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SUMMARY

An engineering design study was made of a commercial-passenger-type 1 ng
range aircraft with laminar flow control (LFC) applied to its wings. The
objective of this engineering design study was to perform the necessary
design and analyses to configure an integrated LFC wing, including all

of the subsystem interfaces associated with a typical wing design plus
those special requirements related to the LFC systems.

The LFC-aircraft configuration selected for this design study was sized
for a range of 10,192.5 km (5500 n. mi.) with 200 tourist class passengers
in 7 abreast seating, plus 4,535.9 kg (10,000 1bm.) cargo and a F.A.R.
take-off field length not to exceed 3,200 m (10,500 ft.?.

The design mission was for cruise at M = .8 at a ceiling of 11,582. m
(38,000 ft.). The airplane achieved a cruise L/D ratic of 25.2; approx-
imately 25% better in performance than with LFC system inoperative. The
total fuel required for the 10,192.5 km (5500 n. mi.) mission was
56,698.7 kg (125,000 1bm.).

Structural integration of the LFC system slots, i.e., ducting and plenum
compartment, was evaluated. Two structural materials, aluminum and
titanium, were evaluated and compared. The results of this design >cudy
indicates that LFC can be effectively integrated into the wing structure
using both standard aluminum and advanced titanium technology and the
titanium technology can be expected to yield a lighter weight design.

INTRODUCTION

The Aircraft Energy Efficiency (ACEE) Program Office, LRC, has proposed

a program to focus t%e application of emerging technologies that, by 1985,
will provide the basis for the design of advanced subsonic transport air-
craft requiring substantially less fuel than current designs. One of the
most promising of the new technologies under consideration is Laminar Flow




Control (LFC). The LFC system prevents the formation of turbulent flow
by pulling the slow-moving turbulent air, adjacent to the wing surface,
through slots, internal ducts/pumps and then discharging this suction air
behind the wing trailing edge. The proper application of this technology
can effect significant fuel savings and increase the range capability.

The purpo-e¢ of this document is to provide an assessment for LFC-project
decisions on the application of LFC to candidate commercial aircraft
designs. The objective of this engineering design study was to perform
the necessary design and analyses work to provide an integrated wing
configuration including all the subsystem interfaces plus those special
requirements related to the LFC systems.

The study approach was to first conduct an evaluation of candidate LFC
aircraft configurations. A baseline 200 passenger, 10,192.5 km (5500 n. mi.)
airplane, which incorporates an aspect ratio 10 wing with laminar flow
control, was selected for the design study. The emphasis in this engineer-
ing design effort was placed on LFC wings of metal technology. The first
wing used the standard aluminum technology. The aluminum wing was compared
with a recent development in metallic titanium technology--superplastic
formed diffusion bonded titanium process (SFDB). Both wings incorporated
similar suction-slot concepts.

SYMBOLS

The analysis computations in support of this study were performed in U.S.
Customary (English) units. Results were converted to the International
System of Units (SI) by using conversion factors in raference 1 and are
presented in this report along with the Customary Units.

>
x
=

Wing Aspect Ratio
Aviation Transport Association
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M.A.C. Mean Aerodynamic Chord
M Mach Number
NARUVL North American Rockwell Unified Vortex Lattice
SH Horizontal Ta‘i Area

Vertical Tail Area

| >
-
>

reoou7T1Tm O OO0 O
—0




SH Wing Area
t/c Thickness/Chord
TSFC Thrust Specific Fuel Consumption, Ib/hr fuel
Ib thrust
Uo Undisturbed free-stream velocity component normal to
wing
v Velocity
Vwall Boundary Layer Velocity at wall
n Percent Semi-span
pamb Ambient Density
pwall Boundary Layer Density at wall
A Wing Taper Ratio
A Wing Sweep

DISCUSSION
LAMINAR FLOW CONTROL (LFC) WING
TECHNICAL DATA

System Design Study Cycle Chart:

The Laminar Flow Control (LFC) in-house system design studies were con-
ducted as shown in the cycle chart of figure 1. The basic study input
decisions were derived from related in-house efforts. The study aircreft
configuration and mission characteristics are shown in reference 2. This
reference study involves the preliminary design and evaluation of a 200
passenger commercial aircraft with laminar flow control for a range of
10,192.5 km (5500 n. mi.). This work focused on configuration definition,
powerplant size selection and the evaluation of aerodynamic characteristics,
mass properties ard performance. The wing airfoil for this study was
developed by the Theoretical Aerodynamics Branch of NASA/LRC, Subsonic/
Transonic Aerodynamic Division. The wing structural materials selected

for comparison in this study are an aluminum skin/stringer concept and a
recent development in titanium fabrication as shown in reference 3. These
basic study input decisions tormed the guidelines for the design and system
integration tasks. Then the candidate design was iterated (see figure 1)
to optimize on mission performance and economics.

Baseline LFC-Aircraft Configuration:

The baseline LFC-aircraft configuration is illustrated in figure 2. This
aircraft concept was configured for 200 passengers plus baggage, 4,535.9 kg
(10,000 1bm.) of cargo, with fuel volume to meet a 10,192.5 km (5500 n. mi.)
mission range. This aircraft configuration exhibits the following features:

0 7 abreast seating (2-3-2 two aisles)

o laminar flow control on upper and lower wing surfaces from the
leading edge aft to 78% of the chord

o all mission fuel contained in the wing




o three high by-pass ratio type engines, aft fuselage mounted

o two laminar flow control suction units, one each in wing mounted
nacelles

o T-tail

o cargo space for 4,535.9 kg (10,000 1bm.) of cargo in the fuselage
under the passenger compartment

0o two hundred passenger seats spaced at 86.36 cm (34 in.) pitch
with 50.8 cm (20 in.) wide aisles. A fuselage diameter of 490.2 cm
(193.0 in.) satisfies this arrangement with sufficient head room
for passengers seated arnd standing in the aisles.

o a F.A.R. take-off field iength not to exceed 3,200 m (10,500 ft.)

LFC-Aircraft Configuration Geometry Data:

The baseline aircraft configuration is comprised of an aspect ratio i0
wing with a 25 degree quarter chord sweep, a constant streamwise thickness
ratio of 12.7% and a specially designed NASA/LRC airfoil section. Other
specific parameters for the herizontal tail, vertical tail, pcwerplants
and fuselage are listed in figure 3.

Mission Performance:

The design mission objectives (see figure 4) zonsist of a range of
10,192.5 km (5500 n. mi.) with 23,496. kg (51,800 1bm.) payload at M = .8
and a maximum F.A.R. take-off field length of 3,200 m (10,500 ft.). For
this configuration the cruise altitude is 11,582 m (38,000 ft.) and the
laminar 1ift to drag ratio is 25.2. The total mission fuel of 56,698.7 kg
(125,000 1bm.) includes the amount required by the LFC units and a reserve
as specified by the ATA for international flights. The case of a LFC
system failure at the mid-point of the design mission range was also
investigated. A range loss of approximately 1,111.9 km (600 n. mi.) was
experienced.

Wing Planform-Aluminum Wing:

The design effort was focused on the baseline aircraft wing planform
depicted in figure 5. Standard metal technology was used in the aluminum
wing design. The fine lines (of constant percent chord) shown in the
planform view represents the suction slots. The increased number of lines
near the leading edge and near the trailing edge is the result of increased
suction required for those areas. The suction system engine is located
just inboard from the M.A.C. at the break point in the trailing edge. In
Sec. A-A, the suction engine nacelle size is minimized by fairing into

the upper and lower wing surface just aft of the rear spar. The engine
centerline is positioned near the wing reference plane.

Control surfaces consist of inboard and outboard spoilers and an outboard
aileron. The trailing edge high 1ift system consists of a 25 percent chord
double-slcotted flap system.

Wing Planform-SFDB Titanium:
The application of a recent development in titanium technology (reference 3)
to the same wing planform (figure 6) was compared with the aluminum wing.




The suction syste. for the titanium wing was “he same as for the aluminum
wing. Neither concept utilized suction aft of the 787 chord because of
interference with spoilers and flaps. In Sec. A-A, the suction engine and
nacelle are beneath the wing reference 1ine thereby providing a clean
upper surface,

The wing controls consist of inboard and outboard spoilers and an outboard
aileron. The trailing edge high lift system consists of a 15 percent
chord vane-flap system.

Structural Concept-Aluminum Skin/Stringer Wing:

This LFC wing uses an integrated structural concept with T-type stringer/
ducts bonded or fastened to the aluminum skin as shown in "Detail A" of
figure 7. The T-stringers are capped on the backside to form the suction-
air ducts. This design technique results in very little structural weight
penalty for the suction air distribution system. The rib/skin shear tie
between stringers is shown in "Section X-X" where the rib web bonds to

the skin. Access into the wing box is provided on the bottom surface
through a series of doors shown in "Detail B." These doors are accessible
through the removal of a spanwise skin-panel.

The slot-plenum arrangement with typical dimensions is shown in "Detail C"
of figure 7. A thin aluminum surface strip is shown bonded over close
tolerance grooves that are machined in the wing surface. The top surface
and precut slot is coated with "Tufram" protective coating to protect
against corrosion and erosion processes. The "Tufram" protective coating
is a patented anodizing process, developed by the General Magna Plate
Corporation, that converts an aluminum surface to one that is very hard,
is resistant to corrosion, abrasion, moisture, and is self-lubricating.

Structural Concept - SFDB Titanium Wing:

The LFC titanium wing (figure 8) uses an integrated superplastically
formed diffusion bonded truss-core panel concept. The wing structure
consists of a series of spanwise continuous panels joined by spanwise
T-sections. The truss-core panel structure is shown in "View A" and the
suction slot, plenum and metering hole arrangement in "View B." The
plenun configuration is formed during the forming process and the metering
holes are pre-drilled. The spanwise suction slots are cut in the outer
titanium skin in the corner of the appropriate truss-core cell after
fabrication of each *titanium panel. Access into the wing bex is provided
through a removable spanwise panel as shown in "View C."  tructural
fail-safe provisions are made by integrated crack stoppers and spanwise
stiffners.

Wing Suction Slot Distribution:

The LFC suction slot spacing is shown in figure 9 for a wing cross-section
at the M.A.C. Tocation. The slot spacing decreases significantly near

the leading edge and aft of the rear spar because of the higher suction
requirements in these areas. The LFC suction distribution, represented by
a coefficient Cq, for the wing upper and lower surface is also presented




in figure 9. Incorporation of the spoilers and flap system dictated that
the suction slots be terminated at the 78% chord location. Based on the
suction distribution shown, 53 suction slots are required for the upper
surface and 50 suction slots are required for lower surface. The Reynolds
number (based on slot width) for the air flow through the slots was main-
tained at a value of 90 over the entire wing surface.

Integral Stringer-Duct Suction System - Aluminum Wing Concept:

As shown in figure 10 the suction air internal distribution is primerily
in the spanwise direztion where the air flows from the wing tip and the
side of boay intersection to the centerline of the suction engine plenum
compartment. In"Section A-A" the suction engine is located vertically
near the wing reference plane to allow the plenum ducts to pass through
the rear spar web and to minimize the engine nacelle size. The upper
surface air is directed into the low pressure plenum where it feeds the
suction engine's low pressure compressor and the high pressure air from
the lower surface is directed into the high pressure plenum where it feeds
the high pressure compressor in the suction engine. The section forward
of the front spar uses a Y-type manifold duct to smoothly direct air into
the plenums. The section aft of the rear spar uses a large contoured
manifold to introduce the air into the plenums just ahead of the compressor
stages. The suction engine gas generator is fed by ram air and all LFC
suction air is by-passed and exhausted aft of the wing trailing edge.

Truss-Core Duct Suction System - SFDB Titanium Wing Concept:

This suction air distribution system in figure 11 is similar to the
aluminum wing concept where air flows from the wing tip and the side of
body to the plenum compartment. Also the truss-core structural panels
form the spanwise ducts for the flow of LFC suction air. Each truss-core
duct uses a local manifold duct that directs the air into the plenum. The
plenum is located in a dry bay that is approximately 71.12 cm (28 in.)
wide. The upper surface air is directed through elbows into the low
pressure compressor and the lower surface air is directed in a 1ike manner
into the high pressure compressor. In this concept the suction engines
are located beneath the wing mold line with the nacelle interfacing the
wing lower surface only, thereby providing a clean upner surface.

Upper Surface LFC Concept:

Independent studies have shown that approximately 70 percent of the wing
friction drag occurs on the upper wing surface. The concept shown in
figure 12 describes the wing cross-section where LFC is applied on just
the upper surface. This allows an efficient leading edge device (Krueger-
type shown) which, in combination with a simple trailing edge device,
provides increased high 1ift capability. Also, the leading edge device
provides an excellent insect shield during the take-off and landing phases.
The lower surface of the wing utilizes standard aluminum technology and
would provide ready access into the wing box ragion. This concept would
reduce the suction complexity and suction engine size. Overall, a lighter
weight and simpler design for the LFC wing would be realized by the
application of LFC on just the upper surface.




Structural Wing Loads:

A simplified loads analysis was performed to allow preliminary sizing of
the wing structural parts. A 2.5 g positive maneuver acceleration was
selected as the critical load condition for wing box sizing. This positive
maneuver condition provided the most critical loading of the wing structure
on a typical present day commercial transport aircraft (reference 4) that
is similar in configuration to the baseline LFC aircraft. Limit load
values are indicated by the curves of figure 13.

Spanwise Lift Distribution:

The 1ift distribution for the baseline LFC aircraft wing was derived using
the NARUVL wing 1ift program (reference 6). This spanwise airload distri-
bution in figure 14, when compared with reference 5, shows a slight inboard
shift of the spanwise center of pressure.

Leading-Edge High-Lift Systems:

The leading-edge high-l1ift system presented in figure 15 is a slat concept
which will allow suction on both the upper and lower surfaces of the wing
in the leading edge region. The system is deployed on a track which is
attached to a false spar located at the 8% chord position. In the stored
position the track does not extend past the front spar located at the

18% chord position. Air is sucked from the slat by means of a telescoping
air duct. This same duct or one mounted internal to this duct may be

used in the de-icing system. Exact details of the slat geometry must be
defined by wind tunnel model tests.

A Krueger-type high-1ift system was selected to be used in conjunction with
a LFC wing with suction only on the upper surface. The Krueger shown in
figure 16 is positioned to have a 2% chord gap and 0% chord overlap. The
exact position would be determined using a wind tunnel model.

A Krueger-type device would make it very difficuit to provide LFC on the
Tower surface in the leading edge region due to the volume needed for the
complex linkage. The system can, however, be practically integrated into
a wing with LFC on just the upper surface. This device would also provide
a shielding effect for the leading edge that may prevent insect contami-
nation of the surface.

Trailing-Edge High Lift Systems:

The aluminum wing design employs a 25% chord double slotted fowler-type,

flap (figure 17) high 1ift system in conjunction with a 10% chord flight

and ground spoiler. Using an internal track system, the flap system is
capable of achieving a minimum 10% chord extension through the fowler action.
This system is estimated to have a take-off C of 1.0 and an approach C

of 1.8 (2.5 with a leading edge device).

The titanium wing design employs a 15% vane-flap high 1ift system (figure
18) with a flight and ground spoiler. This system is capable of achieving
a minimum 10% chord extension through the fowler actizn. The system is
estimated to have a take-off CL of .90 and an approach CL of 1.70.



Suction Powerplant Concept:

The LFC suction powerplant selected is a turboshaft engine (figure 19)

that is connected to low pressure and high pressure axial flow compressors.
Low pressure air from the upper wing surface enters the low pressure
compressor from which it discharges into a mixing chamber where it combines
with the high pressure air from the lower wing surface. The combined air
then passes through the high pressure compressor, bypasses the turbine,

and is exhausted at approximately free stream velocity, aft of the wing
trailing edge.

Wing Bending Stiffness Comparison:

Figure 20 shows the LFC-wing bending stiffness distribution from the wing
tip to the wing/body intersection. The cross-hatched band represents
estimated values from previous studies. Discrete calculated points from
the structural analysis of this study are shown for the aluminum and
titanium wings. The titanium wing has 15% greater bending stiffness than
the comparable aluminum wing.

Wing Torsional Stiffness Comparison:

Figure 21 shows the LFC-wing torsional stiffness distribution from the

wing tip to the wing/body intersection. The cross-hatched band represents
estimated values from previous studies. Specific calculated points of

this study are plotted for the aluminum and titanium wings. The titanium
wing has over 20% greater torsional stiffness than the comparable aluminum
wing.

Baseline Aircraft Weight Fractions:

The chart in figure 22 shows the statistical weight estimate of the base-
line LFC aircraft with an aluminum wing. The LFC wing was estimated to
weigh 24,947.4 kg (55,009 1bm.), which included a weight penalty (increase)
of 7.32 kg/M2 (1.5 1b/ft¢) of wing area for the LFC suction surface and
ducting system plus 907.2 kg (2000 1bm.) concentrated weight for each
suction engine.

CONCLUDING REMARKS

The NASA-LFC wing in-house design study findings are as follows:

o The LFC wing-integral stringer/duct technique provides an efficient
LFC concept.

o Extent of laminarization aft of the wing rear spar significantly
impacts the total suction flow and suction engine size.

o Advanced turboshaft engine technology is necessary for a viable
wing mounted concept.

o A double-slotted fowler-type flap system can be integrated into
a LFC wing.

o Integration of a leading edge slat with suction appears to be
feasible.




0 LFC on just the upper surface of the wing allows integration of
L.E.and T.E. high 1ift devices, normal wing access, lower weight
and less suction system complexity.

0 The superplastic formed-diffusion bonded (SFDB) titanium structural
concept can be integrated into a LFC wing,

o The SFDB-titanium wing with LFC hai nigher bending and torsional
stiffness characteristics than the aluminum wing with LFC, and can
be expected to yield a lighter weight design,

This design study effort concluded that the extent of wing laminarization
should end near the B0 of the wing chord. This locatien allows laminar-
ization to be contained in a fixed wing structure immediately aft of the
rea:'spar and forward of movable panels such as ailerons, flaps and
spoilers,

The SFDB titanium technique results in an attractive LFC-wing concept

that has increased stiffness characteristics that are important for high
aspect ratio wing structures. Further development and manufacture of

large flight quality panels are required in order to commit this technology
to actual flight aircraft design and fabrication.
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s, = 334.5 M (3600 ft°)
ARH = 10

taperw ik

sweep @1/4 C = 25°
tfcw streamwise = 12.7%

s, = 83.61 m° (900 ft°)
AR, = 3.26

taperh = .40

sweep, @1/4 C = 30°
t/c, @ root = 11%

t/c, @ tip = 9%

vol. coeff = .90

s, = 75.69 m, (804 ft°)
ARv = .67

sweep, @ 1/4 C = 50°
t/cv @ root = 11%

t/cv @ tip = 9%

vol coeff. = .06

GEOMETRY_DATA

WING

span, = 57.83m (189.74 ft)

root chord = 8.90 m (29.29 ft)(e A/C q_)
tip chordw = 2,67 m (8.76 ft

M.A.C. = 6.34 m (20.8 ft)

HORIZONTAL TAIL

span, = 16.49 m (54.1 ft)

roo* chordh = 7.25m (23.8 ft)
tip chordh =2.90m (9.5 ft)
M.A.C.h = 5.39m (17.7 ft)
moment arm = 22.86 m (75 ft)

VERTICAL TAIL

span = 7.07 m (23.2 ft)
root chord = 8.4 m (27.6 ft)
tip chor'dv = 8.4l m (27.6 ft)
M.A.C. =10.70 m (35.1)
moment arm = 15.54 m (51 ft)

POWERPLANTS

sealevel/stand. day take-off
thrust per engine = 12,246.9 kg (27,000 1bs) installed

FIGURE 3




length = 49.32 m
maximum dia, = 4,
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MISSION PERFORMANCE

MISSION: DESIGN (M = .8)

MODEL:  LFC BASELINE AIRCRAFT

AIRCRAFT CHARACTERISTICS
TAKE-OFF GROSS WEIGHT 165,424, KG (364,700 LBM)
OPERATING WEIGHT EMPTY 85,229, KG (187,900 LBM)

PAYLOAD (GROSS) 23,496, K6 ( 51,800 LBM) (200 PASS. + 453.6 KG
(10,000 LBM) CARGO)
WING AREA ( 3,600 FT2)
S.L. STATIC THRUST PER ENGINE (STD DAY)
UNINSTALLED 13,471.6 K6 (29,700 LBM)
INSTALLED 12,246.9 K6 (27,000 LBM)
TAKE-OFF INSTALLED THRUST TO WEIGHT RATIQ .22
TAKE-OFF WING LOADING 334,5 KG/M¢ (101.3 LBS/FTZ)
TAKE-OFF FIELD LENGTHwayy 3.200. M (10,500 FT)
DESIGN MISSION
OPTRATING » FUEL 5 RANGE . T
K6 LM KG LBM KM NI MIK
TAKE-OFF 165,424, (364,700)  635. ( 1,400) 0 (0) 11
START CLIMB  164,78S. (363,300) 5,624, (12,4000 531.2  (287) 45
START CRUISE 159,165. (350,900) 48,415. (89,1000 9,334.5 (5037) 659
END CRUISE  118,750. (261,800)  590. ( 1,300) 370.6 (200 20
END DESCENT  118,160. (260,500
TAXI-IN 227 _(_500) e S
BLOCK FUEL AND TIME 47,491 (104,700) 740
TRIP RANGE 10,237,  (5524)

FIGURE 4



MODEL: LFC BASELINE AIRCRAFT

RESERVE FUEL BREAKDOWN KG
1. 10% TRIP TIME 3,855.5
2. MISSED APPROACH 453.6
3. 370.6 KM (200 N.MI.) TO ALTERNATE AIRPORT 3,220.5
4, 30 MIN, HOLDING AT 457.2M (1500 FT) 1,905.

TOTAL RESERVE 9.434.7

INITIAL CRUISE CONDITIONS:

LIFT COEFFICIENT 5077

DRAG COEFFICIENT 02012

LIFT/DRAG 25,24

TSFC .0683 KG/HR/N (.670 LBS/HR/LBF)
ALTITUDE 11,643 M (38200 FT)

FIGURE 4 CONTINUED
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STANDARD TECHNOLOGY (ALUM.) WING
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