

PLANETARY SCIENCE INSTITUTE

```
(NASA-CR-154512) PLANETARY ASTRONOMY N78-11955
PROGRAM Final Report (Planetary Science
Inst., Tucson, Ariz.) 177. p BC A0.9/MF A0.1
CSCI 03A Unclas


\title{
PLANETARY ASTRONOMY PROGRAM
}

Final Report
15 October 1977

NASW-2983

\section*{Submitted by:}

Planetary Science Institute
2030 East Speedway, Suite 201 Tucson, Arizona 85719
Page
TASK 1: Asteroid Spectrophotometry ..... 1
TASK 2: Nature of the Trojan Asteroids ..... 5
TASK 3: Investigation of the Determination of Asteroid Masses ..... 9
TASK 4: Saturn's Rings: Photometry, Structure, and Dynamics ..... 22
TASK 5: Uranus: Aerosol Distribution in the Atmosphere ..... 37
Appendix A The Evolution of Asteroids and Meteorite Parent-Bodies, C. R. Chapman . . . . . . . A-1 - A-5 Parent-Bodies, C. R. Chapman ..... A-5
Appendix B The Asteroids, C. R. Chapman, J. G. Williams, and W. K. Hartmann . . . . B-1 - B-74 ..... \(\mathrm{B}-1\) ..... B-74
Appendix C UBV Pinhole Scans of Saturn's Disk,
O. G. Franz and M. J. Price ..... \(\mathrm{C}-1\)*
Appendix \(D\) Uranus: Limb and Polar Brighteningat 7300 \&, O. G. Franz andM. J. Price . . . . . . . . . . . . . . . D-1 - D-3
Appendix E Limb-Brightening on Uranus: The Visible Spectrum. II, M, J. Price and O. G. Franz ..... E-1 - E-46
Appendix \(F\). Iimb-Brightening on Uranus in the \(\lambda 7300 \mathrm{~A}_{\mathrm{CH}_{4}}\) Band, M. J. Price andO. G. Franz . . . . . . . . . . . . . . . F-1

\section*{TASK 1: ASTEROID SPECTROPHOTOMETRY}
(Principal Investigator: Clark R. Chapman)

During the 1976/1977 contract period, major advances were made in spectrophotometric observations of asteroids and in their interpretation. Major progress was achieved in data reduction. The purpose of this final report is to summarize briefly the accomplishments of the first three quarters, for which more details are available in our first three Quarterly Reports, and to provide greater details concerning the work accomplished during the Final Quarter. Appendices \(A\) and \(B\) contain manuscripts prepared in major part with Planetary Astronomy Program funding: "The Evolution of Asteroids and Meteorite Parent-bodies" (an invited review paper presented by Dr. Chapman to the annual Meteoritical Society meeting) and "The Asteroids" (a major review article to appear in the 1978 volume of Annual Review of Astronomy and Astrophysics, co-authore \(\bar{d}\) by Drs. Chapman and Fartmann at PSI and Dr. Williams of JPL).

\section*{SUMMARY OF WORK DURING FIRST THREE QUARTERS}

The foundation of our program of asteroid spectrophotometry is acquisition of new data, although reduction and interpretation of that data are essential elements of the program as well. Data were obtained during the contract period during four observing runs at the Kitt Peak National Observatory: 3 runs on the 1.3-m telescope (Sept. 15-19, 1976; Nov. 14-17, 1976; and June 6-16, 1977) and 1 run on the 2.1-m telescope (Sept. 25-27, 1976). A total of 83 asteroids were observed, although a few included within that total represent the same object observed during different runs. All of the asteroids were measured in the spectral range \(0.33-0.9 \mu \mathrm{~m}\) and a large minority were measured, in addition, between \(0.9-1.07 \mu \mathrm{~m}\).

This year has proven to be one of the most productive years for obtaining asteroid spectrophotometric data. Included among the asteroids measured are the exceptional asteroids 1620 Geographos and 944 Hidalgo. The great quantity of data has caused some pile-up in the data reduction programs, but preliminary results are expected to be available for some asteroids for presentation at the October 1977 DPS meeting in Boston.

During this year, our data reduction program was upgraded for inclusion as an interactive code for running on our HP-9825 computer. Improvements in standard star calibrations have been incorporated in the program and most raw data obtained during the past two years have been written onto HP-readable magnetic tape cartridges. Final reduction of all data is proceeding.

An observing trip was also made to Mexico during October 1976 to attempt measurement of the diameter of Pallas during a stellar occultation. Unfortunately, the occultation path passed south of us, so we could only report a negative observation.

Interpretive work has also progressed. Chapman has been working with Bowell, Gradie, Morrison, and Zellner in writing a paper on asteroid taxonomy, based on a classification program that utilizes the TRIAD data file (see Fourth Quarter Report, below.

Papers written and presentations delivered during the contract year include the following: (l) A final manuscript was prepared in February 1977, based on Chapman's invited review at IAU Colloquium 39 during the summer of 1976 . This manuscript, entitled "The Evolution of Asteroids as Meteorite Parent-bodies", will appear in the Colloquium Proceedings (The Interrelated Origin of Comets, Asteroids, and Meteorites, A. H. Delsemme, Editor, Univ. of Toledo Publications, in press) and was included as Appendix A to our Second Quarterly Report. (2) Dr. Chapman presented an invited review paper to the Cambridge, England, meeting of the Meteoritical Society in July 1977. His extended abstract, "The Evolution of Asteroids and Meteorite Parentbodies", attached as Appendix A, will appear in Meteoritics. (3) Drs. Chapman and Hartmann (in conjunction with Dr. Williams of JPL) have prepared an invited review paper on "The Asteroids" for the Annual Review of Astronomy and Astrophysics. It is attached as Appendix B.

\section*{FOURTH QUARTERLY REPORT}

Plans have been finalized.during the fourth quarter to obtain the extremely important observations of the nucleus of dying comet P/Arend-Rigaux during early November 1977. This observing run was originally planned for Kitt Peak Observatory, but for inexplicable reasons, time was not granted at that Observatory. Subsequently, last minute plans were made to obtain the data using the 88 -inch telescope at Mauna Kea Observatory, using the spectrophotometer of T. McCord. Other faint asteroids will be observed as secondary objectives of the program. A proposal has been written to Kitt Peak requesting time for asteroid observations during spring 1978.

Further work has been accomplished in asteroid datareduction. There is hope that some preliminary data may be in a form to be presented at the DPS meeting in Boston in October 1977.

Two manuscripts have been completed during the Fourth Quarter. They have been referred to above and are included as Appendices A and B.

A major interpretive effort has been carried out during the fourth quarter. Dr. Chapman hosted a meeting at PSI at which Dr. Bowell, Mr. Gradie, Dr. Morrison, and Dr. Zellner met to work on a manuscript in preparation concerning asteroid taxonomy. New data were entered into the TRIAD data file and a classification program generated classifications for over 560 different asteroids, according to the C-S-M-etc. taxonomy originally developed by Chapman, Morrison, and Zellner (Icarus 25, 104). Dr. Chapman worked on comparing the C-S-M taxonomy with earlier schemes developed by himself and with more recent schemes advanced by Gaffey and McCord. There is a reasonable degree of concordance among the various schemes (see Table I). The text of the article in preparation discusses the detailed relationships between the taxonomies, the advantages and disadvantages of each, and the relationships between observationallybased groupings and mineralogical types of asteroids.

Table I. Asteroid taxonomies and mineralogical classifications

\(a_{\text {Bowell }}\) et ai (1978).
\(b_{\text {Descriptor }}\) slightly modified from Chapman (1976). Letters in parentheses are corres ponding compositional groups of Gaffey and McCord (1977a, b).
\({ }^{\text {C Asteroids }}\) typifying the 34 spectral groups found by McCord and Chapman (1975a, b), augmented by the 44 Nysa group (Zellner et al 1977d).
\(\mathrm{d}_{\text {Typical }}\) colors and albedos are only indicative.

\section*{TASK 2: NATURE OF THE TROJAN ASTEROIDS}

\section*{(Principal Investigator: William K. Hartmann)}

Dr. Hartmann joined Dr. Dale P. Cruikshank for a highly successful observing run devoted to studying the peculiar Trojan asteroid 624 Hektor in February, 1977. Photometric observations were obtained both in the visual and at \(20 \mu\) in the infrared. The observations revealed that we were observing Hektor as close to pole-on as it has even been seen. This was interesting in tying down the pole orientation, but disappointing from the point of view that the magnitude variation was only about 0.06 mag (clearly detected in the visual), making it difficult to detect the change in \(20 \mu\) radiation with period, as shown in Figure 1 , which shows the observations for 14 February. We are continuing a further analysis of the records, including data obtained on 13 February, so that it may ultimately be possible to determine the phase relations of the \(20 \mu\) period. Our original intent was to discriminate a shape variation from an albedo variation by seeing whether the visual and \(20 \mu\) peaks were correlated or anti-correlated, respectively. An irregular shape of Hektor is favored as an explanation of the light variations.

Our observations have allowed an improved measurement of the albedo and dimensions. Our results indicate Hektor is very dark, with visual albedo \(p_{V} 0.025 \pm 0.005\). The dimensions would be calculated as 128 km wide and 275 km long for the Dunlap-Gehrels cigar-shaped model.

Our work has led to consideration of the origin of such an unusual shaped object. It is the largest Trojan, making its origin as a fragment of a larger body seem less likely than if i't were one of the smaller Trojans. We have made preliminary calculations of the possibility that 624 Hektor arose not as a fragment, but as a coalescence of two sub-spheroidal asteroids originally independent in the Trojan cloud. Collision velocities in the Trojan cloud could be lower than the typical collision velocity for belt asteroids. A low-velocity collision could result in a dumbbell-like configuration of two partially fractured bodies not completely oroken apart on impact. Figure 2 shows some marginal eviderice in favor of this interpretation. If Hektor were two ball-like objects in contact, each with different spectrophotometric properties, then the two end-on views should give different spectrophotometric signatures. Figure 2 shows that this is so, and that in fact, the end-on view'in Minimum I (Dunlap-

Gehrels nomenclature) is markedly distinct from the other views, by more than the exror-bar dimension.

Publication of the observations and interpretation is expected in 1978.



Figure 2: A hypothetical interpretation of Hektor is seen in the sketches at the bottom, where the asteroid is pictured as the result of a collision between two spheroidal bodies with different spectrophotometric properties. In this case, the two end-on views would differ, as is actually seen in the spectrophotometry.

TASK 3: INVESTIGATION OF THE DETERMINATION OF ASTEROID MASSES
(Principal Investigator: Donald R. Davis)

The main objective of this task was to search for close encounters between one of the ten largest asteroids and another of the numbered asteroids that would produce observable. perturbations in the smaller asteroid's orbit. Analysis of observation would determine whether or not it would be feasible to measure the mass of the perturbing asteroid. Observations of perturbations in asteroid orbits has led to mass estimates for three asteroids, namely Ceres, Pallas and Vesta (Hertz, H.G., 1968, Science l60, 299; Schubart, J., 1975, Astron. \& Astrophys. 39, 147), which are the only ones for which mass determinations are available. However, many other asteroids are now known to be much larger and presumably much more massive than previously believed, and consequently the orbital perturbation technique due to close encounters might be applicable to these objects.

Table II lists the largest asteroids which were the target bodies for close encounters. A search was made for other numbered asteroids which came within 0.1 AU of the target asteroid between 1970 and 1990. This search was performed using a program originally designed for multi-asteroid flyby mission opportunities. The target asteroid was substituted for the spacecraft in our study. Many close encounters were found during the course of the search, for example, 11 encounters involving 31 Euphrosyne and other asteroids were found. However, a close approach alone is not sufficient to produce an observable deflection; the relative velocity must also be sufficiently slow. At the \(5 \mathrm{~km} / \mathrm{sec}\) mean encounter speed of mainbelt asteroids, an extremely close encounter would be required to produce any observable deflection, hence most of the encounters occurred at too bigh speed to generate any significant orbital perturbation. The deflection angle, \(\theta_{\text {, }}\) was adopted as a measure of the perturbation, where
\[
\theta=\pi-2 \tan ^{-1}\left(1+r v^{2} / \mu\right),
\]
with \(r\) = encounter distance, \(v=\) relative speed of encounter and \(\mu=\) gravitational parameter of target asteroid.
\(\dot{\mu}\) was calculated assuming a density of \(3 \mathrm{gm} / \mathrm{cm}^{3} . \theta\) is essentially the angle through which the asymptote of the hyperbolic approach trajectory is rotated. Table III summarizes the encounters that result in the largest deflections of the encountering asteroid orbit. The question remains, however, as to the feasibility of mass determination based on these encounters. However, before addressing that question, a discussion of the computations leading to Table III is required. The search program uses the orbits listed in the Minor Planet Ephemeris for
TABLE II - LARGEST ASTEROIDS ..... (1976)
Asteroid Diameter (km)
1 Ceres ..... 1003
2 Pallas ..... 608
4 Vesta ..... 538
10 Hygiea ..... 450
704 Interamnia ..... 350
31 Euphrosyne ..... 334
511 Davida ..... 323
65 Cybele ..... 309
52 Europa ..... 289
451 Patientia ..... 275
15 Eunomia ..... 272

TABLE III
ENCOUNTERS FROM 1970-1990 RESULTING IN LARGEST DEFLECTIONS OF THE ENCOUNTERING BODY
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Target \\
Asteroid
\end{tabular} & Encountering Asteroid & Date & Closest Approach (AU) &  & \begin{tabular}{c}
\(\begin{array}{c}\text { Re-encounter } \\
\text { Period } \\
\text { (Years) }\end{array}\) \\
\hline
\end{tabular} \\
\hline 1 Ceres & 534 Nassovia & 12/24/75 & . 023 & 2.8 & 76 \\
\hline 1 Ceres & 1801 1963UR=52SP & 11/19/84 & . 034 & 1.0 & 38 \\
\hline 4 Vesta & 197 Arete & 1/26/76 & . 035 & 2.1 & 18 \\
\hline 4 Vesta & 126 Velleda & 7/10/82 & . 012 & 3.8 & 78 \\
\hline 4 Vesta & 1044 Teutonia & 1/25/79 & . 052 & 2.0 & 30 \\
\hline 4 Vesta & 1601 Patry & 4/15/88 & . 048 & 1.2 & 42 \\
\hline 10 Hygiea & 64 Angelina & 1/21/90 & . 061 & 2.0 & 21 \\
\hline 10 Hygiea & 1363 Herberta & 6/25/82 & . 10 & 1.6 & 43 \\
\hline 15 Eunomia & 1313 Berna & 3/24/69 & . 06 & 1.0 & 550 \\
\hline 52 Europa & 76 Freia & 12/12/82 & . 01 & 2.6 & 44 \\
\hline 65 Cybele & 609 Fulvia & 3/8/70 & . 09 & 0.8 & 37 \\
\hline 511 Davida & 348 May & 10/3/80 & . 01 & 2.8 & 51 \\
\hline
\end{tabular}

1977, augmented for a few asteroids by improved reference orbits from the Minor Planet Center, Cincinnati Observatory. The search program uses these two-body orbits to predict future encountexs. This technique neglects orbital perturbation due primarily to Jupiter; the magnitude of the resulting error increases with the interval between the encounter date and the epoch dates of the orbits. To estimate the effect of this resulting error, several orbits were integrated from their epoch date to the encounter date; Table IV compares the fully integrated runs with the conic search results. Clearly planetary perturbations must be included in the final predictions. A project is currently underway at JPL under the direction of Dr. D. Bender to produce integrated asteroid orbits with epochs spaced every few years. When these results are available, refined predictions of encounter opportunities will be found. It is unlikely that many good encounters were missed during the conic search as the encounter distance criteria of 0.1 AU is quite large.

The feasibility of mass determination from the abovediscussed encounters was addressed by modeling the orbit determination process using simulated observations. To do this, it is necessary to find the "observable", i.e. what are the perturbations in right ascension and declinations resulting from an encounter? The Vesta-Arete encounter was selected for detailed analysis for this pair is known to produce measurable perturbations; however, it is not an enormously large perturbation.

The encounter perturbations were calculated by numerical integrations in which Vesta was introduced as a perturbing body in adaition to the planets Mercury to Neptune. The orbit of Arete was integrated twice; once with zero mass for Vesta and once using a Vesta mass of \(1.2 \times 10^{-10}\) solar masses. Figure 3 shows the resulting perturbation in right ascension, which is the principal observable perturbation for the mass determination process. This figure shows that an observable perturbation does result from this single encounter, but that high quality observations are required to obtain a good mass estimate.

An observation schedule was constructed based on Figure 3 and was the input to a Kalman filter orbit determination program which was modified to solve for the mass of a perturbing body on a known orbit. The Kalman filter technique produces an optimal estimate of the quantities to be determined that is equivalent to a least squares solution when the input measurement errors are uncorrelated and Gaussian distributed. This method has the advantage of considering measurements sequentially, rather than having to repeat the entire solution to ascertain the result of additional measurements. Table \(V\) lists the observations used in the mass determination process. Various combinations of bias and noise were added to the measurements along with different values of "a priori" estimates as to what the measurement errors really were. Table VI summarizes results

TABLE IV
EFFECT OF PLANETARY PERTURBATIONS ON CLOSE ENCOUNTERS. FOR EACH ENCOUNTERING PAIR THE UPPER ENTRY IS BASED ON THE CONIC REFERENCE ORBIT WHILE THE LOWER ENTRY INCLUDES PLANETARY PERTURBATIONS ON THE ORBITS.
\begin{tabular}{|c|c|c|c|c|}
\hline Encountering. Asteroids & Orbit Epoch & Encounter Date & Minimum Separation (AU) & Deflection Angle (II) \\
\hline 4 Vesta & 12/2/62 & 11/30/75 & . 081 & 0.13 \\
\hline 197 Arete & 11/23/56 & 1/26/76 & . 035 & 0.28 \\
\hline 1 Ceres & 12/2/52 & 12/28/75 & . 020 & 1.92 \\
\hline 534 Nassovia & 12/2/62 & 12/24/75 & . 023 & 1.67 \\
\hline * 4 Vesta & 12/2/62 & 5/23/72 & . 062 & . 15 \\
\hline 1603 Neva & 5/5/35 & 6/16/72 & . 086 & . 13 \\
\hline *4 Vesta & 12/2/62 & 1/25/79 & . 052 & . 21 \\
\hline 1044 Teutonia & 12/20/51 & 2/21/79 & . 107 & . 09 \\
\hline
\end{tabular}
*Vesta integration to \(8 / 6 / 75\)

- птー

TABLE V
ARETE OBSERVATIONS FOR VESTA MASS DETERMINATION
\begin{tabular}{llll} 
Date & Julian Day & Right Ascension & Declination \\
\cline { 2 - 2 } & 2443930.5 & 259.51554 & -19.627217 \\
\(4 / 7 / 79\) & 2443970.5 & 269.73373 & -20.80407 \\
\(5 / 17 / 79\) & 2444010.5 & 271.38189 & -22.40096 \\
\(6 / 16 / 79\) & 2444040.5 & 265.76601 & -24.23964 \\
\(7 / 16 / 79\) & 2444070.5 & 259.22205 & -25.82428 \\
\(4 / 6 / 83\) & 2445430.5 & 211.61586 & -0.86297 \\
\(4 / 20 / 84\) & 2445810.5 & 321.72147 & -19.78834 \\
\(6 / 19 / 84\) & 2445870.5 & 340.66124 & -17.90568 \\
\(8 / 8 / 84\) & 2445920.5 & 342.10084 & -22.51729 \\
\(8 / 7 / 84\) & 2445980.5 & 332.89165 & -25.35414
\end{tabular}

\section*{TABLE VI \\ MASS ESTIMATION OF 4 VESTA FROM ORBITAL PERTURBATION OF 197 ARETE DURING 1976 ENCOUNTER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Number of Observations & Observation Noise/ Orbit Quality & A priori mass & A priori Standard Deviation & \begin{tabular}{l}
Mass \\
Estimate
\end{tabular} & Standard Deviation \\
\hline 5 & \begin{tabular}{l}
Precise Orbit \\
1" Bias \\
1.5" Noise
\end{tabular} & \(2^{-10}\) & \(2^{-10}\) & \(1.6^{-10}\) & \(3.5^{-11}\) \\
\hline 10 & Fair Orbit 1" Bias 1.5" Noise & \(I^{-20}\) & \(2^{-10}\) & \(-6.7^{-11}\) & \(1.8^{-10}\) \\
\hline 10 & Good Orbit 1" Noise & \(1^{-20}\) & \(2^{-10}\) & \(8 \cdot 3{ }^{-11}\) & 1.1-10 \\
\hline 10 & \begin{tabular}{l}
Precise Orbit \\
1" Noise
\end{tabular} & \(1^{-20}\) & \(2^{-10}\) & \(1.0^{-10}\) & \(4.2^{-11}\) \\
\hline
\end{tabular}
from the mass determination program for the Vesta-Arete encounter of 1976. This table shows that mass-information can be recoverad from a relatively small number of observations even in the absence of any a priori knowledge of the asteroid's mass. However, recovery of this information is dependent upon having a very accurate orbit of the perturbed body prior to the encounter and also upon obtaining;: high quality observations after the encounter.

A favorable encounter involving 1 Ceres and 534 Nassovia occurred in December 1975. Subsequent perturbations in the orbit of 534 Nassovia are shown in Figure 4 and are considerably larger than those resulting from the vesta-Arete encounters. Simulated observations of 534 Nassovia were used to estimate the mass of Ceres, the results of which are shown in Table VII. A Ceres mass of \(5.9 \times 10^{-10}\) solar masses was used to generate the observation and the estimated value after 10 observations is \(5.2 \times 10^{-10}\) with a standard deviation of \(2.1 \times 10^{-10}\). The estimated value differs from the true value by \(12 \%\), which is quite consistent with the conservative standard deviation. This case assumed no a priori knowledge of ceres mass ( 0.0 ) and a large uncertainty in the initial estimate ( \(6.0 \times 10^{-10}\) ) while the observation noise was 1". Additional observations would further improve the above estimates particularly in reducing the standard deviation of our estimate.

Several useful results were identified in this phase of the asteroid mass determination project. First, was the prediction of encounters potentially suitable for mass estimation. The Ceres-Nassovia encounter should produce observable perturbations in Nassovia's orbit over the next few years. High quality observations should readily provide an independent determination of Ceres' mass. Second, the "short arc" technique used here, i.e. observations before and after the encounter but over a limited time, can be used to estimate masses and should complement the "long arc" approach previously employed to determine masses. Third, although there probably will be other suitable encounters identified among those listed in rable III, there are not good encounters involving all asteroids, hence this method does not appear to be a general technique that could be applied to systematically explore asteroid masses. Rather it is applicable to specific cases and should provide independent estimates to those previously obtained or mass determinations being made at JPL based on Viking orbiter perturbations.

Additional sources of asteroid orbits were briefly considered, primarily the Palomar--Leiden Survey, list of Class I orbjits. However, even though the orbits are probably sufficiently good to recover the asteroid, they are generally not precise enough to permit reliable encounter predictions to be made.
munor mase
noldout frame 2


Ficure 4

\section*{TABLE VII}

MASS ESTIMAPION OF 1 CERES FROM ORBITAL PERTURBATIONS OF 534 NASSOVIA
\begin{tabular}{ccc}
\begin{tabular}{c} 
Observation \\
Number
\end{tabular} & Date & \begin{tabular}{c} 
Residuals \\
R.A. (") DEC (")
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Ceres Mass \\
Estimate. \\
(Solar Mass \\
Units)
\end{tabular}\(\quad\)\begin{tabular}{c} 
Standard \\
\hline
\end{tabular}
\begin{tabular}{llllll}
1 & \(5 / 28 / 78\) & 2.5 & 0.4 & \(1.7^{-10}\) & \(5.0^{-10}\) \\
2 & \(6 / 17 / 78\) & 1.8 & 0.2 & \(1.8^{-10}\) & \(5.0^{-10}\) \\
3 & \(7 / 7 / 78\) & 1.6 & 0.0 & \(1.8^{-10}\) & \(5.0^{-10}\) \\
4 & \(9 / 20 / 79\) & 7.6 & 2.2 & \(2.4^{-10}\) & \(4.6^{-10}\) \\
5 & \(10 / 10 / 79\) & 0.1 & 0.0 & \(2.4^{-10}\) & \(4.6^{-10}\) \\
6 & \(10 / 30 / 79\) & 0.0 & 0.0 & \(2.4^{-10}\) & \(4.6^{-10}\) \\
7 & \(12 / 3 / 80\) & 2.3 & 0.2 & \(5.0^{-10}\) & \(2.4^{-10}\) \\
8 & \(12 / 23 / 80\) & 0.2 & 0.0 & \(5.1^{-10}\) & \(2.2^{-10}\) \\
9 & \(1 / 12 / 81\) & 0.1 & 0.0 & \(5.1^{-10}\) & \(2.2^{-10}\) \\
10 & \(2 / 2 / 81\) & 0.1 & 0.0 & \(5.2^{-10}\) & \(2.1^{-10}\)
\end{tabular}

The attached Exhibit \(A\) is the abstract submitted to the Boston meeting of the Division for Planetary Sciences of the American Astronomical Society to be held October 26-30, 1977. This meeting will provide an opportunity to alert observers to the necessity of obtaining observations of 534 Nassovia over the next few years.

Asteroid Mass Determinations: A Search for
Further Encounter Opportunities. D. R. DAVIS, Planetary Science Inst., and D. F. BENDER, JPL - Asteroid mass measurements, which are currently available only for Ceres, Pallas and Vesta, have been based on observations of orbit perturbations ärising`from periodic close encounters between two asteroids ( \(J\). Schubert, 1974 Astron. Astrophys. 30, 289; H. G. Hertz, 1968 Science 160 , 299). As many asteroids are substantially larger and hence more massive than previously believed, a search was undertaken to determine if there exist additional encounters involving one of the ten largest asteroids and another numbered asteroid. The search covered the interval from 1970 to 1990. The table below summarizes the best encounters found so far for producing observable changes. The magnitude of the perturbations resulting from the encounter was estimated based on an assumed asteroid mass. In order to ascertain observational requirements, a simulated observation schedule was constructed and a differential correction model was used to estimate the asteroid mass for various positional accuracies of the observations.


Type of paper (check one)
1) oral presentation \(x\) min.
\(\square 10 \mathrm{~min}\).
2) read by title only \(\square\)
3) invited lecture * \(\square\)
4) percent published elsewhere

Billing information:
We agree to pay \(\$ 20\) in partial support of the publication of the abstract in the B.A.A.S.

Date:


Planetary Science Institute Institution to be billed

2030 East Speedway, Suite 201
Tucson, Arizona 85719


ES Y g nature of Authorized Agent

TASK 4: SATURN'S RINGS: PHOTOMETRY, STRUCTURE, AND DYNAMICS
(Principal Investigator: Michael J. Price)

\section*{A. PHOTOMETRY}
1. Azimuthal Clumping and Quadrant Asymmetry

Investigations of longitudinal clumping of particles within the ring system were made during the current Planetary Astronomy contract. Observations were hampered by poor observing conditions. Even so, UBV pinhole scans of Saturn's rings, perpendicular to the major axis across the west ansa were obtained on 1977 March 7 and April 7 using the Franz area-scanner mounted on the 72 inch aperture Perkins reflector at Lowell Observatory. Seeing conditions on March 7 were average-to-poor; on April 7, they were quite variable. Each night the rings were monitored continuously for \(\sim 2\) hours at a fixed position relative to the center of the system.

On March 7 , real fluctuations ( \(\pm 3 \frac{1}{2}\) percent) in surface brightness of the rings were found on a time scale \(\sim 5-10\) minutes. Fluctuations were correlated in both \(B\) and \(V\) colors indicating their reality. On April 7, the photometry was not adequate to determine if brightness fluctuations were present. More observations will be made at the next Saturn apparition during the 1977/8 winter.

Insufficient observing time together with inadequate weather conditions prevented further study of the quadrant asymmetry until the next Saturn apparition during the 1977/8 winter.

\section*{2. Phase Effect}

Observations to study differences in the phase effects of rings \(A\) and \(B\) were obtained on five nights during the 1976/7 Saturn observing season. The phase curve was adequately sampled. Scans were made in the three standard UBV colors using the Franz area scanner with a \(100 \mu\) circular aperture. Data were taken with the 42 inch aperture reflector at Lowell Observatory. To expedite the analysis, information on the point spread function was also obtained using slit-scanning of selected comparison stars. Observing dates, and the corresponding phase angles, are listed in Table VIII.

Analysis of the photometric data to determine the absolute and relative surface brightnesses of rings \(A\) and \(B\) has not yet been completed at Lowell Observatory. Theoretical interpretation of the anticipated results has been completed at PSI.

\section*{TABLE VIII}

SATURN'S RINGS: PHASE EFFECT
\begin{tabular}{cc} 
Date & Phase Angle (Degrees) \\
1977 February 3 & 0.2 \\
1977 February 4 & 0.3 \\
1977 February 13 & 1.2 \\
1977 February 14 & 1.4 \\
1977 May 4 & 6.3
\end{tabular}

Provided that the phase effect ratio between rings \(A\) and \(B\) does not vary by more than 215 percent, the concept of mutual shadowing within the ring system can safely be abandoned. Results on the study will be published in a paper entitled "On the Phase Effect in Saturn's Rings" which is currently in preparation. .

\section*{3. Saturn Disk}

UBV pinhole scans of the Saturn disk were made using the Franz area-scanner mounted on the 42 inch reflector at Lowell Observatory. Chord scanning of Saturn's disk over a wide range of latitudes was carried out on 1977 April 6 and May 9. Data for April 6 are illustrated in the accompanying Fig. 5. Limb-profiles, spaced parallel to the equator, were obtained over the entire southern hemisphere of the planet. Saturn was found to exhibit strong limb-brightening in the ultra-violet, moderate limb-brightening at the blue wavelengths, and strong limb-brightening in the visual region of the spectrum. Latitudinal variations in the disk profiles were found. In general, the degree of limb-brightening decreases towards the polar region. Pronounced asymmetry is apparent in the disk profiles in each color. The sunward limb is significantly brighter than the opposite limb. This asymmetry depends on phase angle; approaching zero at opposition, it reaches a maximum near quadrature.

The observations have been interpreted using an elementary radiative transfer model. The Saturn atmosphere was approximated by a finite homogeneous layer of isotropically scattering particles overlying a Lambert scattering cloud layer. The reflectivity of the clouds is a strongly dependent function of wavelength. The best-fitting model consists of a clear \(\mathrm{H}_{2}\) layer of column density \(\sim 31 \mathrm{~km}\)-amagat above the clouds; the maximum permitted \(\mathrm{H}_{2}\) column density was \(\sim 46 \mathrm{~km} \cdot\) amagat. The phase-dependent asymmetry in the disk profiles is a natural consequence of the scattering geometry. The results are consistent with current knowledge of the Saturn atmosphere. The observations, and their analysis, will be published in a paper entitled "Saturn: UBV Photoelectric Pinhole Scans of the Disk" which is currently in preparation. The abstract of a paper to be presented at the Ninth AAS/DPS Meeting in Boston is contained in Appendix \(C\).

\section*{PINHOLE SCANS OF SATHEN DHEK SOUTHERN REASYPRERE}

\author{

}


Figure 5

\section*{B. DYNAMICS}

The longitudinal brightness variations observed in Saturn's ring (Franz and Price, unpublished observations) may result from a size distribution among the ring particles or it may arise from a physical clustering of ring particles. If this phenomena does reflect the real particle distribution in longitude, then what causes this azimuthal variation? To address this problem, a model was developed to examine the effect of longitude dependent harmonics in Saturn's gravity' field on ring particles. The effects of such terms has been widely studied for Earth-orbiting satellites (Blitzer, J., 1966, JGR 71, 3557; Blitzer, L., Davis, D. and DeSulima, T., 1968, AIAA 6, 1199) and these results may be applied to Saturn.

The lowest order longitude dependent (tesseral) harmonic is the one arising from an equatorial ellipticity, the \(J_{22}\) term. The effect of this term on synchronous orbits of small eccentricity and inclination is to produce four equilibrium positions separated \(90^{\circ}\) in longitude. Two points are stable, namely those along extensions of the minor axis of the elliptical-shaped equator, while the other two are unstable. An orbit in the vicinity of a stable point exhibits large amplitude, long period oscillations about the stable point when viewed in a coordinate system rotating with the planet. The amplitude and period of the libration, which is predominately in longitude, is determined by the initial conditions and can be as large as \(90^{\circ}\). However, if the initial location is too far from the stable points, the particle circulates rather than librates. The libration zone is quite narrow in the radial direction with the maximum width of the zone varying with \(J_{22}\).

To ascertain the importance of these gravitational harmonic resonances, the location of resonances relative to the ring system must be known. Table IX gives the location of synchronous orbits about Saturn, which is the region where \(J_{22}\) resonance effects would be important together with pertinent ring parameters. Figure 5 shows the resonance location on a brightness profile of Saturn's ring system with the indicated resonance zone width determined by the difference between the equatorial and temperate rotation periods. If the actual rotation period for the mass distribution producing the \(J_{22}\) harmonic was known, then the actual synchronous orbit distance could be determined. It is interesting to note that the synchronous orbit distance is quite close to the region of peak brightness of the ring system.

Because the lowest order resonance, the \(J_{22}\) resonance, may be relevant to the structure of the ring system, a simple

TABLE IX
SYNCHRONOUS ORBIT DISTANCES FROM SATURN
\begin{tabular}{|c|c|c|}
\hline Orbital Period & Distance from Saturn Using -Keplerian Orbits ( \(10^{5} \mathrm{~km}\) ) & \begin{tabular}{l}
Distance from \\
Saturn including \(J_{2}\) and \(J_{4}\) correction ( \(10^{5} \mathrm{~km}\) ).
\end{tabular} \\
\hline \begin{tabular}{l}
\[
10^{\mathrm{h}} 14^{\mathrm{m}}=
\] \\
Equatorial Period
\end{tabular} & 1.092 & 1.095 \\
\hline \[
\begin{aligned}
& 10^{\mathrm{h}} 38^{\mathrm{m}}= \\
& \text { Temperate Zone Period }
\end{aligned}
\] & 1.121 & 1.124 \\
\hline Inner Edge of A Ring & \(\sim 1.20\) & \(m \times\) \\
\hline Outer Edge of \(B\) Ring & \(\sim 1.16\) & --- \\
\hline
\end{tabular}

model was constructed to see if resonance trapping of ring particles would produce a variation in the spatial density and if so , what would be the characteristics of the variation. The system of particles was taken to be moving initially in circular Keplerian orbits with a constant area density of uniform particles. The \(J_{22}\) perturbation was introduced and the size of the libration regions found. The initial conditions determine whether particles at particular locations withir the ring librate or circulate. Within the libration zone the distribution of particles in longitude was found by first calculating the period and maximum amplitude of the libration orbit based on the initial conditions. The libration zone was divided into longitude increments \(\Delta \lambda\), and the fraction of the period that particles spend in each zone \(\Delta \lambda\) was found from the libration orbit. By summing over all libration orbits and weighting each orbit by the number of particles moving on it, a longitude distribution of particles in the libration zone was constructed.

In order to estimate the brightness variation in the ring it was assumed that outside the libration zone the distribution was uniform. Insofar as only the \(J_{22}\) perturbation is treated, this approximation is valid far away from the resonance; however, it does neglect the transition region where particles are circulating but might have a nonuniform spatial distribution. This effect should be incorporated if more sophisticated models are ever required.

The longitude brightness variation was then found by assuming that brightness is proportional to the particle density. The magnitude of the effect is proportional to the radial extent of the libration zone which is determined by the \(J_{22}\) coefficient and is given as
\[
\Delta_{\max }=4 \sqrt{J_{22}} R_{e^{\prime}}
\]
where \(\Delta_{\text {max }}\) is the maximum radial deviation from the exact synchronous orbit distance, and. \(\mathrm{R}_{e}\) is the planet's equatorial radius.

Table \(X\) gives the maximum zone size for three levels of \(J_{22}\). Table XI gives the particle density in the libration zone relative to the initial uniform distribution, where each longitude zone contains the area weighted average of librating and circulating particles. Finally, Table XII gives the longitude brightness variation in ring \(B\) for the two levels of \(J_{22}\). In terms of the model developed here, \(J_{22}\) would have to be greater than \(\sim 2 \times 10^{-5}\) for the effect to be observable, with a \(2 \%\) brightness variation.

\section*{TABLE X \\ SIZE OF IIIBRATION ZONES}
\begin{tabular}{lcc}
\(J_{22}\) & \(\Delta_{\text {max }}\) & Ratio of \(\Delta_{\text {max }}\) to \\
\(\cdots\) & (km) & \begin{tabular}{c} 
Bring width
\end{tabular} \\
\(10^{-6}\) & 240 & .01 \\
\(10^{-5}\) & 760 & .03 \\
\(10^{-4}\) & 2400 & .10
\end{tabular}

\section*{TABLE XI}

\section*{RELATIVE PARTICLE DENSITIES}

\section*{INSIDE LIBRATION ZONES}

Longitude Interval
From Stable Longitude

> Relative Density
\begin{tabular}{cc}
\(0-10\) & 1.41 \\
\(10-20\) & 1.38 \\
\(20-30\) & 1.32 \\
\(30-40\) & 1.17 \\
\(40-50\) & 1.17 \\
\(50-60\) & 1.02 \\
\(60-70\) & .91 \\
\(70-80\) & .91 \\
\(80-90\) & 1.0
\end{tabular}

\section*{TABLE XII}

\section*{LONGITUDE BRIGHTNESS VARIATION OF RING B}
\begin{tabular}{|c|c|c|}
\hline Longitude Interval & \multicolumn{2}{|l|}{Relative Brightness} \\
\hline From Stable Longitude & \(10^{-4}\) & \(10^{-5}\) \\
\hline 0-10 & 1.04 & 1.013 \\
\hline 10-20 & 1.04 & 1.012 \\
\hline 20-30 & 1.03 & 1.010 \\
\hline 30-4.0 & 1.02 & 1.005 \\
\hline 40-50 & 1.02 & 1.005 \\
\hline 50-60 & 1.002 & 1.001 \\
\hline 60-70 & . 99 & . 997 \\
\hline 70-80 & . 99 & . 997 \\
\hline 80-90 & 1.0 & 1.0 \\
\hline
\end{tabular}

Although quantitative predictions cannot be made as \(J_{22}\) for Saturn is unknown, this model does lead to features that could be investigated observationally. First, the longitude variations should occur only in the outer part of ring \(B\). In particular, the A ring would not be expected to show the longitude variation. Second, the time required to go from maximum to minimum brightness should be approximately one quarter of the rotational period of Saturn or about 2.5 hours. However, given the nature of the calculated profiles most of the brightness change occurs over a small longitude region from \(15^{\circ}-55^{\circ}\) and should occur on a timescale of the order of an hour.

This model may be only part of the answer as to the nature of the longitude brightness variation in Saturn, but if any of the predicted characteristics could be observed, this technique provides a method for determining the gravitational coefficient \(J_{22}\) for Saturn which would have possible interesting implications for the interior structure of Saturn and perhaps other giant planets.

\section*{C. STRUCTURE}

A portion of our study of ring systems was to gather observational data on the probable shapes of particles in ring systems governed by collisions. Our earlier study' (Greenberg, Davis, Hartmann and Chapman, 1977, Icarus 30, 769) showed that collisions at low speeds are possible in the Saturn rings, and that fragmentation may have governed the evolution of the ring particles. Our initial hypothesis was that aligned particles of non-spherical shape might play a role in explaining the observed brightness asymmetries in Saturn's rings. Therefore', Dr. Hartmann has made a series of shape measurements of all particles generated in his experiments at Ames Research Center on fragmentation of basalt spheres and irregular igneous rocks. These bodies were fragmented at velocities of 26.0 to \(50.4 \mathrm{~m} / \mathrm{sec}\).

If particles were aligned, the extreme light variations that would be observed would depend on the ratio of minimum to maximum cross section, or \(B C / A C\), where \(A, B\), and \(C\) are principal diameters. This reduces to an extreme light variation of B/A. Measurements of 46 particles showed a median ratio of 0.69 and a similar mean of 0.71 , illustrated in Figure 6. An interesting trend is shown in Figure 7, which indicates that the largest fragments (defined as maximizing mass of fragment/mass of initial body) tended to be more spherical than the smallest fragments. Extreme light ratios of less than 0.4 were found among the smallest fragments, but no large fragments had extreme light ratios less than about


Figure 6: Histogram of frequencies of fragments of different shapes. Abscissa shows maximum light ratio that could be observed if particle were rotating around its principle axis. Alignment of particles by tidal or other forces could affect photometry of ring system.


Figure 7: Relation of shape (light ratio) and fragment size (scaled to size of parent object). Data suggest that the smallest fragments have the greatest range of shapes and the largest fragments are the most nearly spherical.
0.8. We have not carried out further application of these data to models of photometric variations or asymmetries in Saturn's rings, partly because other models, such as density wave theories, have been proposed to explain the quadrant asymmetries, and partly because of the more fruitful theoretical investigation of effects to explain the light variations observed by Drs. Price and Franz.

We have also noted that scattering theories of radiation transfer in the rings have tended to assume spherical particles, and that elongated particles, particularly in the presence of any mechanisn of preferential alignment, could modify the scattering theory as well as the more straightforward models of direct reflection. However, our data on shapes of macroscopic (mm-cm dimension) fragments do not establish shapes of wavelength-scale scatterers. Further investigation of this problem might be useful.

TASK 5: URANUS: AEROSOL DISTRIBUTION IN THE ATMOSPHERE (Principal Investigator: Michael J. Price)

Studies of the phenomenon of limb-brightening on Uranus resulted in the production of several related papers during the course of the current Planetary Astronomy contract. In a Letter, Franz and Price (1977, Astrophys. J. 214, L145) reported pinhole photoelectric area-scanning photometry of the Uranus disk which demonstrated directly the existence of both limb and polar brightening in the \(7300 \AA \mathrm{CH}_{4}\) band. Polar brightening, which appeared to be present also at continuum wavelengths, was interpreted as being caused by scattering in a thin aerosol haze located over the polar regions. A reprint is contained in Appendix D.

Full details of the 1976/7 observational program are reported in a paper entitled "Limb-Brightening on Uranus: The Visible Spectrum. II", recently submitted for publication in Icarus. A preprint is contained in Appendix E. New narrow-band (100R) photoelectric area-scanning photometry of the Uranus disk is reported. Observations were concentrated on the two. strong \(\mathrm{CH}_{4}\) bands at \(6190 \AA\) and at \(\lambda 7300 \AA\). Adjacent continuum regions at \(\lambda 6400 \AA\) and at \(\lambda 7500 \AA\) were also measured for comparison. Both slit and pinhole scans were made in orthogonal directions. Disk structure in each waveband is apparent through lack of circular symmetry in the intensity distribution over the Uranus image. Polar brightening is especially prominent in the \(\lambda 7500 \%\) waveband.

Coarse quantitative determinations of the true intensity distribution over the Uranus disk were made. For the \(\lambda 61900\) \(\mathrm{CH}_{4}\) band, Uranus exhibits a disk of essentially uniform intensity except for a hint of polar brightening. For the \(\lambda 7300 \mathrm{~A}_{\mathrm{CH}_{4}}\) band, moderate limb-brightening is apparent. Specifically, the true intensities at the center and limb of the planetary disk are approximately in the proportion 1:2. Extreme limb-brightening, with a corresponding intensity ratio greater than 1:4, is not permitted by the observational data.

Theoretical analysis of the limb profile of Uranus in the \(\lambda 7300\) \& \(\mathrm{CH}_{4}\) band has been completed. The results are contained in a paper, currently in preparation, entitled "Limb-Brightening on Uranus: An Interpretation of the \(\lambda 7300 \AA\) Methane Band." Our earlier observational results have been interpreted on the basis of a simple radiative transfer model containing an elementary vertical inhomogeneity. The Uranus atmosphere is approximated by a finite upper layer
of conservatively scattering particles below which lies a semi-infinite honogeneous \(\mathrm{H}_{2}-\mathrm{CH}_{4}\) gas. Isotropic scattering is assumed. The measured degree of limb-brightening is consistent with an upper layer of optical thickness ~0.1 together with a \(\mathrm{CH}_{4} / \mathrm{H}_{2}\) mixing ratio \(22 \times 10^{-3}\) in the lower atmosphere. \(\mathrm{CH}_{4}\) appears to be overabundant by a factor ~3 compared with the solar value. Our conclusions are discussed in the context of recent models of the Uranus atmosphere by Daniel.son (1977, Icarus 30, 462) and by Trafton (1976, Astrophys. J. 207, 1007) - The abstract of a paper to be presented at the Ninth AAS/DPS Meeting in Boston is contained in Appendix F .

APPENDIX A

\section*{THE EVOLUTION OF ASTEROIDS AND}

METEORITE. PARENT-BODIES (Invited Review)
Clark R. Chapman, Planetary Science Institute, 2030 E. Speedway, Suite 201, Tucson, AZ 85719

As distinct from other planetary scientists, meteoriticists are studying planets unknown. Rocks fall from the sky, they are measured, and inferences are made concerning conditions on other planets -- but what planets? Evidently they are asteroids or comets, for if rocks don't reach Earth from the moon, they certainly don't come from much more distant and much larger planets. And all other bodies are defined to be asteroids and comets. If dead, devolatilized comets are also called "asteroids", then virtually all meteorites come from asteroids.

There are other ways of learning about asteroids than by drawing inferences from stones that fall from the skies. They are the techniques of astronomy. While these techniques are often more limited than meteoritical techniques, they provide kinds of information about asteroids that are impossible to infer from meteorites. (e.g. orbital characteristics and physical shapes) or can be inferred from meteorites only through elaborate models (e.g. parent-body sizes). All meteoritical and astronomical data would be much more useful, of course, if we could identify individual asteroids (or at least groups of asteroids) as the parents of individual meteorites (or at least classes of meteorites). Here again, the astronomical techniques --
despite their limitations -- hold promise of providing the required links.

Much astronomical data has been gathered about asteroids during the past decade. We know the colors, albedos, diameters, shapes, spin periods, and orbital family relationships for hundreds of bodies. Progress has been made in understanding the orbital dynamical evolution. of asteroids and their collisional interactions. Models for the evolution of meteorite parentbodies may now be compared with expectations, for instance, of asteroid collision rates based on our knowledge of the frequency of asteroids of different compositional classes and of their collisional cross-sections.

Results of these observational and theoretical programs provide a géneral picture of consistency: substantial parentbodies for most meteorite types appear to exist in the main asteroid belt or among the Apollo and Amor asteroids, to the degree we can confidently interpret asteroid spectra in terms of major mineralogies and ascribe such assemblages to different meteorite types. Collisional and dynamical evolution of the asteroids can indeed yield the observed numbers of meteorites on Earth. Inferences about the early accretion and subsequent collisional evolution of asteroids that are consistent with the physical and orbital properties of present-day asteroids are also consistent with many of the inferences that have been based on meteoritical and cosmochemical research; for instance, regolith environments have existed in the past,
and may still exist on some asteroids, to provide for the creation of brecciated and gas-rich meteorites.
, But there are also certain important inconsistencies emerging from the synthesis of astronomical and meteoritical data, and fascinating new questions emerge. For example, while we can readily identify the Earth-approaching asteroids as the parent-bodies for many ordinary chondritic meteorites, it is increasingly unlikely that sizable parent-bodies for either these short-lived asteroids or chondritic meteorites will be found in the main asteroid belt. What are the cosmochemical implications if we must identify the ordinary chondritic parent-bodies as cometary cores? Alternatively, it may be necessary to identify the so-called s-type main-belt asteroids as ordinary chondrites, but that would require that an as-yet-not-understood process is modifying the infrared spectra of those asteroids.

Other interesting problems concern Vesta; It seems to be the only large candidate parent-body for the eucrites, howardites, and diogenites. Yet as Wetherill has said, it is hard to understand how eucritic basaltic surface flows, formed near the beginning of solar system history, can have been preserved on Vesta for all this time, given the very high collision rates to which all asteroids have been subjected over the intervening duration. And we still do not understand how to deliver fragments of Vesta to the Earth in sufficient
quantities to account for the observed numbers of basaltic achondrites.

Still other questions concern such diverse bodies as Ceres and the Martian satellite Phobos. Both bodies are inferred to be of carbonaceous chondritic composition, on the basis of their albedos, spectra, and bulk densities. How can such a large body as Ceres have failed to melt if a neighboring, smaller body like Vesta did melt? How can a carbonaceous body be in Martian orbit, well inside the zone. where carbonaceous material is believed to have accreted (the outer part of the asteroid belt and beyond)? Personally, I believe that it is not yet proven that Ceres and Phobos are carbonaceous.

The major result of asteroid research of the 1970's, I believe, is the recognition that asteroid collisions have probably been much more frequent than was believed; this recognition has emerged from observational studies of asteroid albedos and sizes combined with improved collisional modelling. Collisions, both erosive and catastrophically destructive, have been very important through the last 4 aeons, quite apart from the possibly even higher collision frequencies in still earlier times. - Most asteroids, even quite large ones, must be regarded as fragments. Original surface layers of asteroids must have been destroyed to depths of many tens of kilometers. There are many implications
for meteoritics, including questions of accessibility of phases formed deep in differentiated parent-bodies, modification of chronological systematics, and the extent of regolith environments in parent-bodies.

APPENDIX B
THE ASTEROIDS
Clark R. ChapmanPlanetary Science InstituteTucson, Axizona 85719
            James G. Williams
            Jet Propulsion Laboratory
                Pasadena, California 91103
                    and
            William K. Hartmann
                Planetary Science Institute
            Tucson, Arizona 85719
Running Head: Same as above
Address and telephone number of author to whom proofs are to be sent:
Dr. Clark R. Chapman
Planetary Science Institute
2030 East Speedway, Suite 201
Tucson, Axizona 85719
(602) 881-0332

Submitted to: Annual Review of Astronomy and Astrophysics

Slightly Revised: October .20, 1977

\section*{CONTENTS}
I. Introduction ..... 1
II. Observational Characteristics ..... 2
A. Photometry ..... 2
B. Rotations ..... 3
C. Diameters and Albedos ..... 5
Direct Measurements ..... 5
Occultations ..... 6
Polarimetric Method ..... 7
Best-Known Diameters ..... 8
D. Masses and Densities ..... 9
E. Spectrophotometry and Surface Compositions ..... 10
Astronomical Observations ..... 10
Compositional Interpretation ..... 11
Compositional Types ..... 13
F. Surface Textures and Regoliths ..... 15
G. Size Distribution ..... 16.
III. Àsteroid Collisions ..... 17
A. Erosion and Fragmentation ..... 17
B. Asteroid Rotations ..... 21
IV. Dynamics and Orbital Evolution ..... 23
A. Introduction ..... 23
B. Commensurabilities and Kirkwood Gaps ..... 23
C. Secular Resonances ..... 34
D. Argument of Perihelion: Libration ..... 35
E. Material Transport from the Asteroid Belt ..... 36
F. Poisson's Theorem ..... 37

\section*{IV. (Cont.)}
G. Planetary Masses 40
H. Catalogs and Selection Effects . 40
I. Families 43
J. Apollo, Amor, and Mars-Crossing Asteroids 44
V. Ramifications for Planetary Evolution 47
A. Asteroids as Planetesimals 47
B. Early Orbital Evolution : 48
C. Geochemical Evolution of Asteroids 51
I. INTRODUCTION

The asteroids axe small rocky bodies that orbit in modestly eccentric and inclined oxbits, mainly between the orbits of Mars and Jupiter. With the comets, they are the only known population of residual planetesimals from the earliest epochs of solar system history. Despite their collisional evolution, their thermal and geological evolution apparently has been modest compared with that for main planets and their orbital evolution has been modest compared with that of comets. Thus they, along with their fragments among the meteorites, hold special clues for us about the early development of the solar system. Their dynamical and collisional evolution continues to contribute to the major geological events (impact cratering) on the less geologically active planets, such as the moon and Mercury

The modern era of asteroid studies commenced with the 12 th IAU Colloquium, held in Tucson, Arizona, in 1971 ("Physical Studies of Minor Planets"; cf the proceedings, edited by Gehrels 1971). Since then, progress in understanding asteroids has been exceedingly rapid, spurred especially by several astronomical observing programs that started about 1970. Especially noteworthy are the determinations of asteroid sizes and mineralogical compositions and theoretical understanding of asteroid dynamical and collisional evolution. These have begun to yield a fruitful synthesis with studies of meteorites, classes of which are now thought to derive from asteroids.

We regret that space limitations prohibit us from referencing most of the cogent literature of the past decade; we are restricted to especially significant or recent papers and those that review subfields of
asteroid science. Further, we xegret that we cannot tabulate recent physical and orbital data for more than a handful of bodies. Reference is made to the computerized TRIAD file of asteroid data (Bender et al 1978) and recent published compilations by contributors to that file.

\section*{II. OBSERVATIONAL CHARACTERISTICS}
A. Photometry

Photometry is the only technique pertinent to physical properties of asteroids (chiefly size and albedo) that was regularly applied until the last few years. Detailed photometric programs yield lightcurves (Sect. II B) and phase angle variations (see review by Gehrels 1970). The \(B\) magnitude of an asteroid, on the standard UBV system, varies (1) inversely as the square of the (known) distances from both Sun and Earth; (2) directly with the geometric albedo and with the reflecting crosssection (neither of which is known independent of the other and both of which vaxy with spin and with viewing aspect); and (3) in an unknown manner with respect to scattering geometry (the unknown dependences with incidence and reflection angles for each surface element are integrated into an effective phase relation for the whole face of the object).

The adopted fundamental brightness parameter for asteroids is the absolute magnitude \(B(1 ; 0)\) : the \(B\) magnitude "at \(0^{\circ}\) phase angle" reduced to 1 AU distances from Earth and Sun. The latest tabulation, based on photoelectric data supplemented by photographic photometry, is by Gehrels \& Gehrels (1977) and is included in TRIAD. Phase variations have been measured•for few asteroids, so tabulated magnitudes are extrapolated from
observed phases to \(0^{\circ}\) phase by a single relationship for all asteroids that artificially excludes the opposition effect (brightness surge at \(\because 7^{\circ}\) phase): beyond \(1.0^{\circ}\), the adopted correction is \(0.023 \mathrm{mag} /\) deg (see Gehrels \& Gehrels 1977 for details). Although the adopted correction for opposition effect is based on data for the anomalous astexoid 20 Massalia, the effect is probably due to surface texture and is similax for all measured asteroids (Gehrels \& Taylor 1977). But phase corrections vary among asteroids and probably depend on both regolith texture and surface composition, which may depend on asteroid size. Since Gehrels' correction is based on diverse photographic magnitudes for a modest non-bias-corrected sample of asteroids, it may not be representative and could even lead to systematic diameter-dependent exrors. Indeed faint Palomax-Leiden Survey asteroids (van Houten et al 1970) vary with \(0.039 \mathrm{mag} / \mathrm{deg}\) and Bowell (1977) reports different phase variations for \(C\) and \(S\) asteroids (composition types, Sect. II E). To avoid confusion, Gehrels' corrections have been adopted for cautious use until more phase dependences are studied. In the meantime, one may expect large exrors in some tabulated magnitudes such as the case of Ceres (Taylor et al 1976), for which a change of 0.3 mag was found due to an anomalous phase factor.

\section*{B. Rotations}

Asteroid magnitudes vary periodically as they spin, mostly due to changes in cross-section for nonspherical bodies but partly due to albedo variations and scattering anomalies. Amplitudes axe typically 0.1 to 0.3 mag but can exceed 1 mag. Early unreliable photographic photometry was replaced in the \(1950^{\prime}\) s and \(60^{\prime}\) s by photoelectric photometry (the
methodology is described and results summarized by Taylor 1971). In the 1970's useful results are being achieved not only by photoelectric photometry but also by photographic and even visual photometry (results for 1975 and 1976 are referenced by Schober 1977) . Lagerkvisk (1975) and Degewij \& Gehrels (1976) have attempted photographic photometry of faint, small asteroids; the latter is a statistical analysis of very faint uncataloged objects. E. Tedesco is maintaining the TRIAD file on lightcurves.

Lightcurves dominated by shape exhibit two maxima and two minima per period for obvious geometrical reasons. Variability due solely to albedo features can yield any number of maxima per period, but most commonly one. Ambiguity concerning period is uncommon, but Vesta is now believed to rotate in 10 h 68 rather than the earlier value of 5 h 34 . A few asteroid lightcurve amplitudes are too small to reveal rotation periods and a few others spin too slowly to be conveniently measured (the longest reported period so far is \(\approx 32^{\mathrm{h}}\) for 654 Zelinda).

Odd-order terms in the Fourier analysis of a lightcurve tend to imply "spottedness" due to albedo or scattering effects and even-order terms imply nonsphexical shape (cf Lacis \& Fix 1971). The effect of odd-order terms on the amplitude is typically 0.04 mag or less, suggesting a high degree of compositional uniformity on measured asteroids (found also by constancy with spin of color and of polarimetric properties).

Lightcurves provide data on asteroid shapes and spin-vectors. Maximum amplitudes are observed when the rotation axis is perpendicular to the line of sight, assuming an asteroid has had time to dissipate energy and spin about its dynamically stable minimum axis, as seems generally likely (McAdoo \& Burns 1974). Over the course of several months or
years, an asteroid may be measured from several aspect angles with respect to its spin axis (which may be assumed not precessing, except for especially small objects that may have suffered a recent collision). Such data provide information on ecliptic latitude and longitude of the spin axis (a recent example is given by Sather 1976), but Dunlap (1971) has show that the technique requires pre-knowledge of the asteroid shape. The technique of "photometric astrometry" (cf Taylor 1971) depends on lightcurve timings at different epochs and in principle yields the spin vector, including the sense of direction. (Thermal radiometry is also sensitive to prograde vs retrograde rotation: Morrison 1977.) In general the quantity of photometric data available on individual asteroids has been sufficient to determine only weakly (at best) the numerous unknowns: shape, spottedness, and spin vector. Earlier conclusions that asteroid spin axes have large tilts must be reevaluated, although the large Trojan, 624 Hektor, does have a rotation pole near the ecliptic. The only secure parameter measured from lightcurves for a significant sample of asteroids is rotation period (tabulated for about 160 objects), and even that may be subject to occasional misinterpretation.

\section*{C. Diameters and Albedos}

Because asteroids are small and far away, their diameters once wexe obtained from absolute magnitudes (Sect. II A) by assuming a geometric albedo (typically 0.1 to 0.2). Such diameters (e.g. as tabulated by Pilcher \& Meeus 1973) are systematically too small and have relative exrors exceeding a factor of 3 rince asteroid albedos are now known to range from \(\sim 0.025\) to \(\sim 0.35\).

DIRECT MEASUREMENTS Direct measurements of the diameters of the first four asteroids were attempted using filar and double-image micrometers and
interferometers (reviewed by Dollfus 1971). Little confidence can be placed in these results since (a) asteroid sizes are comparable to diffraction disks, (b) systematic errors are not easily evaluated, (c) results were inconsistent (especially for Pallas), and (d) similax direct measurements of larger objects, such as Neptune and the Galilean satellites, were moderately erroneous. Recently, the new technique of speckle interferometry has been applied to vesta (Worden et al 1977), yielding a diameter within \(5 \%\) of values determined by radiometry and polarimetry" (see below).

OCCULIATIONS Precise diameters and shapes for asteroids may be obtained from photometry of occultations of stars by asteroids. These events are common (several occur per night somewhere on Earth involving asteroids brighter than 12.5 mag and stars \(\leq 2 \mathrm{mag}\) fainter). But predictions cannot normally be made for the usually faint, uncataloged stars. "Predictable" events occur about once a year, but are difficult to observe since the paths are narrow (the diameter of the asteroid) and uncertainties in asteroid and star positions result in errors in the location of the path approaching 1000 km . Despite several coordinated attempts during the past decade, photoelectric observations have never been obtained for more than a single chord of an asteroid, which provides only a lower limit on diameter. Visual timings of eventṣ lasting a few seconds have yielded diameters for 6 Hebe (raylor * Dunham 1977) and 433 Eros ( \(0^{\prime}\) Leary et al 1976) that agree with results from radiometry and polarimetry, but are too imprecise to calibrate those less direct techniques. Occultations of asteroids by the dark limb of the moon are easily predictable and observable from wide areas on Earth but, due to rapid
lunar motion, photometry with timing resolution better than 0.01 sec is requixed. Uncertainties in asteroid shape, limb-darkening, and albedo features, combined with rough topography on the lunar horizon, complicate intexpretation of photometric traces. The technique has yet to be successfully applied to an asteroid.

RADIOMETRIC METHOD Current knowledge of asteroid diameters comes from two indirect methods. The first is based on a comparison of visible and mid-IR magnitudes (Allen 1970). For asteroids of the same size at the same distance, one of a lower albedo will be fainter in the visible but, at the same time, hotter and hence will radiate more at 10 or \(20 \mu \mathrm{~m}\). Quantitative application of the technique requires. knowledge of the emissivity and thermal inertia of the surface, the rotation period, and the angular dependence of the reflected and radiated radiation. padiometry - over a range of Sun-asteroid-Earth geometries can help specify some parameters. Thermal modelling assumptions are discussed most recently by Morxison (1977) and Kansen (1977). Derived diameters are insensitive to modelling assumptions for very dark objects of rock-like composition with low thermal inertias. Present models may introduce systematic exrors up to \(20 \%\) in inferred albedos; especially uncertain are the relatively high albedo objects of potentially metallic composition ( \(S\) and M classes, Sect. II E).

POLARIMETRIC METHOD There is an empixical relationship between geometric albedos of powdered materials (crushed rocks, meteorites, and lunar soils) and the slope of the polarization-vs-phase curve (Widorn 1967, KenKnight et al 1967). As recently calibrated in the laboratory by zellner et al (1977a, 1977b), the relationship is insensitive for albedos <0.05. The
technique has the potential for inherent syscematic exroxs approaching those of the radiometric technique and there is significant scatter of the laboratory data about the nominal calibration curve. Asteroid albedos determined from polarimetry agree with those determined by radiometiry (for albedos \(>0.05\) ) to within a couple of percent. BEST-KNOWN DIAMETERS Over 160 asteroids have been measured radiometrically (summarized by Morrison 1977) and about a third that number polarimetrically (zellner \& Gradie 1976). The radiometric technique is based on sound physical principles but is subject to modelling uncertainties while the polarimetric technique is based on an empirical relationship for which there is only an incomplete physical understanding. Various observational uncertainties in both visible and IR photometry introduce appreciable scatter in radiometric diameters (e.g. most published radiometry is based on compaxisons of radiometry with tabulated values of \(B(1,0)\) without regard for individual variations in visible or \(I R\) phase coefficients or lightcurve phase). Morrison (1977) has tabulated best-known diameters and albedos for 187 astexoids, including all objects \(>250 \mathrm{~km}\) diameter, by applying roughly equal weighting to radiometric and polaximetric results. D. Morrison and B. Zellner, respectively, are responsible for the TRIAD data files on radiometry and polarimetry.

It is possible to estimate diameters of unmeasured asteroids from other photometric properties (color index, visible phase coefficients, minimum polarization) known to correlate roughly with albedo. Such estimates may be very misleading in individual cases. For instance, the very-high-albedo E-type asteroids have UBV colors very similar to those of the much more common very-low-albedo C-type asteroids. Asteroids having physical or orbital parameters indicating probable C-type may have albedos
no.04, while probable S-types may be \(\sim 0.15\). Because C-types are predominant in the bel.t, a geometric albedo 0.06 is applicable to a statistical ensemble of bodies about which nothing is known. The proportion of \(S\) to \(C\) bodies is reasonably invariant with size for diameters \(>50 \mathrm{~km}\), but may change at smaller diameters. (S- and C-types are defined in Sect. II E.) D. Masses and Densities

Estimates have been made of the masses of Ceres, Pallas, and Vesta from the accumulated perturbational changes in orbital longitudes of other asteroids in nearly commensurate orbits. From the motion of 197 Arete, Hertz (1968) derived a mass for Vesta of \(2.4 \times 10^{23} \mathrm{gm}\) with a probably underestimated formal error of \(\pm 10 \%\). From mutual perturbations of Ceres, Vesta, and Pallas, Schubart \((1974,1975)\) has obtained \(1.17 \times 10^{24} \mathrm{gm}\) for Ceres and \(2.26 \times 10^{23}\) gm for Pallas; Schubart's estimated percentage errors are 4 times sorse for Pallas than for Ceres.

It may be possible to improve on these mass determinations slightly and possibly extend the technique to one or two additional asteroids. It may also be possible to determine masses for a few large asteroids from their perturbations on Mars' orbit by analyzing accurate ranges to spacecraft orbiting or landed on Mars. But definitive measurements of asteroid masses await close approaches by spacecraft.

An important constraint on the internal constitution of asteroids is density. Combined with the best-known diameters, the above masses yield \(2.2,1.9\), and \(2.9 \mathrm{gm} \mathrm{cm}^{-3}\) for Ceres, Pallas, and Vesta, respectively. Likely errors exceed \(1 / 2 \mathrm{gm} \mathrm{cm}^{-3}\) for Ceres and Vesta and \(1 \mathrm{gm} \mathrm{cm}^{-3}\) for Pallas. Morrison (1976) has determined the relative diameters of Vesta and Ceres to higher precision, which yields an apparently significant
density ratio between the two of \(1.33 \pm 0.17\), dominated by the difficult-to-estimate uncertainties än mass. Thus Ceres and Vesta are apparently of different bulk composition. If one can trust the derived densities, Ceres and Pallas have bulk densities similar to the most primitive car- . bonaceous chondrites and Vesta is more similar to terrestrial and ordinary chondritic rocks. Such compositions are consistent with geochemical inferences based on surface mineralogy (Sect. II E).

Estimates of the mass of the entire asteroid belt may be made assuming asteroid interiors are composed of compositions inferred for surface mineralogical assemblages (Sect. II E) and applying bias-corrected statistics for the proportions of different compositional types to measured brightness-frequency distributions (Sect. II E \& G) . Asteroids >100 km diameter total about \(3.0 \times 10^{24} \mathrm{gm}\) and the toral for the entire belt does not greatly exceed three times the mass of Ceres alone; this estimate is consistent with that of Kresak (1977).

\section*{E. Spectrophotometry and Surface Compositions}

ASTRONOMICAL OBSERVATIONS Rocks and minerals differ in their wavelengthdependent reflectance of visible and near-IR sunlight. Early programs of asteroid colorimetry (reviewed by Chapman et al 1971), intexpreted in terms of colors of meteorites, were not definitive. More recent extensive programs of UBV photometry (Zellnex et al 1975, Zellner et al 1977c, Degewij et al 1978), maintained in the TRTAD files by \(E\). Bowell, have yielded reliable colors for hundreds of astexoids. While this is an efficient reconnaissance technique that distinguishes several broad types, the blue portion of the spectrum is not highly diagnostic of mineralogy.

Spectrophotometry in 224 filters has been published for \(v 100\) asteroids by Chapman, McCord, and coworkers (most presented by Chapman et al 1973a,

McCord \& Chapman 1975 a , b) and is being reduced for 150 others (maintained in TRIAD by \(M\). Gaffey and C. Chapman). These spectra reveal absorption features near 1 um in spectra for many asteroids.

Spectral windows beyond \(1 \mu \mathrm{~m}\) contain important electronic and molecular absorption features, but faint objects cannot be measured because of the lesser brightness of the sun and detector insensitivity. Broadband measurements at \(J, H\), and \(K\) wavelengths, combined with visible photometry, provide data unsuited to defining absoxption features but appear to be sensitive to metallic iron (Veeder et al 1977; for other data cf Chapman \& Morrison 1976 and Gradie et al 1977) . Measurements beyond 3. \(\mu \mathrm{m}\), accomplished so far only for Ceres (Lebofsky 1977), are sensitive to water of hydration. Interferometric spectra to \(2.5 \mu \mathrm{~m}\) (with resolution of \(\sim 35 \mathrm{~cm}^{-1}\) ) have been published for Vesta and 433 Eros by Larson \& Fink (1975) and Iarson' et al (1976). Both spectra reveal the \(2 \mu \mathrm{~m}\) pyroxene•band. The technique can be extended toward \(4 \mu \mathrm{~m}\) but only for bright asteroids. Far-ultravīolet reflectance data have been obtained for a few asteroids from above the Earth's atmosphere (Caldwell 1975), but are not highly diagnostic of composition.

Spectral observations of emitted thermal radiation beyond \(5 \mu \mathrm{~m}\) could provide useful compositional information, but little has been learned from differences in \(10 \mu \mathrm{~m}\) and \(20 \mu \mathrm{~m}\) radiometry and occasional measurements at longer wavelengths.

COMPOSITIONAL INTERPRETATION It is less easy to interpret reflection spectra of solid surfaces than gaseous spectra. • Absorption bands are broad and few in number, and physical factors unrelated to composition (e.g. particle size) influence spectra. Nevertheless such spectra are
highly diagnostic for many common minerals (cf Adams 1975). The clearest inferences are possible for spectra dominated by the signature of a single mineral that has diagnostic features. Pyroxenes dominate reflection spectra of many rocks because of their intermediate opacity (transparent minerals reflect light chiefly from surface facets despite long pathlengths traversed in the material, while high-opacity substances hardly transmit light at all and so also exhibit primary surface reflections). Pyroxenes have strong \(I R\) absorptions involving the \(F e^{2+}\) ion within the cxystal lattice; bandcenters vary predictably depending on proportions of calcium, iron, and magnesium in the crystal, yielding a precise tool for determining pyroxene composition. Other minerals (e.g. olivine and plagioclase) have important IR bands. Transparent minerals with featureless spectra may constitute a significant portion of a mineral assemblage and remain undetectable whereas opaque minerals manifest themselves by reducing or blocking the spectral features of pyroxenes or similar minerals. The soundness of such approaches to intcrpreting asteroid spectra was proven when the prediction of a \(2 \mu \mathrm{~m}\) pigeonite band on Vesta, based on the observed \(0.9 \mu \mathrm{~m}\) band (McCord et al 1970), was confirmed by Larson \& Fink (1975).

These approaches to interpreting asteroid spectra are somewhat complicated by the fact that the silicate absorption features are subdued on many asteroids and absent on others. Intexpretations for astexoids lacking deep bands variously invoke the absence of strong-featured minerals, blocking by an opaque phase, and appaxent presence of the spectral signature (not involving distinct absorption bands) of nickel-ixon alloy. These potentially challengeable interpretations are strengthened by a combination
of (1) matching spectral traits against a library of lab spectra of varioús meteorites and other rocks, (2) attempts to model spectra of simple artificial multi-component mineral assemblages, and (3) geochemical considerations of cosmically abundant elements and plausible mineral assemblages. Early work on interpreting asteroid spectra is referenced and briefly summarized by Chapman (1976). Inclusion of albedo data with spectral data in mineralogical interpretation was done by Chapman et al (1975). The most recent and definitive interpretation, with discussion of meteoritical analogs, is that of Gaffey \& McCord (1977a). COMPOSITIONAL TYPES Thirty-five recognizably diffexent visible and near-IR spectral types are grouped in Table 1 into 16 groups of significantly different inferred mineralogical assemblages. Most asteroids fall into two broad types: the c-type (inferred to be akin to carbonaceous chondrites) and the s-type (various silicate-metal mixtures, perhaps akin to stony-iron meteorites). The inference that the very dark C-types are carbonaceous has been strengthened by Lebofsky's (1977) discovery of a water of hydration band on the \(C^{*}\)-type asteroid Ceres. The silicate absorption features are obvious in most spectra of \(s\)-types, but the inference that there is also a metal phase (nickel-iron alloy) present has been more. controversial. The IR measurements of Veeder et al (1977), combined with the analysis of soil maturation effects by Matson et al (1977), argue against the chief alternative to the nickel-iron interpretation. Soon radar-backscatter measurements of laxge S- ana M-type astexoids should prove or disprove the inferred large abundance of metal on these asteroid surfaces.

The \(C\) and \(S\) types are recognized by bimodalities in several observational parameters, including depth of the negative branch of polarization-vs-phase curves (an opacity-related parameter that sepaxates the groups
most clearly), albedo, and color index. Paxticular ranges in five parametexs were used by Chapman et al (1975) to defjne these types. The definitions have been slightly modified by Bowell et al (1978), who have classified \(\approx 560\) asteroids. They added a few new types, including \(M\)-type (a mnemonic for "metal", which is apparently the spectrally important phase present, although possibly mixed with featureless silicates as in enstatite chondrites) and E-type (a memonic for the possible interpretation as "enstatite achondrite"; cf Zellner et al 1977d). Anomalous asteroids, such as Vesta, are considered "unclassified" (U-type).

An attribute of the C-S-M-etc. taxonomy of Bowell et al (1978) is that it permits numerous asteroids obsexved by one of the reconnaissance techniques (e.g. UBV photometry) to be given probable classifications and calls attention to anomalous objects. Furthemore, such an albedo-sensitive tazonomy is useful for studying the statistical and distributional properties of asteroids. Correction for observational selection biases against low-albedo and more distant asteroids were first applied to a sample of \(w 100\) asteroids by Chapman et al (1975) and more recently to a sample three times larger by Zellner \& Bowell (1977). Sampling bias is dominated by apparent brightness, so corrections are performed by weighting each observed asteroid of mean opposition magnitude \(B(a, 0)\) by the ratio of total asteroids of that apparent magnitude to the number in the sample. Apparently there are \(\sim 560\) mainbelt asteroids \(\geq 50 \mathrm{~km}\) diameter, of which \(76 \%\) are \(\mathrm{C}, 16 \% \mathrm{~S}, 5 \% \mathrm{M}\), and \(3 \%\) other. S-types constitute \(2 / 3 x d s\) of asteroids at the inner edge of the mainbelt, but only \(15 \%\) in the middle of the belt decreasing to \(6 \%\) at the 2:l resonance. Zellner and Bowell find that large asteroids avoid Kirkwood gaps more completely than small ones, but contrary to earlier
suggestions they see no evidence for a compositional correlation with proximity to gaps.

\section*{F. Surface Textures and Regoliths}

The physical state of an asteroid surface affects the manner in which cratering impacts redistribute or eject material. In early epochs, when collisional velocities vere lower, the development of particulate surface layers (regolith) probably assisted accretion (Hartmann 1978). Asteroidal regoliths, both ancient ones and those evolving today, are hypothesized as environments for the creation of many types of gas-rich, brecciated meteorites (cf Pellas 1972, Rajan 1974).

Few observations conclusively reveal the surface structure of asteroids. Polarization data are interpreted as indicating dusty surfaces; a dusting is the easiest way to produce the intricate surface structure required. Radar penetrates to greater depths, but it is unclear whether the extreme. roughness found for Eros at scales \(\geqslant 4 \mathrm{~cm}\) radar wavelengths (Jurgen's \& Goldstein 1976) necessarily rules out a deep regolith. Microwave measurements of Ceres and Vesta have been interpreted (Conklin et al 1977) in terms of regoliths -- a dusty surface for Ceres, more compacted for Vesta.

Qualitative theoretical considerations have led to hypotheses that most asteroid regoliths are very thin (Chapman 1976) or many kilometers deep (Anders 1975). A quantitative model by Housen et al (1977) predicts deep regoliths on the largest asteroids, but negligible regoliths on rocky bodies \(\leq 10 \mathrm{~km}\) diameter or on relatively unconsolidated bodies \(\leq 1 \mathrm{~km}\) diameter. Early in an asteroid's life, the surface level of a typical region actually rises, due to blanketing from large anomalous cratering
events elsewhere on the body; later, rapid net erosion may occur on typical regions prior to catastrophic fragmentarion of the whole body. Repetitive gardening of the surface by small impacts is inefficient in competition with erosion and blanketing, so astexoid regoliths should have a coarse texture. The model suggests that most small- to moderate-sized asteroids should be surrounded by the ejecta from the last major cratexing event, probably masking any local compositional vaxiations; this is consistent with the apparent polarimetric and colorimetric uniformity nearly all. asteroids display as they rotate.

Asteroid surfaces may superficially resemble Phobos, as photographed by Viking. Yet ejecta from Phobos cannot immediately escape Mars' gravitational potential well and may reaccumulate on phobos, yielding an anomalously thick regolith (Soter 1971), a situation that does not apply to asteroids.

\section*{G. Size Distribution}

Relative to the few big asteroids, smaller ones are increasingly abundant. The size distribution has been derived from the bias-corrected statistics of Zellner \& Bowell (1977) for diameters 350 km and may be supplemented at smaller diameters by photographic magnitude surveys. The first survey was the McDonald Survey or MDS (Kuiper et al 1958), which is nearly complete to apparent photographic magnitude 15 or 16 . Corrections were made for minox incompletenesses in coverage as well as the platemeasurers' completeness factors near the limiting magnitude of the plates. Frequency relations of \(B(1,0)\) were obtained for each of three concentric zones in the belt; an exror in tabulated completeness factors for the outer zone was corrected by van Houten (1971). The Palomar-Leiden Survey or PLS (van Houten et al 1970) sampled asteroids down to mag 20 in a
' \(12^{\circ} \times 18^{\circ}\) part of the ecliptic during two successive months. The factor of \(w 50\) extrapolation from this small region to the whole belt involves assumptions which have been questioned (cf Kxesák 1971; Kiang 1971; Dohnanyi 1971, and discussions of same by van Houten; also see sect. IV H).

Comparisons of the revised MDS and RLS reveal a discrepancy of a factor of two in the region of overlap between \(I 1<B(I, 0)<13\). One reason may be the small PLS sample in this range (van Houten [1971] says it is 12). Second, the "revised" MDS values for objects fainter than \(B(1,0)=10.0\) are based on extrapolations of an average of one linear fit and one curving fit to the MDS plot of log number vs magnitude. But a İnear extrapolation (MDS eq. 7) is without justification, especially now that PLS data and direct diameter measurements confirm the curving relation given by MDS eq. 6.

Fig. \(I^{-}\)shows the bias-corrected size-frequency data of Zellner and' Bowell. The differences between the shapes of the smooth curves drawn through the \(C\) data and through the \(S+M\) data are not significant. The dashed extrapolations are hypothetical, but they must satisfy the PLS data, which constrain at least one curve to bend upwards at small diameters.
III. ASTEROID COLLISIONS
A. Erosion and Fragmentation

Although an individual asteroid is small compared with the volume of the belt, its geometric cross-section sweeps out a huge volume over \(10^{9}\) years. Thus interasteroidal collisions, at velocities of \(05 \mathrm{~km} \mathrm{sec}^{-1}\), are common and the resulting erosion and fragmentation determines the asteroid size distribution, probably forms Hirayama families, and liberates
some of the meteorites and cratering projectiles that strike the Earth and other texrestxial planets.

Most calculations of asteroid collisional evolution are based on a particle-in-a-box approach, with the box taken to be the effective volume of the asteroid belt \(\left(8.5 \times 10^{25} \mathrm{~km}^{3}\right.\), accoxding to Dohnanyi [1969]). Wetherill (1967) found that the particle-in-a-box approach underestimates collision timescales by factors of 1.5 to 2 . Two parts of a continumm of asteroid collisions may be distinguished by the ratio of diameters of the larger and smallex colliding bodies ( \(D / D_{S}\) ). If \(D / D_{S}>\) some parameter \(\gamma\), the smaller body craters the larger one. Such exosive collisions gradually reduce the size of the larger body, provided the ejecta that escape exceed the mass of the projectile, which is true for cven the laxgest asteroid in the present \(5 \mathrm{~km} \mathrm{sec}^{-1}\) velocity regime. Fox colliding bodies more nearly equal in size \(\left(\mathrm{D} / \mathrm{D}_{\mathrm{S}}<\gamma\right)\), catastrophic colljsion occurs and the larger object fragments into a distribution of smaller pieces.

The size ratio \(\gamma\) depends on velocity and the physical traits of the bodies involved -- their material strength, density, and gravitational field. The kinetic energy of the projectile is partitioned into fxacturing and comminution of both bodies, heat, and the kinetic energy of the ejecta. The partitioning has been examined in detail for cratexing on semi-infinite surfaces (O'Keefe \& Ahrens 1976), but may be roughly applied to asteroid collisions. Some laboratoxy measurements have been made of such paxameters as the energy per unit volume necessary to rupture an object (for basalt, \(\approx 3 \times 10^{7}\) ergs \(\mathrm{cm}^{-3}\); Greenberg et al 1977, Hartmann 1978), the size of the largest fragment for excessive energy densities, and the size and velocity distributions of the smallex fragments.

Material properties help establish \(\gamma\). An impact of given energy makes a much larger crater, or disxupts a much larger body, in weak material than in strongmaterial; the resulting ejecta velocities are concomitantly much reduced for weak material. For \(5 \mathrm{~km} \mathrm{sec}{ }^{-1}\) collision velocities in the belt, \(\gamma=18\) may be appropriate for hard, rocky bodies sufficiently small that the gravitational binding strength is \(\ll\) the material strength. \(\gamma \approx 7\) for iron. Presumably \(\gamma \gg 18\) for gravitationless carbonaceous bodies; but for a weak body of moderate size or larger, energy sufficient to fracture the body is often insufficient to disperse the fragments. In that case \(\gamma\) is determined by the gravitational, rather than material, strength of the target body.

The size distribution of a fragmental event may be roughly log-normal, but it is commonly represented by a truncated incremental power-law frequency distribution of the form \(d N / d D=a D^{-b}\), for diameter \(D\) bigger than some lower limit determined by mass conservation. For size ratios near \(\gamma\), a barely sufficient energy is delivered to the target to rupture it and the fragmental distribution is found to have b o 3 . For cratering events and destructive collisions involving excessive energy densities ( \(D / D_{S} \ll \gamma\) ), there is more comminution and b \(\underset{\sim}{ } 4\) (Hartmann 1969, Greenberg et al 1978). A weakness in Dohnanyi's (1969) analytical treatment is that he adopted \(b=3.4\) for all cases, cratering and catastrophic fragmentation.

Full consideration of relevant physical processes and experimental data may reveal weaknesses in earlier considerations of asteroid collisional evolution (e.g. Wetherill 1967, Dohnanyi 1969, Napier \& Dodd 1974). The characteristic lifetime against catastrophic. destruction varies roughly as \(\sqrt{D}\) in these theories and the asteroids evolve to a size distribution
that varies within narrow limits about \(b=3.5\) (earlier theories gave \(\underline{b}=3.0)\). Chapman et al (1977) have modelled most of the physical processes discussed above, including the mutual interaction of populations of bodies of different strengths (to simulate \(C\) and \(S\) types); they find collisionally evolved size distributions for \(C\) and \(S\) types qualitatively resembling the observed curving distributions (Fig. 1), which cannot be characterized by a single value of \(b\).

The nonlinear shape of the size-distributions, first noted by kuiper et al (1958), was interpxeted by Anders (1965) and Hartmann \& Hartmann (1968) as indicating a remnant accretionary population of asteroids with a "tail" of smallex collisional fragments from sevexal of the original bodies. The shape of the power-law-like size distribution for smaller asteroids did appear consistent with the size distributions obscrved in nature and in the laboratory for fragmented rocks (Hartmann i969). The major downward revision of asteroid albedos in the \(1970^{1}\) s caused an upward revision in collisional cross-sections, hence decrease in lifetimes against destruction by catastrophic collision. Virtually all rocky asteroids must now be thought of as fragments. Chapman (1974), noting evidence (now obsolete) that the nonlinearity might be confined to the \(S\)-types, suggested they could be bodies preserved from eaxly epochs despite the much greater collision rates if they were very strong, such as metallic cores of geochemically differentiated bodies. More recent observations (Fig. 1) show that the \(C\)-type bodies also fail to exhibit a simple linear fragmental distribution. Chapman et al (1977) suggest this may result from vaxiable strength of inherently weak \(c\) objects dominated by gravitational strength at larger sizes, combined with their collisional interaction with \(s\) bodies. However, a definitive explanation of the observed size distribition awaits further research. A majox conclusion that has emerged during the 1970's is that,
unless asteroids are much stronger than we believe, nearly all of them (including all but the largest ones) must be fragments of precursor bodies. Chapman \& Davis (1975) suggested the asteroids might be a collisional remnant from a much vaster population of bodies in early epochs. The lifetimes of the largest asteroids against catastrophic fragmentation are probably a few \(x 10^{9}\) yr, which is consistent with collisional depletions ranging from only a factor of 2 up to a huge factor. Chapman \& Davis offered a highly model-dependent estimate of an early population \(\sim 300\) times that present today.

At the opposite extreme, Alfvén \& Arrhenius (1970a, b) believe that accretion of asteroids competes effectively with fragmentation. This requires that astexoids have oxganized motions that result in collision velocities \(\ll 5 \mathrm{~km} \mathrm{sec}{ }^{-1}\). Napiex \& Dodd (1974) argue that formation of such jet streams requires volume densities vastly greater than exist in the asteroid zone. The observational evidence for jet streams (Arnold 1969) is of questionable statistical significance. Moreover the preferred orientation of the node and perihelion, which distinguishes a jet stream from a Hirayama family (Section IV I), has been demonstrated to be due to observational selection in at least one case (Kresák 1971).

\section*{B. Asteroid Rotations}

Alfvén \& Arrhenius (1970a) suggest that the typical rotation periods of asteroids (8 to 9 hr ) are too long to explain by rotational instability, that any modification of "original" periods by collisions should result in shorter periods for smaller fragments (not clearly observed), and therefore that the observed rotations are primordial.

Although asteroid rotation periods (cf Burns 1975) are independent of size down to a few km diameter, there is a suggestion of excess angular momenta for a few numbered objects less than 3 km diameter and from statistical analysis of lightcurves of very faint asteroias by Degewij \& Gehrels (1976). Proper interpretation of these data require the understanding that unless an asteroid is vexy small or strong, it will be catastrophically fragmented by any collision sufficient to markealy change its spin. Harris (1977) has shown that most asteroids are rotating at an appropriate equilibriur rate for a collisionally interacting population. The more rapid rotation of small asteroids suggests they have at least moderate strengths; if the \(\sim 100 \mathrm{~km}\) diametex \(\mathrm{s}-\) or M-type asteroids are indeed strong metallic cores, they might show a detectably. greater dispersion about the 8 to 9 hr mean period. Asteroid precession, if observed, would also yield information on collision frequencies and material strengths; but few asteroids have been observed well enough to determine whether or not they are rotating about theix body axes.

Astexoid lightcurve maximum amplitudes have been taken by Andexs (1965) and others as a measure of whether or not an asteroid is a fragment (large amplitude) or oxiginal accxetion (small amplitude). Apart from the lack of compelling reasons for assuming original accretions to be spherical, other effects apparently control asteroid shape. The smallest asteroids, which certainly are recent fragments, have smaller amplitudes than moderatesized bodies (Boweil 1977). As for the larger asteroids, gravitational compression would constrain those made of very weak materials to roughly spherical shapes, even if they were fragmental (Johnson \& McGetchin 1973); this effect is apparent for C-type objects \(>100 \mathrm{~km}\) djameter (Chapman 1976).
IV. DYNAMICS AND ORBITAL EVOLUTION-

\section*{A. Introduction}

We havé just considered.how asteroid collisions produce fragments, laxge and small. Perturbative forces of planets redistribute them, sometimes onto orbits that cross those of the terrestrial planets, resulting in impact or further orbital evolution. The asteroids are depleted and gaps are created in the distribution of orbits. Thus dynamical evolution may link the asteroid belt and the meteorites that strike Earth. This section leads to consideration of meteorite origin, geochemical evolution of parent bodies, and cratering. Furthermore, we discuss clues in the present orbital distributions about early epochs in the origin of the asteroids and the planetesimal swarms from which planets accreted.

Two types of orbital resonances are known to be important for asteroids. First, commensurabilities in periods of an asteroid and planet (usually Jupiter) cause variations with typical periods of centuries. Second, when the rate of the longitude of node or perinelion of an asteroid matches a frequency of one of the fundamental, long-period oscillations of the planetary system, an asteroid is in a secular resonance; such secular perturbations have timescales of a few million years. A third type of behavior, libration of the argument of perihelion, is not usually classed as a resonance.
B. Commensurabilities and Kirkwood Gaps .

If an asteroid and planet nearly repeat their relative positions after an integral number of revolutions of both bodies, then perturbing forces systematically repeat. For such a resonance, a phase angle is
defined of the form \(\sigma=Q \lambda-P \lambda_{j}+(P-Q) \tilde{\omega}_{i}\), where \(Q\) and \(P\) are integers, \(\lambda\) and \(\lambda_{j}\) are the mean longitudes of the asteroid and the \(j^{\text {th }}\) planet, and \(\tilde{\omega}\) is the longitude of perihelion of the asteroid. \(P: Q\) is the ratio of periods of planet and asteroid. The most common ( \(P \neq Q\) ) commensurabilities depend on asteroid orbital eccentricity, but inclination-dependent resonances are possible for which \(\tilde{\omega}\) must be replaced by the node \(\Omega\). Also possible are resonances controlled by the eccentricity (e) or inclination (i) of the planet, in which case \(\tilde{\omega}_{j}\) or \(\Omega_{j}\) replaces \(\tilde{\omega}\). Most commensurabilities are eccentricity-controlled since terms occur in the expansion of the perturbing potential at one lower power of the eccentricity than of the inclination; this power is the difference \(|P-Q|\), called the degree. Resonances may be shallow, for which o circulates slowly and large amplitude oscillations in the orbit have the period of that circulation, or deep, for which \(\sigma\) cannot take on all values but librates about some value (usually near \(0^{\circ}\) or \(180^{\circ}\) ) and large orbital oscillations have the period of this libration.

Librations frequently act to prevent close approaches between an asteroid and planet. Librating asteroids are preserved for \(P: Q=4: 3\) (279 Thule), \(3: 2\) (Hilda type), and \(2: 1\) (Hecuba type, i.e., 1362 Griqua, 1921. Pala, and 1.922 zulu), with Jupiter the perturbing planet. For each case, o librates about a value near \(0^{\circ}\). When the asteroid and Jupiter are passing the same longitude so that \(\dot{\lambda}=\lambda_{J}\) (which together with \(\sigma \approx 0\) means that the mean anomaly \(\lambda-\tilde{\omega} \tilde{\sim} 0\) ), the asteroid is almays near perihelion; when the asteroid is near aphelion, Jupiter's longitude cannot be similax. This results in striking stabilization. Some Hilda-type asteroids have aphelia nearly reaching Jupiter's orbit, but they axe safe from Jupiter encounters closer than 1 AU.

Objects for which \(\sigma\) oscillates most are least stable. Commensurabilities at 1:1 (Trojans) and 3:1 (887 Alinda and 1915 Quetzalcoatl) also contain librators. Both of the latter are Mars-crossers and could have been placed in librating orbits during a close encounter with Mars.

The best examples of libration due to commensurability are the Trojan asteroids of Jupiter (Table 2) at the I; l commensurability, librating about \(\sigma= \pm 60^{\circ}\). Everhart (1973) started 221 hypothetical objects in low inclination, circular orbits between 4.68 and 10.4 AU and calculated their orbital evolution under the influence of Jupiter and Saturn. Twenty-five of them librated about the Jupiter Trojan points for \(>1000 \mathrm{yr}\), of which 10 lasted the length of the integration, \(\sim 30,000 \mathrm{yr}\). All seven Saturn Trojans were stable for similar durations. The real Jupiter Trojan 1173 Anchises and 6629P-L were found to be stable for \(\sim 160,000 \mathrm{yr}\) integrations. No Saturn Projans have yet been discovered, although the limited searches to date do not rule out thejr existence.

Everhart also studied a type of l:l libration called horseshoes which, in a coordinate system rotating with the orbital rate of the planet, are large C-shaped loops enclosing both Trojan points and the third Lagrangian point, which lies on the side of the sun opposite the planet. Jupiter horseshoes were not very stable, consistent with the fact that none have been discovered, but several Saturn horseshoes seemed moderately stable. Weissman \& Wetherill (1974) have studied Trojan and horseshoe
orbits associated with Earth, yielding stability for as long as 10,000 yr on Trojan-type oxbits. They argue that modest eccentricities and inclinations for the planets and librators will not disrupt stability, which is supported by the existence of Jupiter Trojans with e up to 0.15 and in up to \(34^{\circ}\).

Horedt (1974) examined whether, if Jupiter lost mass, outex satellites might escape and become Trojans. Evidently such satellites would avoid the Trojan points, escaping always from the sunward side of Jupiter, in accord with Hill's zero-velocity surfaces in the restricted three-body problem. The minimum in the potential energy baxrier over which the satellite has to escape occurs at the sunward Lagrangian point while, contrary to popular misconception, the Trojan points represent local potential energy maxima in the rotating coordinate system (potential energy is taken to be negative for gravitational interactions). :

It seems paraoxical that asteroid groupings appeax at the \(1: 1\) and 3:2 commensurabilities, while those at \(2: 1,3 ; 1,5 ; 2\) and \(7: 3\) appear as Kirkwood gaps. For \(\underline{a}>3.95 \mathrm{AU}\), all reliably observed minor planets are commensurate, with the possible exception of 944 Hidalgo which, in any case, may be an extinct comet (cf Marsden 1972). As discussed above, any noncommensurate asteroids would long since have been eliminated by close Jupiter encounters, but at smaller semimajor axes \(\underline{a}\), noncommensurate objects become stable and we see Kirkwood gaps partly by contrast. The origin of these gaps, apparently due to a combination of dynamical and collisional processes, has been much studied.

Both Hilda (3:2) and 2:1 type asteroids have first-order commensurabilities with \(P-Q=1\), but there are 24 numbered asteroids of the formex
type (see Table 3) and only 3 of the latter, despite observational biases Favoring the latter. The brightest 3:2 librator has \(B(1,0) ~ \sim 3\) mag bxighter than the brightest 2:1 librator. Giffen (1973) studied the averaged planar elliptic restricted three-body problem for the two commensurabilities and found that intriguing changes result from a finite value for the : eccentricity of . Jupiter's orbit. Periodic solutions were found for both commensurabilities when an integral number of libration periods equalled the.period of the longitude of pexihelion. For the nonperiodic cases, Giffen plotted \(a\) vs \(e\) and \(\sigma\) vs \(e\) at systematic times, such as each maximum of \(a\). If the points lie on smooth so-called invariant curves, an integral of the motion exists and the orbit is stable. For the \(3: 2\) case, initial e from 0.1 to 0.3 and initial a of \(3.920-4.015 \mathrm{AU}\) gave invariant curves. For the \(2: 1\) case, initial e's from 0.1 to 0.34 were checked and only those \(>0.30\) gave invariant curves. Giffen hypothesizes that cases without invariant curves might rule out the existence of such asteroids, but he suggests no mechanism for theix elimination and concludes that their possible existence is not yet disproven.

The existence of the invariant curves demonstrates stability against the close approaches to Jupiter which radically change orbits and remove real objects by collision or gravitational ejection from the solar system. But nonexistence of invariant curves does not demonstrate limited lifetimes for low-eccentricity cases unless such orbits can be shown to evolve to higher :eccentricities so that close Jupiter approaches occur. Alternatively a librating object might simply move out of the Kixkwood gap. One of Giffen's cases which was increasing in \(e\) and
a was further followed by Scholl \& Giffion (1974) and Froeschlê \& Scholl (1976); its variation of \(a\) and \(e\) is boundcd and of moderate amplitude, so the apparently least stable of Giffen's orbits lacking invariant curves is stable. A dynamical means for emptying the \(2: 1\) gap thus remains unknow.

Giffen's suggested nonexistence of \(2: 1\) librators with es 0.3 may be checked observationally. Franklin et al (1975) note that the three numbered librators (1362, 1921 and 1922) now have e between 0.34 and 0.47 , supporting Giffen's suggestion, but that in's of \(19^{\circ}-36^{\circ}\) are far from Giffen's \(0^{\circ}\) case. Thirty-three unnumbered objects, with orbit qualities ranging from hopeless to very good, lead to libration when integrated. The best one is \(1928 \mathrm{UF}=1928 \mathrm{WC}=\) the original 1125 China, which was measured on eight nights over a \(1 \frac{1}{2}\) month span. Its e of 0.22 and low \(\dot{\text { i. }}\) seems to violate Giffen's hypothesis, but the object has not been recovered.

The Kirkwood gaps at \(2: 1,3: 1,5: 2\) and \(7: 3\) have been studied by Scholl \& Froeschle (1974, 1975) and Froeschlê \& Scholl (1976) using the planar elliptic case. With \(10^{4}\) and \(10^{5}\) yr integrations, they show that commensurabilities, except for the 7:3, include some orbits with e oscillating between modest values and values \(>0.3\). Since only a fraction of orbits in gaps show large changes in \(e\), it is unclear how the gaps are depopulated, Scholl \& Froeschle adopt Jefferys' (1967) suggestion that increased collision probabilities of periodically eccentric bodies with other astexoids may deplete the gaps. But even if the present asteroid population is a decayed remnant of a larger population (Chapman \& Davis. 1975), e's would have to greatly exceed 0.3 to deplete even part of the gaps, since high e's exist elsewhere in the belt where population densities are much higher in the gaps. For the \(3: 1\) case there is an alternative to collisions for part of the
gap, since objects with e \(>0.27\) can be eliminated by close Maxs encounters. Of course, the dynamical models so fax applied to the problem of Kirkwood gaps are simpler than reality. Enhanced eccentricities appear to result from the complex intexmingling of a conmensurability and the longer period secular perturbations due to perihelion rotation. The calculation of perturbations due to Jupiter's precessing, variable e orbit provides several additional frequencies to mix with commensurabilities beyond the one zero frequency present in the fixed ellipse case. These may affect a larger fraction of gap orbits. . Future studies should also investigate inclined asteroid orbits.

Franklin et al (1975) exemplified a new kind of 2;1 librator, called apparent apocentric librators, for which \(\sigma\) librates about \(180^{\circ}\) rather than \(0^{\circ}\). When \(\sigma\) librates, \(\tilde{\omega}\) circulates and vice versa. Greenberg \& Franklin (1975) have explained the behavior of \(\tilde{\omega}\) and \(e\) when the forced oscillations in e due to the nearby \(2: 1\) commensurability exceed e itself, appropriately averaged over an oscillation. The temporarily small values of e occur for asteroids with proper e 00.04 , about the same size as forced oscillations in e due to long-period secular perturbations. Greenberg \& Frankling explained the behavior of \(\sigma\) as well: when foxced oscillation in e due to the \(2: 1\) comensurability dominate the motion of \(\tilde{\omega}\), driving it into rapid circulation, the circulation frequency is exactly that needed to cause libration of \(\sigma\) with a \(180^{\circ}\) phase. Such temporary apocentric librators occur at a slightly beyond the main librating region. Analogous temporary pericentric librators occur just inward from the main librating region. Temporary librators are not deep enough into resonances to be as strongly modified as ordinary librators; the secular perturbations are strong
enough to push them into and out of the narrow region of \(e\) at the edges of the resonance where libration occurs. (These phenomena have yet to be generalized to other commensurabilities.)

Wiesel (1974a, b) developed a theory of phase mixing of an initial asteroid distribution and applied it to the \(2: 1,3: 1\), and \(5: 2\) Kirkwood gaps. He developed the two integrals of the resonant motion to first order in e for the planar case with a circular Jupiter orbit. The distribution is calculated after the phases of resonant terms for different objects have become randomly distributed. For smooth initial a-e distributions, the largest depletion is about \(50 \%\), with a corresponding augmentation on the inward side of the resonance. The effect is much smaller for initial distributions mimicking the belt adjacent to the \(2: 1\) gap. Wiesel points out that a mechanism that relies solely on the dynamical redistribution of Jibrators to depopulate the gaps is doomed since so few objects near gaps are librators. Since gaps are wider than libration regions, a mechanism is needed that selectively removes librators and adjacent circulators. The missing mechanism may be collisions, but Wiesel points out that for reasonable initial distributions near the 3:1 and 5:2 gaps, the increase in average \(e\), hence collision rate, due to the librations is quite modest.

Zimmerman \& Wetherill (1973) showed that asteroids adjacent to the 2:1 gap collide and inject.fragments into the libration region. Libration periodically augments small initial e's to as much as 0.3 to 0.4 , but prevents close approaches to Jupitex. If librating fragments suffer further high-velocity collisions while e's axe large, some resulting fragments will be put in nonlibrating orbits that can approach Jupiter. On a timescale of \(\because 10^{5} \mathrm{yr}\), such approaches random-walk the orbits into different
paths (important implications for deriving meteorites are discussed in Sect. IV E). Thereby we may collisionally populate and depopulate the Kirkwood gaps, but destructive collisions seem to be required. Lesser collisions cannot modify the orbit sufficiently and the probability of a destructive collision approaches unity before the effects of lesser collisions could accumulate. This problem requires further work.

There is yet another possioility: Jupiter's e causes extra periodicities in efor a librating object so that the range of \(e\) and \(\sigma\) variation is increased. To be stable against close Jupiter encounters, orbits must be stable for the full range of variation of Jupiter's e (0.027 to 0.062). Orbits which librate only part of the time would be eliminated by close Jupiter encounters if they can leave libration with \(e \geq 0.3\).

We have used the word "stability" to describe orbits that can exist for the age of the solar system. Empirical evidence suggests that a minimum approach distance to Jupiter (the major dynamical destabilizex in the outer asteroid belt) of \(\sim 1 \mathrm{AU}\) is the limit for such stability, but the limit has yet to be theoretically computed. We have seen that some commensurabilities can increase stability, by increasing minimum approach distances. But other librating orbits axe unstable, as exemplified by comets which exhibit temporary librations of a few cycles and are sudaenly terminated by a close approach to Jupiter (Marsden 1970, Franklin et al 1975), which results in eventual ejection from the solar system or collision with a planet.

Heppenheimer (1975) studied the effect of a changing Jupiter/Sun mass ratio (e.g. in early solar system history) on evolution of degree one commensurabilities, especially that at 2:1. He identified two adiabatic invariants for \(0^{\circ}\) i orbits and ascircular Jupiter orbit. For slowly increasing
mass ratio, circulating orbits adjacent to the libration region become librating orbits. Transition from circulation to libration is reasonable since the width of the libration region scales as the square root of the mass ratio; an example is transition from low e circulation to a higher e libration. If transitions could occur between high e circuiators and libration, then a decreasing mass ratio might transfer librators into circulators which pass close to Jupiter and would be texminated. While slow mass change of Sun or Jupiter could change the number of librators, it would not provide an obvious way to empty the Kirkwood gaps. (A brief way to calculate the width of the \(2: 1\) resonant region was given by walsh \& Zimmerman, 1971.)

Because the strength of a commensurability involves \(e^{|p-Q|}\) or \(\sin i^{|p-Q|}\), low-degree commensurabilities have widex resonance regions, hence are more probable; than high-degree ones. For asteroios of modest \(\underline{e}\) or \(\underline{i}\) r resonances involving \(i\) can occur only for even values of \(|\underline{p}-\underline{Q}| \geq 2\) while e-controlled commensurabilities occur for any value of \(|\mathrm{P}-Q| \geq \mathrm{I}\); hence, we know of many e-controlled librators but no i-controlled librators.

1685 Toro crosses the orbits of Eaxth and Mars and approaches Venus' orbit; the above generalities do not apply to such orbjits that approach planets closely; high-degree resonances then become possible. Toro's complex behavior -- near commensurabilities with both Earth (5:8) and Venus (5:13) -- has led a succession of authors (most recently Williams \& Wetherill, 1973) to run numerical integrations for up to 5000 yr . . Since Earth and Venus have a near-commensurability of 13:8, Toro's two commensurabilities can be simultaneously important and both are capable of temporary librations. But Toro's librations with respect to at least one commensurability must be
temporary, since Venus and Earth are only roughly commensuxate. The 5:8 librations with Eaxth last for at least 3400 yr while the 5:13 librations with Venus last for a nonoverlapping time span of at least 1000 yr . A transition occurs as perihelion precession increases the closest approach distance of Tors from Eaxth and decreases the Venus closest-approach distance; the planet with strongest peak forces (nearly impulsive) controls the librations. The librations tend to prevent the closest encounters, although it is uncertain how efficiently. If collisions can be avoided by such librations, the mean lifetimes of planet-crossing asteroids might be increased. Mars perturbations set an upper limit of \(\sim 3 \mathrm{~m} . \mathrm{y}\). for the Toro librations, which is an ordex of magnitude smaller than typical lifetimes of such objects against planetary impact or ejection. It is not certain how much such resonances can lengthen the lifetimes of typical planet-crossers; we require more statistics. Several other Earth-approaching objects have been studied; one has been known to librate ( 887 Alinda), 1627 Ivar may have an 11:28 librating commensurability with Earth, and 1221 Amor apparently does not librate (uaniczek et al 1972). Ip \& Mehra (1973) have called some objects "librators" because of periodic oscillations of elements (always expected near a commensurability), although they failed to establish that o oscillates between fixed limits in many cases.

Knowledge about commensuxabilities remains incomplete. Most theoretical work involves necessarily restrictive assumptions about a very complex problem. Numerical integrations can model the complexities; for investigations of real asteroids, timescales of both wl libration period (a few hundred \(y r\) ) and \(w 1\) perihelion or nodal precession period (several \(\mathrm{x} 10^{3} \mathrm{yr}\) ) are important. Such long"integrations are expensive but they have revealed
the suxprising temporary apocentric librators and the switch of libration mode for Toro. Finally, continued discoveries of librators contribute to understanding commensurabilities; two of the three known 2:l librators and one of the two 3:I librators were recovered in the past few years.

\section*{C. Secular Resonances}

Secular resonances have been less intensively studied than commensurabilities, but are clearly important for the morphology of the asteroid belt. They arise if the rate of the node or perihelion of an asteroid matches one of the discrete frequencies in the trigonometric series that describes planetary inclinations and nodes or eccentricities and longitudes - of perihelion. If planetary nodes and perihelia precessed at constant rates, then the resonant values for an asteroid would correspond to these rates. The actual description of planetary precessions corresponds to an eigenvectoreigenvalue problem. Perturbations with periods depending on precession periods are (misleadingly) called secular perturbations. They yield periodicities in the \(e^{\prime} s\) and \(i^{\prime} s\) and periodic and linear changes in the nodes and longitudes of pexihelion.

There axe three dominant resonant frequencies for the asteroid belt. An asteroid with an average (more exactly a proper) nodal rate of \(-25: 7 / y r\), or one with a proper longitude of perihelion rate of \(27: 8 / y x\) or \(4!3 / y r\), is resonant and can oscillate substancially in \(i\) or \(e\) with timescales of \(\sim 10^{6} y x\). The strong effects of such a resonance are exemplified for the Lost City meteorite) by Lowrey (1971) and williams (1975a). The asteroids are strongly depleted (like the Kirkwood gaps) at these three resonant frequencies. The recognition of gaps around secular resonances is recent since digital computers are required for practical calculation of the
resonance locations in a-e-i space.
The depopulation of the secular resonance gaps is more easily understood than for the Kirkwood gaps. For the \(27: 8 / \mathrm{yr}\) xesonance, Williams (1973b) showed that a resonant inner-belt asteroid could easily attain sufficiently large e oscillations to become Mars-crossing. Mars probably clears the \(4: 3 / y x\) resonance also, but the \(-25: 7 / y r\) nodal resonance requires a separate study. None of the non-planet-crossing main-belt asteroids with accurate orbits and \(a<2.5 \mathrm{MU}\) are seen in the three strongest secular resonances. There appear to be some resonant planet-crossers and there may be resonant main-belt objects with larger \(a\), although calculations of the latter are sensitive to error. It is actually surprising that no resonant imner-belt objects are known for it seems it should be possible for low e secular librators to exist without becoming Mars-crossers. D. Argument of Perihelion: Libration

The argument of perihelion \(\omega\) of an asteroid librates about \(90^{\circ}\) or \(270^{\circ}\) when a combination of \(e\) and \(\underline{i}\) exceeds a critical value. 1373 Cincinnati is the only numbered asteroid known to show \(\omega\) libration (cf description by Marsden 1970). Although its aphelion reaches 5.2 AU, the libration about \(90^{\circ}\) prevents close approaches to Jupiter. In fact all asteroids with large e or \(i\) have minimum perihelion distance and maximum aphelion distance when \(\omega\) passes through \(90^{\circ}\) or \(270^{\circ}\) and the pexihelion and aphelion points are farthest from the plane of the planets. This additional effect of secular perturbations helps stabilize such orbits against close planetary encounters. The recently discovered Mars-crosser 1974 UB also shows \(\omega\) libration about \(90^{\circ}\).

\section*{E. Material Transport from the Asteroid Belt}

Problems of extracting meteoritic material from the astexoid belt have been reviewed by wethexill (1974) and Wetherill \& Williams (1977): Wetherill (1976) finds that the Apollo objects can be the primary source bodies for a large fraction of the meteorites. But the lifetimes of Apollos are too short for any significant number to have remained in such orbits since the origin of the solar system. Thus a source is required for both meteorites and Apollos; one possible source is the main asteroid belt.

One transport mechanism (Zimmerman \& Wetherill 1973) was partly outlined in Sect. IV B. Fragmental debris knocked into the \(2: 1\) resonance region develops high e and secondary collisions decouple some matexial from libration. The debris with greater e approaches Jupiter, which results in some material being random-walked into Earth-crossing orbits. Some debris goes Earthcrossing within \(10^{4}\) yr of the second collisjon and much of the rest within \(10^{5} \mathrm{yr}\). A second mechanism (Williams \(1973 a_{r}\) b) uses secular resonances to transport collision debris to Earth. Debris injected into secular resonance gaps in the inner belt is augmented in e until it becones Earthcrossing on a timescale of \(\sim 10^{6}\) yr. Encounters with Earth decouple the debris from the resonance. Initial Earth-crossing orbits are distinct for the two mechanisms (oxbits with aphelia near Jupiter and resonant orbits, respectively) but Earth perturbations rapidly smear out the distinctions so there are not yet observational tests of the relative importance of the mechanisms (only three meteorite orbits are known). These resonant mechanisms select debris from objects near the \(2: 1\) Kirkwood gap (and possibly others) and from near the secular resonance gaps, leaving most asteroids unsampled.

A significant meteorite source mechanism must match observed timescales and mass fluxes on Earth. Both mechanismis are rapid enough to be compatible with typical \(10^{7} y x\) cosmic-ray exposure ages for stony meteorites. Also both mechanisms may yield \(\sim 10^{8+1}\) gm/yr impacting Earth, which is about a factor of 10 lower than observed. While these mechanisms likely contribute some meteorites and could plausibly supply a substantial fraction of them, the production rates fail by at least two orders of magnitude to supply the observed number of Apollo objects (Methexill 1976). A recent evaluation of the combined effects of secular, Mars, and Earth perturbations. on fragments derived from some large, low \(i\) asteroids in the inner belt demonstrates that such bodies are an entirely adequate source for the stony and metallic differentiated meteorites (Wetherill \& Williams 1977), consistent with some inferred mineralogies for those asteroids:

Peterson (1976) has proposed transport using the Yarkovsky effect. The effect on the yield and lifetimes of the stability of the spin state remains to be evaluated:

Much bork remains to be done. For example, secular resonances in the outer belt mighi transport debris into Jupiter-crossing oxbits more readily than into Earth-crossing oxbits, with subsequent evolution resembling the end of the 2:l gap process. One hopes to restrict the dynamically possible processes so as to identify particular asteroids with paxticular meteorite classes.

We have discussed resonance transportation only for the present solar system. When the planets were forming, resonances would have shifted position, modifying planetesimal orbits in the asteroid belt and elsewhere.

\section*{F. Poisson's Theorem'}

The most misunderstocd result on orbital stability in the solax system may be Poisson's theorem on the invariability of semimajor axes. Consider
gravitational interactions between noncommensurate, mutually noncrossing point masses. It is often stated that there axe no secular terms in a of second order in planetary masses, but there are secular terms of third ordex containing the factor \(m^{3} t\). What is frequently missed is that this result is demonstrated only for timescales \(\ll 10^{4} y r\), limited by the timescale of node and perihelion precession periods. The existence proof for these terms involves trigonometric expansion of the potential energy of intexaction, where the arguments of cosines involve a linear combination of the mean longitudes, nodes, and longitudes of perihelion. The proof involves expanding the truly secular terms in \(\Omega\) and \(\tilde{\omega}\) out of the arguments so that a linear term in time is introduced into the coefficients. The same approximation introduces linear terms in time into the e's and \(\underline{I}^{\prime}\) 's which, in fact, can be demonstrated to be long-periodic at that order. The third-order secular term in the semimajor axes is really periodic of very long period and the linear term in time results from expanding part of the trigonometric term in a power series in time. This restriction in the development was pointed out by Eginitis (1889) but has been little noted since. For timescales comparable to the age of the solar system, there has been no analytic demonstration of the existence of terms in either \(a_{r} \underline{e}\), or \(\underline{i}\) of planets and asteroids with coefficients which are truly linear in time, though such terms may exist.

It should be possible to calculate the largest pure and mixed secular terms in \(\underline{a}_{r}\) e, and \(\underline{i}\) while retaining all of the secular changes inside the trigonometric arguments. Such a project is natural for one of the computer codes which manipulate series; it would contribute to our knowledge of the true dynamical stability of the solar system.

Ovenden (1972, 1973) formulated what he calls the pxinciple of "least interaction action," suggesting it is responsible for the arrangement of semimajor axes of planets and satellites. He states that calculation of the present configuration of planets is improved if a body of 90 Earth masses had been in the asteroid belt until \(1.6 \mathrm{x} 10^{7} \mathrm{yr}\) ago; then the present configuration is a stage in evolution toward a new minimum of "interaction action."

One objection to Ovenden's dynamical procedure concerns timescale. His calculation of the evolutionary rates of planetary a's uses the aforementioned third-order secular term in a. But this term is perjoclic, not linear, in time for \(\geq 10^{4} \mathrm{yr}\), so the calculation of a \(\sim 10^{7}\) yr event is unjustified. Another objection concerns the meaning of least interaction action and the assumed evolution toward it. Experience with numerical integrations of several bodies does not indicate that a system of strongly interacting orbits evolves smoothly into a system of weakly interacting orbits; rather. some objects are ejected from the system in unbound orbits until the remaining system stabilizes. It is very different for a systern to stabilize by eliminating its least stable members than by evolution of all objects toward stability. Once stable, there is no reason to expect the system to evolve further toward minimum interaction action. If ovenden's principle has any validity in predicting configurations, it is probably not because the configurations change until they reach a minimum, but because the minimum configuration is the most difficult from which to remove members.

Lunar and meteoritical chronologies provide further fundamental inconsistencies to Ovenden's hypothesis for the creation of the asteroids vio \({ }^{7}\) yr ago by destruction of a huge planet. A recent observation by

Van Flandern (1975) on the regularity of orbits of conets with \(\sim 10^{7}\) yx pexiods has been linked to Ovenden's hypothesis, but far less exotic explanations exist than an exploded planet (e.g. collision between a large comet and an asteroid or observational biases in the data).
G. Planetary Masses

Minor planets provide a useful tool for measuring masses of some planets. Duncombe et al (1973) and Gxeenberg (1976) have summarized the use of commensurable asteroias to measure Jupiter. The mass of Saturn has been determined from three Trojans (Scholl, 1973).

\section*{H. Catalogs and Selection effects}

The permanently numbered asteroids are cataloged each year in the Ephemerides of Minor Planets. Orbits therein result primarily from photographic programs plus some visual programs. New discoveries result from astrometric programs and supernova and asteroid search programs. Most asteroids are discovered neax opposition. Photography is often concentrated near the ecliptic and is not uniform in time (e.g. because of moonlight). At least three observations over a duration of a month or more are required to permit identification with observations made in earlier years which were too few in number, or covered too short a span, to give an accurate orbit. This is the most common way new asteroids are cataloged. For instance, 1940 Whipple got its first accurate orbit from a 45-day arc in 1975 which led to identification of 6 previous observations at 5 oppositions back to 1932. Sometimes lower-accuracy oxbits axe linked by xecognizing their similarily. Short-arc orbits or unlinked data are common for asteroids near the plate limit. (Each year several hundred objects are
seen while only several dozen are cataloged.) Finally, an accurate orbit at one opposition may be used to generate predictions which lead to subsequent recovery, This third procedure for cataloging objects is used for unusual objects, such as Apollos. To guard against misidentifications most asteroids are cataloged only if seen at three or more oppositions (very rarely two). Care was not always taken in the past, partly for lack of computers; there are about 30 minor planets with catalog numbers less than 1565 that are presently lost. There are always several dozen multiple opposition objects with good orbits awaiting observation at one more opposition prior to cataloging. Over a thousand single-opposition orbits await linkage with another opposition.

The annual Ephemerides of Minor Planets, published by the Institute of Theoretical Astronomy at Leningrad, lists all cataloged asteroids, giving orbital elements and predicted positions neax opposition. The Minor Planet Circulars, compiled by the Cincinnati obsexvatory, list obsexvations, newly numbered oxbits, preliminary orbits, and new ephemerides. Finally, the IAU Cixculars give observations, orbits, and ephemerides for priority objects (e.g. Earth-approachers).

Selection effects in the numbered asteroids are discussed by Kiang (1966) and Kresák (1967). Slightly less than half are brighter than mean opposition magnitude \(B(a, 0)=15.0\), the Iimit of bias-free completeness. Newly cataloged asteroids tend to range from 15.5 to 17.5 . The sample of all 2042 numbered asteroids is biased aqainst high inclinations and in other ways. Participating obscrvatories are few, so that climate and observatory latitude favor discoveries of asteroids coming to favorable opposition at certain times of the year in certain parts of the sky. A
strong effect is discovery of asteroids near perinelion, when they are brightest. The peaking of the number of known perihelia near \(0^{\circ}\), \(u 3\) times that at \(180^{\circ}\), is paxtly a selection eftect but partly due to long-period perturbations that cause asteroids with perihelia approximately aligned with Jupiter's to have smaller perihelion distances than those oriented around \(180^{\circ}\). Because of the power-law size distribution of asteroids, the closer pexihelia in one part of the sky favor discovery of smaller objects. Such selection effects are enhanced by the fact that most asteroids are independently observed at several oppositions before the observations are linked.

The Palomar-Leiden Survey (PLS, see Sect. II G) sampled fainter minox planets. Plates were timed and positioned so that most objects could be followed between two inonths. Of the \(\sim 1800\) discovered objects with acceptable oxbital elements, \(\sim 1100\) were seen in both months and ase of high accuxacy; the remainder have an order-of-magnitude worse accuracy. The selection effects for this survey of \(2 \%\) of the total number of asteroids within the Palomar Schmidt's grasp are easiex to assess than for numbered asteroids since the procedures were uniform and specified. The restriction to a \(12 \%\) strip about the ecliptic strongly selects against high \(i\) objects; those with \(i \gg\) a few degrees were missed unless their nodes were in the photographed area. The faintest surveyed objects exhibit a bias for perihelia neax the survey axea.

The faintest cataloged objects are a biased sample and the brightest PLS objects are a sample of small numbers. The discovery of new asteroids will push the completeness limit to fainter objects. This will further clarify the distortions in the vicinity of the juncture of the two data sets (Sect. II G).

\begin{abstract}
I. Families

The orbital elements of main-belt asteroids showclusters called families. They are probably debris resulting from catastrophic collisions. From the orbital properties of families and physical studies of their members, we may learn about the collisional and dynamical evolution of asteroids and about the interior properties of precursor bodies. There have been few papers on families since the classical papers by Hixayama (1928), Brouwer (1951), and Arnold (1969). We discuss here the technique of family identification and some partial results of a study in progress.

Asteroid orbits are affected by planetary perturbations, especially Jupiter's. For most asteroids, the long-period (secular) perturbations are largest. When these periodic perturbations axe rémoved from the present elements, one obtains proper elements which may be thought of as mean elements. The proper elenents, \(\underline{a}, \underline{e}\), and \(\underline{i}\) show the distinctive family clusterings. The long-recognized families Eos (Fig. 2), Themis, and Koronis are heavily populated and well defined, but families with as few as four members are recognizable. Using the numbered asteroids and high-quality PIS orbits, Williams (1975b) searched for clusters among 2800 objects. 104 families, containing \(44 \%\) of the asteroids in the sample, were found which appeared to be statistically significant. The size of the families in proper \(\mathfrak{a - e - i}\) space suggests a typical rms speed of \(270 \mathrm{~m} \mathrm{sec}^{-1}\) from the center of mass. The violence of family-producing events ranges from cases where a large body still exists and the family members are ejecta from a gigantic cratering event to cases where the parent body was thoroughly broken up. Families were not examined for clustexings of proper. lomgitude of node and perihelion since "jet streams" can be the
\end{abstract}
spurious result of observational selection (most family members are fainter than the completeness limit; see sect. IV H). The discovery of new asteroids will help to fill out many small families and will place major portions of some families above the bias-free completeness limit.

Comparisons of the physical propexties of family members pexmits us to look inside a former asteroid. Spectrophotometric sampling of the brightest members of several families (McCord \& Chapman 1975b) reveals heterogeneity of compositional types in many cases. UBV studies of the Eos and Koronis families suggest compositional similarity of members, but the Nysa family may be more complex (Gradie \& Zellnex 1977). Attempts to interpret the association of the Nysa family with a compositionally distinct companion family (zellner et al 1977d) and the disparate members of the Eunomia family (Chapman 1976) in terms of geochemically plausible precursor bodies have proven to be difficult.

\section*{J. Apollo, Amox, and Mars-Cxossing Asteroids}

Earth-approaching asteroids are particularly fascinating. First, they are links between many meteorites that fall to Earth and their distant parent bodies. second, some of them are possible candidates for mining endeavors in space (Gaffey \& McCord 1977C). Third, the Earth is an actjve participant in a cosmic target-shoot with these objects.

Apollo asteroids have perihelion distances \(g<1.0\) AU while Amors have perihelia somewhat larger than 1 AJ , although different authors define different upper limits such as \(1.15,1.30\), or 1.33 AU. There is little significance to the Apollo/Amor boundary for we know that two Anors (1915 Quetzalcoatl and 1580 Betulia) have perihelia that evolve back and forth across 1.0 AU. Also, one must calculate orbital evolution in oxder to determine if an object with \(q<1.0\) NU can intersect the Earth's orbit.

Table 4 lists asteroids with \(q<1.5\) AU in ordex of pexihelion distance. Note that the range of inclinations, up to \(68^{\circ}\), is nearly twice that for main-belt asteroids and that there is a qreat variety of \(e^{\prime} s\) and \(a^{\prime} s\). The large range of absolute magnitudes is expected for a sample of closeapproaching objects; though the brighiest Amor objects are 433 Eros and 1036 Ganymed, it is unlikely that the brightest Apollo has been found yet. The table shows that perihelia tend to avoid the mean distances of venus and Earth; perhaps objects with such perihelia would have more frequent close planetary encounters, hence shorter lifetimes. The exception to this avoidance appears to be 1685 Toro, but it seems to avoid both Earth and Venus due to a resonant commensurability (Sect. IV B).

Table 4 illustrates a cutoff in aphelia neax 4.2 AU which, without the certainty that evolutionary calculations would provide, suggests that we lack objects that approach Jupiter closer than \(\sim 1 \mathrm{AU}\), the same limit seen for main-beltobjects. Apollo/Amor lifetimes are apparently controlled by the terrestrial planets and are typically a few \(x 10^{7}\) yr rather than the \(20^{6}\) yr expected for the Jupiter-approaching objects such as meteors and fireballs. Perhaps some Apollos and Amors were perturbed from short-lived orbits into longer-lived orbits by the terrestrial planets. Aphelia \(\underset{\sim}{ } 4.0\) AU might suggest bodies derived by the Kirkwood gap meteorite transport mechanism (Sect. IV E), but the largest value is for an orbit (for \(6344 \mathrm{P}-\mathrm{I}\) ) of only modest accuracy, While no cleax-cut examples exist, there are several cases of aphelia \(\sim 4\) AU which might result if a higher-aphelion object wexe pexturbed onto a longer-lived orbit by close encounters with terrestrial planets.

Many Apollos wexe discovered in the late \(40^{\prime}\) s and early \(50^{\prime} \mathrm{s}\), but only two
were found in the \(60^{\prime} \mathrm{s}\) (both from the PLS). The \(1970^{\prime}\) s have yielded numexous Apollos, parily due to the dedicated seaxch for them by \(E\). Shoemaker and E. Helin. Because of their large angular velocities at discovery, rapid followmups are necessary if the objects are not to be lost; occasionally objects disappear into the daylit sky within days. UnidentiEied objects trailing \(\lambda 0.7 /\) day at opposition are mainly unusual objects such as Apollos, Amors, and Mars-crossers, while those trailing 0.5-0.7/day tend to be high-i main belt objects, but may be more unusual. Also any object neax opposition moving the wrong way (prograde) or nearly perpendicular to the ecliptic are strong suspects. Any such unusual objects should be reported by telegram to the Central Bureau for Astronomical Telegrams (cable: Satellites New York; postal address: 60 Garden st., Cambridge, Mass. 021.38). The Eirst rough positions should be followed by accurate ones and further positions should be sought on subsequent nights. All. accurate asteroid positions should be sent to the Cincinnati observatory. Much of the recent success in discovering unusual objects has been due to observers being alert to the possibility of discovery and responding rapidly when a suspect is found. .

None of the known Apollos has been independently rediscovered at a different opposition. Several authors, most recently Wetherill (1976), have used this fact to try to place approximate limits on the number of Apollos with diameters \(\geq 1\) km. Constraining the upper limit by lunar and terrestrial cxater counts, Wethexill estimates that there are 0700 such Apollos. When he includes the search data of Shoemaker, Helin \& Gillett (1977), Wethexjll estimates 2600 Apollos and a similar number of Amors. This last fact raises a sexious problem concerning the oriain of the Anollos:
since the dynamical lifetimes of Amors are at least 10 times those of Apollos, few Apollos can be derived by evolution throuqh an Amor staqe. Calculations of methods for supplying Apollos directly from the main belt also run into difficulties (Sect. IV E), leading wetherill to conclude that most Apollos are extinct comet nuclei. This conclusion is bolstered by Sekanina's (1973) report that sevexal small meteor streams seem to match . orbits of several Apollos.

\section*{V. RAMCFICATIONS FOR PLANETARY EVOLUTION}
A. Asteroids as Planetesimals
"planetesimals" is a term referring to asteroid-sized bodies -- from objects hundreds of km across dow to dust grains -- that were involved in forming and cratering planets. Remnants of these populations exist, or have existed, in orbits that protect bodies from collision or ejection. Known remnants include comets, main-beltasteroids, Apollos, and Trojans. Crater-forming projectiles and meteoxites must be derived from one ox more of the known populations, although a few could conceivably be derived from an as-yetunknown population. Arguments have persisted over which bodies are the "parent bodies" for the meteorites, but the term is deceptively vague. Levin (1977) has emphásized the distinctions between initial parent bodies (presumably large bodies on which meteoritic rocks originally formed and were subsequently modified by metamorphic and other processes), intexmediate parent bodies (on whose regolithy surface many gas-rich, brecciated, and xenolithic meteorites vere formed), and last parent bodies (in which meteorites were shielded from cosmic rays prior to fragmentation and. capture by the Earth). Whatever the relationship among the various types
of parent bodies, they are all representatives of, or descendants of, the same grand family of planetesimals that initially populated the solar system. Differences among them involve such factors as initial solar distance (which determined the ice/silicate ratio) and distance from the gravitational effects of large outer planets, which determined the probability of accumulating into a planet, being left as a swarm in situ (asteroids), or ejection into the oort cloud (comets). The clear separation of classes of planetesimals is blurred by recent work suggesting appreciable mixing of material between planetary zones (Hartmann 1976, Wetherill 1977). The lunar cratering record (cf Haxtmann 1972) exemplifies how the xemnant planetesimal population has been decreasing with time as objects remaining in short-lived orbits are exhausted. The lunar cratering flux was high in early epochs, perhaps with some major spikes, but has tailed off since \(4 \mathrm{~b} . \mathrm{y}\). ago. The lunar post-mare crater size distribution is similar to that expected from impact of an evolved fragnental population, but there is some evidence for anomalous population in the cratering record on Mercury and on some of the oldest lunax units (Strom \& Whitaker 1976).

\section*{B. Early Orbital Evolution}

Lecar \& Franklin (1973) examined the evolution of several hundred hypothetical objects distributed in orbits interior to Jupiter. Aftex only 2400 years most objects beyond 3.97 AU ( \(3: 2\) commensurability) were removed by Jupiter perturbations, as were higher e objects just inside the commensurability. Many 3:2 and 4:3 librators remained there throughout the 2400-yx integration. Lecar and Franklin's final distribution for the outer belt resembles the true belt in that nonresonant belt objects exist only for a smallex than for the \(3: 2\) commensurability, though the predominant
outer boundary of the true belt appears tximmed by a further \(\frac{1}{4}\) AU. Presumably this difference represents the additional depth from which Jupiter has been able to eject objects between 2400 yr and the age of the solar system.

Lecar and Franklin thought their discrepancy with the true belt was larger than it really is because they compared their results with the PLS rather than the cataloged asteroids. A rarely noted plis result is that few objects were found between the \(2: 1\) and \(3: 2\) commensurabilities. While 47 of the first 1800 numbered asteroids exist in this interval, only four of \(\sim 1100\) PLS objects with accurate orbits were found, one of which was already numbered. The four (319, 6550P-I, 6030P-I, and \(9594 \mathrm{P}-\mathrm{I}\) ) have \(B(a, 0)\) of \(16.1,17.4,18.5\), and 19.6 , a distribution very unlike the usual power-law (sect. II G) for which each fainter magnitude interval contains about \(2^{\frac{1}{4}}\) times as many objects as the adjacent one. This puzzling lack of small noncommensurate objects beyond 3.3 AU may imply that very little collisional Eragmentation has occurred, but it is not known why.

Lecar and Franklin also performed integrations over 6000 yr for hypothetical objects between Jupiter and Saturn. Most were ejected from the solax system, but bands remained at 6.8 and 7.5 AU . Everhart (1973) found some of these orbits stable for \(>50,000 \mathrm{yr}\). These zones are near the 2:3 and 4:7 commensurabilities with Jupiter and 5:3 and 10:7 with Saturn. It is not known whether these zones are stable for the age of the solar system, but no such objects have yet been discovered. .

Birn (1973) integrated hypothetical, initially circular orbits intexior to Jupiter and found that boundaries of stability between planets occur at first-order commensuxabilities with the adjacent planet. To
speed up his integrations, he increased the masses of the planets over present values, but that modifies the dynamics; perturbations on the position of an object scales with the mass to the power \(1, \frac{1}{2}\), and 0 for shortperiod, comensurate, and "secular" terms so that the relative importance of different terms differs from reality. Alfven et al (1974) explain the outer-belt boundary by a process other than pure gravitational dynamics. They calculate that it should occur at 3.47 AU ( \(2 / 3\) Jupiter's a) due to condensation of grains in a partially corotating plasma.

Weidenschilling (1975) has addressed the question of why an asteroid planet failed to grow. When a planet grows large enough, remaining planetesimals are random-walked into orbits of higher e and i. As Jupitercrossing planetesimals increase in \(e\), they should first cross the asteroid belt, then Hars, and then Earth at which time their ejection probability coincidentally becomes significant. He notes the inverse correlation of bombardment time with present planetary masses in these zones and suggests that this intense bombardment may have inhibited the growth of Mars and, especially, the asteroids. Similar disruption by high-velocity bodies with different origins has been suggested by wetherill (1975). while such bombardment certainly could have depleted the asteroid population, the present size-distribution is controlled by the interasteroidal collisions at \(5 \mathrm{~km} \mathrm{sec}{ }^{-1}\) due to moderate \(e^{\prime} s\) and \(\underline{i}^{\prime} s\). The origin of these velocities is not known, but probably cannot be explained by collisions since they tend to catastrophically fragment bodies rather than change orbits.

This raises yet another objection to the "exploded planet" theory for the origin of the belt (Sect. IV F). Such an explosion would produce orbits that cross at the distance of the explosion. But the separation
of orbits in the belt exceeds the distance between the inner belt and Eaxth.

Nearly circular orbits exist from the belt's innermost edge to its outermost edge, a range of 1.9 AU and, if the lrojans are included, this spread is 3.3 AU. Planetary perturbations cannot make crossing eccentric orbits into separated cixculax orbits. To accomplish this feat by collisions, without disrupting a body, would require \(\geqslant 10^{3}\) collisions just under the threshold for disxuption. As improbable as such a scenario would be for a single body, it is absurd to rely on such a process for reoxdering orbits of multitudes of asteroids.

\section*{C. Geochemical Evolution of Asteroids}

The recent deluge of data on the physical properties of astexoids pexmits us to begin to consider them as "planets" in their own right and to discuss how they evolved to their current form, To the extent that meteorites are, in fact, asteroid fragments, we can discuss the geochemical evolution of these bodies more knowledgeably than for any other planets besides the moon and Earth. Indeed the meteorites most indicative of geochemical and thermal evolution in large parent bodies -- the most diffexentiated meteorites \(-\cdots\) are almost certainly derived from the asteroid belt. There is a concordance between spectral identification of surface mineralogies for inner-belt asteroids and dynamical probabilities of dexiving meteorites from them (Wetherill \& Williams 1977) as well as between the measured sizes of these bodies and dimensions inferred from cooling curves for many metaliic meteorites. Furthermore, the large asteroid vesta seems to be uniquely well suited as the parent body for basaltic achondrites (Consolmagno \& Drake 1977) despite the lack of a

\section*{ORIGINAL PAGE IS}
clear iransport mechanism from Vesta to Earth.

It is also plausible that many carbonaceous chondrites are derived from the asteroid belt, if for no other reason than that \(C\)-type asteroids predominate in the belt. But a reaj problem concerns the ordinary chon-. drites, the most common type of meteoxite. Wo definitely confirmed asteroid analog for ordinaxy chondrites has been found in the main belt so far. It may be quantitatively possible to obtain sufficient yield from as-yet-unobserved asteroids, but it seems increasingly improbable. Moreover, the association of ordinary chondrites with Apollo asteroids (Chapman et al 19730, Jevin et al 1976) combined with the difficulties we have mentioned before in dexiving most Apollos from the main belt lends credence to the idea that ordinary chondrites are of cometary origin. Although this idea does violence to many prejudices concerning the likely environments in comet cores, inferences from measured properties of chondrites, and models for the condensation of the solar nebula, it must be taken seriously. We must then examine possible ways of forming ordinary chondrites in the outex solax system or ways that major constituents of comet cores might have been derived from the inner solar system. The asteroid belt might yet be salvaged as a location for parent bodies of ordinary chondrites if (I) the common s-type asteroids are actually ordinary chondrites rathex than the preferred stony-irons and if (2) further dynamical investigations uncover major additional transport mechanisms for both meteorites and Apollo asteroids.

A preliminary model for the geochemical evolution of asteroids has been descirbed and updated by Chapman (1976; 1977). These ideas are too new, and the data are increasing too rapidly to warrant summary here. We
conclude our review with one of the most interesting questions; the nature of heating processes in the early solar system. Asteroids evidencing thermal evolution provide an extreme measure of the efficacy of heating processes since small objects cool so rapidly. The fact that the third largest asteroid appears to have been heated substantially while the largest retains a primitive composition illustrates the complexity of the problem (cf Matson et al 1976). Shori-lived radionuclides such as Al-26 (Iee et al 1976) may have been injected into different astexoids in different amounts or at different times with respect to accretion. Another possible. mechanism -- electrical induction by the solar wind during the presumed T Tauri phase of solar evolution -- may be most effective for moderately large (but not the laxgest) asteroids (Herbert \& Sonett 1977). Collisions. among asteroids, or between asteroids and high-velocity planetesimals, may have contributed to heat budgets, but it is likely that collisional melts, of which we may have a few meteoritic examples (nahklites; cf Bogard and Husain 1977), were locally restricted on parent bodies.

\section*{ACKNOWLEDGMENTS}

This review was supported in part by the NASA Planetary Astronomy Program (NASA Contract NASW-2983). Anothex part of this work was one phase of rea search carried out at the Jet Propulsion Laboratory, California Institute of Technology, undex NASA Contract NAS 7-100. We thank numerous colleagues (including B. Marsden, D. Morrison, and G. Wetherill) for critical reviews of earlier drafts of this manuscript. D. Davis and \(J\), Metcalfe helped in the late phases of the project. This is PSI Contribution No. 55.

Adams, J. B. 1975. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Ninerals, ed. C. Kasr, Jr. pp 91-116. New York: Academic Press.

Alfvén, H., Arrhenius, G. 1970a. Astrophys. Space Sci. 8:338-421..
Alfvén, H., Arrhenius, G. 1970b. Astrophys. Space Sci. 9:3-33.
Alfyén, H., Ip, W. -H., Burkenroad, M. D. 1974. Nature 250:634-36.
Allen, D. A. 1970. Nature 227:158-59.
Anders, E. 1965. Icarus 4:399-408.

Anders, E. 1975. Icarus 24:363-71.

Arnold, J. R. 1969. Astron. J. 74:1235-42.
Bender, D., Bowell, E., Chapman, C., Gaffey, M., Gehrels, T., Zellner, B., Morrison, D., Tedesco, E. 1978. Icarus. In press.

Birn, J. 1973. Astron. Astrophys. 24:283-93.
Bogara, D. D., Husain, I. 1977. Geophys. Res. Lett. 4:69-71.
Bowell, E. 1977. Bull. Am. Astron. Soc. In pxess ; also in Relationships Between Comets, Minor Planets, and lieteorites, ed. A. H. Delisemme, Univ. of Toledo Publications. In press.

Bowell, E., Chapman, C. R., Gradie, J., Morrison, D., Zellner, B. 1978. Icarus. (submitted)

Brouwer, D. 1951. Astron. J. 56:9-32.

Burns, J. A. 1975. Icarus 25:545-54.
Caldwell, J. 1975. Icarus 25:384-96.
Chapman, C. R. 1974. Geophys. Res. Lett. 1:341-44.
Chapman, C. R. 1976. Geochim. Cosmochim. Acta 40:701-19.
Chapman, C. R. 1977. In Relationships Between Comets, Minor Planets, and Meteorites, ed. A.H. Delsemme, Univ. of Toledo Publications. In press.

Chapman, C. R., Davist
Chapman, C. R., Davis, D. R., Greenberg, R. 1977. NASA TM X-3511, 72-73.

Chapman, C. R., Johnson, T. V., McCord, T. B. 1971. See Gehrels 1971, pp 51-65.

Chapman, C. R., McCord, T. B., Johnson, T. V. 1973a. Astron. J. 78:126-40.
Chapman, C. R., McCord, T. B., Pieters, C. 1973b. Astron. J. 78:502-05.
Chapman, C. R., Morrison, D. 1976. Icaxus 28:91-94.

Chapman, C. R., Morrison, D., Zellner, B. 1975. Icarus 25:104-30.
Conklin, E. K., Ulich, B. L., Dickel, J. R.s Ther, D. 1977. See Chapman 1977. Consolmagno, G. J., Drake, M. J. 1977. Geochim. Cosmochim. Acta 4l:1271-82. Degewij, J., Gehrels, T. 1976. Bull. Am. Astron. Soc. 8:459.

Degewij, J., Gradie, J., Zellnex, B. 1978. Astron. J. (submitted)
Dohnanyi, J. S. 1969. J. Geophys. Res. 74:2531-54.
Dohnanyi, J. S. 1971. See Gehrels 1971, pp 263-95.
Dollfus, A. 1971. See Gehrels 1971, pp 25-31.
Duncombe, R. L., Klepczynski, W. K., Seidelmann, P. K. 1973. Eund. Cosmic phys. 1:119-65.
Dunlap, J. J. 1971. See Gehrels J971, pp 147-54.
Eginitis, D. 1889. Annales de J'Observatoixe de Paris 19:H.1-H.16.
Everhart, E. 1.973. Astron. J. 78:316-28.
Franklin, F. A., Marsden, B. G., Williams, J. G., Bardwell, C. M. 1975. Astron. J. 80:729-46.

Froeschlé, C., Scholl, H. 1976. Astron. Astrophys. 48:389-93.

Gaffey, M. J., McCord, T. B. 1977a. Space Sci. Rev. (submitted)
Gaffey, M. J., McCord, T. B. 1977b. Proc. Lunax Sci. Conf., 8th. In press.
Gaffey, M. J., McCord, T. B. 1977c. Tech. Rev. 79:50-59.
Gehrels, T. 1970. In Surfaces and Interiors of Planets and Satellites, . ed. A. Dollfus, pp 37I-75. New York: Academic Press.

Gehrels, T., ed. 1971. Physical Studies of Minor Planets, NASA sP-267. Washington:NASA. 687 pp.

Gehrels, T., Gehrels, N. 1977. See Chapman 1977.
Gehrels, T., Taylor, R. C. .1977. Astron. J. 82:229-37.
Giffen, R. 1973. Astron. Astrophys. 23:387-403.
Gradie, J., Leake, M., Morrison, D. 1977. Neteoritics. In press.
Gradie, J., Zellner, B. 1977. Science 197:254-55.
Greenberg, R. 1976. In Jupitex, ed. T, Gehrels, 122-132. Tucson: Univ. Ariz, Pres Greenberg, R., Davis, D. R., Hartmann, W. K., Chapman, C. R. 1977. Icarus 30:769-79.

Greenberg, R., Franklin, F. i975. MNRAS 173:1-8.
Greenberg, R., Wacker, J. F., Hartmann, W. K., Chapman, C. R., 1978. Icarus (submitted)

Hansen, O. L. 1977. Icarus 31:456-82.
Harris, A. W. 1977. Icarus (submitted)
Hartmann, 7. K. 1969. Icarus 10:201-13.
Hartmann, W. K. 1972. Astrophys. Space Sci. 17:48-64.
Hartmann, w. K. 1976. Icarus 27:553-559.
Hartmann, W. K. 1978. Tcarus 33. In press.
Hartmann, W. K., Hartmann, A. C. 1968. Icarus 8:361-81.
Heppenheimer, T. A. 1975. Astron. J. 80:465-72.
Hexbert, F., Sonett, C. 1977. Astrophys. Space Sci. Submitted.
Hertz, H. G. 1968. Science 160:299-300.
Hirayama, K. 1928. Jap. J. Ascron. Geophys. 5:137-62.
Horedt, Gp. 1974. Icarus. 23:459-64.
Housen, K. R., Wilkening, J.J., Greenberg, R., Chapman, C.R. 1977. Bull. Am. Astron. Soc. In press.

Ip, W.~H., Mehra, R. 1973. Astron. J. 78:142-47.
Janiczek, P. M., Seidelmann, P. K., Duncombe, R. L. 1972. Astron. J. 77:764-73.

Jefferys, W. H. 1967. Astron. J. 72:872-75.
Johnson, T. V., McGetchin, T. R. 1973. Icarus 18:612-20.
Jurgens, R: F., Goldstejn, R. M. 1975. Icarus 28:1-15.
KenKnight, C. E., Rosenberg, D. Lo, Wehner, G. K. 1967. J. Geophys. Res. 72:3105-29.

Kiang, T. 1966. Icarus 5:437-49.
Kiang, T. 1971. See Gehrels 1971, pp 187-95.
Kresák, L. 1967. Bull. Astron. Inst. Czech. 18:27-36.

Kresák, I. 1971. See Gehrels 1971, pp 197-210.
Kresák, L. 1977. Bull. Astron. Inst. Czech. 28:65-82.
Kuipex, G. P., Fujita, Y., Gehrels, T., Groeneveld, I., Kent, J., Van Biesbroeck, G. van Houten, C. J. 1958. Astrophys. J. Suppl. Ser. 3:289-334.

Lacis, A. A., Fix, J. D. 1971. See Gehrels 1971, pp 141-46.
Lagerkvist, 'C. -I. 1975. Astron. Astrophys. 45:439-40.
Larson, H. P.r Fink, U. 1975. Icarus 26:420-27.
Larson, H. P., Fink, U., Treffers, R. R., Gautjer, T. N. III. 1976. Icarus 28:95-103.

Lebofsky, L. A. 1977. MNRAS (submitted)

Lecar, M., Franklin, F.A. 1973. Icarus 20:422-36.
Lee, T., Papanastassiou; D. A., Wasserburg, G. J. 1976. Geophys. Res. Lett, 3:109-112
Levin, B. J. 1977. See Chapman 1977.

Levin, B. J., Simonenko, A. N., Anders, E. 1976. Icarus 28:307-24.
Lowrey, B. E. 1971. J. Geophys. Res. 76:4084-89.
Marsden, B. G. 1970. Astron. J. 75:206-17.
Marsden, B. G. 1972. Proc. TAU Colloq. 45, pp. 239-43.
Matson, D. L., Fanale, F. P., Johnson, T. V., Veeder, G. J. 1976.
Proc. Lunar Sci. Conf., 7th, pp 3603-27.

Matson, D. L., Johnson, T. V., Veeder, G. J. 1977. Proc. Lunar Sci. Conf., 8th, In press.

McAdoo, D. C., Burns, J. A. 1974. Icarus 21:86-93.
McCord, T. B., Adams, J. B., Johnson, T. V. 1970. Science 168:1445-47.
McCord, T. B., Chapman, C. R. 1975a. Astrophys. J. 195:553-62.
McCord, T. B., Chapman, C. R. 1975b. Astxophys. J. 197:781-89.
Morrison \({ }_{r}\) D. 1976. Geophys. Res. Lett. 3:701-04.
Morrison, D. 1977. Icarus 31:185-220.
Napier, W. MCD., Dodd, R. J. 1974. MNRAS 166:469-89.
O'Keefe, J. D., Ahrens, T. J. 1976. Proc. Lunax Sci. Conf., 7th, pp 3007-25.
O'Leary, B., Marsden, B. G., Dragon, R., Hauser, E., McGrath, M., Backus, P.,
\(\therefore \quad \therefore . \ddots\) Robkoff, H. .1976. - Icarus 28:133-46.
Ovenden, M. W. 1972. Nature 239:508-9.
Ovenden, M. W. 1973. In Recent Advances in Dynamical Astronomy, ed.
B. D. Tapley and v. Szebehely, pp 319-32. Dordrecht iReidel.

Pellas, P. 1972. In From Plasma to Planet, ed. A. Elvius, pp 65-92.
New Yorls: John Wiley.
Petexson, C. 1976. Icarus 29:91-111.
Pilcher, F., Meeus, J. 1973. Tables of Minor Planets. privately published.
(Library of Congress Catalog Card \#73-80379). 104 pp .
Rajan, R. S. 1974. Geochim. Cosmochim. Acta 38:777-88.
Sather, R. E. 1976. Astron. J. 81:67-73.
Schober, H. J. 1977. Astron. Astrophys. In press.
Scholl, H. 1973. Astron. Astrophys. 25:203-9.
Scholl, H., Froeschlé, C. 1974. Astron, Astrophys. 33:455-58.
Scholl, H., Froeschle, C. 1975. Astron. Astrophys. 42:457-63.
Scholl, H., Giffen, R. 1974. Proc. IAU Symp. No. 62, pp 77-80.
Schubart. J. 1974. Astron. Astrophys. 30:289-92.

Schubart, J. 1975. Astron. Astrophys. 39:147-48.
Sekanina, Z. 1973. Icarus 18:253-84.

Shoemaker, E. M., Helin, E. F., Gillett, S. I. 1977. Geologica Romana. In press.

Soter, S. 1971. CRSR 462 Cornell Univ., Ithaca, NY.
Strom, R. G., Whitakex, E. A. 1976. NASA Tech. Nemo, X-3364, pp 194-96.
Taylor, G. E., Dunham, D. W. 1977. Icarus (submitted)
Taylor, R. C. 1971. See Gehrels 1971, pp 117-31.
'Taylor, R. C., Gehrels, T., Capen, R. C. 1976. Astron. J. 81:778-86. Van Flandern, 1. 1975. Bull. Am. Astron. Soc. 7:467.
van Houten, C. iu. 1971. See Gehrels 1971, pp 292-295.
van Houten, C. J., van Houten-Groeneveld, I., Herget, P., Gehrels, T.
1970. Astron. Astrophys. Suppl. 2:339-448.

Veeder, G. J., Matson, D. L., Smith, J. C. 1977. Astron. J. In press. Walsh, T. F., Zimmerman, P. D. 1971. Nature 230:233-34.

Weidenschilling, S.J. 1975. Icarus 26:361-66.

Weissman, P. R., Wetherill, G. W. 1974. Astron. J. 79:404-12.
Wetherill, G. W. 1967. J. Geophys. Res. 72:2429-44.
Wetherill, G. W. 1974 Ann. Rev. Earth Planet. Sci. 2:303-3l.

Wetherill, G. W. 1975. In Lunar Science VI, pp. 866-68 (Abstr.)

Wetherill, G.W. 1976. Geochim. Cosmochim. Acta 40:1249-1317.
Wetherill, G. W. 1977. Proc. Lunax Sci. Conf., 8th. In press.
Wetherill, G. W., Williams, J. G. 1977. proc. 2nd Intl. Conf. Origin and Distribution of Elements (I.A.G.C.), In press.

Widorn, T. 1967. Anm. Univ. Sternw. Wien 27:1J2-19.
Wiesel, W. E. 1974a. Harvard CFA Preprint Series, No. 191.
Wiesel, W. E. 1974b. Harvard CFA Preprint Series, No. 204:
Williams, J. G. 1973a. Eos, Trans. Am. Geophys. Union 54:233.
Williams, J. G. 1973b. Bull. Am. Astron. Soc. 5:363.
Williams, J. G. 1975a. J. Geophys. Res. 80:2914-16.
Williams, J. G. 1975b. Bull. Am. Astron. Soc. 7:343.
Williams, J. G., Wetherill, G. W. 1973. Astron. J. 78:510-15.
Worden, S. P., Stein, M. K., Schmidt, G. D., Angel, J. R. P. 1977.
Tcarus In press.

Zellner, B., Andersson, L., Gxadie, J. 1977c. Icaxus 31:447-55.
Zellner, B., Bowell, E. 1977. See Chapman 1977.
Zellnex, B., Gradie, J. 1976. Astron. J. 81:262-80.
Zellner, B., Leake, M., Lebertre, T., Duseaux, M., Dollfus, A. \(1977 a\). Proc. Lumar Sci. Conf., 8th. In press.

Zellner, B., Leake, M. Morrison, D., Williams, J. G. 1977ả. Geochim. Cosmochim. Acta In press.

Zellner, B., Lebertre, T., Day, K. 1977b. Proc. Iunas Sci. Conf, 8th. In press.
Zellner, B., Wisniewski, W. Z., Andexsson, L., Bowell, E.. 1975. Astron. J. 80:986-95.

Zimmerman, P. D. Wethexill, G. W. 1973. Science 182:51-53.

Table 1. Asteroid taxpnomites dind mineralogical classifications
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Taxonomic } \\
& \text { Class }^{2} \\
& \hline
\end{aligned}
\] & Mineralogical Class, Metcorite Analog, or Descriptor \({ }^{\text {b }}\) & \[
\begin{gathered}
\text { Type } \\
\text { Asteroids } \\
\hline
\end{gathered}
\] & Typical \(\mathrm{B}-\mathrm{v}^{\text {d }}\) & Irypical Albedo \({ }^{\text {d }}\) \\
\hline  &  & \begin{tabular}{l}
C*, carbonaceous chondrite? ( \(\mathrm{F}+\mathrm{TB}\) ) \\
C2 or CM, carbonaceous chondrite (TA +TC )
\end{tabular} & \[
\begin{aligned}
& 213,2,10, \\
& 88,511,1 \\
& 324,51
\end{aligned}
\] & \(0.63-0.74\)
.
0. & \(0.04-0.07\)
\(0.03-0.04\) \\
\hline \% & M & metal or enstatite chondrite (RR) & 16, 21, 22 & 0.70-0.72 & 0.09-0.11 \\
\hline \[
\begin{aligned}
& 0_{0}^{0} \\
& 0_{1}
\end{aligned}
\] & E & enstatite achondrite & 44 & 0.72 & 0.35 \\
\hline \multirow[t]{3}{*}{} & ( \()\) & \begin{tabular}{l}
intermediate \\
(various T)
\end{tabular} & 166, 48 & 0.77 & 0.03 \\
\hline & (U) & basaltic achondrite & 4,69 (?) & 0.77 & 0.23 \\
\hline & (U) & Trojan & 624 & 0.77 & 0.04 \\
\hline \multirow{5}{*}{} & \multirow[t]{5}{*}{} & \begin{tabular}{l}
metal-rich (plus \\
silicate?) (RF)
\end{tabular} & 9, 12 & \(0.87-0.88\) & \(0.13-0.14\) \\
\hline & & metal plus olivine ( \(\mathrm{R} A-1\) ) & 7, 39 & 0.82-0.92 & 0.14-0.16 \\
\hline & & metal plus pyroxene (plus minox olivine?) ( \(\mathrm{RA}-2+\mathrm{TE}\) ) & \[
\begin{gathered}
29,3,6 \\
230,25
\end{gathered}
\] & 0.87-0.91 & \(0.10-0.17\) \\
\hline & & pyroxene-rich plus metal (RA-3) & \[
89,5,63,
\] & 0.83-0.91 & 0.13-0.14 \\
\hline & & metal-poor, opaque-poor, pyroxene-rich & 8 & 0.88 & 0.14 \\
\hline \multirow{4}{*}{} & (U) & L ordinary chondrite? & 785 & 0.88 & 0.12 \\
\hline & R & wh oxdjnary chondrite or olivine achondrite? & 349 & 0.96 & 0.26 \\
\hline & ? & ? (steep red spectrum) & 170 & ? & ? \\
\hline & (U) & (carbonaceous?) chondxite type 3 (TD) & 80 & 0.89 & 0.14 \\
\hline
\end{tabular}
\(a_{\text {Bowell et al (1978). }}\)
\(b_{\text {Descriptor }}\) slightly modified from Chapman (1976). Letters in parentheses are corresponding compositional groups of Gaffey and McCord (1977a, b).
\({ }^{c}\) Asteroids typifying the 34 spectral groups found by McCord and Chapman (1975a, b), augmented by the 44 Nysa group (Zellner et al 1977d).
\(\mathrm{d}_{\text {Typical }}\) colors and albedos are only indicative.

Notes to Tables 2,3 , and 4

These tabulate Trojans, Hildas, and Earth-approaching ( \(q<1.5\) AU) asteroids. Columns give catalog number, name, semi-major axis eccentricity, inclination, perihelion and aphelion distances, and absolute and mean opposition \(B\) magnitudes. \(P\) and \(F\) indicate Trojan clouds preceding or following Jupitex in its oxbit. The least secure Trojan orbits are for PLS objects 2706 and 9507. 334 Chicago and 1256 Normannia are excluded from the Hildas since they do not librate. The last column in the Earth-approachers table indicates observational status, hence orbital accuracy, Several magnitudes were provided by \(E\). Roemer in advance of publication.

NUHEER NAME
588 ACHILHES
617 PATROCLUS
624 HEKTOR
659 NESTOR
684 PRIAHIS
911 AGABLINON
1143 ODYSSEUS
1172 ANEAS
1)73 ANCHISES

E208 1ROLHUS
1404 AJaX
1437 OIOMEDES
- I583 ANTILOCHUS

1647 MEDELAUS
1749 TELAKOH
1867 DETPHOBUS
1868 THERSITES
1867 PHILOCTEYES
1070 GLAUKOS.
1871 ASTYANAX
1372 HELENOS
1873 AGENOR
2706pol
4139 prl
4523 FuL
4572 PmL
4655 P - L 6020 POL

A
5.21
5.218141 22.1 44475094 \(9.16 \quad 15.86\) F
\(5.12 \quad 5025 \quad 18.3 \quad 4.975 .25 \quad 5.67 \quad 15.29 \quad p\) \(5.26 \quad i 110 \quad 4.5 \quad 4.685 .84 \quad 9.69 \quad 16.44 \quad p\) 5.19 . 120 0.9 \(4.555 .61 \quad 9.87 \quad 16.55 \quad\) 个 \(5.150 .067 \quad 21.7 \quad 4.815050 \quad 0.92 \quad 15.57 \quad \mathrm{~F}\)
\(5.21 \quad 0930.14: 735.70 \quad 9.44 \quad 16.15 \quad P\)
\(5.17 \quad .102 \quad 1607 \quad 40645069 \quad 9.42 \quad 16.08 \quad F\)
\(5.17 \quad .141 \quad 6.8 \quad 4.945089 \quad 10.13 \quad 16.79 \quad F\)
\(5.17 \quad 9093 \quad 33.7 \quad 4868 \quad 5.65 \quad 9.79 \quad 16.45 \quad F\)
\(5.21 \quad .113 \quad 16.1 \quad 4.625 .80 \quad 10.27 \quad 16.97 \quad \mathrm{~F}\)
\(5.05 \quad 046 \quad 20.6 \quad 4.85 \quad 5.32 \quad 9.23 \quad 15.82 \quad P\)
\(5.29 \quad .054 \quad 28.3 \quad 4: 995056 \quad 9.81 \cdot 16.58 \quad \mathrm{P}\)
\(5.22 \quad .020 \quad 506 \quad 58035.37 \quad 11.50 \quad 18.22 \quad P\)
5.27 . 111 6.1 4.685 .65 11.20 \(17.96 \quad F\)
\(5.20 \quad 0045 \quad 26.0 \quad 4.975 .44 \quad 10.80 \quad 17.30 \quad F\)
\(5.18 \quad .108 \quad 16.9 \quad 4.625074 \quad 10.75 \quad 17.43 \quad p\)
\(5.26 \quad 00614.04 .945 .52 \quad 12.32 \quad 19.07 \quad \mathrm{P}\)
\(5.21 \quad 031 \quad 6.6 \quad 5.05 \quad 5.37 \quad 11.90 \quad 18.61 \quad F\)
\(5.33 \quad 0.34 \quad .8 .6 \quad 5.155 .51 \quad 12.30 \quad 10.12 \quad \mathrm{~F}\)
\(5.11 \quad 0.43 \quad 14.8 \quad 4.895 .32 \quad 11: 50 \quad 18.11 \quad F\)
\(5.25 \quad \because 199 \quad 2107\) 4.775073 11.70 18.44 F
\(\begin{array}{lllllllll}5.07 & 119 & 1.2 & 4.47 & 5.68 & 14.14 & 20.72 & P\end{array}\)
5.14 .003 \(17.6 \quad 5.135 .16 \quad 12.44 \quad 17.08 \quad p\)
\(5.15 \quad .049 \quad .9 \quad 48895040 \quad 12.38 \quad 19.03 \quad P\)
\(5.17 \quad .057 \quad 9.3 \quad 4.875016 \quad 12.08 \quad 19.55 \quad P\)
5.25 .031 17.1 5.08 5.4 \(11.93 \quad 18.07 \quad P\)
\(\begin{array}{llllllll}5.24 & 1.494 & 4.75 & 5.73 & 13.06 & 17.79 & P\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 6540 PaL & 5.26 & 8059 & 9.1 & \(4: 75\) & 5.57 & 12.79 & 19:54 & \(p\) \\
\hline 6541P.4. & 5.25 & . 087 & 8.1 & 4.80 & 5.71 & 12.87 & 19857 & \(p\) \\
\hline 6581 PmL & 5.32 & 9030 & 4.9 & \(5: 16\) & 5.48 & 12.10 & 13.91 & \(p\) \\
\hline 65915 L & 5.31 & .042 & 7.4 & 5.08 & 5.53 & 12.32 & 19.11 & \(p\) \\
\hline 6629P-L & 5.07 & \(: 007\) & \(4 \cdot 2\) & \(5: 0.3\) & 5.10 & 12.30 & 18.95 & P \\
\hline 6844p-1. & 5.21 & \(\therefore 103\) & 8.2 & 4.67 & 5.74 & 13.80 & 20.58 & \(i\) \\
\hline \(950 \% \mathrm{PaL}\) & 5.08 & .114 & 5.0 & 4.50 & 5.66 & 11.96 & \(18{ }^{*} 54\) & \(p\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Numger & GAME & A & โ & \(!\) & Q1 & \[
82
\] & 5(1:0) & S(ADO \\
\hline 153 & HILDA & 3.98 & -154 & 7.8 & 30.36 & 4059 & 8.35 & 14.21 \\
\hline 190 & ISHENE & 3.95 & ' 170 & 602 & \(3: 28\) & 4.62 & 3:58 & 13072 \\
\hline 368 & BONONFA & 3.93 & -214 & 12.7 & 3.09 & 4.77 & 9.65 & 14.96 \\
\hline 499 & VENUSIA & 3.96 & - 222 & \(2 \cdot 1\) & 3.08 & 4.84 & 10.22 & 15.57 \\
\hline 748 & StMEISA & 3.95 & .176 & 2.3 & 3.26 & 4 c 64 & 9.85 & 15e! 8 \\
\hline 958 & ASPLINDA & 3.94 & C191 & 5.7 & 3.19 & 4.70 & 11:13 & 16945 \\
\hline 1038 & tUCKIA & 3.93 & . 243 & 9.2 & 2.97 & 4.83 & 11.69 & 16,99 \\
\hline 1162 & LARISSA & 3.74 & 0110 & 508 & 3:51 & 4.30 & 10.34 & 15:66 \\
\hline 1180 & RITA & 3.98 & -173 & 7.2 & 3.29 & 4.67 & 10.23 & 15.60 \\
\hline 1202 & NARINA & 3.95 & .197 & 3.4 & \(3 \cdot 17\) & 4.73 & 11.41 & 16.74 \\
\hline 1212 & Francette & 3.95 & C184 & 7.6 & \(3: 23\) & 4068 & 10.90 & 16.24 \\
\hline 1268 & llaya & 3.93 & - 606 & 9.4 & 3.51 & 4035 & 9.99 & 15.30 \\
\hline 1269 & ROLI.ANDIA & 3594 & . 074 & 2.7 & 3.65 & 4 P 23 & 9.75 & 15.07 \\
\hline 1345 & POTOMAC & 3.98 & \(\therefore 179\) & 11:4 & 3.27 & 4670 & \$0,8i & 16.18 \\
\hline 1439 & Vogtia & 3.98 & -115 & 4.2 & 3652 & 4049 & 16.24 & 16.61 \\
\hline 1512 & OULU & 3.93 & -162 & 606 & 3:30 & 4.57 & 10.50 & [5.81 \\
\hline 1529 & OTERMA & 4.000 & \(\therefore 194\) & 9.0 & 3.22 & 4.77 & 16.29 & 16.688 \\
\hline 1578 & KIRKWOOD & 3.96 & .223 & 08 & 3.108 & 4.84 & 11.84 & 17.18 \\
\hline 1746 & BROUWER & 3.97 & -197 & 0.4 & 3.19 & 4.75 & 10.90 & 16.26 \\
\hline 1748 & MaUderli & 3.92 & 0234 & 3.3 & 3.00 & 4084 & 11.70 & 16.99 \\
\hline 1754 & CUNNINGHAH & 3.99 & 0163 & 12.0 & 3.34 & 4.64 & 10.60 & 15.99 \\
\hline 1877 & MARSDEN & 3.96 & -213 & 17.5 & 3.11 & 4080 & 12.40 & 17,74 \\
\hline 1702 & SHAPOSHNIKOV & 3.97 & 0224 & 1205 & \(3: 08\) & 4087 & 10.60 & 15.96 \\
\hline 1911 & Schubart & 3.98 & .162 & 1.7 & 3.33 & 4962 & 11030 & 16.67 \\
\hline \multirow[t]{4}{*}{. 1941} & WILD & 3099 & .278 & 3.9 & 2:88 & 5.10 & 12.50 & 17.89 \\
\hline & 2033Pmb & 3.99 & 9168 & 305 & 3.33 & 4.66 & 13.66 & 19.05 \\
\hline & 2159P0L & 3.93 & -185 & 5.6 & 3.20 & 4.57 & 11.68 & 16.98 \\
\hline & 2554 Pm & 3.98 & 0238 & 3.5 & 3:03 & 4.92 & 13.94 & 19.30 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 1972 RB & 2.17 & \(\times 492\) & \(5 \cdot 2\) & \(1: 10\) & 3.23 & 20.00 & 22.02 & RECOVERABLE? \\
\hline 5580 & BETUKLA & \(2 \div 20\) & 8490 & 57.00 & \(1: 12\) & \(3 \cdot 27\) & 15066 & 17876 & SECURE \\
\hline \multirow[t]{2}{*}{1627} & IVAR & 1086 & 6397 & 8.4 & \(1: 12\) & 2060 & 14.23 & 15.27 & SECURE \\
\hline & 1772 RA & 2.36 & 5523 & 9.0 & 5013 & 3 c 60 & 18.50 & 21.014 & RECOVERABLE \\
\hline 433 & EROS & 1046 & .223 & 10.8 & 1813 & 1:73 & 11088 & 11.00 & SECURE \\
\hline \multirow[t]{2}{*}{887} & ALINDA & 2.52 & e 544 & 901 & 1.15 & 3088 & \(\{5.39\) & 18.30 & SECURE \\
\hline & 4706Fral & 2.55 & 0.545 & 10.0 & 1.16 & 3.93 & 17.89 & 20.87 & LOST \\
\hline - 719 & ALBERT & 2650 & 9540 & 10.8 & \(1: 19\) & 3090 & 16.87 & 19.93 & LOST \\
\hline \multirow[t]{2}{*}{1036} & GANYMEO & 2066 & 9542 & 26.3 & 1:22 & 4010 & 10.36 & d \(\mathrm{S}_{\text {e }} 08\) & SECURE \\
\hline & 19630 A & 20.65 & \(\bigcirc 530\) & 1101 & 1:24 & 4.05 & 17.80 & 20.97 & SECURE \\
\hline 1916 & 1953RA & \(2 \times 27\) & 0450 & 12.8 & \(1: 25\) & 3.30 & 15.60 & 17091 & SECURE \\
\hline \multirow[t]{3}{*}{1951} & LICK & 1830 & 062 & 39.1 & 1830 & 1848 & 15.80 & 14.47 & SECURE \\
\hline & 197156 & 2. 21 & .390 & 12.0 & 1834 & 307 & 16.50 & 18.62 & LOST? \\
\hline & 197400 & 2.12 & 0359 & 3603 & \(4 \times 36\) & 2.89 & 14.00 & 15.85 & SECURE \\
\hline \multirow[t]{2}{*}{8474} & BEIRA & 2073 & 9850 & 26.8 & 1.39 & 4.07 & 13002 & 16.40 & SECURE \\
\hline & 2108 Pm & 2.32 & 8385 & 206 & 1043 & 3021 & 19.60 & 22.03 & LOST \\
\hline \multirow[t]{2}{*}{1134} & KEPLER & 2.60 & 0467 & 1500 & 1043 & 3093 & 15.39 & 13.66 & SECURE \\
\hline & 4548PmL & 2.17 & \[
0310:
\] & ग765 & 1043 & 2973 & 18.55 & 20.58 & LOST' \\
\hline 1009 & SIRENE & \(2 \times 63\) & \[
\because \varepsilon^{\prime} 45^{5}
\] & 1508 & 1.44 & 3.32 & 16.97 & 20.08 & RECOVERABLE? \\
\hline \multirow[t]{3}{*}{1139} & ATAMI & 1.95 & 8255 & 1301 & \(1: 45\) & 2044 & 14.35 & \(15 \cdot 63\) & SECURE \\
\hline & 1963124 & 2438 & 0378 & 2101 & 1048 & 3028 & 14.20 & 16.79 & LOST \\
\hline & 1975A0 & 2.37 & c 375 & 20.1 & 1040 & 3.26 & 14000 & 16.55 & SECURE \\
\hline 1198 & ATLANTIS & 2,25 & -3,35 & \(2 \cdot 7\) & 1597 & \(3: 00\) & 16.79 & 17.03 & LOST \\
\hline
\end{tabular}

Table 4 (Cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ) & (cont.) & & & & & & & & 8 - \\
\hline LHEER & NAHE & \(\wedge\) & E & [ & \(9!\) & 02 & B(1:0) & E(A)0) & STATUS \\
\hline .1566 & icarus & 1¢08 & . 027 & 23.0 & -19 & 1097 & 17.62 & 12.23 & SECURE \\
\hline & 1974 mA & 1.76 & -760 & 37.7 & \(: 42\) & 3.09 & 15.00 & 15.62 & LOST? \\
\hline & 1936 CA ADONIS & 1.87 & .764 & 184 & \(\therefore 44\) & 3.30 & 13.60 & 19,66 & SECURE \\
\hline & \(1976 \cup \mathrm{~A}\) & -84 & -451 & 509 & :46 & 1.22 & 21.50 & 17.10 & RECOVERABLE \\
\hline 1864 & DAEDAlus & 1046 & 2615 & 2201 & \(\therefore 56\) & 2.36; & 16.34 & 15048. & SECURE \\
\hline 1865 & cerberus & 1.08 & \(: 467\) & 16.1 & \(\bigcirc 58\) & \(1<50\) & 17.50 & 12.19 & SECURE \\
\hline 1 & 1937 Ub hermes & 1.64 & 0624 & 6.2 & 462 & 2066 & 19.10 & 18:20 & LOST \\
\hline 1901 & 1973EA, & 1.78 & -650 & 38.8 & \(: 62\) & 2.93 & 16.40 & 17.10 & SECURE \\
\hline 1862 & APOLALO & 1.47 & 8560 & 6,4 & 465 & 2.29 & 17.00 & 16.20 & SECURE \\
\hline 18.685 & TORO & 1.37 & +436 & 984 & \(: 77\) & \(1.0 \%\) & 14.90 & 13,41 & SECURE \\
\hline & 1976 AA & .97 & -182 & 18.9 & -79 & 1014 & 18.36 & 10.71 & SECURE \\
\hline & 6743P00L & 1.62 & c 493 & 7.3 & : 82 & 2.42 & 18.41 & 18.12 & LOST \\
\hline 1620 & geographos & 1.24 & 0.335 & 13.3 & \(\div 83\) & 1966 & 16.67 & 14.006 & SECURE \\
\hline & 1976世感 & 2.41 & -656 & 24.3 & -83 & 3.99 & 16, 30 & 18.95 & RECOVERABLE \\
\hline & \(1947 \times \mathrm{C}\) & 2.25 & ¢630 & \(1 ¢ 0\) & -83 & 3667 & 16.000 & 18.25 & LOST \\
\hline & 1959611 & 1.34 & . 379 & 3.3 & \(\therefore 83\) & 1.35 & 14.00 & 12.32 & LOST \\
\hline & 19500 A & 1\%68 & \(\div 502\) & 12.1 & \(\bigcirc 84\) & 2.53 & 16.90 & 17.20 & LOST? \\
\hline 1866 & sisyphus & 1689 & 8540 & 41.1 & 0.67 & 2092 & 13.70 & 14.64 & SECURE \\
\hline & 1873 NA & 2.39 & :633 & 67.9 & ¢ 88 & 3.98 & 15.40 & 28.01 & LOST? \\
\hline 1863 & Antinous & 2.26 & -606 & 18.4 & 489 & 3063 & 86.50 & 16.77 & SECURE \\
\hline & \(1975 \mathrm{YA} \quad\)\begin{tabular}{l} 
a \\
\\
\hline
\end{tabular} & \[
1_{1}^{1}, x_{1}^{2} 9
\] & 02.98 & 64.0 & -91 & 1067 & 17.50 & 15.37 & RECOVERABLE \\
\hline & 6344Pmi. & 2 ES 8 & \(\because 635\) & \(4: 6\) & \(\therefore 94\) & 1021 & 23.02 & 26.06 & LOST \\
\hline - & 196004 & 2.26 & -537 & \(3 \% 7\) & 1:05 & 3.48 & 13.10 & 20.37 & RECOVERABLE \\
\hline \[
1815
\] & QUETZALCOATH. & 2.52 & -503 & 20.5 & 1:05 & 3.99 & 19.30 & 22.22 & SECURE \\
\hline 1717 & cuyo & 2.45 & 0.505 & 24.0 & 1006 & 3.23 & 16.50 & 18.36 & SECURE \\
\hline \[
p^{943}
\] & 1973E6 & 1.43 & . 256 & E.7 & 1.06 & 1.80 & 16.50 & 15.45 & SECURE \\
\hline 1900 & 19501.6 & 1071 & e 365 & 26.8 & 1-0 0 & 2.33 & \(15: 00\) & 15.42 & SECURE \\
\hline 1221 & AMOR & 1097 & - 336 & 11.7 & 1.00 & 2076 & 19:16 & 20:30 & SECURE \\
\hline
\end{tabular}

\section*{FIGURE CAPTIONS}

Figure 1: Diameter-frequency distribution for asteroids. points are bias-corrected counts in increments of 0.05 in \(\log \mathrm{D}\) (Zellner \& Bowell 1977). Lines are possible fits and extrapolations, constrained at small D by Palomar-Leiden Survey data.

Figure 2: Proper e vs proper sin \(i\) values for asteroids in a small part of the belt show the very populous Eos family. It contains 78 members in a volume of proper a-e-sin \(i\) space that would normally contain less than one object by chance.


Rimima 1


APPENDIX C

UBV Pinhole Scans of Saturn \({ }^{2}\) s Disk. 0. G. FRANZ, Lowell Observatory, and M. J. PRICE, Planetary Science Institute. - A photoelectric area scanner, equipped with a circular aperture of \(0.64 \operatorname{arcsec}(100 \mu)\) diameter, was used in conjunction with the 72 -inch Perkins reflector at the Lowell Observatory to obtain UBV scans of Saturn's disk on several nights in the winter and spring of 1977. The resulting intensity profiles show pronounced limb brightening in \(U\), moderate limb brightening in \(B\), and limb darkening in \(V\). They also display, in all three colors', distinct east-to-west asymmetry varying with solar phase angle. In interpreting these observations, elementary radiative-transfer models are used to describe scattering in the atmosphere above the visible cloud layer. Limits are placed on the optical thickness of the gas above the clouds. The probable structure of Saturn's atmosphere is briefly discussed. . This research was supported by the National Aeronautics and Space Administration under Contract NASW-2983 and by the National Science Foundation. Some of the data processing was carried out with. the support of NASA Grant NGR-03-003-001.

Type of paper:
1) oral presentation [ ] 5 min . \([x] 10 \mathrm{~min}\).
2) read by title only
3) invited lecture
4) percent published elsewhere

Billing information:
We agree to pay \(\$ 20\) in partial support . of the publication of the abstract in the B.A.A.S.

Date: 26 August 1977
Lowell Observatory
Post Office Box 1269
Flagstaff, Arizona 86002


APPENDIX D

\title{
URANUS: LIMB AND POLAR BRIGHTENING AT \(7300 \AA\)
}

OTTO G. FRANZ and MICHAEL J. PRICE

\title{
URANUS: LIMB AND POLAR BRIGHTENING AT \(7300 \AA\)
}

\author{
Otto G. Franz \\ Lowell Observatory, Flagstaff, Arizona \\ AND \\ Michael J. Price \\ Planetary Science Institute, Tucson, Arizona \\ Received 1976 November 15; revised 1977 March 15
}

\begin{abstract}
Pinhole photoelectric area-scanning photometry of the Uranus disk demonstrates directly the existence of both limb and polar brightening in the \(7300 \AA \mathrm{AH}_{4}\) band. Polar brightening, which appears to be present also at continuum wavelengths, is interpreted as being caused by scattering in in a thin aerosol haze located over the polar region.
\end{abstract}

Subject headings: planets: atmospheres-planets: Uranus

\section*{I. INTRODUCTION}

Limb brightening of Uranus was first detected by Westphal (19i2), who, on 1971 March 8, obtained two simultaneous scans across the disk in the passbands \(8000-8240 \AA\) and \(8720-8960 \AA\). The atmospheric seeing was \(\sim 0.5\). A circular aperture of \(1^{\prime \prime}\) was used. The long-wavelength scan, which has since been reproduced in the literature (Belton and Vesculus 1975), shows distinct limb brightening and also asymmetry, the west limb being markedly brighter than the east limb. The short-wavelength scan, which remains unpublished, shows a flat central region about \(2^{\prime \prime}\) wide together with limb darkening.

Infrared limb brightening was confirmed by Sinton (1972), who obtained several images of Uranus with a Varo tube and an \(8570 \AA\) interference filter under good seeing conditions. Both limb and polar brightening were found. Sinton explained the polar brightening as being caused by haze in the upper atmosphere, in addition to Rayleigh scattering.
Belton and Price (1973) interpreted limb brightening on the Uranus disk in terms of \(\mathrm{H}_{2}-\mathrm{CH}_{4}\) pressure induced absorption in a semi-infinite, clear atmosphere. On the basis of this model, limb darkening is predicted to occur in continuum wavebands, while limb brightening is expected in all deep \(\mathrm{CH}_{4}\) bands.
In a recent investigation of wavelength dependence in the optical appearance of Uranus, Price and Franz (1976) used an area-scanning photometer (Franz 1970) in conjunction with the 72 inch ( 1.8 m ) Perkins reflector at the Lowell Observatory to obtain multicolor ( \(5500-7600 \AA\) ), narrow-band ( \(100 \AA\) ) scans of the Uranus disk. Both slit and pinhole scanning apertures were used, each having a characteristic width of \(100 \mu \mathrm{~m}\) ( 0 "65). Absolute limb brightening, i.e., limb brightening with respect to a uniform disk, was found in the \(7300 \AA\) methane band. Relative limb brightening, i.c., limb brightening with respect to the disk profile at adjacent continuum wavelengths, was detected in the \(6190 \AA \mathrm{CH}_{4}\) band. No evidence of asymmetry was
found in the scan profiles. However, the point spread function (PSF) never exhibited a half-power width less than about \(2^{\prime \prime}\). As a result, statistical methods were required to analyze the data. To demonstrate directly the existence of limb brightening in the visible region of the spectrum, observations of higher quality were clearly required. Such data are reported in this Lelter.

\section*{II. New observational results}

Substantial improvement of the optical performance of the 72 inch Perkins telescope was recently brought about by retouching the figure of its secondary mirror. When new scans of Uranus were subsequently obtained in winter and spring of 1976, the half-power width of the PSF was found to be on the order of \(1^{\prime \prime}\), an improvement by a factor of 2 over typical earlier values. While equipment and observational technique were those previously used and described by Price and Franz (1976), special attention was given to pinhole scans in an effort to enhance the visibility of limb brightening.
Two sets of south-to-north (near-equatorial) scans of the Uranus disk, taken on 1976 May 18 and June 17 in the \(\mathrm{CH}_{4}\) band at \(7300 \AA\) and in adjacent continuum regions, are presented in Figure 1. All profiles are normalized at the center of the planetary disk. Both sets of scans, although of unequal quality owing largely to different seeing conditions and different effective integration times, exhibit distinct limb brightening in the light of the methane band relative to the profiles in continuum light. Note that owing to the effects of atmospheric smearing, observed relative limb brightening may indicate the presence of absolute limb brightening, as pointed out by Belton and Price (1973).
Figure 2 shows two sets of near-polar scans obtained on 1976 January 30 and June 17. The presence of limb brightening at \(7300 \AA\), relative to scans at continuum wavelengths, is again readily apparent. But while the near-equatorial scans (Fig. 1) show symmetry about the center of the planetary disk. the near-polar scans (Fis. 2) appear distinctly asymmetric in the \(7300 \AA \mathrm{CH}_{4}\)
\begin{tabular}{lcl} 
Uranus Scans & Angular Diameter & O.6arcsec Circular Aperture \\
a: 17 June 76 & 384 arcsec & \(-\lambda 7300 \dot{A} \mathrm{CH}_{4}\) - Band \\
b: 18 May 76 & 3.90 & - Continuum
\end{tabular}


Fig. 1.-Near-equatorial (south-north) pirhole scans across the Uranus disk show limb brightening at \(\lambda 7300 \AA\). All data are normalized at the disk center. Angular diameters of the Uranus disk are taken from the 1976 American Ephemeris and Naulical Almanac.
\begin{tabular}{lll} 
Uranus Scans & Angular Diameter & 0.6 arcsec Circular Aperture \\
a: 17 June 76 & 3.84 aresec & - \\
b: 30 Jan 76 & 3.72 & -
\end{tabular}


Fig. 2.-Near-polar (east-west) pinhole scans across the Uranus disk show limb brightening at \(7300 \AA\) and asymmetry in both wave bands. The sense of the asymmetry reverses with scan direction. All data are normalized at the disk center Angular diameters of the Uranus disk are taken from the 1976 American Ephemeris and Nautical Almanac.
band and the adjacent continuum. Note also that the near-polar scans were made in opposite directions on the two nignts. The sense of the asymmetry changes accordingly, demonstrating that the effect is real and showing that in all cases Uranus appeared brighter near its western limb than near its eastern limb. It should be emphasized that this effect, now discovered in the visible spectrum, is the same as that found in the nearinfrared ( \(8870 \AA\) ) from the scans by Westphal (1972), published in part by Belton and Vesculus (1975), and from the observations by Sinton (1972).

Explanation of the observed east-west asymmetry in terms of polar brightening remains the most likely. On 1976 April 25 (opposition), the north pole of Uranus was located near the planet's western limb at position angle \(278^{\circ} .3\) and at a distance of 0.680 Uranus radii from the center of the disk.

If this polar brightening were caused by \(\mathrm{H}_{2}-\mathrm{CH}_{4}\) pressure-induced absorption, its occurrence would be limited to the deep \(\mathrm{CH}_{4}\) bands. Because polar brightening is apparent in both continuum and \(\mathrm{CH}_{4}\) wavebands, it is almost certainly the result of scattering in an aerosol haze located over the polar region. This conclusion confirms that drawn by Sinton (1972). Our 1976 observations therefore suggest that such a thin polar haze on Uranus is a long-lived, perhaps even permanent, feature.

This work was carried out with the aid of the National Aeronautics and Space Administration under contracts NASW-2521, NASW-2718, and NASW-2843 and with the support of grants from the National Science Foundation. Some of the data processing was aided by NASA grant NGR-03-003-001.

\section*{REFERENCES}

Belton, M. J. S., and Price, M. J. 1973, Ap. J., 179, 965. Belton, M. J. S., and Vesculus, F. E. 1975, Icarus, 24, 299. Franz, O. G. 1970 , Loacell Obs. Bull., No. 154. Price, M. J., and Franz, O. G. 1976, Icarus, 29, 125. Sinton, W. M. 1972, Ap.J. (Letters), 176, L131.
Westphal, J.A. 1972, comment during 3d Annual Meeting of the AAS, Division for Planetary Sciences, Kailua-Kona, Hawaii, 1972 March.

APPENDIX E

\section*{LIMB-BRIGHTENING ON URANUS:}

THE VISIBLE SPECTRUM. II

\author{
Michael J. Price \\ Planetary Science Institute 2030 E. Speedway Blvd., Suite 201 Tucson, Arizona 85719 and \\ Otto G. Franz \\ Lowell Observatory \\ P. O. Box 1269 \\ Flagstaff, Arizona 86002
}

\section*{Received}

Revised

No. of Copies: 3
No. of MS Pages: 35
No. of Figures: 11
No. 'of Tables: 2

Proposed Running Head:

\section*{LIMB-BRIGHTENING ON URANUS}

Name and Address of Person to Whom Proofs Should be Sent:

\author{
Dr. Michael J. Price Planetary Science Institute 2030 E. Speedway Blvd., Suite 201 Tucson, Arizona 85719
}

\begin{abstract}
New narrow-band (100 \(\AA\) ) photoelectric area-scanning photometry of the Uranus disk is reported. Observations were concentrated on the two strong \(\mathrm{CH}_{4}\) bands at \(\lambda 6190 \AA\) and at \(\lambda 7300 \AA\). Adjacent continuum regions at \(\lambda 6400 \AA\) and at \(\lambda 7500 \AA\) were also measured for comparison. Both slit and pinhole scans were made in orthogonal directions. Disk structure in each waveband is apparent through lack of circular symmetry in the intensity distribution over the Uranus image. Polar brightening is especially prominent in the \(\lambda 7500 \AA\) waveband.

Coarse quantitative determinations of the true intensity distribution over the Uranus disk were made. For the \(\lambda 6190 \AA \mathrm{CH}_{4}\) band, Uranus exhibits a disk of essentially uniform intensity except for a hint of polar brighténing. For the \(\lambda 7300 \AA \mathrm{CH}_{4}\) band, moderate limb-brightening is apparent. Specifically, the true intensities at the center and limb of the planetary disk are approximately in the proportion 1:2. Extreme limbbrightening, with a corresponding intensity ratio greater than 1:4, is not permitted by the observational data.
\end{abstract}

\section*{I. INTRODUCTION}

Belton and Vesculus (1975) pointed out that valuable information for investigating the physical structure of the Uranus atmosphere can be obtained from knowledge of the distribution of brightness over the planetary disk. Qualitative and quantitative infrared studies of the intensity profile of the Uranus disk have been reported by Westphal (1972) and by Sinton (1972), respectively. In Paper I, Price and Franz (1976) studied the wavelength variation in the optical appearance of Uranus using multicolored \((\lambda 5500-7600 \AA\) ), narrow-band ( \(100 \AA\) ), area-scanning photometry. Eight wavebands were selected. During the 1975 Uranus apparition, absolute limb-darkening was found in all spectral regions considered except for the two \(\mathrm{CH}_{4}\) bands at \(\lambda 6190 \AA\) and \(\lambda 7300 \AA\). For the \(\lambda 7300 \AA\) band, absolute limb-brightening with respect to a uniform disk was found. For the \(\lambda 6190 \AA\) band, no definite conclusions could be drawn regarding the absolute nature of limb-brightening. Only limb-brightening relative to adjacent continuum regions could be demonstrated. If absolute limb-brightening did occur in the \(\lambda 6190 \AA\) band, it had to be much less pronounced than in the \(\lambda 7300 \AA\) A band. Quantitative estimates of the degree of either limb-darkening or limb-brightening in any waveband could not be obtained from the available observational data. Spatial resolution and photometric accuracy were insufficient.

Further observations of limb-brightening on Uranus have since been carried out by other investigators. Avis et. al. (1977) reported the photographic detection of albedo features in the \(\lambda 6190 \AA \mathrm{CH}_{4}\) band. Image enhancement processing resulted in the discovery of local polar brightening superimposed on weak, symmetrical, absolute limb-brightening. Smith
(1977), using a CCD camera, confirmed the existence of absolute limbbrightening in the \(\lambda 8900 \AA \mathrm{CH}_{4}\) band.

During the 1976 Uranus apparition, we refined our earlier observations of the planet. Spatial resolution and photometric accuracy had been much improved since 1975. Our objective was to quantitatively determine the degree of limb-brightening in each of the two \(\mathrm{CH}_{4}\) bands of interest. For the \(\lambda 7300 \AA\) band, initial qualitative results were reported by Franz and Price (1977). Pinhole scans demonstrated directly the existence of both limb and polar brightening. Polar brightening appeared to be present also at adjacent continuum wavelengths. In this paper, we present a detailed analysis of our 1976 observational data. In a subsequent paper, an interpretation of our results in terms of the physical. structure of the Uranus atmosphere will be given.

\section*{2. OBSERVATIONS}
- Using the equipment and technique described in Paper I, we carried out new photoelectric area-scanning photometry of the Uranus disk during the 1976 apparition. Measurements were restricted to four narrow-band ( \(\sim 100 \AA\) ) spectral regions, namely the \(\mathrm{CH}_{4}\) bands selected with Filter No. 3 ( \(\lambda 6200 \AA\) ) and Filter No. 7 ( \(\lambda 7300 \AA\) ), and adjacent "continuum" regions studied through Filter No. \(4(\lambda 6400 \AA\) ) and Filter No. 8 ( \(\lambda 7500 \AA\) ). Specifications of the filters were noted in Paper I.

Since 1975 major improvements had been made to the optical performance of the Perkins reflector. Specifically, the Cassegrain secondary was refigured to reduce spherical aberration. Typical point spread functions produced by the atmosphere-telescope combination became narrower by a factor of two compared with those previously obtained. Significant improvement in the spatial resolution of the Uranus disk was a direct result. Photometric signal-to-noise ratios were also increased by replacing the earlier EMI-9558 (S-20) tube with an ITT F4085 (S-20) photomultiplier.

Uranus was scanned with both slit and pinhole apertures. Slit scans were selected to provide the most reliable photometric data for investigating the true intensity distribution over the disk. Pinhole scans were included to enhance the visibility of limb- and polarbrightening, and to verify the interpretation of the slit-scan data. Characteristic widths of the pinhole and slit were both chosen equal to \(100 \mu \mathrm{~m}\left(0^{\prime \prime} .645 \mathrm{arc}\right)\). The slit and scan lengths were each 2 mm (12".9 arc). Point spread function data were obtained by slitscanning images of individual stars located near the planet. Direct and reverse scans were made along two orientations, north-south ( \(\mathrm{N}-\mathrm{S}\) ) or east-west ( \(\mathrm{E}-\mathrm{W}\) ). For Uranus, orthogonal scans were used to examine the reality of features in the disk profiles. For stellar images, orthogonal scans were used to verify that telescope guiding errors were insignificant. Table I gives the 1976 Uranus observing log.

Visual guiding was used with no attempt made to correct for image displacement caused by the wavelength dependence of atmospheric refraction. For the maximum wavelength difference (2000 \(\AA\) ) between
guiding ( \(\lambda 5500 \AA\) ) and scanning ( \(7500 \AA\) ), at the largest zenith distance ( 51 degrees) encountered in our observations, the relative image displacement never exceeded 0.5 arc . For our slit scans, this displacement is of no consequence. Since both the slit and scan lengths ( \(\sim 13^{\mathrm{th}}\) arc) were much greater than the sum of both the Uranus angular diameter ( \(\sim 4^{\prime \prime} \mathrm{arc}\) ) and the maximum image displacement encountered ( \(0^{\prime \prime} .5 \mathrm{arc}\) ), no light from the planet was lost whatever the scan orientation. Furthermore, no distortion of any scan profile could occur. For our pinhole scans, however, the situation is not so clear cut. Because Uranus was always observed near the time of its local meridian transit, the N-S pinhole scans were essentially unaffected by the phenomenon image displacement. But, the red E-W pinhole scans were located up to 0.5 arc north of the disk center when the visual image was centered. The chord traversed was then \(\sim 3\) percent shorter than the disk diameter. For the E-W scans, therefore, limb-brightening will tend to be underestimated; limb-darkening will be overestimated. We shall return to this point in our analysis of the pinhole scan data.

Composite Uranus and stellar profiles were produced to increase the effective signal-to-noise ratio in the photometry. For Uranus, on each
night of observation, composite profiles in each waveband were obtained in each of the two cardinal orientations ( \(\mathrm{N}-\mathrm{S}, \mathrm{E}-\mathrm{W}\) ) for the slit and pinhole scans individually. The point spread function for each night was obtained by summing together all stellar slit-scans. All stellar profiles were symmetrical. Inspection of the individual stellar profiles showed no variation with waveband, scan orientation, or scan direction. Formation of the entire set of composite profiles is summarized in Table II.

Individual Uranus slit profiles were typically obtained by integrating 50 to 200 one-second scans; pinhole profiles required 200 to 500 one-second scans. Individual stellar profiles each consisted of 20 onesecond scans. Colocation of the individual Uranus and stellar profiles prior to composite summation was achieved through Gaussian curve fitting by means of the least squares technique to define the centroids of the individual profiles. Where necessary, scans made in opposite directions were mirrored on their centroids prior to computer summation.

All Ura nus composite profiles were normalized to an equal arbitrary integrated signal not only to facilitate interwaveband comparisons, but also to expedite comparisons with theoretical predictions. In essence, the photoelectron counts received from the planet for all points in each scan were summed to derive the total signal. Such a normalization
procedure minimizes the influence of individual photometric errors within each observational scan, and eliminates the need to know the effective geometrical albedo in each waveband when comparing observation with theory. By comparison, each stellar profile was scaled to an equal arbitrary intensity at its centroid.

\section*{3. THE POINT SPREAD FUNCTION}

Atmospheric turbulence, together with diffuse scattering from the telescope mirrors, produces the observed point spread function. In Paper I, we showed that a single Gaussian curve provided only a coarse fit to the distribution of intensity within the image of a point source; a Double-Gaussian curve (Fig. 1) provides a far better description of the point spread function. Line-integration, slit-broadening, and normalization of the Double-Gaussian shape are discussed in Appendix I.

Composite stellar slit-scans obtained for the nights of 1976 May 18, June 16, and June 17 are plotted individually in Fig. 1. Best-fitting theoretical scans, based on the Double-Gaussian representation of the point spread function, are shown for comparison. Optimum values of the PSF parameters for each night are tabulated in Fig. 1. Interestingly enough, the point spread functions on 1976. May 18 and June 17 were essentially identical. On 1976 June 16, to demonstrate the ability of the
area-scanner to resolve the Üranus image by slit-scanning, a set of close visual binary stars was also measured. Results are illustrated in Fig. 2.

Variations in the point spread function, during each night of observation, are of special interest for the interpretation of the Uranus data. For 1976 June 16, quantitative estimates of the variation in the width of the actual point spread function may be made by fitting a single Gaussian curve to each of the 29 individual stellar slit-scans by means of the least squares technique. The derived \(1 / e\) widths provide a measure of the constancy of the point spread function. Distortion of the actual point spread function introduced by slit-scanning is not significant in the present context. Results show that the individual r.m.s. fluctuation in the \(1 / \mathrm{e}\) width amounted to 6.0 percent. For the composite profile, the r.m.s. error in its width should therefore amount to \(\sim 1\) percent, in agreement with the observational data presented in Fig. 1. Investigation of variation in the point spread function during the nights of 1976 May 18 and 1976 June 17 produced similar results. Evidently, mean theoretical PSF parameters for each night of observation are known to an accuracy \(\sim 1\) percent.

\section*{4. URANUS SLIT SCANS}

\subsection*{4.1. Modelling Procedures}

Deriving the true intensity distribution over the Uranus disk in each waveband of interest was the objective of the slit scan analysis. Our approach was first to model both the size and shape of the planet
together with the adopted "true" distribution of intensity over the disk, next to employ the known point spread function in a two-dimensional broadening procedure to derive the planetary image smeared by atmospheric seeing, then to compute the profile which would result from slit-scanning the image in one-dimension, and finally to normalize the slit-scan prediction to permit comparison with the observed profile. Full details of the mathematical formulation of the problem are contained in Appendix II.

Using Stratoscope II photographs of Uranus, Danielson et al. (1972) derived a planetary equatorial radius of \(25,900 \pm 300 \mathrm{kms}\) together with . an ellipticity of \(0.01 \pm 0.01\). Although stellar occultations may provide improved values for both the radius and ellipticity of the planet, we adopt the values given by Danielson et al. as the best available. Our theoretical predictions assumed Uranus to be a perfect sphere of radiús \(25,900 \mathrm{kms}\). Circular symmetry in the distribution of intensity over the disk was also assumed. Distance from the Earth to Uranus on 1976 June 16 was taken from the American Ephemeris and Nautical Almanac to be 17.88 A.U. The corresponding angular diameter of Uranus (unbroadened) was there" fore 3.99 arc.

Simple theoretical distributions of intensity over the Uranus disk were adopted which could be described by a single parameter chosen to encompass a broad range of situations; this parameter was determined by the relative intensities at the limb and center of the disk.

Although consideration was given to the predictions by Belton and Price (1973), our choice of the radial intensity function remained largely arbitrary. Between the limb and center of the disk, the true intensity distribution was assumed to follow an elliptical curve. For both limbbrightening and limb-darkening, the slope of the function was taken to be zero at the disk center. At the limb, the slope reaches negative infinity for limb-darkening, and positive infinity for limb-brightening. Six curves, illustrated in Fig. 3, were used in our analysis. Besides the case of a uniform disk, both limb-darkened (convex) and limbbrightened (concave) intensity distributions, ranging from moderate to extreme, were adopted. For limb-darkening, the parameter (p) equal to the ratio of the intensities at the limb and center of the disk was sufficient to describe the distribution. For limb-brightening, the parameter (q) equal to the ratio of the intensities at the center and limb filled an identical role.

Distortions of the slit scans resulting from variations in atmospheric seeing need to be examined before we embark on a detailed comparison of theory with observation. Sample theoretical slit scans were computed for three extreme models of the radial intensity distribution, namely the uniform disk, extreme limb-brightening ( \(\dot{q}=0\) ), and extreme limbdarkening \((p=0)\). Each distribution was subjected to smearing by three distinct point spread functions, described by the optimum set of parameters (A, B, \(\sigma_{1}, \sigma_{2}\) ) listed in Fig. 1 for 1976 June 16 together with two extreme
variants obtained by changing the individual \(\mathrm{B}, \sigma_{1}\), and \(\sigma_{2}\) parameters in unison by \(\pm 5\) percent. Results are illustrated in Fig. 4. Increasing the PSF width reduces the normalized intensities near the center of the slit scans; intensities in the wings are increased. For the composite Uranus slit scans, the effective PSF parameters should be uncertain by only \(\sim 1\) percent. Evidently, variations in the seeing will have a negligible effect on the interpretation of the data. Photometric noise will be significantly greater than profile fluctuations resulting from the cumulative effects of seeing fluctuations.

Uncertainty in the slit-scan predictions introduced by inaccurate knowledge of the Uranus radius also requires examination. Sample theoretical siit scans were calculated for three distinct radii; the Danielson et al. value was adopted together with radii differing from the optimum value by \(\pm 5\) percent. Models chosen for the intensity distribution were again a uniform disk, extreme limb brightening ( \(q=0\) ), and extreme limb-darkening \((p=0)\). The point spread function parameters for 1976 June 16 were those listed in Fig. 1. Results are illustrated in Fig. 5. Enlarging the planetary radius reduces the normalized intensities near the center of the slit scans; intensities in the wings are increased. Since the Uranus radius appears to be uncertain by only \(\sim 1\) percent, the corresponding error introduced in the slit-scan predictions will have a negligible effect on the interpretation of the data. Photometric noise in the composite Uranus scans will be significantiy greater.

\subsection*{4.2. Results}

Observed composite Uranus slit scans, in all four wavebands of interest, are compared with theoretical predictions in Fig. 6 through 9. Discrimination between the individual intensity distributions is readily achieved near the center of the planetary image. Small uncertainties both in the planetary radius and in the point spread function then have their least influence on the interpretation. Investigation of disk structure through detection of gross asymmetries and local anomalies in the slit scans is a principal objective of our analysis. No attempts have therefore been made either to smooth out the residual photometric noise in the composite scans or to force-fit a curve through each set of observational data. For each waveband, northsouth ( \(N-S\) ) and east-west ( \(\mathrm{E}-\mathrm{W}\) ) orthogonal scans were plotted separately. Polar brightening would manifest itself near the center of the N-S scans, and on the westerly segment of the E-W scans. Information given in the Explanatory Supplement of the American Ephemeris and Nautical Almanac shows that, on 1976 June 16, the north pole of Uranus
was located at position angle 278.9 degrees at a distance of 0.69 Uranus radịi from the disk center. Location of the pole on the disk did not change significantly throughout the 1976 observing season.

Data for the \(\lambda 6190 \AA \mathrm{CH}_{4}\) band are presented in Fig. 6. Both N-S and E-W scans suggest that the optimum true radial intensity distribution corresponds to a uniform disk. But weak limb-darkening ( \(\mathrm{p} \geq 0.5\) ) and weak limb-brightening ( \(q \geq 0.5\) ) are also permitted by the \(N-S\) and \(E-W\) scans respectively. Data for the adjacent "continuum" region at \(\lambda 6400 \AA\) are plotted in Fig. 7. Limb-darkening is readily apparent in both the N-S and E-W scans. For the N-S scan, the true radial intensity distribution can range from a uniform disk to weak limb-darkening ( \(\mathrm{p} \geq 0.5\) ). For the \(\mathrm{E}-\mathrm{W}\) scan, the distribution can range from moderate to extreme limb-darkening ( \(0.5<\mathrm{p} 20\) ). Giving equal consideration to both the \(N-S\) and \(E-W\) scans, we will adopt moderate limb-darkening ( \(p=0.5\) ) as the optimum fit to the \(\lambda 6400 \AA\) data.

Data for the strong \(\lambda 7300 \AA \mathrm{CH}_{4}\) band are presented in Fig. 8. In spite of the residual photometric errors in both \(\mathrm{N}-\mathrm{S}\) and \(\mathrm{E}-\mathrm{W}\) composite scans, limb-brightening is evident. Precise determination of its magnitude is difficult however. For both the N-S and E-W scans, the true radial intensity distribution can range from a uniform disk to substantial limb-brightening ( \(q=0.25\) ). But extreme limb-brightening ( \(q=0\) ) cannot be reconciled with the observational data. Giving equal consideration to the \(\mathrm{N}-\mathrm{S}\) and \(\mathrm{E}-\mathrm{W}\) scans, we will adopt moderate limbbrightening ( \(q=0.5\) ) as the optimum fit to the \(\lambda 7300 \AA\) data. Observations
in the adjacent "continuum" region at \(\lambda 7500 \AA\) are ploted in Fig. 9. For the \(\mathrm{N}-\mathrm{S}\) scan, the true radial intensity distribution can range from a uniform disk to moderate limb-brightening ( \(q=0.5\) ). For the \(\mathrm{E}-\mathrm{W}\) scan, the distribution can range from a uniform disk to moderate limb-darkening ( \(p=0.5\) ). Evaluating both scan directions together, one . can conclude that on average the distribution of intensity in the \(\lambda 7500 \AA\) band corresponds approximately to a uniform disk.

For the \(\lambda 6400 \AA, \lambda 7300 \AA\), and \(\lambda 7500 \AA\) wavebands, striking differences are apparent between the \(\mathrm{N}-\mathrm{S}\) and \(\mathrm{E}-\mathrm{W}\) scans. The \(\mathrm{E}-\mathrm{W}\) scans exhibit a distinctly greater intensity near the center of the planetary image. Since \(N-S\) and \(E-W\) scans are normalized to an identical total signal, the E-W scans must also have a slightly narrower profile than the N-S scans. Considering the scan geometry, one might conclude that Uranus is significantly oblate. But an ellipticity \(\sim 0.1\) would be required to produce the effect. Studies by Danielson et al. (1972) appear to preclude that interpretation. If Uranus is in fact essentially spherical, one is obliged to conclude that the distribution of intensity over the disk is not circularly symmetric. Disk structure must be present in each of the above wavebands.

For the \(\lambda 6190 \AA \mathrm{CH}_{4}\) band, a slight asymmetry in the E-W scan suggests the presence of weak polar brightening. One final point may be made. In all four wavebands, the \(N-S\) scans show a slight asymmetry in the wings; the northerly segment is definitely brighter than the southerly
segment. One might be tempted to interpret this asymmetry in terms of the recentiy discovered Uranus ring system. But such an interpretation would be highly speculative. Moreover, it appears to be unwarranted.

\section*{5. URANUS PINHOLE SCANS}

Our slit-scan results were confirmed by the pinhole data. Interpretation of the pinhole scans was.carried out in a manner essentially identical to that employed for the slit scans. No changes were made in the Uranus disk model. Only diametric scanning of the Uranus image was considered. Uncertainties both in the atmospheric seeing and in the planetary radius were insignificant when considered in the context of the photometric noise remaining in the composite pinhole scans. Modifications to the theoretical formulation introduced by changing the scanning aperture from a slit to a pinhole are discussed in Appendix II.

Theoretical pinhole scans were calculated for the six radial intensity distributions illustrated in Fig. 3. Atmospheric seeing was described by the optimum set of PSF parameters (A, B, \(\sigma_{1}, \sigma_{2}\) ) listed in Fig. 1 for both the 1976 May 18 and 1976 June 17 observations. For the two nights in question, a mean Earth-Uranus distance of 17.74 A.U. was obtained from the American Ephemeris and Nautical Almanac. The corresponding mean angular diameter (unbroadened) of Uranus was 4.03 arc. Adopting a mean diameter introduces an error of less than 1 percent in the value for each night.

Observed composite Uranus pinhole scans, for the \(\lambda 7300 \AA\) and \(\lambda 7500 \AA\) wavebands, are compared with theoretical predictions in Figs. 10 and 11, respectively. For each waveband, north-south ( \(\mathrm{N}-\mathrm{S}\) ) and east-west ( \(\mathrm{E}-\mathrm{S}\) ) scans are plotted separately to investigate the presence of disk structure. Compared with the slit-scan observations, significantly greater photometric noise remains in the pinhole data. But, fortuitously, the theoretical pinhole scans exhibit a far greater sensitivity to the shape of the true intensity distribution. Note, however, that telescope guiding errors (rms deviation \(\sim 0.2 \mathrm{arc}\) ) are potentially more serious for pinhole scans than for slit scans. Errors in guiding can cause the observed pinhole scans to exhibit rather less limb-brightening, and rather more limb-darkening than is actually present in the Uranus image. Earlier, we pointed out that, for the E-W pinhole scans only, an identical effect is introduced by image displacement ( \(<0^{\prime \prime} .5 \mathrm{arc}\) ) resulting from atmospheric dispersion. For the pinhole observations, the observable pole of Uranus lies 2.7 arc west, \(0^{" \prime} .2\) are north of the center of the planetary disk. Northerly displacement of the E-W pinhole scans, with respect to the pole, will therefore amount to less than 0.3 arc. Since our pinhole diameter was \(0^{\prime \prime} .645\), the pole will always be included in the E-W scans, but will always be excluded from the N-S scans. Difierences in the visibility of polar brightening should therefore be apparent between the E-W and N-S pinhole scans.

For the \(\lambda 7300 \AA \mathrm{CH}_{4}\) band, Fig. 10 shows that polar brightening is present in the E-W scan and, as expected, not in the N-S scan. Using the N-S scan to derive limits to the shape of the true intensity distribution, we conclude that limb-brightening is definitely present in this waveband. Extreme possibilities range from a uniform disk to moderate limb-brightening ( \(q=0.25\) ). Extreme limbbrightening ( \(q=0\) ) is excluded. The best match between observation and theory is achieved for moderate limb-brightening ( \(q=0.5\) ). Evaluating the pinhole and slit scan data together, we estimate that the maximum permitted degree of limb-brightening corresponds to \(q=0.25\).

For the \(\lambda 7500 \AA\) data, Fig. 11 shows that polar brightening is present in the E-W scan, but not in the N-S scan. Evidently, polar brightening must be highly localized on the Uranus disk. Using the N-S scan to derive limits to the shape of the true intensity distribution, we estimate that limb-darkening may be present in this waveband. Possibilities range from weak limb-brightening ( \(q=0.5\) ) to extreme limb-darkening. The best match between observation and theory appears to lie between a uniform disk and moderate limb-darkening ( \(p=0.5\) ). For the \(E-W\) scan, polar brightening is so significant that it grossly affects the overall shape of the profile. Possibilities for the true intensity distribution appear to range from a uniform disk to extreme limbdarkening ( \(p=0\) ). Even the latter distribution is not sufficiently extreme to completely encompass the polar brightening. Considering
the pinhole- and slit-scan results together, we conclude that the basic distribution of intensity in this waveband corresponds to an essentially uniform disk upon which is superimposed significant polar brightening.

\section*{4. CONCLUSIONS AND DISCUSSION}

Coarse quantitative information on the true radial intensity distribution over the Uranus disk has been derived in four selected wavebands . . Lack of .,circular symmetry in the intensity distributions indicates the presence of disk structure, especially polar brightening, in each waveband. For the \(\lambda 6190 \AA \mathrm{CH}_{4}\) band, the distribution corresponds to a uniform disk upon which a hint of polar brightening is superimposed. For the \(\lambda 6400 \AA\) region, moderate limb-darkening ( \(p=0.5\) ) was found. For the \(\lambda 7300 \AA \mathrm{CH}_{4}\) band, moderate limb-brightening ( \(q=0.5\) ) was discovered. Extreme limbbrightening ( \(q<0.25\) ) was not permitted by the observational data. For the \(\lambda 7500 \AA\) waveband, the distribution corresponds to a uniform disk upon which significant localized polar brightening is superimposed. While the \(\lambda 7300 \AA \mathrm{CH}_{4}\) band observations exhibit absolute limb-brightening with respect to a uniform disk, the \(\lambda 6190 \AA \mathrm{CH}_{4}\) band data show only relative limb-brightening with respect to nearby continuum regions.

Our results may be compared with those obtained by Sinton (1972) for the \(\lambda 8900 \AA_{\mathrm{CH}_{4}}\) band. Both limb and polar brightening were found. Sinton fitted his observations with a radial intensity distribution consisting of , a uniform disk combined with limb-brightening proportional to \(1 / \mu\), where \(\mu\) equals the cosine of the angle made by the incident/emergent ray with respect to the local outward normal to the atmosphere. Both components
of the intensity were taken to contribute equally at the center of the Uranus disk. In the notation of Appendix II, the limb brightening .: . component takes the functional form \(\left(1-r^{2}\right)^{-1 / 2}, 0 \leq r \leq 1 .\), ,

Our coarse analytical technique used in this paper to explore the information content of the photometric scans of Uranus has several basic limitations. First, the assumption of smooth elliptical distributions of radial intensity over the disk is entirely arbitrary. Second, the use of circular symmetry prevents investigation of azimuthal structure on the disk. In fact, direct deconvolution of the Uranus scans is required to thoroughly investigate the twodimensional photometric structure of its disk. In principle, Fourier analytical techniques, operating on the Uranus slit scans made in orthogonal directions, can be used. But practical application of Fourier analysis to the Uranus images remains to be demonstrated.

\section*{APPENDIX I: THE POINT SPREAD FUNCTTON}

Our empirical studies show that the two-dimensional ( \(x, y\) ) image of an astronomical point source formed by the Flagstaff atmospherePerkins telescope combination can be accurately described by a circularly symmetric normalized intensity profile given by
\[
\begin{equation*}
F(r)=\frac{1}{\pi\left(\mathrm{AO}_{1}{ }^{2}+\mathrm{B} \mathrm{\sigma}_{2}{ }^{2}\right)}\left\{\mathrm{A} \exp \left(-\frac{\mathrm{r}^{2}}{\sigma_{1}{ }^{2}}\right)+\mathrm{B} \exp \left(-\frac{\mathrm{r}^{2}}{\sigma_{2}{ }^{2}}\right)\right\} \tag{1.1}
\end{equation*}
\]
where
\[
\begin{equation*}
r=\left(x^{2}+y^{2}\right)^{1 / 2} \tag{1.2}
\end{equation*}
\]
and \(A, B, \sigma_{1}\) and \(\sigma_{2}\) are constants for the image under consideration.
Next, consider a slit of indefinite length, and infinitesimal width, scanning the two-dimensional image in one-dimension (x). Line-integration of the point spread function produces a profile given by
\[
\begin{equation*}
L(x)=\int_{-\infty}^{+\infty} F(x, y) d y \tag{1.3}
\end{equation*}
\]
which reduces to
\[
\begin{equation*}
L(x)=\frac{1}{\sqrt{\pi}\left(A \sigma_{1}{ }^{2}+B \sigma_{2}{ }^{2}\right)}\left\{A \sigma_{1} \exp \left(-\frac{x^{2}}{\sigma_{1}^{2}}\right)+B \sigma_{2} \exp \left(-\frac{x^{2}}{\sigma_{2}^{2}}\right)\right\} \tag{1:4}
\end{equation*}
\]

For a slit of finite width, \(\Delta\), the line-integrated profile is broadened to produce
\[
\begin{equation*}
S(x)=\frac{1}{\Delta} \int_{a}^{b} L(\zeta) d \zeta \tag{1.5}
\end{equation*}
\]
where the integration limits are
\[
\begin{equation*}
\mathrm{a}=\mathrm{x}-\frac{\Delta}{2}, \quad b=\mathrm{x}+\frac{\Delta}{2} \tag{1.6}
\end{equation*}
\]

The slit-scan profile of the point spread function reduces to
\[
S(x)=\frac{1}{2 \Delta\left(A \sigma_{1}^{2}+B \sigma_{2}^{2}\right)}\left\{A \sigma_{1}^{2}\left[\operatorname{erf}\left(\frac{b}{\sigma_{1}}\right)-\operatorname{erf}\left(\frac{a}{\sigma_{1}}\right)\right]+B \sigma_{2}^{2}\left[\operatorname{erf}\left(\frac{b}{\sigma_{2}}\right)-\operatorname{erf}\left(\frac{a}{\sigma_{2}}\right)\right]\right\} \cdot(1.7)
\]

Optimum values for the parameters \(\mathrm{A}, \mathrm{B}, \sigma_{1}, \sigma_{2}\) are obtained by direct comparison of theoretical predictions with the nhservatinnal data

\section*{APPENDIX II: THE URANUS IMAGE}

\section*{1. True Disk Profiles}

The Uranus disk is taken to be circular and of unit radius. Its true intensity profiles, \(D(r)\), were chosen to encompass the possibilities of extremes in both limb-darkening and limb-brightening. Limbdarkening was described by
\[
\begin{equation*}
D(r)=p+(1-p) \sqrt{1-r^{2}} \quad, \quad 0 \leq r \leq 1 \tag{2.1}
\end{equation*}
\]
where
\[
\begin{equation*}
\mathrm{p}=\mathrm{D}(1) / \mathrm{D}(\mathrm{o}) \tag{2.2}
\end{equation*}
\]

Limb-brightening was described by
\[
D(r)=1-(1-q) \sqrt{1-r^{2}} \quad, \quad 0 \leq r \leq 1
\]
where
\[
\begin{equation*}
q=D(0) / D(1) \tag{2.4}
\end{equation*}
\]

The uniform disk is described by
\[
\begin{equation*}
D(r)=1 \quad, \quad 0 \leq r \leq 1 \tag{2.5}
\end{equation*}
\]

\section*{2. Seeing Broadening}

Every element of the Uranus disk will be affected by seeing broadening.
Smearing by the point spread function will produce a circularly symmetric intensity profile of the planetary image given by
\[
\begin{equation*}
I(u)=\int_{0}^{2 \pi} \int_{0}^{1} D(r) F(\rho) r d r d \theta \tag{2.6}
\end{equation*}
\]
where the radial distance, \(u\), from the center of the image is given by
\[
\begin{equation*}
u=\left(x^{2}+y^{2}\right)^{1 / 2} \tag{2.7}
\end{equation*}
\]
and
\[
\begin{equation*}
\rho^{2}=r^{2}+u^{2}-2 r u \cos \theta \tag{2.8}
\end{equation*}
\]

Equation (2.6) reduces to
\[
\begin{equation*}
\mathrm{I}(\mathrm{u})=\frac{2}{\left(\mathrm{AO}_{1}^{2}+\mathrm{BO}_{2}^{2}\right)}\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) \tag{2.9}
\end{equation*}
\]
where
\[
\begin{align*}
& T_{1}=A \exp \left(-\frac{u^{2}}{\sigma_{1}^{2}}\right) \cdot \int_{0}^{1} D(r) r I_{0}\left(\frac{2 r u}{\sigma_{1}^{2}}\right) \exp \left(-\frac{r^{2}}{\sigma_{1}^{2}}\right) d r \\
& T_{2}=B \exp \left(-\frac{u^{2}}{\sigma_{2}^{2}}\right) \int_{0}^{1} D(r) r I_{0}\left(\frac{2 r u}{\sigma_{2}^{2}}\right) \exp \left(-\frac{r^{2}}{\sigma_{2}^{2}}\right) d r \tag{2.10}
\end{align*}
\]
and \(I_{0}\) denotes the modified Bessel function.
3. Line-Integration and Slit-Broadening

Consider a slit of infinite length, and infinitesimal width, scanning the Uranus image in one-dimension (x). Line-integration produces
\[
\begin{equation*}
L(x)=\int_{-\infty}^{+^{\infty}} I(x, y) d y \tag{2,11}
\end{equation*}
\]

For a slit of finite width, \(\Delta\), the line-integrated profile is broadened to produce a scan profile given by
\[
\begin{equation*}
S(x)=\frac{1}{\Delta} \int_{a}^{b} L(\zeta) d \zeta \tag{2.12}
\end{equation*}
\]
where the integral limits are given by
\[
a=x-\frac{\Delta}{2} \quad, \quad b=x+\frac{\Delta}{2}
\]
4. Pinhole Integration

Our pinhole calculations consider only diametric scans across the Uranus image. For a pinhole of radius \(r_{1}\), numerical integration over the pinhole aperture is required to obtain the pinhole scan profile, given by
\[
\mathrm{P}(\mathrm{x})=\int_{0}^{2 \pi} \int_{0}^{\mathrm{r}} 1 \mathrm{I}(\eta, \psi) \eta \mathrm{d} \eta \mathrm{~d} \psi
\]
where
\[
\begin{equation*}
\mathrm{I}(\eta, \psi) \equiv \mathrm{I}(\mathrm{u}) \tag{2.15}
\end{equation*}
\]
with
\[
\begin{equation*}
\mathrm{u}^{2}=\mathrm{x}^{2}+\eta^{2}+2 \mathrm{x} \eta \cos \psi \tag{2.1}
\end{equation*}
\]

\section*{ACKNOWLEDGMENTS}

This research was supported by the National Aeronautics and Space Administration under contract NASW-2983, and with the support of grants from the National Science Foundation. Some of the data processing was carried out with the support of NASA grant NGR-03-003-001. The U.S. Naval Observatory, Flagstaff Station, generously lent us an ITT F4085 photomultiplier for the project. This is Planetary Science Institute Contribution No. 71.

Avis, C.A., Smith, H.J., Bergstrailh, J.T., Sandmann, W.H. (1977). "Photometric Determination of the Rotation Period of Uranus." Paper presented at the Eighth Annual Meeting of the American Astronomical Society/Division for Planetary Sciences, Honolulu, Hawaii, 1977 January 19-22.

Belton, M.J.S. and Price, M.J. (1973). "Limb-Brightening on Uranus:
A Prediction." Astrophys. J. 179, 965-970.
Belton, M.J.S. and Vesculus, F.E. (1975). "Why Image Uranus?" Icarus 24, 299-310.
Danielson, R.F., Tomasko, M.G. and Savage, B.D. (1972). "High resolution imagery of Uranus obtained by Stratoscope II." Astrophys. J. 178, 887-900.

Franz, O.G. and Price, M.J. (1977). . "Uranus: Limb and Polar Brightening at \(\lambda 7300 \AA . "\) Astrophys. J. 214, L145-L146.

Price, M.J. and Franz, O.G. (1976). "Limb-Brightening on Uranus: The Visible Spectrum." Icarus 29, 125-136.

Sinton, W.M. (1972). "Limb and Polar Brightening of Uranus at 8870£." Astrophys. J. 176, L131-L133.

Smith, B.A. (1977). "Uranus Photography in the \(890-\mathrm{nm}\) Absorption Band of Methane." Paper presented at the Eighth Annual Meeting of the American Astronomical Society/Division for Planetary Sciences, Honolulu, Hawaii, 1977 January 19-22.

Westphal, J.A. (1972). Comment at the Third Annual Meeting of the American Astronomical Society/Division for Planetary Sciences, Kona, Hawaii, 1972 March 21-24.

\section*{TABLE I}

URANUS OBSERVING LOG*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{DATE (U̇.T.)} & \multicolumn{2}{|r|}{\(\operatorname{SCAN}^{(1)}\)} & \multirow{2}{*}{FILTER NO.} & \multicolumn{2}{|l|}{SKY \({ }^{(2)}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
(3),(4)
\] \\
REMAARKS
\end{tabular}} \\
\hline & TYPE & DIRECTION & & TRANSPARENCY & SEEING & \\
\hline 1976 May 18 & P & \(S \rightarrow N\) & 7, 8 & 4 & 2-3 & PSF ( 1 Vir) \\
\hline 1976 June 16 & S & \[
\begin{aligned}
& N \leftrightarrow S, \\
& E \leftrightarrow W
\end{aligned}
\] & 3, 4, 7, 8 & 5 & 3-4 & \[
\begin{gathered}
\text { PSF ( }<\text { Vir and } \\
\text { Double Stars })
\end{gathered}
\] \\
\hline 1976 June 17 & P & \(\mathrm{E} \rightarrow \mathrm{W}\) & - 7, 8 & 5 & 2-3 & PSF ( ' Vir) \\
\hline
\end{tabular}
*Notes: \(\quad\) 1. Scan type is either pinhole ( \(P\) ) or slit ( \(S\) )
2. Sky transparency and seeing conditions are given on scale \(0-5\) (i.e. worst-best)
3. All PSF data were taken using slit scanning. Scan directions and filters used were identical with those employed to obtain the Uranus profiles.
4. Angular scales of both the Uranus and stellar profiles were identical for all scans on all nights. . Scale calibration was achieved using double stars of known separation.

FORMATION OF COMPOSTTE PROFILES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Date (U.T.)} & \multirow[t]{2}{*}{Object} & \multicolumn{2}{|c|}{Scan} & \multirow[t]{2}{*}{Filter} & \multirow[b]{2}{*}{Integrated Scans} & \multirow[t]{2}{*}{Total : one-sec scans/ Integration} & \multirow[t]{2}{*}{Total one-sec scans/ Composite} \\
\hline & & Type & Direction & & & & \\
\hline 1976 May 18 & Uranus & P & \(\mathrm{N}-\mathrm{S}\) & 7 & 2 & 500-801 & 1301 \\
\hline " & Uranus & P & N-S & 8 & 2 & 200 & 400 \\
\hline " & PSF & S & All & All & 4 & 20 & 80 \\
\hline 1976 June 16 & Uranus & S & \(\mathrm{N}-\mathrm{S}\) & 3 & 5 & 50 & 250 \\
\hline " & Uranus & S & \(\mathrm{N}-\mathrm{S}\) & 4 & 4 & 50 & 200 \\
\hline " & Uranus & S & N-S & 7 & 3 & 100-200 & 400 \\
\hline " & Uranus & S & N-S & 8 & 4 & 50 & 200 \\
\hline " & Uranus & S & E-W & 3 & 4 & 50 & 200 \\
\hline " & Uranus & S & E-W & 4 & 4 & 50 & 200 \\
\hline " & Uranus & S & E-W & 7 & 6 & 100-200 & 700 \\
\hline " & Uranus & S & E-W & 8 & 8 & 50 & 400 \\
\hline " & PSF & S & All & All & 29 & 20 & 580 \\
\hline 1976 June 17 & Uranus & P & E-W & 7 & 3 & 500 & 1500 \\
\hline " & Uranus & P & E-W & 8 & 2 & 100-200 & 300 \\
\hline " & PSF & S & All & All & 5 & 20 & 100 \\
\hline
\end{tabular}

\section*{FIGURE CAPTIONS}

Fig. 1. The composite stellar slit scans for each night of observation. Theoretical point spread function predictions are compared with observation. Optimum curve fitting only is illustrated. The corresponding PSF parameters are tabulated.

Fig. 2. Illustration of atmospheric seeing quality on 1976 June 16. Specimen double star scans obtained in the airection of maximum separation are shown. Scans were obtained by integrating over 20 individual onesecond sweeps.

Fig. 3. Theoretical intensity distributions over the Uranus disk selected for the analysis. Intensity, \(I(r)\), is considered to be a smooth function of radial distance, \(r\), from the center of the disk. Azimuthal symmetry is assumed.

Fig. 4. Analytical uncertainties introduced by atmospheric seeing fluctuations. Theoretical Uranus slit scans are shown computed for 1976 June 16. The Uranus disk was taken as circularly symmetric with an apparent angulai :" diameter of 3.99 arc. Seeing broadening was computed for a uniformly bright disk, and for the two cases of extreme limb-darkening and extreme limb-brightening shown.in Fig. 3. The optimum PSF parameters tabulated in Fig. 1 were used together with two alternate sets of parameters obtained by varying \(B, \sigma_{1}\) and \(\dot{\sigma}_{2}\) together by \(\pm 5\) percent.

Fig. 5. Analytical uncertainties introduced by changes in the Uranus radius. Theoretical Uranus slit scans are shown computed for 1976 June 16. Three models for the radial distribution of intensity over the disk were used. Computations were made for a uniformly bright circular disk, and for the two cases of extreme limb-darkening and extreme limb-brightening shown in Fig. 3. Seeing broadening was described by the optimum set of PSF parameters tabulated in Fig. 1. The optimum Uranus radius was taken as \(25,900 \mathrm{kms}\); Two alternative Uranus radii, obtained by varying the optimum value by \(\pm 5\) percent, were also used.

Fig. 6. Composite Uranus slit scans obtained on 1976 June 16 for the \(\lambda 6200 \AA\) waveband. Theoretical slit scans are compared with observation. The Uranus disk was taken as circularly symmetric with an apparent angular diameter of 3 ". 99 arc. Seeing broadening was described by the optimum set of PSF parameters tabulated in Fig. 1. All six models for the radial distribution of intensity over the Uranus disk shown in Fig. 3 were used. All theoretical and observational scans were normalized to a fixed arbitrary flux from the planet. In the abscissa, the zero point corresponds to the centroid of each observed and theoretical scan profile. Centroids of the observed scans will coincide with the physical center of the disk only if the intensity distribution is circularly symmetric. For information purposes, the observable pole of Uranus is located \(2^{\prime \prime} .7\) arc west, 0.2 arc north of the physical center of the disk.

Fig. 7. Composite Uranus slit scans obtained on 1976 June 16 for the \(\lambda 6400 \AA\) waveband. Theoretical slit scans are compared wilh observation. The Uranus disk was taken as circularly symmetric with an apparent angular diameter of 3.99 arc. Seeing broadening was described by the optimum set of PSF parameters tabulated in Fig. 1. All six models for the radial distribution of intensity over the Uranus disk shown in Fig. 3 were used. All theoretical and observational scans were normalized to a fixed arbitrary flux from the planet. In the abscissa, the zero point corresponds to the centroid of each observed and theoretical scan profile. Centroids of the observed scans will coincide with the physical center of the disk only if the intensity distribution, is circularly symmetric. For information purposes, the observable pole of Uranus is located \(2^{\prime \prime} .7\) arc west, \(0^{\prime \prime} .2\) arc north of the physical center of the disk.

Fig. 8. Composile Uranus slit scans obtained on 1976 June 16 for the \(\lambda 7300 \AA\) waveband. Theoretical slit scans are compared with observation. The Uranus disk was taken as circularly symmetric with an apparent angular diameter of 3.99 arc. Seeing broadening was described by the optimum set of PSF parameters tabulated in Fig. 1. All six models for the radial distribution of intensity over the Uranus disk shown in Fig. 3 were used. All theoretical and observational scans were normalized to a fixed arbitrary flux from the planet. In the abscissa, the zero point corresponds to the centroid of each observed and theoretical scan profile. Centroids of the observed scans will coincide with the physical center of the disk only if the intensity distribution is circularly symmetric. For information purposes, the observable pole of Uranus is located \(2^{\prime \prime} .7\) are west, \(0^{\prime \prime} .2\) are north of the physical center of the disk.

Fig. 9. Composite Uranus slit scans obtained on 1976 June 16 for the \(\lambda 7500 \AA\) waveband. Theoretical slit scans are compared with observation. The Uranus disk was taken as circularly symmetric with an apparent angular diameter of 3.99 arc. Seeing broadening was described by the optimum set of PSF parameters tabulated in Fig. 1. All six models for the radial distribution of intensity over the Uranus disk shown in Fig. 3 were used. All. theoretical and observational scans were normalized to a fixed arbitrary flux from the planet. In the abscissa, the zero point corresponds to the centroid of each observed and theoretical scan profile. Centroids of the observed scans will coincide with the physical center of the disk only if the intensity distribution is circularly symmetric. For information purposes, the observable pole of Uranus is located \(2^{\prime \prime} .7\) arc west, \(0^{\prime \prime} .2\) arc north of the physical center of the disk.

Fig. 10. Composite Uranus pinhole scans obtained on 1976 May 18 and on 1976 June 17 for the \(\lambda 7300 \AA\) waveband. Theoretical pinhole scans through the image center are compared with observation. The Uranus disk was taken as circularly symmetric with a mean apparent angular diameter of 4.03 arc. Seeing broadening was described by the optimum set of PSF parameters tabulated in Fig. 1. All six models for the radial distribution of intensity over the Uranus disk shown in Fig. 3 were used. All theoretical and observational scans were normalized to a fixed arbitrary flux from the planet. In the abscissa, the zero point corresponds to the centroid of each observed and theoretical scan profile. Centroids of the observed scans will coincide with the physical center of the disk only if the intensity distribution
is circularly symmetric. Moreover, the scans must be precisely across a diameter of the planetary disk. For information purposes, the observable pole of Uranus is located 2.7 arc west, 0.2 arc north of the physical center of the disk.

Fig. 11. Composite Uranus pinhole scans obtained on 1976 May 18 and on 1976 June 17 for the \(\backslash 7500\) A waveband. Theoretical pinhole scans through the image center are compared with observation. The Uranus disk was taken as circularly symmetric with a mean apparent angular diameter of 4.03 arc. Seeing broadening was described by the optimum set of PSF parameters tabulated in Fig. 1. All six models for the radial distribution of intensity over the Uranus disk shown in Fig. 3 were used. All theoretical and observational scans were normalized to a fixed arbitrary flux from the planet. In the abscissa, the zero point corresponds to the centroid of each observed and theoretical scan profile. Centroids of the observed scans will coincide with the physical center of the disk only if the intensity distribution is circularly symmetric. Moreover, the scans must be precisely across a diameter of the planetary disk. For information purposes, the observable pole of Uranus is located \(2^{\prime \prime} .7\) arc west, \(0^{\prime \prime} .2\) arc north of the physical center of the disk.



Fig:


\(\sqrt{\text { Fin }}\)




En



苜



Fig

APPENDIX F
\(\mathrm{CH}_{4}\) Band. M. J. PRICE, Planetary Science Institute, and O. G. FRANZ, Lowell Observatory - New narrow-band (100A) photoelectric area-scanning photometry of the Uranus disk in the strong \(\lambda 7300 \AA \mathrm{CH}_{4}\) band is reported. Coarse quantitative studies of the true radial intensity profile of the disk show moderate limb-brightening to be present. Specifically, the true intensities at the center and limb of the planetary disk are approximately in the proportion \(1: 2\). Extreme limb-brightening, with a corresponding intensity ratio greater than \(1: 4\) is not permitted by the observational data. Our results are interpreted on the basis of a simple radiative transfer model containing an elementary vertical inhomogeneity. The Uranus atmosphere is approximated by a finite upper layer of conservatively scattering particles below which lies a semi-infinite homogeneous \(\mathrm{H}_{2}-\mathrm{CH}_{4}\) gas. Isotropic scattering is assumed. The measured degree of limb-brightening is consistent with an upper layer of optical thickness 00.1 together with a \(\mathrm{CH}_{4} / \mathrm{H}_{2}\) mixing ratio \(\sim 2 \times 10^{-3}\) in the lower atmosphere. -

\section*{ORIGINAL PAGE IS OF POOR QU'ALITY}

\section*{L}

Type of paper (check one)
\begin{tabular}{cc} 
1) oral presentation & \(\square \mathrm{min}\). \\
& \(\square 10 \mathrm{~min}\).
\end{tabular}
2) read by title only
3) invited lecture
1) percent published elsewhere 0

Billing information:
We agree to pay \(\$ 20\) in partial support of the publication of the abstract in the B.A.A.S.


Planetary Science Institute Institution to be billed

2030 East Speed̉way, Suite 201
mucson, Arizona 85719
```

