

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. NASA-CR-ERIM-118500-1-F	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle NASA/COUSTEAU OCEAN BATH	IYMETRY EXPERIMENT	5. Report Date JULY 1976
REMOTE BATHYMETRY USING	HIGH GAIN LANDSAT DATA	6. Performing Organization Code
7. Author(s) Fabian C. Polevn		8. Performing Organization Report No. 118500-1-F
9. Performing Organization Name and Environmental Research I	Address Institute of Michigan	10. Work Unit No.
P.O. Box 8618 Ann Arbor, Michigan 481	.07	11. Contract or Grant No. NAS5-22597
(313) 994-1200, Ext. 234		13. Type of Report and Period Covered
National Aeronautics and Goddard Space Flight Cer	l Space Administration	Final Report August 1975-April 1976
Greenbelt, Maryland 207	71	14. Sponsoring Agency Code
15. Supplementary Notes		

16. Abstract

Satellite remote bathymetry was successfully verified to 22 m depths where water clarity was defined by $\alpha = .058 \text{ m}^{-1}$ and bottom reflection, r_b , was 26% High gain Band 4 and Band 5 CCT data from Landsat-1 was used for a test site in the Bahama Islands and near Florida.

Near Florida where $\alpha = .11 \text{ m}^{-1}$ and $r_b = 20\%$, depths to 10 m were verified. Depth accuracies within 10% rms were achieved. Position accuracies within one Landsat pixel were obtained by reference to the Transit navigation satellites.

Two ships, Calypso and Beayondan, were at anchor on each of the seven days during Landsat-1 and 2 overpasses: LORAN-C position information was used when the ships were underway making depth transects. Results are expected to be useful for updating charts showing shoals hazardous to navigation or in monitoring changes in nearshore topography.

				the second s
17. Key Words		18. Distribution Stat	ement	
Landsat shoal detection charting multispectral scanner computer processing		Initial distri end of this do	ibution is lis ocument.	ted at the
19. Security Classif. (of this report) Unclassified	20. Security Clas Unclassift	sif. (of this page) Led	21. No. of Pages 132	22. Price

L

Ι.

DRMERLY WILLOW RUN LABORATORIES THE UNIVE SITY OF MICHIGAN

PREFACE

This report presents the results of an experiment in remote bathymetry conducted jointly as a NASA/Cousteau Society Ocean Bathymetry experiment in August and September of 1975. Fabian C. Polcyn, Senior Research Engineer of the Environmental Research Institute of Michigan, served as Principal Investigator. Many personnel from several organizations participated in the preparation and execution of the experiment. Among these are:

*Cousteau Society

Captain Jacques Cousteau, Experiment Co-Sponsor *NASA Headquarters

Mr. Russell Schweickart, Experiment Coordinator *NASA Goddard

Dr. Enrico P. Mercanti, Experiment Manager

Mr. Charles Bohn, Experiment Manager and Technical Monitor

Dr. Ross McCluney, Experiment Scientific Monitor

Mr. Charles Vermillion, NASA/Calypso Coordinator

Dr. John Barker, Real Time Landsat Processing

Mr. Locke Stuart, Experiment Advisor

Mr. Albert Whalen, ATS-3 Communications

*Texas A&M

Mr. John M. Hill, Oceanographer and Whiting Study Coordinator *John Hopkins University

Mr. Edward Westerfield, Transit and LORAN-C

Mr. Dan Mitola, Beayondan Coordinator

*U.S. Coast Guard

Charles Montanese, LORAN-C

Robert Riper, LORAN-C

VERIM

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

*Defense Mapping Agency

Jim Hammack, Historical Data and Navigation Charts Dennis Granato, LORAN-C Grid Conversion

Because of the wide scope of the experiment, separate reports are being prepared related to the different aspects of the experiment, e.g., real time data processing performed at NASA, Goddard by Dr. John Barker and accurate position information obtained by Johns Hopkins University under the direction of Mr. Ed Westerfield. This report focuses on the remote bathymetry aspects of the experiment.

A special note of appreciation is given to experiment managers Enrico Mercanti and Charles Bohn for their tireless efforts in bringing together, under a tight time schedule, the several elements to ensure the successful completion of the experiment.

Acknowledgement is given to Charles Vermillion, John M. Hill, Rusty Schweickart, and Jack Ford for their support, cooperation and participation in the shipboard data collection phase of the experiment.

Particular thanks to Jacques Cousteau and the crew of the Calypso for their dedication and expertise in the underwater phases of the experiment, without which, measurements of key experimental parameters could not have been made.

Special thanks to Dan Mitola and Ed Westerfield and the crew of the Beayondan for their patient efforts in obtaining the accurate position information, without which, verification of the calculated depths with the measured depths would have been difficult.

At ERIM, the collaboration of Dr. David R. Lyzenga in model development and computer analysis of the high gain Landsat data tapes is gratefully acknowledged.

This report was reprinted after minor corrections were made in July 1977. Pages 44 through 127 were repaginated.

|

ì

.

2

.

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

ſ

.

Ì

ĩ

I

3

ş

CONTENTS

l

1.	INTRODU	CTION
	1.1	Scope of Study
	1.2	Approach
	1.3	Summary of Conclusion
2.	PREVIOU	S WORK
3.	DESCRIP	TION OF EXPERIMENT
	3.1	Outline of Experiment
	3.2	Shipboard Operation
	3.3	Data Preparation
4.	CALCULA	TION OF WATER DEPTH
	4.1	Model Development
	4.2	Comparison of Calculated vs Measured Depth at Station F-1
	4.3	Extension of the Calculations to Other Areas
	4.4	Extension of the Calculations to Another Date
	4.5	Saturation of Band 4 and 5
5.	DEPTH C	ALCUIATIONS NEAR THE FLORIDA COASTLINE
6.	CONCLUS	ION
REFE	RENCES .	
APPE	NDIX A:	TECHNICAL MEMORANDUM \$3R-76-067
APPE	NDIX B:	TECHNICAL MEMORANDUM RSC-131
DIST	RIBUTION	LIST

5

1

1

ľ

1.

ſ

<u>ERIM</u>

7

ļ

_ **|**. .

X...

1.

--- [

Γ

LIST OF ILLUSTRATIONS

ł

1

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

1

ł

Figure	Title	P	age
1	Bahama test site for four consecutive Landsat Passes	•	15
2	Cousteau at recording fathometer	•	17
3	Ship transect defined by LORAN-C	•	18
4	Submarine multichannel photometer	•	20
5	Diver measuring light reflected from calibrated gray scale	•	22
6a	Three step calibrated gray scale made specially for experiment	•	23
6Ъ	Two 35 mm lens Nikonos cameras filtered to match Band 4 and Band 5 of Landsat-1 and 2	•	24
7	Transmissometer deployed underwater tc measure beam attenuation of water	1 •	26
8	Green and red band transmission versus water depth	•	27
9	Band 4 filtered images	•	30
10	Bathymetry map made from Band 4	•	33
11	Landsat-1 calculated depth vs measured depth	•	38
12	Landsat-1 calculated depth based on October 12, 1975 data	•	41
13	Bathymetry map from Landsat-1,Band 4, October 12, 1975 with overlay from Chart N.O. 26320	•	45
14	Bathymetry map from Landsat-1, Band 4, October 12, 1975 with overlay from Chart N.O. 26320, Data averaged over 6x6 resolution elements	•	47
15	Bathymetry map from Landsat-1, Band 4, October 12, 1975 with overlay from Chart N.O. 26320, data averaged over 6x6 resolution elements		49

<u>ERIM</u>

Ļ

۰.

.

1.

...¶a

}

•-

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

ſ

.

1

1_____ * 1____

ł

ĩ

Figure	Title Pa	<u>ge</u>
16	Saturation depths from Landsat-1 Bands 4 and 5 5	51
17	Bathymetry map from Landsat-1, Band 5, October 12, 1975	52
18	Signal-related depth profile near Florida coastline	57
19	Satellite calculated depth profiles for two transects near Hollywood, Florida	58
20	Color coded depth map made from Landsat image 6	50
21	Signal difference versus band position (Landsat-D)	63

7

1

L

1.

Ī

.

....

1

FORMERLY WILLOW RUN LABORATORIES THE UNIVENSITY OF MICHIGAN

ſ

Ì

Į

LIST OF TABLES

Table	Title	Page
1	NASA/Cousteau Bathymetry Experiment, August/ September 1975	. 17
2	Average water attenuation coefficients derived from photometer data Bahamas and Florida 1975	n . 28
3	Average MSS 4 signals observed over deep water, September 6, 1975	. 37
4	Average MSS 4 signals over deep water, October 12, 1975, Landsat-1	. 40
5	Color code for depth range of Florida coastline map	. 60

8

ļ

1.

. .**l**. .

٩.

ł.

REMOTE BATHYMETRY USING HIGH GAIN LANDSAT DATA

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

1

INTRODUCTION

This report prepared under contract NAS5-22597 gives the remote bathymetry results obtained as part of the NASA/Cousteau Ocean Bathymetry Experiment. This experiment using the high gain mode of both Landsat 1 and Landsat 2 was conducted between August 21 and September 8, 1975 with the test site centered in the Bahama Islands. Analysis of Landsat CCT data took place between October 1975 and April 1976.

Two ships, Calypso and Beayondan and thirteen satellites were used in the experiment in order to obtain the necessary supporting data and position verification. The results are expected to be useful in the preparation of charts in order to update the location of hazardous shoals and to monitor changes in nearshore underwater profiles resulting from storm and wave action.

1.1 SCOPE OF STUDY

ERIM

Previously, the International Hydrographic Office defined shoals as hazardous to shipping if they fell in the range from 0 to 17 meter depths. With the advent of supertankers, the need to "clear" the shipping lanes to 25 and 30 meter depths becomes a serious concern in order to help prevent accidents and thus avoid potential oil spills from affecting the environment. More accurate charts could lead to savings in ship transportation costs by reducing time spent on unnecessary routes to avoid uncertain shoals.

Not all countries of the world have the necessary ship resources to provide the type of measurements needed to update charts in

ž

I

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

their areas. In order to determine the role of satellite remote sensing in helping to provide usable information to alleviate this problem, this experiment was conducted to answer two specific objectives:

- 1. What is the maximum depth measurable using high gain data from Landsat 1 and 2 (in particular, for Band 4 whose wavelengths have the best clear water penetration c pability of the 4 channels available on Landsat 1 and 2)?
- 2. What is the accuracy of the depth measurement made using satellite data combined with suitable supporting ground data? If practical values could be derived from satellite remote bathymetry than a comparatively rapid means for surveying the critical ocean areas would be created.

The experiment also included a demonstration of a possible future satellite to ship data communication system wherein satellite imagery could be relayed directly to a ship in the same day of its collection giving that ship the most recent information on potential hazards over a large area. Since one frame of Landsat data covers a 100 nm square, a ship traveling at 10 knots would be given a maximum of 10 hours of travel time over which current information would be available. With two satellites in orbit, 9 day old information is theoretically achievable for any part of the globe, provided a rapid means for processing the data is perfected. The real time processing of Landsat data (completed on the same day that the image was formed) and transmission of depth contour data to the Calypso that was successfully demonstrated during this experiment is the subject of a separate NASA report.

If cloud cover lessens the chance for the full realization of this concept, the repetitiveness of the satellite coverage does suggest the possibility of some type of chart updating at intervals shorter than now available. In certain parts of the world charts may be anywhere from 10 to 100 years old because of the lack of ship and money resources to complete surveys at shorter intervals. If practical depths are measurable at acceptable accuracies, the cost savings in equivalent ship survey time could be substantial.

F. . .

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

1.2 APPROACH

Remote bathymetry takes advantage of two characteristics. Water selectively absorbs different wavelengths of light, and energy at each wavelength is strongly absorbed as a function of the depth of the water. As the sun's energy penetrates the ocean, losses occur (1) at the surface, (2) through the water column, (3) at the reflection from the bottom, then (4) through the water column for the return path, (5) at the surface again, and finally (6) through the atmosphere to the satellite where it is collected by multispectral scanne in selected wavelength bands. By knowing the sensor sensitivity calibration and taking each parameter into account, the MSS voltages expressed digitally can be used co calculate the depth of water. Two variables had to be measured at the time of the satellite overflight. The first was the light absorption of the water in the same bands in which the satellite sensor operates, and the second was the percent reflection of the bottom surface. The experimental team aboard the "Calypso" made the necessary submarine photometer, transmissometer, and reflectance measurements at several sites during the satellite overpasses.

The Calypso made a number of transects to record fathometer depths so that satellite-derived depths could be checked against ship measurements. The team aboard the "Beayondan" operated by the Applied Physics Laboratory of John Hopkins University provided accurate location information using LORAN-C and TRANSIT navigation satellite fixes. LORAN-C measurements aboard the Calypso were also used for position information and the ship's transects were correlated with Beayondan measurements at a number of rendevous points. During the time of the satellite overpass, both ships were anchored side-by-side so that later, the depth measured by the MSS at the corresponding Landsat CCT pixel containing the ship could be correlated with actual depth as measured by a fathometer.

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

Twelve lend points subsequently were used to convert line and point elements of the Landsat CCT to geographical coordinates.

1.3 SUMMARY OF CONCLUSIONS

ERIM

Supported only by measurements of average water transmission and bottom reflection data, high-gain Landsat Bands 4 and 5 were used to construct bathymetry maps of test areas near the Berry Islands and near Hollywood, Florida. Depths to 22 m were reliably verified at accuracies within 10% (rms) of measured values at the site West of the Berry Islands where water transparencies of 0.05 m^{-1} and 26% bottom reflections were encountered. CCT signals two digital counts above deep water signals were identified to be caused by light reflected from 40 m depths. Landsat data taken in October over the same site successfully gave the same depths (within the same accuracies) as the depths derived using September data, when both satellite data and water characteristics were measured on the same day.

Depths to 1.0 m were verified at the Florida site where water was less transparent with $\alpha = .11 \text{ m}^{-1}$ and bottom reflectance equal to 20%.

At 3x gain for Landsat 1, Band 4 was found to saturate at 1.3 m depths and Band 5 saturated at 0.3 m depth for high reflective bottom (about 30% in Band 4). Thus Band 5 can be used to cover the range where Band 4 reaches saturation.

For an area with uniform average characteristics both in time and space as seen by the integration over each resolution element, the knowledge of point characteristics can be extended to the larger area. Alternative ground supporting data such as knowledge of specific water depths at two or more control points for each combination of water clarity and bottom types would serve equally well.

Cloud free scenes should be used to avoid spurious shallow anomalies resulting from partial cloud cover or from cloud reflections of sunlight from the ocean surface.

<u>ERIM</u>

ORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

2

PREVIOUS WORK

The general technique for remote bathymetry was first tested using aircraft multispectral data [1]. Two-channel techniques were explored to reduce the dependency on the knowledge of the absolute values of bottom reflection and water transmission characteristics. Two-channel processing was employed in an ERTS-1 experiment [2]. In that work, the two-channel data gave results to 3 m. At this depth, the signal from Band 5, which operates where water more strongly absorbs, is the limiting factor. Channel 4 data, however, was usable to 9 m depths using normal-gain Landsat data.

The high-gain Landsat data used in this experiment provides a better digitization of signal range encountered from sites with varying depths. With a wider range of signal spread over more digital values, each digital step represents a finer depth increment so that two advantages are achieved. First, depth values can be measured within finer bounds with less ambiguity. Second, deeper depths can be measured. Two or three digital values above the mean deep water background signal (with a standard deviation of less than 2 counts) can, in some cases, be interpreted as evidence of the presence of the ocean bottom (see Chapter 4).

Future sensors should be made to operate in bands closer to the optimum transmission of water. An investigation of the optimum placement for future satellite MSS channels for water depth measurements is reported in [3].

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

DESCRIPTION OF EXPERIMENT

The experimental team met in Nassau, New Providence Island, between August 21 and August 25, 1975 to complete preparations. LORAN-C equipment was installed on the Calypso with the assistance of Charles Montanese and Robert Riper of the U.S. Coast Guard. Instruments manufactured by Kahl Scientific Instrument Corporation for measuring water transparency and bottom reflections were transferred to the Calypso at this time and a trial run took place near the island on August 26, 1975 to familiarize the team with the experimental procedures.

3.1 OUTLINE OF EXPERIMENT

1.

ERIM

The plan of the experiment called for the two ships, Calypso and Beayondan to be on station during the Landsat-2 overpass on four consecutive days (August 27, 28, 29, and 30, 1975). The sequence was to be repeated for Landsat-1 on September 5, 6, 7, and 8, 1975. On August 27, the first day on station, the rendevous point was north of Eleuthera Island. By sailing 90 nm westward during the night (see Figure 1), the two ships were able to be in position the following day for a Landsat overpass, west of the Berry Islands on the northern edge of the Great Bahama Bank. This site was considered our prime test area. It was chosen because of its gradual change in depth from one meter of water to deep ocean water in a north and south span of 25 nm. Laterally to this slope, it is relatively uniform so that a broad incline of ocean bottom is available for investigating the maximum water depths detectable from a satellite. At the same time it enables the depth accuracy to be determined with precision. It also makes the exact knowledge of the ship's position less critical during subsequent data analysis efforts, should the position accuracy

FIGURE 1. BAHAMA TEST SITE FOR FOUR CONSECUTIVE LANDSAT PASSES.

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

of a given depth measurement be in doubt within one or two picture elements. The water clarity and relatively uniform bottom reflectance at this site also permitted the goal of the experiment to be better achieved.

?

ERIM

Table 1 lists the station locations, where underwater measurements were taken for each day of the experiment. At each station the Calypso and Beayondan were anchored so that accurate location information and depth soundings near each other are well correlated. The Beayondan would remain at these stations several hours in order to take advantage of the improved position accuracy obtainable from multiple passes of the six transit navigation satellites. These satellites fixes were then used to improve the LORAN-C position measurements.

During the time that the Beayondan obtained position information, the Calypso sailed at 8 knots along 10 to 15-mile linear transects, usually at a compass heading matching the ground track of Landsat. Along these transects fathometer data was obtained continuously with minute marks entered on the charts at the time that LORAN-C position data were also recorded (see Figure 2). The transects were also chosen so that sometime along the track, the Calypso would pass within 30 to 40 m (one half the size of a Landsat ground resolution element) of the anchored Beayondan. The time of passage and the range and bearing between the ships were taken into order to maintain correlation of depths measured with position (see Appendix A).

Between stations, the Beayondan also anchored near several landpoints to again check satellite position fixes with LORAN-C position information obtained from times of arrival differences in signals transmitted from a master station and two slave stations.

Figure 3 shows a typical ship transect defined by LORAN-C. It was taken on September 6 starting at 0425 EDT in the prime test site west of the Berry Islands. The positions are plotted at one or two minute intervals and were defined by converting the coordinates found by the LORAN-C time differences, to geographic coordinates from

TABLE 1

Į

ľ

ERIM

h

NASA/COUSTEAU OCEAN BATHYMETRY EXPERIMENT AUGUST/SEPTEMBER 1975

TABLE OF STATIONS

DATE	STATION NUMBER	LOCATION
Aug 26		New Providence Island
Aug 27	A-1	North of Eleuthera Island
Aug 28	B-1	West of Berry Islands
Aug 28	B-2	West of Berry Islands
Aug 29	C-1	Little Issac
Aug 29	C-2	Great Issac
Aug 29	C-3	Great Issac
Aug 30	D-1	Hellywood, Florida
Sept 4	Transit	Little Bahama Bank
Sept 5	E(5)	Whiting Study
Sept 6	F-1	West of Berry Islands
Sept 7	F-2	Great Issac

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

ORIGINAL PAGE IS OF POOR QUALITY

FICURE 2. COUSTEAU AT RECORDING FATHOMETER. Defection corresponds to depth while horizontal grid is minute by minute time marks for correlation with LORAN-C position information.

ļ

VERIM

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

.

1

1.00

5.1

FIGURE 3. SHIP TRANSECT DEFINED BY LORAN-C September 6 Tract Starts 0425 EDT and Ends 0517 EDT.

1

.....

¥.,

18

ŗ

YERIM

ORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

maps supplied by the Defense Mapping Agency. The solid line is the planned heading. This part of the Atlantic lies at the fringe of the LORAN-C network, so that in some cases a poorly locked-on time difference gave a displaced apparent position of the ship. However, enough reliable points were obtained so that the ships average geographic position along the line could be determined.

3.2 SHIPBOARD OPERATIONS

A series of underwater measurements was made at six of the anchored stations. Three types of instruments were employed to conduct these measurements. A multichannel submarine photometer, two filtered transmissometers and a combination of two Nikonos underwater cameras filtered to match Landsat Bands 4 and 5. The two cameras were used to photograph the ocean bottom; a 4-step calibrated reflectance gray scale was included in each frame. Three teams carried out the shipboard operations to obtain the necessary supporting water data. One team operated the multichannel submarine photometer (see Figure 4). This instrument consisted of two sensing cells and a deck control unit. One sensing cell, called a Deck Cell, remained on board ship fastened to the helicopter pad to get an unobstructed view of the sky. The Sea Cell, with four identical channels, was deployed away from the ship using 200-ft cables and lowered beneath the surface. Readings were made from both mezers at the surface, and at selected depths of 1, 5, 10, and 15 m, as well as the bottom. At each level, the divers would hold the Sea Cell fixed, it always looked upward, integrating the light from the hemisphere above. During this moment, the team recording the radiance would cycle through the four detector positions. Two positions had filters which matched the Landsat Bands 4 and 5; the third was filtered for the blue region; and the fourth was unfiltered.

The necessary range selector adjustments were made each time, since less light reached the Sea Cell as it was lowered into deeper

	FORMERLY WIL	LOW RUN LABORATORIES	THE UNIVERSITY OF MICHIGAN
		andra and and and and and and and and and an	in γγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ
			- and sense in the second s
line			
K MAN	A STATE	•	•
The second		and the second	
		- *	
	Trany .		
(a) Sea cell bein	g lowered into Zodi	iac for deploy	ment 200 ft
	away from shi	.p.	
	، محمد ا		
•			
• • •			·- . ´
-			··· . *
			. ´
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · ·
(b) Meters to reace	ad light reaching Do	eck Cell and S positions.	Sea Cell in
(b) Meters to reaceast FIGURE 4.	ad light reaching Do h of four detector SUBMARINE MULTICH	eck Cell and S positions. ANNEL PHOTOMET	Sea Cell in

3

-

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

water. At the same time that the Sea Cell detector positions were read, the corresponding Deck Cell detector readings were also recorded. In this way variations in the sun's illumination during the time between readings at different depths could be removed in the data reduction phase and only the effect of water depth on the light absorption would be determined.

The photometer data, by measuring the volume-integrated loss of energy as a function of water depth, gave values of the water extinction coefficient most suitable to the model which was used to compute water depth with the satellite CCT data. The photometer was also employed underwater in a second mode (see Figure 5). By restricting its field of view (a tube was attached underwater) the diver could obtain readings (again in all four spectral ranges) from each step of the calibrated gray scale as well as from typical surrounding bottom materials. From these data, the bottom reflectances in Bands 4 and 5 can be obtained if care in avoiding shadows is taken and no bottom sediment is permitted to be in suspension.

A second technique for accomplishing the same measurement used the two filtered Nikonos cameras. A three step gray scale panel with measured reflectances of 1%, 10.6%, and 29.6% (see Figure 6) was deployed underwater and photographed against the ocean bottom along with a secchi disk of known reflectance 84% to provide a fourth calibration step. Along with station location codes, the panels contained red and green stripes to code the black and white images so that no ambiguity would result later in determining in which spectral band an image was taken. By measuring the density of the negative across each gray level and than at selected points of the ocean bottom, an average percent reflectance of the bottom for that particular spectral band could be obtained. This parameter was also needed for the calculation of water depth. Different mixtures of bottom types were encountered at six sites during the experiment. Data from stations F-1 and D-1 were subsequently used to make detailed depth measurements.

22

1.

1.

L

ORIGINAL PAGE IS OF POOR OUT

FIGURE 6a. THREE STEP CALIBRATED GRAY SCALE MADE SPECIALLY FOR EXPERIMENT. Station and Day Codes as well as color stripes for coding Nikonos Band 4 and 5 images were employed.

FORMERLY WILLOW RUP LABORATORIES THE UNIVERSITY OF MICHIGAN

FIGURE 6b. TWO 35 mm LENS NIKONOS CAMERAS FILTERED TO MATCH BAND 4 AND BAND 5 OF LANDSAT 1 AND 2. Underwater exposures with Tri X film, ASA400 at f/ll at 1/125 sec fcr green band and f/5.6 at 1/125 sec for the red band were typical.

Two transmissometers were also used, each filtered so that beam attenuation measurements in spectral bands equivalent to Band 4 and 5 of Landsat could be made. They were lowered over the side of the Calypso (see Figure 7) and the percent light transmission from a light source through a fixed distance of water was measured. Measurements were made at 1, 5, and 10-m depths to check on the assumption of uniformity of the water column with respect to the average water transmission characteristics.

1

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF LICHIGAN

Special measurements were made and samples collected at Station E in the Little Bahama Bank in order to investigate the source of turbidity concentrations that appear in Landsat imagery and are sometimes mistaken for shallow water. The result of this phase of the investigation is given in Appendix B.

3.3 DATA PREPARATION - WATER ATTENUATION AND BOTTOM REFLECTANCE

The results of the submarine photometer work are summarized in Figure 8. In this graph, transmission of light, T, where $T = e^{-\alpha Z}$, is plotted versus water depth, z. The attenuation coefficient ω is usually expressed in m⁻¹. Data for both Band 4 (green) and Band 5 (red) are given for six stations. The transmission data were derived from the raw photometer data by comparing values in each band near the surface with each of the values measured at lower depths. This quotient was normalized by referring to the Deck Cell variations recorded at the same times as the Sea Cell data were obtained at the sequence of depths.

The average slopes of each of the lines of Figure 8 were then computed to produce the results given in Table 2. From this table, the variations in the type of water encountered at the six sites can be seen by an inspection of the values of α for Band 4. The clearest water $\alpha = 0.052 \text{ m}^{-1}$, occurred at the Eleuthera test site, A-1 and theoretically, the deepest depths could be measurable there. The site F-1 west of the Berry Islands, measured on September 6, 1975, contained

25

.....

SERIM

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

1.

1

Ľ,

FIGURE 7. TRANSMISSOMETER DEPLOYED UNDERWATER TO MEASURE BEAM ATTENUATION OF WATER. Distance between light source and detector is adjustable and was typically set at 55 to 70 cm apart.

ORIGINAL' PAGE IS OF POOR CUAL

ł

!

,

^}

}

I

ERIM

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

ł

ł

}

FIGURE 8. GREEN AND RED BAND TRANSMISSION VERSUS WATER DEPTH

SERIM

Ì. •

.....

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

Ŧ

ł

TABLE 2

AVERAGE WATER ATTENUATION COEFFICIENTS DERIVED FROM PHOTOMETER DATA BAHAMAS AND FLORIDA 1975

CALYPSO STATION		$\begin{array}{c} \text{BAND 4} \\ (m^{-1}) \end{array}$	BAND 5 (m ⁻¹)	
A-1	Eleuthera	Aug 27	0.0522	0.219
F-1	Berry	Sept 6	0.0586	0.314
B-1	Berry	Aug 28	0.0638	0.273
в-2	Berry	Aug 28	0.0661	0.369
C-2	Issac	Aug 29	0.0748	0.326
D-1	Florida	Aug 30	0.1067	0.374

the next clearest water $\alpha = 0.059 \text{ m}^{-1}$. The site D-1 near Florida, measured on August 30, 1975, had the poorest water clarity encountered, $\alpha = 0.107 \text{ m}^{-1}$.

The experimental test of satellite-measured water depth was performed for stations F-1 and D-1 in order to investigate the effect of changes in water attenuation on the maximum depth measurable. Consequently, the filtered Nikonos imagery of the gray scales for sites F-1 and D-1 (see Figure 9) were analyzed to compute the percent reflectance of the bottom. The corresponding photometer data taken at the same site gave comparable values.

Transmissometer data in the green band taken at station F-1 showed that the average percent transmission was of 88 ± 7 units over all depths measured. At D-1, the average percent transmission for all depths measured was 78 ± 5 units in the green band. Path was 55 cm in both cases.

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

FIGURE 9. BAND 4 FILTERED IMAGES. Taken underwater at six locations with calibrated gray scale used to estimate percent reflectance of bottom.

30

ORIGINAL PAGE IS OF PORE OUT T

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGA

4

CALCULATION OF WATER DEPTH

4.1 MODEL DEVELOPMENT

ERIM

In order to compute water depth using remotely sensed signals, a relationship between signal voltage from the Landsat MSS and the depth of the water must be developed which includes the parameters that have an effect on the sun's energy as it passes through both the air and water paths and reflects from the ocean bottom. The complexity of the variables in this situation suggest that before a relationship can be developed, some simplifying assumptions are necessary. Three assumptions were made in this case. First, the model to be used would neglect scattering in the water. If we are investigating maximum depth penetration in clear water, this is not unreasonable. Secondly, we assume that the sensor signal comes only from direct solar radiation defined as E_0 . For the wavelengths in the green and red bands, this again is practical since skylight is dominated by blue wavelengths. erty of α , the water The third assumption is placed on the p attenuation coefficient, we assume it is independent of the radiance distribution for mathematical simplicity.

In general then, the voltage at the MSS output, V will be related to water depth, z, by the equation:

 $V = V_{S} + V_{0} e^{-\alpha} (\sec \theta + \sec \phi) z$ $V = V_{S} + V_{0} e^{-2\alpha z} \text{ for small values of } \theta \text{ and } \phi$

where

or

 V_S = the signal level from deep water including atmospheric path. θ and ϕ are the refracted solar elevation angle and view angle respectively. ϕ is less than 5° while θ is less than 16°

and

 $V_0 = k_S \frac{T_1 T_2}{r_2} E_0 T \frac{r_b}{\pi}$

FORMERLY WILLOW RUN L BORATORIES THE UNIVERSITY OF MICHIGAN

such that $k_s = Landsat-1$ MSS 4 sensitivity constant $T_1, T_2 =$ water surface transmittance (approximately 0.98) n = index of refraction = 1.33 $E_0 =$ surface irradiance $T = e^{-T}$, atmospheric radiance transmittance and $r_b =$ bottom reflectance (assuming Lambertain reflection distribution).

ERIM

1

Hence, if V_0 and α are known or can be calculated we can compute z by inspecting the Landsat signals after first subtracting the mean deep water signal. In a Landsat scene which covers 10,000 sq nm it does not prove difficult to find areas of deep water.

The water attenuation α was measured by the submarine photometer and is obtained from Table 2. Most of the terms in V₀ are constants or known parameters. The bottom reflectance r_b , was measured as described in section 3. E_0 , the surface irradiance was also obtained from the Sea Cell reading of the photometer at the surface. E_0 could also be obtained from knowledge of the sun's solar irradiance at the top of the atmosphere and modified by the atmospheric path transmission for a marine atmosphere. Finally, T was assumed to equal 0.8, the atmospheric radiance transmittance based on calculations of a Guttman-Kwajalein type atmosphere for this site [4].

4.2 COMPARISON OF CALCULATED DEPTHS FROM SATELLITE DATA VERSUS CALYPSO FATHOMETER READING AT STATION F-1

On September 6, 1975 at Station F-1 west of the Barry Islands, in the prime test area, Landsat-1 passed over the Calypso and Beayondan at about 10:30 EDT. The computer compatible tapes containing high gain data from this scene were subsequently used to construct a depth map (see Figure 10). The scene is partly cloudy, but the edge of the Great Bahama Bank is clearly **delineated**, as are several shallower depth ranges which were coded by printing in different colors. The digital

ORIGINAL PAGE IS OF POOR QUAL

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSIT / OF MICHIGAN

in the second se

ETRY MAP Book 1975	Contra in Recent	17.7	
BATHYN Belede Milee G	111	\$.	AND
ANDSAT Gree Sept	Coller		

33

Site is the northern edge of the Great Bahama Bank. hite. Other depths are coded according to legend. FIGURE 10. BATHYMETRY MAP MADE FROM BAND 4. Site Clouds or snallow depths less than 4 m are white.

<u>ERIM</u>

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

values for a given depth range are given in the caption for Figure 10. Fortunately, the sky was clear at station F-1 within this scene and the satellite sensor signals corresponding to the pixel containing the two ships could be identified from the CCT. This was accomplished by first rotating and scaling the Landsat data and then developing a regression equation that converts line and point numbers from the digital format into known geographic coordinates. A twelve-point fit using the geographical coordinates of distinct land features in the scene were used to compute the regression relations. Since the satellite fixes made by the Beayondan gave accurate position information, these were used to find the corresponding Landsat line and point numbers. The Beayondan's calculation for the position of station F-1 was 25° 45.116' N latitude and 78° 9.001' W longitude. The corresponding line and point position in the Landsat data was computed as 1524, 496 respectively. The digital count for this pixel was found to be 66. By careful examination of the digital data it was possible to locate which of the six detectors to use in determining the corresponding deep water signal in an area north of the Great Bahama Bank. This value was found to be 59 counts. Using the model described in the previous section, the relationship for station F-1 was:

$$Z = \frac{-1}{0.117} \ln \left(\frac{V - V_S}{70.4} \right)$$

where $\alpha = 0.058 \text{ m}^{-1}$ was obtained from Table 2.

$$\begin{split} & V_0 = 70.4 \text{ for the parameters following:} \\ & T_1 = T_2 = 0.98 \\ & E_0 = 12.8 \text{ mw cm}^{-2} \text{ (Sea Cell reading at the surface)} \\ & T = 0.8 \text{ (Guttman-Kwajalein atmosphere)} \\ & r_b = 0.26 \text{ (Derived from the underwater photography)} \\ & k_S = \frac{127 \text{ counts}}{0.83 \text{ mw cm}^{-2} \text{ sr}^{-1}} \text{ (NASA-supplied sensitivity constant).} \end{split}$$

VERIM

I. N. _____ . __.

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

1

The high-gain Band 4 Landsat data for this date saturated at 127 counts. Substitution into the equation for Z gives:

$$Z = \frac{-1}{0.117} \ \ln \left(\frac{66-59}{70.4}\right) = 19.7 \text{ m.}$$

This is the calculated depth from the assumed model, based on careful analysis of the Landsat digital values.

On board the Calypso, the displacement of the fathometer recording pen for this site was 42.1 mm with a scale sensitivity of 10 ms/20 mm. The temperature of the water at this site was 29.1°C. Using the temperature correction of 2.4 m/s/C° above 25° C the velocity of sound was computed to be 1542 m/s.

The fathometer displacement represents a two-way path for the time it takes the sound to reflect from the bottom back to the transducer. Thus,

$$Z_f = 1542 \text{ m/s x} \frac{t}{2} = 1542 \text{ m/s x} \frac{42.1 \text{ mm x} 10^{-3} \text{sec}}{2 \text{ x} 20 \text{ mm}} = 16.2 \text{ m}.$$

The Calypso fathometer transducer is 2.97 m below the water line; this bias must be added to the value computed for Z_f . Thus, the depth Z_c measured by the Calypso for station F-1 was:

 $Z_{C} = 16.2 \text{ m} + 2.97 \text{ m} = 19.2 \text{ m}$

The close agreement (2.5% error) between the 19.7 m derived from the model and 19.2 m measured by the fathometer gives strong evidence to the correctness of the approach and to the potential practical utilization of satellite data for water depth measurements.

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

4.3 EXTENSION OF THE CALCULATIONS TO OTHER AREAS

In order for the satellite technique to be considered practical, we must know how well other depths calculated from the satellite MSS digital values will compare with ship-measured depths. This necessarily raises the question of the reliability of the extension of measured values for α and r_b at one site to other nearby areas. This element was tested using the ship transect described in Figure 3.

Along the track, the Calypso position was known from LORAN-C measurements and the depth was known for each corresponding minute of data samples. A number of positions along this track was selected and by similar procedures to that for station F-1 the depths were calculated. In addition, the mean deep water signal in Band 4 was calculated for all six detectors separately and together. These are listed in Table 3.

One can see that the Landsat detectors are not equally noisy so that depth accuracy can vary from point to point in a scene. For this analysis, the standard deviation of 1.77 calculated for all six detectors was chosen to define the error bars on the depth calculations from the satellite data. A graph showing the calculated values versus the ship measured depths is given in Figure 11.

The ideal case would be for all values to fall on the straight line. It can be seen that agreement to 22 m depths is readily acceptable but beyond this range the calculated values are consistently lower than measured values. It is encouraging to note that for this site, depths at 40 m were detectable (even though they were not correctly measured as such). There could be several reasons for the short estimate.

First, the model has neglected scattering effects. At longer water path lengths, this assumption could be invalid. Second at deeper depths, less bottom vegetation may occur, so that the effective reflection could be higher and thus appear to be a signal from a shallower depth. In any event, the signal from the 40 m depth represents
ERIM

TABLE 3

. . .

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

AVERAGE MSS4 SIGNALS OBSERVED OVER DEEP WATER, SEPT. 6, 1975

Detector	<u>Mean Signal</u>	Std. Deviation
1	57.80	1.43
2	57.34	2.05
3	57.85	1.99
4	58.68	1.55
5	57.70	1.79
6	59.09	1.05
all	58.14	1.77

Based on sample of 2100 Points for each detector.

37

1

ł. .

Y.

<u>ERIM</u>

and the second of the second

vs MEASURED DEPTH

ERIM

I

only two counts above the deep water signal, indicating that the effect may also be statistical. Note the location of the upper error bar on the 40 m test case. It is close to 35 m. An error of 5 m out of 40 m is 13%. The agreement is better for shallower depths where the signal-to-noise count is more favorable.

ł

1

1

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

4.4 EXTENSION OF THE CALCULATIONS TO ANOTHER DATE

P . . .

A stronger test of the method can be made by assuming that the ground data taken in September is stationary in time and using it to calculate depths with Landsat CCT's obtained in October. On October 12, 1975, Landsat-1 obtained coverage of the station F-1 area. Since the solar zenith angle was different, the signal levels were found to be lower. However, the noise variation as seen in the calculation for the standard deviation in Table 4 were similar to the September case. For October, the mean signal had dropped to 51.1 counts and the standard deviation was 1.63 counts. The signal change was proportional to the cos θ where θ is the solar zenith angle.

In a similar fashion as above, a graph comparing Landsat calculated depths versus measured depths was constructed (see Figure 12). The water transparency value and the bottom reflection value used in the model were those measured in September.

The October satellite-calculated depths followed a similar pattern. Good agreement in the 20 to 23 m range with the error on the short side for the deeper depths. Interestingly, the upper error bar for this date for the 40 m data point now crosses the correlation line.

If the signal-to-noise of the Landsat signal could be improved even by two counts better reliability would be achieved for calculated measurements to 40 m.

The results shown in Figures 11 and 12 suggest that remote bathymetry from space is practical. If the measurements of water clarity and bottom reflectance at a small number of control points can

ľ

TABLE 4

AVERAGE MSS-4 SIGNALS OVER DEEP WATER OCT 12, 1975 LANDSAT -1

1

ſ

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

ł

1.

ŧ

I

5

Detector	Mean Signal	Std. Deviation
1	51.11	1.21
2	51.45	1.57
3	51.08	1.49
4	50.52	1.93
5	51.19	1.36
6	51.60	1.89
all	51.15	1.63

Based on sample of 2100 points for each detector.

|_.

1.

ļ

ERIM

?

-- }.

YERIM

٠,

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

ERIM

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

be made and if they represent values that can be used over a few months in time, then updated charts for the location of water depths hazar'ous to ships is feasible. And not only can position informatior be derived from space data, but estimated depths with accuracies on the order of 10% or less in the range from 0 to 22 m is feasible with present satellites in orbit operating in the high gain mode. Suitable supporting cata is necessary for highest accuracy and can take several forms. Knowledge of the depths at selected points can serve the same role as knowledge of water clari y and bottom reflectance. However, there is a world wide distribution of measurements from different countries of water transparency and bottom reflectance data that could be obtained and these values tested for determination of overall accuracy. One advantage of the 70 m resolution of the Landsat sensor is that small variations in the bottom surface are averaged out. With a library of parameters for different areas and with careful analysis of repetitive satellite data, charts of ocean areas with potential hazards can be constructed.

To illustrate what is possible in map construction, a relatively cloud free area of the October 12, 1975 scene for the area west of the Berry Islands was used to make a depth map. The computer output of the CCT was first rotated and scaled in order to produce a final product with proper aspect at 1:300,000. The scale was chosen to match chart N.O. 26320 covering the Northwest and Northeast Providence channels. The area on this map of the investigation is labeled Northwest channel with a reference to a very intricate passage due to hazardous shoals. The first edition of the chart is given as June 7, 1965 and it was was revised February 12, 1973. A transparency of this map for the area selected from the Landsat CCT was used as an overlay to the color coded depth map generated by ERIM using the color inw-jet printer on the output of the MIDAS computer. MIDAS is a multivariate interactive digital analysis system in developmental stages under NASA sponsorship.

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

1

٤.

The map made from Band 4 is illustrated in Figure 13. The color association for each range of depth is given in the legend. The numbers on the overlay express the depth in fathoms (6 ft or 1.83 m).

2

ERIM

The effect of noise fluctuations in the data can be seen by the texture of the dark blue area representing deer water. This is relaced to the differences in the mean signal levels and their .ariances for the six detectors as shown in Table 4.

The spurious shallow depths seen in deep water areas in the lower right are the result of the presence of clouds, cloud shadows and sunlight reflection from clouds onto the ocean surface. Obviously these artifacts can be eliminated by choosing only cloud free scenes or cloud free areas within a given scene. The general agreement between the overlay and the satellite map is encouraging. For example the pink yellow boundary which represents about 5 m depths falls on the chart between 2 to 2.5 fathoms or near 3.7 to 4.5 m.

One method to reduce the effect of the difference in signals from the six detectors operating in one band is to average their values line by line by a six by six "moving window" algorithm operating on the CCT data. This procedure was implemented and the results are shown in Figure 14. The procedure smooths the data so that each color's depth range is less ambiguous. The trade off in producing this type of map is that the spatial resolution is made coarser. The position uncertaincy has been increased. However, position information can be obtained before the smoothing process.

Another benefit for depth charting is that with a 6 x 6 element smoothed data set, a single digital value can be printed which will represent a narrow depth range and produce a contour line depth profile map as shown in Figure 15.

Each 'ine represents the depth boundary between adjacent depth ranges of Figure 14. Where the line widens that area would be interpreted as having the same water depth. Other forms of CCT processing

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHICAN

ORIGINAL PAGE IS OF POOR QUALITY

PRECEDING PAGE BLANK NOT FINGS

FIGURE 13. BATHYMETRY MAP FROM LANDSAT-1, BAND 4, OCTOBER 12, 1975. With overlay from Chart N.O. 26320.

45

MENTER PACE BLANK NOT FILMED

1.

t

1

۰,

١.

ſ

PRECEDING PAGE BLANK NOT FILMED

}

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF M HIGAN

Ľ

^}

FIGURE 15. BATHYMETRY MAP FROM LANDSAT-1, BAND 4, OCTOBER 12, 1975. With overlay from Chart N.O. 26320; data averaged over 6X6 resolution elements.

are possible using the satellite data and further research could produce those output formats most helpful to the map using community.

4.5 SATURATION OF BANDS 4 AND 5

As seen from Figures 13 and 14, the red areas represent depths not measured because of signal saturation. With the high gain mode for Landsat, there will be an increase in the areas where signal saturation will occur in Band 4. This occurs in shallow depth areas, with high reflective bottom materials on the order of 30% or higher.

This aspect was further investigated for an area just north of Andros Island. Bright calcareous sands almost awash produce signal levels at 127 counts. A plot of the signal level difference versus water depth is given in Figure 16 for both Landsat Bands 4 and 5. The signal level associated with deep water for each band was subtracted from the Landsat signal to give the linear relation shown on a semilog graph. For this case depths were estimated from the chart but the error bars are calculated from the deep water noise fluctuations as before.

The data shows that for this area with the conditions prevailing, Band 4 saturates at 1.3 m while Band 5 saturates at 0.3 m. Figure 16 also explains why two channel processing for mapping depths with present Landsat MSS is limited. The minimum and maximum depths where both channels have usable data are from between 1.3 m and 6 m. This could be improved in the future by two channels operating in the bluegreen and green bands of the spectrum.

The use of Band 5 (also 6 and 7, if needed) to isolate water depth at small intervals can be seen from Figure 17. There the amount of area (red color) giving a saturated signal is greatly reduced. The finer depth increments show the complimentary nature of Band 5 with regard to the range where Band 4 saturates. The higher absorption of radiation in Band 5 helps to improve the depth division with steps fraction of meters apart. In surface water hydrology or shallow-water targe-transport

ì

-- |

Į

ľ _

. 1

ł

ł

ł

FIGURE 16. SATURATION DEPTHS FOR LANDSAT-1 BANDS 4 AND 5

51

. .

FIGURE 17. BATHYMETRY MAP FROM LANDSAT-1, BAND 5, OCTOBER 12, 1975. With overlay from Chart N.O. 26320.

problems, such narrow level mapping of depths should prove advantageous. In a similar manner, Band 6 could be used to "slice" the shallow depth ranges where Band 5 saturates.

One notable improvement in shallow water mapping with Band 5 is that a clear passage of 3.6 m depth is shown for the Northwest channel (lower middle of Figure 17). In Figure 13, for the same area, a red zone defining a range of 0 to 5 m leaves a clear passage ambiguous. FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

ERIM

5 DEPTH CALCULATIONS NEAR THE FLORIDA COASTLINE

We have seen the results for remote bathymetry from satellite data for a test area with clear water characteristics, that is, when the water extinction coefficient was equal to 0.058 m^{-1} . On the fourth day of the experiment (August 30, 1975) the Calypso anchored near the coast of Florida and obtained data at station D-1, to determine the loss of light penetration in areas of different clarity (see Table 2).

The satellite CCT data for this date was not available but the site was imaged on September 7, 1975 under partially cloudy conditions.

A portion of the east coest of Florida, extending approximately from Lake Worth to Biscayne Bay, is contained within Landsat frame 5141-14503 (September 7, 1975). A subset of this data, covering the shoreline from Port Everglades to Miami Beach, was rotated and scaled in order to yield a geometrically correct display on the MIDAS ink-jet printer at a scale of 1:80,000. The scale of the transformed data set was verified by means of an analysis of four ground control points, and the following relationships were established for the line and point numbers on the rotated data:

> line no. = 1871 - 28.06 x lat line point= 280 - 23.88 x long

where lat is the latitude in minutes north of $25^{\circ}N$, and long is the longitude in minutes west of $80^{\circ}W$.

The Beayondan position information from the satellite interrogations gave the coordinates for D-1 at 26° 3.8556'N and 80° 5.648'W. Using the above relationships, the line and point numbers for Station D-1 were determined to be 79 and 145, respectively. A display of the data from the CCT showed the signal values at this location to be 68 counts in MSS 4 and 34 counts in MSS 5.

54

1

ERIM

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

An area of Jeep water further offshore was found to have a mean signal of 61.82 counts with a standard deviation of 2.99 counts in MSS 4, and a mean signal in MSS 5 of 34.61 counts with a standard deviation of 2.64 counts.

The signal variation in the deep water area for this data was found to be higher than that found near the Berry Islands. We interpret this to mean that the water color (and hence the returned signal to the sensor) near Florida is considerably more variable spatially because of the presence of the Gulf Stream, river discharges and ocean outfalls, and other industrial effluents along the Florida coastline which contribute to the variation in light scattering and absorption.

The signal level of 68 counts for station D-1 against a mean deep water signal of 61.8 counts clearly indicates that a bottom reflected component exists in MSS Band 4. This is not true for Band 5, where 34 counts at station D-1 is less then 34.6 counts for the deep water signal.

In order to calculate the depth at station D-1 the various ground measurements, including the underwater photography of the gray scale against the bottom, were analyzed to yield a bottom reflectance of 20%; the photometer data gave an extinction coefficient of 0.1067 m^{-1} in MSS 4 at this location. As a practical matter, the film negatives with the gray scale are scanned with a densitometer and the film density (or transmission) is plotted versus the known panel reflectance. An average film density (or transmission) was measured for the bottom and the bottom reflectance is obtained. However, this quantity measured from data taken under water can be defined as the wet reflectance = $\frac{r_b}{n^2}$ where r_b was defined as bottom reflectance in Section 4 and n is the index of refraction. When we report $r_{h} = 20\%$ for D-1 or $r_b = 26\%$ for F-1 these values are the dry reflectances. Substituting the appropriate values in the depth equation (see Section 4) gives the following relationship between water depth and MSS 4 signal:

55

ł

L

ERIM

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

 $V_0 = 54$ for this site since the r_b is different from that of site F-1 $V = 62 + 54 e^{-0.2134z}$

or $z = \frac{0.1}{0.2134}$ ln $\frac{V-62}{54}$.

This equation yields 1 depth of 10.2 m at Station D-1.

The fathometer reading for this site on August 30 gave a depth value of 11.2 to following the procedure described for site F-1. Again the agreement is encouraging. The higher extinction coefficient, however, limits the maximum depth measurable at site D-1. In order to determine the range of depth detectable along the Floriaa shoreline, two transects perpendicular to shore were investigated. One transect covered the track of the Calypso for this site and is shown in Figure 18a. The second cransect was taken near Sunny Isles (25° 59.75'N) and corresponded to a fathometer line measured two years earlier by ERIM personnel in the same test area. This is shown in Figure 18b. The plot shows CCT count versus point number or position offshore. The CCT data was averaged in rectangular arrays 5 x 1 pixels with the long axis parallel to the coatline. The fairly smooth curves can be used to investigate the maximum depth penetration under these more difficult circumstances. Figure 19a and b show the conversion to depths using the equation given above.

For the Sunny Isles transect, a plot of the ground truth is also shown for comparison. Good agreement is found to depths of S m within the first 1,000 m from shore. Subsequenc points further from shore were calculated to be deeper than measured depths. This implies a change (lower) in the value for the bottom reflection. A corrected value would have to be inserted into the model for this part of the transect. Beyond 2,200 m from shore, where actual depths are greater than 14 m, the satellite depths are shallower than measured values, producing the effect noted for clear water beyond a depth of 22 m (see Chapter 4).

56

l

1.

FIGURE 18. SIGNAL-RELATED DEPTH PROFILE NEAR FLORIDA COASTLINE

57

1

1

.1.

ł

L

Ι.

Į

FIGURE 19. SATE LLITE CALCULATED DEPTH PROFILES FOR TWO TRANSECTS NEAR HOLLYWOOD, FLORIDA

58

ł

<u>ERIM</u>

1.

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

A color coded depth chart for this site was also produced on the MID\S Ink-jet printer (see Figure 20). Depths from 0 to 15 m are indicated in 3 m increments by means of six colors on this chart. These colors and the corresponding data and depth ranges are indicated in Table 5. Land is indicated by overprinting in black those areas where the signal in MSS 7 is greater than 12 counts. A few pixels are also visible with a pink color: these indicate pixels where the MSS 4 signal was saturated in high gain mode. The data presented in this display were smoothed 5 lines by 1 point in order to reduce random noise while maintaining spatial resolution in the perpendicular-toshore direction.

A cloud present in the image nearshore gives the anomalous shallow water reading. The scale of 1:80,000 was matched to chart C&GS 11466 from which the overlay to the color coded map was made.

Numbers of the chart are expressed in feet. The correspondence of the location of underwater variations along shore in the chart to that of the satellite map is favorable. The feasibility of the technique is again demonstrated even though only shallow depths are measurable because of the higher extinction coefficient. The maximum depth discernable along the track containing station D-1 is about 18.5m.

L

1.

ORIGINAL PAGE IN OF POOR QUALITY

TABLE 5

COLOR CODE FOR DEPTH RANGE OF FLORTDA COASTLINE MAP					
DATA	DEPTH RANGE				
RANGE	(meters)	COLOR			
1- 64	> 15	Purple			
65- 66	12-15	Light Blue			
67- 70	9-12	Green			
71- 77	6-9	Tan			
78- 90	3- 6	Yellow			
91-126	0-3	Red			
Saturation		Pink			
	*				

Land Black

FIGURE 20.

COLOR CODED DEPTH MAP MADE FROM LANDSAT IMAGE. Taken September 7, 1975. Overlay is from Chart C&GS 11466 at approximately 1:80,000; soundings are in feet. The anomalies offshore are due to clouds.

....

٩.

ERIM

Ĩ

CONCLUSIONS

6

}

RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

1

The success of the satellite calculated water depth using high gain Londsat MSS 4 data demonstrated the feasibility of remote bathymetry from space. In clear water (extinction coefficient = $0.058m^{-1}$) depths to 22 m can be measured reliably and signals from 40 m depths can be differentiated sometimes from deep water signals that are due to scattering only. In less clear water (extinction coefficient = .11 m⁻¹) depths to 10 m are reliably measured and detection of the presence of 18.5 m depth is feasible. For these values to be generally realizable, the bottom reflection shou'd characteristically be between 20 to 26% in the green band (Landsat MSS 4). The best accuracy of the depth measurement will occur if knowledge of the areas average water transmission characteristics are known as well as the reflectance of the bottom.

Single-charmel charting is reliable where assumption of uniform bottom reflection and water transmission characteristics are valid. If changes do occur, adjustments of the appropriate model input parameters much be node to maintain accuracy. Otherwise those pixels should be edited. The technique may use alternative information to bottom reflectance and water clarity. Knowledge of depths at control points within the scene, made available by water level gauges or by aircraft with laser depth-ranging equipment and ship support measurements are equivalent. A catalog of average values for an area will give useful a priori information. Repetitive satellite coverage helps provide information as to possible deviations from average values.

Under certain conditions of bright bottom reflectances, 30% or greater and shallow depths, less than 1.3 m, the high gain data of Band 4 will saturate. In this case, it is possible to use Band 5 data to determine depth in fractions of meter steps for the range where Band 4 saturates because of the greater light attenuation in Band 5.

ERIM

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

ł

Cloud free Landsat scenes offer the best solution to depth map construction to avoid anomalous shallow depths due to clouds and ocean reflection of sunlit clouds. Incorporation of scattering effects into model relating Landsat signals to water depth could improve accuracies of deep water estimates.

Detection of deeper depths or improved reliability of intermediate depth calculations would be possible if optimum band location could be employed on future spaceborne sensors. An analysis of the effect on S/N ratio by placement of the channel bandwidth between .45 to .60 μ m was made on 0.1 µm intervals [3]. That study concluded that improvement in S/N would occur by placement of the band in the range .47 to .57 μ m. The same methodology of that study was employed to determine placement with .07 μm bandwidth intervals. The results are shown in Figure 21. The analysis was done for three types of water clarity and two atmospheric conditions. The graph shows the improvement to be gained by proper location of the channel bandwidths. For clear water, 0.45 to 0.52 μ m would be optimum. As a compromise to all three types of water, 0.47 to 0.54 μ m might be selected. The NASA/Cousteau Ocean Bathymetry experiment also demonstrated the potential of near-real-time transmission of processed satellite data to ocean going vessels through ATS-3 communication link. The report of this phase of the experiment is given in Reference 5.

Į

?

Ì.

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

FIGURE 21. SIGNAL DIFFERENCE VERSUS BAND POSITION (LANDSAT-D)

-1,

l

l

63

1

....

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

REFERENCES

- W. L. Brown, F. C. Polcyn, A. N. Sellman, and S. R. Stewart, Water-Depth Measurement by Wave Refraction and Multispectral Techniques, Report No. 31650-31-T, Willow Run Laboratories, Ann Arbor, August 1971.
- F. C. Polcyn and David R. Lyzenga, Remote Bathymetry and Shoal Detection with ERTS, Report No. 193300-51-F, Environmental Research Institute of Michigan, Ann Arbor, April 1975.
- 3. D. R. Lyzenga, C T. Wezernak, and F. C. Polcyn, Spectral Band Positioning for Purposes of Bathymetry and Mapping Bottom Features From Satellite Altitudes, Report No. 115302-1-F, Environmental Research Institute of Michigan, Ann Arbor, January 1976.
- 4. A. Guttman, Extinction Coefficient Measurements on Clear Atmospheres and Thin Cirrus Clouds, <u>Applied Optics 7</u>, 2377, 1968.
- 5. Dr. John Barker, NASA Goddard, in preparation.

ERIM

₩. A.

APPENDIX A

Technical Memorandum S3R-76-067

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

ľ

ANALYSIS OF LORAN-C DATA COLLECTED ABOARD CALYPSO DURING OCEAN BATHYMETRY EXPERIMENT

April 1976

The Johns Hopkins University Applied Physics Laboratory

65

l

L

1.

]

l...

S3R-76-067 IW10S3R0 April 19, 1976

TO:	Dis	tribu	tion
-----	-----	-------	------

FROM: E. E. Westerfield

SUBJECT: Analysis of LORAN-C Data Collected Abcard Calypso During Ocean Bathymetry Experiment

BACKGROUND

In July of 1975 NASA requested that APL investigate the feasibility of accurately determining the position of Jacques Cousteau's ship Calypso during a joint Cousteau Society/NASA operation. The purpose of the operation was to determine the feasibility of accurately determining depths of water in shallow areas utilizing data from the LANDSAT satellite. APL was specifically requested to look into installing a TRANSIT Navigation receiver aboard the Calypso and to work with the Coast Guard in the use of LOPAN-C. Preliminary studies indicated that it would be difficult to install TRANSIT gear aboard the Calypso due to very limited space, plus an uncertain power system. This was particularly true since Backpack equipment, which is capable of battery operation, was not in any condition to be utilized at that time and time was not available to put it in condition. In addition, it appeared that Calypso would be constantly in motion and that it would be difficult to obtain a sufficient number of rasses at any one point for high quality position determination.

It was suggested by Laboratory personnel that the TRANSIT gear be installed aboard another vessel that could support the gear adequately and that would accompany the Calypso. The Laboratory's 85 ft. Motor Sailboard Beayondan was picked for this job, principally because it was available and required a relatively small crew to operate.

PRECEDING PAGE BLANK NOT FILMED

S3R-76-067 Page -2-

The proposed method of operation was for the Beayondan to sail to one or two sites in each area and to anchor long enough to accurately survey the location by means of the Navy Navigation Sa⁺ellite system (TRANSIT). The Beayondan was also equipped with LORAN-C gear so that the LORAN grid could be accurately calibrated at each point.

At NASA's request the Coast Guard installed a LORAN-C receiver aboard the Calypso. The receiver was a unit that APL had purchased for the Coast Guard and loaned back to the Coast Guard for this operation. Coast Guard personnel installed it aboard the Calypso in Nassau. This receiver was a Deca ADL81. The purpose of this receiver was to determine Calypso's position while it was underway and too far from Beayondan for Calypso's position relative to Beayondan to be accuractely determined using visual means.

PURPOSE OF THIS REPORT

The purpose of this report is to serve as a vehicle to disseminate the data recovered by processing the LORAN-C data collected aboard Calypso, during four of the data collecting runs.

OVERVIEW OF LORAN SYSTEM

1.

LORAN is a hyperbolic radio navigation system that makes use of a master and two or more slave stations. Each station transmits a short pulse of 100KC carrier at a rate of approximately 10 times per second. The exact rate varies from chain to chain. All LORAN-C stations transmit on a frequency of 100 KHz. Precise navigation cannot be obtained by using the pulses, so a system is utilized whereby measurements are made using the 100 KHz carrier. This is done by a method known as cycle matching. The third positive going zero crossing of each pulse is considered the epic point for the pulse.

68

1

L

L ...

ł

1

S3R-76-067 Page -3-

The LORAN-C receiver is built in such a manner that it can track a master station and up to three slave stations The receiver displays the difference in arrival time at once. of the signal received from the master station and each of the (TD) slave stations being tracked in microseconds. The receiver used aboard Calypso was capable of tracking three slaves. One of the difficulties with the receivers and the system in general, is that it is necessary that the receiver lock on and track the third cycle as received from the master and all the slaves. When the signals are very weak the receivers tend to track the wrong cycles, resulting in an error in the time difference measurement, i.e., the difference in time between when the master station was received and a particular slave, by some multiple of 10 microseconds. This can result in a significant error in navigation.

In the area of operation the master station, which is located at Cape Fear, is received quite well, as well as the signal from Jupiter, one of the four slave stations of this The signals from the slaves located at Dana, Indiana, chain. Newfoundland and Nantucket, however are quite weak. This resulted in the receiver often tracking on the wrong cycle or switching cycles in the middle of the data run. In addition, the geometry of the LORAN-C stations as viewed from a user in the area is poor. The lines of position (lines of constant time difference) obtained between the master and the various slaves are running very near parallel. As a result, a very small error in measuring the time difference can result in a relatively large position error. This is particularly true as one approaches the coast of Florida, where one is near the baseline of the Cape Fear - Jupiter pair.

S3R-76-067 Page -4-

?

5

T

In addition, it appeared that the LORAN-C receiver aboard the Calypso was not functioning too well. The receivers are equipped with a series of lights to indicate when they are properly locked on the stations. This receiver often gave an indication of Leing properly locked even though it was not locked or was locked onto the wrong cycle.

DATA COLLECTION

The data was manually recorded by Calypso personnel on log sheets during the various data collection runs of Calypso. The runs were arranged so that typically Calypso ran very near, i.e., usually within 50 feet of Beayondan, at least once during the run. This proved to be invaluable in that the position of Beayondan, which had been obtained by means of the Navy navigation satellite, could be utilized to calibrate the Calypso LORAN-C receiver. This information could be used to determine which stations were being properly tracked, i.e., if the receiver was tracking on the correct cycle and if not what the correction factor was.

PROCESSING OF DATA

1

To obtain the best estimate of Calypso position while it was underway, was a very involved process due to the relative poor quality of the data, plus occasional errors in the hand recording process.

The data was first punched on IBM cards. The cards were then read into a Honeywell H21 computer where they were stored on disc. Use was then made of a Hewlett-Packard 9821 calculator with associated plotter. Hardware was available that allowed the data to be read directly from the disc and entered into the calculator. The first step in the processing was to plot the time

S3P-76-067 Page -5-

difference that had been read from the card against time. Jumps of 10 microseconds in the data could be readily seen from the plots plus other errors such as punch errors could be readily seen. The cards were corrected until a smooth curve was obtained from each set of TD's.

The TD's collected by the Calypso receiver at the time of closest approach were compared to TD's computed for the position. Routines were then utilized for offsetting the TD's normally by a multiple of 10 microseconds, to make them nearly agree with the computed TD's for the point of closest approach.

The TD's for the complete run were then smoothed by utilizing a linear regression algorithm where a straight line is fitted to each set of 7 consecutive points, in a least squares process. The equation of the line is then used to calculate the TD of the center of the line. This was repeated for each data point, always utilizing the data collected for that point and three points on each side. In the case of the end points, the value is calculated from the coefficients of the nearest 7 point segments.

Utilizing the smooth TD's, the position at each point was calculated utili ing a standard LORAN-C computational algorithm. The positions were then plotted along with the positions of both Beayondan and Calypso when at anchor. In some cases the data was still quite ragged and additional smoothing was done directly on the latitude and longitude number utilizing the same algorithms used for the TD's, i.e., where a straight line is fitted to 7 consectuive data points.

PROCESSING OF DATA

.

Four sets of data collected aboard Calypso have been received from Mr. Fabian Polcyn of the Environmental Research

71

L

1.

I

S3R-76-067 Page -6ł

ł

ł

Institute of Michigan, who was principal investigator for the experiment. This data covers the following time spans.

27 August 04:30 to 06:48 local time
27 August 10:36 to 11:23 local time
28 August 03:17 to 05:48 local time
6 Sept. 04:25 to 07:57 local time

The unique features of processing each data run is discussed below.

27 August 04:30 through 06:48

During the majority of this run personnel aboard Calypso recorded data from three slave stations. All three possible combinations were then processed, i.e., Jupiter/ Nantucket; Jupiter/Newfoundland and Newfoundland/Nantucket. Following the position computation, data from each station pair was plotted. As was predictable knowing the typical strength of the signal, the Jupiter/Newfoundland data was by far the best, being very smooth and not requiring any post position computation filtering. The other data was much noisier. with the Newfoundland/Nantucket data being essentially useless. This was due not only to the fact that the signals were weak, but also that the paths to both slave stations from the vessel are nearly coincident and as a result a very poor geometric solution is obtained. Data from this pair deviated by over 4 miles at times from the data of the other pair. The difference between Jupiter/Newfoundland and Jupiter/Nantucket was half a mile at the worse. The Jupiter/Newfoundland data agreed much better with the NAVSAT data. Figure 1 is a plot showing the results of computations utilizing all three pair. Figure 2 is a more detailed plot showing only the Jupiter/Newfoundland X's are shown at each data point. Data was typically data. collected every minute and the time is in icated every 10th point.

72

ł

1.

S3R-76-067 Page -7-

In addition, the positions of the Beayondan at six o'clock and at eight o'clock are plotted as well as the position of the Calypso before and after the data runs. The position of the Beayondan was obtained via the Navy navigation system and is accurate to around 15 meters for the 8 o'clock position and to 100 meters for the 6 o'clock position. The error of this fix is due to the fact that only one pass as taken so that no exact statistics can be arrived at. Figure 2 not only shows the current run under discussion, but also the run made between 10:26 and 11:23 local. Figure 3 shows the data for this run without the time marks. The turn at the end of the run can be seen from this plot. Table 1 is a listing of the processed data giving the best estimate of the latitude and longitude at each time point. For this run Jupiter and Newfoundland required essentially no correction at all. The run made utilizing Newfoundland required a 10 microsecond correction, i.v., the receiver was 1 cycle away from the proper third cycle of tracking.

27 August 10:34 to 11:30

Data for this run was available from three different slaves. As usual the data from the Jupiter slave was good while that from Nantucket and Newfoundland was weaker with the Newfoundland/Nantucket pair being weak enough that it is not utilized. In the case of Newfoundland the receiver was 4 cycles off, i.e., 40 microseconds. This error was detected by comparing the Calypso TD's to that collected aboard the Beayondan. The actual comparison was done when Calypso was anchored and range and bearing was taken from Beayondan to Calypso via radar and hand compass. The Beayondan position was from NAVSAT. Figure 4 is a chart showing the data and Table 2 lists the processed data. The position of Beayondan and Calypso when at anchor is again shown on the chart. The reader should note the high scale factor for this particular chart.

> S3R-76-067 Page -8-

1

}

ş

28 Augus: 03:19 to 05:32

Data was again recorded from Jupiter, Nantucket and Newfourdland. Again the signal from Nantucket was obviously very weak as the receiver was often unlocked. All data processing was therefore done with the signals from Jupiter and Newfoundland. The signal however, was off by 60 microseconds, i.e., 6 cycles, which was corrected in processing. The time differences were filtered prior to the position computation. Figure 5 is a plot of the computer positions prior to the insertion of post processing filtering, while Figure 6 is a plot of the position after filtering. The position of the Beayondan at its anchor point is also plotted. It appears that the second filtering probably improves the data because it is very unlikely that the ships made sudden changes of course as indicated by the unfiltered plot. Table 3 is a listing of the filtered positions vs time.

6 September 04:25 to 07:57

Data was collected from the three slave stations. However, for this run the Newfoundland data was very sporadic, while the Nantucke. data was quite usable. Nantucket/Jupiter was therefore used for all data runs. No major corrections were required, i.e., the receiver appeared to be tracking on the proper cycle. The data was sufficiently noisy, however, that post processing filtering was utilized. Figure 7 is a chart showing movement of Calypso while Table 4 lists the position as a function of time. Tables 5 and 6 summarize the results of NAVSAT data collected aboard Beayondan, including the bias errors noted for the LORAN-C grid. The position computed for Calypso when at anchor is also shown. This was computed using Beayondan position and offsetting using range from either radar or optical measurement devices, and bearing obtained by hand compass.

74.

ſ

S3R-76-067 Page -9-

CONCLUSION

The LORAN-C results shown here are probably accurate to around 200 meters, i.e., 1/10 of a mile. This number cannot be proven but it is based on the accuracy of closures with Beayondan typically found in processing the data. Considering the difficulty with the LORAN data, the availability of Navy navigation satellite data made it possible to process the LORAN data with reasonable accuracy. LORAN-C and TRANSIT are an excellent combination, in that the TRANSIT can give high accuracy when the ship is at anchor while LORAN-C can provide reasonable accuracy when underway. It is felt that if the operatic. had been carried out in an area where LORAN-C was better, then the data processing operation would have been simpler and the results would have been obtained much faster.

Edun E Westerfield

EEW:nt Distribution LFFehlner RBKershner RWLarson DJMitola TThompson EEWesterfield ives - 2

....

1

75

1

L

1.

١

1

I

ł

1

ł

(

Į

. . .

* 2 1

1.

.

ţ

1.

ў. ;

I

1

1.

l

,

2

į

Ì.

.

!.

i · † ١

1.

ĵ

3

93¢ 84. NWI Beayondon KX NZE ۲ХХ ÷××₁ XXVV L L L XXX CALYPSO UNFILTERED POSITION 28 August 03:17 thru 05:48 D N J Z -Σ Z Σ IJ Ш М Flgure 5 口 山 公 10 11 12 -M N h N 815 NWB 93¢ 84

- .

81 •••

l

!

I

.1.

;

Ì

1.

Ļ

Ì

.

1

ļ

1.

|

١.

Ι.

٩.

l

ş

I

ORIGINAL PAGE IS OF POOR QUALITY

{

I

Table 1

"

Ì

ł

.

5

}

Į

1.

181

I.,

~

TIME	LATITUDE	LONGITUDE
11 3 0	05 33 2000	
4 3 8	25 33.79900	•76 52•63158
431	25 33.92280	-76 52-49940
432	25 33,84198	-76 52.36596
433	25 33.76026	•76 52.24332
434	25 33.69024	-76 52.12248
435	25 33.59640	-76 51 99294
436	25 33.50580	-76 51.87030
437	25 33.40428	-76 51-75090
438	25 33.32604	-76 51 65316
439	25 33.22800	-74 51 51319
440	25 33.14034	
441	25 33,05868	
<u>11</u> 2	25 32.99704	
<u>и</u> цЗ	25 32 94134	
<u>и</u> пп 	25 32 01321	• 76 51 • 14736
145		- 16 71 - 16 990
449 80 -	20 34.97270	-76 51 00180
443	20.00.00	-76 50.95374
847	25 55.05988	-76 50-91324
448	25 33.14532	-76 5 0.88840
449	25 33.25984	-76 50.98930
450	25 3.38916	-76 50-88012
451	25 33.50436	-76 50.87796
452	25 33.60924	-76 50.88 396
453	25 33.71250	-76 50-87742
454	25 33.80880	-76 50 .85204
455	25 33.87762	-76 50.82420
457	25 33.94776	-76 50 71779
458	25 33.93798	-76 50-43970
459	25 33.92760	-76 50-55 666
500	25 3.90132	-76 50-45478
201	25 33.83208	-76 50-33406
503	25 33.70278	-76 50-11098
524	25 33.69600	-76 50 03742
505	25 33.70818	-76 49.97136
ちれん	25 33.75396	+76 49 .93986
5 17	25 23.81900	-76 49-91838
508	25 33.92568	-76 49.92390
50-2	25 34.36776	-75 49.94262
511	25 34.35066	76 59.00904
512	25 34.48998	- "6 59 - 14420
513	25 (4.62792	50-08752
514	25 74.75932	-7+ -9.11452
515	26 K4. 85742	-76 57 - 10948
·11-	25 34.94622	-75 59-10192
517	25 45. 90124	76 59 17558
514	2	-76 43-36566
310	21 25, 15470	74 19.87524
<u>ה א</u> ו	94102 .	76 19.78290
,27	13 34 9951A	274 19424660298
515	25 14.95956	= 7
N <u>1</u> .	25 14 89624	
· · ·	25 20 000444	.76 49.09564
6 9 f	2. 14 80186	- 10
5 7	2. 4. 77726	-74 .0. XHARB
1.24	21. 11. 77424	10 LR 18 106 100
·> * #	24,31467	

83

1

ļ

L

۰.

Ţ

|.

Ŋ

Т

Ċ

٢.

-

Table 1 cont'd

9

7

5

|.

	AC 31 87050	-76 48.86772
30	25 34.51420	-76 48.85716
31	25 34.95104	76 48.85356
32	25 35.06352	-10 40 17102
	25 35.19762	-76 40 01 -
6	25 35 47332	-76 48-93518
557	35 15 58744	-76 48.95670
536	25 15 70096	-76 48-97326
537	25 35 10015	-76 48-99738
538		-76 49.03344
539	25 35.96000	-76 49.05948
540	25 36 09444	-76 49.07736
541	25 36.21222	74 49.09650
542	25 36.33456	
543	25 36.45222	-/0 47417482
514	25 36.55998	-76 49-12402
544	25 36.64902	-76 49-10745
24 6 1 4	25 36.68994	-76 49.06365
740	25 36 72930	-76 49.005/8
547	25 74 69216	-76 48.90228
548	25 36+67210	-76 48-80322
549	25 36.50072	- 76 48.69858
550	25 36+6+210	-76 48-43566
552	25 36 48444	-76 48-30318
553	25 36.38634	76 18-16572
554	25 36.28764	
555	25 36.16884	7/ 17-02404
556	25 36.10110	-10 41 -2464
557	25 36.00372	-76 47 - 79000
559	25 35.88342	-75 47.60240
555	25 35.79102	-76 47 - 53420
777	25 35 70570	-76 47-418/8
500	25 35.62920	-76 47.3164
	25 35 56230	-76 47 - 20110
0.02	25 35 51292	-76 47 08332
603	25 37 27 27	-76 46.97304
604	27 39.47220	-76 46-87110
605	20 30++00=20	-76 46.77486
696	25 37.40020	-76 46-67988
507	25 35.51/14	-76 46-58316
5118	25 35.55210	-76 46.49382
5114	25 35.26606	-76 46-10443
610	25 35.57214	74 46.32756
611	25 35.56999	74 14 24800
612	25 35.52312	76 43424000
613	25 35,47296	-75 45+17170
614	23 35.39508	-76 -0-10-201
- 15	25 35.30558	-76 46 - 1417
416	25 25.22864	-76 46-14102
	25 35 13401?	-76 46-14995
	25 35,03832	-76 46-16/12
510	36 34 94136	-76 46.17915
	55 14 84154	.76 46.18446
10 ²⁰⁴	25 71 75582	-76 46.19292
<u> </u>	25 34.1965	-76 46+19795
-??	20 34 6 2016	-76 45+19842
-133	17 24+01147 00 40 ENEOU	-76 46+29714
h · 1	25 54 797764	-76 46-21329
ر م ر با	255 Sulate 1200	-76 46.23126
645	20 34.44400	.76 46.23612
5 17	25 34 414 4	-76 46,24416
42-	31 34 37034	76 16. 36720
1.55	2-5 34 <u>.</u> 34424	74 114 - 24942
6.51	24 34.37650	10 413 - 20 / //

ORIGINAL PAGE IS OF POOR QUALTE:

}

Į,

1

}

" **8**4

. I...

Table 1 cont'd

?

Ι.

- <u>-</u> . _ }

}

633 634 635 636 637 638 639 641 642 644 646 648	25 34.24432 25 34.28988 25 34.27836 25 34.29384 25 34.28508 25 34.30674 25 34.35126 25 34.36032 25 34.38840 25 34.41864 25 34.41864	-76 46.26078 -76 46.24134 -76 46.21878 -76 46.22130 -75 46.21698 -76 46.19880 -76 46.19262 -76 46.21086 -76 46.23156 -76 46.26228 -76 46.29240
548	25 34.44672	-76 46.32318

ORIGINAL PAGE IS OF POOR QUALITY

1

ł

I

l

.

1.

۱. ست

.'

85

Ļ

,

Ì

ORIGINAL PAGE IS OF POOR QUALITY

ł

ľ

ł

ł

1

Table 2

1

TIME	LATITUDÉ	LONGITUDE
1035	25 34.16556	-76 46.90632
1036	25 34.27326	-/6 46+30232
1037	25 34.38076	•/6 46•00002 7/ 1/2 93130
19.38	25 34.48806	
1039	25 34.60068	+/6 40+00+14 7/ 11/ 77501
1040	25 34.71270	-10 40 -11074
1041	25 34.82634	
1051	25 35.99772	-76 46 J7700 77 H4 38304
1052	25 36 . 09744	-76 40+30224
1053	25 36 13400	74 14 35372
1054	25 36+25604	76 46+332712
1055	25 36.21526	-76 46+30230
1006	25 36.33246	-76 46-38510
1057	25 36.32044	76 46.40190
1058	25 36.29175	-74 44.41960
1059	25 36.22970	-76 46441766
1100	25 36+15064	-76 46-46202
1101		-76 46.48262
1102	25 35.74300	-74 44-50348
1105	25 37.82376	-76 46-53066
1104	25 35.63774	
1105	25 35.57404	-76 46.59726
1105	25 35.45004	76 46.63176
1107		-76 46.67124
1108	25 35+193+2	-74 46-71756
1109	25 55.07100	-74 44.76520
1110	25 54.95420	-76 46-80924
1111	25 34.04(102	-76 46-85112
1112	25 34 41070	-76 46-89264
1113	25 74 67494	-76 46-93122
1114	20 04+07474	.76 46.96860
1115	25 34 17504	-76 46-99794
1110	25 34 88 1904	-76 47-01924
1111	25 34.44,00	.76 47.23922
1110	25 34.42123	-76 47-05254
1117	25 34.41120	-76 47-05914
1120	25 34 4112 3	-76 47.06268
1121	25 JH HURDR	-76 47.05962
1122	25 54440005	.76 47.05794
11:5	2 2 24 44 224	-76 47.05980
114	25 34 42910	-76 47 .06454
1127	27 JH H79730	-76 47.07229
1125	27 74447775 75 34 50257	-76 47.98902
1121	55 78 5067L	-76 47.10324
112	20 J M M M M M M	

86

l

ļ

1.

l

٠,

11.4

ORIGINAL PAGE IS OF POOR QUALITY

ł

8

.

Table 3

ļ

}

ģ

1

٠.

..

ن ر ł

ł

}

TIME	LATITUDE	LONGITUDE
	05	·
519	25 48.50872	-78 11-68:64
520	25 48.34800	-78 11-71710
321	25 48.18702	-78 11-75255
322	25 48.02610	-78 11 78802
323	25 47.86410	-78 11-82222
324	25 47.69850	-78 11.85372
325	25 47.52768	-78 11-88150
327	25 47.17698	-78 11-92578
328	25 47.00256	-78 11 94354
329	25 46.82724	-78 11.95884
330	25 46.65108	-78 11.96952
331	25 46.47469	-78 11.97342
332	25 46.31406	-78 11.98110
333	25 46,16304	-78 11.99040
334	25 #4.01448	-78 11.99970
335	25 4 86556	-78 12.00456
336	25 µ / 71964	-78 12.00696
337	25 45 56994	-78 12.00810
338	25 45 42054	78 12.00648
330	25 45 24192	78 11.98890
340	25 45 05524	78 11.06496
311	25 44.86794	78 11.93910
342	25 114-68188	78 11 91402
342	25 44.00101	-78 11 89020
3111	25 44.47270	-78 11-86764
344	25 44 J2 724	-79 11 91910
340	20 44412000	-79 11.94364
340	25 113 79224	-78 11 84394
247	23 43+17/20	-79 11.94794
340	25 43.02000	-79 11 95285
347	23 43 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-79 11 94/38
150	25 12 94360	-78 11-88630
322	25 42476500	-78 11-90202
35.7	20 57.00454	-78 11.01624
355	25 42 403725	-78 11.93046
354	25 12 30374	.7. 11.94834
758	25 42.50575	-70 11 98848
160	25 4 47102	-74 12-01206
5-5- 1 (1)(1)	25 41 47470	-78 12-03216
4 80 81	22 41.02074	.79 12.05502
401	こう サドッサフィブラ つち xil つきて1つ	78 12 00000
402	20 41.427272	70 12 10 222
405	27 41.12104	70 10 116/6
404	20 441.75520	70 120 14070
4.410	17 40 • 520 1 5 No. 11 (1) • 520 1 5	70 10 000
436	25 40.67540	*/3 12+2201 70 10 07347
497	25 411.53504	70 13 21768
4.9*		
1.9**	25 44.242145	- 10 17 - JOURD 70 10 - 10 - 20
4160	ビア 4月19~1275112751 うん まさ いうにしひ	● 7 型 1 Z ● 4 Ø 9 Z Z
411	27 J********	-/ <u>0 /2</u> +44420 70 13 7744
4.17	22 314 + + 14, ac to w7 14	=/= I<+ 1/00 79 15 ±3099
212	27 14.7/426 54 13 431/1	- 70 12 - 4730
	177 19 J76 (D	1/0 12104270 .70 10 conto
	27 34+2504+	-14 12-55210
410	11 13 13 13 13 13 13 13 13 13 13 13 13 1	-725 1 - + + 2) (4) 79 1 2 2 3 4
41/	20 35.55466	• .2 IS+007AD

87

ł

• •

ł

•

Table 3 cont'd

ļ

:

\$

,

ł

7

٩.

.

.

.

Ì

5 # ±

÷

.

۰,

I

?

1

	_	
418	25 38.72375	•78 12•70652
419	25 38.56944	-78 12-75450
420	25 38.41356	-78 12-33256
421	25 38.25578	-78 12-845/0
422	25 38.09214	-78 12-89022
423	25 37.92090	-78 12-92808
424	25 37.75116	-78 12-95528
425	25 37.58040	-78 13-00380
426	25 37.40910	-78 13-04298
427	25 37.25358	-78 13-78816
428	25 37.11996	-78 13-13795
429	25 37.00812	-73 13-19190
430	25 36.93678	-78 13-24950
431	25 36.89368	-78 13.51.564
432	25 36.90186	-78 13-58500
433	25 34.96240	-78 13-45500
434	25 37.04326	-78 13-52052
435	25 3 14965	-78 13-58/72
437	25 37 +284	-78 13-72744
439	15 37 + 1554	-78 13-8/524
441	25 38.01534	-78 14-01/20
443	25 38.31438	-73 14-15240
445	25 23.60580	-78 14-28674
447	25 33.89812	+78 14+415/0 ma +4 50719
449	25 39.18924	-78 14-54/15
451	25 30.47754	-78 14-57090
453	25 39.77952	-78 14-74050
455	25 47.08450	-78 14-91144
457	25 40.40053	- 78 15-025AC
459	_5 4И.72175	78 16 03096
≓ •1	5 41.84702	-/* 13+ 7470 70 15 H30
- 33	28 u1. 33424	72 15 54010
うくつ	25 41.72340	76 15-71232
	25 47.06422	70 15 25761
5.53	25 42.40-30	70 14 17922
512	25 42.91632	70 14 03305
514	25 43.27422	
516	25 43.63255	78 15-54UQU
514	25 43.98648	78 16.79682
5.20	25 44.54004	79 16 34434
522	P3 44 65996	10 10 07727
- 24	25 44 49160	- 70 17-13984
530	25 45.32324	17.347-2
573	25 45.67570	-10 (I+ DIDZ

ORIGINAL PAGE IS OF POOR QUALITY

ŧ.

\$ 1

••••

1

ļ

Ì

I

- 1

1

88

1

1

•

T / .		Table 4
117	LATITUNE	
4.25		LONGITUDE
427	25 50,9461	8
428	25 50.5869	-78 2-110-21
420	25 50.4073	-78 2.60500
430	25 50.2277	-78 2.661
432	25 50.06460	78 2.7177
433	25 49.73688	-78 2.7816
435	25 49.57668	-78 2-89519
436	25 49.27866	78 2.45080
437	25 49.12452	-78 3.06744
438	25 48.97644	·78 3.12048
439	25 48.92764	-78 3.17352
440	25 48.65982	-78 3.22542
441	25 48.49170	-78 3.26568
442	25 48.32466	-78 3.30594
443	25 47 14172	-78 3-34524
444	25 47 97828	-78 3-37350
445	25 117 1711	78 3+41346
446	25 117 11600	70 3.45066
447	25 47 2840-	78 3.47850
448	25 47 00010	-78 3-50544
449	25 46,92570	-78 7
400	25 46.73280	-78 3 55044
451	25 46.53420	-78 3.591//
472	7- 46.34940	-78 3.601.00
495	25 46.1807	-78 3.62202
455	25 46.02840	-78 3.65202
456	25 45.86772	-78 3.69264
457	25 45.71010	78 3.72546
458	25 45.56172	78 3.76056
459	25 115 2010	78 3.80166
500	5 45 13500	-78 7.85374
501 3	5 44.97002	-78 3 076
502 2	5 44.80050	*78 3.070~
581 2	5 44.62743	-78 4-0070
505	5 44.45040	-78 4.03300
376	44.26956	-78 4.06204
587 25	44.37234	-78 4-38762
508 25	43.37818	-78 4-10358
509 25	42+68864	-78 4-12464
512 25	42.49922	-78 4-14618
511 25	4.7.51.458	-73 4-16772
512 25	42 0777	79
25	42.76110	-78 4 - 20967
574 25 514 25	47.62412	-78 4-267-0
51. 25 1	42.50935	-78 4.303-0
517 25 1	12.4136x	-79 4.35044
513 25 4	2.36215	-78 4.40244
514 25 4	2.36312	-78 4-46094
520 25 1	< • 4 A 91 7 4	*78 4 • 53552
-521 St	< • 45834	-75 4+61454
5/2 25 //	5+74×44 2.6491	78 4.69572
523 25 US	*95244 .8943.	•78 # 079326
·		-78
		7,700

1

- 2

3

I

1

ORIGINAL PAGE IS DE POOR QUALITY

ł

ł

1

1

89

1

l

1.

Ŧ ۲,

Table 4 cont'd

2

`}

}

ł

٦

:

÷.

****____

t

t

٢

524	25 42.99504	-78 5.07510
525	25 43.17696	-78 5 18700
526	25 43.35036	78 5 20/70
527	25 43.51422	-78 5-29674
528		-78 5-40246
620	25 43.0007	•78 5•50536
527	25 43.82874	-78 5-60808
טנכ	25 43.98126	-78 5-70678
531	25 44.11248	-78 5-79474
532	25 44.22785	78 5-97370
533	25 44.35572	-78 5 0570
534	25 44 49258	
535	25 111 43130	-78 6-04542
536		-78 6-13398
533	25 44.78100	-78 6-22440
530	25 44.92584	-78 6-31446
525	25 45 07098	-78 6-40596
539	25 45.22014	-78 6-49878
540	25 45.36048	-78 6.58764
541	25 45.49122	-78 6.67128
542	25 45.61836	
543	25 45 73470	
544	25 45 94730	-18 6-83076
515	25 47.84732	-78 6.90444
545	23 43.96360	-78 6.97800
546	25 46.07940	-78 7.05318
547	25 46.20246	-78 7-13484
549	25 46.33512	-78 7.22250
549	25 46.46952	-78 7.31046
550	25 46.61616	-75 7 #0526
551	25 46. 77065	
552	25 44 03/190	-18 1.50570
553	25 45+73276	-78 7-61094
551	22 47.047.25	-78 7-71594
555	23 41.25314	-78 7-81668
777	25 47.41494	-78 7.90896
776	25 47.56320	-78 8-20124
557	25 47.70240	-78 8-08812
558	25 47.83803	-78 8-17584
559	25 47.95128	78 8.25600
609	25 48.04998	-78 8.3372
601	25 43, 12882	-79 9 10 2070
602	25 48-19830	70 0+420/0
603	25 48 23052	
674		-78 8-59902
605	27 40.27000	•78 8•68 3 12
202	27 48.21312	-78 8.764 <u>62</u>
646	25 48.14400	-78 8-83716
NØ 1	25 48.05910	-78 8-90418
508 -	25 47.93136	-78 8-96424
509	25 47.77914	-78 9-01266
613	25 47.61678	-78 0.04109
611	25 17 44543	
612	25 17 27734	
613	25 47 14145	•78 9•15024
		-78 9-19212
	22 40.41 324	-78 9.22932
012	29 45. (1156	•78 9•26004
-10	2 10.5313	-78 9.29514
517	25 46.22338	-78 9-32316
n!)	25 45.12842	-78 9.35376
51.2	50 MP*63015	78 9.38.22
5.25	25 45.75410	-78 0-H2012
521	15 45. 54694	-78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		-10

ORIGINAL PAGE IS OF POOR QUALITY

ł

ľ

:

90

Į

1.

1

1. 2

÷.,

ORIGINAL PAGE IS OF POOR QUALITY

{

Į

Table 4 cont'd

ł

1 1 -----

!

1

. •

672	25 45.45103	
623	25 45.30474	-78 9-57900
624	25 45.17754	-78 9-64260
625	25 45.24248	-78 9.70278
626	25 44.90466	-78 9.76140
627	25 44.75412	-78 9-81402
628	25 44.60754	-78 9.86868
620	25 44 43822	-78 9-91134
630	25 44.25642	-78 9-94794
631	25 44.05924	-78 9.97632
632	25 43 85538	-78 10-00128
433	25 43.65606	-78 10-02552
634	25 43.45668	-78 10-04892
635	25 43.25412	-78 10-26968
637	25 42.85570	-78 10-11750
638	25 42.68244	-78 10-14+44
639	25 42.49206	-78 10-16760
640	25 42.30274	-78 10-19010
641	25 42.10530	-78 10-20850
642	25 41.90394	-78 10-22418
643	25 41.69892	-78 10-23690
644	25 #1.50236	-78 10-25364
645	25 41.29254	-78 10.26438
645	25 -1.38962	-78 10-27906
647	25 40.85808	-78 10-27722
648	25 48.54060	-78 10-25760
64.7	25 4A.28814	-78 10-21968
450	25 39.95628	-78 10-16735
631	25 39.58356	-78 10-19512
652	25 34.19188	-77 10-01214
653	25 38.77314	-78 9-91572
654	25 38.39610	-78 9.84120
555	25 33.07048	-78 9-79532
556	25 37.79250	-78 9.71052
657	25 37.55262	-78 9-70722
558	25 37.37076	-/3 9-/7102
550	25 37.22535	•/A 4•03550 70 0 03636
71919	25 37 15446	
791	25 37.09502	
795	25 37 05462	79 10-18662
704	25 37 13334	70 10-75418
7,45	25 37.15754	79 10.31250
7-16	25 37 22713	79 10-115788
7:39	25 17.57392	79 10.47006
716	25 37 (19242	-78 10-47678
711	25 37 84 990	.78 10.47774
712	25 38 01206	. 78 10.44594
713	25 34 13413	73 10.40382
714	27 34.20434	78 10.35032
715	25 33.45777.	.78 10.31718
715	20 30.02210	-78 10.2730?
717	10 10 10 10 00 01 0 10 10 00 00	-78 10-22922
713	15 25,7754 16 20 1167	-79 10.1h632
714	20 37411976 AL 24 071021	-78 1.1.14545
· · · · ·	しつ シャルビックをひつし オペールつん	10.10478
12	11. 30 -7370	78 10-96398
	51 274777 5 16 19 79144	-79 10.0254h

91

Ļ

i

Į.

ORIGINAL PAGE IS OF POOR QUALITY

ľ

Į

Table 4 cont'd

•

l

ł

}

}`

. .

ţ

.

••

.

.

ز -

· · · · · ·

.

.

Ą

. J. - L .

2

. .

I

I

ļ

724	25 39.88446	-78	9.99480
725	25 40.05342	-78	9.96726
726	25 40.23642	-78	9.94626
727	25 4 .42450	-78	9.92892
728	25 40.62768	-78	9.91500
729	25 40.82166	-78	9.89820
730	25 40.99806	-78	9.87126
731	25 41.16234	-78	9.83880
732	25 41.33022	-78	9•80850
733	25 41.48604	-78	9.77268
734	25 41.64276	-78	9.73668
735	25 41.78478	-78	9-69510
736	25 41.93868	-78	9.65898
737	25 42.11076	-78	9.63294
738	25 42.28378	-78	9.60924
739	25 42.44844	-78	9.57708
740	25 42.60528	-78	9.54350
741	25 42.74784	-78	9.50310
742	25 42.89910	-78	9.46508
743	25 43.04616	-78	9.42708
744	25 43.18722	-78	9.38418
745	25 43.32726	-78	9-34158
745	25 u 3.47852	-78	9.30384
747	25 43.63398	-78	9.26392
748	25 43.79784	•78	9.23802
749	25 43.96098	-78	9.20130
750	25 44.12430	•78	9-17652
751	25 44.28726	-79	9-14580
752	25 44.45160	-78	9.11484
753	25 44.61684	-78	9.00000
754	25 44.77776	-78	9.05334
755	25 44.94114	-78	4.02292
756	25 45.10452	-78	8.99250
757	25 45.26790	-78	8+96208

•

.

1

l_

ł

.

t

2. 3

.

-

Station Number	ı	1	8		£	Ŧ	s	19	7	Gi	10		11	12
Number of Tilisit Passes	19	1	ŝ		-	•	ñ	•	6	m			n	8
IN C Bias -Computed Nantucket	3	0	5		Unlocked	· .3								
LOR/ Grid Measured- Jupiter	1.1	0	+.2		•.1	2								
10n g1tude	•	ı	46.3192'	47.0645'	1	19.8336'	28.1331'	ı	56,8082'	ı	12.24'	11.6196'		5.648'
os i t Lon			760	76°		7 8 0	18،		78		19 0	190		80°
Calypso 2 Itude	1		34.5216'	34,8568'	ı	47.6411'	42.7710'		1.9746'		57.31'	59,980		3.8556'
Latio			25	254		35	3%		26		250	25'		36
Predicted Precision of Beayondan Position	15 Neters	100 Neters	15 Meters		100 keters	38 Meters	43 Neters	52 Neters	50 Neters	81 Meters	46 Meters	ı	74 Neters	36 Meters
on 1 Lude	20.255'	51.267'	46.422		12.003'	15,783'	28.011'	31.828'	56.736'	5.7586'	11.485'	ı	5.766'	5.671'
os i t i Long	170	76	.92		780	78	78	78)	180	18,	190		80°	800
yondan Pe tude	4.765'	32.801'	34.712'		45.367'	47.743'	42.870'	50.859'	2.0915'	2.0486	00.027'	ŀ	2.330'	3.873'
Bea	25°	250	253		25	25	25,	25	26	26	26		260	260
Location	Nassau	Off Eleuthera	:		Berry Islands	:	:			Great Isaac Light				
Approx. Time of Occupancy	24 Aug 1200-26 Aug 2300	27 Aug 0600-27 Aug 0730	27 Aug 0800-27 Aug 1730	Calypso - ifter Transit	28 Aug 0307-28 Aug 0400	28 ALK 0500-28 Aug 1200	28 1uf 1300-28 Aug 2200	28 Aug 2312-29 Aug 0300	29 Aug 0700-29 Aug 0913	2 ⁷ Aug 1202-29 Aug 1330	29 Aug 1400-29 Aug 2030	Evening Anchorage of Calypso	30 Aug 0700-30 Aug 0920	30 Aug 1002-30 Aug 1200

OCEAN BATHYWETRY ANALYSIS AND POSITION SUMMARY PHASE I

ļ

ł

,"

.

.

,

ø

-*

7

۰.

;

•

. .

•

• • •

:

ORIGINAL PAGE & OF POOR QUALITY

1

1

l

1

Table 5

93

L

1

.

۱. .

٠

8. y

•

-84

					PHASE I	-							
Approx. Time of Occup.in	Location	Lati	ea) ondan I tude	Position Longitude	Predicted Precision of Beayondan Position		Calypso	Positi	ton <u>ritude</u>	LORAN Grid Bi Measured-Co Jupiter Na	C BB mputed ntucket	Yumber Number of Transit Passes	Station Number
4 Sept 2200-5 Sept 0700	Little Bahama Bank	27°	6.669'	78° 53.608'	26 Neters	27	6,6302	482	53,367	µsec +.1	+.07	ω	20
5 Sept 1000-5 Sept 1430	Whiting Plume	27.	3.5130'	78° 54.1408	40 Meters	270	4,954	7.8°	55.152'	+.2	5	•	21
6 Sept 0500-6 Sept 1100	Berry Islands	257	45.2604	78 8,9530	41 Netera	250	45,116'	∞8 2	9.011'	1.+		ŝ	52
6 Sept 1300-f Sept 1600	:	25	46.77	78 25,179	80 Meters	240	1020 27					,	1
6 Sept 1630-7 Sept 1000	:	250	48,879'	78 27.2446	35 Veters				. 192.02	1.1	е	1	23
After Transit									27.105	÷.3	•	7	34
7 Sept 1500-7 Sept 1600	. Little Isaac	52	58.201'	78° 52.789'	90 Metera	ĥ	48.986.4	80 1~	27,087'	+.18		-	25
7 Sept 1800-7 Sept 2100	Great Jaaac	32	59,0051	79° 11.570'	80 Meters	320	59.0677'	38	11.561'	÷.	8) 1		36

OCEAN DATHYMETRY ANALYSIS AND POSITION SUMMARY

ORIGINAL PAGE IN OF POOR QUALITY

1

I

Table 6

÷

1

{

|

1

ا - سمب ١.

ļ

ļ

ł

94

ł

۰.,

ŧ

I.

ERIM

I

ſ

ſ

ORIGINAL FAGE IS OF POOR QUEE MY

1

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

APPENDIX B

1.

Technical Memorandum RSC-131

WHITING INVESTIGATIONS ON THE LITTLE BAHAMAS BANK

March 1976

Texas A&M University Remote Sensing Center

95

Ļ

ł

R. 3

l

Technical Memorandum RSC-131 Whiting Investigations on the Little Bahamas Bank

John M. Hill*, Fabian C. Polcyn**, and Charles Vermillion***

INTRODUCTION

An investigation in the Bahamas to evaluate the capability of the high gain mode of Landsat 1 and 2 to determine bathemetric data included an investigation of an anomaly called Whitings. The Whiting Investigation was conducted by NASA/Goddard Space Flight Center, the Environmental Research Institute of Michigan, the Remote Sensing Center of Texas A&M University, the Applied Physics Laboratory of Johns Hopkins University, the U.S. Coast Guard, and the Cousteau Society.

The whitings were observed in satellite images even before the ship sailed. The whitings were investigated because they could conceivably cause an alarm due to their similarity to shoal areas.

EACKGROUND ON POSSIBLE ORIGINS OF WHITINGS

Shallow-water sedimentation is a complicated process. It involves chemical, physical and biological

I

Remote Sensing Center, Texas A&M University, College Station, Texas, 77843, U.S.A.

^{* *} Environmental Research Institute of Michigan, P.O.

Box 618, Ann Arbor, Michigan, 48107, U.S.A. *** NASA/Goddard Space Flight Center, Greenbelt, Marvland, 20771, U.S.A.

relationships. The solubility of $CaCO_3$ changes with varying levels in photosynthesis, respiration, precipitation of $CaCO_3$, evaporation, rainfall and fresh water run-off from the shoreline (Bathurst, 1975). Organisms not only secrete carbon skeletons; they are also a prime factor in breaking and stirring them up. Tidal and wind-driven currents as well as wave action are the main factors in the abrasion and dissemination of these particles.

The Little Bahama Bank, adjacent to the island of Grand Bahama, is similar to the Grand Bahama Bank in that it is a large flat bank surrounded and sheltered by rocky shoals. This creates an area of relatively undisturbed water. Water movement is important in the supplying of nutrients to biological communities and has an influence on the distribution of carbonate which can be in solution (Smith, 1940; Costin, 1965; B. Katz, 1965, Traganza, 1967). Bathurst (1975) explains that tidal movements can be easily modified by winds. From March or April to the end of August the prevailing winds are generally from the east or southeast and in September they begin to move toward the north.

Surface water temperatures from 22°C to 31°C (February-August) are attributed to warm waters brought to the Bahamas by the Gulf Stream (Smith, 1940; Cloud, 1962; Broecker and Takahashi, 1968) and to insulation on the shallow banks. Gloud (1962) found that the lateral

variation on the Great Bahama Bank was only about 0.5°C. The water in these shallow areas is relatively well mixed by the wind.

Whitings consist of suspended aragonite muds that appear as clouds of milk-white water. The origin of aragonite muds which make up whitings is currently under question and examination. Some investigators believe these muds to be accumulations of aragonite needles from decomposed codiacean and dasycladacean algae ('owenstam and Epstein, 1975; Stockman, Ginsburg and Shinn, 1967; Neumann and Land, 1969).

Cloud (1962) conducted an investigation on the environment of calcium carbonate deposition west of Andros Island, Bahamas which included a study of whitings. He states that the propeller and dragging anchor of his ship, the <u>Physalia</u>, made whitings as they stirred up the bottom. Underwater springs as well as outbursts of gas can cause similar conditions. Cloud also states that unusual local meteorological conditions may also produce identical effects. Ginsburg (1956) observed similar clouds of sediment which were stirred up by schools of bottom feeding fish, such as mullet. These plumes are termed "fish muds" and were observed in Florida Bay. Wells and Illing (1964) investigated whitings in the Persian Gulf which they believe to

be related or similar to those found in the Bahamas. They observed that the milky patches. or whitings, appeared and grew within a few minutes and persisted in the area for several hours. The visibility in these whitings was from less than 0.5 m to a few centimeters, the suspension consisted of aragonite needles and some pelagic organisms, and the density was approximately 1g of solid/100L. The following, although these observations sound as if the tail of a whiting instead of the source had been observed, are some interesting points made by Wells and Illing:

- (1) The milkiness appears at the same moment over an area of many square kilometres. The region is normally devoid of fish which, even where they disturb the bottom, only muddy the water in patches a few hundred meters across.
- (2) The whitings form at the surface and overlie clear water.
- (3) They occur over any depth of water in the Gulf
 but are very fromenc, though smaller, over depths
 of less than 10 m.
- (4) The aragonite crystals flocculate, sink and disappear from sight in less than a day, whereas stirred bottom mud takes several days to set le.

- (5) The underlying bottom mud contains up to 50% calcite, but in the whiti g there is "very little calcite".
- (6) Analysis of water immediately before and after the appearance of a whiting suggests that there is a very slight drop in Ca²⁺ and Ca²⁺/Mg²⁺. This could mean that calcium had been removed from the solution.
- (7) Water stratification in terms of temperature, salinity and pH remains stable and this points to the absence of turbulence and bottom disturbance.

Bahamian aragonite mud can be formed by either inorganic cr organic (physiological) processes. Stockman et al. (1967) have found that the algae are adequate sources of recent aragonite mud. A fact that is confusing is that there exist areas of sheltered waters such as in the Bimini Lagoon that have prolific algal blooms with no aragonite muds (Bathurst, 1975).

Cloud (1962) estimated that 5 wt. % of the mud is detrital, 17-20 wt. % is skeletal remains, of which 4-5% is algal aragonite, therefore leaving 75 wt. % to be accounted for by some other process. This has led to the possibility of inorganic precipitation. Black (1933) concluded that in sheal areas west of Andros Island the high rate of evaporation

101

Ľ

generates a high concentration of salts, when in combination with the loss of CO_2 , causes precipitation of tiny aragonite crystals. Smith (1940) and Cloud (1962) showed that rates of withdrawal of $CaCO_3$ were related to an increase of residence time of the water on the banks, as well as to the salinity and the accompanying fall in the produced $aCa^{2+} \cdot aCO_c^{2-}$ as aragonite is precipitated. Broecker and Takahashi (1966) state that the rate of $CaCO_3$ precipitation is proportional to the degree of supersatur lion. This data would tend to justify the inorganic origin of the aragonite muds, for this relationship does not necessarily have to exist if the process is biological. They, however, could not account for a large percentage of the CO_2 budget which is lost from the Bank. It is assumed that he CO_2 must be removed from the Bank and is lost to the deep ocean.

Another hypothesis (Weyl, 1961) is that in sea water saturated for aragonite, a sudden bloom of diatoms can remove so much CO_2 from the water that the only way to reach an equilibrium is by a widespread precipitation of CaCO₃, thus causing whitings. DeGroot (1965), however, conducted laboratory experiments which tend to disprove Wells' and Illing's hypothesis. His findings indicated that sudden appearances of whitings in the Persian Gulf could not have occurred because the maximum rate of precipitation of aragonite from sea water is much too slow.

Even when hurried up in the laboratory, it still took at least two weeks to form a precipitate.

Aragonite needle precipitates occurring at intervals of a few years also occur in the surface waters of the Dead Sea. Neev and Emery (1967) investigated one in which the suspended HCO_3 concentrations first occurred at the surface and progressed downward to a maximum depth of 40 m. The bottom sediments were found to consist of the heavier isotopes Q^{18} and C^{15} . The precipitation of HCO₅ at the near surface, due to evaporation, would cause the selective loss of lighter oxygen and carbon isotopes. Their data also favors the hypothesis of aragonite precipitation, but one should keep in mind that the water in the Dead Sea is not normal sea water. The extremely high salinities, which far exceed those found in either the Bahamas or Persian Gulf, could very well cause precipitation of HCO_{χ} in the surface layers. Revelle and Fairbridge (1957) suggested that temporary morning clouding in still waters in the lagoon of Houtman's Abrolhs (southwestern Australia) might be due to photosynthetic reduction of CO_2 pressure.

Cloud (196?) studied three whitings just west of Andros Island. The first whiting drifted away before it could be entered, but an underwater inspection of the drifting margin proved the water to be unusually milky due to suspended matter. No local turbulences or bottom disturbances were noted at the site.

103

Upon entering the second whiting, Cloud states that "its center gave the sensation of weightless fixity in the middle of a sunlit cloud band. It was impossible without resting motionless, to detect buoyancy and drift or to tell up from down or sideways. The brilliant lighting was so dispersed that a hand, invisible at arm's length, had to be extended to grope for bottom and avoid a collision on surfacing. No fish were seen (or felt) nor was any other evidence of bottom disturbance found". The suspended material, upon microscopic examination, was found to consist of primarily aragonite needles.

The third whiting was about 4 km long and 0.8 km wide. During a six-hour study no large schools of fish were observed except for a few small <u>Halichoeres</u>, tiny Eques found in and about the sponges and much later five sharks were seen. No other whitings were seen to occur in the surrounding area. Chemical analyses of water samples from inside and outside the whitings were examined. The whiting water, after particles larger than 0.45 microns were filtered out, was significantly high in calcium, phosphates, CO_2 evasion, pH, the rate of photosynthesis, and low in alkalinity and partial pressure of CO_2 . The whiting kept its properties for at least 45 hours without being eliminated by diffusion or from mixing caused by external sources.

Cloud noted that all of the whitings were elongated and drifted with the wind and tidal current. No schooling of fish was observed in the area, the whitings did not drift away from a fixed point or move around erratically, and no unusual meteorological or other disturbances were noted. He made no definite conclusions as to the specific cause or origin of these whitings except for the mentioning of the possibility of the previously stated ideas of inorganic or biological processes.

Cloud stressed the need to examine individual whitings in any given area to determine what features they either have in common or in which they differ.

WHITING OBSERVATIONS AS COLLECTED

FROM THE CALYPSO

Two whitings were investigated by the scientists and crew of the R/V Calypso on the fifth of September, 1975 on the Little Bahama Bank. Whitings occurring in this area were observed in satellite images even before the cruise.

Upon entering the area, a T-38 aircraft was utilized to obtain a synoptic view of the area and to locate a group of whitings. Once the area of whitings had been identified by the jet, the Calypso was directed to the source of the whiting by the Calypso helicopter. A Zodiac, a small rubber raft, was deployed from the ship and sent to the source.

Upon arriving at the source the Zodiac was anchored and the divers proceeded to enter the whiting. The Zodiac was used because of its speed, maneuverability, and it lessened the chance that schools of fish would be scared away if present. The excellent naturalistic instincts and experience of Captain Cousteau's divers made it possible for several new and interesting observations.

The Zodiac crew collected measurements of depth, secchi depth, sea surface temperature, surface salinity, and water samples for later analysis. The divers collected bottom temperature, bottom salinity, water samples, sediment samples (Figure 1) depth vertical visibility, horizontal visibility, current direction, a rough estimation of current speed and general bottom descriptions and comments (Table 1). Water and sediment samples and observations were collected from the source, the tail, and from the clear water surrounding the whitings.

The source of the first whiting, Station EB, had several sharks swimming within it. One shark even took a swipe at a diver's flipper. Investigators have been known to not enter the whitings for just such a reason. Once in the plume the divers observed <u>Callianassa</u> mounds, with heights of 6 to 10 centimeters, covering the bottom (Figure 2). Bathurst (1975) states that conical mounds constructed by Callianassa, burrowing shrimp, are common in stable sand

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 1. Diver collecting sediment samples for later analysis. Note the very fine sediments. (Courtesy of Joe Thompson and the Cousteau Society)

Fig. 2. <u>Callianassa</u> mounds surrounded by blades of <u>Thalassia</u>. (Courtesy of Joe Thompson and the Cousteau Society)

١,

1.

1- .

TABLE 1. Data Obtained from the Whiting Investigation on the Little Bahama Bank by the R/V Calypso (September 5, 1975)

ł

	EB Source	EA Out of Whiting	FC Source	ED Tail
Depth (m)	7.5	7.0	6.5	7.0
Secchi (m)	7.0	Seen on bottom	3.75	4.25
Surf. Temp. (°C)	29.93	29.94	30.98	31.20
Bot. Temp. (°C)	29.90	30.13	30.24	30.19
Surf. Sal. (°/00)	38.294	38.307	38.457	38.348
Bot Sal. (°/oo)	38.316	38.319	38.454	38.342
Vert. Vis. (m)	2.0	7.0	1.0	2.0
Hor. Vis. (m)	0.5	5.0	2.0	2.0
Cur. Dir.	Minimal	S.E.	S.E.	S.E.
Cur. Sp. (knts)	Minimal	0.25	0.75	2.00
Mounds	Present	Present	Present	Present
Sharks	Present	None Observed	None Observed	None Observed
Fish	Present	None Observed	None Observed	None Observed
Meteoroligical Disturbances	None Observed	None Observed	None Observed	None Observed

108

1.

and and a high diamona as in a since which inside a first second second second second second second second second

habitats. The usual mounds resemble miniature volcanic cones, have remarkably constant sizes, have a basal diameter of about 20 cm, a height of about 6 cm, and have approximately 30° sloping sides. At the peak of the mound there is a vent about 3 mm wide. The cone has a surface of loose sand. Grain have occasionally been seen being expelled from the exhalant vent. Shinn (1968) originally discovered that the mounds were constructed by the crustacean <u>Callianassa</u>. The bases of the closely arranged mounds were surrounded by blades of <u>Thalassia</u>.

Ginsburg (1975) explained that these shrimp homogenize the sand to a point where "the history of deposition and with it the story of successive sea-floor environments is hopelessly jumbled". Bathurst (1975) remarks that in some areas the mounds are the only source of loose grains. Tidal currents derived from evidence obtained around the Berry Islands can move the loose grains about 3 to 4 cm at the most and with time, that could be significant.

A large school of what was termed Bone fish were seen bouncing off the bottom. These fish most probably had attracted the sharks into the area. The fish could have been either bottom feeding or merely cleaning parasites or other growths from their undersides. In this particular area of the whiting, the source was covered with a clear surface

layer approximately 2 m thick. The surface currents, usually being more rapid than bottom currents, could have kept the sediments from rising to the surface at the source. The sediments in the tail of the whiting would eventually disperse into the surface layers. The water was turbid from this clear layer all the way to the bottom.

A diver that had left the Calypso, which was anchored near the middle of the whiting, observed relatively large amounts of sediments being expelled from the <u>Callianassa</u> mounds. This observation raises the question as to whether or not the Callianassa may be a possible cause of whitings.

In the clear water surrounding the source of the same whiting, Station EA, the bottom was again covered with closely arranged <u>Callianassa</u> mounds surrounded by <u>Thalassia</u> blades. No sharks, fish school, or burrowing shrimp were seen disturbing the bottom sediments. New sources of whitings were observed by the crew of the helicopter. The new sources appeared as billowing, or mushrooming clouds of white milky sediments that were being forced to the surface. From searching the literature this is quite possibly the first actual observation of the evolution of a non man-induced whiting in the middle of a shallow bank. It is very difficult to imagine what mechanism might mushroom bottom sediments to the surface in about 7 m of water. That is, in fact, if

110

1

.1.

the sediments do actually come from the bottom. The large sharks which were observed in the source area of the first whiting could have created a turbulence in the water column. Rezak (1976), in conjunction with the Shell Development Corporation, has studied sediments collected from whitings in the Persian Gulf with an electron microscope. His findings were that the sediments consisted of primarily aragonite needles and fine, fine fragments of mollusk shells which had to be stirred up from the bottom. Currents roughly measured in the whitings ranged from about 0.25 to 0.75 knots. At one station the current was negligible. These values are about the expected for the area. The salinities both top and bottom ranged from a mean of 38.358°/oo to 38.352°/oo respectively. These summer values are rather high when compared to open ocean waters which are usually around 36°/oo, but values of 46°/oo have been recorded just off Andros Island (Cloud, 1962). The temperature and salinity values point out that the water mass was fairly well mixed from top to bottom and that the possibility of underwater springs, that could have caused these particular whitings, was not probable.

I

Station EC was located at the source of the second whiting. This was the most dense whiting source because the secchi depth was only 3.75 m. The bottom was again found to be covered with mounds and surrounded by Thalassia grass.

The sediments between the mounds appeared to be darker than the previous area. No sharks, schools of fish, or shrimp were observed stirring up the sediments. The absence of any of the previously observed sources of disturbance from the first whiting left speculation. No meteorological disturbances were observed in the local area over either of the two whitings investigated.

Ŧ

Station ED was established to investigate the tail of the second whiting. The sediments were still quite concentrated even when about 1 km from the source since the secchi depth was 4.25 m. The mounds surrounded by grass were again observed. No sharks, fish, or shrimp were seen in the tail of the plume of the second whiting.

The general shape of these whitings can be constructed from the observations (Figure 3). A layer of clear water was over the source of the first whiting. The sediments were also the most dense from top to bottom in the source of both whitings. The vertical visibility observations made on the bottom, in the tails of both whitings, especially in the first whiting since it was most probably the oldest and longest of the two, was much better. The better bottom visibility and the lack of a clear surface layer would lead to the belief that the heavier sediments have already settled out and that the finer particles are carried to the surface layers in the tail of the whitings.

and the for the second second
CONCLUSIONS

Several points of interest were made by the investigation of these two whitings on the Little Bahama Bank.

- The whitings were all elongated in form.
 (Figure 4).
- (2) The source areas of the whitings did not move significantly from a fixed point.
- (3) The suspended particles appeared to be evenly distributed through the vertical water column, except for a 2 m layer of clear water on the surface at the source.
- (4) They displayed definite source areas from which the sediment was dispersed in a nearly straight course by the wind and tidal current.
- (5) The whitings kept their discrete properties for long distances to the point where several whitings were observed to be parallel for relatively long distances while being separated by only 4 to 5 m or less of clear water (Figure 5). They would eventually mix.

;;; ;

ł

ł

4. - 1. 1.

۰. ب Fig. 4. Elongated shape of the whitings and the R/V Calypso. (Courtesy of Joe Thompson and the Cousteau Society)

Fig. 5. Parallel courses of several distinct and separate whitings. (Courtesy of Joe Thompson and the Cousteau Society)

115

1

Ļ

(6) Two possible new causes of whitings have been observed:

- (a) A large school of fish, accompanied by sharks, was observed stirring up the bottom sediments in the source of the first whiting.
- (b) <u>Callianassa</u>, burrowing shrimp, mounds were observed dispersing sediments to a height of a meter or more in the middle of the second whiting.
- (7) The formation of a new whiting was observed aerially from a helicopter and appeared as billowing, mushrooming sediments being presumably forced from the bottom to the surface by an as yet unexplained source.

Further sediment analyses being conducted by Ginsburg at the University of Miami will hopefully add to the knowledge obtained on the origin of these two whitings on the Little Bahama Bank. It is also hoped that these observations may generate future studies on the origin of whitings that will take into consideration the old as well as these new hypothesized sources of the aragonite particles.

116

Ì

ACKNOWLEDGEMENTS

This research was funded by the Environmental Research Institute of Michigan, the National Aeronautics and Space Administration and the Cousteau Society. We are grateful to the divers and crew of the Calypso who ventured into the shark-infested whitings to collect the necessary samples.

The manuscript was improved by the comments of Drs. R. Rezak and J. C. Harlan.

117

1.

REFERENCES

- Bathurst, R.G.C. (1975). Developments in sedimentology 12, carbonate sediments and their digenesis. Elsevier Scientific Publ. Co., New York, New York.
- [2] Black, M. (1933). The precipitation of calcium carbonate on the Great Bahama Bank. Geol. Mag. 70, 455-466.
- Broecker, W. S. and Takahashi, T. (1966). Calcium carbonate precipitation on the Bahama Banks. J. Geophys. Res. 71, 1575-1602.
- [4] Cloud, P. E., Jr. (1962). Environment of calcium carbonate deposition west of Andros Island, Bahamas. U. S. Geol. Surv. Profess. Papers 350, 1-138.
- [5] Costin, J. M. (1965). Circulation near the southern Berri Islands, Bahamas. Tech Rept. U. S. At. Energy Comm. Tech. Rept. CU-23-65, unpublished.
- [6] DeGroot, K. (1965). Inorganic precipitation of calcium carbonate from sea water. Nature 207, 404-405.
- Ginsburg, R. N. (1956). Environmental relationships of grain size and constituent particles in some south Florida carbonate sediments. Bull. Am. Assoc. Petrol. Geologists 40, 2384-2427.
- [8] Ginsburg, R. N. (1957). Early diagenesis and lithification of shallow-water carbonate sediments in south Florida. In: R. J. LeBlanc and J. G. Breeding (Editors), Regional Aspects of Carbonate Deposition Soc. Econ. Paleontologists Mineralogists, Spec. Publ. 5, 80-99.
- [9] Katz, B. (1965). Circulation near the southern Berri Islands, Bahamas. Tech Rept. U. S. At. Energy Comm., Tech. Rept. CU-23-65, unpublished.
- [10] Lowenstan, H. A. and Epstein, S. (1957). On the origin of sedimentary aragonite needles of the Great Bahama Bank, J. Geol. 65, 364-375.
- [11] Neev, D. and Emery, K. O. (1967). The Dead Sea. Depositional processes and environments of evaporites. Israel Geol. Surv. Bull. 41, 1-147.

[12] Neumann, A. C. and Land, L. S. (1969). Algal production and lime mud deposition in the Bright of Abaco: a budget. Geol. Soc. Am., Spec. Papers 121, 219 (abstract). 「「「「「「」」」」」

- [13] Revelle, R. and Fairbridge, R. (1957). Carbonates and carbon dioxide. Geol. Soc. Am., Mem. 67 (1), 239-295.
- [14] Rezak, R. (1976). Personal communications. Texas A&M University, College Station.
- [15] Shinn, E. A. (1968). Burrowing in recent lime sediments of Florida and the Bahamas. J. Paleontol. 42, 879-894.
- [16] Smith, C. L. (1940). The Great Bahama Bank.
 1. General hydrographic and chemical factors.
 2. Calcium carbonate precipitation. J. Marine Res. (Sear Found. Marine Res.) 3, 1-31, 147-189.
- [17] Stockman, K. W., Ginsbery, R. N. and Shinn, E. A. (1967). The production of lime mud by algae in south Florida. J. Sediment. Petrol., 37, 633-648.
- [18] Traganza, E. D. (1967). Dynamics of the carbon-dioxide system on the Great Bahama Bank. Bull. Mar. Sci. Gulf Caribbean, 17, 348-366.
- [19] Wells, A. J. and Illing, L. V. (1964). Present day precipitation of calcium carbonate in the Persian Gulf. In: L.M.J.M. Van Straaten (Editor), Deltaic and Shallow Marine Deposits. Elsevier, Amsterdam, 429-435.
- [20] Weyl, P. K. (1961). The carbonate saturometer. J. Geol. 69, 32-44.

119

No. of the second s

GENERAL SAMPLING INFORMATION

Zodiac (Rubber Raft) Samples:

- (1) Secchi
- (2) Sea Surface Temperature (Bucket Thermometer)
- (3) Surface Salinity Samples
- (4) Gallon Surface Water Samples

Diver Collected Samples:

- (1) Bottom Temperature (Reversing Thermometer)
- (2) Bottom Salinity Sample
- (3) Gallon Bottom Water Samples (Niskin Bottles)
- (4) Bottom Sediment Samples
- (5) Depth
- (6) Vertical Visibility
- (7) Horizontal Visibility
- (8) Current Direction
- (9) Current Speed
- (10) General Bottom Description and Comments

Helicopter and T-38 Jet:

Spotted source and tail of whitings. Also spotted clear areas out of the plume.

DATE: 9/5/75 STATION: EA

* The samples were collected from clear waters outside of the plume or whiting #1.

Sample Code:

stand the second second second

- (1) AT-1 Gallon Water Sample Collected From the Surface
- (2) ATS- Salinity Sample Collected From the Surface
- (3) AB-1 Gallon Water Sample Collected From the Bottom
- (4) ABS- Salinity Sample Collected From the Bottom
- (5) A,A,A-2 Sediment Sample From the Bottom

Ι.

122

l

L

Secchi: Seen laying on the Bottom Sea Surface Temperature: 29.94°C Botcom Temperature: 30.21°C-(A = 33.2°C) (possible diver problem) Depth: 7 m Vertical Visibility: 7 m Horizontal Visibility: 5 m Current Direction: From SE Current Speed: Material moved 98" in 19 seconds Comments:

- (1) Bottom covered by mounds 4-12" high
- (2) Eel crass surrounded mounds
- (3) Three bottom samples were collected from top of mounds

- (4) No sharks were observed
- (5) On bone fish were observed
- (6) No mollusks were observed
- (7) Helicopter pilot spotted new sources that appeared to be billowing (mushrooming) clouds of sediments coming to the surface.

1.

.....

DATE: 9/5/75

STATION: EB (Source of First Whiting)

(2) BTS- Salinity Sample Collected on the Surface

(3) BB-2 Gallon Samples Collected From the Bottom

(4) BBS- Salinity Sample Collected From the Bottom

(5) BBB-3 Sediment Samples From the Bottom

1

1. .

124

Į.

۱.

Secchi: 7.0 m Sea Surface Temperature: 29.93°C Bottom Temperature: 29.92°C - (A = 30.1°C) Depth: 7.5 m Vertical Visibility: 2.0 meters above bottom Horizontal Visibility: 1.5 Feet Current Direction: No Current

Current Speed: No Current

Comments:

1

- (1) Mounds from 4 to 12 inches covered the bottom
- (2) Eel grass surrounded the mounds

(3) Three bottom sediment samples came from the top of the mounds

- (4) Sharks were observed near the Zodiac
- (5) Bone fish in large numbers were observed hitting and bouncing off of the bottom
- (6) Mollousks were also observed by one diver to be squirting up sediments
- (7) The source was spotted by helicopter
- (8) There was a layer of relatively clear water(2 in thick) on the surface, but was turbidfrom 2 m to the bottom

DATE: 9/5/75

CO

- -

STATION: EC (Source of Second New Whiting)

Ĩ

H

Sample Code:

Secchi: 3.75 m
Sea Surface Temperature: 30.98°C
Bottom Temperature: 30.3°C (A - 32.3°C)
Depth: 6.5 m
Vertical Visibility: 1 m before bottom was visible
Horizontal Visibility: 2 m lateral visibility
Current Direction: From S.E.
Current Speed: 9 seconds to go 18 inches.
Comments:

- (1) Bottom covered by mounds 4 12" in height.
- (2) Eel grass surrounded mounds.
- (3) 2 bottom sediment samples collected from mound

tops (C,C)

(4) 1 bottom sediment sample collected from between mounds

1.

- (5) No sharks were observed
- (6) No bonefish were observed
- (7) No mollusks were observed
- (8) Sediments between mounds looked muddier and darker, mound sand looked clean and white.

1

13

...

Sample Code:

- (1) DT-1 Gallon Water Sample Collected From the Surface
- (2) DTS- Surface Salinity Sample
- (3) DB-1 Gallon Water Sample Collected From the Bottom
- (4) DBS- Bottom Salinity Sample
- (5) Sediment Samples:

D = From top of Mound

D+ = From Between Mounds

Secchi: 4.25 m Sea Surface Temperature: 31.2°C Bottom Temperature: 30.20 - (30.25-A) Depth: 7 m Vertical Visibility: 2 m from bottom Horizontal Visibility: 2 m Current Direction: From SE (45°) Comments:

- (1) Bottom covered by mounds 4-12" in height
- (2) Eel Grass surrounded mounds
- (3) Three bottom sediment samples collected(See Previous page for sample code)
- (4) No sharks were observed
- (5) No bonefish were observed
- (6) No mollusks were observed

<u>|</u>.,

DATE: 9/5/75 STATION: EE

One Bottom Sediment Sample Was Collected About 5 miles From the Sited Whiting Area.

Sediment Sample Is Marked "+++".