An ILLIAC Program for the Numerical Simulation of Homogeneous Incompressible Turbulence

Robert S. Rogallo

November 1977

Mnsn

National Aeronatucs and
Space Admuns:itration

Ames Research Center

Molfett tield. California 940.35

AN IJIIIAC PROGRAM FOR THE NUMBRICAL STMUI.ATION OF HOMOGENEOUS
INCOMPRESSIBI.E TURBILENCE
Robert S. Rogallo
Ames Research Center

SUMMARY

An algorithm and ILLTAC computer program, developed for the simulation of homogeneous incompressible turbulence in the presence of an applied mean strain, are described. The turbulence fleld is represented spatially by a truncated triple Fourier series (spectral method) and followed in time using a fourth-order Runge-Kutta algorithm. Several transformations are applied to the numerical problem to enhance the basic algorithm. These include

1. Transformation of varlables suggested by Taylor's sudden-distortion theory
2. Implicit viscous diffusion by use of an integrating factor
3. Implicit pressure calculation suggested by Taylor's suddendistortion theory
4. Inexpensive control of aliasing by random and phased coordinate shifts

INTRODUCTION

The primary difficulty in the numerical simulation of homogeneous turbulence is that the nonlinearity of the equations of fluid motion excites a large range of scales (i.e., a large ratio of largest to smallest scale) of motion in both space and time. The computer resource required for a complete simulation is proportional to the product, over all space-time dimensions, of the range of computed scales of each dimension. These scale ranges increase with Reynolds number (R), and their product increases so rapidly, in three space dimensions, that only the weakest experimentally studied turbulence can be simulated completely on today's computers.

The overall range of scales continues to increase indefinitely with Reynolds number. However, at a sufficiently high Reynolds number the scales of motion can be grouped, in order of decreasing scale, into three distinct ranges: the energy-containing range, the "inertial" range, and the dissipation range (fig. 1). Further increases in Reynolds number increase only the inertial range. The range of energy-containing scales, which determine the
features of turbulence of engincering incerest, is bounded as; $R \rightarrow \infty$, and the motion in these scales becomes independent of the motion at smaller scales. At somewhat lower R, the inertial and dissipation ranges merge, but still do not affect the energy-containing rangt. At sufileiently low R , dissipation: occurs in the energy-containing range itself. This physical description of the scale dependence upon Reynolds number is encouraging because it indicates that, in principle, only the energy-containing scales of motion need to be included in a high Reynolds number turbulence simulation. The difficulty is that, mathematically, all the scales are coupled through the nonlinear terms in the governing equations and, although we know that physically (i.e., statistically) the encrgy-containing range is uncoupled from the smaller scales, we do not know how to uncouple it mathematically.

The range of statistically interdependent scales increases with the anisotropy of the motion and, because most flows of engineering interest are anisotropic, it is important to determine the nature and magnitude of the additional computational difficulty posed by anisotropy.

THE NUMERICAL SIMULATION

The computational tool presented here is an unsteady incompressible Navier-Stokes code that runs on the ILLIAC IV computer. The program conputes the evolution in time from an arbitrary homogeneous turbulence field in the presence of a simple class of spatially-linear mean flows. The sinulation is a spectral deconposition similar to that of Orszag (ref. 1) but differing in detail. The primary purpose of this report is to present the simulation algorithm in detail sufficient to allow its use by others. The program can be used as presented to study weak (low Reynolds number) turbulence for which typical results are presented. The magnitude of the computation (fig. 2) requires a computer at least as fast as a CDC-7600.

THE EOUATIONS OF MOTION

The equations governing the flow of a viscous constant-density fluid are the familiar Navier-Stokes equations

$$
\left.\begin{array}{rl}
u_{t}+(u u)_{x}+(v u)_{y}+(w u)_{z}+p_{x} & =v\left(u_{x x}+u_{y y}+u_{z z}\right) \tag{1}\\
v_{t}+(u v)_{x}+(v v)_{y}+(w v)_{z}+p_{y} & =v\left(v_{x x}+v_{y y}+v_{z z}\right) \\
w_{t}+(u w)_{x}+(v w)_{y}+(w w)_{z}+p_{z} & =v\left(w_{x x}+w_{y y}+w_{z z}\right) \\
u_{x}+v_{y}+w_{z} & =0
\end{array}\right\}
$$

where (u, v, w) is the velocity vector, p is the pressure deasity ratio, \checkmark is the kinematic viscosity, and subseripts denote differentiation.

We wish to slmulate numerically the effect of a simple elass of infosed strains on a homogeneous field of turbulence. The strain field is given by

$$
(\bar{u}, \bar{v}, \bar{w})=[x a(t), y b(t), z c(t)]
$$

where $a+b+c=0$ as required by continuity. It is convenient to introduce the following transformation of the dependent variables:

$$
\left.\begin{array}{l}
u=a x+A^{1 / 2} \hat{u} \\
v=b y+B^{1 / 2} \hat{v} \\
w=c z+c^{1 / 2} \hat{w} \tag{2}\\
p=-\frac{1}{2}\left[\left(\frac{d a}{d t}+a^{2}\right) x^{2}+\left(\frac{d b}{d t}+b^{2}\right) y^{2}+\left(\frac{d c}{d t}+c^{2}\right) z^{2}\right]+\hat{p}
\end{array}\right]
$$

where $a(t), b(t)$, and $c(t)$ are the arbitrary time-dependent strain rates imposed, and the resulting inverse square strains are

$$
\left.\begin{array}{l}
A(t)=e^{-2 \int_{0}^{t} a d t} \tag{3}\\
B(t)=e^{-2 \int_{0}^{t} b d t} \\
C(t)=e^{-2 \int_{0}^{t} c d t}
\end{array}\right\}
$$

It follows from the continuity condition that material volumes are invariant, (i.e., $A B C=1$). Explicit spatial dependence of the resulting system of equations is eliminated by the following transformation of independent variables:

The equations of motion for the transformed turbulence ficid are then

$$
\begin{align*}
& \hat{u}_{t}+A(\hat{u} \hat{u})_{\hat{x}}+B(\hat{v} \hat{u})_{y}+C(\hat{w})_{\hat{u}}+\hat{p}_{\hat{x}}=v\left(\Lambda \hat{u}_{\hat{x} \hat{x}}+B \hat{u}_{y \hat{y}}+C \hat{u}_{\hat{z} \ddot{z}}\right) \\
& \hat{v}_{t}+A(\hat{u} \hat{v})_{\hat{x}}+B(\hat{v} \hat{v})_{\hat{y}}+C(\hat{w} \hat{v})_{\hat{z}}+\hat{p}_{\hat{y}}=v\left(\Lambda \hat{v}_{\hat{x} \hat{x}}+B \hat{v}_{\hat{y} \hat{y}}+C \hat{v}_{\hat{z} \hat{z}}\right) \tag{'j}\\
& \hat{w}_{t}+A(\hat{u} \hat{w})_{\hat{x}}+B(\hat{v} \hat{w})_{\hat{y}}+C(\hat{w} \hat{w})_{\hat{z}}+\hat{p}_{\hat{z}}=v\left(A \hat{w}_{\hat{x} \hat{x}}+B \hat{w}_{y \hat{y}}+C \hat{w}_{\hat{z} \hat{z}}\right) \\
& A \hat{u}_{\hat{x}}+B \hat{v}_{\hat{y}}+C \hat{w}_{z}=0
\end{align*}
$$

It is interesting to note that Taylor's theory (sce ref. 2) for the sudden distortion of a turbulent field is particularly simple when expressed in these transformed variables, because strain rate does not appear. Suppose that a field of turbulence (state 1) is rapidly strained. The resulting field (state 2) is defined as

$$
\hat{\mathbf{u}}^{(2)}=\hat{u}^{(1)}+\int_{0}^{t} \hat{u}_{t} d t \text {, etc. }
$$

where τ is a time characteristic of the imposed straining period. Continuity must be satisfied throughout the straining process and, in particular, in the initial and final states of strain. Hence, if the total strain imposed is given by its inverses A, B, C, we have

$$
\begin{aligned}
\hat{u}_{\hat{\mathbf{x}}}^{(1)}+\hat{v}_{\hat{y}}^{(1)}+\hat{w}_{\hat{z}}^{(1)}=0 \quad \text { at } t \\
A \hat{u}_{\hat{\mathbf{x}}}^{(2)}+B \hat{v}_{\hat{y}}^{(2)}+C \hat{w}_{\hat{z}}^{(2)}=0 \quad \text { at } t+\tau
\end{aligned}
$$

As the strain becomes sudden $(\tau \rightarrow 0) A, B, C, \hat{u}, \hat{v}$, and \hat{w} remain bounded but their time derivatives do not. During the straining process the momentum equations (5) degenerate, as $\tau \rightarrow 0$, to

$$
\begin{aligned}
& \hat{u}_{t}+\hat{p}_{\hat{x}}=0 \\
& \hat{v}_{t}+\hat{p}_{\hat{y}}=0 \\
& \hat{w}_{t}+\hat{p}_{\hat{z}}=0
\end{aligned}
$$

so that the velocity jump ir the transformed variables is irrotational, that is

$$
\hat{u}^{(2)}=\hat{u}^{(1)}-\int_{0}^{t} \hat{p}_{\hat{\mathbf{x}}} d t=\hat{u}^{(1)}-\phi_{\hat{x}}
$$

and similarly

The contiraity conditior then determines the potential as the solution or

$$
A \phi_{\hat{x} \hat{x}}+B \phi_{\hat{y} \hat{y}}+C \phi_{\hat{z} \hat{z}}=A \hat{u}_{\hat{x}}^{(1)}+B \dot{v}_{\hat{y}}^{(1)}+C \hat{w}_{\hat{z}}^{(1)}
$$

which completes the solution for the velority fleld at state 2 .
The above transformations seem to be the natural ones for the study of the effect of uniform imposed strain on a homogeneous turbulent field, regardless of the rate at which the strain is imposed. A more general set of transformations can be used when the mean strain-rate matrix is not diagonal, and also when the mean vorticity is nonzero.

NUMERICAL APPROXIMATIONS

We wish to simulate a spatially homogeneous turbulence field in an infinite space, and this suggests that we represent the field spatially as a Fourler series. The resulting field is periodic in all three space dimensions, with correspondingly periodic spatial correlations. However, if these correlations decay to negligible magnitude within the period, (e.g., if the integral scale is much smaller than haif the period), the error dua to the finite period should be small. In practice this requirement is difficult to satisfy with the resolution allowed by today's computers.

In this section we develop the equations in more detail and describe the integration process as programmed. Let $\tau_{11}=\hat{u} \hat{u}, \tau_{12}=\hat{u} \hat{v}, \tau_{13}=\hat{u} \hat{w}$, etc., tilde (\sim) denote the three-dimensional Fourier transform, and ${ }^{3}$ k_{1}, k_{2}, k_{3} be wave numbers in the \hat{x}, \hat{y}, and \hat{z} directions, respectively. The equations (5) in wave space are then

$$
\begin{align*}
& \tilde{u}_{t}+i k_{1} A \tilde{\tau}_{11}+i k_{2} B \tilde{\tau}_{12}+i k_{3} C \tilde{\tau}_{13}+i k_{1} \tilde{p}=-v\left(A k_{1}{ }^{2}+B k_{2}{ }^{2}+C k_{3}{ }^{2}\right) \tilde{u} \\
& \tilde{v}_{t}+i k_{1} A \tilde{\tau}_{12}+i k_{2} B \tilde{\tau}_{22}+i k_{3} C \tilde{\tau}_{23}+i k_{2} \tilde{p}=-v\left(A k_{1}{ }^{2}+B k_{2}{ }^{2}+C k_{3}{ }^{2}\right) \tilde{v} \tag{6}\\
& \tilde{w}_{t}+i k_{1} A \tilde{\tau}_{13}+i k_{2} B \tilde{\tau}_{23}+i k_{3} C \tilde{\tau}_{33}+i k_{3} \tilde{p}=-v\left(A k_{1}{ }^{2}+B k_{2}{ }^{2}+C k_{3}{ }^{2}\right) \tilde{w} \\
& i k_{1} A \tilde{u}+i k_{2} B \tilde{v}+i k_{3} C \tilde{w}=0
\end{align*}
$$

The linear terms are combined by multiplying the equations by the integrating; factor

$$
\begin{equation*}
F(\underline{k}, t)=e^{\nu k_{1}^{2} \int_{0}^{t} A d t} e^{\nu k_{2}^{2} \int_{0}^{t} B d t e_{3}^{2} \int_{0}^{t} C d t} \tag{7}
\end{equation*}
$$

giving

$$
\begin{gather*}
\frac{d}{d t}(F \dot{u})+1\left\{i k_{1} A \tilde{\tau}_{11}+1 k_{2} B \ddot{\tau}_{12}+i k_{3} C \tilde{t}_{13}+i k_{1} \tilde{p}\right\}=0 \\
\frac{d}{d t}(F \tilde{v})+F\left\{i k_{1} A \tilde{t}_{12}+i k_{2} B \tilde{\tau}_{22}+i k_{3} C_{23}+i k_{2} \tilde{p}\right\}=0 \\
\frac{d}{d t}(F \tilde{w})+F\left(i k_{1} A \tilde{\tau}_{13}+i k_{2} B \tilde{\tau}_{23}+i k_{3} C \tilde{\tau}_{33}+i k_{3} \tilde{p}\right\}=0 \tag{8}\\
\quad i k_{1} A(F \tilde{u})+i k_{2} B(F \tilde{v})+i k_{3} C(F \tilde{u})=0
\end{gather*}
$$

Now multiply the first equation by $i k_{1}$, the second by $i k_{2}$, etc., to obtain
(let $\left.\tilde{\tilde{U}}=i k_{1} \tilde{u}, \tilde{V}=i k_{2} \tilde{v}, \tilde{W}=i k_{3} \tilde{w}\right)$

$$
\begin{align*}
\frac{d}{d t}(F \tilde{U})= & F\left\{k_{1}{ }^{2} A \tilde{\tau}_{11}+k_{1} k_{2} B \tilde{\tau}_{12}+k_{1} k_{3} C \tilde{\tau}_{13}\right\}+k_{1}{ }^{2} F \tilde{p} \\
\frac{d}{d t}(F \tilde{V})= & F\left\{k_{1} k_{2} A \tilde{\tau}_{12}+k_{2}{ }^{2} B \tilde{\tau}_{22}+k_{2} k_{3} C \tilde{\tau}_{23}\right\}+k_{2}{ }^{2} F \tilde{p} \tag{9}\\
\frac{d}{d t}(F \tilde{W})= & F\left\{k_{1} k_{3} A \tilde{\tau}_{13}+k_{2} k_{3} B \tilde{\tau}_{23}+k_{3}{ }^{2} C \tilde{\tau}_{33}\right\}+k_{3}{ }^{2} F \tilde{p} \\
& A(F \tilde{U})+B(F \tilde{V})+C(F \tilde{W})=0
\end{align*}
$$

(The purpuse of this transformation of dependent variables is discussed later on; note that $k_{1}, k_{2}, k_{3}=0$ are special cases.)

The usual procedure for the computation of \tilde{p} requires the tine differentiation of the continuity condition. However, we want the algorithm to handle impulsive strains correctly (jumps in A, B, and C), that is, according to 'laylor's sudden distortion theory, so we need to avoid the differentiation. We thus define a potential $\dot{\boldsymbol{\phi}}$ as

$$
\tilde{\phi}=-F^{-1} \int_{0}^{t} F \tilde{F} d t
$$

and absorb it into the time-advanced variables. Then
and the continuity condition becomes

$$
\begin{equation*}
\tilde{\phi}=F^{-1}\left(\frac{A \tilde{X}+B \tilde{Y}+C \ddot{Z}}{A k_{1}{ }^{2}+B k_{2}{ }^{2}+C k_{3}{ }^{2}}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{F}^{-1} \tilde{\mathrm{X}}=\tilde{U}+\mathrm{k}_{1}{ }^{2} \tilde{\phi} \\
& \mathrm{~F}^{-1} \tilde{\mathrm{Y}}=\tilde{\mathrm{V}}+\mathrm{k}_{2}{ }^{2} \tilde{\phi} \tag{12}\\
& \mathrm{~F}^{-1} \tilde{Z}=\tilde{W}+\mathrm{k}_{3}{ }^{2} \tilde{\phi}
\end{align*}
$$

The $\tilde{\tau}$'s are functions of $\tilde{u}, \tilde{v}, \tilde{w}$ only, so that, if \tilde{u}, \tilde{v}, \tilde{w} are known at the beginning of a time step and satisfy the continuity condition, we may advance $\tilde{X}, \tilde{Y}, \tilde{Z}$. However, to form time derivatives of the advanced $\tilde{X}, \tilde{Y}, \tilde{Z}$ we must form from (12) advanced values of $\tilde{u}, \tilde{v}, \tilde{w}$, and this requires the solution (11) for $\tilde{\phi}$ at the advanced time. This is done using the continuity condition at the advanced time, and does not require its time differentiation.

At the beginning of a time step $t=0$, and we have

$$
F=1, \tilde{\phi}=0, \tilde{X}=\tilde{U}, \tilde{Y}=\tilde{V}, \tilde{Z}=\tilde{W}
$$

The equations for \tilde{X}, \tilde{Y}, and \tilde{Z} are integrated over the time step, and the final values are used in equations (11) and (12) to produce final values of \tilde{U}, \tilde{V}, and \tilde{W}. The origin of time is then shifted to the final time giving the proper initialization for the next time step.

Spatial differentiation is a point operator in wave space but multiplication (e.g., $\tilde{\tau}_{12}=\hat{\hat{u} \hat{v}}$) is not, and the most efficient means of forming the Fourier transform of a product from the transforms of its terms is to return to physical space by inverting the transforms, form the product, and then transform the result back to wave space. Unfortunately, the transformation of the product back to wave space introduces an error due to spectral truncation.

The truncatifon veros are mast basily demonstrated forme spatal dimension. The reprosentation of the product of two fourler sertes $a, ~ \ddot{b}$ (in complex form) as a fourfor serins \ddot{c} i:s given by the (finfinte) convolution sum

However, the process of Inverting finite transforms \tilde{a} and \bar{i}, forming the product ab, and then taking its finite transform results instead in two sums:

$$
\tilde{c}_{k}=\sum_{s} \tilde{a}_{k-s} \tilde{b}_{s}+\sum_{s} \tilde{a}_{k \pm M-s} \tilde{b}_{s}
$$

The first sum represents a contribution (incomplete due to truncation) to ab correctly attributed to wave number k. The second sum also represents a contribution to $a b$, but it is actually a contribution not to k, but to $k \pm M$, wave numbers beyond those allowed by the length (M) of the finite transforms used. This is the "allasing" error. Now it may be argued that because aliasing errors do not account for all of the truncation error, suppression of the allasing error is not cost effective so far as accuracy is concerned. Kowever, in the algorithm used here, the aliased lerms can lead to nonlinear instability, and their control is essential.

Now consider the effect of a shift of the physical coordinate system. In wave space this amounts to multiplication by $e^{i k \Delta}$, where $-\Delta$ is the amount of coordinate shift. If we use $e^{i k \Lambda}$ to shift \tilde{a}_{k}, \tilde{b}_{k} prior to inverting them to physical space, furm the product $a b$ on the shifted grid, transform back to wave space, and finally shift coordinates back witi e-ik we obtain

$$
\tilde{c}_{k}=\sum_{s} \tilde{a}_{k-s} \tilde{b}_{c}+e^{+i M \Delta} \sum_{s} \tilde{a}_{k \pm M-s} \dot{b}_{s}
$$

The first (alias-free) sum is invariant under these shifts, but the second sum, the aliased one which we wish to suppress, has a phase dependency on is and can be eliminated. For example, if two evaluations are made, one with $e^{ \pm i M \Delta}=1$ and the other with $e^{ \pm i M \Delta}=-1$, the alias-free result is one-half their sum. The second sum (which is multiplied by the phase factor) itself vanishes identically for $|k| \leq N,(N \leq M / 3)$ 1f modes of \tilde{a} and \tilde{b} outside of this range are nulled prior to inversion, and transforms of length M ale retained. Thus two independent procedures are avallable for alias suppression.

The extension of these procedures to three dimensions gives for each aight terms, seven of which represent aliasing errors. The alfased terms are 1 lassiffed according to the number of dimensions in which aliasing, has occurred. We then have $\left.\mid \underline{k}=\left(k_{1}, k_{f}, k_{g}\right), A_{n}=e^{ \pm i k_{n} \Lambda_{n}}\right)$

$\mathrm{c}_{\mathrm{k}} \quad S_{0}$	(allas-froe)
$+0_{1} S_{3}+0_{2} S_{2}+0_{3} S_{5}$	(singly-allascd)
$+0_{1} 0_{2} \mathrm{~S}_{4}+0_{2}{ }_{3} \mathrm{~S}_{4}+0_{3} 0_{1} \mathrm{~S}_{6}$	(doubly-al lased)
$+0_{1} 0_{9} \theta_{3} s_{7}$	(triply-allascod)

All of the aliased sums (S_{1}, . . . S. ${ }^{2}$) vanish if modes having any $\mathrm{k}_{1}>\mathrm{N}_{1}$ are nulled. The doubly and triply aliased sums $\left(S_{1}, \ldots, S_{7}\right)$ vanish if modes having any two $k_{1}>N_{i}$ are nulled. The triply aliased sum ($S_{\text {. }}$) vanishes if modes having all. three $k_{1}>N_{1}$ are nulled. Alternatively one can evaluate the convolution efght times using the eight combinations of $\theta_{x}, \theta_{y}, \theta_{z}= \pm 1$ and sum to eliminate the aliased terms. Note that suppression by the latter means requires eight evaluations to eliminate all of the aliased terms. One can also, as suggested by Orszag (ref. 1), remove $S_{4}, \ldots . S_{7}$ by truncation and the remaining single allases by coordinate shift with two evaluations. We are faced with the choice between losin: information (truncation) or losing computational speed (multiple evaluations).

We have, following Orszag, eliminated doubly and triply aliased sums by truncation, though the truncation used here differs slightly from that of Orszag who nulls modes having $k \cdot k>2(M / 3)^{2}$. We have not exactly eliminated the remaining single aliases, due to the computational cost of the double evaluations required. Instead we have used the fact that the Runge-Kutta algorithm requires pairs of evaluations at each half step and that by using a shifted grid for the second evaluation we reduce the total alias error for the pair by a factor of Δt^{2}. The possibility of nonlinear instability is further reduced by insuring that the θ_{j} for the first evaluation in a pair are not correlated with those of other pairs. This is easily accomplished by the use of a uniform-random-number generator during computation of the phase factors.

DATA MANAGEMENT

In large simulations the high-speed random-access memory of the computer cannot hold the entire data base of the problem (in the present code it holds 6% of $1 t$). In this case the high-speed memory may only be able to hold a few lines of the mesh (e.g., all values of k_{1} for a few k_{2}, k_{3} values), and it is convenient to transform and take derivatives only along those 1 nes. In general, separate passes over the data base are required for each spatial dimension. The directional order in which operations are performed then determines the required number of passes over the data base. We will demonstrate how this number may be reduced in a spectral algorithm.

Consider the evaluation in wave space of $(\hat{u} \hat{v}) \hat{x}$ and $(\hat{u} \hat{v}) \hat{y}$, which is required in equation (5). The transforms of \hat{u} and \hat{v} are inverted in the \hat{x}, \hat{y}, and \hat{z} directions, cach direction requiring a separate pass over the

 $\%$ directan. In pelaciple there romatn only the \hat{x} and \hat{y} transforms and the mult tplications by $i k_{x}$ and $i k^{\prime} y$ to form the dorivatives follo x and \hat{y} directions. Tho poblemis that, under our constraints, trangforms and derfvatives can only be taken in the direetion of the grld lines held in fast memory. Under these constrafils we must elthor perform three transforms and two dorivatives in two passes, or two traneforms and two dortvativesi in three passes. If the constralnt on the dorlvative is absent the results can be obtained in two transforms and two derivatives in two passos. This constraint can be removed only if four lines of the mesh can be held simultaneously in fast menory (so that al. elght real numbers representing wave number k are present). The TLLIAC fast memory is sufficiently large to accommodate four mesh lines, tut not within a single processing element (PE), so that differentiation would require communication across the PE.s. We have instead used a slightly altered set of dependent variables that avoids this problem altogether.

If the \hat{x} momentum equation is differentiated with respect to \hat{x}, and the \hat{y} momentum equation with respect to \hat{y}, the $\hat{u} \hat{v}$ stress term appears as $(\hat{u} \hat{v}) \hat{x} \hat{y}$ in both equations, and its evaluation under the constraints requires two transforms and two derivatives in two passes. But two extra integrations (of $\hat{u}_{\hat{x}}$ and $\hat{v}_{\hat{y}}$) are then required to form \hat{u} and \hat{v} in physical space; however, since integration and differentiation cost far less than either a transform or an I/O pass, this method is quite efficient. To avoid loss, upon differentiation, of information in a Fourier mode having a null wave number we simply do not multiply that mode by its wave number (i.e., zero) and similarly when we integrate it we do not divide by its wave number. What this amounts to is that, instead of the usual spectral dependent variables

$$
\begin{aligned}
& \tilde{u}\left(k_{1}, k_{2}, k_{3}\right) \\
& \tilde{v}\left(k_{1}, k_{2}, k_{3}\right) \\
& \tilde{w}\left(k_{1}, k_{2}, k_{3}\right)
\end{aligned}
$$

we use

$$
\begin{array}{ll}
\tilde{u}\left(0, k_{2}, k_{3}\right), & i k_{1} \tilde{u}\left(k_{1}, k_{2}, k_{3}\right), \\
\tilde{v}\left(k_{1} \neq 0\right. \\
\left.\tilde{v}, k_{3}\right), & i k_{2} \tilde{v}\left(k_{1}, k_{2}, k_{3}\right), \\
\tilde{w}\left(k_{2} \neq 0\right. \\
\left.k_{2}, 0\right), & i k_{3} \tilde{w}\left(k_{1}, k_{2}, k_{3}\right), \\
k_{3} \neq 0
\end{array}
$$

Use of these variables simplifies the continulty condition and minimizes the number of transforms and passes over the data base.

intilial condttions

The inftial velocities are chosen randonly, subject to the constrafnts of continuity and a speciffed energy spectrum. In detafl, the real and Imaginary parts of the Fourler veloclty amplitudes $\underline{\underline{i}(\underline{k}) \text { are selected ran- }}$ domly from a uniform distribution over the circle that is the intersection of the sphere (having surface area proportional to $\mathrm{l}(\mathrm{k})$) determined by the desired encrgy spectrum and the plane (normal to k) determined by continuity. For example, consider the (real) spectral mode $\left(k_{1}, k_{2}, k_{3} \neq 0\right)$

$$
\begin{aligned}
& u_{x}=f_{1} \cos k_{1} x \sin k_{2}!\cos k_{3} z \\
& v_{y}=f_{2} \cos k_{1} x \sin k_{2} y \cos k_{3} z \\
& w_{z}=f_{3} \cos k_{1} x \sin k_{2} y \cos k_{3} z
\end{aligned}
$$

The algorithm described previously advances the vector \underline{f} in time given the initial values ($k_{1}, k_{2}, k_{3}=0$ are special cases)

$$
\begin{aligned}
& f_{1}=c\left(k_{1}{ }^{2}+k_{2}{ }^{2}\right)^{-1 / 2} k_{1}\left(k_{2} \cos \psi+\frac{k_{1} k_{3}}{k} \sin \psi\right) \\
& f_{2}=c\left(k_{1}{ }^{2}+k_{2}{ }^{2}\right)^{-1 / 2} k_{2}\left(\frac{k_{2} k_{3}}{k} \sin \psi-k_{1} \cos \psi\right) \\
& f_{3}=-c\left(k_{1}{ }^{2}+k_{2}{ }^{2}\right)^{1 / 2} \frac{k_{3}}{k} \sin \psi
\end{aligned}
$$

where $k^{2}=k^{2}+k^{2}+k^{2}, c^{2}=\left[E(k) / 2 \pi k^{2}\right]$, and ψ is a random number uniformly distributed on the interval ($0,2 \pi$).

SCALING PROCEDURE

The simulation variables are nondimensional (integer wave numbers with period 2π) and must be scaled to obtain dimensional values. If we wish to simulate an experimental flow, knowing at the initial time only its energy spectrum $E_{e}\left(k_{e}\right)$ and viscosity v_{e}, we must use a similar energy spectrum (i.e., differing only in energy and wave number scales) and specify a simulation viscosity such that the dimensionless problems are the sane. Thus we define scale factors α, β relating the simalation energy E and wave number k to the experimental values by

$$
E(k) d k=\alpha E_{e}\left(k_{e}\right) d k_{e}, \quad k_{e}=\beta k
$$

Here E and k are dimensionless, α has units $L^{-2} T^{2}$, and B has units L^{-1} so that time must scale as

$$
=4^{-1 /:} 3 t
$$

and the vasonity an

$$
v=u^{1 / 2} p_{e}
$$

The seale factor a depends only on the soallag of the dependent varlables of the problem and, since the complatation allows an unl mithed range for thetr values, cnamges of a produce only phanges of scafo in the results. This would also be the ease for β it the computation allowed an undited range of values for the independent variables (wave rumber:), but such would recuire infinite spatial resolution.

The computer simulation does noi, of course, have infinite resolution, and the range of its independent varidbles is simply the value of its highest nondimensional (inieger) wave number. Because the entire experimental range of length scales camot be simulated, the choice of 8 determines which physical wave numbers of the experiment are to be simulated. Clearly the error of the simuiation depends on this chotce, but at present no rationale is known for making it. The choice of Ferziger (ref. 3), for example, is the scaling that allows the greatest total energy to be included in the simulation. There is also, however, the implicit constraint that the spatial period be "much greater" than the integral scale of the turbulent field.

The number of modes, or degree of freedom of the motion, within a range of scales (e.g., $K<k<2 K$) characterized by K is proportional to K^{3}. The different scale ranges of the motion are certainly not represented equally well in the statistical sense. There are very few modes in the larger scales (smaller wave numbers), and if the simulation is to represent turbulence we must require that a small number of modes does not contain a large fraction of the energy. This is equivalent to the integral length constraint.

If the truncation error is to be sma11, the viscosity must be high enough to damp the highest wave numbers of the calculation to the point where they, and presumably also those lost by truncation, have negligible effect. In other words, an accurate and complate solution requires that the computation resolve all scales of motion; otherwise one must face the notorious "closure problem." Since the simulation coie presented here contains no closure approximations, it is nesessarily restricted to very low-turbulence Reynolds numbers.

SAMPLE RESULTS

Several runs of the simulation code have heen made for isotropic flow to develop the algoithm and to obtain numerical error estimates. Typical energy spectra are shown in figures 3-6. The algorithm used has negligible numerical dissipation and, when the spatial resolution is truncated at any
finite wave number in an inviseld $(v=0)$ flutd, the energy cascade eventually leads to an equlpartiloned state (fis. 3) with the throretical spectrum $H(k): \mathrm{ck}^{2}$. Thi:s tendency is still aplatent whon molucular dissipation is included (fig. 4) it the range of computed scales does not include almost all of the dissifition. More of the dissipation range can be included by increasing the range of computed scales (fig. 5) or by shifting the range of computed scales (fig, 6) to include more of the dissipation range.

APPENDIX

'LIE TLLIAC PROCRAM

Program Structure

A fourth-order Runge-Kutta algorithai is used to integrate the system of equations (10)-(12). The strain inverses A, B, C, and the integrating factor F are considered known. The bulk of the computation is the evaluation of the right side of (10), which is done in subroutines PHASE1, PHASE2, and PHASE3. The dependent variables $\tilde{X}, \tilde{Y}, \tilde{z}$, are then advanced in STEP, and the continuity condition (11), is used by PRESSR to recover the physical velocities (12). These five subprograms are called sequentially by the control routine LOOP which is responsible for data management and step control.

The functions of processes called by these routines are given by in-line comments in the listing.

Data Structure and Flow

The data base resides on disk and consists of two blocks. The first block of data holds the velocity field at the beginning of a Runge-Kutta step (three words/node) and a predicted velocity accumulator field (three words/node). This block of data is always accessed sequentially. The second block of data is working space (four words/node) in which the right side of (10) is evaluated, requiring both sequential and nonsequential page accesses from the disk.

Each prediction within the Runge-Kutta process requires two complete passes through the data base, one bringing (x, y) planes into core (PHASE1, PHASE3, STEP, and PRESSR) for operators in the y direction, and one bringing in (x, z) planes (PHASE2) for operators in the x and z directions. In the latter pass, only the working space data block is required, allowing the (x, z) planes to be handled by a triple buffered scheme.

Listing of Program

The program is coded for execution in 32-bit precision on the ILLIAC computer. The routines listed in this appendix, which are coded in the CFD language, cover the major algorithmic steps of the computation. Some of the lower level rulutines are coded in assembly language (ASK) for efficiency, and others had to be hand coded because of the restrictions placed on 32-bit operation hy the CFD language.
SUBROUTINE LOOP

SUBROUTINE STEP

SUBROUTINE STEP (CONT.)

SUBROUTINE STEP (CONCL.)
> *RETUR
*END

> C***E********) STARTING WITH TRANSFORMS OF THE VELOCITY DERIVATIVES DU/DX, DV/DY, DWY OF U, V, W COMPUTATION IN Y DIRECTION

SUBROUTINE PHASE2 (CONCL.)

**	leaving physical space FOR AUU-BVV, UV, CWW-BVV, Vw
3*CALL $\mathrm{CFT}(\mathrm{P}(*, 1,1)$)	X TRANSPORM
CALL SHIFT2(P, XSHIFT(, RKSTEP+1))	SHIFT X BACK
Call $\operatorname{DIFF}(\mathrm{P}(, 2,1)$)	D(UV)/DX
*DO 8 I = 1, 4	FOR AUU-BUV, UV, CWW-BVV, VW
CALL TRANS (P (, 1,1))	ALIIGN 2 down Pem
8*CALL $\operatorname{FFT}(\mathrm{P}(*, 1,1)$)	2 TRANSFORM
CALL $\operatorname{DIFF}(\mathrm{P}(, 4,1)$)	D(VW) /Dz
LSKIP $=1$	DO FOR TEE UW PRODUCT
*CALl PFT(UW)	X TRANS $50 R A$
CALL SHIPT3(UW, XSHIFT(,RKSTEP+1))'	SHIFT X EACK
*CALL DIff(uw)	D(UW)/DX
*CALL TRANS (UW)	ALLIGA 2 DOWN PEM
*CALL Fl't(uW)	2 TRANSFCRM
*CALL DIff(UW)	D(UW)/DXDZ
LSKIP $=8$	
$A(*)=A X$ FACT01(*)	
AB(*) = ABZ * FACT01 (*)	because data Structure not as pass
*DO 10 $1=1$, 64	COMBINE STRESSES
$\mathrm{P}(*, 1, \mathrm{I})=\mathrm{RKSQR}(*) * P(*, 1, I)-\mathrm{AB}(\mathrm{I})$	* UW(*,I) : X EQUATION
$10 \mathrm{P}(*, 3, \mathrm{I})=\operatorname{RKSQR}(\mathrm{I}) * \mathrm{P}(*, 3, I)-\mathrm{A}(*)$	* UW(*, I) , Z EQUATION
CALL SHIPT2(P, 2SHIFT(,RKSTEP+1))	PESTRUCTURE SEIFT 2 BACX
*DO $9 \mathrm{I}=1,4$	RESTRUCTURE DATA POR PASS
9*CALL WSWAP(P(*, I, 1))	
*RETURN	
*END	

ORIGINAL Page is OF POOR QUALITY
EGSVH: GNILHO甘GกS
 TRANSFORM AND DIFFERENTIATE STRESSES IN $X-Y$ PLANE AND FORM INERTIAL
 *SUBROUTINE PHASE3(P, SCALES, FILTER)
COMMON /SCALES/A(), B(*), AB(*)
COMMON /FILTER/ EAX(), EBY(*), EABZ (*)
*EXTERNAL FFT, DIFF, SHIFT2
*CU INTEGER 1,2 , LSKIP, RKSTEP
*CU REAL BY, ABZ, DELTAT

- (47,ABZ), (4,RKSTEP)
COMMON /ALIAS/ RNXYZ(, 3), XSHIFT(*,5), YSHIFT(*,5), 2SHIFT(*,5)
LSKIP $=4$
SHIFT Y-COORDINATES BACK
$D(U V) / D X D Y$
$D(V W) / D Z D Y$

SUBROUTINE PRESSR

REPERENCES

1. Orsaag, S. A.: Numerteal Methods for the Simulation of Turbulence. Physies of Fluids Supplement IT, 1969, p. 250.
2. Batchelor, G. K.: The Theory of Homogrneous Turbulence. Cambridge University Press, 1953.
3. Ferziger, J. H.: Large Eddy Numerical Simulations of Turbulent Flows. AIMA J., vol. 15, no. 9, Sept. 1977, pp. 1261-1267.
$\{1$

Figure 1. - Scales of motion.

NUMBER OF MESH CELLS DEPENDENT VARIABLES DATA BASE
 FFT'S PER STEP
 COMPUTER TIME PER STEP COMPUTER TIME PER RUN

$262144 \quad\left(=64^{3}\right)$
$786432 \quad\left(=3 \cdot 64^{3}\right)$
$2.62 \times 10^{6} \quad\left(=10 \cdot 64^{3}\right)$
$376832\left(=4 \cdot 23 \cdot 64^{2}\right)$
20 sec (REAL TIME)
10 TO 30 min (REAL TIME)

ALGORITHM

SPATIAL RESOLUTION TEMPORAL RESOLUTION

SPECTRAL (ALIAS-DAMPED)
RUNGE-KUTTA (FOURTH-ORDER)

[^0]

Figure 3.- Evolution toward equipartitioned energy in inviscid energyconservative simulation.

Figure 4.- Effect of viscous dissipation on computed energy spectrum.

Figure 5.- Fffect of higher spatial resolution on computed energy spectrun.

WAVE NUMBER, log k

Figure 6.- Effect of scale change on computed energy spectrum.

[^1]
[^0]: Figure 2.- Simulation program.

[^1]: -For sale by the National Technical Information Service, Syringfield. Virgiaia 22169

