In the providable under NASA sponsorship in the providest of early and will a dissource and of Early function of Survey France Contract of Frid Latiout Laudity turing the random scott."

7.8+\$0.0.5 &: CR-155365

APPLICATION OF REMOTELY SENSED LAND-USE INFORMATION TO IMPROVE ESTIMATES OF STREAMFLOW CHARACTERISTICS

By Edward J. Pluhowski

U.S. Geological Survey Reston, Virginia

> (E78-10052) APPLICATION OF REMOTELY SENSED N78-15541 LAND-USE INFOFMATION TO IMPROVE ESTIMATES OF STREAMFLOW CHARACTERISTICS, VOLUME 8 Final Report (Geological Survey, Reston, Va.) Unclas 93 p HC A05/MF A01 CSCL 08H G3/43 00052

August 1977

Volume 8 of Final Report for:

Goddard Space Flight Center Greenbelt, Maryland 20771

Interagency Memorandum of Understanding No. S-70243-AG Earth Resources Technology Satellite, Investigation SR-125 (IN-002), "Central Atlantic Regional Ecological Test Site: A Prototype Regional Environmental Information System."

BIBLIOGRAPHIC DATA SHEET	I. Report No.	2.	3. Recipient*	s Accession No.
4. Tule and Subinite Appl Information to Im	ication of Remotely Sen prove Estimates of Stre	sed Land-Use amflow Characte	eristics 6.	/27/77
7. Author(s) Edward J. Pluhows	ki		8. Performing No.	3 Organization Rept.
9. Performing Organization N U.S. Geological S	lame and Address UTVEY		10. Project/1	Fask/Work Upir No.
Water Resources L Mail Stop 432 Reston, Virginia	22092		• 11, Contract/ S-7024	Grapt No. 13-AG
12 Spoosoring Organization Frederick Gordon NASA Goddard Spac Greenbelt, Maryla	Name and Address ce Flight Center and 20771		13. Type of F Covered Type III 14.	Report & Period Final Report
15. Supplementary Notes Sponsored Jointly U.S. Geological S	/ by the National Aerona Survey	utics and Spac	e Administration	and the
 16. Abstracts Land-use data presented for 49 multiple regress 39 of the basins graphy provides a Forty streamflow-information, were cover. Significat added and in five equations were in Significant losse were detected on were probably due 17. key Words and Document Remote Sensing, Saircraft (remote) 	ta derived from high-alt basins in Delaware, and ion techniques to a network , it was demonstrated the an effective means of su- characteristic equations e compared with a control ant improvement was deta e equations where Level mproved significantly un es in accuracy due to the ly in estimates of flood e to land cover changes t Analysis. 17a. Descriptors Streamflow, Land use, Re sensing), Statistics.	titude photogra d eastern Maryl work of gaging nat land-use da ignificantly im ns for incorpor ol set of equat ected in six eq II information sing land-use d he use of remot d peaks. Losse associated wit primary land- egression analy	phy and satellite and and Virginia. stations monitori ta from high-alti proving estimates ating remotely se ions using map de uations where Lev was utilized. O ata derived from ely sensed land-u s in accuracy for h temporal differ use data sources. sis, Satellites (imagery are Applying ng runoff from tude photo- of streamflow. nsed land-use rived land el I data was nly four Landsat imagery se information flood peaks ences among the artificial),
17b. Identifiers/Open-Ended Basin characteri Landsat imagery,	Terms stics, Streamflow chara Multiple-regression an	cteristics, Hig alysis, Delawar	gh-altitude photog e, Eastern Maryla	raphy, nd,
Eastern Virginia 17c. COSATI Lield Group	•	•		
18. Availability Statement	······································	19.	Security Class (This Report)	21 No. of Pages
Unclassified		20.	UNCLASSIFIED Security Class (This Page	92 22. Price
FORM NTIS 35 (REV. 10-73)	ENDORSED BY ANSI AND UNLSCO	THIS FORM M	UNCLASSIFIED	USCOMM-DC 8265-P74

LIST OF FINAL REPORT VOLUMES

(CARETS)/LANDSAT INVESTIGATION SR-125 (IN-002)

Robert H. Alexander, 1975, Principal Investigator

- Volume 1. CENTRAL ATLANTIC REGIONAL ECOLOGICAL TEST SITE: A PROTOTYPE REGIONAL ENVIRONMENTAL INFORMATION SYSTEM by Robert H. Alexander.
 - NORFOLK AND ENVIRONS: A LAND USE PERSPECTIVE by Robert H. Alexander, Peter J. Buzzanell, Katherine A. Fitzpatrick, Harry F. Lins, Jr., and Herbert K. McGinty III.
 - 3. TOWARD A NATIONAL LAND USE INFORMATION SYSTEM by Edward A. Ackerman and Robert H. Alexander.
 - GEOGRAPHIC INFORMATION SYSTEM DEVELOPMENTS ASSOCIATED WITH THE CARETS PROJECT by Robin G. Fegeas, Katherine A. Fitzpatrick, Cheryl A. Hallam, and William B. Mitchell.
 - INTERPRETATION, COMPILATION AND FIELD VERIFICATION PROCEDURES IN THE CARETS PROJECT by Robert H. Alexander, Peter W. DeForth, Katherine A. Fitzpatrick, Harry F. Lins, Jr., and Herbert K. McGinty III.
 - COST-ACCURACY-CONSISTENCY COMPARISONS OF LAND USE MAPS MADE FROM HIGH-ALTITUDE AIRCRAFT PHOTOGRAPHY AND ERTS IMAGERY by Katherine A. Fitzpatrick.
 - 7. LAND USE INFORMATION AND AIR QUALITY PLANNING: AN EXAMPLE OF ENVIRONMENTAL ANALYSIS USING A PILOT NATIONAL LAND USE INFORMATION SYSTEM by Wallace E. Reed and John E. Lewis.
 - 8. APPLICATION OF REMOTELY SENSED LAND-USE INFORMATION TO IMPROVE ESTIMATES OF STREAMFLOW CHARACTERISTICS by Edward J. Pluhowski.
 - SHORE ZONE LAND USE AND LAND COVER: CENTRAL ATLANTIC REGIONAL ECOLOGICAL TEST SITE by R. Dolan, B. P. Hayden and C. L. Vincent.

- ENVIRONMENTAL PROBLEMS IN THE COASTAL AND WETLANDS ECOSYSTEMS OF VIRGINIA BEACH, VIRGINIA by Peter J. Buzzanell and Herbert K. McGinty III.
- 11. POTENTIAL USEFULNESS OF CARETS DATA FOR ENVIRONMENTAL IMPACT ASSESSMENT by Peter J. Buzzanell.
- 12. USER EVALUATION OF EXPERIMENTAL LAND USE MAPS AND RELATED PRODUCTS FROM THE CENTRAL ATLANTIC TEST SITE by Herbert K. McGinty III.
- UTILITY OF CARETS PRODUCTS TO LOCAL PLANNERS: AN EVALUATION by Stuart W. Bendelow and Franklin F. Goodyear (Metropolitan Washington Council of Governments).

CONTENTS

	Page
Conversion factors	iv
Abstracteneers and a second sec	1
Introduction	2
CARETS project	3
land-use classification system	6
land use in selected hasing-procession-procession-procession-	8
Land use based on bigh-altitude photography	8
land use based on landsat-1 imagery	22
Experiment Design	29
Study basins	29
Streamflow characteristics	31
Basin characteristics	32
Characteristics based on maps and weather records	32
Characteristics based on high-altitude photography	33
Characteristics based on Landsat imagery	34
Regression Analysis	35
Multiple regression model	36
Regression equations	39
Accuracy comparisons	55
Experiment 1	55
Experiment 2	60
Experiment 3	50
Summary and conclusions	70
References cited	73
Appendix	74
Table A1. Streamflow and basin characteristics	15

ORIGINAL PAGE IS OF POOR QUALITY

.

ILLUSTRATIONS

			Page
Figure	1.	Map of the CARETS area showing location of basins for which land use was delineated	4
	2.	Map showing drainage patterns and location of gaging stations analyzed in this report	30

TABLES

Ť	abla 1	Land-use categories used in CARETS data base	7
10	2.	Drainage basins analyzed for land use and gaging	•
		stations used in multiple regression analysis	9
	3.	Level I land-use classifications, in percent, for	
		selected basins in Delaware, eastern Maryland,	10
	_	and Virginia (based on high-altitude photography)	12
	4.	Level II land-use classifications, in percent, for	
		selected pasins in Delaware, eastern Waryland	16
	۶	level I land-use classifications in percent for	
	Ο.	selected basins in Delaware, eastern Marvland	
		and Virginia (based on Landsat imagery)	24
	6.	Control equations obtained by regressing streamflow	
		characteristics against physiographic and climate	
		basin parameters obtained from climatologic data	ЛЛ
		and USGS topographic maps	41
	1.	Experimental equations obtained by regressing	
		and climatic bacin parameters and four level i	
		land-use categories derived from climatologic	
		data, USGS topographic maps, and high-altitude	
		photographs	44
	8.	Experimental equations obtained by regressing stream-	
		flow characteristics against physiographic and	
		climatic parameters, and six Level II land-use	
•		categories from climatologic data, USGS	47
	Q	Experimental equations obtained by regressing	
	5.	streamflow characteristics against physiographic	
		and climatic parameters, and three Level I	
		land-use categories from climatologic data, USGS	50
		topographic maps, and Landsat-1 imagery	50
	10.	Comparison of standard error of estimate changes	
		resulting from inclusion in the regression analysis	•
		bigh-altitude photography	56
		man are adde bliogographi	

TABLES

		Page
Table 11.	Comparison of standard error of estimate changes resulting from inclusion in the regression analysis of six Level II land-use categories derived from high-altitude photography	59
12.	Comparison of standard error of estimate changes resulting from inclusion in the regression analysis of three Level I land-use categories derived from Landsat imagery	62

CONVERSION FACTORS

Multiply English units	by	To obtain SI units
in (inches)	25.4	mm (millimeters)
ft (feet)	3.048 x 10 ⁻¹	m (meters)
mi (miles)	1.609	km (kilometers)
mi ² (square miles)	2.59	km ² (square kilometers)
acres	4.047×10^{-1}	ha (hectares)
ft ^{'3} /s (cubic feet per second)	2.832×10^{-2}	m ³ /s (cubic meters) per second)
^O F (degrees Fahrenheit)	5/9 after subtracting 32	^O C (degrees Celsius)

APPLICATION OF REMOTELY SENSE! LAND-USE INFORMATION TO IMPROVE ESTIMATES OF STREAFFLOW CHARACTERISTICS

by Edward J. Pluhowski

Abstract

Land-use data derived from high-altitude photography and satellite imagery are presented for 49 basins in Delaware, and eastern Maryland and Virginia. Based on 1:100,000 scale maps from high-altitude photography, basin land cover was extracted at the generalized Level I and the more detailed Level II classification categories. Level I land-use data summaries were prepared for 46 of the basins using the 1:250,000 scale maps derived from Landsat imagery. Land cover in the basins ranged from 93.9 percent urban at Little Falls Branch near Bethesda, Maryland, to 96.2 percent agricultural at Morgan Creek near Kennedyville, Maryland.

Applying multiple regression techniques to a network of gaging stations monitoring runoff from 39 of the basins, it was demonstrated that land-use data from high-altitude photography provides an effective means of significantly improving estimates of streamflow. Forty streamflow-characteristics equations incorporating remotely sensed land-use information, were compared with a control set of equations using map derived land cover. Siginificant improvement was detected in six equations where Level I data was added and in five equations where Level II information was utilized. Only four equations were improved significantly using land-use data derived from Landsat imagery. Significant losses in accuracy due to the use of remotely sensed land-use information were detected only in estimates of flood peaks. Losses in accuracy for flood peaks were probably due to land cover changes associated with temporal differences among the primary landuse data sources.

INTRODUCTION

Since 1888 when systematic streamflow records were first collected by the U.S. Geological Survey, more than 16,000 sites have been gaged in the United States (Carter and Davidian, 1968). Surface-water data are used for many purposes such as evaluating the water supply available to a town or city, designing bridges and culverts, or assessing the flood potential along a particular watercourse. A well designed stream-gaging network is of considerable value in studies attempting to assess man's impact on the hydrologic cycle. For example, urbanization will change streamflow patterns because of street paving, home and building construction, and the installation of storm sewers. These and other activities needed to develop urban environments alter important basin characteristics such as infiltration rates, generated volume of storm flow, and the time required for water to move from any point in the basin to stream channels. Ideally, continuous streamflow monitoring would be required before, during, and after development to appraise the impact of urbanization on a particular watercourse.

The general objective of the streamflow data program is to provide users with water data at any site on any stream. Clearly, it is neither practical nor desirable to gage every site where data are required. It is, however, frequently possible to transfer streamflow information on unregulated streams to other natural stream sites in areas of similar climatic and geologic settings. Thomas and Benson (1970) outlined a multiple-regression method of streamflow generalization. This procedure involves regressing a single streamflow characteristic (such as mean annual discharge) against the physiographic and climatologic characteristics

of gaged basins within a selected region. Equations obtained from the multiple-regression procedure contain only statistically significant basin characteristics, and the regression equations enable users to compute streamflow patterns at any site on natural streams within the region.

Using basin characteristics derived from climatologic data and maps, detailed formulas were obtained by the multiple-regression procedure for a wide range of streamflow characteristics throughout the Nation. The results of these investigations, published in open-file reports, are available at the 46 district offices of the U.S. Geological Survey except Hawaii (Benson and Carter, 1973). The purpose of this investigation is to investigate the potential improvement of streamflow estimates by using land-use information obtained from high-altitude photographs and satellite images. Remotely sensed data to be tested were obtained from U.S. Geological Survey land-use maps compiled by the Central Atlantic Regional Ecological Test Site (CARETS) project.

CARETS PROJECT

The CARETS project was sponsored jointly by the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey. The principal objective of CARETS was to test the extent to which various remote sensor data systems could be used as input to a regional land-resources information data base (Alexander, 1974). The CARETS region covers 46,434 mi² (74,712 km²) which includes Delaware, southern New Jersey, southeastern Pennsylvania, District of Columbia, and eastern Maryland and Virginia (fig. 1).

> ORIGINAL PAGE IS OF POOR QUALITY

Figure 1. -- Map of CARETS area showing location of basins for which land use was delineated.

Figure 1. -- Map of CARETS area showing location of basins for which land use was delineated.

NASA aircraft flown at altitudes of about 60,000 ft (18,300 m) provided color and color infrared photographs of the site in 1970 and again in 1972. The bulk of the high-altitude land-use analysis was done using the 1970 aerial photographs. However, parts of the site were masked by clouds in the 1970 high-altitude photographs and other aerial photographs taken as close as possible to the dates of the 1970 missions were required to complete land-use mapping of the site. Landsat-1 imagery was available at 18-day intervals following launching of the satellite in July 1972. Land-use mapping predicated on satellite imagery was derived from Landsat-1 data obtained principally during September and October 1972 (K. Fitzpatrick, oral commun., 1976).

Photointerpreters examined each piece of film or imagery for the major land-use types such as urban land, agricultural land, forests, wetlands, or water. Urban land is recognized by the patterns of buildings, houses, road networks, railroads, and other man-made features. The complex urban setting contrasts strongly on high-altitude photographs and images with the less complicated appearance of agricultural fields, forests, wetlands, and water.

Land-use maps based on high-altitude photographs were produced at a scale of 1:100,000. Owing to resolution differences between Landsat imagery and high-altitude photographs, land-use maps derived from satellite imagery were prepared at a scale of 1:250,000. Forty eight sheets depicting land use of the CARETS area at a scale of 1:100,000 and eight sheets at a scale of 1:250,000 have been released to the U.S. Geological Survey open files, along with many additional map types to assist users in applying the data to land-use planning and environmental interpretation (Alexander and others, 1975).

LAND-USE CLASSIFICATION SYSTEM

The classification system used in the CARETS project was one developed by a special interagency committee (R. Alexander, written commun., 1976) later slightly modified into the USGS Land-Use Classification System for use with remote-sensor data (Anderson and others, 1972). The scheme is a multilevel, hierarchical classification system which specifies the first two levels (table 1), and leaves the more detailed levels for later definition. Level I contains generalized categories suitable for delineation from satellite imagery. Level II yields greater detail within each Level I category and is most suitably obtained using high-altitude photographs as a primary source. Table 1. -- Land-use categories used in CARETS data base

<u>Level I Categories</u>	Level II Category Numbers and Titles
URBAN & BUILT-UP	<pre>11-Residential 12-Commercial and services 13-Industrial 14-Extractive 15-Transportation, communications, and utilities 16-Institutional 17-Strip and clustered settlement 18-Mixed 19-Open and other</pre>
AGRICULTURAL	<pre>21-Cropland and pasture 22-Orchards, groves, bush fruits, vineyards, and horticultural areas 23-Feeding operations 24-Other</pre>
FOREST LAND	41-Heavy crown cover (40% & over) 42-Light crown cover (10% to 40%)
WATER	51-Streams and waterways 52-Lakes 53-Reservoirs 54-Bays and estuaries 55-Other
NONFORESTED WETLAND	61-Vegetated 62-Bare
BARREN LAND	72-Sand other than beaches 73-Bare exposed rock 74-Beaches 75-Other

LAND USE IN SELECTED BASINS

Using maps prepared in accordance with the CARETS classification system (table 1), land use was defined for selected basins listed in table 2. The basins for which land-use information is presented are in the northwest and north-central part of the CARETS region (fig. 1). They represent a broad spectrum of land cover ranging from predominantly agricultural in the Delmarva Peninsula to urban in the Washington-Baltimore-Wilmington corridor. Land-use data were obtained by drawing the boundaries of each selected basin on clear plastic sheets. These basin outlines, prepared at scales of 1:100,000 or 1:250,000, were used as overlays on CARETS land-use maps. The percentage of a basin ascribed to any particular category was determined manually using a dot planimeter. The dot planimeter is a uniform grid of dots on a clear plastic sheet which was placed over the basin boundary overlay. Land use beneath each dot was recorded, the number of dots subtotaled by category, each category subtotal was then divided by the sum total of dots within the basin boundaries, and the result multiplied by 100 to yield percent.

Land Use Based on High-Altitude Photographs

Land-use information for 49 basins based on high-altitude photographs is summarized in tables 3 and 4 at Levels I and II respectively. At the 1:100,000 scale used to compile tables 3 and 4, the smallest depictable area is about 10 acres (4 hectares), or the equivalent of a square 656 ft (200 m) on a side (Alexander, 1975, written communication). Table 3, which shows generalized Level I land-use categories, is a compilation of the more detailed Level II category listings in table 4.

Station No.	Station name	Latitude	Longitude	Drainage area (mi ²)	Period of record analyzed (water years)
01477800	Shellpot Creek at Wilmington, Del.*	39 ⁰ 45' 39"	75 ⁰ 31'10"	7.46	194567
01478000	Christina R. at Coochs Bridge Del.	39 [°] 38'16"	75 ⁰ 43'46"	20.5	1943-67
01478500	White Clay Creek above Newark, Del.*	39 ⁰ 42'50"	75 ⁰ 45'35"	66.7	1952-59, 1962-67
01479000	White Clay Creek nr. Newark, Del.	39 [°] 42'00"	75 ⁰ 41'10"	87.8	
01483200	Blackbird Creek at Blackbird, Del. *	39 [°] 21'58"	75 ⁰ 40'10"	3.85	1952-56**,1937-67
01483500	Leipsic River nr. Cheswold, Del. *	39 ⁰ 13'58"	75 ⁰ 37'57"	9.35	1932-33,1943-57, 1958- 67**
01484300	Sowbridge Branch nr. Milton, Del. *	38 ⁰ 48'51"	75 [°] 19'39"	7.08	1956-67
01484500	Stockley Branch nr. Stockley, Del. *	38°38'19"	75 [°] 20'31''	5.24	1943-67
01485000	Pocomoke River nr. Willards, Md.	38 [°] 23'20"	75 ⁰ 19'30"	60.5	1949-67
01485500	Nassawango Creek nr. Snow Hill, Md. *	38 ⁰ 13'45"	75°28'20"	44.9	1949-67
01486000	Nanokin Brook nr. Princess Ann, Md.	38°12'50"	75°40'18"	5.8	1951-67
01486500	Beaverdam Creek nr. Salisbury, Md. *	38 ⁰ 21'05"	75 ⁰ 34'11"	19.5	1930-33,1934-35,1936-67
01487000	Nanticoke River nr. Bridgeville, Del.*	38 ⁰ 43'42"	75 ⁰ 33'44"	75.4	1943-67
01487500	Trap Pond Outlet nr. Laurel, Del.*	38 ⁰ 31'40"	75 ⁰ 29'00"	16.7	1951-67
01488500	Marshy Hope Creek nr. Adamsville, Del.*	38 ⁰ 51'00"	75 ⁰ 40'29"	44.8	1943-67
01489000	Faulkner Br. at Federalsburg, Md.	38°42'45"	75 ⁰ 47'35"	7.1	1950-67
01490000	Chicamacomico River nr. Salem, Md. *	38 [°] 30'45"	75 ⁰ 52'50"	15.0	1951-67
01491000	Choptank River nr. Greensboro, Md.	38 ⁰ 59'50"	75°47'10"	113	1948-67
01492000	Beaverdam Branch at Matthews, Md. *	38 [°] 48'40"	75 ⁰ 58'15"	5.85	1950-67
01492500	Salle Harris Cr. nr. Carmichael, Md.*	38 ⁰ 57'55"	76 ⁰ 06'30"	8.09	1951-56,1957-67**
01493000	Unicorn Branch nr. Millington, Md. *	39°15'00'	75 [°] 51'40"	22.3	1948-67
01493500	Morgan Greek nr. Kennedyville, Md.*	39 ⁰ 16'50"	76 ⁰ 00'55"	10.5	195167
01494000	Southeast Creek at Church Hill, Md.*	39 ⁰ 07'57"	75 ⁰ 58'51"	12.5	1951-56,1957-65**
		1	1	1	

-

Table 2. -- Drainage basins analyzed for land use and gaging stations used in multiple regression analysis.

.

Station No.	Station name	Latitude、	Longitude	Drainage area (mi ²)	Period of record analyzed (water years)
01495000	Big Elk Creek at Elk Mills, Md.*	39 ⁰ 39'26"	75 [°] 49'20"	52.6	1932-67
01495500	Little Elk Creek at Childs, Md.*	39 ⁰ 38'30"	75 ⁰ 52'00"	26.8	1949-58
01496000	Nortneast Creek nr. Leslie, Md.	39 ⁰ 37'40"	75 ⁰ 56'40''	24.3	
01579000	Basın Run at Liberty Grove, Md.*	39 ⁰ 39'30"	76 ⁰ 06'10"	5.31	1948-58,1965-67**
01586000	N. Br. Patapsco R. at Cedarhurst, Md.	39 ⁰ 30'00"	76 ⁰ 53'00''	56.6	1945-67
01589300	Gwynns Falls at Villa Nova, Md.*	39 ⁰ 20'43"	76°44'01"	32.5	1957-67
01590000	North River nr. Annapolis, Md.*	38 ⁰ 59'09"	76°37'21"	8.5	1932-67
No gage	Rhode River nr. Galesville, Md.	38 ⁰ 52'00"	76 ⁰ 31'00"	14.8+	
01591000	Patuxent River nr. Unity, Md. *	39 ⁰ 14'18"	77 ⁰ 03'23"	34.8	1944-67
01594500	Western Branch nr. Largo, Md.*	38 ⁰ 52'34"	76 ⁰ 47'54"	30.2	1950~67
01594600	Cocktown Cr. nr. Huntington, Md.*	38 ⁰ 38'27"	76 [°] 38'07"	3,85	1957-67
01594800	St. Leonard Cr. nr. St. Leonard, Md.	38 [°] 26'57"	76 ⁰ 29'43"	6.73	
01645200	Watts Branch at Rockville, Md.*	39 ⁰ 05'03"	77 ⁰ 10'38''	3.70	1957-67
01646200	Scott Run nr. McLean, Va.	38 ⁰ 57'32"	77°12'21"	4.69	
01646550	Little Falls Br. nr. Bethesda, Md.*	38 ⁰ 57'27"	77 ⁰ 06'31"	4.1	1944-59,1960-61,**1961-67
01648000	Rock Cr. at Sherrill Dr., Washington, D.C.*	38 ⁰ 58'21"	7702'25"	62.2	1928-67
01649500	N.E. Br. Anacostia R. at Riverdale, Md.*	38 ⁰ 57'37"	76 [°] 55'34"	72.8	1938-67
01650500	N.W. Br. Anacostia R. nr. Colesville, Md.*	39 ⁰ 03'55"	77 ⁰ 01'48"	21.1	1924-67
01652610	Holmes Run nr. Annandale, Va.	38 ⁰ 50'47"	77 ⁰ 10'28"	7.10	
01653500	Henson Creek at Oxon Hill, Md.*	38 ⁰ 47'05"	76 ⁰ 58'42''	· 16.7	1948-67
01653900	Accotink Cr. nr. Fairfax, Va.	38 ⁰ 48'46"	77 ⁰ 13'43''	23.5	
01655500	Cedar Run nr. Warrenton, Va.*	38 [°] 44'30"	77 ⁰ 47'15"	13.0	1950-67
01656800	Cub Run nr. Chantilly, Va.	38 ⁰ 54'30"	77 ⁰ 28'01"	7.13	
01656940	Cub Run at Lee Highway nr. Chantilly, Va.	38 ⁰ 49'59"	77 ⁰ 27'50"	39.6	

Table 2. -- Drainage basins analyzed for land use -- Continued

Station No.	Station name	Latitude	Longituãe	Drainage area (mi ²)	Period of record analyzed (water years)
01657800 01658000	Giles Run nr. Woodbridge, Va. Mattawoman Cr. nr. Pomonkey, Md.*	38 ⁰ 40'48'' 38 ⁰ 35'45''	77 ⁰ 13'36" 77 ⁰ 03'25"	4.54 57.7	1950-67
	*Station used in regression analyses. **Annual maximum discharge only. * Incluqes entire drainage basin above conflu	ence with West F	l ver.		

Table 2. -- Drainage basins analyzed for land use -- Continued

ي. است

Index		LEVEL I Categories						
(fig.2)	STATION NAME	URBAN	AGRICUL- TURE	FOREST	WATER	WETLAND	BARREN	
4778	Shellpot Creek at Wilmington, Del.*	84.9	3.5	11.0	0.6	0	D	
4780	Christiana River at Coochs Bridge, Del.*	20.9	59.9	19.2	0	0	0	
4785	White Clay Creek above Newark, Del.*	3.0	78.0	19.0	0.05	0	D	
4790	White Clay Creek nr. Newark, Del.	11.1	69.7	19.1	0	0	0	
4832	Blackbird Creek at Blackbirg , Del.*	0	61.6	37.6	0.8	0	D	
4835	* Leipsic River near Cheswold, Del.	0	82,3	17.7	0	o	o	
4843	Sowbridge Branch near Milton, Del $*$	ō	46.9	52.5	0.6	O	D	
4845	Stockley Branch at Stockley, Del.*	1.3	56.5	42.2	0	0	0	
4850	Pocomoke River near Willards, Md	- 0.2	49.6	50.2	0	O	D	
4855	Nassawango Creek near Snow Hill, Md.*	0.2	20.2	79.6	D	0	0	
4860	Manokin Br. near Princess Ann,Md."	0	31.6	68.4	0	0	D	
4865	Beaverdam Creek near Salisbury, Md.*	5.1	44.7	49.8	0.4	0	0	
4870	Nanticoke River near Bridgeville, Del.*	1.1	57.6	41.3	0	0	0	

Table 3. --Level I land-use classifications, in percent, for selected basins in Delaware, eastern Maryland and Virginia.(Based on high-altitude photography).

Table 3. --Level I land-use classifications, in percent, for selected basins in Delaware, eastern Maryland and Virginia--continued

Index	· · · · · · · · · · · · · · · · · · ·	<u> </u>	LEVI	EL I Cate	gories		
NO. (fig.2)	STATICN NAME	URBAN	AGRICUL- TURE	FOREST	WATER -	WETLAND	BARREN
4875	Trap Pond Outlet near Laurel, Del.	0	26.3	72.8	0.6	0.3	Q
4885	Marshy Hope Cr near Adamsville, Del.*	0.1	58.0	41.9	o	0	0
4890	Faulkner Branch at Federalsburg, Md.*	0	72.5	27.5	0	0	0
4900	Chicamacomico Rıver, near Salem, Md.*	0	53.0	46.8	- 0.2	0	0
4910	Chóptank River near Greensboro, Md.*	0.1	55.8	43.9	o	0.2	0
4920	Beaverdam Branch at Matthews, Md.*	0	71.2	28.8	O	0	0
4925	Sallie Harris Cr.near Carmichael, Md.*	0	67.9	32.1	0	0	0
4930	Unicorn Branch near Millington, Md.*	0.4	70.1	29,2	0.3	0	0
4935	Morgan Creek near Kennedyville, Md.*	0	96.2	3.8	0	0	0
4940	Southeast Cr.at Church Hill, Md.*	0	73.5	26.5	0	0	0
4950	Big Elk Creek at Elk Mills,Md.*	1.1	85.9	13.0	0	0	0
4955	Little Elk Cr. at Childs, Md.*	1.2	79.5	18.3	01	0.9	0

Index			LEVE	EL I Cate	gories		
(fig.2)	STATION NAME	URBAN	AGRICUL- TURE	FOREST	WATER	WETLAND	BARREN
4960	Northeast Creek nr. Leslie, Md.	4.0	80.1	15.9	0	0	0
5790	Basin Run at Liberty Grove, Md.*	1.9	73.4	24.7	0	o	0
5860	North Branch Patapsco River at Cedarhurst, Md.*	3.6	70.9	25.3	0.1	0	0.1
5893	Gwynns Falls at Villa Nova, Md.*	35.4	23.7	40.0	0	0	0.9
5900	North River near Annapolis, Md. $*$	o	33.0	67.0	o	0	0
5905	Rhode River nr. Galesville, Md.	3.7	39.7	42.9	12.2	1.5	0
5910	Patuxent River near Unity, Md.*	1.5	66.3	32.2	0	0	0
5945	Western Branch near Largo, Md.*	18.5	38.6	42.9	0	0	0
5946	Cocktown Creek near Huntington, Md.*	1.6	57.7	40.7	0	0	D
5946	St. Leonard Creek near St.Leonard Md.*	, 0	18-9	81.1	0	0	D
6452	Watts Branch at Rockville, Md.*	42.5	40.9	16.6	0	0	0
6462	Scott Run near McLean, Va.	55.6	9.6	34.8	0	o	O
64655	Little Falls Branch near Bethesda, Md.*	93.9	0	6.1	0	o	0
6480	Rock Creek at Sherrill Drive, Washington, D.C.*	53.3	26.1	20.3	0.3	0	0

Table 3. --Level I land-use classifications, in percent, for selected basins in Delaware, eastern Maryland and Virginia--Continued

		LEV	EL I Cate	gories		
STATION NAME	URBAN	AGRICUL- TURE	FOREST	WATER	WETLAND	BARREN
N.E. Br. Anacostia River at Riverdale, Md.*	45.1	15.8	38.9	0.2	0	0
N.W Br. Anacostia River near Colesville, Md.*	26.0	42.4	31.6	0	0	0
Holmes Run near Annandale, Va.	67.9	1.3	30.8	0	0	0
Henson Creek at Oxon Hill, Md.*	63.2	4.8	32.0	0	0	0
Accotink Cr. near Fairfax, Va.	71.1	8.6	20.2	0	0	0
Cedar Run near Warrenton, Va. \star	1.9	63.1	3+.0	0.4	0	0
Cub Run near Chantilly, Va.	49.9	28.0	22.1	0	0	0
Cub Run at Lee Highway near Chantilly, Va.	18.5	46.9	34.0	0	0	0
Giles Run near Woodbridge, Va.	11.8	33,3	54.9	0	0	0
Mattawoman Cr.nr. Pomonkey,Md.*	7.2	24 7	68.0	0.1	0	0
*Station used in regression analy +Includes entire drainage basin a	ses bove con	fluence	ith West	River.		
	N.E. Br. Anacostia River at Riverdale, Md." N.W Br. Anacostia River near Colesville, Md." Holmes Run near Annandale, Va. Henson Creek at Oxon Hill, Md." Accotink Cr. near Fairfax, Va. Cedar Run near Warrenton, Va." Cub Run near Chantilly, Va. Cub Run near Chantilly, Va. Giles Run near Woodbridge, Va. Mattawoman Cr.nr. Pomonkey, Md." *Station used in regression analy +Includes entire drainage basin a	STATION NAMEURBANN. E. Br. Anacostia River at Riverdale, Md.*45.1N. W Br. Anacostia River near Colesville, Md.*26.0Holmes Run near Annandale, Va.67.9Henson Creek at Oxon Hill, Md.*63.2Accotink Cr. near Fairfax, Va.71.1Cedar Run near Warrenton, Va.*1.9Cub Run near Chantilly, Va.49.9Cub Run at Lee Highway near Chantilly, Va.11.8Giles Run near Woodbridge, Va. Mattawoman Cr.nr. Pomonkey, Md.*7.2*Station used in regression analyses +Includes entire drainage basin above con	LEVSTATION NAMELEVSTATION NAMEAGRICUL- TUREN.E. Br. Anacostia River at Ruverdale, Md.*45.115.8N.W Br. Anacostia River near Colesville, Md.*26.042.4Holmes Run near Annandale, Va.67.91.3Henson Creek at Oxon Hill, Md.*63.24.8Accotink Cr. near Fairfax, Va.71.18.6Cedar Run near Warrenton, Va.*1.963.1Cub Run near Chantilly, Va.49.928.0Cub Run at Lee Highway near Chantilly, Va.11.833.3Giles Run near Woodbridge, Va. Mattawoman Cr.nr. Pomonkey, Md.*7.224*Station used in regression analyses +Includes entire drainage basin above confluence1	LEVEL I CateSTATION NAMEAGRICUL- TUREFORESTN.E. Br. Anacostia River at Riverdale, Md.*45.115.838.9N.W Br. Anacostia River near Colesville, Md.*26.042.431.6Holmes Run near Annandale, Va.67.91.330.8Henson Creek at Oxon Hill, Md.*63.24.832.0Accotink Cr. near Fairfax, Va.71.18.620.2Cedar Run near Warrenton, Va.*1.963.130Cub Run near Chantilly, Va.49.928.022.1Cub Run at Lee Highway near Chantilly, Va.11.833.354.9Mattawoman Cr.nr. Pomonkey, Md.*7.2247*Station used in regression analyses +Includes entire drainage basin above confluence with West	LEVEL I CategoriesSTATION NAMEAGRICUL- TUREFORESTWATERN.E. Br. Anacostia River at Riverdale, Md.*45.115.838.90.2N.W Br. Anacostia River near Colesville, Md.*26.042.431.60Holmes Run near Annandale, Va.67.91.330.80Henson Creek at Oxon Hill, Md.*63.24.832.00Accotink Cr. near Fairfax, Va. Cedar Run near Warrenton, Va.*71.18.620.20Cedar Run near Chantilly, Va.49.928.022.10Cub Run at Lee Highway near Chantilly, Va.11.833.354.90Giles Run near Woodbridge, Va. Mattawoman Cr.nr. Pomonkey, Md.*11.833.354.90*Station used in regression analyses +Includes entire drainage basin above confluence with West River.River.	LEVEL I CategoriesSTATION NAMELEVEL I CategoriesURBANAGRICUL- TUREWATERWETLANDN.E. Br. Anacostia River at Raverdale, Md.*45.115.838.90.20N.W Br. Anacostia River near Colesville, Md.*26.042.431.600Holmes Run near Annandale, Va.67.91.330.800Henson Creek at Oxon Hill, Md.*63.24.832.000Accotink Cr. near Fairfax, Va.71.18.620.200Cedar Run near Warrenton, Va.*1.963.1300.40Cub Run near Chantilly, Va.49.928.022.100Cub Run near Woodbridge, Va. Mattawoman Cr.nr. Pomonkey, Md.*11.833.354.900*Station used in regression analyses *Includes entire drainage basin above confluence with West River.River.1

Table 3. --Level I land-use classifications, in percent, for selected basins in Delaware, eastern Maryland and Virginia--Continued

٠

1													
Category Number	Level II Category Description	Shellpot Cr. at Wilmington, Del. #4778	Christiana R. at Coochs Br. Del. #4780	White Clay Cr. above Newark, Del. #4785	White Clay Gr. near Newark, Del. #4790	Blackbırd Cr. at Blackbird, Del. #4832	Leipsic R. nr. Chreswald, Del. #4835	Sowbridge Br. nr. Milton, Del. #4843	Stockley Br. at Stockley, DeL. #4845	Pocomoke R. nr Willards, Md. #4850	Nassawango Cr. nr. Snow Hill, Md. #4855	Manokin Br.nr. Princess Anne, Md. #4860	Beaverdam Cr. nr. Salısbury Md. #4865
1111	URBAN	11111	11111	11111	111111	111111	11111	111111	11111	111111	11111	11111	111111
11	Residential	69.8	15.0	1.8	7.1						0.1		1 1
12	Commercial	2.9	0.3	0.3	0.8								
13	Industrial		2.0	0.3	1.3			-					
14	Extractive		0.1										
15	Transportation	1.5	1.5	0.1	0.1								3.2
16	Institutional	5.4	0.9	0.2	0.9	-			1.3				
17	Strip or clustered		0.4							0.2	0.1		0.8
18	Mixed	0.7			0.3								
19	Open or other	4 6	0.7	0.3	0.5			ы.					
111	AGRICULTURE	11111	111111	111111	1/////	11111	111111	11.111	<i>i1111i</i>	111111	111111	111111	(11111
21	Cropland & pasture	3,5	59.9	78.0	69.7	61.6	82.3	46.5	56.5	49.4	19.2	31.6	44.3
22	Orchards									-		•	
23	Feeding operations		-								1.0		0.4
24	Other					-		0.4		0 2	1		
1111	FORESTLAND	111111	111111	11111	111111	111111	111111	111111	111111	11/1/1	111111	//////	11111
41	Heavy crown cover	10.1	18.2	18.5	18.7	376	17.5	51.8	42.2	49.3	74.3	67.9	47.9
42	Light crown cover	0.9	1.0	0.5	0.4		0.2	0.7	·	09	5.3	0.5	1.9
111	WATER	11111	11111	111111	11111	11111	11111	IIIII	11111	11.1111	11111	11111	11111
52	Lakes	<u> </u>					-	0.6					
53	Reservoirs	0.6		0.05	0.1	0.8	-	_	1		.		0.4
54	Bays and estuaries									1	,		
<u> ÍII</u>	WETLANDS	111111	111111	111111	111111	111111	11/111	111111	111111	111111	111111	111111	111111
61	Vegetated				0 1		1						
111	BARREN LAND	111111	1/////	111111	111111	11111	111111	11111	11111	11111	111111	11111	111111
75	"Other"	1				1		1		1	1	1	1

Table 4. --- Level II land-use classifications, in percent, for selected basins in Delaware, eastern Maryland and Virginia (Based on high-altitude photography).

Category Number	Level II Category Description	Nanticoke R. nr.Bridgeville Del. #4870	Trap Pond outlet nr. Laurel, Del. #4875	Marshyhope Cr. nr.Adamsville Del. #4885	Faulkner Br. at Federalsburg Md. #4890	Chicamacomıco R. nr. Salen Md. #4900	Choptank R. nr.Greensboro Md. #4910	Beaverdam Br. at Matthews Md. #4920	Sallie Harris nr. Carmıchael Hd. 4925	Unicorn Br. nr.Híllington Nd. #4930	Morgan Cr.nr. Kennedyville Md. #4935	Southeast Cr. at Church Hill Md. #4940	Hig Elk Cr. at Flk Mills Md. #4950
1111	URBAN	11111	11111	11111	11111	11111	111111	11111	777777	11111	TITIT	11111	TTTTT
11	Residential	0.6		-									0.3
12	Commercial	0.1											
13	Industrial												
14	Extractive			~									
15	Transportation												
16	Institutional				•								0.2
17	Strip or clustered	0.4		0.1			0.1			0.4			0.6
18	Mixed												
19	Open or other												
1111	AGRICULTURE	11111	<u> //////</u>	<u> </u>	/////	<u> //////</u>	11111	111111	//////	11111	//////	11/1//	11////
21	Cropland & pasture	574	26.1	58.0	-72.5	53.0	55.8	71.2	679	70.1	96.2	73.5	\$5.9
22	Orchards	0.1											
23	Feeding operations												
24	Other	0.1	0.2										
μ	FORESTLAND	11111	111111	<u> //////</u>	111111	11111	./////	11111	11111	11111	11111	11111	7/////
41	Heavy crown cover	41.2	63.1	41 7	27.5	44.0	43.0	28.8	32.1	27.7	3.8	26.3	12.9
42	Light crown cover	0.1	97	0.2		2.8	0.9			1.5		0.2	0.1
111	WATER	11111	111111	<u> //////</u>	111111	111111	<u>`/////</u>	11111	111111	111111	//////	111111	111111
52	Lakes					0.2				D.3			
53	Reservoirs		0.6										
54	Bays and estuaries												
1111	WETLANDS -	//////	11111	<u></u>	111111	111111	//////	1/////	111111	111111	111111	11111	11/11
61	Vegetated		0.3				0,2		~				
111	BARREN LAND	11111	IIIII	111111	11111	11111	11/11	11111	111111	11111	11111	11111	11111
75	"Other"	<u> </u>		,	I								

Table 4. -- Level II land-use classifications, in percent, for selected basins in Delaware, eastern Maryland and Virginia (Based on high-altitude photography). __ Continued.

.

Category Number	Level II Category Description	Little FIk Cr at Childs Md. #4955	Northeast Cr nr Leslie Md. #4960	Basin Run at Liberty Grove Md #5790	N Br.PatapscoR. at Cedarhurst Md. #5860	Gwynns Falls at Vılla Nova Md. #5893	North River nr Annapolis Md. #5900	Rhode Rıver nr Galesvılle Md. #5905	Patuxent R. nr Largo Md. #5910	Nestern Br. nr Largo Md. #5945	Cocktown Cr. nr lluntington Md. #5946	St.Lconard Cr. nr St.Lconard Md. #5948	Watts Branch at Rockville Md. #6452
////	URBAN	/////	/////	/////	/////	11/1/	/////		/////	//////	/////	111111	11111
	Residential	0.4	05	1.9	1 7	26.9		3.5	1.0	12.3			26.2
12	Commercial				0.6	28			0,1	1 4			7.2
13	Industrial				0.5	0.1							
14	Extractive				0.1	0.3							
15	Transportation	ļ	07			0.2				0.5			1.8
16	Institutional					26		02		1.9			50
17	Strip or clustered	0.4	28		06	0.4			0.4	0 3	16		
18	Mixed	04			0 1								
19	Open or other					2.1				21			2.3
<u>µ</u> µµ	AGRICULTURE	11111	11/11/	111111	//////	<u> //////</u>	11111	111/1	11/1/1	//////	//////	//////	//////
21	Cropland & pasture	79.5	80.1	73.4	70 9	237	33.0	39.7	66.3	38.6	57.7	18.9	40.9
22	Orchards								l. <u></u>				ļ
23	Feeding operations										<u> </u>		
24	Other											 	
1111	FORESTLAND	//////	111111	//////	<u> //////</u>	//////	111111	11111	//////	//////	//////	//////	11/1/1
41	Heavy crown cover	15.2	12.1	22 7	23.7	33.3	67.0	42.9	31.8	\$1.4	40.7	\$0.7	11.8
42	Light crown cover	3.1	3.8	2.0	16	67			0.4	15		0.4	4.8
1111	WATER	11111	111111	111111	11111	111111	111111	//////	1/////	//////	111111	11111	111111
52	Lakes		<u> </u>						İ				
53	Reservoirs	0.1			0.1								
54	Bays and estuaries							12.2					
LLI	WETLANDS	111111	111111	111111	111111	111111	111111	111111	111111	111111	11/1/1	111111	111111
61	Vegetated	0.9						1.5					
1111	BARREN LAND	VIIII	/////	111111	11111	11111	111111	111111	111111	111111	111111	11111	11111
75	"Other"				0 1	09							

Table 4. -- Level 11 land-use classifications, in percent, for selected basins in Delaware, eastern Maryland and Virginia (Based on high-altitude photography) -- Continued.

ſ		1						1		· · · · · · · · · · · · · · · · · · ·			ļ
tegory umber	Level II	Run Lean 6462	e Falls r sda 6465.5	Creek shington 6480	Br. stia R verdale 6495	Br. stia R. lesville 6505	s Run nandale 6526.1	n Cr. on Hill 6535	ınk Cr dir <u>f</u> ax 6539	Run rrenton 6555	un antilly 6568	.un lantılly 6569 4	k Run bodbr'idge 6578
U S S	Category	±0.t	1 L O#	×≥ ≈	· U 🗠	00# UU	An An	9 X #	4 0	187 188	<u>~</u> 5*	<u>ٿ</u> ٿ	ese Fese
	Description	ar Va.	Чан. Чан. Чан.	C t C	Ana Ana Md.	V B V B	llo] nr Va.	Her at dd.	Acc Na.	C G C G C G	Cut Nr Va	Cul Tr Va	G I VB VB
1111	URBAN	11111	11111	111111	11111	11111	71111	ากก๊ก	TITIT	777777	777777	TITT	Tinn
11	Residential	24 8	72.9	37 5	24 5	14 9	49.1	39.4	42 7	16		5.1	6.4
12	Commercial	14.9	12.0	5.4	4.8	09	39	54	12.3			0.3	
13	Industrial				0,5		1.1		18				
14	Extractive			0.1	33			62			. 0	07	0.7
15	Transportation	12 6		04	2.5		3.5	5.6	5.0		13.4	2.8	1.4
16	Institutional	0.7		4.1	39	06	69	2 2	20	0.3		0,2	3.3
17	Strip ör clustered				0 4	0.4		0.3			0.6	1.3	
18	Mixed			0.1									
19	Open or other	2.6	9 0	57	5.2	92	3.4	4.1	7.3		34.9	8.2	
<u><u> </u></u>	ACRICULTURE	//////	//////	<u>.//////</u>	111111	111111	111:11	11:14	11111	11111	11////	1/////	//////
21	Cropland & pasture	96	ļ	25 7	15 8	42 4	13	48	86	63 1	28.0	46 9	33 3
22	Orchards			0.4	L	<u> </u>							
23	Feeding operations	L										-	
24	Other												
1111	FORESTLAND	//////	111111	<u> /////</u>	1/////	<u>//////</u>	11/1//	11111	//////	//////	11111	11/1//	11/1//
41	Heavy crown cover	28.8	2.4	18.1	363	25.6	29.3	28 4	17 3	33.0	15.6	30 8	54.9
42	Light crown cover	6.0	3.7	2 2	26	60	1.5	3.6	30	1.6	6.5	3.7	
Π	WATER	11111	11111	111111	<u> //////</u>	//////	111111	<u>//////</u>	//////	/////	11////	11111	//////
52	Lakes			0.1	0 1								
53	Reservoirs		<u> </u>	0.2	0 1					0.4			
5.4	Bays and estuaries	-											
1111	WETLANDS	//////	11111	111111	111111	111111	11111	11111	111111	111111	111111	11111	1/////
61	Vegetated												
VIII	BARREN LAND	11111	111111	11111	11111	11.11.1	11111	11111	111111	11111	111111	11111	11111
75	"Other"				{								

Table 4. -- Level II land-use classifications, in percent, for selected basins in Delaware, eastern Maryland and Virginia (Based on high-altitude photography). -- Continued.

٠

Category Number	Level II Category Description	Mattawoman Cr. nr Pomonkey, Md. #6580							1			-	-
1111	URBAN	111111	11111	11711	11111	117111	11111	11111	11111	$\pi\pi\pi$	/////	\overline{mn}	11/1/1
11	Residential	2.8											
12	Commercial	07											
. 13	Industrial									<u>.</u>			<u> </u>
14	Extractive	01											<u> </u>
15	Transportation	0 1											<u> </u>
16	Institutional	2.0											[
17	Strip or clustered	0.7											<u> </u>
18	Mixed	/ .	<u> </u>	<u> </u>							} _	<u>_</u>	} <u> </u>
19	Open or other	0.8											
$\Pi \Pi$	AGRICULIURE	<u> //////</u>	<u> </u>	<u>]]]]]]</u>	//////	<u></u>	<u> </u>	<u> </u>	1/////	<u>//////</u>	<u> //////</u>	<u>//////</u>	11111
21	Cropland & pasture	24.7									<u> </u>		<u> </u>
22	Orchards	<u> </u>		<u> </u>	l		. <u> </u>		ļ				
23	Feeding operations	<u> </u>							·	[[
24	Other	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>			1 		
$\mu\mu$	FORESTLAND	<u> /////</u>	11111	11/1/1	11111	11111	11111	11111	1/////	11111	11111	//////	11////
41	Heavy crown cover	67.0			L	ļ			<u> </u>	 	<u> </u>	 }	ļ
42	Light crown cover	1.0		<u> </u>	Į								<u></u>
μ	WATLR	$\mu\mu\mu$	<u>//////</u>	<u> /////</u>	<u> //////</u>		111111	<u>//////</u>	1/////	11111		//////	11111
52	Lakes	<u> </u> .		<u>.</u>	<u> </u>	;	<u></u>		<u> </u>	<u> </u>		·	<u> </u>
53	Reservoirs	0.1		ļ	 	·		{		<u> </u>	Į	ļ	<u> </u>
54	Bays and estuaries					<u></u>			<u> </u>		<u> </u>	<u> </u>	1 · · · · · · · · · ·
μ <u>μ</u>	WETLANDS .	<u> </u>	<u>1/////</u>	<u> //////</u>	<u> /////</u>	<u> /////</u>	<u> /////</u>	11111		11111	11111	11111	11111
61	Vegetated	<u></u>	+	ļ	Į		<u> </u>	<u> </u>		<u> </u>	1		<u> </u>
111	BARREN LAND	<u> 11111</u>	$\mu\mu\mu$	$\mu\mu\mu$	$\mu\mu\mu$	11111		11111	<u> /////</u>	<u>µIII</u>	μm	<u>шп</u>	$\mu \mu \mu$
75	"Other"	<u> </u>	1	<u> </u>	<u> </u>		1	L		L	l	L	<u> </u>

Table 4. -- Level II land-use classifications, in percent, for selected basins in Delaware, eastern Maryland and Virginia (Based on high-altitude photography). -- Continued.

For example, at Shellpot Creek (station No. 01477800), 84.9 percent of the basin is characterized by the Level I, URBAN category (table 3). This value was obtained by adding the various Level II categories listed under the generalized URBAN classification in table 4. Thus, the 84.9 percent URBAN Level I classification shown in table 3 for Shellpot Creek is equal to the sum of the following Level II URBAN categories listed in table 4:

Category and n	umber		Percent
Residential	(11)		69 .8
Commercia1	(12)		2.9
Transportation	(15)		1.5
Institutional	(16)		5.4
Mixed	(18)	***	0.7
Open or other	(19)		4.6
		TOTAL	84.9

Similarly, the Level I FOREST category for Shellpot Creek (11.0 percent) in table 3 was obtained by adding Level II forest heavy crown cover (10.1 percent) and light crown cover (0.9 percent) in table 4. Because only single Level II categories, cropland and pasture, and reservoirs correspond to the general Level I category of AGRICULTURE and WATER respectively, identical values are shown at corresponding category levels for Shellpot Creek (tables 3 and 4).

Based on high-altitude photographs, the highest measured percentage (93.9) Level I URBAN designation was at Little Falls Branch near Bethesda (table 3). By way of contrast, no urban development was detected in the high-altitude photographs of 11 Delmarva Peninsula basins. Agricultural usage ranged from zero at Little Falls Branch to 96.2 percent at Morgan Creek near Kennedyville. Forest cover ranged from 3.8 percent at Morgan Creek to 81.1 percent at St. Leonard Creek near St. Leonard. With

ORIGINAL PAGE IS OF POOR QUALITY

the exception of Rhode River near Galesville, water areas identified in the 1:100,000 scale land-use maps amounted to less than 1 percent of the total drainage area of all basins. The Rhode River watershed is the only basin without a stream-gaging station as its downstream reference point. Land use given in tables 3 and 4 for the Rhode River catchment is for the entire basin above its confluence with West River. The high percentage (12.2) of the basin in the WATER category results from the largely estuarine lower part of the watershed. Wetlands were detected in four of the basins while only two basins had land use corresponding to the Level I BARREN category.

Land Use Based on Landsat-1 Imagery

The significantly lower resolution of Landsat imagery relative to high-altitude photography precludes its use as a data source for all Level II land-use categories. As previously noted, however, satellite imagery was used as the source base for preparing highly generalized Level I land-use maps at a scale of 1:250,000. The basic problem with Landsat imagery as used in this project is that its spectral and tonal signatures cannot always be consistently matched with categories in land-use classification schemes, especially where land parcels are small and categories are intermixed (Alexander, 1975, written communication). CARETS interpreters experienced particular difficulty in accurately mapping urban and built-up land in non-metropolitan areas using Landsat imagery (K. Fitzpatrick, 1976, oral communication).

Level I land use for 46 selected basins using satellite imagery as the primary source of land-cover information is shown in table 5. In general, these data are within 10 to 15 percent (by category) of the more accurate Level I land-use values based on high-altitude photography given in table 3. K. Fitzpatrick (written communication, 1975) reports that Level I land-use maps, when mapped from high-altitude photography were 7 percent more accurate for the entire CARETS area than the much less expensive Level I satellite-based land-use maps. However, accuracy differences greater than 7 percent between high-altitude and satellite sensors occur in table 5 owing partially to the small size of some of the basins selected for land-use analysis. Thus, in addition to errors stemming from lower resolution and problems with spectral-signature discrimination, errors inherent in accurately positioning such small basins on 1:250,000 scale land-use maps introduced additional variance, thereby further amplifying accuracy losses. Despite additional errors due to basin size, category differences in excess of 20 percent between Level I data based on high-altitude photography (table 3), and that based on satellite imagery (table 5) were detected in just eight basins.

As anticipated, the largest discrepancies when comparing high-altitude with satellite sensor derived Level I categories generally occurred in suburban areas. Interpreters encountered difficulty segregating urban areas from surrounding non-urban land use in satellite imagery. For example, extensive urban areas in the N.W. Branch Anacostia River basin near Colesville, just north of Washington, D.C., were incorrectly interpreted as agricultural land in Landsat-1 imagery; accordingly, a high proportion of the basin (71 percent) was placed in the AGRICULTURE

Table 5.	Level I I	land-use	classificat	tions, in	percent,	for
	selected	basıns ı	n Delaware.	eastern	Maryland	and
	Virginia	(Based	on Landsat	ımagery)		

Index		LEVEL I Categories								
(f1g.2)	STATION NAME	URBAN	AGRICUL- TURE	FOREST	WATER	WETLAND				
4778	Shellpot Creek at Wilmington, Del.*	86	0	14	0	0				
4780	Christiana River at Coochs Bridge, Del.*	12	56	30	2	0				
4785	White Clay Creek above Newark, Del.*	O	80	20	0	0				
4832	Blackbird Creek at Blackbird, Del.*	0	51	49	o	0				
4835	Leipsic River near Cheswold, Del.*	0	91	9	0	0				
4843	Soubridge Branch near Milton, Del.*	o	52	48	0	o				
4845	Stockley Branch at Stockley, Del.*	1	61	38	0	0				
4850	Pocomoke River near Wıllards, Md.*	0	43	56	0	1				
4855	Nassawango Creek near Snow Hill, Md.*	2	26	72	0	0				
4860	Manokin Br. near Princess Ann, Md.*	0	30	70	0	0				
4865	Beaverdam Creek near Salısbury, Md.*	4	51	45	0	0				
4870	Nanticoke River near Bridgeville Del.*	0	54	45	1	о				

Table 5.	 Level	I	land-use	classifications	based	on	Landsat	ımagery,	ın	percent	 Continued.

Index			LEVEL I	Categories		
No. $(fig. 2)$	STATION NAME	URBAN	AGRICU- TURE	FOREST	WATER	WETLAND
4875	Trap Pond Outlet near Laurel, Del.*	0	28	72	0	0
4885	Marshy Hope Cr. near Adamsville, Del.*	4	56	40	0	0
4890	Faulkner Branch at Federalsburg, Md.*	0	71	29	0	0
4900	Chicamacomico River near Salem, Md.*	0	47	53	0	0
4910	Choptank River near Greensboro, Md.*	1	55	44	o	0
4920	Beaverdam Branch at Matthews, Md.*	0	93	7	0	0
4925	Sallıe Harrıs Cr. near Carmıchael, Md.*	0	69	31	0	ο
4930	Unicorn Branch near Millington, Md.*	0	74*	26	o	0
4935	Morgan Creek near Kennedyville, Md.*	0	97	• 3	0	0
4940	Southeast Cr. at Church Hill, Md.*	0	71	29	0	0
4950	Big Elk Creek at Elk Mills, Md.*	0	80	20	0	0
4955	Little Elk Cr. at Childs, Md.*	0	62	38	0	0
4960	Northeast Creek nr. Leslie, Md.*	0	71	29	0	0
5790	Basın Run at Liberty Grove, Md.*	0	100	0	0	0
5860	North Branch Patapsco River at Cedarhurst, Md.*	2	81	17	0	0
5893	Gwynns Falls at Villa Nova, Md.*	45	25	30	0	0

•

Index No.		LEVEL I Categories					
(fig. 2)	STATION NAME	URBAN	AGRICU- TURE	FOREST	WATER	NETLAND	
5900	North River near Annapolis, Md.*	5	13	82	o	0	
5910	Patuxent River near Unity, Md.*	0	65	35	o	0	
5945	Western Branch near Largo, Md.*	19	35	46	0	0	
5946	Cocktown Creek near Huntington, Md.*	0	58	42	O	0	
5948	St. Leonard Creek near St. Leonard, Md.*	0	6	94	٥	0	
6452	Natts Branch at Rockville, Md.*	61	24	15	o	0	
6462	Scott Run near McLean, Va.	65	0	35	O	0	
64655	Little Falls Branch near Bethesda, Md.*	94	0	6	σ	0	
64 80	Rock Creek at Sherrill Drive, Washington, D.C. [*]	49	34	16	l	0	
6495	N. E. Br. Anacostia River at Rıverdale,Md	55	13	32	O	0	
6505	N.W. Br. Anacostia Rıver near Colesville Md.*	6	71	23	o	ο	
65261	Holmes Run near Annandale, Va.	90	0	10	0	0	
6535	Henson Creek at Oxon Hill, Md.	85	0	15	o	0	
6539	Accotink Cr. near Fairfax, Va.	96	0	4	0	0	
6555	Cedar Run near Warrenton, Va.*	0	81	19	0	0	
6568	Cub Run near Chantilly, Va.	12	50	38	o	0	

Table 5. -- Level I land-use classifications based on Landsat imagery, in percent -- Continued.

Index		LEVEL I Categories							
No. (f1g. 2)	STATION NAME	URBAN	AGRICUL- TURE	FOREST	WATER	WETLAND			
6578	Giles Run near Woodbridge, Va.	49	0	51	0	D			
6580	Mattawoman Cr. near Pomonkey, Md.*	1	29	70	0	0			
	*Station used in regression analyses		, r						
			}						
			-						
		1			۱ ۱				

Table 5. -- Level I land-use classifications based on Landsat imagery, in percent -- Continued.

٠

ORIGINAL PAGE IS OF POOR QUALITY

.
category (table 5). Based on high-altitude photographs only 42 percent of the basin was agricultural and 26 percent was designated urban (table 3). Using land-use maps derived from satellite imagery only 6 percent of the basin was categorized as urban (table 5).

EXPERIMENT DESIGN

The approach used in evaluating remotely sensed land-use data as a means of improving streamflow estimates was based on (1) selecting as many stream-gaging stations from the basins listed in tables 3-5 as possible to perform a meaningful multiple-regression analysis, (2) applying the same basin and climatic characteristics utilized in the streamflow program analysis of the Maryland district of the U.S. Geological Survey (Forrest and Walker, 1970) to the study basins in order to develop regional equations needed to compute specific streamflow characteristics, (3) incorporating selected Level I and Level II land-use categories developed from both high-altitude and satellite sensors to define other sets of streamflow characteristic (control) equation developed using the basin characteristics available to the Maryland district of the U.S: Geological Survey with those generated by incorporation of remotely sensed land-use information.

STUDY BASINS

Records of 10 or more years are generally required to develop meaningful streamflow statistics. Streamflow records spanning at least 10 years were available for 39 of the 49 basins for which land-use information is presented (tables 3-5). These stations (table 2) formed the network of study basins selected for multiple-regression analysis. The study basins drain into the Chesapeake Bay, Delaware Bay and the Atlantic Ocean (fig. 2), and are situated in the Piedmont and Coastal Plain physiographic provinces. The boundary between these provinces trends northeast through the Washington-Baltimore-Wilmington urban corridor. The

> 29 ORIGINAL PAGE IS OF POOR QUALITY

Figure 2. -- Map showing drainage patterns and the location of gaging stations analyzed in this report.

تر به

Figure 2. -- Map showing drainage patterns and the location of gaging stations analyzed in this report.

Piedmont is characterized by rolling topography, low hills and ridges, and fairly steep side slopes. The Coastal Plain is low, flat, and poorly drained on the Delmarva Peninsula, but west of the Chesapeake Bay is more rolling with slightly improved drainage.

Average annual basinwide precipitation is quite uniform throughout the area with the lowest amount of 39.9 inches (1010 mm) reported at Cedar Run near Warrenton, Va. and the highest amount of 47.0 inches (1190 mm) at three Delmarva Peninsula basins (table A-1, col. 19). As previously noted, the study basins exhibit a wide variety of land cover ranging from primarily urban in the Washington, Baltimore, and Wilmington metropolitan areas, to extensively forested west of the Chesapeake Bay in the abandoned farm areas just beyond the limits of urban development, and to agricultural in much of the Delmarva Peninsula.

STREAMFLOW CHARACTERISTICS

The streamflow characteristics (dependent variable) used in the streamflow analysis of the Maryland district span the full range of discharge regimen observed at 105 gaging stations. These include measures of high and low flows, discharge variability, and long-term average monthly and annual streamflow. Forty streamflow characteristics, in cubic feet per second, evaluated using all or some of the 39 gaging stations in this report, are as follows:

- Q mean annual discharge, defined as the arithmetic average of the annual mean flows.
- q_n, mean monthly discharge, where the subscript refers to the numerical order of the month beginning with January as 1,

- SD_a standard deviations of the annual means,
- SD_n, standard deviations of the monthly means, where the subscript n refers to the numerical order of the month beginning with January as 1,
- P_T , annual flood peak discharge at T-year recurrence interval; recurrence intervals of 2, 5, 10, 25, and 50 years are denoted as P_2 , P_5 , P_{10} , P_{25} , and P_{50} , respectively.
- $V_{D,T,}$ flood volume characteristics are the annual highest average flow for 3-day periods at recurrence intervals of 2 and 25 years ($V_{3,2}$, $V_{3,25}$), and for 7-day periods at recurrence intervals of 2, 10, and 25 years ($V_{7,2}$, $V_{7,10}$, $V_{7,25}$),
- M_{D,T}, low-flow characteristics are the annual minimum 7-day average flows at recurrence intervals of 2, 10, and 20 years (M_{7,2}, M_{7,10}, M_{7,20}),
- D₅₀ discharge equaled or exceeded 50 percent of the time.

BASIN CHARACTERISTICS

Characteristics Based on Maps and Weather Records

Correlation studies performed on the Maryland district streamflow analysis incorporated 12 independent physiographic and climatic parameters into the multiple regression analysis as follows:

- A, drainage area, in square miles, as shown in the latest
 U.S. Geological Survey streamflow reports,
- S, main-channel slope, in feet per mile, computed by the l0- to 85-percent method (Benson, 1962),
- L, main-channel length, in miles, measured from gaging station to basin divide,
- E, mean basin elevation, in feet above mean sea level, measured from topographic maps by the grid method (Benson, 1962).

ORIGINAL PAGE IS OE POOR QUALITY

- L, main-channel length, in miles, measured from gaging station to basin divide,
- E, mean basin elevation, in feet above mean sea level, measured from topographic maps by the grid method (Martins, 1968),
- S_t, area of lakes, ponds, and swamps, in percent of total drainage area, determined by planimetering such areas on topographic maps,
- F, forest area, in percent of total drainage area, measured from topographic maps by the grid method,
- S₁, soil index, a measure of potential maximum infiltration capacity, in inches, estimated from data provided by the U.S. Soil Conservation Service,

Р**,**

- mean annual precipitation, in inches, determined from isoheytal maps prepared from National Weather Service records,
- ^I24,2, precipitation intensity, expected once every two years over 24-hour periods, in inches, estimated from U.S. Weather Bureau Technical Paper 29,
 - S_n, mean annual snowfall, in inches, from snowfall maps prepared from National Weather Service records,
 - T₁, average minimum January temperature, in degrees Fahrenheit, from National Weather Service records,
 - T₇, average minimum July temperature, in degrees Fahrenheit, from National Weather Service records.

Characteristics Based on High-Altitude Photograph

Land-use classifications based on high-altitude aerial photograph were tested as independent variables in the multiple regression analysis. These classifications, expressed in percent of total drainage area, are as follows: U_u, Level I urban or built-up land which comprise areas of intensive use with much of the land covered by structures, U_{a,} Levels I and II agricultural land consisting predominantly of croplands and pasture, U_{f.} Level I forested land, Level I and II water areas includes total area covered U_w. by lakes, reservoirs, streams, and estuaries, Level II, residential, consisting of housing ranging Ur, from high density (multiple-family units) to low density (houses on large lots), level II, industrial, consisting of land devoted to U_I, light to heavy manufacturing, Level II, other urban or built-up land consisting of U_o, parks, cemetaries, zoos, waste dumps, golf courses, and undeveloped land within an urban setting. U_{fl,} Level II, forest land, light crown cover (10 to 40 percent), and U_{fh,} Level II, forest land, heavy crown cover (40 percent

or greater).

Characteristics Based on Landsat Imagery

Land-use classifications based on Landsat-1 imagery were also tested as independent variables in the multiple regression analysis. These classifications, expressed in percent of total drainage area, are as follows:

- Z_u, Level I urban or built-up land which comprise areas of intensive use with much of the land covered by structures, Z_a, Level I agricultural land consisting predominantly of croplands and pasture, and
- Z_f, Level I forested land.

REGRESSION ANALYSIS

The multiple regression technique used defines the relation between a single streamflow characteristic (dependent variable) and an array of climatic, physiographic, and land-use characteristics (independent variables) for a selected network of stream-gaging stations. Only those independent variables that account for significant measures of variance in the streamflow characteristic under analysis are included in the regression equation. Those independent variables that had at least a 95-percent probability of effectiveness were deemed significant to the equation. An indication of accuracy provided by the equation relating a streamflow characteristic to significant basin characteristics is provided by the standard error of estimate. The standard error of estimate is a range of error such that the value estimated by the regression equation is within this range at about two out of three sites, and is within twice this range at about 19 out of 20 sites for the sample population.

Stepforward multiple regression analyses were performed by digital computer using STATPAC program D0094. The program eliminated doubtful dependent variable entries, added a small constant (0.0001) to those dependent variables which go to zero, and transformed all dependent variables and selected independent variables to their logarithms. The independent variable that accounts for most of the variance in the dependent variable was identified and entered into the regression equation. Then the next most effective variable was added to the equation. Because the significance of an independent variable in the equation changes with the addition of each new variable, all previously included variables were retested with the addition of a new variable, and any variable shown to be

ORIGINAL PAGE IS OF POOR QUALITY

no longer significant was deleted from the equation. The addition of variables accounting for a progressively smaller part of the variance in the dependent variable continues until the equation is not significantly improved by the inclusion of any additional variables. For each streamflow characteristic equation, the program provided the multiple correlation coefficient, percent of total sums of squares of the dependent variable that are explained by the regression, and the standard error of estimate of the dependent variable. Program D0094 also tabulated observed, computed, and residual values of all streamflow characteristics at each of the 39 gaging stations used in the analysis.

Observed, calculated, and measured values of all dependent and independent variables used in the Maryland district streamflow analysis were obtained from the Streamflow/Basin Characteristics retrieval program E796 and are listed for each station in table A-1 (cols. 1-7, 19-55, 57-66).

MULTIPLE REGRESSION MODEL

The model equation used in the multiple regression analyses is:

$$\log Y = b_{1} \log X_{1} + b_{2} \log X_{2} + \dots + b_{n} \log X_{n}$$

+ a + b_{n+1} X + b_{n+2} X + b_{n+2} + \dots + b_{m} X_{m}

or its equivalent form:

$$Y = X_1 \stackrel{b_1}{=} X_2 \stackrel{b_2}{=} \dots X_n \stackrel{b_n}{=} n_{10} \stackrel{[a + b_{n+1}]}{=} X_{n+1}$$

 $+ b_{n+2} \chi_{n+2} \dots + b_{m} \chi_{m}$],

where

Y = a streamflow characteristic X₁ to X_m = basin characteristics a = regression constant, and b₁ to b_m = regression coefficients. In this analysis, X_1 through X_n were logarithmically transformed whereas X_{n+1} through X_m were not transformed prior to calculations. Independent variables which tend to vary widely, such as (A) drainage area and (L) main channel length, were log (base 10) transformed, whereas those subject to relatively small variations were used directly. In addition to drainage area and main channel length, (S) main channel slope and (E) mean basin elevation were log transformed. All other basin characteristics were relatively stable and were used directly in the model equation. The model equation was applied uniformly for the development of control and experimental equations without comparing its effectiveness as a predictive tool with models wherein all variables are logarithmically transformed. Rather, simple comparative tests were performed to evaluate the usefulness of remotely sensed land-use data in improving estimates of individual streamflow characteristics.

Specifically, the model was applied to 39 gaged basins in the CARETS region where land-use maps based on high-altitude photography and satellite imagery are available. A control set of equations was developed using the same basin characteristics that Forrest and Walker (1970) incorporated into their evaluation of the Maryland district streamflow program. The regression model was then applied successively to each of three experiments where additional land-use data were incorporated as follows:

> ORIGINAL PAGE IS OF POOR QUALITY

- four level I land-use categories derived from high-altitude photography,
- (2) six individual and combined Level II land-use categories derived from high-altitude photography, and,
- (3) three Level I land-use categories derived from Landsat-I imagery.

Comparisons were then made between the control equations for individual streamflow characteristics and those developed for each of the above experiments to determine whether significant improvement in the standard error of estimate had resulted in any of the 40 streamflow-characteristic equations. Changes of 10 or more percent in the standard errors of estimates between the control and experimental equations were arbitrarily deemed significant.

The remotely sensed land-use categories selected for analysis depended on frequency of occurrence and percent basinwide coverage of each category, and category accuracy relative to map derived land-use data. For example, only four of six possible Level I land-use categories based on high-altitude photography were tested in experiment 1. The Level I categories of wetlands and barren land were not used because of the 39 basins in the regression analysis, wetlands were detected in only three basins and barren lands in just two basins (table 3). Moreover, with the exception of the Rhode River basin which was not used in the regression analysis, the portion of either category (wetlands or barren land) relative to total area in any of the basins was less than one percent (table 3). Map derived percentages of areas

covered by lakes, ponds, and streams were used in experiment 3 rather than remotely sensed water data based on satellite imagery. Resolution problems as well as spectral and tonal signature degradation precluded accurate detection of the small water bodies found in most of the test basins.

REGRESSION EQUATIONS

Tables 6-9 summarize the results of the multiple regression analyses. The first column of each table indicates streamflow characteristic (Y) coded in accordance with the scheme developed on p. 3]. The last column lists the regression constant (a) corresponding to a particular streamflow characteristic. Regression coefficients (b;) for those independent variables found to be significant at the 95-percent level are listed in the intervening columns. Not all 39 stations in the test network were used in defining each of the regression equations shown in tables 6-9. Owing to varying periods of operation and special purpose gages, sufficient data to define streamflow frequency relationships for all 40 characteristics was not available at all gaging stations. For example, two of the gages were designed to measure floods (crest-gage stations) and were used only in the flood-peak computations. The number of stations used to develop each streamflow characteristic equation is as follows:

> ORIGINAL PAGE IS OF POOR QUALITY

Streamflow Characteristic	No. of stations
P ₂ , P ₅ , P ₁₀ , P ₂₅	39
Q _A , Q ₁₋₁₂ , SDA, SD ₁₋₁₂	37
M _{7,2} , V _{7,2} , V _{7,10}	34
^M 7,10	33
^M 7,20	32
D ₅₀	29
V _{3,2}	26
V _{7,25}	25
V _{3,25}	24
P ₅₀	15

The regression analysis results incorporating physiographic and climatic basin characteristics identical to those used in the Maryland district analysis are listed in table 6. These are the control equations with which equations using remotely sensed land-use information were compared. Tables 7 and 8 present equations based on the inclusion of four Level I and six Level II land-use categories, respectively. These categories were based on land-use maps using high-altitude photographs as the primary information source. Level I land-use data based on Landsat-1 imagery at three category levels were also analyzed and the results are listed in table 9.

				Expone	nt or coe.	fficient o	f basin c	haracteri.	stic		· · · · · · · · · · · · · · · · · · ·		
flow cnaract- eristics Y	Prainage àrea A	Main channel slope S	Main channol length L	Mean basin clevation E	Storage S _t	Forest, cover	Soil index Sa	Hean annual precip F	Precip. intensity I/24,2)	Showfall S _n	Januarv minimum temp T	July maximum temp T ₇	Regross- ior constant a
Qa	1.006						0.120		0.108				770
9 ₁	1.027						.140	0.019)				-1.228
9 ₂	1.029						.096	.017.					- ,918
٩ ₃	1.022					.0017	.159						358
9 ₄	1.006						.112		.161				- 703
۹ ₅	,959								.173	0.013			752
9 ₆	.986												115
9 ₇	.882							ł		.027			584
⁹ 8	1.022				,								094
9 9	.887						•			.021			507
^q 10	.987	1											287
9 ₁₁	.994												084
9 ₁₂	1.038						.168	į	j				619

Table 6. -- Control equations obtained by regressing streamflow characteristics against physiographic and climatic basin parameters obtained from climatologic data and USGS topographic maps.

····				Expone	nt or coe	fficient	of basin (haracter	stic	·]
Flow charact- eristics Y	Drainage area A	Hain channel slop o S	Main channel length L	Mean basin clevation E	Storage S _t	Forest, cover	Soil index Sz	Mean annual precip. P	Precip. intensity I(24,2)	Snowfall S _n	January minimum temp. Th	July maximum tomp. Ty	Regross- ion constant a
SDa	1.022						.217						-1.226
SDI	,1.074						.194						901
^{SD} 2	1.087									-,023			.200
SD3	1.037							.032		-, 015			-1.278
SD4	1.018							.021			ľ		-1.076
SD 5	1.015	· · ·								-			223
SD ₆	1.039												400
SD7	.935					~.0055		-					020
50 ₈	1.080								-)	093
SD ₉	.858				•					•	•••	.092	-8.054
SD ₁₀	.947			, ,	.027	.0043	258						.283
SD ₁₁	1.031		•	••••		-	•	•					313
SD ₁	1.087		t				•	•					316

Table 6. -- Control equations obtained by regressing streamflow characteristics against physiographic and climatic basin parameters obtained from climatologic data and USGS topographic maps --- Continued.

Table 6. --- Control equations obtained by regressing streamflow characteristics against physiographic and climatic basin parameters obtained from climatologic data and USGS topographic maps --- Continued.

model 18	1=14	<u>5</u> L	E	10	·····								-
				Ехропе	nt or coe	fficient o	of basin (characteri	stic				
Flow charact- wristics Y	Orainage area A	Main channel slope S	Nain channel length L	Aran basin elevation E	Storage S _t	Forest, cover	Soil index Sz	Mcan annuál procip P	Precip intensity I(14,2)	Snowfall S _n	January minimum temp Tj	July maxiaum temp T7	Regross- ion constant a
^P 2	1.067	0.770				0089				- ,023			1.312
P ₅	1.017	.783				0093			1	029		1	1.712
^P 10	.942	.756				0094				029		0.085	-5.384
P ₂₅	.785	.640		}		0069						[-5.846
P50	.774							213					11.771
v _{3,2}	1.067							}					.831
V3,25	1,025												1.270
v _{7,2}	1.045			ł									.662
V _{7,10}	1.022			{	-								.953
V _{7,25}	1.025												1.037
^M 7,2	.936												937
^M 7,10			3.265	}									-3.590
^M 7,20	2.530												-4.169
D ₅₀	1.014						.276						-1.178

Model 18 Y=A bisbi Lbs Ebt 10 (a+bs SE + bo F+ br Sa + bo P+ bo I + bro Sn + br Ti + bro Tr)

0

Model is	Y = 1	96'562	L ⁶³ E ^{6.}	*10 (a+	bs S_+ E	bcP+br	I+68S	n + bg T,	+ 610 1	T7 + b11	Uu + bie	: Ua + E	13 Uf + bus Uw)
				Ex	ponent or co	efficient of	basin cnarac	teristic					1
Flow								· · · · · ·		Level I a	ategories		Regress-
charact-	area	channel	channel	basin	index	annual	intensity	200%2311	Urban	ture	Forest	Mater	101
Y	٨	510pe S	length L	elevation E	s _i	precip. P	1 (24,2)	s _n	۲ ئا _ل	Ua	υ _Γ	U w	2
Q _a	1.014			}	0.147		0.171				0015	,	-1.033
^q 1	1.027				.140	0.019					•		-1.228
۹ ₂	1.029				.096	.017				{ }		}	918
q ₃	1.017				.137						.0017		272
۹ ₄	1.017	ļ ,			,116		.181					0,133	875
q ₅	.959						.173	.013	1				752
q e	1.001						- 283'				0041	•	-,95~
9 ₇	.987		ļ		.199		.426				0092		-2.036
9 ₈	1.022												094
9 ⁹	.958						297			}	0059		-1.019
9 10	.987					1							287
9 ₁₁	1.013				.157		.270				0039		-1 444
912	1.038				.168		•]	619

Table 7. -- Experimental equations obtained by regressing streamflow characteristics against physiographic and climatic basin parameters and four level I land-use categories derived from climatologic data, USGS topographic maps, and high-altitude photographs.

Table 7. -- Experimental equations obtained by regressing streamlfow characteristics against physiographic and climatic basin parameters, and four level I land-use categories derived from climatologic data, USGS topographic maps, and high-altitude photographs -- Continued. b, b2, b3 - b4, 0 (a+b55a+bcP+b7I+bgSn+bqTi+b10T7+b10U+b12Ua+b13Uf+b14Uw).

. Model	Y =	A'S'	LEE	²⁴ /0 ^{(a)+}	05Jr + 1	068 + 0	7L +0g	Sn + Dq I	1 + 010	17+0,0	Jut Dizl	10+ D13	UFF BIAU
	[······································		Ex	ponent or co	efficient of	basın cnara	cteristic*					1
										Level I o	ategories		Regressa
charact-	prainage area	Main Channel	Hain channel	Hoan basın	Soil index	Mean annual	a July max	Snovfall	Urban	ture	Forest	Water	100
eristics Y	A	slope S	length L	elevation B	\$ <u>1</u>	precip. P	temp. T ₇	s _n	^ນ	Ug	Ů _Ŧ	U W	2
SDa	1.022				.217								-1.226
^{SD} 1	1.074				.194					}			901
SD2	1.087							023					. 200
SD3	1.037					.032		015					-1.278
SD4	1.044					.018						.156	-1.004
SD5	1.015												223
SDE	1.039							-					400
SD7	.914										0051		020
SD8	1.080												093
SD9	.858						.092			1			-8.054
^{SD} 10	1.047		•					017		0035			052
SD ₁₁	1,031												- ,313
SD12	1.087				~	[,				- ,316

ORIGINAL PAGE IS OF POOR QUALITY

-

Table 7. -- Experimental equations obtained by regressing streamflow characteristics against physiographic and climatic basin parameters, and four level I land use-categories derived from climatologic data, USCS topographic maps, and high-altitude photographs --Continued.

		<u> </u>		Ex	ponent or co	efficient of	basın cnarac	teristic*					1
				1			•			Level I c	ategories		1
flow charact- gristics	Brzinage zroz	Nain channol	Main channol	Mean basin	Soil index	Mean Annual	Precip. intensity	Snowfall	brban	Agricul- ture	Forest	Hater	ion constant
Y	A	S	L	E	s _i	procip.	I (Z+, 2)	s _n	Ъ _ц	Ua	U _f	ប _ណ	2
P2	0.694]		0.462					0.0032		0062		1.053
^P 5	.996	0.774	İ				287	029			0060	380	2.635
P10	.962	.759			ļ	ļ		029			0077	327	1.907
^P 25	.838	•634									0056		1.711
P ₅₀	.774					213							11.771
						ļ			Į	}			
^V 3,2	1.086			2 2 3					.0025				.761
^V 3,25	1.052			· ·	,				.0022	}			1.195
V _{7,2}	1.045]			1	ļ			.662
V7,10	1.022									ļ			.953
V _{7,25}	1.025										1		1.037
·						}]	
™7,2	1.081		ł	- 	1.152						~.018		-4.456
^M 7,10			3.625		•					ŀ			-3.590
^M 7,20	2.530			ļ		}				}			-4.169
^D 50	.989		<u> </u>				.284			0.0048		.285	-1.428

Model 15 Y = A 5 2 L 53 E 64 10 (a + bs Sx + bc P + by I + bs Sn + bg T, + b10 Ty + b11 Uu + b12 Ua + b13 Uf + b14 Uw)

*Although T₁ (January mean minimum temperature) was used in the regression analysis it was not significant; accordingly it was not listed in this table

	 	·	1	Exp	nent or	COELLCI	ent or o	asin cha	racteris	1	Level T	Leatedory			Regression
Flow charact- eristic	Drainage area	Main channel slope	Hain channel length	Hean basın elev.	Storagę	Soll index	Nean annual precip.	Precip. intens.	Snow- fall	Pasture G Crop- Iand	Resid- ential	Indus- trial	Forest heavy	Forest lignt	COISTERT
<u>Y</u>	A	S	L	E	St	s,	P	I (24,2)	Sr	Ua	υ _r	υ _I	^U fh	^U f1	2
Qa	1.014					0.154	1	0.180					0017		-1-057
۹ ₁	1.027	l				.140	0.019								-1.228
۹ ₂	1.029					.096	.017								918
٩٫	1.017					.131							.0018		- ,252
q	1.006		{			.161		.112							763 -
q	.959		1					.013	.173						- 752
9 ₆	.977		ļ	004	}	.385		.267					.132		-2,501
۹,	.987					010		.475					.236		-2.528
q	1.022				-										094
٩ ٩	.963					007	ļ	.378					.163		-1.846
- 9 ₁₀	.987						₽ 								287
. 9 ₁₁	.994				•		1								084
۹ ₁ ,	1.038		ł			.168]		:						619

Table 8.. -- Experimental equations obtained by regressing streamflow characteristics against physiographic and climatic parameters, and six level II land-use categories derived from climatologic data, USGS topographic maps, and high-altitude photographs Model is Y-Abisbar bar Dation (a+bsSe + bcSu + by P+ bo I+ bo Sn + bro T, + bro T, + bro Us +

47

.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Nocel 15	<u>)=H</u>) L E	10							-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ļ			Expo	onent or	coeffici	ent of b	asın cha	racteris	tic"					<u> </u>
Parane Main Main Main Main Main Main Parane Sofia Sofia Snow Parane Creat Storage Sofia Main Parane Channel Damain Main Parane Channel Damain Parane Creat Storage Sofia Parane Creat Storage Sofia Parane Creat Sofia Creat Sofia U E St P T Sn U U U Corest Forest Creat U U A S L E St P T Sn U U U Imain I	Flog	}	Mata]]			Level I	I categor:	les		Regression
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	eristic	Drainage area	hain channel slope	Main channel length	basin elev.	Storagę	Soil index	Mcan annual precip.	July Max. temp.	Snow- fall	Pasture & Crop- lard	Resid- ential	Urban otner	Forest heavy	Forest ligat	CORSTERE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	<u> </u>	S	L	E	S _t	Si	Р	T7	S _n	U ₃	υ _r υ	U o	ປ fh	^U £1	3
SD1 1.070 SD2 1.100 SD3 1.037 SD4 1.018 SD5 1.015 SD6 1.039 SD7 909 SD8 1.080 SD9 6858 SD1 1.088 SD1 1.015 SD2 1.018	SDa	1.034		1			.182			[1	- 014	-1 098
· S02 1.100 017 013 612 .200 S03 1.018 .032 015 015 612 .1278 S04 1.018 .039 .021 015 015 016 023 016 0045 022 0045 026 021 <td>۶D</td> <td>1.070</td> <td></td> <td></td> <td></td> <td></td> <td>.310</td> <td></td> <td></td> <td></td> <td></td> <td>.0024</td> <td></td> <td>[</td> <td></td> <td>-1.326</td>	۶D	1.070					.310					.0024		[-1.326
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	• 50 ₂	1.100						· ·	{	- 023			012	,		.200
S04 1 018 .021	SD3	1 037	ļ					.032		015						-1 278
SD5 1.015 SD6 1.039 SD7 909 SD8 1.080 SD9 .858 SD10 1.068 SD11 1.031 SD12 1.108	SD4	1 018			ſ			.021	[1		-1 0/6
SD ₆ 1.039 SD ₇ 909 SD ₈ 1.080 SD ₉ .858 SD ₁₀ 1.068 SD ₁₁ 1.031 SD ₁₂ 1.108	SD5	1.015				}							•			- 223
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	^{SD} 6	1.039														400
SD ₈ 1.080 SD ₉ .858 SD ₁₀ 1.068 SD ₁₁ 1.031 SD ₁₂ 1.108	^{S0} 7	909	l										ļ	0045		028
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	sd ₈	1.080														093
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SD ₉	.858				t l			092						ł i	-2 054
SD11 1.031 SD12 1.108	SDIO	1.068	-							017	0047	4]	- 026	.017
SD ₁₂ 1.108	SD11	1.031														313
	^{S0} 12	1.108												1	021	- 703
)]										
											1				}	

. Table 8. -- Experimental equations obtained by regressing streamflow characteristics against physiographic and climatic parameters, and six level II land-use categories derived from climatologic data, USGS topographic maps, and high-altitude protographs -- Continued

Valation V Abic bar bar bar (a+bsSe + bcSe + by P+ bs I+ by Sn + bio Ti + bir Ty + biz Ub + bis Ur + bis Uo + bic Ush + bir Ush + bir Ush)

ORIGINAL PAGE IS OF POOR QUALITY

	1			Expe	onent or	coeffici	ent of b	asin cha	racteris	t10*					<u>}</u>
		1	1 •			}		}			Level I	I categor.	.45		Regression
Flow charact- eristic	Drainage area	Main charnel slope	Hain channel length	Moan basın elev.	Storage	Soll index	Mean annual precip.	Pracip Inters	Snow- fall	Pasture 6 Crop- 1and	Resid- ential	Indus- trial	Forest neavy	Forest light	CUNSTA"T
<u> </u>	Α	s	L	E	s _t	s,	Р	I (24,2)	Sn	υ _a	^b r	UI	^b fh	U _{f1}	a
Р ₂	0 699			453]			*		.0042		- 0065		1.007
P 5	.999	.694	j	1					026			1	0089	i 1	1 732
P10	967	703				[1		026			ľ	0088	1	1.694
P 25	835	.631		1		· ·							- 005-	1	1.714
P 50	.774						213						1 1 1		11.771
V _{3,2}	1.094										.0033				753
^V 3,25	1.060					, 					.0029				1.186
۲,2	1.045						1								662
۷7,10	1.022												1		953
V _{7,25}	1.025														1.037
^M 7,2	.1.076					1.216				*			0198		-4.660
^M 7,10			3.265		1										-3 590
^N 7,20	2.530				}				ŕ						-4.169
D ₅₀	.990			•				. 259		0042					-1 280
													1]	

 Table 9, ~- Experimental equations obtained by regressing streamflow characteristics against physiographic and climatic parameters,

 i
 and six level II land-use categories derived from climatologic data, USGS topographic maps, and high-altitude photographis ~- Continued.

*Although T, (January mean minimum temperature) WAS .03ed in the regression analysis it was not significant, accordingly, it was not listed in this table.

Mode]	is $Y = A^{\dagger}$	bisbe Lbs	E 6410	(<i>a+bsS</i> *	t + b 6 5.	+ by P+ E	08 <i>∑+b</i> 9	Sn+bioT,	+ b 11 T7	+ biz Zun	<i>ь Ыз Z</i> а	+ 614 Zf).
				Ex	ponent or coe	efficient of	basın charac	teristic*	· · · ·			<u>_</u>
Flow	Drannage	Main	Main	S01]	Kean	Precip	Snówfall	Juiv	L	evel I Catego	mes	
eristic	area 5	channel slope	channel length	index	annual precip,	intensity		maximum témperature	Urpan	Agricul- ture	Forest	Regression constant
<u> </u>	A	s	L	s _i	Р	I (24,2)	s _n	т ₇	Zu	Za	Z _f	ā
, Q _a	1 058			,120		.108						- 770
, d ¹	1 027	1	}	.140	.019							-1 228
, q ₂	1.029		.	.096	.017							918
, q ³	1.044	[.138			008					- 105
٩4	1 006	1		112		.161					-	- 7E '
9 ₅	. 959					.173	.013					- 752
96	.986											- 115
9 ₇	.882			ĺ			.027					- ,584
, q ₈	1.022		1			4		•				094
٩ ₉	.887						021					- ,507
01 ⁹	. 987											- 287
۲۲ ^۹	.994											084
912	1.038		Ì	,168						,		619

Table 9. -- Experimental equations obtained by regressing streamflow characteristics against physiographic and climatic basin parameters, and three level I land-use categories derived from climatologic data, USGS topographic maps, and Landsat imagery.

*Although E (mean basin elevation), S. (storage), and T. (January mean minimum temperature) were used in the regression analysis, they were not significant and are not listed in this table.

	Nodel is	: Y=A	bisba b	3E ⁶⁴ 10	a+ bs St.	+ 66 Sz + 6	7 P+ b8 I	+ 69 Sn -	+ b10 T, + b	11 T+ t	nz Zut b	13 Za+2	514 Z¢).
					Exp	onent or coe	fficient of	basın charac	teristic*				
	Flow	Drainage	Малл	Main	S011	Mean	Precip.	Snowfall	July	L	evel I Catego	ries	
c e	haract- ristics	area	channel slope	channel length	index	annual precip,	intensity		maximum temperature	Urban	Agricul- ture	Forest	Regression constant
	Y	Α	s	L	s,	Р	I (24, Z)	s _n	ī ₇	Ž _u	Z _a	Zf	5
	SD,	1.022			,217								-1.226
	SD	1 074			,194								- 961
	SD ₂	1,087						- 023					.200
1	SD3	1.037				.032		015					-1 278
	SDą	1.018				.021 '							-1.076
	SD5	1,015											- 223
•	SD ₅	1.039	j										400
	SD7	.922				[- 0050	- 040
	SD ₈	1.080											- 093
	SD ₉	.858		ļ					,092				-8.054
	SD ₁₀	1,076			281			-,029					.994
	SD ₁₁	1.031			}								- 313
	^{SD} 12	1.087											316

Table 9. -- Experimental equations obtained by regressing streamflow characteristics against physiographic and climatic basin parameters, and three level I land-use categories derived from climatologic data, USGS topographic maps, and Landsat imagery -- Continued.

പ

ORIGINAL PAGE IS OF POOR QUALITY

				Exj	ponent or coe	fficient of	basin charac	teristic*	<u> </u>			
Flow	Drainage	Main	Main	Soil	Mean	Precip.	Snowfall	July	Le	evel I Catego	ries]
eristics	area	channel slope	channel length	Jodex	annual precip.	intensity		maximum temperature	Urcan	Agricul- ture	Forest	Regression constant
Y	Α	<u>s</u>	L		Р	I (24,2)	s _n	τ ₇	z _u	Za	z _f	a
P2	. 991	.746		}		397						2.022
₽ ₅	.918	.735				-,354	ł		}			2 211
P ₁₀	.853	.672			{						- 0036	1.403
P ₂₅	.793	. 658				(1			l l	0043	1 692
^P 50	774				213							11,771
V _{3,2}	1 054					1			.0021			.809
V3,25	1.089								.0024			1.236
V7.2	1 038								.0012			654
¥7,10	1.022							[.953
V _{7,25}	1.020						1		.0018			1 014
M7,2	.845	•		•			.070		015			-1.895
M7,10			3.265		1							-3,590
, ^M 7,20	2.639							ļ	019	1		-4.035
, D ₅₀	.998					.324	•			.0038		-1.506

Table 9. -- Experimental equations obtained by regressing streamflow characteristics against physiographic and climatic basin parameters, and three level I land-use categories derived from climatologic data, USGS topographic maps, and Landsat imagery -- Concluded. Model is $Y = A^{b_1} S^{b_2} L^{b_3} E^{-b_4} IO^{(a+b_5S_e+b_4S_e+b_7P+b_8I+b_9S_n+b_{10}T_1+b_{11}T_2+b_{12}Z_0+b_{13}Z_a+b_{14}Z_4)}$.

To illustrate the use of the regression equations, assume that the 2-year peak flow (P_2) is required for Shellpot Creek at Wilmington (fig. 2, index No. 4778) using (1) map and climate data (table 6), (2) added Level II land use based on high-altitude photography (table 8), or (3) added Level I land use from satellite imagery (table 9). The equations for (1) are:

from table 6: $P_2 = A^{1.067} S^{0.770} 10^{(1.312 - 0.0089F - 0.023S_n)}$ from table A1: $P_2 = 7.46^{1.067} 67.1^{0.770} 10^{[1.312 - 0.0089(19) - 0.023 (20)]}$ $P_2 = 8.535 (25.50) 10^{0.683}$ $P_2 = 1050 \text{ ft}^3/\text{s},$ (2) from table 8: $P_2 = A^{0.699} E^{0.453} 10^{(1.067 + 0.0042)} V_r - 0.0065 V_{\text{fh}})$ from table A1: $P_2 = 7.64^{0.699} 271^{0.453} 10^{[1.067 + 0.0042]} (69.8) - 0.0065 (10.1)]$ $P_2 = 4.143 (12.65) 10^{1.294}$ $P_2 = 1030 \text{ ft}^3/\text{s},$ and (3)

from table 9: $P_2 = A^{0.991} S^{0.745} 10 (2.022 - 0.397 I_{24,2})$

DRIGINAL PAGE IS OF POOR QUALITY

from table A1:

$$P_2 = 7.46^{0.991} 67.1^{0.746} 10^{[2.022 - 0.397 (3.3)]}$$

 $P_2 = 7.326 (23.05) 10^{0.712}$
 $P_2 = 870 \text{ ft}^3/\text{s}$

Each of these 2-year peak flow estimates at Shellpot Creek, based on regression analyses, is below the 1,200 ft³/s computed from actual station records (table Al, col. 24). Part of the variation between predicted and recorded discharge is due to chance. However, Shellpot Creek drains a highly urban area and is subject to flash flooding owing to the impervious nature of its basin. Because the regression analysis is based on rural as well as urban streams, fairly sizeable discrepancies in the 2-year recurrence flood between actual and estimated values were anticipated at the station.

ACCURACY COMPARISONS

Tables 10-12 identify the significant independent variables in both the control and experimental equation arrays as well as the standard error of each equation in logarithmic units and approximate equivalent percentage. The percentages represent arithmetic averages of the plus and minus percent of the mean, calculated using the standard error in log units. Thus, an average standard error of 18.5 percent, corresponding to 0.08 log units, represents a range of 20.2 percent on the plus (high) side and 16.8 on the minus (low) side of the streamflow characteristic mean (Hardison, 1969). The last two columns show the percent change in the standard error resulting from inclusion of land-use information in the analysis. Changes of 10 or more percent in the standard error of estimate are considered to be significant. Plus percent changes are indicative of improved accuracy whereas minus changes represent a loss of accuracy. Percent change values are given for all streamflow characteristics except the three 7-day low-flow categories. Less than 50 percent of the variance in each of these categories was explained by any of the 7-day low-flow regression equations. This strongly suggests that other unidentified independent variables should have been included in the regression analyses. Accordingly, conclusions regarding relative accuracy improvements were not made for any of the low-flow categories.

Experiment 1

In the first experimental array of regression equations, four of six possible Level I land-use classifications derived from high-altitude photographs were tested; namely, FORESTLAND (U_f) , AGRICULTURAL (U_a) , URBAN AND BUILTUP (U_u) , and WATER (U_w) . As previously noted, the remaining two Level I categories,

ORIGINAL PAGE IS OF POOR QUALITY.

Flow	, Significant		Standard e		Percent				
charact- eristics		,	in log	units	in per	in percent			nge
¥	Control equations	Experimental equations	Control	Exper.	Control	Exper.		Plus	Minus
۵ _а	A; S _i ; I _{24,2} .	A; S ₁ ; I _{24,2} ; U _f	0.062	0.058	14.4	13.4		6.9	
qı	A; S ₁ ; P	A; S ₁ ; P	.061	.061	14.1	14.1		0	0
9 ²	A; S ₁ ; P	A; S ₁ ; P	.067	.067	15.5	15.5	1	C	0
93	A; S _i ; P	A; S ₁ ; U _f	.073	.073	16.9	16.9'		° 0	c
q ₄	A; S ₁ ; I _{24,2}	A; S1; I24,2; Uw	.072	.056	16.7	15.3		8.4	
95	A; S _n ; I _{24,2}	A; S _n ; I _{24,2}	.095	-095	22.0	22.0		0	0
96	A	A; I _{24,2} ; Ur	.133	.114	31.1	26.6		14.5	
97	A; S _n	A; S1; I24,2; Uf	.182	.146	43.1	34.2		20.6	
. ^{d8}	A '	A	.120	.120	28.0	28.0		0	0
9 9.	A; S _n	A; I _{24,2} ; U _f	.143	.127	33.5	29.7		11.3	
: ^q 10	A	A	.139	.139	32.6	32.6		ð	0
9 ₁₁	A	A; S ₁ ; I _{24,2} ; U _f	.117	.097	27.3 .	22.5		17.6	
9 ₁₂	A; S _i	A; S ₁	.081	.081	18.7	18.7		0	0

Table 10. -- Comparison of standard error of estimate changes resulting from inclusion in the regression analysis of four level I land-use categories derived from high-altitude photography.

Flow	Significant	L	Standard (Percent					
charact- eristics		•	in log	units		in percent			cha	inge
<u> </u>	Control equations	Experimental equations	Control	Exper.		Control	Exper.	ļ 	Plus	Minas
SDa	A, S _i	A, S _i	0.085	0.085		19.7	19.7		0	0
SD1	A, S _Í	A, S _i	.094	.094		21.8	21.8	İ	0	o
SD2	A, S _n	A, S _n	.107	.107	}	24.9	24.9		σ	2
sd3	A, S _n , P	A, S _n , P	.095	.095		22.0	22.0		0	2
SD4	A, P	A, P, U _N	.080	.074		18.5	17.1		7.6	
sp ₅	A	A	.115	,116		27.0	27.0		0	Ũ
SD6	Α.	A	.149	.149		35.0	35.0		0	6
SD7	A, F	A, U _f	.195	.197	ł	46.4	45.9	1	1	12
• SD8	A	A	.153	.153		35.9	35.9		0	c
SD ₉	А, Т ₇	A, T7	.155	.155		36.4	36.4		0	0
SD10	Α, S _t , F, S ₁	A, S _n , U _a	.152	.155		35.7	36.4		ĺ	2.2
SD ₁₁	A	A	.154 [·]	.154		36.2	36.2		C	c
SD ₁₂	A	A	.137	.337	 	32.1	32.1		0	c

Table 10. -- Comparison of standard error of estimate charges resulting from inclusion in the regression analysis of four level I land-use categories derived from high-altitude photography --Continued.

Flow	Significant		Standard e			Perc	ent ere			
charact-			in log units			in percert				
Y	Control equations	Experimental equations	Control	Exper.		Control	Exper.		Plus	Mirus
P2	A, F; S; S	A, E; U _f ; U _u	0.158	0.177		37.1	41.8		- •	12.7
Pe	A; F; S, S_	A; S, S _n , I _{24,2} ; U _f , U _y	.150	.145		35.2	34.0		3.4	1
- 7 Pao	A F S S . T	A. S: S. U.; U.	.147	.159		54.5	37-4			8.4
Par	A: F: S	A. S: U.	.158	.186		37.8	44.1			h6.7
P50	A; P	A; P	.259	.259		63.2	63.2		D	c
Vo. n	А	A; U ₁₁	.126	.107		29.4	24.9		15.3	
` 3, ∠ Vo.or	A	A. U	.146	.135		34.2	31.6		7.6	
*3,25 v	^	Δ	.089	.089		20.7	20.7		0	C
· 7,2	n.	Λ Δ	.103	.103		23.9	23.9		9	0
^v 7,10	A	A	.102	.102		23.7	23.7		0	0
M7.2	А	A; S ₁ ; U _f	.791	.690		No meani	i ngful equat	ions deriv;	eà	
M7 10	L '	L	1.394	1.394		No meani	ngful equat	ions deriv:	eā	1
M7.2	Α΄	A	1.509	1.509		No meani	ngful equat	ions deriv	ed	
D ₅₀	A; S ₁	A; I _{24,2} ; U _a ; U _w	.143	.106		33.5	24.6		26.6	

Table 10. --Comparison of standard error of estimate changes resulting from inclusion in the regression analysis of four level I land-use categories derived from high-altitude photography -- Continued.

Flow	Significant	predictive variables		Standard error		Per	Percent	
eristics			in log	units	in per	cent	cha	inge
Ŷ	Control equations	Experimental equations	Control	Exper.	Control	Exper.	Pl.s	Minus
î.	A, S ₁ ; I _{24,2}	A, S ₁ ; I _{24.2} ; U _{fn}	0.062	0.057	14.4	13.2	8.3	
91	A; S ₁ ; P	A; S ₁ , P	.061	.061	14.1	14.1.	0	Ø
Q.2	A; S ₁ ; P	A; S ₁ ; P	.067	.067	15.5	25.5	Ø	0
-2 93	- A; S1, F	A, S ₁ ; U _{fh}	.073	.072	16.9	16.7	1.2	1
94	A; S ₁ ; I _{24 2}	A; S ₁ ; I _{24,2}	.072	.072	16.7	16.7	` a	0
q	A; S_n ; $I_{24,2}$	A; S_n ; $I_{24,2}$.095	.095	22.0	22.0	0	0
9.6	A	A; E; S ₁ ; $I_{24,2}$; U_{fh}	.133	.100	31.1	23.2	25.4	
97	A; S _n	A; S1; I24,2; Urb	.182	.143	43.1	33.5 .	22.2	
98	A	A _	.120	.120	28.0	28.0	0	0
q _q .	A; S _n	A; S ₁ ; I _{24 2} ; U _{fb}	.143	.121	33.5	28.2	15.8	
910	A	A	.139	.139	32.6	32.6	0	Ð
911 911	A	. А	.117	.117	27.3 .	27.3	0	o
** و 19	A; S;	A; S;	.081	.081	18.7	18.7	0	o

Table	11.	 Comparison	of	standard	error es	timate	changes	resulting	from	inclusion f	n the	regression	analysis of
		six level]	I I.	land use o	ategorie	s deriv	ved from	high-altit	tude p	photography.			

$\frac{\text{SD}_{a}}{\text{SD}_{a}}$	Cons Experimental equations A, S ₁ , U _{fh}	in log f	Exper.	in per	cent	en	ange
Y Control equat:	Cons Experimental equations A, Si, Ufh	Control	Exper.	Control			-
SD _a A, S ₁	A, S _i , U _{fh}			001101	Exper.	Plus	Kinus
gn A g.		0.085	0.081	19.7	18.7	5.1	
501 A, 51	A, S ₁ , \overline{U}_{r}	.094	.089	21.8	20.7	5.5	
SD ₂ A, S _n	. A, S _n , U _o	.107	.102	24.9	23.7	4.8	
SD ₃ A, S _n , P	A, S _n , P	.095	.095	22.0	22.0	0	С
SD4 A, P	A, P	.080	.080	18.5	18.5	c	o
SD5 A	A	.116	.116	27.0	27.0	0	0
SD6 A	A	.149	.149	35.0	35.0	0	0
SD7 A, F	A, U _{fh}	.195	.199	45.4	47.4		2.2
· SD8 A	A	.153	.153	35.9	35.9	o	0
SD9 A, T7	A, T7	.155	.155	36.4	36.4	с	· 0
SD_{10} A, St, F, Si	A, S_n , U_a , U_{fl}	.152	.148	35.7	34.7	2.8	
SD ₁₁ A	A	·154`	.154	36.2 .	36.2	o	0
SD ₁₂ A	A, U _{ff}	.137	.131	32.1	30.6	4.7	

Table 11. -- Comparison of standard error estimate changes resulting from inclusion in the regression analysis of six level II land-use categories derived from high-altitude photography -- Continued.

Flow	Significant	predictive variables		Standard (error of es	stimate			Per	cent
eristics		•	in log	units	1	in per	cent		cha	nge
<u> </u>	Control equations	Experimental equations	Control	Exper.		Cortrol	Exper.		Plus	<i>wiruz</i>
P2	A; F; S; S _n	A; E, U _{fh} ; U _r	0.158	0.176		37.1	41.6			12.1
P5	A; P; S; S ₁₁	A; S, S _n , U _{fh}	.150	.165		35.2	38 8			10.2
Plo	A, F; S; S _i ; T ₇	A, S; S _n , U _{fh}	.147	.174		34.5	41.1	•		19.1
P25	A; F; S	A, S; U _{fh}	.158	.187		37.8	44.4			4.7.5
P50	А, Р	A, P .	. 259	.259		63.2	63.2		С	o
V3,2	A	A; U _r	.126	.106		29.4	24.6		15.3	
¥3,25	A	'A; U _r	.146	.135		34.2	31.6		7.6	
V7,2	A	A	.089	.089		20.7	20.7		0	o
V7,10	A	- A	.103	.103		23.9	23.9		o	o
V7,25	A	A [*]	.102	.102		23.7	23.7		o	G
M7,2	A	A; S ₁ ; U _{fh}	. 791	.685		No meani:	{ ngful equat	' ion derive	a	
M7,10	L .	L	1.394	1.394		No neani	ngfal equat	ion derive	ā	
M7,25	A	A	1.509	1.509		No meani:	No meaningful equation derived			
D ₅₀	A; S ₁	A; I _{24,2} ; U ₈	.143	.120		33.5	28.0		16.4	

Table 11. -- Comparison of standard error estimate changes resulting from inclusion in the regression analysis of six level II land-use categories derived from high-altitude photography -- Continued.

Flow	Significant		Standard	error of es		Percent				
eristics			in log i	units		in per	cent		eha	* E=
¥Y	Control equations	Experimental equations	Control	Exper.		Control	Exper.		Plus	/1m_2
Q _a	A, S ₁ ; I _{24,2}	A, S _i ; I _{24,2}	0.062	0.062		14.1	14 4		0	0
۹ı	A, S _i , P	λ, s ₁ , p	.061	.061		14 1	14.1		0	0
9 ₂	A, S ₁ , P	A, S _i , P	.067	.067	Í	15.5	15.5		0	J
٩3	A, 5_ =	A, S ₁ , S _n	.073	074	-	16.9	172			1.3
۹Ľ	A, S _i , I _{24,2}	A, S _i , I _{24,2}	.072	.072		16.7	16 7	l I	0	0
۹ ₅	A, S _n , Ī _{24,2}	A; s_{n} , $I_{24,2}$.095	. 095		22.0	22 O		o	0
⁹ 6	A	A	.133	.133		31.1	31.1)	;
q	A; S _n	A, s _n	.182	.182		431	43.1		0	0
9 ₈	A	A	.120	.120		28.0	28.0		o	0
۹ ^р	A; 5 n	A, S _n	.143	.143		33.5	33 5		0	0
9 ₁₀	A	À	.139	139		32.6	32.6		0	٥
u ۲	·A	Å	,711,	7נו.		27 3	273		0	0
9 ₁₂	A, 5	A, S _i	.081	.081	· ·	18.7	18.7	l	0	с

Table 12. --- Comparison of standard error of estimate changes resulting from inclusion in the regression analysis of three level I land-use categories derived from Landsat imagery.
Flon	Significant	predictive variables		Standard	error of e	estimate	·····		Fer	cent
eristics		1	in log	units	ı	in per	rcent		ena:	
<u> </u>	Control equations	Experimental equations	Control	Exper.		Control	Exper.		Flus	11111
SDa	a, s _i	A; S_	0.085	0.085		19.7	19 7		0	G
SD	a, s _i	A, S _i	. 094	.094		21.8	21.8		0	0
SD2	A; S _n	A, S _n	.107	.107	,	24.9	24, 9		0	c
^{SD} 3	* A, S _n ; P	A, S _n , P	.095	.095		22.0	22 0		0	0
SD4	A, P	A, P	.080	.080		18.5	18.5		0 -	0
SD5	A '	A	.116	.116		27.0	27 0	1	0	0
SD6	A	А	.149	.149		35.0	35.0		0	0
^{SD} 7	A, F	A, Z _f	.195	.190		46.4	45 1		2.8	
SD8	A	A	.153	153		35.9	. 35 9		0	0
^{SD} 9	А; Т ₇ ·	A, T ₇	.155	.155		36.4	36.4		0	0
SD10	A; S _t , F, S _i	A, S _i , S _n	.152	.157		35.7	369			34
SD ₁₁	A	A	.154	.154		36.2	36.2		Ó	0
SD ₁₂	A t	A	.137	.137		32.1	32 1		0	0

Table	12	Comparison of s categories deriv	tandard error o ved from Landsa	f estimate t imagery.	changes : Contin	resulting fro	m inclusion	in th	e regression	analysis (of three	level	I lard	d-use
-------	----	-------------------------------------	------------------------------------	--------------------------	---------------------	---------------	-------------	-------	--------------	------------	----------	-------	--------	-------

Flow	Significant	predictive variables		Standard	error of es	timate			Per	eent
eristics			in log	units		in per	cent		c1.3	.~.5e
<u> </u>	Control equations	Experimental equations	Control	Exper.		Control	Exper.		Plus	1r
P2	A, F, S, S _n	À; S, I _{24,2}	0.158	0.188		37.1	44.6			20.2
P ₅	A, F, S, S _n	A; S, I _{24,2} .	.150	,190		35 2	45.1			28 1
P ₁₀	A; F, S, S _n , T ₇ '	A, S, Z _r	•1 ⁴ 7	.198		34.5	47.1			36 5
P ₂₅	A, F, S	A; S, Z _r	.158	.191		37 8	45 է	•		20 7
P ₅₀	А, Р	, P	. 259	.259		63 2	63.2		0	0
v _{3,2}	A	A; ^z u , ·	.126	.109		29.4	25.4		13.6	
^V 3,25	A	A; Z _u	, .146	.128		34.2	29 9		12 6	
v _{7,2}	• A	A, Z _u	.089	.084	· ·	20.7	19.5		5.8	.
V _{7,10}	A	A	.103	.103		23 9	23.9		0	0
v _{7,25}	А	A, Z _u .	.102	. 087		23.7	20 2	ļ	14.8	
^N 7,2	, A	A, S _n , Z _u	.791	.651		No mean	lngful equati	ion aerived		
M7,10	`L	L	1.394	1.394		No mean	ingful equati	on deriveó		
¹¹ 7,25	A	A, Z _u	1.509	1.435		No mean:	ingful equati	ion derivea		
D ₅₀	A; S _i	Λ, I _{24,2} , Z _a	.143	119 ,		33.5	27 8		17.0	

Table 12. -- Comparison of standard error of estimate changes resulting from inclusion in the regression analysis of three level I land-use categories derived from Landsat imagery -- Continued

BARREN LAND and WETLAND, were identified in only five of the 39 basins used in the correlation network, and were not included in the regression analysis. Throughout the analyses, U_f was substituted for the USGS topographic map (scale 1:24,000) derived forest (F) category which was used in the control equations, and U_w was used in place of the USGS map derived storage (S_t) category also used in the control equations. No substitutions were required for U_a or U_u because neither category was available for use in the original (control) equations.

Results of the experiment are listed in table 10, which shows that 11 equations were improved (six significantly) and five equations sustained a loss of accuracy (two significantly). By far the most often used independent variable in the regression analysis was FORESTLAND (U_f) as indicated below:

Streamflow Characteristic	Number of	Number o	of times i /ariable (that indic	cated
Туре	equations	U _a	U _f	Uu	U W
High	10	0	4	3	2
Average	14	1	6	0	2
Low	3	0	1	0	0
Variability	13	I	1	0	1
All characteristics	40	2	12	3	5

Five of the six streamflow characteristic equations significantly improved by inclusion of Level I land-use information involved mean flow characteristics (q_6 , q_7 , q_9 , q_{11} and D_{50}) whereas one flood volume characteristic ($V_{3,2}$) equation was similarly improved. A significant accuracy loss was detected in two flood peak characteristics (P_2 , P_{25}). Examination of the four significant variables affecting the P_2 relationships

(table 10) in both the control and experimental equation arrays indicates the presence of three dissimilar variables. By way of contrast, the three significant variables governing the P_{25} flood characteristic were identified in both tests; however, F was used in the control set whereas U_f was used in the experimental set. Owing to the loss of accuracy due to the inclusion of U_f in the analysis, F (map derived) is the preferred independent variable for estimating 25-year flood peaks rather than U_f which was obtained from high-altitude aircraft photography.

Experiment 2

In this experiment six Level II categories were included in the regression analysis to evaluate the possible impact of more detailed land-use information on streamflow estimates. As in Experiment 1, Level II data were derived from high-altitude photographs of the CARETS region. Two forest categories were included to depict heavy crown cover (U_{fh}) and light crown cover (U_{fl}) . Categories denoting residential (U_r) , industrial $({\rm U}_{\rm I})$ and, open and other $({\rm U}_{\rm O})$ urban development were also incorporated in the analyses. The urban open and other (U_0) category consists of golf courses, some parks, cemeteries, and undeveloped land within an urban setting (Anderson and others, 1972). The last Level II classification used in the analysis was a combined cropland and pasture category (U_a) which essentially corresponded to the Level I agriculture category used in Experiment 1. Level II U was not substituted for S_t (map derived storage) in Experiment 2 because it appears that the S_t category, based on 1:24,000 scale maps, portrays surface-water area with an equivalent accuracy to that derived from high-altitude photographs.

Thirteen equations were improved (five significantly) and five were reduced in accuracy (four significantly) by the inclusion of Level II land-use data derived from high-altitude photography (table 11). The independent variable most often appearing in the test equations was $U_{\rm fh}$ whereas $U_{\rm I}$ never proved to be significant in any of the 40 equations as shown below:

Streamflow Characteristic	Number of	Numb	er of var	times iable	that for	indica red	ated
type	equations	Ua	U _{fh}	U _{fl}	U r	Uo	UI
High	10	0	4	0	3	0	0
Average	14	1	5	0	0	0	0
Low	3	0	1	0	0	0	0
Variability	13	1	1	3	1	1	0
All characteristics	40	2	11	3	4	1	0

Not surprisingly, the results of this test closely parallel those in Experiment 1 in that the streamflow characteristic equations significantly improved in Experiment 2 were identical to five of the six characteristics similarly improved in Experiment 1. Significant accuracy losses were sustained in four of the five flood peak characteristic equations as evidenced by large minus percent changes (10 to 19 percent) in the standard errors for these experimental equations. As in Experiment 1, more accurate flood estimates were generated in the control equations where F (map derived forest cover) appears as a stronger independent variable than either U_{fh} or U_{f1} (aircraft derived forest categories). The use of Level II aircraft derived land use generated a slight overall loss in accuracy in the equations when compared with the Level I categories

67

used in Experiment 1. Thus, the use of more detailed land-use discrimination provided by Level II was unwarranted in this particular streamgaging network.

The loss of accuracy in estimating flood peak discharges at all frequency intervals except the 50-year return period, where forest cover is relatively unimportant, is probably a function of how well the landuse information represents the selected streamflow study period. For example, flood flow records used in this analysis included all available gaging-station records through September 30, 1967. The maps available for determining forest cover (F) in the control equations were prepared predominantly during the late 1950's which approximates the median period of actual data collection at the gaging stations (table 2). Land-use maps which were derived from high-altitude photographs obtained in 1970 and 1972 reflect conditions beyond the streamflow analysis cutoff date. Because flood flows are highly dependent on forest cover, the values for this factor (F) used in the control equations were better suited as flood flow predictors than either the Level I (U_f) or Level II (U_{fh} and U_{fl}) aircr aircraft derived forest cover estimates obtained three to five years beyond the flood analysis cutoff date.

Experiment 3

Owing to a significant loss of land-use detail in Landsat imagery, only three of six possible Level I categories were tested in Experiment 3. These include agriculture (Z_a) , forestland (Z_f) , and urban and built-up (Z_u) . As in Experiment 2, S_t (map derived storage) was retained to reflect the percentage of each basin covered by lakes, ponds, and swamps. Level I forestland (Z_f) was substituted for map derived forest (F). Z_a and Z_u

represent land-use characteristics which were not considered in the control equations. Aside from the substitution of Z_f and the addition of Z_a and Z_u to the analysis, all other basin characteristics tested in Experiment 3 were identical with those used in the control equations.

Only six equations were improved (four significantly) and an identical number were reduced in accuracy (table 12). The independent variable appearing most often in the analyses was Z_u which was significant in a total of six low- and high-water equations as indicated below:

Streamflow Characteristic	Number of	Number 'o V	f times th ariable oc	nat indicated
type	equations	Za	Z _f	Zu
High	10	0	2	4
Average	14	1	0	0
Low	3	0	0	2
Variability	13	0	1	0
All characteristics	40	1	3	6

As in the high-altitude photography experiments, flood peak equations were adversely affected by inclusion of remotely sensed land-use information. Four of the five flood peak equations showed significant accuracy losses. Satellite forest cover, (Z_f) obtained principally in late 1972, was not as effective as map derived values (F) in portraying conditions representative of the flood flow data analyzed in this report. Moreover, additional difficulties in land-use discrimination in satellite imagery that were not encountered in high-altitude photography introduced further errors in evaluating Z_f . The combination of these and other error factors interacted to amplify flood-flow accuracy losses to a range of 20 to 36.5 percent (table 12).

ORIGINAL PAGE IS OF POOR QUALITY

Using a network of gaged basins in the Delmarva Peninsula, Hollyday (1976) found that 12 streamflow characteristics were significantly improved with the inclusion of Landsat derived land-use information. Hollyday extracted the following categories from satellite imagery for use in a multiple regression analysis (1) forest, (2) riparian (streambank) vegetation, (3) water, and (4) combined agricultural and urban land use. Only one accuracy loss (December mean discharge) was detected in his regression analysis of 20 gaging stations, all of which were included in this study.

SUMMARY AND CONCLUSIONS

Maps incorporating the CARETS land-use classification system were utilized to determine land cover in selected basins of Delaware, eastern Maryland and Virginia. Land-use maps based on high-altitude photographs were used to prepare Level I (generalized) and Level II (more detailed) classifications for 49 basins. Only Level I classifications could be defined on the 1:250,000 scale maps derived from Landsat-1 images. Land use varied from highly urbanized in many basins in the Washington-Baltimore-Wilmington corridor to heavily agricultural in the Delmarva Peninsula.

Using a network of gaging stations consisting of 39 of the 49 basins for which land cover was defined, it was demonstrated that land-use data derived from high-altitude aircraft photographs are effective in significantly improving streamflow estimates. Significant improvement in accuracy, defined as a 10 or greater percentage reduction in the standard error of estimate, was detected by comparing streamflow characteristic "control" equations with three experimental equation sets. The control equation set consisted of basin characteristics used in a

review of the streamflow program of the Maryland district of the U.S. Geological Survey. Land-use data based on high-altitude photographs and satellite imagery were used in the experimental equation sets. Comparisons of the experimental and control equations utilizing land-use information derived from high-altitude photographs showed significant improvement in six equations incorporating Level I data and in five equations where Level II categories were used. Only four equations showed significant improvement using land-use information derived from Landsat-1 imagery. The lower resolution of imagery relative to highaltitude photographs and difficulties in classifying certain spectral signatures tend to lower the effectiveness of satellite sensors as a means of providing detailed land-use information.

Of the wide range of streamflow characteristics tested, remotely sensed land-use data yielded losses in accuracy only in estimates of flood peaks. These losses in accuracy were probably due to land cover changes stemming from temporal differences among the three primary landuse data sources. For example, high-altitude photographs and satellite imagery were obtained primarily in 1970 and 1972, respectively, and streamflow records analyzed in this study terminated on September 30, 1967. Thus, remotely-sensed land-use data were not synchronous with the period of flood-flow analysis. By way of contrast, map derived land-use data incorporated in the control equations were obtained primarily in the late 1950's, which closely represent the median date associated with the streamflow records in this study.

> ORIGINAL PAGE IS OF POOR QUALITY

Because the ability to accurately transfer streamflow data from gaged to ungaged sites is increased by raising network efficiencies, the application of remotely sensed land-use information to improve streamflow network models is a potentially valuable analytical tool. However, the generally favorable improvement in the network model of the Maryland district of the U.S. Geological Survey following inclusion of land-use data based on high-altitude photographs and satellite imagery may or may not be exceeded in other parts of the Nation. Accordingly, it is recommended that experiments, similar to those used in this report be conducted wherever remotely sensed land-use data are currently available. This would permit the making of accurate assessments of the use of remotely sensed land-use information to improve streamflow network models under a wide range of physiographic, climatic, and geologic settings.

REFERENCES CITED

- Alexander, R. H., 1974, CARETS: an experimental regional information system using ERTS data: NASA Goddard Space Flight Center, Third Earth Resources Technology Satellite-1 Symposium, v. 1, sec. A, p. 505-522.
- Alexander, R. H., Fitzpatrick, K., Lins, Jr., H. F., and McGinty III, H. K., 1975, Land use and environmental assessment in the central Atlantic region, in Proceedings of the NASA Earth Resources Survey Symposium, v. I-C: Houston, NASA, p. 1683-1727.
- Anderson, J. R., Hardy, E. E., and Roach, J. T., 1972, A land-use classification system for use with remote-sensor data: U.S. Geol. Survey Circ. 671, 16 p.
- Benson, M. A., 1962, Factors influencing the occurrence of floods in a humid region of diverse terrain: U.S. Geol. Survey Water-Supply Paper 1580-B, 64 p.
- Benson, M. A., and Carter, R. W., 1973, A national study of the streamflow data-collection program: U.S. Geol. Survey Water-Supply Paper 2028, 44 p.
- Carter, R. W., and Davidian, Jacob, 1968, General procedure for gaging streams: U.S. Geol. Survey Techniques Water-Resources Inv. Book 3, Chap. A6, 13 p.
- Forest, W. E., and Walker, P. N., 1970, A proposed streamflow data program for Maryland and Delaware: U.S. Geol. Survey open-file rept., 55 p.
- Hardison, Clayton H., 1969, Accuracy of streamflow characteristics: U.S. Geol. Survey Prof. Paper 650-D, p. D210-D214.
- Hollyday, Este F., 1976, Improving estimates of streamflow characteristics by using Landsat-1 imagery: U.S. Geol. Survey Jour. Research, v. 4, no. 5, p. 517-531.
- Martens, L. A., 1968, Flood inundation and effects of urbanization in metropolitan Charlotte, North Carolina: U.S. Geol. Survey Water-Supply Paper 1591-C, 59 p.
- Thomas, D. M., and Benson, M. A., 1970, Generalization of streamflow characteristics: U.S. Geol. Survey Water-Supply Paper 1975, 55 p.

73

ORIGINAL PAGE IS OF POOR QUALITY

•••

APPENDIX

STATION No Summer	Col Ø	SLOPE	3 LENGTH	elev	STURAGE	G. FOREST		8 TIMETŐPK		T		0		
0147 7800	7.4600	67,1000	5.7060	270,9993	0.0190	19,0000	3.0000	0.0	a	0.0	в	0 .0	в	
1473000	20.5000	22.70.00	12,6000	198,9999	0.0700	19.0000	3.7000	0.0	Ā	0.0	R	0.0	B	
1478500	66,7000	18,4000	18.4000	379,9598	0.0730	19.0000	3.7000	0.0	Ă	0.0	B	0.0	8	
1483200	3.8500	15,8000	2.3600	64.0000	0.7000	43.0000	3.7040	0.0	Ā	0.0	8	0.0	8	
1483500	9.3500	10.4000	5.1000	61,0063,	0.0100	21.0300	3.7000	0.0	8	0.0	8	0.0	B	
1484300	7.08.10	7.8900	4.9000	38.0000	3.9530	54.0000	3, 7000	0.0	Å	0.0	Ř	0.0	Ř	
1484500	5,2400	4.8700	6.5000	46,0000	0.0430	51.0000	3.70.00	0.0	Ā	0.0	Ă	0.0	Ř	
1485000	A0.5000	1-4400	16.0000	44	15,8430	10.0000	3,7000	n. n	ą	5.0	a	0.0	Ř	
1485500	44,90.00	3.5600	13,1000	45-0000	n.2000	35,0000	3.70.00	0. 0	ă	0.0	ß	0.0	B	
1486000	5.8000	5.4704	4.2000	32.0000	a.c	57-0000	3.7000	0.0	ä	0.0	8	0.0	Ř	
1486500	19 5000	5 9600	9 5000	50 0000	2.3000	48 0000	3.7000	0.0	2	0.0	R	0.0	ě	
1437000	75 4000	2 2200	16 3000	50.0000	1 7030	40.0000	3 7000	0.0	é	0.0	a	0.0	Ä	
1497600	16 7000	5+2300 6 8300	7 5000	50.0000	1 4353	71	5 7 7 7 7 0	0.0	2	a a	5	0. <u>0</u>		
1407500	20+7000 26 8000	7.6200	11 0000	56.0000 E4 0000	0 2000	20 0000	3 7000	0.0	5	Å.Å	۵ ۵		9	
1480300	7 10.10	2.0000	L 5000	00000 000	3 474 1	74 0000	3 7000	0.0	6	0.0	5	0.0	-	
1407000	15 00.30	4 5200	2+2000	20 0000	0.4140	53.0000	3 7000	0.0	0	0.0	0	0.0		
1490000	112 0300	4.000	10.0000	28.0000	0.1000	30.0000	3.7000	0.0	2	0.0	0	0.0	6	$\circ \circ$
1491000	112.9999	3.0100	19.0000	50.0000	1-2020	33.0000	3.7000	0.0	0	0.0	D C	0.0	D	- F 7
1492000	5.8500	14.6000	4.1000	55.0000	0.0	26.0000	3.7000	0.0	5	0.0	в С	0.0	в	H
1492300	8.0900	8.8000	5.1000	59-0000	0.0	32.0000	3.2000	0.0	8	0.0	в	0.0		· 전 년
1493000	22.3000	6.0600	9.9000	61-0000	1.5400	43,0000	3.7000	0.0	в	0.0	8	0_0	в	<u> </u>
1493500	10.5000	9+1500	6.1000	60.0000	0+2000	8.0000	3.7000	0.0	ь В	0.0	<u>ម</u>	0.0	5	25
1494000	12.5000	20.6000	5.6000	61+3000	0.0083	24.0000	3.2000	0.0	8	0.0	8	0.0	8	ᅍᄕ
1495000	52.6000	17+9000	23.3000	397.9998	0.0535	14.0000	3.7000	G. 0	8	0.0	в	0.0	8	~ `
1495500	26.8000	23.7000	16,1000	358.9993	1.0650	23.0000	3.7030	0.0	8	0.0	в	0.0	в	<u>ଅ</u> ଟ
1579000	5+3100	38-0000	3.6000	347.9998	3-0770	Ta*0000	3,7000	0.0	В	0.0	в	0.0	в	- Y A
1586000	56.6000	23.9000	14.1000	746.9995	0.0720	36.0000	3.3000	0.0	9	0.0	8	0.0	B	- P. G
1589300	32.5000	21.0000	13,7000	553.9998	U.0470	33.0000	3,3000	0.0	8	0.0	В	0.0	8	
1590000	8.5900	18-1000	4.6000	111.99999	V.3010	70.0000	3.5000	0.0	8	0+0	B	0.0	8	``
1591000	34.8000	28.2000	12.5000	588.9998	0.0	26.0000	3.5000	0.0	а	0.0	8	0.0	8	
1594500	30.2000	7.4400	10.6000	147.0000	0.4800	47.0000	3.1000	0.0	Ð	0.0	8	0.0	В	
1594600	3+8500	22+8000	2.8000	105.9999	U. O	46.0000	3,5000	0.0	9	0.0	в	0.0	в	
1655500	13.0000	77.1000	4.8000	639.9995	0+0	33.0000	3.3000	0.0	8	0.0	6	0.0	B	
1645200	3.7000	59.5000	2.9000	373.9998	0.1480	26.0000	3.0400	0.0	9	0.0	8	0.0	В	
1658000	57.7000	10.5000	17.6000	182.9999	3.2090	59-0000	3.1000	0.0	6	0.0	в	0.0	8	
1653500	16.7000	22.9000	8.5000	225.9999	0.1880	45.0000	3.0700	0.0	5	0.0	6	0.0	8	
1646550	4.1000	63.2000	2.9000	304.9998	0.0	14.0000	3.0400	0.0	8	0.0	в	0.0	8	
1648000	62.2300	12.5000	24.5000	386.2998	0.0520	34.0000	3.0400	0.0	8	0.0	8	0.0	в	
71649500	72.8000	27.2000	15.7000	226.99999	1.5300	56.0000	3,0600	0.0	6	0.0	8	0.0	В	
11650500	21.1000	19.3000	3.1000	414,9998	0.0400	31.0009	3.0400	0.0	3	0.0	В	0.0	В	

Table Al.	Streamflow and	l basin	characteristics.of	stations	used	in	multiple	regression	analysis (
	(see explanati	on on y	p. 84).						

-

Table AL.	 Streamflow	and	basin	characteristics	of	stations	used	in	multiple	regression	analysis
	Continue	ed.									

STATION No STRATE	61 🕜		Ø		ß		Ø		0		ø		Ø		B		PRECIP	@ 124,2
P1477800	0.0	8	0+0	8	0.0	в	0.0	-1	0.0	ы	0.0	н	0.4	н	0.0	в	45.0000	3.3000
1478000	0.0	6	0.0	8	0.0	B	0.0	B	0.0	A	0.0		0.0	a.	0.0	Ā	45.0000	3.2000
1478500	0.0	н	0.0	B	0.0	B	0.0	B	0.0	н	0.0	н	0.0	á	0.0	ā	45.0000	3.2000
1483200	0.0	ь	0.0	R	0.0	8	C.0	ė	U.G	н	0.0	в	0.0	Å	0.0	ŝ	44.5000	3.2000
1483500	0.0	ź	0.0	в	0.0	8	0.0	ß	ū. 0	H	0.0	- -	0.0	ы	3.0	ā	1000.20	3.5000
1464300	0.0	14	0.0	н	0.0	8	0.0	đ	0.0	н	0.0	ы	0.0	Ē.	0.0	Ā	47.0500	3.7000
1484500	0.0		0.0	6	0.0	н	0.0	в	6.0	н	0.0	Б	G . 0	н	0.0	ē	47.0000	3.6960
1485000	0.0	ы	0.0	Ð	0.0	В	0.0	B	0.0	н	0.6	в	0.0	Ä	0.0	Ë	47.0330	3.4000
1485500	0.0	5	0.0	B	0.0	B	0.0	B	6.0	Ь	0.0	н.	0.ū	à	0.0	ā	47.0000	3.4300
1486000	0.0	а	0.0	в	0.0	в	0.0	Ĥ	0.6	н	0.0	ਜ਼	0.0	Â	0.0	a	46.0000	3.3000
1486500	0.0	в	0.0	в	0.0	н	0.0	ĥ	C.O	н	0.0	н	0.0	н.	0.0	B	96.0.00	3.4000
1487000	0.0	B	0.0	B	0.0	8	0.0	e	0.0		0.0	B	0.1	в	0.0	B	+5.5000	3.5000
1487500	0.0	в	0.0	R	0.0	я	6.0	ы	0.0	ы	0.0	H	0.0	Ē	0.0	Ř	46.5000	3.4000
1488500	0.0	ы	0.0	Ð	0.0	н	0.0	B	0.0	5	0.0	Б	0.0	Ř	0.0	ā	46.0000	3.5000
1489000	0.0	ь	0.0	ь	0.0	в	0.0	9	0.0	6	0.0	Б	0.0	Ř	0.0	5	45.0000	3.4000
1490300	0.0	в	0.0	я	0.0	в	0.0	Ð	0.0	Ĥ	0.0	н Н	6.0	à	0.0	ā	45.0000	3.5000
1491000	0.0	в	0.0	8	0.0	н	0.0	8	0.0	Ë.	0.0	в	0.0	Ă	0.0	ā	45.0000	3.5000
1492000	0.0	н	0.0	R	0.0	8	0.0	8	0.0	4	0.0	ā	0.0	A	0.0	B	44.5000	3.3000
1492500	0.0	Ũ	0.0	в	0.0	H	0.0	в	0.0	н	0.0	н	0.0	ä	0.0	ē	44.5000	3.4000
1493000	0.0	в	0.0	B	0.0	Â.	0.0	Ē	U.Ū	н	0.0	ā	0.0	Ř	0.0	ē	43.5000	3.2000
1493500	0.0	в	0.0	8	0.0	H	0.0	й	0.0	4	0.0	ē	0.0	ŝ	0.6	ă	43.0000	3.2000
1494000	0.0	6	0.0	A	0.0	Ð	0.0	р	0.0	н	0.0	Ĥ	0.0	2	0.0	š	64.5000	3.2000
1495000	0.0	в	0.0	н	0.0	R	0.0	p	0.0	н	0.0	н	6.0	a	0.0	a	Au. E130	3,5000
1495500	0.0	ь	0.0	8	0.0	в	0.0	4	6.0	h	0.0	н	6.0	R	0.0	a	44.5000	3.5000
1579000	0+0	8	0.0	В	0.0	ы	0.0	ਸ਼ੇ	0.0	ĥ	0.0	Б	0.0	A	0.0	Ř	43.0000	3.2000
1586000	0.0	н	0.0	н	0.0	ĥ	0.0	Ð	0.0	Ř	0.0	ม้	0.0	8	0.0	6	45.0000	3.4000
1589300	0.0	ત	0.0	н	0.0	н	0.0	8	0.0	н	G . O	ъ	0.0	â	0.0	Ä	44.5000	3,3000
1590000	0.0	ю	0.0	8	0.0	8	0.0	h	0.0	Ĥ	0.0	มี	0.0	A.	0.0	คั	43.5000	4.0000
1591000	0.0	н	0.0	R	0.0	н	0.0	н	0.0	н	0.0	Ĥ	0.0	в	0.0	Ř	42.5000	3.3000
1,594500	0.0	н	9.0	P)	0.0	н	0.0	B	÷ 0	н	0.0	й	0.0	я	0.0	Ä	44.0000	3.8000
1594600	0.0	R	0.0	н	0.0	B	0.0	H.	U . 0	ь	0.0	в	0.0	B	0.0	Ä	44.0570	3.9000
1655500	0.0	н	0.0	ß	0.0	Ĥ	0.0	н	0.0	5	0.0		0.0	Ä	0.0	ъ	1 39,5000	3,2500
1645200	0.0	H	0.0	в	0.0	B	0.0	н	0.0	н	0.0	H	0.0	มั	0.0	н	41.5000	3,2000
1656000	0.0	н	0.0	в	0.0	Ĥ	0 0	ь	υ.0	4	0.0	8	6.0	R	0.0	н	45.5000	3.7000
1653500	0.0	н	0.0	н -	0.0	н	0.0	н	0.0	н	0.0	н	0.0	R	0.0	Ä	43.5000	3.7000
1646550	0.0	н	0.0	в	0.0	8	0.0	ь	0.0	ĸ	0.0	8	0.0	Ä	0.0	Ř	44.0000	3.3000
1648000	0.0	ß	0.0	R	0.0	н	0.0	н	0.0	н	0.0	H	0.0	8	0.0	e.	43.5000	3,2600
1649500	0.0	в	0.0	A	0.0	6	0.0	н	0.0	ษ	0.0	H	0.0	Ř	0.0	ē	43.5000	3.7000
01650500	0.0	Ħ	0.0	н	0.0	H	0.0	В	0.0	Ĥ	0.0	В	0.0	8	0.0	8	43,5000	3.3000

. Table Al. -- Streamflow and basin characteristics of stations used in multiple regression analysis -- Continued.

,

,

STATION No	Col. (2) SNOFALL		JUL YMA X	Ø	ي ا	<u>نې</u>	Ø P25	B P50	() ()	SDA SDA
01477800	20.0000	25.5000	55.0000	1199.9993	2099.9990	2494,9968	4699.9961	0.0 A	9.0260	3.0160
11478000	24.0000	25.0000	46.5000	1404,9993	1740.9990	1971,9993	227+,9988	2508.9990	25.3000	7,6930
1478500	25.0000	25.0000	96.0000	2872.9985	3683 9985	4188,9961	0.b H	0.0 8	71+4100	26,1000
1483200	20.0000	26.0000	86.5700	103.9999	193.4994	274,9998	407.5998	530.9998	4.2020	1,9740
1483500	19.0000	26.5000	5-5-5000	195.3499	3+4.3997	611.5496	1059,9493	0.0 B	10.6900	3,5020
1484300	16.0000	27.5000	86.0000	32.6800	56.7000	01.1500	0.0 H	0.0 B	9.6770	3,6630
1494500	15.0000	28.0000	85.5000	55.2200	79.9800	97,8800	122.2000	141.4999	5.9890	2,3680
1485000	13,5000	28.5000	55.5000	642.9998	,775.9995	850. 9995	432.9995	987.9995	65,6800	20,4500
1485500	12,0000	28.0000	87.0000	445.6997	777.2995	863.1995	1067.9990	0.0 8	50.1300	19.3200
1486000	12.0000	27.0000	85.5000	117.7999	191.4999	239,8999	250.5999	0.0 B	3.9060	1.4+10
1486500	13.0000	28,0000	87,0000	243.2999	452.5976	618.4996	853.2596	1045.9995	23.1900	8,1980
1487000	16.5000	26.5000	86.5000	599.9998	999.9995	1349.9990	2039.9985	2649.9985	90.4500	31,5900
1487500	14.0000	28.0000	86.0000	209.0999	333.7998	412.6997	545.7995	0.0 B	15.1105	5.3830
1488500	17.5000	26.5000	67.0000	660.9998	1558,8990	1669.9993	2523,2249	2819.9988	51.4400	22,6500
1489000	16.0000	27.0000	86.0000	177.2999	409.0996	616.4990	935.5496	0.0 B	8.7690	3.2480
1490000	15.0000	28.0000	86.5000	209.99999	335.9994	477.9998	551.9998	648.9995	16.8300	5.0470
1491000	19.0000	26.5000	67.5000	1593.9990	2787.9988	3800.9983	5361.9961	J.O 8	121.2999	57.8000
1492000	17.0000	27.0000	87.0000	271.99995	595.9998	967.9495	1719.9993	2589.9988	6.5830	2.8130
1492500	18.0000	27.0000	87,5000	170.9999	483.1997	844.9995	16-8-993	0.0 B	9*0 B	С.О В
1493000	20.0000	26.0000	87.0000	282.7998	507.5596	643.8997	973.4995	0.0 B	23.1200	9.3040
1493500	21.0000	26.0000	87.0000	356.9998	672.9995	937.9995	1325.9995	1679.9990	9,1770	3.2900
1494000	20.0000	26.5000	87.5000	464.8997	828.7996	1165 9991	1731.9995	0.0 B	0.0 B	0.0 B
1495000	23.0000	24.5000	86.0000	3108.9985	487].990]	6292.9961	0404.9961	10229,9922	67.0600	18.4000
1495500	21.0000	24.5000	57.0000	1579.9993	2360.9988	3191.9985	0.C R	0.0 ь	32.2400	12.0400
1579000	20.0000	24.0000	85.5404	571.3997	954.7996	1251.9990	0.0 H	0.0 8	ь.7450	2,3380
1586000	29.0000	24.5000	86.5000	2037,9990	2832.9985	3340.9981	3959.9483	0.0 8	59.0700	19.0900
1589300	26.0000	26.5000	86.5000	908,4995	1259.9993	1639.9790	Ú.C B	Ç.) B	29.2600	8,0676
1590000	50.0000	26.0000	86,5000	144.7999	238.0999	353.9998	6.4.9998	909.9995	10.1400	2.4306
1591000	22.0000 .	23.5000	87,5000	1338.9993	2882.9990	4460,9961	7346.9961	0.0 8	34.9400	12.5500
1594500	20.0000	24.0000	AH-0000	801.9995	1178.9995	1427.4990	1741.9943	0.D B	26.1100	8,8690
1594600	15.0000	27+5000	86.5000	137.9999	336.1997	594.9998	0.0 8	0.0 H	4.1310	1.6780
1655500	18.4000	24.3000	87.0000	1079.9990	2119 . 998A	2849 . 9938	1959.9983	0.0 B	11.0000	3,9000
1645200	19.0000	26.0000	87.5000	470+7996	847.9995	1133.9990	0.0 B	0.0 8	3.1670	0.7586
1658000	17.0000	26.0001	87.5400	914.3994	1958,9990	3176.9983	5664,9461	0.0 6	52.6900	18,5800
1653500	18-0000	25.5000	87.0000	1047 9990	1734.9993	2343.9990	3.65.9963	0.0 5	18.3400	5.7310
1646550	18.0000	26.0000	81.0000	1115.9990	1652.9995	2039.9985	2563.9985	0.0 8	3.1700	0.8512
J1648000	19.0000	50,0000	88.0000	149].9990	2460.9988	3254.9983	4445,9961	5480.9961	55.4800	18.0200
11649500	19,0000	26,0000	87.0300	2542.4449	3564.9983	4607,9961	6193,9961	7505.5961	75.9100	20,4600
<i>0</i> 1650500	19.0000	25.5000	87.0000	1200.99995	1980.9990	2675.9988	3803.9988	4657.9961	22.3400	7.9580

Table Al.	 Streamflow and Continued.	basin	characteristics	of	stations	used	in	multiple	regression	analysis
	4									

STATION	61 🕢	Ø	3 3	8	ø	ø	Ø	Ø	Ø	6	
Etter:	01*	011	Q12	-(41	92.1	63	G4	⁻ Q5	- 66	67	
01477800	3.3850	8,1270	9.5860	11.8900	14.3000	16.0-00	13.1600	9.3623	4.7730	6.1330	
1478000	10.4900	21.1200	26.6800	33.7600	42.7800	44.0500	34700	25,6800	15.6900	17.2:50	
1476500	38,1300	57.6500	68.8400	67.4000	103.8999	123,0999	99.8600	80.0600	53.3700	45.0200	
1483200	2.3760	4,1130	4.0980	5.4830	7.3020	9.0745	6.9190	3.2790	1.9710	1.7792	
1483500	5-8180	11.2900	11.4300	13.6000	14.9600	16.5000	14.0700	12.4100	7.5620	7.0400	
1454300	6.3050	7.2720	8.1010	10.3460	12.1800	15.5400	14.6400	10.6700	8.1930	7.8220	
1484500	3.1220	4.8500	6.8670	9.4310	10.4200	13.0700	9.7580	7.3100	5.7490	4.71.2	
1485000	29.3100	41.2800	70.9000	97.9700	125.7999	148.3999	160.0499	53.0600	38.9600	22.3600	
1485500	19.3300	32.8500	51.2300	73.5430	97.0300	117.899-	75.5200	41.6250	27.2200	15.5600	
1486000	1-3460	1.8790	4.0750	6.5410	8.7050	9.6565	5.7620	2.6530	1.6340	0.7437	
1486500	14.4400	17,1000	22.9300	29.6600	34.1900	40.6200	32.3200	23.0600	17.5000	12.8900	
1467000	40.8300	67.6900	91.3000	121.0999	132.6599	164,1999	130.2999	86.0100	69.3950	60,1200	
1487500	5.3670	9.7720	15.6000	22,8500	30,4800	37.65.0	26.4100	15.5200	9,7350	4.5460	
1488500	12.5300	37.2200	58.0400	81.1900	83.6600	1.6.4999	70.7000	40,6300	29.2000	35.5620	
1489000	3.2340	6.1440	8.2740	11.7600	14.1300	10.0000	12.6700	7.3010	5.7320	4.8110	
1490000	- 7.6180	12,5900	15.7800	22.1700	27.4500	33.0700	25.8100	15.5400	10.9300	8.0000	
1491000	36.5900	99.7200	138,7999	181.5999	211.9999	254.5969	173.9999	105,5999	59.0000	36.7100	
1492000	2.2630	5.8160	6.6340	8.4430	11.4500	13.4700	9.6060	4.8400	2.7010	3.0730	
1497500	0+0 H	0+0 H	0.0 H	0.0 H	0.0 H	6 0.J	0.0 8	0.J B	0.0 P	0.6 5	
1493000	11.6900	16.4600	20.6600	28.8200	35,8600	43.0360	34.0600	23.7500	16.8400	13.6000	
1493500	5.9650	8.1896	9.4250	11.3500	12+1500	13.5100	10.1400	7.8000	ø.0730	6.4310	
1494000	0.0 H	0.0 H	0.0 H	0.0 14	0.0 I-	0.0 B	0.0 B	0.0 B	0.0 B	0.0 5	
1495010	37.5100	51.9400	58,8800	79.3700	98.3500	101.1999	90.6400	73.3300	54.1400	56,2200	
1495500	15+4100	29.9400	44.9600	45.7700	54.5300	63.4700	52.2600	43 **960	30,9100	25.1900	
1579000	3+1910	5.3800	7.7550	8.4570	9.0120	10.0400	9.3530	7.9640	5.3590	5.8050	
1586000	31.7800	46.4400	53.9100	67.5400	82.8500	94.6500	81.0500	71.7200	55.5000	48.32.0	
1589300	15.6200	25.4400	26.3500	34,4500	48.0300	54.9800	43.9000	31,3900	19.9900	16+4390	
,1590000	7.9370	9.7980	9.9450	11.2200	12.0900	13.4800	13.4600	11.1200	8.4590	7.5270	
1591000	15.07.7	24,1600	33,5600	41.0300	52+1500	\$9,3900	51.2500	42.2800	31.8700	25.9700	
1594500	12+4900	20.6400	25.3400	33,4300	43.8000	55.5900	43,9100	28.6400	17,5800	14.4500	
1594600	1.8730	2.8740	3.3470	4 2450	5,7790	8.5990	7.9200	5.1490	3.4350	5.3000	
1655500	4.2000	5.9000	10.0000	14.0000	50.0000	26.0000	20.0000	13.0000	8,5000	4.8030	
1645200	1.4270	1.9810	2.2940	3.5960	4.8230	5-6960	4.3730	3.3610	2.8270	2.7.93	
1658000	18.7700	35*8200	58.0300	76.6200	106.2999	13.5999	89.7500	37,7400	21.4900	10.9300	
1653500	10.5400	15,180n	18,8100	20,3600	27.7100	33.2300	27.6700	20.9300	12,3500	8.5091	
1646550	1.5490	2.7220	2.9450	3.745()	3.5560	4,1968	3.6530	3+7770	3,2280	3.1900	
1648000	33+2700	44+5100	49.4600	64,7000	79.5700	97.0600	80.6700	64.2360	47.6460	39.9400	
¥1649500	44.5100	53,4400	75.3900	89.6600	110.3999	128.0000	108.2000	78.6100	57.5500	48.1700	
01650500	17-6500	" ZI.6800	18.5800	26.7500	37-0900	.1.6700	31.7500	22.3700	17.2300	11.5000	

Table Al.	 Streamflow	and	basin	characteristics	of	stations	used	in	multiple	regression	analysis
	Continue	≥d.									

STATION	Col.a	Ø	(A)	æ	Ø	ØD	Ø	æ	Ø	0
57.00	3		5010	SFIL	SD.2	Su	SJ2	503	\$74	305
Ø1477800	7,4621	4,3810	3+3371	6.9490	6.2290	7,6650	6.0220	6.2480	6.0320	7.7360
1475000	20.0900	15.5400	7.5000	12.5700	17.4500	17.1500	17.9400	17.2650	17.1800	<u>46.9500</u>
1478500	62,3600	39.0700	14.3290	24.8700	35.1100	53.0567	29.0200	49.8600	53.4700	50.3960
14e3200	2.0500	2.3160	1.0900	2.6+40	2.3970	2.9540	3.5870	4.9430	3,8210	5.4030
1483500	7.9000	5.9020	1.4630	7.9260	5.6700	6.2893	6.3-50	5.6640	6.0010	4.7590
1484300	9.8520	7.5470	3.7249	2.9250	2.9700	3.543	5.00+0	5,7550	6.8210	4.2820
1484500	5.4740	3,2670	1,7988	3.6340	5.5100	4.869(4.99.0	5.8580	+.3230	3,7340
1485000	45.3950	17.7.30	34.1300	31.6400	35-2000	56+1400	69.8+90	75.7100	53.5500	39.3300
1485500	36.8700	13.1600	24.6900	30.1000	27.9400	44.7730	60.7200	63.4500	46.7100	+3,1700
1486000	2.5260	1.1490	2.1796	1.9947	2.4260	4.,370	4.8170	5.1560	2.90.0	2.7550
1486500	20.8100	12.4600	10.4760	10.9935	16.6500	15.5700	17.0300	18.6900	14.5900	13.2600
1487000	76.81v0	49.8500	20.3400	39.0900	64.6700	66.35.0	75.3600	77.5600	55.9305	37,6800
1487500	11.6400	5.1700	5.8220	7,9261	8.0380	13.0-00	16.84v0	17.1000	12.8300	10.5300
1488500	46.7300	17.5200	6.8120	42.4300	57.2666	49.1200	48.7000	55.4000	34.6200	33 . 11.00
1489000	9.9420	4.9880	2.0663	5.5400	5.1269	6.0740	7.0340	7.2420	5,5570	3.4360
1490000	13.5500	9.4120	3.6070	5.5280	7.3800	12.2500	15.+800	12.3500	10.8500	8,3130
1491000	111.6999	47,3400	33.9100	113-4999	154.9399	125.1999	111.1999	93.4900	96.8999	74,3600
1492000	7,5170	3,1740	2.8460	6.3540	4.3770	5.6490	7.3950	5.6940	4.9780	4,2760
1492500	0.0 B	0.J B	0+0 B	0.0 H	0.0 4	0.0 n	0.0 8	0.0 8	0.0 B	0.C B
1493000	18.1600	15.3200	7.1280	11.4100	12.8100	17.5100	18.0700	19.8600	17.0260	11.0700
1493500	9.0930	7.6260	2.3180	3*58]0	4.d940	6.3940	4.1210	5.9080	5.1220	3,5310
1494000	4 0.0	0.0 1	0.0 H	0.0 H	0.0 H	0.0 d	0.0 4	0.0 B	3.0 с	0.0 H
1495000	60.7700	44.2300	16.8(00	23.1000	27.1800	43.0000	41.9930	3/+0800	37.6.30	34.6000
1495500	34.0200	20.2000	4.4100	13,2000	22.4000	29.2200	17.3700	24.0400	23.7700	23.8000
1579000	4.9720	3.7090	0.8273	2.2790	3.9970	5.5300	3.0020	2,9570	3.6040	4.0500
1546000	44.3900	32.1500	12.6600	26.9900	30.3000	37.140,	33,6500	28.3800	40.6000	39.8300
1589300	22.5000	16.4300	4.8660	8*8380	15.6900	16.8100	17.0400	21.7900	19.4100	15.0900
1540000	9.3570	7.4560	3.1660	3.6670	3.7640	4.1169	3.5920	3.8130	4.4390	4.2630
1591000	23.6800	20.0500	6.9990	16.4200	24.0300	24.3300	21.0000	19.7600	28.0100	25.9900
1594500	25.8000	16.0100	10,9000	10.2140	15.6100	19.730J	17.5500	24.1400	22.4900	19.1400
1594600	1.9640	1.6408	1.3470	0.9726	1.7450	1.9200	2.75-0	3.9950	3.5760	3.1380
1655500	7.0000	4.1000	4.3000	8.3000	8.9000	9.4000	11.0000	10.0000	9.7000	8,3000
1645200	2.8590	2.0970	0.8142	1.3060	1.0020	2.0210	2.250	2.0820	1.7430	1.3160
1658000	35.7600	13.3800	35.2300	28.6900	49.0100	43.0417	53.27.00	65.300	4. ¥500	24.7706
1653500	13.6100	11.4200	9.7060	10.0700	12.7000	11.2900	11.5000	13./600	13./000	16,9900
1646550	3.4940	2.4870	1.1810	2.1130	2.2130	1.6480	1.8230	2.0650	2.3796	2.6470
1648000	43.1400	32.8200	28.5600	33.9000	28.6HQU	34,2200	37.8600	33.7300	36,2700	29,7500
¥1649500	66.4600	42.6500	44.0900	38.4500	47.7200	45,7/00	47.9000	49.5900	52.1700	42.7000
d 1650500	17.5300	15.4200	14.3400	15,9200	9.0740	14.8300	25.1400	15.7400	16.9900	12.5600

Table Al.	Streamflow and	basin	characteristics of	of	stations	used	in	multiple	regression	analysis
	Continued.							-		-

-

STATION No	Col. 505	51/7	SD8	عەربە	<u>ن</u> م ال	œ: ۲,5	Ø	@ M7,20	99 V 3 · 2	(C) ¥3,25
1477800	2.9450	5.6570	13.6440	4.6430	0.5000	0.4 * 8	0.2000	0.2000	112,9999	244.9999
1478000	9.2300	16.2400	29.0600	11 4600	3.6100	00 6	1 3000	0.9000	273.7998	-24.1996
1478500	27.6900	29.0700	66.6300	18.3300	17.0000	0.0 B	7.6000	6.0000	533.0996	884 +245
1483200	1.0110	2.2070	2.0650	3.3720	0.4010	0-0 p	0.0	0.0	0.0 8	2.0 B
1483500	2+6740	5.8640	6.2830	2.9580	3.0000	0.0	1.9000	1.7000	66.4400	231.8999
1464300	2.1700	4.5600	7.9870	4.6420	3 8000	0.0 0	1 900	1.5000	26.0000	59.0000
1484500	4.5780	3.4690	5.2440	1.8390	1 6010	G 0 0	0.6001	2.4000	49.2500	78,5000
1485000	28.4500	17.2200	51,7500	13.0500	5.5000	0.0 5	2.6000	2.0000	6 0.0	C.C B
1485500	19+5800	19.6000	55.5100	12.3000	2.7000	0.0 B	1.4000	1.2000	421.6997	730.0995
1486000	1.5440	0.6776	4.5260	2.1800	0.1010	0.0 H	0.0001	0.0	44.8200	93,3500
1486500	12.3700	6.4960	22.5200	5.9300	5.4000	0.0 0	0.0 A	0.0 B	137.0999	365.7998
1487000	52.3700	43.2600	94.6700	46.9300	22.0000	С О В	14.0000	12.0000	0.0 B	C+0 B
1487500	5.4120	3.5210	17.9400	6.2270	0.3010	0.0 1	•	0.1000	109.8999	249,7997
1488500	30.9800	47.0800	79.6400	25.3400	4.6000	0.0 5	2-0000	1.5000	0.J B	0.3 B
1489000	3.4630	4.0280	13.2400	5,8510	1.0000	0.0 B	0,1000	0.0	65.2300	202,5999
1490000	3.6380	3,1240	15.7900	8,0100	3.3000	0.0 8	1.8000	1.5000	ថ∙ថ្ ៩	0.0 B
1491000	43,7100	42.4000	218.0999	72.3500	10.0000	0.0 н	4 5000	3,4000	1003.4995	3745,9935
1492000	2.1860	5+2760	11+1500	7.1960	0.1010	0.0 B	G + 0	0.0	0+0 B	0 <u>.</u> 0 n
1492500	0.0 H	6 U.U	0.0 B	0.0 B	00+	0.0 b	0.0 9	0.0 P	С.О Ь	0.0 B
1493000	10.0400	7.3630	16.8400	19.1700	6.6000	0.0 ь	3.9400	0.0 B	133.3999	+30,2998
1493500	5.8720	4.96 #0	7.1290	7.4800	2.4000	0.0 H	1.4000	1.0000	3 . 0 B	0.0 B
1494000	0+0 A	U.∎O H	0.0 H	0.0 H	0.0 9	0.D H	0.0 P	0.0 B	0.0 B	0.0 8
1495000	23-8800	34.0000	58.7300	30.8500	19.0000	0.0 н	8.9000	7.2000	546.3997	1144.9990
1495500	9.9920	13.6000	37.7900	10.7800	0.0 0	0,0 H	8 G.C	0.0 8	G.J 3	C.C 8
1579000	1.6560	4.0110	4.0400	1.9550	0.0 +	0.0 H	0.0 A	0.0 B	0.0 A	0.0 8
1586000	37.0200	30.1300	38.3700	16.6600	17.0000	0.0 B	7.6000	5.7000	404.8997	819.8597
1589300	8.9610	9.0550	28.8700	11.5400	6.0000	0.0 B	2.9000	2,3000	257.9953	û.0 e
1590000	3.3590	3.7640	7.0040	3.8980	3.7000	0.0 8	2.0000	1.7000	49.1900	160.0999
1591000	21.6900	24.9400	24.1200	15,8800	7.3000	0.0 B	3.0000	2.2000	267.3999	736.1997
~ 1594500	14.8300	13.8800	32.3100	19,9700	1.9000	0.0 8	0.5000	0.3000	296.7998	639,9998
1594600	2.8590	1.9920	2.1060	2.0930	0+5010	0.0 Y	0.0001	0.0	21.0000	0.0 н
1055500	9.0000	9.0000	15-00Ö0	4.8000	0.3100	0.0 H	0.1000	0.0700	0°0 9	6 5.0
1645200	1+6230	3.2750	3+1740	2.0540	0.0 6	0.0 H	0.0 H	0.0 B	0.0 8	0.0 H
1658000	14.7000	13.0000	99.1000	31.7400	0.0010	0.0 8	0.0001	0.0	553.9950	1569.9990
1053500	8-6100	7.0730	21.4600	13.2700	0.9010	0.0 H	0.0001	0.0	147.7999	5.5.0996
1040551	2.6770	3.8000	3.9290	2.5350	0.2010	0.1 ម	0.10.0	0.0	35.5800	104,6994
1048000	27.0900	36.1300	41.0500	30.6700	8.4000	0.0 8	5.5000	1.4000	470.8997	1073,9993
1049500	49.8700	64.6800	65.9900	37_4800	11.0000	0.0 5	4.8000	3.6000	794.8997	1468,9993
1020401	10.3400	·5.3110	17.6400	15.6800	3.6000	0.0 B	0.4000	0.6010	184.9999	449.9998

Ţable Aļ.	 Streamflow	and	basin	characteris	ics o	f	stations	used	in	multiple	regression	analysis
	Continue	ed.										

STATION	Cal ()	Ø,		Ø	6	Ø	Ø
				() (2.5			
1477800	0.0 B	61.0000	98.0000	119.0000	0.0 %	3.0000	
1478000	457.1997	148.2999	223.9999	263.1997	293,2998	12.6000	
1478500	0.0 B	310.6997	517.9994	639.6997	4 0.0	48,5000	
149320n	0.0 B	18.6600	39.0000	0.0 H	0.0 4	0.0 K	
1483500	0.0 B	40.0700	85.0000	110.7000	0.0 H	7.2500	
1484300	0.0 8	23.5000	42.5000	52.0000	0.0 +	8.6000	
1484500	91.6800	25.2600	+6.0000	57.0700	65.2500	4.9500	
1485000	C.O B	340.0599	515.9998	0.0 H	0.0 H	0.0 H	
1485500	0.0 b	313,1997	488.9998	534.4998	0.0 K	24.0300	
1486000	0.0 B	28.0800	48.0000	57.0700	0.0 B	1.4400	
1486500	420.8997	93.9600	179.9999	222.3999	252,6999	16.7050	
1487090	0.0 6	365.9998	774.9995	0.0 H	1070,9993	0.0 B	
1487500	0.0 B	76,5900	129.9999	154.4999	0.0 н	10.600v	
1488500	0.0 4	316.1997	662.9995	0.0 H	971.3997	0.0 b	_
1489000	0.0 8	41.9000	86.0000	107.9999	0.0 H	5.n000	
1490000	С.О в	74.1400	159,9966	0.0 H	0.0 -	0.0 B	Ň
1491000	0.0 5	713.9995	1579.9993	1975.9993	0.0 H	57.5000	31
1492000	0.n s	43-0000	100.0000	0.0 5	0.0 н	0.0 H	
1492500	0.0 H	0.0 B	0+0 H	0.0 6	Ŭ₄Ŭ +s	0.0 H	1
1493000	0.0 B	94.0400	193.9999	246.9999	0.0 5	15.0000	20
1493500	0.0 6	48.4800	86.0000	0.0 8	0.0 H	0.C B	`
1494000	0.0 8	0.0 B	0.0 H	0.0 H	0.0 A	0.0 B	~
1495000	1321.9993	302.6997	506.9998	629.6997	729.6997	45.5000	5
1495500	0.0 H	0.0 B	0.0 8	6.0 8	0.0 b	23.3000	_
1579000	0.0 4	0.0 H	0.0 H	0.0 Fi	0.0 H	4.4000	2
1586000	0.0 B	252.4999	401.9998	466.0995	0.D H	41.0000	ŝ
1589300	0.0 B	151.9999	246.9999	0.0 H	0.0 H	17.0000	~
1590000	210.5999	37.6700	63.0000	85.3400	105.0995	8,1500	6
1591000	0.0 B	170.0000	334.9998	426.7998	0.0 H	23.2000	~
1594500	G+0 B	170.2999	290.9994	363,1997	0.0 H	14.8000	
1594600	0.0 8	15.0000	27.0000	0+0 H	0.0 H	2.8000	
1655500	0.0 8	83.0000	131.9999	144.99999	151,9999	0.0 8	
1645200	0.0 d	0.0 8	0.0 B	0.0 5	0.0 H	1.8500	
1658000	0.0 H	351.9998	786.9995	1119.9993	0.0 H	55°2000	
1653500	0.0 B	102.2999	203.9999	270.3947	0.0 m	10,0000	
1646550	0.0 8	20.8200	41.3100	53.6100	0.0 B	1.0000	
1648000	1222.9990	282.7998	478,9994	562.3997	618,0996	34.6000	
1649500	1601,9993	453.1997	722.9995	847.2996	935.0996	42.0000	
1650500	559.9998	105.9999	199.9999	249.9999	289,9998	12.9000	

ORIGINAL PAGE IS OF POOR QUALITY

> . 81

Table Al.	 Streamflow	and	basin	characteristics	of	stations	used	in	multiple	regression	analysis
	Continue	٠d.							-	-	•

STATION No	Cal 🥝 URHANBLT	BORICULT	GAPEORST	Ø WATER		UPBAN, I	UHBAN, O	FORSTAL	B FORST . H	Ø URBN+R+I
1477800	84.9000	3.5000	11.0000	0.6000	69.6300	10.5000	4.6000	0.9060	10.1000	80,3000
1478000	20.9000	59,9000	19.2000	0.0	15.4000	4.3000	0.4000	1.0000	18.1024	23.7000
1478500	3.0000	78,0000	19.0000	0.0500	1.7000	1.0000	0.3000	0.5000	18.5000	2.7000
1483200	C . 0	61.6000	37.0000	0.8000	0.0	0.0	0.0	0.0	37.6000	C 0
1483500	0.0	52.3000	17.7000	0.0	0.0	0.0	0.0	0.2000	17.5000	0.0
1484300	0.0	46.5000	52.5000	0.6000	0.0	0.0	0.0	0.7000	51.8000	0.0
1484500	1.3000	56.5000	42.2000	0.0	0.0	1.3000	0 • D	0.0	42.2000	1.3000
1465000	0.2000	49.4000	50.2000	0.0	0.2000	0.0	0.0	0,9000	49.3000	0.2000
1485500	0.2000	19.2000	79.6000	0.0	0.2000	0.0	0.0	5.3000	74.0000	0.2000
1486000	0.0	31,6000	68.4000	٥.0	0.0	0.0	0.0	0.5000	67,9010	0.0
1486500	5.1000	44.3000	49.6900	0.4000	1.9000	3.2000	0.0	1.9000	47.505.	5.1000
1487000	1-1000	57.4960	41.3000	0.0	1.0006	0.1000	0.0	0.2000	41.2000	1.1066
1487500	J.C	26.1000	72.8000	0.6000	0.0	0.0	0.0	9 7000	63000	0.0
1468500	0.1000	58.0000	41,9000	0.0	0.1003	0.0	0.0	0.2000	41.7000	0.1000
1469000	0.0	72.5000	27.5000	U . Q	0.0	0.0	0.0	0.0	27.5000	0.0
1490060	G.O	53.0000	46.8000	0.2000	0.0	0.0	0.0	2.0000	44.0207	6.0
1491000	0.1000	55.80.00	43.9000	0.0	0.1000	0.0	0.0	0.9000	43.0000	0.1000
1492000	0.0	71+2000	58*8000	0.0	0.0	0.0	0.0	0.0	28.0000	0.0
1492500	0.0	67.9000	35-1000	0.0	0.0	0.0	0.0	0.0	32.1000	C.O
1493900	0.4000	70.1000	29.2000	0.3000	A.4000	0.0	0.0	1.5000	27.7000	6,4000
1493500	0.0	AP 5000	3.8000	0.0	0.0	0.0	0.0	0.0	3.8000	3.0
1494000	0.0	73.5000	26.5000	a.o	0.0	00	00	0.2000	26.3.00	5.0
1495000	1.1000	85.9000	13.0400	0.0	0.9000	0.2000	0.0	0.1000	12.9000	1.1004
1495500	1.2000	79.5000	18.30-0	0.1000	0.7030	0.4000	0-0	3.1000	15.2000	1.1000
15/9000	1.9000	73,4000	24.7100	0.0	1.9000	0.0	00	2.0000	22.7333	1.9000
1200808	3.6000	70.9000	25.3000	0.1000	2.3000	1.2000	0-1800	1.6000	23.7000	3,5000
1244300	35.4000	23.7000	40-0000	0.0	27.3000	5.7400	2.4000	6.7003	33.3000	33.0000
1399009	V - U	33.0000	67.0000	0.0	0.0	0.0	0.0	0+0	67.0000	0.0
1204200	1.5000	r6.3000	32.0000	0.0	1-4000	0.1000	0.0	0.4000	31.8000	1.5000
1274200	10/12010	38.6900	42.9900	0.0	12-6000	3.8000	Z.1000	1.5000	41.4000	16,4000
1004000	1-000	57.7000	40.7000	0.0	1.00	0.0	0.0	0.0	AC.7300	1.6000
1000000	1.9000	63.1800	34.6000	0.4000	1.6000	0.3000	0()	1.6000	33.0000	1,9000
- 1043200	42.5000	40.9000	16.6000	0.0	26.2000	14.0000	2.3000	4.3000	11.8000	40.2000
145350000	/ 2000	24.1000	68.0000	0.1000	3.5000	5-H000	0.9000	1.0000	67.0000	9.3000
1000000	N3.2000	4,8000	32.0000	0.0	39+700P	12.2000)0.3000	3.6000	20.4000	51.9000
1040330	A2*A000	0.0	6.1000	0.0	73.0000	12.0000	9.0000	3.7000	2.4000	. 85.0000
1649500	23+300J	25.7090	20.3000	0.3000	37.5000	10.0000	5.8000	2.6000	18.1000	47.5000
1447500	43.[UUU	15.5000	38.9000	0.2000	24.9000	11.7000	8.5000	2.6000	36.6000	36,6000
7020200	20.0000	42.4000	31,6000	0.0	15.3000	1.5000	9.2000	6.0000	25.6000	10.8000

Table Al,	 Streamflow	and	basin	characteristics	of	stations	used	in	multiple	regression	analysis
	Continue	ed.									

		•	-	-
STATION	\odot	Ø	69	6)
No	ERTSUMPN	ERISAGHI	ERTSFHST	ERTSWATE
,01477800	86.1000	0.0	14.0000	Ç.0
1478000	12.0000	56.0000	30,0000	2+0000
1478500	C.D	80.0000	20.0000	0.0
1455200	0.0	51.0000	-9.0000	0.0
1483500	6.0	51.0000	9.0000	0.0
1+84300	6.5	52,0000	48.0000	6.0
1+84500	1.0000	E1,0000	38.0000	J.O .
1485000	0.0	+3,0000	56.0000	1.0000
1485500	2,0000	20,0000	72.0000	0.0
1486000	0.0	30.0000	70.0000	6.0
1486500	4.0000	51.0000	45.0000	Q . Ū
1497000	0.0	54,0000	45.0000	1.6000
1487500	0.0	28.0000	72,0000	0.0
1488500	+.0000	56,0000	40.0000	0.0
1409000	0.0	71.0000	29.0000	0.0
1490000	0.0	47.0600	53.0000	0.0
1491000	1,0000	55.0000	44.0000	0.0
1492000	0.0	93.0000	7.0000	0.0
1492500	0.0	69,0000	31.0000	0.0
1493000	0.0	74.0000	26.0000	0.0
1493500	0.0	97.0000	3.0000	0.0
1454000	0.0	71.0000	29.0000	0.0
1495000	0.û	63.3000	20.0000	0.0
1494500	0.0	62.0000	39.0000	0.0
1579000	0.0	99.9000	0.1000	0.ù
1584000	2.0000	81.0000	17.0000	0.0
1589200	45.0000	25.0000	30.0000	G . O
1550000	°5,00≎≎	13.0000	d2+0000	0.0
1591000	0.0	65.0000	35.0000	0.0
1594500	19.0000	35.0000	46.0400	0.0
1594600	0.0	58,0000	42.0000	0.0
1655500	0.0	81,0000	19.0000	0.0
1645200	61.0000	24,0000	15,0000	0.0
11646550	94.0000	0+0	6.0000	0.0
1048000	49,0000	34,0000	16.0000	1.0000
1649500	55.0000	13.0000	35°0030	0.0
1650500	6.0000	71.0000	23.0000	0.0
11653500	85.0000	0.0	15+0000	0.0
A 1662000	1.0000	29_0066	70,0000	0.0

EXPLANATION

- B. Missing data.
- Station No. These eight digit numbers are permanent nationwide numbers assigned by the U.S. Geological Survey to stations at which streamflow data are collected on a recurrent basis.
- Col. 1 Drainage area, in square miles.
- Col. 2 Main-channel slope, in feet per mile, determined from elevations at points 10 percent and 85 per ent of the distance along the channel from the gaging station to the drainage divide.
- Col. 3 Main-channel length, in miles, from the gaging station to the basin divide.
- Col. 4 Mean-basin elevation, in feet above mean sea level.
- Col. 5 Storage, in percent, of the drainage area covered by lakes, ponds, and swamps.
- Col. 6 Forest cover, in percent, of the drainage area covered by forests as shown on USGS 1:24,000 scale topographic maps.
- Col. 7 Soil index, a measure of potential maximum infiltration capacity, in inches, estimated from a map or from other data provided by the U.S. Soil Conservation_Service.
- Cols. 8-18 Not used in the analysis.
- Col. 19 Mean annual precipitation, in inches, determined from an isohyetal map prepared from National Weather Service records.
- Col. 20 Precipitation intensity, which is the maximum 24-hour rainfall, in inches, having a recurrence interval of 2 years (24-hour 2-year rainfall).
- Col. 21 Average annual snowfall, in inches, estimated from maps of average snowfall prepared from National Weather Service records.
- Col. 22 Average minimum January temperature, in degrees Fahrenheit.
- Col. 23 Average maximum July temperature, in degrees Fahrenheit.

Col. 24-28 Flood-peak charac: eristics are represented by discharge from the annual f ood-frequency curve at recurrence intervals of 2, 5, 10, 25, and 50 years. Mean annual discharge, in ft³/s. Col. 29 Standard deviation of mean annual flows, in ft³/s. Col. 30 Mean monthly discharge, in ft^3/s beginning with Q_{10} Col. 31-42 (October). à., Standard deviation on monthly flows, in ft³/s. Col. 43-54 Low-flow characteristics are the annual minimum 7-day Col. 55-58 mean flows, in ft³/s at 2-year, 10-year, and 20-year recurrence intervals ($M_{7,2}$, $M_{7,10}$, and $M_{7,20}$); Col. 56 not used. Col. 59-65 Flood-volume characteristics represent the annual highest average flow, in ft³/s for 3-day periods at recurrence intervals of 2, 25, and 50 years and for 7-day periods at recurrence intervals of 2, 10, 25, and 50 years. Col. 66 Fifty percentile discharge on the flow duration curve, in ft³/s. Col. 67 Not used in the analysis. Col. 68-71 Level I land use categories, in percent, determined from high altitude areal photographs. Col. 72-77 Level II land use categories, in percent, determined from high altitude areal photographs. Col. 78-81 Level I land use categories, in percent, determined from Landsat (ERTS) imagery.

ORIGINAL PAGE IS OF POOR QUALITY •_ • \$ •* • ; *