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SUMMARY 

The cloud chamber in the Space Shuttle provides a facility to 

study droplet-vapor interactions which would resemble those in a 

natural cloud. A better understanding of the microphysical phenomena 

of cloud physics will greatly improve the accuracy of ,~eather forecasts, 

in particular, a better control of precipitation, inhibitation of fog 

formation, and dispersal of fog by modification. 

In the zero-gravity experiment of the cloud formation, a suc-

cessful study of microphysical processes depends upon the accurate 

measurement of some initial key parameters. For instance, the study 

of droplet growth relies heavily on knowing the water vapor-air mixing 

ratio; and the study of nucleation depends on knowing the relative 

humidity. The purpose of the present study is to numerically simulate 

the conditions of the expansion chamber under zero gravity environment 

and investigate the minimum accuracy of the initial dew point tempera-

ture required in the experiments. This study certifies low cost in 

the cloud chamber design and maintains high quality experiments in the 

Space Shuttle missions. 

Dynamics of oscillation, rotation, collision and coalescence 

of water droplets in Skylab simulations are also investigated. 
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I. INTRODUCTION 

The general objective of the Zero-Gravity Atmospheric Cloud 

Physics Laboratory Program is to improve the level of knowledge in 

atmospheric cloud physics research by placing at the disposal of the 

terrestrial-bound atmospheric cloud physicist a laboratory that can 

be operated in the environment of zero-gravity or near zero-gravity. 

This unique laboratory will allow studies to be performed without 

mechanical, aerodynamical, electrical, or other techniques to support 

the object under study. In the meanwhile, the uniform and homogeneous 

thermodynamic ~;rcumf"rence offered by the zero-gravity environment 

provides the best opportunity to study the basic phenomena of thermal 

diffusion which is particularly essential to understanding the micro-

physical processes in atmospheric clouds. 

By taking advantage of a zero-gravity environment to define 

many of the processes in clouds that are not yet fully understood is 

derived in the philosophy of the operation of the Shuttle-Spacelab 

Cloud Physics Laboratory. Of course, the final objective of the mission 

is to investigate how men can influence weather, by changing, for 

example, drop distributions and nuclei concentrations, or by adding 

pollutant compositions. 

To support the development work and hardware design criteria on 

the Shuttle-Spacelab Cloud Physics Laboratory Payload, the following 

activities have been performed under the support of the present contract. 
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(1) A group of scientists from the cloud physics scientific 

community were invited to serve as consultants and also to 

participate in the working group meetings. The purpose of 

the service was to provide the advice and the guidance of 

the definition of experiments and scientific input to the 

Atmospheric Cloud Physics Laboratory at the Shuttle Spacelab 

mission. 

(2) Two subcontracts t~ere granted under the present contract 

to scientists in the cloud physics scientific community for 

the support of terrestrial simulation of cloud physics 

experiments in the Space Shuttle missions. 

(3) Inhouse study of numerical simulation of drop growth i1'l a 

low gravity environment, and the analysis of Skylab fluid 

mechanics simulation are performed un:ler the support of 

this contract. 

The proposed cloud chambers in the Space Shuttle include three 

experimental chambers, i.e., expansion chamber, continuous flow diffusion 

chamber, and the diffusion chamber. The present inhouse study is limited 

to the discussion of numerical simulation of droplet grpwth studies in 

the expansion chamber which is designed to simulate the pseudo-adiabatic 

ascent of a parcel of air. During the adiabatic expansion of the cloud 

chamber, no heat is allowed to cross the boundary of the cloud chamber. 

The walls of the chamber are cooled by a cooling system at such a rate 

as to prevent heat transfer from the walls. The only source of heat in 

the entire experiment comes from the latent heat released or absorbed 

during condensation or evaporation within the chamber. The purpose of 
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the present inhouse study is to numerically simulate the conditions 

of the expansion chamber under zero gravity environment and investi-

gate the minimum accuracy of the initial dew point temperature required 

in the experiments. This study will certify low cost in the cloud chamber 

design and maintain high quality experiments in the Space Shuttle 

',.-' 
mission. 

The following three branches of fluid mechanics simulation under ; . 

low gravity environment also have been accomplished in this report: 

(1) oscillation of the water droplet which characterizes the nuclear 

oscillation in nuclear physics, bubble oscillation of t,,,o phase flow J 
in chemical engineering, and water drop oscil'qtion in meteorology; 

(2) rotation of the droplet which characterizes nuclear fission in 

1 

'1 I 
nuclear physics, formation of binary stars and rotating stars in astro- 1 

'_. J 
phYSics, and breakup of the water droplet in meteorology; and (3) • I 

1 , , 
{ 

.. !! 

collision and coalescence of the water droplets which characterizes 

nuclear fusion in nuclear physics and processes of rain formation in 

I 
1 
,1 
I 

I meteorology. 
1 

I . , 

This project also supported a graduate student while he 

accomplished his Master's of Science in Engineering degree here at 
1 , 

I 
The University of Alabama in Huntsville. 

A detailed list of the scientists from the cloud physics scientific 

I community invited to participate in the working group meetings is given 

in Appendix A. Two subcontracts supported by the contract are described 

~ 
I 
I ,. 

in Appendix B. 
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II. STUDY OF THE PROCESSES OF DROPLET GROWTH IN CLOUD 
CHAMBER AND DYNAMICS OF WATER DROPLETS IN SKYLAB SIMULATION 

The processes of nucleation and growth of droplets are a particular 

interest in cloud physics. Our knowledge of these processes is still 

rudimentary because adequate observation of them under laboratory con-

ditions required that gravitational effects be absent which is a difficult 

condition to be met in a terrestrial laboratory. 

Techniques to support droplets artificially in the terrestrial 

laboratory are possible by employing levitation apparatuses by vertical 

wind tunnel, by applied electrostatic potential, by high frequency acoustic 

waves (or ultrasonic waves), and by laser beam. Any of the techniques 

mentioned above tend to mask some other types of phenomena such as change 

or distortion of the shape of droplets, create or dampen the oscillations 

of droplets, etc. The alternate approach is to obtain zero-gravity con-

ditions for 20-30 minutes required for observations. Drop towers, air-

craft flying parabolic trajectories, and sounding rockets can not provide 

zero-gravity conditions for more than a few minutes. The obvious solution 

to carry out these experiments is to utilize a satellite. 

The Space Shuttle, in contrast to a one shot satellite can provide 

a long duration, low gravity environment at a reasonable cost. The 

anticipated time of observation of a cloud j.n the Space Shuttle chamber 

1s "tens of minutes," and may be as long as 90 minutes. This time 

duration of the observation in the Space Shuttle chamber is comparable 

to a life-time of natural clouds in which discrete droplets or a group 
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of droplets last some 20-30 minutes. Thus, the droplets can float in 

the cloud chamber for the natural duration of processes. Droplet-

vapor interactions would then resemble those in a natural cloud. 

In the zero-gravity experiment of the cloud formation, a successful 

study of microphysical processes depends upon the accurate measurement of 

some initial key parameters. For instance, the study of droplet growth 

relies heavily on knowing the water vapor-air mixing ratio; and the 

study of nucleation depends on knowing the relative humidity. The 

former places stringent requirements on the accuracy of the initial 

absolute temperature of the saturator, while the latter depends on a 

very accurate knowledge of the relative temperature between the saturator 

and the expansion chamber. 

In the present study, we numerically simulated the conditions of 

the expansion chamber under zero gravity environment and investigated 

the minimum accuracy of the initial dew point temperature required in 

the experiments. The results of the numerical simulations are included 

in the following pages. 

The study of the dynamics of water droplets has also been carried 

out in this report. Skylab 4 crew members performed a series of 

demonstrations showing the oscillations, rotations, as well as collision 

coalescence of water droplets which simulate various physical models 

of fluids under low gravity environment. The results from the Skylab 

demonstrations provided much interesting information and illustrated the 

potential of an orbiting space-oriented research laboratory for the, 

study of more sophisticated fluid mechanics experiments. The results 

of this study are also included in the following pages. 
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Mr. James E. Huckle, a graduate student in the Department of 

Mechanical Engineering at The University of Alabama in Huntsville, 

accomplished his ~Iaster' s of Science in Engineering degree in the 

Fall of 1977/78, under the support of this contract. The topic of 

the thesis presented by Mr. Huckle is "The Growth of Hater Droplet in 

"--, a Low Gravity Environment." 

In this report, two papers based on our inbouse study are 

included. The topics a'..e 

(1) "Accuracy of Initial Dew Point Temperature and the Growth 

of Droplet in Expansion Chamber Under Low Gravity Environ-

ment." 

This article has been accepted for publication and will 

appear in J. Rech. Atmos. 11, 1977. 

(2) "Skylab Fluid Mechanics Simulations: Oscillation, Rotation, 

Collision and Coalescence of Water Droplets Under Low Gravity 

Environment.'f 

This paper was presented at the Eighth Conference on 

Space Simulation, and was also published in NASA SP-379, 

Space Simulation, pp. 563-574, Scientific and Technical 

Information Office. National Aeronautics and Space Admini-

stration, Hashington, D. C., 1975. 
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ACCuRACY OF INITIAL DEW POINT TEHPERATURE AND TilE GROWTH 

01' J)ROl'LIl'l' IN IlXPANSION CIIAf'IllER UNDER LOW GRAVITY ENVIRONHIlNT * 

A1IS'l'RACT 

The "loud cllllmhl.!r In the Space Shuttle provides a· facility to 

study droplet-vlll,or interactIons which would resemble those in a natural 

cloud. Drol,l<!t l',rowth studle,; tn the expnnsion chamber at the low 

grnv i ly ('nvi rol1m(!11 t i" desi.llned to simu.ln te the pseudo-adiabatic ascent 

of n I,arcel 'ur ai r.. A minimum accurac¥ of initit.l dew point temperature 

is ,)uestionahll' ror the desilln of the expansion chamber. A computer 

simulation of drop growth in the expansion chamber under zero-gravity 

envi.ronmlJt1t has been investigated. The sj.mulat.ion includes the time 

dependent study of saturation ratio, pressure and drop radius for initial 

water-vapor saturation temperatures, corresponding to dew point 

temperatureA ilt 18, 17.998, 17.990, 17.900 and l7.0000 C, under cooling 

° rilLes of 6, 2, 1 and 0.3 C/mln for each case. The results show that 

til" best SUI\Ill'Sll'd "ccuracy of initial dew point temperature is O.OloC 

for the expansiun ch.:unber cxp(~riment. However, the temperature accuracy 

° at 0.1 C is also acceptable if the experiment is IIvoided during the 

beginning rew minutes. 

-*-_._--
Thill article was accepted for publication and will appear in J. Reth • 
.b.tm_o~., .1.1., 1977. 
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I. -- Introduction 

A better understanding of the microphysical phenomena of cloud 

physics will greatly improve the accuracy of weather forecasts, in 

particular, a better control of precipitation, inhibition of fog 

formation, and <dispersal of fog by modification. It may also contribute 

to the moderation of severity of destructive phenomena such as h"il and 

tornadoes. 

The processes of nucleation and growth of droplets are of particular 

interest in cloud physics. Our knowledge of these processes is still 

rudimentary because adequate observation of them under laboratory con-

ditions required that gravitational effects be absent which is a difficult 

condition to be met in a terrestrial laboratory • 

In clouds, discrete parcels of moist air and entrained particles 

can last nearly a half hour, rising and falling for miles. During these 

movements, the constituents within the parcel are constantly interacting. 

The volume of the cloud can be several cubic miles. 

A cloud chamber encloses only a minuscule fraction of a volume 

of a natural cloud. When droplets through condensation are produced 

inside a terrestrial cloud chamber, they soon drift to the bottom of the 

chamber, ending the experiment before any long duration process can be 

studied. 

Techniques to support droplets artificially in the terrestrial 

laboratory are possible by employing levitation apparatuses which are 

by vertical wind tunnel, by applied electrostatic potential, by high 

frequency acoustic waves (or ultrasonic waves), and by laser beam (Hung et al., 

1974 [1]). Any of the techniques mf>nti'~ned above tend to mask some 
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other types of Ilhenomena such as change or distortion of the tlhape of 

droplets, create or dampen the oscillations of droplets, etc. The 

alternate approach is to obtain zero-gravity conditions for 20-30 minutes 

required for obs,ervations. Drop towers, aircraft flying parabolic tra­

jectories, and sounding rockets can not provide zero-gravity conditions 

for more than a few.minutes. The obvious solut:l.on to carry out these 

experiments is to utiliz.e a satellite (TRW, 1977 [2J; General Electric, 

1977 [3]). 

The Space Shuttle, in contrast to a one shot satellite can provide 

a long duration, low gravity environment at a reasonable cost. The 

anticipated time ofobservat:ionof a cloud in the Space Shuttle chamber 

is "tens of minutes,n and may be as long' as 90 minutes (TRW, 1977 [2]; 

General Electdc, 1977 [3]). 'l'his time duration of observation in the 

Space Shuttle chamber is comparable to a life-time of natural clouds i.n 

which discrete droplets or groups of droplets last some 20-30 minutes 

(Greco and Turner, 1975 [4]). 'l'hus, the droplets can float in the cloud 

chamber for the natural duration of the processes. Droplet-vapor inter­

actions would then resemble those in a natural cloud. 

The proposed cloud chambers in the Space Shut.t1e include three 

experimental chambers, Le., expansion chamber, continuous flow diffUSion 

chamber and diffusion chamber (TRW, 1977 [2]; General Electric, 1977 [3]). 

The present I)aper is limited to the discussion of numerical simulation of 

droplet growth studies in the expansion chamber which is designed. to 

simulate the pseudo-adiabatic a .. cent·of a parcel of air • During the 

adiabatic expansion of .thecloud chamber. no heatia allowed to cross the' 

boundary .0fthee1oud cha1llber • The . walls ofthe.chalDber are cooled by . 

a cooling system at Buchs rate as to prevent heat transfer from the 
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wal.!.s. ,The only source of heat in the whole experiment comes'from the 

latent heat released or absorbed during condensation or evaporation within 

the chamber. 

In the zero-gravity experiment of the cloud formation, a 

successful study of microphysical processes depends upon the accurate 

measurement of some initial key parameters. For instance, the study 

of droplet growth relys heavily on knowing the water vapor-air mixing 

ratio; and the study of nucleation depends on knowing the relative 

humidity. The former places stringent requirements on the accuracy of 

• 
the initial absolute temperature of the saturator, while the latter 

depends on a very accurate knowledge of the relative temperature between 

the saturator and the expansion chamber (TR~I, 1977 12]; General Electric, 

1977 13J) . 
The purpose of the present study is to numerically simulate the 

conditions of the expansion chamber under .'ero gravity environment and 

investigate the minimum accuracy of the initial dew point temperature 

required in the experimenta. It is of particular interest, therefore, 

to investigate the time":dependent evolution of saturation ratio,water 

vapor pressure, and drop growth under different initial humidities and 

different cooling rates. The variations of time-dependent saturation 

ratio, pressure and drop growth under a small change in the initial 

humidity, which corresponds to different temperature readings, have 

been numerically simulated. TltiH study will certify low cost in the 

cloud chamber design and maintain high quality experiments in the Space 

Shuttle mission. 
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.II. Theoretical Analysis 

During an adiabatic expansion of t,he cloud chamber, no heat is 

allowed to cross the boundary of the chamber. The only source of heat 

comes from the. latent heat released or absorbed during condensation ot' 

e:vaporationwithin the chamber. T.hese adiabatic expansions of a mixture 

of dry air, water vapor and liquid water can be described by the first 

law of thermodynamics and equation of tbe growth of tbe droplets based 

on microphysical processes • 
• 

Pe.rtinient assumptions in this study are no gravitational force, 

no heat exchange. witb the walls and a constant number of uniformly sized 

droplets. The thermodynamics for a closed system of the cloud chamber 

containing a mixture of dry air, water vapor, and liquid water can be 

described by the first law of thermodynamics, as follows: 

15 Q" dU + .pdV (1) 

wherec5Q is the latent heatu1eased or absorbed minus the heat required 

to raise tbe teml'eratureof liquid water within the chamber,i.e., 

(2) 

Here, dU denotes the change of .the internal energy of the m:l.xture of dry 

air and water vapor; p, r;he pressure o.f the mix!:ure; dV, the change of the 

volume of theclolld chamber during expansion; 1.., the. latent heat; SW' 

tbe.specific. h!!at of liquid w;lte:r; T. the temperature of the mixture; and 

WL,the: liquid "ater content whi.ch. is deUned 
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(3) 

where Ni il the total number of droplets with a radius of r i ; rio' the 

radius of the nucleus; pw,.the liquid water density; and n, the total number 

of classes of the size spectrum of droplets. 

The following relation is obtained after dividing Equation (1) 

by dt, with consideration of Equation (2) (Lin, 1976 (5]): 

&1. 
dt 

(4) 

where y denotes the specific heat ratio of the mixture; R , the gas constant 
, " v 

of the water vapor; J, the number· of moles of the mixture; R, the gas 

constant of dry air; and Cp ' the constant pressure specific heat for one 

mole of the"mixture. 

The effect of Brownian movement is neglected in the present model. 

The droplet will grow to a size greater than one micron (~M) in seconds 

in the expansion chamber. Brownian motion appears to be important for 

drop diameters less than one micron. This will justify our assumption. 

The growth of droplets due to the condensation and evaporation is 

governed by the following equations (Carstens et al. 1974 [6J ) 

where 

"( ; 7 r 
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OF POORQUAUTY 
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1/2 
I. • (1-!!) JS.. X-1 (81fT) 
a 2 ap y+1 a 

Ii .. 

c· 

20 

.!! ( 21T )1/2 
~ RyT 

(8) 

(9) 

(10) 

(11) 

Here, Psst (co) is the ssturation vapor density at infinity; s, .the 
• 

saturation rlltioof water vapor in air; r,the radius of .the droplet; 
. . 

I., characteristic length which is the weighted average of I.a and I.~; 

b, the slope of Il linearized P Silt (co) Ilnd.T curve; D, the diffusion 

coefficient of water vapor in the air; K, the thermal conductivity of 

the mixture; a, the accoDDllodation coefficient which is Q.67 in our casel 

~, the sticking coefficient which is 0.03536 in our case; a, the gas 

cons!:anj:.of dry air; a,. the surface tension of water; i, factor of . 

Van'tHoff; Kw' the molecular weight of water; ms ' the mass of hygroscopic 

materia1disso1ved;and Ms' gram molecular weight of hygroscopic nucleus. 

In theprellent .stwy, the .. dHfusivity, D, of water vllPor in 

the air followsthemode1presen!:ed by Fuller et a1.,{l966 [71) 

·D-

1/2 .. . 
0.001 OCl +M-1) T1. 7!5 .. ·a .... V· .. 

•.... (V 113 + V 1/3 ·)··.2 
. Pa.v 

p 

wnereMa is. tile mo1ecu11lrweiaht0 f Ilir; . Mv' the mo1ecu1arwe~ht9f 

wpor; Va' the cli ffusionyol=eoJ a:l.t; andVv'~l1edi UUSiQIlvo1ume of .. 

vapor. 'XIle~therConatants.BIIP1oyeci i.n.Equations(51t;o (p.) .which 
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are temperature dependent can be simplified as follows (Paluch, 1971 [8]): 

K - 0.1675 x 10-6 (T - 273.16) + 0.5725 x 10-4 
(callan-OR-sec) 

(13) 

L a 737.44 - 0.52 T (cal/g) 

a = 75.7 - 0.148 (T - 273.16) (dynes/an) 

The semi-empirical expression is used for P t 
sa 

6 (27 .. 3.1.6)
5.737104 

( ) a 4.847 X 10-Psat 00 T 

[ . 1 1) 
• I!Kp 6718.235 ( 273.16 - T) 

b a P (00) ( 6718.235 _ 5.7373104) 1 
sut T T 

(14) 

(15) 

(00) and b, i.e., 

(16) 

(17) 

In the Space Shuttle experiments, cooling rates are assumed to be 

constant. Le •• 

:! .. constant. (18) 

In our particular cases, constant cooling rates with 6. 2. 1 and 

0.3 °C/min are of special interest. 
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Ill. - Computational Scheme 

After substituting Equation (3) into (4), and Equation (6) to 

(17) into Equation (5), the fundamental equations are finally reduced 

to Equations (4), (5) and (18). These three simultaneous differential 

equations can be written in the following matrix form 

dx(l) 
dt 

dx(2) 
dt 

dx(3) 
dt 

(19) 

where x(l), x(2) and x(3) express pressure. radius of water droplet, and 

temperature, respectively. These equations can now.be integrated by an 

existing computer program developed by Thompson (1975 (9) with some 

modifications. 

We have considered twenty cases in which five initi.a1 water vapor 

saturation te!Dperatures,corresponding to dew point te!Dperatures at 18.000, 

17.998, 17.990, 17.900 and 17.000 ~C, with cooling rates of 6, 2. 1 and 

o 
0.3. Clmin, have been taken into account, In these cO!Dputations, the 

. 6 . 2 
i.nitia1 pressure i,s 10 dynes/em; and the initial drop radius or radius of 

.. . -5 
the nucleus. is 5. x 10 C!D or 0.5 II. Calculations were made for one mole 

of airand.water vap()r. T~e density and specific heat of water are 

15 



assumed to be unity. -13 It ia n1so assumed that Nae~ with mass 10 gram 

was dissolved ip. the droplets. With this amount of salt, the droplets 

are in e!~uilibrium at 20
0 e air with dew point temperature at lSoe. The 

3 number density of nucleus ~s assumed to be 300 per em • 

The results of the computation in the time-dependent study of 

saturation ratio, pressure, and drop radius will be discussed in the 

following section. 

16 
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IV. -- Results and Discussions 

Figures 1, 2, 3 and 4 show the time-dependent study of saturation 

ratio for cooling rates corresponding to 6, 2, 1 and 0.30 e/min, respectiveiy. 

Each of the figures express five curves of time-dependent evolution of 

saturation ratios corresponding to air-vapor mixtures at the initial dew 

pOint temperatures lS, 17.99S, 17.990 and 17 °e. It is clearly indicated 

that three curves are drawn coincidentally for the case of initial dew 

point temperatures at 18, 17 .99S, and 17.990 °e within a fraction of 11 

division. In these 'figures, one vertical division represents a change 

of 25 x 10-4 in the saturation ratio. Slight deviations are shown for 

saturation ratios for the case of initial dew point temperatures between 

lS °e and 17.990 °e. Peak saturation ratios of 1.029, 1.012, 1.007 and 

° 1.0024 are obtained for cooling rates of 6, 2, land 0.3 e/min, 

respectively, at the initial dew point temperature IS °e. 

In order to have more insight of the characteristics of saturation 

° ratio and its deviation for initial dew point temperatures between IS e 

o and 17.990 e, the maximum percentage of deViations have been computed. 

The expression is given by 

where 

= S17.900oC - SlS.OOOoe 

SlS.OOOoc 
~lax. 

x 100 

(20) 

denotes the maximum percentage deviation of 

saturation ratio for dew point temperatures between lS.aOOoe and 17.900oC; 

17 ORIGINAL PAGE IS 
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S17.9000C' saturation ratio with initial dew point temperature at l7.9000C; 

and I 1M ,the maximum value. Table 1 shows the computed maximum deviation ax 

of the saturation ratios for different cooling rates. It is shown that 

the maximum deviation of saturation ratios between these two initial dew 

point temperatures are essentially less than 0.63% which occcurred at 

operation time t ,. 0.0 sec. for the cooling rates at 6, 2, 1 and 0.30 C/min. 

rhese results suggest that O.loC accuracy of initial dew point temperature 

in the ~xpansion chamber at the Space Shuttle missiotl is proper at least 

based on the time-dependent study of saturation ratio • 
• 

11igures 5, 6, 7 and S show the time dependent evolution of 

presRure for cooling rates corresponding to fi, 2, 1 and 0.30 e/min, 

respectively'. These figures also imply that the time-dependent evolution 

of pressures arc practically no different for the cases corresponding to 

o initial dew point temperatures at IS, 17.998, and 17.990 e. The 

computations of the maximum percentage deviation of pressure for the 

" c '0 
cases of initial dew point temperatures between IS C and 17.900 Care 

also accomplished analogous to that of the saturation ratio shown in 
• 

Equation (20). Table 1 indicates that the maximum deviation of pressure 

for the caSes of initial dew point temperatures between lSoe and 17.90 e 

are essentially less than 0.24% for the various cooling rates. These results 

also support the similar conclusions ohtained from the simulation of 

saturation ratios. 

Figures 9, 10, 11 and 12 show the time dependent evolution of drop 
- -- 0 -

size for cooling rates corresponding to 6, 2, and 1 and O. 3C/min, respec ti ve1y • 

Similar to the results obtained for the simulations of saturation ratios and 

pressures, ther!'! ar!'! no differences for the time dependent growth of drop 

sizes for cas'es corresponding to initial dew point temperatures in the ranges 

IS 
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from 18 to 17. 9900 C; A deviation of time dependent growth .of drop size is 

shown for the case of initial dew point temperatures between 180 C and 17 .9900 C 

for all the cooling rates assumed. Table 2 shows the maximum deviation of time 

dependent growth of drop size for this case, This table indicates that 

maximum deviation of the growth of drop size for the case of initial 

dew point temperatures between l8°C and l7.9000 C can be as high as 21, 

28, 
a 34 and 43% for cooling rates corresponding to 6, 2, 1 and 0.3 C/min, 

respectively, which occurred in the experiments during the first few 
• 

minutes. After the experimental operation time 0.85, 2.41, 4.66 and 

15.3 minutes have p~ssed for cooling rates corresponding to 6, 2, I, 

o and 0.3 C/min, respectively, the percentage deviation for the cases 

between these two initial dew point temperatures will be declined less 

than 2%. At these moments, the operating temperatures will be 14.9, 

a 15.1, 15.3 and 15.4 C for cooling rates correspoinding to 6, 2, 1 and 

0.30 C/min, respectively, if the initial operating temperature is assumed 

o to be 20 C. These results, based on the time dependent growth of droplets 

indicate that O.OloC accuracy of the initial dew point temperature is 

perfectly satisfactory for the experiments in the expansion chamber. How-

o ever, this temperature accuracy can also be droped at 0.1 C if we would 

skip the experiments in the first few minutes for the case of the studies 

of drop growth. 

Howell (1949, (lO]) has calculated the time dependent evolution of 

the saturation ratios for the growth of uniform droplets under the con-

dition of constant rate of ascent, whereas a constant rate of cooling is 

used in the present study. These differents made a direct comparison 

19 
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between our results and Howell's to be difficult. However, there are 

similarities in which the peak of saturation ratios for both cases are 

the same magnitudes and also exhibit the same asymptotic approaches as 

the time increases. 
o . 

In conclusion., 0.01 C accurr,cy of the initial dew point temperature 

for the experiments in the expansion chamber is always the most acceptable 

condition for cases of time dependent study of saturation ratio, pressure 

o and droplet growth under cooling rates 6, 2, land 0.3 CImino It is also 

o recommended that 0.1 C accuracy of the initial dew point temperature is 

acceptable for experiments of the st~dy of the ~aturation ratio and 

pressure; however, special care must be attempted for the case of drop 

growth studies in which the experiment shall be avoided to carry out in 

the beginning few minutes. These results may be evidence to justify the 

o proposed 0.1 C temperature accuracy of the expansion chamber in the Space 

Shuttle mission subjected to the conditions outlined above. 
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Table 1. MAXlMUH "ERCENTAGE DEVIATIONS OF SATURATION RATIO 

AND PRESSURE FOR TilE CASE OF INITIAL DEW POINT 

TEMPERATURES BETWEEN lSoC AND l7.900oC. 

Saturation Ratio 
Cooling 

Rate Max. Deviation Time 
(oC/min) (%) (sec) 

. 
6 0.63 0.0 

2 0.63 0.0 

1 0.63 0.0 

0.3 0.63 0.0 

Max. 

Pressure 

Deviation Time 
(%) (sec) 

0.24 40 

0.24 95 

0.23 175 

0.21 540 
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TABLE 2. MAXIMtJ}! PERCENTAGE DEVIATION OF THE GROIITH OF DROP SIZE FOR 

THE CASE CORRESPONDING TO INITIAL DEW POINT T~lPERATURE BET'jEEN 

lSoC AND 17 .geooc, AND MIlII}!lJ!1 OPERATION TUIE A.'ID I!IGHEST 

T~!PERATURE FOR PERCENTAGE OF DEVIATION LESS THAN 2%. 

. 

Drop Size 

I !{inimum Operation Time for Highest Temperature * for 
Maximum Deviation Deviation Less Than 2% Deviation Less Than 2% 

Time 
% (sec) Second Minute (oC) 

21 27 51 0.S5 14.9 

28 80 14S 2.41 lS.l 

34 155 280 4.66 lS.3 

43 S04 918 lS.3 lS.4 

-1 

1 , 
! 

I 
I 

--.--J 
I 
! 

* ° Initial temperature is assu1l1ed to be 20 C. 
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FIGURE,CAPTIONS 

Figu're 1 - Time-dependent study of saturation ratios for cooling rate 
at 6oC/min. 

Figure 2 - Time-dependent study of saturation ratios for cooling rate 
at 2°C/min. 

Figure 3 - Time-dependent study of saturation ratios for cooling rate 
at laC/min. 

Figure 4 - Time-dependent study of saturation ratios for cooling rate 
'at 0.3OC/min. 

Figure 5 Time-dependent study of for cooling rate at 
o ' 

6 C/min. pressures 

Figure 6 Time-dependent study of pressures for cooling rate at 
0 2 C/min. 

Figure 7 Time-dependent study of pressures for cooling rate at 10C/min. 

8 cooling rate ° Figure Time-dependent study of pressures for at 0.3 C/min. 

Figure 9 - Time-dependent growth of drop radius for cooling rate at 
6°C/min. 

Figure 10 - Time-dependent growth of drop radius for cooling rate at 
ZOC/min. 

Figure 11- Time-dependent growth of drop raMus for cooling rate at 
1°C/min. 

Figure 12 ~ Time-:dependent growth of drop radius for cooling rate at 
0.30 C/min. 

24 

'. " 



~<~:?:>'W7~' J, ,ap.-&',}f4/ll¥tJe Lit < 3 ""./O::~,~' "F"T._ ~,"" C"", , '-,~'~ -:.:-~ ::':::,'~<~~'-"\,F~~.;,,'- ,-,,'3-"';~""':-::--;' ,,'-_' I ~ ",",~"-~,,.::~,,"--";--"- '"-_~_~' '~; ~ T.,,·' 

.. ... _ == == t.= = c.;::::! c::::I l.. _1 t= c:::::::: = i::::::! c:::.=I c:= m.J Ii!!M ... 

0 -I-
< c::: 

~z 
\)10 -l-

< 
~ 
:;:) 
l-
< 

.tn 

1.11) ~§ 
~ .. ~. 
i~ 

1. '15 ~i 
.~~ 

1.00 

0'" .... ::> 

/ , 

/ , 

.85~ ,I 

"-

, 
/ 

I 

I 
I 

................ ---._--

COOLING RATE = 60C/MIN 

AIR-VAPOR MIXTURE SATURATED AT ls0e 
AIR-VAPOR MIXTURE SATURATED AT 17.99s0e 
AIR-VAPOR MIXTURE SATURATED AT 17.9900e 

AIR-VAPOR MIXTURE SATURATED AT 17.9000e 

AIR-VAPOR MIXTURE SATURATED AT 17.ooo0e 

.80! ".., I I 

o 20 40 .~ 80 100 UO ~ ~o wo 
TiME (SECONDS) ~(1 i 



?j 
~ 

\: 
, . 
~:(". 

r,' 
t-;, 

):" 

~, 
~: 

, 
'it 

I 
~ 
! 

-------------------
1.lOf 

1.05 

l.OO 

0 .... 
l-
< a: 

~ Z ·05 
o .""" 

I 

/ 
.... 
!;( 
a: 
::l 

~ I 
(I) /' 

.90 I 
I 

I 
.85~ / 

I 

COOUNG RATE = 20UMIN 

---
--~ 

, 
/ • 

/ 

AIR-VAPOR MIXTURE SATURATED AT lsOe 
AIR-VAPOR MIXTURE SATURATED AT 17.99S0C 
AIR-VAPOR MIXTURE SATURATED AT 17.9900e 

AIR-VAPOR MIXTURE SATURATED AT 17.9JOOC 

AIR-VAPOR MIXTURE SATURATED A.T 17.:l000e 

°i ftj .... 

gi 
~.~ 

,~ . I?;j 

-~ 

.'80 I -'I " I , I , I 

050 100 150 20D 250 300 350 400 450 

TIME (SECONDS) r:, .., -, - , 
" -

"~'~~·.wh.l"!;;'~""''' ; "--,'L;;"~!i~.~~:.#:~ 



- - - - - - - - - -. - - - - - - - - -
1.10 

1.05 

~1.00 
l-
e:( 
a:: 
Z 
0 -l- I 

'" e:( 95 I ...... a:: • 
:::I I l-
e:( I Ul 

I 
I 

I I 

•9O I-/,' / 
I I 

/ 
.85 ~ / 

I 
I 

I 
I 

I 
I 

I 
" 

/ 

, 

/ 
i 

/ 
/ 

-. 

COOLING RATE=10ClMIN 

AIR-VAPOR MIXTURE SATURATED AT 180e 
AIR-VAPOR MIXTURE SATURATED AT 17.99S0C 
AIR-VAPOR MIXTURE SATURATED AT 17.9900C 

AIR-VAPOR MIXTURE SATURATED AT 17.9000C 

AIR-VAPOR r~IXTURE SATURATED AT 17. ooooe 

. 801 ! ! ! .! ! I 

o ' 100 200 300 400 500 600 700 800 900 

TIME (SECONDS) ;::.. ". ':I, 
'. 

"""!iji" !¥ rpm -p -n" PI , • 
~~td<&~~~,~~, 



\i ;:> PH .• ,-, ' ".it;F<' ';. ~., ie ::-t: ':\':::~"~ ,;", '4;'f~::~P'-.~~l.;~7" -J~~:. '.~' -~~~_~" '. - '~f. ~.{;, ~~i'--.,:- ;"'''--~''-;< ." ~"":'>"-",~ i";-""~N\"''':;P''-:" - '>",-;:",,' ';-'-~-"?;f',<;-","r'~ 'i!~" ,-'. :-,~:-,'Z'"F"1'·~,·>.- "i ':':~{fF-'" ,---<! 

, '"' iil.1;;UIi! !LiilIil Sib.! U iI & II .3 S JURI • l' ." l;".--~~--- -.,----~ ____ _ 

~~~~~==~~~~~-~-~-~-

1.10 

1.05 

01.1)0 -I-
< 'I 
cr: ~ :z 0 'I -S;; ~ .95 'I cr: 
::J 'I I-
< / (I) 'I 

'I 
, 

• 90 ~'I / 
I 

I , 
.• 85 ~ ,I 

r , , 
/ 

I 

/ 
I 

o~ 
~-
"d~ 
§~ 
~"d 

;! 

COOLING RATE = O.30C/MIN 

--- AIR-VAPOR MIXTURE SATURATED AT BOC 

AIR-VAPOR MIXTURE SATURATED AT 17.9980e 
AIR-VAPOR MIXTURE SATURATED AT 17.9900C 

--- AIR-VAPOR MIXTURE SATURATED AT 17.9000e 

- - - AIR-VAPOR MIXTURE SATURATED AT 17. aaaoe 

.80 0 6 12 18 24 30 3'6 42 40 54 

TIt1E (MINUTES) 1-:/~ ~ 

-- . ,-' - '. 
.,', i~i;'i~;~i''-:'M'i,'§-,j'm' ~'''''~_'~<l-)::'' 

I 
." 
• 
I , .. 

I , 



'.",: 
~, 
tr' 

1-
~'. , 
:t~ 
I.j 

;; 

,t 
~~ 

- - ._ ._ - - - ..... MIl ...... _ ........ -

,... 
(I) 
Q 
Z, 
o 
u 

200 

160 

.::g ~ 120 ....... 
w 
2l: -I-

80 

40 

....... 

7 

,T';::;;,r;3,' 

COOLING RATE = 60ClMIN 

AIR-VAPOR MIXTURE SATURATED AT l30C 
AIR-VAPOR MIXTURE SATURATED AT 17.9980C 
AIR-VAPOR MIXTURE SATURATED AT 17.9900C 

AIR-VAPOR MIXTURE SATURATED AT 17.9000C 

-- - AIR-VAPOR MIXTURE SATURATED AT 17.00QOC 

~ 

8 
PRESSURE (X 105 DYNES/CM2) 

9 

.z;,'.~ t:; 

lJ 

;_,;.;.;~T;,~ieil";:'-:;-~S~~~i;;:;@.\lJi.;!o: i, W-w:'" "',""," < _.',:"-';"~,;";;",,,,"'~~.l~;~.,,",,;."';";.'.:c~-' "'" '21+$",-,'+6< 'M "e't:M-ii#';' liiW\e:.~e&'M··-· ht('tr J~_ e;-it! 



r"''''·· "7n 
, .. '" '5 - pr if"· elL lim 2 r ' 

1::1 = t::! = t::::l 1::1 1.:1 c.:::: t=l t=:l I=: t~ r~~ P;:,..J r= == r:::=::l .. -
t-

500 

4:JO 
...... 
en 
Q 
Z 
o 
U 
l1J 

~~ 300 

~~ 
~.~ 

w 
~ -I-

~~ 
~"tl 

§2 

200 

100 

7 

COOLING RATE = 20C/MIN 

--- 'AIR-VAPOR MIXTURE SATURATED AT laOc 
AIR-VAPOR MIXTURE SATURATED AT 17.9980C 
AIR-VAPOR MIXTURE SATURATED AT 17.9900C 

--- AIR-VAPOR MIXTURE SATURATED AT 17.900oe 

--- AIR-VAPOR MIXTURE SATURATED AT 17.ooo0e 

" 

8 9 

PRESSURE (X 105 DYNES/cM2) c,.? b 

'~.~.oili.~,,--,,'.:.;" .... ~~~, ill!~~J..W.s~..w..~ ... ; 

10 

/ 

• 
.p 

J 

.1; 

,J 

, 



---~---------------

.1000 

"" tn 
Q 
z 
o 
u 
w 

800 

~.!!] 600 
w 
:0: -I-

400 

2!J!J 

7 

COOLING RATE = 1°C/MIN 
AIR-VAPOR MIXTURE SATURATED AT laOc 
AIR-VAPOR MIXTURE SATURATED AT 17.99S0C 
AIR-VAPOR MIXTURE SATURATED AT 17.9900C 

AIR-VAPOR MIXTURE SATURATED AT 17.9000C 

AIR-VAPOR MIXTURE SATURATED AT 17.0000C 

8 9 

PRESSURE (X 105 DYNES/CM2) j;,r, ~ 
I~. ' 

10 



~O\. "''''"?O~ 4),l 44 ""':"t ii, SO '~"'""':"""'''''':--'~, 4~-,' ~r, '~j~ ~~....," _~ '''':': 

~ . ". ~ ;"...... M;lIUM _ax Uk t.1"M&3.M1U ill!! J'Sd:\lM!f£CSt. en il lid 
",f.- _____ .-,. ,_ .'_ ._ """'""" ._ .. _ ......." _ ............... __ _ 
rt:: .J ~ ..... ....... ~ I...., ~ if~. , .... '~i ir~ rr-"",,-,: I:'~"~ iti.~' I-'~"" WRW'-""","} ~ ~ ~ ~ 

60 

43 

" C/) 
w 
I-
::l 
Z 

'" -"':E 36 ...., 
w 
:E -I-

24 

12 

~% 
8~' 
.~~ 

~~ 

~~ 

7 

COOLING RATE = O.30C/MIN 

--- AIR-VAPOR MIXTURE SATURATED AT lS0C 

AIR-VAPOR MIXTURE SATURATED AT 17.9980C 
AIR-VAPOR MIXTURE SATURATED AT 17.9900C 

---- AIR-VAPOR MIXTURE SATURATED AT 17.9000 C 

- - - AIR-VAPOR MIXTURE SATURATED AT 17. OOOOC 

8 9 
PRESSURE (X 105 DYNES/CM2) .! -.!J c:. 

1Q 

!.h . L. LLMa2tL_,a. ,<,_ .J._~ .. _,-~.,g~"j!!!L"--~,""",.t~,,,S,,,,,,"~ ... ii££S.1......!£K ..... ,,,,,,L .. :",.,,,-,,-,~~_.~!r.._",, ___ £1£ 2 .#..., $; . 4£Util!&!2222JSWL.e,,,,, .. w $1£22 Of' e &. .M 



~ •. 
~. 
1-: 

7r:' ;., 
~; 

~ 
~ 
)f, 

'" 

~ 
~ 
~l , 
f,: 

(,: 

----------------~-~--"----------- -------__ __ -= ".IIIiII\:J == t=1 == = = t::l t::::i = c::'I t= == c= _ 

,.." 

00 
§2. 
o 
u 

.... LLI . 

..,00 ...... 
LLI 
=::: .... 
I-

180 

160 

12/) 

80 

40 

COOLING RATE = GOC/MIN 

---AIR-VAPOR MIXTURE SATURATED AT looe 
AIR-VAPOR MIXTURE SATURATED AT 17.9980e 
AIR-VAPOR MIXTURE SATURATED AT 17.9900C 

--- AIR-VAPOR MIXTURE SATURATED AT 17.9000( 

--- -,.- AIR-VAPOR MIXTURE SATURATED AT 17. Doooe 
/ '" , ,J 

/1 
, " /# 

, b 
/b 

" b 
,/ b 

, . Q 

/' .0 , A 
./ h 

.-," ~ 

. --~-- ,& _------------ 4--
--~--.~~~~~ 

-~~ 

---'~ -

5 

,O~<:"". 

10 
DROP SIZE ((J.'1) 

1:) 

f-, ,,,;, ~ 



~,~~~~.lUy ~ ""'~/_?<' ",1".2 "'"'_'I!"'_::"~:""''';'''~_~r'~''': ~~f<:- :,' ,r' ,- - •. > ... ~ -~ ,~J"" ,., "" ___ ," .", ' - - . ",' . 

r;}-. :. ,: 
i" ' 

~'1!!! '(' ":_'~'-:-~;J --~~~~"'-'" '. "" ',-7;.,"P!,1:'Y'" '"',~O" I • ',"', . ,-':- yri1~"';""'" 

~ ,........... ,.-., :-.--. r--,"'1'-''-'''-' r-, '-'-i ,-- ~ ,..-: .-' ( i r--, i.'! " j--"1 ....--. .--
l---..,.; ~ t--..I i-.....J J.--;.;...t t.i-a-J ~ • _.... ~~. 1_1 t_, ",--........ 1_____ ,t...-.. ~ . -' '-" ~ 

~~I 

Ie 

COOLING RATE = 2°C/MIN 

;t" AIR-VAPOR MIXTURE SATURATED AT l80e 
AIR-VAPOR MIXTURE SATURATED AT l7.998oe 

50°1 
AIR-VAPOR MIXTURE SATURATED AT l7.9900e 

-- - AIR-VAPOR MIXTURE SATURATED AT 17. 90Qoe 

400r --- AIR-VAPOR MIXTURE SATURATED AT 17.0000e 

........ ~i 
(I) 

i~ Q 
Z 

",0 

300 ."u -SOd UJ 
(I) 

.~~ '-' 

UJ 
:;:: &1. -I-

200 
I , -- #' --~ --- ~ 

~----- ~ 
100/- ---- ~ / ,.. -==:::. 

-
~ 

o 5 10 15 



-",::m<i.V·*-~~/''-~·_'" sa ,~-~"" / .... " '-"""'h -,;-,> }F/t:-:~. ':~~-:-""~,:< v;"";'.\J'H""-' 
:"~"'- '''''''~,-;.r ,~,:,~---, <o __ ~, "r":',' ',-~ 

~~ .............................................................. ~.n ____________________ __ 

_ _ -=. == e:;:; = =: c:::J r.....!! I ' '_..:l .c=.l t=:l r=l ~ I: c=; =- t:::::I 

1000 

800 

...... 
CI) 
~ z 
0 

... u 
"'w 600-

CI) ....... 
w 
:e: -I-

400 

200: 

o 

COOLING RATE = 1°C/MIN 

AIR-VAPOR MIXTURE SATURATED AT laCC 
AIR-VAPOR MIXTUR~ SATURATED AT 17.9980C 
AIR-VAPOR MIXTURE SATURATED AT l7.9900C 

AIR-VAPOR MIXTURE SATURATED AT 17.90QOC 

--- AIR-VAPOR MIXTURE SATURATED AT 17.0000C 

-- ---f - -- ----- ,,-"" 
--- - - ~~ &%' 

5 10 

DROP SIZE VIM) 

II 

, 

15 

/='4. II .. 

. ~'"'"~~,--;.;,~ ~,:;l~l.;.:, .. (;',_...:.w-M) .. ifm ;.,! -n;~ZliO;b' 'If' .... '· , ... ~~~ <1 1 \ '$'ii..t.r..~ -6iiW' wit): q#! 



?: 

."'1'"""" 'C"" "''"1. /~ ,'" j*.i;;- -J~ _ ""'1!p"lij(;r:~-i" .·,,~~n'1": -.,,--,-._u"'_~'C~j~'''~~~?'J';'''''':''9'''1;t'"'':-:;'''~)~0''"f~~ --.;~ ,,,,_ ""4,--_.~~" ... --,,,.,,n, .--~ ·:'-"~'r""', .. "f";,~., !""'111! 

. ;// 
" 

r-'~ r:::J l __ -- -., -, 1 . .-" .. _1 \ __ .J t,,, ..... ""u,,i 
,.--, 
.~ t= [:::) U.:.J c::::l c::::J r=:: :::::::::J c=i \~ t=l (=1 ~ .. 

60 

48 

....... 
rn 
w 
~ 
:I 
z 36 ... -

'" :E ....... 
w 
:E -~ 

24 

12 

o 

COOLING RATE = O.30C/MIN 

AIR-VAPOR MIXTURE SATURATED AT ls0e 
AIR-VAPOR MIXTURE SATURATED AT 17.99s0e 
AIR-VAPOR MIXTURE SATURATED AT 17.9900C 

AIR-VAPOR MIXTURE SATURATED AT 17.9000C 

AIR-VAPOR MIXTURE SATURATED AT 17.ooo0e 

/ 

,,1/ 
/1 

";/ 

~8 
""'~ i~ 
@"'" 

i! 

,~/ 
// 

/'/ 
, / 

. ~-~/.;/ 
/----------~--- .#.#" - ~"""'~ ~ _ r 

5 10 15 

DROP SIZE CstM) h'tI, {? 
~ -



B 
n 
u 

n 
v . I 
I ! -
U1 

! 

'l 
Ll 

[] 

r­J 

n 

o 

SKYLAB FLUID MECHANICS SIMULATIONS: OSCILLATION, ROTATION, 
COLLISION AND COALESCENCE OF WATER DROPLETS UNDER LOW­
GRAVITY ENVIRONMENT* 

O'ha H •. Vaullhun, Jr" AeroS{hlClI Environment Dill./SpIIce SCiencestllb., NASA/Mtmh.1I Space 
FIiIJIltCentp.r. Alsl,iltna 358'2 
R. J~ Hung, The University of Alabama In Huntlvlll., Alabama 35801 

ABSI'RAcr 

"itudies of the dynmnicsofwater droplets has been one 
of the most intel esting areas in the fields of atmo­
spheric microphysics, nuclear physics, astrophysics, 
fluid mechanics, mechanical engineering, and chemical 
engineering, Skylab 4 crew members performed a series 
of demonstrations showing the oscillations, rotations, 
as well ·as collision coalescence of "ater droplets 
"hieh sinrulate various physical modol~ of fluids under 
low I:r:lvity environment, The results from SRylab 
demonstl'ations show that these demtln~trations have 
provided much interesting information and illustrate 
the potential of an orbiting space-oriented research 
laboratory for the study of more sophisticated fluid 
mechanic experiments. 

I , IN1'RODU<.iION 

Reccntly, the dynmnics of oscillation, rotation, collision 
and coalescence of water droplets has triggered the imagination of 
researchers in various fields of physical sciences, such as 
metcorolob'}', nuclear physics, astrophys ics, fluid mechanics, 
mechanical engineering and chemical engineering. J.ord RlIyleigh 
(1879) first investigated mathen~~tically the various modes of 
oscillation of fluids. Since then there have been many investi­
gations concerning the dynamics of liquid drops, yet the 
mechanics of the oscillation (particularly nonlinear oscillation), 
rotation (particularly rotation breaRup), and the coalescence 
procerses still remain poorly ~Iderstood, 

To study and observe the dynamics of Ut]Uids in the 
terrcstriul lahoratory, artificial supports arc requited to 
eliminate the gravitational force anel to provide for longer 
observational time. 1be levitntion apparatuses which arc 
available today arc the vertical wind tunnel, electrostatic 
potential, high frequ~ncyncoustic waves (ultrasonic waves), and 
high enemy level laser be:uns. Although these arc useful tech­
niques, thei r usc tends to mask other types of minute forces and 
disturbs their effects which might confuse the experimental 

*UdS article was. published in "Space Sil!WIstion," NASA SP-379 , 
pp. 563-574, Scientific and Technical Information Office, National 
Aerc:mautics and Space Administration,Washirigton, D. C., 1975.. . 
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observations. Experiment~ I'crfonncd in an orbitinj' spacecraft 

with. its low gravity cnvirmuncnt offcr II teciUlique to study 

fluids lII\d observe their lIIodes or oscillation witbout the side 

.. Ifects of artificial suspension techniques. 

I'l'ior to the Skylah program various studies had been per­

fonned in wind tWIDC!ls to observe the oscillations, rotations and 

coalest:ence of liquid drops (e.Il., lIenrd lII\d Pruppacher, 1971). 

However, many of the oscillation modes could not be detected or 

recorded Ilecause thoy were being masked by the aerodynamic 

forces. To understand how wllter droplets will oscillate, rotate 

'Illd coli ide, and to s .. c how fluids will behave wld .. r the low 

uravity environment, a series of simple science demonstrations 

were pruposed for the Skylnb mission. The demonstrations were 

deSigned to provide a data base for the design of a fluid 
mechanics and a cloud physics type laboratory to be flown as a 

part of the Spacelah Shuttle program. The Skylab 3 and 4 crews 

were requ .. sted to periom these science demonstrations so that 

the mechanics of cull isions, coalescenc.e, rotation, natural 

o5cillal ions and tl'l:hniques for mnnipulat10n and positioning of 

fluids in low grnvity could be simulated and studied. 

In the Jlre~ent paper, we hnve limited ours"lvcsto a 

discussion of the (ollowinll thr(\e branches or fluid mechanics 

silnulation under low-gravity emri'ronment: (1) oscillation of 

droplet which char"ctcrizes the nuclear OSCillation in nuclear 

physics, hubble oscillation of two phase flow in chemical 
engineering, lUldwater drop oscillation in meteorology; (2) 

rotation of droplet which characterizes nuclear fission in 

nuclear physics, fonl~~tion of biMry st"rs lII\d rotating staTs in 

astrophysics, and breakup of water droplet in meteorology; and 

(3) collision and coalescence of droplets which characterize 
nuclear fusion in nuclear physics, and processes of Tain for­

mation in meteorolob'Y. 

I r • EXPERIMENTAL ARRANGEMIlNTS 

111e hnrdwnre used in the Skylah fluid mechanics demon­

gtrations consiste<1 of on-bo'ird medical typa syringes, pieces of 

tape attached to drinking straws, marker pan writing ink, grape 

drink, strawberry drink .• picces of thread, the teflon coated flat 

surface of the HO.52 "Web formation in zero gravity" spider cage, 

reflection mirror. etc., and the on-board color TV camera. The 

water used in the demonstration was colored, to enhlll\ce the 

photography. by adding a small runount of marker l",n ink, grape 

drink mix, or strawberry drink mill to ench drop. Iotlvies of the 

dynamics of oscillations, rotatiolls. collisions and coalescence 

ofw.1ter droplets tmder low gravIty envirolllllCnt were recorded on­

board 'IV cmneras. 'll1<'se series of color films are ideritified as 

Fluid Mechanics Demonstrations - TV 11)7. 
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TIle films taken with the on-board TV cameras were later 

analyzed. Measurements of the characteristics of the drop 

osci1lations, rotations, co1lisions and cot>~escence were made by 

using a Vanguard film analyzer. The wnplitude and wavelength of 

the oscillations were determined directly from the film using 

appropriate scale factors. The frequency of oscillation and 

angular velocity of rotation were detennined by counting the 

number of frames that were observed during the time interval and 

then dividing this COWlt mmlber by the 1V cwnera frwning rate. 

Tn this paper, teclmiqlles and results of space simulation 

will Ilc discussed. TIle theoretical analysis and comparison of 

the Skylab delllonstration data with existing theory is out of the 

scope of the paper but it is published elsewhere (Vaughan, et a1., 

19740; Vaughan, et al., 1974b; Hung, et aI., 1974). 

Ill. SKYLAB FLUlll MEQIANICS SIMJLATIONS 
• 

'l1lC Skylab science delllonstration/simulation TV 107 (Fluid 

Mechanics Demonstration) has created muth interest among the 

researchers in various fieldS, such as meteorology, nuclear 

phys ics, astrophysics, fluid mechanics, mechanical engine(>ring 

and chelllical engineering. In particular, fluid dClilonstration of 

oscillation, rotation, col1 ision and con lescence of water droplets 

silllulate some physical models of interests which may contribute 

toward the solutions of a great number of un~olved problems. 

~ne selected trames of oscillation, rotation, collision 

and coalescence of water droplets from TV 107 will be presented 

in this paper. 

A. Qscillation of Water Droplet - Study of nuclear oscil­

! ations has been one of the major topics in nuclear physics in the 

last forty years. In particular, nuclear physicists are mostly 

interested in the investigation of nuclear deformation energy 

surfnces. To study these phenomena, a model of an incompressible 

liquid drop with charges uniformly distributed throughout the 

volume lind a uniform surface tension is generally assumed (Cohen, 

et. aI., 1974). 
Atmospheric microphysics studies deals with droplet and 

droplet-droplet interactions. Particularly, oscillation of water 

droplet ,md oscillntionhreakup of droplet nrc closelycorrelnted 

to the mechanism of rain fonnation (Mason, 1971). 
Stahility of bubble oscillation is very important for the 

study of two-phase flow in chemical engineering. Furthermore, 

chemical engineer~ are also very interested in the study of the 

dynwnics of the conta..:t. line between the fluid and solid surface 

as the water droplet oscillated (West, 1911; Huh and Scriven, 

1971) • 
lllese physical modelS of interests were very well simulated 

and are shown in the Skylab Fluid Mechanics Simulation. Figure 1 

shows some sel~'Cted frames of the various modes of water droplet 

oscillation. TIle numbers on the pictures in the figure show the 
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sequence of 1V camera [ramcs taken in the SkyJab demonstration. 
Picture number I shows " water droplet with the di;unctcr of 2.67 
em touched on opposite sitlcs hy two ~oJa s traws. pjcturc mnnbcr 7 
shows that two soda straws were pluckcd outward from thc water 
droplet causin~ the wa ler dropll' t to osci Uatc. We observc variCllS 
modes of oscillation until the decay of oscillation occurs duc to 
its internal damping. Picture Illnnhcr 9 shows the oscillation of a 
watcr droplct in longitu,linal direction and picture 17 indicates 
the oscillation of a water droplet in transverse direction . 
Picturcs number 22 and 24 show thc transition of droplet oscil ­
lation from transverse direction to longitudinal direction. 
Pictures numbcr " and 36 5hOl' the transition of droplet oscil­
lation from lonr.itutlinal to transverse direction. Picture munber 
42 shows the rccovery oC the oscillation of a watcr droplet to 
jts original due to damping effect. .. .... 

Figure 1. Skylah Fluid Mcch:U1 ics lJcmonstration - Free Oscillation 
of Water Droplet. 

40 

ORIGINAL PAGE IS 
OF POOR QUALITY 



/ 

-... 

. . 

.. 

-
• -

... 

- , 

.. 

Pi!:ure 2 shows selected frumes of the various modes of the oscillatin~ water droplet attached to the flat surface . This is very useful for the study of droplet oscillations and the dynamics of < 'ct line between the fluid and solid surface as the water dre' " osci llated. Picture number 1 shows a drinking straw being in ·c • . e<l into the center of a water droplet attached to the fl at sur •• ;e. Pictures number 3 "nd 10 sho" the soda straw being pulled out of the water drop. Picture number 17 sho"s the oscillation of water droplet as it reaches its maximum amplitude right after the soda straw left the surface of the droplet. Pictures number 22 an<l 26 shows the water droplet decreasing its amplitude, and picture number 29 shows the oscillation of a water droplet descending to its minimum amplitude. Picture number 31 shows the increasing amplitude of a water dropl et, and picture number 39 shows the proximate moment when the water droplet just completed one cycle of oscillation and returned to its maximum amplitude . 

Figure 2. Skylab Fluid Mechanics Demonstration - OsciUe.tion of Water Droplet Attached to the Flat Surface . 
'l1lC dynamics of the droplet oscill:1tion is governe<l by the hound.1ry condition given by the Youn~-Laplace relation (Landau and LifshHz, 1959). Solution of Young-Laplace relation leads to tho relation of droplet oscillation (Rayleigh, 1879) 

w' • a1 (1-1) (1+2) (1) pR j 
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where" denotes surface tension; n, the density of fluid; R, the radius of unperturbed liquhl droplet; w, the circular frequency of oscillation; and £ • 0,1,2, ... , the intel:er numbers. Equation (1) shows that!· 0 and I correspond only to ril:id body oscillations, ami the flll1lllUnental mode corresponds to £a 2. In general, the oscillation for each mode 9. , there arc 2£+1 oscillations along different directions. These oscillations with the same mode £ have the same frequency. I ~ ~'(' consider only the characteristics of the mode and not the type of oscillations in the various directions, the shape of the drop is Olung, et a1., 1974) 
r = R + 7 a£ P £ (cos e) (2) 

where P! is the £th order Legendre polynomial; (r, e, 4>). the 
axes of spherical coordinates; and the coefficients a£ are 
functions of time t: 

(3) 

where w is given by Equation (1), and b£ is some amplitude of the oscillat ions. 
Skylab Fluid ~1cchan rcs Demonstration provides us a good opportwlity to study how well the theory stands. 

8. Rotntion of Water Uroplet - About half the stars in the sky arc binary stars. TI10 [lsslon theory, proposed by Poincare in 1885, attempted to explain the occurrence of binary stars by a natural process of evolution of a single star. Unfortunately, 
re~ent investigation showed that the results were adverse to Poincare ' s picture. A ne~'Cr fission theory of rotating liquid drops has been proposed to study these problems (Chandrasekhar, 1969). Experimentally, the dynamics of rotating liquid drops simulate the characteristics of binary stars and rotating stars. In nuclear physics, mechanics of fission process is the area which draws a great attention among the researchers. A model of an incompressible rotating liquid drop simulates the dynamic evolution of the stability of the mechanics of nuclear fission process (Cohen , et al., 1974). 

In lI1eteorology, dynamic of the breakup of water droplet is closely related to the warm c loud processes. The Skylab demon­stration of rotating droplet is also of particular interest in large precipitation drop hreakup. 
Figure 3 shows some selected frames of the sequences of rotating drops exhibiting "dog bone" or "dumb bell" shape. To get the drop of water to rotate in the "dog bone" or "dumb bell" shape the astronaut conceived a simple tcchnique which he used to pro­duce initial ly a prolate spheroid by asymetric excitation of the ollter surface of the drop of water. After a few applications of th is asymetric excitation force the drop is caused to rotate at a higher rotational speed which produced an unstable oscillation 
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noxIe and the drop then tears into two separate drops. Picture 

nlmlher 1 shows the drop of water rotating in the "dog bone" shape . 

Picture nlO1lbcr 2 shows a drop being initially touched with the 

rotation tool. The astronaut touches the drop and later he 

causes it to begin to rotate. Each time the astronaut touched 

the drop at its outer ~urrace with a rotating motion he caused it 

to rotate at a slightly hir,her rotational rate. After a nlmlher 

of encounters with the drop. it was then allowed to rotate until 

it began tu breakup by itself. Picture number 136 shows the drop 

still in contact with the tool and being excited - note the start 

of the prolate sphere shape now occurring. Picture number 165 

shows the drop now free of the tool but in a rotating/oscillating 

noxIe. Pictures number 747 thru number 75l show how the drop 

began to reach the unstable mode as it begins to rotate faster 

until it begins to neck down and breakup into two distinct drops. 

In future space flights. a demonstration should be performed in 

the low gravity environment to illustrate the case of the oblate 

spheroid rotating at increasing rutgular velocity until a ring of 

fluid similar to a "donut" is produced. 

(F 1.~ " ~C ~ to be Continued) 
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(Figure 3 Continued) 
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Figure 3. Skylab rluid Mechanics Demonstration - Rotation of 
Water Droplet. 

Based on the original work by Plateau (1866) , Chandrasekhar 
(1965) extends the work and investigated various modes of oscil­
lation on the stability of rotating drops . For an axisyrrrnetrica1 
fonn and unifonn density, the figure of equilibrium depends on the 
value of the non-dimensional parameter ~ (Chandrasekhar , 1965) 

r • 1 p Il' a' .. Sci (4) 

where {J denotes the an~t11ar velocity of rotation; a, the equa­
torial radius of the distorted drop; p, density of drop; and (1, 
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the surface tension. As I; decreases the figure tends to the 
oblate spheroid, and degenerates into a sphere as I; - O. However, 
as I; increases, the figure rapidly departs from the spheroidal 
fOI1ll. The polar regions are flat as I; -1; as 1;, increases beyond 
1, the drop develops a dUlple; and finally the breakup occurs. 

The theory of time dependent evolution of rotating 
stability of liquid droplets has been a very active research 
field for many years. It is because of a conllpicuous lack of 
experimental evidence to backup the boundary conditions assumed 
in numerical computation which makes the computer simulation still 
not o::ompletely explored. In this respect, the Skylab demonstration • 
of a rotating droplet has enhanced the understanding of rotational 
stability of liquids. 

c. Collision and Coale.scence of Water Dr~lets - Recently 
studies of the dynamics of the COniSlon and cOll escence of water 
droplets has been widely used in simulating the mechanism of 
nuclear collision and nuclear fusion. These dynamic studies are 
considered to be a significant step in understanding fusion 
process of nuclear physics (Cohen, et al., 1974). 

In cloud physics, the precipitation process is solely 
dependent on growth of droplets and ice crystals which is 
governed by the following three stages: (1) growth by nucleation 
process, this process includes condensation, ice depoSition, and 
freezing of water droplets and ice crystals on the surface of 
foreign substances or of tile same substances as nUclei; (Z) growth 
by diffusion process, after a droplet or ice crystal has been 
nucleated and has surpassed the free energy barrier or critical 
radius, it enters a stage of growth by diffusion; and (3) growth 
by collision and coalescence process, the growth by diffusion 
process is negligible compared with that by coalescence process 
as the size of droplets is greater than 40 microns (p) radius 
(Byers, 1965). This implies that the collision and coalescence 
process is one of the key processes of rain formation. 

Figure 4 shows some selected frames of the collision and 
coalescence of two water drops. Picture number 1 shows the dark 
colored droplet moving toward the stationary pink colored droplet. 
The volumes of the two droplets are the same, 30cn', or a sphere 
with a 3.85 em diameter. Picture number 5 is at the moment when 
the two COlliding droplets reached the critical separation 
distance, and suddenly the distance between two colliding droplets 
was bddged and cOBll)scence then proceeded rapidly. Pictures 
number 7, 14, 19 and 20 show how two of thecon1cscence droplets 
fUsed into one, and how tile nonlinear wave-wave interaction 
Qscillated in the longitudinal direction. Pictures n\ll1ber 26 and 
31 show haw the nonlinear wave-wave interaction oscillated in the 
transverse direction. Pictures ntlllber 39, 51,59 and 7Z show the 
CPIltinuous nonlinear oscillations and how the nonlinear damping 
effect overcanes the nonlinear growth rate. Pictures number 93, 
132 and 151 show the typical small amplitude oscillations of B 
water droplet. 
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Figure 4. Skylab Fluid ~1ech:mics Demonstration - Collision and 
Coalescence of Water Droplets. 

The basic numerical techniques for studying collision and 
coalescence of an incompressible viscous fluid are those of the 
Marker-and-Cell ~C) method which were developed by the Los 
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Alamos group (Harlow and Welch, 1965). The MAC ~thoc1 solves the finite difference form of Navier-Stokes equations with the velocity components and pressure defined over a staggered Eulerian ~sh. The surface tension effects given by Yeung-Laplace relation serves as the boundary condition for the free surface. To apply boundary conditions at the edges of the collision (contact point of droplets), fUrther exper~ntal evidence must be obtained to justify either the condition of zero tangential stress or free-slip condition and/or other conditions to confirm the validity of numerical computations. In this sense, Skylab demonstrations of the collision and coalescence of water droplets has helped in our understanding of this phenomena. 

IV DISCUSSIOO AND cn;CWSIOOS 

TIle study of droplet dynamics has been,for many years, one of the most interesting topics in the· fields of atmospheric micro­physics, nuclear physics, astrophysics, fluid mechanics, mechani­cal engineering, Imd chemical engineering. The Fluid "Iechanics Demonstrations (TV 107 Series) performed during the Slcylab. missions produced excellent photographic data showing the oscil­lation, rotation, collision and coalescence of water droplets which simulate various physical models of interests under low gravity envirooment. Also, these TV 107 series of films provide interesting observations and illustrate the potential beneficial use of the low gravity environment for various branches of research. Particularly, scientific and technical evaluations have been provided by Skylab demonstrations to support the Zero­Gravity Atmospheric Cloud PhYSics Laboratory project in the fUture missions of Spacelab/Space Shuttle. 
lkJring the Skylab missions, special equipnent was not available and video recording was used for data collection. These video tapes were subsequently transferred to 16 mn movie film which was then supplied to the reseaTChers for analysis. In this respect, because of the restriction of speed 9f video recording, a laboratory type controlled exper~t was not perfol'l\led in the Skylab missions. However, qualitative in nature, these films have provided IIIJch interesting infonnation and illustrate the potential of an orbi ting research laboratory to provide data beneficial to terrestrial research problems. 
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APPENDIX A 

COlISULTANTS FROM THE CLOUD PHYSICS SCIENTIFIC 

COMMUNITY AND PARTICIPATION OF WORKING GROUP MEETINGS 

A group of scientists from the cloud physics scientific community 

were asked to serve as consultants for the present contract. Some of the 

scientists were also invited to participate in working group meetings. 

Tbe purposes of the service and working group meetings were to provide 

the advice and the guidance of the definition of experiments and 

scientific input to the cloud physics laboratory project which was 

necessary to assure successful experiments on the Shutt1e-Space1ab 

Cloud Physics Laboratory. Financial and limited administrative support 

for the scientists and engineers participating in the working group 

meetings was also provided from this contract. In general, the support 

for the personnel to attend the working group meetings consisted 

primarily of financial support for their travel to, from, and during 

the meetings, in addition to limited research activities at their home 

locations on specific items that were identified during the working 

group meetings. The support of meeting expenses, for example the 

working group meeting at the Plaza Inn, Denver, Colorado (September16-

18, 1975), was a1ao provided by the present contract. The list of 

scientists who served as consultants and/or participated in working 

group meetings, requested by the present contract, are as follows: 

(1) Dr. Larry Berbig1er 

University of Missouri - Rolla, Rolla, Missouri 

(2) Dr. John C. Carstens 

University of Missouri - Rolla, Rolla, Missouri 
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(3) Dr. Donald E. Coles 

California rnstitute of Technology, Pasadena, California 

(4) Dr. Kenneth Dunipace 

University of Hisso~ri-Rolla, Rolla, Missouri 

(5) Dr. Harry Edwards 

Colorado State University, Fort Collins, Colorado 

(6) Dr. Dennis M. Garvey 

Colorado State University, Fort Collins, Colorado 

(7) Dr. Donald Hagen 

University of Missouri_Rolla, Rolla, Missouri 

(8) Dr. Peter Hobbs 

University of Washington, Seattle, Washington 

(9) Dr. Thomas E. Hoffer 

University of Nevada System-Reno, Reno, Nevada 

(10) Dr. Charles Hosler 

Pennsylvania Stste University, University Park, Pennsylvania 

(11) Dr. J~es Hudson 

University of Nevada System-RenO, Reno, Nevada 

(12) Mr. Jim Hughes 

Naval Research Laboratory - Arlington, Virginia 

(13) Dr. Jim Jiusto 

S.tate University of New York, Albany, New York 

(14) Dr. James L. Kassner 

University of Millsouri-Rolla, Rolla,Missouri 

(15) Mr. Warren Kocmond 

Universityof.Nevada System-Reno, Reno, Nevada 
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(16) Dr. Garland Lala 

State University of New York. Albany, New York 

(17) Dr. C. L. Lin 

University of Missouri-Rolla, Rolla. Missouri 

(18) Dr. Henry Loos 

Laguna Research Laboratory, Lsguna Beach, California 

(19) Dr. Fred Rogers 

University of Nevada System-Reno, Reno, Nevada 

(20) Mr. Bob Ruskin 

Naval Research Laboratory, Arlington, Virginia 

(21) Dr. Bob Sax 

Experimental Meteorology Laboratory, Coral Gables, !lorida 

(22) Dr. Pat Squires 

University of Nevada System-Reno, Reno, Nevada 

(23) Dr. Gabor VaU 

University of Wyoming, Laramie, Wyoming 

(24) Dr. James W. Telford 

University of Nevada System-Reno, Reno, Nevada 

(25) Dr. Helmut Weickmann 

NOAA,Boulder, Colorado 

(26) Dr. Dan White 

University of Missouri-RoUa, RoUa, Missouri. 
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APPENDIX B 

SUBCONTRACTS FOR THE SUPPORT OF TERRESTRIAL 

SIKULATION OF SPACE SHUTTLE EXPERIMENTS 

The cloud physics research under zero or low gravity conditions 

offers an opportunity to answer msny problems that can not otherwise. 

be solved on earth-bounded laboratoties. By taking advantage of zero 

gravity to define many of the processes in clouds that are not yet 

fully understood, msn can influence weather by changing, for example, 

drop disttibutions and nuclei concentrations, or by adding pollutant 

composition. 

To support the development work and hardware design criteria 

on the Shuttle-Space lab Cloud Physics Laboratory Payload, the terrestrial 

simulation was urgently necessary. Two subcontracts were granted from 

the present contract. 

Two reports :e~omplished by the subcontractors were transmitted 

to NASA coordinator immediately after we received the reports. A 

summary of the reports are as follows: 

(1) "Computationsl and Calculational Support for Terrestrial 

Simulation Chsmber ," by J. C. Carstens and C. L. Lin of 

Cloud Physics Research Center, University of Missouti­

Rolla, Rolls. Missouri. 

Thegfi!neral nature of the problems related to heat and 

msss transfer in connection with humidity systems. cloud 

challiberwall, heat sink, flow a1l81ysis through the chamber. 

aer.osoldecay,and drop growth and/or evaporation for the 

simulated cloud chamber is investigated. 
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Computations on the humidifier system are undertaken 

to provide guidelines for the optimum humidifier design 

required by specified operating conditions. A general 

expression is derived to give any desired relative humidity 

for a ~et cbannel with constant temperature of plates. 

The thermsl analysis of the terrestrial UMR cloud chamber 

shows that the maximUDI temperature drops of the inner wall 

in one minute are l7.27·c and l2.94·C when the initial wall 

temperatures are 2S'C and -lS·C, respectively, provided that 

the maximum temperature difference between the thermoelectric 

unit is limited to lO·C. The temperature fluctuation along 

the inner wall for the case of the initial temperature at 

2S'C is only about O.026·C. It seems therefore that the 

thermsl analysis could be further simplified by using one-

dimensional approach to the whole chamber wall. 

The back-propagated effect of the sinusoidal temperature 

fluctuation created by the heat transfer through the cooling 

pipes inside the heat sink is also considered. It is found 

that the temperature fluctuation is damped out very rapidly 

and that the heat wave induced by the cooling pipes therefore 

will not be back-propagated seriously to the thermoelectric 

unit. 

The effect of the flow pattern by the camera mounted in 

the zero-g cloud chamber is analyzed by 8ssUDIingaxisymmetric 

fluid flow approximated as a potential flow pattern. The 

solution of the flow pattern can be used to determine the 
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number of holes to be drilled or locations and directions 

of holes to be drilled along both of the end plates inside 

the zero-g chamber. 

The drop growth and/or evaporation in the zero and 

the terrestrial chambers are numerically simulated by using 

Adam-Moulton predictor-corrector method. Good agreements 

are obtained with Saad et al.,'s results (1976). This 

method is then extended to include the gravitational effect 

by dividing the chamber into 5 layers. The profiles of 

temperature., supersaturation, liquid water content, vapor 

content, and drop growth with time are obtained along the 

height of the chamber. It is found that the maximum 

temperature and maximum supersaturation difference between 

layers 1 and 5 are around 0.12°e and 0.01, respectively 

for the characteristic length, 1 ~ 2pm. For 1 ~ 20Opm, 

the maximum temperature difference between layers I and 

5 is about O.OBoe and the dro.p growth is much slower than 

that of 1 .. 2pm. In other words, the sedimentation of 

droplets plays an important role in limiting the expansion 

rate. In the present calculations, the collision and coal-

escence effect, the ventilation effect, the deposition on 

the wall, the mass diffusion, and the heat transfer are 

neglected. However,thelatte.r two factors will be added 

to the program in t .. e future. 

The coolant flow analysis of zero-g simulated cloud 

chamber is a1.so included in this report. We conclude that 



some kind of heat-resistance material whose magnitude is a 

linear function along the flow direction, must be inserted 

between the channel and its upper wall in order to limit the 

temperature fluctuation inside the chamber wall. The 

difference between the solid wall temperature at the inlet 

and the inlet fluid tempErature is also an important factor 

in limiting the temperature fluctuation and the cooling rate. 

Several cases of calculations which are based on different 

boundary conditions are conducted. 

"Critical Review of Terrestrial Environment (Climatic) 

Criteria Guidelines for Use in Aerospace Vehicle Development," 

by E. A. Carter, Consulting Meteorologist of Huntsville, 

Alabama. 

This is a review of terrestrial environment data which 

can be applied to the Space Shuttle and other programs. 
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