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ABSTRACT

The LANDSAT raultispectral scanner (MSS) data have been analyzed with a
view toward classification to identify wheat. The notion of spectral signature
of a crop, a commonly used basis for classification, has been found to be in-
adequate. Data analysis has revealed that the MSS data from agricultural sites
are essentially two dimensional, and that the data from different sites and
different acquisitions lie on parallel planes in the four-dimensional feature
space. These results have been exploited to gain new insight into the data and
to develop alternate models for classification. In particular, it has been
found that the temporal pattern of change in the spectral response of a crop
constitutes its signature and provides a basis for crop classification.

1. INTRODUCTION

The classification of multispectral observations from agricultural sites
is commonly based on the notion of spectral similarity of like ground covers
in a scene. With this model, the data are characterized on the basis of a
sample of training fields from each crop class of interest. The data from each
class are usually assumed to be Gaussian, and, then, the characterization con-
sists of computation of sample mean and dispersion matrix. These parameters
are said to constitute the 'spectral signature1 of the class and are used as a
basis for classification of the test data Cl-3] .

Experience with LANDSAT multispectral scanner (MSS) data, however, has
shown this model generally to be inadequate for crop classification. While the
within-field variability of data is small, the field-to-field variability is
usually so large as to make the notion of representative fields of a crop class
untenable. This difficulty is compounded by the lack of wide separability in
the data from different crop classes. Both these factors depend upon the rela-
tive biological phases of the different crops in the scene at the time of the
data acquisition. In wheat identification problem, for example, it has been
found that in most instances the data from any single acquisition at any time
during the wheat crop calendar cannot be classified satisfactorily on the basis
of the spectral similarity model. Actually, even with multitemporal data (i.e.
merged data from multiple acquisitions at different times in the crop calendar
of wheat), the different sets of training fields produce substantially differ-
end classification results C43.

The difficulty with basing classification on spectral signatures described
above is illustrated in Figures la and Ib. These figures provide typical plots
of the mean vectors for several randomly selected wheat and nonwheat fields in
a LANDSAT subframe covering a 5x6 nautical miles area in Kansas. The plots
correspond to four acquisitions over the site during different biological
phases (viz., crop establishment, green, heading, and mature) of the wheat
crop. The sizes of the fields range from 50-100 ground resolution elements
(pixels). The standard deviations in the four channels range from 0.9 to 3.5.
Figure la suggests that the data from the wheat fields cannot reasonably be
modeled as having been drawn from the same probability distribution. Actually,
hypothesis tests for equality of mean vectors across wheat fields invariably
fail at each stage of the crop. In a generalization of the model described
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above, the data from each crop class are regarded to constitute a Gaussian mix-
ture distribution C5Q This model, though more realistic, is still not entirely
adequate for a situation where training is based on data from sample of fields.
Quite often the mixture distribution is found to have as many constituents as
there are fields! The basic difficulty, of course, still is with the notion of
distinct spectral crop classes and their representation in a sample of training
fields.

With this background, an extensive analysis of the LANDSAT MSS data was
undertaken with the objective of discovering features of spectral response that
constitute a signature of wheat. The data available for this study consisted
of mean vectors and dispersion matrices for a number of known wheat and non-
wheat fields from each of several sites with multiple acquisitions. The results
of data analysis are given in the next section.

2. SIGNATURE ANALYSIS

The following findings on the LANDSAT MSS data from agricultural sites
were reported by the authors in an earlier paper C6D. (1) The data from any
acquisition are essentially two dimensional, and (2) the data from different
acquisitions/sites essentially lie on parallel two-dimensional planes in the
four-dimensional feature space. See also the related, independent work of
Kauth and ThomasC73, who give an interesting phenomenological identification to
the spectral measurements and report roughly similar conclusions on the dimen-
sionality of the data.

The above finding on dimensionality offers a significant benefit in terms
of graphical display of the four-dimensional data. This can be done by finding
representation of the data in a rotated coordinate frame with, say, the first
two axes on the plane of the data and the remaining two orthogonal to it. In
this representation, the first two (in-plane) components, giving the location
of the data on the plane, essentially distill the 'information' from the four-
channel MSS data; the last two (off-plane) components, measuring the deviation
of the data from the plane, have only a very small range of values and are re-
garded as noise. The relative positions of the data in the original four dim-
ensional feature space are very nearly preserved in a data display based only
on the first two components of the transformed data. Note that having iden-
tified the plane, for our purpose, the orientation of the two orthogonal axes
on it is entirely arbitrary C6l The coordinate frame, i.e., orthonormal trans-
formation (see Appendix), used in the graphical representation of data in this
paper was chosen solely for clean displays. In plots of in-plane (off-plane)
components, the first (third) component of the transformed data is plotted
along the abscissa.

Figures 2a and 2b give scatter plots of data from the Kansas site
(acquisition 2) mentioned earlier. These data correspond to 22,932 ground
resolution elements in the scene. The plots use characters •,1,2,..,9,A,B,...,
Z to represent 36 increasing levels of concentrations in a cell. The character
assignment is on a uniform scale in the range 1 through KMAX, specified on the
plots. The plot in Figure 2a is typical; the data are densely packed in a
roughly triangular region with no apparent cluster structure. The spectral
similarity model, however, is predicated on the existence of cluster structure
in the data. The scatter plot of the off-plane components is also typical; it
demonstrates the two-dimensionality of the data.

For each of the available acquisitions over several sites, the transformed
mean vectors of a set of wheat and nonwheat fields were plotted on the plane of
the data. Two such scatter plots are presented in Figures 3a and 4a. The
former corresponds to a site in Kansas with registered data available from six
acquisitions over the crop calendar of wheat. Figure 4a corresponds to a site
in Oklahoma with eight acquisitions. The acquisition dates are given below
each plot as five-digit numbers. The first two digits identify the year, and
the last three the day of that year. These two sites were chosen for avail-
ability of good-quality data from several acquisitions over each. In view of
the small within-field variability, the data from all pixels of a field can be
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thought of as densely scattered about the mean. The wheat grown at both sites
is of winter wheat variety. It is planted early in the fall, is dormant during
winter, greens and matures during spring, and is harvested in early summer.

Figures 3a and 4a illustrate the difficulty with the spectral signature
model for wheat identification. The large field-to-field variability, as noted
earlier, is generally compounded by the lack of strong separability in wheat-
nonwheat data. For example, in Figure 4a, in one-half of the acquisitions the
decision boundaries are not apparent to separate the wheat and nonwheat data
from the training fields. Even in cases where such decision boundaries can be
drawn, what can be said of classification of the test data?

Experience with maximum likelihood classification with Gaussian (-mixture)
model for data from the various crop classes has shown that the decision bound-
aries determined by the different sets of training fields are substantially
different. The more training fields there are of wheat, the greater is the
amount of wheat discovered in the scene by classification of data C4D• The
reason for this is apparent from Figures 3a and 4a. The difficulty is that the
data from a sample of fields of a crop class is not representative of the popu-
lation. A better characterization of the data would be obtained by taking a
pixel, rather than a field, as a unit for training. For example, a 5% sample
of pixels from the wheat fields in a scene would provide a better basis for
characterization of the distribution of the wheat data than a set of pixels of
the same size belonging to a sample of wheat fields. Such training process,
however, is not deemed cost effective in large-scale utilization of the LANDSAT
data.

This basic difficulty in characterization of the data from different crop
classes is resolved by examining the pattern of temporal changes in the spectral
response. Again, the results on the data dimensionality have been crucial to
this work: The temporal pattern can be plotted as a trajectory on the plane of
the data by joining together the points representing the locations of the field
means in successive acquisitions. Figures 3b, 3c, 4b, and 4c present these
temporal trajectories for some of the training fields from the Kansas and Okla-
homa sites. An asterisk marks the starting point of each trajectory. The
scale of each plot, unless otherwise specified, is the same as that of the plot
above it.

These trajectories constitute a complete graphical description of the
spectral-temporal response of the field. Note that for each of the two sites,
the trajectories associated with wheat fields are similar, and are sufficiently
distinct from the corresponding trajectories of nonwheat. Even for acquisitions
where the wheat and nonwheat data had appeared confused, the corresponding pat-
terns of spectral changes bear unique information for classification. Examin-
ation of multitemporal data from a number of sites has revealed that in each
case the pattern of temporal changes characterizes the crop and constitutes a
valid signature. Supervised classification of the data can be based on features
extracted from the temporal trajectories of the training fields C8D,

Simple interpretations based on crop phenology can be associated with this
pattern. It has been proposed,C7D, for example, that in our coordinate frame on
the plane of the data, the abscissa and ordinate give measures of brightness
and greenness, respectively, of the ground cover. Interpretation of the tem-
poral trajectories of winter wheat in terms of the anticipated phenomenological
changes generally supports this view, though this issue appears far from
resolved.

Note that the trajectories associated with wheat fields at the two sites
have certain qualitative similarity. Both sets are sampled versions of a con-
tinuous trajectory which appears to resemble an I (lower case script E). The
sampling times at the Oklahoma site (Figure 4b), however, are such as to miss
the distinguishing feature of the 'loop'. Distortion in trajectories can be
introduced by atmospheric conditions, such as haze. The nature of this distor-
tion, however, being common to data from all classes, would generally not mask
the class-specific features. Such identification of the features of the
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temporal trajectory with the crop phenology and the atmospheric conditions
would permit development of unsupervised crop-calendar tracking classification
schemes.

3. CONCLUSIONS

Graphical representation of the LANDSAT MSS data acquired during the dif-
ferent phases of the wheat crop has shown that wheat can be identified on the
basis of its characteristic pattern of temporal changes in the spectral re-
sponse. This pattern can be interpreted in terms of the crop calendar and the
crop vigor. Features of this temporal pattern provide a basis for both super-
vised and unsupervised classification of the data. These results, presented
here in the context of wheat identification, are applicable to the general crop
classification problem.
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APPENDIX

Orthonormal Transformation for the MSS Data

The following orthonormal transformation was used for the graphical representa-
tion of data in Figures 2-4.

T =

0.406 0.600 0.645 0 . 2 4 3
-0.386 -0.530 0.535 0.532

0.723 -0.597 0 .206 -0.278
0 .404 -0.039 -0.505 0.762

The rows of T define the bases vectors of the new coordinate frame. The first
two rows span a subspace parallel to the plane of the data.

1476



PA
G

E
 K

O
F K

JO
B

 Q
U

A
LITY

1 I
tJ& 

?or

1477



s?
sn i ;<>w , <M*I

JiII?\
ii

-»
-A
-»

...1.73

... 1 132*9)7
. 1.. 311 13 ? ^ C 9 l C 3

...1.1 3)4a jFC*H5£

246
6641 12. 1. .. .1 ..
73623.1. .2.,.. ..

.4*o2)N82CFDdF Fi.91,d J*. ;•» U .: •

""f*U12"262327»?3lajy6B8**68il!2r. l^.3."I .
I. 12122521754. . tA6547i i28fc762*^*5)45.5*. .
1.2. .4. 4 7 7 B M424f**oi440«M24*l»4VJ 72641.
.4123 i63?4«x , t6Ml^77642S»b3i i46 i t -2785^4* . . . .

. . ..3. 3 « 6 3 A d r , t f ^ b d 7 A 2 * 9 3 6 4 6 4 6 ^ G ^ 7 2 J l o B S 2 4 2 . .
...2. 7 465-. 1 97 86*^)96)62 70 71 7 t JU5^» ^44 36 2S212. ..
1 • 12l«4A6. ?M5U Ar|M r|AUM)9MT|4|j72aS2al 2 ..

...4 716925)1C*lGM6CCCaB7»043Dwa6BO. i**33 .11 22. .1
3 1 l 4 . A 2 7 B 6 . D F K a f r . F 2 »CCF(tCA82 OSM778453BD22 5. .3.1...

.. 161 2988 M094?V«4^> IG «. JF 93 3IC86UHM769E 40462 L 32. . 121.
.1 44.4F 7 F P 0 3 3 Z A 9 8 L * M F N O R * T8K 4iY 9E ioOio.) <• 1 J^> . 6. 2 . I .
».. 11 l 7 i 4 N 7 9 R J C 9 R r , 4 C » ' G * * K 3 E 9 « t I *7fl 1C E 7*82-. 79 i. M2. >4 I. . . I 6 5 7 A X K L T b C 9 M C * * 3 K ^ 3 3 0 E S > d N 9 J H K C t > ^ E 7 > A 7 I /4* 42 34

. I. 222B4GL)^biJ9^a J d S 2 6 4 d f c 7 < ( 9 i % 4 0 3 o ^ 6 * : 3 2 J 3 3-*9it>4 .93 3
3309C7B6637223 3.4.*I 7*44*2571i?4164)^6.I I.

m l . ' '"•' ' . . ' m ' m ' . ' l l . . '

. .
I i2l ...... 1 1. 12

ORIGINAl PAGE IS
•OF POOR QUALITY

Figure 2a. Scatter Plot of the In-plane Components of Data

;i*
IS

i

f?

Figure %. Scatter Plot of the Off-plane Components of Data

1478



ORIGINAL PAGE 1$
OF POOR QUALITY

45 55

Acquisition 1: 75349

4S 55

Acquitition 2: 76038

80 90 1

Acqumtion 4 76109

Acwmition 5: 76127

--V-

Acquixtion 3 76073

100 110

Acquwtion 6: 76164

Figure 3A Scnvr Plot Of F»ld MMIO

1479



\

1480



OF

20 M « K>

Acqmi.tion 1: 75310

40 50

Acquisition 5: 76053

20 30 40 M

Acquisition 2: 75328 Acquisition 6: 78107

25 »

Acquisition 3: 75364 Acquisition 7: 76143

25 X 46 56 I

Acquisition 4: 76017

Fisjura 4A. Sentx Plot Of FisM I

Acquisition 8 7(179

(Okltfionul

1481



1482




