NASA TM-73,203

An ILLIAC Program for the Numerical Simulation of Homogeneous Incompressible Turbulence

Robert S. Rogallo

November 1977

(NASA-TM-73203)AN ILLIAC PROGRAM FOR THEN78-13367NUMERICAL SIMULATION OF HOMOGENEOUSINCOMPRESSIBLE TURBULENCE (NASA)35 p HCA03/MF A01CSCL 20DUnclasG3/3455193

Ames Research Center Moffett Field, California 94035

AN ILLIAC PROGRAM FOR THE NUMERICAL SIMULATION OF HOMOGENEOUS

INCOMPRESSIBLE TURBULENCE

Robert S. Rogallo

Ames Research Center

SUMMARY

An algorithm and ILLIAC computer program, developed for the simulation of homogeneous incompressible turbulence in the presence of an applied mean strain, are described. The turbulence field is represented spatially by a truncated triple Fourier series (spectral method) and followed in time using a fourth-order Runge-Kutta algorithm. Several transformations are applied to the numerical problem to enhance the basic algorithm. These include

1. Transformation of variables suggested by Taylor's sudden-distortion theory

2. Implicit viscous diffusion by use of an integrating factor

3. Implicit pressure calculation suggested by Taylor's suddendistortion theory

4. Inexpensive control of aliasing by random and phased coordinate shifts

INTRODUCTION

The primary difficulty in the numerical simulation of homogeneous turbulence is that the nonlinearity of the equations of fluid motion excites a large range of scales (i.e., a large ratio of largest to smallest scale) of motion in both space and time. The computer resource required for a complete simulation is proportional to the product, over all space-time dimensions, of the range of computed scales of each dimension. These scale ranges increase with Reynolds number (R), and their product increases so rapidly, in three space dimensions, that only the weakest experimentally studied turbulence can be simulated completely on today's computers.

The overall range of scales continues to increase indefinitely with Reynolds number. However, at a sufficiently high Reynolds number the scales of motion can be grouped, in order of decreasing scale, into three distinct ranges: the energy-containing range, the "inertial" range, and the dissipation range (fig. 1). Further increases in Reynolds number increase only the inertial range. The range of energy-containing scales, which determine the features of turbulence of engineering interest, is bounded as $R \rightarrow \infty$, and the motion in these scales becomes independent of the motion at smaller scales. At somewhat lower R, the inertial and dissipation ranges merge, but still do not affect the energy-containing range. At sufficiently low R, dissipation occurs in the energy-containing range itself. This physical description of the scale dependence upon Reynolds number is encouraging because it indicates that, in principle, only the energy-containing scales of motion need to be included in a high Reynolds number turbulence simulation. The difficulty is that, mathematically, all the scales are coupled through the nonlinear terms in the governing equations and, although we know that physically (i.e., statistically) the energy-containing range is uncoupled from the smaller scales, we do not know how to uncouple it mathematically.

The range of statistically interdependent scales increases with the anisotropy of the motion and, because most flows of engineering interest are anisotropic, it is important to determine the nature and magnitude of the additional computational difficulty posed by anisotropy.

THE NUMERICAL SIMULATION

The computational tool presented here is an unsteady incompressible Navier-Stokes code that runs on the ILLIAC IV computer. The program computes the evolution in time from an arbitrary homogeneous turbulence field in the presence of a simple class of spatially-linear mean flows. The simulation is a spectral decomposition similar to that of Orszag (ref. 1) but differing in detail. The primary purpose of this report is to present the simulation algorithm in detail sufficient to allow its use by others. The program can be used as presented to study weak (low Reynolds number) turbulence for which typical results are presented. The magnitude of the computation (fig. 2) requires a computer at least as fast as a CDC-7600.

THE EQUATIONS OF MOTION

The equations governing the flow of a viscous constant-density fluid are the familiar Navier-Stokes equations

$$u_{t} + (uu)_{x} + (vu)_{y} + (wu)_{z} + p_{x} = v(u_{xx} + u_{yy} + u_{zz})$$

$$v_{t} + (uv)_{x} + (vv)_{y} + (wv)_{z} + p_{y} = v(v_{xx} + v_{yy} + v_{zz})$$

$$w_{t} + (uw)_{x} + (vw)_{y} + (ww)_{z} + p_{z} = v(w_{xx} + w_{yy} + w_{zz})$$

$$u_{x} + v_{y} + w_{z} = 0$$

$$(1)$$

where (u,v,w) is the velocity vector, p is the pressure-density ratio, v is the kinematic viscosity, and subscripts denote differentiation.

We wish to simulate numerically the effect of a simple class of $i\dot{m}_{\rm P}$ osed strains on a homogeneous field of turbulence. The strain field is given by

$$(\overline{u}, \overline{v}, \overline{w}) = [xa(t), yb(t), zc(t)]$$

where a + b + c = 0 as required by continuity. It is convenient to introduce the following transformation of the dependent variables:

$$u = ax + A^{1/2}\hat{u}$$

$$v = by + B^{1/2}\hat{v}$$

$$w = cz + C^{1/2}\hat{w}$$

$$p = -\frac{1}{2}\left[\left(\frac{da}{dt} + a^{2}\right)x^{2} + \left(\frac{db}{dt} + b^{2}\right)y^{2} + \left(\frac{dc}{dt} + c^{2}\right)z^{2}\right] + \hat{p}$$
(2)

where a(t), b(t), and c(t) are the arbitrary time-dependent strain rates imposed, and the resulting inverse square strains are

$$A(t) = e^{-2\int_{0}^{t} a dt}$$

$$B(t) = e^{-2\int_{0}^{t} b dt}$$

$$C(t) = e^{-2\int_{0}^{t} c dt}$$
(3)

It follows from the continuity condition that material volumes are invariant, (i.e., ABC = 1). Explicit spatial dependence of the resulting system of equations is eliminated by the following transformation of independent variables:

$$\hat{\mathbf{x}} = \mathbf{A}^{1/2} \mathbf{x}$$

$$\hat{\mathbf{y}} = \mathbf{B}^{1/2} \mathbf{y}$$

$$\hat{\mathbf{z}} = \mathbf{C}^{1/2} \mathbf{z}$$
(4)

The equations of motion for the transformed turbulence field are then

$$\hat{u}_{t} + A(\hat{u}\hat{u})_{\hat{x}} + B(\hat{v}\hat{u})_{\hat{y}} + C(\hat{w}\hat{u})_{\hat{z}} + \hat{p}_{\hat{x}} = v(A\hat{u}_{\hat{x}\hat{x}} + B\hat{u}_{\hat{y}\hat{y}} + C\hat{u}_{\hat{z}\hat{z}})$$

$$\hat{v}_{t} + A(\hat{u}\hat{v})_{\hat{x}} + B(\hat{v}\hat{v})_{\hat{y}} + C(\hat{w}\hat{v})_{\hat{z}} + \hat{p}_{\hat{y}} = v(A\hat{v}_{\hat{x}\hat{x}} + B\hat{v}_{\hat{y}\hat{y}} + C\hat{v}_{\hat{z}\hat{z}})$$

$$\hat{v}_{t} + A(\hat{u}\hat{w})_{\hat{x}} + B(\hat{v}\hat{w})_{\hat{y}} + C(\hat{w}\hat{w})_{\hat{z}} + \hat{p}_{\hat{z}} = v(A\hat{w}_{\hat{x}\hat{x}} + B\hat{w}_{\hat{y}\hat{y}} + C\hat{w}_{\hat{z}\hat{z}})$$

$$A\hat{u}_{\hat{x}} + B\hat{v}_{\hat{y}} + C\hat{w}_{\hat{z}} = 0$$

$$(5)$$

It is interesting to note that Taylor's theory (see ref. 2) for the sudden distortion of a turbulent field is particularly simple when expressed in these transformed variables, because strain *rate* does not appear. Suppose that a field of turbulence (state 1) is rapidly strained. The resulting field (state 2) is defined as

$$\hat{u}^{(2)} = \hat{u}^{(1)} + \int_{0}^{\tau} \hat{u}_{t} dt$$
, etc.

where τ is a time characteristic of the imposed straining period. Continuity must be satisfied throughout the straining process and, in particular, in the initial and final states of strain. Hence, if the total strain imposed is given by its inverses A,B,C, we have

$$\hat{u}_{\hat{x}}^{(1)} + \hat{v}_{\hat{y}}^{(1)} + \hat{w}_{\hat{z}}^{(1)} = 0 \quad \text{at t}$$

$$A\hat{u}_{\hat{x}}^{(2)} + B\hat{v}_{\hat{y}}^{(2)} + C\hat{w}_{\hat{z}}^{(2)} = 0 \quad \text{at t} + \tau$$

As the strain becomes sudden ($\tau \rightarrow 0$) A,B,C, \hat{u} , \hat{v} , and \hat{w} remain bounded but their time derivatives do not. During the straining process the momentum equations (5) degenerate, as $\tau \rightarrow 0$, to

$$\hat{\mathbf{u}}_{t} + \hat{\mathbf{p}}_{\hat{\mathbf{x}}} = 0$$
$$\hat{\mathbf{v}}_{t} + \hat{\mathbf{p}}_{\hat{\mathbf{y}}} = 0$$
$$\hat{\mathbf{w}}_{t} + \hat{\mathbf{p}}_{\hat{\mathbf{z}}} = 0$$

so that the velocity jump in the transformed variables is irrotational, that is

$$\hat{u}^{(2)} = \hat{u}^{(1)} - \int_{0}^{T} \hat{p}_{\hat{x}} dt = \hat{u}^{(1)} - \phi_{\hat{x}}$$

and similarly

$$\hat{\mathbf{v}}^{(2)} = \hat{\mathbf{v}}^{(1)} - \phi_{\hat{\mathbf{y}}}$$
$$\hat{\mathbf{w}}^{(2)} = \hat{\mathbf{w}}^{(1)} - \phi_{\hat{\mathbf{z}}}$$

The continuity condition then determines the potential as the solution of

$$A\phi_{\hat{x}\hat{x}} + B\phi_{\hat{y}\hat{y}} + C\phi_{\hat{z}\hat{z}} = A\hat{u}_{\hat{x}}^{(1)} + B\hat{v}_{\hat{y}}^{(1)} + C\hat{w}_{\hat{z}}^{(1)}$$

which completes the solution for the velocity field at state 2.

The above transformations seem to be the natural ones for the study of the effect of uniform imposed strain on a homogeneous turbulent field, regardless of the rate at which the strain is imposed. A more general set of transformations can be used when the mean strain-rate matrix is not diagonal, and also when the mean vorticity is nonzero.

NUMERICAL APPROXIMATIONS

We wish to simulate a spatially homogeneous turbulence field in an infinite space, and this suggests that we represent the field spatially as a Fourier series. The resulting field is periodic in all three space dimensions, with correspondingly periodic spatial correlations. However, if these correlations decay to negligible magnitude within the period, (e.g., if the integral scale is much smaller than half the period), the error due to the finite period should be small. In practice this requirement is difficult to satisfy with the resolution allowed by today's computers.

In this section we develop the equations in more detail and describe the integration process as programmed. Let $\tau_{11} = \hat{u}\hat{u}, \tau_{12} = \hat{u}\hat{v}, \tau_{13} = \hat{u}\hat{w}$, etc., tilde (~) denote the three-dimensional Fourier transform, and k_1, k_2, k_3 be wave numbers in the \hat{x}, \hat{y} , and \hat{z} directions, respectively. The equations (5) in wave space are then

$$\tilde{\mathbf{u}}_{t} + i\mathbf{k}_{1}\tilde{\mathbf{A\tau}}_{11} + i\mathbf{k}_{2}\tilde{\mathbf{B\tau}}_{12} + i\mathbf{k}_{3}\tilde{\mathbf{C\tau}}_{13} + i\mathbf{k}_{1}\tilde{\mathbf{p}} = -\nu(\mathbf{Ak}_{1}^{2} + \mathbf{Bk}_{2}^{2} + \mathbf{Ck}_{3}^{2})\tilde{\mathbf{u}}$$

$$\tilde{\mathbf{v}}_{t} + i\mathbf{k}_{1}\tilde{\mathbf{A\tau}}_{12} + i\mathbf{k}_{2}\tilde{\mathbf{B\tau}}_{22} + i\mathbf{k}_{3}\tilde{\mathbf{C\tau}}_{23} + i\mathbf{k}_{2}\tilde{\mathbf{p}} = -\nu(\mathbf{Ak}_{1}^{2} + \mathbf{Bk}_{2}^{2} + \mathbf{Ck}_{3}^{2})\tilde{\mathbf{v}}$$

$$\tilde{\mathbf{w}}_{t} + i\mathbf{k}_{1}\tilde{\mathbf{A\tau}}_{13} + i\mathbf{k}_{2}\tilde{\mathbf{B\tau}}_{23} + i\mathbf{k}_{3}\tilde{\mathbf{C\tau}}_{33} + i\mathbf{k}_{3}\tilde{\mathbf{p}} = -\nu(\mathbf{Ak}_{1}^{2} + \mathbf{Bk}_{2}^{2} + \mathbf{Ck}_{3}^{2})\tilde{\mathbf{w}}$$

$$i\mathbf{k}_{1}\tilde{\mathbf{Au}} + i\mathbf{k}_{2}\tilde{\mathbf{Bv}} + i\mathbf{k}_{3}\tilde{\mathbf{Cw}} = 0$$

$$(6)$$

The linear terms are combined by multiplying the equations by the integrating factor

- 5

$$\frac{\nu k_1^2 \int_0^t \Lambda \, dt \quad \nu k_2^2 \int_0^t B \, dt \quad \nu k_3^2 \int_0^t C \, dt}{e} F(\underline{k}, t) = e \qquad e \qquad (7)$$

giving

$$\frac{d}{dt} (F\tilde{u}) + F\{ik_1A\tilde{\tau}_{11} + ik_2B\tilde{\tau}_{12} + ik_3C\tilde{\tau}_{13} + ik_1\tilde{p}\} = 0$$

$$\frac{d}{dt} (F\tilde{v}) + F\{ik_1A\tilde{\tau}_{12} + ik_2B\tilde{\tau}_{22} + ik_3C\tilde{\tau}_{23} + ik_2\tilde{p}\} = 0$$

$$\frac{d}{dt} (F\tilde{w}) + F\{ik_1A\tilde{\tau}_{13} + ik_2B\tilde{\tau}_{23} + ik_3C\tilde{\tau}_{33} + ik_3\tilde{p}\} = 0$$

$$ik_1A(F\tilde{u}) + ik_2B(F\tilde{v}) + ik_3C(F\tilde{w}) = 0$$
(8)

Now multiply the first equation by ik_1 , the second by ik_2 , etc., to obtain (let $\tilde{U} = ik_1\tilde{u}$, $\tilde{V} = ik_2\tilde{v}$, $\tilde{W} = ik_3\tilde{w}$)

$$\frac{d}{dt} (\tilde{F}\tilde{U}) = F\{k_1^{2}A\tilde{\tau}_{11} + k_1k_2B\tilde{\tau}_{12} + k_1k_3C\tilde{\tau}_{13}\} + k_1^{2}F\tilde{p}$$

$$\frac{d}{dt} (\tilde{F}\tilde{V}) = F\{k_1k_2A\tilde{\tau}_{12} + k_2^{2}B\tilde{\tau}_{22} + k_2k_3C\tilde{\tau}_{23}\} + k_2^{2}F\tilde{p}$$

$$\frac{d}{dt} (\tilde{F}\tilde{W}) = F\{k_1k_3A\tilde{\tau}_{13} + k_2k_3B\tilde{\tau}_{23} + k_3^{2}C\tilde{\tau}_{33}\} + k_3^{2}F\tilde{p}$$

$$A(\tilde{F}\tilde{U}) + B(\tilde{F}\tilde{V}) + C(\tilde{F}\tilde{W}) = 0$$
(9)

(The purpose of this transformation of dependent variables is discussed later on; note that $k_1, k_2, k_3 = 0$ are special cases.)

The usual procedure for the computation of \tilde{p} requires the time differentiation of the continuity condition. However, we want the algorithm to handle impulsive strains correctly (jumps in A, B, and C), that is, according to Taylor's sudden distortion theory, so we need to avoid the differentiation. We thus define a potential ϕ as

$$\tilde{\phi} = -F^{-1} \int_{0}^{t} F\tilde{p} dt$$

and absorb it into the time-advanced variables. Then

$$\frac{dX}{dt} = F\{k_1^{2}A\tilde{\tau}_{11} + k_1^{2}k_2B\tilde{\tau}_{12} + k_1^{2}k_3C\tilde{\tau}_{13}\}$$

$$\frac{d\tilde{Y}}{dt} = F\{k_1^{2}k_2A\tilde{\tau}_{12} + k_2^{2}B\tilde{\tau}_{22} + k_2^{2}k_3C\tilde{\tau}_{23}\}$$

$$\frac{d\tilde{Z}}{dt} = F\{k_1^{2}k_3A\tilde{\tau}_{13} + k_2^{2}k_3B\tilde{\tau}_{23} + k_3^{2}C\tilde{\tau}_{33}\}$$
(10)

and the continuity condition becomes

$$\tilde{\phi} = F^{-1} \left(\frac{A\tilde{X} + B\tilde{Y} + C\tilde{Z}}{Ak_{1}^{2} + Bk_{2}^{2} + Ck_{3}^{2}} \right)$$
(11)

where

$$F^{-1}\tilde{X} = \tilde{U} + k_1^2 \tilde{\phi}$$

$$F^{-1}\tilde{Y} = \tilde{V} + k_2^2 \tilde{\phi}$$

$$F^{-1}\tilde{Z} = \tilde{W} + k_3^2 \hat{\phi}$$
(12)

The $\tilde{\tau}$'s are functions of \tilde{u} , \tilde{v} , \tilde{w} only, so that, if \tilde{u} , \tilde{v} , \tilde{w} are known at the beginning of a time step and satisfy the continuity condition, we may advance \tilde{X} , \tilde{Y} , \tilde{Z} . However, to form time derivatives of the advanced \tilde{X} , \tilde{Y} , \tilde{Z} we must form from (12) advanced values of \tilde{u} , \tilde{v} , \tilde{w} , and this requires the solution (11) for ϕ at the advanced time. This is done using the continuity condition at the advanced time, and does not require its time differentiation.

At the beginning of a time step t = 0, and we have

$$F = 1$$
, $\phi = 0$, $X = \tilde{U}$, $\tilde{Y} = V$, $\tilde{Z} = \tilde{W}$

The equations for \tilde{X} , \tilde{Y} , and \tilde{Z} are integrated over the time step, and the final values are used in equations (11) and (12) to produce final values of \tilde{U} , \tilde{V} , and \tilde{W} . The origin of time is then shifted to the final time giving the proper initialization for the next time step.

Spatial differentiation is a point operator in wave space but multiplication (e.g., $\tilde{\tau}_{12} = \hat{uv}$) is not, and the most efficient means of forming the Fourier transform of a product from the transforms of its terms is to return to physical space by inverting the transforms, form the product, and then transform the result back to wave space. Unfortunately, the transformation of the product back to wave space introduces an error due to spectral truncation.

The truncation errors are most easily demonstrated in one spatial dimension. The representation of the product of two fourier series \tilde{a} , \tilde{b} (in complex form) as a Fourier series \tilde{c} is given by the (infinite) convolution sum

$$\hat{c}_{k} = \sum_{s=-\infty}^{+\infty} \tilde{a}_{k-s} \tilde{b}_{s}$$

However, the process of inverting *finite* transforms \tilde{a} and \tilde{b} , forming the product ab, and then taking its *finite* transform results instead in two sums:

$$\tilde{c}_{k} = \sum_{s} \tilde{a}_{k-s} \tilde{b}_{s} + \sum_{s} \tilde{a}_{k+M-s} \tilde{b}_{s}$$

The first sum represents a contribution (incomplete due to truncation) to ab correctly attributed to wave number k. The second sum also represents a contribution to ab, but it is actually a contribution not to k, but to $k\pm M$, wave numbers beyond those allowed by the length (M) of the finite transforms used. This is the "aliasing" error. Now it may be argued that because aliasing errors do not account for all of the truncation error, suppression of the aliasing error is not cost effective so far as accuracy is concerned. Fowever, in the algorithm used here, the aliased terms can lead to nonlinear instability, and their control is essential.

Now consider the effect of a shift of the physical coordinate system. In wave space this amounts to multiplication by $e^{ik\Delta}$, where $-\Delta$ is the amount of coordinate shift. If we use $e^{ik\Delta}$ to shift \tilde{a}_k , \tilde{b}_k prior to inverting them to physical space, form the product ab on the shifted grid, transform back to wave space, and finally shift coordinates back with $e^{-ik\Delta}$ we obtain

$$\tilde{c}_{k} = \sum_{s} \tilde{a}_{k-s} \tilde{b}_{s} + e^{\pm iM\Delta} \sum_{s} \tilde{a}_{k\pm M-s} \tilde{b}_{s}$$

The first (alias-free) sum is invariant under these shifts, but the second sum, the aliased one which we wish to suppress, has a phase dependency on Δ and can be eliminated. For example, if two evaluations are made, one with $e^{\pm iM\Delta} = 1$ and the other with $e^{\pm iM\Delta} = -1$, the alias-free result is one-half their sum. The second sum (which is multiplied by the phase factor) itself vanishes identically for $|\mathbf{k}| \leq N$, (N < M/3) if modes of \tilde{a} and \tilde{b} outside of this range are nulled prior to inversion, and transforms of length M are retained. Thus two independent procedures are available for alias suppression.

The extension of these procedures to three dimensions gives for each $c_{\underline{k}}$ eight terms, seven of which represent aliasing errors. The aliased terms are classified according to the number of dimensions in which aliasing has occurred. We then have $[\underline{k} = (k_1, k_2, k_3), \theta_n = e^{\pm i k_n \Lambda_n}]$

<u>k</u>	s _o	(altas-free)		
	$+ \theta_1 s_1 + \theta_2 s_2 + \theta_3 s_3$	(singly-aliased)		
	$+ \theta_1 \theta_2 \mathbf{S}_4 + \theta_2 \theta_3 \mathbf{S}_5 + \theta_3 \theta_1 \mathbf{S}_6$	(doubly-alfased)		
	+ $\theta_1 \theta_2 \theta_3 \mathbf{S}_2$	(triply-aliased)		

All of the aliased sums (S_1, \ldots, S_7) vanish if modes having any $k_1 > N_1$ are nulled. The doubly and triply aliased sums (S_1, \ldots, S_7) vanish if modes having any two $k_1 > N_1$ are nulled. The triply aliased sum (S_7) vanishes if modes having all three $k_1 > N_1$ are nulled. Alternatively one can evaluate the convolution eight times using the eight combinations of θ_x , θ_y , $\theta_z = \pm 1$ and sum to eliminate the aliased terms. Note that suppression by the latter means requires eight evaluations to eliminate all of the aliased terms. One can also, as suggested by Orszag (ref. 1), remove S_4, \ldots, S_7 by truncation and the remaining single aliases by coordinate shift with two evaluations. We are faced with the choice between losing information (truncation) or losing computational speed (multiple evaluations).

 \mathbf{r}

We have, following Orszag, eliminated doubly and triply aliased sums by truncation, though the truncation used here differs slightly from that of Orszag who nulls modes having $\underline{k} \cdot \underline{k} > 2(M/3)^2$. We have not exactly eliminated the remaining single aliases, due to the computational cost of the double evaluations required. Instead we have used the fact that the Runge-Kutta algorithm requires pairs of evaluations at each half step and that by using a shifted grid for the second evaluation we reduce the total alias error for the pair by a factor of Δt^2 . The possibility of nonlinear instability is further reduced by insuring that the θ_j for the first evaluation in a pair are not correlated with those of other pairs. This is easily accomplished by the use of a uniform-random-number generator during computation of the phase factors.

DATA MANAGEMENT

In large simulations the high-speed random-access memory of the computer cannot hold the entire data base of the problem (in the present code it holds 6% of it). In this case the high-speed memory may only be able to hold a few lines of the mesh (e.g., all values of k_1 for a few k_2 , k_3 values), and it is convenient to transform and take derivatives only along those lines. In general, separate passes over the data base are required for each spatial dimension. The directional order in which operations are performed then determines the required number of passes over the data base. We will demonstrate how this number may be reduced in a spectral algorithm.

Consider the evaluation in wave space of $(\hat{u}\hat{v})_{\hat{x}}$ and $(\hat{u}\hat{v})_{\hat{y}}$, which is required in equation (5). The transforms of \hat{u} and \hat{v} are inverted in the \hat{x} , \hat{y} , and \hat{z} directions, each direction requiring a separate pass over the

data base. On the last (\hat{z}) pass of this sequence we also form, in physical space, the $\|\hat{\mathbf{u}}\hat{\mathbf{v}}\|$ product and then transform back to wave space in the \hat{z} direction. In principle there remain only the \hat{x} and \hat{y} -transforms and the multiplications by ik_x and ik_y to form the derivatives in the \dot{x} and y directions. The problem is that, under our constraints, transforms and derivatives can only be taken in the direction of the grid lines held in fast memory. Under these constraints we must either perform three transforms and two derivatives in two passes, or two transforms and two derivatives in three passes. If the constraint on the derivative is absent the results can be obtained in two transforms and two derivatives in two passes. This constraint can be removed only if four lines of the mesh can be held simultaneously in fast memory (so that all eight real numbers representing wave number k are present). The ILLIAC fast memory is sufficiently large to accommodate four mesh lines, but not within a single processing element (PE), so that differentiation would require communication across the PE's. We have instead used a slightly altered set of dependent variables that avoids this problem altogether.

If the \hat{x} momentum equation is differentiated with respect to \hat{x} , and the \hat{y} momentum equation with respect to \hat{y} , the $\hat{u}\hat{v}$ stress term appears as $(\hat{u}\hat{v})_{\hat{x}\hat{y}}$ in both equations, and its evaluation under the constraints requires two transforms and two derivatives in two passes. But two extra integrations $(of \ \hat{u}_{\hat{x}} \text{ and } \hat{v}_{\hat{y}})$ are then required to form \hat{u} and \hat{v} in physical space; however, since integration and differentiation cost far less than either a transform or an I/O pass, this method is quite efficient. To avoid loss, upon differentiation, of information in a Fourier mode having a null wave number we simply do not multiply that mode by its wave number (i.e., zero) and similarly when we integrate it we do not divide by its wave number. What this amounts to is that, instead of the usual spectral dependent variables

$$\tilde{u}(k_1, k_2, k_3)$$

 $\tilde{v}(k_1, k_2, k_3)$
 $\tilde{w}(k_1, k_2, k_3)$

we use

 $\tilde{u}(0,k_{2},k_{3}), \quad ik_{1}\tilde{u}(k_{1},k_{2},k_{3}), \quad k_{1} \neq 0$ $\tilde{v}(k_{1},0,k_{3}), \quad ik_{2}\tilde{v}(k_{1},k_{2},k_{3}), \quad k_{2} \neq 0$ $\tilde{w}(k_{1},k_{2},0), \quad ik_{3}\tilde{w}(k_{1},k_{2},k_{3}), \quad k_{3} \neq 0$

Use of these variables simplifies the continuity condition and minimizes the number of transforms and passes over the data base.

INITIAL CONDITIONS

The initial velocities are chosen randomly, subject to the constraints of continuity and a specified energy spectrum. In detail, the real and imaginary parts of the Fourier velocity amplitudes $\underline{u}(\underline{k})$ are selected randomly from a uniform distribution over the circle that is the intersection of the sphere (having surface area proportional to E(k)) determined by the desired energy spectrum and the plane (normal to \underline{k}) determined by continuity. For example, consider the (real) spectral mode $(k_1, k_2, k_3 \neq 0)$

$$u_{x} = f_{1} \cos k_{1}x \sin k_{2}y \cos k_{3}z$$
$$v_{y} = f_{2} \cos k_{1}x \sin k_{2}y \cos k_{3}z$$
$$w_{z} = f_{3} \cos k_{1}x \sin k_{2}y \cos k_{3}z$$

The algorithm described previously advances the vector \underline{f} in time given the initial values $(k_1, k_2, k_3 = 0$ are special cases)

$$f_{1} = c(k_{1}^{2} + k_{2}^{2})^{-1/2}k_{1}\left(k_{2} \cos \psi + \frac{k_{1}k_{3}}{k} \sin \psi\right)$$

$$f_{2} = c(k_{1}^{2} + k_{2}^{2})^{-1/2}k_{2}\left(\frac{k_{2}k_{3}}{k} \sin \psi - k_{1} \cos \psi\right)$$

$$f_{3} = -c(k_{1}^{2} + k_{2}^{2})^{1/2}\frac{k_{3}}{k} \sin \psi$$

where $k^2 = k_1^2 + k_2^2 + k_3^2$, $c^2 \approx [E(k)/2\pi k^2]$, and ψ is a random number uniformly distributed on the interval $(0, 2\pi)$.

SCALING PROCEDURE

The simulation variables are nondimensional (integer wave numbers with period 2π) and must be scaled to obtain dimensional values. If we wish to simulate an experimental flow, knowing at the initial time only its energy spectrum $E_e(k_e)$ and viscosity v_e , we must use a similar energy spectrum (i.e., differing only in energy and wave number scales) and specify a simulation viscosity such that the dimensionless problems are the same. Thus we define scale factors α , β relating the simulation energy E and wave number k to the experimental values by

$$E(k)dk = \alpha E_{\alpha}(k_{\alpha})dk_{\alpha}$$
, $k_{e} = \beta k$

Here E and k are dimensionless, α has units $L^{-2}T^2$, and β has units L^{-1} so that time must scale as

 $t = a^{-1/2} B t_c$

and the viscosity as

$$v = \alpha^{1/2} \beta v_e$$

The scale factor α depends only on the scaling of the dependent variables of the problem and, since the computation allows an unlimited range for their values, enanges of α produce only changes of scale in the results. This would also be the case for β if the computation allowed an unlimited range of values for the independent variables (wave numbers), but such would require infinite spatial resolution.

The computer simulation does not, of course, have infinite resolution, and the range of its independent variables is simply the value of its highest nondimensional (integer) wave number. Because the entire experimental range of length scales cannot be simulated, the choice of β determines which physical wave numbers of the experiment are to be simulated. Clearly the error of the simulation depends on this choice, but at present no rationale is known for making it. The choice of Ferziger (ref. 3), for example, is the scaling that allows the greatest total energy to be included in the simulation. There is also, however, the implicit constraint that the spatial period be "much greater" than the integral scale of the turbulent field.

The number of modes, or degree of freedom of the motion, within a range of scales (e.g., K < k < 2K) characterized by K is proportional to K^3 . The different scale ranges of the motion are certainly not represented equally well in the statistical sense. There are very few modes in the larger scales (smaller wave numbers), and if the simulation is to represent turbulence we must require that a small number of modes does not contain a large fraction of the energy. This is equivalent to the integral length constraint.

If the truncation error is to be small, the viscosity must be high enough to damp the highest wave numbers of the calculation to the point where they, and presumably also those lost by truncation, have negligible effect. In other words, an accurate and complete solution requires that the computation resolve all scales of motion; otherwise one must face the notorious "closure problem." Since the simulation code presented here contains no closure approximations, it is necessarily restricted to very low-turbulence Reynolds numbers.

SAMPLE RESULTS

Several runs of the simulation code have been made for isotropic flow to develop the algorithm and to obtain numerical error estimates. Typical energy spectra are shown in figures 3-6. The algorithm used has negligible numerical dissipation and, when the spatial resolution is truncated at any

finite wave number in an inviscid (v = 0) fluid, the energy cascade eventually leads to an equipartitioned state (fig. 3) with the theoretical spectrum $E(k) = ck^2$. This tendency is still apparent when molecular dissipation is included (fig. 4) If the range of computed scales does not include almost all of the dissipation. More of the dissipation range can be included by increasing the range of computed scales (fig. 5) or by shifting the range of computed scales (fig. 6) to include more of the dissipation range.

APPENDIX

THE ILLIAC PROGRAM

Program Structure

A fourth-order Runge-Kutta algorithm is used to integrate the system of equations (10)-(12). The strain inverses A, B, C, and the integrating factor F are considered known. The bulk of the computation is the evaluation of the right side of (10), which is done in subroutines PHASE1, PHASE2, and PHASE3. The dependent variables $\tilde{X}, \tilde{Y}, \tilde{Z}$, are then advanced in STEP, and the continuity condition (11), is used by PRESSR to recover the physical velocities (12). These five subprograms are called sequentially by the control routine LOOP which is responsible for data management and step control.

The functions of processes called by these routines are given by in-line comments in the listing.

Data Structure and Flow

The data base resides on disk and consists of two blocks. The first block of data holds the velocity field at the beginning of a Runge-Kutta step (three words/node) and a predicted velocity accumulator field (three words/node). This block of data is always accessed sequentially. The second block of data is working space (four words/node) in which the right side of (10) is evaluated, requiring both sequential and nonsequential page accesses from the disk.

Each prediction within the Runge-Kutta process requires two complete passes through the data base, one bringing (x,y) planes into core (PHASE1, PHASE3, STEP, and PRESSR) for operators in the y direction, and one bringing in (x,z) planes (PHASE2) for operators in the x and z directions. In the latter pass, only the working space data block is required, allowing the (x,z) planes to be handled by a triple buffered scheme.

Listing of Program

The program is coded for execution in 32-bit precision on the ILLIAC computer. The routines listed in this appendix, which are coded in the CFD language, cover the major algorithmic steps of the computation. Some of the lower level routines are coded in assembly language (ASK) for efficiency, and others had to be hand coded because of the restrictions placed on 32-bit operation by the CFD language.

COMPUTER ROUTINES

SUBROUTINE LOOP

INITIALIZE COORDINATE SHIFTS RUNGE-KUTTA SUB-STEP COUNTER ***** ****** SEED RANDOM NUM. GENERATOR GENERATE COORDINATE SHIFTS RE-SET RUNGE-KUTTA STEP # STEPS COMPLETED COUNTER INITIALIZE MEAN STRAINS ANOTHER STEP IN THE BAG I (9,PLANE), (10,K), (4,RKSTEP), (8,MAXSTP), (7,NSTEP),(2,Z), (17,KMAX), (18,EPAGE), (28,CFL), (3,DELTAT), (21,SKEW1), (22,OFFSET), (29,BASE1), (30,BASE2), ł MAIN LOOP-DRIVING PROGRAM FUR SOLUTION OF 3-D NAVIER-STOKES EQUS OUTPUT PAGE COUNTER RCOL, WCOL, RROW, WROW, SPCTRA, RSTART, RSHIFT DISK AREA OFFSETS (14,LAST), (15,OUTPUT), (32,FSTEP), (11,A), (12,B), MAIN LOUP LAST PASS FLAG NEXT TIME STEP LAST, OUTPUT, SKEW1, OFFSET, BASE1, BASE2, FSTEP *CU INTEGER PLANE, K, RKSTEP, MAXSTP, NSTEP, Z, KMAX, EPAGE, INITIALIZE POINTERS AND COUNTERS *EXTERNAL PHASEL, PHASE2, DEFORM, STEP, FFIELD, -*COMMON /STRAIN/ TIME(*), SCALES(*,3,3) RUWMAX (VMAX (*))) (FLUAT (KMAX) * *CU REAL CFL, DELTAT, A, B, AB *PE INTEGER XYPLAN, SSUB(5) *DATA SSUB /1, 2, 2, 3, 3/ Pl(*,640,2) *COMMON /PASS2/ P2(*,512,3) XYPLAN (*) (13,AB) \dot{s} VMAX (⁺) = CFL / SUBROUTINE LOOP 10 NSTEP = NSTEP + *COMMON /XYORDR/ COMMON /PASS1/ SKEWI * EQUIVALENCE *CALL DEFORM *CALL RSTART *CALL RSHIFT *CALL RSHIFT OFFSET = 0RKSTEP = bRKSTEP =] BASEI = 099 || EPAGE = 0LAST = 0n * CO TO 4 NSTEP BASE2 ť

Gradinal Page is Of Poor Quality

ÓRIGINAL PAGE IS OF POOR QUALITY

RUNGE-KUTTA STEP ON VELOCITY **************** ****** ******* WAIT ON BUFFER FLUSH / LOAD **ORIGIN OF DESTINATION AREA** LOOP OVER Y-PLANES (4 PER) CONTINUE TIME DERIVATIVES BEGIN TIME DERIVATIVES LOOP OVER ALL Z-PLANES ORIGIN OF SOURCE AREA TEST FOR END OF RUN FLUSH / LOAD BUFFEK APPLY MEAN STRAIN PRE-LOAD BUFFERS PRE-LOAD BUFFERS SWAP DISK AREAS BUFFER POINTER BUFFER POINTER RELOAD BUFFER FLUSH BUFFER (IN Z DIRECTION) NEXT BUFFER Y DIRECTION) NEXT BUFFER (IN END OF PASS PASS 2 THRU DATA BASE PASS 1 THRU DATA BASE *CALL RCOL(K, P1(*,1,K), XYPLAN(PLANE+4)) *CALL WCOL (K+2, Pl (*, 1, K), XYPLAN (PLANE)) *IF(LAST .EQ. 9) CALL PHASE1(P1(*,1,K)) 4*CALL RCOL(1, P1(*,1,1), XYPLAN(1)) *CALL RCOL(2, P1(*,1,2), XYPLAN(3)) *CALL RROW(K, P2(*,1,K), PLANE+12) *IF(PLANE + 12 .GT. 64) GO TO 102 *CALL WROW(K+3, P2(*,1,K), PLANE) *IF(PLANE + 4 .GT. 64) GO TO 1 C*********************** *CALL RROW(1, P2(*,1,1), 1) *CALL RROW(2, P2(*,1,2), 5) *CALL RROW(3, P2(*,1,3), 9) *IF(LAST .NE. Ø) GO TO 6 *CALL PHASE2(P2(*,1,K)) *CALL PHASE2(P2(*,5,K)) *DO I PLANE = 1, 64, 2BASE2 = BASE1 + SKEW1 *CALL STEP(P1(*,1,K)) *DO 2 PLANE = 1, 64, OFFSET = 1 - OFFSETK = SSUB(RKSTEP+1) AB = SCALES (3, 3, K) A = SCALES(3,1,K) B = SCALES(3,2,K) Z = XYPLAN(PLANE)= VMAX(1)C************* BASE1 = BASE2 VMAX(*) = 8.*WAIT K, K+3 *WAIT K, K+2 *CALL DEFORM K = 3 - K 102 K = K + 1DELTAT K = 1 × =

SUBROUTINE LOOP (CONT.)

SUBROUTINE LOOP (CONCL.)

********** ************** NEXT RUNGE-KUTTA SUBSTEP TERMINATE ON STEP LIMIT COMPUTATION TERMINATED SQUASH DUMP FILE END OF MAIN LOOP END OF PASS 2 -. *GO TO (8, 4, 4, 9, 10), RKSTEP 9*IF(NSTEP + 1 .EQ. MAXSTP) LAST = 1 *IF(NSTEP .EQ. FSTEP) CALL FFIELD C*************************** RKSTEP = RKSTEP + 1 2*IF(K .GT. 3) K = 11600 N 11*D0 12 Z = 12 Pl(*, Z, 1) *G0 T0 4 *RETURN 6*WAIT * END A.S.

÷

i i

URIGINAL PAGE IS

*************** ENFORCE CONTINUITY & START ********************* TRUNCATE 2-D, 3-D ALIASES TRUNCATE 2-D, 3-D ALIASES SPECTRA OF INITIAL FIELD INVERSE FILTER & H/2 PREDICT e H/2 ACCUMULATE SUBSTEP SHARP FILTER DATA 9 INER'TIAL RATE & STARTING FIELD *COMMON /BUFFER/ U(*,4,64), UN(*,64), VN(*,64), WN(*,64), * DU(*,64), DV(*,64), DW(*,64), OW(*,64), -*COMMON /STRAIN/ TIME(*), SCALES(*,3,3), VCHOP(*,3,4) = FACTOR(*) * (UN(*,I) + U(*,1,I) / 2.) SPECIAL STARTING STEP *COMMON /KSPACE/ RK(*), RKSOR(*), CHOP(*) *COMMON /KSPLIT/ RKZ(*), RKZSOR(*), CHOPZ(*) RUNGE-KUTTA STEP 1 *EXTERNAL PHASE3, PRESSR, TRUNC, SPCTRA FPAkT(*) = VCHOP(*,1,2) * VCHOP(2,3,2) *EQUIVALENCE (1,1), (4,RKSTEP), (2,2) 1*CALL PHASE3(U, SCALES(*,1,1), UNITY) FPART(*), FACTOR(*) PACTOR(*) = FPART(*) * VCHOP(1,2,2)RUNGE-KUTTA INTEGRATION PROCESS * FPART(*) PPART(*) = CHOPZ(Z) * CHOP(*)(I'*)NN (I * *) NM *CALL PRESSR(U, SCALES(*,1,1)) VN(*,I) *COMMON /ABC1/ UNITY(*,3) 2 SUBROUTINE STEP (BUFFER) ·*********************** *CU INTEGER I, RKSTEP, FACTOR(*) = CHOP(I)= FACTOR(*) = FACTOR(*)= FACTOR(*) *CALL SPCTRA (BUFFER) *CALL TRUNC (FACTOR) = UN(*,I) = VN(*,I) $(I'_{*})NM =$ *CALL TRUNC (FACTOR) = U(*,2,I) DU(*,I) = U(*,I,I)DW(*,I) = U(*,3,I)*DO 100 I = 1, 64 *COMMON /SCRTCH/ *DO 10 I = 1, 64 (1,1) U(*,3,I) UN (*, I) VN (*, I) U(*,2,I) U(*,1,I) (I' *) NM DV (*, I) * RETURN U(*,1 100 *****

SUBROUTINE STEP

SUBROUTINE STEP (CONT.)

******************* ******************** ********************* TRUNCATE 2-D, 3-D ALIASES TRUNCATE 2-D, 3-D ALIASES TRUNCATE 2-D, 3-D ALIASES ENFORCE CONTINUITY & H/2 ENFORCE CONTINUITY & H/2 1 INVERSE FILTER @ h/2 ų INERTIAL RATES @ H/2 INERTIAL RATE & H/2 PREDICT @ H/2 ACCUMULATE SUBSTEP INVERSE FILTER @ H ACCUMULATE SUBSTEP ENFORCE CONTINUITY INVERSE FILTER & H щ INERTIAL RATES e Y PREDICT 2.) + U(*,2,I) / 2.) + U(*,3,I) / 2.) 2.) • _ -2 ო 2*CALL PHASE3(U, SCALES(*,1,2), VCHOP(*,1,1)) 3*CALL PHASE3(U, SCALES(*,1,2), VCHOP(*,1,1)) 4 4*CALL PHASE3(U, SCALES(*,1,3), VCHOP(*,1,3)) U(*,2,I) U(*,1,I) U(*,3,I) U(*,2,I) + U(*,1,I) (WN(*,I) + U(*,3,I))RUNGE-KUTTA STEP RUNGE-KUTTA STEP RUNGE-KUTTA STEP FPART(*) = VCHOP(*, 1, 2) * VCHOP(2, 3, 2)FPART(*) = VCHOP(*,1,4) * VCHOP(2,3,4)PART(*) = VCHUP(*, 1, 4) * VCHOP(2, 3, 4)*DO 20 I = 1, 64 FACTOR(*) = FPART(*) * VCHOP(I,2,2) FACTOR(*) = FPART(*) * VCHOP(I, 2, 4)FACTOR(*) = FPART(*) * VCHOP(I, 2, 4)+ + = FACTOR(*) * (WN(*, I) (I / *) NA) (IN(*,I)) (I (* , I) (IN(*,I)) (I (*) N) * (MN(*,I) *CALL PRESSR(U, SCALES(*,1,2)) *CALL PRESSR(U, SCALES(*,1,2)) *CALL PRESSR(U, SCALES(*,1,3)) ,3,I) U(*,1,I) + U(*,1,1)+ U(*,2,I) + U(*,2,I) + U(*,3,I) *) = + * * C********************* C********************** *********** = FACTOR(*) = FACTOR(*) = FACTOR(*) + = FACTOR(*) U(*,3,I) = FACTOR(*)= FACTOR(*) = FACTOR(*) $= DU(^{*}, I)$ = $DV(^{*}, I)$ = $DW(^{*}, I)$ = DV(*,I) = DW(*,I) CALL TRUNC (FACTOR) CALL TRUNC (FACTOR) DU(*,I) = DU(*,I)*CALL TRUNC (FACTOR) *DO 30 I = 1, 64 *DO 48 I = 1, 64 U(*,2,I) U(*,3,I) 10 U(*,3,I) U(*,1,I) U(*,2,I) U(*,1,1) U(*,2,I) DV(*,I) DU (*, I) UV (*, I) (I * *) MQ DW(*,I) * **RETURN** * RETURN * RE TURN 9 P 20

SUBROUTINE STEP (CONCL.)

ې ۲

-' CORRECT è H	ı	ı	ENFORCE CONTINUITY & H SPECTRA OF FIELD	UN-FILTERED FINAL FIELD BECOMES FILTERED INITIAL FIELD FOR NEXT STEP	
+	+			• • •	
(UN(*,I) + (DU(*,I))	(I, *) = (DV(*, I) + (DV(*, I))	U.(*,1)/ (0.) (M(*,1) +(DW(*,1) + U.* 2 1) / 6)	() () () () () () () () () () () () () (
*	*	#	ss (*		
U(*,1,1) = FACTOR(*) *	U(*,2,I) = FACTUR(*) *	\$0 U(*,3,I) = FACTOR(*) *	*CALL PRESSR(U, SCALE *CALL SPCTRA(BUFFER) *DO 41 I = 1, 64	UN(*,I) = U(*,1,I) VN(*,I) = U(*,2,I) UN(*,I) = U(*,3,I) *keturn	* END

21

ą

ł

SUBROUTINE PHASE1

INVERT Y-TRANSFORM OF DU/DX, V, DW/DZ STARTING WITH TRANSFORMS OF THE VELOCITY DERIVATIVES DU/DX, DV/DY, *CALL SHIFT1(P(*,1), YSHIFT(*,RKSTEP+1))' RANDOM Y-COORDINATE SHIFT DW/DZ PERFORM INTEGRATIONS AND INVERSE TRANSFORMS FOR RETURN, IN *COMMON /ALIAS/ RNXY2(*,3), XSHIFT(*,5), YSHIFT(*,5), ZSHIFT(*,5) INTEGRATE DV/DY TO V PHYSICAL SPACE, OF U, V, W. COMPUTATION IN Y DIRECTION *EQUIVALENCE (1,1), (24,LSKIP), (4,RKSTEP) *EXTERNAL IFFT, IDIFF, SHIFT! *CU INTEGER I, LSKIP, RKSTEP SUBROUTINE PHASE1 (P) *CALL IDIFF(P(*,2)) *DIMENSION P(*,256) 1*CALL IFFT(P(*,I)) $*D0 \ I \ I = I,$ LSKIP = 4 * RETURN *END *****0

ORIGINAL PAGE IS OF POOR QUALITY SUBROUTINE PHASE2

AND TRANSFORM AND DIFFERENTIATE THEM IN THE X AND 2 DIRECTIONS. FIND MAX VELOCITY (TU INSURE ACCURACY) COMPLETE, IN (X,Z) PLANES INTEGRATION AND INVERSE TRANSFORMS TO OBTAIN U, V, W IN PHYSICAL SPACE. FORM VELOCITY PRODUCTS (REYNOLDS STRESSES) 3 2 WELCOME TO PHYSICAL SPACE I I 3 BVV - BVV INVERT Z-TRANSFORM OF DU/DX, *CONMON /PASS2/ P2(*,512,3), UW(*,64) *COMMON /KSPACE/ RK(*), RKSQR(*), CHOP(*), VMAX(*), FACTØ1(*) *COMMON /ALIAS/ RNXYZ(*,3), XSHIFT(*,5), YSHIFT(*,5), ZSHIFT(*,5) RANDOM Z-COORDINATE SHIFT RANDOM X-COORDINATE SHIFT 2 *EXTERNAL FFT, IFFT, DIFF, IDIFF, SHIFTI, SHIFT2, TRANS, GETMAX, INVERT X-TRANSFORM OF U, V, **RESTRUCTURE DATA FOR PASS** I CWW AUU *EQUIVALENCE (1,1), (24,LSKIP), (4,RKSTEP), (11,AX), (12,BY) BVV '*∩ ΜŅ 20 INTEGRATE DU/UX TO U INTEGRATE DW/DZ TC ALLIGN X DOWN PEM 262144. / 262144. - BV2(*)) BV2(*)) = P(*,1,I) * P(*,2,I) / 262144. / 262144 262144. -_ *COMMON /SCRTCH/ BV2(*), A(*), AB(*) SHIFT1 (P, ZSHIFT (*, RKSTEP+1)) SHIFTI(P, XSHIFT(*, RKSTEP+1)) ,3,I) ** 2 ,2,I) * P(*,3,I) = (AX * P(*,1,1) ** 2 * P(*,3,1) RKSTEP $4*D0 \ 2 \ I = 1, \ 64$ BV2(*) = BY * P(*,2,I) ** 2 *GO TO (4, 4, 4, 5), RKSTEP WSWAP, SHIFT3 *CU INTEGER I, LSKIP, SUBROUTINE PHASE2(P) (13,AB2) 6*CALL WSWAP(P(*,I,1)) IDIFF(P(*,3,1)) TRANS (P(*, I, 1)) IDIFF(P(*,1,1)) 5*CALL GETMAX (P, VMAX) *CU REAL AX, BY, ABZ DIMENSION P(*,8,64) IFFT(P(*,1,1)) 7*CALL IFFT(P(*,I,1)) (1,1) (ABZ *)d = ≡ P(*, *D0 6 I = 1, 3н **Т**, Э י |-|-LSKIP = 8P(*,2,I) P(*,1,I) UW (*, I) ,4,I) P(*,3,I) *CALL *CALL *CALL *CALL CALL *CALL *D0 7 * DO 1 *) d 2 C*** *0 ໍ່ວ່ ວໍ

ORIGINAL PAGE IS OF POOR QUALITY

SUBROUTINE PHASE2 (CONCL.)

BECAUSE DATA STRUCTURE NOT AS PASS FOR AUU-BVV, UV, CWW-BVV, VW FOR AUU-BVV, UV, CWW-BVV, VW r-1 LEAVING PHYSICAL SPACE RESTRUCTURE DATA FOR PASS Z EQUATION SHIFT Z BACK X EQUATION DO FOR THE UW PRODUCT ALLIGN 2 DOWN PEM ALLIGN Z COWN PEM COMBINE STRESSES SHIFT X BACK SHIFT X BACK Z TRANSFORM Z TRANSFORM X TRANSFORM X TRANSPORM ZQXQ/(MN)Q * UW(*,I) * UW(*,I) xa/(vu)a XQ/(MN) Q D (VW) /D2 - AB(I) * P(*,3,I) - A(*)************************ *CALL SHIPT3(UW, XSHIFT(*, RKSTEP+1))' *CALL SHIFT2(P, ZSHIFT(*, RKSTEP+1)) *CALL SHIFT2(P, XSHIFT(*, RKSTEP+1)) P(*,1,I) = ABZ + FACT01(*)A(*) = AX * FACT01(*)9*CALL WSWAP(P(*,I,1)) = RKSQR(I) = RKSQR(*) *CALL TRANS (P(*, I, 1)) *CALL DIFF(P(*,2,1)) *CALL DIFF(P(*,4,1)) 3*CALL FFT(P(*,1,1)) 8*CALL FFT(P(*,1,1)) I = 1, 64*CALL TRANS (UW) 4 *CALL DIFF (UW) *CALL DIFP(UW) *CALL FUT (UW) *CALL FFT (UW) *D0 9 I = 1,I = 1, n 1 LSKIP = 8P(*,1,I) = P(*,3,I) = LSKIP = 1* RETURN *D0 3 I *D0 18 AB (*) *D0 8 A END 10

-1

SUBROUTINE PHASE3

TUYU/VU * DU/DXDT DW/DZDT (VISCOUS) * *COMMON /ALIAS/ RNXYZ(*,3), XSHIFT(*,5), YSHIFT(*,5), ZSHIFT(*,5) Ħ Ш н SHIFT Y-COORDINATES BACK INTEGRATING FACTOR ((I'4, I)) (3,DELTAT), (48,BY) * (A(*) * P(*,2,1) + ABZ * P(* * P(*,2,I)) * P([±], 4, I)) Y TRANSFORM **Υ**αχα/ (νυ) α D (VW) /DZDY *COMMON /SCALES/ A(*), B(*), AB(*) *COMMON /FILTER/ EAX(*), EBY(*), EABZ(*) *EQUIVALENCE (1,1), (2,2), (24,LSKIP), * (47,ABZ), (4,RKSTEP) - ВҮ ,I) - BY Η SUBROUTINE PHASE3 (P, SCALES. FILTER) * EAB2(Z) *COMMON /SCRTCH/ FPART(*), FACTOR(*) (P(*,3,I) *CALL SHIFT2(P, YSHIFT(*, RKSTEP)) CU INTEGER I, Z, LSKIP, RKSTEP (P(*,] EBY(I) EXTERNAL FFT, DIFF, SHIFT2 = DELTAT * EAX(*)CU REAL BY, ABZ, DELTAT * -FACTOR(*) = FACTOR(*) FACTOR (*) = FPART (*) *DIMENSION P(*,4,64) *CALL DIFF(P(*,2,1)) CALL DIFF(P(*, 4, 1)) 2*CALL FFT(P(*,I,1)) $^{1}DO I I = 1, 64$ $*D0 \ 2 \ I = 1,$ AB2 = AB(2)11 $\hat{B}Y = B(I)$ FACTOR(*) FPART (*) P(*,1,I) P(*,2,I) P(*,3,I) H * RETURN LSKIP *END

SUBROUTINE PRESSR

55

CORECTION POTENTIAL ADD VELOCITY INCREMENT DUE TO PRESSURE GRADIENT TO SATISFY CONTINUITY. XOXO/dO + **Υαχα/αα + Υα/να** + DP/DZUZ *EQUIVALENCE (2,Z), (48,I), (46,BY), (45,ABZ), (44,RKYS), (43,RKZS) INVERSE STRAINS IN CONTINUITY CCNDITION ARE IN ARGUMENT SCALES # SQUARED DU/DX DW/DZ WAVE 1 * P(*,1,1) + BY * P(*,2,1) +,3,1)) / P(*,4,1)
- RKSQR(*) * PRESS(*) CON(*) = A(*) * RKSQR(*) + AB2 * RKZS *DO 1 1 = 1, 64 - RKYS * PRESS(*) - RKZS * PRESS(*) *C:)MHON /KSPACE/ RK(*), RKSQR(*) *COMMON /KSPLIT/ RKZ(*), RKZSQR(*) COMMON /SCALES/ A(*), B(*), AB(*)*COMMON /SCRTCH/ CON(*), PRESS(*) + BY * RKYS *SUBROUTINE PRESSR(P, SCALES) *CU REAL BY, ABZ, RKYS, RKZS *) d (1) *DIMENSION P(*,4,64) P(*,2,I) P(*,3,I) = CON(*)(*) V) ABZ * RKZS = RKZSQR(Z)P(*,] *CU INTEGER I, Z RKYS = RKSQR(I)ABZ = AB(Z)I n BY = B(I)P(*,4,I) P(*,1,1) P(*,2,1) P(*,3,1) PRESS (*) * RETURN * END

REFERENCES

- 1. Orszag, S. A.: Numerical Methods for the Simulation of Turbulence. Physics of Fluids Supplement IT, 1969, p. 250.
- 2. Batchelor, G. K.: The Theory of Homogeneous Turbulence. Cambridge University Press, 1953.
- 3. Ferziger, J. H.: Large Eddy Numerical Simulations of Turbulent Flows. AIAA J., vol. 15, no. 9, Sept. 1977, pp. 1261-1267.

Figure 1.- Scales of motion.

17

1873

داد ، محمولات

HE TEPPEN AND

ا حقوق د. د

154

λ.

athla ray and

Sell 9

ASALDE SE

M2 16.

NUMBER OF MESH CELLS DEPENDENT VARIABLES DATA BASE FFT'S PER STEP COMPUTER TIME PER STEP COMPUTER TIME PER RUN

262144 $(=64^3)$ 786432 $(=3 \cdot 64^3)$ 2.62 x 10⁶ $(=10 \cdot 64^3)$ 376832 $(=4 \cdot 23 \cdot 64^2)$ 20 sec (REAL TIME) 10 TO 30 min (REAL TIME)

ALGORITHM

SPATIAL RESOLUTION TEMPORAL RESOLUTION

SPECTRAL (ALIAS-DAMPED) RUNGE-KUTTA (FOURTH-ORDER)

Figure 2.- Simulation program.

Figure 3.- Evolution toward equipartitioned energy in inviscid energyconservative simulation.

Figure 4.- Effect of viscous dissipation on computed energy spectrum.

Figure 5.- Effect of higher spatial resolution on computed energy spectrum.

Figure 6.- Effect of scale change on computed energy spectrum.

1. Report No. NASA 'I'M-73,203	2. Government Accession No		3 Recipient's Catalog No						
4. Title and Subtitle AN ILLIAC PROGRAM FOR TH HOMOGENEOUS INCOMPRESSIB	E NUMERICAL SI LE TURBULENCE	IMULATION OF	6. Report Date 6. Performing Organization Code						
7. Author(s)			8. Performing Organia	ration Report No					
Robert S. Rogallo		Ļ	A-6899						
9. Performing Organization Name and Address	- 		505-06-12						
NASA Ames Research Center Moffett Field, Calif. 940	r 035		11. Contract or Grant	No.					
12. Sponsoring Agency Name and Address National Aeronautics and	Space Adminis	tration	13. Type of Report and Period Covered Technical Memorandum						
Washington, D.C. 20546	opace numinis		14. Sponsoring Agency	/ Code					
15. Supplementary Notes									
An algorithm and ILLIAC computer program, developed for the simulation of homogeneous incompressible turbulence in the presence of an applied mean strain, are described. The turbulence field is represented spatially by a truncated triple Fourier series (spectral method) and followed in time using a fourth-order Runge-Kutta algorithm. Several transformations are applied to the numerical problem to enhance the basic algorithm. These include									
 Transformation c theory 	 Transformation of variables suggested by Taylor's sudden-distortion theory 								
2. Implicit viscous	diffusion by	use of an inte	grating fact	or					
 Implicit pressure calculation suggested by Taylor's sudden- distortion theory 									
 Inexpensive control of aliasing by random and phased coordinate shifts 									
17. Key Words (Suggested by Author(s))	T	18. Distribution Statement							
Turbulence Numerical Spectral		Unlimited STAR Category - 34							
19 Security Classif (of this securit)	20. Saurity Classif Int	this manal	21 No. of Barris	22 . Duru!					
Unclassified	Unclassific	ed	21. NO of Pages 34	\$4.00					

*For sale by the National Technical Information Service, Springfield, Virginia 22161