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FOREWORD

The Shuttle Experimental Radar for Geological Exploration (SERGE)
Antenna and Integration Concept Definition Study was conducted for
NASA's Lyndon B. Johnson Space Center by Ball Brothers Research
Corporation under contract NAS9-15363. The Johnson Space Center
Technical direction for the SERGE study was provided by Mr. Harold
A. Nitschke and Mr. Curtis J. LeBlanc. The Principal Investigator
for SERGE is Dr. Charles Elachi of the Jet Propulsion Laboratory.

This report presents the final technical results of the study,
using material presented at the Concept Definition Review on
August 3, 1977 and the Final Presentation on September 26, 1977.
The study covers the concept definition of the SERGE Antenna,
feed system, supporting structure and pallet interfaces, and the
th,!rmal coverings. The other SERGE hardware, the transmitter,
electronics, optical recorder, etc., are provided by the Jet
Propulsion Laboratory. SERGE is planned to fly on the second space
shuttle mission, 0FT-2. The OFT-2 mission management for payloads
is provided by Johnson Space Center.

The study leader was Mr. John Kierein with major contributions from
Messrs. Gary Sanford, Tom Metzler, Jack James, Don Yagi, and Dan
McMann.

The title of the SERGE experiment is currently under review. It
has also been know as the All Weather Surface Observation Experiment
(AWSOE) and the Shuttle Imaging Radar-A (SIR-A).
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The baseline configuration of the SERGE Antenna, feed system, supporting
structure and thermal coverings is shown in the figure. The system
consists of two major assemblies, the installation truss assembly and
the strongback truss assembly.

The installation truss assembly is a free standing trusswork that
mounts to the OFT-2 pallet at 4 points using adjustable interface fittings..
These fittings provide adjustment to mate to the pallet hardpoints and
provide vernier pointing adjustment for the antenna. The truss joints are
covered with multilayer inslation (MLI) and the entire trusswork is
covered with teflon impregnated quartz cloth (TIQC) for thermal protection.
The truss will be shipped in two pieces and assembled prior to mounting
to the pallet.

The strongback truss assembly includes the strongback truss which supports
the 7-way coax corporate feed and seven antenna panel array. The front
face of the antenna array is covered by the TIQC and the entire rear of
the assembly is covered with both MLI and TIQC for thermal protection.
The strongback truss assembly mounts to the installation truss assembly
at four points. Shimming at these four points provides coarse pointing
of the antenna. The strongback truss assembly will be shipped as a single
unit.'

Both truss assemblies are constructed of graphite reinforced epoxy with
aluminum joints to provide a lightweight structure of sufficient stiffness
to meet the fundamental frequency requirements for structure mounted to
a.pallet.

The pallet is shown centered on the long dimension of antenna array. The
pallet location in the shuttle payload bay allows this positioning for
a seven panel array to fit the allowable envelope between the EVA
envelope at the hatch fromthe cabin to the bay and the access envelope
to the Development Flight Instrumentation pallet near the aft of the bay.

The preferred SERGE electronics location is identified to reduce the length
of feed line to the antenna. The electronics are provided by JPL.
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SERGE ANTENNA

BASELINE CONFIGURATION TEFLON-IMPREGNATED QUARTZ CLOTH (TIQC)
OR EQUIVALENT

F77-23

ANTENNA PANELS (7 NEW EMU)

7-WAY CORPORATE FEED

MULTILAYER ALUMINIZED MYLAR (MLI)

WITH TIQC OUTBOARD COVER

STRONGBACK TRUSS (GRAPHITE EPDXY)

MLI WITH TIQC OUTBOARD COVER

- INSTALLATION TRUSS (GRAPHITE EPDXY)

04- PREFERRED ELECTRONICS LOCATION
-r

-4- ADJUSTABLE PALLET INTERFACE FITTINGS (4)
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-F77-23

MAJOR FUNCTIONAL REQUIREMENTS

The major functional requirements are listed. The 33 d6 gain require-
ment is met using a seven panel array of SEASAT engineering model panel
design with a coax cable corporate feed to these panels. The power
is split to these panels with a "natural" taper of unequal power division
to provide for lowering the sidelobes in the horizontal E-plane to the
required level. This caused the horizontal beamwidth to marginally
exceed the initially specified 2 0 . The beamwidth requirements were sub-
sequently changed to 2.2 0 as the reduced sidelobes were determined to
be more important than the smaller beamwidth.

Orbiter interface requirements were taken from the Shuttle System/Cargo
Standard Interface Specification. One of the driving requirements was
the necessity of reducing the radio frequency interference levels in the
payload bay. This was accomplished by mounting the antenna high in the
bay.

Pallet mounted structure was required to have a fundamental frequency
greater than 25 hertz. This requirement necessitated the use of graphite
reinforced epoxy structural members in the strongback truss.

The low cost considerations resulted in the use of existing-design
engineering model panels from the SEASAT program and a low-cost coax feed
system.

41. a
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SERGE ANTENNA

	

t	 .. MAJOR FUNCTIONAL REQUIREMENTS

•	 33 dB GAIN

•	 1.4 to 2.2 DEGREE HORIZONTAL PLANE BEAMWIDTH

•	 14.5 dB SIDELOBES IN ALL PLANES
i

	

^—-	 •	 MEET ORBITER INTERFACE SPECIFICATION REQUIREMENTS

•	 ESPECIALLY RFI

•	 25 CPS FUNDAMENTAL FREQUENCY

•	 LOW COST
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YA	

MAJOR RESULTS

'Pali

The baseline configuration chosen is predicted to meet all RF performance
specifications at low cost and weight. The gain will be marginally
better than the specification and the sidelobes well below the specifica-
tion.	 -^

The structural fundamental frequency is predicted to be 28.5 hertz.
This provides a 3.5 hertz margin over the required 25 hertz. The indi-
vidual panels have a predicted fundamental frequency of 15 hertz with
a nine point attachment to the strongback truss. These panels are
relatively light weight components of the system and are not required
to meet the 25 hertz requirement of the primary structure of the strong-
back truss and installation truss assembly.

Thermal effects on panel flatness deviation and pointing at the antenna
were found to be small in the relatively benign environment of the
earth-pointing payload bay.

The peak amount of radio frequency interference coming from the backside
of the antenna panels into the payload bay is estimated at 1 volt per 	 j
meter at the center of the bay, half the allowable level	 This peak
amount occurs only if the transmitter transmits at 1500 watts. The a,
level is greater nearer the antenna and smaller farther away.
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SERGE ANTENNA
MAJOR RESULTS

Lt	 1	 RESULTS
i
t,

t	 I MEETS ALL RF PERFORMANCE SPECS.

1	 GAIN: 33,1 DB

E-PLANE BEAMWIDTH < 2,2 c'SIDELOBES —15 DB

1 WEIGHT LESS THAN 400 LBS,

1 ESTIMATED 370 LBS,

1 MAJOR STRUCTURE FUNDAMENTAL FREQUENCY 28.5 Hz 	 -"

1 PANELS	 15 Hz
i
i

1 THERMAL DISTORTION	 ,l INCHES MAXIMUM DEVIATION FROM PLANE

I
1 THERMAL EFFECTS ON POINTING < ,03 INCHES FROM PALLET REFERENCE

(MUST ADD ORBITER DEFLECTIONS)

1 RFI IN P/L BAY APPROXIMATELY 1 V/M PEAK
{
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EARLY ELECTRICAL ENGINEERING MODEL

One of the candidate panel designs for SERGE, and the design finally
chosen, was that of the engineering model unit (EMU) panels of the
SEASAT program. The array gain measured was for an eight panel array
rather than the SERGE seven panel array. Note that the H-plane (vertical
in the photograph) sidelobe levels are well below the specified levels
due to built-in H-plane power taper. The E-plane (horizontal) sidelobes
were reduced for SERGE by building in a power taper from panel-to-panel
in the seven way power division feed network to the panels. This," -^—
plus the use of seven rather than eight panels caused the E-plane beam
width to increase form 1.7 0 to 2.10.
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EARLY ELECTRICAL ENGINEERING MODEL

MEASURED PERFORMANCE
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PANEL GAIN = 25.9 DB

ARRAY GAIN = 34.9 DB*

SIDELOBES

E-PLANE - -13.0 DB

H-PLANE _ -17.0 DB

BEAMWIDTH

E-PLANE = 1.7°

H-PLANE = 6.1°

*ARRAY GAIN WITH LOSSLESS

FEED NETWORK.
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^ ^^	 PROTOTYPE PANEL - SEASAT FLIGHT MODEL

1

Another major antenna panel candidate was the flight model of the
SEASAT panels. A prototype of this panel is shown in the figure.
It differs from the EMU panel in that the feed on the flight unit is
a coaxial cable network to eight points on the panel. This resulted 	 ^-
in 'a marginally greater gain per panel, but was much more costly to
manufacture than the EMU panel.
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PANEL CONSTRUCTION

The EMU panels have a stronger construction than the SEASAT flight
panels. Both panels are of honeycomb construction, but the EMU panels
have the fiberglass side of the ground plane facing the inside of the
sandwich which provides a stronger bond to the honeycomb core. The
flight panels have the copper side of the ground plane facing the
core in order to marginally improve the gain. Since the gain require-
ments are not so great for SERGE as SEASAT, and the panels are launched
in a deployed configuration, the stronger 'EMU panels are of a better
construction for the SERGE application



PANELS
COMPONENT SEASAT EMU SEASAT FLIGHT

CIRCUIT SHEET G-10 EPDXY	 FIBERGLAS w/1 oz SAME ; SILVERPLATED WITH

COPPER CHROMATE CONVERSION COAT

CORE 3/8"	 HEXCEL	 HRP	 2.2	 lb/ft 3 1/4"	 HEXCEL	 HRH	 10	 1.5	 lb/ft3

1/4"	 THICK 1/4"	 THICK

ADHESIVE NARMCO	 1113-2 HEXCEL	 HEXABOND	 III

.030 lbs/sq ft .015	 lbs/sq	 ft

GROUND PLANE G-10 'EPDXY	 FIBERGLAS w/l	 oz SAME;	 COPPER,	 SILVERPLATED

COPPER .0003	 to	 .0008 WITH	 CHROMATE

CONVERSION COAT

FIBERGLAS TO CORE COPPER-SILVER TO CORE

PANEL	 FEED MICROSTRIP	 FROM ONE	 FEED MICROSTRIP	 FROM 8	 POINTS;

POINT COAX TO THE 8 POINTS	 FROM

ONE	 FEED	 POINT

i
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poll
	 EMU PANEL STATUS

	

- -	 Twelve EMU panels were manufactured. Gain measurements were made on
10 ofthem. Only six of the 12 have been found to be in good condition,
the others having been damaged or destroyed in development testing of
concepts forattaching bracketry, feed lines, and connectors. Since
the EMU panels were not built to flight quality control or drawings,
their usefulness as flight hardware would require considerable rework.
However, the existence of good gain measurements gives confidence in

E	 the performance of the design.
I
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SERGE ANTENNA

EMU PANEL STATUS

,x SERIAL NUMBER GAIN STATUS

1	 NOT'MEASURED DAMAGED - HOLE'S	 CUT,	 BRACKETS	 ADDED,	 ETC.

2 26.15 MISSING - PROBABLY	 DAMAGED

3 25.65 GOOD

4 25.85 GOOD

t 5 25.65 GOOD

6 25.85 MISSING

_ 7 25.85 GOOD

8 26.0 MISSING

9 25.8 GOOD

10 26.15 GOOD,	 REPAIRED	 PATCH

11 26.05 DAMAGED -	 HOLES	 CUT,	 BRACKETS ADDED

12	 NOT MEASURED DAMAGED - GROUND	 PLANE	 IN	 -	 NO	 CONNECTOR

I
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The facing chart indicates the rework which would be required to be
performed on the existing EMU panels to configure them for SERGE and
certify them for flight status. Even if this rework were performed,
the resulting panels would not have the quality control and materials
traceability of newly manufactured panels 	 There is also the danger that
the panels might be damaged in the reworking. Some of the rework
would require developmental testing to devise methods of removing
brackets and connectors without damage.
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SERGE ANTENNA
-	 EMU PANEL REWORK REQUIRED

•	 REPLACE CONNECTORS

r.	 •	 REMOVE BRACKETS

•	 TRIM
Y

:t	 •	 ROUND CORNERS AND EDGES

•	 INSPECT, CLEAN, REWORK COPPER TAPE AND REPAIRS

•	 OUTGASSING TEST

r	 TREAT COPPER

t	 BUILD SPARES AND/OR FLIGHT UNITS

i
i
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 PANEL SELECTION

A trade study to select antenna panels for the SERGE mission was

	

_-:	 performed. Panels newly manufactured to the EMU design were selected,
based mainly upon cost. An additional candidate antenna panel considered
was a new design of panels sufficiently smaller than the SEASAT 	 T

panels such that 8 panels could fit in the envelope and thus utilize
the more conventional 8-way power divider. The other options considered
were Flight SEASAT panels and the use of reworked existing panels.
A significant input to the panel selection trade study was the
confidence achieved in this study in the 7-way power division feed
network selected.

The SEASAT panels have a vented core honeycomb to preclude multipactor
_

	

	 (or corona). The existing EMU panels have a smaller vent size than
the Flight panels. The new EMU panels to be built will use the
larger vent size.

17



PANELS

REQUIREMENT

7

EXISTING

EMU

7

NEW

EMU

7

FLIGHT

SEASAT

8

NEW

SMALLER

NUMBER	 EXISTING 6 0 3	 (?) 0

NUMBER	 REQUIRED	 (INCLUDING 10 10 10 11
SPARES)

REWORK YES NO YES NO

Q.C./MATERIALS 	TRACEABILITY NQ YES YES YES

POWER DIVIDER 7-WAY 7-WAY 7-WAY 8-WAY

E-PLANE SIBELOBES/BEAMWIDTH MARGINAL MARGINAL MARGINAL MARGINAL

GAIN 32.9	 to	 33+ 32.9	 to	 33+ 34.1 33.3	 to	 33.6

VENT SIZE SMALL OK OK OK

ADDITIONAL	 DESIGN SMALL SMALL MED TO HI MED

MFG.	 COST LOWEST	 (?) LOW HIGHEST LOW

PROVEN	 DES;IG`N YES YES YES NOT YET
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F77-23

¢	 ^/	 MECHANICAL ANALYSES

The mechanical analyses included trade studies of the location of
the antenna in the bay, mounting concepts, materials, truss junction
concepts, concepts for panel attachment to the truss and feed
attachments, pallet adjustable fitting concepts, clearance analysis,
and weight and C.G. determinations.

The facing photograph shows a model of the antenna mounted high in
the payload bay on the OFT pallet between the DFI pallet and the
cabin bulkhead. This was the general location finally selected.
The antenna is pointed 50 0 away from the orbiter Z-axis.

j
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F77-23

Z/	 LOW IN THE BAY LOCATION

This photograph shows the antenna mounted low in the bay on a
pallet, another concept considered. In this location, reflections
of sidelobes from orbiter surfaces caused potentially high RFI 	 .
levels in the bay.
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This photograph shows a concept initially considered.. The direct

mounting to the orbiter resulted in excessive weight of supporting
structure and was rejected early in the study.
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F77-23

	

__ t	 rFi  GENERAL ARRANGEMENT TRADEOFF

	

— -	 The arrangement selected was the pallet high mount configuration
based mainly on considerations for reducing the levels of potential
RF-interference in the bay. As a result of the selection, the
SERGE electronics location was re-arranged on the pallet to move
it to the same site of the pallet as the antenna thus reducing the
length of feed line needed.

25



i	 F77-23

ro,	 SERGE ANTENNA
t-a	

GENERAL-ARRANGEMENT TRADEOFF

If

'

PALLET/HI PALLET/LO

1

SANS	 PALLET

WEIGHT ACCEPTABLE BEST PROHIBITIVE

STRUCTURAL STIFFNESS ACCEPTABLE BEST X

THERMAL ENVIRONMENT ACCEPTABLE BEST X

FEED	 (ELECTRONICS) POOR* BEST X

ANTENNA PERFORMANCE GOOD GOOD X

RF	 INTERFERENCE BEST POOR X

*PALLET/HI ELECTRONICS-FEED RATING WILL BE AS GOOD AS FOR PALLET/LO TF SERGE ELECTRONICS ARE

MOVED TO STARBOARD (ANTENNA) SIDE.

Ir

26

t



r,

F77-23

Pori 
0 

VA
	 FORM TRADEOFF

ra

Box and truss structures were considered as structural forms for the
support structure. Truss structures were selected mainly because
of the reliability of analyses of this type of structure.

,FI
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ANTENNA STRONGBACK

AND	 INSTALLATION STRUCTURES

TRUSS BOX

STIFFNESS/WEIGHT ACCEPTABLE ACCEPTABLE

STRENGTH/WEIGHT ACCEPTABLE ACCEPTABLE

ACCESS--PALLET HARD POINTS BEST ACCEPTABLE

ACCESS--OTHER EQUI-PMENT BEST POOR

FABRICABILITY BEST ACCEPTABLE

THERMAL CONTROL EQUAL EQUAL

COST	 (LABOR)* ACCEPTABLE BEST

RELIABILITY OF ANALYTICAL RESULTS BEST POOR

*BASED ON GRAPHITE—EPDXY TRUSS AND SHEET—METAL BOX STRUCTURES

y s,	 -



t

F77-23

STRUCTURAL MATERIALS TRADEOFF

Although graphite epoxy had the highest cost, it proved to be the
only material for the strongback trusswork capable of meeting the
25 hertz structural requirements due to its high stiffness to weight 	 —
ratio. This is discussed in the strucutral dynamics section of the
report in more detail. As weight considerations became more important
later in the study, the lighter weight of the graphite epoxy structure
also became a more attractive feature of its selection.

i
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ALUMINUM GRAPHITE STEEL TITANIUM

STIFFNESS/WEIGHT POOR BEST POOR POOR

STRENGTH/WEIGHT ACCEPTABLE BEST POOR POOR

MATERIALS COST ACCEPTABLE HIGH LOW ACCEPTABLE

THERMAL CONTROL ACCEPTABLE BEST POOR POOR

FABRICABILITY GOOD ACCEPTABLE GOOD GOOD

AVAILABILITY GOOD ACCEPTABLE GOOD GOOD
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GENERAL ARRANGEMENT

-----	 The general arrangement of the trusses and panels on the OFT
pallet is depicted in the figure. The pallet hardpoints used
are identified and dimensions given.

31
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- r L 	 SERGE ANTENNA

GENERAL ARRANGEMENT
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ti	 F77-23

TYPICAL TRUSS JUNCTION END FITTINGS

-- —	 The truss muember junction concept is illustrated. The end fittings
have clevis members to permit truss assembly. Two bolts may be
used to attach each end fitting to the junction rather than
the single bolts shown in order to make a more rigid junction.

33
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polo, ^^	 SERGE ANTENNA
TYPICAL TRUSS JUNCTION AND END FITTINGS

L^
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F77-23'

TYPICAL TRUSS JUNCTION AND END FITTINGS

Another truss junction is illustrated, this one at the interface
between the strongback truss and the installation:, truss. Handling
fixtures for lifting the strongback and lowering it to the
installation truss on the pallet will interface with this junction.

35 1
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SERGE ANTENNA
TYPICAL TRUSS JUNCTION AND END FITTINGS

HANDLING-FIXTURE THREADED-INSERT BOLT HOLE

INSTAI
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F77-23

PANEL ATTACH FITTINGS

The panels will be attached to the strongback truss using a thermally
4 non-redundant mounting concept similar to that used to attach the

SEASAT panels to its trusswork. This concept permits differential
expansion of the trusswork and panels and reduces distortions.

The panel attach fittings will be bonded to the back of the.
panels. A pattern will be etched away from the ground plane to

— -	 allow bonding to the fiberglas substrate, making a stronger bond.

i
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SERGE ANTENNA

PANEL ATTACH FITTINGS
u^

PATTERN ETCHED THROUGH COPPER GROUND-PLANE TO *;
ALLOW BONDING OF FITTING TO FIBERGLAS SUBSTRATE	 ri

F' BONDED COLLARS, AT FITTINGS A AND B ONLY,
PREVENT MOVEMENT ALONG TUBES (ALL OTHERS
FREE)

SLOTTED HOLES, IN ALL FITTINGS EXCEPT A AND C,
PERMIT MOVEMENT NORMAL TO TUBES.
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F77-23

RF FEED ATTACH FITTINGS

The RF coax cable feed will be attached in a manner which allows the
cable to expand without producing a load on the trusswork. A short
length of flexible coax cable will interface between the panel connector
and the larger coax cable to protect the interface from loads.
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F77-23

ADJUSTABLE PALLET INTERFACE FITTINGS

An adjustable pallet interface fitting will be provided to mate to
the pallet hardpoints. The adjustment will allow the interface ball
to be located at the socket. It will also provide fine pointing
capability (± 2 0 ) after the antenna has been coarsely aligned to a
within j of the pointing direction by 'shims at the strongback
to installation truss interface. This capability will allow the
antenna to meet the ± 0.2 0 pointing accuracy requirement with respect

r	 to the pallet trunnions in a one-g environment.
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Pei 	 SERGE ANTENNA
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ADJUSTABLE PALLET-INTERFACE FITTINGS (4)

CD

/o
0	 TRUSS-TUBE END FITTING

BASE
CONCENTRIC FEMALE THREADS

OUTBOARD SLEEVE
o	 CONCENTRIC MALE, ECCENTRIC FEMALE THREADS. 	 ?

	

a	INBOARD SLEEVE

ECCENTRIC PALE, CONCENTRIC FEIIALE THREADS

O	 BOLT
_	

CONCENTRIC MALE THREADS

i

LOCK NUT - OUTBOARD SLEEVE

LOCK NUT - INBOARD SLEEVE

LOCK NUT - BOLT

LOCK NUT - BALL SOCKET (PALLET HARDPOINT)

BALL

t



F77-23

CLEARANCE ANALYSIS - INSTALLED STATIC POSITION

A clearance analysis was conducted to verify that orbiter distortions
due to thermal "hotdogging" and ascent and landing dynamics did
not result in mechanical interference with the antenna. The next
4 figures show that under static conditions thermal distortion
conditions, ascent conditions, and landing conditions no interferences
result. The most critical case is the ascent condition.
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'mpg;

SERGE ANTENNA
ORBITER THERMAL DISTORTION 6—HOUR HOLD

REDUCES LATERAL CLEARANCE (REF. UNDISTORTED ENVELOPE):

•	 FROM 19.39 to 18.57 INCHES AT TOP/FWD ANTENNA CORNER

•	 FROM 19.39 to 18.31 INCHES AT TOP/AFT ANTENNA CORNER	 r

A

X,= 781 ..9	 X. = 996.5

94,97—\

9-4.93

Y, _ X8..5,	 _ /8.78
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a	 SERGE ANTENNA

ORBITER DYNAMIC DISTORTION — ASCENT

REDUCES VERTICAL CLEARANCE (IEF. UNDISTORTED ENVELOPE)

	

a	
I	 FROM 6.24 to 4.11 INCHES AT TOP/FWD ANTENNA CORNER

•	 FROM 6.24 to 3.92 INCHES AT TOP/AFT ANTENNA CORNER

781.9	 X, - 840.9

76 =. 484,12	 3,2

i

A^
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SERGE ANTENNA

ORBITER DYNAMIC DISTORTION - LANDING

INCREASES VERTICAL CLEARANCE (REF. UNDISTORTED ENVELOPE)

•	 FROM 6.24 to 8.71 INCHES AT TOP/FWD ANTENNA CORNER

t	 FROM 6.24 to 9.47 INCHES AT TOP/AFT ANTENNA CORNER

i

I
1

Vie- ^8^. 9 --^ ^ X:o 840.9

E

j

,r {	 i	 z o = ¢ 78.7

^" = 4I1, zi-1	
.moo = 4iI. 09

r.

Jf Y	 A ^
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The estimated weights for the baseline configuration are given in
the chart. The 101 uncertainty is utilized to account for potential
uncertainties in calculations. The margin is for potential design
changes which could result in weight growth. The target weight
(best estimate plus uncertainty) is slightly less than 170 Kg ( 370 lbs).
The not-to-exceed weight (including margin) is 181.3 Kg (400 lbs).

The approximate C.G. location corresponding to the best estimate
weight is also given in the chart.
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F77-23
SERGE ANTENNA

G	 x ESTIMATED WEIGHT BREAKDOWN

ANTENNA PANELS (7 NEW EMU) 
FEED FITTINGS _(7)
COAX "PIG TAILS" WITH CONNECTORS (7)

-"	 - PRIMARY COAX WITH CONNECTORS (18.4 m x 28 mm DIA)
POWER DIVIDERS (1 3-WAY + 4 2-WAY)
ELECTRONICS COAX WITH CONNECTORS (1.2 m x 28 MM DIA)
CABLE ATTACH FITTINGS (APPROXIMATELY 50)
THERMAL FRONT-FACE COVER (20.4 m2 TIQC)

- TOTAL ANTENNA

STRONGBACK TRUSS TUBES (84.1 m x 38.1 mm DIA)
JUNCTION AND TUBE-END FITTINGS (25 JUNCTIONS)
INSTALLATION TRUSS MOUNTING PLATES (4)
BOLTS, NUTS, ADHESIVE, ETC.
THERMAL BALNKET (30.7 m2 , 5 LAYERS MLI + 1 TIQC)

TOTAL STRONGBACK TRUSS

INSTALLATION TRUSS TUBES (27.6 m x 50.8 mm DIA)
JUNCTION AND TUBE-END FITTINGS (9 JUNCTIONS)
STRONGBACK TRUSS MOUNTING PLATES (4)
BOLTS, NUTS, ADHESIVE, ETC.

" ADJUSTABLE PALLET- INTERFACE FITTINGS (4)
THERMAL SLEEVES (8.2'm2 , 5 LAYERS MLI + 1 TIQC)

-- TOTAL INSTALLATION TRUSS

TOTAL ANTENNA SYSTEM, BEST ESTIMATE

UNCERTAINTY (10%)

TOTAL ANTENNA SYSTEM, TARGET WEIGHT

MARGIN

TOTAL ANTENNA SYSTEM, NOT-TO-EXCEED

C.G. LOCATION - ORBITER STATION

Xo
Yoj.w
Zo

5o

KILOGRAMS	 (POUNDS)

34.9 77.0
0.3 0.7
0.6 1.4

20.4 45.0
0.8 1.7
1.6 3.6
3.4 7.5
5.3 11.8

67.3 148.7

25.2 55.7
7.3 16.1
0.9 2.0
2.5 5.5

10.7 23.6

46.6	 102.9

37.7 83.2

151.6 334.8

15.2 33.5

166.8 368.3

14.5 31.7

181.3 400.0

MM	 INCHES

	

20608.8	 811.4

	

1053.9	 41.5

	

10908.3	 429.5
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Per,*,	 SERGE ANTENNA

STUDY CONCLUSIONS	 MECHANICAL

I "HIGH" POSITION ON STARBOARD SIDE OF PALLET

I TRIANGULAR-SECTION, 7-BAY, 1,5 INCH DIA. GRE-TUEF STRONGBACK TRUSS

I "STAND-ALONE", 2,0 INCH DIA, GRE-TUBE INSTALLATION TRUSS WITH FIELD JOINT

I ALUMINUM JUNCTION AND END FITTINGS, BOTH TRUSSES

I 4-POINT, HARD-BOLT INTERFACE BETWEEN TRUSSES

I 4-POINT, ADJUSTABLE-POSITION PALLET INTERFACE FITTINGS

I COARSE POINTING AT BOLT INTERFACE AND FINE POINTING AT PALLET INTERFACE

I POINTING REFERENCES TO BE OPTICAL FLAT ON ANTENNA AND PLANE OF

PALLET TRU'141 NIONS,	 IN 1 G, AT LEVEL IV INTEGRATION

I NON-REDUNDANT, ALUMINUM.,	 PANEL ATTACH FITTINGS

I LOAD ISOLATION OF RF-FEED DIVIDERS VIA HARD-CLAMP TRUSS [FITTINGS

I LOAD ISOLATION OF PANEL RF-FEED FITTINGS VIA LOOPED PIG TAILS

I SHIPMENT OF ANTENNA., EXCEPT INSTALLATION TRUSS, AS ONE ASSEMBLY
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I //	 F77-23
/	 RF ANALYSIS

The RF objectives of the SERGE Antenna Study were to:

1) Define the antenna to be flown

2) Establish mountingconfiguration based on antenna performance and
Shuttle interface requirements

3) Define the panel feed system and establish performance levels

4) Project performance of the selected SERGE Antenna configuration

Several studies were undertaken by BBRC to accomplish these objectives.. The
results are summarized in the following section. First the selected configura-
tion and projected performance is outlined with more detailed trade-off studies
considered in the following order: panel study, mounting configuration, feed
system,_ thermal blanket effects and gain-loss budget.

The SERGE antenna consists of seven new EMU panels for which the
electrical design and efficiency have been demonstrated during the SEASAT
program. The panels are interconnected by a 7/3" coax corporate feed providing
both amplitude taper on the outer four panels and equal phase illumination to
all panels. A high-in-the-bay mounting configuration immproves the electrical
performance and reduces unwanted radiation within the payload bay.

f '—	 53
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F77-23

'//	 PROJECTED PERFORMANCE

The facing table lists nominal expected performance levels 	 It should be
noted that the E plane beamwidth criteria has been modified to accommodate
the required E plane taper for 14.5 dB sidelobes.

s
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t a	
, ^Z SERGE ANTENNA

	

`'`	 PROJECTED PERFORMANCE1

CRITERIA SPECIFICATION
PROJECTED

PERFORMANCE

OPERATING FREQUENCY 1,275	 MHz 1,275	 +	 3	 MHz

BANDWIDTH +	 11	 MHz +12/-14 MHz

VSW'R 1.5:1 1.5:1

PEAK POWER 1,500	 WATTS >1,500 WATTS

GAIN 33.0	 dB 33.18

BEAMWIDTH	 E-PLANE 2.20 2.1

BEAMWIDTH	 H-PLANE 6.20	 +	 .1 0 6.20

SIDELOBES	 E-PLANE 14.5	 dB 15.0	 dBl

SIDELOBES	 H-PLANE 14.5	 dB 17.0	 dB

POLARIZATION PURITY -20	 dB -26	 dB

PHASE ERROR <200 +	 5 0	OFF-BORE SIGHT < 50

DEVIATION	 FROM QUADRA-
TURE	 FIT 2.0° .5°

RFI 2 V/M 1 V/M 2

1)GRATING LOBE AT 470
.-	 2)ESTIMATED LEVEL AT CENTER OF PAYLOAD BAY 	

56
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PANEL STUDY

The selection of EMU panels was based on low cost and risk both
in the design and manufacturing stages of this program. The
electrical performance is acceptable and has been thoroughly
established. Due to element spacing the EMU array exhibited a
14.5 dB grating lobe at 47 0 from boresight in the E-plane.

i

I
1
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TRADE-OFF CRITERIA EMU	 PANELS FL?GHT	 PANELS NEW PANELS

ELECTRICAL:	 GAIN ACCEPTABLE GOOD ?

SIBELOBES GRATING LOBE GOOD GOOD

DESIGN	 RISK LOW LOW HIGH

MECHANICAL:	 COMPLEXITY - EXCELLENT POOR GOOD

RESONANT FREQ. GOOD POOR GOOD

DESIGN	 RISK LOW HIGH LOW

DEVELOPMENT COSTS LOW LOW HIGH

MANUFACTURING COSTS LOW HIGH LOW

CONCLUSION: SEVEN EMU PANEL CONFIGURATION WILL MEET ALL SYSTEM SPECIFICATIONS WITH
THE EXCEPTION OF 16 dB INTEGRATED SIDELOBES. THE SPECIFICATION WAS

..	 SUBSEQUENTLY CHANGED TO REFLECT 16 dBINTEGRATED SIDELOBES WITHIN 40°
OF THE BORESIGHT, MAKING THE GRATING LOBE AT 47° ACCEPTABLE. a

i
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Due to the proximity of the SERGE antenna to potential reflecting
surfaces within the Shuttle bay, it was necessary to evaluate
the antenna performance in its operating environment. As shown
in the facing figure, BBRC built a 1/10 scale model of the SERGE
antenna and Shuttle bay. Pattern tests were conducted with the
antenna mounted in a high configuration as depicted, and also
mounted on the opposite side of the bay in a low mounting con-
figuration.
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Test patterns were first obtained for the 1/10 scale SERGE antenna
under free space conditions These results were compared to
patterns recordedwith the antenna mounted both high in the bay
and low in the bay. The scale model antenna operated at a fre-
quency of 12.7 GHz providing patterns scaled to the payload bay
model	 The measured patterns are shown on the following four
charts. As only minor variations were detected in the E-plane,
only H-plane patterns are shown for comparison.

r ''

__	
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a SERGE ANTENNA

1/10 SCALE TEST

E-PLANE

NO MODEL

A

r
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SERGE ANTENNA
1/10 SCALE

H-PLANE

LOW MOUNT
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F77-23

MOUNTING CONFIGURATION	 j

TEST RESULTS

The 1 /10 scale model results are summarized in the opposite table. In
terms of beamwidth and firs , sidelobe levels, there appears to be little
impact on the antenna in either the high or low configuration. Further
study indicates that in the low configuration, outer sidelobes increase
three to five dB and null filling occurs. Tests also indicated that in
the high mount, minor aberrations in sidelobe3 are due to reflections 	 -
off the Shuttle's outer thermal radiator panels and not due to reflec-
ti.ons from within the Shuttle bay.

I% moon
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SERGE ANTENNA

O	 1/10 SCALE

TEST RESULTS

H-PLANE

si.

a—+.Y

ANTENNA POSITION

BEAMWIDTH*

3aB	 8dB

SIDELOBES	 (dB)

LEFT	 RIGHT

GRATING	 LOBES	 (dB)

LEFT	 RIGHT

NO MODEL 6.10 9.30 -13.0 -13.8 ---- -----

HIGH 6.00 9.10 -13.0 -13.0

LOW 6.20 9.00 -12.5 -13.0

t

E-PLANE
E

NO MODEL 1.50 1.90 -12.5 -13.0 15.5 16.0

HIGH 1.40 1.90 -12.0 -12.5 15.0 18.0

LOW 1.50 1.90 -12.2 -12.8 14.7 15.5

1

+'	 a
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MOUNTING CONFIGURATION RFI

In the low-mounted configuration increased sidelobe levels indicated
significant reflections within the Shuttle bay. To estimate the
electric field intensity within the bay, the analysis as shown on
the faci7-1 page was performed. The estimated level of 10 volts/
meter exceeds specification.

With the high mount, only radiation due to currents on the backside
of the panels will be detected within the bay. Near field patterns
of a single EMU panel were measured with major attention focusing
on the back side radiation. A similar analysis applied to these
near field measurements yield an estimated electric field intensity
of l U/m at the center of the Shuttle bay.

Based on pattern performance and a reduction in the RFI level by
20 dB the high configuration was selected.

n
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SERGE ANTENNA
RFI CONSIDERATIONS	 -^

•	 SPE'CIFICATION

ELECTRIC FIELD INTENSITY < 2 V/m

0	 OBSERVED FIELD LEVELS IN LOW CONFIGURATION

INTERIOR REFLECTIONS INCREASE SIDELOBES 2-5 dB 	 _II

3 dB INCREASE FIFTH SIDELOBE IMPLIES REFLECTED SIGNAL OF 25 dB DOWN
FROM PEAK LEVEL OR 4.74 WATTS

ASSUME THAT THE INTERIOR SPECULAR REFLECTIONS ORIGINATE FROM AN APER-
TURE EQUAL IN SIZE TO THE SERGE ANTENNA. THE POWER DENSITY AT THIS
APERTURE IS .26 WATTS/M2.

PLANE WAVE APPROXIMATION--POWER DENSITY = E2 /ql

E	 10 V/ m	 ---

•	 OBSERVED FIELDS EXCEED SPECIFICATION

70
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Pori

	

SIDELOBE STUDY - FEED SYSTEM AMPLITUDE TAPER

The specification of 14.5 dB sidelobes in all planes requires that

power tapers be applied in both the E and H-planes. The EMU panel
	_	 is designed with an H-plane taper and achieves 17 dB sidelobey in

this plane. A power taper can be applied by the panel feed system
such that the power is distributed to the panels achieving a step-
wise taper across the aperture in the E-plane. Computer analysis
of various step-tapers using the measured EMU pattern as the element
factor were conducted during this study. A summary of the projected
array performance for various step tapers is shown.

The "natural" taper developed for the SERGE 7-way power division
to the 7 panels which presents the least development costs and	 j
risks requires further explanation. Four equal 2-way power 	 I

division; and one equal 3-way power division implements the

	

-.^--	 required amplitude distribution. After initially splitting the
input power in half, 50 percent of the total power is used
to feed the center three panels. This power undergoes a
3-way power division such that the center three panels are each
illuminated with 1/6 of the total power. The remaining power is
equally divided by three 2-way power divisions. The outer
four panels thus are illuminated at 1/8 the total power each.
This is the selected distribution to be used on the SERGE antenna.

71
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BEAMWIDTHS FIRST SIDELOBE GRATING LOBE DIRECTIVITY

3	 dB 8 dBTAPER LEVEL	 (dB) LEVEL	 (dB) LOSS	 (dB)

NONE 1.22° 1.880 -13.0 -17.2 ---

COSINE 1.27° 2.05° -15.0 -17.2 -.03

16	 dB

TCHEBYSCHEFF 1.22° 2.05° -16.0 -17.2 -.02

"NATURAL"

TAPER 1.33° 2.00° -15.0 -17.2 -.05

CONCLUSION:;

•	 REQUIRED 14.5dB SIDELOBES CAN BE OBTAINED, BUT BEAMWIDTH SPECIFICATION WILL BE
EXCEEDED. CAN E-PLANE BEAMWIDTH SPECIFICATION BE INCREASED TO 2..2 degrees?

•	 GRATING LOBE WILL EXIST AT 47 DEGREES IN E-PLANE OF EMU ARRAY. MEASUREMENTS
INDICATE A -14.5 dB LEVEL AT 1.275 Ghz.
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psiFEED SYSTEM REQUIREMENTS

Gain and sidelobe level specification dictate that the selected
component feed system be able to obtain low insertion loss while
providing a stepped amplitude taper across the array.

Nominally the power level to the center three panels should be 7.8
dB below the input level with the outer four panels, 9.0 dB
below the input level

f
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PARAMETER REQUIREMENT EXPECTED PERFORMANCE

INSERTION LOSS(INPUT PORT TO PANEL) .3 .62	 DB

INPUT VSWR 1,5;1 1,5,1

POWER DIVISION -9,03 -9,0 +
-7,73 -7.3 + O

BANDWIDTH ± 11 MHz ± 11 MHz

CENTER FREQUENCY 1275 MHz 1275 MHz

INPUT POWER 1500 WATTS PEAK
90 WATTS AVG,

PHASE ERROR (BETWEEN' PANEL PORTS ± 5 0 + 5 0

INTERFACE CONNECTOR TBD

d
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F77-23

r	 FEED SYSTEM POTENTIAL TRANSMISSION LINES

Air-loaded 7/8" coax was selected for the main distribution lines
after the first power division, with a dielectrically-loaded 7/8"
coax up to that point. System tests which will be discussed later
in this report confirm that a coax corporate feed can achieve the
insertion loss values indicated. The coaxial system presents low

`	 design risks and low manufacturing costs when compared to suspended
substrate or waveguide. 	 •°-^-

The 3 dB multipactor margin in the coaxial configuration is based
on a dielectrically-loaded 7/8" input cable with the first power
divider also dielectrically-loaded. The 7/8" air dielectric cable
will handle 1900 to 2000 watts into a matched load before multipactor
breakdown occurs. If the system peak instantaneous power is such
that a 3 dB multipactor margin can be maintained, it would be
advantageous both in terms of reduced insertion loss and development
costs to use an air-loaded input section rather than the dielectrically-
loaded coax. Multipactor considerations also require the use of
HN type connectors rather than N type.

is

i
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SUSPENDED SUBSTRATE	 WAVEGUIDE

ELECTRICAL

INSERTION LOSS

PHASE SENSITIVITY (PPM/-C)

MOLTIPACTOR MARGIN
a..

DESIGN RISK

MECHANICAL

COMPLEXITY

WEIGHT

VACUUM VENTING

THERMAL

k	 POWER DISSIPATION

t

MANUFACTURING COSTS

,5 .3

GOOD GOOD

3 DB 3 DB

Low + HIGH

FAIR HIGH

25 LBS. 100 LBS,

GOOD GOOD

GOOD	 GOOD

HIGH	 FAIR

P
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Pori ^/
	 FEED SYSTEM BASELINE CONFIGURATION

A schematic figure of the corporate feed is shown as well as ortho-
graphic projections of the actual layout. The cable connecting
the radar electronics to the antenna is not shown

In the proposed baseline configuration power enters directly into

a reactive coaxial power divider. This unit is an off-the-shelf

item which has been modified to be dielectrically loaded and has

HN type connectors. The vendor (Microlab) indicates these modifi-
cations can be made with no deterioration in performance. Air-
loaded 7/'8" coax cable with male HN connectors is used to inter- 	 !`°" —
connect similar power dividers as shown to obtain the required

distribution. Just before entering each panel a short length of

3/8" flexible cable is used to protect from potential mechanical
loads at the panel to strongback attachment.

The cables will be phased by adjusting length D such that all

parts are fed in phase. Cable D is shown in the orthographic

projections as a loop perpendicular to the plane of the antenna.

xy
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10Z
z 	 SERGE ANTENNA

BASELINE 'CORPORATE FEED

PgNEL TERi9/NATION	 FEEO SYSTEM SCHEMATIC
^a 1

 8-
1-3	 A-^	 i	 v

^-D	 1- y - 2 WAV Pow£R DIV/DZO

s	 INPUT	 S = 3 WAY POWER DIVIDER
C	 -q—D- 7/9 COAX

	PANEL FEED	 3 WAY POWER DIVIDER

I/8	 1/8	 1/6	 I/6	 1/6	 1/8	 1/8

	

4	

LL2 WAY POWER	 INPUT	 7/8`^ COAX	 FLEXIBLE
^—	 DIVIDER	 COAX

a

COMPONENTS	 MANUFACTURER

COAX 7/8" HCC-78-50—J CABLEWAVE
HN CONNECTORS MODIFIED 738250 CABLEWAVE

COAX 3/8" F382 FLEXCO

MODIFIED D2-2TN POWER DIVIDER MICROLAB

MODIFIED D3-2TN	 POWER DIVIDER MICROLAB r.w
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FEED SYSTEM PROTOTYPE TEST/

A prototype feed system consisting of Andrews HJ5-50 7/8" coax-cable
with 75AN'connectors and Microlab D2-2TN power dividers was con-
structed as shown. This system did not model the 7/8" input
cable or the short flexible cable at the panels.

The major objective of this test was to confirm calculated system
insertion loss values.

79
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F77-23

Pori CORPORATE FEED INSERTION LOSS MEASUREMENTS

The insertion loss through each of the seven output ports was
measured on a network analyzer with all other ports terminated in
matched loads. Output cables A or B were connected to the port
being measured. Thus each port measurement simulated the actual
length of transmission line to be used in the flight system.

Measured data is depicted on the facing page. Note that the
required power split was generally obtained across the band.
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SERGE ANTFNNA

CORPORATE FEED

INSERTION LOSS MEASUREMENTS

/ry0/Ve

"IN

-8

(30

LAJ

-9
03

D 4

—10

1225 1250	 1275	 1300	 1325

FREQUENCY	 MHz
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CORPORATE FEED INSERTION LOSS

1

Using the measured data, the system insertion loss was calculated
by summing the output from each port. Mismatch loss was negligible
across the band. The input VSWR with all ports terminated did not
exceed 1.15:1.

Measured insertion loss for the prototype system was .3 dB. Perhaps
more important than this low insertion loss is the fact that the
insertion loss was predictable based on measured values for the
component elements
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F77-23

FEED SYSTEM LOSS BUDGET

Based on the prototype tests, a refined estimate was made of the potential
corporate feed loss budget. Including the dielectrically loaded
input section and the short flexible cable at each panel, predicted
insertion loss is nominally .6 dB.
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Pori ^/ SERGE ANTENNA

CORPORATE FEED LOSS BUDGET

COMPONENT	 LENGTH	 LOSS DB/FT	 TOTAL LOSS DB

„., INPUT LINE (7/8") 4.51 . 035 ,16
u. (DIELECTRICALLY LOADED)

POWER DIVIDER , 03

POWER DIVIDER .03

CABLE RUN_ 11,0 ,015 ,18
i

' POWER DIVIDER ,03

a CABLE RUN 2,3 .015
,04

3/8" FLEX ` .JUMPER AND

PANEL CONNECTION 1.0 ,12 X15

TOTAL LOSS ,62
r

,a

I.
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FEED SYSTEM POTENTIAL COAX CABLES

A survey of potential vendors found two cables (Cablewave HCC-78-50-J,
Andrews H55-50) acceptable for main transmission lines. Flexco_	
manufactures cables suitable for the input and flexible panel
connections, but these may be available only in large quantities.
The vendor is further checking stock and alteriiate sources will be
contacted.

I
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DIAMETERS PHASE

WEIGHT ATTENUATION PEAK POWER AVERAGE MULTIPACTOR
RMIN

STABILITYOUTER	 INNER

COMPANY PART NO. CONSTRUCTION ID	 OD	 ID LB/FT dB/FT I ATM (kW) POWER(kW) LEVEL (W) °F)(ppm/ CONNECTORS AVAILABILITY

CABLEWAVE SLA-78-50J POLYETHYLENE .758	 .875	 .310 .39 .018 58.8 1.5 1900
9.1

EIA, N STOCK

SPIRAFIL HELIX, 7/8" MODIFY FOR

ILUMINUtf HN

HCC-78-50J POLYETHYLENE" .794'	 1,00	 354 .55 .015 76.7 1.7 1900 i0" Same Same Same

WELLFLEX HELIX COPPER'
7/8", 1-5/8" 1.564	 1.830	 .473 .89 009 278 1.85 >4000 20" -- EIA only --

1'-78-50 TEFLON STUDS ,785	 .875	 .341 ,60 .012 61 1.5 2000 No -- EIA and Same

RIGID 7/8" Bends Adaptors

HCC-R-50J 1/2" HELIX .338	 .484	 .155 .16 .03 15.3 .55 380 51, N, EIA Same

WELLFLEX

ANDREWS H55-50 7/8" HELIX --	 1.11	 -- .54 .014 44 1.8 1800
101, N, EIA Stock

PC`. a ZTHYLENE

TIMES AS50716P TFE-SPLINE .642	 .716	 .248 .216 C25 48.4 6.5 1650 9" 12 N, EIA 50,000' only

FLEXCO 5642 TFE-SPLINE 1.025	 -- .525 .018 384 1.8 - 5.13 12 N, EIA, OUT

7/8" TNC

S542 TFE-SPLINE .875	 -- .475 .020 250 2 -- 4.37 -- N, EIA, STOCK
3/4 TNC

F382 TFE SOLID .420	 -- .100 .12 -- .9 SOLID DI- 1.85 -- HN, N STOCK

3/81 ELECTRIC TNC

F682 TFE SOLID 1.025 - .035 SOLID DI- 5" -- HN,N ---
7/8 ELECTRIC

88
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FEED SYSTEM POWER DIVIDERS

Two alternate power divider concepts will be approached by BBRC
in parallel	 The actual performance levels of "baseline Microlab
dividers with HN type connectors and dielectric loading is not
known. Modifications will be needed to increase the average power
capability of the device. These design risks indicate alternate
approaches should be studied.

BBRC has developed and tested a prototype 7/8 diameter reactive
power device. EIA instead of HN connectors ran be used and the
device will easily handle the average power. Tests of this alter-
native indicate performance will equal the standard Microlab D2 -2TN
device tested in the prototype feed system.

89
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L	 MODIFIED MICROLAB/

	

—:	 FXR D2-2-TN

	

t	 ELECTRICAL

VSWR	 1.1:1

POWER DIVISION	 3.0 + ,1 DB{

-,	 INSERTION LOSS	 03 DB

	

t	 AVERAGE POWER

DERATED FOR SPACE

ENVIRONMENT	 50 WATTS

MULTIPACTOR	 PROBABLY

LEVEL	 ACCEPTABLE

MECHANICAL

7/8" RIGID LINE

POWER DIVIDER

1,1,1

3.0 ± ,1 DB

.03 DB

250 WATTS

2000 WATTS

CONNECTORS	 MODIFIED HN	 EIAa
CONNECTORS

`	 DIELECTRIC	 SOLID POLYETHYLENE	 AIR

COMPLEXITY	 FAIR	 GOOD

,.	 THERMAL

POWER DISSIPATION POOR 	 GOOD
s - 	 90
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THERMAL BLANKET

.'

—_-	 Astro-quartz, the thermal cover used on SEASAT, tends to flake and
could be a source of particulate contamination on the SERGE flight
mission. A teflon' impregnated `quartz cloth material (Beta cloth) 	

r

is planned to be used to line the Shuttle bay and meets the
reflectivity criteria for surfaces in the bay without particulate
generation. This material was tested and has little effect on
gain or resonant frequency. Beta cloth will be a suitable material	 p-Y--

to use as a thermal blanket on the SERGE antenna.

i
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SERGE ANTENNA
f

THERMAL BLANKET

{ V	 OBJECT - DETERMINE THE EFFECT OF TEFLON IMPREGNATED QUARTZ CLOTH_

ON ARRAY PERFORMANCE
E

1	 PROCEDURE - THERMAL BLANKET WAS PLACED IN INTIMATE CONTACT AND ON

_2" STANDOFFS ACROSS AN EMU QUARTER PANEL,	 CHANGES IN

t,
PANEL RESONANT FREQUENCY AND GAIN WERE NOTED. ----

1	 RESULTS - INTIMATE CONTACT 2" STANDOFFS

RESONANT FREQUENCY SHIFT NO CHANGE NO CHANGE

- GAIN -.05 DB -,05 DB

I	 CONCLUSION - BLANKET MAY BE PLACED DIRECTLY ON ARRAY APERTURE WITH A

;05 DB DECREASE IN GAIN,

1
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—	 F77-23

^ Z	 SERGE ANTENNA
7 THERMAL BLANKET/PAINT

t^ 1

-	 •	 SE/-ISAT TEST RESULTS ON SG113 PAINTt

— FREQUENCY SHIFT 15' - 20 MHz

GAIN LOSS OF . 1 TO	 . 2 DB

.. •	 IMPACT ON SERGE PROGRAM

^•^, — NEW ARTWORK REQUIRED FOR FREQUENCY COMPENSATION

— DECREASE IN GAIN MARGIN

a

— UNEVEN PAINT SPREAD MAY CAUSE LOCALIZED IMPEDANCE SHIFTS 	 °—

•	 CONCLUSION .	 r

— USE THERMAL BLANKET

i

.y wry
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lei	
LOSS BUDGET UPDATE

Theoretical gain of 7 EMU panels equally illuminated is 34.35 dB.

Several sources, of loss can be established and are tabulated on the
facing page. Nominal corporate feed and thermal blanket losses
have been measured. Directivity losses due to t-plane taper and
array distortion are based, cn computer analysis. Mismatch losses
are accounted for under frequency and temperature effects.

Predicted array gain is 31.1 to 31.2 dB.

►r
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F77-23

t /	 -----SERGE ANTENNA
LOSS BUDGET UPDATE

•	 THEORETICAL ARRAY GAIN

EMU PANEL GAIN	 25,9

L ARRAY FACTOR	 +	 8.45 

GAIfJ	 34,35

•	 LOSS FACTORS
LJ

CORPORATE FEET) —.62	
-

MECHANICAL AND THERMAL DISTORTION —	 .2

F, I
FREQUENCY AND TEMPERATURE EFFECTS -	 .2

E—PLANE TAPER LOSS —	 ,1
_ r ,

THERMAL BLANKET

-^--^

-,05

TOTAL —1,17

• PREDICTED  GA I N

THEORETICAL G.A IN 	 34.35

w.,^ LOSS	 -1,17 ^y._...a

GAIN	 33.18
ti 96
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STRUCTURAL ANALYSIS OBJECTIVE

'Pali

l

Structural analysis activities in this study were governed to a great
—

	

	 extent by the design objective defined on the facing page. This
requirement influenced practically all aspects of the recommended
structural design including the selection of materials and the defini-
tion of specific configurations.

The design that is recommended herein evo l ved from a series of iterative
analyses which isolated and identified what is regarded to be a highly
efficient, application of material, configuration and mounting arrangement.
Results of interest from -a number of those analyses are summarized on

I	 the following pages.

a
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SERGE ANTENNA

s STRUCTURAL ANALYSIS

1 OBJECTIVE TO DEFINE A MOUNTING STRUCTURE FOR THE SERGE

ANTENNA THAT WILL EXHIBIT A FUNDAMENTAL RESONANT

FREQUENCY GREATER THAN TWENTY—FIVE HERTZ, AT

THE PRIMARY STRUCTURE LEVEL,

r

s	 98
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i	 DISCUSSION

The various types of structural analysis that were covered in this
study', are outlined on the facing sheet.-

Structural math models were generated at intermediate steps in the
design development process. These models were used to conduct trade-
off studies and to determine the resonant frequency levels associated 	 r
with each step.

Math models representing the final design configuration were used to
determine loads, stresses and displacements resulting from various
design loading conditions. Thermal distortion effects were also deter-
mined with these models.

i

f
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SERGE ANTENNA
DISCUSSION

1 MATERIALS

1 STRUCTURAL MODELS
1	 CONFIGURATION
1	 STUDIES

1	 RESONANT FREQUENCIES

1	 DESIGN LOADING CONDITIONS

1 MAXIMUM LOADS /STRESSES

1 MAXIMUM DISPLACEMENTS

1	 CONCLUSIONS

100
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r

	 MATERIALSAp—^-.,

Graphite reinforced epoxy tubing was selected as the material for both
the strongback and installation trusses. The selection was based on
numerous trade-off studies which included aluminum tubing as a candidate
material. The studies showed that, given the same weight and configura-
tion, considerably higher frequency levels could be obtained with GRE

T than with aluminum.

The 'selection of the antenna panels (SEASAT type EMU) was influenced
only slightly by structural considerations.

i
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^^	 SERGE ANTENNA

h MATERIALS

i	 STRONGBACK TRUSS
1	 GRAPHITE/EPDXY	 (GRE)	 COMPOSITE TUBES

s 1	 1 1/2NCH DIA, x 0,063 INCH WALL

1	 E = 19 ' x 10 6	LB/IN2

1	 W = 0,055	 LB/IN3

1	 INSTALLATION TRUSS

1	 GRAPHITE/EPDXY TUBES	 -^--

1	 2 INCH DIA,	 x 0,063 INCH WALL

i	 ANTENNA PANELS

1	 FIBERGLASS/EPDXY HONEYCOMB COMPOSITE	 -------

1	 E = 2,5 x 106	 LB/IN2

1TEQ '= 0,20	 INCH

1
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r

--	STRONGBACK MODEL

	

~	 The structural math model of the strongback-truss is shown on the
facing page. The fundamental resonant frequency associated with this
configuration, using lz inch diameter GRE tubing, is 35.9 Hz, as noted.
Mounting points at nodes 12, 16, 20 and 23 are required to obtain this
frequency level.

t

f--
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SERGE ANTENNA

STRONGBACK MODEL

1

j

 7

I'

I	
r

r 9

}1

1$	
f 1 = 5!). y H Z

NO. OF MEMBERS 69

NO, OF NODES	 25

	

rl	 NO. OF DOF	 = 75

104
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STRONGBACK MATERIAL/MOUNTING STUDY

i

A comparison is made of strongback resonant frequency levels obtained
with GRE tubing (2 in. dia.) and with aluminum tubing (l in. dia.).

I	 The comparison is based on equal weight and similar configuration.
i

It is evident that higher frequencies can be obtained using GRE tubing.
This is due to the higher stiffness-to-weight (E:w) of GRE. It is
also apparent in this comparison that the 25 Hz requirement itself would
be difficult to achieve with aluminum.

I

}

I

	

0	 105

n

c-

r

c	 j

c

r	 ^

ii

s

8

f





1

Ap

F77-23

Pei
r

	 STRONGBACK MOUNTING STUDY

--	 The influence of mounting arrangements on strongback frequency levels
is shown on the facing chart. The strongback material in each case is
12 inch diameter'GRE tubing. It can be seen that the four-point mountings'
are preferable to a three-point mounting.

The highest frequency (35.9 Hz) is obtained with a four-point over/under
mounting arrangement at the second in-board joint points. This is the
arrangement that is recommended for the SERGE structure.

3
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FREQUENCY (Hz)

20,6

r

23,8

25.6

28,6

33.1

35,9
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psiSTRONGBACK/INSTALLATION MODEL

f

The structural math model of the combined strongback-installation truss
structure is shown on the facing page. These structures are joined at
node 12, 16, 20 and 23 of the strongback truss. Interface points
joining the installation truss to the pallet are at nodes 26, 27, 28
and 29. The resonant frequency for this configuration, using 2 inch
diameter GRE tubing for the installation truss, is 30.1 Hz, as noted.

i,

t

t

4

C

109

J



ir

.. Y

j / -- F77-23

SERGE ANTENNAa rSTRONGBACK/INSTALLA 71ION  MODEL

J

d 1	 /

j	 l 

{	 t'

NO. MEMBERS = 85

NO. OF NODES = 30

NO. OF W	 90

RIGID PANELS, LUMPED MASS	 ^9

r!

t

fr,

Fl	3011 L,z
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z

if	 INSTALLATION TRUSS STUDY'Pali

Aluminum tubing was also considered as a candidate material for the — ------
installlation truss. Two variations in installation truss configuration,
using 3 inch 'diameter aluminum tubing, produced resonant frequency levels 	 F

slightly lower than that obtained with GRE.

However, the lower density and smaller diameter of the GRE tubing make
it possible to obtain a GRE installation truss that is approximately
60% lighter than its aluminum counterpart. Hence, a GRE installation
truss 'is recommended for the SERGE structure.
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f	 F77-23j 	 SERGE ANTENNA 	 --_-s

INSTALLATION TRUSS STUDY

1	 "LONG STRUT" CONFIGURATION 3 INCH DIA. ALUMINUM TUBES 	 2F,,1 Hz

I	 "SHORT STRUT CONFIGURATION 3 INCH DIA, ALUMINUM TUBES 	 2r,' Hz

1	 BASELINE CONFIGURATION 2 INCH DIA, GRAPHITE/EPDXY TUBES	 3=;-,1 Hz	
ter__

NOTE:	 STRONGBACK ATTACHED, ANTENNA PANELS RIGID, LUMPED MASS

r,

fi

j.
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STRONGBACK/INSTALLATION/ANTENNA MODEL

1
The complete strucutral math model of the SERGE Antenna structure
incorporates flexible antenna panels. The seven panels are each indepen-
dnet of the other', as in the actual structure, and thus have no
continuity across their boundaries. 4

For this model all modes below 28 Hz (approximately 35 modes) are local
antenna panel modes which involve negligible participation of the
primary (truss) structure. The first structural mode occurs at 28._5 Hz.; T

the mode shape being similar to the first mode obtained with the rigid
panel model.

113.
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r a, 	 SERGE ANTENNA

STRONGBACk/INSTALLATION/ANTENNA MODEL
31

r.

f
G

G7

r	 <<
a	 fr	 ,f

c.:	 f•

i	 L 1 f ,r	 ;	

r	
, j^	

n,	
f	 r.J4

U

^-
-w.

or

ej	 30

F	 28,5 Hz

NO, OF MEMBERS = 92	 ^	 f

N0, OF NODES = 105

NO. OF W	 351	 r

FLEXIBLE PANELS

114
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psi ANTENNA PANEL MODEL

The antenna panel math model incorporates flexural properties of both
the panel and the adjacent strongback members. Since the .lower modes
of panel vibration involve no coupling of strongback joint motion,
translational constraints are applied at the joint points; nodes 6,
10, 26 and 30.

{

With the panel mounted to the strongback joint points and at the mid-
points of the five truss members (9-point mounting) the resulting
resonant frequency is 15 Hz, as noted.
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f 	

PANEL MOUNTING STUDY

----

	

	 A comparison is shown of antenna panel resonant frequencies for
three basic variations in panel mounting arrangement. Each of the
variations utilize adjacent members of the strongback.

The nine point mounting arrangement uses all of the available adjacent
members; including the partition (side) rails that are omitted in the
other arrangements. This mounting provides an improvement in resonant

	

r	 frequency of about 35/.

Extensive additions to both the panel and strongback structures will
be required to produce panel frequencies significantly greater than
15 Hz.

i
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7 MOUNTS	 1019

NOTE: ANTENNA PANELS FLEXIBLE,
LUMPED MASS,
	 13 MOUNTS	 11.6
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FUNDAMENTAL RESONANT FREQUENCIES

The vibration analyses conducted in this study indicate the recommended
SERGE Antenna design will have a frequency of 28.5 Hz, at th, primary
structure level, and will thus be in compliance with the specified
requirement of 25 Hz or greater.

At the component level, the antenna panels will have a frequency of 15 Hz.	 r
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SERGE ANTENNA

FUNDAMENTAL RESONANT FREQUENCIES

I PRIMARY STRUCTURE
;r

STRONGBACK + RIGID PANELS 	 35,9 Hz

^-- _

	

	 I STRONGBACK + RIGID PANELS + INSTALLATION TRUSS 	 30,1 Hz

1 STRONGBACK + FLEXIBLE PANELS + INSTALLATION TRUSS 28,5 Hz

-	 1 ANTENNA PANEL	 15,0 Hz

1	 REQUIREMENTS

1 PRIMARY STRUCTURE	 > 25 Hz

1 COMPONENT STRUCTURE	 N/A

120
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DESIGN LOADING CONDITIONS

Design limit load factors that were specified for design are noted on
the facing page. The load factors cover lift-off and landing condi-
tions.

The recommended design was evaluated for four of the more severe load
factor combinations, which are shown. Math models that were generated
previously for frequency determinations were utilized in this analysis.

r,
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-	 F77-23
SERGE ANTENNA

DESIGN LOADING CONDITION

1	 DESIGN REQUIREMENTS___

-_

EVENT LIMIT LOAD FACTOR (G)
_

NX NY NZ

LIFT-OFF 0,4/-4,5 ±3.3 3.I/ -3,5

t LANDING ±2,5 ±2,5 6.5/-2,6

1	 CONDITIONS INVESTIGATED

EVENT LIMIT LOAD FACTOR (G)

NX NY NZ

- LIFT-6FF (3) -4.5 3.3 -3.5	 u^

LIFT-OFF (4) -4,5 -3.3 --3.5

LANDING	 (5) 2,5 2,5 6,5

LANDING	 (7) -2,5 -2,5 6.5

122
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s ^^	 MAXIMUM LOADS/STRESSES/DISPLACEMENTS

Maximum loads and stresses were determined for various members of the
structure and, as anticipated, found to be relatively low in magni-
tude. Maximum displacement levels were also evaluated and, likewise,
found to be relatively insignificant.

i
I

r--^	
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F77-23
/ SERGE ANTENNA

MAXIMUM LOADS/STRESSES/DISPLACEMENTS.7

1	 STRONGBACK MEMBER (19-20) LOAD 671 LB

STRONGB,ACK MEMBER (19-20) STRESS 2360 LB/IN2

- 1	 INSTALLATION MEMBER (26-12) LOAD 774 LB

INSTALLATION MEMBER (26-12) STRESS 2020 LB/IN2

.^ 1	 PANEL MEMBER (	 7	 ) LOAD 2.65 IN LB/INz

PANEL MEMBER (	 7	 ) STRESS 650 LB/IN2

1	 TRUSS DISPLACEMENT

X-AXIS 0,026 IN

Y-AXIS 0,071 IN

1

Z-AXIS 0,054 IN

/	 PANEL DISPLACEMENT

i Y-AXIS 0,25 IN

NOTE:	 1,)	 ALL VALUES SHOWN ARE LIMIT VALUES

2,)	 DISPLACEMENTS ARE IN LOCAL COORDINATE SYSTEM:.

124
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^ ^/	 MAXIMUM TRUSS/PALLET INTERFACE LOADS

The maximum pallet interface road was determined to be less than
1,100 lbs., limit. This load is not expected to create any problems
for either pallet attachment hardware or the pallet itself.

a
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OEM	 SERGE 'ANTENNA
-lx

J	 MAXIMUM TRUSS/PALLET INTERFACE LOADS

I	 UPPER INTERFACE (26,27)

X-AXIS REACTION 960 LB

r-- Y-AXIS REACTION 625 LB

Z-AXIS REACTION 635 LB

S	 LOWER INTERFACE (28,29) 240 LB

X-AXIS REACTION -935 LB

Y-AXIS REACTION -1030 LB

NOTE:	 1,)	 ALL VALUES SHOWN ARE LIMIT VALUES,

2,)	 LOADS ARE IN LOCAL COORDINATE SYSTEM,

,r
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/	 STRUCTURAL MARGINS OF SAFETY

Material strength data (allowables) used in thin analysis were taken
from tests that were performed on the SEASAT program. However, all
of the referenced tests were of the non-destructive type. Thin resulted
in the calculation of very conservative margins of safety throughout
the analysis.

A summary of member margins of safety is shown on the facing page.
Very high margins are available despite the above described
conservatism; confirming that stiffness considerations rather than
strength dictate the recommended design.

127
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^
Pori ,
	 SERGE ANTENNA

STRUCTURAL MARGINS OF SAFETY

1	 ALLOWABLE LOADS

1	 GRE TUBES, TENSION(' ) 1000 LB

1	 1 1/2 INCH DIA,	 GRE TUBES, COMPRESSION 2150 LB

1	 2 INCH DIA, GRE TUBES, COMPRESSION 3990 LB

` l	 PANELS, BENDING^2)
11 IN LB/IN

1	 PALLET INTERFACE (N/A)

1	 MARGINS OF SAFETY (3)
- 1	 1 1/2 INCH DIA, GRE TUBES

TENSION >+250%

COMPRESSION >+150%

i	 2 INCH DIA GRE TUBES

TENSION >+300%

COMPRESSION >+300%

1	 PANELS, BENDING >*200%

1	 PALLET INTERFACE (N/A)

6v- 71 NOTES;	 1)	 BASED ON SEASAT TEST OF 112 INCH DIA, GRE TUBES

2,)	 BASED ON SEASAT TESTS

3,)	 BASED ON ULTIMATE FACTOR OF SAFETY OF 1,25 x LIMIT LOAD
128
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THERMAL DESIGN CONCEPT

The thermal design concept for SERGE is intended to minimize thermal
distortion while keeping all components within their allowable thermal

	

units	 It is RF compatible, light weight, easily fabricated and in-
stalled, and meets all the OFT Shuttle constraints for thermal control
surfaces.

The front of each antenna panel is covered with a single layer of teflon
impregnated quartz cloth (Beta cloth). This layer provides improved
thermal properties without noticeable RF interference. A coat of white
paint could have served the same purpose thermally, but would have caused
RF distortions.

To minimize the thermal gradient across the antenna panel face sheet,
and to eliminate the transient shadowing of the strongback truss, a
multi'layes insulation blanket is proposed to cover the back of the panels
and the entire strongback structure. This blanket assembly will consist
of five (5) layers of doubly aluminized mylar separated by dacron
netting. The outer layer will be Beta cloth. It is estimated that this
blanket will have an effective emissivity of at most .02.

The graphite tubes that make up the truss members for the installation
structure will be covered with a single layer of Beta cloth to limit the
transient temperature swings caused by shadowing. The vicinity of the
aluminum end fittings will have a five (5) layer blanket like the
strongback, to further limit transient excursions of temperature. This
greater p rotection is required at the joints because of the higher linear
coefficient of thermal expansion (LCTE) for the aluminum, and it is
expected that these joints will be the biggest contribution to thermal
distortion inthe installation structure.

131
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^ ^V	SERGE ANTENNA
THERMAL DESIGN CONCEPT

i

L1	 - •	 PANEL FRONT SURFACE

``	 • SINGLE LAYER OF TEFLON IMPREGNATED QUARTZ CLOTHt

• PANEL REAR SURFACE, RF FEED, STRONGBACK STRUCTURE

•_ 5 LAYERS OF ,25 MIL DOUBLY ALUMINIZED MYLAR SEPARATED BY

DACRON NETTING

• OUTER 'LAYER OF TEFLON IMPREGNATED (QUARTZ CLOTH

j	 •	 INSTALLATION STRUCTURE

'	 • GRAPHITE TUBES SINGLE LAYER OF TEFLON IMPREGNATED

QUARTZ CLOTH

• ALUMINUM FITTINGS SAME AS STRONGBACK STRUCTURE

}
y,
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	 - NODE LOCATIONS FOR STRONGBACK AND PANELS

Ap

The SERGE strongback thermal model consists of sixty-nine (69) graphite
epoxy truss nodes (400-468), and twenty-five (25) aluminum joint nodes
(500-524).	 The graphite epoxy nodes have conductive couplings to the
joint nodes and radiative couplings to the insulation and panel back
nodes.	 No attempt was made to estimate possible conductive paths between
the truss member and the panel attach bracket. 	 This path is expected
to be quite small in relation to other heat paths to the truss members.

The aluminum joints have only conductive paths to the truss nodes. 	 All
radiative couplings would be small, because of the low emissivity of
chromacoated aluminum and the small surface area involved.	 Also, the
temperature differences are quite small.

The MLI blanket over the truss and panel backs is treated in five (5)
massless nodes. 	 The effective emissivity through the blanket is assumed
to be .02.	 External	 heat loads (direct solar, albedo, and earthshine),
reflected heat loads and reflecting view factors for the MLI blanket were
calculated using BBRC thermal analysis programs.

Each panel is divided into two (2) nodes, a face sheet node and a rear
sheet node.	 These two nodes are coupled conductively. 	 The Beta cloth
covering the face sheet of each node is modeled as one massless node.

NOTE:	 The circled node numbers indicate temperature versus time plots
-- included later in this report.
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F77-23

INSTALLATION STRUCTURE NODE BREAKDOWN

The installation structure thermal model consists of sixteen (16) graphite
epoxy truss members, nine (9) aluminum joints and sixteen (16) insulation
nodes. The graphite epoxy members exchange heat conductively with the
joint nodes and radiatively with the insulation nodes.

The insulation nodes have external fluxes and reflecting view factors
calculated by the BBRC thermal program.

The installation truss is assumed to be conductively isolated from the
strongback truss and pallet. This was necessary at the pallet because
the temperature history for the pallet is not known. This assumption
will not be of significant consequence except in the immediate vicinity
of the mounting flanges. Also, the same assumption at the strongback
interface will not seriously affect the predicted temperatures distribution.
This is because the current designs for these fittings indicate a poor
conduction path the the temperature differential is expected to be small.

Since the graphite epoxy truss members are only covered by one layer of
Beta cloth which was assumed-40% transparent to the solar spectrum,
40% of the direct solar and albedo energy on the insulation layer was
transferred to the truss member itself.

NOTE: The circled node numbers indicate temperature versus time plots
included later in this report.
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SERGE ANTENNA
INSTALLATION STRUCTURE NODE BREAKDOWN
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INSTALLATION STRUCUTURE TEMPERATURE VERSUS TIME

The plot gives the predicted transient temperatures for selected installation
truss nodes. Time zero represents the dawn terminator passage. The
orbit period is assumed to be 1.51 hours (150 NM orbit).

The temperatures increase as the Shuttle moves into the sunlit portion
of the orbit. The increase in temperature is due to the increasing

_	 albedo flux. The jump in temperature at 	 75 hrs. is due to
momentary direct solar flux into the bay. The temperatures then decrease
during the shadowed portion of the orbit.

The orbit angle used in the analysis {S	 0 0 ) should give worst case
temperatures because as the orbit angle increases, in a positive 0
direction, the front of the antenna is exposed to less and less direct
solar radiation and the albedo decreases.

^T
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SERGE ANTENNA — INSTALLATION STRUCTURE TEMPERATURE vs, TIME
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INSTALLATION STRUCTURE DIFFERENTIAL TEMPERATURES

Differential temperatures were calculated between various installation
truss members These differential temperatures give an indication of
the amount of thermal distortion that can be expected.

It can be seen that the differential temperatures are, in general, less
than5°C. This small value, in a graphite epoxy structure, immediately
indicates small thermal distortion values associated with the installation
structure.

However, temperature differences between the installation truss and the
pallet will be a factor in the total distortion of the antenna plane.
This is due to the fact that the pallet is aluminum (with a LCTE of
X13 x 10-6 in/in °F) and the installation structure is m-90/ graphite
epoxy and 10% aluminum (with an equivalent LCTE of--1.3 x 10- 6 in/in °F).
This factor of 10 difference in the LCTE will lead to thermal distortions,
even with low values for the differential temperatures between the two.
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STRONGBACK STRUCTURE TEMPERATURES' VERSUS TIME

Typical strongback structure temperatures are presented in the plot.
The 'variations over a typical orbit are less than 3°C for most members.
The temperature fluctuations are kept small because the structure is
protected from most transient shadowing effects by the MLI and
antenna panels.

Structural members near the bottom of the truss (402,410) run at a some-
--	 what warmer temperature than the other truss members. This is due to

their "protected" position nearer the Shuttle bay, giving them a reduced
exposure to the cold space environment. The coldest members are those
at the top of the truss (404, etc.) that have the greatest exposure to
space.
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7J
/	 STRONGBACK DIFFERENTIAL TEMPERATURES 'VERSUS TIME

The strongback differential temperatures are quite low, with the
maximum (-5.5 0 C) between the upper and lower antenna support
longerons (402 and 404). Since the strongback is mostly graphite/epoxy,
with a low'LCTE, the expected thermal distortions are quite small.

The low strongback differential temperatures are a result of the
relatively benign thermal environment of the Shuttle bay, and the
protection the truss receives from the MLI blanket and antenna panel/
Beta cloth combination.

143
s Doom

i



404

I-SO

2.000

8-000

6.000

4.000

F77-23
SERGE NNITENINA

F

-

ir
STRONGDACK DIFFERENTIAL TEMPERATURES vs. TIME

+	 405 MIiVlJS	 456 4	 410 MSN115	 49	 4 402 MISS

S ,

a 5-

pp
.

LWr1 4

4,

3•
,t	 1

Q

1 <
2-SDC-

c-CXX

--
{

i

I
0.00 0-a	 O•SO 0.75	 1.00	 •25

TI OE - FULPS SERGE 7 -BAY kCUEIL	 9C`TA=O EEG

ST	 AD", STRL3CT1 RE TaPERATIRES

144



ce.

j

F77-23

PANEL TEMPERATURES VERSUS TIME

i

{
Panel temperatures for one orbit are shown in the figure. Except for
brief periods during orbit sunrise and sunset the Beta cloth covering--^
the antenna panel receives no direct solar radiation. This is due to
blockage by Shuttle bay surfaces. Since the antenna points toward nadir
it receives earthshine and albedo radiation. The variation in the amount
of albedo radiation during an orbit accounts for the variation in panel
temperature from a low of about -34°C (just prior to sunrise) to a high
of—P -10°C (near orbit noon),
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PANEL DIFFERENTIAL TEMPERATURES yERSUS TIME

'Panel differential temperatures (front minus rear) are shown in the
--figure. The maximum is approximately 3°C which is well under the

differential required to introduce significant panel warpage. Test's 	 r

made on SEASAT-Type panels indicate that a differential" temperature of
8°C produces a thermal distortion of only .4 cm. The design goal is
to keep the distortion less than 635 cm.

A negative orbit angle (^) would produce higher AT's across the panel,
but only at large negative a angles would the AT approach the 12.700
needed to exceed the .635 cm warpage goal.

The spikes occuring in the plot at t .75 hrs. and t 	 1.4 hrs. is
due to momentary rapid heating of the panels by direct sunlight just
prior to entering the earth's shadow and just after emerging from it.

i'

r

7

147



G-00

400

2-00

0-00

-2-00

_4-00

-G-00

1.50

{

I

r

- F77-23
i

/ SERGE ANTENNA
r ' PANEL DIFFERENTIAL TEMPERATURES vs, TIME
r$.

+ 3101 MINUS 3201 a 3104 MINUS 3204
r:

4. -

c._l
3,

2•
t

O-OC

-
2-OC-

it

O-CX) 0 ► 25	 0. SO	 0.75	 1-cu	 1,25

-TINE - Houps SEDGE 7-SAY aOOEL BETA=O C

~	 j
PANEL_ FANT ArZ REAR TaPE?ARRES

148
m

t



F77-23

^ I	THERMAL DISTORTION

Thermal distortion due to temperature variations in the strongback and
installation truss were quite small. The maximum deviation of the antenna
plane from the Gaussian best fit plane was 02 cm. The design goal was
to keep the deviation (6) from the best fit plane less than .635 cm.

Thermal distortions predicted for the pallet-installation structure inter-
face were somwhat larger (.229 cm) but still were well within the allowable
range.

In all cases the effect of thermal distortion on the antenna pointing was
negligible (< .`03 0 )	 Therefore, thermal distortion is not expected to be
a major factor in the SERGE antenna performance
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SERGE ANTENNA
THERMAL DISTORTION

1 FABRICATION TEMPERATURE OF 70°F (R.T.)

I TRUSS TEMPERATURE CHANGE INCLUDED

LJ I PALLET TEMPERATURE CASES

1 140°F	 (d T = +70)

1	 0°F	 (4 T = —70)

1 DISTORTION

POINTING ERROR OF BEST—FIT PLANE (8)

MAXIMUM DEVIATION FROM BEST—FIT PLANE (6)

1 RESULTS

PALLET TEMP,	 6 (DEG,)

70 °.F 0.003 

a
140°F 0,028

0°F 0.023

1 MAXIMUM ALLOWED 0,2-

1 CONCLUSION — NO DISTORTION PROBLEMS
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SUMMARY AND CONCLUSIONS

The major conclusions of this concept definition study are summarized
in the facing chart.

The baseline configuration defined in the study has the SERGE antenna
panel array mounted on the OFT-2 pallet sufficiently high in the bay
that negligible amounts of radiation from the beam are reflected from
orbiter surfaces into the Shuttle payload bay. The array is symmetri-
cally mounted to the pallet along the array long dimension with the
pallet at the center. It utilizes a graphite epoxy trusswork support
structure. The antenna panels are of SEASAT engineering model design
and construction. The antenna array has 7 panels and a 7-way
anturally tapered coax corporate feed system. The assembly mounts
to the pallet at four places with adjustable attachments fittings.

The performance of the system is predicted to exceed 33 dB gain, have
-15 dB sidelobes in the E-plane and even lower in the H-plane, and have
an E-plane beamwidth less than 2.2 0 , all within performance specifica-
tion. The entire assembly will be controlled to weigh less than 400 lbs.
and in the baseline configuration is estimated to weigh less than 370 lbs.
The primary support structure is predicted to exceed the specified
greater than 25 hertz fundamental frequency, although individual panels
will have 15 hertz fundamental frequency. The thermal effects are
predicted to be minimal
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#^-	 1	 BASELINE CONFIGURATION

1 MOUNT ON PALLET HIGH IN BAY

i PALLET CENTERED ON PANEL LONG DIMENSION

1 GRAPHITE-EPDXY SUPPORTING STRUCTURE

1 7 PANELS, NEW BUILD, EMU CONSTRUCTION

1	 COAX FEED, 7-WAY POWER DIVISION

1 ADJUSTABLE PALLET ATTACHMENTS

1 PERFORMANCE
I

1	 33 DB GAIN, -15 DB SIDELOBES,	 2,2 0 E-PLANE BEAM14IDTH

1 < 400 LBS

1 28,5 Hz STRUCTURE FUNDAMENTAL FREQUENCY, 15 Hz PANELS

1	 MINIMAL THERMAL EFFECTS ON POINTING AND PANEL DISTORTION
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Pori	 OTHER AVAILABLE DATA

In addition to this final report, the thermal and structural dynamics
analytical models have been provided to the technical monitor for use
in integrated orbiter/pallet/payload analyses. Preliminary design
drawings were also provided.

Also, in addition to this technical information, a separate report
of the expected cost and schedule for the manufacture, test,land
integration of the baseline configuration was provided to the technical
monitor.
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