(»Q)+Asinw+Bcos 2 (9.167)

where ¢ and (, the secular parts, are funec-
tions of the semimajor axis, inclination, and
eccentricity, which are not constant and,
except for the semimajor axis, have long-
periodic terms. The inclination and the ec-
centricity cannot be assumed constant in
expressions for o, Q in equation (9.167) but
must include long-period terms. The effects
of these long-period terms are of the same
order as A and B and produce secondary
effects. Therefore, if constant values for
secular motions are adopted in order to
analyze the data, the secondary effects in
expressions for the long-period terms must
be included in equation (9.167). In earlier
papers by Kozai, the secular motions were
determined from observation by assuming
they were constant. Corrections to the secu-
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lar motions and the amplitudes of the long-
periodic terms were derived in recent papers
by fitting the observed orbital elements with
the integrated results of equation (9.167) by
using assumed values of J, and the instan-
taneous observed mean values of the semi-
major axis, inclination, and eccentricity.
Thus, it is not necessary to incorporate the
interaction terms, as they have already been
included numerically and subtracted from
the observed data.

As tables 9.27 to 9.29 show, the decrease
of the coefficients with degree of the har-
monics is slow, particularly for low-altitude
and for low-inclination satellites. For
DIAL and PEOLE, the coefficients of the
secular motions for lower harmonics are not
independent, as & is almost twice as large
as —Q.

For low-inclination satellites, the signs of
the coefficients change continually as the
degree of the harmonics is increased, while
for high-inclination satellites, they change
only rarely. Therefore, to reduce correlations
between the coefficients in the determination
of zonal spherical harmonics, it is necessary
to use data for satellites with well-distributed
orbital elements. However, such data are
usually not available.

9.4.3.3 Determination of Tesseral Harmonics

Tesseral harmonics were computed by com-
bining satellite perturbations and terrestrial
gravimetry. In the computation of the nor-
mal system, terms with small contributions
have been omitted. Therefore, the normal
system determined from orbit analysis is
complete through !=m=12. In each higher
order, terms have been omitted—for ex-
ample, 13,6 through 13,9 and 14,5 through
14,11. Resonance harmonics through 23,14
have been incorporated. Of course, all terms
were included in the computation of the
residuals. In the same way, for surface
gravity all available potential coefficients
have been used, but no partial derivatives
for the zonal harmonics or tesseral har-

monics less than ninth degree were computed,
since they are negligibly small.

For each orbital arc, a set of six mean
elements, ¢, is determined. The linear rates
are derived empirically, as is the mean
anomaly. In addition, higher polynomials in
the mean anomaly are employed, where ap-
propriate, to account for the nonperiodic, yet
nonsecular, effects of air drag and radiation
pressure. Twelve or more orbital elements
are determined for each arc, and the arcs
range in length from 4 to 30 days. Therefore,
with the more than 100 orbital arcs used in
this solution, over 1500 additional parameters
need to be determined. By use of a device
described in section 9.4.2.2 for reducing the
normal equations, this can be accomplished
without dealing with 2000 x 2000 matrices.
For systems of 2000 unknowns, the time re-
quired to compute reduced normal equations
is much greater than that for the adopted
method, which is a block Gauss-Seidel itera-
tion. Reduced normal equations are used
with more limited problems—e.g., in a solu-
tion for resonant harmonics—because they
rigorously account for the interaction of the
elements and unknowns.

The determination of orbital elements and
of geodetic parameters (potential and sta-
tion coordinates) was done separately and
iterations were performed alternately; this
method improves first one set and then the
other. As the iterations proceed, the choice
of unknowns is modified: Satellite data were
either deleted or augmented, depending on
whether coefficients (and station coordi-
nates) appeared to be ill-determined or sig-
nificant.

Equations (9.162) lead us to the method of
selecting those coefficients that affect the
orbit and that therefore can be determined
from observing the orbit. We know that (.,
a, e, and I determine the size of §&%,,,, which
can be computed by using an estimate of
|Cin| and the value of the mean elements.
We estimate [C.|=al? to test for signifi-
cance, and only terms greater than ol#® are
retained. All the 8§&* are calculated and com-
bined into a shift of position Vdp-dgs; they
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are given in table 9.24 for satellite 6701401
with 1=11,12,...,20. The units are adjusted
so that with (,, expressed in units of 10-¢
(e.g., C,,=2.4), the perturbation in position
is in meters. Conservative values for o and
B are used, and more terms are carried than
are perhaps necessary. For example, for
I=11, m=5, and C;,,=10-/1>=0.083, the per-
turbation is 0.083x88~3 m. From such
tabulations for each satellite, we can choose
the coefficients that affect the motion of the
satellite and ascertain how many satellites
contribute to the determination of a coeffi-
cient. In addition, the accuracy of the avail-
able data controls the size of the effect that
can be detected. The choice of coefficients is
made by balancing the amount and precision
of the data available for a particular satellite
against the sensitivity of that satellite to
particular coefficients. Further, it is apparent
that the surface-gravity data are stronger
than the satellite information for some coeffi-
cicnts, and for that reason some higher
coefficients have been dropped from the satel-
lite solution.

Table 9.24 illustrates two points referred
to earlier. The amplitudes for m=18 are

~itka la hnnovian Af +lhn wacAman +ha
Juiie iarge pecause 01 tne reldnance; tne

large size of the effects continues well into
the Z0th-degree terms, The m— 12 and m =14
harmonics also have sizable effects because
they are adjacent to a resonant harmonic.

Apart from the resonant harmonics, terms
higher than 1=12, m=12 are weakly deter-
mined by the satellite data, but it had been
demonstrated in earlier iterations that the
surface gravity could determine these higher
harmonics. The satellite solution was limited
to those harmonics that have an effect greater
than 3 to 4 m on the orbit. The resulting
terms were complete through =12, m=12.
The higher order terms selected were
C/S(L1) 13<LI<16; C/S(,2) 13<i<15;
C/8(14,3) ; C/S(1,12) 13<1<19; C/S(1,18)
13<1<23; and C/S (1,14) 14<1<24.

The m=9, 12, 13, 14 terms are resonant
with some satellites, which are listed in
table 9.30 along with their resonant periods.
Several satellites are resonant with more

than one order. For example, 6701101 has
a 1.6-day period with the 13th order and a
2.6-day period with the 14th, the latter being
the principal effect. Other resonances have
several periods, as illustrated by equation
(9.163) for 5900701 (which was not used
in the final solution) and in table 9.30 for
6701401. The multiple periods are due to
the nonzero eccentricity, which causes the
frequency splitting.

9.5 RESULTS

As was explained in section 9.4, the process
used by SAO in solving for station coordi-
nates and the gravitational potential is such
that station coordinates and the potential are
determined both independently and in com-
bination. These quantities are therefore
easily discussed and analyzed separately. The
station coordinates are discussed in section
9.5.1. The potential, in terms of coefficients
Cim, Sy is given and discussed inn section
9.5.2. The geoid derived from this potential
is discussed in section 9.5.3.

The analysis was divided into two parts be-
cause of the initial high accuracy of the ge-

odatice povqmafav-a’ the n‘nnﬂ coverage of all
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types of observational materlal, and the re-
sull from Gaposchikin and Lambeck {1570)
indicating that the interaction between the
potential and the station coordinates is
relatively small. The determinations of the
potential and of station coordinates were
carried out in parallel. In an iterative proc-
ess, the improved coordinates were used in
the next iteration for the potential, and
then the improved potential was used in
the subsequent iteration for the station co-
ordinates. This process, known as the block
Gauss-Seidel iteration, will rigorously con-
verge.

9.5.1 Coordinates
(E. M. Gaposchkin, J. Latimer, and G.
Veis)

Each subset of data was treated to pro-
vide a system of normal equations and
residuals. These systems are combined
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with their relative weights. In addition,
each system may have a different origin,
orientation, and scale, but these differences
should not occur if each system had been
referred to the defined system without error.
In the combination, additional parameters
as necessary were introduced into the com-
bined normal system to account for possible
systematic errors. The SAO dynamical, pre-
ISAGEX data were taken as the reference.
Since the geometrical networks have no
scale, only translation and rotation param-
eters were introduced. For practical pur-
poses, the SAO geometrical network covers
only one hemisphere in an east-west orienta-
tion, so only the rotation about the z axis
(e.) may be meaningful. This corresponds
to a correction to UT1. The polar orientation
(e,, ¢,) for the SAO geometrical network
turned out to be smaller than the formal un-
certainty. The JPL net had only a scale and
e. parameter as it is not sensitive to ¢, ¢, or
to the origin. Experiments with determining
corrections (AQ) to the node for each arc of
ISAGEX data indicated that (1) the correc-
tions were small, generally less than 1 urad,
and (2) they were satisfactorily included
through the reduced normal equations.
Therefore, formally, the combination solu-
tion contained 14 additional parameters. The
final values of these parameters are given
in table 9.31. The translation of the two
geometrical networks is the correction to the
station used as the origin. Excellent agree-
ment occurs between these translations and
the coordinates determined from an a pos-
teriori geometric adjustment. The formal
uncertainty for the translation of the SAO
geometrical network is not given, because
the origin, station 9051, has very few observa-
tions and is not determined very well.

Two iterations were completed, the first
starting with the coordinates given in Gapo-
schkin and Lambeck (1970). Examination of
the solutions indicated problem stations; in
particular, the geodetic coordinates were
sometimes seriously in error.

The strategy used to determine the relative
weights and the formal uncertainty was
based on the geometrical solutions, and all

other solutions were referred to them. Geo-
metrical solutions are relatively uncompli-
cated and free from assumptions. Further-
more, the statistics are straightforward.

The accuracy of each station-to-station
direction was computed. This estimate can
be verified by comparison with the direction
determined in the network adjustment. The
adjustment essentially enforces the co-
planarity condition for any three directions
that connect three stations. By comparing
these estimates of the direction, we can
compute a scale factor that is-a measure of
the agreement between the formal statistics
of the adjustment and the actual errors. This
scale factor turned out to be k*=2.65 for the
SAO geometrical network and k*=2.60 for
the BC-4. Since the difference between
these estimates of k* is not significant, we
adopted an overall scale factor of k*=2.625
for the geometrical networks. It is interest-
ing to note that when only the 12 SAO Baker-
Nunn cameras are used, the scale factor be-
comes k*=1.03, indicating excellent control
of systematic errors.

In the combination of the six types of data,
the geometrical networks, the JPL network,
and the geodetic survey data were used with
a priori variances. The pre-ISAGEX dy-
namical data were given a weight of 0.25 for
the combination of the normal equations,
which effectively doubles the assumed ac-
curacy. In addition, the assumed accuracy of
the pre-ISAGEX laser data was further

multiplied by a factor of 1/V/10, and thus the
assumed accuracy of the laser data was
multiplied by 6. The ISAGEX data were
given an overall weight of 0.0625; i.e., the
assumed accuracy was multiplied by 4. Thus,
the reference orbits were computed by using
the assumed accuracy in table 9.8, but the
normal system was scaled by these factors.
These adjustments were necessary in order
to accommodate the enormous volume of data
used for the dynamical solutions. Large vol-
umes of well-distributed data lead to can-
cellation of errors, which is desirable, but
give optimistic estimates of variance. The
balance of weights presented here leads to
an internally consistent solution, which has
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acceptable agreement with independent de-
terminations.

Table 9.32 lists the geocentric coordinates
for the stations determined in SE III to-
gether with their uncertainties scaled by
k*=2.625. Station 8820, Dakar, Senegal,

is not given, the poor agreement and paucity,

of data precluding reliable results.

The solution for coordinates from the com-
bination scaled by k*=2.625 gave estimates
of variance of 2 m for the best stations. Since
no comparison exists that can verify this
accuracy for geocentric coordinates, we are
limited to consistency checks. The coordi-
nates should agree with the standard at least
as well as the accuracy of the standard. A
number of internal checks (e.g., between
geometrical and dynamical solutions) can be
performed. Comparisons can be made with
surface data, but they test only the relative
position and not the geocentric position of
the coordinates. Nevertheless, these compari-
geng are instructive and indicate that the
computed variances (uncertainties) are
realistic estimates. Further, the general
agreement internally in the satellite data—
and externally with the terrestrial data—indi-
cates that, as a rule, discrepancies are within
the expected umextainties The 1arge dis-
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survey data, and further analysis is needed.

Comparisons with satellite orbits are in-
conclusive at best, because of the large num-
ber of error sources. In section 9.5.2.3
numerical results are given for orbit compu-
tations with laser data by using the latest
potential and station coordinates. This
comparison indicates that the orbit comput-
ing system (data, theory, physical param-
eters, and station coordinates) has an ac-
curacy of 5 to 10 m, which is not consistent
with a 2- to 5-m accuracy for the station
coordinates.

The typical direction is determined with
an accuracy of 5 prad, equivalent to a rela-
tive position of 10 m. For selected sets of sta-
tions, figure 9.12 compares the determined
direction (both before and after the co-
planarity condition is applied), the dynam-
ical solution, and the combination solution. In

some cases, a direction from the SAO geo-
metrical net and another from the BC-4
geometrical net are available. These compari-
sons are perhaps unfavorable in that the
errors of both stations are reflected in the
figures. The error ellipses for all the direc-
tions are scaled by the factor k2=2.625. In
order to express all the directions in the
same coordinate system, the plotted direc-
tions are rotated by the parameters given in
table 9.35.

When the origin and scale are provided,
the BC-4 network of 48 stations gives a
geometric solution that can be compared
with the combination solution. Table 9.33
gives the results of such a comparison,
with differences in X, Y, and Z and North,
East, and height. The geometrical solution
has an average uncertainty of 5 m for each
coordinate, while the combined solution has
the uncertainty given in table 9.32. The ad-
justment uses a weight computed from the
two solutions. The root mean square of 12 m
and the standard error of unit weight +,=0.8
indicate the excellent agrcement in the co-
ordinates and the estimated uncertainties. A
number of the individual coordinates are too
large. The North-South difference of —25 m

{or station Uuuo, which is tied 5cudetxcally to

The JPL coordmates glven by the LS 37
solutions, rotated and scaled by the results in
table 9.31 are compared in tabie 9.34 wiih tie
coordinates determined in the combination
solution.

Comparisons within each datum are pos-
sible. The four major datums where this
was done are North American datum (NAD
1927), South American datum (SAD 1969),
Australian datum (AGD), and European
datum (EU50).

As described earlier, the use of datum co-
ordinates in the combination solution has
been restricted to nearby stations, primarily
in order to relate different types of observa-
tions. Therefore, datum coordinates consti-
tute a relatively independent set of data.
However, each datum has an arbitrary
origin, orientation, and scale, and the rela-
tion between each datum and the geocentric

“|\4/ ,unl 41 ll i.\’
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Ficure 9.12.—Comparison of interstation directions from the combination, dynamical,
and geometrical solutions. Each of the two geometrical solutions yields two directions.
BC-4 (2) and geometrical (2) are the directions obtained from the network adjust-

ment. v is in the direction of increasing declination, and x is in the direction of in-
creasing right ascension.
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system must be determined. One can there-
fore determine up to seven parameters, but
depending on the size of'the datum and the
distribution of stations on the datum, some
of these transformation parameters may not
be significant. The seven transformation
parameters are three translations, three rota-
tions, and one scale. We have elected to ex-
press the rotations as rotations of the datum
origin about the normal to the ellipsoid and
around two axes in the tangent plane ori-
ented north-south and east-west. These rota-
tions have a physical interpretation since
they express an error in the azimuth of ori-
entation of the datum and a tilt of the ellip-
soid. Accordingly, the transformation will
be given by

Y= Yo+ T4+ (14+-K) B (Koo —X0)

where X,,, and X,., are the coordinates from
the satellite solution and the datum, respec-
tively, T is the vector of the three translation

pd!dmeters’ K ic the geale correction Y are
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the coordinates of the datum origin, and R
is a rotation matrix depending on the three
rotationai parameters and the iatitude and
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and scale parameters ror Iour maJor datums
as computed from the adjustment of the
datum coordinates to the sateliite solution. A
positive scale here means that the datum
scale has to be increased in order to agree
with the satellite scale. The table also gives
the number of stations used in each datum.
In the computation of datum shifts, each sta-
tion was assigned a weight computed from
the standard deviation of the satellite solu-
tion and the standard deviation of the
datum coordinates, which was taken as
o(m) =5x (Sx10¢)%(m), where S is the
distance of the station from the datum origin
in meters. In all cases, the standard deviation
of unit weight «, (given in table 9.85) after
the adjustment is smaller than 1, which
means that the weights are somewhat pessi-
mistic. The rms, ¢(m), of the final differ-
ences for each datum in table 9.36 is be-

|nln| nnl

tween 5 and 16 m. It is apparent that the
European and the South American datum co-
ordinates do not agree very well with the
satellite solution. The European datum is
rather inhomogeneous and its extension into
Africa and Asia, which we used, makes it
rather weak.

Further checks with datum information
can be obtained with station heights. The
height above the reference ellipsoid (h.)
should be equal to the mean height above sea
level (H,.), which is approximately the
height above the geoid plus the geoid height
N; i.e., the disagreement between these two
estimates, AL, is

Ah= ho-ll - Hmsl ~N-— Hdntum mean

If we use the satellite geoid to calculate N,
we can make this comparison for all stations
but we lose the detailed variation in geoid
height. The computation does provide a
value for the semimajor axis of the best-

fitting ellipsoid used to calculate 2., We get
a,=6378140.4+1.2m

To em“loy thc dctmlcu geo:d-hexght infor-
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we must refer the coordinates Lo the uatum
origin by using the datum shifts in table
5.35. Tabile 5.86 lists the standard deviations
of the heights calculated for each datum. The
average of 3.98 must be considered excellent
in view of all the uncertainties in calculating
Ah. Figure 9.13 shows these heights residuals
as a function of latitude.

The results by Gaposchkin and Lambeck
(1970) were derived in the same manner,
by combining several types of data, estab-
lishing relative weights, and verifying the
accuracy by intercomparison. Their accu-
racy was 7 to 10 m for the fundamental
stations. In table 9.37 we give the corrections
derived in this analysis for selected stations.
The overall agreement of +=10 m and a
standard error of unit weight ¢,=0.662 indi-
cate excellent agreement in the derived co-
ordinates and the accuracy estimates; if any-
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FIGURE 9.13.—Geoid height comparison as a function
of latitude Ah= hel 1 —Hmsl —Ndntum geold — hdatum meany
where Ao is transformed by the appropriate datum
shift parameters ¢a»=3.98 m.

thing, the accuracy estimates are pessimistic.
The very small shift in origin indicates that
the whole reference system has not changed.
Williams et al. (1972) have determined
the spin-axis distance of McDonald Observa-
tory from lunar-laser observations. Table
9.38 compares this distance with that de-
duced by means of the coordinates of station
9001 from survey data. The agreement of
—3.51 m must be considered acceptable.
The scale of the combination solution is de-
fined by the value of GM adopted in the
dynamical solution, given in table 9.11. We
found a scale difference of 0.18+0.55 ppm
between the JPL and the SAO coordinates,
the JPL ones being slightly larger. If the
discrepancy with lunar laser is attributed to
scale, the scale difference would be 0.7 ppm.
The scale obtained for the four major
datums is given in table 9.35. It appears
from the NAD 1927, EU50, and AGD

datums that the datum scale is smaller than
the satellite scale by approximately 2+1
ppm, while from the SAD 1969 datum, it is
larger by 1+ 1 ppm. Since the survey scales
are not expected to be established to better
than a few ppm, the weighted mean of 1.6 =1
ppm is not considered to be significantly
different from zero.

Each geometrical network has an arbi-
trary origin specified by the intial coordi-
nates of one station, a station not explicitly
determined in the combination solution. The
translation parameters in table 9.33 corre-
spond to the correction to the origin of the
network, i.e., the correction to the initial
coordinates of the reference station.

In principle, the orientation of the two
geometrical systems and that of the dynam-
ical system should be identical. Orientation
parameters (e, ¢, ¢.) are determined to ac-
commodate possible systematic differences in
the actual representation of the three sys-
tems. Since the SAO geometrical network
covers only one hemisphere in an east-west
orientation, the orientation of its pole (e, ¢,)
may be poorly determined.

The polar orientation of the BC—4 system
with respect to the SAO dynamical system is
1.88=V1.762+0.656°+1.16 prad. This sys-
tematic difference is obtained by comparing
the observed BC-4 directions with directions
determined from eleven stations in the com-
bination solution with characteristic inter-
station distances of 2 to 3 Mm. In metric
terms, the orientation difference is 1.88 x 10-°
x2%x10°~4 m. The accuracy of the mean
station for the 11 stations is approximately
4 m. It is assumed that the value of 1.88 prad
results from differences in pole-position data
or in processing methods.

The rotation in longitude (e,) corresponds
to a correction in UT1. Figure 9.14 indicates
the relative position of the zero meridian of
each system. We note almost the same rela-
tion between SAO and the JPL systems that
we found in SE II, which was 4.0 prad. The
difference between the SAO geometrical and
the SAO dynamical systems is —0.40+1.43,
and that between BC—4 and the SAO dynam-
ical is —2.20+0.82. The relative rotation in
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FIGURE 9.14.—The relative zero meridians of the
different systems.

longitude between the JPL and the SAO sys-
tems is probably due to a difference between
the JPL’s planetary ephemeris and the FK4
system used by SAO, while that between the
geometrical and dynamical nets most likely
results from differences in the UT1 data or in
the processing methods.

The results described above, the pro-
cedures, the tests and comparisons, and the
experience of carrying out the work have
led to the following conclusions about the use
of artificial satellites for the determination
of station coordinates:

(1) Observations of close-Earth satellites
have been successfully combined with obser-

AV Ui oo

nnqnlaﬁn‘n pnahlmg u% to determlne the co-
af 00 o

lite fv-nn'lrnnn' gitas in g

Ui :Urﬂi OUINUE CICCU IS Sten".
(2) The combination of these data pro-

vides a better solution than we can obtain
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from each set of data separately, because
more complete coverage results and because
the combination enables us to overcome
weaknesses in each system.

(3) The methods of processing each type
of data are sufficiently understood to make a
rational combination.

(4) Successive solutions have resulted in
improvements. When compared with the
previous solution, each new one has agreed
to within the estimated uncertainty, and that
uncertainty has steadily decreased from 10
to 20 m in 1966, to 5 to 10 m in 1969, to 2 to
8 min 1973.

(5) Formal statistics are generally opti-
mistic, and therefore the uncertainty in co-
ordinates is established by intercomparison,
a method that has proved reliable.

ALY

(6) A comparison between coordinates
indicates an accuracy of 2 to 4 m for funda-
mental stations and 5 to 10 m for most others.

(7) The body of data available from laser
systems, though small, has made a signifi-
cant contribution. The laser data dominate
the solution through the relatively great
weight assigned and thereby essentially es-
tablish the reference frame for the station’s
coordinates.

(8) The use of a variety of orbits span-
ning a considerable period of time is very
important. Data from such orbits average
over error sources with a slow variation such
as UT1 or epoch timing and eliminate poor
orbital geometry. The laser data suffered
from both problems.

(9) Geometrical data require a minimum
of assumptions, and geometrical solutions
have relatively straightforward statistics.
Geometrical data are more difficult to obtain
owing to the necessity of simultaneous ob-
servations. Dynamical data are more pieuti-
ful, but their processing requires an elaborate
orbit-computation program that may intro-
duce model errors. The well-behaved statis-
tical properties of the geometrical data al-

iowed the use of the gcuuwu ical networks to
egtahlish the uncertainties.

{10) Small but significant systematic dif-
ferences in scale and orientation are found
hetween satellite coordinate svstems. These
differences may result from variations in
data-processing methods or from fundamen-
tal and obscure differences in the definition
of reference systems, e.g., the FK4 system
and the JPL planetary ephemeris.

(11) Satellite determinations of site loca-
tion are now sufficiently accurate to verify
terrestrial survey data. The most trouble-
some part of the analysis was finding the
erroneous survey coordinates. Considerable
effort remains in providing global geodetic
coordinates with sufficient reliability.

(12) Scale obtained for the four major
datums is systematically smaller than the
satellite results by 1.6 =1 ppm. Since survey
scales are not expected to be established to
better than a few ppm, this resuit is not
significantly different from zero.
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9.5.2 Potential
(E. M. Gaposchkin, M. R. Williamson, Y.
Kozai, and G. Mendes)

The Smithsonian Astrophysical Observa-
tory has published a series of Standard Earth
models based on satellite-tracking and other
data (Kozai, 1964, 1969; Gaposchkin, 1967,
1970a; Kohnlein, 1967 ; Veis, 1967a,b; Whip-
ple, 1967; Lundquist and Veis, 1966; Lam-
beck, 1970 ; Gaposchkin and Lambeck, 1970).
There has been a steady advance in the ac-
curacy of the analytical treatment, in both
the accuracy as well as the completeness of
the data, and in the significance of the
results.

Each Standard Earth model consists of
(1) a set of geocentric coordinates for sta-
tions observing satellites and (2) a set
of spherical harmonics representing the
potential. These two sets of unknowns can
be correlated, and both sets of parameters
have been determined in the same computa-
tion. This led, for example in Gaposchkin
and Lambeck (1970), to solving a system
with 428 unknowns—i.e., for 39 stations
and potential coefficients complete through
degree and order 16. Evaluation of the
Gaposchkin and Lambeck (1970) results
indicated that the remaining errors in these
parameters were small; that is, the correc-
tions to the parameters would be small.
Therefore, the effect of errors in the adopted
station coordinates on the determination of
the potential, and vice versa, would be
small. Because these effects are small the
two sets of parameters could be computed
separately.

A general revision of the parameters for
SE III was undertaken because of new and
improved data for almost all types of obser-
vations. Observations by cameras have been
augmented by a considerable number of data
from laser DME with global coverage from
ISAGEX. Two satellites with inclinations
significantly lower (5° and 15°) than pre-
viously available have been launched since
1970. Available surface-gravity data have
been significantly improved by the distribu-
tion of a compilation of gravity anomalies by

the Aeronautical Chart and Information
Center (ACIC). Determinations of station
coordinates have been improved by data from
the worldwide BC—4 geometrical network.
Finally, among these improved data is the
information on site locations from JPL’s
DSN which has been revised with the
addition of new data and improved process-
ing techniques.

Gaposchkin (1970a) has shown that, ex-
cept for isolated harmonics, the terms be-
yond 18th or 20th degree have a negligible
effect on a satellite. The only exceptions are
some zonal harmonics that give rise to secu-
lar and long-period effects, and the resonant
harmonics. Therefore, one cannot hope to
obtain from analysis of satellite perturba-
tions much more detail beyond 16th degree
and order than is already available. Greater
detail will have to come from other methods,
such as terrestrial gravimetry. Many of the
harmonics between 10th and 18th degree are
not very well determined from satellite-
perturbation analysis, but terrestrial gravim-
etry provides a good determination of the
coefficients when combined with satellite
data. So, our objectives are to improve the
low-degree and low-order harmonics from
satellite data and the higher harmonics from
terrestrial data that best represent the
gravity field.

Since the terms beyond 18th degree do
not give rise to an observable change in
satellite position, the satellite observations
could be modeled with the use of a poten-
tial complete through degree and order 18,
including, of course, some additional reso-
nant and zonal harmonics. Therefore, there
is no model error due to neglected higher
harmonics. However, the surface-gravity
data are given in area-means of 550 km x 550
km squares. This surface distribution of
gravity would require a spherical harmonic
development to [=m—36. Therefore, using
a potential through degree and order 18
will have a significant model error that must
be taken into account in establishing weights
and making comparisons with surface-
gravity data.
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95.21

The equations of condition were solved by
least squares for both the even-degree and the
odd-degree harmonics. They were solved first
with 11 unknowns, J, (n = 23), and then with
12, the 12th being J,(24=n=49). Eight
solutions were obtained. The solutions, given
in tables 9.39 and 9.40, include the sums of
the squared differences from the assumed
values. The values for coefficients of degrees
lower than 14 express corrections to those in
table 9.16.

Tables 9.39 and 9.40 show that the solu-
tions are quite stable, especially for lower
degree coefficients, and that the data can be
expressed quite nicely by including J,; and
J3s. The sum of the squared differences drops
from 114 to 39 when J;; is included for the
even degree and from 53.7 to 40.6 when J;; is
incorporated for the odd degree. Although
there is some uncertainty as to whether J;;
and J,; can have such large values, the 12-
unknown solutions that include them are
regarded as the best. The sum of squared
residuals cannot be reduced much further
even if the number of unknowns were in-
creased beyond 12.

in tables 9.41, 9.42, and 9.43, the differ-
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the 11 unknowns are given under the head-
ings I and II, respectively. Solution I for
even orders can express the secular motions
of all the satellites except 7010901 and
6202901. Since only in table 9.48 is the
difference between difference I and difference
II much larger than the standard devia-
tion for the data on 7001701, 6508901, and
6508101, it can be said that J., is determined
essentially from the data on these three satel-
lites. If more accurate data become available
for 7010901, so that the standard deviations
for this satellite become smaller than the dif-
ferences, a more definite conclusion regarding
J 36 can be obtained. Table 9.43 shows no essen-
tial difference between differences I and II;
for odd degrees, the 12-unknown solution is
not yet much better than the 11-unknown one.

2 Note that J,= — C,.

For comparison, five previous solutions
(Kozali, 1959b, 1961a, 1963a, 1964, 1969) are
given in table 9.44. These solutions were
derived from the following numbers of satel-
lites with inclinations ranging from 28° to
96°:

Inclination
Number range
Date of satellites (deg)
1959 1 34
1961 3 33 to 50
1963 13 32 to 65
1964 9 33 to 96
1969 12 28 to 96

Except for some from the 1963 determination,
the standard deviations in the first three
determinations are more than 10 times larger
than the present ones; therefore, the differ-
ences computed by these solutions are very
large even for satellites within the indicated
inclination ranges. The differences from the
1964 solution are listed as (O—-C) in tables
9.41, 9.43, and 9.44. Both the 1964 and the
1969 solutions give very large differences for
PEOLE and DIAL. Table 9.44 also includes
a solution by Cazenave, Forestier, Nouel, and
Piepiu (1971 unpubiished), who incorpo-
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(7010701; I=3°) in addition to the satel-
lites used by Kozai (1969). Their solution
agrees quite well with ours except for the
odd higher degree coefficients.

9.5.2.2 Tesserals

The results of the dynamical solution must
be discussed in the context of the combination
solutions. A summary of the data is given in
table 9.7. The selection of data and unknowns
evolved through the analysis. The number
of satellites used ranged from 21 to 25, and
the number of ares in the largest solution was
203. Arcs were added or rejected on the
basis of their contribution to the normal
equations, the number of observations for a
particular station, the improvement of dis-
tribution for a resonant harmonic, and the
quality of the orbital fit.
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Two iterations were performed to find the
potential. The first employed the potential
and station coordinates determined by
Gaposchkin and Lambeck (1970) as initial
values; and the second used the results of the
first iteration for the potential and the sta-
tion coordinates determined earlier in this
chapter.

For each iteration, several solutions were
obtained. Orbital arcs were added or deleted
to improve the satellite distribution and the
variance-covariance matrix.

Several weights for the surface gravity
were used. For areas without surface-gravity
data, we had four choices of treatment:

(1) We could make no assumptions about
unobserved areas.

(2) We could use a zero anomaly with a
very large variance; that is, the expected
value of gravity would be zero.

(3) We could use a reference gravity field
with a very large variance; that is, only the
higher harmonics would have an expected
value of zero.

(4) We could use a model anomaly, for
example, one determined from topography.

Adoption of method (1) would introduce
very large short-wavelength features into
those regions where no gravity is measured.
In addition, the statistical comparisons dis-
cussed later are very poor, although the (O —
C) values and the satellite orbits are good.
Therefore, (1) had to be discarded. Gaposch-
kin and Lambeck tried methods (2) and (4)
and found them equivalent. Choice (3) is an
improvement over (2) because the low-
degree and low-order terms are well deter-
mined by means of satellite data. Therefore,
(3) was adopted, with the weight given in
table 9.21. Comparing the results of choices
(1) and (3), we found that satellite com-
parisons are identical, the (O—C) for the
surface gravity is marginally improved, and
the statistical comparisons of the surface
gravity are quite acceptable.

The fully normalized spherical-harmonic
coefficients of the adopted solution are given
in table 9.45. Figure 9.15 shows the mean
potential coefficient by degree, extended by
numerical quadrature.

« COMBINATION SOLUTION
x SURFACE GRAVITY

1073722
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FIGURE 9.15.—Mean potential coefficient by degree.

9.5.2.3 Results of Comparison

9.5.2.3.1 ORBIT DETERMINATION BY
USE OF SE III

A detailed evaluation of SE III results
with satellite orbits is difficult. Although
other effects—such as lunar and solar per-
turbations, body tides, radiation pressure,
and air drag—are all included in the orbit
computation, none of these is known without
error, and each, in itself, provides a number
of problems. Also, the coordinates of the
tracking stations are not known without
error. Furthermore, incomplete orbital cov-
erage can result in overoptimistic estimates
of orbital accuracy from formal statistics.
Finally, the tracking data contain errors.
A few comparisons are given here to indicate
approximately the accuracy of the total orbit-
computation system. The potential is cer-
tainly one of the larger contributors to the
error budget.

From ISAGEX data, consecutive orbits
were computed every 2 days, by using 4 days
of data (except for 6800201, where 6 days
of data were employed). This type of analy-
sis is especially valuable for (1) detection of
bad observations, since each observation is
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used in two orbits, and (2) evaluation of the
reliability of the orbital elements by com-
parison of adjacent orbits.

Results for 6508901, 6800201, and 6701401
are given in table 9.46, together with the
number of observed points used in the final
iteration. All calculations were performed
by using the final station coordinates and the
tidal parameter k,=0.30; radiation-pressure
perturbations were calculated with a fixed
area-to-mass ratio.

We see that with good orbital coverage, we
can expect to have rms residuals of between
4 and 10 m.

Satellite 6701401 has a relatively low peri-
gee, and the poorer orbits from MJD 41072 to
41078 coincide with increased solar activity
resulting in increased drag.

Of the 4- to 10—m rms residuals, 2 to 3 m
come from station coordinates and 1 to 4 m
could be attributed to the orbital theory.
Therefore, ihie accuracy of the gravity field
for orbit computation may actually be some-
what better than indicated by table 9.46.

9.5.2.3.2 COMPARISON WITH GRAVITY

To compare a model (g,) with observed
values of surface gravily {g¢.), the {ollowing
quantities defined by Kaula (1966b) can be
computed:

(9% the mean value of ¢, where g, is
the mean free-air gravity anom-
aly based on surface gravity,
indicating the amount of infor-
mation contained in the surface-
gravity anomalies

(g3 the mean value of g%, where g,

is the mean free-air gravity

anomaly computed from the po-
tential model, indicating the
amount of information in the
computed gravity anomalies

an estimate of g,—i.e., the true
value of the contribution to the
average gravity anomaly of the
potential model and the amour.:
of information common to both

g:and g,

<gtga>

((9:—9,)% the mean-square difference of g;
and g,
E(¢¢) the mean-square error in the
gravity anomalies
E (&) the mean-square error of the
observed gravity
E (3g?) the mean square of the error of

omission—that is, the difference
between true gravity and g¢,;
this term is then the model error

If the potential model were perfect, then
{9 =(g3), which in turn would equal {(g:9:)
if g, were free from error and known every-
where. Then, & would be zero even though g,
would not contain all the information neces-
sary to describe the total field. The informa-
tion not contained in the model field—i.e.,
the error of omission, §g—then consists of
the higher order coefficients. The quantity
{(9:—9¢:)? is a measure of the agreement
between the two estimiates g, and g, and is
equal to

((9:—9)H=E () +E (}) +E (3g%)

Another estimate of g, can be obtfained

from the gravimetric estimates of degree

wrmmatneman 2 LB oasia TOEERY
vVallalute g v xaulda, LJUUNV ) .

E(UE\:D:? .nIA n*ox
v

where n; is the number of coefficients of de-
gree lincluded in ¢;, and

Uzlzyz(l—l)zz (C?))L+S§n)

m

We also have

E (&) =(g%)—(9:91)
and
E (&) =(g3)/(n)

Table 9.47 summarizes the above quanti-
ties for SE III. The improvement over SE 11
in the coverage of surface-gravity data is
evident. The more limited gravity coverage
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used for SE II resulted in accuracy estimates
that were consistently optimistic. The re-
vised set of average gravity anomalies has
greater coverage and is more independent of
the model used for the potential. Even so,
line 2 represents an estimate of the accuracy,
E (&) =52 mGal, that is more optimistic than
that based on independent gravity data for
SE II, which was 99 mGal* (Gaposchkin and
Lambeck, 1970).

We used the 306 average gravity anomalies
with more than 19 observed units in each
average for the comparison. There is very
good agreement between (g,9,), (9%, and D,
which would be equal for a perfect solution.
In E(89?), we have a measure of the infor-
mation remaining in the higher harmonics.
The formal statistics give an error in the
combination reference field of FE (&) =15
mGalz.

An alternative is to eliminate 8g by use of

—\(_‘Im ___1_#
[ AS, } T ry (I-1) J e (91— 9rer)
(Puemalgm] Ya

where

(Pusmp[S2])
is the mean of

5 s COS MA
Pu, (sing) [sin mA

over the area defined for the gravity anomaly.
We can compute any harmonic with respect
to a reference gravity field, but care must be
used in treating®areas where no observed
gravity is available. A gravity field defined
by g.. and the A}, AS,,, will have an error of

((9:—9))=E () +E (i) +E(89°) + E (4aa)

where E (¢2) is the error in the composite
field and E (&,.4) is the error due to the
inexact quadrature and imperfect distribu-
tion of the data.

Table 9.48 gives the results of this numeri-
cal quadrature with reference fields defined
by the first [ degrees of SE III. Computing
all the potential coefficients to I=m =386, i.e.,
the null reference field, we get £ (&) =0, and

E () +E (8g%) +E (efuua) =29 mGal®

Using an increasingly detailed reference
field, we obtain an estimate of E (&) as a
function of degree. As expected, the mean-
square error for the low-degree and low-order
harmonics estimated from a comparison with
terrestrial gravimetry is quite small. The
satellite data provide accurate values, and
the low harmonics have a smaller effect on
gravity anomalies. The mean-square error
for the 8th to 18th degrees is relatively con-
stant, as expected, since these harmonics are
determined largely by surface-gravity data.
The mean-square error E (&) estimated from
the quadrature is in good agreement with
that obtained from statistical analysis. For
comparison, the values are given in table 9.49.

The estimate of E (%) assumes that g, and
g: are independent; i.e., they have uncorre-
lated errors. Since the terrestrial gravity
(9:) was used to determine the combination
solution (g.), this assumption is certainly
incorrect, and therefore, the estimate of
E (&) =15 mGal® is definitely optimistic. A
better test could be made with independent
data for g,. Since the mean gravity anomalies
used in the combination solution were com-
puted, two compilations of 1° x1° anomalies
have been published: the North America
and the North Atlantic (Talwani et al., 1972)
and for the Indian Ocean (Kahle and Tal-
wani, 1973). These compilations were pub-
lished after the set of mean anomalies used
here became available, but some basic data
are probably common to both. The processing
methods used by Talwani and his coworkers
were different from those of ACIC, and addi-
tional data were included. It is true that
these two new compilations may not be
completely independent of the data used in
the combination solution.

Two comparisons are nevertheless instruc-
tive. A simple 5°x5° average was computed




SMITHSONIAN ASTROPHYSICAL OBSERVATORY 883

for these data since all 1°x1° areas had
values given in the region of interest. These
5° x5° averages, with the mean of the whole
region subtracted, were used to compute the
same statistical quantities given in table 9.49.
The number 7 is the number of points, cen-
tered in a 1°x1° area, for which a 5°x5°
mean was computed. Therefore, we have a
moving 5°x5° mean calculated every 1°.
Most of the gravity data in these ancillary
compilations were taken at sea, and the esti-
mate E(¢) of their variance may be opti-
mistic. The weighted mean of E(¢&) is 65
mGal?, equivalent to 3.1 m in geoid height.
The remaining gravity information in the
higher harmonics, 8¢, equals 68 mGal>. We
notice that 8g for the Indian Ocean is larger

than 8¢ for North America and the Atlantic
and is probably due to the very sharp low
below the Indian subcontinent, which cannot
be modeled very well by the generalized
geoid. Further, ((9:—9.)%), (93), (9%), and (g.9.),
which are all in good agreement with the
global values from Table 9.47. Therefore, we
feel reasonably certain that for comparison
purposes, both the North America and North
Atlantic region and the Indian Ocean region
are typical. Thus, we conclude that the gen-
eralized geoid has an accuracy of =3 m in
geoid height and +=8 mGal for the whole
earth. Figures 9.16 to 9.19 give north-south
and east-west profiles for both North Amer-
ica and the Indian Ocean.
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FIGURE 9.16.—F ree-air mean gravity anomalies for North America at latitude 37°5.
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Figure 9.20 was selected because of the
large change in the values at the India low
from those given in SE II. However, the
terrestrial gravity and the combination solu-
tion are in good agreement there. A further
point is the disagreement, east of Borneo,
between the observed gravity from the ACIC
compilation and the anomalies used in 1969.

The results described above, the proce-
dures, the tests and comparisons, and the
experience of carrying out the work have
led to the following conclusions about the
use of artificial satellites for the determina-
tion of the geopotential :

(1) Satellite-tracking data from 25 satel-
lites have been combined with terrestrial
gravity data to determine the spherical-
harmonic representation of the potential
complete through degree and order 18, plus
several higher harmonics to which satellite
orbits are sensitive.

(2) The zonal harmonics are successfully
dete1m1ned from analysis of long-period and
secular perturbations; the tesseral and sec-
torial harmonics are obtained from short-pe-
riodic satellite perturbations and terrestrial
oravimetry, Low-degree and low-order 7 m <R

are primarily determmed from %atelhte per-
turbations, and the short-wavelengih i;m>-8,
primarily from terrestrial gravity data.

(2) The principal improvements over
Gaposchkin and Lambeck (1970) are due to
the addition of two low-inclination satellites
for the determination of the zonal harmonics,
the use of a sizable number of precise laser
observations, and the use of an improved set
of terrestrial gravity anomalies.

(4) In the combination of satellite and
surface-gravity measurements, some at-

tention must be given to the unobserved
areas.

(5) The unobserved areas were treated by
using anomalies computed from a satellite-
determined reference field and by taking the
expected value of this residual field as zero,
with a large variance.

(6) The accuracy of the solution is estab-
lished by comparison with satellite orbits
and with terrestrial gravity data not used in
the solution.

(7) The lower harmonies have been im-
proved such that the total orbit-computing
system has an rms error of between 5 and
10 m for 4-day arecs.

(8) The accuracy of the generalized geoid
is =~ 64 mGal? or 3 m.

(9) The geoid is very similar to that found
by Gaposchkin and Lambeck (1970) ; no new
features have been found, and nene has dis-
appeared. Therefore, geophysical analyses
from these results remain valid (see, e.g.,

Kaula, 1970, 1972; Gaposchkin et al., 1970,
unpublished).
9.5.3 The Geoid

Figure 95.21 shows the geoid computed
from the ‘(‘ S,..) given in section 9.5.2.
The geoid in figure V.21 iz with respect

to a best ﬁttmg ellipsoid of flattening
1/298.256; the geoid in fig. 9.21b is with re-
spect to a hydrostatic ellipsoid of flattening
1/299.67 ; and the geoid in figure 9.21c is with
respect to a surface computed from only those
coefficients (found for the potential) which
have I,m less than or equal to 5. In figure 9.22
are plotted the “gravity anomalies” calculated
from the potential and with respect to the
same ellipsoids as in figure 9.21.
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F1GURE 9.21a.
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Standard Earth ITI, geoid heights in meters with respect to the fifth degree and order reference surface, Ciu

Ficure 9.21c.
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FIGURE 9.22b.—Standard Earth III, gravity anomalies in milligals with respect to the hydrostatic ellipsoid, f=1/299.67.
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FIGURE 9.22¢c.—Standard Barth III, gravity anomalies

in milligals with respect to the fifth degree and order reference surface,

Cin=S1m=0; [;m<5,
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APPENDIX

TABLE 9.1.—History of the SAO

Satelli
camergte COSPAR number First sueccessful Last successful Transferred to
number and station location observation observation number and station
SC-1 .. 9001 Organ Pass, November 26, 1957 March 18, 1968 9021 Mt. Hopkins,
New Mexico Arizona
SC-2 _______ 9002 Olifantsfontein, March 18, 1958 December 17, 1970 9022 Olifantsfontein,
South Africa South Africa
(new building)
SC-8 - 9003 Woomera, March 11, 1968 June 1964 9023 Island Lagoon,
Australia Australia
SC-4 _______ 9004 San Fernando, March 18, 1958  ____________ o
Spain
SC-5.______ 9005 Tokyo, Japan April 5, 1958 May 24, 1968 9025 Dodaira, Japan
SC-6 .______ 9006 Naini Tal, India August 29,1958 ____________ o _______
SC-7 .. 9007 Arequipa, Peru July 4, 1958 May 30, 1970 9027 Arequipa, Peru
(new building)
SC-8 —_____ 9008 Shiraz, Iran May 20, 1958 July 15, 1966 9088 Addis Ababa,
Ethiopia
SC-9 _______ 9009 Curagao, June 22, 1958 July 10, 1966 9029 Natal, Brazil
Netherlands Antilles
SC-10 _.___ 9010 Jupiter, Florida June 10, 1958 October 12, 1967 9091 Dionysos, Greece
SC-11 _____ 9011 Villa Dolores, July 10, 1958 October 28, 1966 9031 Comodoro Rivadavia,

Argentina
SC-11a® ___9040 Dakar, Senegal

SC-12 _____ 9012 Maui, Hawaii

December 1970

July 4, 1958

September 1971

Argentina
9040 Ouagadougou,
Upper Volta

% On loan to CNES.
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Baker-Nunn Satellite-Tracking Cameras

First successful Last successful Transferred to First successful Last successful
observation observation number and station observation observation
Mareh 31, 1968 . et e e
January 5, 1971 o _____ et e e
July 1964 April 13, 1973 9043 Orroral Valley, January 1974 (est)  ____________
Australia
May 24, 1968 o e e mmmmcmeemee

June 1, 1970

August 15,1966 o mceeemmmmmmmmmeee e

September 27, 1966 May 5, 1970 9039 Natal, Brazil May 7, 1970 o _______
‘ : (new building)

December 7, 1967 June 25, 1969 9030 Dionysos, Greece July 3,1969 ..
(new building)

Novembver 14, 15366 January 1970 See 8C 112 ____________

May 1972
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TABLE 9.2.—Laser Sites

Station number

NGSP SAO Station location Period of operation

9901 _____ 7901 Organ Pass, New Mexico March 1966 to July 1967

9912 _____ 7912 Maui, Hawaii May 24, 1968 to March 27, 1969
9902 _____ 7902 Olifantsfontein, South Africa February 1971 to present
9907 _____ 7907 Arequipa, Peru December 1970 to present
9921 _____ 7921 Mt. Hopkins, Arizona (prototype) December 1967 to June 20,1972
9921 _____ 7921 Mt. Hopkins, Arizona (rebuilt system) November 1972 to present
9929 _____ 7929 Natal, Brazil November 1970 to present
9991 _____ 7991 Athens, Greece September 1968 to June 1969
9930 _____ 7930 Dionysos, Greece July 1969 to present

9925 _____ 7925 Tokyo, Japan November 1972 to present

TABLE 9.3.—Air Force Baker-Nunn Sites

Station number

NGSP SAO Station location Period of operation
9425 _____ 9113 Edwards AFB, California (Rosamund) December 1960 to present
9424 _____ 9114 Cold Lake, Canada (I) January 1963 to June 1971
9426 _____ 9115 Harestua, Norway December 1959 to July 1967
__________ 9116 Santiago, Chile September 1960 to May 1964
9427 _____ 9117 Sand Island (Johnston Island), Pacific September 1963 to present
__________ 9118 Kwajalein Island Not operational for

satellite photography
9119 _____ 9119 Mt. John, New Zealand October 1969 to present
9120 _____ 9120 San Vito, Italy March 1971 to present
__________ 9124 Cold Lake, Canada (II) July 1971 to present

__________ 9010° Jupiter, Florida (AF)

June 1968 to July 1971

e Site previously occupied by SAO Baker-Nunn camera (see figure 9.10).

TABLE 9.4.—Sources of Data Used in
the Orbit-Generation Program

Agency Instrument
SAO _____ Baker-Nunn cameras
Lasers
MOONWATCH
NASA/GSFC ____________ PRIME MINITRACK
Lasers

CNES __ .

Baker-Nunn cameras
CNES cameras
Lasers
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TABLE 9.5.—Number of Observations

Line n Line n
8015-8019 _________ 29 9006-9091 _________ 10
8015-9004 _________ 122 90069426 ____.____ 19
8015-8010 ___._____ 133 9007-9009 _________ 263
8015-9431 _________ 25 9007-9010 ______._. 86
8015-8011 _________ 67 9007-9011 . ______ 437
8015-9091 ___._____ 30 9007-9029 _________ 74
8019-9004 _..______ 301 9007-9031 _________ 32
8019-9091 _____.___ 61 9008-9028 _________ 25
9001-9009 ___._____ 183 9008-8011 _________ 8
9001-9010 _._______ 154 8008-9426 ___.______ 38
9001-9012 _________ 187 9009-9010 .. _______ 248
9001-9425 _________ 20 9009-9011 _________ 201
9001-9424 _________ 74 9009-9424 _________ 13
9001-9427 _________ 16 9010-9029 _____.___ 6
9002-9008 _________ 7 9010-9424 _________ 38
9002-9028 _________ 25 9011-9029 _________ 7
9004-9006 _________ 14 9011-9031 _________ 9
9004-9008 _________ 139 9012-9021 _________ 29
9004-9009 _________ 43 9012-9425 _________ 14
9004-9010 _________ 41 9012-9424 _________ 24
9004-9028 _____.___ 35 9012-9427 _________ 216
9004-9029 _________ 42 9021-9425 _________ 57
9004-8010 _________ 192 9021-9427 _________ 8
9004-9431 _________ 65 9028-9091 _________ 37
9004-8011 _________ 164 9029-9031 _________ 26
9008-9091 _________ 442 8010-9431 _________ 13
9004-9426 _________ 60 8010-8011 _________ 27
9005-9006  ______ a1 0421-0422 _________ 42
9005-9012 _________ 25 9431-9091 _________ 43
8006-9008 _________ 172 8425-9424 _________ 30

TABLE 9.6.—Stations Whose Coordinates
Were Determined by Orbital Theory

Orbital theory Orbital plus
alone geometric theory

9021

8818 9003 1021 9001 9028
9020 1030 9002 9029

9023 1042 9004 9031

9006 9050
7050 9007 9091
8815 9009
8816 9010 9113
9011 9114

a117

vase

8015 9012 9115
8019

895
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TABLE 9.7.—Dynamical Data Used in SE 111

i
£ & 3 3
-~ « 1 — '
Satellite & E g.g —_ § g § 29
a Perigee 23 S& 2 E =E EE
Number Name Inclination Eccentricity (km) (km) 3 L £e S _g P“,’ _g Z %
7001701 .- DIAL 5° 0.088 7344 301 X
7010901 ____ PEOLE 15 0.017 7070 635 X X b4 4
6001301 .___. COURIER 1B 1970v1 28 0.016 7465 965 X X X 7
5900101 .__. VANGUARD 2 1959 al 33 0.165 8300 557 X X X 7
5900701 .___ 1959 n1 33 0.188 8483 515 X 18
6100401 ____ 1961 51 39 0.119 7960 700 X 4
6701401_.___. D1D 39 0.053 7337 569 X X x 10
6701101 ____ D1C 40 0.052 7336 579 X X X 9
6503201 ____ Explorer 24 BE-C 41 0.026 7311 941 X X b4 13
6202901 -__. TELSTAR 1 1962 ael 44 0.241 9672 962 X 4
6000902 ____ 1960 (2 47 0.011 7971 1512 X X b4 10
6206001 ..__ ANNA-1B 1962 8ul 50 0.007 7508 1077 X X X 12
6302601 ____ Geophysical
Research 50 0.062 7237 424 X 6
6508301 ____ Explorer 29 GEOS-1 59 0.073 8074 1121 X X X X 56
6101501 ____. TRANSIT 4A 6101 67 0.008 7318 885 X X 10
6101502 ____ INJUN-1 6102 67 0.008 7316 896 X 9
6506301 _.___ SECOR-5 69 0.079 8159 1137 X X 2
6400101 ____ 70 0.002 7301 921 X X 4
6406401 ____ Explorer 22 BE-B 80 0.012 7362 912 X X b3 X 6
6508101___. OGO-2 87 0.075 7344 420 X X 5
6600501_.__. OSCAR-07 89 0.023 7417 868 X X 1
6304902 ____ 5BN-2 90 0.005 7473 1070 X x 5
6102801 ___. MIDAS-4 1961 ad1 96 0.013 10005 3503 X X X 6
6800201___._ Explorer 36 GEOS-2 106 0.031 7709 1101 X b4 X 13
6507801____ OV1-2 144 0.182 8306 416 X X 4
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TABLE 9.8.—Assumed Accuracy for Data Used in SE 111

Remarks

Data Weight
Baker-Nunn ____________________ 4"
Smoothed Baker-Nunn _________ 2’
SAOlaser ______________________ 5m
CNESlaser_____________________ 10 m
GSFClaser ____________________ 5m
ISAGEX laser __________________ 5m

Observed before 1970
Observed before 1970 .
Observed before 1970
1971 International Campaign

TABLE 9.9.—Satellite Center of Mass®

BE-B and BE-C A =0.3493 — 1.09183 x 107% X ¢ + 2.9222 X 10-% X ¢z — 1.5338 X 10-7 x ¢*

(A = 0 for ¢ > 120°)

D1C and D1D A =0.164612 — 2.824 X 1072 X ¢ + 2.0639 x 1073 X ¢*+ 8.1214 X 1077 X ¢*
— 5.81302 x 10° x ¢*
(A = 0 for ¢ > 120°)
GEOS-1 A =0.3972 cos ¢
GEOS-2 A = 0.4298 cos ¢
PEOLE A=1048 - 1.108 X 1072 X ¢ + 4.19267 x 1074 x ¢? — 3.619 X 107¢ x ¢3

+ 8.12555 X 107° x ¢*

s ~ o

(4 = 0.768 for ¢ >> 567)

2 From D. Arnold and J. Latimer.
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TABLE 9.10.—Number of Observations Used in the Dynamical Solution

Station no. No. of observations

Pre-ISAGEX Data (15 satellites, 140 arcs)

T050 e 274
8818 e 1223
8016 _ 612
8815 e 1970
9001 __ e 4367
9002 _ e 2120
9008 _ e 349
9023 _ e 2630
9004 _ e 3343
9005 e 945
9006 e 3170
9007 e 1646
9008 _ e 2301
9009 _ .o 1825
9010 _ e 2424
9011 e 1637
9012 e 3088
9028 e 525
9029 e 261
9031 _ e 467
9021 e 81
9066 . ..o 809
902D e 9
9080 _ e 47
9091 _ e 143
9921 e 9
8816 _ e 2382
8804 __ e 200
9901 e 761
ISAGEX Data (3 satellites, 15 arcs)
7050 — e 14256
T060 e 1514
8804 _ e 625
8809 _ o e 1178
8820 e 296
9902 _ e 1484
9907 e 746
9921 e 225
9929 __ e 213
9930 _ e 89
9080 _ e 172
9021 _ e 29
* TABLE 9.11.—Adopted Constants

GM =3.986 013 x 10?° ¢m? sec 2
¢ =2.997 925 x 10! ¢m sec ! (velocity of light)
k, =0.30 (Love number)
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TABLE 9.12.—DSN Data Used in LS 87

Flight Tracking time period 8 (deg)
Mariner 4 encounter July 10-21, 1965 -3
Mariner 5 cruise July 28-September 16, 1967 —8to +8
Mariner 5 encounter October 14-25, 1967 6
' Mariner 5 post October 28-November 21, 1967 +2to -2
encounter
Mariner 6 July 26-31, 1969 -24

TABLE 9.13.—LS 387 Coordinates, From Mottinger (1973)

r X Y

Station (Mm) A (Mm) (Mm)

DSS 11 5.206 340 9 24315059 -2.351428 8 -4.645 080 0
DSS 12 5.212 052 5 243219452 -2.350 442 4 —4.651 979 4
DSS 14 5.203 997 8 243°11047 -2.353 621 1 —4.641 3425
DSS 41 5.450 201 9 136288749 -3.978 718 6 3.724 848 8
DSS 42 5.205 349 4 148298126 -4.460 978 2 2.682 4124
DSS 51 5.742 939 9 27°68542 5.085 4415 2.668 265 9
NSS 61 4.862 608 3 3552765097 4.849 243 1 —-0.360 278 6
DSS 62 4.8608181 35563217 4.846 700 7 —0.370 196 0

TABLE 9.14.—The Stations Eelaied by the Survey

ifer?

Location Station pairs (m~?)
Meorvliand _____________ 70506002 1.0
Hawail —______oo______ 9012-6011 1.0
! Argentina _____________ 9011-6019 1.0
1 Japan . ____ 9005-6013 0.1
\ Spain . DSS 61-DSS 62 5.0
9004-DSS 61 0.20
Central Europe ________ 9066-8015 0.25
! 9066-6065 0.0025
? 8816-9030 0.01
Brazil - ______ 9029-6067 1.0
California______________ DSS 14-DSS 12 5.0
DSS 14-DSS 11 5.0
| 9113-DSS 14 0.7
9113-6111 2.0
6111-6134 5.0
Ethiopia _______________ 9028-6042 2.0
Australia ._____________ 6060-DSS 41 1.0
9003-DSS 41 1.0
9003-9023 1.0
DSS 41-DSS 42 0.04
South Africa___________ 9002-6068 1.0
9002-DSS 51 0.1




900

NATIONAL GEODETIC SATELLITE PROGRAM

TABLE 9.15.—Geodetic Coordinates Used in SE-111

Sta. H oyt Hoy GH X Y 4
Agency no. Latitude Longitude (m) (m) Datum (m) Name (megameters)
a = 6378388.0m 1if = 297.0000

JPL.._...DSS61  +40 26 47.717 355 45 06.178 788.4 766.4 EUS0 -220 MADRIl 4.849 332 01 —-.360 171 92 4.115 005 79
JPL..... DSS62  +40 27 15.273 355 38 00.5672 738.3 716.3 EUG0 -220 MADRI2 4.846 789 68 -.370 090 30 4.117 028 98
NOAA __6006 +69 39 44.2698 018 56 31.9076 106.0 119.0 EU50 +13.0 TROMSO 2.103 040 80 721 762 62 5.958 301 35
NOAA ..6012 +19 17 23.227 166 36 39.780 35 35 ASTR 0. WAKEIS  -5.858 82561 1.394 575 85 2,093 679 89
NOAA ..6015 +36 14 29.527 0569 37 42,729 991.0 959.0 EU50 -320 MASMAD 2.604 467 55 4.444 277 33 3.750 465 44
NOAA _.6016 +37 26 42.628 015 02 47.308 9.24 -6.8 EUS0 -160 SICILY 4.896 494 12 1.316 269 43 3.856 792 86
NOAA 6020 —-27 10 39.213 260 34 37.495 230.8 230.8 EI67 0.0 EASTER -1.88879616 —5.35603180 —2.89587721
NOAA ..6031 ~46 25 03.491 168 19 31.166 0.9 . NZ49 INVERC —4.313 886 56 89137493 —4.597 458 23
NOAA 6039 -25 04 07.146 229 53 11.882 339.4 3394 PITC 0.0 PITCAN —3.724 93290 -4.42140620 —2.686 144 64
NOAA 6043 ~b52 46 52.468 290 46 29.573 80.7 . CHé3 SOMBRO 1.37137597 -8.614 94594 —5.066 020 37
NOAA __6044 -53 01 12.031 073 23 27.415 38 3.8 HR69 0.0 HERDIS 1.099 079 48 3.684 662 62 —5.071 987 40
NOAA 6050 —64 46 33.98 295 56 37.04 16.44 PLMR PALMER 1.192 460 38 —2.451 024 27 -5.747 260 40
NOAA __60563 —77 50 46.2487 166 38 07.5845 19.0 CA62 MCMURD ~-1.310 740 80 31140586 —6.213 51412
NOAA __6055 —07 58 16.634 345 35 32.764 70.94 . ASBH8 ASCENS 6.118 56151 —1.57184078 —.878 654 81
NOAA __6065 +47 48 07.011 011 01 29.378 943.2 9424 EUS0 -08 PEISEN 4.213 664 69 .820 948 44 4.702 898 97
NOAA __6069 —37 08 26.2672 347 40 53.5648 248 248 TRé8 0.0 DACUNA 497907544 —1.08729430 -3.82254543
NOAA __6073 —07 20 58.5270 072 28 32.1666 39 GRAC CHAGOS 1.904 935 20 6.032 722 80 —.810 502 73
NOAA __6078 -17 41 46.966 168 17 57.921 16.2 . EFAT NWHBRD -5.952 163 90 1.232 696 45 —1.926 425 29
CNES __8804 +36 27 50.1191 353 47 41.2862 25.40 -96 EUS0 -3560 SFRLAS 5.105 70263  —.555 125 50 3.769 769 71
CNES __8809 +43 56 00.190 005 42 48.788 657.82  649.4 EUS0 -84 HTPRVL 4.578 434 82 .458 082 30 4.403 291 78
CNES _.8809 +43 56 00.190 005 42 48.788 667.82 64178 EUS0 -10.0 HTPRVL 4.578 435 96 458 082 42 4.403 292 89
CNES __8815 +43 55 59.183 005 42 48.382 657.83  649.4 EUS0 -84 HTPRVL 4.578 458 32 .458 075 66 4.403 270 50
CNES __8816 +37 45 17.043 022 49 43.313 803.11 7887 EU50 -144 STPHNL 4.654 421 39 1.9569 282 40 3.884 501 87
CNES __8818 +31 43 19.26 357 34 54.06 856.66 813.7 EU50 —-420 BECHRL 5.426 41914 —.22917216 3.334 728 56
SAO ____9930 +38 04 46.147 023 55 59.991 47302 46662 EU50 -64 DIOSLS 4.595 303 76 2.039 557 34 3.912 743 97
CNES ._8015 +43 56 01.142 005 42 49.277 65885  650.4 EU50 -84 HTPROV 4.578 415 31 .458 091 32 4.403 314 74
CNES __8019 +43 43 36.496 007 18 03.309 37742 3694 EU50 -8 NICEFR 4.579 557 66 .586 729 53 4.386 538 88
SAQ ___.9004 +36 27 51.3666 353 47 42.0891 26.00 -90 EUB0 -3560 S.FERN 5.105 682 54 —.556 103 20 3.769 801 00
SAO ____9006 +29 21 38.97 079 27 26.561 1927. 1827. EUbB0 ~—100. NA.TAL 1.018 269 70 5.471 218 80 3.109 759 10
SAO ____9008 +29 38 18.112 052 31 11.445 1597.4 1549.4 EUS0 —480 SHIRAZ 3.376 963 53 4.404 102 29 3.136 406 45
SAO ____9028 +08 44 56.39 038 57 33.61 1923.2 1820.2 EU50 —105. ETHIOP 4.903 855 04 3.966 304 21 .964 021 18
SAO _.._9030 +38 04 46.564 023 56 00.130 472.64 46624 EUS0 -64 DIOSBN 4.596 294 86 2.039 557 10 3.912 7563 85
SAO ____9051 +37 58 40.31 023 46 42.89 187.9 180.9 EUS0 -7.0 ATHENG 4.606 949 19 2.029 849 75 3.903 882 23
INT. ____ 8010 +46 52 40.318 007 27 58.238 903.44 900.3 EUs0 -31 ZIMMWL 4.331 39150 567 637 49 4.633 236 85
INT. ____ 9431 +56 56 54.98 024 03 37.81 8.0 2.4 EU50 56 RIGALT 3.183 998 49 1.421 638 06 5.322 893 86
INT. ____ 9432 +48 38 04.56 022 17 67.88 189.0 187.5 EUS0 -156 UZGROD 3.907 492 64 1.602 532 61 4.764 032 96
INT.____ 8011 +52 08 39.116 358 01 59.492 113.19 1086 EU50 -46 MALVRN 3.920 249 42 -.134 624 34 5.012 850 24
SAO ____9091 +38 04 48.216 023 56 01.587 466.25 46085 EUS0 -64 DIONBN 4.595 247 88 2.039 575 10 3.912 790 60
AF _____ 9426 +60 12 40.38 010 45 08.74 576.92 5817 EUB0 +68 HAREST 3.121 368 36 592 747 33 5.612 829 59
AF _____ 9427 +16 44 45.39 190 29 056.59 5.0 50 Ji6l 0.0 JOHNST —6.007 58942 -1.11180181 1.825 951 15
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TABLE 9.15.—(Cont’d)
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Sta.

. ) Ho H.oy GH X Y z
Agency  no. Latitude Longitude (m) (m) Datum (m) Name (megameters)
a=6 37738972 m 1/f = 299.1528
NOAA __ 6013 +31 23 30.1397 130 52 24.8595 65.9 46.9 TKYO -—-19. KANOYA -3.56571019 4.120 207 06 3.302 741 97
SAO _.__9005 +35 40 11.078 139 32 28.222 59.77 59.8 TKYO +0.0 TOKYOJ —3.946 5565 04 3.365774 71 3.698 152 01
SAO ____9025 +36 00 08.606 139 11 43.159 855.89 855.4 TKYO -0.6 DODRAJ —3.910298 61 3.375 836 40 3.728 538 81
a=6378206.4m 1/f = 294.9787
GSFC___1021 +38 25 49.628 282 54 48.225 5.76 6.7 NA27 +0.9 IBPOIN 111806122 -4.87647215 3.942 793 54
+35 23 22.346 243 09 05.262 1036.3 1014.3 NA27 -220 GOLDS1 —2.351415601 —4.645228 10 3.673 582 42
+35 17 59.854 243 11 43.414 988.9 966.9 NA27 -220 GOLDS2 —2.350 428 27 —4.652 127 56 3.665 447 06
+35 25 33.340 243 06 40.850 1031.8 1009.8 NA27 -220 GOLDS4 —2.363 607 04 —4.641490 95 3.676 870 68
+76 30 03.4106 291 27 51.8867 206.0 238. NA27 +32. THULEG .546 580 66 —1.390 107 20 6.180 069 57
+39 01 39.003 283 10 26.942 44.3 43.9 NA27 -04 BELTVL 1.130 798 67 —4.830 987 41 3.994 520 58
+47 11 07.132 240 39 48.118 368.74 356.2 NA27 -125 MOSELK -2.12779649 -—3.786 01463 4.655 848 03
+52 42 54.89 174 07 37.87 36.8 -92 NA27 -460 SHEMYA -3.85174500 .396 192 09 5.051 199 36
NOAA __6011 +20 42 38.561 203 44 28.529 3049.27 30413 OHAW -8 HAVAII —5.466 06254 —2.404 12970 2.242 407 61
NOAA __6022 ~14 20 12.216 189 17 13.242 5.34 53 AS62 0.0 PAGOGO —6.099 842 41 —.99746771 -1.569 008 83
NOAA __6038 +18 43 44.93 249 02 39.28 23.2 23.2 ISOC 0.0 GIGEDO —2.161114 55 —b5.642 916 48 2.034 864 29
NOAA __6047 +06 55 26.132 122 04 04.838 9.39 10.1 LZ11 +0.7 ZAMBOA  -3.361826 92 5.365 864 13 .763 736 96
NOAA __6111 +34 22 54.537 242 19 09.484 228441 225811 NA27 -263 WRWDBA -2.44881518 —4.688125178 3.5682 568 64
NOAA __6123 +71 18 49.882 203 21 20.720 8.3 ~6. NA27 +1.3 PTBRRW  -1.881 75624 -.81258399 " 6.019 403 56
NOAA __6134 +34 22 44.444 242 19 09.259 219837 217207 NA27 -263 WRWDBB -2.44886889 —4.668 21579 3.5682 263 30
GSFC___7050 +39 01 13.676 283 10 18.035 54.812 56.1 NA27 +12 GODLAS 1.130 704 28 —4.831 524 29 3.993 921 50
GSFC__.7060 +13 18 28.6136 144 44 05.3744 85.873 85.9 GUAM 0. GUAMLS -5.068867 06 3.5684 334 33 1.458 509 59
SAO ____9901 +32 25 24.56 253 26 51.17 1651.33 164893 NA27 —-24 ORGN L —1.53572537 —5.167 146 66 3.400 867 41
SAO .___9912 +20 42 37.28 203 44 24.03 3034.14 3026.1 OHAW -8 MAUIHL -5.46611522 —2.404 01058 2.242 363 93
SAO _._ 9921 +31 41 02.87 249 07 21.35 2383.14 2370.4 NA27 -127 MHSAOL -1.93675026 —5.077 855 96 3.331 744 02
SA0 001 +22 28 2858 253 26 51.17 1651.3 1648.9 NA27 24 ORGN T —1.535 72637 —5.167 146 55 3.400 8O 41
SAO __._9010 +27 01 12.882 279 53 18.008 15.13 26.5 NA27 +114 JUPITE 97631216 —5.601 550 92 2.880 064 23
SAO _.__9012 +20 42 37.50 203 44 24.08 3034.14 3026.1 OHAW -8 MAULH —5.466 11195 —2.404 01072 2.242371 70
SAO ____9021 +31 41 02.67 249 07 21.36 2383.12  2370.4 NA27 -127 MTHPBN -1.93675141 -5.077 858 98 3.331738 78
AF .. 0425 +34 57 50.742 242 05 11.584 784.231 1760.4 NA27 -238 ROSMND -244997502 —4.624 57236 3.634 851 19
AF _____ 9424 +54 44 33.858 249 57 26.389 704.6 701.7 NA27 -29 CLALBC —1.264 826 81 —3.467 044 42 5.186 275 10
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TABLE 9.15.—(Cont'd)

Sta. H ot H, GH X z
Agency no. Latitude Longitude (m {m) Datum (m) Name (megameters)

a = 6378249.145 m 1f = 293.465
JPL_____ DSS51 -25 53 21.15 027 41 08.53 1391.0 1399.0 ARCC  +8. JOHANG 5.085 580 65 2.668 37093 —2.768 408 99
NOAA __6042 +08 46 08.501 038 34 49.164 1886.46 1857.5 ADDN -29.0 ADDABA 4.900912 36 3.968 254 30 .966 118 39
NOAA __6063 +14 44 44.228 342 30 55.594 26.3 263 Y067 0. SENGAL 5.884 522 66 —1.853 639 29 1.612 760 05
NOAA __6064 +12 07 51.750 015 02 06.151 295.4 3164 ADDN +21.0 FTLAMY 6.023 554 50 1.617 955 70 1.331 525 26
NOAA __6068 —25 52 56.98 027 42 25.17 1523.8 1531.8 ARCC +8  JOHANS 5.084 982 16 2.670 466 91 —2.767 797 68
NOAA __6076 —04 40 07.23 035 28 50.38 588.98 . SEIL . MAHEIS 3.602 875 32 523842744  -.51567627
CNES __8820 +14 46 04.878 342 35 22.462 28.48 285 Y067 0.0 DAKARL 5.886 31560 —1.845836 00 1.615 157 50
SAO .___9902 —25 57 33.851 028 14 53.909 1543.88 1551.9 ARCC +8 OLIFTL 5.066 260 03 2.716 634 10 -2.775 471 14
SAO __._9002 ~25 57 33.85 028 14 53.91 1544.1 1552.1 ARCC +8  OLFSFT 5.056 260 19 2.716 63422 -2.77547120
CNES __9020 +14 46 05.975 342 35 22.936 24.59 24.6 YO67 0.0 DAKARS 5.886 308 05 —1.845818 78 1.615189 11
SAO ____9022 —25 57 33.815 028 14 54.351 1543.34 1551.3 ARCC +8 OLIFTS 5.056 254 16 2.716 644 91 —2.775 469 88
SAO ____9028 +08 44 47.23 038 57 30.48 1925.2 1896.2 ADDN -29 ETHIOP 4.903 904 76 3.965 221 35 .963 656 06

a=6378160.0 m 1)f = 298.25
JPL__.__ DSS41  -31 22 59.4305 136 53 10.1244 14828 1473 AUGD -10 WOOMAU -3.978581 94 3.724 896 03 —3.302 323 84
JPL._.__ DSS42 —35 24 08.0381 148 58 48.2057 656.08 664.5 AUGD +84 TIDBIN —4.460 848 00 2.682 46157 —3.674 72947
NOAA __6008 +05 26 55.325 304 47 42.832 18.38 +8.7 SA69 -97 SURNAM 3.62333539 —5.214 222 41 .601 599 57
NOAA __6009 —00 05 50.468 281 34 49.212 2682.1 2706.7 SA69 +246 ECUADR 1.280 904 38 —6.250 970 09 —.010 769 28
NOAA __6019 —31 56 33.9540 294 53 41.3415 608.18 621.2 SA69 +13.0 DLORES 2.28071297 -4.91453960 —3.355387 84
NOAA __6023 —10 35 08.0374 142 12 35.4955 60.5 61.7 AUGD +12 THURIS ~4.955 236 08 3.84230946 —1.163 990 61
NOAA __6032 —381 50 28.992 115 58 26.618 26.30 325 AUGD +62 PERTHA —2.375 257 20 4.875 59999 —3.345 531 90
NOAA __6060 —30 18 39.4182 149 33 36.8921 211.08 211.8 AUGD +0.7 CULGOR ~-4.751 500 46 2.792 12193 —3.200 296 97
NOAA __6067 —05 55 37.414 324 50 06.200 40.63 66.7 SA69 +26.1 BRAZIL 5.186 494 84 —3.653 919 32 —.664 244 53
SAO ___.9907 ~16 27 55.085 288 30 26.814 2452.274 2486.5 SA69 +342 ARQUPL 194286944 -5.804 08719 —1.796 876 89
SAO _._.9929 —05 55 38.616 324 50 08.660 45.6 717  B8A69 +261 NATALL 5.186 53940 —3.65385816  —.654 28178
SAO _...9003 —31 06 07.2608 136 46 58.6988 159.21 158.1 AUGD -11 WOOMER -3.983657 92 3.743 13237 —3.275 676 47
SAO _.__9007 —16 27 55.085 288 30 26.814 2451.86  2486.1 SA69 +342 AREQUI 1942859 32 —5.804 08683 —1.796 876 77
SAO ____9009 +12 05 25.912 291 09 46.078 7.44 -84 SA69 —108 CURACA 2.251890 08 —5.816 918 37 1.327 200 69
SAO ____9011 —31 56 33.228 294 53 38.949 608. 621.0 SA69 +130 V.DLOR 2.280 660 87 —4.914576 54 —3.355 368 76
SAO __..9023 —31 23 30.8163 136 52 39.0156 13791 1369 AUGD ~1.0 LAGOON -3.977646 16 3.725145680 —3.303 143 65
SAO ._..9027 —16 27 54.365 288 30 26.578 2450.23 24844 SA69 +342 AREQU2 1.942854 16 —5.804 093 46 —1.796 855 06
SAO _.__9029 —06 55 38.616 324 50 08.660 45.34 714 SA69 +261 NATLBR 5.186 53916 -3.656385798  —.664 281 74
SAO __..9031 —45 53 11.028 292 23 12.2156 186.54 1725  SA69 -140 CHDRVD 1.693 86960 —4.11233951 ~-4.566 606 80
SAO .___9039 -05 55 38.616 324 50 09.401 41.6 67.7 SA69 +261 NATALZ2 5.186 54928 -3.663 83723  —.6b4 281 36

Sta. H oy H,, GH X VA
Agency no. Latitude Longitude (m) (m) Datum (m) Name (megameters)

a=6378140.0 m 1f = 298.258
NOAA __6007 +38 45 36.725 332 54 21.064 53.3 533 GRAC 0.0 AZORES 443356344 —2.268197174 3.971 629 06
NOAA __6040 -12 11 57.91 096 49 47.08 4.4 4.4 ASTR 0.0 COCOIS —.741462 10 6.190 800 89 —1.338 974 41
NOAA __6045 -20 13 50. 057 25 15. 149.4 . NSPC . MAURIT 3.223 895 00 5.045104 82 —2.191 716 44
NOAA __6051 —67 36 03.08 062 52 24.41 11.3 11.3  ASTR 00 MAWSON 1.111 359 85 2.169 30795 —5.874 28599
NOAA __6052 —66 16 45.12 110 32 04.61 18.0 180 ASTR 00 WILKES —.902 551 77 2.409 54573 —5.816 560 60
NOAA __6059 +02 00 35.622 202 35 21.962 2.75 XMé67 XMASIS —5.88521981 —2.448 507 30 222 198 23
NOAA __6061 —-b54 16 39.515 323 30 42.531 4.2 SGRG SOGEOR 3.00059110 -2.21936327 -5.154 853 86
NOAA __6072 +18 46 10. 098 58 15. 319.3 NSPC TILAND —.942 038 16 5.967 454 08 2.039 306 54
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TABLE 9.16.—Orbital Elements

of Adopted Satellites
n

Satellite (rev day™?) 1 e

7001701 ________ 13.800 52410 0.0880
7010901 ________ 14.811 155040 0.0165
6001301 ________ 13.454 282330 0.0166
5900101 ________ 11.460 32°880 0.1650
6202901 ________ 9.126 44°800 0.2428
6000902 ________ 12.197 47°230 0.0114
6302601 ________ 14.108 492740 0.0600
6206001 ________ 13.345 502140 0.0070
6508901 ________ 11.968 59°380 0.0717
6101501 ________ 13.870 662820 0.0080
6400101 ________ 13.920 69°910 0.0015
6406401 ________ 13.746 792700 0.0129
6508101 ________ 13.805 872370 0.0743
6102801 ________ 8.677 952850 0.0121

TABLE 9.17.—Coefficients of C,

Rased on Kozai’s (196

C; = ~1082.639
C, = 1.649
Ce = 0.646
Cs = 0.270
Cw = 0.054
Cp= 0.357
Cu= -0.179

a
es

(196%) Value
C; = 2.546
C, = 0210
C; = 0.333
Cy, = 0.053
C, = —~0.302
Ca= 0114

¢ Given in units of 107
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TABLE 9.18.—(0-C) for Secular Motion and Their Differences®

Satellite (0-C) - I I 1969 1962 1961 1959
7001701 @ —oeee —~18060 =90 -57 271 29090 9540 18250 18840
Q 10120 =170 -51 258 —17400 —5390 —9950 -10240
7010910 @ —oee —2200 =800 ~1530 -857 —4700 100 6200 6900
Q 5160 +100 -83 99 —2160 ~1450 -5560 ~5900
6001301 @ e 170 +100 43 61 40 -300 -670 -90
Q. 125 =5 -4 -10 -1 59 -611 -928
5900101 PN 32 =3 1 3 1 18 -129 278
Q. -9 =+3 2 7 0 10 -248 -488
6202901 @ —oeee 40 =6 11 10 2 300 827 1013
Q 7 +3 5 8 2 -39 —-247 -395
6000902 @ oo 170 =50 0 21 47 —287 770 1070
Q. -1 =3 1 5 4 -43 -342 -594
6302601 @ e 920 =10 -1 -6 -52 2650 4900 5290
Q.. 1 =3 0 -2 19 261 -2 -352
6206001 @ . 600 =60 16 84 60 2230 4180 4500
Qo -42 =3 1 2 8 -56 -437 -740
6508901 @ - -110 =10 -1 -29 -26 1460 3180 3285
Qo -70 +3 0 -6 -7 -670 —1465 -1670
6101501 @ oo -300 =80 14 97 65 -81 1900 2500
Q _____ 22 =+3 -1 -1 3 -1252 -2815 —3057
6400101 @ . 600 =800 729 718 620 —600 580 -500
Q . 56 *8 10 6 9 -1073 -27083 -2921
6406401 @ —400 *100 -95 -231 -110 -2000 —4000 ~4300
Q_____ 90 10 9 9 15 -220 -1351 ~1467
6508101 @ 620 =30 15 100 -8 300 —3290 -3630
Q. 50 +3 -2 -9 -27 35 -306 -337
6102801 @ e -85 +50 -47 —47 -47 —340 -915 -1008
Q. -2.9+0.5 0.6 0.7 0.6 62.7 192.3 212.6

2 Given in units of 10~ degrees per day.
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TABLE 9.19.—(0-C) for Amplitudes of s";;f} 2w Terms
and Their Differences®
Satellite (0-C) I II 1969 1962 1961 1959
5900101 ® 0305 -02 -02 -03 -0.6 15 14
Q -2+2 -1 -2 -2 -1 ~4 -4
T e -3+6 -4 -4 -5 -4 3 3
€ e 0+1 1 1 1 1 -4 -4
6202901 ® -0.1+x03 -02 -02 -02 -0.8 ~-25 -2.7
Q . -1+1 1 1 1 -8 -14 -14
A 4+4 5 4 4 -3 -14 -15
e _______ 0+1 0 (] 0 5 12 12
6000902 © -3+4 -2 -2 -2 -6 -10 -10
€ . 0+1 0 0 0 0 1 1
6302601 . -6+2 -1 0 0 -14 -23 -23
Q 2+2 3 3 3 -2 -3 -3,
T o -1+3 1 1 1 -4 -6 -6
€ . 3+2 -3 -3 -3 12 20 20
6205001 © e 3+6 7 6 6 -5 -13 -13
€ . 1+1 1 1 0 2 3 3
6503901 @ e 6+2 1 2 2 —22 -49 -50
Q 42 2 2 0 9 10 10
A 5+5 4 4 4 -3 -11 -1
€ . -4=+1 2 1 1 30 62 63
6101501 o -1+2 -1 0 0 -3 0 0
€ . 12 0 0 -i 3 -i -1
6406401 @ 0=2 0 0 0 -1 -1 -1
€ el 424 3 4 3 5 7 7
6508101 ® . 7+3 3 4 3 12 0 0
Q 1+1 1 0 0 2 2 2
T -2=xR -2 -2 -2 -2 -2 -9
& e §x2 1 -2 -1 -11 5 3

= Given in units of 167 des
fur ¢ per day.
® For these satellites,  is in units of 102 degrees.
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TABLE 9.20.—(0-C) for Amplitudes of gg;}w Terms and Their Differences®

Satellite (0-C) I II 1969 1962 1961 1959
7001701 @ .- 7 = 5 -2 0 -126 -104 -85 -87
Q __._-190 = 30 0 —28 —248 -570 -168 —237
_____ 430 =* 30 -34 -31 740 900 480 550
_____ -91 * 6 -b -5 —149 -179 -99 -112
7010901 @ .____ 45 = 30 9 41 160 —411 232 112
Q ____-18 = 45 ~-44 —48 0 10 9 7
_____ -170 =300 —-166 -170 -181 -120 -190 =177
_____ 28 =+ 20 18 27 61 ~102 83 49
6001301 @ _____ 4 = 1 0 0 0 46 314 241
—- 0 = 3 2 2 0 3 -10 -1
_____ 0 += 30 0 0 0 -2 ~16 -12
_____ 1.6+ 10 0.5 0.5 0.6 13.5 90.7 69.8
5900101 o _____ -17x 03 0.0 0.3 0.0 4.8 22.4 17.2
— =2 = 2 2 1 2 -1 —87 —58
_____ 1 = 5 -3 -3 -4 -8 ~64 -57
_____ -31x 05 -0.3 -0.7 -0.1 3.2 40.0 35.6
6202901 o _.__- -01+ 02 0.0 0.0 -0.1 -1.2 -4.0 6.1
e 2 = 3 2 3 3 16 5 31
_____ -2 = 3 -5 -4 -4 -11 —26 -178
_____ + 08 0.2 0.0 0.2 4.2 15.2 49.7
6000902 o ____- -19 = 3 -4 -4 -10 42 1 315
——e 1 = 1 1 1 0 3 4 6
_____ -2 * 6 -2 -2 -6 -3 -2 -6
_____ -2.0x 06 1.0 1.0 0.3 10.5 2.4 64.8
6302601 o _____ -17 = 2 0 -4 -1 9 -17 86
. § 0 0 1 20 52 60
_____ 14 = 156 10 11 10 6 12 -19
_____ -12 = 1 0 -1 2 16 -6 99
6206001 o _____ -59 = 4 0 5 0 187 122 931
e 2 2 2 -2 -2 -2 0 3 4
_____ 0 = 10 0 0 0 -1 0 -4
_____ -8 + 1 -1 0 -1 22 14 113
6508901 o _____ 3 = 4 7 7 0 119 264 486
——— 10 = 2 3 3 2 -10 8 -29
_____ -8 = 8 -9 -9 =1 —40 —80 -144
_____ -4 = 1 0 0 -2 127 292 5565
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TABLE 9.20.—(Cont'd)

Satellite (O-

c) I 11 1969 1962 1961 1959

6101501 «® ____ —19 * 5 -1 -11 -8 -46  -265  —413
Q . -8 = 4 2 2 0 7 17 29

i 0 = 5 0 0 0 1 7 11

PR -11 =+ 1 0 0 4 -48  -354  —560

6400101 o® ____—200 = 10 6 3 1 -72  —445  -593
€ - -58 + 3 -4 -5 -9 ~24 -122  -161

6406401 @ _____ -110 =+ 20 23 36 30 23 510 930
Q . 6 = 3 1 1 1 5 11 18

P 0 + 8 0 0 0 0 -2 -3

€ . -3¢ + 5 -4 -2 -2 -4 106 199

6508101 @ ____ 60 + 2 1 -1 3 64 197 296
Q . 20 =+ 1 0 2 2 16 26 32

i -10 = 10 -9 -9 -10 -10 -13 -16

e 60 + 3 -4 -5 -2 67 231 354

6102801 @ _____ -30 = 50 —48 —47 -40 15 390 663
Q ___ -2 + 2 -2 -2 -2 -2 -3 -4

i -6 = 7 -6 -6 -6 -6 -6 -5

€ . 3.0+ 15 -0.7 -06 0.0 125 918 1492

¢ Given in units of 10° degrees for w, 104 degrees for (1, 105 degrees for i, and 10¢ degrees
for e per day.
® For these satellites, w is in units of 102 degrees.

TABLE $.21.—Assumed Accuracy for SE iii
Data Weight Remarks

Baker-Nunn 4"

Smoothed Baker-Nunn 2"

SAO laser 5m Taken before 1970, observed before 1970
CNES laser 10m Taken before 1970, observed before 1970
GSFC laser 5m Taken before 1970, observed before 1970
ISAGEX laser 2m 1971 International Campaign

. . 13.5
Gravity anomalies ) nA mGal n is the number of 1° X 1° squares in each

5° X 5° mean

Model (zero) o4 -2% mGal 4 is the area

anomalies
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TABLE 9.22.—Smithsonian Atomic Time Defined With Respect to WWV
: and UTC (USNO)**

B T,
Interval (sec) (sec/day) (mod. J.d.)

(A.S ~WWV)=A + B (T — T, before September 20, 1967

1961 Jan. 01.0—1961 Jul. 01.0 13458 858 + 02001 296 000 (T — 37 300.0)
1961 Jul.  01.0—1961 Jul. 13.0 1.693 434 + 0.001 292 000 (T" — 37 480.0)
1961 Jul.  13.0—1961 Aug. 01.0 1.694 215 + 0.001 245 000 (T ~ 37 480.0)
1961 Aug. 01.0—1961 Sep. 21.0 1.643 160 + 0.001 280 000 (T — 37 480.0)
1961 Sep. 21.0—1961 Oct. 01.0 1.641 500 + 0.001 300 000 (T — 37 480.0)
1961 Oct.  01.0—-1961 Nov. 01.0 1.642 184 + 0.001 290 764 (T — 37 480.0)
1961 Nov. 01.0—1962 Jan. 01.0 1.643 272 + 0.001 289 444 (T - 37 480.0)
1962 Jan. 01.0—1962 Apr. 01.0 1.865 000 + 0.001 123 200(T — 37 650.0)
1962 Apr. 01.0—-1962 Jul. 01.0 1.864 620 + 0.001 126 800 (T — 37 650.0)
1962 Jul.  01.0—1963 Jan. 01.0 1.864 704 + 0.001 126 370 (T — 37 650.0)
1963 Jan. 01.0—1963 Nov. 01.0 2.292 725 + 0.001 118 458 (T — 38 030.0)
1963 Nov. 01.0—1964 Jan. 01.0 2.392 725 + 0.001 118 458 (T — 38 030.0)
1964 Jan. 01.0—1964 Apr. 01.0 2.800 962 + 0.001 293 560 (T — 38 395.0)
1964 Apr. 01.0—1964 Jul. 01.0 2.900 766 + 0.001 295 716 (T — 38 395.0)
1964 Jul.  01.0—1964 Sep. 01.0 2.901 518 + 0.001 292 659 (T ~ 38 395.0)
1964 Sep. 01.0—1964 Oct. 01.0 3.001 518 + 0.001 292 659 (T — 38 395.0)
1964 Oct.  01.0—1965 Jan. 01.0 3.001 589 + 0.001 296 048 (T — 38 395.0)
1965 Jan. 01.0—1965 Mar. 01.0 3.575 732 + 0.001 296 000 (T — 38 761.0)
1965 Mar. 01.0—1965 Jul. 01.0 3.675 732 + 0.001 296 000 (T — 38 761.0)
1965 Jul.  01.0—1965 Sep. 01.0 3.775 732 + 0.001 296 000(T ~ 38 761.0)
1965 Sep. 01.0—1966 Jan. 01.0 3.875 732 + 0.001 296 000 (T — 38 761.0)
1966 Jan. 01.0—1967 Jan. 01.0 3.348 772 + 0.002 592 000 (T — 39 126.0)
1967 Jan. 01.0—1967 Sep. 20.0 5.294 852 + 0.002 592 000 (T — 39 491.0)
[A.S - UTC (USNO) =A + B (T - Ty after September 27, 1967

1967 Sep.  20.0—1968 Jan. 01.0 5¢294 688 + 02002 592 000 (T — 39 491.0)
1968 Jan. 01.0—1968 Feb. 01.0 6.240 768 + 0.002 592 000 (T — 39 856.0)
1968 Feb. 01.0—1969 Jan. 01.0 6.140 768 + 0.002 592 000 (T — 39 856.0)
1969 Jan. 01.0—1970 Jan. 01.0 7.089 440 + 0.002 592 000(T — 40 222.0)
1970 Jan. 01.0—1971 Jan. 01.0 8.035 520 + 0.002 592 000 (T — 40 587.0)
1971 Jan. 01.0—1972 Jan. 01.0 8.981 600 + 0.002 592 000 (T — 40 952.0)
1972 Jan.  01.0—1972 Jul. 01.0 10.035 280 + 0.000 000 000 (T — 41 317.0)

« From M. R. Pearlman, J. M. Thorp., C. R. H. Tsiang, D. A. Arnold, C. G. Lehr, and
J. Wohn.

b Since September 20, 1967, SAQ’s satellite observations have been referred to
UTC(USNO). Before that date, observations were referred to time of emission of WWYV sig-
nals (WWV-emitted). Both timing systems are readily available for use in the field, yet
both have occasional discontinuities which make them inappropriate for analysis.

When the satellite-tracking program began in the late 1950’s, uniform time standards
such as Al and their differences from WWYV emitted (and later UTC) were not available
in a timely fashion. However, the intended relations between WWYV (and later UTC)
and the uniform time standard Al were published regularly. SAO has used these in-
tended relations to generate a facsimile of Al from WWV and UTC data.




TABLE 9.23.—Accuracy of an Observation as a Function of
Topocentric Angular Velocity

SMITHSONIAN ASTROPHYSICAL OBSERVATORY

With VLF
and portable
Associated clocks With VHF
topocentric velocity

Cycle rate of object Along Across Along Across
(sec) (arc-sec sec™) track track track track

32 0- 250 1'8 1’8 18 18

16 . 250- 500 1’8 1’8 21 1’8

8 500-1000 19 1’8 23 1'8

4 1000-2000 1'9 1'8 27 1'8

2 >2000 20 1’8 37 18

TABLE 9.24.—Sensitivity Coefficients for Satellite 6701401°

A = 7614 km
perigee = 594 km
mé 11 12 13 14 15 16 17 18 19 20
1 154 229 121 75 139 160 66 69 118 67
2 ______ 113 43 61 94 58 35 59 46 0 33
3 . 52 78 65 25 54 43 12 18 39 26
4 ______ 66 34 19 39 38 14 10 27 0 0
5 _____ 38 28 51 29 0 23 10 0 0 18
6 __.___ 65 48 42 14 27 19 0 17 0 0
T . 68 62 61 45 10 0 18 16 0 0
8 ______ 46 62 45 37 18 12 0 0 8 0
9 ______ 21 30 46 64 55 53 23 0 0 0
10 ______ 0 0 29 44 43 58 37 32 0 0
11 . 0 0 8 16 27 48 47 57 48 44
12 0 0 21 44 64 89 101 75 99
13 425 1203 2987 4758 8014 9531 12277 11613
4 0 0 20 47 ks 111 145
Y 0 0 0 0 16 20
16 0 0 0 0 0
17 e 0 0 0 0
18 e 0 0 0
19 e 0 0
20 e 0
¢ Given in units of meters, with |@,.| x 10°

nn LLL 3
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TABLE 9.25.—Results of Complete Network Adjustment

Direction cosines

Interstation o’ a? [o No.

direction x Y z (urad) (urad) (urad) obs.
SAO Network

8015-8019 ________ 0.008 826 76 0.991 566 88 —-0.129 295 09 4378.25 3682.33 409.04 29
8015-9004 ________ 0.403 688 17 -0.775 736 75 —0.485 044 69 29.21 17.80 7.03 122
8015-9066 ____.__ _—0.696 237 98 0.308 764 57 0.648 010 12 552.99 204.51 -61.20 133
8015-9074 ________ —0.723 132 48 0.499 652 76 0.476 892 59 54.68 21.55 —18.85 25
8015-9080 ________ -0.612 142 61 —0.551 268 92 0.566 907 41 90.07 42.32 18.81 67
8015-9091 ________ 0.010 166 06 0.955 062 10 —0.296 231 40 24.96 25.68 0.97 30
8019-9004 _._______ 0.375 702 50 -0.815 399 14 —0.440 422 38 8.99 5.46 2.27 301
8019-9091 ________ 0.010 266 10 0.950 679 22 —0.310 005 84 23.46 12.23 —-1.87 61
9001-9007 __._____ 0.553 303 12 —0.101 336 83 —0.826 792 90 7.19 491 -1.16 35
9001-9009 ________ 0.867 353 66 —0.148 829 84 —0.474 918 21 5.08 6.60 -3.13 183
9001-9010 ________ 0.965 435 98 —0.166 946 59 —0.200 155 43 12.00 14.31 -7.74 154
9001-9012 ________ —0.795 296 06 0.559 031 40 —0.234 495 37 9.01 9.63 6.26 187
9001-9113 ________ —0.839 865 57 0.498 415 57 0.214 959 85 119.75 227.49 110.69 20
9001-9114 ________ 0.109 263 14 0.685 666 26 0.719 668 92 41.57 18.51 —0.64 74
9001-9117 ________ —0.716 762 03 0.649 994 62 -0.252 505 81 8.64 19.81 7.90 16
9002-9008 ________ —0.263 480 98 0.264 768 12 0.927 618 25 23.08 145.74 -37.94 7
9002-9028 ________ -0.038 627 03 0.316 476 94 0.947 813 43 52.37 119.71 21.28 25
9004-9006 ________ —-0.5569 029 19 0.824 219 14 —-0.090 272 72 8.87 8.85 -3.97 14
9004-9008 ________ —0.326 789 15 0.937 481 22 —0.119 740 60 13.50 8.84 -6.96 139
9004-9009 ________ —0.441 426 33 —0.813 880 96 —-0.377 810 25 25.76 27.96 20.26 43
9004-9010 ________ —0.627 485 32 —0.766 807 91 —0.135 158 44 26.73 28.14 18.57 41
9004-9028 ________ —0.037 913 83 0.849 029 88 —0.526 982 74 18.85 15.61 -1.99 35
9004-9029 ________ 0.014 976 95 —-0.573 627 21 -0.818 979 56 68.03 29.79 21.05 42
9004-9051 ________ -0.189 212 79 0.980 621 32 0.050 797 07 2160.68 2169.11 —1375.13 47
9004-9066 ________ ~0.479 672 65 0.695 552 78 0.534 902 31 22.93 10.64 —5.24 192
9004-9074 ________ -0.607 317 21 0.624 696 01 0.490 836 73 18.11 7.63 —4.83 65
9004-9080 ________ —-0.670 338 78 0.237 785 34 0.702 925 36 29.78 9.92 0.41 164
9004-9091 ________ -0.192 739 02 0.979 763 41 0.053 993 83 3.29 3.55 -1.53 442
9004-9115 ________ —0.689 044 82 0.398 593 75 0.605 260 49 74.58 28.34 -8.14 60
9005-9006 ________ 0.915 236 02 0.388 002 15 -0.108 615 64 44.80 34.23 32.36 61
9005-9012 ________ —0.247 353 66 -0.939 455 40 —0.237 149 14 106.27 176.50 —114.45 25
9005-9117 ________ -0.390 770 14 —0.849 194 96 —0.355 199 42 182.41 189.44 -154.07 16
9006-9008 ________ 0.911 043 75 —0.412 181 49 0.010 281 02 37.46 20.76 16.35 172
9006-9028 ________ 0.828 975 55 —0.321 287 02 —0.457 792 73 22.65 23.59 10.19 28




SMITHSONIAN ASTROPHYSICAL OBSERVATORY 911
TABLE 9.25.—(Cont'd)
Direction cosines
Interstation o a? Tyu
direction x Y z (urad) (urad) (urad)

9006-9091 ________ 0.712 325 15 —0.683 388 19 0.159 917 01 20.83 36.31 14.13 10
9006-9115 ________ 0.360 690 12 —0.836 686 48 0.412 138 77 16.89 16.71 7.12 19
9007-9009 ________ 0.098 443 23 —0.004 084 91 0.995 134 28 4.04 9.65 2.17 263
9007-9010 ________ -0.202 184 39 0.042 403 31 0.978 429 06 4.88 5.94 1.92 86
9007-9011 ________ 0.185 005 71 0.487 139 75 —0.853 503 22 17.65 9.35 5.14 437
9007-9029 ________ 0.799 740 13 0.530 146 21 0.281 710 37 14.15 32.67 2.56 74
9007-9031 ________ —0.076 686 54 0.521 089 04 —0.850 050 22 31.70 22.18 1.86 32
9008-9028 _.______ 0.567 329 00 -0.163 038 12 ~0.807 190 42 69.25 59.45 15.59 25
9008-9051 ________ 0.442 138 26 —0.853 475 28 0.275 850 87 7168.06 6510.27 6102.56 13
9008-9080 ________ 0.109 946 43 -0.918 531 30 0.379 752 59 38.24 25.92 —-8.53 8
9008-9115 ________ —0.056 819 15 —0.847 191 43 0.528 240 73 30.33 16.42 8.31 38
9009-9010 ________ —0.631 057 97 0.106 627 28 0.768 372 60 10.73 18.06 6.43 248
9009-9011 ________ 0.006 033 03 0.189 216 50 —-0.981 916 86 7.28 247 0.50 201
9009-9029 ________ 0.707 260 24 0.521 304 13 -0.477 519 59 39.98 35.77 2.00 12
9009-9114 ________ —0.614 261 56 0.410 481 04 0.673 934 76 8.47 10.52 3.09 13
9010-9029 ________ 0.721 923 97 0.333 948 56 —-0.606 056 22 22.19 20.40 2.74 6
9010-9114 ________ —-0.580 737 58 0.553 105 20 0.597 342 87 19.62 15.65 5.54 38
9011-9029 ________ 0.698 052 66 0.302 858 53 0.648 844 50 52.36 41.72 -13.65 7
9011-9031 ________ —-0.376 336 08 0.514 540 22 —0.770 467 07 198.44 140.41 27.09 9
9012-9021 ________ 0.774 021 22 —0.586 319 09 0.239 000 17 75.78 18.83 -12.52 29
9012-9113 ________ 0.754 823 45 -0.555 631 45 0.348 590 37 23.64 21.19 14.81 14
9012-9114 ________ 0.801 985 13 —0.202 846 07 0.561 848 14 22.01 17.31 -0.17 24
9012-9117 ________ —0.370 330 01 0.884 135 37 —0.284 886 53 49.17 46.84 27.96 216
9021-9113 ________ —0.685 370 68 0.605 320 01 0.404 789 73 175.96 211.14 9.22 57
9021-9117 ________ —0.692 362 28 0.674 539 06 —0.256 186 51 50.43 26.94 19.65 8
9028-9091 ________ —0.087 279 58 —0.544 704 02 0.834 074 22 105.67 28.64 -3.90 37
9029-9031 ________ ~0.664 370 01 —0.087 213 96 —0.742 297 93 23.64 25.10 -2.78 26
9066-9074 ________ —0.722 593 68 0.537 T77 49 0.434 342 89 94.27 33.43 ~29.i2 i3
9066-9080 ________ ~0.457 869 96 —0.782 066 08 0.422 762 05 120.67 109.92 26.05 27
9074-5077 ________ 0.776 825 65 0.154 165 54 —-3.095 681 77 453.01 147.30 —-165.47 42
9074-9091 ________ 0.675 716 06 0.295 891 28 -0.675 171 21 45.42 22.62 6.25 43
9077-9091 ________ 0.583 629 63 0.370 871 86 -0.722 378 38 187.65 121.07 -53.33 30
01130114 ________ 0522324001 0.510153 75 0.682 202 79 126,10 10670 38.12 20
9113-9117 ________ —0.669 105 98 0.660 671 02 —0.340 310 14 16.21 29.22 10.95 16
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'I:ABLE 9.25.—(Cont’d)

Direction cosines

Interstation a? o Tyu
direction x Y z (urad) (urad) (urad)
6001-6002 ________ 0.141 867 57 -0.835 578 65 —0.530 737 14 4.88 2.13 0.12
6001-6003 ________ —0.685 613 65 —0.614 208 86 —0.390 744 68 5.55 2.03 0.41
6001-6004 ________ —0.901 363 80 0.366 090 55 —0.231 346 07 7.88 2.47 1.52
6001-6006 ________ 0.591 183 24 0.802 114 53 —0.084 348 41 10.68 2.69 -1.90
6001-6007 ________ 0.8563 151 78 -0.192 741 70 -0.484 750 12 6.83 2.27 -0.37
6001-6016 ________ 0.773 269 54 0.481 076 40 —0.413 061 40 2.81 0.81 -0.44
6001-6065 ________ 0.809 558 20 0.488 080 94 —0.326 178 66 3.99 1.22 -1.02
6001-6123 ________ -0.970 854 20 0.230 905 62 —0.064 223 96 19.08 6.47 -1.12
6002-6003 ________ —0.934 936 56 0.299 816 54 0.189 746 36 3.10 2.95 1.48
6002-6007 ________ 0.790 059 49 0.613 005 38 -0.005 513 94 7.15 6.25 -1.91
6002-6008 ________ 0.589 6564 10 —0.090 689 02 —0.802 614 27 4.37 3.76 -2.32
6002-6009 ________ 0.035 287 76 —0.333 951 82 —0.941 929 38 9.39 4.10 0.51
6002-6038 ________ —0.840 626 18 —0.207 333 06 -0.500 360 51 4.85 4.12 1.11
6002-6111 ________ —0.992 430 15 0.045 147 €5 -0.114 210 70 6.70 6.52 2.33
6002-6134 ________ —0.992 422 07 0.045 119 01 —0.114 292 19 6.19 5.00 1.27
6003-6004 ________ -0.379 650 63 0.921 024 95 0.087 054 20 10.44 3.59 0.62
6003-6011 ________ —0.768 297 61 0.317 940 94 —0.555 546 88 4.80 3.85 2.16
6003-6012 ________ —0.542 340 66 0.753 078 57 -0.372 477 21 3.33 1.88 0.59
6003-6038 ________ -0.010 322 05 -0.578 100 31 —0.815 900 41 5.50 2.64 —0.78
6003-6111 ________ -0.225 140 91 -0.618 652 34 —0.752 715 65 34.64 18.77 12.08
6003-6123 ________ 0.075 002 12 0.906 419 74 0.415 665 66 11.48 8.39 0.56
6003-6134 ________ —0.225 131 46 —0.618 590 94 —0.752 768 94 31.12 17.64 —4.62
6004-6012 ________ —0.540 783 78 0.268 965 14 —0.797 001 04 18.71 5.13 -2.83
6004-6013 ________ 0.069 330 48 0.903 078 62 -0.423 842 30 9.58 8.25 3.02
6004-6123 ________ 0.786 132 00 -0.482 393 72 0.386 384 23 35.88 8.81 —4.98
6006-6007 ________ 0.544 571 14 —0.698 573 02 —0.464 153 00 7.50 3.40 ~0.04
6006-6015 ________ 0.115 085 63 0.854 379 21 —0.506 745 95 5.03 3.21 0.14
6006-6016 ________ 0.787 806 62 0.167 660 50 —0.592 664 06 4.78 1.88 0.10
6006-6065 ________ 0.858 757 69 0.040 345 30 -0.510 791 05 7.60 3.14 0.19
6007-6016 . __._.__ 0.127 976 51 0.991 267 29 —0.031 798 92 5.87 4.76 —1.86
6007-6055 ________ 0.325 134 21 0.134 399 75 —0.936 068 62 2.37 2.18 —0.80
6007-6063 ________ 0.518 127 69 0.148 082 01 —0.842 386 74 7.86 3.39 —2.96
6007-6064 ________ 0.320 536 02 0.783 539 87 —0.532 279 94 2.68 2.70 -0.75
6007-6065 ________ —0.069 163 60 0.970 784 14 0.229 770 66 13.69 6.15 -0.88
6007-6067 ________ 0.154 021 10 —0.283 547 61 —0.946 508 46 3.36 2.86 1.14
6008-6009 ________ —0.889 382 39 —0.393 627 48 —0.232 500 28 10.72 17.99 8.22
6008-6019 ________ —0.320 491 21 0.071 535 74 ~0.944 546 46 3.83 3.77 -1.25
6008-6067 ________ 0.615 252 90 0.614 120 14 —0.494 287 69 15.83 20.35 1.79
6009-6019 ________ 0.267 472 01 0.357 525 69 —0.894 781 60 6.28 5.31 3.34
6009-6020 ________ —0.723 867 36 0.204 650 56 —0.658 888 60 10.08 11.65 —-1.01
6009-6038 ________ —-0.849 821 14 0.150 178 73 0.505 223 10 7.40 9.49 3.01
6009-6043 ________ 0.015 902 71 0.463 052 32 —0.886 188 27 4.27 1.63 0.70
6011-6012 ________ -0.102 697 51 0.993 954 29 ~0.038 834 06 7.10 6.36 2.10
6011-6022 ________ —0.154 186 69 0.342 233 00 -0.926 878 11 2.36 4.39 0.66
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Interstation

Direction cosines

o? 2

direction x Y z (p.rz;‘d) (;le’:;d) (y,(;d;d)
6011-6038 ________ 0.713 571 02 —0.699 157 90 —-0.044 661 29 4.93 4.11 -1.83
60116059 ________ —0.203 146 66 —0.021 289 30 —-0.978 916 85 12.93 3.89 1.67
6011-6111 ________ 0.753 727 27 —~0.565 465 17 0.334 879 59 8.14 8.17 —-2.05
6011-6134 ________ 0.753 729 93 —-0.565 502 25 0.334 810 98 5.65 5.50 -2.71
6012-6013 ________ 0.609 450 15 0.724 692 18 0.321 545 90 13.41 8.85 4.80
6012-6022 ________ —0.055 106 45 —-0.545 974 12 —0.835 987 76 2.57 4.53 0.36
6012-6023 ________ 0.216 399 64 0.586 471 64 —-0.780 526 88 4.01 7.30 0.90
6012-6059 ________ —0.006 268 11 —0.898 976 36 -0.437 952 29 241 3.97 —-1.42
6013-6015 ________ 0.996 026 91 0.052 213 03 0.072 140 17 3.28 3.62 0.01
6013-6040 ________ 0.485 672 28 0.356 024 41 —-0.798 353 97 2.08 3.88 0.87
6013-6047 ________ 0.071 906 80 0.439 043 73 —0.895 583 62 8.33 7.00 4.50
6013-6072 ________ 0.760 880 82 0.535 459 13 —0.366 529 53 4.36 8.55 1.81
6013-6078 ________ —0.370 956 05 —0.449 044 19 —-0.812 865 87 0.94 12.01 -3.04
6015-6016 ________ 0.590 837 46 —0.806 324 68 0.027 415 57 2.95 2.82 1.04
6015-6040 ________ -0.528 142 99 0.275 666 07 —-0.803 164 49 1.65 2.08 -0.07
6015-6042 ________ 0.630 855 74 —0.130 742 05 —-0.764 805 57 2.44 2.82 0.60
6015-6045 ________ 0.103 102 95 0.100 120 56 —0.989 618 94 1.27 0.81 0.32
6015-6064 ________ 0.676 713 19 —0.559 380 10 -0.478699 44 - 1.74 1.85 0.53
6015-6066 ________ 0.394 666 49 —0.888 635 25 0.233 593 13 5.57 2.35 -0.21
6015-6072 ________ -0.839 965 71 0.360 824 97 —0.405 293 67 2.98 4.19 -1.46
6010-0073 _______. 0.143 282 86 0.325 434 15 —0.934 645 73 2.72 1.85 -0.69
6015-60756 ________ 0.224 226 76 0.178 325 99 —-0.958 082 57 2.84 1.86 0.81
6016-6042 ________ 0.001 109 29 0.676 082 54 —0.736 825 06 4.38 3.04 -0.43
6016-6063 ________ 0.246 574 17 —-0.790 990 05 —-0.559 942 79 3.84 2.99 1.33
6016-6064 ________ 0.405 181 93 0.108 489 72 —-0.907 776 18 5.65 3.07 0.89
6016-6065 ________ —0.571 507 16 —0.414 589 06 0.708 163 45 25.62 8.62 1.65
80190-6020 ________ —0.988 544 41 —0.104 406 02 0.108 990 57 8.63 9.11 -4.07
6019-6043 ________ 0.390 990 19 0.558 928 98 —-0.731 248 97 6.16 2.42 -0.23
HBUIB-6U6T . G.2i66VG T2 0.81 38 —03.542 158 11 7.88 3.44 0.54
6019-6067 ________ 0.698 038 94 0.302 827 21 0.648 873 89 3.70 6.55 2.34
6019-6069 ________ 0.573 249 08 0.813330 71 -0.099 391 40 14.67 10.84 5.58
6020-6038 ________ ~-0.055 058 66 —0.058 182 22 0.996 786 52 9.75 3.90 -1.14
6020-6039 ________ ~0.886 798 99 0.450 925 46 0.101 261 01 46.24 84.34 —48.70
6020-6043 ________ 0.761 603 48 0.406 532 67 —-0.504 669 51 12.13 7.22 2.77
6022-6023 ________ 0.229 398 44 0.969 946 65 0.081 116 30 3.97 4.22 0.22
6022-6031 ________ 0.447 512 00 0.473 203 10 -0.758 822 66 6.38 3.96 -1.71
6022-6039 ________ 0.550 539 48 —-0.793 608 11 -0.259 022 11 9.48 15.45 6.00
6022-6059 ________ 0.092 732 48 —0.626 945 87 0.773 524 12 3.29 6.17 -0.26
6022-6060 ________ 0.310 640 87 0.873 041 83 -0.375 899 20 4.53 5.01 -0.95
6022-6078 ________ 0.065 258 85 0.985 289 47 —-0.157 942 84 70.31 78.59 53.19
6023-6031 ________ 0.140 307 20 —0.645 359 19 —0.750 883 09 1.84 1.15 0.56
6023-6032 ________ 0.730 220 42 0.292 459 45 —0.617 450 90 4.711 2.62 -0.99
6023-6040 ________ 0.872 900 05 0.486 554 80 —0.036 192 95 3.22 4.69 -0.30
6023-6047 ________ 0.544 13175 0.520 276 13 0.658 204 67 7.08 11.72 1.73
6023-6060 ________ 0.088 571 50 -0.456 559 81 —-0.885 272 97 2.49 2.26 1.09
6023-6072 ________ 0.722 203 86 0.382 400 25 0.576 360 68 2.75 3.73 1.36
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Direction cosines
Interstation

a} o Typ

direction x Y z (urad) (urad) (urad)
6023-6078 ________ —0.344 213 95 -0.901 266 78 —-0.263 125 35 38.04 54.65 —-32.36
6031-6032 ________ 0.421 012 31 0.865 343 95 0.271 897 94 2.21 2.25 -0.79
6031-6039 ________ 0.103 770 02 —-0.935 883 55 0.336 680 52 7.68 9.08 3.79
6031-6051 ________ 0.948 773 86 0.223 489 34 —0.223 339 85 3.13 1.18 -0.29
6031-6052 ________ 1.868 470 44 0.386 519 64 -0.310 421 76 5.11 2.65 -1.05
6031-6053 ________ 0.868 120 23 -0.167 691 87 —0.467 168 82 6.20 2.29 0.62
6031-6060 ________ ~0.182 484 01 0.792 220 53 0.582 311 10 5.04 2.87 . 1.64
6031-6078 ________ 0.519 787 53 0.108 042 39 0.847 436 00 16.60 7.33 1.37
6032-6040 ________ 0.562 738 04 0.453 120 81 0.691 380 81 14.56 10.49 —4.02
6032-6044 ________ 0.856 098 02 ~0.293 452 46 —0.425 419 60 11.72 9.87 —1.56
6032-6045 ________ 0.978 994 41 0.029 690 27 0.201 713 74 2.66 3.32 —-0.96
6032-6047 ________ -0.231 903 26 0.115 244 64 0.965 887 96 2.44 5.19 1.81
6032-6052 ________ 0.388 697 91 -0.650 824 51 —-0.652 182 02 7.61 2.97 0.06
6032-6060 ________ —0.751 113 54 —0.658 575 02 0.045 906 50 3.72 3.86 1.59
6038-6039 ________ —0.305 337 11 0.238 502 97 —0.921 892 39 3.38 10.38 -1.16
6038-6059 ________ —0.711 967 36 0.610 648 24 —0.346 714 88 3.44 3.33 1.84
6038-6134 ________ —0.155 550 27 0.526 537 55 0.835 800 41 7.65 3.15 1.93
6039-6059 ________ —0.523 780 88 0.478 273 00 0.704 917 39 7.29 16.49 -6.47
6040-6045 ________ 0.940 828 58 —-0.271 770 48 —0.202 441 09 2.41 3.92 -1.07
6040-6047 ________ —-0.757 459 32 -0.238 511 17 0.607 756 37 6.92 9.42 -0.49
6040-6060 ________ —0.719 063 73 —0.609 502 87 —0.333 846 68 2.87 3.23 0.49
6040-6072 ________ —0.058 895 96 -0.065 862 14 0.996 089 08 8.00 9.57 0.10
6040-6073 ________ 0.979 007 93 —0.058 625 46 0.195 208 96 8.03 11.93 -2.38
6040-6075 ________ 0.960 512 05 —0.210 583 46 0.181 854 89 3.21 4.45 -1.29
6042-6045 ________ -0.449 127 82 0.288 406 76 —0.845 639 25 2.23 2.36 0.15
6042-6064 ________ 0.426 834 35 -0.893 595 14 0.138 925 02 717 8.16 -0.92
6042-6068 ________ 0.046 510 08 -0.827 935 56 —0.943 554 49 2.02 3.55 —0.14
6042-6073 ________ —0.739 897 12 0.509 802 26 —0.438 923 58 2.79 3.51 -0.32
6042-6075 ________ —0.553 708 69 0.541 789 04 —0.632 353 80 5.24 9.84 1.47
6043-6050 ________ —0.130 891 08 0.852 415 41 —-0.506 216 84 39.52 14.49 -6.23
6043-6061 ________ 0.758 559 97 0.649 959 05 —0.046 260 24 21.33 11.80 1.07
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Direction cosines

Interstation a? 2
direction @ v 2 Wrad)  Grad)  Guad)  obs
6044-6045 ________ 0.554 878 31 0.355 385 18 0.752 204 38 14.61 15.53 ~2.69
6044-6051 ________ 0.007 253 12 —0.883 713 18 ~0.467 972 66 67.30 23.18 -2.08
6045-6051 ________ -0.411 896 51 —0.560 884 05 —0.718 157 61 4.08 2.14 -0.29
6045-6068 ________ 0.605 912 70 -0.773 097 59 —0.187 589 76 4.79 5.03 -1.35
6045~-6073 ________ -0.613 372 05 0.459 201 80 0.642 579 51 717 7.74 2.24
6045-6075 ________ 0.219 418 94 0.111 565 29 0.969 230 89 13.52 7.81 -2.45
6047-6072 ________ 0.863 993 41 0.214 776 50 0.455 397 01 8.25 9.11 3.04
6050-6053 ________ —0.666 360 22 0.735 231 19 —0.124 093 36 26.19 5.54 3.75
6050-6061 ________ 0.943 372 93 0.120 914 00 0.308 913 11 44.80 1 21.02 —-11.51
6051-6052 ________ —0.992 556 05 0.118 412 41 0.028 477 98 20.63 11.42 4.14
6051-60563 ________ —0.788 602 68 —-0.604 920 10 —0.110 351 64 7.70 3.72 0.10
6051-6061 ________ 0.390 885 48 —0.908 327 49 0.148 82780 12.32 4.36 -0.77
6051-6068 ________ 0.783 976 60 0.098 864 04 0.612 867 51 3.95 1.37 -0.67
6052-6053 ________ —0.187 775 83 —0.965 112 61 —-0.182 47711 12.18 5.73 1.01
6052-6060 ________ —0.824 242 87 0.081 916 08 0.560 279 80 4.14 1.63 0.39
6053-6060 _____ .. —0.661296 78 0.476 791 55 0.579 099 64 2.98 1.20 -0.48
6055-6063 ________ —0.092 868 60 -0.111 882 65 0.989 372 37 6.33 6.52 1.12
6055-6064 ________ —0.024 459 13 0.821 692 72 0.569 405 67 2.34 4.58 0.72
6055-6067 ________ —1.406 559 49 —0.908 368 02 0.097 861 77 7.36 8.80 0.44
6055-6069 ___ -0.356 833 86 0.151 782 89 —0.921 754 60 32.27 18.85 3.97
6061-6067 ________ 0.420 033 59 —-0.275 587 72 0.864 652 07 5.97 4.03 1.70
6061-6068 ________ 0.357 797 96 0.839 136 75 0.409 670 76 7.54 3.33 0.91
6061-6069 ________ 0.749 334 62 0.428 916 57 0.504 507 89 53.39 28.14 16.96
6063-6064 ________ 0.039 855 27 0.995 945 04 —0.080 653 84 3.07 3.81 -1.04
6063-6067 ________ —0.234 403 11 —0.604 571 06 —0.761 281 16 4.17 7.76 -0.64
6064-6068 ________ —0.216 482 33 0.242 73719 —-0.945 628 92 2.77 4.03 1.71
8088 g0g0 ___ —-0.027 252 14 ~0.082 401 53 ~0,270 28018 26.89 19,00 -9.28
6068-6075 ________ —0.398 041 64 0.689 693 01 0.604 885 45 5.43 5.59 0.88
oU72-6076 ________ 0.863 257 60 —0.138 517 63 —0.485 38b 60 2.94 3.89 0.66
6073-6075 ________ 0.894 816 33 —-0.418 523 78 0.155 375 66 14.38 17.76 -0.98
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TABLE 9.26a.—Accuracy Estimates for BC—4 Geometrical Network
Station-Station Vectors"

o a3 & oy o3 5-

Line (urad) (urad) (urad) K Line (urad) (urad) (urad) k*
6002-6003 _____ 3.0 36.73 26.52 1.34 6015-6065 _____ 6.6 3.96 34.65 6.56
6002-6007 _____ 14.8 6.70 51.48 4.79 6015-6072 __.___ 3.3 3.59 8.29 2.41
6002-6008 _____ 3.8 4.07 4.03 1.02 6015-6073 _____ 4.3 2.28 2.00 0.61
6002-6009 _____ 15.4 6.74 7.65 0.69 6015-6075 _____ 7.0 2.35 32.89 7.04
6002-6038 _____ 12.0 4.48 10.71 1.30 6016-6042 _____ 84.3 3.71 247.16 5.62
6002-6111 _____ 13.0 6.61 7.63 0.78 6016-6063 _____ 17.2 3.42 90.14 8.74
6003-6004 _____ 15.1 7.01 112.06 10.14 6016-6064 _____ 3.9 4.36 1.47 0.36
6003-6011 _____ 6.9 4.33 6.83 1.22 6016-6065 _____ 14.8 17.12 30.86 1.93
6003-6012 _____ 298.0 2.61 62.48 0.42 6019-6020 _____ 31.4 8.87 159.21 7.91
6003-6038 _____ 5.3 4.07 7.99 1.71 6019-6043 _____ 2.8 4.29 3.84 1.08
6003-6111 _____ 17.1 26.70 1.38 0.06 6019-6061 _____ 5.3 5.67 6.77 1.23
6003-6123 _____ 10.0 9.94 0.45 0.05 6019-6067 _____ 6.8 5.12 13.95 2.34
6003-6134 _____ 195.7 24.38 232.13 2.11 6019-6069 _____ 82.0 12.76 6.34 0.13
6004-6012 _____ 31.0 11.92 104.81 4.88 6020-6038 _____ 11.0 6.82 30.71 3.45
6004-6013 _____ 8.8 8.92 15.37 1.73 6020-6039 .____ 113.8 65.29 11.62 0.13
6004-6123 _____ 37.9 22.34 88.76 2.95 6020-6043 _____ 11.9 9.68 1.02 0.09
6006-6007 _____ 27.9 5.45 41.13 2.47 6022-6023 _____ 17.5 4.09 83.06 7.69
6006-6015 _____ 13.7 4.12 15.36 1.72 6022-6031 _____ 12.5 5.17 18.19 2.06
6006-6016 _____ 6.4 3.33 52.79 10.85 6022-6039 _____ 29.0 12.46 15.01 0.72
6006-6065 _____ 4.5 5.37 4.49 0.91 6022-6059 _____ 3.1 4.73 0.72 0.18
6007-6016 _____ 144 5.32 24.89 2.52 6022-6060 _____ 16.3 4.77 36.84 3.50
6007-6055 _____ 77.9 2.27 21.76 0.54 6022-6078 _____ 808.0 74.45 2970.60 6.73
6007-6063 _____ 5.2 5.62 4.86 0.90 6023-6031 _____ 11.1 1.49 11.13 1.77
6007-6064 _____ 38.5 2.69 178.65 8.67 6023-6032 _____ 4.9 3.66 52.75 12.32
6007-6065 _____ 33.2 9.92 31.07 1.44 6023-6040 _____ 30.2 3.96 65.25 3.76
6007-6067 _____ 17.7 3.11 61.90 5.95 6023-6047 _____ 17.8 9.40 63.17 4.64
6008-6009 _____ 16.5 14.36 12.03 0.78 6023-6060 _____ 1.6 2.38 2.09 1.05
6008-6019 _____ 2.7 3.80 4.78 1.47 6023-6072 .. __._ 94.9 3.24 268.78 5.48
6008-6067 _____ 21.0 18.09 0.82 0.04 6023-6078 ____. 663.6 46.34 1521.11 4.29
6009-6019 _____ 10.3 5.79 2.96 0.37 6031-6032 _____ 4.2 2.23 4.711 1.47
6009-6020 _____ 17.3 10.87 32.65 2.32 6031-6039 ____._ 122.9 8.38 153.07 2.33
6009-6038 _____ 16.0 8.45 20.84 1.70 6031-6051 _____ 139.4 2.16 136.70 1.93
6009-6043 _____ 20.6 2.95 28.89 2.45 6031-6052 _____ 8.9 3.88 4.46 0.70
6011-6012 _____ 12.5 6.73 54.35 5.66 6031-6053 _____ 4.6 4.25 3.86 0.87
6011-6022 _____ 165.6 3.38 2.70 0.03 6031-6060 _____ 3.3 3.96 2.36 0.65
6011-6038 _____ 20.5 4.52 22.72 1.82 6031-6078 _____ 13.3 11.97 0.10 0.01
6011-6059 _____ 6.0 8.41 1.17 0.16 6032-6040 _____ 31.0 12.53 20.85 0.96
6011-6111 _____ 86.6 8.16 8.05 0.17 6032-6044 _____ 10.1 10.79 0.52 0.05
6011-6134 _____ 9.3 5.57 0.83 0.11 6032-6045 _____ 41.3 2.99 233.71 10.55
6012-6013 _____ 23.3 5.09 4.10 0.29 6032-6047 _____ 7.1 3.81 3.72 0.68
6012-6022 _____ 7.1 3.55 9.71 1.82 6032-6052 _____ 21.4 5.29 191.15 14.32
6012-6023 _____ 8.0 5.66 9.95 1.46 6032-6060 _____ 5.6 3.79 9.99 2.13
6012-6059 _____ 4.0 3.19 10.43 2.90 6038-6039 _____ 9.2 6.88 2.18 0.27
6013-6015 _____ 195.8 3.45 174.15 1.75 6038-6059 _____ 19.6 3.38 205.25 17.86
6013-6040 _____ 17.3 2.98 53.68 5.29 6038-6134 _____ 3.6 5.40 0.82 0.18
6013-6047 _____ 7.3 7.66 7.18 0.96 60396059 _____ 26.4 11.89 4.27 0.22
6013-6072 _____ 8.0 6.46 2.09 0.29 6040-6045 _____ 3.8 3.16 1.67 0.48
6013-6078 _____ 25.1 6.48 46.25 2.93 6040-6047 _____ 18.2 8.17 21.08 1.60
6015-6016 _____ 5.3 2.88 9.40 2.30 6040-6060 _____ 73.6 3.05 12.64 0.33
6015-6040 _____ 9.8 1.87 3.89 0.67 6040-6072 _____ 21.3 8.79 25.05 1.67
6015-6042 _____ 2.9 2.63 3.56 1.34 6040-6073 _____ 22.5 9.98 37.66 2.32
6015-6045 _____ 11.1 1.04 2.47 0.41 6040-6075 _____ 17.6 3.83 31.92 2.98
6015-6064 _____ 8.9 1.79 49.22 9.21 6042-6045 _____ 2.7 2.30 0.53 0.21
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Line (urad)  (urad) (urad) k? Line (urad) (urad) (urad) k?
6042-6064 _____ 9.6 7.67 8.74 1.01 6052—-6053 _____ 7.1 8.96 1.59 0.20
6042-6068 _____ 2.8 2.78 1.55 0.56 6052-6060 __.___ 6.2 2.88 3.66 0.81
6042-6073 _____ 162.0 3.15 720.92 8.73 6053-6060 _____ 27.8 2.09 6.33 0.42
6042-6075 _____ 155 7.54 23.07 2.00 6055-6063 _____ 6.0 6.42 2.28 0.37
6043-6050 _____ 19.1 27.00 58.35 2.53 6055-6064 _____ 4.6 3.46 11.38 2.82
6043-6061 _____ 29.9 16.57 78.65 3.38 6055-6067 _____ 59 8.08 0.71 0.10
6044-6045 _____ 74.5 15.07 19.43 0.43 6055-6069 _____ 23.5 25.56 4.41 0.18
6044-6051 _____ 38.3 45.24 0.16 0.00 6061-6067 _____ 238.0 5.25 1099.08 9.04
6045-6051 _____ 8.2 3.11 1.14 0.20 6061-6068 _____ 29.9 5.44 51.15 2.89
6045-6068 _____ 5.0 4.91 0.50 0.10 6061-6069 _____ 53.0 40.76 40.50 0.86
6045-6073 _____ 6.5 7.46 0.53 0.08 6063-6064 _____ 3.3 3.44 1.29 0.38
6045-6075 _____ 7.6 10.67 6.83 0.75 6063-6067 _____ 10.8 5.97 0.86 0.10
6047-6072 _____ 8.2 8.68 13.27 1.57 6064-6068 _____ 18.8 3.40 35.10 3.16
6050-6053 _____ 51.3 15.86 512.41 15.26 6068-6069 _____ 297.5 22.99 27.68 0.17
6050-6061 _____ 32.7 32.91 174.32 5.31 6068-6075 _____ 128.7 5.51 339.50 5.06
6051-6052 _____ 22.2 16.02 11.87 0.62 6072-6073 _____ 27.8 5.41 61.70 3.72
6051-6053 _____ 4.8 5.71 6.28 1.20 6072-6075 _____ 240.5 3.41 397.15 3.26
6051-6061 _____ 20.4 8.34 32.94 2.29 6073-6075 _____ 31.7 16.07 16.28 0.68
6051-6068 _____ 2.5 2.66 8.36 3.24 .

k* ave = 2.60

“of and o} are accuracy estimates before and after network adjustment, §” is the sguare
between the estimates, and k? is the scaling factor.
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TABLE 9.26b.—Accuracy Estimates for SAO Geometrical Network Station-Station Vectors®

o2 ai 52 o? ol 8
Line n (urad) (urad) (urad) k? Line n (urad) (urad) (urad) k2

8015-8019 _____ 29 15144 4031.7 3114.8 1.12 9006-9091 _____ 10 30.0 28.6 38.6 1.32
8015-9004 _____ 122 7.2 234 44.9 2.93 9006-9115 _____ 19 5.9 16.8 201.5 17.75
8015-9066 _____ 133 79.2 378.5 258.9 1.13 9007-9009 _____ 263 1.1 6.9 1.5 0.38
8015-9074 _____ 25 37.2 38.1 487.9 12.96 9007-9010 _____ 86 2.3 5.5 0.6 0.15
8015-9080 _____ 67 20.8 66.2 2174 5.00 9007-9011 _____ 437 1.7 13.5 0.1 0.01
8015-9091 _____ 30 10.6 25.3 0.01 0.00 9007-9029 _____ 74 1.2 24.1 10.6 0.84
8019-9004 _____ 301 0.9 7.2 0.6 0.15 9007-9031 _____ 32 3.5 27.0 0.4 0.03
8019-9091 _____ 61 4.0 17.9 2.3 0.21 9008-9028 _____ 25 16.7 64.3 6.4 0.16
9001-9009 _____ 183 1.0 5.8 1.3 0.38 9008-9080 _____ 8 233.1 32.1 453.1 3.42
9001-9010 _____ 154 .~ 2.1 13.1 6.8 0.89 9008-9115 _____ 38 6.4 23.3 33.4 2.25
9001-9012 _____ 187 1.6 9.4 0.8 0.15 9009-9010 _____ 248 2.2 14.4 0.1 0.01
9001-9113 _____ 20 32.3 174.1 195.2 1.89 9009-9011 ____. 201 1.3 4.9 0.2 0.06
9001-9114 _____ 74 5.8 30.0 11.7 0.65 9009-9114 _____ 13 21.5 9.5 13.8 0.89
9001-9117 _____ 16 11.7 144 85.3 6.54 9010-9029 ____._ 6 59.6 24.9 79.9 1.89
9002-9008 _____ 7 19.3 84.3 369.4 7.13 9010-9114 _____ 38 7.4 17.6 146.4 11.71
9002-9028 _____ 25 11.0 86.0 40.6 0.84 9011-9029 _____ 7 734.0 47.9 6252.8 15.99
9004-9006 _____ 14 43.2 8.9 44.9 1.72 9011-9031 _.____ 9 141.1 169.9 78.5 0.50
9004-9008 _____ 139 2.8 11.2 20.8 2.97 9012-9021 _____ 29 12.5 47.4 10.6 0.35
9004-9009 _____ 43 8.0 27.0 0.6 0.03 9012-9113 _____ 14 8.2 22.6 8.0 0.52
9004-9010 _____ 41 6.9 27.5 1.8 0.10 9012-9114 _____ 24 9.8 19.7 31.8 2.16
9004-9028 _____ 35 8.2 17.2 83.5 6.57 9012-9117 _____ 216 5.8 48.2 3.3 0.12
9004-9029 _____ 42 18.0 49.7 0.7 0.02 9021-9113 _____ 57 23.1 193.3 4.9 0.05
9004-9066 _____ 192 3.3 16.8 24.2 2.41 9021-9117 _____ 8 126.0 39.1 800.1 9.69
9004~9074 _____ 65 7.3 12.8 90.0 8.96 9028-9091 _____ 37 13.3 67.1 290.4 7.22
9004-9080 _.___ 164 3.4 19.8 7.2 0.62  9029-9031 _____ 26 12.6 24.6 2.6 0.14
9004-9091 _____ 442 0.6 3.4 0.7 0.35 9066-9074 _____ 13 89.9 63.9 461.7 6.00
9004-9115 _____ 60 7.7 51.4 21.0 0.71 9066-9080 _____ 27 34.1 115.3 68.3 0.91
9005-9006 _____ 61 4.8 89.5 0.01 0.00 9074-9077 _____ 42 41.0 299.8 15.6 0.09
9005-9012 _____ 25 35.0 141.6 98.0 1.11 9074-9091 _____ 43 11.7 34.0 204.3 8.94
9005-9117 _____ 16 45.5 186.4 108.2 0.93 9077-9091 _____ 30 22.6 154.1 11.9 0.13
9006-9008 _____ 172 4.2 29.1 0.9 0.05 9113-9114 _____ 30 45.0 116.7 424.6 5.25

k* ave = 2.65

“n is the number of observations, 0% and o} are accuracy estimates before and after network adjustment, 82 is
the square of the angular difference between the two estimates, and k? is the scaling factor (o,, 0,, and 8 are in
microradians).




TABLE 9.27.—Coefficients of Zonul-Harmonic Coefficients in Equations for ® and Q

Satellite Je J. Jes A I Ji I Jie Jis Ja Jye Ju Ja Iy I Iy I I
7001701 (}af,-. 11306 -21362 28183 —31767 32678 —-38159% 29139 -2568356 22092 -18218 14437 -10903 7717 —-4936 2 585 —665 —842 1968
Q] __ -5691 10807 -—14617 16932 -18043 18 21H  —17 686 16 649 —15 268 13667 ~—11950 10197 -8473 6828 -5299 3913 -2688 1632
7010901 q.)i___ 12166 —20770 21326 —14509 3882 6305 -—12812 14276 -11222 5463 766 —5639 7823 -7500 5228 2046 —967 3043
Q __ -6414 11751 -13 867 12620 -8995 4414 -194 2781 4171 -4117 3066 -1574 144 891 1393 1397 -1062 647
6001301 @ ... 7625 -5479 2224 6043 3260 -1675 3781 2046 -T44 1979 -1213 -223 952 -671 -17 424 ~348 38
al __ -4671 5169 —2137 —946 1924 -1071 ~167 703  —487 17 249 -211 37 84 —-88 26 27 —-36
5900101 ¢ ... 4868 -1560 -—2711 2473 409 —1902 925 666 -1045 244 636 -617 -14 367 —230 —87 214 -85
ﬂ} .. —3236 2 540 -200 -1095 87 106 —522 274 141 -264 85 114 -131 13 78 —-61 -11 48
6202901 ¢;)i___ 1836 1040 —823 —646 400 342 —204 -179 107 94 -587 -50 31 27 -17 -14 9 8
Q . -1717 301 512 -127 —208 60 97 -31 —48 16 24 -9 -13 5 7 -3 -4 1
6000902 @ ... 2753 2685 —1224 -2302 317 1425 33 --763 —121 373 106 -171 -7 73 42 -30 -23 11
Q .. -2864 261 1168 -16 ~480 -37 194 34 -6 -21 29 12 -1 -6 4 3 -1 -1
6302601 o ... 3245 5104 -766 ~6141 -1782 4990 3273 ~-3127 -3678 1374 3334 -72  -2612 -717 1794 1073 -1056 -1122
Q __ -3856 -146 2333 646 —1331 -761 677 6856  —272 -540 41 385 ki -250 -124 144 128 —68
6206001 @ .. 2741 4130 —-334 -4065 1359 2 597 1845 -1190 -1593 289 1095 139 -632 —264 306 243 -112 -173
Q __ -3334 -187 1667 489 -7147 —441 273 301 -69 -174 -9 89 27 -39 -24 14 16 -3
6608901 @ ___ 605 2 454 2144 39 -1392 -1096 -10 604 438 -12 —240 -161 - 12 92 67 -7 ~34 -20
Q .. -2076 —976 260 562 239 —-92 —163 —64 32 50 18 —-12 —16 -6 4 3 2 -2
6101501 @ .. —641 1893 4419 4327 1628 -1619 -3:00 -£743; -816 1016 1760 1305 295 —b544 —809 —548 -82 264
Q __ -2240 -2037 —809 331 811 657 219 ~-160  —284 -211 -b67 62 98 67 14 -25 -34 -21
6400101 ¢ .. -1176 774 3506 41737 3659 1074 -1486 -2 816l -2596 -1830 132 1096 1294 884 237 -292 —-518 —449
Q . -1971 -2044 -1205 -210 457 663 495 196 -60 —184 -179 -102 -14 43 58 43 16 -6
6406401 @ ... —2341 -2483 -1458 12 1376 2310 2708 2622 2189 1676 931 363 -68 —342 —471 —487 —427 —326
Q __ -996 -1298 1252 1026 -1735 -455 —i24 ~59 44 96 110 101 79 56 33 15 2 -5
6508101 ¢ ... -2814 -3984¢ —4371 -4299 -3969 3508 —2U9¢ ~2491 -2016 -15688 1213 -893 —626 —406 -229 -90 18 -99
Q . -261 -375 —422 —431 —417 —392 —360 ~-327 -293 —£60 —-230 -201 -175 -162 -131 -112 -96 -81
6102801 @ ___ —903 —637 —-331 —144 -563 -15 -2 2 2 1 1 0 0 0 0 1] 0 0
0 . 1942 144.5 82.4 41.7 19.6 8.7 3.1 16 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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TABLE 9.28.—Coefficients of Zonal-Harmonic Coefficients in Equations for w, Q, I, and e

Satellite Js Js Js Jy I Jis Jis Iz Jis I I Jos I a2 I3 I I35 I
7001701 w._._._._ —b 12 —23 36 -50 63 -75 84 -90 93 -93 90 -85 M -69 60 —50 40
Q ___ -211 381 —471 484 —436 347 -235 116 -1 -103 190 -258 307 -337 350 -348 334 -310
I ____ 203 —384 507 -573 592 -576 537 -—484 423 —360 299 -241 190 -—-144 105 -T2 45 —-24
e ____ —38 72 -95 107 -110 107 -100 90 -79 67 —56 45 -35 27 -20 13 -8 4
7010901 w ____. —318 668 -753 644 -—410 141 87 -—229 275 —241 157 -59 —-25 79 -97 86 —57 22
Q .. -12 12 5 -31 54 —66 60 -40 12 16 —-35 43 —38 25 -8 -7 18 -21
I ____ 38 -68 76 —-64 41 -13 -9 23 -27 23 -15 5 3 -8 9 -8 5 -2
e -___ —109 192 -216 183 115 38 26 —66 i) -67 42 -15 -8 22 -26 23 -15 5
6001301 w __.. —647 569 —-67 —-290 286 -76 -97 122 —47 —-29 49 -25 -1 19 -12 -1 7 -5
Q . -2 -12 22 -12 -6 16 -11 -1 9 -7 1 4 -4 1 2 -2 1 1
I ____ 33 -29 3 15 -14 4 5 -6 2 1 -2 1 0 -1 1 0 0 0
e .___ —187 164 -19 -84 82 -21 -28 35 -13 -8 14 -1 -2 5 -3 0 2 -1
5900101 w____ -1 53 14 -47 24 15 —-26 8 12 -14 1 9 -1 -1 6 -3 -2 3
Q ___ 9 —128 122 13 -103 65 25 -62 25 24 -34 i 18 -17 -1 12 -8 -3
I ____ 290 -143 -71 114 -33 -38 39 -4 -19 14 2 -9 5 2 -4 1 2 -2
e ____ —193 95 48 —-76 22 25 -26 3 12 -9 -1 6 -3 -2 3 -1 -1 1
6202901 w____ —T4 -15 45 6 -25 -3 13 1 -7 -1 4 0 -2 0 1 0 -1 0
Q ___ 103 -150 —66 96 33 -52 -16 28 8 -15 -4 8 2 -4 -1 2 1 -1
I ____ 319 98 —124 -31 45 11 -18 -4 8 2 -3 -1 2 0 -1 0 0 0
e __.. —215 —66 83 21 -30 -1 12 3 -5 -1 2 1 -1 0 0 0 0 0
6000902 w ____—1365 —828 698 451 —269 —-221 94 103 -29 —46 8 20 -1 -8 0 4 0 -1
Q ___ i -9 -9 ki i -4 -4 2 2 -1 -1 0 1 0 0. 0 0 0
I ____ 16 10 -8 -5 3 3 -1 -1 0 1 0 0 0 0 0 0 0 0
e ___. —27 -165 138 89 -53 —44 18 20 -6 -9 2 4 0 -2 0 1 0 0
6302601 w __.. —305 —-325 189 293 -61 -227 -17 159 56 -100 —68 55 66 —-22 55 1 42 11
QO __. 52 -57 -109 40 126 -1 -112 -32 84 50 -52 -54 25 49 -5 -39 -1 28
1 ____ 91 97 -52 -82 14 58 6 -317 -14 21 15 -10 -12 3 9 0 -6 -2
e ____ 311 -332 179 282 —49 -200 -20 126 47 -71 —-50 34 42 -11 -31 -1 21 6
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TARLE 9.28.—Cont’d)

Satellite Js Js J; Jy I Jis Jis Ju Ji Ju o3 Jas Iz J2o Ja Jas Jas Ix
6206001 o ..._—2466 —2550 1113 1803 -168 -1033 -175 509 224 -213 -—174 68 109 -8 -59 -11 28 13
0 __. 6 -6 -11 3 10 1 -7 -3 4 3 -2 -2 0 2 0 -1 ) 0
I ... 10 10 -5 -7 1 4 1 -2 -1 1 1 0 0 ] 0 0 0 0
e ____—301 -3811 138 220 -20 -126 -21 62 27 -26 -21 8 13 -1 -1 -1 3 2 g
6508901 o .__. —268 —862 -—417 160 309 126 —66 -106 —39 26 37 12 -10 -13 -4 4 5 1 5
Q ___ 213 80 -186 -212 -32 108 97 8 —47 -37 -1 19 14 o -7 -5 0 3 =
I ... 11 249 119 -40 -78 -32 14 23 8 -5 -7 -2 2 2 1 -1 -1 0 z
e .___ —314 —-1019 -489 164 320 130 -57 -93 —34 19 27 9 -6 -8 -2 2 2 1 Z
6101501 w° —-265 744 1046 652 48 -345 -39¢ -215 6 134 137 67 -10 -50 -46 -20 6 18 5
Q .. -30 —-40 -9 34 52 36 ¢ -2 -32 -18 1 14 15 7 -2 -7 -1 -3 Zz
I 7 -20 -29 -18 -1 9 1 6 0 4 -4 -2 0 1 1 1 0 ) >
e ____ —370 1037 1459 909 68 —480 -b51 —299 9 185 190 92 -14 -68 —-64 27 8 25 |
6400101 ° ___—1447 1211 2666 2438 1244 -17 -771 -899 ~598 —-170 154 280 238 114 -6 74 -83 54 =
Q ... -3 -5 -3 1 4 5 & 1 -2 -3 -2 -1 0 1 1 1 0 0 ;
I ____ 1 -1 -2 -2 -1 0 1 1 0 0 0 0 0 0 0 0 0 0 )
e ____ —378 317 698 638 326 -4 202 -235 —157 45 40 73 62 30 -2 -19 -22 -14 %
6406401 o ._._—1750 —1123 -378 169 477 585 537 454 323 197 94 20 -26 —48 -54 -48 -38 -26 5
Q . -7 -15 -20 -21 -—17 -12 ~6 0 4 6 7 6 5 3 2 1 0 -1 e
) J— 5 3 1 -1 -1 -2 -2 -1 -1 -1 0 0 0 0 0 0 0 0 s
e ____ —394 -262 -85 38 107 130 124 101 71 43 21 4 -6 -10 -12 -10 -8 -6 ]
6508101 « ... —318 -—307 -261 -214 -173 —138 -109 -8 -65 -49 -36 -26 -17 -11 -5 -1 2 4 @
Q... -9 -22 -85 -45 -53 -57 -59 -59 —57 -4 —50 —46 -42 -37 -33 29 -25 22 >
I ... 8 7 6 5 4 3 2 1 1 1 1 0 0 0 0 0 0 0 b=
e .___ —401 -377 -809 -242 -185 -139 104 -76 ~56 -39 -27 18 -1l -7 -3 -1 1 2 1
6102801 o ____—1388 -638 -242 -81 23 -5 0 1 1 0 0 0 0 0 0 0 0 0
Q ___ 2 3 3 2 1 0 0 0 0 ] 0 0 0 0 0 0 0 0
I . -2 -1 0 0 0 0 0 0 ) 0 0 0 0 0 ] 0 0 0
e ____ —293 ~-185 -51 -17 -5 -1 0 0 ) 0 0 0 0 0 0 0 0 0

e For these satellites, w is in units of 102 degrees.
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TABLE 9.29.—Coefficients of Zonal-Harmonic Coefficients in Equations for o, Q, I, and e
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TABLE 9.29.—(Cont'd)
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NATIONAL GEODETIC SATELLITE PROGRAM

TABLE 9.30.—Resonant Periods

Resonant
with order Inclination Period
(m) Satellite (deg) (days)
¢ . 6102801 95 2.90

12 . 6100401 39 15.0

12 . 6000902 47 15.5

12 6508901 59 7.2

12 6506301 69 3.3

12 . 6507801 144 2.3

18 6701401 39 9.4,10.9,13.1,...
13 . 6503201 41 5.6

13 o __ 6701101 40 1.6

18 . 6206001 50 5.3

13 . 6800201 105 6.3

13 . 6600501 89 1.8

18 . 6304901 90 2.5

14 6701101 40 2.6

14 . 6302601 50 12.2

14 6101501 67 3.84

14 6101502 67 3.76

14 . 6400101 70 4.9

4 6406401 80 2.9

14 . 6408101 87 3.8

14 .. 6600501 89 2.2

TABLE 9.31.—Additional Parameters Determined

Rotation
. Translation parameters
Relation to the parameters about the axis
dynamical system (m) (urad) Scale parameter
SAO geometrical _____ X =—- 6.66 ex= 0.70 = 1.56
Y =-14.88 €= 084124
Z =~ 990 €, = —0.40 = 1.43
BC—4 geometrical _.___ X =-11.25+ 960 ¢,= 1.76=0.96
=-16.63+ 9.58 ¢,=—0.65=*0.65
Z=-679%13.714 ¢ =-2.20+0.82
JPL . €, =—3.43 +1.02 0.18 X 10-¢ = 0.55 x 1076
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TABLE 9.32.—Geocentric Coordinates

Station X (Mm) Y (Mm) Z (Mm) o (m) Location
7050 ________ 1.130673 9 —4.831373 5 3.994 1010 1.81 Greenbeit, USA
1021 ________ 1.118 030 8 —4.876 321 3 3.942973 0 1.81 « Blossom Point, USA
7060 ________ —5.068 964 1 3.584 106 1 1.458 744 3 2.88 Guam, USA
8816 ________ 4.654 3369 1.959179 0 3.884 358 5 2.26 Stephanion, Greece
8818 ________ 5.426 328 1 —0.229 326 6 3.334 606 4 6.07 Colomb-Bechar, Algeria
8015 ________ 4.578 327 7 0.457974 8 4403179 7 2.07 Haute Provence, France
8815 ________ 4.578 3707 0.457 959 1 4.403 1355 2.07 Haute Provence, France
8809 ________ 4.578 348 4 0.457 965 9 44031579 2.07 Haute Provence, France
9001 ________ -1.535 768 6 —5.166 989 0 3.401042 5 2.44 Organ Pass, USA
9901 . _______ —1.5635 768 8 —5.166 989 0 3.401 042 5 2.44 Organ Pass, USA
9002 .. ______ 5.056 126 7 2.716 513 6 -2.775 788 3 1.79 Olifantsfontein, Rep. S. Afr.
9902 ________ 5.056 126 5 2716 513 5 -2.775788 3 1.79 Olifantsfontein, Rep. S. Afr.
9022 _______ 5.056 120 7 2.716 524 3 —-2.775 7870 1.79 Olifantsfontein, Rep. S. Afr.
9003 ________ —-3.983 778 3 3.743 093 9 -3.2756 561 0 2.49 Woomera, Australia
9023 ________ -3.977 766 8 3.725106 1 -3.303 028 3 2.16 Island Lagoon, Australia
9004 ________ 5.105 591 9 -0.555 230 0 3.769 662 5 3.06 San Fernando, Spain
8804 ________ 5.015 6120 —0.555 252 3 3.769 631 2 3.06 San Fernando, Spain
9005 ________ —3.946 690 6 3.366 295 7 3.698 833 4 6.26 Tokyo, Japan
9025 ________ -3.910434 2 3.376 3574 3.729 220 2 6.26 Dodaira, Japan
9006 ________ 1.018 204 4 5.471104 5 3.1096219 2.77 Naini Tal, India
Q007 ________ 1942776 9 —-5.804 089 4 -1.796 931 1 2.11 Arequipa, Pern
9907 ________ 1.942 7770 —5.804 089 8 ~-1.796 931 2 2.11 Arequipa, Peru
9027 _______ 19427718 —5.804 096 1 —1.796 909 4 Z2.11 Arequipa, Peru
9008 ________ 3.376 892 9 4.403 982 3 3.136 257 8 5.08 Shiraz, Iran
9009 ________ 2.251 8237 ~5.816 9157 1.327163 5 4.42 Curacao, Antilles
9010 . ______ 0.976 2870 —-5.601394 7 2.880234 7 2.86 Jupiter, USA
9011 ________ 2.280 591 3 —4.914 5735 —-3.3556423 0 3.19 Villa Dolores, Argentina
9012 ________ —5.466 059 8 —2.404 278 8 2.242180 5 2.72 Maui, USA
5512 ________ —5.466 063 & —-2.404 278 7 2242172 % 2.72 Maui, USA
21 __ —-1926 7728 —~5.077 708 2 23219024 218 Mt Hopkins, USA
vl —1926 7727 —5.077 705 3 3.331 907 6 ®.18 Mt. Hopkins, USA
9028 ________ 4.903 765 2 3.965 216 0 0.963 868 0 4.85 Addis Ababa, Ethiopia
9029 ________ 5.186 459 7 —8.653 866 0 —0.654334 7 3.86 Natal, Brazil
9929 ______ 5.186 459 § —3.653 866 Z —0.654 334 8 3.86 Naial, Drazil
9039 ________ 5.186 469 8 —3.653 845 2 —0.654 334 4 3.86 Natal, Brazil
9031 ________ 1.693 805 4 -4.112332 6 —4.556 653 1 5.24 Comodoro Rivadavia, Arg.
9091 ________ 4.595 1675 2.039 466 0 3.912658 7 4.11 Dionysos, Greece
9930 ________ 4.595 223 4 2.039 448 2 3.9126121 411 Dionysos, Greece
9030 ____.___ 4.595 2145 2.039 448 0 3.9126220 4.11 Dionysos, Greece
8019 _______. 4.579 476 7 0.586 618 8 4.386 412 7 10.40 Nice, France
8010 ________ 4.331304 7 0.567 521 8 46331012 3.67 Zimmerwald, Switzerland
9431 ________ 3.183 884 5 1.421 4753 5.322 802 1 20.57 Riga, Latvia
9432 _______ 3.907 436 6 1.602 441 7 4.763 886 4 83.31 Uzhgorod, USSR
8011 ________ 3.920 168 9 -0.134 732 3 5.012714 3 13.26 Malvern, U.K.
9425 ________ —2.450 008 9 —4.624 414 9 3.635028 8 3.70 Rosman, USA
9424 . _____ -1.264 8451 —3.466 879 7 51854541 10.87 Cold Lake, Canada
9426 ________ 3.121276 0 0.592 642 3 5.5127109 12.63 Harestua, Norway
9427 ________ —6.007 407 9 -1.1118591 1.825 736 9 7.25 Johnston Is., USA
DSS11.______ —-2.351 4471 —4.645070 6 3.673760 0 3.80 California, USA
DSS12______ —2.350 460 6 —4.651 969 9 3.665 624 7 3.80 California, USA
DSS14______ -2.3536393 —4.641 333 2 3.677048 3 3.77 California, USA

DSS41 ______ -3.978 702 1 3.724 858 7 -3.302208 1 2.78 Australia
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TABLE 9.32.—(Cont’d)

Station X (Mm) Y (Mm) Z (Mm) o (m) Location
DSS§42 _____ —4.460 966 9 2.682 428 4 —-3.674 613 8 6.05 Australia
DSS51______ 5.085 4475 * 2.668:250 2 —2.768 726 1 4.73 So. Africa
DSS61______ 4.8492411 —0.360 297 2 4.114 8673 3.64 Spain
DSS62______ 4.846 698 7 -0.370214 9 4.116 890 5 3.66 Spain
6001 ________ 0.546 586 2 -1.389 9730 6.180 232 9 11.15 Thule, Greenland
6002 _______ 1.130 768 8 —4.830 836 0 3.994 700 2 2.38 Beltsville, USA
6003 ________ —2.1278251 —3.785 847 4 4.656 027 9 7.52 Moses Lake, USA
6004 ________ -3.851769 9 0.396 430 5 5.051 335 4 19.38 Shemya, USA
6006 ________ 2.102 948 2 0.7216791 5.958 176 5 13.56 Tromsg, Norway
6007 ________ 4.433 654 6 —-2.268 140 7 3.9716410 12.86 Azores, Portugal
6008 ________ 3.623 253 6 —-5.2142311 0.6015174 12.95 Paramaribo, Netherlands
6009 ________ 1.280 845 5 —6.250 943 5 -0.0108277 15.17 Quito, Ecuador
6011 ________ ~5.446 010 4 -2.404 3979 2.242 216 3 3.12 Maui, USA
6012 ________ —5.858 525 1 1.394 529 5 2.093 790 2 13.96 Wake Is.,, USA
6013 ________ —3.565 847 0 4.120 728 3 3.303 4218 7.56 Kanoya, Japan
6015 ________ 2.604 378 6 4.444 166 7 3.7503171 10.37 Mashhad, Iran
6016 ________ 4.896 413 6 1.316 178 8 3.856 666 2 10.87 Catania, Italy
6019 ________ 2.280 642 9 —4.914 5636 6 ~3.355441 9 3.54 Villa Dolores, Argentina
6020 ________ —1.888 600 6 -5.354 864 7 —-2.895771 6 19.81 Easter Is., Chile
6022 ________ —6.099 943 6 -0.997 320 8 —1.568 598 2 12.65 Tutuila, Am. Samoa
6023 ________ —4.955 351 8 3.842 266 6 ~1.163 859 8 8.96 Thursday lIs., Australia
6031________ -4.3138010 0.891364 6 —4.597 282 7 9.29 Invercargill, New Zealand
6032 ________ —2.3753707 4.875 567 2 ~3.345 405 6 10.59 Caversham, Australia
6038 ________ —2.160 9779 —5.642694 7 2.035352 3 8.65 Revilla Gigedo, Mexico
6039________ —3.724 752 5 -4,421 198 5 -2.686 1050 22.12 Pitcairn Is., U.K.
6040 ________ —0.741 936 4 6.190 810 5 -1.338 557 8 13.24 Cocos Is., Australia
6042 ________ 4.900 772 8 3.968 249 0 0.966 330 3 4.93 Addis Ababa, Ethiopia
6043 ________ 1.371393 5 —-3.6147358 -5.055 969 1 12.76 Cerro Sombrero, Chile
6044 ________ 1.098 926 5 3.684 646 5 -5.071 883 5 23.43 Heard Is., Australia
6045 ________ 3.223 459 4 5.045 345 3 -2.1918119 9.30 Mauritius, U.K.
6047 _______ —3.861922 1 5.365 826 1 0.763 621 4 12.76 Zamboanga, Philippines
6050 ________ 1.192 697 6 —2.450 987 7 —5.747074 4 19.81 Palmer Sta., Antarctic
6051 ________ 1.111 3619 2.169 282 1 —5.874 353 0 13.95 Mawson Sta., Antarctic
6052 ________ ~0.902 571 8 2.409 550 0 -5.816 569 5 13.80 Wilkes Sta., Antarctic
6053 ________ —-1.310821 8 0.311 2860 -6.213 299 2 13.45 McMurdo Sta., Antarctic
6055 ________ 6.118 349 5 -1.571 738 4 —-0.878 618 1 11.14 Ascension Is., UK.
6059 ________ —5.885 323 7 —2.448 3377 0.221 658 4 10.63 Christmas Is., U.K.
6060________ —4.751 620 6 2.792 084 7 -3.200 181 2 3.19 Culgoora, Australia
6061 _._______ 2.999 939 6 -2.219352 6 ~5.165 279 4 15.33 So. Georgia, U.K.
6063 ________ 5.884 483 9 —-1.853 4891 1.612 843 2 11.17 Dakar, Senegal
6064 ________ 6.023 411 3 1.617 937 3 1.331 725 4 9.89 ©  Fort Lamy, Chad
6065 ________ 3.213 585 2 0.8208359 4.702 766 2 12.59 Hohenpeissenberg, W. Ger.
6067 ________ 5.186 415 4 ~3.653 9275 —0.654 297 7 4.13 Natal, Brazil
6068 ________ 5.084 848 9 2.670346 3 —-2.768 114 4 2.38 Johannesburg, Rep. S. Afr.
6069 ________ 4.978 443 0 ~1.086 860 7 -3.823 181 6 26.56 Tristan Da Cunha, U.K.
6072 . ______ —0.941 663 5 5.967 461 5 2.039307 2 13.65 Chiang Mai, Thailand
6073 ________ 1.905 165 3 6.032 287 8 —-0.810736 5 12.02 Chagos, Archipelg
6075 ________ 3.602 847 1 5.238 244 8 ~0.5156 9507 11.39 Seychelles, U.K.
6078 ________ —5.952 304 1 1.231 941 2 —1.925939 0 22.93 New Hebrides, U.K.
6111 ________ —2.448 849 2 —4.667 968 5 3.582 746 1 3.83 Wrightwood, USA
6123 ________ —-1.8817815 —0.812422 7 6.019 588 6 17.73 Point Barrow, USA
6134 _______ —-2.448 902 9 —4.668 058 6 3.582 440 8 3.89 Wrightwood, USA
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TABLE 9.33.—Comparison of BC-} Geometrical Solution With the
Combination Solution®

Differences
Station Weight AX AY AZ North East Height

6001 ________ 12.22 -0 -0 4 0 -0 4
6002 ________ 5.54 12 -13 9 1 -15 13
6003 ________ 9.03 0 -4 -0 - 2 2 2
6004 ________ 20.01 2 -9 1 3 9 -0
6006 ________ 14.45 -6 -12 4 11 -10 0
6007 ________ 13.80 -6 -5 -1 1 -1 -3
6008 ________ 13.88 2 - 4 - 4 -5 0 4
6009 ________ 15.97 5 -5 -1 -1 4 6
6011 ________ 5.89 15 4 4 9 2 -13
6012 ________ 14.83 7 - 2 1 4 0 - 6
6013 ________ 9.06 -1 - 8 12 13 6 1
6015 ________ 11.51 -5 -9 7 12 0 - 4
6016 __._____ 11.96 -5 -11 3 8 -10 - 4
6019 ________ 6.13 13 3 -5 -3 138 5
6020 ________ 20.43 3 5 -6 - 8 1 -2
6022 _______._ 13.60 7 6 -1 -3 - 4 - 8
6023 ________ 10.26 -2 3 0 1 -1 4
6031 ________ 10.55 -2 4 -9 - 4 - 4 g
6032 ________ 11.71 1 7 -4 -0 -4 [
6038 ________ 9.99 4 5 -1 0 2 -~ 6
6039 ________ 22.68 4 7 - 4 -7 -2 -5
6040 ________ 14.15 -1 -0 -0 -0 1 -0
6042 ________ 7.02 -3 -1 5 6 -3 - 6
6043 ________ 13.70 11 8 -8 - 8 13 4
6044 ________ 23.96 4 7 -5 3 - 2 10
6045 ________ 10.56 -5 -1 -1 -8 3 -1
6047 ________ 13.70 -0 -0 b 5 0 1

2 [ Y 0 [

oy
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TABLE 9.33.—(Cont’d)

Scale (ppm) = 1.17 = 0.19

Differences
Station Weight AX AY AZ North East Height
6051 ________ 14.82 5 4 -10 1 - 2 12
6052 _______. 14.68 4 5 -9 -0 -5 10
6053 ________ 14.35 3 5 -12 -5 -5 11
6055 ________ 12.21 -9 0 11 10 -1 -11
6059 ________ 11.75 9 5 -2 -2 -1 -11
6060 ________ 5.93 -3 3 - 8 -5 -1 8
6061 ________ 16.12 8 3 -4 1 8 6
6063 ________ 12.24 -8 -2 0 2 -4 -1
6064 ________ 11.08 -6 -12 5 7 -10 -7
6065 ________ 13.55 -6 —-12 4 9 -11 -2
6067 _.______ 6.49 -5 13 10 9 7 -13
6068 ________ 5.54 -4 -3 -24 —24 -0 5
6069 ________ 27.03 -8 2 5 -0 0 -10
6072 ________ 14.54 -3 -1 9 9 4 1
6073 __..____ 13.02 -7 -2 0 0 6 -4
6075 _.______ 12.44 -4 -2 1 1 1 -4
6078 ________ 23.47 -8 3 9 12 -1 5
6111 ________ 6.30 3 2 7 8 2 1
6123 ________ 18.42 1 -13 2 -3 12 3
6134 ________ 6.33 4 12 6 12 -1 -1
rms: 135 6.33 7.10
Total rms: 12.02
Parameters determined
X Y VA
Translation (m) 16.32 =1.22 23.21 +=1.22 -4.68 +1.22
Rotation (arc-sec) —0.101 = 0.050 0.086 = 0.050 0.368 = 0.046

2 Given in units of meters. The standard error of unit weight, gy, is 0.823.
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TABLE 9.34.—JPL-SAO Differences

Rotation: —3.48 + 1.02 urad
Scale: 1.8 X 1077 = 5.5 x 107

A
Station (m) (m)
DSS11 _____________ —-0.81 2.69
DSS12 _____________ -0.66 2.63
DSS14_____________ -0.86 2.57
DSS41_____________ 4.31 -0.21
DSSs42 _____________ 0.51 1.66
DSS51 . __________ 0.96 -3.03
DSS61_____________ -0.26 2.10
DSS62_____________ -0.31 2.31
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TABLE 9.35.—Translation, Rotation, and Scale Parameters for the Four Major Datums

Number Translation (m) Rotation (arc-sec) Scale
of correction
Datum  stations X Y Z Azimuth E-W N-S (ppm) g, o(m)

NA27 ___ 10 -31.4 154.0 176.3 0.09 -0.62 -0.23 1.78 0.67 8
*1.9 +2.2 *1.9 +0.24 +0.69 =+0.24 +1.13

EU50 ___ 17 —85.4 -111.1 -131.9 0.56 -0.561 -0.22 2.60 0.59 16
+2.0 +1.9 +2.0 +0.21 *+0.35 =x0.22 * 0.92

SALE 2 ~75.3 —-3.2 —32.2 —-8.32 -4.12 428 —1.28 5.01 14
+2.5 +2.6 +25 +0.21 +0.27 =*0.33 +0.99

AGD____ 7 -118.2 -38.6 +119.6 0.23 0.82 -0.22 2.33 0aK 5
*1.5 *14 +1.4 +0.26 +0.41 =+0.31 +1.22

.TABLE 9.36.—Standard Deviations of
Datum-Height Comparisons

c

Datum (m)
NAD27 ________________ 3.07
SAD69_________________ 2.69
AGD___________________ 125
EUsS0 . 8.90
Average _______________ 3.98
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TABLE 9.37.—Comparison of Coordinates Determined in Both SE II
and SE 111

Difference

Station Weight X Y ¥4 North East Height
7050 ________ 7.23 1 -6 -9 -12 0 -0
8015 ________ 5.41 -0 1 0 0 ki 0
9001 ________ 5.58 -8 4 0 1 -9 -1
9002 ________ 7.23 1 -0 -3 - 2 -1 2
9003 ________ 6.50 0 0 4 3 -0 -1
9004 __._____ 5.86 3 -3 -4 - b -3 0
9005 . _______ 11.80 3 - 8 -1 3 4 -1
9006 ________ 9.42 0 -2 -2 -1 -1 -3
9007 ... _._ 7.31 53 -10 3 6 1 10
9008 .. . ___ 10.33 -1 2 6 5 2 4
9009 ___.____ 8.28 -2 1 4 b -1 -1
9010 _______. 5.76 -1 1 -4 -3 -1 -3
9011 ________ 9.55 5 -2 5 7 3 1
9012 ________ 7.61 -3 -1 8 6 -0 6
9021 ________ 15.33 11 -6 -13 -13 12 -5
9023 . .. 6.38 1 -2 5 3 0 ~ 5
9028 ... __ 12.94 14 11 - 4 -6 0 17
9029 ________ 12.61 0 -11 -7 -1 -9 7
9031 ________ 15.89 5 -7 -1 5 2 7
8010 ______._ 7.90 -5 8 7 8 9 2
8011 ________ 16.03 -9 4 5 11 3 -1
9425 ________ 7.92 4 3 -6 -2 2 -8
9424 ________ 16.19 -5 2 -13 -1 -5 -11
9426 . _____ 21.18 -4 -2 8 8 -1 5
9427 _______. 16.66 -2 -4 5 4 4 4

rms: 6.62 5.02 6.37

Total rms: 10.47 )

Parameters determined
X Y VA
Translation (m) -169 +=1.19 3.76 +1.18 0.04 £ 1.18
Rotation (arc-sec) —0.039 + 0.047 —0.043 = 0.049 —=0.059 + 0.044

Scale (ppm)= —0.26 = 0.18

¢ The systematic translation, rotation, and scale differences were removed before the
differences were computed (in units of meters). The standard error of unit weight o,
is 0.662,

TABLE 9.38.—Comparison of Spin-Axis
Distances

Using SAO station 9001 and geo-

detictie _______________________ 5492 412.489 m
Using McDonald lunar laser _______ 54924160 +3 m
Difference _________________________ -3.51m
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TABLE 9.39.—Solutions for Even-Order Harmonics®

931

Js Js Jg Jg Jso Ji J s Jis J s J a0 I g n Y (residuals)?
-3 30 -94 66 -178 161 -78 43 77 —-108 75 11
+1 +2 +3 +4 +4 +3 +8 +7 +9 +9  =*138 4
-3 31T -97 68 —178 155 -174 30 -75 —-104 72 31 24 106
*1 *2 *3 +4 *4 *5 *7 *10 +6 +9 +12 *17
-3 30 —-94 67 —177 161 -76 43 —-74 —-108 73 -9 26 113
*1 *2 *3 +4 +4 +3 *8 +7 +9 +9 +13 *20
-2 30 -89 61 ~181 162 -80 35 —83 -132 80 94 28 67
*1 +2 +3 +3 +3 +2 *6 +6 +5 +8 *9 *17
-3 28 -92 61 -178 167 -80 44 -75 -104 97 -61 30 103
*1 *+2 +3 +4 +4 *4 *7 +7 +6 +9 *15 +28
-3 29 -94 67 -176 159 —-82 41 ~T76 -111 75 33 392 110
*1 +2 +3 +4 +4 +3 +8 +7 +6 +9 +12 +25
-3 30 -94 66 -178 162 —-78 40 -78 -107 74 14 34 113
*1 +2 +3 +4 +4 +3 =7 +9 +7 +9 +12 +33
-2 31 —94 65 —-183 165 —-74 34 -102 -119 92 199 36 39
*1 *1 +2 +2 +2 *+2 +4 +4 +5 +5 *7 +22
¢ In units of 10~° Corrections are given for n < 14. Note thatJ,= -C,.
TABLE 9.40.—Solutions for Odd-Order Harmonics®
Js Js 7y Je Jn Jis s I I 10 Ja s I n 2 {residuals)?
6 -20 -12 -109 15 —-222 104 —-227 83 -70 111 53.7
+3 +5 +7 +8 +7 +7 +11 +11 *+12 +14 +21 .
8 -23 -8 -106 10 -210 88 -210 78 —-83 137 —-41 25 494
+3 +4 +7 +7 +7 +10 x13 +13 +11 +13 +18 +20 )
3 -15 -18 -98 19 —-226 121 —237 101 -78 101 —58 o7 447
+3 +4 +7 +8 +6 +7 =*11 *11 +12 +11 +13 =20 '
5 -19 -12 -107 17 -222 107 -227 84 -64 103 -—16 29 53.0
+3 +5 *7 +8 *7 +7 +11 +11 +12 +14 +17 +23 :
6 -20 -11 -109 15 -220 106 227 87 -72 115 -23 31 52.8
+3 +4 +7 +8 +7 +8 +10 +11 +12 *12 +14 +28 .
7T -2 -11 -109 13 -219 102 -218 78 —-69 124 —47 33 511
+3 +4 +7 +8 +7 +8 +10 +12 +12 +12 +16 +32 :
5 -18 -19 -101 10 -—-225 105 —220 99 -83 145 -134 35 106
+3 +4 +7 +17 +6 +7 +9 +10 *11 +11  x15 36 )
6 -21 -1 -109 15 —222 102 —225 86 —66 110 -30 37 53.1
+3 +4 +7 +8 +7 +7  +11 +11 +13 %13  *13 =44 ’

¢ In units of 10-°, Corrections are given for » < 13. Note thatJ,=-C,.
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TABLE 9.41.—(0-C) for Secular Motion and Their Differences®

Satellite 0-C) I 1I 1969 1963 1961 1959
7001701 P —-18060 =*=90 =57 271 29 090 9 540 18 250 18 840
Q- 10120 =170 -51 258 -17 400 -5 390 -9 950 —10 240
7010901 P —-2200 =800 -1530 —857 -4 700 100 6 200 6 900
[ R 5160 =100 -83 99 -2160 —1450 -5 560 -5 900
6001301 P 170 =100 43 61 40 -300 —670 -90
Qo -126 =56 -4 -10 -1 59 -611 -928
5900101 @ e 32 =3 1 3 1 18 -129 278
Qe -9 =3 2 7 0 10 —248 —488
6202901 T . 40 =x6 11 10 2 300 827 1013
Q- 7 x3 5 8 2 -39 —247 -395
6000902 L 170 =50 0 21 47 —287 770 1070
[ -1 =3 1 5 4 —43 —342 —-594
6302601 L. 920 =10 -1 -6 -52 2650 4 900 5290
Qo 1 =3 0 -2 19 261 -2 —3562
6206001 [ 600 =60 16 84 60 2230 4180 4 500
Qo -42 =*3 1 2 8 -56 —437 —740
6508901 T -110 =10 -1 -29 -26 1460 3180 3 285
[ - -70 =3 0 -6 -7 -670 —1 465 ~-1670
6101501 L -300 =80 14 97 65 -81 1900 2 500
Q- 22 =*3 -1 -1 3 —1252 -2815 -3 057
6400101 T Y — 600 =800 729 718 620 -600 580 -500
Q- 56 =8 10 6 9 -1073 -2703 -2921
6406401 P —-400 =100 -95 -231 -110 -2 000 -4 000 -4 300
[ 4 - 90 =10 9 9 15 -220 -1351 —1467
6508101 [ 620 =30 15 100 -8 300 -3290 -3 630
Qe 50 =3 -2 -9 -27 35 —306 -337
6102801 @ e -35 =50 —47 —47 —47 —340 -915 -1008
[0 - -29 =% 05 0.6 0.7 0.6 62.7 192.3 212.6

¢ Given in units of 10~ per day.
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TABLE 9.42.—(0-C) for Amplitudes of ¢%%

} 2w Terms and Their Differences®

933

sin
Satellite ©O-C) 1 II 1969 1963 1961 1959
5900101 @ 03 +0.5 -0.2 -0.2 -0.3 -0.6 1.6 14
Q_ -2 x2 -1 -2 -2 -1 -4 -4
I _______ -3 =6 —4 -4 -5 -4 3 3
e _______ 0 =1 1 1 1 1 -4 -4
6202901 @ o -01+03 -0.2 -0.2 -0.2 -0.8 -25 -2.9
Q_ -1 =*1 1 1 1 -8 -14 —-14
I __.____ 4 =4 5 4 4 -3 -14 ~15
e _______ 0 =1 0 0 0 5 12 12
6000902 @ -3 *4 -2 -2 -2 -6 ~10 -10
e _______ 0 =1 0 0 0 0 1 1
6302601 @ -6 =2 -1 0 0 -14 -23 -23
Q_______ 2 =2 3 3 3 -2 -3 -3
) (R -1 =+=3 1 1 1 -4 -6 -6
e _______ 3 =2 -3 -3 -3 12 20 20
6206001 @ __ 3 *6 7 6 6 -5 -13 -13
e _____.__ 1 =1 1 1 0 2 3 3
6508901 @ ___ 6 =2 1 2 2 -22 -49 -50
Q_______ 4 +2 2 2 0 9 10 10
) SO 5 =5 4 4 4 -3 -11 -11
e __.____ -4 =1 2 1 1 30 62 63
6101501 bw -1 =2 -1 0 1] -3 0 0
e _..____ 1 =2 0 0 -1 3 -1 -1
6406401 bw ______ 0 =2 0 0 0 -1 -1 -1
e __.____ 4 +4 3 4 3 5 7 7
6508101 W _______ 7T +£3 3 4 3 12 0 0
Q_______ 1 =1 1 ] 0 2 2 2
I -2 +8 -2 -2 -2 -2 -2 -2
e _______ -6 +2 -1 -2 -1 -11 3 3
¢ leen in units of 103 degrees for o, 10* degrees for ), 105 degrees for I, and 108 for e, per da

v rvnr rhnen garailitao
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TABLE 9.43.—(0-C) for Amplitudes of

cqs} o Terms and Their Differences®

sn
Satellite (0-C) I I 1969 1963 1961 1959
7001701 @ _______ -70 = 5 -2 0 -126 -104 -85 -87
_______ -190 = 30 0 -28 -248 -570 -168 —237
_______ 430 = 30 -34 -31 740 900 480 550
_______ —91 = 6 -5 -5 -149 -179 —99 -112
7010901 @ o____ 45 = 30 9 41 160 —411 232 112
_______ ~18 = 45 —44 —48 0 10 9 7
_______ ~170 =300 -166 -170 -181 -120 -190 -177
_______ 28 = 20 18 27 61 -102 83 49
6001301 @ .oo___ 4 = 1 0 0 0 46 314 241
_______ 0 = 3 2 2 0 3 -10 -7
_______ 0 = 30 0 0 0 -2 -16 -12
_______ 16+ 1.0 0.5 0.5 0.6 13.5 90.7 69.8
5900101 @ _..____. -17+ 03 0.0 0.3 0.0 48 22.4 17.2
_______ -2 = 2 2 1 2 -7 -87 —58
_______ 1 = 5 -3 -3 —4 -8 -64 -57
_______ -31=% 05 -0.3 ~0.7 -0.1 3.2 40.0 35.6
6202901 @ oo ~01=x 0.2 0.0 0.0 -0.1 -12 -4.0 6.1
_______ 2 + 3 2 3 3 16 5 31
_______ -2 = 3 -5 —4 -4 -11 —26 -8
_______ 15+ 0.8 0.2 0.0 0.2 42 15.2 49.7
6000902 @ ______ -19 = 3 -4 -4 -10 42 1 315
_______ 1 = 1 1 1 0 3 4 6
_______ -2 = 6 -2 -2 -6 -3 -2 -6
_______ —20=% 06 1.0 1.0 0.3 105 2.4 64.8
6302601 @ _______ -17 * 2 0 -4 -1 9 -17 86
_______ -6 = 1 0 0 1 20 52 60
_______ 14 = 15 10 11 10 6 12 -19
_______ -12 = 1 0 -1 2 16 -6 99
6206001 @ _______ -59 * 4 0 5 0 187 122 931
_______ -2 0+ 2 -2 -2 -2 0 3 4
_______ 0 = 10 0 0 0 -1 0 -4
_______ -8 = 1 -1 0 -1 22 14 113
6508901 @ _______ 3 + 4 7 7 0 119 264 486
_______ 10 = 2 3 3 2 -10 8 -29
_______ -8 =+ 8 -9 -9 -7 -40 -80 -144
_______ -4 = 1 0 0 -2 127 292 555
6101501 w0 -19 = & -1 -11 -8 —46 —265 -413
_______ -3 + 4 2 2 0 7 17 29
_______ 0 = 5 0 0 0 1 7 11
_______ -11 = 1 0 0 4 -48 —354 -560
6400101 © -200 = 10 6 3 1 72 ~445 -593
_______ -58 =+ 3 —4 -5 -9 —24 -122 -161
6406401  w_______ -110 = 20 23 36 30 23 510 930
_______ 6 = 3 1 1 1 5 11 16
_______ 0 = 8 0 0 0 0 -2 -3
_______ -34 = 5 -4 -2 -2 -4 106 199
6508101 @ .__.___ 60 = 2 1 -1 3 64 197 296
_______ 20 = 1 0 2 2 16 26 32
_______ -10 = 10 -9 . -9 -10 -10 -13 -16
_______ 60 =+ 3 —4 -5 -2 67 231 354
6102801 @ ______. -30 + 50 -48 -47 ~40 15 390 663
______ -2+ 2 -2 -2 -2 -2 -3 -4
_______ -6 + 7T -6 -6 -6 -6 -6 -5
_______ 30+ 15 -0.7 -0.6 0.0 125 91.8 149.2

2 Given in units of 10° degrees for w, 10* degrees for Q, 10° degrees for I, and 10¢ for e, per day.
b For these satellites, w is in units of 10* degrees.
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TABLE 9.44.—Comparison of Results®

Solution Je J, Js Js I Ji2 Ju 16 Jis Iz I I
1959 1082.1 -2.15
1961 1082.19 -2.13
+3 +5
1963 1082.48 -1.84 039 -0.02
+4 +9 +9 =7
1964 1082.639 —-1.649 0.646 -0.270 -0.054 -0.357 0.179
+6 +16 +30 +50 +50 +44 +63
1969 1082.628 —-1.593 0.502 -0.118 -0.354 —-0.042 -0.073 0.187 —0.231 —0.005
+2 +7 +14 +20 +25 *27 +28 +26 +22 *22
1973 1 1082.637 -1.618 0.552 -0.205 -0.237 -0.192 0105 0.034 —-0.102 -0.119 0.092 0.199
+1 +1 +2 +2 +2 +2 +4 +4 +5 +5 +7 +22
1973 IT  1082.636 —1.619 0.552 -0.204 -0.232 -0.196 0.101 0.043 -0.077 -0.108 0.075
*1 *+2 *3 +4 *4 +3 +8 *=7 *+9 +9 =13
Cazenave 1082.637 -1.619 0.558 -0.209 -0.233 -0.188 0085 0.048 -0.137 —0.087
et al. +4 +10 +17 +24 +26 *27 +34 +43 +44 +52
1971)
Solution Js Js Jr Jy Jn Jis Jis Jiz I I I Jas
1959 —-2.20
+8
1961 2.29 -0.2
+2 +2
1963 -2.562 —-0.064 -0.470 0.117
*7 *+7 *10 +11
1964 —2.546 -0.210 -0.333 -0.053 0.302 -0.114
+20 *25 *39 *60 *35 +84
1969 -2.538 -0.230 -0.361 -0.100 0.202 -0.123 -0.174 0.085 —-0.216 0.145
+4 *7 +15 +23 +35 +49 +61 +65 +53 +29
1973 1 —2.541 —0.228 -0.352 -0.i54 0.3i1Z2 -0.339 0.i05 —0.220 0.099 -0.083 0.i45 —0.i34
+3 +4 *7 *7 *+6 +7 +9 +10 +11 +11 +15 +36
1573 11 —2.540 -0.250 -0.8345 -6.162 0.317 -0.336  ©.104 —0.227 0.083 -8.070 .11
*3 +3 +7 *8 *7 +7 +11 +11 +12 *17 *21
Cazenave —2.543 -0.226 -0.365 -0.118 0.236 -0.202 -0.081 -0.027 -0.i112 0.106
et al, *5 +7 +12 +12 *12 *14 +21 +22 +23 +158

1971)

2 Given in units of 105,
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TABLE 9.45.—Fully Normalized Tesseral-Harmonic Coefficients for the Potential®

NATIONAL GEODETIC SATELLITE PROGRAM

Harmonic Value Harmonic Value Harmonic Value Harmonic Value

Cas 2.3799 .-06 S,. -1.3656 -06 C, 1.9977 -06 S, 2.2337 -07
Cs 7.7830 -07 S;. -17.5519 -07 Cas 4.9011 -07 S, 1.5283 -06
C., -5.1748 -07 S, -4.8140 -07 Ca» 3.4296 -07 S,. 6.7174 -07
Cas 1.0390 -06 S,, -1.1923 -07 C., -1.0512 -07 T, 3.5661 -07
Csy -5.3667 -08 S, -7.9973 -08 C;, 5.9869 -07 S;, —-3.9910 -07
Css -5.8429 -07 S,as -1.6338 -07 C;, -1.1583 -07 T, —4.5393 -08
Css 1.3956 -07 S;s -8.6841 -07 Cs, -7.2166 -08 S, 1.7756 -08
Csa 24670 08 Si. -4.0654 -07 Ces 4.4139 -09 Sis 2.9055 -08
Cou —1.0003 —07 Ss. -3.0297 -07 Cas -1.3504 -07 S,s -6.0964 —07
Cos -2.9136 -08 Ses -2.6327 -07 Ci, 2.3532 -07 S, 5.5634 08
Cis 2.0425 -07 S, 1.7821 -07 Cia 21994 -07 S, -3.4644 -07
Cra -2.8617 -07 Sy -2.7738 -07 Cis 34727 -08 T, 8.7014 -08
Crs —2.7496 -07 S; 8.5865 -08 Ci, -2.4856 -08 S, —-8.8968 —09
Cs 1.0946 -08 S, 4.8429 -08 C,, 1.1084 -07 S, 1.0359 -07
Csa -8.8578 -08 Sas -5.07156 -08 Cas -2.2315 -07 S, 2.6511 -07
Css 1.5318 -07 Sss 8.11568 -08 Css -9.7542 -08 Sie 2.8082 -07
Cox 2.0498 -07 Sy 24592 -07 Cags 1.6967 -07 Sgs 9.3261 -08
C,., 1.8099 -07 S, 41091 -08 C,, -2.2013 -08 S, 2.4215 -09
Css -9.9252 -08 S, -2.3085 -08 Cog —4.0867 -08 S, —-3.8525 -08
C,s —5.8957 -08 S,s 3.6834 -09 Cye 48812 -08 S, 1.1115 -07
Cos -1.9880 -07 S,, -1.4978 -07 C,s 23523 -07 S, 9.6355 -09
o -3.4533 -08 S, 5.9502 -08 Cy, 8.9008 -08 S, —-6.0157 -08
Co —3.71256 -08 Sy0» -6.3676 -08 Cios -1.3307 -07 S.s -7.2728 -08
Crou -2.1887 -08 Si4 —7.8408 -08 C,ys —6.1509 —09 S0 -1.1904 -07
Chos -9.4142 -08 S0 -1.1728 08 Cios 1.8525 —07 Sios 2.1656 —08
Cs 1.0887 —09 Syos 7.0781 =09  Ciow 78473 -08 S0 5.6381 —09
Ciouw 1.3321 -07 S0 9.8839 08 C,;, -1.2194 -08 §,,, 7.5463 —08
[of -2.0255 -08 S, -6.2998 -08 C,a -1.0988 -09 S, —3.8098 -08
Cua 1.5676 -08 Sy, -1.9551 -07 C,s -1.8591 -09 S, 6.1113 -08
Cus 6.3601 —-08 S -2.6457 -08 Cu. -3.3761 -08 S, -1.2825 -07
Cus -1.3634 -08 Ss 45229 -08 C, 2.1256 -08 S, 6.6721 -08
Cino 5.2555 —08 S0 -7.7401 08 T 86996 -08 S, ., -2.5691 -08
[ -5.6935 -08 S, -6.6159 -08 Ci. -9.7424 -08 S, 4.6341 -08
Clas 1.5555 -07 Sps -4.8666 -08 Ca. —-5.0379 -08 S, 5.3568 —08
Cis 8.1834 -08 Sps 27932 08 C a6 —2.1177 -08 S 3.5034 -08
Crs 29751 -08 S 3.1783 -08 Cs 4.0190 ~-08 Sy, 5.6877 —08
C s -1.1503 -07 Sy 1.4508 -08 Ciz0 -4.5921 -08 S0 -4.3264 -08
Cun -7.8443 -09 Sy -4.7858 -08 Cion —2.7617 —08 S —-1.6808 -08
Cun 8.6136 —09 Sy, -8.2401 -08 Cu. —1.0679 -08 S, -9.0670 -08
o -3.2361 -08 S 4.9286 -08 C 3. 3.9852 -08 S -1.0608 -07
Cas 4.0047 -08 Sy 3.8114 -08 C36 —2.1906 -08 S 36 -1.1321 -08
Cas ~7.6933 -08 S, 1.1140 -08 Cas —2.7448 09 T34 1.4309 -08
[ -1.1588 -08 Sy, 7.2989 -08 Cuan 41979 -09 S 7.6769 —09
Cun -5.4381 -08 Sy, 1.3450 -08 Ciap -4.6633 —08 Sy 7.9963 -08
Cus ~6.8944 -08 S 7.1891 -08 C.4. -1.4359 -08 S 5.2390 -08

3Values given as coefficient and exponent of 10.




SMITHSONIAN ASTROPHYSICAL OBSERVATORY 937

TABLE 9.45.—(Cont'd)

Harmonic Value Harmonic Value Harmonic Value Harmonic Value
Cus -1.5908 -08 S, -2.7374 -09 C,,, 9.6915 -08 §,,, -2.56381 -08
[ —2.9864 —-08 S, -3.8189 -09 C,,; -1.3828 -09 T, -5.8680 -08
[ -1.3872 -08 S, -2.7976 -08 C., 7.1056 -08 S,,, 2.4043 -09
Cus -1.8779 ~08 T .. -5.8750 -08 T, -2.4322 -08 S, 6.0461 -08
Eu,m 2.8985 —08 S —3.4224 -08 ?u,u 8.2611 -08 §,.,“ —-1.9627 -09
Crane 1.1751 -09 S, —~3.0967 -08 C,..s 3.0793 08 T, 4.7620 -08
Cran -6.5969 —08 S .. 3.3030 -09 TC,,, 29358 -08 §,;, -1.6691 -08
Ciss -1.2291 —-08 §;, —~6.8963 —08 Ci55 -5.8921 08 T, 44772 -08
Clsa 1.4876 -08 S5 7.0359 -09 TCiss 3.6806 08 S, —-8.4051 -09
Clse 1.0081 -08 S, -3.0473 -08 <C,s; 3.0439 -08 [T, 1.5775 -08
Ciss -6.8884 -08 S5 6.0808 -08 C,, -4.5169 -08 S, 5.5556 —08
Cisao 6.2126 —08 S5 -7.1799 -09 C,.,, -44724 -08 T,,,, -3.4391 -09
Cisne -4.2025 -08 S 59072 09 Ciois ~4.1654 —08 S5 -5.5892 -09
Cisis 9.5654 -09 S5 ~2.7145 -08 T —5.6358 -08 S, 3.4895 -08
Cle -9.9588 —09 S, 54160 -08 C, 5.5086 -09 S, 4.9455 -08
Cies 5.4189 ~08 Se, 5.4887 -09 C., 4.6176 -08 T, 3.6270 -08
Cles -2.4432 -08 S, 2.9671 -08 C6 —8.7203 -09 T, -2.0786 -08
Cien —2.2794 —09 S 3.0609 -09 Ciq —1.0459 -07 T, —4.4731 -08
Cieo 2.4845 -08 Se6 —8.6262 —08 Ciaso —8.9928 -08 S0 —4.5058 -09
CTin -2.0848 08 S, 29738 -08 T, 1.5930 -08 T, -1.2703 -08
Crous 2.5280 -08 S 6.6240 -09 T, —1.4852 -08 6. ~8.1713 -09
Ciese —7.7425 —08 S,a.s ~2.6491 08 Ciors —1.8538 -08 T ~2.2310 -08
Ciry 8.6593 -09 §,;, -4.1093 -08 C,;, -9.0769 09 [, —2.7205 -08
Cirs —-7.7864 -09 S, -1.7913 -08 C,.. -4.3231 -08 §,,, 6.8203 -08
Cirs 4.1513 -08 T, —-2.5453 —08 C, —4.54583 -08 S -1.7273 -08
Cia 16938 -08 S, —8.3752 -08 Cps 4.1231 -08 S, 5.8792 —09
Cis -4.3119 -08 S, -1.5974 -08 Cu, —1.0844 -08 S, 5.5628 -08
Cun -4.4136 -08 S, -4.3123 —09 C 3.1661 -08 T, 6.2982 09
Ch. 2.5147 -08 §,,., 97728 09 T, ~5.5945 —09 T, . 7.2604 09
; 40112 02 T, 21088 08 ... —2.3540 08 S, . —1.5882 _08
s —0.0101 08 S, —04775 09 T, -923557 _08 N, . ~7.4536 08
C s -9.4249 09 S, 3.0353 -08 Cius -3.5003 -08 S, —2.0464 -08
Clea 2.9433 -08 S, ~4.4672 -08 Cys 17511 -09 S, -6.0367 -09
Ciss 2.3931 -08 S —4,4966 -09 C44 —7.8040 -10 S, —8.2010 —09
Cles 5.3819 -08 S -2.2106 -08 Cis —3.6120 -10 S5, -5.0562 —09 .
Cuso 4.2146 -08 T4, 7.8924 -09 Cyy, 2.4981 -08 T, 2.3183 -08
T -6.2242 09 T, 6.6025 —09 TCus —2.6685 —08 S ~4.2500 -08
Clon 9.1191 -09 T, -3.3129 —08 Cio.us —4.1521 -08 T, -1.7610 -08
Coe 2.4850 —08 S,g -4.8182 -09 Ty 3.5357 -08 Syo.ur -4.7166 -08
Cios —34701 -10 T4 5.0654 -08 Ci.n 3.6058 —08 S, —3.4421 -09
Cions 9.6876 —09 T —6.6095 —08 Cio.4 7.6389 09 T, ~2.7649 -08
Cuus 2.7630 —08 S, 3.2389 —08 Cyu4 3.3687 -08 Sy —6.5741 -08
Caos -1.9799 -08 S, —3.0711 -08 Caia 1.6623 -08 T, 8.7215 —09
Cuus —7.9435 —09 Sp..s 41452 -09 Cauu 2.8516 -09 Sy, -4.2148 —08
Cus ~1.3236 -08 Ty -4.8892 -09 Ciu —2.1148 -08 Ty, 2.2010 -08

Caaa 3.4668 —09 S, 2.2983 -08
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TABLE 9.46.—Comparison of SE 111 With Satellite Observations®

Epoch (MJD) a(m) n Epoch (MJD) o(m) n
6508901 (GEOS-A) A/m = 0.05
41000 _________________ 4.1 289 41010 7.7 523
41002 ____ 5.5 367 41012 9.8 577
41004 o _______ 3.2 314 41 014 9.2 715
41006 . ___ 8.9 601 14 016 4.1 425
41008 __ .. 10.6 696 41 018 3.6 221
6800201 (GEOS-B) A/m = 0.05
41038 o ___ 2.4 249 41 048 3.8 304
41040 6.5 533
41042 _________________ 7.8 681 41 052 2.8 388
41044 ________________ 6.3 651 41 054 6.6 602
41046 ______ . _________ 2.7 441
6701401 (DID) A/m = 0.1
41072 . 10.3 467 41 080 7.4 621
41074 _________________ 9.9 332 41 082 6.9 764
41076 o~ 16.3 341 41 084 4.9 427
41078 ___ 17.0 254 41 086 3.6 519

2n is number of observations used.

TABLE 9.47.—Comparison of SE I1I Combination Solution With Surface Gravity® 1

Solution em (g — g @9,) @ D 9% E (ed) E ) E (g% n
SEII* ______ 16 75 184 186 163 253 2 11 63 =20
SEIT _______ 16 187 177 229 203 311 52 13 122 (306 anomalies)®
SE IIT ______ 18 105 221 236 237 311 15 13 &
SE IIT ... 10 195 150 192 163 302 42 24 129 =1
14 174 174 220 198 302 47 24 103 (1183 anomalies)
18 156 202 258 237 302 56 24 7%
SEIIT ______ 10 184 183 205 163 345 22 19 143 =10
14 151 215 236 198 345 20 19 111 (659 anomalies)
18 117 255 281 237 345 26 19 63 00
SE IIT __.___ 10 186 151 176 163 311 25 (24) 13 148 =20
14 146 182 200 198 311 17 (21) 13 116 (806 anomalies)
18 105 221 236 237 311 15 (18) 13 v

a Given in mGal®.

b From the available data, there were 935, 369, and 136 gravity anomalies withn = 1,10, and 20 1° x 1° anomalies. ]
¢ Here, n is the number of 1° X 1° mean gravity anomalies used to obtain 5° X 5° mean gravity anomalies. |
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TABLE 9.48.—Swurface-Gravity Residuals
Jor an € = m = 36 Potential
From Numerical Quadrature®

Degree of ((gt - g')z) <(gl - gref)2>
reference field n=1 n=20 n=20 E (e®)
0 28 29 12
6 . 38 39 12 10
8 - 53 54 20 25
10 56 53 21 24
4 61 50 19 21
18 . 70 48 16 18
Anomalies
used _________ 1183 306 471 _____

% Given in mGal2.

TABLE 9.49.—Comparison With Independent Surface-Gravity Data®

Compariéon Maximum .
ﬁ‘:’id: g o 7w \\fit g::-); :a',u'n; w;’; D ":2\ E feD E n K (Sg\ Reglon
SEIIT _____ 18 3726 147 209 284 237 282 75 13 59 North Atlantic
SE IIT ______ 18 1794 145 188 232 237 290 44 13 88 Indian Ocean
Averages ' G4 68
=3m

¢ Given in mGalz.



