General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

KNOWLEDGE OF THE SYSTEM H20-S03-N203 REPORT I. THE SYSTEM H2S04-H20-N203

K. Stopperka, F. Kilz

Translation of Zur Kenntnis des Systems H₂O-SO₃-N₂O₃ I, "Üeber das System H₂SO₄-H₂O-N₂O₃". Zeitschrift für anorganische und allgemeine Chemie. Vol. 348, 1966, pp. 58-70.

(NASA-TM-75168) KNOWLEDGE OF THE JYSTEMS N78-13156 H2O-SO3-N2O3. REPORT 1: THE SYSTEM H2SO4-H2O-N2O3 (National Aeronautics and Space Administration) 17 p HC A02/MF A01 Unclas CSCL 07D G3/25 55142

> NATIONAL AFRONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 OCTOBER 1977

STANDARD TITLE PAGE

NASA TM-75168	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Sublitle KNOWLEDGE OF THE SYS	STEMS H20-S03-N203	5. Report Date OCTOBER 12, 1977
REPORT I, THE SYSTEM	4 H2504-H20-N203	C. Forlerming Organization Code
7. Author(s)		8. Performing Organization Report No.
K. Stopperka and	F. K41z	10. Work Unit No.
9. Performing Organization Name	and Address	11. Contract or Grant No.
Box 5456		13. Type of Report and Period Covered
Santa Barbara, CA	93108	Translation
 Spensoring Agency Name and A National Aeronautic Washington, D.C. 	ddress s and Space Administratio 20546	14. Sponsoring Agoncy Code
15. Supplementery Notes Translation of Zur Ke	enntnis des Systems H ₂ 0-S0	0 ₃ -N ₂ 0 ₃ I,
"Ueber das System H.	SO, -H_O- N_O_". Zeitschri	lft für
energenteche und ell	4 2 2 3	1966. pp.
16. Abstract	gemeine Chemie. Vol. 540,	
The amount of N 60, and 95°C is d and inversely pro according to the H ₂ SO ₄ concentrati concentrated sulf talline NOHSO ₄ (p	gemeine chemie. vol. 340, 120, being absorbed in irectly proportional portional to the temp above-formulated equa ons greater than 52%. Unic acid results in owder data being comm	50-100% H ₂ SQ ₄ at 19, to the acid concentration berature. NO ⁺ formation tion occurs only at Absorption in highly the formation of crys- nunicated.).
 anorganische und all 58-70 16. Absweet The amount of N 60, and 95°C is d and inversely pro according to the H₂SO₄ concentrati concentrated sulf talline NOHSO₄ (p 17. Xey Words (Selected by Author) 	(1) geneine chemie. vol. 340, 120, being absorbed in irectly proportional portional to the temp above-formulated equa ons greater than 52%. Puric acid results in owder data being comm	50-100% H ₂ SQ ₄ at 19, to the acid concentration berature. NO ⁺ formation tion occurs only at Absorption in highly the formation of crys- nunicated.).
 anorganische und all 58-70 16. Absweet The amount of N 60, and 95°C is d and inversely pro according to the H₂SO₄ concentration concentrated sulf talline NOHSO₄ (p 17. Xey Words (Selected by Authority) 	(1)} (20, being absorbed in frectly proportional portional to the temp above-formulated equa ons greater than 52%. Puric acid results in bowder data being comm (1)} 16. Distribution Unclassifi	stotement 50-100% H ₂ SQ ₄ at 19, to the acid concentration berature. NO ⁺ formation tion occurs only at Absorption in highly the formation of crys- nunicated.).
 anorganische und all 58-70 16. Abstreet The amount of N 60, and 95°C is d and inversely pro according to the H₂SO₄ concentration concentrated sulf talline NOHSO₄ (p 17. Xey Words (Selected by Authon) 19. Security Clossif. (of this report) 	(s)} (20. being absorbed in frectly proportional portional to the temp above-formulated equa ons greater than 52%. Puric acid results in bowder data being comm (s)} 18. Distribution Unclassifi 20. Security Classif. (of this page)	1 50-100% H ₂ SQ ₄ at 19, to the acid concentration berature. NO ⁺ formation tion occurs only at Absorption in highly the formation of crys- nunicated.).

KNOWLEDGE OF THE SYSTEM H20-S03-N03. REPORT I. THE SYSTEM H2S04-H20-N203

K. Stopperka, F. Kilz

SUMMARY

The amount of N_2O_3 being absorbed in 50-100% H_2SO_4 at 19, 60, and 95°C is directly proportional to the acid concentration and inversely proportional to the temperature. NO⁺ formation, according to the above-formulated equation occurs only at H_2SO_4 concentrations greater than 52%. Absorption in highly concentrated sulfuric acid results in the formation of crystalline NOHSO₄ (powder data being communicated).

1. INTRODUCTION

 N_2O_3 in the gas phase is not available in pure form under standard pressure and temperature, but rather the following equilibrium results from an equal mole-mixture of NO and NO₂ for the constituents NO, NO₂, N_2O_3 and N_2O_4 [1, 2]:

NO	+	NO2	=	N203	(I)
NO2	+	NOZ	=	N ₂ O ₄	(II)
NO		N ₂ O ₁	-	21,03	(III)

/58*

159

According to Abel and Proisl [1], at 25°C and 760 torr, only 10% of an equimolar mixture of NO and NO₂ is present as undissociated N_2O_3 . Thus, it would be possible that competing reactions occur during the absorption between N_2O_3 , NO₂, N_2O_4 and NO on the one hand, and sulfuric acid on the other. Studies by other authors [3-8] and our own observations lead to the conclusion that in this gas mixture the main mass of the N_2O_3 in this equilibrium reacts with the sulfuric acid. The momentary adjustment of the N_2O_3 - equilibriums (I and III) proceeds very fast and the N_2O_3 taken from the equilibrium system by the absorption is instantly replenished.

* Numbers in margin indicate pagination in original foreign text.

It was recognized very early that N_2O_3 reacts with sulfuric acid to form NOHSO₄ [9-14]. However, these qualitative studies were mostly aimed at clarifying the reaction mechanisms in the lead chamber process [15] and resulted in most contradictory statements.

Millen [16] was the first to state that the following reaction occurred:

$N_{t}O_{3} + 3 H_{2}SO_{4} \Rightarrow 2 NO^{+} + 3 HSO_{4}^{-} + H_{3}O^{+}.$ (IV)

He arrived at this conclusion after an evaluation of Raman spectrographs run on the reaction products of the replacement reaction between concentrated sulfuric acid and liquid N_2O_3 .

Chanukvadze and colleagues [17] believe to have established a compound $H_2SO_4 \cdot N_2O_3$ (m.p. 56°C) in the $H_2SO_4 - H_2O - N_2O_3$ system which decomposes when heated to 70-80°C. In addition, they examined the solubility of N_2O_3 in 72.2, 48.45 and 26.68% sulfuric acid and determined that the solubility of N_2O_3 decreases with decreasing acid concentration.

Since an accurate knowledge of the $H_2SO_4 - H_2O - N_2O_3$ system is $\frac{160}{100}$ of basic importance to the tower sulfuric acid industry, it seemed desirable to take up the studies of the $SO_3 - H_2O - N_2O_3$ system again.

2. TEST RESULTS AND DISCUSSION

2.1 Absorption of N203 in sulfuric acid

The measurements of absorption were performed with the apparatus illustrated in Figure 1.

A graphic illustration of the absorption process is shown in Figure 2.

In general, it was determined that the absorbed quantity of N_2O_3 increases with decreasing temperature and increasing acid concentration. Up to a sulfuric acid concentration of 80%, the curves derived from the test data at 19, 60, and 95°C have similar courses. Only above the named concentration does a difference appear. The slope change of the curve at 19°C and about 80% H_2SO_4 - which leads to an intersection with the curve at 60°C in the direction of greater sulfuric acid concentrations - is

160

/61

Figure 2: Course of absorption.

understandable if we remember the amount of solids precipitating during the absorption process [18] (bottom curves in Figure 2).

This portion of solids is 40% in the sulfuric acid concentration mentioned above, and is already so great that the mixing of the crystal slurry by the agitator is insufficient, i.e., the sulfuric acid clinging to the crystals is removed from the reaction with N_2O_3 . For the 60°C and 95°C test series, this effect did not

occur. In this temperature range, no solids precipitate during the absorption. Only after cooling off to room temperature does the precipitation begin in the N_2O_3 -saturated sulfuric acid solutions treated at 60°C and 86% H_2SO_4 . The absorption solutions of the 95°C test series, however, remain clear even at room temperature and do not precipitate after standing.

The relatively low N_2O_3 -uptake of the more highly-concentrated sulfuric acids in the 95°C test series is apparently due to the fact that pure NOHSO4 melts and decomposes at 73.5°C and this tendency to decompose acts against the formation of a higher NO⁺-ion concentration.

The measurements permit us to draw the conclusion that the absorbed N_2O_3 quantity will continue to fall for additional increases in temperature of the absorbant solution.

The absorbant temperature, the rate of agitation and the degree of N_2O_3 saturation of the absorption solutions are of particular influence on the rate of absorption. As a result of supersaturation a clear reduction in the rate of absorption occurs shortly before the precipitation; however, this reduction ceases immediately after the onset of crystallization.

If we observe the concentration range in Figure 2, in which the sulfuric acid solutions react with N202 to form nitrosyl ions, then the question of the reaction mechanism assumes a gratter interest. On the basis of the IR-spectrographic studies of the H_2SO_4 - H_2O system, it was recently demonstrated [19] that the region of existence for molecular sulfuric acid in the H_2SO_4 - H_2O_4 system lies between 75% and 100% H2SO4. I this range, the concentration of molecular sulfuric acid increases to the extent that the HSO₄ ion concentration falls. This concentration has the value of zero when the H2SO4 reaches 100% concentration. However, from the previous studies it is quite clear that even in the concentration range of 52% - 75% $\rm H_2SO_4$ definite reactions with N_2O_3 occur. The reaction mechanism suggested by Millen [16] and by Gillespie and colleagues [20] in accordance with equation (IV) cannot be correct. Rather, if we regard the region of existence for H_2O and H_3O^+ , demonstrated by the studies on the $H_2SO_4 - H_2O$

162

system [19], then it is clear that a noticeable reaction occurs between the aqueous sulfuric acid and the N_2O_3 , even at concentrations at which the concentration ratio of H_3O^+ to H_2O is shifted far toward the formation of H_3O^+ ; and that in addition, only small amounts of molecular water are letected. It thus appears more correct to us to formulate the reaction mechanism according to the following equation (V):

2 H₃O+ + N₃O₃ = 2 NO+ + 3 H₂O.

(V)

163

The erroneous assumption of earlier authors that only molecular sulfuric acid was capable of reacting with N_2O_3 , according to equation (IV) to form NO⁺ ions is attributable to the fact that they considered the molecular sulfuric acid to be the reaction partner with N203 rather than the agent which pulled water from the equilibrium (V) to hydrate its dissociation products and thus shifted this equilibrium to the right. If the necessary water were not drawn from the equilibrium according to equation (V) by subsequent reactions, then the NO⁺ ion would not be able to stabilize. These phenomena were particularly evident when the experiment to absorb N_2O_3 in aqueous sulfuric acid (less than 50% H_2SO_4) was performed with the apparatus described in Figure 1. Whereas no reaction with formation of NO+ ions was observed in the concentration range from 0 - 45% H_2SO_4 - except for a low physical dissolving [21] of the N_2O_3 , at concentrations between 45% and 52% H2SO4 a low level of reaction must be occurring because of the slightly blue coloration of the absorption solution. According to Seel [22], the sometimes very intense colorations appearing at higher sulfuric acid concentrations can be attributed to the formation of nitric oxide nitrosyl ions according to equation (VI). This coloration passes from blue to green, and finally yellow.

$NO^{+} + NO \Rightarrow N_1O_1^{+}.$ (VI)

2.2 IR-Spectra of the Absorption Solutions.

The IR-spectra of the absorption solutions taken between silicon discs are shown in Figure 3.

If we compare these spectra with those of blank sulfuric acids of the same concentrations [19], then the dilution expected from

164

- · · · ·

Figure 3: IR-spectra of the N_2O_3 -saturated absorption solutions.

from equation (V) can be found, especially at the higher concentrations (at which more N_2O_2 was absorbed).

Although the $v_{as}S(OH)_2$ of molecular sulfuric acid is weak at 975 cm⁻¹ in the IR-spectrum of a pure sulfuric acid sample of 90% H_2SO_4 , and becomes strong for 90% H_2SO_4 , this characteristic band for molecular H_2SO_4 was not observed, even in the IR-spectrum of an absorption solution of 96% H_2SO_4 treated at 19°C. However, if the absorption of N_2O_3 in 96% sulfuric acid is performed at 95°C, then the decreased N_2O_3 -absorption seen in Figure 2 results in a lower level of dilution according to equation (V) which can be clearly seen by the appearance of the $v_{as}S(OH)_2$ of H_2SO_4 at 975 cm⁻¹.

The characteristic absorption frequency [16, 23-25] for the NO⁺ ion around 2300 cm⁻¹ which corresponds to the vNO⁺ appears weak in spectrum 4 of Figure 3, but becomes more pronounced in the more highly concentrated absorption solutions.

Absorption bands which could be attributed to the oscillations of the nitryl ion [26-28] were not observed. Thus, the condition necessary for an unequivocal absorption process - that only N_2O_3 reacts with the sulfuric acid according to equation (V), is confirmed. If a competing or secondary reaction proceeded between NO_2 or N_2O_4 and the absorption solution, then nitryl ions would be detectable according to equation (VII):

 $N_{2}O_{4} + 2 H_{3}O^{+} \Rightarrow NO^{+} + NO_{4}^{+} + 3 H_{2}O.$ (VII)

165

But since no absorption bands of nitrate ions are found in spectra 1 and 2 of Figure 3 - the latter could have resulted from the reaction of the NO₂ or N_2O_4 , according to equation (VIII):

 $3 NO_2 + 3 H_2O \sim NO + 2 H_3O^2 + 2 NO_3$ (VIII)

and since noticeable $N_2O_2^+$ ion concentrations are detected on the basis of the pale blue coloring, it can be explained by an NO_3^- concentraticn which is less than the detection limit, or it is explained by Milligas [4] according to equation(IX):

 $2 \text{ NO} + 4 \text{ H}_2\text{O}^+ + \text{NO}_2^- \Rightarrow 3 \text{ NO}^+ + 6 \text{ H}_2\text{O}.$ (IX)

3. EXPERIMENTAL SECTION

3.: Apparatus and Empirical Methods

The apparatus used is shown in Figure 1. It can be coarsely

divided into three parts: the gas dosage unit, the absorption vessel and the device for regulating pressure.

The absorption vessel was provided with a thermostat, an agitator and a dropping funnel. The absorption solutions could be drained off by a stopcock for further examination.

It was difficult to find a method which made possible an accurate gas dosage. The simplest way, namely that of a volumetric dosage of a gas mixture prepared by mixing equal volumes of NO and NO₂ (or N_2O_4) cannot be considered if we remember the equilibrium from equation (II) since there is no blocking liquid which satisfies the requirements. Addition of the appropriate quantity of oxygen to a given quantity of NO, so that half of the NO reacts to form NO₂ in the desired final ratio of 1:1 for both components, fails because the NO dried for the absorption measurement over phosphorus (V)-oxide, will not react, or will react only incompletely - with oxygen [29-31].

Liquid N_2O_3 can be vaporized and the decrease in weight in the supply vessel could be used as a measure of the quantity of N_2O_3 absorbed; however, this will also not meet the requirements since N_2O_3 distills incongruously. Consequently, a preset quantity of liquid N_2O_3 must be quantitatively converted to the gaseous state to get an actual equimolar gas mixture. Difficulties are encountered here with regard to the 760-Torr pressure which is supposed to exist in the apparatus at the end of the absorption. Moreover, it must always be possible to quickly supplement the N_2O_3 consumed by the absorption, in the proper ratio.

We decided to introduce NO and NO₂ in equal quantities into a supply chamber as follows: Nitrogen monoxide was measured volumetrically by using Hg as the barrier liquid. Nitrogen dioxide was vaporized into the apparatus from a supply vessel and determined by weighing. In order to be able to control the dosage of both gases before and during the absorption as well as the pressure ratios in the apparatus, a manometer was needed. The indirect pressure measurement by means of a glass-membrane manometer [32-36] in balancing circuit design proved to be the simplest and <u>/66</u> most suitable for our purposes. The membrane had reproducible sensitivity to pre-sure differences of 1.5 Torr. In our apparatus

with a capacity of about 2 liters, that meant that 4 cm³ of gas had to be admitted before any reading of the pressure change would occur by the glass-membrane manometer. If two gases were present, which did not react with each other and which did not associate or dissociate, then one could admit a volume of each component which corresponded to a pressure change of 380 Torr and thereby arrive at a total pressure of 760 Torr. But since the components NO_2 , N_2O_4 , NO and N_2O_3 are present in the gas mixture, the corresponding equilibria (equations I-III) must be remembered.

For a mathematical formulation of the total system with its equilibria, in the first step, the partial pressure [37] of N_2O_3 is neglected - this is only permissible at normal pressure for temperatures above 150°C [1]. For P_{ges} **, we have the following equation

we need

$$\mathbf{P}_{\mathbf{NO}} = 2 \mathbf{P}_{\mathbf{N},\mathbf{O}_1} + \mathbf{P}_{\mathbf{NO}_2}$$

From (1) and (2) we have

In addition, for the equilibrium from equation (II), when p_0 is the pressure of N_2O_4 before dissociation:

$$\mathbf{p}_{\mathbf{NO}_{\mathbf{n}}} = 2 \, \alpha \, \mathbf{p}_{\mathbf{0}} \tag{4}$$

$$\mathbf{p}_{\mathbf{N},\mathbf{O}_{\mathbf{s}}} = (1 - \alpha) \, \mathbf{p}_{\mathbf{s}}. \tag{5}$$

From (4) and (5), we have

$$\mathbf{p}_{\mathbf{N},\mathbf{O}_{\mathbf{s}}} = \frac{\mathbf{P}_{\mathbf{N}\mathbf{O}_{\mathbf{s}}}}{2\alpha} \left(1 - \alpha\right) \tag{6}$$

or

$$\mathbf{p}_{\mathbf{NO}_{\mathbf{n}}} = \frac{2\alpha}{(1-\alpha)} \cdot \mathbf{p}_{\mathbf{N}_{\mathbf{n}}\mathbf{O}_{\mathbf{n}}} \cdot \tag{(7)}$$

For $p_{N_2O_4}$, we then have from (3) and (4),

$$\mathbf{p}_{\mathbf{N},\mathbf{O}_{\mathbf{t}}} = \frac{\mathbf{p}_{\mathbf{g} \in \mathbf{s}_{\mathbf{t}}}}{\mathbf{3} + \alpha^{\bullet}} (\mathbf{1} - \alpha^{\bullet}). \tag{8}$$

From the requirement that $p_{ges} = 760$ Torr and the calculated $p_{N_2O_4}$ from (8) by means of an assumed α^* -value, p_{NO_2} can be determined from (3). Now, all quantities are known so that finally, the value of p_{NO} can be calculated from (1).

*translator's note - ges = total.

Experimentally, we proceeded so that NO was admitted into the /67 apparatus illustrated in Figure 1 (supply and absorption vessels) through a burette until the calculated value for p_{NO} had been reached. From the NO₂-supply vessel, gas was added slowly until a total pressure of 760 Torr was reached for the gas mixture of N_2O_4 and NO_2 in the apparatus according to the equilibrium (II). By determining the weight differences, the NO_2 -mass was converted to a NO_2 -volume and compared to the NO-volume read from the burette. If the requirement $v_{NO} = v_{NO_2}$ was not met, then the given a*-value was corrected again. The a*-value was varied until the NO_2 -volume corresponded to the NO volume. At a temperature of 19°C, the a*-value determined by approximation equalled 0.10.

The simplification needed for mathematical formulation - namely, the initial neglect of $p_{N_2O_3}$ - was then corrected by a pre-given α^* which had been checked for accuracy against the criterion that $v_{NO_2} = v_{NO}$, since this includes the equilibria (I) and (III).

When admitting the sulfuric acid solution into the absorption vessel, the total pressure falls in the apparatus as a result of the absorption of the N₂O₃-portion at equilibrium, and NO and NO must be supplemented to maintain the 760 Torr pressure. If the calculation of p_{NO} as described above is to succeed, then a* must be independent of pressure or be a linear function of the pressure.

But both requirements are not quite correct; rather, from

$$Kp_{NO_1/N_1O_1} = \frac{4\alpha^3}{1-\alpha^2} p_{ges.} \quad \text{we have} \quad \alpha_{N_1O_1} = \sqrt{\frac{Kp}{4p_{ges.} + Kp}}$$

or from

 $Kp_{NO, NO_{3}/N,O_{4}} = \frac{\alpha^{2}}{1-\alpha^{2}} p_{ges.} \quad \text{we have} \quad \alpha_{N,O_{4}} = \sqrt{\frac{Kp}{p_{ges.} + Kp}} \, .$

However, from our studies it turned out that a sufficiently accurate calculation of the partial pressure is possible nevertheless. This fact is understandable if we examine the pressure dependence of the α -values for the equilibria (I) and (II) more closely.

In Figure 5, the degree of dissociation is plotted as a function of the pressure for equilibrium (II) at 20°C according to

Natanson [38].

Figure 4 shows the same dependence for equilibrium (I) according to Abel and Proisl [1] at 25°C.

of the degree of dissociation α for equilibrium (II)

From the course of the curves, we can see that the influence /68 of pressure on the degree of dissociation is relatively low in the region of isportance to the measurements (about 500-760 Torr). The maximal deviations for equilibrium (II) are 4% of the a-value; for equilibrium (I), 2% of the a-value. As the experimental results confirm, these changes have no noticeable influence and lie within the limits of error of the measurement method.

In the following tables, the measured values for the absorption of N202 in sulfuric acid are summarized:

The volume data relate to standard conditions of temperature and pressure.

veight H	% 80,	1 N.O. 100 g H.SO.	Mol N.O. Mol H.SO.	color of solution	prec	•c m.p.	× ×	**
5	0,7	0,21	0.018	black		1	1	
		0.27	0.021	blue		*		
	05	0.50	0.050	green	4	1000		
6	6.3	1.38	0.001	yellowgree	en			
7	0.2	2.47	0,154					
7	5,2	3,60	0,200		10	73	10.8	25,0
	0.4	4.97	0.271		40	71		
	6,6	6.10	0,308	vellow	60	71	10,9	25.2
	0,1	6.78	0,829	"	70	72		
	6,1	7,88	0,358		85	71	10,8	25,1
	0,8	8.68	0,381		95	72	10,9	25,1

Table 1: Measured Values of the Absorption performed at 19°C.

ORIGINAL PAGE IS OF POOR QUALITY

Table 1: Measured values of the Absorption performed at 60°C.

and the second

۲.

eight.% H,SO.	1 N.O. 100 g H.SO.	Mol N.O. Mol H.SO.	color of solution	% prec	• с m.р.	××	**
60.3	0,15	0.012	entirely				4
60,5	0,38	0,028	black		1.1	1.1	
66,3	3.05	0,0#2	bluegreen vellowgree	n	1	* d	
70,2	1,68	C,105	vellow'L	1	2 6 1		
75,2	2,53	0,147		1			
80,4	8.03	0,214			24		
86.5	5,43	0,275		70	72	10,9	25,2
. 90,1	6.50	0.316		90	71	11.0	25,1
96.1	8.08	0,368		95	78	10,9	25,2
99.8	9.01	0,895		100	78	10,8	25,0

Table 3: Measured values of the Absorption performed at 95°C. /69

ight.%	1 N.O. 100 g H.SO.	Mol N.O. Mol H.SO.	color of solution
56.3	0.005	0.0076	entirely blueblack
60.5	0.21	0,015	yellowblack
66.3	0,65	0.043	yellow
70.2	1.22	0.076	yellow
75.2	1,97	0115	vellow
NO.4	3,10	0,169	vellow
86,5	4,12	0,208	1.01 green
90,1	4,58	0,223	1.51 violet 2.61 vellow 1.21 green 2.21 violet 2.51 yellow
96.1	4.02	0,226	Only a brief,
90,8	5,24	0,230	weak green and violet coloration

3.2 Solutions

The sulfuric acids needed for the absorption were prepared by dilution of concentrated H_2SO_4 . A precise determination of concentration was performed by titration or, in the case of the 100% H_2SO_1 , by conductivity measurement.

NO2 was prepared according to the method of Meldrum [33] from copper and nitric acid in a stream of oxygen.

Of the different methods for preparing NO, we selected that of Johnston and Glauque [40] in which semi-concentrated sulfuric acid is added by drops to a solution of KNO₂ and KI.

The gases were dried before the absorption measurements by phosphorus (v)-oxide.

3.3 Analysis

The sulfur determination was done gravimetrically as $BaSO_4$. For the nitrogen determination, the available N³⁺ was reduced by Devard-alloy and determined according to Kjeldahl.

3.4 Spectra

The spectra were taken with the UR 10 of the People's Carl Zeiss Co., Jena. The preparation and recording techniques of Stopperka [19] were applied.

3.5 X-ray Photographs

The goniometer recordings were prepared with the horizontal counter tube goniometer of the People's Freiberg Precision Mechanics Co. The locations of the X-ray interferences of NOHSO₄ are shown as a bar graph in Figure 6.

Figure 6: Powder data (debyeogram) of NOHSO4.

The exact location of the interferences with the attendant intensities determined from 5 photographs can be seen in Table 4.

Photo conditions: $Cu-K_{\alpha}$ radiation, Ni-filter, 35 kV.

/70

Table 4: X-ray Interference of NOHSO4.

1.

0	1	ð	1
13,4	\$D	23.4	4.0
13,7	1 1	23.8	1 D
14.15	2	25,15	2 D
14,25	2	25,65	11
14,45	3-4T	- 26.2	2 D
15,4	3 T	26.0	4 D
17,35	6 T	27,05	2 D
18,05	12	27,35	1
18,5	2-3 D	27.6	0-1
18,8	2	27.95	1-2 D
19,6	37	29,1	1
20,4	1	30,1	ST.
21,85	1	34.0	80
22.6	2-3 D	84.1	

D = doublet T = Triplet

Thanks to Dr. H. A. Lehmann for his interest in our work. Received for Publication: 3/14/66

REFERENCES

1.	E. Abel and J. Proisl, Z. Elektrochem. angew physik. Chem. 35, 712 (1929).
2.	M. Bodenstein, Z. Physik. Chem. 100, 68 (1922).
3.	G. Lunge and E. Berl, Z. Angew. Chem. 19, 991 (1906)
4.	L. H. Milligan, J. Physic. Chem., 28, 544 (1924).
5.	F. H. Verhoek and F. Daniels, J. Amer. Chem. Soc. 53, 1250 (1931)
6.	E. Forster and J. Blich, Z. angew. chem. 23, 2017 (1910)
7.	E. Wourtzel, C. R. Hebd. Seances Acad. Sci., 170, 109, (1920)
8.	A Sanfourche, C. R. Hebd. Seances Acad. Sci., 172, 1573 (1921)
9.	C. A. Winkler, Z. Chem. 5, 715 (1869)
10.	G. Lunge, Ber. Dtsch. Chem. Ges., 18, 1834 (1885)
11.	A. Rose Hoggendorfs Ann. 50, 161 (1840)
12.	C. Weltzein, Liebigs Ann. Chem. 115, 213 (1860)
13.	C. Rammelsberg, Ber. dtsch. chem. Ges, 5, 310 (1872)
14.	F. Schoofs, Bull. Soc. chem. Belgique 35, 121, (1926)
15.	For brevity's sake, a detailed discussion of the work regarding the theory of the Lead Chamber Process is omitted here.
16.	D. J. Millen, J. Chem. Soc., London, 1950, 2600.
16. 17.	 D. J. Millen, J. Chem. Soc., London, 1950, 2600. O. Chanukvadze, S. Nomoradze, G. Talakvadze and P. Tsistaridze, Tr. Grusinsk, Inst. Subtrop. Khoz., 1961, (5-6), 439-442 (Chem. Abstr. 1964, 60, 9969h)
16. 17. 18.	 D. J. Millen, J. Chem. Soc., London, 1950, 2600. O. Chanukvadze, S. Nomoradze, G. Talakvadze and P. Tsistaridze, Tr. Grusinsk, Inst. Subtrop. Khoz., 1961, (5-6), 439-442 (Chem. Abstr. 1964, 60, 9969h) By this we mean the weight ratio between solids and the ab- sorption solution. This value is always somewhat inaccurate due to sulfuric acid enclosed between the crystals.
16. 17. 18. 19.	 D. J. Millen, J. Chem. Soc., London, 1950, 2600. O. Chanukvadze, S. Nomoradze, G. Talakvadze and P. Tsistaridze, Tr. Grusinsk, Inst. Subtrop. Khoz., 1961, (5-6), 439-442 (Chem. Abstr. 1964, 60, 9969h) By this we mean the weight ratio between solids and the ab- sorption solution. This value is always somewhat inaccurate due to sulfuric acid enclosed between the crystals. K. Stopperka, Z. anorg. allg. Chem. 844, 263 (1966).
16. 17. 18. 19. 20.	 D. J. Millen, J. Chem. Soc., London, 1950, 2600. O. Chanukvadze, S. Nomoradze, G. Talakvadze and P. Tsistaridze, Tr. Grusinsk, Inst. Subtrop. Khoz., 1961, (5-6), 439-442 (Chem. Abstr. 1964, 60, 9969h) By this we mean the weight ratio between solids and the ab- sorption solution. This value is always somewhat inaccurate due to sulfuric acid enclosed between the crystals. K. Stopperka, Z. anorg. allg. Chem. 844, 263 (1966). R. J. Gillespie, J. Graham, E. D. Hughes, C. K. Ingcid and E. R. A. Peeling, J. Chem. Soc., [London], 1950, 2504.
16. 17. 18. 19. 20. 21.	 D. J. Millen, J. Chem. Soc., London, 1950, 2600. O. Chanukvadze, S. Nomoradze, G. Talakvadze and P. Tsistaridze, Tr. Grusinsk, Inst. Subtrop. Khoz., 1961, (5-6), 439-442 (Chem. Abstr. 1964, 60, 9969h) By this we mean the weight ratio between solids and the ab- sorption solution. This value is always somewhat inaccurate due to sulfuric acid enclosed between the crystals. K. Stopperka, Z. anorg. allg. Chem. 844, 263 (1966). R. J. Gillespie, J. Graham, E. D. Hughes, C. K. Ingcid and E. R. A. Peeling, J. Chem. Soc., [London], 1950, 2504. NO2 is preferentially absorbed so that an NO-cushion is always forming above the absorption solution.
16. 17. 18. 19. 20. 21. 22.	 D. J. Millen, J. Chem. Soc., London, 1950, 2600. O. Chanukvadze, S. Nomoradze, G. Talakvadze and P. Tsistaridze, Tr. Grusinsk, Inst. Subtrop. Khoz., 1961, (5-6), 439-442 (Chem. Abstr. 1964, 60, 9969h) By this we mean the weight ratio between solids and the ab- sorption solution. This value is always somewhat inaccurate due to sulfuric acid enclosed between the crystals. K. Stopperka, Z. anorg. allg. Chem. 844, 263 (1966). R. J. Gillespie, J. Graham, E. D. Hughes, C. K. Ingcid and E. R. A. Peeling, J. Chem. Soc., [London], 1950, 2504. NO2 is preferentially absorbed so that an NO-cushion is always forming above the absorption solution. F. Seel and H. Szuer, Z. anorg. allg. Chem, 292, 1 (1957).
16. 17. 18. 19. 20. 21. 22. 23.	 D. J. Millen, J. Chem. Soc., London, 1950, 2600. O. Chanukvadze, S. Nomoradze, G. Talakvadze and P. Tsistaridze, Tr. Grusinsk, Inst. Subtrop. Khoz., 1961, (5-6), 439-442 (Chem. Abstr. 1964, 60, 9969h) By this we mean the weight ratio between solids and the ab- sorption solution. This value is always somewhat inaccurate due to sulfuric acid enclosed between the crystals. K. Stopperka, Z. anorg. allg. Chem. 844, 263 (1966). R. J. Gillespie, J. Graham, E. D. Hughes, C. K. Ingcid and E. R. A. Peeling, J. Chem. Soc., [London], 1950, 2504. NO2 is preferentially absorbed so that an NO-cushion is always forming above the absorption solution. F. Seel and H. Scuer, Z. anorg. allg. Chem, 292, 1 (1957). J. D. S. Goulden and D. J. Millen, J. Chem. Soc. [London], 1950, 2620.
 16. 17. 18. 19. 20. 21. 21. 22. 23. 24. 	 D. J. Millen, J. Chem. Soc., London, 1950, 2600. O. Chanukvadze, S. Nomoradze, G. Talakvadze and P. Tsistaridze, Tr. Grusinsk, Inst. Subtrop. Khoz., 1961, (5-6), 439-442 (Chem. Abstr. 1964, 60, 9969h) By this we mean the weight ratio between solids and the ab- sorption solution. This value is always somewhat inaccurate due to sulfuric acid enclosed between the crystals. K. Stopperka, Z. anorg. allg. Chem 844, 263 (1966). R. J. Gillespie, J. Graham, E. D. Hughes, C. K. Ingeld and E. R. A. Peeling, J. Chem. Soc., [London], 1950, 2504. NO₂ is preferentially absorbed so that an NO-cushion is always forming above the absorption solution. F. Seel and H. Szuer, Z. anorg. allg. Chem, 292, 1 (1957). J. D. S. Goulden and D. J. Millen, J. Chem. Soc. [London], 1950, 2620. A. Simon and H. Richter, J. Prakt. Chem., 5, 68, (1958)
 16. 17. 18. 19. 20. 21. 21. 22. 23. 24. 25. 	 D. J. Millen, J. Chem. Soc., London, 1950, 2600. O. Chanukvadze, S. Nomoradze, G. Talakvadze and P. Tsistaridze, Tr. Grusinsk, Inst. Subtrop. Khoz., 1961, (5-6), 439-442 (Chem. Abstr. 1964, 60, 9969h) By this we mean the weight ratio between solids and the ab- sorption solution. This value is always somewhat inaccurate due to sulfuric acid enclosed between the crystals. K. Stopperka, Z. anorg. allg. Chem 844, 263 (1966). R. J. Gillespie, J. Graham, E. D. Hughes, C. K. Ingcid and E. R. A. Peeling, J. Chem. Soc., [London], 1950, 2504. NO₂ is preferentially absorbed so that an NO-cushion is always forming above the absorption solution. F. Seel and H. Szuer, Z. anorg. allg. Chem. Soc. [London], 1950, 2620. A. Simon and H. Richter, J. Prakt. Chem., 5, 68, (1958) D. W. A. Sharp and J. Thorley, J. Chem. Soc., [London], 1963, 3557.

27.	D. Cook, S. J. Kuhn and G. A. Olah, J. Chem. Phys. 33, 1669 (1960)
28.	J. R. Soulen, W. F. Schwartz, J. Physic. Chem. 66, 2066 (1962).
29.	H. B. Baker, J. Chem. Soc., [London], 65, 611, (1894).
30.	R. L. Hasche, J. Amer. Chem. Soc., 48, 2253 (1926).
31.	J. H. Smith, J. Amer. Chem. Soc., 65, 74, (1943).
32.	A. Sathlers, "Methods of Inorganic Chemistry", V. II/1, p. 34, Berlin-Leipzig, 1919.
33.	A. Stock, G. E. Gibson, and E. Stamm, Ber. dtsch. chem, Ges. 45, 3527, (1913).
34.	R. Seeliger, Physik, Z., 27, 732, (1926).
35.	G. Kornfeld and E. Klinger, Z. physik. Chem., Abt B 4, 37, (1929).
36.	K. Sommermeyer, Z. Physik. Chem., Abt A 155, 208 (1931).
37.	The partial pressures of the individual components are designated p_{NO} ; p_{NO_2} ; p_{N2O_4} ; and p_{N2O_3} ; the total pressure is p_{res} .
38.	E. Natanson and L. Natanson, Wiedemanns Ann. 24, 466 (1885).
39.	W. B. Meldrum, J. Chem. Soc. [London], 1933, 905.
40.	H. L. Johnston, and W. F. Giauque, J. Amer. Chem. Soc., 51, 3194 (1929).

Dresden, Institute for Inorganic and Inorganic-Technical Chemistry of the Technical University.

Coswig, Kreis Rosslau, VEB Chemiewer, Coswig, E. Germany.