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THE WMETHOD OF AVERAGES APPLIED TO THE

KS DIFFERENTIAL EQUATIONS
by

Otis F. Graf, Jr.. Alan Muceller and Stephen Starke

1.0 INTRODIICTION

Solutions to ordinary differential equations are usualily
obtained through the application of cither analytical or nu-
merical solution methods. Tach approach has its own set of
ndvantages and disadvantages, A particular method is usually
chosen according Lo how it may satisfy foreseen applications,

Analytical methods roquire extensive development of math-
emetical formulas, Once they have been obtained, the formulas
can be used to study certain global properties of the solu-
tion. Also, the analytical formulas can be used in computing
machines to provide extiremely rapid numerical calculations.

There is relatively little apriori mathematical develop-
ment of numerical methods. They allow extremely accuratce nu-
merical calculations of the solution and are usually not dif-
Ticult to program on the computer. However, the solution musi
be developed step-by-step, which can take large amounts of
computer time. Also, very little qualitative or global infor-

mation on the solution is available.

For some applications, it may be advantuageous to devoelop
new specialized methods that combine features of both the ana-
lytica. and the numerical methods., This is the suggested ap-
proach for those applications that require repetitive solutions
nf the differential equations, but for which no analytical so-
lutions are available, Therefore, the advantage in speed of
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an analytical solution might be partially realized by using
a limited application of an analytical method. Numerical
step-by-step calculations still need to be done, but usually
in a more efficient manner.

This repart concerns a new approach for the solution of
artifical satellite trajectory problems. The basic idea is
Lo apply an analytical solution method (the Method of Averages)
to an appropriate formulation of the orbital mechanics equa-
tions of motion (the KS-element differential equations). The
result is a set of transformed equations of motion that are
more amenable to numerical solution.

The following three subsections in this Introduction
give an overview of the Method of Averages, a review of the
KS-elements, a short discussion of orbit perturbations, and
finally, a stateme .t of the overall objectives of this work.

1.1 Overview on the Method of Averages

The purpose of the Method of Averages is to eliminate
"fast variables" from the differential equations. It is based
on the following Main Theorem of Averaging (reference 1) for
the periodic case:

Theorem

Consider the initial value problem

dx
— =g T(¥,t,e) , X0,e) =% (1)
dt ©
. -+
with t € [0,] , € € [O,Eo] , X € G , an open bounded
get in R" , and the following conditions are satisfied:
-
(1) f 1is defined in a connected set G
(2) ? is continuous and uniformally bounded in G
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(3) Fi is Lipschitz-continuous with respect to X
in G+ :
(4) the 1liait
1im F(¥,t,e) = £(¥%,t,0)
£+0
exists uniformally in G ;
(5) 4 possesses a bounded derivative of e in G

(6) T is periodic in t with period T .

Consider the associated initial value problem

-y
dy >
—=ct (¥» , Vo, =% (2)
9}
at
where 1 T
T -
f, (y) = —-[ f(y,t,0)dr
T

0

If it is also assumed that §(t,e) exists, then

X(t,e) - ¥(t,e) = Ofe)

1
on the time scale -
£

Comments

(1) Equation (1) is the "standard form'" for the averaging
method. Not all problems can be reduced to the standard
form.

{(2) The conditions expressed above are generally satisfied
by orbital mechanies problems.

T The first three conditions ensure that the solution to (1)

exists and is unique.
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(3) The theorem establishes that the solution of the Averaged
Differential Equations (2) is always close to tie true
solution, in the time interval of interest.

(4) Notice that the right side of (2) contains only slowly
varying variables, Therefore, these equations should be
easier to solve.

The Generalized Method of Averaging is discussed in ref-
erence 2, and concerns ithe system of equations:

dx

— =, e , i=1,2 -, n
dt

dy

._._.j.=w ;Z 4 7 ”:h}

” j0) + e g (X,¥,¢) i=1, 2, «++, m

where fi and gj are periodic in each component of § with

period 2w. The yj are called "rapidly rotating" phases.

The purpose of the method is to eliminate § from the differ-
ential equations.

The Method of Averages has found widespread use in ap-
plied mathematics and engineering. Different formulations,
examples, as well as rigorous developments are given in
references 3, 4 and 5.

In this report, a Modified Method of Averages is devel-~
oped for application to equations of the form

>
dx
—-—

dt

[

e T(X,y.t,e)

dy

dt

]

w(X) + e g(X,y,t,e)
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Note that there is only one rapidly rotating phase, but that
the independent varisble appsars explicitly on the right hand
side, It will be found that the KS equations can be put in
the above form. Tor the applications presented in this report,
it is convenient to eliminate only y from the differential
equations.

1.2 KS Total Energy Orbital Elements

A very powerful method for the numerical solution 9T the
differential equetions of satellite motion is the total energy
Tormulation of the K38 element equations. The theoretical
details of the KS method are developed in reference 8. Ref-
erences 7 and 8 give evaluations of the KS elements when
applied to numerical computation of satellite orbits. It has
heen found that the K8 formulation offers the following ad-
vantages:

(1) Instabilities associated with solving the two-body

(conic) equations are eliminated.

(2) An orbital frequency based on the total energy
gives more accuracy to calculations of the in-
orbit (downrange) position,

{3) The differential equations are "sm,othed" for ec-~
centrie orbits because the eccentric anomaly is the
independent variable.

(4) The equations are less sensitive to roundoff and
truncation errors in the numerical integration al-

gorithm,.

It will be shown in Section 2 that the total energy fea-
ture can be used to eliminate the tesseral geopotential terms
from the numerical orbit computation. This is an additi»nsal
advantage of the K8 formulation.
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1.3 Orbit Perturbations Due to s Nonsnherical, Nonhomogenous

Barth

Let the geopotentirl function be denoted by V . It
contains two typas of terms

V = Vz + VT

where Vz are the zonal terms and VT the tesseral terms.

The zonal terms represent a potential funetion that is inde-

pendent of the rotation of the earth. Thus, VT contains

the longitude dependent part of the geopotential, and therelore,
containg explicitly the time.

It has been shown by analytical satellite theories that,
whereas the zonal terms contribute long period and secular
terms to the solution, the tesseral terms contribute primarily
periodic terms. Tor solutions that are valid over several
hundred revolutions, tesseral resconance terms must be included.
However, for many applications, resonance effects are not im-
portant and they will be neglected in this report.

Even though the tessernl terms in the solution are small
and periodiec, it has been shown in references 2 and 10 that
they can contribute large errors if neglected from numerical
integrations. Downrange errors of 20 to 30 km are typical
for near earth satellites (reference 9). These errors can be
attributed to the fact that an incorrect "mean' mean motion
results when tesseral terms are arbitrarily dropped from the
differentiial equations.

It was shown in reference 10 that neglecting a small
periodic perturbation from the differential equations, does
not necessarily mean that the error in the solution will re-
main small. Qonsider the following differential equations
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dx
— n tn ginwi x(t=0) = Xy
dt
dy
— = X + eb sinwt y(t=0) = y
dt ©

where € 1s some small parameter., This situation ies similar
to the geopotential tesseral perturbations. The x is analo-
gous to the mean motion and y is analogous to a fast vari-
ble Such az the mean anonaly. Both are being perturbed by a
periodie fTunction, The solution for x and y is

ea
X = — (lecpawt) + X,
w
Ca t B el
y = (x_ * =1 «-— ginwt + — (l-cogwt) + y
o} " w? © o

Suppose that the small perturbation is neglected. This
is equivaient to "crude' averaging, wmentioned in reference 2.
The solution is

x' o= X ,

f = N o+
h% aot yo

The difference in the two solutions is

£
Xex' = — (l-cpswt)
a
£ ca eb
y=y' = — 1t - — gimt ¥+ — (l-coawt)

8 w? m
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Note, that disregarding the perturbation results in a periodte
crror in x . llowever, the error in y 1is linear,

Suppose, instead, that an average value for x

1 21 ca
X' m o— I_. (lerogQ) + X, { do
2n w
O

iz inserted into the differential equation for y . Then,
neglecting the perturbation, the solution for ¥y 1is

or

£a
L TSR S . r
v (w+:«0)t+:&o

The error incurred by this solution 1s periodic.

This example and the numerical experiments of reference 9
illustrate that crude averaging will lead to incorrect results.
It will be shown in this report that with a proper initializa-
tion of the mean motion, the numerical integration can procecd
without including the tessgeral geopotential terms.

1.4 Objectives of this Work

An important problem that is found when attempting the
numerical solution of the salellite differential equations,
is that the maximum size of the numerical integration steps
is limited by the high .irequency (short period) terms con-
tained in the geopotential. This problem appears even with
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the K8 formulation. Even though their amplitudes are small
and may be considered negligible for many applications, the
short period terms cause the following practical problems:

{i) Since the tesseral terms depend on time, the orbital
frequency based on the total energy is no longer
constanut, If small steps are not taken to "track"”
the high frequency oscillations, large down range
errors can result,.

(¢4} If the tesseral terms were simply neglected in the
numerical integration, lavger steps could be taken
but unacceptable intrack errors would result
{(reference 9).

(i¢i7) Evaluation of all tesseral terms in the numerical
integration force model consumes a major part of
the computation time.

An approach to solving the three above problems is dis-
cussed in this report. Basically, the idea is to =arry out
2 numerical integration without the tesseral tezms.+ In order
to avoid the second of the above problems, the KS elements
are initialized with a mean frequency (total energy). The
mean values are obtained via a specialized application of the
Method of Averages, 8ince the force model contains only zonal
geopotential terms plus, possibly, atmospheric drag and ex-
ternal bodies, computer run time and stability problems asso-
ciated with the tesseral terms can be avoided,

T It will be assumed here that there are no important reso-

nance effects.
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2.0 MODIFIED METHOD OF AVERAGES FOR KS EQUATIONS

One of the reasons for applying the Method of Averages
to differential equations i1s to eliminate terms that do not
make important contributions to the solution, but that can,
nevertheless, cause difficulties in obtaining & numerical or
analytical solution. That will be the objective in this sec-
tion with regard to the KS differential equations. It was
mentioned in Section 1.3 that neglecting the tesseral geopo-
tential terms would cause a linear growth in the error of
predicted satellite positions. In reference 10 it was shown
experimentally that this linear error could be eliminated if
a mean KS frequency could be found. In this section, a
modified method of averages is developed and applied to the
KS equations. This results in a mean KS frequency w that
is defined by a partial differential equation. When this
value of w is used in the numerical inte-~stion, the tesser-
al geopotential terms can be safely neglectea for many appli-
cations.

2.1 The KS Differential Iquations

The KS total energy element differential equations that
will be used here are given in reference 6, section 23:

dw r 3y 1

— = e — (U, LT B (3)
dE 8w? 9t B

d’I l - 2 dw -

— = — [ v r2@ B)] - —— @, (4
dE  Bw? w?* dE

mseeommeasmmammnﬂmm



da 1 2 du E
= | — 8 o= — " gin - (5)
dE auw? w dE 2
dB 1, 2 dw o, E
—— = | — - e 08 — (6)
dE dw? w dE 2
where
0 r .
8= 1— @]+ ~-1T3? (7)
ax 2
* .
q , a s a ) § and a are 4-vectors,

ﬁ is a 3-vector of perturbing accelerations that may or
may not be derivable from a potential. V s the disturbing
potential function.

For the purposes of this section, we will assume that
-

P is zero and that V is composed only of geopotential terms.
In this case, equations (2) and (7) become

dw r 3V
—_———— — (8)
dE 8w® 3t
T 3
Q=-2L'|— (xV) (9)
ax
al
The gravitational acceleration on a satellite is —
%
where
u
U= — =¥V
T
and
vV = V'_' + VT (10)
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Thus the geopotential can be separated into zonal (time inde-
pendent) terms and tesscral (time dependent) terms, and

-]
U RG» n
v, = - E Jn (-—'-) Pn (ain @) (11)
T T
n=2
U R, \n n
VT = - - el K E an (sin ) Cnm co8 m A
r T
n=2 m=1
(12)
+ 8 gitn m A]
nm
where
¢ = geocentric latitude,
A = geographic longitude,
Pn = ordinary legendre Tunctiion,
an = agsocinted legendre funection,
R@ = equatorial mean radius of the earth,
J , C f’ S = peopotential coefficients.
n nm nm
The time appears explicitly in VT through A
A= - (BE t o+ BEO) (13)
wi.ere
Yy = inertial longitude of the satellite
BE = Greenwich longitude.
The time is given in terms of KS-elements by
1 - =%
t=1--=(u, u) (14)

w
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Making use of equations (13), (14) and the transformation
equations in section 18 of reference 8, it can be shown that

v may be v-itten as

T
u 0 N > o
v, = —J2 E' Z [A (a,B.w,E) cosa m O
T A 2 nm
n=2 m=1 (15)
-+ .
+ B (3,8,0,5) sin m 0] ‘
where
0 = b1+ 0., (16)
ancl
14
a 2 L (Cl-i + Bi)
i=]

Coments
(1) Notice that J; has been brought outside the' summalion.

Therefore, the magnitudes of the funciions Anm and Bnm

are of order 1,
(2) The functinns Anm and Bnm are periodic in E with

period 2m

(3) VT is "purely’ periodic in © with period 2n . That

means that there are no terms in VT which are indepen-

dent of @
Making use of the expressions for Vz . VT , assuming
that ﬁ = 0 , and using the new time element @ ., the K8

differential equations can be formally expressed as
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e? £, (vw,0,%,8,E) (17)

@ e .
— I = B + € 8‘ (m,&-,g,E) + 82 gz (mlelg)glE) 1 (18)
dE  8w® E !

— =¢ B (3,55 +e*h, (0,0,§38,5) , (19)

ag

—_—

am

i

e 121 (w,%,8,E) + ¢? 1‘22 (v,0,2,B8,E) . (20)

The parameter € = J has been introduced., The function h

2 1
and ﬁl depend only on Vz and the functions ﬁz and ﬁz
depend only on VT . Based on the above comments concerning
VT , it can be concluded that the functions fz By s
32 and ﬁz are purely periodic in @ , i.e.

27
f £, (w,0,a,8,E) d 0 =0 (21)
)
im
f g, (v,0,3,8,E) d0 =0 (22)
0
2T
[ B, (v,0,6,8,E)de=20 (23)

o]
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2n
/ Kk, (v,0,2,8,E) d 0 = O (24)
Q

These results will be important in the theoretical develop-
ments with the Method of Averages.

2.2 'The Modilied Method of Averages

For the developments that follow, there will be no loss
of generality if the order of the KS differential equations
(17) through (2/) is reduced. Thus, the equations will be
represented as

cliw
— = g? f, (0,0,a,E) (25a)
dr
de
— = uww) *+ e g (w,0,E) + ¢’ g, (v,0,a,kE) (25hb)
di
dao
— =¢eh (waE)+ e? h, (0,0,a,E) (25¢)
dE
where
u .
u{w) = 'é:;‘ @E (26)

The functions on the right side of equations (25) have the
properties:

i) fz' g, By, h], h2 are periodic functions of B

(i1) T and h2 are purely periodic functions of

2' B
® . They represent the tesseral terms of the

geopotential.
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(ii1) By and hl do not depend on €& , They represent
the zonal terms of the geopotential.

Sinee the right sides of equaticns (2B) are periodic in
the angular variables, it is appropriate to apply averaging
for their solution. A Modified Method of Averages (MMOA)
will be applied in this section to equations (25). The
MMOA is a modification of the averaging method that isg de-
veloped in reference 2.

The purpose of the MMOA 1is to eliminate only those
periodic terms that depend on a dependent angular variable
(i.e., time). This approach will eliminate the tesseral geo-
potential terms from the problem. The averaged differential
equations will still depend on the independent variable E
and the right sides will contain short period terms. However,
numerical solution of the averaged equations will be enhanced
because they will have the following properties:

() The frequency of the fast variable will be a con-
stant. This means that the numerical solution will
have increased stability, i.e. larger steps can be
taken.

(i1) DBvaluation of the right sides will be much quicker

since the time consuming tesseral terms need not
be computed,

Given the differential equations (25), assume asymptotic

expansions of the form

w = w + en, (w,0,a,E) + Eznz (w,0,0,E) + *+++ (278)
0 =0 + k) (w,8,a,8) + szd)z (w,0,0,E) + eo¢ (27h)
a = o + €X, (w,0,a.E) + czxz (0,0, 0, E) + ~eo | (27¢c)

The functions s ¢i, Xy (i =1,2, *+-+) are required to be

periodic in ® and E with period 2w . The new (averaged)
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slements are defined by the differential equations,

dw _

— = ¢F (w,a,E) + e*P, (w,0,E) + - , (28a)
. 1 2

dE

dag _ o _

~— = U(&@) + eG; (w,d,E) + ssz (W,0,B) + »o¢ | (28b)

dE

do o o

— = gH. (w,a,E) + ezﬂz (w,a,B) + <= (28¢)

AL 1

Equations (28) are referred to as the "averaged" equations.
It will be shown that they have the properties that were pre-
viously discussed.

.The functions nya by Xy Fi, Gi, Hi (i = 1,2, +++)

are not yet known and will now be determined by making expan-
sions in powers of € . The coefficients of the powers of

€ will provide a set of partial differential equations. The
solution of these equationsg will give the reguired functions.

Power series expansions in £ are obtained by the Tol-

lowing algorithm:

(i) Compute the total derivative of both sides of equa-
tions (27), using the chain rule for the functions
on the right side.

{ii1) Insert equations (28) into the right sides of the
equations produced in step (Z). This will give

dw de do
expressions for -— , — , and — in terms the
dE dE dE

averaged variables.
(ii7) Insert equations (27) into equation (25) and expand
in powers of ¢
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(tv) Equate the expressions for the total derivatives of
w, ©, and a that were produced in step (i) to
those that were produced in step (iii).

(v) Collect terms of likc powers of € . The coeffi-
cients are the required partial dif{ferential equa-
tions.

The defining equations are:

e Terms
U{w) = u(w) (28)
el Terms
any ~ an,
F1+U-—-—+—-—-=0 (30)
30 oL
3¢1 ad u
G, * U —+——==n, —+g (31)
30 3E aw
X X,
H1 + U —_—p —= = hl (32)
d Ak
£2 Terms
an an an an an
F, +F, —t+G——Len —L+y—2L+—2=y, (33)
Juw a0 aa a0 R



LTS 3¢ a4 9¢ ad
G2+Fl—:L+Gl"-_—1—+H1-:-]’-+U 2, 2.
qw 30 da 30 3k
(34)
du 1 , 3w 1 o8, g,
=N, ——+-—ny] T +-n,—>+ x, — * §
295 2 lamr o lag Y 2
3% 3x 3X X
Hy +F —+ 46 —Lsup 24+ 2o
d 30 20 E
(35)

Note that all dependent variables in equations (29) through
(35) are barred.

Equation (30) has two unknown functions F1 and n

-

Thus, define
F,. =0 (36)

Then, n, can also be set to zero, i.e,

n, = 0 (37)
In equation (31), make use of equation (37) and define

1 i

G, = — glda
2n
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Since g, daes not depend on g

G, (w,q,E) = g, (v,q,E) (38)

1

The defining equation Tor ¢1 i therefore

LY ) 2¢
U-__—1+—-—-1-=0
o0 Ak
so «that
4, =0 (39)

Similarly, from equation (32),

=

i) = h, (w,a,E) (40)

I (w,a, )

1
and

X, = 0 (41)

There hes been established the following important results:
{1} All first order terms in the transformation equa-
tions (27) are zero.
(i7) The averaged KS frequenecy w is constant to
Tirst order.
(i7¢) The first order terms in the derivatives of the
remaining averaged XS elements are unchanged
from the original equations.

Now the second order equations (33), (34) and (35) will
be used. Making use of n, = 0 , equation (33) becomes
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an an
F. # U —2 4 —2 m

2 8 2E 2

The above equation has two unknown fur ‘tions, s¢ one can be

arbitrarily defined. Remember n,

periodic in ® and/or E . Therefore, set
2w 2

1
Fr = T, dBde
2 2 /ﬂ jﬂ 2
(2m) o Yo

But recall that f, is purely periodic ia c]

taing only tesseral terms). Thus, F is zero and

2
defined by the equation

an an
U —2 4+ —%=7

o) 3E 2

Making use of similar arguments, it is found that

is requirc . to bhe purely

(8ince it con-

is

(42)

(43)

(44)

and ¢2 and X, are defined, respectively, by the equations

9 3 Ju
U—":z'+—-g'=n2":+g2

a6 ak 3w

9% X
U._..._z..}._z:h

(45)

(46)
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The additional important results have been established:
(i) The derivative of w is zero through second order

in e .,

(i1) The averaged differentinl equations do not depend
on the tesseral terms, through second order in ¢

(i11) Transformation between osculating and mean elements
is give: by the solution of partial differentisal
equations.

If the power series expansion method is carried to third
order, the following results involving w are obtained:

F3 =0 [ (47)

on an an an
v—32+2=-lg —2+n 2| . (48)

20 3k 20 Ja
Thus, w is constant through third order in € . The func-

tion N, is defined by a partial differential equation, the

right hand side of which contains coupling effects between
tesseral and zonal geopotential terms.

Finally, the averaged differential equations are:

du

—_— O(E“) (49&)
dE

dad _ o

— = U(w) + € g (w,a,E) + Oe?)y (49h)
dE

do _

— = ¢ h, (w,a,E) + O(?) (49¢)

dE l
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The transformation equations beiween mean and Lngtantaneous
elaments are:

w=w+e*n, (,8a58 +Qe?) (50a.)
=8 +c¢e*9, (0,6,d,E} + OCe?) , (50b)
a0 =a + g? X, (w,9,a,E) + Q(e?) (50¢c)

Based on the averaging theorem discussed in Section 1.1,
it is expected that the averaged solution will diflfer from
the exact solution by order & .,

2.3 Computational Algorithm

It will be necessary to express the averaged elements in
terms of the instantaneous elements. The fequired transform-
ation can be obtained from equations (50) by observing that

(w’OJaJE) = nz (EIG!E,E) + O(Ez) H

with similar expressions for ¢? and X - Therefore, the

required transformation equations are obtained by 'reversing"
(50):

=4

= w + g2 n2 (w Lo,B) O(Ea) ' (5151.)

@|
il

0 + € ¢, (w,0,0,E) + OQ(e?) , (51b)

o= a+ e’y (v,0,0,F) + O(e?) (51c)
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The computational algoritam for solving the differential

aquations is as follows:

(1)

(2)

(3)

Solve the partial differential equations (42), (45)
and (46). Notice that the equations depend only on
the tesszeral geopotential terms and that the oscu-
lating values of the elements w , © , o are
used. This is allowed because of equations (51),
Use the values of Ny ¢2 and Xq obtained in

step (1) to obtain w , ® and & by equations
(51).

Solve the averaged differential equations (49) by
using the initial conditions obtained from step (2).
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3.0 APPLICATIONS OF AVERAGED KS ELEMENTS
In this section, the averaged KS equations will be
applied to satellite orbit prediction problems. By making

use of the theory developed in Section 2, it will be Ffound
that the objectives stated in Section 1.4 are realized.

3.1 Numerical Solution of the Partial Differential Equation

It has been shown that the averaged elements were deter-
mined by functions that are solutions of partial differential
equations, Nothing has been said, so far, about the soclution
of these equations. A numerical solution algorithm will be
developed in this section.

First, an important simplification can be made. Consider
the averaged differential equations (49) and make the follow-
ing ohservations:

(7¢) The right sides of equations (49) do not depend on

@ . Therefore, any small initial error in &
(i.e. in time) will remain constant and will not
affect the solution.

{ii) 1f o 1is replaced by o in g, and h, , the

error is of order e?

Since this error is of the
same order as neglected terms in equations (49b) and

(49¢), it is permissible to iunsert o into g, and

hl

(ii1) The function U idis a secular term depending only
on w . ‘“herefore it is important that w be ac-
curate, otherwise there would be a secular {(linearly
inereasing) error. This is the source of the error
demonstrated in reference 9.

(iv) Since w is a constant, it is necessary only to

initialize w , using equation (5l1a).

o GEQINGAPAGERABLARKANOTS AILKED-
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From the above considerations, it is concluded that only the
partial differential equation (42) for n, needs to be solved.

Consider the equation for n,

an. n
U —% 4 —2% = f, (0,0,%,8,E) (52)
30 AL

where the bars have been removed from the dependent variables
since, according to Section 2.3 and equation (51a), it is al-
lowed to express n, in terms of the unaveraged elements.

Also, the dependence of fz on all the KS elements is shown

in equation (52),

A method of solving equation (52) is to express the right
gide as a truncated double fourier series in the variables @

and E , This idea is presented in Section 28 of reference 6
for a similar problem. The expression for f, is then
L
DY z
fz (0,8) —~ I + — (ai0 cos 1 0O + a; sin i 9)
4 2 i=1

M
1 \
+ § ,(a ., cos JE + boj sin j E)

|

M
:E:l}aij - B;,) eos (i0+JE)
i=1 j=1 (53)

+ (a,, + Eij) cos (10-JE)
+ (b,. + Eij) gin (10+3E)

- (b,, - aij) sin (i0-jE)
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The coefficients Biy ¢ Byy oo bij , Bij depend on o
§ and w only. Numerical algorithms {for computing the co-~
efficients are given in the Appendix. These algorithms make

use of the fact that f2 is a known function and can be com~

puted by the routines in the KSFAST program (reference 11).
See also the discussion given on page 163 of reference 6,

It is known that f2 does not have a constant term or

any terms independent of @ . Therefore, some of the coef-
ficients must be zereo, i.e.

a =0 (54)

The solution of equation (B52) is then

L
s (0,E) = — ‘ I {a o Stn i 0 - a , cos i 2)

cothL )
=2l 2l 5in (i0-3JE) (55)
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3.2 Computational Algorithm

According to the discussion in BSection 3.1, it i aorle
necessary to compute the initial value of

Gy = wy *+m, (0, 0) , (56

where W, is the initial K8 {frequency computed from the
initial position, velocity and time. It is assumed that

E =0 . Also,
Q

0o =8 1 + 9 (57)

For a complete discussion of the initialization of the KS

elements, refer to section 12 of reference B,
Inserting © = 60 and E = 0 1into equation (55), the

required expression is

1 Lo )
n, (8,,0) = — :E: — (a,, 8in 10, - T, _cos 10)
2U i
{=1
(58)
L M
E 2112 24—} i .
+ }E:(i Uc-j°) [(Jbij+lUdij) sin i @
f=] j=1

+ (jbij—iUEij) cos 1 90}

The compucation of satellite orbits is carried out in

the following steps:

(1) Compute the initial KS elements &, , B, , uw,
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T, from the initial satellite state vector, by mak-

ing use of the transformation equations (reference 6,
ection 19)., Be sure that the disturbing potential
function V0 that is used to compute W, includes

all the tesseral and zonal termg in the geop. .ential.

ij

(2) Compute the coefficients By bij bRl 1)

using the equations in the Appendix.
(3) Evaluate equation (58) for nz(eo,O) and then com-

pute

Wo = Wy 7 n,(8,.0)

(4) Replace w_  with G’o in the set of initial KS

elements.

(5) Carry out the numerical integration of the KS dif-
ferential equations (3), (4), (5), (8) with the con-
dition that the function V contains only the zonal
geopotential terms. Atmospheric drag and third body
perturbing accelerations are included in P

A computed trajectory based on the above algorithm will
agree to within a few hundred meters to the true trajectory.

3.3 Satellite Trajectory Prediction Experiments

A set of numerical experiments has been carried out using
the averaging option (tesseral initialization) in the KSFAST
program (reference 11, section 4.2). Selection of this option
causes execution of the satellite orbit prediction algorithm
that was described in Section 3.2. The experiments described
in this section demonstrate the computation time savings that

are available with this option.

Two sets of initial conditions are considered. Perturb-
ing effects on the satellite orbit are atmospheric drag and
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o nonsphericrl, nonhomugenous ecarth. The geopotential nomi-
nully includes all terms through eighth order and eighth
degree. The purpose of the comparisions is to demonstrate
that il the averaging algorithm ls used, computation time can
be reduced by a factor of nbout 4 . This is because the
tesseral geopotential terms no longer need to be included in
the numerical integration,

The initial conditions for the two trajectories are:

Case 1
Altitude 300 km
Eccentricity 0
Inclination 28 deg.
Longitude 136.93 deg.
Latitude 0
Epoch January 1, 1977 22 hrs.
Case 2
Perigee Altitude 300 km
Apogee Altitude 500 km
Lecentricity L0156
Inclination 28 deg.
Longitude 136.93 deg.
Latitude 0
Epoch January 1, 1977 22 hrs.

Figures 1 and 2 show how the error in position will in-
crease if the tesseral terms are not included in the numer-
ical integration and no averaging is done. (Compare with the
experiments in reference 9.) This error is almost entirely
in the along-track direction and is caused by an incorrect
"mean' mean moti n. Therefore, the error grows linearly,

The purpose of the averaging method is to remove this linear
error. A periodic error will still remain, but will be small
(=200 m. ).
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Results of satellite trajectory prediction experiments
are displayed in Tables I and II. Two types of comparisons

are mada:

(1)

(2)

Position error - The errors for the averaged method
are sghown, as well as the No Average case. In bolh
cases, tesseral terms are neglected. However, in
the No Average case, the averaging is not done.
Almost all of the position error in each case is in
the along-track direction.

Computation time - The times are shown for the
Averaged case (no tesseral terms) and a Precision
case (all tesseral terms included in the numerical

integration).

Discussion of Results

(1)

(2)

(3)

(4)

(5)

The averaging method effectively reduces the lincar
growth of the along-track error in position. Periodic
errors remain and are on the order of a few hundred
meters,

The larger errors found in Case 1 occur because of
coupling between drag and tesseral terms. Case 1
is a rather 'ow circular orbit and the coupling ef-
fects are important. Tor Case 2, the satellite
spends less time in the dense almosphere sc the
coupling effect is not so important. Even so, the
coupling is only important alter about four days.

The errors in the Averaged Method in both cases are
so small that they would not show up on the scale
of Figures 1 and 2.

The run time comparisons of Tables I and II show
that the Averaged Method is about three to four
times more efficient than the Precision Method.
About. two seconds are required for the averaging
initialization algorithm. Therefore, the Averaged
Method is most efficient for prediction intervals
of more than one day.
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TABLE 1.- NUMERICAL COMPARISONS, CASE 1

Prediction
Interval Position Error (km) | Computation Time (sec)
(Days) Avaraged No Averaged Precision
Method Average Metlhod Method
1 .10 21.4 3.5 8.8
2 27 42,9 5.6 17.7
4 .80 86.3 9,9 35.4
8 1.58 130.3 14,1 53.1
8 2.74 174 .8 18.4 70.7
10 1 e 4,40 220.0 22,6 88.4
15 11.06 337.0 33.2 132.6

TABLE II.- NUMERICAL COMPARISONS, CASE 2

Prediction
Interval Position Error (km) | Computation Time (sec)
(Days) Averaged No Averaged Precision
Method Average Method Method
1 .16 21.2 4.0 8.8
2 .29 43.2 6.1 17.3
4 .63 85.5 10.3 34 .6
6 .41 128.7 14.4 51.9
8 .29 169.1 18.6 69.1
10 .48 214 .4 22,7 86.4
15 .93 © 319.2 33.1 128.6
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(6) The efficiency of the Averaged Method is because
the tesseral terms do not need to be included in
the step by step numerical integration, Also, a
large stepsize can be taken becruse the averaged
differential equations are more stable. This is
because the KS frequency element w is nearly
constant,

The errors of a few hundred meters in the solution by
the Averaged Method are caused by the diurnal (daily) varia-
tions produced by the neglected tesseral terms. It would bhe
possible to add these variations to the solution by convert-
ing back to osculating elements via equations (Bl1). The
position error would then be reduced to a few meters. This
procedure could be added to the Averaged Method in case more
accuracy is required. There would be a negligible increase
in conputation time since the back conversion would be done
only for oqutput,

A further refinement would eliminate much of the long
term error growth of the Case 1 Averaged Method. As was men-
tioned above, this error is due to coupling between atmospheric
drag and tesseral perturbations in the altitude., Since Lhe
density ol the atmosphere increases exponentially with decreas-
ing altitude, the small variations in altitude caused by tes-
seral perturbations become important over many revolutions,
Equations (51) could be used to compute the actual altitude
al each numerical integration step. This altitude would go
into the density model., More accurate calculation of drag
perturbations would result.
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4,0 CONCLUSIONS

The Averaging Initialization Algorithm that is developad
in this report can decrease the computation time required for
predicting near earth satellite orbits. TFor prediction inter-
vals of one or more days, the computation time will be reduced
by a [lactor of three to four. The methouw is particularly
suited to iterative applications where accurate in-orbit sat-
ellite position information is required.
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APPENDIX
TRIGONOMETRIC POLYNOMIAL APPROXIMATION IN TWO VARIABLES

Suppose that there exists a function f(0,¢) which is
27 periodic in both variables. It is required to establish
a fourier approximation for f in the region

0 £0 g 2n - 0 an

1A
=
1A

The approximation will be based on numerical evaluations of
f at an odd number of values of the arguments. Thereflore,
let

(A1)
y =0, 1, 2, «+, 2M ,
where
2T+1 oM+l
X = @ y = ¢ (AZ2)
2m an

The fourier approximation formula in one dimension is

(reference 12)

L
1 2m 27
P(x) 2 — A *Z Ay cos kx + B 8in ——— 1<X) . (A3)
2 k=1 2L+1 2141
where the coefficients are
A, = E :f(x) 208 J x v Jd = 0,1, ¢ L, (A4)
Vo 2L+l 500 2L+1

PREGEDINGaPAGE: BLANK, NOT.FILMED.
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2 2
B, = :E: r(x) ain J x , od o= 1,2, L., (AB)
b ora1 topar 20+1

Assume that (he coefficients Ak anc Bk in (A3) are functions

of y . Then they car also be expressed as fourier approxi-

mations:

1 am
A (y) = — a8 + 2 :a eng ——— F ¥y
. g 1o A\ 2M+1
(A6)
27
+ bi, sin Jy) ,i=0,1, 2,¢-1L,
J aH+1
b
1 ~ B o
B.(y) = — a, +§: a,. cos Jy
1 g o ATV G M+1
(A7)

_ 2.
+ h,., 8in Jy), i=1, 2, ---, L.
tJ OM+1

Expressions (AG6) and (A7) are inserted into (A3). Using equa-
tion (A2) aud trigonometric identities, the double fourier

approximation is

L
DD
. o + - b2 < i a a1 e
((0,¢) = ; 2 5 ) (a, wcos i 0 + a, win 1 0)
1=1
M
D>
+ - (a ., cos j + b . sin j
2 &={ °J Jo*b,, sinje) (A8)

M

4
ol
-

l[mij = b)) cos (10 + ] 9)

1=1 T=]k

o |
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+ (aij + Eij) aog (1 0 = 3 ¢)
+ (l:)ij + Eij) gin (i O+ j ¢) (AB)
- (b, - agy) ein (10 - ¢)]

The coefficients are computed from the following expres-

sions:
2M 21,
ay . = K E : E :f(x,y) cos (ixy) cos (jyd)
] y=0 x=0
i=0,1, 2, %, L,
J=0, 1, 2, ==+, M,
ZM 2L
bij = K E ; f(x,y) ecos (ixy) sin (jyé&) .,
y=0 =x=
'i:' 0' 1' 2. ooo, I_,.
lj = 1? 21 ...I L!
2M 2L
— -}‘
alj = K i LogT(x,y) sin {ixy) cos (jys)
y=0 %=0 _
i=1,2, o, L,
j 3 0. 1‘ 2' ---’ R’l'
2M 2L
Eij = K Z : 2 :f(x,y) sin (ixy) cos (Jjys)
y=0 x=0 )
i =1, 2, -, L,

The Tollowing abbreviations were used in the above expressions:

4

(2M+1) (2L+1)

2n 2m

2L+1 2M+1



