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ABSTRACT

The Navy Navigation Satellite System (NNSS) is over fifteen years old
and has well established its utility in position determination, from the knowledge
of the satellite ephemeris and the observations of the Doppler shifts at the
receiver.

The satellite ephemeris is available in two forms. The broadcast
ephemeris which can be received on real time basis is predictive and has
larger uncertainties than the post fitted precise ephemeris whose availability
is restrictive.

This study is an effort to improve station position recovery using broad-
cast ephemeris in Doppler data reduction.

Comparison of precise and broadcast ephemerides, treating the former
as the standard, yields information about the state disturbance that can be
associated with the broadcast ephemeris. Statistical information about the
state disturbance has been used with current observational data for improved
position recovery.

The rank deficiency problem encountered in the Short Arc Geodetic Ad~
justment (SAGA) procedure has been analysed and it has been deduced that the
fundamental rank deficiency is six, scale information being derivable from the
wavelength of transmission. Coordinate differences between stations coobserv-
ing a pass are estimable.

The uncertainty of the broadcast ephemeris, now in the WGS72 system,
has been assessed. It is conservatively estimated that its p~sitional uncertainty
may vary between 19 to 26 m in-track, 15 to 20 m cross-track and 9 to 10 m
in radial directions depending on the incidence of the epoch of observations in

the interinjection peried.
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The broadcast ephemeris indicates a radial bias of -6 m, which appears
to be the consequence of

(a) a 9.8 m offset of the origin of the coordinate system, with

respect to the geocentre, in the direction of 909W longitude,

(b) a scale correction of -1.4 ppm required to make it compatible

with a terrestrial system obtainable from a scale corrected
precise ephemeris.

Considering the state disturbance as a signal, sample autocovariances
have been computed for acceleration, velocity, and position.

Two specific experiments have been conducted. In the first experiment
in which three stations coobserve 12 passes, the removal of the radial bias,
resulted in bringing a chord distance in better agreement with ground survey
though the uncertainties were unchanged.

In the second experiment, the station positions of the first experiment,
simulated range rate observations and the autocovariance function of the
acceleration signal in the Cartesian coordinate system has been used in an
adaptive filtering procedure to improve the state of the satellite for one pass.
The position improved by only 0.6 m while the positional uncertainty improved
by about 4 meters. Much better results are expected with the use of positional
signal in the polar coordinate system which could also evaluate the in-track,
out-of-plane and radial biases in the individual passes. The experiment has

demonstrated the feasibility of this approach.

OF POOR QU




ACKNOWLEDGEMENTS

This study would have been impossible without the availability of the
data and the software mentioned in Chapter 1, The organizations concerned
not only gave the required data and the software liberally, but most willingly
spared the time to give the benefit of their experience and help in utilizing the
same. It is my greatest pleasure to place on record my appreciation to Dr.
Georges Blaha, and Messrs. Duane Brown, John A. Strahle, Jerry Trotter,
and David Robinson of DBA Systems Inc., Melbourne, Florida; Mr. George
Hadgigeorge of the Air Force Geophysics Laboratory, Bedford Massachusetts;
Drs. William E. Strange, Charles R. Schwarz, and Messrs. John Gergen and
Larry D. Hothem of the National Geodetic Survey, Washington, D.C.; Messrs.
L.E. Campbell and C, Robert Payne of the Naval Astronautics Group, Point
Mugu California; Dr. Kenneth I. Daugherty of the Defense Mapping Agency,
Washington, D.C.; Messrs. Lou Decker and Haschal L.. White of the Defense
Maypping Agency, St. Louis, Missouri; and Professors Byron D. Tapley and
Bob E. Schutz of The University of Texas at Austin, Texas.

Drs. David E. Wells and Reiner Rummel, and Mr. J, Kouba showed a
keen interest in this study. Their help and our very profitable discussions are
greatly appreciated.

Dr. Muneendra Kumar and Mr. Ed Herbrechtsmeier gave invaluable
help and advice in computer programming and processing the virious types of
data. Iam very thankful to them for the same.

I am also most grateful to Ms. Irene Tesfai for her prompt and efficient
typing of the final draft.

My colleagues in the Department, notably Drs. A. Dermanis, Tomas
Soler and Richard Snay, and Messrs. Alfred Leick, B.H.W. van Gelder,
Patrick Fell, and John Luck have contributed useful discussions on the subject

matter and suggestions on my draft. I greatly appreciate their cooperation.




The Secretary, Department of Science and Technology, Government of
India, the Surveyor General of India and the Director, Survey Training Institute,
arranged for the leave from duty which enabled me to give my undivided attention
to study and research during the last three years. Iam most thankful to them
for this,

A vrolonged study of this nature inevitably demands a considerable
sacrifice on the part of the family, but for whose patience and understanding I
could not even have thought of undertaking this venture. My children, my wife
Saroj, and all my' relatives and friends have helped me in every way possible
to make this period (trying as it has been at times) a very rewarding one. My
wife also undertook to type the first draft, I am beholden to them for all this.

This report was also submitted to the Graduate School of The Ohio
State University as a partial fulfillment of the requirements for the PhD degree.

Professors Urho A. Uotila and R.C. Srivastava have contributed greatly
to my knowledge and interest in estimation procedures in ge.odetic science and
statistics. The other members of the faculty of the Department of Geodetic
Science, Professor Richard H, Rapp in particular, have also given me educa-
tion in geodesy for which I am most thankful.

I owe a deep debt of gratitude to Professor Ivan I. Mueller for suggest-
ing this study and for his invaluable guidance, encouragement, cooperation and
support at all times during this investigation.

I also gratefully acknowledge the extensive computer support provided
by the Instruction and Research Computer Center of The Ohio State University

and the financial support from the National Aeronautics and Space Administration.




TABLE OF CONTENTS

Page
PREFACE ....... e e e et e e e e e e e 1t
ABSTRACT . . . . ... ittt it e e e e e e iv
ACKNOWLEDGEMENTS . . ... ... ...ttt itinnnennnnns vi
LISTOF TABLES . .. ... .. ittt iineanas b ¢

LISTOFFIGURES . .......... ... ... ... e, xi

1, INTRODUCTION | . .. .. i it it et et e e et ea e 1
1.1 General Background and Brief Description of Present Study . . 1
1.2 Brief Description of Data Utilized . .. ... ............. 4
1.3 Brief Description of Computer Software Utilized ... .. .. .. 5
1.4 CoordinateSystems Used. .. .. .. .. .. .. ... .. 6

2. RANK DEFICIENCY PROBLEM IN THE DOPPLER SYSTEM 7
2.1 Introductory Remarks . .......... ...,

2.2 Rank Defect in the Short Arc Mode. .. .. .............. 9
2.2.1 H Matrixfor RangeObservation . .. ............ 10
2.2,2 H Matrix for Range Difference Observations of

Doppler System . . .. .. ... ... ee.n 12
2.2.3 HMatrixinSAGA .. .. .. .. . . . ...t 13
2.2.4 Rank DefectAnalysis ...................... 19

2.3 Estimable Quantities in Doppler Observations . . ... .. .. .. 20

3. EPHEMERIDES OF THE NNSS AND THEIR ACCURACY
ESTIMATES . . ... ittt it it it e bt et et e e i e 23
3.1 IntroductoryRemarks . .. ..............c.. ..., 23
3.2 The Navy Navigation Satellites . .................... 23
3.3 PreciseEphemeris. . . .. .. ......... .. 0., 25
3.4 Broadcast Ephemeris ., .. ........ ... et 26
3.5 Accuracy Estimates .. .. .. ... ... ... .. .. 30

3.5.1 Precision of Broadcast Ephemeris ,............ 30
3.5.2 Accuracy Estimate of Broadcast Ephemeris ., .. .. .. 37

viii




EY 2 B B R e R

4. STATISTICAL ANALYSISOF EPHEMERISDATA ............. 45

4.1 Introductory Remarks . . . ......................... 45
4.2 Computation of the SignalOutcomes .. ... .............. 48
4.2.1 AccelerationSignal ........................ 49
4.2.2 Velocity Signal ... ........... ... ... ... ... 49
4,2.3 PositionSignals............... ... ... . ... 50
4,3 Computation of the Signal Statistics .. ................. 50
4.4 Observations . ... ... ... .. i ittt e 66
4.4,1 Acceleration Signals g)-((u), €§(u), £ i(u) .......... 67
4.4.2 Acceleration Signals £X(u), §‘5 (v, EI-,(u) .......... 68
4,4,3 Velocity Signals Ei(u), E(b(u), L £ 68
4.4.4 Position Signals &;X(u), €(p(u), £r(u) ............. 68
4,5 ApplicationinPresentStudy. .. ..................... 69
5. EXPERIMENTS FOR IMPROVED POSITIONING . ............. 71
5.1 Introductory Remarks . .. .............. ... 0., 71
5.2 Experiment for Radial Bias ... ..................... 74
5.2.1 Determination of Station Positions. . .. ........... 74
5.2.2 Determination of Radial Bias . ................. 75
5.2.3 Correction of the State Vectors for Bias ... .. ... 15
5.2.4 TRedetermination of Station Positions After Removal
of Bias . . . . .. . . e 76
5.2.5 Observations. . .. ... ... .. .. it ineunenn 76
5.2.6 Explanationfor Radial Bias ................... 76
5.3 Experiment in Adaptive Filtering. . .. ................. 80
5.3.1 Adaptive Filtering . . .......... .. .. ......... 81
5.3.2 Estimation of Initial Values of Parameters.. .. .. ... 85
5.3.3 Simulation Program - EARTHOD .. ............. 86
5,3.4 Description of the Experiment and Results .. ....... 88
5.,3.5 Observations . . . ... ...... ... ... 90
5.3.6 Limitations of the Filter World ... ............. 98
6. CONCLUSIONS AND RECOMMENDATIONS .. .. .. .. ... .v... 100

APPENDIX A: Influence of Transformation Parameters on

AccelerationSignal . ... ... ... .. ... ... .. .. ... 103
APPENDIX B: First Order Filtering Technique..... ceenennn cisereeans 108
REFERENCES. . ..ot viviannns cecesecesesscesssrossasassasessesnes 126
ix
e s ; 1 R et



Tt et e

-—

T

Sk v R St

o eaii e

SRR B i e tida L

i dabia s

No.

3-1

3-3

3-4

3-6

3-17

3-8

3-10

3-11

3-12

3-13

LIST OF TABLES

Title

Transit Satellite ldentification Numbers . . . .

Values for Selected Operational Ephemeris

Parameters for Selected Days in 1976 . . . ..
Fixed Orbit Parameters ..............

Variable Orbit Parameters ... .........

Transit System Surveyors Error Budget

(Singie Pass ) ... .. ................

Precision Estimates of Broadcast Ephemeris
for Position Components in Cartesian System

Precision Estimates of Broadcast Ephemeris
for Velocity Components in Cartesian System

Precision Estimates of Broadcast Ephemeris
for Position Components in Spherical System

Precision Estimates of Broadcast Ephemeris
for Velocity Components in Spherical System

Accuracy Estimates of Broadcast Ephemeris
for Positinn Components in Cartesian System

Accuracy Estimates of Broadcast Ephemeris
for Velocity Components in Cartesian System

Accuracy Estimates of Broadcast Ephemeris
for Position Components in Spherical System

Accuracy Estimates of Broadcast Ephemeris
for Velocity Components in Spherical System

...... 24
...... 27

...... 28

...... 29
...... 33
...... 34
...... 35
...... - 36
...... 39
...... 40
...... 41

...... 41

ORIGINAL PAGE IS
OF POUR QUALITY|



PR R e e b -

B AR A e T N T e T

No.

4-1

5-1

5-2

5-3

5-4

5-5

5-6

Summary of Data Analysed for Signal
Statistics .. .. .. ... ... . ... ..

Results of Station Position Determination

Weight Coefficier . Matrix for Station

Coordinates

State Disturbance Components in Trial 1
State Disturbance Components in Trial 2
State Disturbance Components in Trial 3

State Disturbance Components in Trial 4

.............................

Title

xi

.........

Page

66

77

78

95

95

96

96



LIST OF FIGURES

No. Title Page
4.1 Block Diagram for Continuous Linear System

Description . . . .. . ... . i e 46
4.2 Sample Autocovariance C}"Q-((u) ................ 53
4.3 Sample Autocouirelation r}'-o-((u) ................ 53
4.4 Sample Autocovariance C{,?(u) ................ 4
4.5 Sample Autocorrelation r§.?(U) ................ 54
4.6 Sample Autocovariance Ci,z(u) ................ 55
4.7 Sample Autorrelation *ii(\J) ................. 55
4.8 Sample Autocovariance C )d(u) ................ 56
4.9 Sample Autocorrelation r )\X(u) ................ 56
4.10 Sample Autocovariance C‘D 0 W ......... .. ..., 57
4.11 Sample Autocorrelation r‘o ° @ ... e, 57
4,12 Sample Autocovariance Crr(u) ................ 58
4.13 Sample Autocorrelation rrr(u) ................ 58
4.14 Sample Autocovariance C X'x‘“’ ................ 59
4.15 Sample Autocorrelation r-xi(u) ................ 59
4.16 Sample Autocovariance Ccétb(u) ................ 60
4.17 Sample Autocorrelation r«oxb(u) ................ 60
4.18 Sample Autocovariance CH‘(u) ................ 61

xii



No. 1itle Page

4.19 Sample Autocorrelation L‘ff(u) .................. 61
4.20 Sample Autovariance C-)'\‘)A\(u) ...... e e e e e e e 63
4,21 Sample Autocorrelation r')-"i\(u) .................. 63
4,22 Sample Autocovariance Cib&:')(u) .................. 64
4.23 Sample Autocorrelation r(.b(.b(u) .................. 64
4,24 Sample Autocovariance C'ff'(u) .................. 65
4.25 Sample Autocorrelation r.fi(u) .................. 65
5.1 Position Error and Covariance Norm

inTrial 1 - - - -« v o o e e e e e e e e e e e e e 91
5.2 Velocity Error and Covariance Norm

inTrial T .. ... . .. 91
5.3 Position Error and Covariance Norm

in Trial 2 . . .. . . e e e 92
5.4 Velocity Error and Covariance Norm

inTrial 2 .. .. ... . ... 92
5.5 Position Error and Covariance Norm

inTrial 3 .. . . . . 93
5.6 Velocity Error and Covariance Norm

inTrial 3 .. .. e 93
5.7 Position Frror and Covariance Norm

inTrial 4 ... ... .. ... . 94
5.8 Velocity Error and Covariance Norm

inTrial 4 ... 94
5.9 Position Error with Respect to Precise Ephemeris

in Triad 4 . . . 99

ORIGINAL PAGE IS
OF PQOR QUALITY|

xiii



1. INTRODUCTION

1.1 General Background and Brief Description of Present Study

The Navy Navigation Satellite System (NNSS) also known as the TRANSIT
system is over fifteen years old and has well established its utility in position
determination.

The operational satellites of this system (currently five) in near polar
orbit broadcast a pair of signals with a fixed frequency relationship which is
received at ground stations and examined for Doppler shift due to the relative
motion between the satellite and the receiver. From the integrated Doppler
shift position of the receiver antenna can be computed with the knowledge of
the satellite ephemeris.

The major factors affecting the accuracy of a receiver position in
Doppler survey are the following:

(1) the type of Doppler receiver and the design of the observations
(2) the accuracy of orbital ephemerides
(3) the method of data reduction including the corrections for atmospheric

refraction.

The satellite ephemeris for the NNSS is available from two sources:
(a) on a real time basis, broadcast as 1 message from the satellite,

(b) in a more precise form, maintained by the Defense Mapping Agency (DMA).

The precise ephemeris is a set of values for carth-fixed positions and
velocitics at one-minute intervals computed by fitling 48-hour orbital arcs (o
Doppler data from a world-wide network [Sims, 1972}, The broadcast ephemeris
injected into satellite memories twice per day and broadeast automatically to
users is computed by fitting 36-hour orbital arcs to Doppler data from the

four U.S. Naval Astronautics Group (NAG) stations in Maine, Minnesota,
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California, and Hawaii and extrapolating these arcs 16 hours beyond the time
of the last data used [Piscane et al., 1973].
The broadcast ephemeris differs from the precise ephemeris in the
following respects:
(i) The broadcast ephemeris is available on real time basis and is predictive,
while the precise ephemeris is a post-fitted ephemeris.

(ii) The broadcast ephemeris is based on Doppler data from only four stations
in the U.S. and generated by the NAG (independently of DMA), while the
precise ephemeris is bases on Doppler data from over 20 stations around
the globe including the four stations tracking the satellites for the broad-
cast ephemeris.

(iii) There are variations in the mathematical models, the parameters used, and
truncation errors between the precise and broadcast ephemerides (e.g., the
corrections to semi-major axis and out-of-plane orbit components are broad-
cast to the nearest ten meters) [Moffett, 1973].

(iv) The broadcast ephemeris is available for all satellites, while the precise
ephemeris is available for only two satellites (which differ from time to
time) and only after a time lag.

(v) The precise ephemeris is believed to have uncertainties of two meters
in each coordinate {Anderle, 1976}, whilc the broadcast ephemeris is

expected to have an uncertainty of 12 - 28 m.

There has, therefore, been an ongoing effort to improve station position
recovery using broadcast cphemeris in Doppler data reduction, The ap-
proaches tried out so far can be considered to fall into one of the following
categories:

(i) Approaches in which the broadcast ephemeris is allowed to adjust
by assigning suitable a priori variances to the ecphemeris in a computation
in which up to six unknowns (satellite state vector) are also solved for in
each pass. For example, the short arc procedure [Brown, 1976] falls in

this category.



(ii) Approaches in which the data is examined pass by pass in the
"Guier Plane' to account for certain biases and to edit the data before subse-
quent adjustment taking advantage of the fact that both refraction and ephemeris
errors are correlated between stations which track the same satellite. For
example, the procedures in [Kouba and Wells, 1976] fall in this category.

Further approaches appear to be available. If the post-fitted precise
ephemeris is considered to representthetrue stateofthe satellite, the comparison
between the precise ephemeris and the predicted broadcast ephemeris (gener-
ated by an independent agency) over a length of time may yield statistical infor-
mation which when suitably used with observational data, broadcast ephemeris
and procedures in stochastic filtering theory (where necessary) may give an
improved state of the satellite and c snsequently an improved recovery of

station positions. An effort in this direction is the central theme of this study.

The study has been carried out in the following sequence: Most geodetic
problems are intimately connected with reference frames and solutions where
adequate precautions are not taken would yield values which may not necessar-
ily refer to the reference frame of interest. One cause for this is the rank
deficiency encountered in a normal matrix formed without intreducing appropri-
ate constraints and is closely related to the mathematical model used to relate
the observables with the unknowns for the solution of the geodetic problem. An
understanding of the rank deficiency encountered helps in ensuring that appro-
priate constraints are enforced. An analytical study of the rank deficiency
problem in Doppler survey in the short arc mode which has been used in this
study has, therefore, first been carried out and described in Chapter 2 along

with a discussion about the estimable quantities in Doppler survey.

The next step in the study was to assess the uncertainty of the broad-
cast ephemeris by comparing it with the precise ephemeris. Studies of this
nature carried out by Wells [1974] and White et al. [1975] were based on data
pertaining to the period before the cormputational procedure of the broadcast
ephemeris was upgraded in December, 1975, It was, therefore, felt

3



appropriate to carry out a fresh assessment as part of this study. This is

described in Chapter 3. The data used for this purpose refers partly to
the pre-1975 period and partly to 1976,

Considering that the broadcast ephemeris provides the nominal state »f
the satellite which is sought to be improved, comparisons between the precise
and broadcast ephemerides may be considered to vieid information about the
state disturbance. Considering the state disturbance as a signal, the proce-
dures for obtaining the statistics of the signal by normal sanpling methods have
been described along with the results obtained in Chapter -,

Based on the above, two specific experiments have been carried out and
are described with their results in Chapter 5. The first experiment was
designed to study the influence of removing the radial bias in the broadeast
ephemeris noticed in the investigations in Chapters 3 and 4. With JMR 1
receiver data from three stations, station positions have been obtained from
12 coobserved passes, both before and after removing the radial bias, and
the results have been compared. The sccond experiment was designed to
judge the feasibility of using the adaptive filtering technique for local orbit
improvement. With the station positions obtained i the first experiment held
fixed, the precisc and broadeast ephemeris state vectors for one pass of
satellite 19 and the parameters of the sample signal autocovariance obtained
in Chapter 4 have been input to an adaptive filtering program. This program
uses simulated range rate observations to determine the error and uncertainty
of the broadcast state vector after processing three new observations at every
integration step treating the precise ephemeris state vector as errorless for
this purpose.

Conclusions and recommendations are made in Chapter 6.

1.2 Brief Description of Data Utilized

The data utilized in this study was received from several sources, a
bricl description of which is given below,  The first data set (hereatter referved
to as Data Scet L) consists of precise and NAG prodicted state vectors for

1
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satellite nos. 13 and 19 for several passes during a period in September, 1974.
This data was received from Defense Mapping Ageucy Aerospace Center
(DMAAC). The data is in the earth-fixed coordinate system of NWL 9D as
described in [White et al., 1975]. As mentioned earlier since 1975 the broad-~
case ephemeris system has been upgraded. Along with changes in computational
procedures, the coordinate system adopted has been changed to the Department
of Defense World Geodetic System 1972 (WGS 72) which differs by a small amount
from the NWL 9D system in which the precise ephemeris continues to be main-

tained.
The second data set, hereafter referred to as Data Set D, was received

from DBA Systems, Inc. It consists of Doppler observational data from three
ground stations in Florida acquired during a period in January, 1976. As JMR 1
receivers were used, the broadcast ephemeris for the ‘svatellites tracked was
also available in 2 message form. The precise ephemeris of satellite nos. 19
and 20 for the related period was oblained from DMA.

The third data set, hereafter referred to as Data Set S, was received
from the National Geodetic Survey (NGS). It consists of the precise ephemeris
for satellite nos. 12 and 19 tracked during October, 1976. The broadcase ephem~

eris of the satellites for the related period was received separately from the NAG.

1.3 Brief Description of Computer Software Utilized

This study has required a considerable amount of data processing for
which software from the following sources was used after due modifications.

For obtaining station positions with Doppler observational data, the
Short Arc Geodetic Adjustment Program (SAGA) as received at The Ohio State
University and described in [Kumar, 1976] was used along with the stand-alone
program SAMVAP reccived from Air Force Geophysiecs Laboratory. For de-
coding the JMR 1 receiver ephemeris message, a routine obtained from Mr.
White, DMAAC, was useful, For Kalman filtering procedures, the program

"EARTHOD" from the University of Texas at Austin was suitably modified.

(1)



1.4 Coordinate Systems Used

For formulations related to satellite dynamics, an earth-centered
inertial coordinate system (ECI) has been used as defined below:

The X and Z axes are directed, respectively, to the true vernal equi-
nox and the true North celestial pole at a selected epoch ty. The Y axis forms
a right-handed system with Z and X.

The precise and broadcast ephemerides provide the satellite state
vectors in an earth-fixed system (EF), through there is a small difference in
the scale and longitude definition between the two. The earth-fixed coordinate
system is defined with the X axis oriented to the Greenwich Mean Astronomical
Meridian, and the Z axis passing through the Conventional International Origin
(C10), both as defined by the Bureau International de 1'Heure (BIH). The Y
axis forming the right-handed system defines with X the average geodetic

equator,

For observations, topocentric systems which are parallel to the above
but passing through the observer position instead of being geocentric are also

used.
Variations from the above where they arise, and actual symbols used,

have been explained in the text. All vector quantities have an overbar.
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2. RANK DEFICIENCY PROBLEM IN THE DOPPLER SYSTEM

2.1 Introductory Remarks

One of the practical aims of geodesy is that of the determination of
positions of points on the earth's surface. The latter aim has dictated the
need for adopting a frame of reference (or coordinate system) with respect
to which locations of points could be determined. Having adopted a refer-
ence frame, it is imperative that for the results to be fully meaningful the

coordinate system is maintained.

Unfortunately, one kind of geometric observation cannot provide all the
necessary information about the coordinate system. TFor example, range
observations can give information about the scale but not the origin or orienta-
tion of a coordinate system. When an adjustment is carried out with such
observations by the usual method of observation equations [Uotila, 1967] with

the mathematical model
Y. -~ G&) (2.1)

where G is a vector function relating the u X 1 parameter vector X, with Y,,

the n x 1 observation vector, the following linearized form is obtained

V = HX + Y (2.2)
where
V is the n x 1 vector of observational residuals
H is the n X u matrix 3G/dX,, the matrix of partials of the observables
with respect to the parameters evaluated at the nominal value of the
parameters Xo

is the u x 1 vector of unknown corrections to -)Zo

bl
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and
Y - ?o - Yy is the difierence between the computed observations
Yo - G(Xo) and the observations Yy,
Generally in all geodetic adjustments n >u, and the rank of the H matrix becomes

less than u if no parameters are constrained.

So in the normal equations

NX -U (2.3)
whore
N Ilrl’ll, the u ¥ u normal matrix
P n X n weight matrix of the observations
U HPY
the rank of N is less than u, and a Cayley inverse cannot be obtained for
N, which could give the unique solution X -N l'ﬁ, as the unbiased estimator

of the parameters,

This is because the lack of information about the reference frame in
the observations leads to a rank detecet of the design matrix H and the singu-
Iarity of the normal matrix,

To overcome this situation, additional information about the coordinate
system lacking in the observations is needed in the form of constraints on
parameters, This additional information may be introduced in the form of
(@) inner constraints, (b) weighted constraints, or (c¢) absolute constraints.
The nature of the constraints enforced influences the coordinate system in
which the solution vector is obtained.

For making decisions in this matter, the rank deficiency encountered
in the short arc mode of Doppler data reduction used in this study has been
derived in this chapter and the decisions regarding the constraints have been

explained.
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2.2 Rank Defect in the Short Arc Mode

Primarily, the rank defect in a design matrix depends on
the type of observations. However, the rank defect may increase due to the
additional parameters used in the mathematical model other than the station
positions and/or numerical problems, which may generate dependence between
the columns of the design matrix.

Therefore, only the minimum rank defect situation has been analyzed,
taking into consideration a simplified form of the mathematical model used in
the SAGA program with the Doppler data reduction [Brown, 1969, 1973], and
this is termed the fundamental rank deficiency.

In its simplest form the integrated Doppler shift is modeled as

D = Af(z-1t) + (02 - Pn)/A (2.4)
where
A is the wave length of the adopted frequency of transmission
D is the observable Doppler count at one ground station P during

the motion of a satellite from position 1 to position 2

ty, t2 are the epochs corresponding to satellite positions 1 and 2

Af is the unknown frequency offset given by f, - f,, where f; is the
ground reference frequency and f, is the frequency transmitted
by the satellite

Pe2yPp1 are the slant ranges corresponding to positions 2 and 1 from P.

In terms of the computed range difference, the observation equation in

a functional form is given by

(Pee = Pr1)° + APz (@K, X3y XD = (Prz - P) *+ Vi (2.5)
where
(Ps2 - Po1)° is the computed range difference
(Pr2 - Pe)° is the observed range difference
D - Af(te - t)} A
AD-AF (2 -] - X(te - 1) dAS



P12 = Pro = Ppy
doyo is the change in range difference due to changes in coordinates
of station and satellite positions
Vis is the observational residual corresponding to station P and |
satellite positions 1 and 2
P are the three ground station unknowns at P
dX, are the three unknowns for satellite position 1
dX; are tF. three unknowns for the satellite position 2
dAf is the unhnown frequency offset correction to the nominal

value Af

For the study of rank deficiencey it is necessary to examine the structure
of the design matrix H, arising from the left member in the observation equation

of the resulting form

dprz ((&p. (&1, d-\—'z) 4 A(te - ) dAT =
XD - Af(tz - )] - (Ore - Pm)° + Via (2. 6)

and to determine the number of independent columns therein. For doing this,
the form of 11 matrix in a range observation will be considered first since the

formulation for range difference observation follows casily from it,
2.2.1 H Matrix for Range Observation

The formnlation of the Il matrix is simplified in the system of topocentric
right ascension and declination. Let
FXG)
Ye | Dbe the earth-ixed coordinates of ground station P, and
L 7]
~ xl"
Ny Y, be the carth-fixed coordinates of the satellite at epoch 1
L7,

A

Ifa, and 8§, are the topocentric right ascension and declination of the satellite

at position 1, then

10



X, -X; 1 0 x Pey cOS 0, cos @y

Yr-Yi| =] 0 1 -yu| Ra(6;1) | Prr cos by sin oy 2.7
Zo -7, X Y= 1 Ppy 8in Oy
[Krakiwsky et al,, 1967]
where
R3 (6a) is the transformation matrix for rotation around the third
axis given by cos 6 sinfy O
-sin 6;; cos 6 0
0 0 1
6,1 is the Greenwich apparent sidereal time at epoch 1
Xzy Va are the components of polar motion

Denoting the polar motion matrix by c’, equat ion (2.7) can be differen-

tiated treating the slant range pr. and the position vectors i, and X , as vari-

ables.
Neglecting second-order terms, C' is orthogonal, Therefore,
dX, - dX; cos (&, - 6;) cos 6,
C | dY, -dY, = |Isin (¢, - 6;) cos 6, den
dZ, - a7, sin 61
Therefore,
dX, - dX,
[cos (¢ - 6;1) cos & ' sin(ay - 6;) cosb, | sindy] C |dY, -dY; | = don
dZ, - dZ,
(2.8)
This is the familiar observation equation form.
Denoting
dX, dX,
di], = dY'L d?p = de
dz, dz,
equation (2. 8) can be rewritten as
11 ORIGINAL PAGE I8
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dXp

‘ doe; = [hpl ‘hn:] 2.9)
aX,

where hy is a 1 X 3 submatrix given by

hey = [cos(@y - Bg) cosby + X, sinby; sin(@; - 6;) cos b, - yusin &y

SRN——

- Xp cos(@) - 8;) coshy + ypsin(@, - &) cosd, + sinb,)
! This equation gives the structure of the design matrix in the case of a slant
range observaticn oy .

2.2.2 H Matrix for Range Difference Observations of Doppler System

To obtain the structure of the design matrix in the case of a range dif-

ference observation, eguation (2.9) is extended to consider corrections to ranges

dpr, and dpse. Corresponding to (2.9) for do,:,

=

:
: dx,

dore = [ba chia] |
dX,

Hence dp,z, the variation in range difference due to variation in position of

TR TR T Y

station P and satellite positions 1 and 2, is givenby

doyz = doer - dpee

X, o,
[hpl "hp1 0} dil = [ hPQ 0 -hpg] d§1 =

dXs dX,

<

r el
B h) b o] | (2.10)
dX2
The variation of the range difference due to variation of the last
unknown dAf is now considered. This is readily scen from equation (2.6) as
A (to-t;). Thus, the structure of the H matrix for a Doppler observation for

one ground station, two satellite position unknowns, and a frequency offset

unknown will be

12
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(1)

COS(Q]_ - 31) cos 61
- cos(tz - B) cos 6z

(iif)

sin 6, - sin 6,

(vi)

- sin §;

(ix)
sin 6,

cos(0z - 6;2) cos O,

(x)
A(tz-t)

(ii)
sin(a; - 64) cos 6,
- gin(az - 6x) cos 6
(iv) (v)
- cos(a; - 64) cos 6 - sin(@, - ;) cos &

(vii) (viii)

Sin(az ~ U;2) cos 62

(2.11)

treating the polar motion components as known and leaving them out of con-

sideration for rank deficiency analysis.

Now the addition of a second range difference observation for satellite

positions 2 and 3 will imply three more unknowns. Denoting wy = &4 - §;1, the
structure of H matrix for the 13 unknowns with two observations will be
(1) (ii) (iii) (iv)
cos w, cos b, sinw, cos §, sind; - sind, - cosw,; cos b,
- cosWs cos B, - sin w, cos O,
cos W, cos O, sin wy cos 6, sin 65 - sin0, 0
-coswscos by - sinws; cosba
(V) (vi) (vii) (viii) (ix)
-sinw, cos 8, -sind, cosw,cosd, sin W, cos 6, sin 6,
0 0 -cosw, cos 8, -sinw,cosd, -sind,
(x) (xi) (xii) (xiii)
0 0 0 Atz - ty)
. . (2.12)
cos Wy cos Oy sinws; cos &, sin 63 Alts - t2)
2.2.3 H Matrix in SAGA

It can readilybe seen that the above procedure gives three more unknowns for

every additional observation, and an overdetermined system required for adjust-

ment cannot be obtained. This situation is remedicd cither by increasing the

number of coobserving stations or

restricting the number of satellite unknowns

13



per pass. In SAGA, the satellite unknowns are restricted to six per pass
(three for position and three for velocity) by assuming the force model to be
known. In this investigation the same procedure has been followed.

Adopting the following compact notation

cc, = cos w, cos b,
1 1 1
SC, = sin w, cos b,
i i i
S, =

i sin 6i

the problem is extended to one ground station and four consecutive satellite
positions. Following equation (2.12), the structure of H matrix for three obser-
vations and 16 unknowns assuming one frequency offset per pass, will appear as

(i) (ii) (iii) (iv) ) (vi) (vii) (viii) (ix)
CC1 ‘CCE SC] "SCQ S1 ‘Sg -CCI ‘Scl _Sl CCg SCg 82

CCy -CC3  SCp -SC3 S =S, 0 0 0 -CG -SC; -5
CCa-CCy SCa-5C, S-S, 0 0 0 0 0 0
“““““““ dXp ===mmmmmmmmmy (mmmmmm dXymmmemd fmmmm- dXpmm--d

(x) (xD) (xil) (xiii) (xiv) (xv) (xvi)

0 0 0 0 0 0 At-t1)

CG SGCs S- 0 0 0 At 3 -tz )

-CC; -8C; -84 CC,y SC, Ss A (ta -t3) (2.13)
f-mmmn dXs === ==m=- dXy ---=--- ) (--=dAf---)

The unknowns for satellite positions are now reduced to six, viz., dN, »
dio » the corrections to assumed values of position and velocity components
at an adopted epoch t, (preferably taken as the epoch to at midare of the pass).

This approach gives the following linear transformation {Brown, 1969, p. 20]

for satellite position i at epoch t;:

o
dX, R' Q' | 2.11)
K3k a3 K s} dXO

Al
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where KJ TOT ] Xo Yo Zo X’o \"o io]. and Q' is the matrizant in the
inertial system given by
d (xh Yh zl- T)l

Q' - ———y-
a(xOvY\'wZODXOOYOUZO)

where
X1, Y1,Zy are the geocentric inertinl coordinates of the satellite at
T, with Ty =ty - to
Xe, Yoo 2o, X . \.’o . 20 are the assumed initial conditions at 7 0
The inertial coordinate system is defined as the coordinate system which

is coincident with the carth-fixed system at T - 0,

€1 is obtnined in SAGA with the help of the orbital integrator developed by
Hartwell {1968}, It cmploys a power series solution to the equations of motion
in the incrtial system, ina recursive algorithm, which can be represented by

the following for an arbitrary 7y:

XX, R T T S 0
YooY b by b o0 I T 1
2o T, o & Co ce Cq ™™ or
(2. 15)
LT qTq_l, \

where the coofficients ay, by, ¢y, § 0, 1, ..., qare functions of the six
initial conditions at T 0, No, Yoo Zoy X"o. \.’o. '/.,n) and the carth gravitational
cocflicients, q is the index of the power series at which the series is truneated
when 1 prespecified tole rance (0. 001 m) is reached for To the maximum value
of T to be exerceised,

From (2.15), @ can be seen as

Qu Q... Q.
o' Q. Q. ... Qu

o -

n.’ﬂ Q.\‘ e Q.’lﬂ

1

.

where @4, ts, intum, a polmomial 1 1, 3; n 1, 6.
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Q.

]

(O'\\ [6 2} O’q)h] 1

! (2. 16)
}

“‘i“‘(adm as the dominant term.  The correspondence between the a coefficients
of (2.18) and (o, b, ¢) coefficients of (2. 15} is casily seen.  For example, taking

Qn ' (Q'Q)n \\:l\\ 3X.x.

COosy Ty siny Ty 0
1 .
R -siny Ty cosy Ty 0
0 0 1 2,17

is the matrix which can transform the matrizant € to an earth-fixed system
at ty. L is the carth rotation rate,
For passes up (o 20 minutes, Ty « 10 minutes, cosy Te v 1,0, and
SN Ty v 0, 80 R is taken as an identity matrix for the purpose of rank
deficieney anadysis, Thus with the help of equation (2. 1), oquation (2, 13) is
used to obtain the corrvesponding portion of the H matrix for satellite position i
in termes of the new satelite unknowns through the linear transformation
. dX.
h. ld.'\?gJ th1 2. 18)

12 4 ) Ls e LUNG

G

N

For the situation in (2, 13), the unknowns will reduce from 16 to 10,

and the new H mateix will have the structure

16



(i) (id Gid (iv)

cc,-cc, sc;-sc ,sl S, -(CCptaly)-(SC)@ 3= (S T3 :
; , '+<ccz>(9 HEC) o) G Q) .

' |
] 1 ¢

CCy-CCy. SCo-SC3! S,-Sg-(CCa) (2 ~(SCy)! Fa)- (Sz)ld"sl)
! L HCC (B Sy +S,) 65D |

CC3-CC4! SC3-SC, Sq~54. ~(CCq) (5P~ (SC3K 9?21)-(33)(“11) :
- . see@tyrscp@y e g

(v) (vi)

‘(CC])(Q 12) (Scl)(dgz (SI)(Q 32) ‘(CCI)(Q 13)-(SC) Qlgg)- (Sl)(ﬂ 33)
| +CCH @ 12}*(802)((?ZZHSz)(S?;,z)'HCCz)’Q 18 5Co) (B (S2) (Bgg)

; -(Ccz)(Q., 12)-(8Ca) () 22)’(52)(1'?32); -(CCy) (. 13)‘(SC2)({?23)'(52)(Q 33)

; 3 3 3 3
H(CC)(G 191+ (5C3)( @ 99)* (S3) Qg p)! +(CC)( yg)*+(SC,) '23)+(S)(Q g

t
t

H i

L _ 3
: (CC,) (B, )~ (SCa)((F'20)-(S3) (P g ~CCaaP),) 8Ca)( Fog)- <s3)(9°’33>i

; 4 4 :
+H(CC( Q121+ (5Ce) (W ggp (89)@"35 "+ (@ 131 (5Cy)(SF 23) “(89)( F33) :

(vii) . (viii)
- 1, '
(CC)) @)~ (SCy)( & 24)~(SPE, ) ;—(ccluﬂls)-(sclndzs)-'slu al,

|

|

2 ' '

+(CC2)(9214H (SCz) 0224)4-(82)( 034) '(CCZ)( 9‘215)4' (SCZ)(@25)+ (SZ)( s.ﬂ35) !
' |

X |

!

-(CCZ)((?14)"(‘SC2)(0224)' Sz)(-gz34 :

-ccyal . ¢
201 (5C T -5y F

I
1
I
1
!
: 1
) |
[ 1
*leey 0'145C (2%, 690 o, );+<cc PP sc 3,
4 4 187 (5C3)( Q3550+ (5,)( 2345,
!
=
I

‘
'
} |

S(CC @6 ) ( Py (500 Q74 )1-(CC) 0315)-(sc )(9325)-(33)(0

| 35)‘
17
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( ix) (x)

(0 cseval 1
CCpal H-sC(Q 06 (5P Qlgg) Mtg-ty)

2 2 X
+ee b ) (Scz)(ff,6>,+(52’( a%g)

_ 2 . 2 2
(CCHO%g)-(SCH) (O 26) (S (&2 36 Atg-t,)

i
i
|
|
t
]
!
‘
t

3 3
HICC (7 )+ (SC. ) 8
3' (7 167 (SCR e (8¢ 0336)

X (ty-t)

1§
u; 3 .
\=(CC V(. )=(8C - 3
( C3( 16) (8(3)(0 26) <s3)<n 3 3

. 6)
+(CC (’4 SC -4
FCC P I(SC ) Q

i

4
SAIEY 5

e - . e e . e e e cae e eme — -
- -

- (2.19)

Using index u for the satellite position and v for the column of the matrizant

2, and denoting

u
cc Q' +sc QY + s af by m O
u ly u 2v u  3v u v
¢ - 4 T
and (t~t) wtl, u

the above matrix takes the following more compact form

(i) (i) (iii) (iv) (v)
QC,-CC,1SC,-§C_ ! §-8_ 1 - V- i
172, T e, e "‘1911”“2921 L nl2”“2 022 !
] ! ! ] ]
] l | ! t
CC_~CC,|SC,-SC. ' S-S, i - - '
27 Cgl STy 55y "‘2(;1”“3031 : m2022+m3 d’2 :
: : : 3 04 ' m +m 04 :
CC_-CC 1SC_-§ - -m L (fz
| CC37CCL8C,8C, Symsy "My Qprmgfy 73 e
( ' ) (

\,—/ \‘,

dX X

Y dXo



(vi) (vii) (viii) (ix)

2
1 a
|-m10 gtm, f -mlﬂlﬁ+m2 6

| I
‘ |
. i
| | 3

'm2&3+m3033 i PALAS It 935 E-m2026+m30 6
| |
| |
[ l
| ]
]
| |

|
!
|
] 5+m3
1
|
' 4 3 4
| = - - -
gm3‘?3+m493 m35?4""‘494 m:;‘-?5””‘495 m & erm
) )
-
dx
9
(x)
: -
;
; A 21
I
|
]
,
AT g
i ( 2.20)
|
; T
i AT 43
dAf -

2.2.4 Rank Defect Analysis

As further observations are taken in the same pass from the same
station P, the number of unknowns do not increase, and only more rows will
be added to the above H matrix (2.20) which can now be analyzed for rank
deficiency.

Examining the first row, it can be seen that

element hy, -m; ] + mg Q2

-(cos wy cos 6,) 0L - (sinw, cos &) Q5 - (sinby) 5

+ (cos wp coshz) N5 + (sinw; cos 62)Q% + (sin 603,

= - hy O - b0z - hyp O3 (2.21)
19
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as QL = 0%; QL =0%; QL =03. 0L = 03 as they are monotone
decreasing series with coefficients which alternate in sign {Hartwell and
Lewis, 1967] and have the same first dominant term (@), independent of T
as seen from (2.16). Similarly, 0% = Q% and Q3;, = Q3,, as they have the
same first dominant terms (@o)z and (@o)s;, respectively.

Therefore, hy, is a linear combination of hy;, h2, and hya. Similarly,
it can be shown that h;s, hyg, hi», hjs, and hyg are linear combinations of hyy, hia,
and hy3. And this holds for every row of H (e .g., has™ -ha331 - hoe0d3 - has3)).
Also, from row 1 to row 2, the scalars in the linear combination will be approx-
imately equal in a short arc, e g., 1~ 03, as explained earlier. The same argu-
ment holds from one row to the next, and columns 4, 5, 6, 7, 8, and 9 become
dependent columns leaving only four independent columns.

If more stations observe the same pass, there will be three more station
unknowns per station, but the above arguments about rank deficiency will hold.
It can therefore be concluded that the fundamental rank deficiency in a Doppler
system, short arc mode, is 6,

It is assumed that the scale information is obtainable in the system
from A , the wave length of transmission, as seen from the tenth column of
the H matrix above. Having determined the fundamental rank deficiency in
the system, an effort will now be made to determine what quantities are esti-
mable in the above situation. But it is obvious that a rank deficient matrix

like H above will lead to a singular normal matrix N.

2.3 Estimable Quantities in Doppler Observations

It is known that if 4 normal matrix N is singular and a solution is obtained
with a pseudo-inverse N+, the solution vector X, = - N+U is not estimable since
E(X,) # X, the parameter vector,

As derived by Rao [1973], any arbitrary matrix G can make GX, cstimable,

in a linear system, if the condition

CII-(N) (N) =0 (2. 22)

20




is satisfied, where I is the identity matrix.

So if a change can be made in the parametrization of the mathematical

+
model obtaining an H matrix which is not rank deficient, ( N ) =( N )’ and

the new parameters will be estimable, This can be done in the Doppler system

considering the form of the H matrix given by (2.20).

With the modified parameters

AX

XP'Xo
Yp"Yg
Z’- Z°

instead of 5(-,, and )_(o, the restructured form of H will be as given below:

()

1
cC) CC2+"‘191'“’2“21

cc,-ce +m202 nhgl

[
3
!
!
1
1
i

1

(i)

1
|

(iif)

SC - sc+mln “‘2&2' S.- s+m1()l3 anz

i

| cc,-ce + na- 'sc T P oma
mg m4“1 SC*“’a“ "my Gy 1 5375 ma B m, Qg |
e ' |
~—— )

d AX.

(iv) W) (vi) ' (vii)
g 1, 2 1 2 ,
N0 ma .y mQgfmQy | m@Qgm O, ! ary :

' i | |

- 02+ ! | 2 3 ! |
myit 4" md | mafl gt myfd 5 1 TmyQgtmylg , ATy
: : ‘ '

i ‘ ' ‘

_ 3 4 3 41 _ 3 4 i
myfigtme By | TmyQ gm0 5 TmyOgrm gl AT,y
i ! ! |

[ : ‘)
dx
o
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In this matrix all the columns are independent, and the solution will be a vector
of estimable quantities. Thus, it is concluded that in a Doppler system, the
vector of coordinate differences between the observing station and the mid arc
state vector of the pass, the velocity components of this state vector, and the

frequency offset are estimable.

If more than one station is coobserving the same pass, the linear

relation
X, Xq Xp - Xo X, - Xo
B = | Yo | = [ Yo| =| Yo- Yo| - | Yo -Yo| = &K, -4y,
Zp Zq Zp - Zq-Z

can be used to conclude that interstation coordinate differences are estimable
if the stations coobserve the same pass of the satellite in a short arc mode,

The coordinate differences are independent of origin. The scale information
comes from the wave length of transmission, and the orientation information

comes from the force components enforced in the satellite dynamics.



3. EPHEMERIDES OF THE NNSS AND
THEIR ACCURACY ESTIMATES

3.1 Introductory Remarks

Having analyzed the rank deficiency problem in the previous chapter,
the next step in the goal to achieve improved positioning is to assess the accu-
racy of the ephemerides of the NNSS. As mentioned in Section 1.1, the
ephemeris of satellites of the NNSS are available in two forms, precise
ephemeris computed after the fact by DMA and broadcast ephemeris which
is obtainable on a real time basis from satellite transmissions.

These values can be treated as direct observations on the position and
velocity of the satellites for applying conventional sampling techniques to
obtain estimates of uncertainties. Estimates of precision or more correctly
the prediction errors in the broadcast ephemeris can be found by comparing
the two values of state vectors for common time points in the overlaps of
successive orbit fits,

Since the precise ephemeris is known to be more accurate than the
broadcast ephemeris, in the pursuit of improving the broadcast ephemeris,
estimates of its accuracy have been computed by comparing it with the precise
ephemeris. After a review about the satellite system and ephemerides, the

results of this study will be presented.

3.2 The Navy Navigation Satellites

There are at present (May, 1977) five operational NNSS satellites in
orbit. Their identification numbers are summarized in Table 3-1, Some
typical orbital elements of the satcllites as per the latest data set (Data Set S)

are given in Table 3-2, The orbital elements tabulated are the mean motion (n),
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Table 3-1
NNSS Satellite Identification Numbers

Launch Ixite

Apr 14,1967|May 18,1967

™ Precise
Ephumenrts
Lientification
Numbuore

59

Sop 25,1967

Mar 2, 1968

Aug 27, 1970

Qct 29, 1973

.

é8 717

Ogurational
Ephemeris
Wdentification
Numbur

30120

30130

30140

Jo180

30190 30200

Number
Usald in
This Staly

13

14

18

19 20

¢ Satellite Number 18 haa gince bucn declared as non operational. But some data for this
s.tullite was avallable in this nludy in Data Set D,

Table 3-2
Values for Selected Operational Ephemeris Parameters
for Selected Days in 1976

Satellite | Day n(deg /min) e a(km) cos |
12 329 ] 3.3816808 . 002168 7440,73 -0.004098
13 316 | 3.3663808 .001978 ] .74863.11 0.008719
4 316 | 3,3729148 .U04009 7453.47 0.013227
19 329 | 3.3657248 LO1TR00 7464.09 -0.0021861
20 330 | 4.4106865 015782 708, 84 -0.002291
24
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eccentricity (e), semi-major axis (a), and the cosine of inclination (cos i).

All NNSS satellites follow a near circular polar orbit.

3.3 Precise Ephemeris

Precise ephemerides for one or more Navy Navigation Satellites are
computed on alternate days based on 48 hours of observation made at over 20
stations distributed around the world [Anderle, 1976].

The equations of motion of the satellite and the variational equations for
the forces are numerically integrated by a tenth-order Cowell process with UTC
time as the argument of integration. The force equation includes terms for the
gravitational field of the earth, moon, and sun, the lunar and solid earth tide
effects, atmospheric drag, and solar radiation pressure. The gravitational
field of the earth is given in a spherical haimonic expansion containing about
400 terms, and the earth tides are based on a2 Love's number of 0.26. The
gravity field revised in January, 1973 (NWL-10E) is in current usage,

The precise ¢cphemeris is belicved to have periodic errors of about 2m
in each coordinate due to uncertainties in the earth's gravitational field and
effects of variations in atmospheric density on the computed satellite positions.
It is maintained in the NWL-9D coordinate system which is believed to be related

to the NWL-10F system (consistent with WGS 72) as follows:

longitude Awr = Agp + 0260, X is positive East

geocentric latitude  Wyor >~ Vop

radius Eior > £oo - 5.27m

[Anderle, 1976]

Based on the above approximate relations Vincenty [1976] has derived the
transformation parameters given in section 3.5.2, which have been used in
this investigation.

The precise ephemeris is made available at one-minute intervals in the

geocentric earth-fixed system in the form of position and velocity components.
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3.4 Broadcast Ephemeris

The broadcast ephemeris is computed as already explained in Chapter 1.
Each satellite has a memory which can hold 16 hours of orbit prediction data.
This predicted ephemeris is injected into the satellite memory about every
twelve hours.

The broadcast ephemeris is received at an observing station in the form
of coded parameters from which earth-fixed satellite positions can be calculated
[Moffett, 1973]. These parameters are divided into 14 fixed orbit parameters
whose values change only twice a day and four sets of variable orbit parameters
whose values change every two minutes. These are listed in Tables 3-3 and
3-4 as taken from [Wells, 1974] and [Moffett, 1973].

The decoding of the parameters and the computation of the positions of
the satellites in the earth-fixed coordinate system, at two-minute intervals, is
done according to procedures described in [Moffett, 1973). For velocities of
the satellite, at two-minute intervals, time derivatives of the variable paramet-
ers are also required, and these have been obtained by a polynominal fit to a
maximum of 16 consecutive values.

Since December, 1975, the broadcast ephemeris system has been up-
graded [Black, 1976], some main features of which are given below:

(i) The previous APL 4,5 geopotential model has been replaced by the

WGS 72 model.

(ii) The value of GM has been changed from 398 601.5 + 0.6 km® /sec®

to 398 600.8 + 0.4 km" /sec?.

(iii) Station coordinates of tracking stations have been changed by small
amounts to bring greater internal consistency.
(iv) Implementing the main sun-moon-induced body tide corrections.

The (single pass) error budget is given in Table 3-5 both "before' and
"after" the introduction of WGS 72. It is clear that the error budget will continue
to be dominated by uncertainty in the geopotential model and incorrectly modeled

surface forces.
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Table 3-3 Fixed Orbit Parameters

Broadcust
Units
(Current.
Symbol Definition Resolutinn)*
tp Time of first satellite perigee after last 10'“ min UT
satellite injection
n Mean motion (only fractional part is 10'7 deg/min
broadcast )
wltp) Argument of perigee at tp 107 deg
™M Absolute value of precession rate of perigee 1077 deg/min
e Eccentricity of orbit ellipse 10'6
a Mean semi-major axis of orbit ellipse 10 metres
altp) Right ascension of ascending node at tp 10‘“ deg
a Precession rate of ascending node 1077 deg/min
cos i Cosine of inclination 10-6
GAST(tp) Creenwich apparent sidereal time at tp 10’“ deg
- Satellite identification number -
- Day number and time of last satellite data 2 min UT
injection
sin 1 Sine of inclination :I.O-6
- Fractional satellite frequency offset parts in 109

(r, - £)/1,

* For each of these parameters there is a trailing sero digit whieh is not
currently used, and vhich could be used to increase the resolution (the
frequency offset has four trailing zeroes).

Note: The above table is based on Wells [1974].
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Table 3-4

Variable Orbit Parameters

Broadcast
Symbol Definizion . Units
t Time in even minutes of UT, modulus one half 2 min UT
hour
AE(t) Correction to eccentric anomaly at time t lO-h deg
da(t) Correction to semi-major axis at time t 10 metres
n(t) Out of plane orbit component et time t¥* 10 metres

* n{t) values are available only at four minute intervals (for times
which when expressed in minutes UT are divisible by 4).
BE(t) and Aa(t) velues are evasilable at two minute intervals (for
even minutes UT).

Note : The above table is based on Wells [1974].
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Table 3-5 NNSS Error Budget * (Single Pass)

Meters
Uncorrected propagation effects (3rd order 1-5
ionospheric and neglected tropospheric
eff-cts )
nstrumentation (oscillator phase jitter) 1-6
Uncertainty in the geopotential model 15-20(APL4.5) 5-10(WGS - 72)
Incorrectly modeled surface forces 10-25
(secular error growth due to incorrect
period, drag and radiation pressure)
Unmodeled UTT-UTC effects and in- i
correct coordinates of the pole
Ephemeris rounding error (last digit of 5

ephemeris is rounded)

Overall Uncertainty 19-33m(AP14.5)

12-28m(WGS-72)

x

Adapted from Staff of Applied Physics Laboratory [1975]




3.5 Accuracy Estimates

Accuracy estimates of the precise ephemeris have been mentioned in
Section 3.3 above, as available in the literature. Estimates of precision of
the broadcast ephemeris can be made by carrying out a comparison between
the broadcast ephemerides based on two successive ocbit fits, in the overlap

period, at common epochs.

Estimates of accuracy of the broadcast ephemeris are possible to be
found by comparison between the precise and broadcast ephemeris at common

two-minute epochs if the precise ephemeris is considered errorless for this

purpose,

3.5.1 Precision of Broadcast Ephemeris

Ephemerides of satellites for common epochs for the overlap portion of
two successive orbital fits were available in two forms:

(i) from Data Set D, from passes tracked during injection

(ii) from Data Set S, where complete injection information was available

on tape, in coded form.

The comparisons between the state vectors of the satellites have been
carried out in two forms:
(i) comparison between the position and velocity components in the
Cartesian system (X, Y, 7, )2, Y', i)
(ii) comparison between the position and velocity components in

the polar coordinate system (A, ¢, r, X, ('p. r)

Since the satellite orbits are polar and near circular, tie comparisons
at (ii) yield resu lts which would correspond very closely to out-of-plane, in-track

and radial differences.
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For the above computations, values for X, Y, Z and 5(, Y, Z were
obtained from the ephemeris message as indicated in Section 3.4. From
these, the corresponding A, ¢, r, A, ¢, r values are readily derived from

the relations:

® + ¥+ 2

r =
e - e 3.1
x* + ¥%) '
]
Y
tan A = X
and
X - r cos@sinA -r sin® cos A COSY COS X A
Y| = T COS¥ cos A - r sine sinA cos® sin) ® (3.2)
VA 0 r cos sin@ r
which yields ‘
[ 5\- [ -sin)A COS A 0 7] F)‘c’
r cosQ r cosQ
ol = - sin® cos A - 8in@ sin A CcosSQ Y 3 3
r T r (.3)
I iJ | cospcosA cos® sinA sinp | | ZJ

when the transformation matrix is nonsingular,

Let M be the quantity whose precision estimate is being obtained.
a4M, = M,; - M,;; , where M,, is the value of quantity M from broadcast
ephemeris at epoch t; as per later orbit fit; M, is the value at the same

epoch t1 as per earlier orbit fit.

ZAMJ
=1

3.
- (3.4)

>
2
4

mean value of M

1}

where n is the number of data points,
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a
> am
RMS =|-——— = Root Mean Square value (3.5)

\ n

n
Z(A M; - m)a
D = = Standard Deviation (3.6)

The above values for X, Y, Z, 5(. Y, 2, A, ©, r, and 5\, ;o, r are given in
Tables 3-6 to 3-9,

Based on the preceding results, the following observations can be made
giving more weight to the values obtained in Data Set S, where the number of

data points are over 300:

(i) Taking conservative estimates (based on maximum values), the
internal consistency of broadcast ephemeris for positions can be taken as about
10 m, 11 m, and 15 m in the X, Y, and Z directions, respectively. But since
X, Y, Z coordinates are correlated, it is more appropriate to consider the
inconsistencies in the in-track, out-of-plane, and radial directions. The
estimates for these are 19 m, 14 m, and 4 m in the in-track, cross-track, and
radial directions, respectively.

Fluctuations to the above extent show no indication of a bias since the
RMS values are very close to the values of standard deviation.

The above values have been arrived at after excluding from consideration
the values for satellite 20 in Data Set S. The unusually high values for satellite
20 are due to the fact that, as ascertained through private communication, NAG
has been experiencing periodic fluctuations in the dynamics of this particular
satellite due possibly to its low perigee height. It does not, therefore, repre-
sent the general behavior of the Navy Navigation Satellites.

(ii) The corresponding conservative estimates, for internal consistency

in velocity components may be taken as 0.2 m/sec each in the X, Y, and 2
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Table 3-6

Precision Estimates of Broadcast Ephemeris for Position Components in Cartesian System

Data | suteitice | MO °f X Y z
Set No Puints Ax RMS SD Ay RMS 8D Az RMS sD
(m) (m) (m) (m) (m) {m) (m) (m) (m)
12 20 0.8 6.6 6.8 -8.0 11.4 8,4 -12.8 | 16.4 10.8
13 15 1.5 7.4 7.5 0.9 1.6 1.2 6.0 3.2 3,3
D 14 10 4.6 10.0 9.3 5.9 7.7 5.2 11.5 | 14.0 8.3
19 15 3.7 7.5 6.7 0.3 1.7 1.7 - 1.4 3.4 3.2
* 20 15 3.0 7.0 6.8 -9.5 10.2 3.7 -21.0 | 22.4 8.1
12 373 |-0.4 7.5 1.5 -1.2 7.7 7.6 |- 0.2 8.2 8.2
13 378 0.3 6.5 6.5 0.2 7.7 7.7 0.8 110.1 10.1
s 14 354 0.2 5.2 5.2 o5 5.6 5.6 0.5 5.5 5.6
19 421 0.4 8.3 9.3 0 4 10. 2 10.2 |- 0.4 [14.0 14.1
. 20 416 1.1 18. 0 18.0 2.1 20.8 20.7 0.8 |28-8 28.8

¢ exceptional vide remarks in section 3.5.1
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Table 3-7

Precision Estimates of Broadcast Ephemeris for Velocity Components in Cartesian System

Lata| Satellite NLo-l:[ (mx/u (nY/n (mz/ﬂ
Sa No. Points preoy ey
A% RMS 8D a? RMS SD A% RMS sp
12 20 .028 . 033 .018 [-.010 . 038 .038 |- o018 .083 .083
13 15 . 054 058 .014 .004 .038 .039 |- o018 . 080 .081
D 14 10 . 0z4 . 040 .034 .021 .040 .036 |-.024 . 073 .073
19 15 .029 .039 .027 -.002 . 048 .048 -.030 . 100 0968
20 15 . 040 . 045 021, .002 .058 .058 |-.610 . 069 .011
12 373 |-.001 .08 .096 |-.011 .133 .133  |-.003 . 154 . 154
13 378 .004 . 1386 .136 ]-.010 . 180 .180 |-.o009 . 188 .188
s 14 354 .003 151 151 |-.012 .157 L1587  |-. 013 .202 .202
19 421 .000 .107 .107 [-.000 .152 .152  |-.018 .187 . 188
20 416 §-.007 147 .147  |-.019 170 .169 .012 .223 . 223
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Table 3-8

Precision Estimates of Broadcast Ephemeris for Position Components in Polar System

Pata | satenue | NO- o A 0 r

Set No. Polnts .3 R MS S D -7 RMS sD Ar RMS S D
") (") ") ") ") ") (m) (m) (m)

12 20 . 028 224 229 -.429 .543 . 341 - .8 4.4 4.5

13 15 . 053 232 234 .007 . 095 .098 - .2 .4 .3

D 14 10 .189 320 .272 . 385 . 450 . 2458 - .4 3.0 3.2
19 15 .138 272 . 243 -.048 113 . 106 - .0 .4 .4

20 15 .049 .192 .192 -.650 692 . 246 -2.5 4.5 3.9

12 313 -.021 | .384 384 -.020 306 306 o1 2.9 2.9

13 378 .044 . 320 .317 .020 356 . 356 .0 3.2 3.2

s 14 354 <058 .337 . 333 014 193 193 .0 2.8 2.8
19 421 .070 .319 .312 -.005 .502 .503 .2 3.6 3.8

*20 416 . 000 .324 .325 . | . o042 1.088 1.088 .2 3.3 3.3

¥ exceptional vide remarks In seclion 3.5.




Table 3-9

Precision Estimates of Broadcast Ephemeris for Velocity Components in Polar System

. No. of A @ r

| l:: &:}:{m p‘:“:. Y (10-2 n/g e (1072 v/g) —— /e
RMS 8D Av RMS 8D AT = RMS 3D
‘f 12 20 .110 .127 .088§ - .037 .169 .169 ~-,.022 .089 . 087
B 13 18 .182 .187 047} - .012 .128 .13z -.021{ .077 077
% D 14 10 .1086 .143 .103 - .006 .095 .100 -.025 .073 .072
41 g 19 16 .087 1286 084 - «.059 .227 . 227 -. 030 .078 .073
j 20 15 . 149 L1758 .095 .008 .078 .078 -.028 .08¢ .084
- 12 373 - .024 - 496 .496 - .029 .289 . 288 -.001 . 194 . 194
13 378 - . 104 . 900 . 898 - .009 . 342 . 342 .001 241 .241%
8 14 354 - .030 .815 818 - 028 . 381 . 361 . 000 . 257 . 257
: 19 421 - -.039 <339 » 337 - -029 - 385 - 384 -.003 «218 .218
20 416 ~ .014 - 446 ~447 -016 <424 424 -. 002 -270 .270




directions. The corresponding in-track, cross-track and radial components

are 0.2, 0.4, and 0.3 m/sec, respectively.

(iii) At this stage it is also clarified that though estimates of precision
have been arrived at by comparing cphemerides in the overlap period between
successive injections, these values more appropriately represent the error of
prediction over the inter-injection period. This point will be brought up again in
a subsequent section while discussing the overall accuracy estimate of the

broadcast ephemeris.

3.5.2 Accuracy Estimate of Broadcast Ephemeris

Estimates of accuracy of broadcast ephemeris have been obtained in two
ways in the cases of Data Sets L, D and S by comparison of precise and broad-
cast ephemeris of the satellite for which a precise ephemeris was being main-

tained for the related period.

In the case of Data Set 1, both the precise and predicted ephemerides
(broadcast ephemeris prior to injection) were available in the form of earth-
fixed position and velocity components (X, Y, Z, 5(, '.Y, Z) in the same
coordinate system (NWL 9D); and as explained in [ White, 1975] the predicted
ephemeris was provided by the Naval Astronautics Group directly and not
derived from transmitted ephemeris in coded form. Comparisons have been
made in the position and velocity components in the earth-fixed Cartesian
system as well as in the spherical system in a procedure similar to that
described in Section 3.5.1,

In the case of Data Sets D and S, the precise ephemeris was in the
NWL 9D system, while the broadcast ephemeris was in the WGS 72 system.
So a coordinate transformation was performed to bring the precise ephemeris
into the WGS 72 system before carrying out the comparisons. With the param-

eters mentioned in Section 3, 3, the equation for the transformation is given by
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X X AL w 0 X
Y:l = 1Y} + |-W AL 0
: Z z 0 0 AL Z
WGS 72 9D 9D

Since the transformation parameters are time independent

X X AL W 07X
| =|y|+|-w ar o ||¥
z Z 0 o arllz
WGS 72 9D 9D
where
AL = -0.8263 ppm
W = -0'26 [Vincenty, 1976]

The broadcast ephemeris was derived from majority-voted ephemeris
message from data collected at three stations in the case of Data Set D and
from the coded ephemeris message provided on tape by NAG in the case of
Data Set S, Where data pertains to an overlap between successive orbit fits,
the more recent data has been used. The results of the comparisons areshown
in Tables 3-10 to 3-13,

Based on tue above finding, the following observations can be made about
the accuracy estimates of the broadcast ephemeris in the WGS 72 system.

(i) Taking conservative estimates, the positional accuracy of the broad-
cast ephemeris, taking the precise ephemeris as the standard, can be taken as
10 m, 10 m, and 17 m in the X, Y, Z directions, respectively. The esti-
mates for the in-track, out-of plane, and radial directions are 19 m, 15 m,
and 9 m, respectively, The values obtained in a comparable procedure by
White [1975], before upgrading of the broadcast ephemeris computational system,

were 25 m, 15 m, and 10 m, respectively. The smaller values now obtained
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Accuracy Estimates of Broadcast Ephemeris for Position Components in Cartesian System

Table 3-10

Data |Satellitd No. of X Y z
Set No Data | _ (m) (m} BR—— 'V
Points | AW RMS sn iy RMS sD Az RMS SD
13 496 J-3.2 ‘'i0.1 9.8 8.2 13. 8 11.1 -3.3 4.1 13.7
[ A U S
1 19 506 |-4.0 9.9 9.1 8.4 12.7 9.5 -4.9 16.0 15 2
19 199 }-0.4 4.3 4.3 1.2 6.2 6.1 -6.9 11.5 9.2
D
20 131 1.0 7.2 7.2 3.8 9.1 8.2 4.2 16. 4 15. 9
12 2005 }6.2 9.2 6.8 -2.2 8.5 8.2 -4.5 12. 2 11.3
s
19 1879 | 7.5 9.3 5.6 -0.9 7.1 7.0 -7.17 11.93 8.2
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Accuracy Estimates of Broadcast Ephemeris for Velocity Components in Cartesian System

Table 3-11

Data | Setellit: r&;l X (m.s) Y(m/s) Z(m/s)
Sat No. | ioits | ax RMS sp ar RMS sD az RMS 8D
13 496 }-.002 j.014 .014 -.004 .018 . 014 .001 .014 .014
L 19 sos |.o07 .018 .014 .000 .014 .014 .003 .014 .013
N 19 199 [--000 |.04y -041 -.o11 | .140 .140 .009 .129 .129
20 131 -.003 .030 .030 .008 .059 .058 -.007 040 .039
s 12 2008 .04 .074 .073 .003 . 103 .103 -.013 . 113 .112
19 1879 .013 ].oe0 .079 -.003 .111 111 -.007 . 128 .128




Table 3-12

Accuracy Estimates of Broadcast Ephemeris for Position Components in Polar System

v

A o r —
';:l Satellite ! No. of — ) — £ — m
No. ' pRt A RMS sD LAw RMS SD Lir RMS Sb
L 13 496 |-.198 |.e25 .59 .04 4 .451 . 450 -7.4 9.1 5.4
19 06 [-.267 |.667 .612 .022 . 454 .454 -7.9 9.9 6.1
19 199 |-.014 |.147 L1417 -.148 .324 .289 -4.9 6.1 3.7
D ! 20 131 | .o070 |[.z205 L1973 .170 .509 . 482 -4.5 6.1 4.2
| | 12 2005 | .282 {.399 .282 -.107 . 386 .371 -3.3 5.5 4.3
LS {19 1879 } .298 [ 371 .221 -.105 .301 .2k3 -7. 4 8.3 38
i
Table 3-13

Accuracy Estimates of Broadcast Ephemeris for Velocity Components in Polar System

[ ¢ Satellit T P .
ol ol S Ae? /ey €002 /g L tm/a) .
_jtoints | X _BMS sn sy 1S sD af RMS | SD
i
* 13 ! 496 .039] 258 .256 - .o008] .o028 .027 |-.002 .011 .01
L [ 19 ' 506 | - .058] 349 .345 014 031 .028 | .00} 011  i.om
’ 19 1 1s9 | - Lorul 131 .131 .022). .3s0 .380 | .001 . 134 135
D 20 131 | - oref 127! 126 L006 ] 064 .064 | .o001 . 061 .064
! 12 2005 -037)  .2s0; 278 - .01 . zo7 .207 |-. 009 . 143 143
s | 19 1879 033l Lere) L2712 [ .022] 286 . 265 (-.004 148 . 148
. i




would represent the effect of the improvements incorporated in the ephemerides
since December, 1975, Previous study by Wells [1974] obtained 26 m, 10 m,
and 5 m for the above estimates, in a slightly different procedure.

(ii) The values for the accuracy of the velocity components would be
0.1,0.2, and 0.2 m/sec in the X,Y,Z directions, respectively. The corres-
ponding values in the in-track, out-of-plane, and radial directions would be
0.2, 0.1, and 0.2 m/sec, respectively.

(iii) The RMS values for velocity differences are much smaller in the
case of Data Set L though this refers to a period before incorporation of im-
provements in the computation of broadcast vphemerides. This is because in
Data Set L the predicted state vectors of the satellites (both position and
velocity components) were available directly on cards and referred to a pre-
coded and preinjection stage, while in Data Sets D and S these have been
derived from coded message and a fitting process for obtaining time deriva-
tives of variable elements. So the velocities in Data Sct L are free of trun-
cation errors and errors of fitting,

(iv) At first sight it may appear irrational that the precision estimates
are of the same order and, in some cases, even lower than the accuracy esti-
mates. However, as pointed out in the previous section, the precision estimates
in reality are the estimates of the prediction errors accumulated over the inter-
injection period. The overall uncertainty of the broadcast ephemeris as obtained
by a user will depend on the relative position of the observation time in the
interinjection period as well as the interinjection period itself, which was found
to vary from about 9% to 132 hours in the data available in this study.

Thus, if a user happens to track a satellite just before injection, the
uncertainty of the ephemeris obtainable by him would be a result of the com-
pounding of the estimates of precision and accuracy given above. In this case,
the positional uncertainty of the satellite is likely tobe 26 m in-track, 20 m

cross-track and 10 m in radial dircctions. However, for a user tracking a
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satellite during or soon after injection, the uncertainties will be those given by
the accuracy estimates above (i.e., about 19 m in-track, 15m cross-track, and

9 m in radial directions). If prediction errors are not taken into account, the
improvements in the Transit system in December, 1975, have brought the broad-

cast ephemeris closer to the precise ephemeris,

(v) Another observation which can be made is about the prominent nega-
tive value of Ar (between three to seven meters) in all data sets,
The possibility of a radial bias is evident and has been pursued in

Chapters 4 and 5.

(vi) The existence of cross-track and in-track biases cannot be complete-
ly overruled. As regards cross-track bias, Data Set D indicated a bias of about
-0''01 for satellite 19 and 0''07 for satellite 20, In Data Set S both sntellites 12
and 19 indicated a bias of about 0''28 and 0''30, respectively. While in Data Set
L the bias indicated is of the order -0''20 and -0''28, A similar situation is seen
in the case of in-track bias. This led to the conclusion that in the data sets used
in this study, a consistent evidence of the existence of in-track and cross-track
bias is not available. These biases have, therefore, not been pursued further
in this study, but a need does exist for identifying these biases with more data
sets in the future.

This conclusion was also supported by the results of tests of hypothesis,
Only in the case of radial bias the tests indicated that the hypothesis that the
expectation of the bias iz zero could be rejected at & = 0,05, in the case of all
data sets. The biases investigated here are in the nature of constant systematic
effects that can be associated with the broadcast ephemeris irrespective of the
satellite or its pass tracked. Other biases in individual satellite passes, if
varying in magnitude and sign between passes, may average out tu in insig-
nificant value over a large number of satellite passes. These latter types of
pass biases, referred to in the literature [Kouba and Wells, 1976], are viewed
as signals v hicl: can be separated in an adaptive filtering procedure discussed

in Chapier 5,
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Based on the above, and taking into consideration the 2m uncertainty
in each component of position expected of the precise ephemeris, it can be
stated that the positional uncertainty of ephemeris as obtainable by a user just
before injection is about 35 m. The positional uncertainty obtainable immed-
iately after injection is about 25 m. The figures given in the literature places
the single pass error budget for a surveyor at 12-28 m for the broadcast

cphemeris in WGS 72,
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4. STATISTICAL ANALYSIS OF EPHEMERIS DATA

4,1 Introductory Remarks

An immediate application for the accuracy estimates of the broadcast
ephemeris, obtained in the study described in Chapter 3, lies in utilizing this
information in the form of a diagonal matrix to assign appropriate weights to
the orbit parameters in an adjustment procedure in which the main parameters
of interest would still be the station positions.

In this method it is assumed that the uncertainty in the orbit is the result
of a system "noise' arising from a random variable whose outcomes are inde-
pendent and identically distributed with a zero expectation and finite variance,
This is similar to the assumption invariably made about the observational
"noise' or random observational "errors' in any least squares adjustment pro-
cedure, irrespective of whether a system '"noise' is taken into consideration or
not. In effect, the procedure amounts to adding the best known orbit parameter
values as additional observations in the adjustment.

Though the mathematical treatment for system "noise' and observational
"noise' is similar in the above situation, the distinction between the two is clear.
A system "noise" arises from an inadequacy inthe mathematical model, while an
observational '""noise' arises from the measurement process. Further in this
study, system '"noise' arises from two models, the model which describes the
dynamics of satellite motion and the model which relates the observable quantity
with the parameters. The first model is the concern of this chapter,

In many situations, such as the satellite orbit in this study, the succes-
sive outcomes of system noise are correlated, though their expectation may
still be zero. In such situations estiinates of the parameters of interest may
improve if the system 'noise' is tnodeled by a stochastic process in the form
of a "signal" to be estimated along with the other parameters, instead of being
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compensated for by weighting parameters.
The situation is well described by considering a physical system whose
dynamic behavior can be modeled by the first-order linear differential equations

X = A% + GOW() for t 2 to whereX = X(t) (4.1)

Here X is an n vector called the state of the system. We say that X is
a state vector if X (t;) can be determined unambiguously from a knowledge of

X (to), t1 2 to, and A(t), G(t), and W(t) for to S t < t;, X contains all the
parameters of interest required to describe the system. Wisannx 1

"disturbance' vector, & term which implies a '""noise" if the outcomes are
uncorrelated and a "'sigral" if correlated, and t denotes time. A (t) and G{t)
are n x n system matrices assumed to be continuous in time t. It is assumed
that the initial time t,, is fixed and initial state X (t,) is known. The forms of
the matrices A(t) and G(t) are also given.

The observation process is modeled as
Z@) = HOX ) + V@) @.2)

where E is a p vector of measurements, -\7 is a P vector of measurement
errors, and H(t) is a continuous p x n design matrix or measurement matrix
of known form. A block diagram for the process implied by equations (4.1)
and (4. 2) is shown in Fig. 4.1 as adapted from [Meditch, 1969].

W (t)

G(t)

X (to) Vi)

% (t)
X (t) —————— H(t) Z (t)

A(L) J

Fig. 4.1 Block diagram for continuous linear system description.
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Estimation procedures in the above system require some knowledge about
the statistics of the disturbance as well as the observational noise. In most cases
where the former is not directly observable, observational residuals are the
only source of information for determining the statistics of the disturbance as
well as of the observational errors, and it is difficult to separate their effects.
However, there are situations where disturbance is accessible to form some esti
mate about its statistics. Availability of precise and broadcast ephemerides of
the same satellite gives rise to one such situation. The outcomes of this distur-
bance process are generally correlated, and it can more appropriately be term-

ed as a signal.
Precise and broadcast ephemerides provide us information about the state

of the same satellites at two-minute intervals for observation spans over a time
period. Precise ephemeris is known to be much more accurate than broadcast
ephemeris. So treating precise ephemeris as the standard, tiic small differences
obtainable by comparing the two can be treated as the outcomes of the system
signal inherent in broadcast ephemeris and their statistics estimated by the nor-
mal sampling procedures. Immediately, several possibilities arise as these
comparisons can be carried out in ditfferent ways. The specific procedure for
comparison depends on how the state disturbance is proposed to be viewed. For
example, the state disturbance could be viewed as predominantly a consequence
of uncompensated acceleration, in which case a stochastic process would be re-
quired to be added to the relevant first-order differential equation for accelera-
tion in the dvnamic model. Outcomes of this process would be computed by
comparing the accelerations given by precise and broadeast ephemerides of the
same satellite, at the same epochs, and in the same coordinate system for
obtaining their statistics. Further, the uncompensated acceleration could be
considered either in the Cartesian system or a spherical system,

On the other hand, the state disturbance could be viewed as predominant-
ly a consequence of a positional or a velocity signal associated with broadeast
ephemeris, which implies that the uncompensated accelerations are negligible,
but due to some reason, there is a systematic deviation in position or velocity
which can be associated with the broadeast ephemeris as a stochastic process.
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In this investigation four different types of signals have been studied
by computing their statistics, and one type of signal has actually been used to
study its effect in local orbit refinement.

The theoretical stochastic process of the signal is denoted as £ (t), while
the practical outcomes of this process are denoted as s(t) where t denotes time.
The autocovariance of £(t) is denoted as R(u), while the sample autocovariance
obtained from data is denoted as C(u), where the lag parameter u represenfs
the separation in t. The subscripts clarify the specific signal intended. The
signals and their statistics, as obtained in this study, are described in this

chapter, and their applications are discussed in Chapter 5.

4.2 Computation of the Signal Outcomes

The ephemerides provide position and velocity components in the earth-
fixed systems. As indicated in the previous chapter, these components are
more correlated than the in-track, cross-track, and radial components
which are obtainable by transforming the state vectors into a spherical system,
As explained in Section 4.1, keeping precise exhemeris as the standard, reali-
zations of the following four signals were computed for Data Sets D and S which
are in the current WGS 72 system:

(i) Acceleration signal €i(t). éjg}(t), Ei(t) in the Cartesian system
(ii) Acceleration signal ﬁi(t). é‘-b(t), £i;(t) in the polar system
(iii) Velocity signal £X(t), E‘b(t), Ef(t) in the polar system
(iv) Position signal E)\(t)' Ew(t). F’r (t) in the polar system

All signal outcomes were computed by first transforming the precise
ephemeris state vectors to the WGS 72 system of the broadcast ephemeris.
However, it has been found both analytically and numerically that the transfor-
mation has a negligible effect on the acceleration signal. This is shown in
Appendix A,

The actual mechanics for the realizations of the above signals will

now be described, followed by the procedure used to obtain the statistics,
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4.2.1 Acceleration Signal

If }.(p(t,) and 5(, (ts+2) are the X components of a satellite velocity in
m/s according to the precise ephemeris after transformation to the WGS
72 system, and }'(,.(tx) and )'(,,(tu.a) are their corresponding values according

to the broadcast ephemeris at even-minute epochs ty and ti.g, then

Xpltnz) - Xp(ts)

Xftie) = - in m/s® (4.3)
and
Xltie)) = X“(t“)lz; Xa(t) in m/s° (4.4

The realization s)-&(tau) of the acceleration signal £)—( (tw1) will be given by
sg b)) = Xp(tur) = Xaltu) (4.5)

Similar computations yield the realizations s? (t) and 82 (t) of the signals
£5(t) and £5(t).

To obtain the outcomes of the signal £X(t), éj(.b t)s € (t), a similar
procedure was used by first transforming the precise and broadcast ephemeris
state vectors from the Cartesian system fo the spherical system as explained

in Section 3.5.1,

4.2.2 Velocity Signal

Similarly, if A p (t1) and i,(tz) are the components of a satellite velocity in
"/s according to the precise and broadcast ephemeris, respectively, at the
same even-minute epoch (ti), the outcome 85 (t1) of the velocity signal £X(t 1)
will be given by

s(t) = Xy (t) - Xy (t) (4.6)
Similar computations yielded

S('p(tg). 8;(t1) the realizations of the velocity signals
£ ® (ty), £i'(t’) in the spherical system,
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4,2,3 Position Signals

Following the same procedure, the realizations s A(t 1) of the signal
¢ ) (t) were obtained from the relation

S)‘(t*) = Ap(ty) = Ay (ty)

where A (ti1) and A, (t1) are the A position components of the satellite at cven-
minute epoch t; in the precise and broadcast ephemeris, respectively. Similar-

ly, the realizations sp(ts), sr(tx) of the signals §¢, (t:) and £ .(t:) were obtained.

4.3 Computation of the Signal Statistics

Considering each of the signals £ (t) above as a stochastic process, the
computations of Section 4.2 yield the discrete observations s(t1) or outcomes of
the continuous time series at equal intervals of two minutes over the available
data spans.

For computing further statistics, the following assumptions were made:

(i) The process £ (t) has reached a steady state in the sense that the
statistical properties of the series are independent of absolute time. This
implies that the probability density function of each signal is independent of
time, has a constant mean p and constant variance 0°. That is, it forms a

stationary time series.

(ii) The process exhibits the property of ergodicity, which enables the

computation of a time average over a record to represent an ensemble average.

With these assumptions the outcomes s(t) can be used to form the sample
autocovariance function, the sample cross-covariance function, and the sample
autocorrelation functions.

For example, considering g‘;(m. its autocovariance function is

defined as

Rigle ) ELEgt) - pg®) Egta) - Hgt))]  (4.6)



where E is the expectation operator, and By (t) = E [E)-( (t)]. Because of the
stationarity assumption, Rﬁ(tl. tz) immediately becomes a function of the
time lag u = t; - t; only, and

Rgp ) = E [Egt) - Bg) g E+) - By ] (4.7

Sample autocovariance C}-&)-((u), its estimate from data is computed from

the outcomes s}»&(ts) using the relation

N=u
1 - -
Cix(® = 5 ) (5% (t) - Sp) (g (tw) - Tp) (4.8)
i1
where
1 N
% T Nl KO
i represents the epoch of each data point taken at two-minute
intervals in an ordered set
N is the total number of data points [Jenkins and Watts, 1968]

The sample autocorrelation function r)-(}-((u) is given by

Similarly, if we consider two signals 65-( (t) and £§ (t), the cross-covariance

function for lag u becomes

Ig-n-{(u) = E [(E)-((t) - u)-() (€§(t+u) - #?)]
for which the sample cross-covariance function is

N=-u

1 —
C)’h‘g(“) = 'ﬁz (s5 (t) - §5'<) (S]}(tm) - S?’ 4.9)
=1
where
N
- 1
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For equations (4.8) and (4.9), an alternate formulation is also available
in the literature [Anderson, 1971) according to which the divisor (N-u) is used in-
stead of N for computing the estimates. Divisor N has been used in this investi-
gation as estimators with divisor N usually have smaller mean square error and
are positive definite [Jenkins and Watts, 1968 p. 184]. For lag o, the sample
cross-correlation matrix for signals § X t), 5; ¢), £é’ (t) is formed by unities

along the diagonal and factors like

C}-(W.I (o)

J(C)"(}"( (0) Cg500))

as off-diagonal terms,

Similar statistics for all signals have been obtained and are shown in various
figures as follows:

Fig. 4.2 C)"()? (u) for Data Sets Dand S

Fig. 4.3 r}-b-( (u) for Data Sets Dand S
Fig. 4.4 Cﬁ (u) for Data Sets Dand S
Fig. 4.5 r{{&, (u) for Data Sets D and S
Fig. 4.6 Cii (u) for Data Sets Dand S
Fig. 4.7 rii () for Data Sets Dand S
Fig. 4.8 CM(U) for Data Sets Dand S
Fig. 4.9 l'v\(u) for Data Sets Dand S
Fig. 4.10 Ccp(p (u) for Data Sets Dand S
Fig. 4.11 r(mp (u) for Data Sets Dand S
Fig. 4.12 Crr(u) for Data Sets Dand S
Fig. 4.13 rn_(u) for Data Sets Dand S
Fig. 4.14 C”‘ (u) for Data Sets Dand S
Fig. 4.15 YSA (u) for Data Sets Dand S

Fig. 4.16 C<b¢' (u) for Data Sets Dand S

g, .17 r. . (u for Data Sets Dand S
& (W( )

IMig. 1.18 Ch._(u) for Data Sets D and S

Fig. 4,19 rh.. (u) for Data Sets Dand S
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Fig. 4.20 CXX(“) for Data Sets D and S
Fig, 4.21 %Y (u) for Data Sets D and S
Fig, 4.22 C(B(D (w) for Data Sets D and S
Fig. 4.23 r(p{b (u) for Data Sets Dand S
Fig. 4.24 Fx’(u) for Data Sets Dand S

Fig, 4,25 ri:l-:(u) for Data Sets D and S

The sample cross-correlation matrix for the signals has been worked out for
a typical case of satellite 19 for the lag u = 0 for Data Set S. The matrices

’ obtained are as follows:

Sample Cross-Correlation Matrix for& ), &€= (0), ¢ - (0)

Satellite 19
€5'( €§ 3 5
1 0.589 ~-0.073
1 -0.234
1

Sample Cross-Correlation Matrix for E 0), £ (0), gr(O)
satellite 19 @

S £,
1 -0.018 -0.168
1 -0.135

1

Sample Cross-Correlation Matrix for EA(O) £. (0), ﬁ 0)
Satellite 19

1 -0.011 0.029
1 -0.003
1
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Sample Cross-Correlation Matrix for £ (0), § o (O £:(0

Satellite 19

1 0.041 0.005
[ 1 -0,042
1

Table 4-1 gives a summary of the data analyzed in obtaining the

statistics. It may be noticed that satellite 19 is common to Data Sets D and

S. The number of data points shown refer to the number of realizations of

the acceleration signal. The realizations for other signals are larger than

this number.

Table 4-1

Summary of Data Analyzed
for Signal Statistics

Data Set Satellite

Minimum No. of
Data Points

19

D 182
20 118

S 12 1674
19 1502

4.4 Observations

The purpose of obtaining sample autocovariance functions and related

quantities is to determine a model for the underlying stochastic process,

inthis case, the various signals, The following observations can be made

based on the values obtained taking the various types of signals in turn,
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4.4.1 Acceleration Signals f,}-;, (v, Qi',(u). Ei (v)

(i) The signal with the smallest autocovariance has a magnitude of over
2.0 x 10°° m®/s*. Acceleration of 1,0 x 10"* m/s® can cause a positional devia-
tion of 1.8 m after ten minutes which can be taken as the observation period of
a pass. So the signal is not insignificant where submeter accuracies are sought.

The largest covariance is over 1.0 x 107 m?/s*,

(iil) Except for satellite 12 of Data Set S, the autocovariances are posi-
tive for a lag up to four minutes. For £§ (u) and ¢ 5 (u) of satellite 12, the auto-

covariance is positive up to a lag of two minutes.

When dealing with Doppler observations with a JMR-1 receiver as in
Data Set D, the Doppler counts are available at every 4, 6 seconds approxi-
mately, and if three stations coobserve a pass, data is acquired at a rapid
pace of about 78 observations for every two minutes observed in common. So
this signal is worth attempting to model in an effort to refine the orbit.

It will be seen in Chapter 5 that a simple and mathematically tractable
model is sought for the stochastic process. A simple and convenient model for
the autocovariance is an exponential form without any periodic term which gives
rise only to nonnegative values. The lag up to which the sample autocovariance

is positive is therefore very relevant,

(iii) The sample cross-correlation matrix of component signals indicates
correlation of about -0, £3 between £ % and § 5 and a correlation of about 0.59
between £)—( and EQ' So this is not the ideal set of signals to attempt to model
in any procedure where an assumption of noncorrelation of the component
signals simplifies covariance propagation. However, it is not too high either

to leave this procedure completely out of consideration,




4.4.2 Acceleration Signals §i(u), ﬁé(u), £ ~(w)

(i) The signal with the smallest autocovariance has a magnitude of
over 0.2 x 107*° ("/s”) which can cause a positional deviation »f one meter
after ten minutes. The largest autocovariance has a magnitude of over 1,2
x 10°° m/s®,

(ii) Regarding the lags up to which the autocovariance is positive, the

same rcmarks as for £ j';(“)' £ ?(u). £ i(u) above apply in the case of E‘B(u) and

gf, (). TFor the signal Sx(u), the positive autocovariance persists even after
cight minutes,

(iii) The sample cross-correlation matrix shows the largest correlation

as low as 0. 04 making this set of signals a good candidate to model.

4,4.3 Velocity Signals gi(u). §¢ (u), gi.(u)

(i) The signal with the smallest autocovariance is over 0.4 x 10" ("/s)a.
A velocity of 0.1 x 10" "/s implies a positional deviation of over 2 m after

ten minutes. The maximum autocovariance is in the order of 14.0 x 107° ("/s).

(ii) Regarding the duration of positive covariance, the same remarks as
above apply for signals Q‘b (w) and £ F@. In the case of the signal £ x(u), the
positive correlation continues to six minutes.,

(iil) The largest correlation is only 0,03 as seen from the sample cross-
correlation matrix making this another good candidate for an attempt to model

the signal,

4.4,4 Position Signals gx(u). Ew(u), £ (u)

(i) In this case the smallest autocovariance is over 0,02 (")2. 01
implies a deviation of 3.6 m at the altitude of the satellite, The largest auto-

covariance is over 0,2 (")3.
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(ii) ’fhe duration of positive correlation is much larger than in the cases
of all previous signals. It persists at least up to eight minutes in case g‘r(u)
for satellite 19 in Data Set S and extends over 18 minutes in other cases, making
this a good candidate for an effort to model.

(iii) The maximum correlation indicated in the cross-correlation matrix

is 0.17 which is fairly low making this signal worthwhile being modeled.

(iv) Another interesting observation in the case of these autocovariances
is the value of the mean of the signal realizations obtained in forming sample
autocovariances Crr(u). The mean in all cases was a negative value varying in
magnitude from -3.3 to -7.8 m. The effect of treating this as a bias in a point
positioning experiment has been described in Chapter 5.

4,5 Application in Present Study

The computations of the realizations of the signals and their sample
statistics have been described above. Some general observations about the
statistics obtained have also been made,

It can be noticed that satellite 19 is common to Data Sets D and S, and
Data Set S is over five times larger than Data Set D, So satellite 19 was a good
candidate for experimentation, giving a greater weight to the statistics obtained
from Data Sct S,

In each of the figures 4.2 to 4. 25 there are two curves with respect to
satellite 19, one pertaining to the period January, 1976, and the other to the
period October, 1976. It is comforting to see that thesc two curves are close
to each other in most figures indicating a nearly stabilized situation.

it will be seen in Chapter 5 that the model chosen for the stochastic
process of the signal £(t) is of the form

Ety - -BE() + 0B w1

ORIGINAL PAGE 15
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where
w(t) is the Gaussian noise with the properties E[w(t)] = 0,
E{w(t) w(s)] = 8(t - s)
o is the variance parameter
6 (t-s) is the Dirac delta func’ion

B is the time correlation coefficient

This choice arises from the fact that if it is further assumed that § (o)~
N(o, o? B/2), independent of [w(t)} in the above model, then

-B()

Ry @) = o (B/2) e [Jazwinsky, 1970]

which is the analog of the first-order autoregressive process or first-order
Gauss-Markov process. In this situation, the curves obtained in this study
can directly give the initial estimates of the parameters of the autocovariance

function in procedures to be described in Chapter 5.

It is evident that with the material available many different experiments
and approaches are possible, depending on which signal is proposed to be
chosen to represent the state disturbance. In this study, however, the con-
straints on time available to the author and the form of software available have
made only some types of experiments possible. These have been discussed in

the next chapter.
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5. EXPERIMENTS FOR IMPROVED POSITIONING

5.1 Introductory Remarks

With the statistical information obtained in Chapters 3 and 4, a couple
of experiments were undertaken in which this information was utilized. These
experiments and their results have been described in this chapter.

At this stage it is appropriate to indicate the overall philosophy adopted
in designing these experiments, for the ultimate aim of gaining improved
station positions with broadcast ephemeris and Doppler data.

The Doppler observational data available and used pertains to Data Set
D in which three stations have coobserved several passes. As discussed in
Chapters 2 and 4, it is possible to carry out a solution in a short arc mode
and obtain values for both the orbit unknowns and the station unknowns. But
as indicated in Chapter 2, such solutions may have a problem which is pre-
cisely stated by Mueller [1976):

The results are being scrutinized by theoreticians who regard the

results as "meaningless' in view of the fact that the dynamic solu-

tions are rank deficient and as such the problem (of simultaneously
determining geocentric station and satellite parameters) is theo-
retically unsolvable, e.g., the system of reference defined by such
solutions would depend entirely on the a priorily selected values of
parameters (e.g., station coordinates).

In this study, the knowledge of the satellite positions is available in the
form of broadcast ephemeris. The broadcast ephemeris gives a set of valucs
in a consistent coordinate system with uncertainties which have been assessed
in the study and described in Chapter 3.

Doppler observational data from three coobserving stations (Data Set D)

has been used with broadeast ephemeris to obtain the best values for the
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station coordinates which could be held fixed in a subsequent filtering program
for orbit refinement. Under this situation, and Keeping in view the rank
deficiency problem described earlier, a decision was to be taken about the
specific constraints to be used in this study in the solution for station positions.

As described by Pope [1971], the rank deficiency of the normal matrix
can be obviated by use of either (a) weighted constraints or (b) absolute con-
straints on parameters. Method (a) becomes (b) as weights on the parameters
are increased to infinity.

As regards the number of constraints, they can be either the minimal
set of constraints, or they can be more than minimal., Among minimal con-
straints, there is the attractive possibility of using an inner constraint solu-
tion [Blaha, 1971} which leads to the "free network adjustment' without
explicitly forming a pseudo-inverse matrix.

Although inner constraints yield an optimum coordinate system with a
minimum trace for the variance-covariance matrix of the parameter esti-
mates, the solution and the coordinate system itself is optimized with respect
to the initial values of the parameters used in the adjustiment. While this may
be advantageous in a larger network adjustment where the coordinate system
also needs to be optimized, in a local adjustment like the one used in this
study where a coordinate system in unambiguously accessible (viz., the WGS
72 system through the broadease ephemeris), it is best to adopt it and to
ensure that the values obtained in the adjustment are in the chosen coordinate
system.

Since the ground station positions are the main unknowns, this could be
achieved by absolutely constraining the satellite orbits by introducing very
large weights. Thus it was decided to hold the satellite orbit lixed in the solu-
tion for station positions with SAGA.

Adopting and maintaining the WGS 72 coordinate system as desceribed

above, the problem is tackled in the following three stages:

-3
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(i) Determination of station posiuouns with observational data, holding the
orbits fixed,
(ii) Improving the orbits keeping the station positions unchanged,

(iii) Redetermination of station positions holding the improved orbits fixed.

Within the time available, only two experiments could be completed,
and only these two experiments have been described. In the first experiment
the radial bias noticed vide Section 3.5 has been taken intoaccount, and the effect
of removing this suspected bias in the broadcast ephemeris on station position
recovery has been determined. This experiment was aimed only to study the
radial bias identified in Chapter 3. Similar studies must be carried out with
respect to other biases, but for reasons explained in Section 3.2, these have
not been pursued in this investigation, As a follow up of this experiment, the
reason for the radial bias has also been investigated.

In the second experiment, the first steps have been taken to judge the
feasibility of utilizing the statistical information obtained in Chapter 4 in an
adaptive filtering procedure for orbit improvement. In this experiment, the
station positions have been held fixed at values obtained in stage (i). Statistical
information obtained earlier was utilized, but simulated range rate observations
available from existing software were utilized to judge the performance of the
filtering procedure.

Simulated range rate observations have been used in this study only as
a first step to judge the feasibilitv of using the adaptive filtering approach in
practice, so that the available softwarc could be used with minimum modifica-
tions, In position determination with Doppier data, range differences would
have been the appropriate observations.

Range difference observations have a more direct influence than range
rates on the position of a satellite. So in using simulated range rates to judge
the feasibility of the filtering procedure, an observational mode less optimum
than that obtained in reality is being adopted, The next steps in this study
would have been to first try the procedure with simulated range differences
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and then to use real data, 1t is best to undertake these stops after fivst
deciding the optimum model for the state disturbance. For example, the
formulations for viewing the state disturbance as an acceleration signil in the
Cartesian coordinate system would differ considerably from the formulation
for state disturbance viewed as a position signal in the spherical coordimate
systemi.  Unfortunately, in the time frame available to the author, it was not
possible to complete these further steps,

The presence of state disturbance and its role in the evolution of the
state characterizes the main distinguishing feature of the fittering procedure
in this study. But the method of estimation from obscervations is similar to
the least squares techniques. Thus it was felt appropriate to review the
mathematical formulations leading to the conventional sequential filter
algorithm ( also called the first order filtering technique) as a back-
ground to the adaptive {iltering procedure in the second experiment.

These are included in Appendix B.

5.2 Experiment for Radial Bias

5.2. 1 Determination of Station Positions

Station positions for three stations inthe Movida area were obtained with
the help of the Short Are Geadetie Program (SAGA) [Brown and Trotter, 1969)
available at The Ohio State University, The formulation used in the program is
documented both in the above-referred publication [Kumar, 1976] and in [Brown,
19746].
\Vith the version of SAGA available at OSU, the following main steps
were required to obtain a solution:
(1y maodification of the available subroutine for Geoceiver raw data to make it
compatible with JMR raw data,
(ii) majority vote of the ephemeris message to  obtain state vectors of
satellites at two-minute intevvals,
(iiy computation of mid arce state vectors for each pass for input to SAGA

with the program SAMVAD,



The meteorological data acquired at the stations formed part of the input.
The solution was obtained from 12 passes holding the orbits fixed and

allowing the station positions to remain free in the adjustment.

5.2.2 Determination of Radial Bias

As mentioned in Section 4.5, a negative radial bias was noticed while
computing the sample autocovariance Crr(u) for both Data Sets S and D. To
assess a more rcliable value of the suspected bias, Data Sets S and D for the

four satellites were combined with the following results:

degrees of freedom 4313
bias = Ar = -5.3 m
Tar = 1.5 m
A t-test is not strictly valid because of the fact that adjacent outcomes

of Ar are correlated. However, in view of the large degree of freedom avail-

able, a t-test wos carried out to test the hypothesis Ho: p = 0 against Hy: 4 # 0

ata = 0.05.
o o 5287 - 66l
t (computed) =" " o0/ /A314 'O
t (tabular) = 1.960

Therefore the hypothesis that 4 = 0 is rejected.

5.2.3 Correction of the State Vectors for Bias

The mid arc state vectors used in Section 5.2, 1 were corrected for a
radial bias of -5.3 m, As shown in Section 4.2.3, the radial signal s; =
rp- ry = Ar. The bias is the mean value of s;. The corrected radial distance
re = Iy +Ar,

For each pass used in the solution in 5.2.1, the mid arc state vector
was first transformed from the Cartesian components (X,Y,Z) to the polar

components (A, ®, r). The radial component was corrected to r., The corrected
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components (A, ¢, r.) were transformed back to the Cartesian components (X«,

Y. Zc), and the solution of Section 5.2.1 was repeated.

5.2.1 Radetorminntion of Station Positions After Removal of Bins

Table 5-1 gives the results of station position determination obtained
before and after removal of radial bias, Table 5-2 shows the weight coeffi-

cient matrix which remained unchanged to the number of digits shown.

5.2.5 QObservations

(i) The a posteriori variance of unit weight was reduced by a very small
amount (. 0003) after removal of bias. The weight coefficient matrix is unchanged
to four decimal places. The station coordinates changed by very small amounts

(< 0.1 m).

(ii)The bias was absorbed by small changes in the values of station coor-
dinates and other pass parameters such as frequency bias, frequency drift, and

refraction scaling factor.

(iii) One external check was available. The distance between stations 1
and 3, according to terrestrial survey, was 29 360,880 m, as given in [Brown,
1976]. In the above determinations, the distance was 29 361,003 m before cor-

rection for bias and 29 360,928 m after removal of bias.

The large standard deviation of the chord recovered (8.7 m) pre-
cludes a more positive statement. However, the removal of bias has made

the solution for chord length closer to the terrestrial value.

5.2,6 Explanation for Radial Bius

As a follow up of the above experiment, an effort was made to understand
the reason for the existence of the radial bias by carrying out the following
adjustment,

It was assumed that the transformation parameters given by Anderle

[1976] between the NWL 9D of precise ephemeris and the WGS 72 of broadcast
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Table 5-1

Results of Station Position Determination

State Vectors As Broadcast ¢

Apriori StandardDeviation of Observation = or = 20 cm

Degrees of Freedom = 1311

Final Station Coordinates

Station X Y Z
No. (m) (m) (m)
1 920731.202 -5578835.827 | 2941252.526
3 892362.893 -56579450.679 2948797.691
4 885656.500 -5573826.292 2961347.463

A
9,=1.07703

State Vectors AsCorrected for Bias ¢

A priori Standard Deviation of Observations = or = 20 cm

Degrees of Freedom = 1311

Fina] Station Coordinates

Station X Y Z
No. (m) (m) (m)
1 920731.111 -5578835.925 2941252.572
3 892362.866 -5579450.681 2948797.692
4 885656.456 -5573826.2178 2961347.440
3 = 1.07671
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Table 5-2

Weight Coefficient Matrix for Station Coordinates

Z,

Cel9610402

~C.186971-08

0.51980~06

T0.23980-06
~0.17€30-07 0.15080=0% =N, 35740~07 ~0.12280-06 0.21146D+02

T 0.IET2D-0F -0.78457=07  0,60200~06
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0421520402

~0.1667D¢02

0.35340=06 =0.33270=-07 0.1624D-06

Zy

T 0.23097e02°

0.3101D-04 =0.58110401 0,1843D+02

0.93090-07 C.74682D+01 -0,1054D402 0.11720+02



ephemeris take care of the rotations completely but not scale and origin shift,

. With this assumption, a four-parameter transformation was carried out between

b gt

: the precise ephemeris, transformed to WGS 72 as per parameters given by

§ o t Anderle [1976] and broadcast ephemeris. Points were selected at intervals of

' over 72 hours to break possible correlation existing between adjacent data

points. From Data Sets D and S, 26 points were available for satellites 12,

19 and 20, thus giving 78 observations in an observation equation model.
Adjustment was carried out with the following mathematical model in

which AX, AY, AZ and AL were considered as the translation and scale

parameters
X AX 1+AL 0 0 X
= |AY | + 0 1+AL 0 Y (5.1)
Z AZ 0 0 1+AL Y/
N P
where

N denotes the NAG broadcast ephemeris
P denotes the precise ephemeris transformed to WGS 72 as per given

| ' transformation parameters [Anderle, 1976]

o

The results obtained were: The correlation matrix was -

a% -
o, = 0.913 AX Ay Az AL
N - ~ r' -
| Ex -3 oz, bam [ 0252 060 oy
L)
N ) 1 -0.355  0.748
LY = 9.8 o4 v 2.0m
| ] yaR 1 -0.475
AZ = -2.0 o2 2.6
N X "l o
li a N
] aL = 1,43 LT 0. 34 ppm
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A t-test was carried out at @ = 0,05 to test if the parameters could be
considered as 0, The test failed with respectto AY and AL. So there are
strong indications that there is an origin shift of about 9.8 m in the Y-axis
direction and a scale correction of about 1,4 ppm between the two coordinate
systems considered above. These two parameters can be explained as follows:

If the origin of the precise ephemeris coordinate system is assumed
to coincide with the geocenter, the origin of the broadcast ephemeris system
gets an offset of about 9.8 m in the direction of 90° W longitude, which is
understandable as all the four stations generating the broadcast ephemeris
are located in continental United Stites .

As regards the scale parameter, it is conjectured that this scale factor
consists of two components. One component of about 0.9 ppm is due to the scale
difference always noticed between the Doppler system and terrestrial surveys
for some unknown reasons. As seen in Chapter 2, the scale in a Doppler system
is derived from A, the wave length of transmission. The second part of about
0.5 ppm is the inherent scale difference between the precise and broadcast
ephemerides. A similar scale factor of about 0.4 ppm had been detected by
White [2975] when he carried out the transformations in his study. During that
time, the coordinate system of both the ephemerides was assumed to be the

same (NWL 9D).

5.3 Experiment in Adaptive Filtering

The aim of this experiment was to assess the feusibility of utilizing the
statistics collected in Chapter 4 in an adaptive filte ring procedure described
in [Myers, 1973] for orbit improvement. The mathematical formulation of
adaptive filtering and the description of the software which motivated the present
experiment will first be given before describing the experiment and the results,




5.3.1 Adaptive Filtering

In the classical sequential estimation procedure, as described in
Appendix B, the state disturbance is viewed as white noise and is compensated
for. An alternate method of handling state disturbance is to treat it as a signal
considering its correlated character. Its expectation is still considered to be
zero, but its autocovariance, considering the signal as a stochastic process, is
associated with an assumed model.

If the parameters of the autocovariance model are assumed to be known,
then the signal and the state can be estimated as per normal least squares col-
location procedures [Moritz, 1972]. For example, consider the procedures in
gravimetry. The parametcrs of normal gravity may be considered as consti-
tuting the state. The gravity anomalies may be considered as the state disturb-
ance or signal with known autocovariance function depending on the separation in
distance instead of separation in tirne as in the case of this study. Further, the
state would be considered time independent unlike the state in this study whose
evolution in time is governed by the differential equations of motion.

Butif the parameters of the autocovariance function arenot well known, itis
possible toinclude them inan augmented state vector inthe adaptive filtering tech-
nique or thedynamic model compensationtechnique, as described in{Myers, 1973]}.

The detailed procedures depend on how it is proposed to model the state
disturbance. Fo example, in this study, referring to the statistics collected
in Chapter 4, the state disturbance cculd be considered to be constituted mainly
of position signal, velocity signal, or acceleration signal. Further, the
acceleration signal could be either in the Cartesian coordinate system or in the
spherical system.

The computer software available was bhased on formulations for an
acceleration signal in the Cartesian coordinate system. So, to judge the feasi-
bility of using this procedure in the present problem, it was decided to attempt
the procedure of adaptive filtering with the acceleration signal in the Cartesian

coordinate system. The fermulation for this based on [Myers, 1973]) and
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[Tapley, 1972] is given below. Formulations for other signals will need
suitable modifications,
The true equations of motion can be expreunsed as a system of first-
order differential equations.
T =¥

_ (5.2)
aEV,t+EQ®

<|-
H

where T and ¥V are three-vectors which describe true position and velocity in an
inertial frame as a function of time, @ is a threc-vector function of acceleration
components in the nominal dynamicai model, andz (t) is a three-vector accelera-
tion signal,

If E(t) is considcred as white noise, the procedure of classical sequential
estimation could be applied as stated earlier. But from the study in Chapter 4,
it is indicated that the realizations of £§(t), &-Y;(t), €i(t)' which are
the components of £ (t), are correlated, and so a white noise model is not
adequate. Therefore, E(t) is approximated by a vector stochastic process
€L - [cx(t) GY(t) EZ (t)]f, and a simple model is assumed for this process
by considering the components of €(t) as a time-correlated first-order Gauss-

Markov process satisfying the stochastic differential equation
€(t) = -RB(t) €t + W0 (5.3)
Here, W( (t) is a three vector of Gaussian noise with the properties

SR . Vi VAl . _ ro
E {Wc(t)} -~ 0 E{ Wt W, (s) } = q () bt-s)  (5.1)

where
- %X 0 0
gt 0 q(Y 0 (5.5)
Y

is the matrix ¢f variance parameters associated with €(t), and B(t) isa o x 3

diagonal matrix of time correlation cocfficients
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Bt) = |0 By O (5.6)

Further, for reasons explained overleaf, the evolution of

Bt = |By
3Z

is assumed to be governed by the differential equation

Bty - o (5.7)

Considering the above additional parametrization, the model in (5.2) is

augmented toc become

-

=V
i'; - ﬁﬁv v, t) + € (t) (r) )
€ -Be + We(t)
B -0
The new state vector is a 12-vector,
X' - [F': ¥ : €T : B (5.9)
and the fuactional form of (5.8) is
X - FX, W, t); () - %o (5. 10)

With this augmentation the algorithm is similar to that of the first-order
filter given in Appendix B.

The advantage of the model of the form (considering one coiponcent),

eX(t) —Bxe

q€ ,
i r ~ N N 511
X(t) P ‘X(t)’ (X(O) 1\(0, TR ) (.11

is that it gives rise to a stationary, exponentially correlated Gaussiun process

or colored noise if the variance parameter and the time corretation covetlicient
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are constant [Jazwinsky, 1970]. It may be recollected that an assumption of

stationarity had been made for computing samnple autocovariance of signals in
Chapter 4. In this algorithm, the process is reinitialized at every step, and

the parameters aré treated as constant for that step. This explains why

—.-B(t) = 0 in equation (5. 7).

From the above formulations, it is easy to understand the interrelations
between some of the estimation procedures used in geodesy. In the adaptive
filtering procedure used in this swdy, the state is time dependent. The state
disturbance is viewed as a signal. The parameters of the autocovariance
model of the signal are assumed not to be perfectly known and are included
in the sequential estimation procedure along with the signals. The state to
be estimated would be given by equation (5.9).

If the parameters of the autocovariance model of the signal are assumed
to be perfectly known, these can be excluded from the estimation procedure,

and the state to be estimated would be

X't) = [(F:7 :¢")
This would be the familiar least squares collocation procedure extended to a
dynamic situation.

If the state disturbance is viewed only as a "noise " in this dynamic
situation, the state to be estimated would be

X't = [T :¥)
as there is no signal to be computed, and this leads to the Kalman filtering
procedure or the first-order filtering procedure described in Appendix B.
Further, if the state is assumed to be time independent in the above,

the familiar least squares sequential adjustment procedure with weighted

parameters is obtained,
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5.3.2 Estimation of Initial Values of Parameters

The sample autocovariances C)"o"((u), Cﬁ-{(u), Ci 2(u) and sample
autocorrelations r)-&(u). rﬁ(u), ri 2(11) are helpful to determine good initial
values of parameters for use in the algorithm to improve the orbit represented
by the broadcast ephemeris.

The stochastic process considered above is the same as the first-order
autoregressive process or the first-order Markov process [Jenkins, 1968].
Consider the component process S((t) from above. It is assumed to satisfy

a differential equation of the form

éX = _px S((t) + Wex(t) (5.12)

Considering the Gaussian white noise W (t) as input and S((t) as output, the
X
autocorrelation function of the output process, ex(t), is

_ _ulBg
Pyx@ = e (5.13)
[Jenkins and Watts, 1968, p. 162]

where u is the time lag. This is an analog of the following discrete first-order
autoregressive process

eth- By = oq(ext - “tH) W, (5.14)

-1
where K¢, = E{ GXt }. Inthis study g4 =0, and so
1

= ey, +tW (5.15)

€
th tll‘l tl

The autocorrelation function o fthis discrete process is given by

Pxx(k) = O‘Jk'

(5.16)
where @, is the autoregression coefficient andk = 0, +1, +2 are the lags. In
this study k = 0. The correspondence between (5. 13) and (5. 16) is readily
seen, which helps in computing ﬁx from Q;.

Further, assuming a Gaussian distribution for Wt., the estimate &; of
o, is given by
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a, = res () (5.17)
[Jenkins and Watts, 1968]
the autocorrelation at first lag (inthis case, the lag of two minutes).
It is clear that with &, taken from the ry; (4 curve in Chapter 4,
the initial value of B % parameter in the algorithm is easily computed.
Similarly, the variance parameter of W _ is estimated by

n
- - a1 C==(1
S¢ ~ Cpp(0) - o Cipd)
for a large sample size. Parameters for other component processes EY and

GZ are similarly obtained.
5.3.3 Simulation Program - EARTHOD

The experiment in adaptive filtering hés been carried out with the
station positioning results of the experiment in Section 5.2, the statistical
analysis shown in Chapter 4, and the simulation program, EARTHOD,
obtained from the Department of Aerospace Engineering and Engineering
Mechanics at the University of Texas at Austin, duly modified.

The program provides the capability for simulation studies of an earth
satellite observed by up to twelve ground-based tracking stations making as
many as twelve simultaneous range, range-rate, elevation, and azimuth
measurements,

Observations are generated from a set of true equations of motion
operated on a true state of the satellite and are corrupted by Gaussian white
noise. The program has an option for estimating the state of the satellite as
well as the acceleration signal components and the parameters of autocovariance,
based on the simulated observations, in an adaptive manner.

Since both the true state and the estimated state based on the
observations and the nominal state are available in the simulation, actual
estimation errors are easily determined for the judgment of the filter per-
formance. The equations of motion are expressed in an earth-centered

inertial (ECI) ccordinate system and are numerically integrated with an

PAGY *
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efficient Runge-Kutta - Fehlberg algorithm [Fehlberg, 1968].

For use in this study, the program written in Fortran IV in
overlay form forthe CDC 6600 operating sy stem has been modified to run on
the IBM 370/168 operating system at The Ohio State University.

State vectors derived from the precise and broadcast ephemerides have
been used in lieu of the initial true and nominal states, respectively, as inputs,
after transforming them from the earth-fixed system to the inertial system.
The propagation of state is carried out with an eighth-order Runge-Kutta
algorithm. The station coordinates are assumed to be known.

Results from EARTHOD simulations are available in terms of Root
Sum Square (RSS) errors and covariance norms defined as follows: The RSS

errors in position and velocity are, respectively:
1

AR = [e; + ezY + e2Z]§ (5. 18)
1
av = (& v+ &) (5.19)

where eX =X -X represents the true error component in the state position
estimate . Similar definitions apply to other components. e)-( = X,. -X
represents the true error component in the state velocity estimate 5(.

In this study, X represents the vector of state components based on
precise ephemeris and % represents the vector of their estimates based on
observations and the nominal state component., The nominal state was
derived from the broadcast ephemeris,

The position covariance norm is defined

1
NP = [pu + Pz * Pol (5. 20)

the square root of trace of the covariance elements associated with the posi-
tion estimate and is obtained from the diagonal of P matrix in the algorithm,
vide equation (B 58).

The velocity covariance norm is dofined by

A
NV [Pu *+ P + P’ (5.21)
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which is likewise the square root trace of the covariance elements associated

with the velocity estimate.

5.3.4 Description of the Experiment and Results
: An experiment in adaptive filtering was carried out for one
1 pass of satellite 19 m Data Set D. The station coordinates for the
, three stations, as obtained in the experiment (before removal of radial bias),
: were taken as known. Within the capability of the software, range-rate obser-
J vations were the closest to Doppler observations, and so for further reasons
*! explained in Section 5.1 the mode of simulated range rates was chosen, giving
!

a three-vector observation at each step.

A fixed integration step of 0. 075 minutes was chosen which is close to
the rate of data acquisition with a JMR 1 receiver. The common two-minute
epoch at the commencement of the observations from the three stations was
chosen as the initial time to for commencing the algorithm. The precise state
vector (transformed to WGS 72 system) and broadcast ephemeris state vector
at to were transformed from the earth-fixed system to the inertial system,
The values for polar motion components were taken as published by Bureau
International de 1'Heure, and the value for the Greenwich apparent sidereal
time at t, was obtained from the American Ephemeris and Nautical Almanac
1976. The Jet Propulsion Laboratory ephemeris tape provided the inertial

state vectors for sun and moon.

In the experiment for obtaining station positions, the range observation
standard deviation was taken as 0,20 m. So a range-rate standard deviation of
0.002 m/s appears reasonable. Based on the study in Chapter 3, the uncer-
tainties in the position and velocity components of the broadcast state vector

were takenas [ 14,0 15.0 22,0 0,20 0.25 0,30 ] inunits of meters and

seconds for initial values in f’o in the first six diagonal locations. The values
for the next three diagonal clements in f’o, which referred to the autocovariance

of the acccleration signal at lag 0, were taken from the curves C}'&i(u). C,} i-{(u),
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and Cﬁ i(u). The last three elements of 130 refer to the uncertainties of the
time correlation coefficients. The values for these were taken either as five
times the coefficients (as used in past investigations of Myers [1973]) or
derived from the difference between the two values for the coefficients from
the two sets of the curves C)&(u), Cﬁ(u),
from Data Set D and the other from Data Set S.

and Ci Z(u) for satellite 19, one

Four trials were taken, varying slightly the standard deviation of
observation and the initial values for the state noise parameters, from the
analysis in Chapter 4.

In trial 1, the standard deviation of observations was kept as 0.002 m/s,
but the initial parameter values were based on the information collected for
satellite 19 from Data Set D. Uncertainties of BX' BY, BZ for i’o matrix
were taken as five times their values,

In trial 2, the standard deviation of observations was kept as 0, 002
m/s for the R matrix In the algorithm, but the initial parameter values for
state noise referred to Data Set S. Uncertainties of BX, 3Y, and BZ for
Pp matrix were taken as five times the initial values of the coefficients,

In trial 3, the standard deviation of obse rvations was increased to 0,005
m/s, and the initial parameters were the same as in trial 2.

Trial 4 was similar to trial 2 in all respects except that the uncertainties
of BX, ﬁY, BZ in the i)o matrix were based on the difference between the two
sample valiues for ﬁx, BY, Bz for satellite 19 obtainable from Data Sets D
and S,

The structures of the A and H matrices required in the algorithm are
given in detail in [Ingram, 1971] and [Myers, 1973] and incorporated in the
software used.

The sample autocovariance curves from the data analyzed in Chapter 4
were used directly for the trial values with the procedures given above. No
least squares adjustments were made for estimates of parameters since it

was the intention of this experiment to judge the adaptive property of the filter.
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Figs. 5.1 and 5. 2 show the values of AR, NR and AV, NV, respec-
tively, against i, the number of integration steps of 0,075 minute, for trial
1. Figs. 5.3to0 5.8 give the same information for trials 2, 3, and 4.

Table 5-3 gives the components of state vector pertaining to the state
disturbance (i.e., acceleration signal and time correlation coefficients) and
their values at various integration steps, i. Tables 5-4 to 5-6 give the same
information for trials 2, 3, and 4.

5.3.5 Observations

From the results of the trials, the following observations can be made:
(i) The initial deviation of 12.91 m in the position of the satelliteas given by
precise and broadc=3t ephemerides narrows down by about 0.6 m in
about 20 integration steps but later diverges.
(ii) The uncertainty in position of the satellite as given by broadcast ephemeris
reduces by about 4.2 m in about ten integration steps and later diverges,

(ili) The rate of change of improvement is the largest during the first five
integration steps.

(iv) The optimum situation for position uncertainty arises fairly close to the
optimum situation for position and the AR curve is flatter than the NR
curve. This is of particular significance from the point of view of users
who have no access to precise ephemeris., When this procedure is used
with real observations and the broadcast ephemeris, only the NR curves
are available, The curves in this study indicate that the state vector at
optimum positional uncertainty, given by the NR curve, also yields a near
optimum value for the position of the state vector.

(v) Velocity uncertainty decreases by about 0.2 m/s in the first five integra-
tion steps. This is followed by further improvement at a very slow rate.

(vi) Velocity error reduces by about 0,011 m/s in the first step, Later the
error increases steadily to about 0.033 m/s in about thirty integration
steps. This is followed by further steady improvement.
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Table 5-3

State Disturbance Components in Trial 1

Hlmurmonf

" Lo e 10 St 107 e e ;e/eg' —

BN RS L =000 ] 6.00 [36.56 | 96.94{ 163.50
5 0.00 |-0.04 | 0.03 |86.56 96.91)| 163. 50
10 0.00 {-0.26 |-0.02 |se.s56 97.00) 163. 49
15 0.01 |[-0.43 [-0.01 [|86.56 98.07| 163.47
20 0.01 |-0.57 {-0.07 186.58 | 100.39) 263.48
28 0.02 l-0.67 [-0.14 [86.61 | 103.58]|163.72
30 0.03 |-0.73 [-0.23 |86.68 | 106.80] 14444
3s 0.03 |-0.73 |-0.32 lss. 78 | 109.10]{165.95 |
10 0.04 |-0.68 |-0.42 |86. 91 [ 109 .90]168.33 |
45 0.04 {-0.58 |-0.51 [s7.03 |109.16)171.40
50 0.04 |-0.45 |-0.56 [s7.13 |107.27]{174.67

Table 5-4

State Disturbance Components in Trial 2

integration) €. €« G T ‘B /8, /3,
"I'” 15* m/8?| 10°m/s? | 18° m/a®|  sec sec sec

0" lo.00 | 0,00 [ 0% 11887207 81,80 [T134TE
5 0.00 ~0.03 0,02 168,20 61.61 134.59
10 0.01 -0.18 }-0.01 168,19 81.65 134.59
18 0.04 0,26 |-0.02 }168.2]1 82.43 134. 868
20 0,08 -0.34 -0.07 168.30] - 84,10 134.60
28 0.11 -0.39 {-0.13 168.56 86. 34 134.89
30 0.18 -0.42 [-0.19 (168.08 88.82 | 135.62
as 0.18 -0.41 |-0.28 188.79 90.03 136. %0
40 0.20 [~0.37 [~0.32 [170.68 9n .50 | 138.67
43 0,20 j-0,30 1-0.37 171.48 39 .93 140.11
50 0,20 | -0.23 {~0.40 {172, 05 88 .54 142.71
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Table 5-5

State Disturbance Components in Trial 3

Integration ¢, ! €, € * B, S8 L
P - -
i wte/s?) e Tuid see sec sec
[} 0.00 0.00 0,00 |168.20 81.60 134.59
§ -0,01 0.10 0.02 188,20 81.63 134.59
10 J.0o 0.03 -0.00 [ 168.20 81.48 134.58
15 0.02 |-0.02 -0.07 ]168.20 81.40 134,58
26 0.04 |-0.07 -0.13 168,22 81,65 134.70
25 0.06 {-0.11 -0.20(168.31 82.18 135. 18
30 Q.09 (0.13 -0,27 1 168.49 82.82 136.22
35 0.10 +0. 14 -0.34]168.80 §3.14 137. 95
49 0.12 FO, 13 -v.40 {169.20 83.60 140. 28
+5 0,13 FO.11 ~-0.44 [ 163.63 §3.52 142, 97
t. 50 0.13 lLO.OS 0. 48 [170.04 83.16 145.67
Table 5-6
State Disturbance Components in Trial 4
fotegration | ¢, « € 7 TR ¢ 8
step i
i 107 m/s° 107 m/8°] 107 m/5*|  sec sec sec
¢ 0.00 0.00 0.00 | 188,20 ] 91.60 134.59
5 0.00 -0.03 0.02 t168.2¢ ] 891.60 134.59
10 0.01 -0.16 | -0,02 [168.20) 81.60 134.569
15 0.04 -0.28 -0.02 168.20] 8:.60 134.59
20 0.08 -0. 3% -0.07 168.20] 83.60 134.59
25 0.1} -0.38 -0,13 1168.20 11.681 134.59
30 0.15 ~0,41 -0,19 1168.2)1 ] 81.62 134,59
s G.18 -0.40 -0.26 ;168,22 81.62 134.59
4) 0,20 -J.38 -0,31 {168,202 | %1.62 134.60
45 0.20 -0.29 ] -0.36 168,723 |81 .42 134.60
50 0.20 0,221 -0.39 168,24 | 81.82 133.61
[ A
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(vii)

(viii)

(ix)

(%)

From the observations at (i) to (vi), it appears that from the point of

view of a user, the value of the state vector at optimum uncertainty of
position could be taken as the best outcome of this filtering procedure.
Specifically, in this experiment the results of the tenth integration step
would be the optimum.

From Tables 5-3 to 5-6 it can be seen thatthe values of BX, BY’ BZ

are relatively insensitive to the filtering procedure. So it is best to

use as realistic values as possible for this procedure. On the other

hand, changes in values of BX' ﬁY’ Bz in trials 1 and 2 have not given
significantly different results,

This indicates that while it is advisable to repeat studies of this nature
occasionally to ascertain the autocovariances for all satellites, since

the autocovariance curves of the three satellites in this study are fairly
close to each other, the values based on the data analysis in Chapter 4
could be applied to other satellites as well, until studies for

other satellites are completed.

It is clear that some improvement in position and velocity is possible

with this procedure though the gain in reducing the uncertainty of position
and velocity is greater. It is, therefore, conceivable that if the software
is suitably modified the optimum state vectors for the 12 passes in experi-
ment 1 can be obtained using broadcast ephemeris and observational data.
With these optimized state vectors held fixed, the solution in experiment 1
could be repeated for improved station position recovery.

It is noticed that the filter diverges within a very short time of about 20
integration steps. However, from Chapter 4 it is known that this filtering
procedure is being used with acceleration signal in Cartesian coordinate
system from consideration of available software. This signal has a posi-
tive autocovariance for only two to four minutes, and the signal compo-
nents are mutually correlated to some extent, Much better results can
be expected if the positional signal in spherical system is used, which

has a positive autocovariance up to about 20 minutes. However, the
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feasibility of this procedure has been demonstrated. The divergence is
also partly due to the weak geometry represented by three nearby
stations (onlyabout30 km apart), coobserving a satellite at a height of
about 1100 km.

(xi) As expected, the results of trial 3 with a larger observational standard
deviation shiow a smaller improvement compared to the other trials.

(xii) Results of trial 4 are the best among the four trials,

(xiii) The signals €’ eY, cz can be viewed as acceleration biases associ-
ated with the specific pass of the satellite used in the experiment. It
can be easily seen that if a filtering procedure as above is carried out
with formulations for positional signals in a spherical system, the
signals obtained would be the in-track, out-of-plane, and radial pass

biases referred to in Section 3.5.2.

5.3.6 Limitations of the Filter World

For computing A R, the positional deviation between the estimated state
and the true state of the satellite, the latter is obtained by integrating the state
derived from the precise ephemeris at to. Ideally, the force model for this
integration should be the one adopted by DMA with all its elaborations. Simi-
larly, the nominal state should use the force model of the NAG computa tions.

However, due to the limitations of the software and the nonavailability
of the values of the gravity field in current use by DMA and NAG in open
literature, there is an inescapable mismatch between the force model in the
filter world and reality.

The force model in the filter in this experiment includes the gravitational
field of the earth (GEM 7 geopotential model [Lerch et al., 1975) with coefficients
up to degree and order four and additional zonals up to degree six), two-body
perturbations of the sun and the moon, and atmospheric drag, for both the
truc and the nominal state.
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So in order to obtain realistic results, it has to be assumed that the
optimum results of the filter are obtained before they are vitiated by the
mismatch in the force models.

For checking the validity of this assumption, trial 4 was repeated
with an integration interval of 0,05 minutes, and the positional deviation of the
estimate was computed directly with respect to the corresponding precise
ephemeris state vectors at integral minutes. Fig. 5.9 shows this deviation
AR; against the time t in intervals of one minute after t,.

P A S R N S|
o 1 2 3 4 5

t (minutes)

Figure 5.9

Pogition Error with respect to Precise Ephemeris in Trial 4

Comparing this curve with Fig, 5.7, it can be seen that there has been
no adverse effect of the mismatch during the first minute in which the optimum
results of the filter have been realized. The three-minute mark in Fig. 5.9
corresponds to the 40th integration step in Fig. 5. 7.
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6. CONCLUSIONS AND RECOMMENDATIONS

The objective of this study has been to investigate the possibility of
locally optimizing the Navy Navigation Satellite broadcast ephemeris for
improved recovery of station positions with Doppler observations.

The rank deficiency problem which is intimately conv.ected with Doppler
surveys has been studied, and it has been shown that the minimum rank
deficiency in a short arc mode of survey is six and the scale information is
derived from the wavelength of transmission. Coordinate differences are
estimable quantities if the stations coobserve the same pass of the satellite
whose motion is governed by an assumed force model.

Accuracy estimates of broadcast ephemeris have been formed {rom the
study of sampled data. It is concluded that, depending on the location of the
epoch of observation in the interinjection period, the positional uncertainty of
broadcast ephemeris may vary between 19 m to 26 m in-track, 15 m
to 20 m cross-track, and 9 m to 10 m in radial directions.

The broadcast ephemeris indicated a radial bias of about -5 m when
compared with the precise ephemeris transformed to WGS 72 system accord-
ing to the currently known transformation parameters.

The experiment in removal of radial bias along with recovery of station
positions holding the orbit fixed showed that the removal of bias has a negli-
gible effect on the uncertainties of the station coordinates. But the values of
the coordinuies as well as the values of other puss paraiiciers change slightly.
Removal of bias brought a chord distance in better agreement with terrestrial
survey. This radial bias appears to be the consequence of the following two
factors brought to light in this study:

(i) The origin of the broadcast ephemeris coordinate system appears to

have an offset of about 10 m in the direction of 90°W longitude, with
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respect to the geocenter.

(ii) The broadcast ephemeris appears to need a scale correction of -1, 4 ppm
to make it compatible with a terrestrial system obtainable from a scale-

corrected precise ephemeris.

It is recommended that experiments be carried out with more data sets
in the future to identify in-track and out-of-plane biases also. These could not
be included in this study for lack of adequate evidence with the available data
sets,

Sample autocovariance and autocorrelation functions of acceleration,
velocity, and position signals have been computed by comparing precise and
broadcast ephemerides. The curves indicate an exponential form which has
been assumed for the signal stochastic process.

Satellites decay with time. So it is recommended that studies similar
to this study be repeated occasionally so that the statistical characteristics
of the broadcast ephemeris of all the satellites are available as they evolve
with time. It is difficult to suggest the time interval at which such studies are
to be repeated. In this study two data sets of the same satellite (satellite 19)
were available at an interval of ten months. But the earlier data set had only
about 180 values against about 1500 in the second. The same autocovariance
functions derived from the two data sets do show variations which are partly
due to the unequal size of the data sets. Keeping this in view, an interval of
one year for repeating such studies appears reasonable.

The experiment in adaptive filtering for one pass of satellite 19, with
station coordinates obtained in the earlier experiment, parameters of the auto-
covariance model of acceleration signal in the Cartesian coordinate system
obtained from sampled data, and simulated range rate observations, leads to
the conclusion that adaptive filtering is a feasible approach from a practical
point of view. The experiment indicated an orbit improvement of about 4 m in
the positional uncertainty and 0.6 in position within the first 20 sequential co-

observations from three-stations at intervals of 0.75 minutes. But the filter
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diverges after giving this improvement. Positional signals in the polar system
which have autocovariances which are larger and remain positive for up to
about 20-minute lag are expected to give better results with this procedure. It

is recommended that further studies in this respect be made.

Any satellite ephemeris derived from satellite transmission is of
necessity predictive and less accurate than that of an ephemeris computed
after the fact and possibly with more data (e.g., the satellites of the NAVSTAR
Global Positioning System). In all such situations where sample statistics of
state disturbance can be predetermined from comparison of predicted and
post-fitted ephemeris, filtering procedures could be applied in conjunction
with broadcast ephemeris and current observational data for local improve-
ment of orbit.

Further studies are also recommended to study the performance of
the adaptive filter with real data and a better geometry of tracking stations
than three stations about 30 km apart as in this study.

As a result of this study, the following steps can be recommended for
improved positioning with broadcast ephemeris and Doppler data:

(i) Correction of broadcast ephemeris for the biases identified. In this study
the radial ' .as identified was traced to an origin shift and a scale correc-
tion.

(ii) Position determination with broadcast ephemeris and coobserved tracking
data from at least three stations, holding the orbit fixed,

(iii) Local improvement of the satelliteorbits forall the passes used in (ii), in
an adaptive filtering procedure, using the sample autocovariance function
derived from comparisons of precise and broadcast ephemerides in the
recent past and the observational data.

(iv) Redetermination of positions as in (ii) with the improved orbits,

The improvement that can be achieved by this procedure can only be
estimated after studying a test case with real data for steps (iii) and (iv) which
is recommended as a follow-up of this study, However, this study has
succeeded in indicating the feasibility of this approach.
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APPENDIX A

INFLUENCE OF TRANSFORMATION PARAMETERS
ON ACCELERATION SIGNAL

The broadcast ephemeris and the precise ephemeris are in coordinate
systems which differ from each other by small amounts. The following ana-
lytical study was carried out to find out to what extent the transformation
parameters are likely to influence the values of acceleration signals obtained
in Chapter 4,

Consider the following system of first-order differential equations for
governing the true state of the satellite in the WGS 72 system of the broadcast

ephemeris.

}.—(N = VN (Al)
Vv = aN"’EN A2)

where Xy, Vy, 3y, EN are the three-vectors for position, velocity, acceleration,
and acceleration signal, respectively.

Similarly, consider the following system of equations for governing the
state of the satellite in the NWL 9D system of the precise ephemeris, whichfor
the purpose of this study is considered errorless:

X, = V, (A3)

Vy = 8y Ad)

where .Xp, v,,, apdenote the three-vectors for position, velocity and acceleration
as per precise ephemeris.

It is assumed that the state vectors based on the precise and broadcast
ephemeris represent a set of consistent values in their respective coordinate
systems, which makes the following similarity transformation relation possible

for the ith point

103 ORIGINAL PAGE IS
OF POOR QU ‘



Xy X, AX, o w -¥||[x, X5
Yy = | Y| +t]AYp + |-W 0 €| |Yp] + AL}Y,
ZN ' Zp ' AZ’ \I, -€ 0 Zp . zp
= AYp + -W 1+AL € Y; (AS)
AZp \I’ -€ 1+AL Zp 4
Here

(X, Y, Zf
[Xv Y Zy) = X,
[AX, AY, AZ;]' = T, the vector of translation parameters.

]
>

AL is the émle parameter

W, €, and ¥ are the rotation parameters.

If R is the 3 X 3 rotation cum scale matrix, equation (A 5) can be rewritten as

Xy = T, + RX, (A6)

The transformation parameters are time independent, so time derivatives of

(A 6) yield

Xy = RX,+RX, = RX, asR=0 A7)
Therefore,

Vi = RVp (A 8)

Ve = RV, + RV, = RV, A9)

@+ Ev = R[E,) (A10)

To seek the influence of transformation parameters on £ y signal, consider

a vector
U = (AL, W, ¥, €]

and differentiate (A 10) with respect to the variables of intercst. The left

member yields, on differentiation,
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0% 7. 4 2B T
3T, & + 33 dT + o,

considering R matrix in the element notation, the right member of (A 10) may
v be written

Ny I Ia i an T2 8p Iz A
R[ a,] = Ty Y rgaf ap = ' ap + T + Iy A,
sy Tz Im T3 ap I'ap a2 'z 858

= R+R+Rs

where Ry, Rz, Rs stand for the corresponding vectors above. Differentiation
of the right member therefore yields

OB oF, + 2B g+ 2Ber, 4 e g5, 25 7, 4 2B
3E, 2T 3L, 3T 3L, 3T

The modeled acceleration @y does not depend on the acceleration signal or on

the transformation parameters. Therefore

-
z
]
=
o/
«
I
=]

B
2
B

daUu =
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Far,, br” Brn brn ]
JAL oW AV d¢€
- |[%ra 3drg  3rg 3y
AL dW W de
Org  dryg dry 3dry
AL d R de |
’ar,a orp orp Br;a-
AL 3w ¥ de
drgp orp drp drg
AL AW Vv X3
Srgp drp dryp Arg
| A1, d IV X3
[~ <
o) I3 ) ' d 3 o) s
JAL RALY oV de
or. org drg oryp
JAL oW QY d€
drm dry drm orm
JAL AW d VY de |
[- 1 0 0 0 0
=10 -1 o 0}]a,dU + |1
0 0 1 0 0
0 0 -1 0
+ 10 0 0 1)ay,dy
1 0o o o
Therefore,
ap Ap2  -Ap3
dEN Ap2  ~ap 0
adp3 0 Qpy

ﬂpa

i T VTR TN TR A Y S diuden 1 :"
Bl R !,,V:. ""7”"’!

U S SO SR s SR O

ap1 dﬁ +

app dﬁ +

apa dﬁ

0

dU (A11)

~{po

In this study, the U vector has the following values for the components
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>
=
f

-0.826 3 ppm

W = -0,000 001 260 5 radian
v =0
€ = 0

At the satellite altitude of about 1000 km, the approximate value of
normal gravity is 743.4 gals. Consideringthisvalueandeven the full values of
the U vector, the maximum component of d€ y is of the order 0.15 X 10 °m/s>,
which is negligible compared to the signals of the order of 0.3 X 10 ° m/s®
obtained in the study.

It may, therefore, be concluded that the transformation parameters have
had an insignificant role in causing the acceleration signals,

This was also verified numerically by obtaining acceleration signals in
two models in a test case:

(i) by comparing broadcast and precise ephemeris without transformation,
(ii) by comparing broadcast and precisc ephemeris after transformation.
Considering acceleration in units of m/s°, the RMS values of the signals in (i)

and (ii) are generally in agreement up to the fifth decimal place of a meter.
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APPENDIX B

FIRST ORDER FILTERING TECHNIQUE

1. Systems Equation

The true equations of motion for the satellite are expressed in the earth-
centered inertial coordinate system. The equations take the functional form of
a system of first-order deterministic differential equations (i.e., without the

inclusion of state noise):

<l

ro- (B1)

<
o

(r, v, t)

where ¥ with components (X, Y, Z) and v with components (X, Y, Z) are three
vectors used in defining the true state X, an n-vector which is to be estimated.
For example, if the state vector were to consist of only position and velocity

compcuents, thenn = 6, and
X' = XyYzxvyz = [rv)

a is the true acceleration vector. Equation (B1) can also be written in a

functional form as

X - F(R 1 (B 2)

where F represents the n-dimensional functional form of the right side of

the equations (B1).
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Now, if a state noise n-vector W (t) is also included in the equation, the
differential equation will take the form
X - X, Wt (B 3)

For seeking a solution, a nominal state X *(t) is first assumed, and a differ-

ential state deviation is considered in the form:
Xt = X@t) - X't (B4)
XM - X -X*® (B5)

State relation (B 3) can now be expanded by a Taylor series aroundi*(t) giving

the linearized first-order differential equation
X(t) = A(@)X() + Gt) W(t) (B6)

which corresponds to the equation given in (4.1) [Ingram, 1971; Tapley et al.,
19721, Here

al arF]"
e
are the n x n matrices of partial derivatives evaluated at the nominal values
X*t).
Equation (B 6) represents the state of the system (in this case the param-

eters associated with the satellite orbit) for t > t5, where the initial time ts is

fixed and the initial state X (to) is assumed known.

2. Concept of the State Transition Matrix

In many problems a representation in terms of the so-called state
transition matrix helps to obtain an explicit expression for the solution of

equation (B6). Since the system in (B 6) is linear, its complete solution

ORIGINAL PAGE IS
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consists of a linear combination of its homogeneous (or force-free solution)
and a particular (or forced) solution.

Consider first the homogeneous solution of the system
Xt) = AR (B7)

for 1 2 ty with X (o) arbitrary. Substitute into (B 7) a trial solution of the
form
X(t) = M(t) X(to)

where M(t) is an unknown n X n matrix, This yields
[M - At)M]X(to) = 0O (B8)

which must hold for all t 2 t. Since X (to) is arbitrary, this relation is satis-
fied if and only if M(t) satisfies the system of n X n differential equations

M = A M (B9)

for all t 2 t5. Further, att = to, X(to) = M(to) X (to) which implies that
M(to) = I is the initial condition for (B9). The homogeneous solution of equation
(B6) can then be written as

X(t) = M(t) X(to) (B10)

where

M = Aty M and M(to) = 1

The particular solution for (B 6) is next obtained by using the Lagrange variation

of parameter technique. Assume a solution of the form
X(t) = M)l (b (B11)

where M(t) is as above, and_l(t) is an unknown n vector. Substituting this result
in (B6)

Mt T + MBI = Al MOTEH + GoH W (B12)
However, since M(t) = A(t) M(t), (B 12) reduces to
M(t).T(t) = G(t) W(t) (B13)
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It can be verified that M(t) is nonsingular for all t = to [Meditch, 1969].

Therefore,
Ty = M) Git) Wt (B14)

Integrating (B14),
t
1) =v/l M*(T) G(T) W(T) dr (B 15)
to
Therefore, the particular solution of (B 6) can be taken as
t
X(t) = M(t)f M (T) G(T) W(n dT (B 16)

Combining (B10) and (B 16), the complete solution of (B6) will have the form
t
(M) = M) X (o) + M(t)f M* (T) G(T) W(T) dT (B17)

where the second part of the right member can be viewed as the contribution
of the state noise to the state,

M(t) is called the fundamental matrix of the system in (B6). Now
define

P, T) = M) M (T) (B18)
the n X n transition matrix for the system in (B6). It is noted that
Yty to) = M(t) M () = M)

since M‘l(to) =1. Thus the completc solution (B 17) can be written in transition

matrix form as
t

Xty = P, to) X () +f @, T)G(T) W(T) dT (B19)
to

where £ to. (B18) is differentiated with respeet to t
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Therefore,

P, T) = APE{iE,T) (B 20)
where differentiation with respect to t is implied. From (B 18)

e, t) = 1, fort 2 to.

So, to obtain @ (t, T) required in the computation of x (t) in (B19), the
differential equation

Sty to) = A(t) Dt to)

is solved subject to initial condition ®(t, to) = I and t, is replaced by T to
obtain @ (t, 7).

The equation relating observations and the state in a linearized obser-

vation equation form can be expressed as
Tty = H(t)X(t) + V(t) (B21)

where ¥ (t) is the p vector of observations in the differential form (observed -
computed). H is the p X n design matrix of the conventional observation
equation model [Uotila, 1967]. X (t), the deviation of thestate from the nominal,
can also be viewed as the unknown corrections to the assumed values of the
state, V (t) is the p vector of observational errors.

Substituting the expression for X (t) from (B 19),

t
F = H( [<I><t, to) X (o) +f @ (t, T)G(T)Wmdr] + V(t)
to
t
H(t) ®(t, to) X (to) +f H(t) @ (t, T) G(T) W(T) dT + V(t)
to
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Defining
D(t, T) = H(t) P(t, T) G(T), ¢

Tt = H@t) P(t, to) X(to) +/ D(t, T) W(T) dT + V(t) (B22)
to

Often the noise vector W(t) is considered as input, the observable ¥ (t) as
output, and the matrix D(t, T) as a system weighting function, in the lit-

erature,

4, Sampled Data Model

Although the evolution of state is continuous in time, observations are
generally available only at discrete times. The study of the effect of noise is
also facilitated if the system is discretized and the continuous relations in a
system are treated as limiting cases of discrete forms.

Assuming that the disturbance or '"noise'' v ector in equation (B6) is
a piece-wise constant function of time which changes values at time points at
which measurements are also made, a time interval ty S t s t,4; is considered
for some k -0, 1, ... . If X (L) is given and W(t) = W(k) - constant, in the

interval tx < t= tx4q, from (B 19):
tern

X(ter1) = P (b1, t) X (k) +[f P (ter 1, T)G(T)df] Wky (B23)
t,

Defining
tes1

f ‘P(tk+1, TYG(T)YdT = T (k+1, k)
t

as the disturbance transition matrix, and denoting

X (tes1) i(k+1)
X (te) X (k)
P (terr, ti) P (k+1, k)
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(B23) can be written as
Xk+1l) = Pk+1, k)X(k) + IEk+1, k) W(k) (B 24)

fork-o0, 1, .
The observation state relation (B21) can also be written in the

discretized form as

F(teer) = H(bee1) X(tesr) + Vitesr)
or

Vk+1l) = Hk+1) X(k+1) + V(k+1) (B25)

It is easy to see that the continuous case can be considered as a limiting case
of the above discrete model by denoting discrete time (k) and (k+ 1) as (1)
and (t+At) and letting At~ 0,

5. Nature of Gaussian White Process

The nature of Gaussian white process in system dynamics will be
first considered. Let {_V\_’(t), t = t, } be an n-dimensional independent

Gaussian process with mean
E{W(t)] - Wat)
and covariance kernel
E L [W(t) - Wa(t)] [W(T) - W (M]"} = Q) B¢t - T)

where to is an initial time, t,T = t;, Q(t) is a continuous positive semi-
definite n X n matrix, and 6(t - 7) the Dirac delta function,

The above cquation implies the limiting behavior of a piece-wise
constant Gaussian white sequence in which the frequency of event points is
made arbitrarily large within a given time interval.

Conside r sequences fW(k), k 0,1, ... }tobe zero mean Gaussian

white with covariance

E [ W(i) W (k)] QK Ope k 0, 1, ...
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and successive time points separated by At > 0, Ift denotes continuous time,

to corresponds to k=0, and t; corresponds to k=n,
t; = to+ndt

For given value of n, let [W(")(t), toS t < t; } denote a piece-wise constant
Gaussian white sequence. Keeping t, fixed while increasing n such that
nlt=t, - to is constant, the nature of { W®(t), toS t< t, Jasn~ @ and
At > 0 is considered,

As proved in [Meditch, 1969], the Gaussian white process

im (W), ostst}

(W), tostst, ) = 1
n-2>«

as described above, where the covariance matrix Q(to + i At) = Q(i), i=0, 1,
..., n-1, is to be replaced by Q(t)/At in taking limits where t corresponds to

the time point i and Q(t) = Q(i). Then Alti_r)no %tg is understood in the sense

that the quantity dealt with is defined over an interval of width At, and in the
limit as At 2 0, the function which is1/At over the interval At and zero

elsewhere becomes the dirac delta function, giving
ELIW@) - W] [W(T) - Wa(m1'} = Q(t) 6(t-7)

forallt, T = to.

6. Probabilistic Description of System Dynamics

The probabilistic nature of state noise and its constribution to the
evolution of the state makes the study of probabilistic description of the state

model imperative.

6.1 Evolution of State in Presence of White Noisc

As indicated earlier, cquation (B 24) can be rewritten in the form



t+At
S (t+AtL, t) X(t) + f S t+At, T) G(T)W(T)dT =
t

i

X (t+At)

il

Q(t+At, t) X(t) + T (t+At, t) W(t) (B 26)

under the assumption that W(T) = W(t) = constant for t < T < t+At., Treating
the noise process (W(T), t< T < t+At} to be the limit of a sequence, as
described above, W(t) in (B 26) can be replaced by a member of the sequence
W(")(t). Further, ® (t+At, t) expanded around t in a Taylor series up to

linear terms yields

S(t+At, ) - B, t) + Bet, ) At = 1+ At) At (B27)
Also,
t+At
Ti+At, t)y = [ D (t+At, T)G(T)dT -~ G(t) At (B28)
;

{ With these simplifications, equation (B 26) can be written as

T(t+At) = [I+A(t) At] X(t) + Gt) W™ (1) At
This can further be written in the form of a difference equation as
; X(L+A) - X(t) = A I() At + G(H) Wty At (B 29)

Now let W(t) be a Gaussian white process with the mean E [W(t) } o= Wa(t)

! and covariance kernel

E {[W(t) - Wo)] [W(T) - We(T)I' } — Q(ty 8¢t - T) (B 30)

where Q(t) is a continuous semidefinite n X n matrix, and 6(t - T) the dirac
delta function, Now dividing (B29) by At, and taking the limit At > 0, leads

to the continuous lincar system
X - AT+ G(t) W(t) (B31)

Now let X (to) be a Gaussian random n vector which is independent of [W(t),

t = to } and has mean Xz(to) and positive semidefinite n X n covariance matrix
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E {[X(to) - Xal(to)] [X(to) - Xa(td)]"] = Poto) (B32)
As a consequence of the assumption of independence,

E {[X(to) - Ru(to)] [W(t) - Wat)]'} = © (B33)
for all t = to.

To examine the nature of {i(t), t = to }, the solution of (B 31) can be written as
to
X(t) = Pty toey) X(te-1) + f ®(te, T) G(T) W(T) AT (B34)

tm—-l

Thus, for t, > te-1 = to, the probability law describing the process X (t) in the
future (i.e., at time t;) depends only on the present value the process assumes
(i.e., at t-;) and is completely independent of the behavior of the process in
the past. Therefore, the process X (t) is a Markov process.

Further, if X (to) is a Gaussian random n vector, then it can be
deduced that

x ®t), n=1,2, ...

is also a Gaussian random vector [Meditch, 1969]. Thus X (t) is a Gauss-

Markov process. Taking expectations of (B31),
% = E{X] = A@t)% + G(t) Wa(t) (B 35)

for t = to and subject to initial condition X ().

6.2 Evolution of State Covariance Matrix in Presence of White Noise

An expression is now obtained for

Pty  E {[X(t) - Ka(t)] [X(V) - Rul(t)]}
From (B 26)

Xk+1) - dEk+1, k)X(k + I'(k+1, k) W(k) (B23)
from which it is clear that

X@+n PG+, DXG TG D) W) (B 36)
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and

"

X(+2) QG+2, j+1XI+Y) + T(+2, j+1) W(§i+1)
Therefore,

X(G+2) = @(@+2, i+ [0+, DO + T (G+1, jHWE 1 +
+ T(+2, j+1)W(G+1)

AE.”]
= d(G+2, §)X(@) + E ®g+2, )T, i-1) W(i-1)
1= $+1 (B37)

Following the above recursive relation,

X
Xk - @k, HXG + Z @k, i) (i, i-1) W(i-1) (B38)
1= §+1
It is clear that for W(i -1, i =1, ..., k, Gaussian, X (k) is Gauss-Markov,

From (B 26), taking expectations,
Xakt1) = @(k+1, k) Xa(k) + T(k+1), k) Wa(k) (B 39)

for k € I, the set of integers. If X,(0) and Wy(k), k € I are given, (B 39)

becomes a recursive relation for the mean of the sequence, Now
Pk+1) = E {[X(k+1]) - Kok + D] [X(k+1) - Xe(k +1)]"}
E({®k+1, k) [X® - k)] + T(k+ 1, k) [ W(K)

- Wa(k) ]}
{@k+1, k) [X(k) - Xu(k)] + T (k+1, k) [ W(k) - Wa(k)} }")

k1, k) Pk) P (k+1, k) + ®(k+1, k) E{[XK - Ku(k)]
[W(k) - Wa)]'} Tk +1, k) + T(k+1, k) E{[WK) - Wa(k))
[XK) - Xe®)]'} @T (k+1, k) + T(k+1, k) Qk) T "(k+ 1, k)
(B11)
To evaluate the middle terms in the above, (B39) is subtracted from (B 26)
to give
X(ktl) - x(k41) k1, K [X(K) - Xy(k)]
b Tk 1, k) [W(k) - We(k)] (B 12)
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Let
Xk = TR -%ek) and Wk = W) - Wak)

Then
X(k+1) = ®k+1, k)X(k) + Dk+1, k) Wk) fork=0, 1, ...

Setting j = 0 in equation (B 38),
k
k) = Pk, 0)X(0) + Z dk, i) (i, i-1)W(i-1) (B43)
=1

In analogy to (B 43)

k

K = @k, 0)%(0) +Z &k, i) T(i, i-1) W(i-1)
=1

and, therefore,

E[Xk) W'k = @k, 0)E[X(©0) W (k) +
x
+Z ®(k, i) T'(i, i-1) E[ W(i-1) ¥ (k)]
=1
W(k), k=0, 1, ... is a zero mean Gaussian white sequence independent of the

zero mean Gaussian random n vector X (0), i.e.,

E[X® W (k)] - 0
and
E{Wi-nW'g) = 0, i-1#k

Therefore, reverting to (B 41)

Pk+1) = ®k+1, k) P(k) P (k+1, k) +

+ T(k+1, k) Qk) I''(k+1, k) fork = 0, 1, .
(B 44)

This equation gives the evolution of the covariance matrix for the discrete

version of the stochastic process,
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If t corresponds to time pointk and t+Atto k+1 with At > 0, and
considering that the analog of Q(k) for the continuous case needs to be

obtained as Q(t)/At [Meditch, 1969], we have
P(t+At) = @(t+At, t) Pt)®" (t+At, t) +
+ Dt +At, t)%(? T (t+At, t)

Substituting for @ (t+At, t) and I" (t+At, t) and expanding as in equations (b27)
and (B 28),

I

P(t+At) [I+A(H)At] Pt) [I+A) At]" + [G(t)At] %(tg[(;(t) At =
P(t) + A(t) P(t)At + P(t) A'¢t)At

+ G(t) Q(t) G'(t) At

Transposing P(t) to the left and taking the limit as At = 0 gives the matrix
differential equation

P = A(t)P + PA(t) + G(t) Q) G'(t) for t= to (B45)

with the initial condition P(ts). This equation describes how uncertainty

propagates in the system dynamics. The solution of this is of the form

t
P(t) = @(t, to) P(to) ®'(t, to) +f¢(t, T)G(T) QT) G(T) @'(t, T)dT
to (B46)

Equation (B 46) is not of much use in the numerical computation of P(t) in
general, as ®(t, T) needs to be determined first. The numerical integra-
tion of (B 45) is preferred to evaluate P(t). The last term in the right member

of (B46) represents the contribution of state noise to P(t).

7. Probabilistic Description of Measurements

Recalling the observation state relation in the form

V() - H(t) X(t) + V(t) fort 2 to (B47)
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as in normal adjustment procedures, it is assumed that the measurement
error V(t), t 2 to is p~-dimensional white noise with E {V(t) } = 0 and has

covariance
E{{[VeNIV(TN'}] = R@)b6t-T) forallt, T 2t (B48)

R(t) is continuous and positive definite,

8. Classical Sequential Estimation

With the mathematical details given above, the next step is to take up
the problem of estimation. The models used in the experiment are special
cases of the formulations studied above. In classical sequential estimation,
noise is compensated for only as indicated in Section 4.1, and no effort is
made to model the parameters of the state noise. This estimation procedure
has been given here though not used specifically in this study since the pro-
cedure for adaptive filtering follows from this procedure and clarifies the
concepts underlying the Kalman filter algorithms.

With G(t) taken as an identity matrix, the linear first-order differ-

ential equation for the state deviation in (B 6) becomes
X(t) = A®)X(t) + Wt) (B49)

It is assumed that t 2 to, the initial state X(to) = %o, and the state noise Wi(t)

is an nn-vector with the properties
E{Wty] = o, E{W@t) W(s) ] = Q) b(t-s)

where Q(t) is the known n Xn covariance matrix of state noise, Xo
will not be perfectly known, and consequently the true solution X(t) will differ
from the nominal solution X * (t) obtained with a specified initial state Xs.
As a result, observations are taken to improve the estimate of f(t).

The observation vector Y,, at discrete times t;, is related to the
state by the functional form Yy = O(Xy, t)+ Vs, i1, ..., k-1, k.

-\7, is the p-vector of observation errors with properties
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E{V =0 E{VV,"} = Ri6y, E{X¢t)V,%} = o

Ry is a positive definite matrix which is assumed to be known. Linearization
.
around the computed observation with respect to the nominal state X (t),

yields the linear form

Tat) = HiX + V, (B 50)
where
. (30
s (5%
X,

which corresponds to equation (B47) given earlier.
The solution of (B 49) as seen from equation (B 34) is of the form
t
X(t) = Pt to) X(to) +f &, ) W(T) dr (B51)
to

To commence the estimation, say, from a discrete time t.-,, the nominal state
o ¥ . L. A . . .
X (t-1) and estimate of deviation X (tx-1) are provided at time t.-,, along with

an associated n X n conditional covariance matrix of the state
: -« Gl 'A' o ‘A'T T
Per - E{(Femr - Ried) (Reer - e ! T (B52)

where Yi_, implies conditioning on all observations from Y, through Yi-1.
With this understanding f’k-l can be denoted by f’(k -1/k-1) and .‘:{k_l by
Si(k -1/k-1). To commence the algorithm at k = 1, the initial estimates of
i’o, even before the first observation vector is processed, is needed. In this
study these estimates have been taken from the analvses in Chapter 1.
Similarly for k - 1, the initial estimate of the state i’o is taken from
the broadcast ephemeris.
Commencing at an arbitrary discrete time t-y, a procedure is con-
sidered for utilizing the observations Y, at the next discrete time 4 to improve

the estimate of the state, This is done in the tollowing steps:
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Step 1:

Given the nominal state X * (t,-1) and the deviation % (te-1)

X* = FEYH Y, Tt = R (tees)
and
dk, k-1) = AK) Pk, k-1), ®k-1,k-1) = I

are integrated numerically, The solutions will yield X *(tk) and ®(k, k-1).
The predicted state deviation

R(k/k-1) = (K k-1) x(k-1/k-1) (B53)

is then computed based on the concept of propagation of the mean, given

in equation (B 39).

Step 2:
The predicted error covariance matrix of the state f’(k/k- 1) is com-

puted from

Pk/k-1) = &K/k-1) Pk-1/k-1) &'&/k- 1) + QK)
where
te

QK) =€/'¢<tk.-r)Q(r>¢*<tk, Tydr
k-1 vide equation (B 46)

Analytical expressions for this have been derived in [Myers, 1973].

Step 3:

The observation vector 7(tk) is now processed for estimation by first

computing the observational deviation

7.o0= Y.  -o(X* +XE&/k-1 4

Yt o - Oy XKD (B34)
and the associated H (t) matrix for the observation state relation

vy = H Xk +V

Yt X T Vi (B55)
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in which X(k/k) and V (%) are the unknown state deviation and the observational

error. Let H(tk) be denoted as H(k) and ‘V(tk) as ?(k).

Under the assumption that the estimate is a linear function of observa-
tions, and using the principle of minimum variance of the estimate as in
normal least squares procedures, the following expression for the estimate of

state at step k, after processing cbservations at t,, is obtained

i(k/k) = i(k/k -1) + Kk) [y H(k) ﬁ(k -1/k-1)] (B 56)

k)
where K(k) is the n x p Kalman gain matrix given by

K, = P&/k-1)H

® , T+t R T (B57)

(k (k)P(k/k -1) H k) (k)

This matrix is also called the filter gain. Tn (B 57) the matrix to be inverted is
of size p x p, the number of observations at t,. The observation cova: iance
matrix R(k) is assumed to be positive definite to ensure that the matrix in the
brackets can be inverted. The new estimate of the state at t, is

= _ T 2
Xty = X (o T XM

Step 4:

The new error covariance of the state based on the observations up to

and including Y,, . will be
G k)

Pk/k)y = [I - K k)} P(k/k-1) (B58)

H
(k) (
and the algorithm is repeated for the next observation at ty+;. To minimize

the linearization errors, the current best estimate of the state is reinitialized

as the nominal state vector for the next step. This procedure makes

% <* £k
g P XK

the reinitialized nominal state for the next step, setting state deviation in

Step 1 above to zero. This also simplifies computations,
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It can be seen that the above estimation procedure which is at times
known as first-order, nonadaptive filtering procedure with state noise com-
pensation is very similar to a normal sequential least squares procedure, as
applied to a dynamic situation. The inclusion of state noise is comparable to
the procedure of weighting parameters in a solution. For example, we can
compare equation (B 55) above to equation (27) of [Uotila, 1975]. This pro-
cedure treats state noise as a white noise process and takes cognizance of it

in the adjustment procedure by assuming its statistical properties.
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