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ABSTRACT

The Navy Navigation Satellite System (NNSS) is over fifteen years old

and has well established its utility in position determination, from the knowledge

of the satellite ephemeris and the observations of the Doppler shifts at the

receiver.

The satellite ephemeris is available in two forms. The broadcast

ephemeris which can be received on real time basis is predictive and has

larger uncertainties than the post fitted precise ephemeris whose availability

is restrictive.

This study is an effort to improve station position recovery using broad-

cast ephemeris in Doppler data reduction.

Comparison of precise and broadcast ephemerides, treating the former

as the standard, yields information about the state disturbance that can be

associated with the broadcast ephemeris. Statistical information about the

state disturbance has been used with current observational data for improved

position recovery.

The rank deficiency problem encountered in the Short Arc Geodetic Ad-

justment (SAGA) procedure has been analysed and it has been deduced that the

fundamental rank deficiency is six, scale information being derivable from the

wavelength of transmission. Coordinate differences between stations coobserv-

ing a pass are estimable.

The uncertainty of the broadcast ephemeris, now in the WGS72 system,

has been assessed. It is conservatively estimated that its p-, iitional uncertainty

may vary between 19 to 26 m in-track, 15 to 20 m cross-track and 9 to 10 m

in radial directions depending on the incidence of the epoch of observations in

the interinjection period.
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The broadcast ephemeris indicates a radial bias of -5 m, which appears

to be the consequence of

(a) a 9.8 m offset of the origin of the coordinate system, with

respect to the geocentre, in the direction of 90 OW longitude,

(b) a scale correction of -1.4 ppm required to make it compatible

with a terrestrial system obtainable from a scale corrected

precise ephemeris.

Considering the state disturbance as a signal, sample autocovariances

have been computed for acceleration, velocity, and position.

Two specific experiments have been conducted. In the first experiment

in which three stations coobserve 12 passes, the removal of the radial bias,

resulted in bringing a chord distance in better agreement with ground survey

though the uncertainties were unchanged.

In the second experiment, the station positions of the first experiment,

simulated range rate observations and the autocovariance function of the

acceleration signal in the Cartesian coordinate system has been used in an

adaptive filtering procedure to improve the state of the satellite for one pass.

The position improved by only 0.6 m while the positional uncertainty improved

by about 4 meters. Much better results are expected with the use of positional

signal in the polar coordinate system which could also evaluate the in-track,

out-of-plane and radial biases in the individual passes. The experiment has

demonstrated the feasibility of this approach.
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1. INTRODUCTION

1.1 General Background and Brief Description of Present Study

The Navy Navigation Satellite System (NNSS) also known as the TRANSIT

system is over fifteen years old and has well established its utility in position

determ ination.

The operational satellites of this system (currently five) in near polar

orbit broadcast a pair of signals with a fixed frequency relationship which is

received at ground stations and examined for Doppler shift due to the relative

motion between the satellite and the receiver. From the integrated Doppler

shift position of the receiver antenna can be computed with the knowledge of

the satellite ephemeris.

The major factors affecting the accuracy of a receiver position in

Doppler survey are the following:

(1) the type of Doppler receiver and the design of the observations

(2) the accuracy of orbital ephemerides

(3) the method of data reduction including the corrections for atmospheric

refraction.

The satellite ephemeris for the NNSS is available from two sources:

(a) on a real time basis, broadcast as a message from the satellite,

(b) in a more precise form, maintained by the Defense Mapping Agency (DMA).

The precise ephemeris is a set of values for earth-fixed positions and

velocities at one-minute intervals computed by fitting .18-hour orbital arcs

Doppler data from a world-wide network f Sims, 19721. The broadcast ephemeris

injected into satellite memories twice per clay and broadcast automatically to

users is computed by fitting 36-hour orbital arcs to Doppler data from the

four U.S. Naval Astronautics Group (NAG) stations in Maine, Minnesota,
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California, and Hawaii and extrapolating these arcs 16 hours beyond the time

of the last data used [Piscane et al. , 19731.

The broadcast ephemeris differs from the precise ephemeris in the

following respects:

(i) The broadcast ephemeris is available on real time basis and is predictive,

while the precise ephemeris is a post-fitted ephemeris.

(ii) The broadcast ephemeris is based on Doppler data from only four stations

in the U.S. and generated by the NAG (independently of DMA), while the

precise ephemeris is based on Doppler data from over 20 stations around

the globe including the four stations tracking the satellites for the broad-

cast ephemeris.
(iii) There are variations in the mathematical models , the parameters used, and

truncation errors between the precise and broadcast ephemerides (e. g. , the

corrections to semi-major axis and out-of-plane orbit components are broad-

cast to the nearest ten meters) [Moffett, 19731.

(iv) The broadcast ephemeris is available for all satellites, while the precise

ephemeris is available for only two satellites (which differ from time to

time) and only after a time lag.

(v) The precise ephemeris is believed to have uncertainties of two meters

in each coordinate [Anderle, 1976, while the broadcast ephemeris is

expected to have an uncertainty of 12 - 28 m.

There has, therefore, been an ongoing effort to improve station position

recovery using broadcast ephemeris in Doppler data reduction. The ap-

proaches tried out so far can be considered to fall into one of the following

categories:

(i) Approaches in which the broadcast ephemeris is allowed to adjust

by assigning suitable a priori variances to the ephemeris in a computation

in which up to six unknowns (satellite state vector) are also solved for in

each pass. Fbr example, the short arc procedure [Brown, 19761 falls in

this category.

2
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(ii) Approaches in which the data is examined pass by pass in the

"Guier Plane" to account for certain biases and to edit the data before subse-

quent adjustment taking advantage of the fact that both refraction and ephemeris

errors are correlated between stations which track the same satellite. For

example, the procedures in [Kouba and Wells, 19761 fall in this category.

Further approaches appear to be available. If the post-fitted precise

ephemeris is considered to represent the true state of the satellite, the comparison

between the precise ephemeris and the predicted broadcast ephemeris (gener-

ated by an independent agency) over a length of time may yield statistical infor-

mation which when suitably used with observational data, broadcast ephemeris

and procedures in stochastic filtering theory (where necessary) may give an

improved state of the satellite and c onsequently an improved recovery of

station positions. An effort in this direction is the central theme of this study.

The study has been carried out in the following sequence: Most geodetic

problems are intimately connected with reference frames and solutions where

adequate precautions are not taken would yield values which may not necessar-

ily refer to the reference frame of interest. One cause for this is the rank

deficiency encountered in a normal matrix formed without introducing appropri-

ate constraints and is closely related to the mathematical model used to relate

the observables with the unknowns for the solution of the geodetic problem. An

understanding of the rank deficiency encountered helps in ensuring that appro-

priate constraints are enforced. An analytical study of the rank deficiency

problem in Doppler survey in the short arc mode which has been used in this

study has, therefore, first been carried out and described in Chapter 2 along

with a discussion about the estimable quantities in Doppler survey.

The next step in the study was to assess the uncertainty of the broad-

cast ephemeris by comparing it with the precise ephemeris. Studies of this

nature carried out by Wells [19741 and White et al. [1975] were based on data

pertaining to the period before the computational procedure of the broadcast

ephemeris was upgraded in December, 1975. It was, therefore, felt

3



appropriate to carry out a fresh assessment as part of this study. This is

described in Chapter 3. The data used for this purpose refers partly to

the pre-1975 period and partly to 1976.

Considering that the broadcast ephemeris provides the nominal state of

the satellite which is sought to be improved, comparisons between the precise

and broadcast ephemerides may be considered to vieid information about the

state disturbance. Considering the state disturbance as a signal, the proce-

dures foi obtaining the statistics of the signal by normal sampling methods have

been described along with the results obtained in Chapter -1.

Based on the above, two specific experiments have been carried out and

are described with their results in Chapter 5. The first experiment was

designed to study the influence of removing the radial bias in the broadcast

ephemeris noticed in the investigations in Chapters 3 and -1. With JNIR 1

receiver data from three stations, station positions have been obtained from

13 coobserved passes, both before and after removing the radial bias, and

the results have been compared. The sceond experiment was designed to

judge the feasibility of using the adaptive filtering technique for local orbit

improvement. With the station positions obtained in the first experiment held

fixed, the precise ;Ind broadcast ephemeris state vectors for one pass of

satellite 19 and the parameters of the sample signal autocovariance obtained

in Chapter .1 have been input to an adaptive filtering program. This program

uses simulated range rate observations to determine the error and uncertainty

of the broadcast state vector after processing three new observations at every

integration step treating the precise ephemeris state vector as errorless for

this purpose.

Conclusions and recommendations are made in Chapter 6.

l.2 brief Description of Data Utilized

The data utilized in this swdy was received from several sources, a

brief description (i1' which is given hrlow. The first dat;l set (hereafter referred

to ;as Data Set 1,) consists of proclse and NAG predicted state vectors for



satellite nos. 13 and 19 for several passes during a period in September, 1974.

This data was received from Defense Mapping Agency Aerospace Center

(DAIAAC). The data is in the earth-fixed coordinate system of NWL 9D as

described in (White et al. , 19751. As mentioned earlier since 1975 the broad-

,	 case ephemeris system has been upgraded. Along with changes in computational

t	 procedures, the coordinate system adopted has been changed to the Department

of Defense World Geodetic System 1972 (WGS 72) which differs by a small amount

from the NWL 9D system in which the precise ephemeris continues to be main-

tained.

The second data set, hereafter referred to as Data Set D, was received

from DBA Systems, Inc. It consists of Doppler observational data from three

ground stations in Florida acquired during a period in January, 1976. As JMR 1

receivers were used, the broadcast ephemeris for the satellites tracked was

also available in a message form. The precise ephemeris of satellite nos. 19

and 20 for the related period was obtained from DMA.

The third data set, hereafter referred to as Data Set S, was received

from the National Geodetic Survey (NGS). It consists of the precise ephemeris

for satellite nos. 12 and 19 tracked during October, 1976. The broadcase ephem-

eris of the satellites for the related period was received separately from the NAG.

1.3 Brief Description of Computer Software Utilized

This study has required a considerable amount of data processing for

which software from the following sources was used after due modifications.

For obtaining station positions with Doppler observational data, the

Short Arc Geodetic Adjustment Program (SAGA) as received at The Ohio State
i
'	 University and described in (Kumar, 19761 was used along; with the stand-alone

program SAMVA P received from Air Force Geophysics Laboratory. For de-

coding the JMR I receiver ephemeris message, a routine obtained from Mr.

White, DMAAC, was useful, Ebr Kalman filtering; procedures, the program

"EARTIIOD" from the Universit y of Texas at Austin was suitably modified.

5



1.4 Coordinate Systems Used

For formulations related to satellite dynamics, an earth-centered

inertial coordinate system (ECI) has been used as defined below:

The X and Z axes are directed, respectively , to the true vernal equi-

nox and the true North celestial pole at a selected epoch to. The Y axis forms

a right-handed system with Z and X.

The precise and broadcast ephemerides provide the ,satellite  state

vectors in an earth-fixed system (EF), through there is a small difference in

the scale and longitude definition between the two. The earth-fixed coordinate

system is defined with the X axis oriented to the Greenwich Mean Astronomical

Meridian, and the Z axis passing through the Conventional International Origin

(CIO), both as defined by the Bureau International de 1 1 11eure (BIH). The Y

axis forming the right-handed system defines with X the ;average geodetic

equator.
For observations, topocentric systems which are parallel to the above

but passing through the observer position instead of being geocentric are also

used.
Variations from the above where they .arise, and actual symbols used,

have been explained in the text. All vector quantities have an overbar.

6



2. RANK DEFICIENCY PROBLEM IN TIIE DOPPLER SYSTEM

2.1 Introductory Remarks

One of the practical aims of geodesy is that of the determination of

positions of points on the earth's surface. The latter aim has dictated the

need for adopting a frame of reference (or coordinate system) with respect

to which locations of points could be determined. Having adopted a refer-

ence frame, it is imperative that for the results to be fully meaningful the

coordinate system is maintained.

Unfortunately, one kind of geometric observation cannot provide all the

necessary information about the coordinate system. For example, range

observations can give information about the scale but not the origin or orienta-

tion of a coordinate system. NVhen an adjustment is carried out with such

observations by the usual method of observation equations [Uotila, 19671 with

the mathematical model

V. - G (R.)
	 (2.1)

where G is a vector function relating the u x 1 parameter vector X, with Y.,

the n x 1 observation vector, the following linearized form is obtained

V = HX+Y
	

(2.2)

where

V is the n x 1 vector of observational residuals

H is the n x u matrix 6G/^X., the matrix of partials of the observables

with respect to the parameters evaluated at the nominal value of the

parameters Xo

X is the u x 1 vector of unknown corrections to Xo

7



and

Y - To - Yi, is the difference between the computed observations

Yo - G(to) and the observations Y b.

Generally in all geodetic adjustments n > u, and the rank of the 11 matrix becomes

less than u if no parameters are constrained.

do in the normal equations

N X	 -I I	 (2.3)

whe re

N	 IITI'll, the u x u normal matrix

p	 n x n weight matrix of the observations

U	 IT p 1'

the rank of N is less th.ul u, and a Cayley inverse cannot be obtained for

N, which could give the Unique solution \ 	 -N ` U, as the unbiased estimator

of the parameters.

This is because the lack o f information about the reference frame in

the observations leads to a rank defect of the design matrix 11 and the singu-

l;trity of the noi-mlal IIIArix.

To overcome this situation, ;rdditional information about the coordinate

system lacking in the obser%-itions is needed in the form of constraints on

parameters. This additional information may be introduced in the form of

(a) inner constraints, (b) weighted constraints, or (c) absolute constraints.

The nature of the constraints enforced influences the coordinate s y stem in

which the solution vector is obtained.

For making, decisions in this matter, the rank deficiency encountered

in the short are mode of I)oppler data reduction used in this study has been

derived in this chapter and the decisions regarding the constraints have been

explained.

S



2.2 Rank Defect in the Short Arc Mode

Primarily, the rank defect in a design matrix depends on

the type of observations. However, the rank defect may increase due to the

additional parameters used in the mathematical model other than the station

positions and/or numerical problems, which may generate dependence between

the columns of the design matrix.

Therefore, only the minimum rank defect situation has been analyzed,

taking into consideration a simplified form of the mathematical model used in

the SAGA program with the Doppler data reduction [Brown, 1969, 19731, and

this is termed the fundamental rank deficiency.

In its simplest form the integrated Doppler shift is modeled as

D = Of 02 - t1) + (PP2 - PPOA	 (2.4)

where

X	 is the wave length of the adopted frequency of transmission

D	 is the observable Doppler count at one ground station P during

the motion of a satellite from position 1 to position 2

t1 , t2 are the epochs corresponding to satellite positions 1 and 2

A f	 is the unknown frequency offset given by f 6 - f„ where fb is the

ground reference frequency and f, is the frequency transmitted

by the satellite

PP2, pP1 are the slant ranges corresponding to positions 2 and 1 from P.

In terms of the computed range difference, the observation equation in

a functional form is given by

(PP2 - PP1) c + dP12 (dX P+ d 1+ d 2)	 (PP2 - P11)0 + V12	 (2. 5)

where

(PP2 - PPO O is the computed range difference

(P P2 - PP1)O is the observed range difference

[D - A f (t^ - t i )] X

XID- A('(t<-ti)l - X(t2-tl)dAf

9
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Piz	 = PF_ - PPl

	dpl,	 is the change in range difference : ue to changes in coordinates

of station and satellite positions

	

V12	 is the observational residual corresponding to station P and

satellite positions 1 and 2

	

(ff,	 are the three ground station unknowns at P

	

c11 1 	are the three unImowns for satellite position 1

(f 2 are tY three unknowns for the satellite position 2

	

dOf	 is the unknown frequency offset correction to the nominal

value Of

For the study of rank deficiency it is necessary to excunine the structure

of the design matrix 11, .wising from the left member in the observation equation

of the resulting form

dP12 (ch\ P, d\ 1 s d12) ^ X ( t2 - ti ) dd f =

X [D - A f 0 (t2 - tl)] - (PP2 - PPO + V12	 (2.6)

and to determine the number of independent columns therein. Ibr doing this,

the form of 1I matrix in a range observation will be considered first since the

formulation for range difference observation follows easily from it.

2. 2. 1 H matrix for Il:tnge observation

The formulation of the 11 matrix is simplified in the system of topocentric

right ascension and declination. Let

x,

	

\r	 1'P	 be the earth-fixed coordinates of ground station P, and

ZP

	

1	 (
x1 -

}'1	 be the c,:r-th-fLxed coordinates of the satellite at epoch 1
L %1

If a1 and 61 are the tolx)eentric right ascension and declination of the satellite

at position 1, then

10



:

X P - Xl	 1	 0	 Xm	 pPl cos 61 cos a1

YP - Y1 =	 0	 1 -ym R3 Al) Ppl cos 61 sin al	 (2.7)

Z P - Z1-	 --xa y. 1	 pP1 sin 61

•

	

	 [Krakiwsky et al., 1967]

where

Rs Al)	 is the transformation matrix for rotation around the third

axis given by	 cos "Gl	 sin eG1	 0

	

-sin eG1	 cos eG1	 0

0	 0	 1

eG1	 is the Greenwich apparent sidereal time at epoch 1

xm, y m	 are the components of polar motion

t
Denoting the polar motion matrix by C T , squat ion (2.7) can be differen-

t	 _	 _

tiated treating the slant range pp 1 and the position vectors X P and X 1 as vari-

ables.

Neglecting second-order terms, C T is orthogonal. Therefore,

dX P - dX1 	Cos (01 1 - eGl) Cos 61

C dYP - dY1 	= sin (al - eC1) cos 61 dPP1

dZ P - d7. 1 	sin 61

Therefore,

dX P - dX1

[cos (0 1 - eG1) cos 61 ' sin (0t 1 - 6cl) cos 6l ; sin 611 C	 dYP - dY1 = dpP1

dZ P - dZ1
(2.8)

This is the familiar observation equation form.

Denoting

dX1	 dXP

1	 dXl = dYl	dXP =	 dYP

dZ 1 	 dZP

equation (2. 8) can be rewritten as

11	 ORIGINAL PAE IS
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dppl = [hpi	 -hP1
J 	
dX p(2.9)

 ia.
where hp l is a 1 x 3 submatrix given by

hpl _ [COS PI - 8G1) cos61 + x. sin 61 , si n((X l - 8G1) cos 61 - ym sin 61

- xm cosp 1 - 8G 1) cos 61 + ym sin(cr l - 1%1) cos b, + sin 61]

This equation gives the structure of the design matrix in the case of a slant

range observation ppl.

2. 2 11 Matrix for Range Difference Observations of Doppler System

To obtain the structure of the design matrix in the case of a range dif-

ference observation, equation (2.9) is extended to consider corrections to ranges

dppl and dpp2 . Corresponding to (2.9) for dppi,

r	 ^p
dPP2 = [hp2 	 -hp2^

JJ (LX 2

Hence dplZ, the variation in range difference due to variation in position of

station P and satellite positions 1 and 2, is given by

dP12 _ dppl - dPp2

dli p

[hP1	 -h p,	 0 ] d; 1	 - [ hp2

d X2

d7^ p[(h p l - h,2) -hp , ho2^ ^1

tI^Z 2

cDC p

0	 -h p2 ] CLN 1 =

cat

(2.10)

The variation of the range difference due to variation of the last

unknown dAf is now considered. This is readily seen from equation (2.6) as

;l (t 2 -tl). Thus, the structure of the II matrix for a Doppler observation for

one ground station, two satellite position unknowns, anti a frequency offset

unknown will be

12
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(i)	 (ii)

COS(a l - 601 ) cos 61 	sin(oc1 - 6C1 ) cos 61

	

- Cos(a 2 - EU Cos 62 	- SiI1((Y2 - 8C2) COS 62

(iii)	 (iv)	 (v)

sin 6 1 - sin 62 	- cos(a l - OGl) cos 61 	- sin(a l - 6"1) Cos 61

	(vi)	 (vii)	 (viii)
- sin 61	 COS(ag - 191.2) COS 62	 Sin(a2 - ()G2) COS 62

	

( ix)	 (x)
	sin 62	 X oz - to	 (2.11)

treating the polar motion components as known and leaving them out of con-

sideration for rank deficiency analysis.

Now the addition of a second range difference observation for satellite

positions 2 and 3 will imply three more unknowns. Denoting W1 = of - 91.,, the

structure of H matrix for the 13 unknowns with two observations will be

(i)	 (ii)	 (iii)	 (iv)

Cos w1 Cos 61	 sin W1 Cos 61	 sin 61 - sin 62	 -COS M Cos 61
- Cos W2 COS 62 - sin W2 COS 62

Cos &J^ Cos 62	 sin &o2 COS 62	 sin 62 - sin 63	 0

- COS W3 COS 63	 - sinw3 COs 63

(v)	 (vi)	 (vii)	 (viii)	 (ix)
- sinwl cos 61	 - sin 61	 Cos w2 cos 62	 sin W2 Cos 62	 sin 62

	

0	 0	 -Cos W2 COs 62	 - sin W2 Cos 62	 - sin 62

	

(x)	 (xi)	 (xii)	 (xiii)

	

0	 0	 0	 >,(t2 - to

cos w3 COs 63	 sinw3 cos 63	 sin 63	 X(tz - t2)	
(2.12)

2.2.3 H Matrix in SAGA

Itcanreadilybe seenth.ltthc^;lboveproccxluregivetithrec more unknownsfcr

every additional observation, and cut overdetermined system required for adiust-

ment cannot be obtained. This situation is remedied either by increasing the

number of coobserving stations or restricting the number of satellite unknowns

13
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per pass. In SAGA; the satellite unknowns are restricted to six per pass

(three for position _-id three for velocity) by assuming the force model to be

known. In this investigation the same procedure has been followed.

Adopting the following compact notation

	

CC.	 =	 cos w. cos b .

	

1	 1	 1

	SC.	 =	 sin w. cos b,
i	 1	 1

Si 	=	 sin 6 

the problem is extended to one ground station and four consecutive satellite

positions. Following equation (2.12), the structure of H matrix for three obser-

vations and 16 unknowns assuming one frequency offset per pass, will appear as

(i) (ii)	 (iii) (iv) (v)	 (vi) (vii) (viii)	 (ix)
CC 1 -CC 2 SCI -SC2 	 S1 -S2 -CC 1 -SC1	 -S1 CC2 SC2	 S2

CC2 -('L3 SC E -SC3	 S2 - S3 0 0	 0 -Cce -SC2 -S2

CC3 -CC 4 SC3 -SC4 	$3-S4 0 0	 0 0 0	 0

------------ d.1 P ------------ ------ &Xj ------ (- ----- d52----j

(x)	 (xi) (xii)	 (xiii)	 (xiv) (xv) (xvi)
0	 0 0	 0	 0 0 >1 42 - tl )

C 	 SC3 S^_	 0	 0 0 Vt-t2 )

-CC3 -SC3 -S3	 CC4	 SC4 S4 *3(t4	 -t3) (2.13)

f------- dX3 -----)	 f------ JR4 -------) (---dA f---)

The unknowns for satellite positions are now reduced to six, viz., cL\o

dXo , the corrections to assumed values of position :uid velocity components

at an adopted epoch to (preferably taken as the epoch to at midarc of the pass) .

This approach gives the following linear transformation [Brown, 1969, p. 201

for satellite position i at epoch ti:

_	

'31	 a1
No

Fl

(2. 1 ?)

14
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Twhere [X0
T
 \o]	 [\o Yo Zo \0 10 7. 0], and n l is the mat rizant in the

inertial system given by

(X I. Yt. l i. T)r
^t

(X0 . yo , Zo . to . Y0 . 70 )

where

\,,Y i ,Z t are the geocentric inertial coordinates of the satellite at

T, with T1 = t t - to

to , Yo . Zo , X-0 , Yo , 7. 0 are the assumed initial conditions at T 0

The inertial coordinate system is defined as the coordinate system which

is coincident with the earth-fixed system at T 0,

0 is obtained in SAGA with the help of the orbital integrator developed by

Hartwell [19681, It employs a power series solution to the equations of motion

in the inertial system, in a recursive algorithm, which earn be represented by

the following for an arbitrary Tt:

1	 0

Y i	 1",	 bo	 b1	 b;	 ...	 T	 1

7, i	 ! t t	 CIO	 Cl	 Co	 cy	 T`	 9 7

(?, 15)
T a	 c{T'— 

l
s

where the coe ffic it`llts :1,, b t . e j . 1	 0. 1, , , 	 (I a re ftllletiOns of th e six

initial conditions at T	 0, (\,,, Y,,. 7.,,, \,,, Y,,, '1.,,) and the earth gravitational

coefficients. q is the index of the power series at which the series is truncattXI

When • 1 prespeeified tole lance (0.001 nl) is reached ftrr T., the maximum value
of T to be exerc ised.

From (2.15), 0 caul tw seen as

fi le 	 01:	 0It;
01	

Q.,l	 n : ;	 fl.,t

t

where 01, is, in turn. :1 polynomial 1	 1. a; n	 1, t;,

15



^ v,	 (a,,	 a l	...	 ^y)m	 1
T

T y

	

	(2. 1G)
t

tt• itI1 a 'j as the dominant tt`rlll. The e01'resptnd('110e 1JetN •el`n the a coefficient:

of (''.16) and (a, b, c) eoef fit , ients of (2. 15) is easily seen. For e nuple, taking

eosL' T t 	 silt L' T t 	 0

li 
t	

- sill L' T t	 eos	 T 	 tl

0	 tl	 1	 (2. 17)

is tilt` lllatrix which et111 tiaivrol •lll the 111.'1trizzult sa l to all t`artil-fixed systelll

at t 	 is the earth rotatioll rate.

For passes up to 20 minutes, T;	 10 minutes, cos ^' Tl c+ 1.0, 'Ind

sin Z' Tt	 0, so lt i is taken as :inidentity matrix for the purpose of rank

deficiency analYsis. 'Thus with the help of etluation ('_'. 1 . 1), otluation (2. 13) is

used to obtain tilt , corresponding lxOl'tion of tllr 11 nl:ltl'L\ for satellite l)ositioll i

ill terms of the new satellite unknowns through tilt , linear transformation

•	 1

For tilt' situation in (2. la). the unknott'ns will rtvluce from 16 to t0,

and the new I  111A rix will have the structure

16



(i)	 (ii)	 ' (iii)	 (iv)
CCl-CC2 SCl-SC2 ^Sl-S2 (CCl)f dll )-(SCl)(Ai21 )-( sl)( 31)

+ ( CC2 )( 0211)+ ( SC2)( x3221) '(S2)( 031)

CC2 -CC 3 SC2-SC3 1, S2-S3, (CC2)( CA1l -(SC2)15f21)-(s2)(d31)

l+(CC3)( ^1)+(SC3) 2 ^ +(S3)(n331)

CC3-CC41 SC3-SC4 S3- s4: -(CC3 ) ll)-(SG3X d21) -(S3)(&31)
+(CC4)(,C411)+(SC4)(9421)+(S4)(d 31)

(v)	 (vi)

-(Cc,) (61 )-(SC )(	 ) -(S )(S31 )	 -(CC >(S21 )-(sC )(^1 >-(S >(b^l )12	 1	 22	 1	 32	 1	 13	 1	 23	 1	 33
i +(CC2) 0212 1+ (SC2) ( 52222)+ (S2) (d32) ^+(CC2)'52213)+(SC2) (Cf23 )+(S2) (d33)

-(CC2)(CP12)-(5C2)(&22)-(s2)(	 ' -(CC )(^ 13 )-(SC )(	 )( ) 2	 ;
32 ) ^	 2	 2 ^23 -s(.2 ^ 33)

+(CC3)(3 )+ (SC3)(	 )+(s )l 3 )! +(CC )( 3 )+(SC )I	 + S	
3	

!12	 22	 3 SZ 3 2	 3 S2 ,3	 3 n 23 ) ( 3)(tl )

-(CC3)( 121-(SC3)(d22)-(S3)(CP32) (CC
 3)(CP) (SC3)(d23)-(S3)(033)I

+ ( C C4 )( 5212)+(SC4)(Q422)+(s4)Q 3 2 ^. +(OC4)013)+(SC4)(d23) `( s4)( Cf33)

(vii)	 (viii)

(	 )(521 )-(SC )(^1 ) (s )(	 )	 '- CC) S, 	 ^1	
!- CCl	 14	 1	 24	 1	 34	 (	 1 ( 15 )-(SCl)( 25)-181)(	 35 )	i

+(CC2)(5^14 (SC2 )	 24)+(S 1( SZ )	 (CC 1 02	 S^ +	 CP2	 34	 2 (	 10^ (SC2)( 25 ) (S2)( 35)	 !I	 ,

-(CC )(a )	 c)(5	 ) s	 2 )(n2	 14 -^ 2	 24	 2)( 34 )	 -(CC 2	 15 -(Sc"(SC2)(	 25)-(S2 )( ^r35)!
( Ci3 )( n 14 ) + (SC3 )( 52324)+(s3)( 52334? +(CC3)( 52315) +(SC3)( S,3 ( S3 )(^3 )l! ` 25^ 	 35

^-(CC3)( 5Z 14 ) - (Si 31( 523 24 )-(S3 ) ( 0 34)i-(CC3)( 5215)-(SC3)(52325)-(S3)(5Z335)

+(CC4)( X14)+(SC4 )(Q424 )+(S4 )( re34);+ (cc 4)(Q415)+ (SC 4 )( 52425) +(S4)( w35)
17
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( ix)	 (X)

- (CC	
1G1 )4 16 	 1 )(131 

26 
)-(S 1 )( d36 ) 	 2-t1)

+(CC21^ 116) + (SC2)(5^^61)+(S)	 36)	 Ii
i	 I

-(CC 2)(2161-(SC2)(0226)-(S 2 )(0236 )	 I	 X(t3-t2)
I

+(CC31( n316)+(SC3)( 0326 )+(S3)()36

I

-(CC 1( S'll ) - (SC )(1^3 )-(S )(^ 3 )	 i3	 1G	 3	 26	 3	 36	 ^ (t4-t3)

; 4-(CC4 1(	 16 )+ (SC
4 )( 0426)+(S4)(Q436)

(2.19)

Using index u for the satellite position and v for the column of the matrizant

0, and denoting

Cc Qu + Sc Quv + Su flu3v 	 bymu 0 tU 1v	
u

and	 (tu_+ 1 - tu )
	

by	 Tu+1, u

the above matrix takes the following more compact form

(i)	 (ii)	 (iii)	 (iv)	 ( v)

cc -cc I Sc -Sc ' S -S	 -m Sa + m S'^ 	 -m tr +m S^1	 21	 1	 2,	 1	 2	 i	 1	 1	 2	 1	 i	 1	 2	 2	 2'

CC 2 -cC' 1 SC2 -SC ,; i S2 -S,1 	-m 2 Sb l a m,11 i -m22+m32

	

3	 4	 ^	 4	 i
cc 3-cc4 ^ sc 3 -Sc4 S3 - S4 , -m3 Q 1+m413 1 

-m3 d	 40 2

	

i	 i

dXp	dXo

18



1

(Vi) (vii) (Viii) ( ix)

I
- 1 111I m	 3+ m2	 3

1
-ml 534+ m 2a -ml d5+ m2 5^5

^	 2
-ml	 g+m 2	 6

I	
2

-m SZ +m > 32	 3	 3
I	 I

2
-m 1b +m S132	 4	 3	 4 i -m 5^5 + m 3 51362 i -m S^6+m S13

2	 3	 6
i

-m3 d3m4 SZ4 3 -m3 d4+m4 S144 i -m3 
C5+M CS -m35a36+m4C46

dXQ

(x)

T21

i
i

'	 T 
32i

( 2.20)

T 
43

' dpf

2. 2.4 Rank Defect Analysis

As further observations are taken in the same pass from the same

station P, the number of unknowns do not increase, and only more rows will

be added to the above H matrix (2.20) which can now be analyzed for rank

deficiency.

Examining the first row, it can be seen that

element h14 = - ml 52 11 + m2 "1

-(coswl cos 61 ) 011 - (sinwl cos 61 ) 0	 - (sin6j)0'

+ (cos w2 cos 6 2) C2 231 + (sin w2 cos 6 2)C22 + (sin 62) 5221

- hll Oil - h12 0a - h13 52311	 (2.21)

19
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as 0'	 ^lal ; S^^ t381c psi ^3i. n ii'— i ii as they are monotone

decreasing series with coefficients which alternate in sign [Hartwell and

Lewis, 19671 and have the same first dominant term (00)11 independent of T

as seen from (2.16). Similarly, 0211 —_ C1a and 0311 (231 , as they have the

same first dominant terms (a'o)a and (a'o)31, respectively.

Therefore, h14 is a linear combination of hil, h12, and h13. Similarly,

it can be shown that hls, h18 , hr?, h18, and hi9 are linear combinations of hil, hia,

and h13 . And this holds for every row of H (e.g., h 2,°• -ha^11 - h22nai - h n3i).

Also, from row 1 to row 2, the scalars in the linear combination will be approx-

imately equal in a short arc, e.g., 0 i ;:tj n2 , as explained earlier. The same argu-

ment holds from one row to the next, and columns 4, 5, 6, 7, 8, and 9 become

dependent columns leaving only four independent columns.

If more stations observe the same pass, there will be three more station

unknowns per station, but the above arguments about rank deficiency will hold.

It can therefore be concluded that the fundamental rank deficiency in a Doppler

system, short arc mode, is 6.

It is assumed that the scale information is obtainable in the system

from ,k , the wave length of transmission, as seen from the tenth column of

the H matrix above. Having determined the fundamental rank deficiency in

the system, an effort will now be made to determine what quantities are esti-

mable in the above situation. But it is obvious that a rank deficient matrix

like H above will lead to a singular normal matrix N.

2.3 Estimable Quantities in Doppler Observations

It is ]mown that if a normal matrix N is singular and a solution is obtained

with a pseudo-inverse N the solution vector X. - N + U is not estimable since

E(X,) / X, the parameter vector.

As derived by Rao [1973], any arbitrary matrix G can make CX, estimable,

in a linear system, if the condition

r [I - ( N ) ( N )1 = 0	 (2.22)

20



is satisfied, where I is the identity matrix.

So if a change can be made in the parametrization of the mathematical

model obtaining an H matrix which is not rank deficient, ( N) = ( N) ; and

the new parameters will be estimable. This can be done in the Doppler system

considering the form of the H matrix given by (2.20).

With the modified parameters

-XP  - X,

Yy - Y,

Z n - Z,

instead of Xy and X„ the restructured form of H will be as given below:

(i)	 (ii)	 (iii)
^2 iCC1-C C2+ ml 5311 - m2 zZ 1 ! SCi SC2+ ^ C a -.n2 (^2 ; s-1-

	

	 ml t2 3- n^ d3

i i

CC2-CC3+	 5321-	 1 ! SC2 -SC3+	 2- m3	 S2-S3+ 
n20 

23_ 
X33 ,

CC -CC +	 -m t3 SC -SC + Sa	 (2 S 	 m 533 	 A !3	 4 m3dl 4 1: 3 4 m3 2 m4 2 3-S4+  3 3 m4 8;

dQX00
( iv) .	 (v)	 I	 NO	 +	 (vii)

- n^ 524+ m8 5324	 -m153i5 m2 (3 5 1 -mIC) 
m2 C26 i X 7 21	 j

I	
2 +
	 n3 	 2	 3 I	

2	
3	 I

m2 ^ 4 m3 4	 m20 
5+ 

m3o 5 I m2 O 
6} 

m3A 6 ()^ 732

^	 ^	 t3	 4_	 3	 4 s
i m3 n 4+M4 A 4	 M30 5 m4 A 5	 n'3 (1 6+m4 n46 a 7 43
^	 ^	 I	 I	 I

(

do
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In this matrix all the columns are independent, and the solution will be a vector

of estimable quantities. Thus, it is concluded that in a Doppler system, the

vector of coordinate differences between the observing station and the mid arc

state vector of the pass, the velocity components of this state vector, and the

frequency offset are estimable.

If more than one station is coobserving the same pass, the linear

relation

	

-XP-XQ
	 XP - Xo	 XQ - Xo

^XPQ = Y P - YQ = Y P - Yo - YQ - Yo = AX Po -,&XQ0

Z P	ZQ	 ZP -	 ZQ - Z

can be used to conclude that interstation coordinate differences are estimable

if the stations coobserve the same pass of the satellite in a short are mode.

The coordinate differences are independent of origin. The scale information

comes from the wave length of transmission, and the orientation information

comes from the force components enforced in the satellite dynamics.

q



3. EPHEMERIDES OF THE NNSS AND

THEIR ACCURACY ESTIMATES

3.1 Introductory Remarks

Having analyzed the rank deficiency problem in the previous chapter,

the next step in the goal to achieve improved positioning is to assess the accu-

racy of the ephemerides of the NNSS. As mentioned in Section 1. 1, the

ephemeris of satellites of the NNSS are available in two forms, precise

ephemeris computed after the fact by DMA and broadcast ephemeris which

is obtainable on a real time basis from satellite transmissions.

These values can be treated as direct observations on the position and

velocity of the satellites for applying conventional sampling techniques to

obtain estimates of uncertainties. Estimates of precision or more correctly

the prediction errors in the broadcast ephemeris can be found by comparing

the two values of state vectors for common time points in the overlaps of

successive orbit fits.

Since the precise ephemeris is known to be more accurate than the

broadcast ephemeris, in the pursuit of improving the broadcast ephemeris,

estimates of its accuracy have been computed by comparing it with the precise

ephemeris. After a review about the satellite system and ephemerides, the

results of this study will be presented.

3.2 The Navy Navigation Satellites

There are at present (May, 1977) five operational NNSS satellites in

orbit. Their identification numbers are summarized in Table 3-1. Some

typical orbital elements of the satellites as per the latest data set (Data Set S)

are given in Table 3-2. The orbital elements tabulated are the mean motion (n),
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Table 3-1

NNSS Satellite Identification Numbers

LAunch Iklte Apr 11, 1887 May 18. 1967 %p 25. 1967 Mar 2,1968 Aug 27, 1970 Oct 28,1873

Precise r
Ephemeris

58 58 60 61 88 77
Uenl lflcation
Numlwr

Operational
Ephemeris

50120 30130 30140 90180 30190 30201)
ldeatificAlloo
Numlwr

Number
Used in I 22 13 1.1 18 19 20
]this bludy

' &UvIlite Number 18 has 04ce Wes declared as moo operational. But some daft b r this
s.Ltelllte was avallablu Is this nlo* in Data fiat D.

Table 3-2

Values for Selected Operational Ephemeris Parameters

for Selected Days in 1976

Satalllte

12

hay

328

n(deb/min)

3.3615808

a

.002108

slktnt

7110.73

cos 1

-0.004096

13 316 3.3883808 .001078 • 7463.11 0.006719

14 316 3.3729148 .004009 7453.47 0.013237

19 329 3.3957248 .017800 7464.09 -0.002161

20 330 3.4100805 .015782 7308.34 -0.002201
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eccentricity (e), semi-major axis (a), and the cosine of inclination (cos i).

•	 All NNSS satellites follow a near circular polar orbit.

3.3 Precise Ephemeris

Precise ephemerides for one or more Navy Navigation Satellites are

computed on alternate days based on 48 hours of observation made at over 20

stations distributed around the world [Anderle, 19761.

The equations of motion of the satellite and the variational equations for

the forces are numerically integrated by a tenth-order Cowell process with UTC

time as the argument of integration. The force equation includes terms for the

gravitational field of the earth, moon, and sun, the lunar and solid earth tide

effects, atmospheric drag, and solar radiation pressure. The gravitational

field of the earth is given in a spherical harmonic expansion containing about

400 terms, and the earth tides are based on a Love's number of 0.26. The

gravity field revised in January, 1973 (NWL-10E) is in current usage.

The precise ephemeris is believed to have periodic errors of about 2m

in each coordinate due to uncertainties in the earth's gravitational field and

effects of variations in atmospheric density on the computed satellite positions.

It is maintained in the NWL-9D coordinate system which is believed to be related

to the NWL-1OF system (consistent with WGS 72) as follows:

longitude	 X10F -1X eD + 01.1260, a is positive East

geocentric latitude	 1Y1o ► 	 \V 9D

radius	 ^10► " SAD - 5 .27 m
[Anderle, 19761

Based on the above approximate relations Vincenty 119761 has derived the

transformation parameters given in section 3.5.2, which have been used in

this investigation.

The precise ephemeris is made available at one-minute intervals in the

geocentric earth-fixed system in the form of position and velocity components.
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3.4 Broadcast Ephemeris

The broadcast ephemeris is computed as already explained in Chapter 1.

Each satellite has a memory which can hold 16 hours of orbit prediction data.

This predicted ephemeris is injected into the satellite memory about every

twelve hours.

The broadcast ephemeris is received at an observing station in the form

of coded parameters from which earth-fixed satellite positions can be calculated

[Moffett, 19731. These parameters are divided into 14 fixed orbit parameters

whose values change only twice a day and four sets of variable orbit parameters

whose values change every two minutes. These are listed in Tables 3-3 and

3-4 as taken from [Wells, 19741 and [Moffett, 19731.

The decoding of the parameters and the computation of the positions of

the satellites in the earth-fixed coordinate system, at two-minute intervals, is

done according to procedures described in [Moffett, 19731. For velocities of

the satellite, at two-minute intervals, time derivatives of the variable paramet-

ers are also required, and these have been obtained by a polynominal fit to a

maximum of 16 consecutive values.

Since December, 1975, the broadcast ephemeris system has been up-

graded [Black, 19761, some main features of which are given below:

(i) The previous APL 4.5 geopotential model has been replaced by the

WGS 72 model.

(ii) The value of GM has been changed from 398 601.5 f 0.6 km3 /sec'

to 398 600.8 t 0.4 km3 /sect .

(iii) Station coordinates of tracking stations have been changed by small

amounts to bring greater internal consistency.

(iv) Implementing the main sun-moon-induced body tide corrections.

The (single pass) error budget is given in Table 3-5 both "before" and

"after" the introduction of WGS 72. It is clear that the error budget will continue

to be dominated by uncertainty in the geopotential model and incorrectly modeled

surface forces.
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Table 3-3 Fixed Orbit Parameters

Symbol

tp

Definition

Broadcast
Units
(Current.
Resolutir)nj*

Time of first satellite perigee after last 10 
4 
min UT

satellite injection

n Mean motion (only fractional part is 10-7 deg/min
broadcast)

W(tp) Argument of perigee at tp 10-4 deg

(W) Absolute value of precession rate of perigee 10-7 deg/min

e Eccentricity of orbit ellipse 10-6

a Mean semi-major axis of orbit ellipse 10 metres

0(tp) Right ascension of ascending node at tp 10-4 deg

6 Precession rate of ascending node 10-7 deg/min

cos i Cosine of inclination 10-6

GAST (tp) Greenvich apparent sidereal time at tp 10-4 deg

- Satellite identi fication number -

- Day number and time of last satellite data 2 min UT
injection

sin i Sine of inclination 10-6

Fractional satellite frequency offset parts in 109
(fo - fs)/fo

s For each of these parameters there is a trailing wro digit which is not
currently used, and which could be used to increase the resolution (the
frequency offset has four trailing zeroes).

Note: The above table is based on Wells [1974).
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Table 3-4

Variable Orbit Parameters

Symbol	 Defini-.:ion

t	 Time in even minutes of UT, modulus one half
hou_''

l a(t)	 I Correction to eccentric anomaly at time t

da(t) Correction to semi-major axis at time t

n(t) I Out of plane orbit component at time t*

Broadcast
Units

2 min UT

10-4 deg

10 metres

10 metres

n(t) values are available only at four minute intervals (for times
which when expressed in minutes UT are divisible by 4).
AE(t) and Aa(t) values are available at two minute intervals (for
even minutes UT).

Note : The above table is based on Wells [1974].
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Table 3-5 NNSS Error Budget * (Single Pass)

Meters

1 Uncorrected propagation effects (3rd order	 1-5
ionospheric, and neglected tropospheric
eff-cts )

2	 Instrumentation (oscillator phase jitter)	 1-6

3 Uncertainty In the geopotential model 	 15 - 2 0 (APL 4. 5) 	 5 - 10 (WGS - 72)

4 Incorrectly modeled surface forces 	 10-25
(secular error growth due to incorrect
period, drag and radiation pressure)

5 Unmodeled UTI-UTC effects and in-
correct coordinates of the pole

6 Ephemeris rounding error (last digit of	 5
ephemeris is rounded)

Overall Uncertainty	 19 - 3 3 m (A PL4. 5)	 12- 2 8 m(WGS-7 2 )

Adapted from Staff of Applied Physics Laboratory 119751



3.5 Accuracy Estimates

Accuracy estimates of the precise ephemeris have been mentioned in

Section 3.3 above, as available in the literature. Estimates of precision of

the broadcast ephemeris can be made by carrying out a comparison between

the broadcast ephemerides based on two successive orbit fits, in the overlap

period, at common epochs.

Estimates of accuracy of the broadcast ephemeris are possible to be

found by comparison between the precise and broadcast ephemeris at common

two-minute epochs if the precise ephemeris is considered errorless for this

purpose.

3.5.1 Precision of Broadcast Ephemeris

Ephemerides of satellites for common epochs for the Overlap portion of

two successive orbital fits were available in two forms:

(i) from Data Set D, from passes tracked during injection

(ii) from Data Set S, where complete injection information was available

on tape, in coded form.

The comparisons between the state vectors of the satellites have been

carried out in two forms:

(i) comparison between the position and velocity components in the

Cartesian system (X, Y, 7, X, Y, Z)

(ii) comparison between the position and velocity components in

the polar coordinate system (X, 0, r, i, cp, r)

Since the satellite orbits are polar and near circular, the comparisons

at (ii) yield resu Its which would correspond very closely to out-of-plane, in-track

and radial differences.

ORIGINAL PAGE IS
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(3.1)

(3.2)

(3.3)

For the above computations, values for X, Y, Z and X, Y, Z were

obtained from the ephemeris message as indicated in Section 3.4. From

these, the corresponding X, v, r, , cp , r values are readily derived from

the relations:

r = (X2 + y2 + Z2)

Z
tan cp =

y

	

tan	 = Y
X

and

X	 - r coscp sina	 - r sincp cos X	 coscp cosy

Y =	 r cos (P cos a	 - r sino sin 	 coscp sin),	 cp

Z	 0	 r cos (p	 sin cp	 r

which yields

	

-sin),	 Cosa	 X

	

r coscp	 r coscp

_ - since cos	 - since sink	 coscp	 Y

	

r	 r	 r

r	 coscp cos X	 coscp sinX	 since	 Z

when the transformation matrix is nonsingular.

Let M be the quantity whose precision estimate is being obtained.

LN i = M. s - M 1 t , where M, t is the value of quantity M from broadcast

ephemeris at epoch t t as per later orbit fit; M. t is the value at the same

epoch ti as per earlier orbit fit.

n

E&M,
0 M =	

1-1 
n
	

(3.4)

mean value of M

where n is the number of data points.
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A

Mi

RMS-ln	 = Root Mean Square value	 (3.5)

A

Eo M, - Q M)a

SD - 
a_ 

1	 n - 1	 Standard Deviation	 (3.6)

The above values for X, Y, Z, X, Y, Z, X, 0, r, and i, 0' , r are given in

Tables 3-6 to 3-9.

Based on the preceding results, the following observations can be made

giving more weight to the values obtained. in Data Set S, where the number of

data points are over 300:

(i) Taking conservative estimates (based on maximum values), the

internal consistency of broadcast ephemeris for positions can be taken as about

10 in, 11 m, and 15 m in the X, Y, and Z directions, respectively. But since

X, Y, Z coordinates are correlated, it is more appropriate to consider the

inconsistencies in the in-track, out-of-plane, and radial directions. 	 The

estimates for these are 19 m, 14 m, and 4 m in the in-track, cross-track, and

radial directions, respectively.

Fluctuations to the above extent show no indication of a bias since the

RMS values are very close to the values of standard deviation.

The above values have been arrived at after excluding from consideration

the values for satellite 20 in Data Set S. The unusually high values for satellite

20 are duce to the fact that, as ascertained through private communication, NAG

has been experiencing periodic fluctuations in the dynamics of this particular

satellite due possibly to its low perigee height. It does not, therefore, repre-

sent the general behavior of the Navy Navigation Satellites.

(lit The corresponding conservative estimates, for internal consistency

in velocity components may be taken as 0.2 m/sec each in the X, 1', and Z

.3r



Table 3-6

Precision Estimates of Broadcast Ephemeris for Position Components in Cartesian System

WW

b ^

M

Data Srtellite No of X Y Z
Set No 4X RMS 8D A Y RMS 8D 4'L Ft M8 SDPuints

I M) ( m 1 (m) Im) (ml (m) (m) (m) (m)

12 20 0.6 6.6 6.8 -8.0 11.4 8,4 -12,8 16.4 10.6

13 15 1.5 7,4 7.5 0.9 1.6 1.2 0.0 3.3 3,3

D 14 10 4.6 10.0 9.3 5.9 7.7 6.2 11.5 14.0 8.3

19 15 3.7 7.5 6.7 0.3 1.7 1.7 -	 1.4 3.4 3.2

' 20 15 3.0 7. 0 6. 6 -9.5 10.2 3.7 -21. 0 22.4 8.1

12 373 -0.4 7. 5 7. 5 -1.2 7.7 7. 6 -	 0.2 8.2 8.2
13 378 0. 3 6. 5 6.5 0. 2 7.7 7.7 0.8 10. 1 10. 1

S 14 354 0.2 5.2 5. 2 0.	 5 5. 6 5,6 0. 6 5.5 5. 6

19 421 R.4. 9. 3 9. 3 0. 4 10. 2 10.2 -	 0. 4 14.0 14.1

• 20 416 ;, 1 18.0 18. 0 2.	 1 20. 8 20. 7 0.8 28.8 28.8

' excepUonal vide remarks in section 3.5. 1
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Table 3-7

Ŵ
A

Precision Estimates of Broadcast Ephemeris for Velocity Components in Cartesian System

lists Yatrllltr
N o 01 X Y Z

(m/al ( m /al (m/al
3vl No.

Point
Points

AK( RMS 81) A7 HMS SD
_
A BMS 8D

12 20 .028 .033 .016 -.010 ,036 .030 -.018 .083 ,083

13 15 .054 056 .014 .004 .038 ,039 -	 O18 .080 ,081

D 14 10 .024 .040 .034 021 .040 .036 -.024 .073 .073

19 15 .029 .039 .027 -.002 .046 .048 -.030 .100 098

20 15 .040 .045 .021, 002 .056 .058 -.010 .069 .071

12 373 -.001 .OIS .096 -.Oil .133 .133 -.003 154 .154

13 376 .004 .136 .136 -.010 160 ISO -.009 .186 .188

S 14 354 .003 .151 .151 -.012 .157 .157 -.013 .202 .202

19 421 .000 .107 .107 -.000 .152 .152 -.018 .187 .186

20 416 -.007 .147 .147 -.019 .170 .169 .012 .223 .223



Table 3-8

Precision Estimates of Broadcast Ephemeris for Position Components in Polar System

W
CJt

Data Satellite
No. of 71 ,p r

Set No.
Data

3T1 RMS S D 3p HMS S D 57 F M S S D
Points (	 ..	 1 (" ) (	 "	 ) ( "	 1 ( "	 ) (" ) ( m ) ( to ) ( m )

12 20 .026 .224 .229 -.429 .543 .341 -	 .6 4.4 4.5

13 IS ,053 .232 .234 .007 .095 .098 -	 .2 .4 .3

D 14 10 189 .320 .272 .385 .450 .245 -	 .4 3.0 3.2

19 15 .138 .272 .243 -.048 .113 .106 -	 .0 .4 .4

20 15 .049 .192 .192 -.650 .692 .246 -2.5 4.5 3.9

12 373 -.021 384 .384 -.020 .306 .306 ,1 2.9 2.9

13 378 .044 .320 .317 .020 .355 .355 .0 3.2 3.2

S 14 354 .056 .337 .333 .014 .193 .193 .0 2.8 2.8

19 421 .070 .319 •312 -.005 .502 .503 .2 3.6 3.6

• 20 416 .000 .324 .325 042 1.088 1.088 .2 3.3 3.3

exceptional vide remarks in section 3.5. 1

01



Table 3-9

Precision Estimates of Broadcast Ephemeris for Velocity Components In Polar System

Wto

Data 8atelitte
No. of 1 io r

set No.
Data 10-2 "A l 10-2 .,/O j ( m/a)

A1< RMS 81) A'0 8618 8D dr RM8 SD
Potaq

12 20 .110 .127 .065 -	 •037 .169 .169 -.022 .069 .067

13 15 .182 .187 .047 _	 .012 .128 .132 -.021 .077 .077

D 14 10 .105 .143 .103 -	 .006 .095 .100 -.025 .073 .072

19 15 .097 .126 .064 •059 .227 .227 -.030 .076 .073

20 15 .1-19 .175 .095 .008 .076 .078 -.028 .086 .084

12 373 -	 . 024 496 496 -	 .029 289 288 -.001 .194 194

13 376 -	 .104 .900 .896 -	 .009 .342 .342 .001 .241 .241

8 14 354 -	 .030 .815 .816 -	 025 .361 361 .000 .257 .257

19 421 -	 •039 339 •337 -	 •029 385 384 -.003 .218 .218

20 416 _	 .014 446 • 447 • 016 • 424 •424 -. 002 •270 .270



directions. The corresponding in-track, cross-track and radial components

are 0. 2, 0. 4, and 0.3 m/sec, respectively.

(iii) At this stage it is also clarified that though estimates of precision

have been arrived at by comparing ephemerides in the overlap period between

successive injections, these values more appropriately represent the error of

prediction over the inter-injection period. This point will be brought up again in

a subsequent section while discussing the overall accuracy estimate of the

broadcast ephemeris.

3.5.2 Accuracy Estimate of Broadcast Ephemeris

Estimates of accuracy of broadcast ephemeris have been obtained in two

ways in the cases of Data Sets L, D and S by comparison of precise and broad-

cast ephemeris of the satellite for which a precise ephemeris was being main-

tained for the related period.

In the case of Data Set L, both the precise and predicted ephemerides

(broadcast ephemeris prior to injection) were available in the form of earth-

fixed position and veloc+ity components (X, Y, Z, X, Y, Z) in the same

coordinate system (NWL 9D); and as explained in ( White, 19751 the predicted

ephemeris was provided by the Naval Astronautics Group directly and not

derived from transmitted ephemeris in coded form. Comparisons have been

made in the position and velocity components in the earth-fixed Cartesian

system as well as in the spherical system in a procedure similar to that

described in Section 3.5.1.

In the case of Data Sets D and S, the precise ephemeris was in the

NWL 9D system, while the broadcast ephemeris was in the WGS 72 system.

So a coordinate transformation was performed to bring the precise ephemeris

into the WGS 72 system before carrying out the comparisons. With the param-

eters mentioned in Section 3.3, the equation for the transformation is given by
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X	 X	 AL W	 0 X

Y = Y + -W AL	 0	 Y

Z	 Z	 0	 0	 AL Z

WGS 72	 9D	 91)

Since the transformation parameters are time independent

X	 X	 AL W	 0 X

Y = Y + -W AL	 0	 Y

Z	 Z	 0	 0	 AL Z

	

WGS 72 9D	 9D

where

A L = -0.8263 ppm

W = -01'26	 [Vincenty, 19761

The broadcast ephemeris was derived from majority-voted ephemeris

message from data collected at three stations in the case of Data Set D and

from the coded ephemeris message provided on tape by NAG in the case of

Data Set S. Where data pertains to an overlap between successive orbit fits,

the more recent data has been used. The results of the comparisons are shown

in Tables 3-10 to 3-13.

Based on the above finding, the following observations can be made about

the accuracy estimates of the broadcast ephemeris in the WGS 72 system.

(i) Taking conservative estimates, the positional accuracy of the broad-

cast ephemeris, taking the precise ephemeris as the standard, can be taken as

10 m, 10 m, and 17 min the X, Y, Z directions, respectively. The esti-

mates for the in-track, out-of plane, and radial directions are 19 m, 15 m,

and 9 m, respectively. The values obtained in a comparable procedure by

White [1975), before upgrading of the broadcast ephemeris computational system,

were 25 m, 15 m, and 10 m, respectively. The smaller values now obtained

38
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Table 3-10

Accuracy Estimates of Broadcast Ephemeris for Position Components in Cartesian System

W
to

Data
set

Selellit
No

No. o1
Dets

Points

S
-
	

(in)
ax	 RMS ^- SD

Y

-----	 ^l
SY	 HMS	 SD

Z

4Z AM9	 9D

13 496 -3.2	 10. 1 9.8 8.2 13. 8 11.1 -3.3 14.1 13.7
L ---- ----- -	 i ----- - ---- -------- - -----

t

r

19 506 -4.0	 9.9 I9.1 8.4 12.7 9.5 -4.9 16.0 15	 2

' 19 199 -0.4 4.3 4.3 1.2 6.2 6. 1 -6.9 11.5 9.2

U -

20 131 1.0 7.2 7.2 3.8 9.1 8. 2 4.2 16.4 15.9

12 2005 6.2 9.2 6.8 2.2 8.5 8.2 -4.5 12.2 11.3

S

19 1879 7.5 9.3 5.6 -0.9 7.1 7.0 -7.7 1l.>f 8.2



Table 3-11

^P
O

Accuracy Estimates of Broadcast Ephemeris for Velocity Components In Cartesian System

Data SafrUtt, No. of X I M i B) i(M / 8 ) ion/s)
Data _

pjl RMS SD AY RMS SD Q2 RMS SD
5.1 NO' lblafa

13 496 -.002 .014 .014 -.004 .015 .014 .001 .014 .014

19 506 007 ,016 .014 .000 .014 .014 .003 .014 .013

19 199 _•000 .041 •041 _,011 .140 .140 .009 .129 .129U
20 1., -,YOJ .030 .030 .008 .059 .058 -.007 040 .039

S 12 2009 .014 .074 .073 .003 .103 .103 -.013 .113 .112
19 1079 013 .090 .079 -.002 .111 111 -.007 .128 .126

p

w SOW



Table 3-12

Accuracy Estimates of Broadcast Ephemeris for Position Components in Polar System

^A.

t4a	 9at.11it.	 No, of 1 ^f^I ^1 m 1_
Q Jk RMS SO n^ RMS S 

____ _T
I.+'

-7.4

RMS

9.1

SD

5.4

No.	 11UM

13 496 198 .625 .593 .044 .451 ,450L
l9 506 -.267 .667 .612 .022 .454 .454 -7.9 9.9 6.1

1	 19 199 -.014 147 .147 -.148 .324 .289 -4.9 16.1 3.7
1)	 20 131 070 205 193 170 509 482 -4.5 6.1 4.2

i	 12 2005 .282 .399 .282 -.107 .386 .371 -3.3 5.5 4.3
S	 j	 19 1879 .29H 371 .221 -.105 .301 .2h3 -7.4 8.3 3	 8

Table 3-13

Accuracy Estimates of Broadcast Ephemeris for Velocity Components in Polar System

........	 ----
I)ala	 Salrlllle No. of

-
- 210	 "/e_1! 40 10- 2 1 4M /8)

Set -
	 No. j rbfnla °	 --	 -- 11 S	 S I) -

--_-

a IdO S 81) _ _ • ILA1 S	 --3 I)

13
Ij

496 .039	 .258	 ,256 -	 .008 028 ,027 -.002 .011	 ,011
1 '	 19 I	 506 -	 ,U5b	 ,349	 ,345 ,01; 031 .028 .001 .011	 1.011

19 199 01:1 .131	 131 .022 .	 .380 .380 .001 .134	 .135
p	 (	 20 131 -	 ,014i 127,	 126 ,006 064 .064 .001 .064	 064

I	 12 2005 .037 2h0278 -	 ,016 '207 ,207 -.009 .143	 .143
S	 19 1879 ,033 174	 ,272 _	 ,022 286 285 -.004 148	 148



would represent the effect of the improvements incorporated in the ephemerides

since December, 1975. Previous study by Wells [ 1974] obtained 26 m, 10 m,

and 5 m for the above estimates, in a slightly different procedure.

(ii) The values for the accuracy of the velocity components would be

0.1 , 0. 2 , and 0. 2 m/sec in the X, Y, Z directions, respectively. The corres-

ponding values in the in-track, out-of-plane, and radial directions would be

0. 2 , 0. 1 , and 0. 2 m/sec, respectively.

(iii) The RMS values for velocity differences are much smaller in the

case of Data Set L though this refers to a period before incorporation of im-

provements in the cnmputa.tion of broadcast ophemerides . This is because in

Data Set L the predicted state vectors of the satellites (both position and

velocity components) were available directly on cards and referred to a pre-

coded and preinjection stage, while in Data Sets D and S these have been

derived from coded message and a fitting process for obtaining time deriva-

tives of variable elements. So the velocities in Data Set L are free of trun-

cation errors and errors of fitting.

(iv) At first sight it may appear irrational that the precision estimates

are of the same order and, in some cases, even lower than the accuracy esti-

mates. However, as pointed out in the previous section, the precision estimates

in reality are the estimates of the prediction errors accumulated over the inter-

injection period. The overall uncertainty of the broadcast ephemeris as obtained

by a user will depend on the relative position of the observation time in the

interinjection period as well as the interinjection period itself, which was found

to vary from about 9- to 13 2 hours in the data available in this study.

Thus, if a user happens to track a satellite just before injection, the

uncertainty of the ephemeris obtainable by him would be a result of the com-

pounding, of the estimates of precision and accuracy given above. in this case,

the positional uncertainty of the satellite is likely to be 26 m in-track, 20 m

cross-track and 10 m in radial directions. However, for a user tracking a
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satellite during or soon after injection, the uncertainties will be those given by

the accuracy estimates above (i.e., about 19 m in -track, 15 m cross-track, and

9 m in radial directions). If prediction errors are not taken into account, the

improvements in the Transit system in December, 1975, have brought the broad-

cast ephemeris closer to the precise ephemeris.

(v) Another observation which can be made is about the prominent nega-

tive value of Ar (between three to seven meters) in all data sets.

The possibility of a radial bias is evident and has been pursued in

Chapters 4 and 5.

(vi) The existence of cross-track and in -track biases cannot be complete-

ly overruled. As regards cross-track bias, Data Set D indicated a bias of about

-0!1 01 for satellite 19 and 0! 107 for satellite 20. In Data Set S both s :tellites 12

and 19 indicated a bias of about 0 ! 128 and 0! 130, respectively. While in Data Set

L the bias indicated is of the order -0!'20 and -0. 128. A similar situation is seen

in the case of in-track bias. This led to the conclusion that in the data sets used

in this study, a consistent evidence of the existence of in-track and cross-track

bias is not available. These biases have, therefore, not been pursued further

in this study, but a need does exist for identifying these biases with more data

sets in the future.

This conclusion was also supported by the results of tests of hypothesis.

Only in the case of radial bias the tests indicated that the hypothesis that the

expectation of the bias i3 zero could be rejected at ac = 0. 05, in the case of all

data sets. The biases investigated here are in the nature of constant systematic

effects that can be associated with the broadcast ephemeris irrespective of the

satellite or its pass tracked. Other biases in individual satellite passes, if

varying in magnitude and sign between passes, may average out to :gin insig-

nificant value over a large number of satellite passes. These latter types of

pass biases, referred to in the literature [Kouba and Wells, 1976], are viewed

as signals i^ hich can be separated in ar; adaptive filtering procedure discussed

in Chap^e r 5.
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Based on the above, and taking into consideration the 2m uncertainty

in each component of position expected of the precise ephemeris, it can be

stated that the positional uncertainty of ephemeris as obtainable by a user just

before injection is about 35 m. The positional uncertainty obtainable immed-

iately after injection is about 25 m. The figures given in the literature places

the single pass error budget for a surveyor at 12-28 m for the broadcast

ephemeris in WGS 72.
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4. STATISTICAL ANALYSIS OF EPHEMERIS DATA

4.1 Introductory Remarks

An immediate application for the accuracy estimates of the broadcast

ephemeris, obtained in the study described in Chapter 3, lies in utilizing this

information in the form of a diagonal matrix to assign appropriate weights to

the orbit parameters in an adjustment procedure in which the main parameters

of interest would still be the station positions.

In this method it is assumed that the uncertainty in the orbit is the result

of a system "noise" arising from a random variable whose outcomes are inde-

pendent and identically distributed with a zero expectation and finite variance.

This is similar to the assumption invariably made about the observational

"noise" or random observational "errors" in any least squares adjustment pro-

cedure, irrespective of whether a system "noise" is taken into consideration or

not. In effect, the procedure amounts to adding the best known orbit parameter

values as additional observations in the adjustment.

Though the mathematical treatment for system "noise" and observational

"noise" is similar in the above situation, the distinction between the two is clear.

A system "noise" arises from an inadequacy inthe mathematical model, while an

observational "noise" arises from the measurement process. Further in this

study, system "noise" arises from two models, the model which describes the

dynamics of satellite motion and the model which relates the observable quantity

with the parameters. The first model is the concern of this chapter.

In many situations, such as the satellite orbit in this study, the succes-

sive outcomes of system noise are correlated, though their expectation may

still be zero. In such situations estimates of the parameters of interest may

improve if the system "noise" is modeled by a stochastic process in the form

of a "signal" to be estimated along with the other parameters, instead of being
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V (t)

Z (t)

compensated for by weighting parameters.

The situation is well described by considering a physical system whose

dynamic behavior can be modeled by the first-order linear differential equations

X = A (t) X + G (t) W (t)	 for t z to where X = X(t)	 (4.1)

Here X is an n vector called the state of the system. We say that X is

a state vector if R(ti) can be determined unambiguously from a knowledge of

X (to), ti a to, and A(t), G(t), and W (t) for to 5 t s ti . X contains all the
parameters of interest required to describe the system. W is an n x 1

"disturbance" vector, s term which implies a "noise" if the outcomes are

uncorrelated and a "signal" if correlated, and t denotes time. A (t) and G(t)

are n x n system matrices assumed to be continuous in time t. It is assumed

that the initial time to is fixed and initial state X (to) is known. The forms of

the matrices A(t) and G(t) are also given.

The observation process is modeled as

Z (t) = H (t) X (t) + V (t)	 (4.2)

where Z is a p vector of measurements, V is a P vector of measurement

errors, and H(t) is a continuous p x n design matrix or measurement matrix

of known form. A block diagram for the process implied by equations (4.1)

and (4.2) is shown in Fig. 4.1 as adapted from [Meditch, 1969) .

W (t)

Fig. 4.1 Block diagram for continuous linear system description.
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Estimation procedures in the above system require some knowledge about

the statistics of the disturbance as w 11 as the observational noise. In most cases

where the former is not directly observable, observational residuals are the

•	 only source of information for determining the statistics of the disturbance as

well as of the observational errors, and it is difficult to separate their effects.

However, there are situations where disturbance is accessible to form some estf-

mate about its statistics. Availability of.preelse and broadcast ephemerides of

the same satellite gives rise to one such situation. The outcomes of this distur-

bance process are generally correlated, and it can more appropriately be term-

ed as a signal.
Precise and broadcast ephemerides provide us information about the state

of the same satellites at two-minute intervals for observation spans over a time

period. Precise ephemeris is known to be much more accurate than broadcast

ephemeris. So treating precise ephemeris as the standard, ti.: s.mall differences

obtainable by comparing the two can be treated as the outcomes of the system

signal inherent in broadcast ephemeris and their statistics estimated by the nor-

anal sampling procedures. Immediately, several possibilities arise as these

comparisons can be carried out in different ways. The specific procedure for

comparison depends on how the state disturbance Is proposed to be viewed. For

example, the state disturbance could be viewed as predominantly a consequence
of uncompensated acceleration, in which case a stochastic process would be re-

quired to be added to the relevant first-order differential equation for accelera-

tion in the dynamic model. Outcomes of this process would be computed by

comparing the accelerations liven by precise and broadcast ephemerides of the

same satellite, at the same epochs, and in the same coordinate system for

obtaining their statistics. Further, the uncompensated acceleration could be

considered either in the Cartesian system or a spherical system.

On the other hand, the state disturbance could be viewed as predominant-

ly a consequence of a positional or it velocity signal associated with broadcast

ephemeris, which implies that the uncompensated accelerations are negligible,

but due to some reason, there is a systematic deviation in position or velocity
which can be associated with the broadcast ephemeris as a stochastic process.
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1
In this investigation four different types of signals have been studied

by computing their statistics, and one type of signal has actually been used to

study its effect in local orbit refinement.

The theoretical stochastic process of the signal is denoted as k (t), while

the practical outcomes of this process are denoted as s(t) where t denotes time.

The autocovariance of ^(t) is denoted as R(u), while the sample autocovariance

obtained from data is denoted as C(u), where the lag parameter u represents

the separation in t. The subscripts clarify the specific signal intended. The

signals and their statistics, as obtained in this study, are described in this

chapter, and their applications are discussed in Chapter 5.

4.2 Computation of the Signal Outcomes

The ephemerides provide position and velocity components in the earth-

fixed systems. As indicated in the previous chapter, these components are

more correlated than the in-track, cross-track, and radial components

which are obtainable by transforming the state vectors into a spherical system.

As explained in Section 4. 1, keeping precise exhemeris as the standard, reali-

zations of the following four signals were computed for Data Sets D and S which

are in the current WGS 72 system:

(i) Acceleration signal t.-(t), tI (t), t2(t) in the Cartesian system

(ii) Acceleration signal
	 (t),	 (t),	 i;(t) in the polar system

(iii) Velocity signal
	 (t),	 (t),	 r (t) in the polar system

(iv) Position signal
	 (t),	 M. r (t) in the polar system

All signal outcomes were computed by first transforming the precise

ephemeris state vectors to the WGS 72 system of the broadcast ephemeris.

However, it has been found both analytically and numerically that the transfor-

mation has a negligible effect on the acceleration signal. This is shown in

Appendix A.

The actual mechanics for the realizations of the above signals will

now be described, followed by the procedure used to obtain the statistics.

48

'	 I



4.2.1 Acceleration Signal

If X D(t i) and X. (t 1+ 2) are the X components of a satellite velocity in

m/s according to the precise ephemeris after transformation to the WGS

.	 72 system, and Xa (ti) and 1k, (t 1+2) are their corresponding values according

to the broadcast ephemeris at even-minute epochs t 1 and ts+a, then

X ^(ti+1) = 
X,#1+2) - XD (t1)	 in m/sa 	(4.3)

120

and

Xn(t1+2) - )4(ti) 	
in m /sa	(4.4)Xa(ti+1) =	 120

The realization s,0i+1) of the acceleration signal ^ X (ti+ l) will be given by

SX (t 1+1 ) = xy(t1+1) - Xo (t1+1)
	

(4.5)

Similar computations yield the realizations s Y (t) and sZ (t) of the signals

Y(t) and ^Z(t).

To obtain the outcomes of the signal t Z (t), 	 (t), r (t), a similar

procedure was used by first transforming the precise and broadcast ephemeris

state vectors from the Cartesian system to the spherical system as explained

in Section 3.5.1.

4.2.2 Velocity Signal

Similarly, if i n (ti) and in (ti) are the components of a satellite velocity in

"/s according to the precise and broadcast ephemeris, respectively, at the

	

same eveirminute epoch (ti), the outcome si (t i ) of the velocity signal 	 (t 1)

will be given by

sx (ti) = ^ D (ti) - ^ p (to
	

(4.6)

Similar computations yielded

s(^ (t i), sr(ti)	 the realizations of the velocity signals

t i(t i )	 in the spherical system,
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4.2.3 Position Signals

Following the same procedure, the realizations s,(ti) of the signal

(t i) were obtained from the relation

sx ( ti) = X p (ti) - as (t i)

where a p (t i ) and ;k,, (tt) are the X position components of the satellite at even-

minute epoch ti in the precise and broadcast ephemeris, respectively. Similar-

ly, the realizations sp(ti), sr(ti) of the signals 4. (t i ) and ^ r(ti) were obtained.

4.3 Computation of the Signal Statistics

Considering each of the signals k(t) above as a stochastic process, the

computations of Section 4.2 yield the discrete observations s(ti) or outcomes of

the continuous time series at equal intervals of two minutes over the available

data spans.

For computing further statistics, the following assumptions were made:

(i) The process ^ (t) has reached a steady state in the sense that the

statistical properties of the series are independent of absolute time. This

implies that the probability density function of each signal is independent of

time, has a constant mean g and constant variance 02 . That is, it forms a

stationary time series.

(ii) The process exhibits the property of ergodicity, which enables the

computation of a time average over a record to represent an ensemble average.

With these assumptions the outcomes s(t) can be used to form the sample

autocovariance function, the sample cross-covariance function, and the sample

autocorrelation functions,

For example, considering Y (t), its autocovariance function is

defined as

RKX(ti, to)	 E [ ( j{ (ti) - µa (tr)) (	 (t2) - µ(t2)) 1	 (4.5)
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where E is the expectation operator, and µX (t) = E [tX (t)] . Because of the

stationarity assumption, %(t l, t2) immediately becomes a function of the

time lag u = t2 - tl only, and

XX (u) = E [(tX(t) - µX) (tX(t+u) - µX) ]	 (4.7)

Sample autocovariance CXX(u), its estimate from data is computed from

the outcomes Yt ! ) using the relation

N- u

CRR (u) - N	 (	 41)- SX) ({ (ts+„) -)	 (4.8)

where

N

= 1	 SX (t!)
11	 N 1

i represents the epoch of each data point taken at two-minute

intervals in an ordered set

N is the total number of data points 	 [Jenkins and Watts, 19681

The sample autocorrelation function rR R(u) is given by

CXX (u)
rXX (u) = 

CRK(o)

Similarly, if we consider two signals ^X (t) and ^Y (t), the cross-covariance

function for lag u becomes

RXY (u) = E [(EX (t) - µX) (^ i, (t+ u) - µ Y) ]

for which the sample cross-covariance function is

N- u

CXY (u) = N E (sic (to - sX) (sY (ti. u) - sY)	 (4.9)

where
N

sY = 
NE sY(ti > 	 ORIGINAL PAGE IS

s=1	 OF POOR QUALPl'Yl
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For equations (4.8) and (4.9), an alternate formulation is also available

in the literature [Anderson, 19711 according to which the divisor (N-u) is used in-

stead of N for computing the estimates. Divisor N has been used in this investi-

gation as estimators with divisor N usually have smaller mean square error and

are positive definite [Jenkins and Watts, 1968 p. 1841. For lag o, the sample

cross-correlation matrix for signals X (t), 4Y (t), 4Z (t) is formed by unities

along the diagonal and factors like

CXY (o)

ex7:00) CYY (0 ) )
	 as off-diagonal terms.

Similar statistics for all signals have been obtained and are shown in various

figures as follows:

Fig. 4.2 CRR (u) for Data Sets D and S

Fig. 4.3 rR	 (u) for Data Sets D and Sk

Fig. 4.4 Cn, (u) for Data Sets D and S

Fig. 4.5 rYY (u) for Data Sets D and S

Fig. 4.6 C22 (u) for DaLa Sets D and S

Fig. 4.7 rZ	 (u) for Data Sets D and S7
Fig. 4.8 C	 (u) for Data Sets D and S

Fig. 4.9 r., (u) for Data Sets D and S

Fig. 4.10
(PO (u)

for Data Sets D and S

Fig. 4.11
rA(A (u)

for Data Sets D and S

Fig. 4.12 C	 (u) for Data Sets D and Srr
Fig. 4.13 r	 (u) for Data Sets D and S

rr
Fig. 4.14 Cil (u) for Data Sets D and S

Fig. 4.15 rii (u) for Data Sets D and S

Fig. 4. 16 C(u) for Data Sets D and S--

V ig. •t.	 17 rP(^ (u) for Data tie Ls D ;end S

Fig. 4.18 C .. (u) for Da4i Sets D and S
rr

Fig. •1.19 r.. (u) for Data Sets D and S
rr
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1

j Fig. 4. 20	 C;5 (U) for Data Sets D and S

Fig. 4.21	 r^i (u) for Data Sets D and S

Fig. 4.22	 CPS (u) for Data Sets D and S

Fig. 4.23	 (u) for Data Sets D and S
,p

Fig. 4.24	 C . _(u) for Data Sets D and S
rr

Fig. 4.25	 r•. »(u) for Data Sets D and S
r I'

The sample cross -correlation matrix for the signals has been worked out for

a typical case of satellite 19 for the lag u = 0 for Data Set S.	 The matrices

obtained are as follows:

Sample Cross -Correlation Matrix for 4X (0), 
t Y (0),	

Z 
(0)

Satellite 19

t X 	 tY ^2

1	 0.589 -0.073

1 -0.234

1

Sample Cross -Correlation Matrix for ^(0),^ ( 0), tr(0)
Satellite 19

1	 -0.018	 -0.168

1	 -0.135

1

Sample Cross -Correlation Matrix for ti(0), t ,̂ (0), r(0)
Satellite 19

1	 -0.011	 0.029

1	 -0.003

1
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Sample Cross -Correlation Matrix for ^^ (0), ^ ( 0), r (0)
Satellite 19

	

ti	
t(^	

r i

	

1	 0.041	 0.005

1	 -0.042

1

Table 4-1 gives a summary of the data analyzed in obtaining the

statistics. It may be noticed that satellite 19 is common to Data Sets D and

S. The number of data points shown refer to the number of realizations of

the acceleration signal. The realizations for other signals are larger than

this number.

Table 4-1

Summary of Data Analyzed
for Signal Statistics

Data Bet Satellite Minimum No. of
Data Points

19 182D

20 118

12 1674S

19 1502

4.4 Observations

The purpose of obtaining sample autocovariance functions and related

quantities is to determine a model for the underlying stochastic process,

in this case, the various signals. The following observations can be, made

based on the values obtained taking the various types of signals in turn.
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4,4.1 Acceleration Signals F, (u), rY(u), ^Z (u)

(1) The signal with the smallest autocovariance has a magnitude of over

2.0 x 107 ' ma/s°. Acceleration of 1,0 x 16-4 m/sa can cause a positional devia-

tion of 1, 8 m after ten minutes which can be taken as the observation period of

a pass. So the signal is not insignificant where submeter accuracies are sought.

Tae largest covariance is over 1.0 x 16-6 111% .

(ii) Except for satellite 12 of Data Set S, the autocovariances are posi-

tive for a lag up to four minutes • For t i (u) and Z (u) of satellite 12, the auto-

covariance is positive up to a lag of two minutes.

When dealing with Doppler observations with a JMR- 1 receiver as in

Data Set D, the Doppler counts are available at every 4. G seconds approxi-

mately, and if three stations coobserve a pass, data is acquired at a rapid

pace of about 78 observations for every two minutes observed in common. So

this signal is worth attempting to model in an effort to refine the orbit.

It will be seen in Chapter 5 that a simple and mathematically tractable

model is sought for the stochastic process. A simple and convenient model for

the autocovariance is an exponential form without any periodic term which gives

rise only to nonnegative values. The lag up to which the sample autocovariance

is positive is therefore very relevant.

(iii) The sample cross-correlation matrix of component signals indicates

correlation of about -0.'9,3 between t 1 and t Z and a correlation of about 0.59

between t R and t Y . So this is not the ideal set of signals to attempt to model

in any procedure where an assumption of noneorrelation of the component

signals simplifies covariance propagation. However, it is not too high either

to leave this procedure completely out of consideration.
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4.4.2 Acceleration Signals t i (u), g,(u), Vu)

(i) The signal with the smallest autocovariance has a magnitude of

over 0.2 x 107 " ("/s') which can cause a positional deviation 4 one meter

after ten minutes. The largest autocovariance has a magnitude of over 1. 2

X 106 m /s4.

(ii) Regarding the lags up to which the autocovariance is positive, the

same---marks as for t^(u), 4 Y(u), a Z (u) above apply in the case of t.(u) and

kr" (u). For the signal k i (u), the positive autocovariance persists even after

eight minutes.

(iii) The sample cross-correlation matrix shows the largest correlation

as low as 0.04 making this set of signals a good candidate to model.

4. 4. 3 Velocity Signals t i (u), % (u), t r (u)

(i) The signal with the smallest autocovariance is over 0.4 x 10 `' ("/0.
A velocity of 0. 1 x 1073 "/s implies a positional deviation of over 2 m after

ten minutes. The maximum autocovariance is in the order of 14. 0 x 10 -6 ("/O.

(ii) Regarding the duration of positive covariance, the same remarks as

above apply for signals t ,^ (u) and k i,(u). In the case of the signal r; ^(u), the

positive correlation continues to six minutes.

(iii) The largest correlation is only 0.03 as seen from the sample cross-

correlation matrix making this another good candidate for an attempt to model

the signal.

4.4. 4 Position Signals 4 X (u), 4O (u), t r (u)

(1) In this case the smallest autocovariance is over 0.02 (")a . 0:'1

implies a deviation of 3. G m at the altitryle of the satellite. The largest auto-

covariance is over 0. 2 (" )a.
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(ii) The duration of positive correlation is much larger than in the cases

of all previous signals. It persists at least up to eight minute s in case ^ r(u)

for satellite 19 in Data Set S and extends over 18 minutes in other cases, making

this a good candidate for an effort to model.

(iii) The maximum correlation indicated in the cross-correlation matrix

is 0.17 which is fairly low making this signal worthwhile being modeled.

(iv) Another interesting observation in the case of these autocovariances

is the value of the mean of the signal realizations obtained in forming sample

autocovariances C rr(u). The mean in all cases was a negative value varying in

magnitude from -3.3 to -7.8 m. The effect of treating this as a bias in a point

positioning experiment has been described in Chapter 5.

4.5 Application in Present Study

The computations of the realizations of the signals and their sample

statistics have been described above. Some general observations about the

statistics obtained have also been made.

It can be noticed that satellite 19 is common to Data Sets D and S, and

Data Set S is over five times larger than Data Set D. So satellite 19 was a good

candidate for experimentation, giving a greater weight to the statistics obtained

from Data Set S.

In each of the figures 1.2 to 4.25 there arc two curve~ with respect to

satellite 19, one pertaining to the period .January, 1976, and the other to the

period October, 1976. It is comforting to see that these two curves are close

to each other in most figures indicating a nearly stabilized situation.

It will be seen in Chapter 5 that the model chosen for the stochastic

process of the signal t(t) is of the form

^ (t)	 -0 4 (t) + ao w(t)
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where

W(t)	 is the Gaussian noise with the properties E[w(t)] == 0,

E[w(t) w(s)] == b (t - s)

Cr	 is the variance parameter

b (t- s)	 is the Dirac delta funs' ion

s	 is the time correlation coefficient

This choice arises from the fact that if it is further assumed that ^ (o) ^-

N(o, v 2 P /2), independent of (w(t)) in the above model, then

R^ t (u) = 
0,2 (^/2) a -A(u)	 [Jazwinsky, 19701

which is the analog of 'lie first-order autoregressive process or first-order

Gauss-Markov process. In this situation, the curves obtained in this study

can directly give the initial estimates of the parameters of the autocovariance

function in procedures to be described in Chapter 5.

It is evident that with the material available many different experiments

and approaches are possible, depending on which signal is proposers to be

chosen to represent the state disturbance. In this study, however, the con-

straints on time available to the author and the form of software available have

made only some types of experiments possible. These have been discussed in

the next chapter.
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'	 5. EXPERIMENTS FOR IMPROVED POSITIONING

5.1 Introducto_y Remarks

With the statistical information obtained in Chapters 3 and 4, a couple

of experiments were undertaken in which this information was utilized. These

experiments and their results have been described in this chapter.

At this stage it is appropriate to indicate the overall philosophy adopted

in designing these experiments, for the ultimate aim of gaining improved

station positions with broadcast ephemeris and Doppler data.

The Doppler observational data available and used pertains to Data Set

D in which three stations have coobserved several passes. As discussed in

Chapters 2 and 4, it is possible to carry out a solution in a short are mode

and obtain values for both the orbit unknowns and the station unknowns. But

as indicated in Chapter 2, such solutions may have a problem which is pre-

cisely stated by Mueller [19761:

The results are being scrutinized by theoreticians who regard the
results as "meaningless" in view of the fact that the dynamic solu-
tions are rank deficient and as such the problem (of simultaneously
determining geocentric station and satellite parameters) is theo-
retically unsolvable, e.g. , the system of reference defined by such
solutions would depend entirely on the a priorily selected values of
parameters (e.g. , station coordinates).

In this study, the knowledge of the satellite positions is available in the

form of broadcast ephemeris. The broadcast ephemeris gives a set of values

in a consistent coordinate system with uncertainties which have been assessed

in the study and described in Chapter :3.

Doppler observational data from three coobserving stations (Data Set D)

has been used with broadcast ephemeris to obtain the best values for the
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station coordinates which could be held fixed in a subsequent filtering program

for orbit refinement. Under this situation, and keeping in view the rank

deficiency problem described earlier, a decision was to be taken about the

specific constraints to be used in this study in the solution for station positions.

As described by Pope (1971], the rank deficiency of the normal matrix

can be obviated by use of either (a) weighted constraints or (b) absolute con-

straints on parameters. Method (a) becomes (b) as weights on the parameters

are increased to infinity.

As regards the number of constraints, they can be either the minimal

set of constraints, or they can be more than minimal. Among nlinilllal con-

straints, there is the attractive possibility of using :in inner constraint solu-

tion [Blaha, 19711 which leads to the "free network adjustment" without

explicitly forming a pseudo-inverse matrix.

Although inner constraints yield an optimum coordinate system with a

minimum trace for the variance-covarkulee matrix of the parailleter esti-

mates, the solution and the coordinate system itself is optimized with respect

to the initial values of the parameters used in the adjustment. While this may

be advantageous in a larger network adjustment where the coordinate system

also needs to be optimized, in a local adjUstlnent like the one used in this

study where a coordinate s y stem in una lilt) iftr Oils ly accessible (viz., the \1'(',S

72 system through the broadcast , ephemeris), it is best to adopt it and to

ensure that the values obtained in the adjustment are in the chosen coordinate

sy steIll .

Since the ground station positions are the main unknowns, this could be

achieved by absolutely constraining;' the satellite orbits by introducing very

large weights. 'Thus it was decided to hold tilt, satellite orbit fixed in the solu-

tion for station positions with SAGA.

Adopting and maintaining the \\'(;S 72 coordinate system :is described

above, the problem is tackled ill 	 following three stages:

.2
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(i) Determination of station posILLUns with observational data, holding the

orbits fixed,

(ii) Improving the orbits keeping; the station positions unchanged,

R	 (iii) Redetermination of station positions holding the improved orbits fixed.

Within the time available, only two experiments could be completed,

and only these two experiments have been described. In the first experiment

the radial bias noticed vide Section 3.5 has been taken intoaccount, andthe effect

of removing this suspected bias in the broadcast ephemeris on station position

recovery has been determined. This experiment was aimed only to study the

radial bias identified in Chapter 3. Similar studies must be carried out with

respect to other biases, but for reasons explained in Section 3.2, these have

not been pursued in this investigation. As a follow up of this experiment, the

reason for the radial bias has also been investigated.

In the second experiment, the first steps have been taken to judge the

feasibility of utilizing the statistical information obtained in Chapter 4 in an

adaptive filtering procedure for orbit improvement. In this experiment, the

station positions have been held fixed at values obtained in stage (i). Statistical

information obtained earlier was utilized, but simulated range rate observations

available from existing software were utilized to judge the performance of the

filtering procedure.

Simulated range rate observations have been used in this study only as

a first step to judge the feasibilit y of using the adaptive filtering approach in

practice, so that the available software could be used with minimum modifica-

tions. In position determination with Doppler data, range differences would

have been the appropriate observations.

Range difference observations have a more direct influence than range

rates on the position of a satellite. So in using simulated range rates to judge

the feasibility of the filtering procedure, an observational mode less optimum

`	 than that obtained in reality is being adopted. The next steps in this study

would have been to first try the procedure with simulated range differences

t
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:uxl than to use real d;tta. It is best to undertake thrsr steps after first

deciding; the optimum model for the state disturbance. For euxample, the

formulations for viewing; the si~ate disturbance as an acceleration signal in the

Cartesian coordinate system would differ considerably from the formulation

for state disturbance viewed as a position signal in the spherical coordinate

system. Unfortunately. in the time frame available to the author, it was not

possible to complete these further steps.

The presence of state disturbantx` :aid its role in the evolution of the

state characterizes the main distinguishing; feature of the filtering; procedure

in this study . But the method of estimation from observations is similar to

the least squares techniques. 'Thus it was felt ;appropriate to review the

naathenaatical formulations leading; to the conventional sequential filter

algorithm ( also called the first order filtering; technique) as a back-

ground to the adaptive filtering; procedure in the second experiment.

These are included in Appendix 11.
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5.2 I•.x W rinaent for Radial Bias
1
s

5.'2. 1 IMetinination of `nation Positions

Station position.,: for three stations inthr I'lorida area were obtaineKi with

the help of the Short Are Gecxletic Program (SAGA) 111rown :uld Trotter, 19691

mailable ;at The Ohio Mate University. 1'he formulation used in the program is

dcx'umented Iwth in the above-referred publication lkumar, 19761 and in (Brown,

19761.

With the version of SAGA available at OSU, Ole following; main steps

were required to obtain a solution:

(i) nwdification of the m-tilable subroutine for Geoceiver rues • data to make it

compatible with JAM ratty dada,

(ii) majority vote of the ephemeris message to obtain state vcx-tors of

satellites at two-mutate intervals,

(iii) computation of mid are state vectors for each puss for input to %A—WA

with the grog r:ana SANIVAP.
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The meteot•ological data acquired at the stations form ed part of the input.

The solution was obtained from 12 passes holding the orbits fixed and

allowing the station positions to remain free in the adjustment.

5.2.2 Determination of Radial Bias

As mentioned in Section 4.5, a negative radial bias was noticed while

computing the sample autocovariance C rr (u) for both Data Sets S and D. To

assess a more reliable value of the suspected bias, Data Sets S and D for the

four satellites were combined with the following results:

degrees of freedom 4313

bias =	 r =	 -5.3 m

Qnr =	 4.5 m

A t-test is not strictly valid because of the fact that adjacent outcomes

of 6 r are correlated. However, in view of the large degree of freedom avail-

able, a t-test w, l s carried out to test the hypothesis Ho: µ = 0 against H l : µ 0

at of = 0.05.

-5.257
t (computed) = 4.507/ 4314	 -76.61

t (tabular)	 = 1.960

Therefore the hypothesis that µ - 0 is rejected.

5.2.3 Correction of the State Vectors for Bias

The mid arc state vectors used in Section 5.2. 1 were corrected for a

radial bias of -5.3 m. As shown in Section 4.2.3, the radial signal sr =

rp - r,, _	 r. The bias is the mean value of s,. The corrected radial distance

r^ = r„ + O r.

For each pass used in the solution in 5.2.1, the mid arc state vector

was first transformed from the Cartesian components (X,Y,Z) to the polar

components (X, co, r). The radial component was corrected to re. The corrected
4
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components (X, 0, r,:) were transformed back to the Cartesian components (X,,

Y,, Z,), and the solution of Section 5.2.1 was repeated.

5. 2. .1 lt:. eteri-nination ^.f Station PoGitions After ltrmoval of Bias

'Fable 5-1 gives the results of station position determination obtained

before and after removal of radial bias. Table 5-2 shows the weight coeffi-

cient matrix which remained unchanged to the number of digits shown.

5.2.5 Observations

(i) The a posteriori variance of unit weight was reduced by a very small

amount (.0003) after removal of bias. The weight coefficient matrix is unchanged

to four decimal places. The station coordinates changed by very small amounts

(< 0.1 M).

(ii)The bias was absorbed by small changes in the values of station coor-

dinates and other pass parameters such as frequency bias, frequency drift, and

refraction scaling factor.

(iii) One external check was available. The distance between stations 1

and 3, according to terrestrial survey, was 29 360.880 m, as given in [Brown,

19761. In the above determinations, the distance was 29 361.003 in cor-

rection for bias and 29 360.928 m after removal of bias.

The large standard deviation of the chord recovered (8.7 m) pre-

eludes a more positive statement. However, the removal of bias has made

the solution for chord length closer to the terrestrial value.

5.2.6 Explanation for Radial Bias

As a follow up of the above experiment, an effort was made to understand

the reason for the existence of the radial bias by carrying out the following

adjustment.

It was assumed that the transformation parameters given by Andcrle

[19761 between the N%VL 9D of precise ephemeris and the WGS 72 of broadcast
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Station X Y Z
No. (m) (m) (m)

1 920731.111 -5578835.925 2941252.572

3 892362.866 -5579450.681 2948797.692

4 885656.456 -5573826.278 2961347.440

a = 1. 07671

I	 '

I
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Table 5-1

Results of Station Position Determination

State Vectors As Broadcast :
Apriori Standard D ev iation of Observation = Qr = 20 cm

Degrees of Freedom = 1311

Final Station Coordinates

Station X Y Z
No. (m) (m) (m)

1 920731.202 -5578835.827 2941252.526

3 892362.893 -5579450.679 2948797.691

4 885656.500 -5573826.292 2961347.463

Qo = 1. 07703

State Vectors As Corrected for Bias

A priori Standard Deviation of Observations or = 20 cm

Degrees of Freedom = 1311

Final Station Coordinates

i

77

r



Table 5-2

x

Weight Coefficient Ma2trix for Station Coordinates
(m y

Xl Yl Z1 X3 Y3 Z3 X4 Y4	 Z4

^.` I A 7 	 C'2

-0.10,111402 --0.20550•C2 C. 1 961 D+02

3.ISJ40-06 0.561?D-07 -0.IN I297j-05 C.24n70+02

0.11070-07 0.24000-06 0.:19RD-D6 -0.957n 0+01 0.21520+01

-4.47810-07 -0.11606-G6 -	 --	 - - -- -
U.2399!)-06 -	 ----	 _	 - -	 -0.15:0^.+'J7  --:6.1hE70+C2 0.2309+1+02

0.23073-C6 -0.22b70-07 -0.17f30-07 0.1504;- 1716 -0.95 740-07 -0.122RD-06 0.21140+02

-0.69b67-^7 0.2A23D-06 n.31:•72D-QP -Q.78 0, Y'!-0^-- 0.60?00-06 0.31Q10-^J6 -7.5911D+^J1 0.I 9430+02

0.1'x500-06 -C.12523-C7 0.3534::-0t -0..3327 -07 0.16240-06 0.93090-07 0. 76820+01 -0.16546+02	 0.117?0+02



ephemeris take care of the rotations completely but not scale and origin shift.

•	 With this assumption, a four-parameter transformation was carried out between

the precise ephemeris, transformed to WGS 72 as per parameters given by

Anderle [1976] and broadcast ephemeris. Points were selected at intervals of

over 72 hours to break possible correlation existing between adjacent data

points. From Data Sets D and S, 26 points were available for satellites 12,

19 and 20, thus giving 78 observations in an observation equation model.

Adjustment was carried out with the following mathematical model in

which AX, A Y, A Z and A L were considered as the translation and scale

parameters

X	 AX	 1+AL	 0	 0	 X

Y	 = AY +	 0	 1 +AL	 0	 Y	 (5.1)

Z	 AZ	 0	 0	 1+ OL	 Z
N	 P

where

N denotes the NAG broadcast ephemeris

P denotes the precise ephemeris transformed to WGS 72 as per given

transformation parameters [Anderle, 19761

The results obtained were:	 The correlation matrix was
A'g

ao 	= 0.9 13 AX	 A Y

G X= -Z. 3 or 	 X 1.4 m 1	 0.252

A 1
L  = 9.8 a`Y 2.0 m
A

LL = --2.0
A
or

I 2.2. 6 m
A

,:. L = 1.43 or t_ 0. 34 ppni

AZ	 AL

	-0. 160	 0.337

	

-0.355	 0.748

1	 -0.475

1
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A t-test was carried out at a = 0.05 to test if the parameters could be

considered as 0. The test failed with respect to AY and AL. So there are

strong indications that there is an origin shift of about 9.8 m in the Y-axis

direction and a scale correction of about 1.4 ppm between the two coordinate

systems considered above. These two parameters can be explained as follows:

If the origin of the precise ephemeris coordinate system is assumed

to coincide with the geocenter, the origin of the broadcast ephemeris system

gets an offset of about 9.8 m in the direction of 90° W longitude, which is

understandable as all the four station generating the broadcast ephemeris

are located in continental United SUt.es .

As regards the scale paiameter, it is conjectured that this scale factor

consists of two components. One component of about 0.9 ppm is due to the scale

difference always noticed between the Doppler system and terrestrial surveys

for some unknown reasons. As seen in Chapter 2, the scale in a Doppler system

is derived from X, the wave length of transmission. The second part of about

0.5 ppm is the inherent scale difference between the precise and broadcast

ephemerides. A similar scale factor of about 0.4 ppm had been detected by

White [1975] when he carried out the transformations in his study. During that

time, the coordinate system of both the ephemerides was assumed to be the

same (NWL 9D).

5.3 Experiment in Adaptive Filtering

The aim of this experiment was to assess the feasibility of utilizing the

statistics collected in Chapter 4 in an adaptive filte ring procedure described

in [Myers, 19731 for orbit improvement. The mathematical formulation of

adaptive filtering and the description of the software which motivated the present

experiment will first be given before describing the experiment and the results.
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5.3.1 Adaptive Filtering

In the classical sequential estimation procedure, as described in

Appendix B, the state disturbance is viewed as white noise and is compensated

for. An alternate method of handling state disturbance is to treat it as a signal

considering its correlated character. Its expectation is still considered to be

zero, but its autocovariance, considering the signal as a stochastic process, is

associated with an assumed model.

If the parameters of the autocovariance model are assumed to be known,

then the signal and the state can be estimated as per normal least squares col-

location procedures [Moritz, 1972]. For example, consider the procedures in

gravimetry. The parameters of normal gravity may be considered as consti-

tuting the state. The gravity anomalies may be considered as the state disturb-

ance or signal with known autocovariance function depending on the separation in

distance instead of separation in time as in the case of this study. Further, the

state would be considered time independent unlike the state in this study whose

evolution in time is governed by the differential equations of motion.

But if the parameters of the autocovariance function are not well known, it is

possible to include them in an augmented state vector in the ada pti ve filtering  tech-

niqueor the dynamic model compensattontechnique, as described in [Myers, 19731.

The detailed procedures depend on how it is proposed to model the state

disturbance. Fo­ example, in this study, referring to the statistics collected

in Chapter 4, the state disturbance could be considered to be constituted mainly

of position signal, velocity signal, or acceleration signal. Rirther, the

acceleration signal could be either in the Cartesian coordinate system or in the

j	 spherical system.

The computer software available was base on formulations for an

acceleration signal in the Cartesian coordinate system. So, to judge the feasi-

bility of using this procedure in the present problem, it was decided to attempt

the procedure of adaptive filtering with the acceleration signal in the Cartesian

coordinate system. The formulation for this based on [Myers, 19731 and
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[Tapley, 19721 is given below. Formulations for other signals will need

suitable modifications.

The true equations of motion can be expreosed as a system of first-

order differential equations.

r = v	 _	 (5.2)
v = a (r, v, t) + (t)

where r and v are three-vectors which describe true position and velocity in an

inertial frame as a function of time, a is a three-vector function of acceleration

components in the nominal dynamical model, and ^ (t) is a three-vector accelera-

tion signal,

if (t) is considered as white noise, the procedure of classical sequential

estimation could be applied as stated earlier. But from the study in Chapter 4,

it is indicated that the realizations of ^X(t), ^I(t), t i(t), which are

the components of l; (t), are correlated, and so a white noise model is not

adequate. Theref,)re, ^ (t) is approximated by a vector stochastic process

E(t) - [EX(t) E
Y

(t)	 EZ (t)J T , and a simple model is assumed for this process

by considering the components of E(t) as a time-correlated first-order Gauss-

Markov process satisfying the stochastic differential equation

	

E (t) _ - R (t) E (t) + WE (t)	 (5.3)

Here, WE (t) is a three vector of Gaussian noise with the properties

E{ WE (t) } = 0	 E ( W E(t) 7V (s) } :- q E (t) b(t- s)	 (5. 4)

where

qE 
X	

0	 0

q E (t)	 0	 qE
Y	

0	 (5.5)

0	 0	
qEI

is the matrix (4 variance parameters associated with E(t), .uxi 13(t) is a x 3

diagonal matrix of time correlation coefficients

S2



e	 0	 0

B(t)	 =	 0	 OY	 0 (5.6)

0	 0	 sZ

•	 Further, for reasons explained overleaf, the evolution of

^X

RY

PZ

is assumed to be governed by the differential equation

(t)	 =	 0 (5.7)

Considering the above additional parametrization, the model in (5.2) is

augmented to become

r = v

v	 -	 a (r, V, t) + 7 (t)

•	 E	 -137 + Wf(t)

0

The new state vector is a 12-vector,

X T (t)	 -	 [ rT .	 v T	.	 7 , .	 pT
(5.9)

and the functional form of (5, 8) is

X	 =	 F(x, W. t);	 x (tc,)	 Xo (5. 10)

With this augmentation the algorithm is similar to that of the first-orde r

filter given in Appendix B.

The adv.mt^tge of the model of the form (considering one co-Aponent),
cl E,

E^(t)	
_S`7^(t) i	 F`(t),	 7^(0)..; N(0,	 1 (:,,	 11)

20

is that it gives rise to a stationary, exponentiallY correlated Gaussian 1--oc ass

or colored noise if the variance parameter and the time correlation cm-fficient

8.3
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are constant [Jazwinsky, 1970 1. It may be recollected that an assumption of

stationarity had been made for computing sample autocovariance of signals in

Chapter 4. In this algorithm, the process is reinitialized at every step, and

the parameters are treated as constant for that step. This explains why

^(t) = 0 in equation (5.7).

From the above formulations, it is easy to understand the interrelations

between some of the estimation procedures used in geodesy. In the adaptive

filtering procedure used in this saxly, the state is time dependent. The state

disturbance is viewed as a signal. The parameters of the autocovariance

model of the signal are assumed not to be perfectly known and are included

in the sequential estimation procedure along with the signals. The state to

be estimated would be given by equation (5.9).

If the parameters of the autocovariance model of the signal are assumed

to be perfectly known, these can be excluded from the estimation procedure,

and the state to be estimated would be

XT (t) = [rT - VT	 ET]

This would be the familiar least squares collocation procedure extended to a

dynamic situation.

If the state disturbance is viewed only as a "noise " in this dynamic

situation, the state to be estimated would be

XT(t) = [VT • 
VT]

as there is no signal to be computed, and this leads to the Kalman filtering

procedure or the first-order filtering procedure described in Appendix B.

Further, if the state is assumed to be time independent in the above,

the familiar least squares sequential adjustment procedure with weighted

parameters is obtained.
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5.3.2 Estimation of Initial Values of Parameters

.

	

	 The sample autocovariances CXX(u), CYY(u), CZ Z(u) and sample

autoco rrelat ions rXX(u), rii(u), rii(u) are helpful to determine good initial

values of parameters for use in the algorithm to improve the orbit represented

by the broadcast ephemeris.

The stochastic process considered above is the same as the first-order

autoregressive process or the first-order Markov process [Jenkins, 19681.

Consider the component process EX(t) from above. It is assumed to satisfy

a differential equation of the form

EX = -PX X (t) + WEX(t)
	

(5.12)

Considering the Gaussian white noise W 
11 

(t) as input and EX (t) as output, the

autoeorrelation function of the output process, E X(t), is

PXX (u ) = e lul ^X

	

	
(5.13)

[Jenkins and Watts, 1968, p. 1621

where u is the time lag. This is an analog of the following discrete first-order

autoregressive process

EXto - 14 to 0i 
(Ex to- 1 - At,-1) + Wtm	

(5.14)

where µ ti = E { 
E
Xt 3. In this study µ = 0, and soi

EX 
to _ a'1 EXt' i + Wt o

	(5.15)

The autocorrelation function o f this discrete process is given by

pXX(k) = ai llkl	 (5.16)

where ail is the autoregression coefficient and k 0, t 1, t 2 are the lags. In

this study k z 0. The correspondence between (5. 13) and (5,16) is readily

seen, which helps in computing PX from &l.

Further, assuming a Gaussian distribution for W to, the estimate & 1 of

ai l is given by
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A
al = r- -

	

	 (5.17)
[Jenkins and Watts, 1968]

the autocorrelation at first lag (in this case, the lag of two minutes).

It is clear that with u l taken from the rXX(u) curve in Chapter 4,

the initial value of P X parameter in the algorithm is easily computed.

Similarly, the variance parameter of W tm is estimated by
A

CXX(0) - all CXX(1)

for a large sample size. Parameters for other component processes C  and

f  are similarly obtained.

5.3.3 Simulation Program - EARTHOD

The experiment in adaptive filtering has been carried out with the

station positioning results of the experiment in Section 5.2, the statistical

analysis shown in Chapter 4, and the simulation program, EARTHOD,

obtained from the Department of Aerospace Engineering and Engineering

Mechanics at the University of Texas at Austin, duly modified.

The program provides the capability for simulation studies of an earth

satellite observed by up to twelve ground-based tracking stations making as

many as twelve simultaneous range, range-rate, elevation, and azimuth

measurements.

Observations are generated from a set of true equations of motion

operated on a true state of the satellite and are corrupted by Gaussian white

noise. The program has an option for estimating the state of the satellite as

well as the acceleration signal components and the parameters of autocovariance,

based on the simulated observations, in an adaptive manner.

Since both the true state and the estimated state based on the

observations and the nominal state are available in the simulation, actual

estimation errors are easily determined for the judgment of the filter per-

formance. The equations of motion are expressed in an earth-centered

inertial (ECI) coordinate system and are numerically integrated with an
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efficient Runge -Kutta-Fehlberg algorithm [Fehlberg, 19681.

For use in this study, the program written in Fortran IV in

overlay form forthe CDC 6600 operating system has been modified to run on

the IBM 370/168 operating system at The Ohio State University.

State vectors derived from the precise and broadcast ephemerides have

been used in lieu of the initial true and nominal states, respectively, as inputs,

after transforming them from the earth-fixed system to the inertial system.

The propagation of state is carried out with an eighth-order Runge-Kutta

algorithm. The station coordinates are assumed to be known.

Results from EARTHOD simulations are available in terms of Root

Sum Square (RSS) errors and covariance norms defined as follows: The RSS

errors in position and velocity are, respectively:
i

	

AR = ( eX + eY + eZ ]	 (5.18)

i
	O V = [ eh + ei, + eZ ]	 (5.19)

where X - X - X represents the true error component in the state position

estimate R. Similar definitions apply to other components. eh _ X - X

represents the true error component in the state velocity estimate X.

In this study, X represents the vector of state components based on

precise ephemeris and i represents the vector of their estimates based on

observations and the nominal state component. The nominal state was

derived from the broadcast ephemeris.

The position covariance norm is defined
1

	N P - [ Pii + Paz + P33 ]
	 (5.20)

the square root of trace of the covariance elements associated with the posi-

tion estimate and is obtained from the diagonal of P matrix in the algorithm,

vide equation (B 58).

The velocity covariance norm is defined by
k

N V	 [ Pao + pLT, * Nl.% 1	 (5.21)

87



which is likewise the square root trace of the covariance elements associated

with the velocity estimate.

5.3.4 Description of the Experiment and Results

An experiment in adaptive filtering was carried out for one

pass of satellite 19 in Data Set D. The station coordinates for the

three stations, as obtained in the experiment (before removal of radial bias),

were taken as known. Within the capability of the software, range-rate obser-

vations were the closest to Doppler observations, and so for further reasons

explained in Section 5.1 the mode of simulated range rates was chosen, giving

a three-vector observation at each step.

A fixed integration step of 0.075 minutes was chosen which is close to

the rate of data acquisition with a JMR 1 receiver. The common two-minute

epoch at the commencement of the observations from the three stations was

chosen as the initial time to for commencing the algorithm. The precise state

vector (transformed to WGS 72 system) and broadcast ephemeris state vector

at to were transformed from the earth-fixed system to the inertial system.

The values for polar motion components were taken as published by Bureau

International de 1'Heure, and the value for the Greenwich apparent sidereal

time at to was obtained from the American Ephemeris and Nautical Almanac

1976. The Jet Propulsion Laboratory ephemeris tape provided the inertial

state vectors for sun and moon.

In the experiment for obtaining station positions, the range observation

standard deviation was taken as 0.20 m. So a range-rate standard deviation of

0.002 m/s appears reasonable. Based on the study in Chapter 3, the uncer-

tainties in the position and velocity components of the broadcast state vector

were taken as [ 14.0 15.0 22.0 0.20 0. 25 0.30 ) in units of meters and

seconds for initial values in Po in the first six diagonal locations. The values

for the next three diagonal elements in Po, which referred to the autocovariance

of the acceleration :signal at lag 0, were taken from the curves CX-(u), CYY(u),

nh
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and CZZ(u). The last three elements of Po refer to the uncertainties of the

time correlation coefficients. The values for these were taken either as five

times the coefficients (as used in past investigations of Myers [19731) or

• derived from the difference between the two values for the coefficients from

the two sets of the curves CiR(u), C (u), and C22(u) for satellite 19, one

from Data Set D and the other from Data Set S.

Four trials were taken, varying slightly the standard deviation of

observation and the initial values for the state noise parameters, from the

analysis in Chapter 4.

In trial 1, the standard deviation of observations was kept as 0.002 m/s,

but the initial parameter values were based on the information collected for

satellite 19 from Data Set D. Uncertainties of O X , SY, {3 Z for Po matrix

were taken as five times their values.

In trial 2, the standard deviation of observations was kept as 0.002

m/s for the R matrix In the algorithm, but the initial parameter values for

state noise referred to Data Set S. Uncertainties of 0X , 9 Y, and 9 Z 
for

Po matrix were taken as five times the initial values of the coefficients.

In trial 3, the standard deviation of observations was increased to 0.005

m/s, and the initial parameters were the same as in trial 2.

Trial 4 was similar to trial 2 in all respects except that the uncertainties

of 0 X, Y, ^Z in the Po matrix were based on the difference between the two

sample values for S X , 0 Y, 9Z for satellite 19 obtainable from Data Sets D

and S.

The structures of the A and H matrices required in the algorithm are

given in detail in [Ingram, 1971] and [Myers, 19731 and incorporated in the

software used.

The sample autocovariance curves from the data analyzed in Chapter 4

were used directly for the trial values with the procedures given above. No

least squares adjustments were made for estimates of parameters since it

was the intention of this experiment to judge the adaptive property of the filter.
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Figs. 5.1 and 5.2 show the values of AR, NR and AV, NV, respec-

tively, against i, the number of integration steps of 0.075 minute, for trial

1. Figs. 5.3 to 5.8 give the same information for trials 2, 3, and 4.

Table 5-3 gives the components of state vector pertaining to the state

disturbance (i.e., acceleration signal and time correlation coefficients) and

their values at various integration steps, I. Tables 5-4 to 5-6 give the same

information for trials 2, 3, and 4.

5. 3.5 Observations

From the results of the trials, the following observations can be made:

(i) The initial deviation of 12.91 m in the position of the satellite as given by

precise and broadcr.3t ephemerides narrows down by about 0.6 m in

about 20 integration steps but later diverges.

(ii) The uncertainty in position of the satellite as given by broadcast ephemeris

reduces by about 4.2 m in about ten integration steps and later diverges.

(iii) The rate of change of improvement is the largest during the first five

integration steps.

(iv) The optimum situation for position uncertainty arises fairly close to the

optimum situation for position and the A R curve is flatter than the NR

curve. This is of particular significance from the point of view of users

who have no access to precise ephemeris. When this procedure is used

with real observations and the broadcast ephemeris, only the NR curves

are available. The curves in this study indicate that the state vector at

optimum positional uncertainty, given by the NR curve, also yields a near

optimum value for the position of the state vector.

(v) Velocity uncertainty decreases by about 0.2 m/s in the first five integra-

tion steps. This is followed by further improvement at a very slow rate.

(vi) Velocity error reduces by about 0.011 m/s in the first step. Later the

error increases steadily to about 0.033 m/s in about thirty integration

steps. This is followed by further steady improvement.
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Table 5-3

State Disturbance Components in Trial 1

Integratioli

stop
lo	 M/

c.
164 m/ss

s.
10-4
0.00

`/g
sec

86.56

1	 9,
sec
96.94

^
sec. __

163.30

S 0.00 -0.04 0.03 86.56 96.91 163.50

10 0.00 -0.26 -0.02 86.56 97.00 163.49

15 0.01 -0.43 -0.01 86.56 98.07 163.47

20 0.01 -0.57 -0.07 86.58 100.39 163.48

25 0.02 -0.67 -0.14 86 . 61 103.58 163.72

30 0.03 -0.73 -0.23 86. 68 106.80 1,34 .44

35 0.03 -0.73 -0.32 86. 78 309 .10 165.93

40 0.04 -0.68 -0.42 A6. 91 109.90 168.33

45 0.04 -0.58 -0.51 87.03 109.16 171.40

50 0.04 -0.45 -0.56 97. 13 1 107.27 174.67

Table 5-4

State Disturbance Components in Trial 2

Integration t, t, h l ;0. `/d •/
step 166 m/s' 10"m/ss IV m/es sec sec sec

0 0.0o - 0-.00-- u.00 189.20 -81.8a -194-59

5 0.00 -0.03 0.02 168.20 81.61 134.59

10 0.01 -0.16 -0.01 168.19 81.65 134.59

15 0.04 -0.26 -0.02 168.21 82.43 134.56

20 0.08 -0.34 -0.07 168.30 •64.10 134.60

25 0.11 -0.39 -0.13 166.36 96.34 134.89

30 0.15 -0.42 -0.19 169.06 88.52 135.62

35 0.18 -0.41 -0.26 169.79 90.03 136.90

40 0.20 -0.37 -0.32 170.66 90.50 136.67

45 0.20 -0.30 -0.37 171.46 69.93 140.11

0 0. 20 -0.23 -0.40 172. 06 88 S 142.71
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Table 5-5

State Disturbance Components in Trial 3

Integration
step

t

io `•/^^

t^

tc-• /,'

r=

.;'. % i sec see sec

0 0.00 0.00 0.00 168.20 81.60 134.59

5 -0.01 0.10 0.02 168.20 81.63 134.59

10 J.00 0.03 -0.00 168.20 81.48 134.58

15 0.02 -0.09 -0.07 168.20 81.40 134.58

20 0.04 -0.07 -0.13 168.22 81.05 134.70

25 0.06 -0. 11 -0.20 168.31 82. 19 135.	 18

30 0.09 I-0.13 -0.27 168.49 82.32 136.22

35 0. 10 -0. 14 -0 .34 168 .80 83 . 3 4 1 37 . 95

4J 0. 12 0.	 13 -J.40 1 169. 20 8 3. 60 140.	 28

45 0. 13 0.11 -0. 44 169.63 8 3. 52 142.	 97

50 0. 13 0.08 -n. 48 1 70. 04 83. 16 145. 67

Table 5-6

State Disturbance Components in Tria! 4

Integration

step

i

E,

10-4m/s'

(.

10 -4 m /s ` 10-4 m sa sec	 sec

31

sec

J 0.00 0.00 0.00 168.20 4 1. 60 134.59

5 0.00 - 0.03 0.02 168.'_'0 41.60 134.59

10 0.01 -0.161 -0.02 168.20 81.60 134.59

15 0.04• -0.26 -0.02 168.20 0!.60 134.59

20 0.08 -0. 34 -0.07 168. 20 81, 60 134.59

25 0.15 -0.38 -0.13 168.201 11.F1 1134.59

30 0.15 -0.41 -1.19 168.21 81.62 134.59

35 0. l8 -0.40 -0.26 163.22 (	 81.62 1'34.59

4) 0.20 -J.38 -0.31 168. 2.1 j1.ti2 134.60

45 0. 20 -0. 29 -0.36 168. 23 el	 - 134.60

50 0. 20 -0.22
II
	

-0.38 168. 24 81 .62 134.61
11111 .^
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(vii) From the observations at (i) to (vi), it appears that from the point of

view of a user, the value of the state vector at optimum uncertainty of

position could be taken as the best outcome of this filtering procedure.

Specifically, in this experiment the results of the tenth integration step

would be the optimum.

(viii) From Tables 5-3 to 5-6 it can be seen thatthe values of ftX , ftY, 0Z

are relatively insensitive to the filtering procedure. So it is best to

use as realistic values as possible for this procedure. On the other

hand, 2hanges in values of OX9 ftY, PZ 
in trials 1 and 2 have not given

significantly different results.

This indicates that while it is advisable to repeat studies of this nature

occasionally to ascertain the autocovariances for all satellites, since

the autocovariance curves of the three satellites in this study are Fairly

close to each other, the values based on the data analysis in Chapter 4

could be applied to other satellites as well, until studies for

other satellites are completed.

(ix) It is clear that some improvement in position and velocity is possible

with this procedure though the gain in reducing the uncertainty of position

and velocity is greater. It is, therefore, conceivable that if the software

is suitably modified the optimum state vectors for the 12 passes in experi-

ment 1 can be obtained using broadcast ephemeris and observational data.

With these optimized state vectors held fixed, the solution in experiment 1

could be repeated for improved station position recovery.

(x) It is noticed that the filter diverges within a very short time of about 20

integration steps. However, from Chapter 4 it is known that this filtering

procedure is being used with acceleration signal in Cartesian coordinate

system from consideration of available software. This signal has a posi-

tive autocovariance for only two to four minutes, and the signal compo-

nents are mutually correlated to some extent. Much better results can

be expected if the positional signal in spherical system is used, which

has it positive autocovnriance up to about 20 minutes. However, the

J?
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feasibility of this procedure has been demonstrated. The divergence is

also partly due to the weak geometry represented by three nearby

stations (onlyabout30 Ian apart), coobserving a satellite at a height of

about 1100 km.

(xi) As expected, the results of trial 3 with a larger observational standard

deviation show a smaller improvement compared to the other trials.

(xii) Results of trial 4 are the best among the four trials.

(xiii) The signals EX , EY, 
cZ 

can be viewed as acceleration biases associ-

ated with the specific pass of the satellite used in the experiment. It

can be easily seen that if a filtering procedure as above is carried out

with formulations for positional signals in a spherical system. the

signals obtained would be the in-track, out-of-plane, and radial pass

biases referred to in Section 3.5.2.

5.3.6 Limitations of the Filter World

For computing A R, the positional deviation between the estimated state

and the true state of the satellite, the latter is obtained by integrating the state

derived from the precise ephemeris at to. Ideally, the force model for this

integration should be the one adopted by DMA with all its elaborations. Simi-

larly, the nominal state should use the force model of the NAG computations.

However, due to the limitations of the software and the nonavailability

of the values of the gravity field in current use by DMA and NAG in open

literature, there is an inescapable mismatch between the force model in the

filter world and reality.

The force model in the filter in this experiment includes the gravitational

field of the earth (GEM 7 geopotential model [Lerch et al., 19751 with coefficients

up to degree and order four and additional zonals up to degree six), two-body

perturbations of the sun and the moon, and atmospheric drag, for both the

true and the nominal state.
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So in order to obtain realistic results, it has to be assumed that the

optimum results of the filter are obtained before they are vitiated by the

mismatch in the force models.

For checking the validity of this assumption, trial 4 was repeated

with an integration interval of 0.05 minutes, and the positional deviation of the

estimate was computed directly with respect to the corresponding precise

ephemeris state vectors at integral minutes. Fig. 5.9 shows this deviation

AR D against the time t in intervals of one minute after to.

Figure 5.9

Position Error with respect to Precise Ephemeris in Trial 4

Comparing this curve with Fig. 5.7, it can be seen that there has been

no adverse effect of the mismatch during the first minute in which the optimum

results of the filter have been realized. The three-minute mark in Fig. 5.9

corresponds to the 40th integration step in Fig. 5.7.
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6. CONCLUSIONS AND RECOMMENDATIONS

The objective of this study has been to investigate the possibility of

locally optimizing the Navy Navigation Satellite broadcast ephemeris for

improved recovery of station positions with Doppler observations.

The rank deficiency problem which is intimately connected with Doppler

surveys has been studied, and it has been shown that the minimum rank

deficiency in a short are mode of survey is six and the scale information is

derived from the wavelength of transmission. Coordinate differences are

estimable quantities if the stations coobserve the same pass of the satellite

whose motion is governed by an assumed force model.

Accuracy estimates of broadcast ephemeris have been formed from the

study of sampled data. It is concluded that, depending on the location of the

epoch of observation in the interinjection period, the positional uncertainty of

broadcast ephemeris may vary between 19 m to 26 m in-track, 15 m

to 20 m cross-track, and 9 m to 10 m in radial directions.

The broadcast ephemeris indicated a radial bias of about -5 m when

compared with the precise ephemeris transformed to WGS 72 system accord-

ing to the currently known transformation parameters.

The experiment in removal of radial bias along with recovery of station

positions holding the orbit fixed showed that the removal of bias has a negli-

gible effect on the uncertainties of the station coordinates. But the values of

the coordinates as well as the values of other perm par.a:ic;Lers change slightly.

Removal of bias brought a chord distance in better agreement with terrestrial

survey. This radial bias appears to be the consequence of the following two

factors brought to light in this study;

(i) The origin of the broadcast ephemeris coordinate system appears to

have an offset of about 10 m in the direction of 90°W longitude, with
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respect to the geocenter.

(ii) The broadcast ephemeris appears to need a scale correction of -1.4 ppm

to make it compatible with a terrestrial system obtainable from a scale-

corrected precise ephemeris.

It is recommended that experiments be carried out with more data sets

in the future to identify in-track and out-of-plane biases also.	 These could not

r be included in this study for lack of adequate evidence with the available data

sets.

Sample autocovariance and autocorrelation functions of acceleration,

velocity, and position signals have been computed by comparing precise and

$:r broadcast ephemerides. The curves indicate an exponential form which has

been assumed for the signal stochastic process.

Satellites decay with time.	 So it is recommended that studies similar

to this study be repeated occasionally so that the statistical characteristics

- of the broadcast ephemeris of all the satellites are available as they evolve

with time.	 It is difficult to suggest the time interval at which such studies are

to be repeated.	 In this study two data sets of the same satellite (satellite 19)

were available at an interval of ten months. 	 But the earlier data set had only

about 180 values against about 1500 in the second. The same autocovariance

k.
functions derived from the two data sets do show variations which are partly

due to the unequal size of the data sets. 	 Keeping this in view, an interval of

one year for repeating such studies appears reasonable.

The experiment in adaptive filtering for one pass of satellite 19, with

station coordinates obtained in the earlier experiment, parameters of the auto-

covariance model of acceleration signal in the Cartesian coordinate system

obtained from sampled data, and simulated range rate observations, leads to

the conclusion that adaptive filtering is a feasible approach from a practical

point of view.	 The experiment indicated an orbit improvement of about 4 m in

the positional uncertainty and 0.6 in position within the first 20 sequential co-

y observations from three-stations at intervals of 0.75 minutes. 	 But the filter
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diverges after giving this improvement. Positional signals in the polar system

which have autocovariances which are larger and remain positive for up to

about 20-minute lag are expected to give better results with this procedure. It

is recommended that further studies in this respect be made.

Any satellite ephemeris derived from satellite transmission is of

necessity predictive and less accurate than that of an ephemeris computed

after the fact and possibly with more data (e, g. , the satellites of the NAVSTAR

Global Positioning System) . In all such situations where sample statistics of

state disturbance can be predetermined from comparison of predicted and

post-fitted ephemeris, filtering procedures could be applied in conjunction

with broadcast ephemeris and current observational data for local improve-

ment of orbit.

Further studies are also recommended to study the performance of

the adaptive filter with real data and a better geometry of tracking stations

than three stations about 30 km apart as in this study.

As a result of this study, the following steps can be recommended for

improved positioning with broadcast ephemeris and Doppler data:

(i) Correction of broadcast ephemeris for the biases identified. In this study

the radial ' as identified was traced to an origin shift and a scale correc-

tion.

(ii) Position determination with broadcast ephemeris and coobserved tracking

data from at least three stations, holding the orbit fixed.

(iii) Local improvement of the satellite orbits for all the passes used in (ii), in

an adaptive filtering procedure, using the sample autocovariance function

derived from comparisons of precise and broadcast ephemerides in the

recent past and the observational data.

(iv) Redetermination of positions as in (ii) with the improved orbits.

The improvement that can be achieved by this procedure can only be

estimated after studying a test case with real data for steps (iii) and (iv) which

is recommended as a follow-up of this study. However, this study has

succeeded in indicating the feasibility of this approach.
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APPENDIX A

INFLUENCE OF TRANSFORMATION PARAMETERS

40	 ON AC^ELERATION SIGNAL

The broadcast ephemeris and the precise ephemeris are in coordinate

systems which differ from each other by small amounts. The following ana-

lytical study was carried out to find out to what extent the transformacion

parameters are likely to influence the values of acceleration signals obtained

in Chapter 4.

Consider the following system of first-order differential equations for

governing the true state of the satellite in the WGS 72 system of the broadcast

ephemeris.

X N = VN	(A 1)

VN = aN + SN	 (A 2)

where XN , VN , TN, SN are the three-vectors for position, velocity, acceleration,

and acceleration signal, respectively.

Similarly, consider the following system of equations for governing the

state of the satellite in the NWL 9D system of the precise ephemeris, which for

the purpose of this study is considered errorless:

X D = Vp	 (A 3)
i. VP = ap	 (A 4)

where Xp, Vp, ap denote the three-vectors for position, velocity and acceleration

as per precise ephemeris.

It is assumed that the state vectors based on the precise and broadcast

ephemeris represent a set of consistent values in their respective coordinate

}

	

	 systems, which makes the following similarity transformation relation possible

for the i th point
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XN X, 	 0	 W	 -* 	 X P' XP

YN 	= Yy	 + AYy +	 -W	 0	 E	 Yy + AL Yy

ZN Zy	 Az'	 -E	 0	 Zy Zy! s !	 !

AXy	 1+'&L	 W XP

= AYy	 +	 -W	 1+AL	 E Yy	 (A 5)

AZy	 —E	 1+AL Z y 	 s

Here

[Xy Yy Zy] T = Xy

[ XN 	 YN	 ZN]T = RN

IAXy DYy OZyJ T = Ty, the vector of translation parameters.

A L is the scale parameter

W, E, and %P are the rotation parameters.

If R is the 3 x 3 rotation cum scale matrix, equation (A 5) can be rewritten as

RN = Ty + RX y	 (A 6)

The transformation parameters are time independent, so time derivatives of

(A 6) yield

XN = RXy + RXy = RXy	 as R = 0	 (A 7)

Therefore,

VN = R Vy	 (A 8)

VN = RVy + RVy = RVy	 (A9)

aN + SN = RIayI	 (A 10)

To seek the influence of transformation parameters on N signal, consider

a vector

U = [ A L, Wo *, E,T

and differentiate (A 10) with respect to the variables of interest. The left

member yields, on differentiation,

104

j



'SN 
d^ N + ^	 ddU + N

considering R matrix in the element notation, the right member of (A 10) may
be written

rii rig r13	 r , api 	 rla apa	 r2a a;s

	

R[ ap]	 ra rm rm ap = ral api + rm ape + r2s ass

r31 r32 r33	 r31 a . pi	 r32 a.2	 rw a Is.

Ri + R2 + R3

where R i , R2s Ra stand for the corresponding vectors above. Differentiation
of the right member therefore yields

aRid^N
+a-

dU+ at c0 N+ aR2
dy+ a_^ d + a

	

a 
N	 aU	 a SN	 aL y a SN ^" aU dU

The modeled acceleration aN does not depend on the acceleration signal or on

the transformation parameters. Therefore

+	 a IN = 0	 aaN = 0a^ N
	y

Similarly,

R1 _R	 a lio
a SN	 aSN	 6 N 

= 0

Therefore, differentiation of right member of (A 10) yields

a Rl dU +

	

aU	 aU dU + a  0 =

ORIGU;AL PAGE 
Is
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a r1i a r^ a_ ate_
AL 3 aE

= a rM a ra a ra a 21

6A a aE apL dU	 +

ar ar- a- r3 ar3l
6A a a4 aE

a rye a rye a r„ a_r
aoL 3 a^ aE

arm arm arx arm
30 L a W a l a E

aD2 dU	 +

arm aEM 3 r3 ar32
oAL 6 a^ a E

C) rL3 a r13 a rya 3113
aAL aW a^ a E

a rm rm arm as
()A L a W a a E a D3 dU

arm arm arm ar33
aAL aW a^ aE

1	 0 0	 0 0 1	 0	 0

= 0	 -1 0	 0 a rL dU + 1 0	 0	 0 avz dU	 +
0	 0 1	 0 0 0	 0	 -1

0 0	 -1 0

+ 0 0	 0 1 ap3 dU

L1 o	 o 0

The refore,

a.,	 a p	 --a1,3	 0

d r N	 a.2 -ap ,	 0	 a v3 dU	 (A 11)

a va	 0	 a.L

In this study, the tT vector has the following values for the components
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AL = -0.826 3 ppm

W = -0.000 001 260 5 radian

^Y	 = 0i
E	 = 0

At the satellite altitude of about 1000 km, the approximate value of

normal gravity is 743.4 gals. Consideringthis value and even the full values of

the U vector, the maximum component of dr N is of the order 0.15 x 10 6 m /s2,

which is negligible compared to the signals of the order of 0.3 x 10 3 m/s2

obtained in the study.

It may, therefore, be concluded that the transformation parameters have

had an insignificant role in causing the acceleration signals.

This was also verified numerically by obtaining acceleration signals in

two models in a test case:

(i) by comparing broadcast and precise ephemeris without transformation,

(ii) by comparing broadcast and precise ephemeris after transformation.

Considering acceleration in units of m/s2 , the RMS values of the signals in (i)

and (ii) are generally in agreement up to the fifth decimal place of a meter.
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. 4	r

A PPENDIX B

FIRST ORDER FILTERING TECHNIQUE

1. Systems Equation

The true equations of motion for the satellite are expressed in the earth-

centered inertial coordinate system. The equations take the functional form of

a system of first-order deterministic differential equations (i, e., without the

inclusion of state noise):

r = v	
(B 1)

v = a ('r, v, t)

where F with components (X, Y, Z) and v with components (X, Y, Z) are three

vectors used in defining the true state X, an n-vector which is to be estimated.

For example, if the state vector were to consist of only position and velocity

components,, then n _ G, and

XT = [X Y Z X Y Z]' _ [Fr VT]

a is the true acceleration vector. Equation (B 1) can also be written in a

functional form as

R - F (R, t)	 (B 2)

where F represents the n-dimensional functional form of the right side of

the equations (B 1).
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Now, if a state noise n-vector W (t) is also included in the equation, the

differential equation will take the form

X	 F(X, W, t)	 (B 3)

For seeking a solution, a nominal state X * (t) is first assumed, and a differ-

ential state deviation is considered in the form:

x (t) _ X (t) - X * (t) 	 (B 4)
x (t)	 X (t) - X * (t)	 (B 5)

State relation (B 3) can now be expanded by a Taylor series around X * (t) giving

the linearized first-order differential equation

x (t) = A (t) x(t) + G(t) W (t)	 (B 6)

which corresponds to the equation given in (4.1) (Ingram, 1971; Tapley et al. ,

19721. Here

	

aF	 aF

	

A _ Ca X]	 G = [aW]

are the n x n matrices of partial derivatives evaluated at the nominal values

^	 X * (t) .

Equation (B 6) represents the state of the system (in this case the param-

eters associated with the satellite orbit) for t > to, where the initial time to is
i	

fixed and the initial state X (to) is assumed known.

2. Concept of the State Transition Matrix

In many problems a representation in terms of the so-called state
{ 

transition matrix helps to obtain an explicit expression for the solution of
m equation (B6). Since the system in (B 6) is linear, its complete solution
i
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consists of a linear combination of its homogeneous (or force-free solution)

and a particular (or forced) solution.

Consider first the homogeneous solution of the system

x (t) = A(t) x (t)	 (B 7)

for t z to with R(to) arbitrary. Substitute into (B 7) a trial solution of the

form

X (t) = MM X (to)

where M(t) is an unknown n x n matrix. This yields

[ M - A(t) M ] x (to) = 0	 (B 8)

which must hold for all t z to. Since X(to) is arbitrary, this relation is satis-

fied if and only if M(t) satisfies the system of n x n differential equations

M = A(t) M	 (B9)

for all t a to. Further, at t = to, x(to) = M(to) Y (to) which implies that

M(to) = I is the initial condition for (B9). The homogeneous solution of equation

(B 6) can then be written as

YM = MM x(to)	 (B 10)

where

M = A(t) M	 and	 M(to) = I

The particular solution for (B 6) is next obtained by using the Lagrange variation

of parameter technique. Assume a solution of the form

S(t) = M(t) 1 (t)	 (B 11)

where M(t) is as above, and 1(t) is an unknown n vector. Substituting this result

in (B6)

M(t) T(t) + M(t) 1(t) _= A(t) M(t) 1(t) + G(t) W(t) 	 (B 12)

However, since M(t) = A(t) M(t), (B 12) reduces to

M(t) 1(t) = G(t) W (t) 	 (B 13)
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It can be verified that M(t) is nonsingular for all t z to [Yeditr;h, 19691.

Therefore,

1(t) = M 1 (t) G(t) W (t)	 (B 14)

Integrating (B 14),

ft
(t) = 
	

M -1 (T) G(T) W(T) dT	 (B 15)
to

Therefore, the particular solution of (B 6) can be taken as

t

? (t) = M(t) f M -1 (T) G(T) W(T) dT	 (B 16)

to

Combining (B 10) and (B 16), the complete solution of (B 6) will have the form
t

x (t) = M(t) x (to) + M(t) f M -1 (T) G(T) W(T) dT	 (B 17)
to

where the second part of the right member can be viewed as the contribution

of the state noise to the state.

M(t) is called the fundamental matrix of the system in (136). Now

define

4? (t, T) = M(t) M-1 (T)	 (B 18)

the n x n transition matrix for the system in (B 6). It is noted that

`;^ (t, to) = M(t) M -1 (to) = M(t)

since M"(to) = I. Thus the complete solution (B 17) can be written in transition

matrix form as
t

X (t)	 -P(t, to) X	
f

(tc') + 	 4) (t, T) G(T) W(T) dT	 (B 19)
to

where t to. (B 18) is differentiated with respect to t
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C— t	 = M(t) M 1(T) = A(t) M(t) M.1(T)

Therefore,

41 (t, T) = A(t) ID ( t , T )

where differentiation with respect to t is implied. From (B 18)

4) (t, t ) = I,	 fort a to.

So, to obtain (D (t, T) required in the computation of x (t) in (B 19), the

differential equation

ID (t, to) = A(t) 4) (t + to)

(B 20)

is solved subject to initial condition 4D(tc,, to) = I and to is replaced by T to

obtain 4)(t, T).

3. Observation - State Relation

The equation relating observations and the state in a linearized obser-

vation equation form can be expressed as

y (t) = H(t) x(t) + V (t)	 (B 21)

where y(t) is the p vector of observations in the differential form (observed -

computed). H is the p x n design matrix of the conventional observation

equation model [Uotila, 19671. x (t), the deviation of thestate from the nominal,

can also be viewed as the unknown corrections to the assumed values of the

state. V (t) is the p vector of observational errors .

Substituting the expression for x (t) from (B 19),

I(D	

t

(t) = H (t) 
	
(t, to) x ( to) + f 4^ (t, T ) G (T ) W(T ) dT] + V(t)

to

t

li(t) 4)(t, to) x(t,,) + f H(t) P(t, T) G(T) W(T) dr + V(t)
to
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Def fining

D(t, T) = H(t) 4)(t, T) G(T), t

y(t) = H(t) ID(t, to) R(to) +f D(t, T) W(T) dT + V(t)	 (B 22)
to

Often the noise vector W(t) is considered as input, the observable y(t) as

output, and the matrix D(t, T) as a system weighting function, in the lit-

erature.

4. Sampled Data Model

Although the evolution of state is continuous in time, observations are

generally available only at discrete times. The study of the effect of noise is

also facilitated if the system is discretized and the continuous relations in a

system are treated as limiting cases of discrete forms.

Assuming that the disturbance or "noise" v ector in equation (B 6) is

a piece-wise constant function of time which changes values at time points at

which measurements are also made, a time interval tk :5 t::, tk+1 is considered

for some k - 0, 1, ... . If x (tk) is given and W(t) = W(k) = constant, in the

interval tk s t :5-  tk+l, from (B 19):

f

t 1

x (tk+1) - 4' (411, tk) x(tk) + 	 (1) (t,+ 1 , T) G(T) dT I 13W(k)	 ( 23)

kt 

Defining

tk+ 1

f ,, (tk+1, T) G(T) dT = T (k+ 1, k)
tk

as the disturbance transition matrix, and denoting

x(tk +1) 	x(k+l)

R (t k )	 x (k)

4 (tkfl, tk)	 4) (k+ 1, k)
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(B 23) can be written as

x(k+1) - 4)(k+1, k) x(k) + r(k +1, k) W(k)	 (B 24)

for k -- 0, 1, ... .

The observation state relation ( 1321) can also be written in the

discretized form as

y (tk+1) — H (tic+1) X (tt,+1) + V(tk+l)

or

3F(k+1)	 H(k+1) x(k+1) + V(k+1)	 (B 25)

It is easy to see that the continuous case can be considered as a limiting case

of the above discrete model by denoting discrete time (k) and (k+ 1) as (t)

and (t + 0 t) and letting A t -> 0.

5. Nature of Gaussian White Process

The nature of Gaussian white process in system dynamics will be

first considered. Let { W(t), t ^ t to ) be an n-dimensional independent

Gaussian process with mean

E [ w(t) ] - TV.(t)

and covariance kernel

E t [TV(t) - W.(t)) ff(T ) - Wd (T ))T ) - Q(t) d(t - r)

where to is an initial time, t, T -- to, Q(t) is a continuous positive semi-

definite n x n matrix, and b(t - T) the Dirac delta function.

The above equation implies the limiting behavior of a piece-wise

constant Gaussian white sequence in which the frequency of event points is

made arbitrarily large within a given time interval.

Coris ide r sequences W(k), k 0, 1, ... } to be zero mean Gaussian

white with covariance

E [ W(i) WT( k )1 	 Q(k) ba k . k 0, 1, ...
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and successive time points separated by At > 0. If t denotes continuous time,

to corresponds to k = 0, and tl corresponds to k = n,

ti = to +nAt

For given value of n, let ( W" ) (t), to s t s tl } denote a piece-wise constant

Gaussian white sequence. Keeping t l fixed while increasing n such that

nAt = tl - to is constant, the nature of { W (° ) (t), to 5 t 5 tl } as n -* m and

At ^ 0 is considered.

As proved in [Meditch, 1969], the Gaussian white process

(W (t), to s t s ti } = Ii W ( W111) (t), to s t s ti }

as described above, where the covariance matrix Q (to + i At) = Q(i), i = 0, 1,

... , n-1, is to be replaced by Q(t)/,&t in taking limits where t corresponds to

the time point i and Q (t) = Q(i) . Then 1 i m -(Z(t) is understood in the senseAt-> O At

that the quantity dealt with is defined over an interval of width At, and in the

limit as At -j 0, the function which isl/At over the interval A  and zero

elsewhere becomes the dirac delta function, giving

E ( [ W (t ) - Wm(t)] [ W (T ) - W.(T )I T } = Q(t ) b(t - T)

for all t, T ^ to.

6. Probabilistic Description of System Dynamics

The probabilistic nature of state noise and its constribution to the

evolution of the state makes the study of probabilistic description of the state

model imperative.

6.1 Evolution of State in Presence of White Noise

As indicated earlier, equation ( 13 34) can be rewritten in the form
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t+At

x(t +fit) _ 'D(t+Ot, t) x(t) + 
J 

41 (t+0 t, T) G(T) W(T) d 	 =

t

_ 4'(t+A t, t) x(t) + r(t+&t, t) w(t)	 (B 26)

under the assumption that W(T) =- W(t) constant for t s T < t+pt . Treating

the noise process (W (T ), t -- T s t + Ad to be the limit of a sequence, as

described above, W(t) in (B 26) can be replaced by a member of the sequence

W (a)(t). Further, ID(t+At, t) expanded around t in a Taylor series up to

linear terms yields

4)(t+At, t) _ 4)(t, t) + 4)(t, t) At =- I + A(t)At	 (B 27)

A1s o,
t+At

r(t+At, t)	 r 4)(t+At, T) G(T) dT = G(t) At	 (B28)
t

With these simplifications, equation (B 26) can be written as

K (t+At) = [ I + A(t) At ] x (t) + G(t) W (n) (t) At

This can further be written in the form of a difference equation as

R (t+ At) - x (t)	 A(t) x (t) A t + G(t) W1° ) (t) A t	 (B 29)

Now let V(t) be a Gaussian white process with the mean E ( w(t) }	 \V.(t)

and covariance kernel

E ( [ W(t) - V .(t)I [ W(T) - W d(T )]T }	 (1(t) 6(t - T)	 (B 30)

where Q(t) is a continuous semidefinite n x n matrix, and b(t - T) the dirac

delta function. Now dividing (1329) by At, and taking the limit At -' 0, leads

to the continuous linear system

K	 A (t) x -+ G(t) W(t)	 (B 31)

Now let x (to) be a Gaussian random n vector which is independent of (W(t),

t <> to ) and has mean Km(to) and positive semidefinite n x n covariance matrix
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E { I x (to) - R. (to) I x (to) - R.(to)] T } = P(to)	 (B 32)

As a consequence of the assumption of independence,

E { [ x(to) - xm(to)) I W(t ) - W.(t)J T } = 0	 (B33)
for all t ? to.

To examine the nature of { x(t), t z to }, the solution of (B31) can be written as
tm

x (tm) - `^ (t ., tm-1) x (t, 1) 
+ f 

4) (t., T) G(T) W(T) dT	 (B 34)

tI- 1

Thus, for tm > t,I ? to, the probability law describing the process x (t) in the

future (i. e., at time tm) depends only on the present value the process assumes

(i.e., at t,- l) and is completely independent of the behavior of the process in

the past. Therefore, the process x (t) is a Markov process.

Further, if x (to) is a Gaussian random n vector, then it can be

deduced that
X (a)M 	 n _ 1, 2, .. .

is also a Gaussian random vector [Meditch, 19691. Thus x(t) is a Gauss-

•	 Markov process. Taking expectations of (1331),

Xm	 E (-X }	 A(t) x^, + G(t) 7Va(t)	 (B 35)

for t = to and subject to initial condition x (t.)).

6.2 Evolution of State Covariance Matt-ix in Presence of White Noise

An expression is now obt.iined for

P(t)	 F { [ X (t) - xm(t)) [R (t) - Xm(t)]' }

From (B 26)

X(k+l)	 (D(k+1, k) 3? 	 + r(k41, k)W(k)	 (B 23)

•	 from which it is clear that

x (1 1 1 )	 141(j4 1 , j ) X(j) i r 	 1, i) w(9)	 (1336)
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and

3E0 +2) __ ID(j+2, j+1) x (j +l ) + r 0 +2, j+1) WO +l)

Therefore,

5E (j +2) 	 100+2, j+ 1) [ o v i , j) X(j) + r (j+1, j)w(j)] +
+ r (j+2, j+1) 7V(j+l)

j 

0 + 2, j) XG) + E (D ( j + 2, i) r (i, i - 1) \V(i - 1)
i- J+1	 (B 37)

Following the above recursive relation,

k

R (k)	 (k, j) x(j) + E 4^(k, i) r(i, i-1) W(i-1)	 (B38)
i= J+ i

It is clear that for W(i - 1), i - 1, ... , k, Gaussian, x (k) is Gauss-Markov.

From (B 26), taking expectations,

xm(k+ 1) _ 40 (k + 1, k) xm(k) + r (k+ 1), k) W.(k) 	 (B 39)

for k E I, the set of integers. If xm(0) and W.(k), k E I are given, (B 39)

becomes a recursive relation for the mean of the sequence. Now

P(k+ 1)	 E {[x(k+1) - x.(k 4-1)] [Y(k{-1) - xm(k+1)]T}

F ( { 0 (k+ 1, k) [ x (k) - x.(k) ] + r (k-4 1, k) f W(k)

- W.(k) ] }
{ 0 (k+ 1 , k) [K (k) - x •(k) ] 4 r (k + 1, k) [ W(k ) - 7V.(k) ] } T )

(P (k { 1, k) P(k) 4^ T (k 4 1, k) + 0 (k 4- 1, k) 1, { [ X(k) - 9.(k)]

[ 7V( k) - v.(k) ] T j r T (k + 1, k) + r (k+ 1 , k) E { [ W(k) - W. (k) ]

[ x (k) - x.(k) I T }
 O T

 (k + 1 , k) . r (k+ 1 , k) 4(k) r T(k i 1, k)
(B -11)

To evaluate the middle terms in the above, (B 39) is subtracted from (1326)

to give

R (k + 1) - x.(k' 1)
	

4^ (k + 1 , k) [ R(k) - x.(k)] I

r(k 1 1, k) [W(k) - V.(k)]	 (B 4 2)
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x (k) = x (k) - x,(k)	 and	 W(k) = W(k) - W,(k)

Let

Then

x (k+ 1) = 0 (k + 1, k) —X(k) + r (k + 1, k) W (k) for k = 0, 1,

Setting j = 0 in equation (B 38),

k

R (k) _	 (k, 0) x(0) +	 o (k, i) r (i, i -1) w(i -1) (B43)

In analogy to (B 43)

k

x (k) _	 (k, 0) x (0) +	 4) (k, i) r (i, i -1) W(i - 1)

and, therefore,

E [ x (k) W T (k)] _ 4' ( k+ 0) E [ x (0) W" (k)] +
k

+	 (D (k, i) r(i, i- 1) E[ W(i -1) W T(k)]

W(k), k = 0, 1, ... is a zero mean Gaussian white sequence independent of the

zero mean Gaussian random n vector :Z (0), i.e.,

E [ ac (k) W T (k)] = 0

and

E [ W(i -1) W T (k)]	 0,	 i-1 # k

Therefore, reverting to (B 41)

P(k+ 1) _ 4D (k + 1, k) P(k) T (k+ 1, k) +

+ r (k+ 1, k) Q(k) r T(k+ 1, k)	 fork 0, 1,
(B 44)

This equation gives the evolution of the covariance matrix for the discrete

version of the stoclilstic process.
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If t corresponds to time point k and t +A t to k + 1 with 0 t > 0, and

considering that the analog of Q(k) for the continuous case needs to be

obtained as Q(t) /bt [Meditch, 19691, we have

P(t+At) = 0(t+O t, t) P(t) 0T (t+A t, t) +

+ r (t +A t, t) ^ r T (t + A t, t)

Substituting for • (t + At, t) and r (t+At, t) and expanding as in equations (b27)

and (B 28),

P(t +At) _ [ I +A(t)At1 P(t) [I+A(t ) At1 T + [G (t)At1 ^[G( t) At1 T =

P(t) + A(t) P(t)At + P(t) AT(t)At

+ G(t) Q(t) G T(t) A t

Transposing P(t) to the left and taking the limit as At ^ 0 gives the matrix

differential equation

P = A(t)P + PAT(t) + G(t) Q(t) G T(t)	 for t -- to	 (1345)

with the initial condition P(to). This equation describes how uncertainty

propagates in the system dynamics. The solution of this is of the form

rt
P (t)	 ^(tr t0) P( t0) 0T (t• to) +

J 0
(t . T ) G (T ) Q(T) Cr T(T) ^ T(t, T)dT

to	 (B46)

Equation (B 46) is not of much use in the numerical computation of P(t) in

general, as $(t, T) needs to be determined first. The numerical integra-

tion of (B 45) is preferred to evaluate P(t) . The last term in the right member

of (1346) represents the contribution of state noise to P(t).

7. Probabilistic Description of Measurements

Recalling the observation state relation in the form

y(t) - H(t) x(t) + V(t)	 for t -1 to	 (B 4 7)
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as in normal adjustment procedures, it is assumed that the measurement

error V(t), t Z to is p-dimensional white noise with E {V(t) } = 0 and has

covariance

E {[ V(t)] [ V(T )] T } = R(t) 6(t - T)	 for all t, T Z to	 (B48)

R(t) is continuous and positive definite.

8. Classical Sequential Estimation

With the mathematical details given above, the next step is to take up

the problem of estimation. The models used in the experiment are special

cases of the formulations studied above. In classical sequential estimation,

noise is compensated for only as indicated in Section 4. 1, and no effort is

made to model the parameters of the state noise. This estimation procedure

has been given here though not used specifically in this study since the pro-

cedure for adaptive filtering follows from this procedure and clarifies the

concepts underlying the Kalman filter algorithms.

With G(t) taken as an identity matrix, the linear first-order differ-

ential equation for the state deviation in (B 6) becomes

x (t) = A(t) x (t) + W(t)
	 (B 49)

It is assumed that t z to, the initial state R(to) = Xo, and the state noise W(t)

is an r,-vector with the properties

E { W(t) } = 0,	 E {W(t) W(s)' } = Q(t) 6(t- s)

where Q(t) is the known n xn covariance matrix of state noise. Xo

will not be perfectly known, and consequently the true solution X(t) will differ

from the nominal solution X * (t) obtained with a specified initial state Xo .

As a result, observations are taken to improve the estimate of R(t).

The observation vector Y 1 , at discrete times tI, is related to the

state by the functional form Y i = O(X i , tO i V i , i = 1, ... , k - 1, k.

V t is the p-vector of observation errors with properties
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E (VO = 0	 E (V1V j ' 1 = Rl 61^	 E ( (tl) V A T } = 0

R4 is a positive definite matrix which is assumed to be known. Linearization

around the computed observation with respect to the nominal state Y*(t),

yields the linear form

where

yl(t) = Hi x + V1	 (B 50)

( 10
H1 

=  a^,

which corresponds to equation (B 47) given earlier.

The solution of (B 49) as seen from equation (B 3 .1) is of the form

t

x (t) _	 (t, to) x	
r

	

(to) + / (P (t, T) l(T) dr	 (B 51)

to

To commence the estimation, say, from a discrete time tk-1, the nominal state

1 (tk_ 1 ) and estimate of deviation (4_1) are provided a t time tk-1, along with

an associated n x n conditioml covarianev matrix of the state

Pk-1	 E l (k-1k-1) (`k-1 ^k-1)T 
I I

^k-1	 (1352

where Yk _ 1 implies conditioning on all observations from Yl through Yk-1.

With this understanding Pk_ 1 can be denoted by P(k -1 A - 1) and Xk--1 by

Y(k -1/k -1). To commence the algorithm at k = 1, the initial estimates of

Po, even before the first observation vector is processed, is needed. In this

study these estimates have been taken from the analyses in Chapter •1.

Similarly for k 1, the initial estimate of the state \o is taken from

the broadcast ephemeris.

Commencing at an arbitrary discrete time 4- 1 , a procedure is con-

sidered for utilizing the obse[•vatiOnS 1' k al the neat disercte time tt to improve

the estimate of the state. ']'his is clone in the following steps:
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Step 1:

Given the nominal state X * (tk_ 1 ) and the deviation x (tk_l)

X * = F(X *^ t).	* (tk-1) = X(tk.-1)

and

I'D (k, k-1) = A(k) 4^(k, k-1), 	 0(k-1, k-1) = I

are integrated numerically. The solutions will yield 7 *(tk) and 0(k, k-1).

The predicted state deviation

x (k/k -1) = 0(k, k -1) x (k -1/k -1) 	 (B 53)

is then computed based on the concept of propagation of the mean, given

in equation (B 39).

Step 2:

The predicted error covariance matrix of the state P(k/k-1) is com-

puted from

P(k/k - 1) = 4^ (k/k- 1) P(k -1/k -1) 0 T(k/k- 1) + Q(k)

where

MM	

tk

Q(k) _	 (ti,, T ) Q(T) 0
T (+ , T) dT

vide equation (B 46)

Analytical expressions for this have been derived in [Myers, 19731.

Step 3:

The observation vector Y(tk) is now processed for estimation by first

computing the observational deviation

y( tx)	 Y(tic) - G( 
X() + x (k/k -1))	 (B 54)

and the associated H(tk) matrix for the observation state relation

y(tk)	 11(tj(k1) + V(t,.) 	 (B 55)
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in which x(kA) and V(tic) are the unknown state deviation and the observational

error. Let Hbe denoted as H and y as y
00	 (k)	 (tk)	 7(k).

Under the assumption that the estimate is a linear function of observa-

tions, and using the principle of minimum variance of the estimate as in

normal least squares procedures, the following expression for the estimate of

state at step k, after processing observations at t* , is obtained

x (k/k) = z (k/k -1) + K(k) [ _y (k) - H(k) x (k -1 /k - 1)]	 (B 56)

where K(k) is the n x p Kalman gain matrix given by

K(k) = P(k/k- 1) HT	 [II	(k)	 (k)P(k/k- 1) 11(k) + R(k) ] a	 (B57)

This matrix is also called the filter gain. in (B 57) the matrix to be inverted is

of size p x p, the number of observations at ti,. The observation cova iance

matrix R(k) is assumed to be positive definite to ensure that the matrix in the

brackets can be inverted. The new estimate of the state at 4 is

X(tk)	 X *(4) + x(k/k)

Step 4:

The new error covariance of the state based on the observations up to

and including V W will be

P(k/k) =- [ I - K(k) H (k) ] P(k/k - 1)	 (B58)

and the algorithm is repeated for the next obser rat ion at tk+1. To minimize

the linearization errors, the current bast estimate of the state is reinitialized

as the nominal state vector for the next step. This procedure makes

X00	
X (

tk) + z (k A)

the reinitialized nominal state for the next step, setting, state deviation in

Step l above to zero. This also simplifies computation.,;.
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It can be seen that the above estimation procedure which is at times

known as first-order, nonadaptive filtering procedure with state noise com-

pensation is very similar to a normal sequential least squares procedure, as

applied to a dynamic situation. The inclusion of state noise is comparable to

the procedure of weighting parameters in a solution. Flor example, we can

compare equation (B 56) above to equation (27) of [Uotila, 19751. This pro-

cedure treats state noise as a white noise process and takes cognizance of it

in the adjustment procedure by assuming its statistical properties.

i(}J( AL PAGE L5

0 
PWVL QUALiTXI

125



REFERENCES

Anderle, R.J. 1976. "Point Positioning Concept using Precise Ephemeris."
Proceedings of the International Geodet.ic b)^mposium on Satellite
Doppler Positioning, New Mexico Stato University, Las Cruces,
N. M.

Anderson, T.W. 1971. The Statistical Analysis of Time Series. John Wilev
Inc., New Fork.

Black, H. U. 1976. "Position Determination using the Transit Svstein." Pro-
ceedings of the International Geodetic Sylnposiulm on Satellite
Doppler Positioning, New Mexico State University, Uts Cruces,
N. M.

Blaha, G. 1971. "Inner Adjm alment Constraints with F:n ► phasis on Range Ob-
servations. " Rep%,rt No. 1 .16 Depmrtrlwnt. of Geodetic Science
The Ohio State University , Columbus, Ohio.

Brown, U.C. and 1. E. 'Trotter 1961). "SAGA, A Computer Pro );ram for Short
Arc Geodetic Adjustment of Satellite Observations." Report No
AWR1.-'1'It-69-O080, Air force Cambridge Research laboratories,
Redford, Mass.

Brown, U.C. and J. E. Trotter. 1973. "Extension to SAGA for Geodetic
Reductions of Doppler Observations." Iteyort No. AFCRL-TR7
73-0177, Air force Cambridge Research I,aboratorics, Redford,
Mass.

Brown, D.C. 1970. "Doppler Positioning by the Short Are Method. " Proceed-
ings of the International Geodetic S-vlilposWin on Satellite Doppler
Positioning, New Mexico State 1niversity, Las Cruces, N. M.

fehlberg, E. 1968. "Classical fifth-, Sixth-, Seventh- and Eighth-Order
Runge-Kutta formulas with Stehsize Control," NASA-'1•R-R-2;,7.
Aeronautics and 81mve Administration, Washington, D.C.

Hartwell, J.G. 1968. "A lower Series Solution for the !\lotion of in Artificial
Satellite and its Concomitant Variational Equations." Relm-t foe
G,E.OS Observ;ition System Intercomixu • iyon Investigation, NAtiA
Contract No. NAS-5-105SS, Washington, U.C.

126



Hartwell, J. G. and T. R. Lewis. 1967. "Integration of Orbits and Concomital
Variational Equations by Recurrent Power Series," R_. evort for
GF.OS Observation System Intercomparison Investigation, NASA
Contract No. NAS-5-10588, Washington, D.C.

Ingram, D. S. 1971. "Orbit Determination in the Presence of Unmodeled
Accelerations." Report No. AMRL-1022, Applied Mechanic
Research Laboratory, the University of Texas at Austin, Texas.

Jazwinsk--y, A.H. 1970. Stochastic Procesjes and Filtering Theory. Academic
Press, New fork.

Jenkins, G. Al. and D. G. Watts, 1968. Spectral Ana.h sis and its Applications,
Holden-Day Series in Time Series Analysis, San Francisco.

Kouba, J. and D. E. Wells. 1976. "Semi-Dy namical Doppler Satellite Position-
ing." Bulletin Geode si ue Vol. 50, No. 1.

Kumar, M. 1976. "Monitoring of Crustal Movements in the San Andreas Fault
Gone by a Satellite-Born Ranging SNstem." Report No. 243
Department of Geodetic Science, The Ohio State University,
Columbus, Ohio.

Krakiwsky, E.J. and A.J. Pope. 1967. "Least Squares Adjustment of Satellite
Observations for Simultaneous Directions or Ranges. " Report No. 86,
Department of Geodetic Science, The Ohio State University, Columbus,
Ohio.

Lerch, F.J., J. A. Richardson, and J. E. Brown. 1975. "Improvement in the
Gravitational Potential Derived from Satellite Data (Goddard Earth
Model, GI: NI 7)." Paper presented at the Annual Spring Meeting
,if the American Geophysical Union, Washington, I). C., June 16-20.
I?,:, S \'ol. 56, No. 6.

Meditch, J. S. 1969. Stochastic Optimal Linear Estimation and Control.
McGraw-Hill Co., New York.

Moffett, J.B. 1973.'9'rograni Requirements for Two Minute Integrated Doppler
Satellite Navigation Solution." 'Technical Memorandum TG-819 -
(Rev. 2). Applied Physical Laboratory, The Johns Hopkins Uni-
versity, Silver Springs, Maryland.

Moritz, II. 197' "Advanced Least Squares Methods." Report No. 175
I)epartment of Geodetic Science. The Ohio State University
Columbus, Ohio.

12 7

Dr 1tx)3: ^II;ALI'i"



Mueller, I. I. 1976. 'Closing Summary" at the International Symposium on
The Changing World of Geodetic Science, Report No. 250,
Department of Geodetic Science. The Ohio State University
Columbus, Ohio.

Myers, K.A. 1973. "Filtering Theory Methods and Applications to the Orbit
Determination Problem for Near-Earth Satellites. " Report No.
AMRL-1058. Applied Mechanics Research Laboratory, the
University of Texas at Austin, Texas.

Piscane, V. L., B. B. Holland, and H. D. B1 ack. 1973. "Recent (1973)
Improvements in the Navy Navigation Satellite System. "Navigation,
Vol. 20, No. 3.

Pope, A. J. 1971. "Transformation of Covariance Matrices Due to Changes
in Minimal Control. " Paper presented at the American Geophys-
ical Union fall meeting, San Francisco. E(OS , Vol. 5 2, No. 11.

Rao, C.R. 1973. Linear Statistical Interference and its Applications,
Second Edition, John Wiley Inc., New York.

Sims, T. 1972. "The NWL Ephemeris". Technical Report 'I'R-2872, U.S.
Naval Weapons Laboratory, Dahlgren, Virginia.

Staff of Applied Physics Laboratory. 1975-76. "Planned Improvements in
the Transit System (1975)", Iy'avition, Journal of the Institute
of Navigration, Vol. 22, No. 4.

Tapley, B.C. and V. Szebehely, 1972. "Statistical Orbit Determination
Theory", Recent Advances in Dynamical Astronomy, Proceed-
ings of the NATO Study Institute in Dynamical Astronomy, held
in Cortina, D'ampezzo, Italy, 1972. D. Reidel Publishing; Company,
Boston.

Uotila, U. A. 1967. "Introduction to Adjustment Computations with Matrices.
Department of Geodetic Science, Lecture Notes, The Ohio State
University, Columbus, Ohio.

Uotila, U. A. 1975. "Sequential Solutions with Observation Equations."
Department of Geodetic Science, Lecture Notes, The Ohio State
University, Columbus , Ohio.

Vineenty, 7'. 1976. "Determination of North American Ihitum 198;1 Coordin-
ates of Map Corners. " NOAA 'Technical Memorandum NOS. NGS-6.
National Geodetic Survey, Rockville, Maryland.

128



Wells,  D.E. 1974. "Doppler Satellite Control." Technical Report No. 29.
University of New Brunswick, Fredericton, New Brunswick,
Canada.

White, H. L. , D. N. Huber, and J. L. Taylor, 1975. "Comparison between
Naval Surface Weapons Center and Navy Astronautics Group
Ephemerides for Geoceiver Positioning". Report No. TR-75-001,
Defense Mapping Agency, Aerospace Center, St. Louis, Mo.

129


