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AI,-;tr=act. A third order, nonlinear, singularly perturbed optimal control
problem is :onsldervd under assumptions whic:t assure that the full problem
Is singular and the reduted problem Is nonsingular. The separation between
the singular are of the full problem and the optimal control law of the
teduced one, both of which are hypersurf aces in state spact - , is of the same
order .as the small parameter of the problem. Boundary laver solutions are
constructed which are stable and rvach the outer solution in a finite 'ime.
A uniformly valid composite solution is then formed from the reduced and
boundary laver solutions. The value of the approximate solution is that it

j	 is relatively east' to , obt.,in and does not involve singular arcs. To illus-
t

	

	 tr to the utillt y of the results, the technique is used to obtain an
approximate solution of a simplified version of the aircraft minimum time-

to-climb problt- , . A numerloal example is included.

Keywords. Singular perturbations, optimal control, singular arcs, flight
mechanics.

INTRODUCTILI

Singular arcs h.avv bee-n found tro occur In
optimal control problems from many fields.

They are particularly prevalent In flight
mechanics because in many problem formula-
tions vehicle thrust Is modeled as a bounded
control variable whi,.h appears linearly in
the state equations and performance index.
Weil-knswn examples are the problems of maxi-
mizing the range of a rocket in vacuo
(Leitmann, 1966), maximizing the range of a
lifting rocket in horizontal flight (Leitmann,
1966), minimizing the fuel required for orbit
rendezvous of a rocket (Breakwell and Dixon,
1975), Goddard's problem of maximizing the
final altitude of a sounding rocket (Bryson
and Ho, 1969), and mLnimiztng the time-to-
climb of an airplane under certain approxi-
mations (Ardema, 1975). Current interest in
flight mechanics problems with possible
singular arcs is evidenced by many recent
papers concerning the optimality of cruise
for airplanes (Schultz, 1974; Speyer, 1976).
In this paper, we investigate the usefulness
of singular perturbation techniques for
dealing with singular arc problems by
analyzing a relatively low-order but other-
wise general system. This system encompasses
many flight mechanics problems including
Goddard ' s problem and a version of the mini-
mum time-to-climb problem.

Consider the third order system, defined on0<t<tf,

six
5-t-
	

f(x,y,z) + f'(x,y,z)u

d°' g ( x , y , , ) + g'(x,Y,z)u	 (1)

c ar	 h(x,y,z) + h'(x,y,z)u

subJect to suitable ioundary conditions,
where x, y, and z are scalars, c > 0 Is a
parameter, and t f is unspecified. It is
desired to

Min 4, [x(tf),Y(tf)^	 (2)

The scalar control is restricted to

um < u < UM	 (3)

Since the Hamiltonian for this problem will
be linear in u, a singular are is possible.
It is assumed that a unique optimal control
exists and that in the region of state space
of interest:t

A. fx, fy, fz, f'x, fly, 
fl 
Z' gx, F}y, gz,

g' x , g' v , $ ' z , bx , hv , h z , h 'x, h ' v , h'z

are defined and continuous.

B. h+h'um^(1, h+h'uM*O,

agn (h + h'um ') = - sgn (h + h'uM).

lPunctionai dependence will be omitted when
this does not result in confusion.
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or	 g	 11 or both.

i , . ffic ,ituon-ir :ir, at is  ire ( s) and the
gvncralired couti .>.itt condition (lfrvson
.ind If,). 19h 11 ; h,lle < , h,,pl,, ..ind Mayer,
1162).

thus be hay .. .1 stiaguldriy perturb,,! optimal
-.,ntrol pr„1,1,m for whiiil the full problem
Is singular but the redu,'ed problem is oat.

As^umpt i +,11 B :i,4sures thclt 1) 11' * 0, .'.) 4 ,'ate
b,. either dc, rvased or incrvabed, :ind 3) the
.alternativv procedure may be used for the
reduced problem (Ardem.i, 197)). Assumption C
them impl ies that the reduced problem is not
Itself slaaxular.

Singular perturbation problems involving sin-

gulat arcs have been considered previously, for

examine by O'Malley (1975) -nd O'Malley and
JaamVson (1915). However, these references
consider linear s ystems for which the full
problem is nonsingular b,it the reduced prob-
lem i,: singular; therefore they bear little
connection with the present work. Rather,
our approach follows Culise (1973) who first
proposed using singular perturbation tech-
niques to solve nonlinear singularly per-
turbed optim;il control problems. This was
given further consideration by Ardema (1975).

ANALYSIS

The Hamiltonian for the problem Just stated
is

H - (f + f'u)' x + (g + g'u) l:y, + (h + h'u)AZ

,and the adjoint squat Ions are 	 (4)1

dux

dt - - (f x + f;i 'u)a x - (gx + gx'u)Av

( hx + fix Iu)?l

dt - 
- ( 1 V + f v 'u)Ax - ( g ti. + gV 'u)1y 	(5)

(h t. + E'vu)az

d}z

dt	
-(fz + f z 'u)X x - (gz + g'„u)),}.

(h z + b1zu)Az

The "switching function” (coefficivnt of u)
in (v) is

S = f'A x + g'A V + h'X z 	(6)

The hart of H not involving S is

H = fA x + g.t y + ha ?	(7)

Using (1) and (5), the time derivative of (6)
19, after multiplying by c,

t- [f
z 'h - h'fz + E(fx 'f + f v 'g - f'fx

- 9 I fy)] Xx + fg z 'h - h'gz + e(gx'f

+ gy 'g - f' gx - g ' gy)l A V + fh' zh - h'hz

+ , (h'xf + h' vg - f'hx - 8'hv)) A z	 (8)

2

fit,- terms involving	 a	 ,'.,n, , I . ill .	 in -1
.,angular arc o ;an ,)ptlmal lr-ij., t„r ,:, If - 0
and S - 0, t10 that we h:a y . tl,i I,rl lowing
svuLvil .11 h, ,tt:, $"tie„uK "Cluat i "us In the
ad l ,, int vari . o , 14 a::

If . ( i

5 - u ^	 (tl)

d ,
,It

for komp:ttil,flit y t that lei, existence „f non-
trivial solutfoue»)' the deturmin•int „ l the

coef f 1. f,-nt m.at i i x „f (9) must lie z(-r,i whi, h
giv,-s

(fg'	 h'hz + t(h' xf + hy'g

f 1 b X - g'ht) + (gh' - h g ')[f z ' ll - h'fz

+ 1: (fx'f + f"g - f'fx - g'f,)] + (lit'

- fh')1xz'h - big z + ( gx' f * Xy' g

f'g x - at'8 1A - 0 (10)
which is the singular arc.

We next show directl y that the control law
for the reduced problem is (10) with e. set
to zero.	 +e .adopt the alternative procedure
and set c - 0 in (11) and eliminatc u to
get the reduced system of equations

dx„ 110
it	 - to - fo hoe	 (11)
dyu	 p	 ho
d t	 gp - 91,' h",''

where, fr.r %Xample, to m f(x,, vo , z 41 ). The

perfortr^incc index becomes ., rxtl(tfo) ,

vo(tf 
o;"

' 	 °.'a problem has control variable

z and is nonsingular. For optimal control

1 ho f
Ho -

(to fo li'' ^Xae

+ (go - go, Th,')^vo - U tl')

11 0	 ho
HZO -

If "o - f zo 1101° ' too
')zo hoIzxo

r
 ho

,	 '	 ` ho ^J+ Cgzo - K `o ho _ 
9.	

^zo 
lao'	

^ vo { ill3)

For compatibility of these equations,3

2 Since for some combinations of performance
index and terminal boundary conditions it
is possible that No 0 0 even if xx = 7+y

Az = 0 (Leitmann, 1966), the trivial solu-

tion of (9) may in fact satisfy the Maximum
Principle. The subsequent development is
tacitly restricted to problems for which
this does not occur.

3A comment similar to the one in footnote2
also applied here.

i	 y	
.a	 _
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(h;oh,,	 It,,' hz ai) t t „Ko'	 I o''• :o ) + (11 It"

' I too I 2 	t t''u tto t - 1',.K,.'t .t	 - t:1,

,

w111,11 I^ (10) whit	 * 0.	 Tbns (he strigul,ir
ar,- of tht fail problem and the control law
of the redu, ed problem diftor by it m•,.+t
tt rm-. of . ,rder	 , .

"!hv transform.ttion ,,pproa It it, sett)-uIar . tr,
developed b} Kellt- , K;,pp, and Mu., er (190)
Is particu'arly .iJv.,fttagvous I`„r singulariv
perturbed problems, 	 t'tider I`.;Irl y mild
assumptions, a transfurmation ,af state vari-
ables may be found such that In the new
variables the state ,equation!; are of the form

epic = r (x,r,^t
ac

e 
dz	

ii(x,y,z) +
dt

This transformation (Kelle y , Kapp, and Moyer,
1967) may be ebt.ittitd as follows: Let the
solution of

d* = f'(z,y,z)	 01 = , (z ,0	
(16)

dt	 h'(R,y,P) ' di	 h'(x,9,1)

be denoted by

Cx = q,x(k.3,$)

Cy = yy(x,ji,i)	
(17)

where Cx and Cy are constants of integration
and ox and tV y are two independent integrals.
Then the transformation of variables

x = ktix(x,_,z)

y = ^y (x ,Y,z)	 (18)

i - z

transfort.r (1) into (15). Thu advantage of
this approach for singularly pert•:trbed
problems is that from (10) and (14) we see

that for (15) the singular arc of the full

problem and the control law of the reduced
problem are identical and are given by

fgz - gf$ - 0	 (19)

The princilal difficulty with implementing
Oil,; approach lies in solving the generally
nvn1inear equations (16).

In many applications, a small parameter must
be inserted artificially to create a singu-
larly perturbed problem (Aiken and Lapidus,
1974; Ardema, 1975. 1976; Calis., 1973; and
Kelley, 1973). In this case, the transfor-
mation approach has the further advantage of
clarifying where to insez^ the parameter.
The transformation results in a system in
which variables x and y are controlled by a

3

ORJGtNAL PAGg lb
OF POOR QIJAI"Y

rt latIv,•Iv f.t„t,r v.,riable z which Its, in
turn,	 „tt,•11+d by .t *t Il l f;,-.t,r v,ariat,le
t t,	 iln,ti. it	 I-	 • It. it fl„1	 I	 Is tit tit
ins'-rt"d . 1 , ., tnttlttltller of tt„- ,)t-rtv.it tv,-
I,rtU „i tin- t.t,t :.tate vsrlEtble	 z.

the .lhove rt--til t	 are also v.t l id for .t
-.I IghtIv d'it t, i. tat pr.,bient.	 In,tLad of (1)
.iatd ( ') . ,n),tid,-r t itt , ”"'stcm

dt

dr y h(x,z) + II X,z)u
d t

wli,-re it ic, desired to

Min ill x(tf)J + fo tf ll.(x,t) + L'(x,z)uJdti
(2t)

subject to (3). Then t he flami I ton 
I 
an is

ti * (f + f' it) . x + (it 	 11 , it	 + 11. + 1.1u)rt

(1't)

Comparing (4) with (22) we see that the same

results are valid as before provided 1., L',

and An are identified with g, g' and ^v,
respectively.'

Returning to the problem defined by (1)-(3),
the initial zeroth order b„undar y laver
equation (7uBLi:) is formed from (1) by trans-

forming tl	 t and setting	 0. The

result its

i = h
l + hl'ul,

dc	
(23)

1

where, for example, h t = h(x(0),v(o),zI).

Similarly for the terminal ZnbLF set

1 2 - (tr - WC to get

dZ 2 	 (20

where, for example, h 2 = h(x(tf),v(tf),z,).

CONSTRUCTION OF APPROXIMATE

SOLUTION

We will now construct an approximate t;olu-

tion to the problem (1)-(3) under the stated
assumptions. To be specific, consider the
case for which5

1, x(0), y(0), z(0), x(tf) z(tf) art riven,

,.-	 ,	 - it, [Y(tf)'].

``In this case the trivial solution of (9)
cannot satisfy the Maximum Principle.

'The ,.e conditions were cho;ien onl y for the
purrs-.e of discussion; the method Is not
limited to this case.

trt
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I.	 1'he opt imal Con! rot r, quenc. I,

( "M. "•,; IN, ULAk • uMs.

liv assumption C. (14) may be solved for z;
the solutlon lx written as to - L(xo,y„1.

First. Integrate (11) from (x(0).v(0)(, to

x(t f ). This gives the zeroth order outer

(r,.duced) solution. denoted x 11 (t). yc,(t).

and z t,(t 1 , Is wtll as an estimate of 	 tf.

denoted tt ° . and of v ( t f ) , denoted vo(tfoI

Second. solve the boundary laver equations.

T)w 
I 
n 

I 
t 

I 
t I LOhLE is

	1 - Itl + 11 1 # 11 	 (25)
dt 1

11U s is Integrated until the reduced solution

Is reached:

/.°O)	 Liz 

I	 z( 1 
h(x(6).v(0).zII+ h (x(0).Y(0).ZI(u..

(26)

At	 T 1 - T I *. u is set to -11 1 /h 1 ' which

holds z i at z o (0). A similar procedure is

used for the terminal ZOBLE. This construe-

tion obviousl y produces stable boundary layer
solutions which not only approach the outer

solution as	 m but reach it In linire

time.
1

A po.;sible representation of the exact solu-

tion may be obtained by "latching" the

unsteady portion of the boundary laver solu-
tions onto the ends of the outer solution.

The trajectory time is estimated as

tfP - tfo 
+ Ti ff ,_ + r *E by this solution

and the performance index as T(yo(tf0)(.

All state variables generally will have

points of non-differentiability.

A more satisf y ing approximate solution is
available from the method of matched asymp-

totic expansions. in this method, "compos-
ite" solutions are constructed from the outer

and boundary layer solutions (Ardema. 1975,
1976; Van Dyke, 1964). The most common of

these is the additive composite, the zeroth
order of which takes the following form.

xa(t) - xo(t)

Ya( t )	 Yo(t)

	

t	 \
z a (t) - z o (t) + z l (e) + z ; fE--t )	 (27)

r o (0) - zortf/o/

Such a solution will satisfy all boundary

conditions. Because "time stands still" in

the boundar y la y er for the slow variables x
and v. the — are no boundary laver correc-

tions to then, variables to zeroth order.

The slow variables are approximated by xo(t)

and vo (t), the trajectory time by t fo , the

final value of y(t) by y 
(tfo) 

and the

performance index by m rye (t fc )]. Thus, if

4

1 kn ,•wleJVe of 7(t 1	 .	 • f •,	 : ­ r' I. .,I it
interest, the b.-

not be solved.

the exa. t , pat. hid,	 : .erotl, older •jdJIt iv.

omposIt,• holutlou*	 •, ., 1.111,,+1 tiItuatlon
are „hewn in Fi g . 1.	 It is cl. jr Irom the

runtitn„ti, •n that for	 Kuffi.lently small
t11a• 1..1t.•r Is generall y a uniformly-valid,
icrotli ­ t -i r approximation, that I	 that

X(t) - x a (t) + c.

	

y(t) - v,1 (t) t	 (18)

z(t) - z a (t) ,

on " -t<t
f„	

cNigher order applxii.,tIons

may be obtained by expanding all variables

in asymptotic power serf--s, matching muter

and boundary laver cxpanl”ion,, and forming

Composite solutions (Ardema, 1975, 1476;

Van Dyke. 19h4).

A procedure for !solving the exact system

would be ar. follows: Equation, (1) are
integrated from x(0), v(0), z(0), with

u - uM , r,ntil the siagulat arc (10) is
reached. The singular are portion of the

trajecto r; is then obtained by integrating

(1) subject to (10). At some time t', the

control is set to uM •,nd (1) is integrated

until x(t f ) is reached.	 If the value of a

is z(tf) when the value of x !s x(tf),

then the solution has been obtained; if it
isn't, repetitive solutions of the terminal

arc must be made by varying t', the time of

departure from the singular arc. until both

she terminal conditions are met. Since this
iteration is not required for the zeroth

order additive composite solution, obtaining

such a:, approximation requires considerably

less computational effort than does obtain-

ing the exact solution.

MINIMUM TTMF:-TO-CLIMB PROBLEM

A well-known problem of flight mechanics is

that of determining the flight path which

gives the minimum time-to-climb between a

given speed and altitude and another given

speed and altitude for an aircraft in the
atmosphere. In one simplified version of

the problem, the two-state approximation,
the rotational dynamics are neglected. This

leads to the state equations

de - v(e,h)F(e,h)
dt

L”
(29)

t 
dt	

v(e,h)u

where

u - sin 7

v(e.h) - 2c(

F(e,h) - -L (e.h) - Do (e,h)	 110)MC IT
UL(e,h,L)(L - mC

s+w

1	 f.
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t	 lime

-	 .cItIt'Id,'

vela.ItN.
I - thrust

Do - zero Iitt drag

Ill , - it 	 due to lift
G - gravit y for,, per unit ma —

e • energ, per unit weight

I	 flight pa:h angle

1.	 lift

In this model. m and is are .,instants. For

th.. derivation of thet.e equations and a com-

plete diacumsion of the assumptions they
Imply. the reader is referred to Chapter 2 of

Ardema (197`0.	 It is desired to find the

control a which gives

I
t IF dt

subject to - I IC is < 1 and

e(0) - Fo di (0) - Ho .e(tf) - E f ,h(t f ) - Hf
(31)

The problem just stated is of the type (20)-

, _i) with

x - e, z - h, f - vf, f' -0, h-0, h' -v

Z- 0 . g . 1.. 1, g' . 1, ' .0
(32)

All four .assumptions listed in the introduc-

tion will be satisfied for physically meaning-

ful problems. The problem is alreadv in the

form (15) and c has been inserted in front

of the derivative of the fast variable h.

From (19),

	

3(vF) . 0
	 (33)all

which is both the singular arc of the full

ptoblem and the control law of the reduced

problem. The reduced problem is

deo

dt - v(e,) ,ho)F(eo ,ho )	 0341

subject to ec (0) - E  and a (t f - Ff where

no - 0 and ho is the contro l., determined from

(33). The initial and terminal ZOBLE's are

dhI

de l
 , v(Eo.hl)`s,

dhZ	
(35)

dt	
v(Ef.h2)u2

2

Assuming that the reduced solution lies on the

"right-hand side" of both boundary conditions,

we have u l . -1 and u, - 1. Using (30), (35)

are then easily Integrated to give

6 Not to be confused with the function h of

the preceding equations.

5

to t'

^(, f	 It

,.rot ii	 ,:rr addi , 	Tpr
solution (27) r

h a (t) - ho 
(t)+	 1 l '. - t0111(t) -ht

_	
1	

t;

+	 ^t +	 4 - ttl)I (t to	 t/

for this problem. wher.	 tt-	 is th,	 it

step function and E has been set to 1, its

proper value.

It is interestine to compare this approximate

solution with solutions obtained from differ-

ent dynami • models. One advantage of the

singular perturbation viewpoint 1, that it

provides a convenient means for making such a

comparison. Many of the approximations com-

monl y used in flight mechanics arc critcally
discussed in Lettmann (1962). The most

widely used approximate formulation of the

minimum time-to-climb problem is that of
energy-state (Ardema, 1975; 9ryson, Uesaf

and Hoffman, 1969).	 in this model, there is
only one state variable, e; the state equa-

tion is the first of (29),

de . v(e,h)F(e,h)	 (39)
dt

subject to e(0) - Eo and e(t f ) - f	 where

h is the control variable. Th 	 11

control law is

'I(VF) . 0	
(40)

ah

The path defined by (40) is often called the

"energy climb path" for obvious reasons.

Boundary conditions on h are met b y adjoin-

ing constant energy arcs (traversed in zero

time in this approximation) to the solution of

(39) with (40). Because 1) the outer problem

of the two-state approximation is identical
to (39) and (40), and 2) boundary layer solu-

tions (36) are constant energy arcs, the path

in (e, h) space obtained by "patching"

together the outer and boundary laver solu-

tions of the two-state approximation is the

same as thar obtained from the energy-state

approximation. The only difference is that

the constant energy arcs are not traversed in

zero time in the patched two-state solution.

t

Ob•
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On the other hand, the times-to-climb, estl-

tsated b y the o, .roth order addIt/v% tomposite

solution of the two-state model and b y the
solution of the energy-state model, will be

identical, but the paths will he different.

A more realfsti. dvnamit utodei than the twu-

sttie one is obtained by Including the r.ota-
tlonal dvnamIcs as a small effect and IIIow-

ing drag dependence on lift. Ibis Ivads to-
the state equations

St	
v(e.11	 F(e.h) - LD1'(e.It,L)1

TTVC

r: t - Vlr,h)sin }	 i

` dt - v(e.h) (I. - cos 7)

where Dl'(e.h,l.) is the increment in drag-

due-to-lift over that at L - mG. The control
variable In (41) is L. and the problem is
nonsingular. This formulation of the problem
is realistic enough for most purposes and was
solved to first order in E by Ardema (1975.

1976) by the method of matched asymptotic

expansions. This solution was iounc' to be In
excellent agreement with a steepest descent
solution, and it will be considered "exact"
for the purposes of comparison.

There have been two other anal y ses of the
minimum time-to-climb problem by singular
perturbation methods. Calise (1975) con-

sidered the system

tie
Ti. v ( e.h)(F(e , h) - mG DL (e, h,L)j

fl(c) 4-11 - v(e,h) sin y

f - (f) St - v(e.h) (L - coo-y)

where

lim f I (t) - 0
C+o

f2(c)

tom 0Elie) - 

This formulation leads to multiple boundary
layers. Breakwell (1977) considered the
system (41) with c - 1 and the reciptrocal
of maximum lift-to-drag ratio treated as a
small parameter. This formulation is appeal-
ing ht ause of the ph y sical significance of
the small parameter.

The numerical example of Ardema (1975, 1976)
will now he solved to illustrate and compare
the various solutions. The boundar y_ cond i

-tions are

M(0) - 0.5. h(0) - 12,200 meters, 7(0) - 0

M(tf) - 2.0, h(t f ) - 24,400 meters, 'y(t f ) FREE

ORIGINAL PAVE Ib
OF POOR QU A I .ITY
Het c, M	 I  tto. ,`t	 iumbet wli,	 tef tiled
by M - v/a(h)	 wt..	 Is th.	 .If
sound, .t known fut	 of altitu,t.	 i r
formul.otlons In wht• 	 is not ttn..ue4..1 in .+

state variable, the t. .odary conditions on y

do not appl y ; a similar tomstcnt applies t•, It.
the data describing the aircraft are Riven in

Ardema 1197'>) and Br yson. Desat. and Hoffman

(1969). Figure : shows how the addltite com-

posite for altitude, h t (t). Is formed from

Its constituent fun,tlons ac,vonttng too W .
This figure clearl y shows the st,ch(llty of

the houndar y layer solutions and the nature

of the composite solution: near t - 0. it If

resembles h l (t); near t - t f 	it resembles
h.(tf - t); and awav tram the boundaries It

is Id.•ntical to hu (t).	 " and t " are
seen to be .ipproximately 32 s and 20 a respec-

tively.

Table 1 compares the times-to-climb as com-

puted by the various methods. The additive
,ompositt solution (also energy - state) under-
estimates the time by a subst.ontial amount

while the patched solution o yerestinates it

by an equally large amount. A similar result
was found for the more exact model (41) in
Ardema (1975). The good agreement between

the patched and exact values (c: of no signifi-
cance since the patch.a solution is an

approximation of the two-state and not the
exact solution.

Table 1. Comparison of _M inimum Time-to-Climb
by Various Methods

Time-

to-climb

Energy-state (39) with (40)	 105

Two-state (29) with c - 1	 130

"Patched" approximation to two-state,

(36) added to ende of solution of

(34) with (31)	 157

Zeroth order additive composite

approximation to two-state (38)	 105

Exact, first-order solution of (41)

or steepest descent	 162

Figure 3 compares the paths fit 	 (h,M)

plane. All the paths agree qualitatively in

that they have the same characteristic- shape:

1) an initial steep dive of nearl y constant

energy to the region of the energy-climb path,
during which velocity is gained at the expense

of a loss in altitude; 2) an intermediate por-

tion spent in the vicinity of the energy climb

path (locus along which energy can be gained

most quickly) where velocity is accumulated

with little change in altitude; and 3) a

steep "zoom-climb" of nearly constant energy,

during which the excess speed is traded for

6
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a It itod. Es in.	 It 1t; this ch.tr.t, t, ri Pit it:
• t ,.tl•v which, In fait. m,i,s th,	 probleri .tm,•n-
thle to wliwAilar pertur",lion te.huiques.

• t ,t.•nt it it ively. the two-ntat. , bolut ion .tpp. ire
t., give a g ootI r. I)rem.•nI it lon of th, • exact
solution. The zeroth-order additive ,omp,, -,Itt

Is no better all
	 t„ tt,a two-.•t ,t.

solution than iK the rnergy-state (reduc—ii

-wI tit lon. AK.iln, a similar result has been

found for tit. more v,-wt model (Ardt• ma, 1107•1.
flit , usefulness of the zeroth-order solution
is that it is rel.ttivvk case to obt.tin and

can be us. •d a+ the basis of it first-order
solution. Bailed on Ardema's (1975) results.
tit. first-. , rder solution should have very
Food acc,tracc.
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1F AhstraCt

A third order, nonlinear, singularly perturbed optimal control problem

Is considered under assumptions which assure that the full problem is singu-;
lar and the reduced problem Is nonsingular. The separation between the
singular arc of the full problem and the optimal control law of the reduced

one, both of which are hypersurfaces In state space, is of the same order

as the small parameter of the problem. Boundar y layer solutions are con-

str'cted which are stable and reach the outer solution in a finite time.

A uniforml y valid composite solution Is then formed fro I the reduced and

boundary layer solutions. The value of the approximate solution is that it

is rulatively eas y to obtain and does not involve singular arcs. To illus-

trate the utilit y of the results, the technique is used to obtain an
approximate solution of a simplified version of the aircraft minimum time-

to-climb problem. ., numerical example is included. 	 i
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