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NONLINEAR SINGULARLY PIRTURBED OPTIMAL CONTROL PROBIEMS WiIH SINCULAR ARCS

Mark . Ardema
Rescarch Svfcutist, NASA Ames Pesecarch Center

Moffett tield, CA 94035

Abutract. A third order, nonlinear, singularly perturbed optimal control
problem {s considered under assumptions which assure that the full problem
is singultar and the reduced problem s nonsingular. 7The separation between
the singular arc of the full problem and the optimal control law of the
1educed one, both of which are hypersurfaces in state space, 18 of the same
order as the small parameter of the problem., Boundary layer solutions are
constructed which are stable and reach the outer solutfon in a finfte ‘ime.
A uniformly valid composite solution {8 then formed from the reduced and
boundary laver solutions., The value of the approximate solution is that 1t
18 relatively casy to obtain and does not ifnvolve singular arcs, To {llus-
trate the utility of the results, the technique 1§ used te obtain an
approximate solutlon of a simplified version of the aircraft minfmum time-
to-climb proble. A numerical example is included.

Kevwords, Singular perturbations, optimal control, singular arcs, flight
mechanics.

RODUCT LoN . )
INTRODUCT Lo g% e Fix,v,2) + ' (x,¥,2)u

Singular arcs have been found to oceur in dy

optimal control problems from many {lelds. Z% ® g(x,¥,2) + g'(%,y,2)u (1)

They are particularly prevalent in flight

mechanics because in many problem formula- ¢ dz _ h(x,y,2) + h'(x,ys2)u

a.
T

tions vehicle thrust is modeled as a bounded
control variable which appears linearly in

the state equations and performance index.
Well-known examples are the problems of maxi-
mizing the range of a rocket in vacuo
(Leitmann, 1966), maximizing the range of a
1ifting rocket in horizontal flight (Leitmann,
1966), minimizing the fuel required for orbit Min ¢ [X(tf),y(tfﬂ 2)
rendezvous of a rocket (Breakwell and Dixon,

1975), Coddard's problem of maximizing the

final altitude of a sounding rocket (Bryson u, Su Suy (3
and Ho, 1969), and minimizing the time-to- Since the Hamiltonian for this problem will
climb of an airplane under certain approxi- be linear in u, a singular arc is possible
mations (Ardema, 1975). Current interest in It is assumed tﬁat a unique optimal control.
flight mechanics problems with possible exists and that in the region of state space
singular arcs is evidenced by many recent of interest:}

papers concerning the optimality of cruise :
for airplaies (Schultz, 1974; Speyer, 1976). . ' '
in thisppnper, we investigate the usefulness Ao o fys 1o, iy f b 2 8x» Eys Bz»
of singular perturbation techniques for 8'x+ 8'vs 8z, hyy Dy, hyy by, 'y, b,
dealing with singular arc problems by
analyzing a relatively low~order but other-

subject to sultable houndary conditions,
where x, v, and 2z are scalars, ¢ > 0 1{is a
parameter, and tg¢ is unspecified. It is
desired to

The svalar control is restricted to

are defined and continuous.

wise general system. This system encompasses B. h+h'uy*0, h+ h'uM £ 0,
many flight mechanic¢s problems including .
Goddard's problem and a version of the mini- sgn (h + b'up) = - sgn (h + h'uy).

mum time-to~c¢limb problem.

Consider the third order system, defined on lFunctional dependence will be omitted when
0]t St this does not result in confusion.
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1. Fhe simenlar are <atisties (3) and the
geverallized vonvex{ts condition (Bryson
and ilo, 19645 Kellew, Kopp, and Moyer,
IRIYS N

fhus we have o singularly perturbed opt imat
cantrol probilem for which the full problem
is singular but the teduced problem is not,

Assumption B assures that 1) h' # 0, 2) 2 cun
be elther devreased of increased, and 3) the
alternative procedure may be used for the
reduced problem (Ardema, 1975). Assumption C
them implies that the reduced problem i{s not
ftself singular,

Singular perturbation problems involving sin-

gular arcs have been considered previously, for

example by 0'Mallev (1975) -nd v'Malley and
Jameson (197%). However, thesce references
consider linear systems for which the full
problem is wonsingular but the reduced prob-
lem iw singulary therefore thev bear little
connection with the present work. Rather,
wur approach follows Callise (1973 who first
proposed using singular perturbation tech-
nlques to solve nonlinear singularly per-
turbed optimal control problems, This was
given turther consideration by Ardema (1975).

ANALYSIS
The Hamiltonian for the problum jusc stated
is
He (f + flu)dy + (g + g'u)r, + (h + h'u)i,

(a4)
'

}5
and the adjoint equations are
Te < cUx t £TudAg - By + gy uddy
- (hy + hx'“)’z
dA L .
7ﬂ¥ = ~(ty + £, Wiy - (gy + gy u).xy { (5
- (hy + h’yu)lz
diy,

el =(E, + £,Tuh, - (g, + g'zu)ly

- (hz + h'zu)‘\z J
The "switching function" (coefficient of u)
In (4) is
§=f'a, + g'ly + h'y, (6)
The part of H not involving § is
H= fi, + 8y + hx, 7)
Using (1) and (5), the time derivative of (6)
is, after multiplying by ¢,

¢ ds

i EPAL I M R LT GO St ST S

- g'fy) Ay + fg,'h - h'g, + s(gx’f

+ gy'g - f'gx - g'gy)]z\y + {h'zh - h'hz

+ o (h'yf +h'yg = £'hy - g'hy) N, (8)

he terms Involving u coono b calt o o g
stngular arce o1 an optimel trajoctors, H = 0
atd S o= 0, s0 that we hive the 1ollowing
svstem of hompoponcods cqual fons o the
adjoint variables:

H =

Ny < u (Y}
Llﬁ

g 1

dt

lor compat ibI1Ity fthat s, existence of non-
trivial solutfens) the determitemt ot the
coefficient matrix »f (9) must be zero whivh
gives
(rg' - f'g)[h'gh = h'hy + oth'yf + hy'y
- f'hx - g‘hya + (gh' - hg')[fz‘h - h'fz
L F 4 'y = £y - g'ED] # (hf
= ' = by o (ry'f o+ owy'E

- flyg - »'g)] =0 (10)
which {s the singular arc.

We next show directlv that the control law
for the reduced problem is (10) with ¢ set
to zero. Ye adopt the alternative procedure
and set ¢ = 0 in (11) and c¢liminate u to
get the reduced system of equations

dxe ho
— o e f Y e
Q ]
dt ° Po an
dyo ho

na-Ea- = 80 - g“' han*..

where, for example, fq = f(x,1¥,12,) The

performance index becomes @[%U(Lfa),

yo(ffo~' ™4y problem has control variable
1

z and 18 neisingular, For optimal control

h, 4
) ) o
HO &= (fD - £y ‘f\—;—r)lxo
ho\. .
+ (go - 8’ Ej#)ﬁyo =0 N

hu ] ho
- 1 DA [Py [P 1D
Hzy = [}Zo N he' fo Iz, <h0' *o

‘ ho AL
+ - '» s t S [ e i, = (
[%zn iy hg o 3z, (ly)' Yo (1;)

For compatibility of these equations,3

2since for some combinations of performance
index and terminal boundary conditions it
is possible that 1, # 0 even if 1y = 3y

= 3, = 0 (Leitmann, 1966}, the trivial solu-

tion of (9) may in fact satisfy the Maximum
Principle, The subsequent development is
tacitly restricted to problems for which
this does not occur,

3A comment similar to the one in footnote
also applied here.
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' ' ' )
(heﬂhn - hl, h,ﬂ)ﬂmh’ - I(‘)"""u) + ([ (,:'h"

ty N | . t [
- b, Iz“)lg“hﬂ LoRTY 4 ( Sl

it

- h"'géﬁ)(h”f”' -t by =0 (13)

which s (101 with > =« U, Thas the gingular
arc of the full problem and the control law
of the reduved problem difter by at most
toerins of order o,

The transtormation approach to slayular ares
developed by Kellew, Kopp, and Mover (19a7)
is particu'arly advantageous for singularly
pertarbed problems,  Uader foivlv mild
assumptions, a transformation of state vari-
ables mav be found such that iu the new
variables the state cquations are of the form

dx
dt

= ":(xu\"(‘

;{ ® g(%,v,2) (1)

& . e
© g = O6y.) 4 b (xy,2)u

This transformation (Kellev, Kopp, and Moyer,
1967) may be obtafned as follows: Let the
solution of

éz ” f'(*.i.i) . 92 - E'Ciliii) (16)
dz  h'(%,9,2) ' dZ  h'(%,y,%)
be denoted by
Cx = by (%,9,2)
Cy = Uy(%,y,2) 4

where Cy and Cy are constants of integration
and ¥4 and ¢, are two independent integrals.
Then the transformation of variables

»®
1

By (%, 7,2)

by (x,y,2) (18)

N gy
"

4

transforus (1) into (15). The advantage of
this approsch for singularly perturbed
problems is that from (10) and (14) we see
that for (15) the singular arc of the full
problem and the control law of the reduced
problem are identical and are given by

fgy - gfz = 0 (19)

The principal difficulty with implementing
this approach lies in solving the generally
nunl inear equations (16).

In many applications, a small parameter must
be inserted artificially to create a simgu~
larly perturbed problem (Aiken and Lapidus,
1974 Ardema, 1975. 1976; Calisw, 1973; and
Kelley, 1973). 1In this case, the transfor-
mation approach has the rurther advantage of
clarifying where to inser:¢ the parameter.
The transformation resvlits in a system in
which variables x and y are controlled by a
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relatively fastor variable 2 which Is, in
turn, «oenttielled by o #0111 fuster variable
i,  has iU - cleyr thet is to be
tnserted as oo maltiplier of the derfvitive
torie o1 the tast state varlable 2,

the above resalts are also valid for o
~iightle diticront problem,  Instead of (1)
and (1) consfder fhee Systoem

B k2 4 1 (x,2)u

at
(.0

Jdo !

gt
whoere 1t Is desired to

= hix,z) + h'(x,2)u

Min telx(tgr] + j;crlbtx.z) + L' {x,z)uldti
' (21

subject to (3), Then the Hamiltonian is

He (f £ flu) g + (h + W'u)i, + (L + L)

(22)

Comparing (4) with (22) we sce that the same
results are valld as before provided 1., L',
and A, aure fdentified with g, g' and 2y,
respectively.”

Returning to tihe problem defined by (1)-(3),
the initial zeroth order boundarvy laver
equat ion (7UBLE) 1s formed from (1) by trans-

forming Ty = % and setting « = U, The

result is

dzy
—— + hy! 2
dTl h1 1 Y1, (23)

where, for example, hl = h(x(O),v(u),zl).
Similarly for the terminal ZOBLE set

1, = (tp - L)/¢ to get

éz2 “hy - hy'u, (24)
dt, <

where, for cxample, h, = h(x(tg),v(te),zs).
CONSTRUCTION OF APPROXIMATE
SOLUTION

We will now construct an approximate folu-

tion to the problem (1)~(3) under the stated

assumptions. To be specific, consider the

case for which®

1. x(0), v(0), 2(0), x(tg) z(t¢) are given.

Zoob =6 [y(tp)].

“In this case the trivial solution of (9)

cannot satisfy the Maximum Principle.
®Thete conditions were choecen only for the
purrece of discussion; the method 1s not
limited to this case.

s
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3. The optimal con:rol scequence Is
{up, “SINGULARs UM},

By assumption C, (14) may be solved for 2,
the solution is written as 2z, = 0(xo.yu).
First, integrate (11) from [x(0),v(0)}, to
x(tg). This gives the zeroth order outer
(reduced) solutlon, denoted x,(t), vy (t),
and z,(t), as well as an estimate of tg,
denoted ty ., and of y(tg), denoted y,(tg ).

Second, solve the boundary laver equations,
The initial ZOBLE is

dz
s '
a h, * hx u

(25)
1] :

M

Tuis 18 integrated until the reduced solution
is reached:

= 2o(0) dz,
“ 'LU R{x(0),¥(0) 42, ] + 0" [%(0),y(0) 2, Tu,

(26)

At 1, = t.% u is set to ~h;/h;' which
holds  z; at z_(0). A simiiar procedure is
used for the terminal ZOBLE. This construc-
tion obviously produces stable boundary layer
solutions which not only approach the outer
solution as - %4 but reach it in finite
time.

A possible representation of the exact solu-
tion may be obtained by "patching" the
unsteady portion of the boundary layer solu-
tions onte the ends of the outer solution.
The trajectory time is estimated as

S T el 12*c by this solution
and the perfcrmance index as olyo(tfo)].

All state variables generally will have
points of non-differentiability.

A more satisfying approximate solution is
available from the method of macrched asymp-
totic expansions., in this method, "compos=-
ite" solutions are constructed from the outer
and boundary layer solutions (Ardema, 1975,
1976; Van Dyke, 1964). The most common of
these is the additive composite, the zeroth
order of which takes the following form.

xa(t) = x,(¢t)

yalt) = yolt) ts
z,(t) =z, (c) + zl(f) * zz(—-gzz—s) (27)

- 25(0) =~ zo(ffo)

Such a solution will satisfy all boundary
conditions. Because "time stands still” in
the boundary layer for the slow variables «x
and y, the'« are no boundary layer correc-
tions to thes. variables to zeroth order.

The slow variables are approximated by x,(t)
and y,(t), the trajectory time by tfo‘ the

final value of y(t) by y(Ffo) and the
performance index by ¢ [yo(tfo)]' Thus, 1f

POOR QUALITY

a knowledpge of 2(t) Is of no particular
interest, the boundary laver cquations need
not be sulved,

he exact, patched, and zeroth order additive
composite solutions for a typical situation
are shown in Fig, 1, It is clear from the
construction that for i+ sufficiently small
the latter Is generally a uniformly-valid,
zeroth=order approsimation, that is, that

x(t) = xa(t) + ((s)
ylt) = v (t) + ¢ (c) (28)
2(t) = z,(t) + £(c)

on C¥]<tf‘. Higher order approximat ions

may be obtained by expanding all variables
in asymptotic power serizs, matching outer
and boundary layer expansions, and forming
composite solutions (Ardema, 1975, 1976;
Van Dyke, 1964).

A procedure for solving the exact system
would be as follows: Equations (1) are
integrated from x(0), v(0), 2(0), with

u = uy, vntil the singular arc (10) is
reached, The singular arc portion of the
trajectory is then obtained by integrating
(1) subject to (10), At some time ¢t', the
control is set to uy and (1) is integrated
until =x(tg) is reached., If the value of 2
is 2z(tg) when the value of x is x(tg),
then the solution has been obtained; if it
isn't, repetitive solutions of the terminal
arc must be made by varying t', the time of
departure from the singular arc, until both
the terminal conditions are met. Since this
fteration is not required for the zeroth
order additive composite solution, obtaining
such an approximation requires considerably
less computational effort than does obtain-
ing the exact snlution,

MINIMUM TIME-TO-CLIMB PROBLEM

A well-known problem of flight mechanics is
that of determining the flight path which
gives the minimum time-to-climb between a
given speed and altitude and another given
speed and altitude for an aircraft in the
atmosphere. In one simplified version of
the problem, the two-state approximaticn,
the rotational dynamics are neglected. This
leads to the state equations

53 = v(e,h)F(e,h)
(29)
e 4 = vie,h)u
where
u = sinYy
vie,h) = V2G(e - h)
Fleh) = Z[TCe,m) = Dyle,h) (30)

- DL(e.h.L)IL - mG]



and,
t = time
how altitude’
m > mass
v = velocity
I = thrust
D, = zero 1ift drag

Dy = drag due to 1ift

G gravity force per unit mass
energsy per unit weight
flight path angle

1ife

v
:
L

In this model, m and G are constants. For
the derivation of these equations and a com=
plete discussion of the assumptions they
imply, the reader Is referred to Chapter 2 of
Ardema (1975), It is desired to find the
control u which gives

' t
Min f°f
subject to -~ 1 € u<1 and

e(0) = B, h(0) = Hy,e(tg) = Eg,hitg) = Hg
(31)

The problem just stated is of the type (20)-
21) with

x=e,z=h, fevf f'=0, h=w0O, h! =y

$4=0,g=L=1,g"'=sL'=nD
(32)

All four assumptions listed in the introduc=-
tion will be satisfied for physically meaning-
ful problems. The problem is already in the
form (15) and € has been inserted in front
of the derivative of the fast variable h,
From (19),

a(vF) _

e 0 (33)
which 1s both the singular arc of the full
ptoblem and the control law of the reduced
problem, The reduced problem is

de,

e = Vieosho)Fleg,hy) (34)
subject to e,(0) = E_and eo(Ffo) = Ef where
Uy = 0 and h, is the control, determined from
(33). The initial and terminal ZOBLE's are

dhy

-d—T—l - V(Eo'hl)ul

dh, (35)

dt,

- = ‘V(Ef'hz)“z

Assuming that the reduced solution lies on the
"right-hand side" of both boundary conditions,
we have u,=-1 and u, = 1. Using (30), (35)
are then easily integrated to give

bNot to be confused with the function h of
the preceding equations.

i eSSl 5

byl ) =R, = (¢ i # e M‘,)
b =i {i6)

hobi ) g e GJZ T B

In particular, the times to .ot to the outer
solution are given b

y PP a—— e ————
T .J(*; [.'tn - hoth) - VE, = |L,]
t,W -V? [.r.f = hofte) = JEg = “"]

fhe zeroth order additive composite approxi=
mate solution (27) may be written as

(37)

e,(t) = e, (t)
h(t) = h () # ol * - t)[hl(t)- hu(O)j

+ ,;(g +1,% - lfo)[":("% = t)
= ho(lfog

for this problem, where o(t) 1is the unit
step function and ¢ has been set to 1, its
proper value.

(38)

It is interesting to compare this approximate
solution with solutions obtained from differ-
ent dynami. models. One advantage of the
singular perturbation viewpoint is that it
provides a convenient means for making such a
comparison, Many of the approximations com=-
monly used in flight mechanics are critcally
discussed in Leitmann (1962). The most
widely used approximate formulation of the
minimum time~to-climb problem is that of
energy-state (Ardema, 1975; Sryson, Desai

and Hoffman, 1969). In this model, there is
only one state variable, e; the state equa-
tion is the first of (29),

4¢ - v(e,mF(e,h) (39)

subject to e(0) = E, and e(tg) = F. where
h 1is the control variable. Th . sl
control law is

3(vF) =
2 i 0 (40)

The path defined by (40) is often called the
“energy climb path" for obvious reasons.
Boundary conditions on h are met by adjcin-
ing constant energy arcs (traversed in zeio
time in this approximation) to the solution of
(39) with (40)., Because 1) the outer problem
of the two-state approximation is identical
to (39) and (40), and 2) boundary layer solu-
tions (36) are constant energy arcs, the path
in (e, h) space obtained by "patching”
together the outer and boundary laver solu-
tions of the two-state approximation is the
same as that obtailned from the energy-state
approximation. The only difference is that
the constant energy arcs are not traversed in
zero time in the patched two-state solution.



On the other hand, the times<to-climb, esti-
mated by the zeroth order additive composite
solution of the two-state model and by the
solution of the energy=state model, will be
identical, but the paths will be different,

A more realistic dynamic model than the two-
state one is obtained by including the rota~
tional dynamics as a small effect and allow-
ing drag dependence on 1ift., This leads te
the state equations

d 1

Gt " v [Fleh) = oDy ' (e,h, L))
€ %% = vie,h)sin y (41)
€ % B ;r.(.el.h—) (l - cos Y)
where '(e,h,L) 1is the increment in drag-

duw-tu-ltf: over that at L = mG, The control
variable in (41) is L, and the problem is
nonsingular, This formulation of the problem
is realistic enough for most purposes and was
solved to first order in ¢ by Ardema (1975,
1976) by the method of matched asymptotic
expansions., This solution was round to be in
excellent agreement with a steepest descent
solution, and it will be considered "exact"
for the purposes of comparison.

There have been two other analyses of the
minimum time-to-climb problem by singular
perturbation methods. Calise (1975) con~-
sidered the system

de
de
b

fi(e) g; = v(e,h) sin ¥y 42)

= v(e,h)[F(e,h) - '(e,h,L)]

;E by

9 1 = :
f,(e) ST W 3 (L = cos y)
where

lim fy(e) = 0
€+0

fao(e)

lin £100)

= 0

This formulation leads to multiple boundary
layers. Breakwell (1977) considered the
system (41) with ¢ = 1 and the reciptrocal
of maximum lift-to-drag ratio treated as a
small parameter. This formulation is appeal=-
ing because of the phvsical significance of
the small parameter.

The numerical example of Ardema (1975, 1976)
will now be solved to illustrate and compare
the various solutions. The boundary condf-
tions are

M(0) = 0.5, h(0) = 12,200 meters, Y(0) = 0

M(tg) = 2.0, h(tg) = 24,400 meters, ¥(tg) FREE

ORIGINAL PAQGE Ib
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Here, M Is the Mach number which is defined
by M = v/a(h) where a 1is the speed of
sound, a known function of altitude. For
formulatfons in which ¥ 1is not modeled as 3
state varfable, the boundary conditions on ¥
do not apply; a similar comment applies to b,
The data describing the alrcraft are given in
Ardema (1975) and Brvson, Desai, and Hoffman
(1969), Figure 2 shows how the additive com=
posite for altitude, h,(t), is formed from

its constituent functions according to (38),
This figure clearly shows the stabllity of

the boundary layer solutions and the nature

of the composite solution: near t = 0, h,(¢)

resembles h,(t); near ¢t = ty it resembles
h (t§ - t}; and away from the boundaries it

is identical to h, (t).
seen to be approximately 32
tively,

t,* and 1,* are
s and 20 s respec~

Table 1 compares the times-to-climb as com-
puted by the various methods. The additive
composite solution (also energy-state) under-
estimates the time by a substantial amount
while the patched solution overestimates {t
by an equally large amount. A similar result
was found for the more exact model (41) in
Ardema (1975). The good agreement between
the patched and exact values is of no signifi-
cance since the patchea solution is an
approximation of the two-state and not the
exact solution,

Table 1. Comparison of Minimum Time-to-Climb
by Various Methods

Time~-
to-climb
5
Energy-state (39) with (40) 105
Two-state (29) with ¢ = 1 130
"Patched" approximation to two-state,
(36) added to endes of solution of
(34) with (33) 157
Zeroth order additive composite
approximation to two-state (38) 105
Exact, first-order solution of (41)
or steepest descent 162

Figure 3 compares the paths in the (h,M)
plane. All the paths agree qualitatively in
that they have the same characteristic shape:
1) an initial steep dive of nearly constant
energy to the region of the energy-climb path,
during which velocity is gained at the expense
of a loss in altitude; 2) an intermediate por-
tion spent in the vicinity of the energy climb
path (locus along which energy can be gained
most quickly) where velocity is accumulated
with little change in altitude; and 3) a

steep "zoom-climb" of nearly constant energy,
during which the excess speed i{s traded for



altitode gain, it is this characteristic
slaape which, in fact, mikes the problem amen~
abie to sioeular perturbation techniques,
Ouant itatively, the two-state solution appears
to give a good representation of the exact
solution, The zeroth=order additive composite
is no better an approximation to the two-stite
solution than is the energy=state (reduced)
solutfon, Again, a similar result has been
found for the more exact model (Ardema, 1975),
he usefulness of the zeroth=order solution

is that it is relatively easy to obtain and
can be used as the basis of a first-order
solution, Based on Ardema's (1973) results,
the first=order solution should have very

good accuracy.
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