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A SINGULARITY FREE ANALYTICAL SoLuTion OF
ARTIFICIAL SATELLITE MoTioN WITH DRaG

by
G. Scheifele, A. Mueller and S. Starke

GENERAL

This report is broken down into three parts,

PART I (by G. Scheifele) gives the connection between
the existing Delaunay~-Similar (DS) and Poincaré-Similar (PS)
satellite theories in the true anomaly version for the J2
perturbation and the new drag approach. It also gilves an
overall description of the corcept of the approach. The ne-
cessary expansions and the procedure to arrive at the computer
program for the canonical forces is then outlined in detail,

PART 11 (by A. Mueller) describes the procedure for the
analytical integration of the equations developed in PART I.
In addition, some numerical results are given.

-~ PART III (by 8. Starke) describes and documents the com-
puter program for the algebraic multiplication of the fourier
series which creates the FORTRAN coding in an automatic manner,
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PART I

THE EQUATIONS OF MOTION FOR THE DRAG PROBLEM
AND THEIR EXPANSION INTO FOURIER SERIES



PART 1
THE EQUATIONS OF MOTION FOR THE DRAG PROBLEM

AND THEIR EXPANSION INTO FOURIER SERIES
by

G. Scheifele

1, INTRODUCTION

The objective of the theory described in this report is
to arrive at a fully analytical theory for the motion of an

artificial satellite which is perturbed by the J term of

2
the zonal geopotential expansion and by a drag force which is
tangential to the orbit and proportional to the square of the

veleocity magnitude. The density function

C(x),X2,%3,1t) (I.1)

does not have to be specified for developing the theory at
hand. This is prohably one of the most significant features
of the theory. It is achieved by postponing the process of
creating the final computer source - language coding, which
is FORTRAN - compilable,to the very last stage. In this last
stage (step No. 2 below) this coding for the final expressions
is created in an automatic manner by a minicomputer. The
corresponding program is written in BASIC language which al-
lows easy alphanumeric string manipulation. This program may
also be executed on a large computer if a BASIC compiler is
available (as for instance on the UNIVAC 1110).

The two-body elements used are of Poincaré-type (PS-
eiements in 1{.ie true anomaly). These elements have been de-
drived from the D3 (Delaunay-Similar) elements which were
first presented in Reference 1. The corresponding regular set
of elements (PS-elements) has been derived in Reference 2,
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and the corresponding differential equations for the perturbed
motion are given in Refarence 3,

The drag theory is built on top of the Jg-theory in PS
elements which is the subject of References 9 and 10. Only
the first order short period and secular perturbation of the
Jz—theory have been taken into account. The long period ef-
fects of do and of the higher harmonics have heen omitted
because they are of the same order of magnitude as the uncer-
tainities in the drag force and density model. Some coupling
of drag and J2 is obtained implicitly because the total
energy is used as a canonical variable, and is evaluated for
the drag forces.

In general, the theory described here is very similar to
the one carried ot by Lane (Reference 7) and Lane and Cranford
(Reference 8) except for the fact that those approaches are
based on the classical Brouwer- .ori approach (Reference 6) which
uses classical elements (time as independent variable), while
here the new PS8 formalism of perturbed two-body motion is
used (true anomaly as the independent variable). In additior,
the density model used here can be different from the ones used
by Lane and by BrouwerHori and is not a fixed input to the theory.

No reference is made to noncanonical approaches to the
solution of the drag problem. The author considers these non-
canonical approaches to be not adequate because they do not
make use of the powerful tools which are typically provided
by all hamilton mechanics approaches to orbital mechanics
problems.

Canonical treatment of the drag effects is done by using
the transformation rules for the '"canonical forces'" as outlined
in References 4 and 5, In order to allow an analytical inte-
gration of these canonical forces they must be expanded into
fourier series with respect to the true longitude 01 which
is one of the canonical angle variables in the PS-theory.
These expansions are carried out in two steps:
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lst Step. Manual computation of the fourier expansions
of individual expressions which are not too complicated to
expand. These are for instance the poesitive and negative
powers of r (as thLey may occur in (I.1;), expansions of expres-
sions of the type r?v, r?v® and of the derivatives of the
cartesian coordinates and of the time with respect to the BPS
elements. These expansions are carried out in such a way
that terms of ordey magnitude 0(e®) (e=eccentricity) are
maintained. Subsequently each of these expansions has been
tested out on a minicomputer to verify the expected convergence
properties,

2nd Step. Or a WANG 2200 minicomputer a program was estab-
lished which automatically discards higher order terms, carries
out the multiplication logic of a product of up to four fourier
series, and then produces a FORTRAN compilable alphanumeric out-
put. This “ecustom tailored" algebraic processor is described
and documented in PART III of this report.

This two step procedure has the advantages that, first the
errors are avolided which are c¢reated by manually multiplying
fourier series, secondly the theory is flexible in the sense
that step number two can be reproduced at any later time to
either include a different model for the density and drag
force or to increase or reduce the number of terms accounted
for in the expansions which were carried out in the first step.

The resulting theory is of relatively concise form and
the resulting FORTRAN program compiles on the UNIVAC 1110
EXEC 8 system and it is executable in the interactive mode.

Some numerical results are given in PART II, where the
analytical integration procedure is outlined explicitly.

We can conclude that the use of the new Poincaré-Similar
elements in the true anomaly version is very well suited for
developing a concise near earth satellite theory that accounts
for a suitable density model. An attempt will be made to
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further reduce the coding of the resulting FORTRAN program
and to incorporate some accurate density models.

2, THE BASIC SET OF PS ELEMENTS USED

The true anomaly DS elements are transformed into the
singularity free PS elements by the following canonical
transformation

(momentas) (coordinates)
= = = +g+
o, pl ¢ cl p+g+h
Oy =p, = Y2(9-G)Ycos(g+h) 02=-/2(¢—G)sin(g+h)
(1.2)
g, = p3 = ¥Y2(G-H)cosh 03==~¢2(G~Hfsinh
G, = pq = L Uu= )

The DS-elements are interpreted as follows:

G: total angular momentum

H: xa-component of angular momentum

L: total energy

¢: related to two-body energy
canonically conjugated elements

g: argument of perigee

h: argument of ascending node

2: time element

$: canonical true anomaly

With q being

1 \ 1.2 2 1 u
gq=0G-50 + —— =-=(0 +p°) + 5p + (1.3)
2 2/3L0 2% 2 T2 271 2/§E:

the transformation from the time t to the new independent
variable T reads

— = — (I.4)
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The hamiltonian for the perturbed two-body motion is then

H 2
F=py =+ —=¥ , (I.5)
Y 2py 4

(V=perturbing potential)
and the initial conditions must be chosen such that F will
initially vandish.

From Reference 2 we can record the following abbreviations
and expressions which will be used later,

G-H = 2(a}+p}) (1.6)
- L, 2. .2
G= p;~- -2-(02'1'[)2) (I.7)
%-—- cosl (1.8)
2 _ L |,2u 1, 2. 2 24 .2
e’ = — I - F(oz+p3)| (o3+p3) (1.9)
u? l:/ﬁl? 2
e = V1-2&, (1.10)
H
1 1 ‘
1
p == |- Z(oi+pd) + — (I.11)
u [ 2 7* /37!
_
q =1 /—2 ~5(0%+p3) (1.12)
2L
Z1 = pp COSC, - O, 8ing, (1.13)
% = pz singy + 02 coOs0, (I.14)

T
le? =1 - %%%(O§+p§) (I.15)
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e sing = Q 2, (I.16)
e cosy = Q Z, (I.17)
R = g, cosa; + p;3 sino, (1.18)

By using the above relations the transformations from car-
tesian coordinates and velocity components to PS variables
can be written as follows:

X1 =- ﬁ%asn + r coso) (I.19)
Xy = = é%p3R + r sinog, (1.20)
_r / 2 ’ _ rR
=== 1——_(03+p3) R = 5G Y2(G+HY (1.21)
Yo G
] . G . Oy ,
x, =T (cosog, - zGGJR) - r(;— sing, + bre R) (I.23)

. . Ps .,
X, =T (Sinol - 2le3R) + r(~—2' cosgy - '2"@ R)

Q

=(# R + r R) —-1/5, /1-2%(a§+p§)'= (;R)' /I (GFEY (I.24)
96

where r, » and R are given by

g = 1+ Q (p2cosg; - Ga8inc;) (I1.25)
. Q r? )

r = 5 (V T + G) (oycosg, + ppsino,) (1.286)
R = (pscoso; - 03singy) %% (1.27)

The last transformation equation that reeds to be given
here is the one for the transformation of the physical time

t = oy + W(E ¢- --\/l ~e? e sing) (I.28)



with

o ui
E-¢ = - 2 arety - ,;}£¢
1+ 1= CONt

(1.29)

and where /i~nﬂ; ¢ osing , e oeondg are taken from (1,18),
(1.168), and (1.17).

3, TRANSFORMATION OF THE CANONICAL FORCES

The formalism ol Lranstorming additional forees which
can not be derived frowm o potential function under canonical
variable transformations has Pirst been given by Brouwer and
Hori (Reference 6). It has been pgoneralized to include canon-
ical systems which are based on independeat variuables differ-
ent from time in Rerepence ., A thorough and exhaustive de-
seription ot this extension can be found in Reterence b
(Chapter VIILI).

Let us pgo back to the ceigipal formulution of the poer-
turbed two-body problem i oatesian coordinngtes where the
canonical equations of moting read

dn, o
e e = X (I.30)
eIt Y k
’ LN
(k=1,2,3,4)
dp nrt
dt ax, S

F® is the hamiltonian of the pevturbed two-body motion in the
extended phase space:

F¢ o= -};(n? + pho+ pi)- ‘f +V o+ (I1.32)

where u is the gravitational parameter, V is the perturb-
ing potential of the J,, purt of the geopotential expansion
and ps is the negative total energy:
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p, = ..[:%.(pg + pi + p?) - ‘;: + V:l , (I.33)
1 A 1
V =¢ = l:(?) -g] , (I.34)
= 3 2
£ =5 Jg W Ry . (1.35)
(R.: mean radius of earth).

@
The canonical forces of the x-type, Xo, X1, X2, X3,
are absent at this initial stage and the canonicnl forces
?,, P, P; are the original forces given by the drag:

P, = C(xk,t)v ' (j=1.2,%3) (I.36)

3 i’

C(xk,t) is the product of the density with the ballistic num-
ber of the body. In this report, € is resiricted fo be a
function of r cniy, namely the Laurent serieg given in (I.1).

According to the rules given in References 4 and 5, a
canonical force P, must be introduced which is defined by

n

'c
x - 5

oF )
1 pii

1#1 (ax

I w

Py, = (I1.37)

oy

The left hand part of this expression is zero and for the
right hand part we obtain

P, = - p1P; - paP; ~ p3P; = C v? (I.38)

(observe that (I.30) ang (I.31) imply P, = vk).

At this point we are ready to transform the independent
varigble from t to T as posted in (I.4). Again, accord-
ing to References 4 and 5 we c¢an proceed as follows:

F=L- pe (1.39)
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4t

X, =0 , (k=1,2,3,1). (1.40)

L XY
Pro 8y

3 Eh
Py
In the next step we will give the transformation of the
canonical forces under the canonical transformation which
iegads from the ca tesian variables to the P8-elements. The
transformation sicheme can b2 deseribed by

xk s (Jk : pk > pk
N (I.41)
¢ MY
K = T o P r By
and the exapliciti formulas are
4 " Bpk o BXk ,
T, =k (R —E e R — (1.42)
: ¢ 9p dp
3 |
(‘-i=1,2,3‘4)
W , 9P N, OX
U, = .5, (¥ —=% 4B, % (1.43)
3 k=1 k 5 k|
g a4
J i
They reduce to
b, bxk w oA axk
Ty =Bt %70 Uy Ry B (149)
Bpj an

v
and by inserting the expressions (I1.40) and (I1.36) for Pk
we obtain

I‘2 5 Eixk 3 at
Ty === Cx) (v By vy ==~V =) (1.45)
! P 9P
(j=1,2,3,4)
r? 4 Bxk 3 8t 1.46
U O Gy D g (1)

(Observe the relavion x, = t).
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These equations form the basis for all of the subsequent theory
which will deal with the explicit expressions and with the ex-~
pansions of T and U

3 ]

The final form of the equations of motion is

EEE = EE— - Tk
dr Bpk
(k=1,2,3,4) (1.47)
T Bck

For the case T, = Uk = 0 {(no drag) t - equations (I1.47)
have been solved. This is the Jz—perturbed solution

of the motion of an artificial satellite described in Refer-
ences 10 and 9. The corresponding equations have been, pro-
grammed and tested out (Program PSANS). This Jz—solution
is not discussed here and we will proceed to the expansion
of the canonical forces T,, Tz, Ta, Ty, Ui, Uz, Us;, Uy into
fourier series.

4, FOURIER EXPANSION OF THE CANONICAL FORCES

To enabhle an integration by quadrature of the canonical
system (I1.47), we have to expand the canonical foces Tk and
Uk into fourier series with respect to the true longitude 1.
The process to arrive at this expansion is rather lengthy, and
we will only outline the major steps and give the results. No

intermediate calculations will be given here.

Throughout the expansions, terms of order magnitude 0(e")
will be maintained. In some cases where derivatives of the
expanded expressions will be needed, the terms had to be ex-
panded to order magnitude O0(e?®).
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Let us list some additional abbreviations for quantities
which occur very often:

s? = $(of + p}) = O(e?) (1.48)

pr = 200 g = @ (1.49)
W qn

1 = BZy = B8(pa cos0; -0 sing;) = 0(e) (I1.50)

g = BZa = B(pz sino; *+ o5 cosoc,;) = O(e) (I.51)

n* = s%82 = 0(e?) (1.53)

The quantities &L, ¢ and n are dimensionless (their
physical dimension is of unity).

For the velocity magnitude v the expression

o
n
t
[
<
[
+
=

-V ) (I1.53)
which stems from F=0 is used, giving

v2 = 2(-py + % - V) (I.54)

The expression for r in PS wvariables is

S
T 1707, (1.55)
v and r , asg well as products of mixed powers of v and

r will be expanded later.
Let us first concentrate on the terms

ax 3

_k ox .= .

1 Vi 35, 0 kE1 Ve —K (j=1,2,3,4) (I.56)
] aoj

3w

k
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which ocecur in (7.45) and (I.46). After having inserted
the PS elements into the expressions (I.56) and by making
extensive use of the formulas (I.19) to (I.27), a consid-
erable number of cancellations will occur. The result is an
astonishingly simple final result for the above eight expres-
sions. The explicit algebra to arrive at these simplified
expressions takes several pages of hand-computation even if
presented in a compressed form. These derivations are not
presented here, we should like, however, to point out that
the resulting formulas have been tested for correctness with
a computer program that compares the original expressions
with the ones obtained after the lengthy calculations. By
taking into account the results of these algebraic manipula-
tions we arrive at a new form of the canonical equations,
which will serve as a starting basis for the fouriler expansions:

: o 0 0%
T, = %FC(X) v ? + oy 8L 2(1-s2p%2)| - v? %E~
J - _2__0-3 pj sz pj
0

(j=1,2,3,4) (1,57)
, G
U, = Zexydy | 9 vy DE |QB2 0 g2p2y| - y? 2E
j .1'_ ao 62 BU.
2 P3 P J
0

The expressions which need to be expanded into fourier
series are now

ar ar at 3t
‘: .: 30-_: a i
acr:| apJ k| pj

2

riv, r2v?, Cc(x), (I.58)

We will now proceed to these expansions. Expanding r and
its powers is straightforward. As an example of these
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binomial expansions we will give the one for r
r = p(1-2:Q + 21Q* - ZiQ® + ziQ" - Z3Q°) + 0(c) (I1.59)

The expansions for Q are found by binomial expansion too,
resulting in

Q@ =8v/1- 25— = (1 - % s?p® ~ g% s'B*)+ 0(e®) (1.60)
Q* = B2(1- 3 s28%) (exact) (1.61)
QY = Bi(L- % s282 + =5 s%B") + 0(e®) (1.62)
Q" = B'(L- s2B% + 7 s"8")  (exact) (I.63)
Q® = B(1 - % s?p® %% s*8") + 0(e®) (I.64)

The fourier expansions of Z% however, are becoming rather
complicated since %!, for instance, will create twelve terms
which are powers of o3, p2, sinc, , cosag,; , which each have
to be expanded into individual fourier polynomials. For this
reason it was decided to expand all the expressions in (I1.58)
into power series with the general term

Bg p2 a? Z% Zé sing, cosu, , (I1.65)

and to multiply these power series at the end in an automatic
way with each other, establishing a table for the fourier
series of expressions of the type (I.65). By observing the

relations
%% = 28* ~ 7% (1.66)
Z) = 2522, - %,%% (I1.67)

74 = 4s" - 4s%2% + 7% (1.68)
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the highest power of %22 which will occur can be restricted
to  j=1,

If these general guldelines are fcllowed, the expressions
for the quantities in (I.58) can be expanded with respect to
the eccentricity to obtain power series with the general term
(I.65). Where these expansions are more or less straightfor-
ward no intermediate steps are given. Here again, the formula
manipulation to arrive at these expressions 1s generally very
tedious and lengthy. For this reason, the resulting expres-
sions have been programmed and thelr expected convergence
properties have been tested out numerically by comparing with
the exact expressions (I1.65). The dimensionless quantities

n?, 5y and %s are used.

Expression for r?v:

rv = p?* /3p, [}l + n?)? - % Li(4 + 15 n?) + %

t3¢2 + 27 n?)
(1.69)
17

rdar - Moo L 1o s g+ 0ce®) + o(ve?)

Some remarks are in order concerning the last term in this
expression. Ry evaluating the drag on a J2 orbit the»prder
of magnitude of the potential V will he of ordexr magnitude
Jo,
of order magnitude 0(e”), and we are limiting the eccen-

i.e. 1073, Since we are only taking into account terms

tricity to the interval 0<e<0.l, terms which wave V as a
common factor need only to be expanded to order magnitude
0(e), thus giving four significant digits in the limit case
e=0.1. The expression for V c¢an be obtained from the con-
dition that the hamiltonian must vanish in extended phase
space:

_VT=1+221 Q -~ p} B* - 22, Q p? BY . (I.70)
8]
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Because this expression contains information beyond the third
digit only, it can be simplified by using

Q =8 YL ~-5n?=28+0("), (I.71)

i.e, replacing @ by B , resulting in

el 1 - p} 8"+ 20.(1 - pf B*) + 0(e?) . (1.72)

By observing in addition

Y2py = B2y (I.73)

and neglecting 0(e®) terms we obtain the final expression:

v el

r?y = 2 p? y g2 4[2(1+n2)2-1+p"1’ B‘i]
-~ 2 ,(2 + 15 n% + 2 pyBY) + 2 zi(2 + 27 n?) (I.74)
+ 4 ] - 17 ¥l + 0(e®)

Fxpression for rivi:

Similarily, we obtain for r?v?:

2v3=%8ﬂ1png 4 p% B"(1 ~ p? B* + 8 n* + 8 ")

+ 2 1) p? BY(2 + 2 pi B* ~ n?)
(1.75)
+2:%E>¥ RY'(-4 + 6 n?) - 2 - 15 “2]

+ 4 gi(l + 2 pi B

-9zt p} 8" L+ 0(e®)
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Expressgions for %%; and %%;:

The expressions for the derivatives of 1r are found by
evaluating equation (I.59). This equation was given to the
fifth order accuracy because taking the partial derivatives
will reduce the order by one. Using the expanded versions

of the Q -~ powers, which are given in (I.60) to (I1.64) we

can write a general expression for %%— :
i
& -2 1z, 8-3n%) + 2} B2(1-3n?) - 27} 87 + 2} g
Bpj Py 4 2
- p 3% [an - 228 sa-fn®) + o2t 6? - 4zt g
j L
(1.76)
0Z
1 R T 2,4_1 2

+ 32} Ba(l—g-nz) - 473 B* + 5%} e{| + 0(e ) ,

(3=1,2,3,4)
and an equivalent expression holds for %§~
K|

The eight partial derivatives of B (they are needed
for the @ - derivatives), of Q, of p =and of Z; which
occur in the above expression are listed below. Derivatives
of these expressions which are not listed are vanishing.

%%T = ,4_5.;_ (1.77)
B e - (38° + 2= s28%) (1.78)
% x - a, (%53 +11~é s28%) (1.79)
%%T,' = ILBT (1_.3_,12_-?%”’*) (I.80)
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2p
ap 2 2
= . (1-n?) (1.81
apZ uBZ
20‘2
3P . o ({on?
- - (1-n?) (1.82)
uB
9p_ _ __H 2
30 ——2pﬁ (1-n*) (1.83)
07,
=%, (I.84)
30’1
97,
—_— = 0050, (1.85)
P2
87,
= ~-g5ing; (I.86)
302

Inserting these expressions into (I.76) yields, after the
truncation of higher order terms and ceollection of the terms
has been carried out, the following expressions:

or . r r_ . ar .

apl - 0, ap3 - O) 303 0! ao-u 0 (I'87)
20,

or  _ 2 _ _5 2 2¢_8B 2y _ ,3 u

Ty 1 - n (1 7" ) + id il ) zi t* 5}

ug?

3 )
+ p stzl}l(%'*“ _]I.L_nz) -%C% uly i ~ CE:I

(I.88)
- BCOsT - n? - L n* - 2g (l—lﬂ2)+3C3(1-§ )
P Beosdy vT a3 1%-3 1= gn

e

—4C:+5C!{_J + 0(e?).



26

3|
= - 5= [1 - n? - 5-Sn2) +gia-dnz) - g 4 z;'*:l
P

(1.89)

sk E;‘(J"%‘z) - 258(1-n?) + 3¢} - -a..‘.‘i:l + 0(e®)

et
L

1 1 1 p 3
Z2 [% -~z N - g5t - 20 0-3n%) + 3i-7n?)

|

@
Q
ot

(I.90)

- az} + 5;{] + 0(e?)

dr g2 5 ‘ 3
fe- = - — [% - n? - Li(t-gn?) + c%(L—Enz) -t} + c{]
uB
2 1 L2y _ 1 3 r3 _
+ P UZB C1(4+ 16n ) 9 [ + a Cy ;1
(I.91)
. l 2 _ _1_._ b 1 2 2 § 2
¢ p gsingy [1 - § 0% - 0t - 2y a-Fn®) +acia-Sn®)
- 4gi + sc?:] + 0(e®)
R at at
Bxpreassions for —— and —:
Bck Bpk

Let us first record the time equation (I.28) again, and
write it by using the new abbreviations. For this purpose
we may first list some basic relations

i
[
|

l-e (o%+p%) = 1 - n2 (1.92)

|
&
D3

e sing; = Q %, , 8 cos0, = (I.93)
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Thus the time equation may now be written in the form
t = o4 + Hmv—-[fb )- = (14\) G ?1 , (1.94)

where (E-¢) stands for

Z2Q
¥ ~-¢=-2 arctan ———- . (1.95)
2"712'*'21@

Let us introduce the guantity 7T

I' = L (I1.96)

1+%(Z1Q—n2)

and first expand E ~ ¢ , 8Since this is the difference bo-
tween the true and the eccontrice anomaly it is of the order
of the ecceniricity, This implics Chat the argument of the
arctan Tunction is small, allowing us Lo expand it into a

power series about the point zZero. The result is

=y
1

1

25 58 yeB
w5 i BE

E—¢=-£B(1——-n)1‘+ 73 g i -

|t

(1.97)
+ 0(e7)

In the above and all the subsequent expansions for ¢t we

have to bhe careful to take into account terms up to and in-
cluding 0(e®) , because of the derivatives to be taken later.
Inseriing (I1.97) into the time cquation (1.84) yields

t = o 4o [}ap(1~1n") T+ fﬁ r3 1?
.gﬂ W B
(1.98)
- é% £3 1'% - =(1-n?) éz?} + 0(e
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The last term %(lunz)ZzQ is expanded by inserting X from
(1.59) and then using equations (I.60) to (I.64) for the
nowers of Q . The result is, after adequate truncations to
the order needed:

Z(1-n2)%2Q = ga[L - n@-Fn®) + sia-gn?)
(I.99)

-r;§+c'f—%n2+%n":|+0(e6)

We may now write down a general expression for the derivatives

%E_ which equally applies to the derivatives L :
Dj acj
A 2o 31 -, P(-% 2y + Ly ope

2 41’] 19 2

%y apy (20072

CzE— - ;5; n? - z,(1- -gn") + g3 - C:{l

9L
+—($2— Cz"ga— 1-%n2—2C1(1'-%n2)+3E%*‘4C{|
h|

8%z lrd
- — 122w 2 - na-dn ¢ ota-dnt) - el g
30
3 (1.100)
l 2 ._l 2 3 § 2 ;L 4 5
v ra-30ty -3 ot ety v ooy o]
2
#pp HD (O 2o Bge Lot e ar- oolr?)
ap
3
ar_ o2 1 .2 p2eq_ 3.2
- L2 3y [1-4n -7 &z '@ n):l

(3=1,2,3,4)
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In the further procedure the powers of cg are reduced to
n=l by using the relation

53 = 2 n* - i (I.101)
which is equivalent to (I.66). The following expressions

need to be inscerted in (I.,100). The results of their ex-
pressions are given below.

' =1 + % n? + % n* - %-r1(1+§n2+égvﬂ)
(I.102)
1.2 2y _ ,3¢1.5 2 I N Y
2 2 §_ [} - 7 K 5 (\'3
P—1+n + 4” ‘Jl(ll-‘ln )+r 4+8n )
(I.103)
_j_- 3 __5_" ]
- 2 r;l + 16 CI
Pe 1o+ Sn2en') - 0G5+ 3m?) + dG e an?)
(I.104)
S .3 . 15 .
- '4" Ly + 16 X
5 _2.,D . 25
Phx 1+ 2 0% + 20"~ 0y (24gn%) + ni(G+FPn?)
(1.1058)
-2 73 . 38
2 z;l 16 -3'1

Al 4 n? - 4 23 n? + o (1.106)
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Last, the derivatives of ©§;,Z, and n need to be listed,

The ones which vanish are omitted in the list.

8L 9Ly 9L,
——= -y , -—-— = R cosg; , = - B coso, (I.108)
apl sz 80,
9% Ly 9Z2 9Lz
= , =L , —_— = B sino; (I.109)
opy 4p,, 30, 3Pz
3L 2 9L 2 Ca
= B coso; ’ ——— (1.110)
902 apy 4py
8 (m?) 3 (n?) a(n* n?
= p3 82 , — = Oy Ba , —_— = — (I.111)
apa ¢ 0Py 2p|,

At this stage, all the information is provided to insert the
necessary quantities into (I.100). However, at this stage too,
the individual expansions for the r® and for the derivatives
have been tested out numerically before proceeding with the
algebra. After a considerable amount of explicit computations
the following final expansions for the partial derivatives of
the time with respect to the PS variables result.
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-1
6 n%(1-n?) + £,(4-13n%) - £%(6-21n2)
4p, B2
(I.112)

+817] ~ 10 £"} + 0(e?)

-1

~ {2 sincl[EZ (1 - n2)- £1(20-29n%)

169:,8
+ 28 r$ - 36 ;%]
+ 00301[}6 - 1202+ 2" - 4 z1(3-4n?) (1.113)
+ r£3(12-19n%) - 12 ¢} 4 12 c{]
- L3 0, B|8 -~ 512 -~ 10z, + 12 ;{] + 0(e?’)
0 (I.114)
1 (I.115)
0 (I.116)
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ot 1 1
—_—= = —— {0y Coscl[éz (1-n?) - £,(20-29n%) + 28 ¢? ~ 36 C{l
dp2 16 puB ! L

sincl[;G - 12 n%2 + 2 n* - 4 £;(3-4n?)

(I.117)
+a;i (12-19n2)-12r,f+12c‘£:|
tT e, B (}—Snz—-lo z;1+12cf:, + 0(e®)
At
— =0 (I.118)
Ipa
ot 1 2,
_— — 20 - 7 n? - g, (12-6n%) + 8 z} - 4 ¢}
apy 16 php?
+ 0(e®) (I.119)

Now all the necessary derivatives and expressions are
expanded which will be needed to evaluate (I1.57) except for
the density function € . To test out the theory and the
general procedure ocutline in the next section we will insert
a constant density for the preliminary numerical tests. Var-
ious expansions of simple representations of the density
function are currently being investigated. The general form
of the resulting expression fer a spherically symmetric den-
sity function is an expression which is very similar to the
ones for the partial derivatives of r , and only powers of
gy will occur. If latitude and time dependent density func-
tions are considered, the resulting expressions become more
complicated, and will be dependent on powers of [

5, AUTOMATIC GENERATION OF THE FINAL EQUATIONS

As it was outlined in the introduction, this theory is
of a "dynamic" character. This allows for example a continuous
updating of the density model. It is of course, necessary to
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develop such a function into an expansion in powers of i,
L2, Sing;, coso; by explieit manual computation. Also the
expansion must be complete to a certain order of the eccen-
tricity; in our case 0(e") terms must be included. Then,
before the expansion may be used for an input to the auto-
matic algebraic multiplier 1ts expected numerical convergence
behavior must be tested out.

Let us here record the expressions (I.57) for the canon-
ical forces

2 0 QRZ
-+
T, = Zc(xXv ? + v %E* —Fl(l—szﬁzi} - 3 %%—
j q - ,5. O3 pj sz j
0
(j=1,2,3,4) (1.120)
2 -+ G 3
u, = Zegxv 0 + v - [:9?-2—(1-5282)] - v? 2
] 3 P4 i |B%p 3
0
and denote the Uj terms by
T, =T (j=1,2,3,4). (I.121)

The expressions which were given in the previous section are

+
r2y 2.3 .~ ar ar 2t at
, TV, C(x), aoj’ Bpj’ Bcj’ Bpj (1.122)

In addition, the expression for the middle term is
QZ >

u = —— (1-5%82) (1.123)
B2p



which can be simplified to
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1
u = g2 (4-85n?) + 0(e®) (I.124)
48%p
needs to be considered.

By denoting the left hand terms by T,®'® , the middle
terms by Tmid and the right hand terms by T;ight we can
write the following multiplication table

0 7
0
_%:03
Tleft _ 2 0 =
" = (r?v)(C)-| 4 (k=1,2,3,4,5,6,7,8) (I.125)
0
1
-gpa
0 ]
T, —(rv)< )()(C) (1.126)
mid _
T, = (r?v): ( ) (u) (C) (1.127)
i - (rzv)-(gj%)-(u)-(C) (1.128)
= () (w0 (1.129)
T3 = (r2v?). (32 (C) (1.130)
TR = (x2v) (550 () (1.131)
right _ ,. 2.3 ot . 132
T, = (r°v )'(ggT) (C) (I. )
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xrlght _ a3y, .88 o .
T (r29?) - (g5=)+ (C) (1.133)
right 2.3

T8 = (rev?).(C) (I.134)

The terms which are not listed here are ahsent, as can
be seen by inspection of the expressions developed in the last
section.

It is of interest to note, that due to(I.125), ‘1‘3 and
'I‘7 are equal up to a different common factor; T5 is the
only canonical force which gets contributions from all three

terms in (I.123).

Of special inierest is the force Tl' It is the only
vanishing one. The consequence is that the variable o;
(true longitude) is not affeceted by the drag pertuvbation.
This is a peculiarity of the PS8-theory. Even though this
seems strange on a first loock, it must be emphasized that it
does by no means imply that there would be no in-track effect.
This in-track or timing effect of the moving body within the

orbit is accounted for by T which determines the motion

)
of the time element o, . Tﬁis interesting observation re-~
flects the fact, that the geometry of the motion is fully
gseparated from the dynamics within the orbit, which is typ-
ical for the new canonical variable formulation of the DS

and PSS theories in the true or eccentric anomaly case.

The ten products displayed in (I1.125) to (I.134) are
carried out with the automatic algebraic multiplier which is
documented in PART III of this rcport. The task to be per-
formed by this multiplier is twofold:

(1) It will determine il a term is of order magnitude

0(e®) or higher. 1If this is the case, the term
is discarded. Practical experience show that
about 85% of the terms occuring in these products
will be discarded.
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(2) If a non-discardable term is encountered, it is
identified, and a pointer is established .hich
rofers to one of the elements listed in tuv
"Table'" below (T1, T2, ..., T27). The perti-
nent factors as well as %the pointer are then
temporarily stored and saved on tape in such a
manner that the resulting statements are FORTRAN
compilable.

The "TABLE":

A careful inspection of the expressions occuring in
(I.125) to (I1.134) and of the expansions of their product
terms which were given in Section 3 shows that the only terms
of order magnitude 0(e") and smaller are the ones given in
the following "TABLE". The expressions for the right hand
sides are computed in a separate FORTRAN subroutine and are
transferred by means of a common block.



order . 1gnitude
T22
T26
T27
order magnitude
g1 = T1
C1 81in0, = T2
L1 cog0, = T3
T2 = T23
Lo 81in0, = T24
La cog0y = T25
order magnitude
L1 €2 = T4
£y, Lz sinoy = T8
51 G2 cosg, = TG
i = T7
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TABLE
0{1) terms:
=1
= ging,
= @Qogagy
0(e) terms:
= B(-0, 8in0, + p2 cos0,) (I.135)
1 .
= B(~- 5 02 % % p» 8itn20,
1 (I.136)
+ 5 02 cos20,)
= B(% P2 ~ % 0, sin 20
1 (1.137)
+ 5 P2 cog20;)
= B(pz sinol + Oa GOSUI) (1.138)
= B(% pa *+ % g2 8in2g,
1 - (10139)
-5 P2 0820, )
= B(% g *+ % Pa sinzcl
1 (I.140)
+ 5 T 008201)
0(e?) terms:
= B2 % (p3-0%) sin20,
< (I.141)
+ pa O2 GOSQG‘]]
= R2|- % P20, 81ROy + %(p%—d%)aosol
lL ) (I.142)
+ 5 P202 sindg, - Z(p%—c%)cossai]
= R2 % (p3-0%) sino, + % P20, €080,
i“ 1 (1.143)
+ 7 (pi-03)ain3da, + 5 92020083G£]
_]. 2 2 +
= p?|z (p5-0}) - gn 8in2c
2 Pz 2 P2d2 1 (I.144)
1

+

5 (p2-0%) cosBc{]
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t¥ sino, =T8 = Bzh% (p3+30%) aino, - % P20, eoBo) .
+ %;(p%—c%) 3in30‘-r% PO, casSc:(I'l >
rt cosag, =1T9 = R%|. % P202 8inc; + Z(Sp%ﬂr%) aozcl
L (1.146)
- % pads 8tnlc; + %(p%—o%) cosSG?
order magnitude o(e®) terms:
R = T10 = BEEI' pa(pit+od) sino, + % oz (p3+0i) coso,
1.147
+ % ps (pZ+303) éin30f~% UZ(SpZ—Ué) cos%a;]
it 52 sinoy = 111 = 8°[F 02 (ofeod) - } or (pE-0d) sinao,
- % p20% coslo, + % c2(3ps-03) siéiéi48)
- %‘- P2 (p%-—302) 00340‘1]
z} ©2 cosoy = T12 = BSB" oz{pi+ad) + ‘i‘ p2(p3-0}) sin2o,
+ % p2g, coslo, + % p2(pé-3c%) siéié}49)
+ % ga(3p%-ad) eoséc{]
i = T13 = Ba[} % c2(pi+ad) sino, + % p2(p§+03) cono,
- % 02(3p}-0%, sindo, (1.150)
+ % p3(p2-30%) 003301:]
t} sino, = T14 = 83[— -g- o2(pi+ad) + % p2(pi+30}) sin2a,
+ %— o} cos20; + —é— p2(p3-303%) sin4g{'151)
+ %‘- o,(3p3-03%) cos4ol:l
ri coso; = T15 = Bs[g p2(pi+od) - % 02(3p3+o}) sin2o,
+ % 01 cos2d, - % 02(3p2-0%) aindsr T2
+ %;' p2(p%-30%) coséo‘{]
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order magnitude O0(e" terms :
td 22 = Tl = {4 (pi-02) ain20, + % p.0,(pi+03) eosl0,
[% pl+gl) - 2— p2a? sinda, (1.153)
+ % p20,(pi-0%) 003401]
£l £a sing, = T17 = B“{— % pzﬁz(p%+c%) sing, + % (pi-03) coso,
4 i 3 ATRS 1 I q 4
5 P20% 81nd0y -i5% (pi-303)
(1.154)
+ % p%c%]cosBcl + % pacs(p3-03) sindc,
1
—[ig (p3+o3) -~ % p3ol 003501}
1 .
t} %2 coso, = T8 = B“{g (p4-03) sinoy + 7 p202(pf+o}) coson
+ 1 y o s
-i-é- -—0 ) - 02 1-?1301
. L (I.155)
+ '§- p%O’z ceosd0;, +[Té- (024'0';
3 2 0 . 1 2
- g P203|8inSoy + T 0202(p%-0}) cosboy
3 .
& = T1l9 = B“{g (p3+03)% - paoa(p3tud) sinlo,
+ Loy 1 1 2 2(1'%56)
5 (p2-08) cos20° - 5 p202(pi-03) sindo,
Ei'm (p3+o2) - % pia2 (103401}
L% sing, = T20 = {[é(p +50%) + % p%o:]szn01
1 2, 2 1 W l
- 5 P202(pz+0z) cosoy +| 75 (3pz-503)
3 .. . 1 (I.157)
t 3 ozoglszn301 t 7 P202(p3+303) ¢osd0,
1 3 .
+[ig (p3tog) - g p%o%]sznﬁol
+ %7 p20z (pi-0%) 008501}
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P20, (pi+od) sino, +|:% (6p3+oi)
o%|eoso, - % P20z (3pi+o?) ginlo,
5p%-302) - % p%o';]aossol (I.158)

1
16

p202(p3-0%) sinbo, +[}— (pi+oi

g

U%]cosSdl}
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PART 11

ANALYTICAL INTEGRATION PROCEDURE
by
A, Mueller

1. INTRODUCTION

The subsequent considerations are concerned with the
analytical integration of the equations of motion defined in
PART 1. These equations have the form

doi _ aF
..__....__.._...._Ti
dt Bpi
i=1,2,3,4 (I1.1)
dp. aF
"—pi="_“'+Ti+4
drt ]+

where TF is the hamiltonian which includes the two-body and
J2 potential and the drag perturbation is included in the
canonical forces Ti . Because of the coupling considerations
given in PART I we will assume that the integration may be
separated into two integrals.

( doy _ [ oF
— dt - dT - Ti dv
J dt Bpi
(I1.2)
[ dpi dF
_—dr = - — dT + Ti+4 dt
J dar aci

The integration of the part due to the hamiltenian has
already been treated in Reference 9 and we proceed to the
integration of the canonical forces.
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2,  CANONICAL FORCES

As described in PART I, the canonical forces Ti have
been expanded about the eccentricity so that these forces may
be written as a fourier series in the fast variable o,
whieh in turn will facilitate the integration. However, to
analytically integrate the forces, they must be expressed as
a function of the independent variable and the initial con-
ditions. As is standard in perturbation theory, this is done
by inserting the two-body expressions for the motion of the
elements into the equations for the canonical forces, These
two-body expressions are obtained from the integration of the
canonical differential equations due to the two-body part of
the hamiltonian. It is known that this integration is a
eanontieal transformation in itself, thus to be consistent,
the canonical forces must undergo another transformation.

The transformation in the elements is defined by the
following equations

gi1{t) = 1 + 0;(0)
(II.3)
= H T + g4(0
gu(T) ?EEI;JQ 4 (0)
ck(r) = 0,(0) for k=2,3
pk(r) = pk(O) for k=1,2,3,4

As defined in Reference 5 the canonical transformation
of the forces is given by
Bpk 90
kt+4

k

—_— (II.4z)
Bpj(r)
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and the conjugate forces

( b 3pk Bck
T T,0,) = L T, ———— 4+ T —1 (II.4b)
i+a4 1 k=0 k BO'j(T) ktd 80:] (1)

onsidering (II1.3) one finds that the transformation reduces

to the following

Tj(T;Ul.) = Tj for J=1:233:5:617:8
(I1.5)
3u

Ty(T,0, ) = Ty + —"7“ T Ty
k (ZPH)sz

The canonical forces are now in a form to be easily integrated.

3.  INTEGRALS
Let us define the right hand integral of (II.2) as

Ry (t,0,) = [ Ty(t,0,) dt (11.6)

Due to the fact that the canonical forces have been ex-
pressed in a fourier series, the indefinite integral Ri may
be expressesd by a summation of terms which are multiples of

the following integrals

dt

]
~

J cos Emol('c)_ dt = + _rlf sin E]cl(r)] (II.7a)

Jsin[nu;(r)il dT %cos Eml(':):]

n
|
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2
-+ TdT P:LZ—

[ .
-+ TCOE-‘I-nm(T):l drt - ;11.;,- nt sinE:crl('r)] + cosE161(T):|

(II.7b)

+ Tsinl}u;('r)] dt = - n_l'f nr cosElol('c):l - Sin|—rlﬁl('f)]

J

]

Forms marked by the arrow appear only in the integral Ry
and are a result of the independent variable appearing in
(II.5) a3 factor.

4,  PERTURBATIONS

Partial coupling effects may be introduced by evaluating
the integrals with the elements Uk(T) which are predicted
from the J2 satellite theory. The procedure by which the
integrals are evaluated and .ne perturbations due to the J2
and drag are summed requires four steps

1. given T=0 , ok(o) + (IL.6) =+ Ri(o)
2. given 1 ,ck(o) - J2 + Uk(T)
3. given ak(T) , T + (I1.8) =+ Ri(T)

5. given Rk(r) and Rk(o) update Uk(T) , pk(T)

I

Ok(T) - E%k('r) - Rk(o):l

Py (1) = pk("r) + ERM(T) - RkM(T)]

The algorithm requires no iteration process to determine

o, (1)

the value of the true anomaly as a function of both drag and
the Jz perturbations as in Reference 8. This is due to the fact



-47-

that the anomaly is a canonical element and is only perturbcd
by the ob!ateness portential,

5, THE ¥EAN MOTIONM

In the integration of (II.6) we considered the energy p,
to be fixed. However the drag force dissipates energy and
thus the mean mption is changing with the independent vari-
able. In the expression for Tu(T,Uk) in (II.5) the error in
the mean motion is multiplied by T agaln, so that the resul-
ting error for considering the mean motion fixed is of order
v2t?®, ¥ Dbeing the relative magnitude of the drag force.

This error may not be neglected for large =

Let us assume that the energy dissipated by drag is a
linear function of the independent variable. For large values
of T this dissipated energy AL can be expressed as

Ra(T) - Rs(
AL ot s (0) T = E?%

T AT

This is true because the secular term dnuwinates the periodic
terms fcr large T in Rg(T)

Also if the dissipated energy AL 1is small compared to
the total energy L then one may express the mean motion
term in (IT7.5) as

3uT 3“ 5 AL 2
———gr = ——s7# |° Tan T | "
(2(L~AL)) (2L) AT
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This new term introduces integrals of the form

2 dt = 173

r - 1
T2 GOSELUI(T)_]G.T = — n2t? sinEwl('c)] + 2nT cosEml(T)]

n

~ 2 sin Ewl('r)]

1
T2 sinEm;('r)]dT =— -n*t? coszl 'r:] + 2nT SinElUI(T):l
n

+2<ws&cﬂrﬂl

J

These terms are premultiplied by factors of order vy* . Also
it should be noted that the procedure to evaluate the drag
perturbations on the solution remains unchanged except for the
fact that perturbation of the energy element must be known
before the perturbation of the time element may be computed.
Also the additional terms due to the mean motion in the per-
turbation of the time element do not require additional FORTRAN
coding to be developed by the algebraic manipulator. From
(II1.5) one can see that the expression for 7T; may be used

to compute the additional terms.

The proceéure outlined in this section corresponds to
what is commonly known as '"the second integration of the mean

motion',
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6.  NUMERICAL EXAMPLES

To demonstrate the accuracy of the expansions and the
integration procedure, the analytical solution has been com-
pared to a numerically integrated solution for several test
orbits. Both the numerical and analytical techniques .issume
a drag model of the form

-
| F|

I
(ST
o

Q
]
bo
ue)

where

100 1bs/ft?

=
1

9

5x10”7 kg/m?

e
i

The density p , is to be a constant. The value con-
sidered is the approximate density of the earth's atmosphere
at the very low height of 175 km. The value of the ballistic
number, % , 1s the average for the Shuttle. Also, both numer-
ical and analyti¢al models neglect the inertial velocity of
the earth's atmosphere.

Both the numerical and analytical solutions will include
the perturbation due to the oblateness of the earth.

Three different orbit cases (Table 1) with eccentricities
of e=0, e=.015, e=.l, were chosen for integration. In Table 2
the position difference between the numerical an.. analytical
solutions are compared after 20 revolutions. Also displayed
is the position difference if drag is neglected in the analyti-
cal solution.

In all three cases the analytical theory accounts very
well for the large perturbation due to drag. The large posi-
tion differences when drag is neglected is from the "in track"
error. The results in Table 2 confirm that the basic analyti-
cal formulation is sound.



a{km) e I i Q M
Case 1 6678 | 0.0 0 0 0 20°
Case 2 6678 0.15 309 0 0 20°
Case 3 7300 0.1 30° 0 0 20°
TABLE 1
Orbit Cases (initial conditions)
Model e=0 e=,015 e=.1
Position difference
Neglect
Drag 1481 km 1506 tm 1920 km
With
Drag .97 km 1.01 km 2.18 km
_
TABLE 2

Differences of analytical vs numerical integration
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PART [11
THE A GEBRAIC MULTIPLIER

by
S. Starke

1.  INTRODUCTION

The algebraic multiplier+ was programmed in BASIC on a
Wang 2200-T minicomputer (16k bytes). EIExtensive use was made
of the alphanumeric character string manipulation offered by
BASIC.

The program documented below has the capabhility of multi-
plying up to four fourier series with respect to 01 and each
individual fourier series may be multiplied by a common factor
AK$. The trigonometric terms are stored in a separate alpha-
numeric array ZK$(J) , and the corresponding factors are
given in array elements EK$(J).

The program input consists of fourier series, which are
stored on tape, and up to ten fourier series can be loaded
into core sequentially to allow automatic (buffered) opera-
tion of the multiplier without manual interaction.

During execution products of the type
Z1$(I)*Z22$(J)*Z3F(K)*Z4$(L)

are searched for terms which are not of higher order. 1If a
low order term is encountered, the program will identify the
term by pointing to the "Table'" which is stored in memory.
Subsequently, ASCII Coding for a FORTRAN compatible state~
ment will be created and saved on an output tape. With a
separate telecommunication program, the output fapes are
dumped to the UNIVAC 1110 computer where they are compiled
after some minor modifications have been made (Subroutine
headings, dimension statements, common-bloacks).

T Multiplier and manipulator will be used interchangeably.
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For the following description of the program the follow-
ing reference should be consulted.

"System 2200 A/B Reference Manual,

Wang Laboratories, Inc., 1974",
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2., PROGRAM DESCRIPTION

The A variables and arrays (Analysis)

Al = A1(1l) + A2(1) + A3(1l) + A4(1l) = power of the Z1 term
A2 = AL(2) + A2(2) + A3(2) + A4(2) = power of the 22 term
A3 = A1(3) + A2(3) + A3(3) + A4(3) = power of the p, term
Ad = Al(4) + A2(4) + A3(4) + A4(4) = power of the o, term
A5 Not used

A6 = AL(6) + AZ(6) + A3(8) + A4(6) = power of sin o, term
AT = AL(7) + A2(7) + A3(7) + A4(7) = power of cos © term

1
In all cases the Al(5)>A4(5) terms are the power of the indi-

vidual term being multiplied. Therefore, if these terms are
added we have the power of the resulting product. This is
usually the primary test for excluding a term.

c, ci, c2, c3, c4

Cl+C4 are the numerical constants associated with each
of the four terms with C Dbeing the product of Cl+C4,
The general form of the term being analyzed is
k

Cc Z1 22 P, G, Sin o, €Os 0,

this term is held in the T1$( )-+T4$( ) arrays.

T$(27)13 this array holds pointers if a term is present after
a particular multiplication. An''*" indicates that a
term is present. The first two characters of this
array tell ifaZ, or a E%g is present., Distinc-
tion on the power of Z1 is made by the entry point

and exit point of the table.

The general form of the arrays being manipulated is

AIS{TIS$(1IELS$(1) + Ti$(2)ELB(2) + - + - + T1$(10)EL$(10)} = FACTOR 1
A2P{T2B(L)E2B (1) v v v v v e tnattr et iatt it nensranssns }
Ji X R R A S e I I I IR SR A A } = FACTOR 4
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AlS$ contains a character string of up to 20 characters.
. They are never changed just carried along.

A4$
T1$(n) contains the terms being multiplied.

T4$(n) n=1,2,--+,10

E1$(n) these terms are considered constants for the
: T1$(n)-+T4$(n) arrays. They may have up to 20 char-
3 acters, They are never manipulated only carried
E4%(n) along.

N(1)--:N(4) this array contains the number of terms in the
T1$( ) = T4$( ) and EIL$( ) -+ E4$( ) arrays.

I,J,K,L these are the loop counters for the nested Do-Loop
(FOR : NEXT Loops) used by the multiplier. Once in
the multiplier section these values must never be
changed,

M Loop counter used within the multiplier. This value
may be reused as necessary.

R1,R2,R3,R4
these are the boockkeeping variables for determining
how many terms were examined, higher order +-+, ete.

H;H(9);H$(9):H1$(9,10) :H28%(92,10)
this is the density buffer. It can contain 9 terms
of the type being multiplied.

H: buffer pointer (H=1-+9)
H(H): array holding the (N(4) value)
H$(H): array holding the A4$ values.

H1$(H,M): array holding the T4$(M) values. (M=1-+H(H)<10)
H2$(H,M): array holding the E4$(M) values. (M=1-+H(H)<10)
As can be seen, the density buffer will only load into the
factor 4 array.
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B;B(3);B1$(3,10);B2%$(3,10):B$(3);B1

B
B(B1)
B1$(B1,M)
B2$(B1, M)
B$(BL)

Bl

M1( )

M8

This is the factor buffer. It will hold up to 3
factors of the type being multiplied.

buffer pointer when loading buffer B=1+3

array holding the N(2) values

array holding the T2%(M) wvalues (M=1+B(B1)<3)
array holding the E2$(M) values (M=1+B(B1)<3)
array holding the A2$% value

buffer pointer when unloading buffer (Bl=1-+3)
As can be seen this buffer can only be loaded
into the factor 2 array

this array holds the extra term generated if a
power of 22 is found.

a flag if an extra term was generated. M9=0 if no
term was generated, otherwise M9 points to the
extra term stored in M1( )

All the other variables are less important as they are used

for general bookkeeping.

SUBROUTINES (as they appear in the listing)

'l to '4
t37
116
'17 to '20
122
123

'30

'10

11

general print routines used to print out
factors 1 to factor 4

subroutine to print the input variables

used to load the table into memory

loads, respectively, factor 1 to factor 4 into

memory

loads the density buffer from tape

loads the factor buffer from tape

initial entry into the multiplier (the starting

point)

re-entry into the multiplier if it has stopped

because of an error (usually an end of tape error).

This is the manual re-entry point.

loads/resets the density buffer into factor 4
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loads/resets the factor buffer into factor 2

'35(G$,2) used to analyze the 11$({ )+T4$( ) arrays. The

136

T41

'42

'43(F0)

"44

position being analyzed is given by Z ; the string
being analyzed is given in G$. If a value is
present its power is returned in A .

analyzes the G$ string for the presence of a

sin or cos. If a sin is found 4 1is set to 1, if
a cos is found B is set to 1.

subroutine to make the substitution for a power of
Z,
M1 array.

The extra term is temporarily stored in the

subroutine to read back the extra term stored in
the M1 array by '41.

routine to create a FTORTRAN COMPATIBLE statement
from the input data. It works in conjunction with
'44, The resulting statement is in TF8% and TF9%.
routine to pack the Al$+A4$ and EL$( )+E4$( )
arrays into ¥8% and TF9$ dinserting an "*" when
necessary and deleting all unnecessary blanks.

The storing of data onto tape is also done by '43 and '44.

The TF1$8

string contains the character used for generating

the continuation cards. When a "2Z'" is encountered it is
reset to an @(in HEX a 1 added to @ = A).

General Starting Procedures

press special function key "START” (S8.F. key 30)

1. load program "MULTTFF!

2, load Density buffer (S.F. key 22)
3. load factor buffer (S.TF. key 23)
4, load factor 1 (S.F. key 1)

5. load factor 3 (S.F. key 3)

6.

7.

when told insert "TABLE" tape and press the continue

button on the console not the S.F. key marked "CONTINUE"



~59—

8, when prompted check paper, insert a free data tape and

press the continue button on the console not the S.¥.
key marked "CONTINUE"

a. if the program has an end of tape error (Error code 49)
a) remove the full tape
b) insert a fresh tape
¢) press S.F, key "CONTINUE" (S.F. key 10)
In general the machine will issue a message if the opera-
tor must supply some type of information.
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3.  FLOW CHART

General
, Initialization

Start and Checks

Preliminary €= Line #sub = =7 Ask for new
Questions L —_— 230 —— Tape
(_pEFEN'1l \& =]

L -~ Reset all
DEFFN'12 /J& — - Buffers

Oper

Contin-
uation

DATA FILE

Initialize
Multiplier
Variahles
Multiplier
Create FORTRAN Phase 1

card using constant term
Al,A2,A3,Ab

N

Branch for #
of produects to
be computed

1 2 3 4

580 540 1 510 480

— i — v A o — e e e o e e A et o e e e e e e ma
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Start outer

loop
I=1 to N(4)
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Multiplie<]
Phase 2

Ansflysis of
important terms

El leapzczsinclcosm]

Analysis of
4th term T45(I)

Analysis+A4( )

S

Start lst
Inner Loop

J=1 to N(3)

L

Analysis of
3rd term T35(J)

Analysis=+A3( )

2
540

Start 2nd
Inner Loop
K=1 to N(2)

Aralysis of
2nd term T25(k)

Analysis+A2( )

c T2 DEFFN'35

1 ‘Eii"



32

Start 3rd
Inner Leop
L=1 to N(1)

4

Analysis of |
lst term T1$(L) [¢ 2 Z-="2/ DEFFN'35 \

E o \ DEFFN'36 /

Analysis+Al( )

Note: 610 starts the basic
compariscen of all data
stored in Al( }+A4( )

— o —— wmam i e e

High order
term can be Ggggo
neglected
High order Go to
term can be | 890
neglected

— —— - e— e —— pwm E——

v 4
EI§(L)= = EAL(5)>]

——

Compute
numerical
product
C1xC24C3%C4-C Multiplier
Phase 3
$ Analysis for
etermine powers High order and
of Z; and Z, Illegal terms
z?1=A1=i§lAi(1)
A2 &

Z3 wA2= L A3(2)




SinAﬁdl

—G3-

Yes Make
A252 substitution N
= g3 = P-}
No using DEFFN'41
Determine
powers of
P2 and Oz

A3 . 4
p2 =A3=_E AL(3)

y
A=t B AL(4)

Error Exit

powexr of
sing,

Error Exit
product of
sinU, cosg;

DEFFN'41

Go to

210

Error Exit
power of
cos0)



{

{reate search
eiement from
Eﬂnwn informatidn
v
Determine Table
entry and exit
point

{696+716}

{720}

—-Bd-

Multiplier
Phase 4

Table search and
Record results

Matching
element
found

Yes

Table error

forgotten term

Write
error
message

DEFFN'43

)

Create TORTRAN

card from dnput
data and Table
information

DEFFN'43
(0)

Was Retrieve added
igh order Z: term from
found TEemory
No 1 7
DEFFN' 42

Multiplier
Phase 5

Incrementation of
Loops and Buffers



Print short

Buffer
empty

-G5—

Load Factor 4
from density
buffer

T

Print out lst
term for check

Load Factor 2
from factor
buffer

Reset
Density
Buffer

I )

DEFFN'11
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DEFFN'43

—

~66- 66.

Subroutine creates a FORTRAN
card from the given input

FO: a flapg telling if this is

the lst card of the multipli.ation
1 create a card using AlA4

0 create a card using

E15( )=E48( )

C=C1xC24C3%C4
M=Table location

DEFFN' 44 DEFFN'44 inserts an "&Y
- between the character strings

and omits all unnecessary

Place
Al+A4 788
Convert C and M
¢ to characters
and place in
Add p2 or 03 string F8%
to F8§ if
present J
v Add E$ terms
Add opening to the TF85
" (" to TF9§ string using
DEFFN'44
Place ID
tag in F9$
{col 73-80)

Save
T8$% and
F95 to
tape

blanks, it also checks to

see if an overflow of the

F8 string will occur. If an
overflow occurs the information
is stored to tape, a continuation
card is generated and the process
continues.
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DEFFN'44 DEFFN'44 adds P$ to the F8%
(P0) character string and insert an %"
before insertion.

Determine the F8 is the current length of ¥8%
length of P$ Fl is the length of P$

Note: T8 always points to the
NEXT available location
of F8%

e/

Add "' to F8$§ Create new
Add P$ to F8S continuation
Increment T8 card
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VARIABLES USED IN ALGEBRAIC MULTIPLIER
SYSTEM 2200 VARIABLE CHECK-OFF LIST

PROGRAM NAME DATE
VERSION PROGRAMMER
SYSTEM
NMAJBCDEFGHIJKLMNOPDRSTUVWXYZ.
A PR NUMERIC SCALARS
A FORMAT = MN'
2 & P
1 X
4
5' N—
6
F
HI
g - —
) H B
NMABCDEFGHIJKLMNOPOHSTUVWXYZ
& [ 1171 NUMERIC ARRAYS
1 1] FORMAT = MN{
2 ] r
3
4‘
5|
6 ! |
7
g T ™
g d_1 |
o [T 10 T
NMABCDEFGHIJKLMNOPG.RSTUVWXYZ
& TTIT ™ T 4 ALPHA NUMERIC SCALARS
' ] FORMAT = MN$
2 - .
|

s S ]

- B S
8 RRNAREEE)
6
; - !
g ' e
g | : —
o { i
NMABCDEF HIJKLMNOPORSTUVW%YZ"
& 1 S ER RN ALPHA NUMERIC ARRAYS
; NN | FORMAT = MNS{
3 "
4 11 NOTE:
5; i _1 Ao 1 0 = NON COMMON
f; =t - 1 = COMMON DEFINED BY THIS
. ~+ 4 ] MODULE
9 - 1 2= COMMON DEFINED BY PRE-
o e R e VIOUS MODULE
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OB QJALIh!?

Listing of BASIC Program for Algebraic Multiplier

SR s e e ——— T & —

s SETOL m.a_::..-v‘-FIIl" H”LT]F‘LIEI" HF-‘IHF;H E"' 2, ZTARKFE 4w
—ab FEM s WERSIOH=% ADAPTED FOR Y20 BY G 50 MARCH 7V
R ." A= BHESERHHEE RIS R
G205 THECR)E FREHEESERRETERRNE RS 80 RHEERRRHE RN R
L E'-Ir"i RS, HECDD 20, HLEOS, S0, 2§05 SHe F=0 FEN ~DENEITY BUFFER.-

-

DIt Eesd, G593 Ls

LI THO2Vnds, AL$20, AZE2N, AZES0. A44E20, DFL, G320, G120, F

DIM WSl WERE THITOFF Y WEE

LI AF2e. B320, MLOds T FEdod, FoRLe, P20 FA4E, TOELd

CIf Tl Loz, T4 L0020 T3 01m0 20, THE a2, Hodh

A DIM ELfldieng, ESECIANE, ERECAONE FAdV AT RES
LEE DL ALCF 0, AZCF Y RZOV . AGCT D SELECT PRINT E'1£1‘:-'TE-4":-FI
120 DEFEN O F=4 FRINT HEKOOob) GOS0 4 GOz <2 Glsln

T |_|!

s 1= 0l
Pl e i

o=
by
o

1268 DEFFHL . S . :
148 PRINTLZING 29 L, ALS  FOR I=sATO Mnd b GOSUE 29 0l. T1e]
e FRIMT Y ML =8 L HERCER s RETURH S

DI BRZ0, B Z020, BLE 8, SO0, BEROD, 020  B=0 REM ~FACTOR BUFEER= ‘-

FoL oA

NT HESCRT % EHE

t
CEIQLEUR S RETUR.

150 DEFFNTZ
LS PRINTUSING 29, 20 A2 FUR I=1 TO Ma2ZL, GOSUE 2702 Yad

[CPRINT " HeZh =Y N2, HEXCADAaRD  RETUMH

i7E DEFFH<Z

LEE PRINTUSIHNG 20, 3, A%E FOR I=L TO NI GOSUE ~37 0%, TIse
A PEREINT M Meza =N N, HESCODOE Y BET I

I B I HERT |

Th, EZ4C T HENT

126G DEFFH G

S8 PRINTUSIMG 20, 4, A4F FOR I=L TQ HOq O GOERE “ZY 0, T
LIPRINT " HOah =" Nid s, HOWTEDER D

Z1e HETURH ' -

229 REM - FRINT UTILITY ROUTINLE-

I B0 T 0 HERT

AR 1ML zan FRla 0 INEUT NETLE HAMEY, STRCEE LN, 2 30 (EELVECT PRINT G5 o7e

FRINTUS(HG S90, STROFS0L0, L &5

EE1 STROF#0La, Lo LasHOR DR S THOF$ 0L LEMCFSCL 0 L =S TR

B STROE L L8 4 =HER G0 RETURN

M FILE NAME = “ghsfaspss

TS DEFFNCETOA, B B30 PRIMTUSING 96, F6 T A$. He 1 B4 PETURN
ETE REN ~LOAD_MENORDS _ e e e e

FEE LEFFN 48 ST "TRELE CHSEETTE 2" DOTH LUND "TAELE":F

LOOID TECL0 HERT T:RETIEN } ,

203 STOP “ROSITION TARD USIHG < DEHTA LOAL NEMNE* =" RETU

SO0 DEFFHSAT FRINT "EGL L7 GOZI0 290 DR LoD Bl ALE
HIA LEOED TLECL ELFCT NEST 1PRINT "LORDLD"  FETUEH
CEAR DUFRENTLS RRINT VPRGNS EOSUE 220 DATH LOnl Nz B2
TH LOED 123010, E2%0T0  NEET 1 FRIIDT “LOMDED"  RETLHH
2 PEFFH LR FRINT "EQL 20 GOS0 224 DATH LOonD HNYZhe A
HIA LOED TE230I0, EZSC10 HEST TOFRINT "LOAGEDRY RETURH
STE DLFFN 20 FRINT "Bl 47 GOSUE 290 OFTH LOMLD Hod, A4,
ATA LOND T30 T0, B4 T HEWET T FRINT "LOAGEDY FEUEH

e L LB-LEMYFECL

OF 1=1T0 &7 . 00TH

FH

CFOR I=A00 ML D

SEOR. 1=1T0 Mz [

FOR I=LT0 HE O

FOF I=4T0 thidh (D
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LIS LCFFN 22 HE0  FRINY NDENSITY EUEEERY . HOEL 2aE

A0 H=HSL DARTA LOALD HYHD HEIHD CFOR I=470 HOHD CDOTH LOADe HLdveH, Th, H240H T
HERT ILFRINT He (1F H=ZTHEN ZS6 . DATA LOAD "+" G070 240 - B
AT DOFFN 25 B=0 FRINT "FACTOR BUFFER": [ GOZUD 2280 THPUT “LORD WITH". WS

JF WERETHEN 2900 WE=3 e e e et e e e

IS0 B=E+L DATA LOAD BCEY, BRCEDFOR I=iT0 ECEY DETAH LOMAD Bis0E, L9, B4 E, I
Lo KBS T ERINT B TR CRS=UWSTHEN e DETE . LR e ST 0 RS0

YR FRINT "RUPFEFR LOADEDY  METURH

uTe FEM e e e e e e e e e e e

e FEM ~MULTIFLIER-

o0 EP o~ e i e —— —_— T SV USSR NS S SO

G DEFFNZ3 . FEM — START —:SELECT PRINT QO50&d) (PRINT HESCHE ) GO 1l

B LW S T gt | s N N . M e I

410 ETOF "FREER 7GOSUE 2X@:STOR “"CORFECT TAFE %"

B e e o I L I e A P L
41T LATA SAVE BV CHD P40 SELECT PRINT @LS072h GOSN “OR. G070 420

20 DOFFHRAAOCREM — RESTHRT — FETURH LLEARR. - ZELECT. FRINT B4 SCT2s  VES=STRG . .
Fodn, 2,80 IF POSVFSOL=F =0 THEN 422

St AEE SR TR I A0, 2 POECEE L =R R -0

22 GOSID 2E0CPRINT " CONTINUATION QF ("W ™ WU STO0R MCORRECT TRFHE 7V

L GOTO AAS L — e . .
429 DATH SAWE OrREN "EOONTIY

S EE ML AL, A2 Az Ad. Bl BE-RZBAEE T d s B e M D D2, B Ot e e -
bt MAT HL=ZER  MAT AZSIZEF G FMAT AZ=ZEFR MAT RG=ZER D INITO200 Fod, FSE QE=s" 200 )

—HTEL  Flgs=l AL

dS0 SELECT FRINT 2@S08dlh (FRINT "DO HOT DIZTURE - PROGRAM WMORFING - " 5E

LECT FRINT B1ScFao  LGOSUIE 4301 - G P —
ATE O OF GOTO S2a, 940, 510, 420

e Ko IT=1 70 Mg o - S . e e e e e e s e e = .

J2@ FOR M=l 10 4 GAZU0 TEECTAF I T, SHEwD A=A AT S =R TS HEST MO0

AWEET ST RLTASL T L e KNG S 3 T a1 00

SEn EOSUE CNSCTER0 I AE A R T =E

JEIE FOoR J=1.TO MNEE e e iyt e m——— = . e —
S200 FOR b=l TO S GOSUER AESOTZEECT N S+20p  HEOM=A RS S =AZ S0+ HERT MO0

CHYERT STROTEERCT 2, L, HUMOTEHS T 3070 235 S U )
LIE GOEUE CZECTEFCIN N AT OS=SH I RZIT =R

BRIy I T R 2 - L

SECGOFOR ML 70 4 GOSUE CISCTZEREDN, SeZEMI D RZOMI=ACAZSVSAZVD A NEST M

SEEQ COHENWERT STRLT23CKD, L. e 2e8cd 2000 08— v e N -
TR GOSUD CZRCTE2FECR N AZCEN=SAIAHZ T =R

L Ol sl ST S i o e e e
e FOR MEL TO 4 G0 CESCTAE 0L HAIHRMY CRLOMA SR AL S =HL S AT NERT MG

— B T e e =R R
2 CORMYERT STROTLEIL, L NI 00y 70 O

£ IF ALCSH+NZCSr+NZECS+A40E 4. THEM 230 : - —— e —

IF Eldsla="v1, —RisR4sBEdaed o THEM 15 GOTO &Sl
JIF CALCEMHAZISIFAECEIHA4CEI L THEN 826
(=Y Y o1 e 7Y o I g §

Pty R = IR = Lo Tl W B2 3 = el B 1 1 = el SR 7= 5 Wl B

!
T Y

ol il el e
(1S 1 I O o B

)l
1
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ORIGINAL PAGE 1b
W POOR QUALITY

SIE HISALCE+HI DS R F
531 1F AZCETHLH 640 60SUE <41 . e .
SbE) ISR I RIS T AT S
—ESE ASALCIFHEG RIS R N e
SEE RESALOE)+RZCEIHAT LS HRG SN IF HECETHEN ST GLE=" "SI T4=nEr | 6OTO o
~J.E
EFG HPSALCTHAZCTIHHICT MHAGIT) D IF ATCETHEN 80 GLE=" 005/ 24="0"  GOTO o
L
S2 IF AGHATIZ THEN SS0:GLE=Y SINCOS M Z4="2"  GOTO 240
_EEG_ Prp=" M OIF AEZ=@ THEH ?aa.,rp R A AD=UEN _ — e
v IF AS=H THEN 7LECETRIRS, 2 13="5" :GOTO 720

_Ti01E _AT=0 THEN 220 STE B, lﬂ—"hﬂ

Tom eAd L Z=0 DN H GODTO VR ._g.T:ﬁ
_PES REM -~ TAELE SEASCH —-

TIH FOR NESHR-S T SeF-I 1F "Tk.ls-nlf;,zﬁésTHﬁpi,iJgﬁTHEn P HEST M3
s

ATV IF

GO0
E0= g

y:ﬂTHBLE ERFOE"  ZH="4" . 3
TAN TE=STROTECML I, L0

S SO o O 0 R

‘-!.
.-

TH=MRNTHEN

IF A=4THEN TIM:H=ZTS 8. Z=0

BEO GO HOE

gy A=A+l GOTO 226 REM —- HIGH OBOER -
SO RAmRSLGOTO SR0CFEM - N0 COHST.  —- e _
s1E Br=RIel FRINT == ERROR ~  NESFECTED s Gid: " AT w PRINTUSING &a
Go Ly Ko To ToM=SS 0 GOSHE 2aT0ms . I
24 pd=FRd+l IF MAS=0 THEN 30 E0SUE ‘942 G010 S3d
_EVE_MOTL_ALSTER. Ci=l HENT Lo IF F=1THEH 10611
SaE T H?"LER:CE=1:HEHT B IF F=2THEN 1004
SO MY AYSIER . CZ=L NEHRT T IF F=ITHCH 1611 e o
QS0 MET R=DRER, Cd=1 HORT ¢ o
LV FREM —= MULTIFLICATION FINISHED —- FRINT. FESLTS —- -
en 1F K2=0 THEN 1641 o

l_]:l ye
fx
kY

I

GRS 47

SHVE FE$. LS DITH SAYE END
SGELECT BRINT ﬁlq::;n
NT= ORI L

Zdf, G RE IHT FPIhTUfIhl-

FRINTUSING T0, 4, Hds B

1@1; SFROFSS, 10=F1% STRJF&E, Th=" DT A
_lodz PRINTUSING 1450, F2d: (PRINTUSING 1480, Fon
11z FRINT H' S0E00: " TOTAL TERME = ok o HO= VR
$MITOHET, = Y PR -RR-RT HOR GO Mk !, HE“VHD‘F-_
AOZ0 FOSUD AGTO: IFE Hh=1aTHEN LB4G:PHIH7UCIHu
Sl A E CFRTRY HEQggHUHJ.uQTD S ]
AGdl PRINTUSING 240, 0t PRINT GUCUL =2 EOs0E At
=T HEMCBDOHAD G010 425
amdt ReEM ——————- ENL OF hHLTTPLlﬁﬁ SECTION — o meeam
ool DEFFNLL Hs0 REM —- ——= DENSITY LOAD RHDD REZET
CTW H=H4d o 3F HI=AOTHEN 1050 NS v Mo FOR M0 HoHD

=

R )

FI

TA4FEPv=HLE H M EQ

oM =HY ‘-'}-hl]...HE..J HomdEeHt - RETGE _ —.
& DEFFH L2 Bld=0 MEM —=-- . FACTOR LOAD AHD RESET ——m-=
g Ei=pd+l IF BdD=HSGATHIN 1140 N2 =8B CFOR M=4T0 BB TIECMy=EB1EC
S MY CEZECMIS=EZECEL MIOCHNERT MoADEsSESOERL 050D 4 RETURH
O ZELELY FREINT HOS(E40  STOR "FRODLUCT FIHRISHOD, LOOD MNEW E60) ARD — 57T
o= B
GEEFIL SO GE, Do A=tfl CETRSGE, T, A v d B TE fmemfy THEHN 14750 . S —

1 ZO=FTHEH 1148 fA=/-2

FE !l J

D EFFI’J TEEG
IR ATROGE.

FETLURH
DRt REN ROLER

I
B R e T e R oo e

!dﬂuwﬁLL}QQM-'ﬂm

o

NN
[ 1 1 1 s e

m

™
o

G0 =E.IF
A7, THIHTCASN THOM AT

T
ks

Hv'.:.? .1.~1
11“(‘1 r-

A=1

L ll'J"'l HLH ;’_;LE-J:
=

A S W 11 ¥ O A o T S E




1240 PRLME, L=l Cmei -T2
L350 ML, ZO=HL  FL=FAL+E . QRKHNAl'PAGnE$

LEEE A ML & o =HE=2  HE LR QF.POOR,QUAJJI

LETY DERFNAIEFER GFERD ENTRR FROLICT:
LZEE =ML NS, L0 L= ME, S0 AZSMLNS, 3

_AZEE el pisEhiSe  RETURN — S —
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