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ABSTRACT 

Experiments w e r e  performed t o  study the e f f ec t  of a low- 

gravity environment on the columnar- to-equiaxed trans it ion (CET) 

during polycrystalline sol id i f ica t ion.  Solutions of H20-30 w t  X 
N H 8 1  and H20-37 w t  X NH4Cl were so l id i f i ed  i n  semicylindrical 

molds with rad ia l  heat extraction. In the ground base t e s t s  

the  general heat flow direct ion w a s  pa ra l le l  o r  ant i -para l le l  t o  

gravity. Both solutions were quenched from the  same soak tempera- 

ture  (90'~) ; the respective superheat temperatures were, therefore, 

approximately 57 and 23'~. The lower superheat resulted i n  a 

completely columnar s t ructure ,  arid the higher superheat resulted 

i n  a 113 columnar - 213 equiaxed microstructure; these r e su l t s  

were independent of the relat tonship between heat flow d i rec t  ion 

and gravity. Grain multiplication mechanisms observed were 
-1 

showering, thermal inversion driven convection c e l l s ,  and 1 

compos it ionally induced dens i t y  inversion driven convect ion 

ce l l s .  

Results obtained during the SPAR I V  f l i g h t  established the 

v i a b i l i t y  of the novel freon quenching system designed for  t h i s  

apparatus, but a p a r t i a l  blockage i n  the needle valve of the 

quenching system prevented so l id i f i ca t ion  of the samples. Thus 

no data on the e f fec t  of gravity on the  CET were obtained. In- 

complete pref l ight  melting of the NH4Cl w a s  a l so  observed. It 

was established tha t  slow sol id i f ica t ion,  a long waiting time 

at  room temperature, and the presence of ag i ta t ion  during t h i s  

time coarsened the room temperature s t ructure  of the sol id  and 

lengthened the t h e  required for  remelt krg. These observations 

have led t o  apparatus modification and revision of prelaunch 

procedures t o  prevent a future occurrence of the same problem. 
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The primary object ive of experiment 74-37 is t o  study the 

e f fec t  of reduced gravi ty on the columnar-to-equiaxed t r a n s i t i o n  

(CET) i n  small cast ings (Ref. 1) .  The resu l t s  obtained t o  date  

from SPAR I show the occurrence of an equiaxed microstructure i n  

low gravi ty,  instead of the expected columnar microstructure 

(Ref. 2 ) .  Similary , f ine  grained equiaxed, ra ther  than columnar, 

microstructures were observed i n  the Skylab metals melting 

experiment (Ref. 3). On the other  hand, Johnston and Griner 

(Refs. 4 and 5) were able  t o  show tha t  no dendri te  arm break- 

off  occurred during low gravi ty s o l i d i f i c a t i o n  of NH4C1 and 

obtained a completely columnar s t ruc ture .  These two r e s u l t s  a re  

not necessar i ly  contradictory because CET is  a complex phenomenon 

and gravi ty driven convection leading t o  dendrite arm breakof f 

i s  only one of the mechanisms tha t  i s  responsible f o r  the formation 

of the equiaxed zone. Crystal  nucle i  may already pre-exis t  i n  

the l iqu id ,  especial ly  following inoculation (Ref. 6) r 

"big bang" nucleation (Ref. 7) .  Also, other gravi ty driven 

mechanisms may be responsible fo r  transport  of small c rys ta l s  

toward the c e n t r a l  region of a cast ing (Ref. 8).  A gravi ty 

independent mechanism f o r  nucleation of the  equiaxed zone has 

a lso  been proposed (Ref. 9) .  Regardless of nucleation, i t  has 

been recently emphasized (Refs. 10 and 11) t h a t  the presence of 

nuclei  is a necessary but not s u f f i c i e n t  condition fo r  the 

occurrence of CET. The growth of equiaxed grains  must h a l t  the 

advance of the columnar in ter face .  This has been suggested t o  
, i 

i occur by attachment of equiaxed c rys ta l s  t o  the columnar growth 
i I 

f ront  (Ref. 10) o r  by the existence of thermal conditions favoring 
I 
, I the growth of equiaxed ra ther  than columnar grains (Ref. 1 2 ) .  
$ 1 1  

This l a s t  suggestion, which has received some experimental 



confirmation (Ref. 11) , may be pa r t i cu la r ly  germane t o  the 

low gravi ty environment since rough estimates indicate  tha t  the  

predominant e f f e c t  of reduced gravi ty on dendri t ic  growth may 

be through modification of the  thermal r a the r  than so lu te  

boundary layer (Ref. 13). 

It has been recent ly emphasized (Refs. 11 and 14) and i t  

a l so  follows from the above discussion t h a t  CET is not wel l  

understood. It depends on the geometry and thermal cha rac te r i s t i c s  

of the mold, heat t r ans fe r  i n  the l iquid  and s o l i d ,  superheat 

of the l iquid ,  cons t i tu t iona l  supercooling p a r a e t e r ,  the 

presence of nucleation centers ,  and gravi ty driven f l u i d  flow. 

The SPAR IV f l i g h t  of experiment 74-37 was performed i n  a 

simple apparatus using semicylindrical  copper molds with t rans-  

parent s ides .  Solutions of NH4C1 i n  H20 were selected as sample 

mater ials ,  because t h i s  system has been used successfully by 

others i n  previous experiments. The mold geometry was chosen 

t o  simulate weld bead s o l i d i f i c a t i o n  and t o  provide the  simpli- 

f i c a t i o n  of r a d i a l  heat extract ion.  Four separate  c e l l s  were 

avai lab le ,  but a l l  of the c e l l s  shared the same thermal environ- 

ment, i. e. , soak temperature and cooling ra t e .  The adjustable  

parameters were so lu te  concentration, Lnoculant concentration, 

soak temperature, and cooling r a t e .  Values of these parameters 

selected f o r  SPAR I V  were such t h a t  the CET occurred a t  d i f f e ren t  

locations i n  two of the  c e l l s ,  while the other two c e l l s  were 

redundant, i . e . ,  i den t i ca l  t o  the f i r s t  two. Thus, t h i s  f l i g h t  

experiment was expected t o  provide data  on the e f f e c t  of gravi ty 

on the CET f o r  two conditions. 



2 .  APPARATUS AND EXPERIMENTAL PROCEDURE 

A dedicated apparatus was designed and constructed f o r  t h i s  

experiment. ;Xgure 1 shows an overa l l  view. The apparatus 

consis ts  of f ive  major components: 1)  sample chamber, 2 )  e lec-  

t ronics  box t h a t  automatically operates the experiment and 

conditions the  telemetry s ignals ,  3) a 250 exposure motor-driven 

camera, 4) a freon reservoir  designed to  de l iver  l iquid  freon, 

and 5) is the  supporting s t ruc ture .  A more de ta i led  descr ipt ion 

of the apparatus i s  given i n  Ref. 15. Figure 2 shows a close-up 

view of the sample chamber assembly. Four independent, semi- 

cy l indr i ca l  pockets a re  contained between plexiglass faces. 

A l l  of these chambers share the same thermal environment; 

t h a t  i s ,  soak temperature and cooling ra t e .  The cy l indr i ca l  

wal ls  of the pockets and the c e n t r a l  portion of the metal l ic  

block a r e  machined from one piece of copper. The f l a t  "top" 

walls  of the sample pockets a r e  made of s t a i n l e s s  s t e e l  t h a t  i s  

brazed t o  the copper. This i s  done i n  order t o  provide a slower 

cooling r a t e  on the "top" of the sample which would b e t t e r  

sfmulate weld bead so l id i f i ca t ion .  Lighting fo r  photographic 

purposes i s  provided by small lamps a t  the  top of each c e l l ,  

and s l o t s  a r e  machined i n  the s t a i n l e s s  s t e e l  t o  admit the l i g h t .  

One of the sample pockets is  instrumented with four thermistors 

(numbered 1-4) placed a t  equal in terva ls  along the radius ,  and 

another pocket has a thermistor (no. 5) a t  the apex. Two 

addi t ional  thermistors (no. 6 and 7) a re  attached t o  the copper 

block on the "outsidev of the cy l indr i ca l  c h i l l  wall.  Two 

heaters  a r e  attached t o  the copper block and two small pieces 

of s t a i n l e s s  s t e e l  tubing d i r e c t  l iquid  freon onto the web 

of the copper block a t  c e n t r a l  locations.  Not shown i n  Fig. 

2 a r e  f i n e  ruled gr ids  which were placed on the ins ide  rea r  
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Fig. 1 Overall l ' i e w  o f  Apparatus 1) sample 
chamber,  2 )  e l c c t r o n i c s  box, 3)  motor- 
d r i v e n  camera, 4 )  freon reservoir ,  
4)  s u p p o r t  i n s  structure 





wall of each pocket t o  allow simple Schlieren observation of 

convect ion. 

In  operation, the  heaters were act ivated 45 minutes before 

l i f t - o f f  and the e n t i r e  sample chamber assembly was heated and 

controlled a t  90'~. Upon l i f t - o f f  the  heater  connection was 

severed. A p p r o x b t e l y  30 seconds a f t e r  attainment of low-g 

the freon quench was i n i t i a t e d  and the  camera s t a r t ed .  The freon 

delivery r a t e  was adjusted t o  give complete s o l i d i f i c a t i o n  of 

a l l  four samples before the end of the film (220 exposures a t  

approximately 1 frame/sec) . 
The samples *are solutions of NH4Cl i n  water. Compositions 

of 30 w t %  and 37 w t %  NH4C1 - H20 were chosen; t h e i r  l iquidus 

temperatures were 33 and 67O~,  respectively.  The solutions 

were made from laboratory purity NH4Cl and f Lltered before use. 

Laboratory simulations of the f l i g h t  experhen t  were per- 

formed t o  generate one-gravity baseline data. The apparatus 

was ins ta l l ed  i n  a vacuum b e l l  j a r  which was equipped with 

e l e c t r i c a l  and f l u i d  feed throughs, and the prelaunch and f l i g h t  

sequence was followed. The telernetered data were recorded on 

s t r ip-char t  recorders and the f l i g h t  camera was allo;,?d t o  

operate automatically. Some t e s t s  were a l so  performed using a 

16 mrn motion p ic ture  camera t o  record the progress of so l id i f i ca t ion .  



3.  GROUND BASE RESULTS AND DISCUSSION 

The major r e su l t s  of the ground base experiments a r e  includ.ed 

i n  a 16 mm motion picture  film tha t  has been submitted t o  the 

SPAR Program Office a t  NASA~MSFC. A copy of the fi lm is  avai lable  

from the authors for  loan t o  interested par t ies .  The film 

i l l u s t r a t e s  v isua l ly  the important e f fec t s  of so lu te  concentration 

and heat flow di rec t ion  on cas t  microstructure. Figures 3, 

4, 5 ,  and 6 show selected frames taken during a typica l  ground 

base simulation; they show the progress of s o l i d i f i c a t i o n  i n  

t h i s  experiment. The main r e s u l t s  arranged i n  a chronological 

sequence from the beginning t o  end of the experiment, a r e  

summarized as  follows: 

1. Before nucleation occurs, thermal inversion, i . e . ,  cold 

l iquid  above hot l iqu id ,  causes vigorous convection i n  the lower 

c e l l s ,  Fig. 3, c e l l  I V .  This i s  due t o  a decrease i n  density 

of the solut ion with increasing temperature. This convectim 

i s  damped soon a f t e r  the so l id  s t a r t s  growing along the c h i l l ,  

presumably because the re lease  of l a t e n t  heat of fusion dec reas ,~  

t abs tan t i a l ly  the temperature difference between c e l l  top and 

bottom. 

2. Thermal inversion- induced convection i s  responsible 

for  some grain mul t ip l ica t icn ,  as i l l u s t r a t e d  i n  Fig. &, c e l l  111. 

3. Grain "showering" i s  i l l u s t r a t e d  i n  Fig. 4 ,  c e l l s  111 

and I V  and i n  Fig. 5 ,  c e l l s  I and 111. 

4. Convection c e l l  formation and grain mul t ip l ica t ion  

through compos it ional ly  induced density inversion is observed 

i n  Fig. 4, c e l l  I. During columnar s o l i d i f i c a t i o n  there  is  

re jec t ion  of water between the dendri tes ,  making the in terdendr i t ic  
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l iquid less  dense than the or ig inal  solution. The r i s ing  

interdendritic l iquid accelerates dendrite arm remelting and 

coarsening and generates sol id  fragments which grow in to  a new 

generation of grains (Ref. 16). 

5 .  The amount of l iquid superheat prior t o  so l id i f i ca t ion  

has a s ignif icant  ef fect  on ingot microstructure. A t  a super- 

heat of ? . ~ O C ,  which corres-onds t o  a H20 - 37% W4C1 al loy,  

a columnar structure was obtained regardless of c h i l l  location 

(top or  bottom), Fig. 6,  c e l l s  11 and IV. A t  a superheat of 

57'~, which corresponds to  a H20 - 309. M4c1 al loy,  the structure 

was columnar along the f i r s t  1/3 of the mold cavity radius and 

equiaxed along the remaining 213, again regardless of c h i l l  

location, Fig. 6 ,  c e l l s  I and 111. These r e su l t s  are consistent 

with observations of CET t rans i t ions  i n  large ingots, i n  which 

columnar microstructures a re  observed during the i n i t i a l  stages 

of sol id i f ica t ion i n  the high temperature gradient zones and 

equiaxed nicrostructures a re  observed l a t e r  i n  lower temperat..re 

gradient zorrzs. Different resu l t s  can be obtained when nucleation 

rather  than grc-s-h i s  the c ~ n t r o l l i n g  step. 



4. FLIGHT RESULTS AND DISCUSSION 

The experiment was performed on SPAR IV.  Inspection of the 

twlemetered thermal data  showed t h a t  the  c h i l l  block f a i l e d  t o  

:sol adequately (Fig. 7). Examination of the f l i g h t  f i lm 

~howed tha t  no s o l i d i f i c a t i o n  occurred during the e n t i r e  length 

of the fi lm, and t h a t  unmelted so l id  was present throughout the  

experiment (Fig. 8). These two problems a r e  discussed below. 

A '{SENCE OF SOLIDIFICATION 

The telemetered data  were carefu l ly  analyzed. We f ind t h a t  

for  an in te rva l  of approximately twenty seconds between 300 and 

3?0s the sample holder was cooled a t  a r a t e  of about O.gOc/s, 

which is the  same cooling r a t e  a s  our p re f l igh t  ground base 

s imulation (see Fig. 7). Thus, the  freon sys tem was capable 

of cooling a t  the  desired r a t e  even in the  absence of gravity.  

Unfortunately, t h i s  cooling r a t e  occurred only f o r  a short  

in terva l ,  r a the r  than fo r  the f u l l  200s. The f a c t  t h a t  the  

proper cocling r a t e  is achievable i n  zero gravi ty i s ,  therefore ,  

established and the cause of lack of cooling must be r e l a t ed  t o  

freon delivery,  not low gravi ty e f fec t s .  

A ground based t e s t  was performed on the apparatus as  

received immediately a f t e r  the  f l i g h t .  The freon supply 

cylinder w, removed from the system, and a supply of freon 12 

connem*cd i n  i ts  place. The complete warm-up and launch 

sec,.,ence was followed and the maj o r  temperatures monitored. The I 

,':est revealed t h a t  the  system was s t i l l  blocked. The sample 

holder was then removed t o  eliminate i t  as  the  source of blockage. 

The t e s t  w s  performed again and the  blockage remained. This 

procedure i so la ted  t3e blockage i n  the solenoid valve-needle 

w i v e  comb tna t ion. 
i 
! 
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Careful disassembly of each of these valves resul ted i n  

the following observations and conc lus ions : 

There were no foreign objects i n  the solenoid valve, 

therefore,  t h i s  uni t  did not clog 

The following foreign objects were found i n  the 

needle valve: 

A small black p a r t i c l e  about 2 m i l s  i n  diameter, 

from the  O-ring i n  the freon b o t t l e  

Shredded mater ial ,  thread-like,  e i t h e r  t e f lon  

seal ing tape o r  from the Kel-F s e a t  s e a l  

A grease, completely surrounding the  t i p  of the 

needle, suspected t o  be s i l i cone  O-ring l clbricant 

used i n  the freon b o t t l e  

Ei ther  the grease o r  the thread-l ike mater ial  could have 

clogged the needle valve and reduced the  flow r a t e  t o  

an inadequate l eve l ,  but the  combination of the two is  

thought t o  provide a potent source of blockage. 

Based on these findings,  it is concluded t h a t  the absence 

of s o l i d i f i c a t i o n  during the f l i g h t  experiment w a s  due t o  a 

blockage i n  the freon delivery system. Subsequently, modifications 

have been made t o  the apparatus t o  prevent a fu ture  occurrence 

of t h i s  problem. 

INCOMPLETE MELTING 

To elucidate  the reasons f o r  incomplete melting (dissolut ion)  

a se r i e s  of experiments were conducted using the f l i g h t  apparatus 

specimen holder. These experiments and the r e s u l t s  obtained a r e  

summarized i n  the tab le  on the following page. The three 

process var iables  investigated were: o r ig ina l  s o l i d i f i c a t i o n  

r a t e ,  waiting time a t  room temperature p r io r  t o  remelting, and 

16 



ag i t a t ion  during t h i s  time. A l l  experiments were performed i n  

the absence of ag i t a t ion  during the remelting stage. 

From these r e s u l t s  it appears tha t  slow so l id i f i ca t ion ,  a 

long waiting time, and the presence of a g i t a t i o n  contr ibute  t o  

a longer time being required f o r  complete remelting. Comparison 

of experiments nos. 3 and 11 shows tha t  a low s o l i d i f i c a t i o n  

r a t e  can double the remelting time. Comparison of experiments 

nos. 3 and 7 shows t h a t  the presence of simple ag i t a t ion  a t  room 

temperature has an even grea ter  e f f e c t  on remelt time. Further- 

more, comparison of experiments nos. 3, 7 ,  11, and 1, 10, 5 

shows t h a t  the e f f e c t  of waiting time a t  room temperature is  the 

most important of the three process var iables .  

To explain these r e s u l t s  it is necessary t o  observe tha t  

a t  room temperature the  system i s  above the eutec t ic  temperature 

and i s  par t  l iquid ,  par t  so l id .  It cons is t s  of primary dendrites 

of pure NH4C1 surrounded by a l iqu id  containing about 2 7  w t %  iiH4Cl. 

During reheating, a dissolut ion of NH4C1 occurs a t  the surface 

of dendrite arms or so l id  p a r t i c l e s  , enriching the surrounding 

Exper b e n t  
Number 

3 

7 

1 

10 

5 

11 

l iquid  i n  NH4Cl. The d isso lu t ion  process depends on the surface 

t o  volume r a t i o  of the s o l i d ,  therefore,  the time required f o r  

So l id i f i ca t ion  
Rate 

Quench 

Quench 

Quench 

Quench 

Slow Cool 

S low Coo 1 

Time Required 
f o r  Complete 
Meltinn (min) 

11 

3 5 

>90 

>90 

>90 

22 

Waiting 
Time 

(days ) 

0 

0 

3 

1 

1 

0 

Apitat ion 

No 

Yes 

Yes 

No 

No 

No 



complete dissolut ion depends on the dendrite arm o r  so l id  p a r t i c l e  

radius. A rapid i n i t i a l  s o l i d i f i c a t i o n  r a t e  would r e f i n e  

the primary NH4C1 dendrites and hence would reduce the  time 

required f o r  complete dissolut ion o r  remelting. Also, because 

so l id  i s  i n  contact with l iquid  a t  room temperature, Ostwald 

ripening or  d i f fus ional  coarsening of the so l id  would occur 

during long waiting times. Thus, dendri te  arms o r  s o l i d  pa r t i c l e s  

would become coarser,  hence a longer time would be required f o r  

t h e i r  remelting. FinalLy, ag i t a t ion  of a so l id- l iquid  mixture 

a t  room temperature accelerates  d i f fus ional  coarsening by enhancing 

t ransport  of NH4C1 through the l iquid  and causes c o l l i s i o n a l  

coalescence of various dendr i t ic  o r  nondendritic pa r t i c l e s .  Again, 

t h i s  would contr ibute  t o  coarsening dendri te  arms o r  s o l i d  

pa r t i c l e s  and would, therefore,  lengthen the time required f o r  

complete remelting. A s  a r e s ~ l t  of t h i s  analysis  a revised 

prelaunch procedure can be developed t o  assure complete dissolut ion 

of NH4C1 p a r t i c l e s  before l i f t - o f f .  
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