DOE/NASA CONTRACTOR REPORT

DOE/NASA CR-150509

THERMAL PERFORMANCE EVALUATION OF SOLAR ENERGY PRODUCTS COMPANY (SEPCO) "SOLORON" COLLECTOR TESTED OUTDOORS

Prepared by Wyle Laboratories, Solar Energy Systems Division, Huntsville, Ala. Under sub-contract with

IBM Corporation Federal Systems Division Huntsville, Alabama 35805

Contract NAS8-32036

(NASA-CR-150509)

National Aeronautics and Space Administration. George C. Marshall Space Flight Center, Alabama 35812

THERMAL FERFORMANCE

U.S. Department of Energy

EVALUATION OF SOLAR ENERGY PRODUCTS COMPANY (SEPCO) 'SOLORON' COLLECTOR TESTED OUTDOORS

(Wyle Labs., Inc.) 91 p HC AC5/MF A01

for the U.S. Department of Energy

CSCL 10A G3/44

N78-17478

Unclas

05671

NOTICE

.

. •

•

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agents the United States Department of Energy, the United States National Aeronautics and Space Administration, nor any federal employees, nor any of their contractors, subcontractors or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately owned rights.

		NICAL REPORT STANDA	41.00 10
DOE/NASA CR 150509	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CAT	ALUG NU.
DOE/ NABA CR 150509	1	5. REPORT DATE	
Thermal Performance Evaluation	on of Solar Energy Products	November 19	
Company (SEPCO) "Soloron" C	֥	6. PERFORMING ORG	
J. AUTHOR(S) J. Chiou		8. PERFORMING ORGA WYLE TR-53	
PERFORMING ORGANIZATION NAME AND AD	DRESS	10. WORK UNIT NO.	
Wyle Laboratories Scientific Services and Systems	s Group, Solar Energy Sys Div	11. CONTRACT OR GR NAS8-32036	ANT NO.
Huntsville, Alabama 35805		13. TYPE OF REPORT	& PERIOD COVER
2. SPONSORING AGENCY NAME AND ADDRESS	5		onent
National Aeronautics and Space	Administration	Contractor R	eport
Washington, D. C. 20546		14. SPONSORING AG	ENCY CODE
15. SUPPLEMENTARY NOTES		l	<u> </u>
	the technical supervision of C	harles N. Thomas, M	Aarshall Space
16, ABSTRACT		······	
conducted to determine the per	formance of a Soloron solar o	collector. The test a	rucie, model
EF-212, Serial Nr. 002, is a s flowing air as the heat transfer the insulation is one inch Isocy Hr. ⁰ /Ft. The tests included the a. Time constant tes b. Collector efficie c. Collector Stagnat d. Incident angle mo e. Load test f. Weathering test	single glazed collector with a c medium. The absorber plat anurate foam board with there e following: st ncy test tion test odifier test	nonselective absorbe: e and box frame are a nal conductivity of 0.	r plate using aluminum and 11 BTU/Ft ²
EF-212, Serial Nr. 002, is a s flowing air as the heat transfer the insulation is one inch Isocy Hr. ⁰ /Ft. The tests included the a. Time constant tes b. Collector efficien c. Collector Stagnat d. Incident angle mo e. Load test f. Weathering test g. Absorber plate o	single glazed collector with a c medium. The absorber plat anurate foam board with there e following: st ncy test tion test odifier test	nonselective absorbes e and box frame are a mal conductivity of 0. vise recorded in this	r plate using aluminum and 11 BTU/Ft ²
EF-212, Serial Nr. 002, is a s flowing air as the heat transfer the insulation is one inch Isocy Hr. ⁰ /Ft. The tests included the a. Time constant tes b. Collector efficience c. Collector Stagnand d. Incident angle mode e. Load test f. Weathering test g. Absorber plate of The results of these tests are t	single glazed collector with a r medium. The absorber plat anurate foam board with there e following: st ncy test tion test odifier test odifier test optical properties test. tabulated, graphed, or otherw	nonselective absorbes e and box frame are a mal conductivity of 0. vise recorded in this	r plate using aluminum and 11 BTU/Ft ²
EF-212, Serial Nr. 002, is a s flowing air as the heat transfer the insulation is one inch Isocy Hr. ⁰ /Ft. The tests included the a. Time constant tes b. Collector efficience c. Collector Stagnand d. Incident angle mode e. Load test f. Weathering test g. Absorber plate of The results of these tests are t	single glazed collector with a r medium. The absorber plat anurate foam board with there e following: st ncy test tion test odifier test odifier test optical properties test. tabulated, graphed, or otherw	nonselective absorbe: e and box frame are a mal conductivity of 0. vise recorded in this	r plate using aluminum and 11 BTU/Ft ²
EF-212, Serial Nr. 002, is a s flowing air as the heat transfer the insulation is one inch Isocy Hr. ⁰ /Ft. The tests included the a. Time constant tes b. Collector efficience c. Collector Stagnand d. Incident angle mode e. Load test f. Weathering test g. Absorber plate of The results of these tests are t	single glazed collector with a r medium. The absorber plat anurate foam board with there e following: st ncy test tion test odifier test odifier test optical properties test. tabulated, graphed, or otherw	nonselective absorbe: e and box frame are a mal conductivity of 0. vise recorded in this	r plate using aluminum and 11 BTU/Ft ²
EF-212, Serial Nr. 002, is a s flowing air as the heat transfer the insulation is one inch Isocy Hr. ⁰ /Ft. The tests included the a. Time constant tes b. Collector efficience c. Collector Stagnand d. Incident angle mode e. Load test f. Weathering test g. Absorber plate of The results of these tests are t	single glazed collector with a r medium. The absorber plat anurate foam board with there e following: st ncy test tion test odifier test optical properties test. tabulated, graphed, or otherw	nonselective absorbe: e and box frame are a mal conductivity of 0. vise recorded in this	r plate using aluminum and 11 BTU/Ft ²
EF-212, Serial Nr. 002, is a s flowing air as the heat transfer the insulation is one inch Isocy Hr. ⁰ /Ft. The tests included the a. Time constant tes b. Collector efficience c. Collector Stagnand d. Incident angle mode e. Load test f. Weathering test g. Absorber plate of The results of these tests are t	single glazed collector with a r medium. The absorber plat anurate foam board with there e following: st ncy test tion test odifier test optical properties test. tabulated, graphed, or otherw 18. DISTRIBUTH Unclass William Manager	nonselective absorbes e and box frame are a mal conductivity of 0. vise recorded in this on statement sified-Unlimited A. Brooksbank, Jr.	r plate using aluminum and 11 BTU/Ft ² report.
EF-212, Serial Nr. 002, is a s flowing air as the heat transfer the insulation is one inch Isocy. Hr. ⁰ /Ft. The tests included the a. Time constant tes b. Collector efficience. Collector Stagnate d. Incident angle modeler. Load test f. Weathering test g. Absorber plate of The results of these tests are to 17. k/E/////9/5/	single glazed collector with a r medium. The absorber plat anurate foam board with there e following: st ncy test tion test odifier test optical properties test. tabulated, graphed, or otherw 18. DISTRIBUTH Unclass William Manager Solar He	nonselective absorber e and box frame are a mal conductivity of 0. vise recorded in this on statement sified-Unlimited A. Brooksbank, Jr. ating & Cooling Pro	r plate using aluminum and 11 BTU/Ft ² · report.
EF-212, Serial Nr. 002, is a s flowing air as the heat transfer the insulation is one inch Isocy Hr. ⁰ /Ft. The tests included the a. Time constant tes b. Collector efficience c. Collector Stagnand d. Incident angle mode e. Load test f. Weathering test g. Absorber plate of The results of these tests are t	single glazed collector with a r medium. The absorber plat anurate foam board with there e following: st ncy test tion test odifier test optical properties test. tabulated, graphed, or otherw 18. DISTRIBUTH Unclass William Manager	nonselective absorber e and box frame are a mal conductivity of 0. vise recorded in this on statement sified-Unlimited A. Brooksbank, Jr. ating & Cooling Pro	r plate using aluminum and 11 BTU/Ft ² · report.

•

.

TABLE OF CONTENTS

•

	-	<u>Page Number</u>
1.0	PURPOSE	1
2.0	REFERENCES	1
3.0	MANUFACTURER	1
8	3.1 Description of Test Specimen	1
4.0	SUMMARY	2
5.0	TEST CONDITIONS AND TEST EQUIPMENT	3 ·
	5.1 Ambient Conditions 5.2 Instrumentation and Equipment	3 3
6.0	TEST REQUIREMENTS AND PROCEDURES	5
	 6.1 Collector Time Constant Test 6.2 Collector Efficiency Test 6.3 Incident Angle Modifier Test 6.4 Collector Stagnation Test 6.5 Collector Optical Properties Test 6.6 Collector Load Test 6.7 Collector Weathering Test 	5 7 10 12 14 15 17
FIGURE 1	Typical Collector Mounting Arrangement	` 1 9
FIGURE 2	Load Test Arrangement	20
FIGURE 3	Stagnation Test Port Assembly	21
FIGURE 4	Air Flow and Measurement Points	22
FIGURE 5	Instrumentation Readout Locations	23
FIGURE 6	Sketch of Test Setup	24
FIGURE 7	Plan and Sectional Views of SEPCO Collector	25
FIGURE 8	Efficiency Curves	26
FIGURE 9	Efficiency Curves	27
FIGURE 10	Incident Angle Modifier vs. Incident Angle	28
FIGURE 11	Incident Angle Modifier	29

TABLE OF CONTENTS (Continued)

•

	· · ·
	Page Number
TABLE I Service Load Steps	30
TABLE II Measurement Techniques	31
TABLE III Test Data and Results for SER	PCO Efficiency Test 32
TABLE IV Test Data and Results for SEI Modifier Test	PCO Incident Angle 36
PHOTOGRAPH 1 Outdoor Air Collector Test	t Setup 38
PHOTOGRAPH 2 Data Acquisition System O	utdoor Collector Test 39
APPENDIX I Test Data Sheets	40
APPENDIX II Weather Conditions	82
-	

1.0 PURPOSE

The purpose of this documentation is to present the test results obtained during the performance of an evaluation test program. The evaluation test program was conducted to determine the conformance of a Soloron solar collector to the evaluation requirements specified in Reference 2.5 in accordance with Reference 2.7.

2:0	REFERENCES

- 2.1 NBS TECH NOTE 899 Development of Proposed Standards for Testing Solar Collectors and Thermal Storage Devices
 2.2 ASHRAE 93-P Method of Testing Solar Collectors Based on Thermal Performance
- 2.3 (TBD) Procedure for Operating the MSFC Hot Air Loop
- 2.4 Contract No.: NAS8-32036
- 2.5 IBM-K42-76-008 Test Evaluation Plan for Solar Energy Products Solar Collectors
- 2.6 MSFC MMI 5300.4C Metrology and Calibration
- 2.7 MTCP-DC-SHAC-405 Test Procedure for Thermal Performance Evaluation of Solar Energy Products Company (SEPCO) "Soloron" Collector
- 3.0 MANUFACTURER

Solar Energy Products Company 121 Miller Road Avon Lake, Ohio 44012

3.1 DESCRIPTION OF TEST SPECIMEN

The test article, a Soloron solar collector, Model EF-212, Serial Number 002, is a single glazed collector with a nonselective absorber plate utilizing flowing air as the heat transfer medium. The absorber plate and box frame are aluminum and the insulation is one inch Isocyanurate foam board with thermal conductivity of 0.11 BTU/Ft².Hr.°F/Ft. The collector measures 25 1/8 inches by 146 3/4 inches by 3 5/16 inches, provides 25.6 square feet of solar collector surface area and weighs 65 pounds. Figure 1 depicts a plan and sectional view of the collector.

4.0 SUMMARY

In accordance with References 2.5 and 2.7, a series of <u>tests</u> were conducted to evaluate the thermal performance of a Model EF-21? Soloron solar collector. These tests included the following:

- a. Time Constant Test
- b. Collector Efficiency Test
- c. Collector Stagnation Test
- d. Incident Angle Modifier Test
- e. Load Test
- f. Weathering Test
- g. Absorber Plate Optical Properties Test

Data sheets for all tests are included in Appendix I. The time constant was determined to be 4 minutes and 30 seconds. Figures 8 and 9 depict collector efficiency curves for 2 SCFM and 5 SCFM per square foot of collector surface. Incident angle modifier data are shown in Figures 10 and 11. Stagnation test data are located in Paragraph 6.4.3 and the results of the optical properties test are contained in Paragraph 6.5.3. The collector was subjected to loads of up to 120 pounds per square feet with no apparent damage or leakage. (See Paragraph 6.6.3). The weathering test was conducted from December 1976 through April 1977. The only apparent deficiency noted during this test was a shrinking and separation of the trim from the frame. Weather conditions during this period were recorded and are presented in Appendix II. Detailed data which formed the basis for all analyzes concerning these tests are presented in Appendix I.

® ®

5.0 TEST CONDITIONS AND TEST EQUIPMENT

ORIGINAL PAGE IS OF POOR QUALITY

5.1 <u>Ambient Conditions</u>

.

.

Unless otherwise specified herein, all tests were performed in the existing natural environment. The solar noon during the period of this test was at 11:47 Central Standard Time.

5.2 Instrumentation and Equipment

All test equipment and instrumentation used in the performance of this test program comply with the requirements of MSFC MMI 5300.4C, Metrology and Calibration. Instrumentation sensor and readout locations are indicated in Figures 4 and 5 respectively. (B) The four channel strip data recorder setup procedures are contained in Appendix II of Peference 2.7. Pictures of test setup and test equipment are shown in Photographs 1 and 2. A listing of the equipment used in each test follows:

Collector Time Constant Test

Apparatus	Manufacturer/Model	Range/Accuracy	
Collector Shield Pyranometer Air Source Thermopile Thermocouples Wind Sensor Strip Chart Recorder Flow Converter Flow Sensor Ice Bath Test Stand Differential	Medtherm Medtherm MSFC Supplied Hewlett-Packard Foxboro Cox-Turbine C-L-32 MSFC Supplied MSFC Supplied	0 - 400 CFM +1% 20-250 ACFM +2% N/A N/A	8
Pressure Sensor	MSFC Supplied	0 - 2 in. H ₂ 0 <u>+</u> 5%	
Collector Ef	ficiency Test		
<u>Apparatus</u>	Manufacturer/Model	Range/Accuracy	
Pyranometer Air Source Thermopile Thermocouples Wind Sensor Strip Chart Recorder Flow Converter Flow Sensor Ice Bath Test Stand Differential	MSFC Supplied		Ø
	MSFC Supplied	0-2 in. H ₂ 0 <u>+</u> 5%	

.

3

5.0 TEST CONDITIONS AND TEST EQUIPMENT (Continued)

5.2 <u>Instrumentation and Equipment</u> (Continued)

Incident Angle Modifier Test

-		
<u>Apparatus</u>	<u>Manufacturer/Model</u>	Range/Accuracy
Pyranometer Air Source Thermopile Thermocouples Wind Sensor Strip Chart Recorder Flow Converter Flow Sensor Ice Bath Test Stand Differential Pressure Sensor	MSFC Supplied	0-400 BTU/Hr·Ft ² / <u>+</u> 10% 50 - 200 SCFM 0-20°F/ <u>+</u> 0.05°F 32°-200°F/ <u>+</u> 0.1°F 0 - 60 MPH 5 v-10v/ <u>+</u> 0.5% 0 - 400 CFM <u>+</u> 1% 20-250 ACFM <u>+</u> 2% N/A N/A 0-2 in. H ₂ 0
Collector Stagnation Test		
Apparatus	Manufacturer/Model	Range/Accuracy
Pyranometer	Eppley	0-400 BTU/Hr.Ft ² /+10%

Pyranometer Thermocouples Test Stand

.

.

Eppley Medtherm MSFC Supplied 0-400 BTU/Hr·Ft²/<u>+</u>10% 32°-200°F/<u>+</u>0.1°F

Collector Optical Properties Test			
Apparatus	Manufacturer/Model	Range/Accuracy	
Mobile Solar Reflectometer Infrared Reflect-	Gier Dunkle Instru- ments/MS 251 Gier Dunkle Instru-	0-100%/ <u>+</u> 2%	
. ometer	ments/DD100	0-100%/ <u>+</u> 2%	

Collector Load Test

Not applicable.

Collector Weathering Test

Not applicable.

6.0 TEST REQUIREMENTS AND PROCEDURES

Data obtained for each test is denoted in the results section. Some data is evaluated through the use of a SR-52 calculator. Program documentation is found in Appendix II of Reference 2.7, and program use is explained in Table III.

6.1 <u>Collector Time Constant Test</u>

6.1.1 <u>Performance Criteria Requirements</u>

The collector shall be mounted and insulated in such a way that the back and edge losses will be characteristic of those that will occur during operation on a structure. (See Figure 1.) The total solar flux shall be continuously greater than 250 $BTU/Hr \cdot Ft^2$ and data taken only during a "quasi-steady state" condition. The collector time constant shall be determined by abruptly reducing the solar flux to zero through shading. This will be done with the inlet temperature adjusted to within 2°F of ambient while the air is circulating at 48 ± 3 SCFM. The differential temperature across the collector shall be monitored to determine the time (t) required to reach the condition of:

$$\frac{\Delta T(t)}{\Delta T_0} < 0.30$$

where T(t) is the differential temperature after shading and ΔT_{o} is the differential temperature prior to shading.

- 6.1.2 <u>Test Procedure</u>
 - 1. Adjust the air flow rate to 48 ±3 SCFM.
 - 2. Adjust the inlet temperature to ambient [±]2°F.
 - 3. Determine the corresponding SCFM value through temperature and pressure compensation.
 - 4. Readjust the air flow and redetermine the SCFM value until the SCFM value is 48 ±3 SCFM.
 - 5. Allow the system to stabilize to a "quasi-steady state" condition (approximately 20 minutes).
 - 6. Reduce the solar flux to zero by shading the collector from the sun.

- 6.1.2 <u>Test Procedure</u> (Continued)
 - 7. Continuously monitor and record the differential temperature until the ratio of $(\Delta T(t)/\Delta T_0)$ is less than 0.30 where $\Delta T(t)$ represents the differential temperature as a function of time referenced to the time of shading, and ΔT_0 is the constant differential temperature prior to shading.

6.1.3 Results

- The "time constant" is defined as the time required for

$$\frac{F_{R}U_{L}(t_{f,i}-t_{a}) + \frac{mCp}{A} \Delta T(t)}{F_{R}U_{L}(t_{f,i}-t_{a}) + \frac{mCp}{A} \Delta T_{0}} = 0.368$$

where

FR: Solar heat removal factor

UL: Solar collector transfer loss coefficient

from Section 6.3.3

 $F_{R}U_{L} = 0.96$

from test data (See data sheet in Appendix I.) —

$$\frac{\text{mCp}}{\Delta}$$
 = 0.0423 x 49.5 = 2.094 BTU/Hr·Ft²·°F

 $\Delta T_0 = 57^{\circ}$ F, air inlet temperature ^tf,i = 98.2°F, an**d** from above equation as

$$\Delta T(t) = 0.368 T_0 - \frac{0.632A}{mCp} FRUL (t_{f,i}-t_a) = 17.7^{\circ}F$$

From the strip chart recorder, this happened at 4 minutes and 30 seconds after shading. Hence, the time constant is 4 minutes and 30 seconds.

ORIGINAL PAGE IS OF POOR QUALITY

6.2 Collector Efficiency Test

6.2.1 Performance Criteria Requirements

The collector to be tested shall be pre-conditioned prior to initiation of the Test. Pre-conditioning shall consist of stagnation heat in a non-operational mode for three cumulative days in which the incident solar radiation measured in the plane of the collector shall be a mean of 1500 $BTU/Ft^2/day$ (406 langleys). The tilt angle shall be 45°. The collector shall be mounted in a location such that there will be no significant energy reflected or reradiated onto the collector from surrounding buildings or any other surfaces in the vicinity of the test stand for the duration of the test (s). This requirement will be satisfied if the ground and immediately adjacent foreground surfaces are diffuse reflectors with a reflectivity of less than 0.20. If significant reflection can occur, provision shall be made to shield the collector by the use of a non-reflective shield. In addition, the test stand shall be located so that no shadow will be cast onto the collector by any obstruction at any time during the test period. The test shall be conducted at times having weather conditions such that the integrated average insolation measured in the plane of the collector or aperture, reported, and used for the computation of instantaneous efficiency values shall not be less than 315 W/m^2 (100 BTU/Hr·Ft²). The orientation of the collector shall be such that the incident angle (measured from the normal to the collector surface or aperture) is less than 30° during the period in which test data is being taken. The air velocity across the collector surface shall be measured and recorded as part of the test data. The velocity measurement shall be made at a distance of approximately 1 m (3.3 Ft.) from the collector, at a height corresponding to the mid-height of the collector, and at a location where the velocity sensor is not shielded from the wind and the sensor does not cast a shadow on the collector during the tests. The range of ambient temperatures for all reported test points comprising the "efficiency curve" shall be less than 30°C (86°F). Collector efficiency shall be determined at flow rates of 48 and 120 SCFM. The inlet temperature shall be maintained as close as attainable to 0, 25, 50, and 100°F above ambient for each flow rate.

6.2.1 <u>Performance Criteria Reguirements</u> (Continued)

At least four "data points" shall be taken for each value of inlet temperature-flow (tf,i); two during the time period preceding solar noon and two in the period following solar noon. The efficiency curve shall be established by data points that represent efficiency values determined by integrating the data over a time period equal to the time constant or 5 minutes, whichever is larger. The integrated value of incident solar energy will be divided into the integrated value of energy obtained from the collector to obtain the efficiency value for that instant.

6.2.2 <u>Test Procedures</u>

1. Establish the proper flowrate and inlet temperature (tf,i) for each test designation a thru j specified below.

·	Ambient °F	:Amb.	+10°F	Amb. +25°F	Amb. +50°F	Amb. +100°F
48 SCFM <u>+</u> 3	a	۲.	C	е	g	1
120 SCFM <u>+</u> 8	b		d	f	h	j

- 2. Continuously adjust the inlet temperature and flow rate to maintain the desired "data point" characteristics.
- 3. Continuously monitor and adjust the strip chart_recorder to obtain accurate, real-time recordings of wind velocity, ΔT , and solar flux.
- 4. Continue recording data from two (2) hours preceding solar noon to two (2) hours following solar noon.

6.2.3 Results

For the test interval of each efficiency "data point" the efficiency value is calculated using the equation

$$\mathcal{M} = \frac{\frac{\text{inCp}}{A} \sum_{z=1}^{z_2} \Delta T(z) dz}{\int_{z=1}^{z_2} I dz}$$

ORIGINAL PAGE IS OF POOR QUALITY

or alternately,

$$\mathcal{T} = \frac{\text{in Cp}}{A} \Delta \overline{T} / \frac{1}{T}$$

where

 $\Delta \overline{T} = \frac{1}{\overline{\tau^2 - \tau_j}} \int_{\overline{\tau_j}}^{\overline{\tau_j}} \Delta T(\tau) d\tau \text{ is the average differential temperature}$

6.2.3 <u>Results</u> (Continued)

across the collector during test interval

and

$$\overline{I} = \frac{1}{\overline{z} 2 - \overline{z} 1} \int_{\tau_1}^{\tau_2} I d_{\tau}$$
 is the average solar irradiation.

Due to the heat input to the system by the blower and the heat absorbed from the ambient, the inlet temperature at ambient temperature can not be obtained without a chiller. Hence, the tests were carried out for inlet temperatures at ambient plus 10°F, ambient plus 25°F, ambient plus 50°F and ambient plus 100°F.

The test data sheets are enclosed in Appendix I and tabulated in Table III. Flow rates of 48 SCFM and 120 SCFM, which corresponds to 2 SCFM and 5 SCFM per square foot of collector, were tested for each of 4 inlet temperatures stated above. Four (4) "data points" were taken for each inlet temperature; two during the time period preceding solar noon and two in the period following solar noon. Consequently, sixteen (16) data points were obtained for éach flow rate to establish the "efficiency curve". Figure 10 depicts plots of efficiency data against (ti+te - ta) /I

with second-order least-square fitting curves.

9

6.3 Incident Angle Modifier Test

6.3. Performance Criteria Requirements

The collector to be tested shall be pre-conditioned prior to initiation of the test. Pre-conditioning shall consist of stagnation heat in a non-operational mode for three cumulative days in which the incident solar radiation measured in the plane of the collector shall be a mean of 1500 BTU/Ft2/day (406 langleys). The tilt angle shall be 45°. The collector shall be mounted in a location such that there will be no significant energy reflected or re-radiated onto the collector from surrounding buildings or any other surfaces in the vicinity of the test stand for the duration of the test (s). This requirement will be satisfied if the ground and immediately adjacent foreground surfaces are diffuse reflectors with a reflectivity of less than 0.20. If significant reflection can occur, provision shall be made to shield the collector by the use of a non-reflective shield. In addition, the test stand shall be located so that no shadow will be cast onto the collector by any obstruction at any time during the test period. The test shall be conducted at times having weather conditions such that the integrated average insolation measured in the plane of the collector or aperture, reported, and used for the computation of instantaneous efficiency values shall be not less than 315 W/m^2 (100 BTU/Hr-Ft^2). The air velocity across the collector surface shall be measured and recorded as part of the test data. The velocity measurement-shall be made at a distance of approximately 1 m (3.3 ft) from the collector, at a height corresponding to the mid-height of the collector, and at a location where the velocity sensor is not shielded from the wind and the sensor does not cast a shadow on the collector during the tests. The range of ambient temperatures for all reported test points comprising the "efficiency curve" shall be less than 30°C (86°F). The incident angle modifier shall be determined at a flow rate of 48 ±3 SCFM with the temperature maintained as close as possible to ambient.

6.3.2 <u>Test Procedure</u>

- 1. Adjust the flow rate to 48 ±3 SCFM.
- 2. Adjust the inlet temperature to within $\pm 2^{\circ}$ F of the ambient temperature.
- 3. Continuously adjust the inlet temperature and flow rate to maintain 48 ±3 SCFM and ambient ±2°F, respectively.
- Continuously monitor and adjust the strip chart recorder to obtain accurate real-time recordings of wind velocity, AT, and solar flux.

6.3.2 <u>Test Procedure (Continued)</u>

.

- 5. The efficiency values are determined in three "pairs" where each "pair" includes a value of early in the day and a second value late in the day.
- 6. The data should be collected for average incident angles of approximately 45°, 60° and 75°.

.6.3.3 Results

During the time of this test program, incident angle of 75°, which is five hours before or after solar noon, does not have solar irradiation above 100 BTU/Hr·Ft² that is required for every efficiency test. Hence, data points were obtained for incident angles of 37.5°, 45°, 52.5° and 60°. The test data sheets are enclosed in Appendix I and tabulated in Table IV. The incident angle can be computed as

$$e_{,n} = \frac{\frac{\eta}{1} + \frac{F_{R}U_{L}(t_{i}-t_{a})}{I}}{F_{R}(2a)e_{,n}}$$

where

 $(\mathcal{C}d)$

FR : Solar heat removal factor

UL : Solar collector heat transfer loss coefficient

(Tλ)e,n : Effective transmissivity-absorptively factor at normal incidence

If the efficiency is plotted against $(T_{f,i}-T_{amb})/I$ (as shown in Figure 9) the negative of the efficiency slope will be equal to F_RU_L (A) and the y interception will be equal to $F_R(z_\lambda)e_n$.

Hence, at 48 SCFM

 $F_{\rm R}(\tau_{\rm A})e_{\rm n}=0.589$

 $F_{R}U_{L} = \frac{-.565 - .589}{.025 - 0.0} = 0.96 \text{ BTU/Hr} \cdot \text{Ft}^2 \cdot \text{°F}$

The efficiency at each incident angle were considered as the average of two data points which were collected at that particular incident angle, one in the period preceding solar noon and the other in the period following solar noon. The incident angle modifiers were computed using above mentioned efficiencies, $FR(\mathcal{I}_{\lambda})e$, n and FRUL value. The results were plotted against incident angle (\mathcal{O}_{λ}) in Figure 10. Alternately, a plot of incident angle modifier against (1 -1) and a linear least- $\cos(\mathcal{O}_{\lambda})$ square fitting curve were presented in Figure 11.

œ

6.4 <u>Collector Stagnation Test</u>

6.4.1 Performance Criteria Requirements

This test shall consist of exposure to ambient condition in a non-operational mode during a day in which the daily mean incident solar radiation measured in the plane of the collector shall be at least 1500 $BTU/Ft^2/day$. The exposure angle shall be the latitude angle, or the angle of test specified herein. The Collector shall be mounted in a location such that there will be no significant energy reflected or re-radiated onto the collector from surrounding buildings or any other surfaces in the vicinity of the test stand for the duration of the test (s). This requirement will be satisfied if the ground and immediately adjacent foreground surfaces are diffuse reflectors with a reflectivity of less than 0.20. If significant reflection can occur, provision shall be made to shield the collector by the use of a non-reflective shield. In addition, the test stand shall be located so that no shadow will be cast onto the collector by any obstruction at any time during the test period. The test shall be conducted at times having weather conditions such that the integrated average insolation measured in the plane of the collector or aperture, reported, and used for the computation of instantaneous efficiency values shall be not less than 315 W/m^2 (100 BTU/Hr-Ft²). The air velocity across the collector surface shall be measured and recorded as part of the test data. The velocity measurement shall be made at a distance of approximately 1 m (3.3 ft.) from the collector, at a height corresponding to the mid-height of the collector, and at a location where the velocity sensor is not shielded from the wind and the sensor does not cast a shadow on the collector during the tests. The range of ambient temperatures for reported test points comprising the "efficiency curve" shall be less than 30° (86°F). This test shall be performed in accordance with Section 5.1.1 of Reference 2.2.

6.4.2 Test Procedure

Record temperature data for a minimum of three consecutive days in which the incident solar radiation measured in the plane of the collector shall be a mean of 1500 $BTU/Ft^2/day$.

ORIGINAL PAGE IS OF POOR QUALITY

B

B)

6.0 TEST REQUIREMENTS AND PROCEDURES (Continued)

6.4.3 <u>Results</u>

 The results of this test are shown below:

 Collector Identification SEPCO Model EF-212, SN-002

 Date 4/19/77 Test Identification Collector Stagnation Test

 Observers J. Chiou, J. Dysart

 Collector Azimuth Angle 0°

 Collector Azimuth Angle 0°

	-
<u>243</u> <u>166</u>	(
81	(
1525 BTU/Ft ² day	
<u>190</u> BTU/Ft ² hr	
304 BTU/Ft ² hr	
	<u>81</u> <u>1525</u> BTU/Ft ² day <u>190</u> BTU/Ft ² hr

6.5 Collector Optical Properties Test

6.5.1 Performance Criteria Requirements

The optical properties of the solar collector shall be determined by MSFC personnel. A collector shall be disassembled by Wyle personnel and delivered to EH-34 for optical measurements. Collector optical measurements are addressed by Reference 2.2.

Test Procedures ·6.5.2 ·

> Collector Optical properties will be measured in accordance with standard procedures set up by MSFC measurement personnel.

6.5.3 Results

Test results are recorded below:

Collector Identification SEPCO Model EF-212, SN-002

Date 5/23/77 Test Identification Collector Optical Properties Test

Tested by B. Kennedy, EH-34 MSFC

	:	Emissivity	Absorptivity
l" sq. cut	from SEPCO panel	0.88	0.96

ORIGINAL PAGE IS OF POOR QUALITY

- 6.6 <u>Collector Load Test</u>
- 6.6.1 <u>Performance Criteria Requirements</u>

One solar collector shall be subjected to load testing. The specified load requirements are listed in Table I. The collector shall be mounted as indicated in Figure 2 but shall be oriented such that the glazing is horizontal. Uniform loads shall be applied by means of a transparent flexible diaphragm which can be covered with a uniform layer of transparent liquid of varying depths to obtain the desired load variations. If either breakage or leakage to the collector occurs before all six tests steps have been conducted, the load testing shall be discontinued. If it is determined that the failure is the result of a collector which is not representative of the vendor's normal product, the collector shall be replaced and the load test started over. If it is determined that the ultimate load capability of the collector has been reached, the load testing shall be terminated.

- 6.6.2 <u>Test Procedure</u>
 - 1. Mount the collector in the horizontal plane.
 - 2. Place the load frame with liner over the collector.
 - 3. Fill the load frame liner with water to a level corresponding to the Step 1 load of Table I and let stand for five minutes.
 - 4. Drain and remove the load frame.
 - 5. Flush the collector exposed surface with water and inspect for leaks.
 - 6. If the collector leaked or was damaged due to the load, record and indicate what the load level is.
 - 7. If the collector does not leak and is not damaged, record the load level and repeat steps 3 through 5 for the next load level.

6.6.3 <u>Results</u>

.

•

The results of this test are tabulated below

Service Load Steps

Step No.	Load (Lb/Ft ²)	Pass/Fail	Comments
1	10	pass	no leåkage
2	20	pa ss	no leakage
3	30	pass .	no leakage
4	50 ·	pass	no leakage
5	80	pass	no leakage
6	120	pass	no leakage

ORIGINAL PAGE IS OF POOR QUALITY

.

-

6.7 <u>Collector Weathering Test</u>

6.7.1 Performance Criteria Requirements

One solar collector shall be subjected to a weathering test.

The collector shall be subjected to long term exposure to sunlight and other weathering elements. The collector shall be exposed to the elements in the same manner as it will be during its service life so that the sides and bottom will be protected from the elements. The inlet and outlet ports of the collector shall be blocked to eliminate natural convection cooling. The ports shall be blocked with urethane foam with breathing tubes inserted as indicated in Figure 3. The collector shall face due south ± 5 degrees at a tilt angle from the horizontal plane of 45°.

The test shall be conducted over a one year period. The collectors shall be visually inspected at least monthly for evidence of collector deterioration. If examination shows evidence of gross collector deterioration which is considered capable of affecting collector performance, weather testing shall be discontinued and spectral tests conducted.

If the spectral parameters have changed by more than 10% of the values initially measured, performance testing shall be conducted. After these tests have been performed, the collector shall be returned to the weather testing status.

Daily records of weather conditions occurring in the proximity of the test collector shall be kept. Weather measurements shall include the following:

- Daily solar radiation total (BTU/Ft²/day)
- Daily temperature profile (high, low, average)
- Daily rain measurements (inches/day)
- Additional weather conditions such as hail, snow, exceptionally high winds shall be reported.

6.7.2 Test Procedure

Weathering tests for the collector shall be performed on test bed #1 of the breadboard facility located at the Marshall Space Flight Center. The necessary sequence of events are:

- 6.7.2 <u>Test Procedure</u> (Continued)
 - 1. Prepare the collector as described in test requirements.
 - 2. Mount the collector on test bed #1 in the manner that it would be installed on a building.
 - -3. Inspect the collector monthly for apparant deterioration.
 - 4. Obtain the necessary data from the National Weather Bureau located at the Huntsville Airport. This data is recorded hourly and summarized daily. Obtain only the daily summaries. Record this information on weathering data sheets.

6.7.3 RESULTS

The results of this test are tabulated monthly in the following pages. Due to the lack of facilities, total daily solar radiation was not recorded.

ORIGINAL PAGE IS OF POOR QUALITY

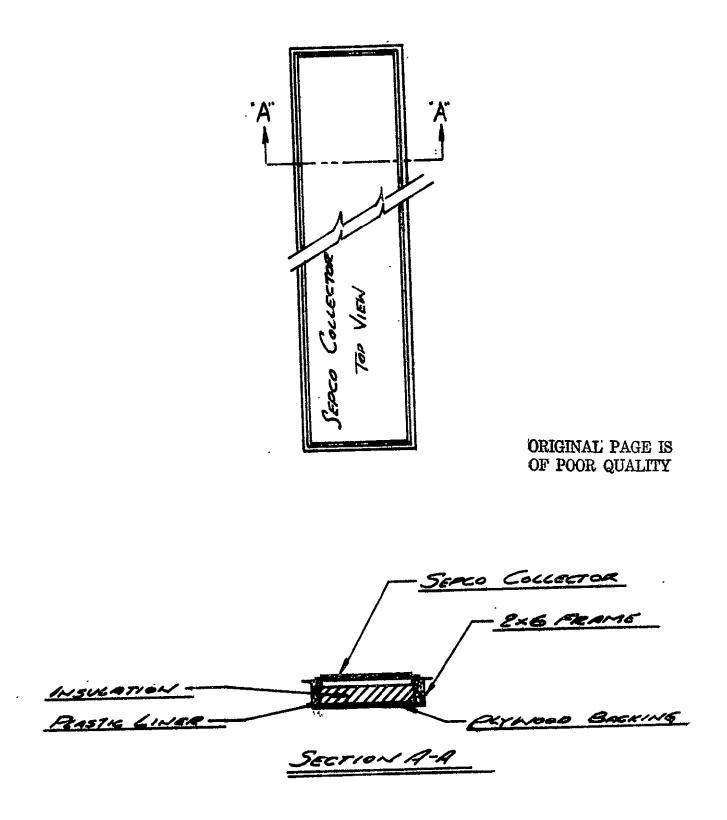
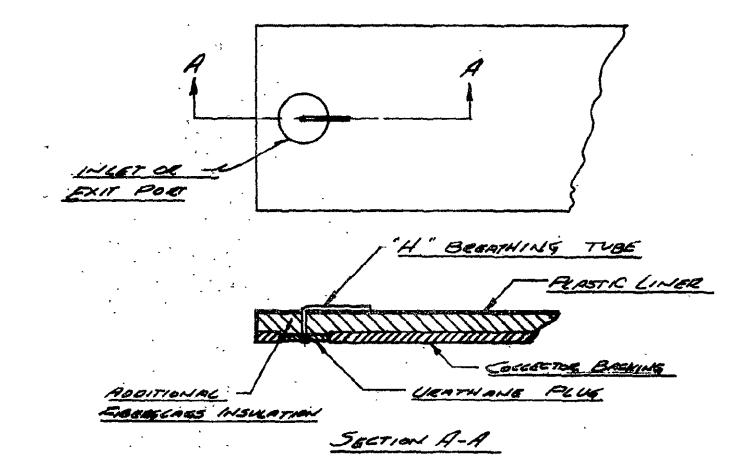



FIGURE 1. TYPICAL COLLECTOR MOUNTING ARRANGEMENT

Å FILL TO PROPER LEMEL 2x18 LOAD FRAME SEPEO COLLECTOR PX6 MOUNTING FRAME

FIGURE 2. LOAD TEST ARRANGEMENT

ORIGINAL PAGE IS OF POOR QUALITY

FIGULE 3. STAGNATION TEST FORT ASSEMBLY

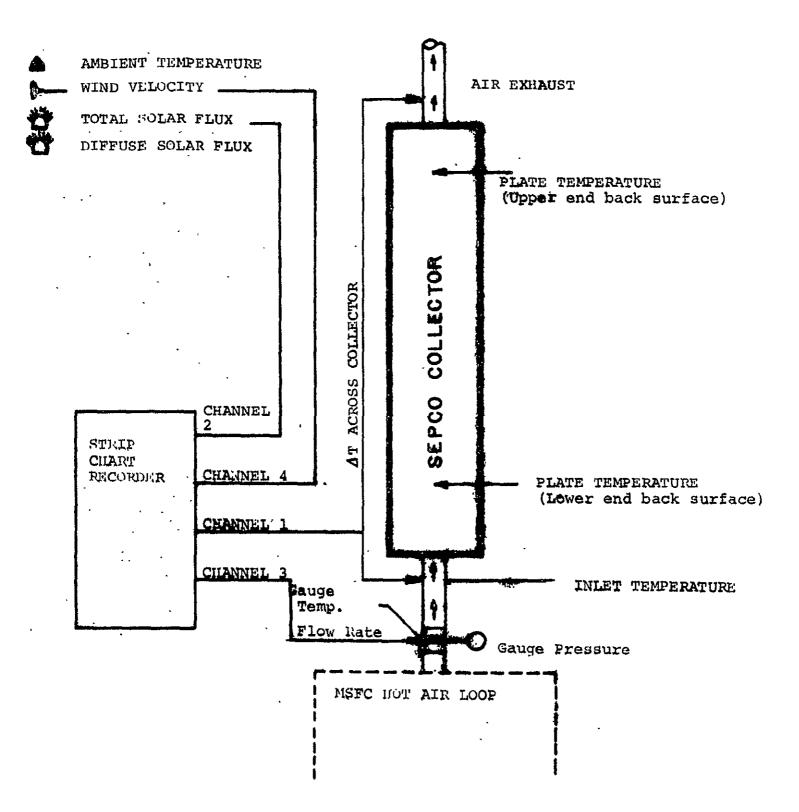
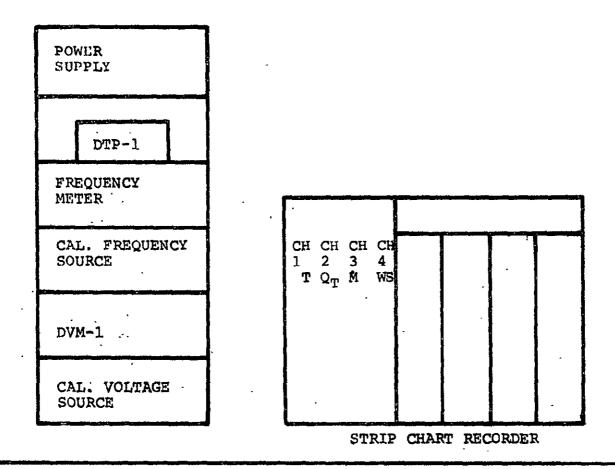
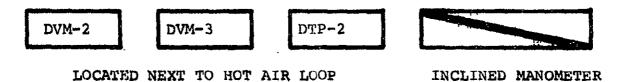




FIGURE 4. AIR FLOW AND MEASUREMENT POINTS

INDOOR INSTRUMENTATION READOUT LOCATION

OUTDOOR INSTRUMENTATION READOUT

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 5. INSTRUMENTATION READOUT LOCATIONS

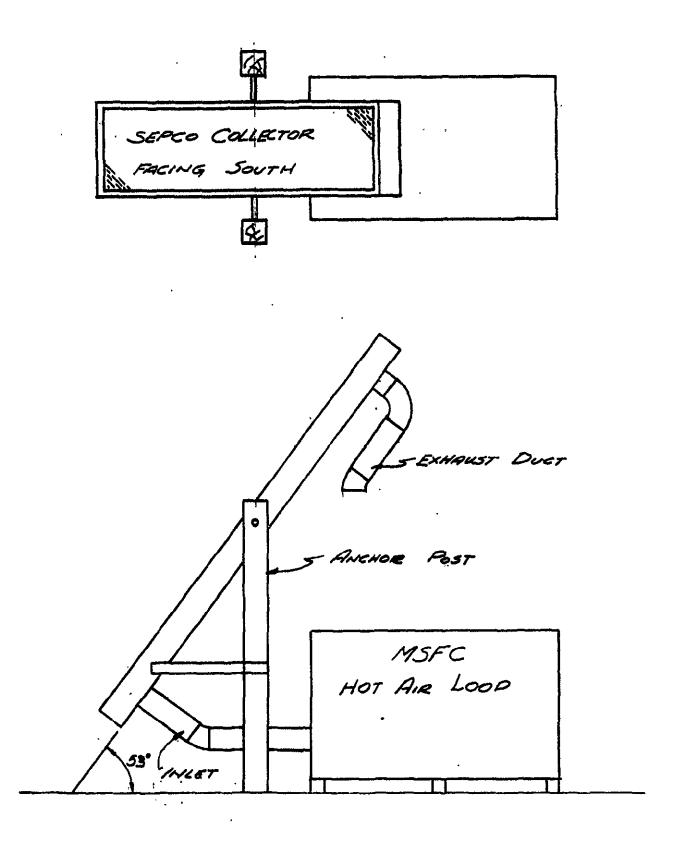
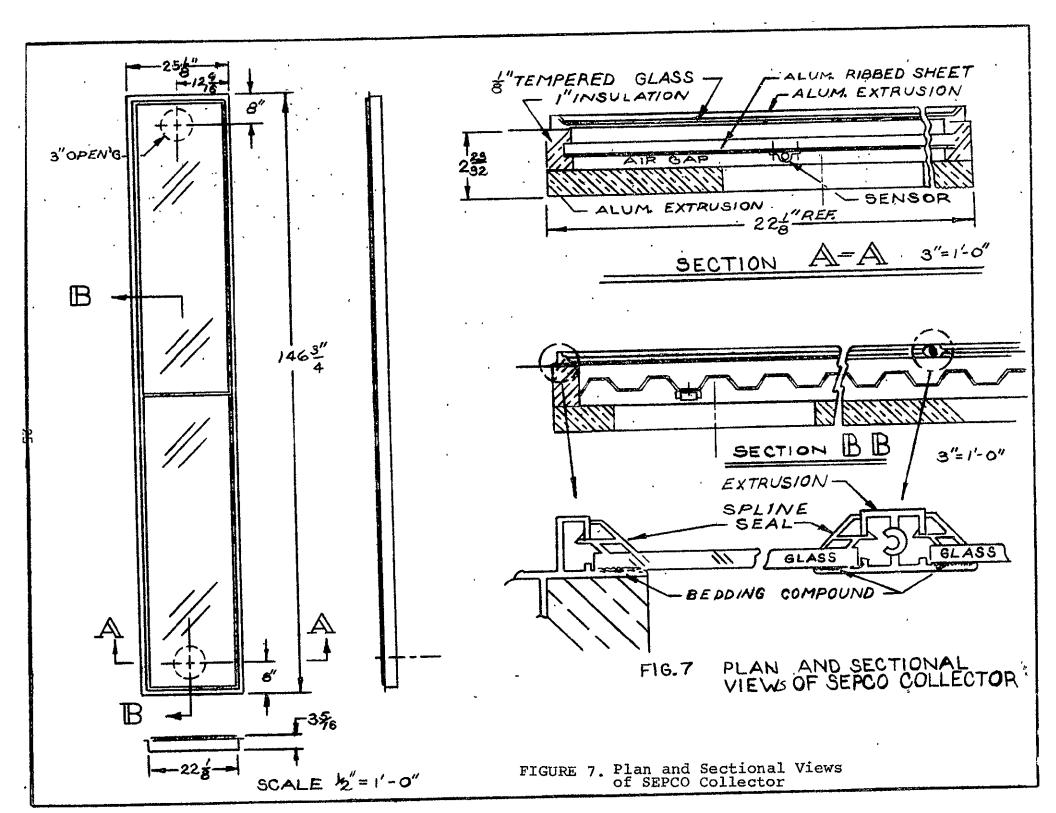
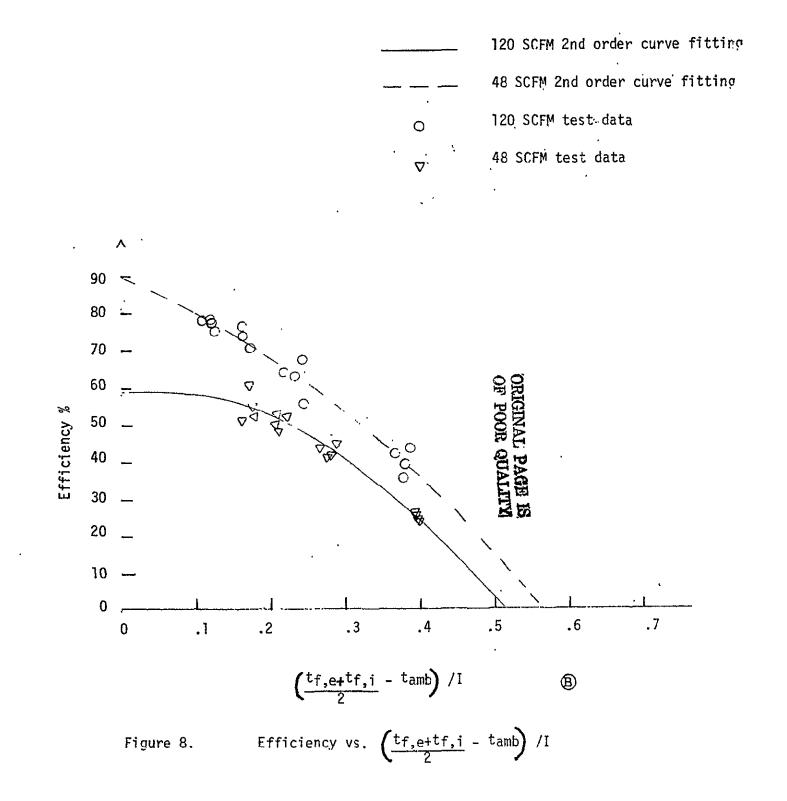
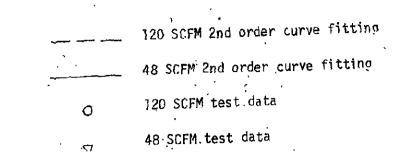
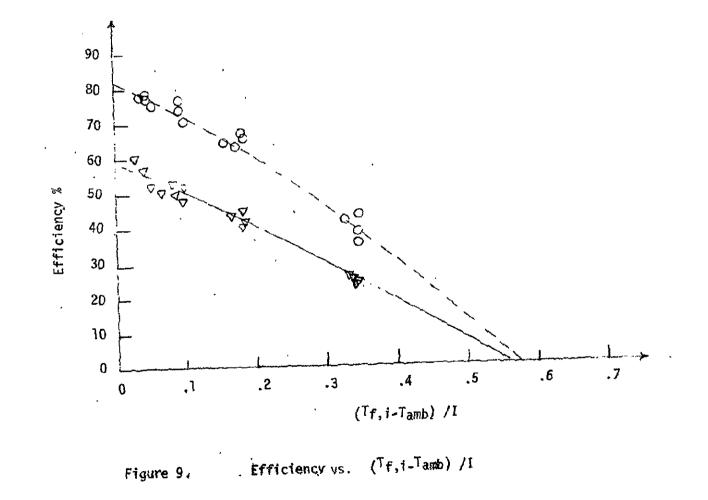






FIGURE 6. SKETCH OF TEST SETUP

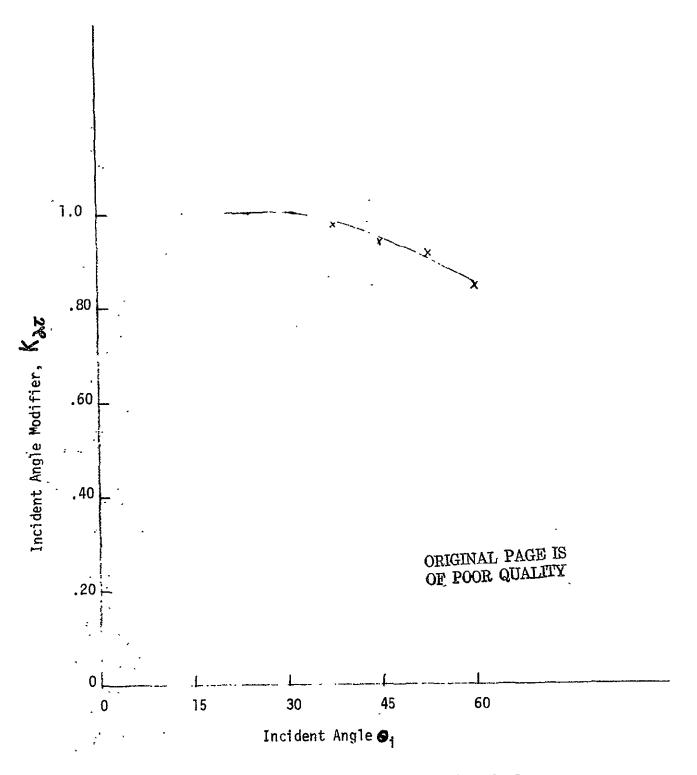
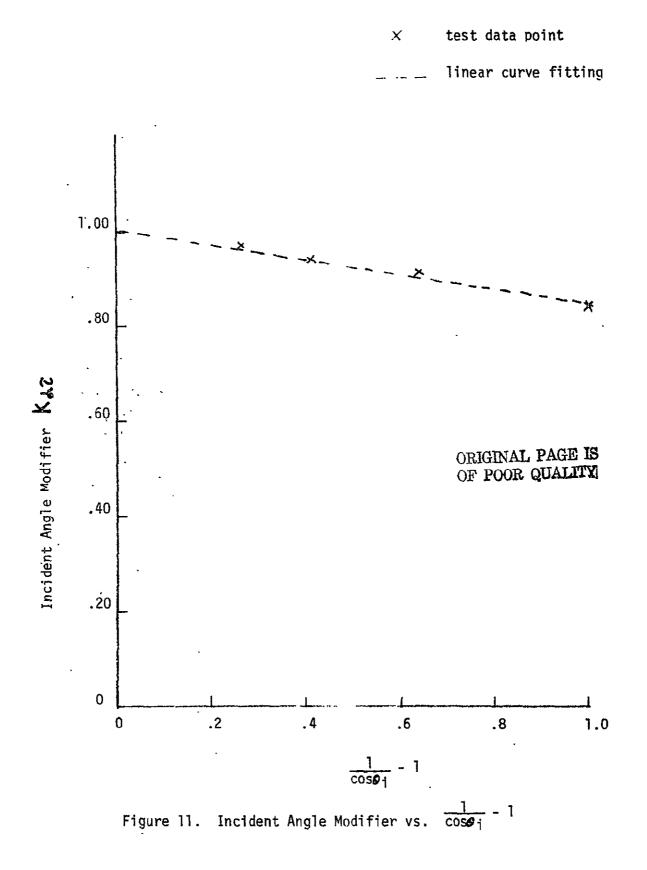



Figure 10. Incident Angle Modifier vs. Incident Angle

TABLE I

SERVICE LOAD STEPS

.

Step No.

1	10 pounds per square foot
2	20 pounds per square foot
3	30 pounds per square foot
4	50 pounds per square foot
5	80 pounds per square foot
-	120 pounds per square foot
· ·	

TABLE II

.

MEASUREMENT TECHNIQUES

. 1.	Barometric pressure is available from the weather station by calling 837-5655.
2:	The ambient temperature is measured with the mini-mite thermocouple bridge.
3.	Gauge pressure is determined by entering the indicated gauge voltage in millivolts and pressing B on the TI-SR-52 calculator.*
4.	Gauge temperature is indicated on the digital thermometer (DT-1).
5 .	Differential pressure is determined by the inclined manometer and read in tenths of an inch of water.
6.	Diffuse solar flux is determined by entering the millivolts indicated on the digital voltmeter (DVM-2) and pressing D on the calculator.
7.	Plate temperatures are indicated on the digital thermometer (DT-2); each must be plugged in separately.
8.	Mass flow is determined by the following process.
	Using the SR-52 calculator:
-	Enter gauge temperature (°F), press A. Enter gauge voltage (MV), press B. Enter flow sensor frequency (Hz), press C.
•.	The result upon pressing C is the flow rate in standard cubic feet per minute.
9.	The inlet temperature is determined by use of the National Bureau of Standards table for type T thermocouples with an ice bath. The milli- volt reading from DVM-3 is looked up in the NBS table.
	*Computation program must be read into the calculator prior to opera- tion. See Appendix II for program documentation.

TEST DATA AND RESULTS FOR SEPCO EFFICIENCY TEST

· · · · · · · · · · · · · · · · · · ·	1	•			×	_ •		•
4/11/77	. 1	2	3 _	4	5	6	7	8 -
Time of starting test ,	' 0942 ·	1050	.11,40.	1211	1230	1315	1332	1405
Time of ending test	0947	1055	1145	1216	1235	1320	1337	. 1410
Mean absorber upper plate temperature °F	143.5	158.5	181	213	210	183	162.5	149.5
Mean absorber lower plate temperature °F	112	128	152	187	191	154	130.5	117.5
Ambient temperature °F	80	81	83	84	84	86	85	85
Mean inlet température °F	88.7	106.7	132.7	184.6	184.6	136.8	111.3	97.8
Mean AT across collector °F	38.88	, 42.2	36.2	20.0	21.8	30.0	37.2	33.9
Mean flow rate SCFM	120	118.9	121	120.2	120.0	120.7	120.9	122.3
Mean diffuse solar flux BTU/Hr·Ft ²	_	-	_	_			-	
Mean total solar flux BTU/Hr·Ft ²	254.2	290	295	292	291	. 278	270	235
Mean wind speed MPH	4	4	3	3'	3	4	3	3
Mean wind speed MPH	. 35	.35	.38	.42	.42	.27	.35	.33
$\frac{\text{collector in. } H_2 O}{\left(\frac{T_{f,e} + T_{f,i}}{2} - T_{amb}\right)/I}$	0.11	0.162	0.378	0.383	.241	0.241	0.172	0.126
Efficiency η %	77.58	73.16	62.82	34.79	38.07	55.26	70.44	74.67

32

TEST DATA AND RESULTS FOR SEPCO EFFICIENCY TEST

v	•				<u></u>		; ·	
4/12/77	1.	2	3	4	5	6	7	8
Time of starting test	1010	10 <u>4</u> 2	1112	1155	1230	1310	1330	1405
Time of ending test	1015	1047	1,11.7	1200	1235	1315	1335	1410
Mean absorber upper plate temperature °F	180.0	189.5	210	226.5	230	212	195	129
Mean absorber lower plate temperature °F	128.0	141.5	166	202	· 204	168	144	101
Ambient temperature °F	80.0	81	83 [·]	83	84	<u>,</u> 85	86	86
Mean inlet temperature °F	91.7	105.6	134.4	179.5	179.5	135.2	111.2	97.8
Mean AT across collector °F	71.6	68.6	57.6	36.5	36.6	59.2	65.2	58.5
Mean flow rate SCFM	48	48	48	48	48	48	48	48
Mean diffuse solar flux BTU/Hr•Ft ²	-	48.6	49.8	52.1	50.6	49.4	48.8	45.8
Mean total solar flux BTU/Hr·Ft ²	268.6	282.8	288	289	288.4	271	258	232.3
Mean wind speed MPH	3	3	3	: 3	3	3	3	3
Pressure drop across collector in. H ₂ O	_	.07	.09	.07	.07	.08	.07	.07
$\left(\frac{T_{f,e} + T_{f,i}}{2} - T_{amb}\right)/I$	0.177	0.208	0.278	0.396	0.394	0.29	0.224	0.176
Efficiency n %	54.14	49.13	40.6	25.3	25.82	44.37	51.39	51.15

در در

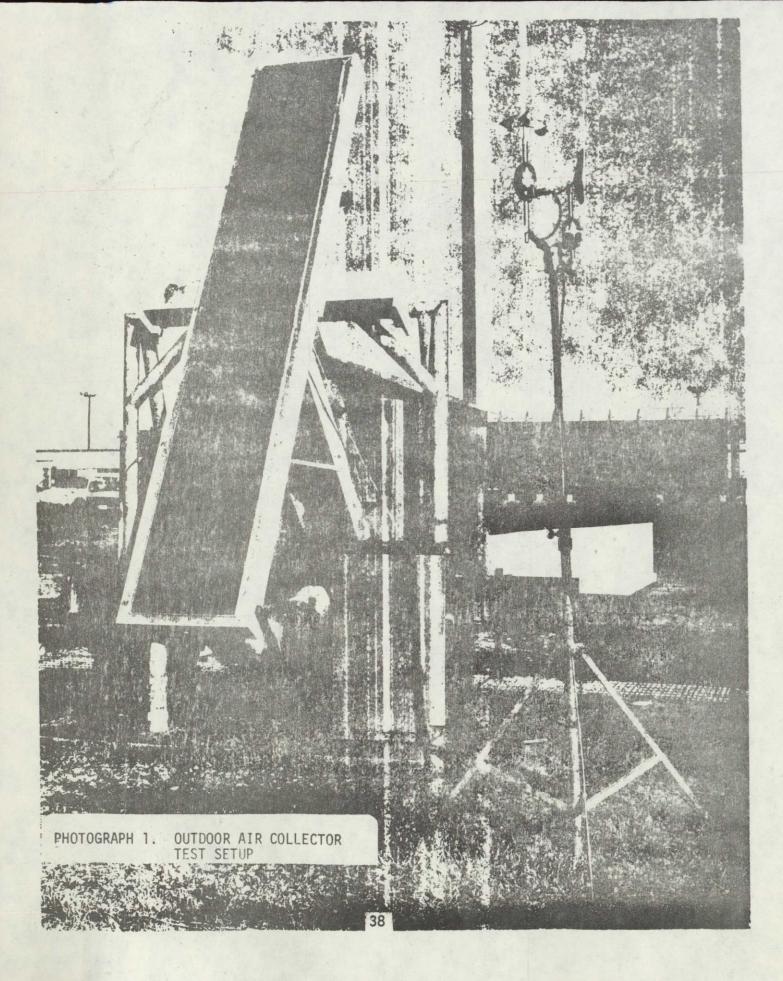
TEST DATA AND RESULTS FOR SEPCO EFFICIENCY TEST

IESI DAIA	AND RESU	PIS LOV 5	MECO ME	, CIENCI	, , , , ,			•
4/14/77	1.	2	· 3	4	5	. 6	· 7	8
Time of starting test	0945	1117	1150	1245	1255	1330	1355	1425
Time of ending test	0950	1122	1155	1250	1300	1335	1400	1430
Mean absorber upper plate temperature °F	175	186 [.]	200.5	228.4	223.4	200	186	169
Mean absorber lower plate temperature °F	124	148.5	167 [.]	201.2	201.2	166	141	126
Ambient temperature °F	80.5	84	82.5	84.5	84.5	85.5	87.5	87.5
Mean inlet temperature °F	88	107.3	130	17918	180.25	134.7	111.6	98.2
Mean'∆T across collector °F	72.35	74.9	59.45	30.93	30.26	53.0	59.8	53.7
Mean flow rate SCFM	48.9	47.5	49.1	51.0	51.6	48.7	47.8	50.1
Mean diffuse solar flux BTU/Hr·Ft ²	73.5	61.4	67.4	73.5	73.5	64.4	71.0	73.5
Mean total solar flux BTU/Hr·Ft ²	250	288	288	278	280	266.5	254.0	231
Mean wind speed MPH	3	2 .	3 ·	2	3	3	2	3
Pressure drop across RA collector in. H ₂ 0 RA	-		-		-		-	-
$\frac{\left(\frac{T_{f,e} + T_{f,i}}{2} - T_{amb}\right)/I}{\left(\frac{T_{f,e} + T_{f,i}}{2} - T_{amb}\right)/I}$	0.175	0.211	0.268	0.398	0.386	0.284	0.212	0.162
Efficiency η %	59.88	52.27	42.89	24.01	23.6	41.09	47.65	49.28

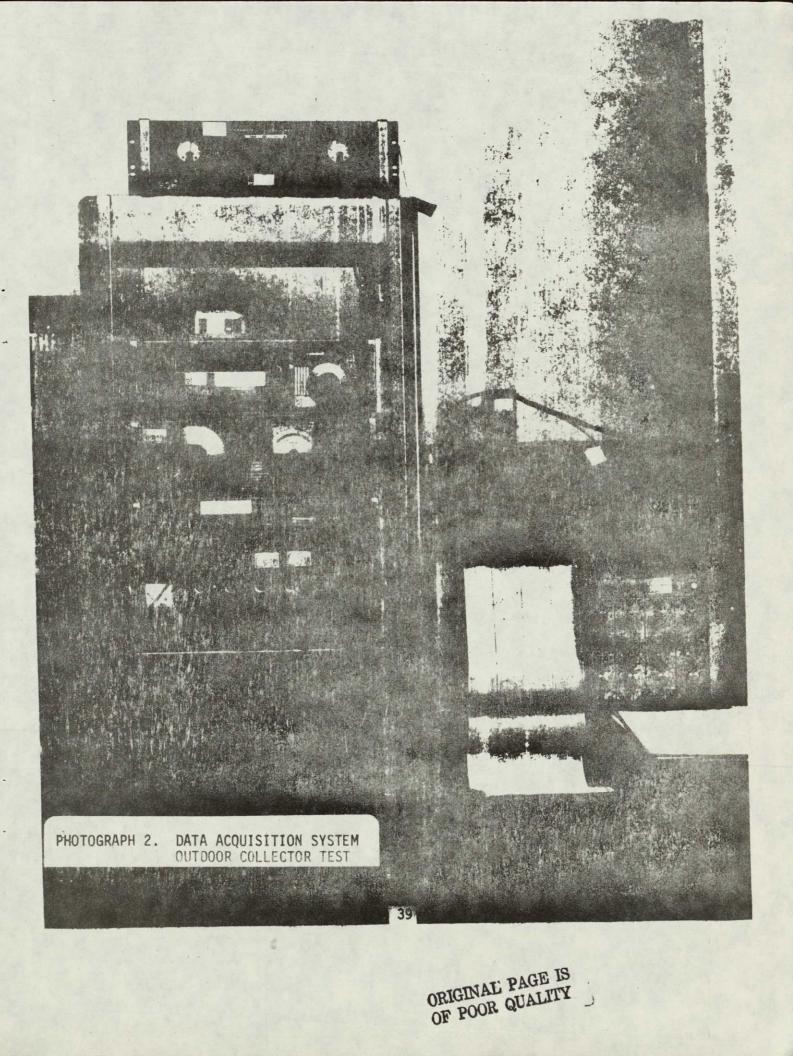
TEST DATA AND RESULTS FOR SEPCO EFFICIENCY TEST

						·		
4/15/77	5	6	7	.8	` 9	10	. 11	12
Time of starting.test	947	1012	1037	1117	1148	1242	1312	1357
Time of ending test	953	1017	1042	1122	1153	1247	1317	1402
Mean absorber upper plate temperature °F	135.5	150.5	173	201	201	175.5	162.5	144
Mean absorber lower plate temperature °F	106	120	144	195	194	129	[.] 127.5	122
Ambient temperature °F	79	79	81	84	84	85	86	86
Mean inlet temperature °F	90.1	103	127.6	180.25	181.4	130.2	110.3	97.4
Mean ∆T across collector °F	38.64	38.8	36,06	23.5	24.73	35.75	41.1	36.4
Mean flow rate SCFM	120.3	119.8	121.8	120.2	120.5	121.2	120.9	119.5
Mean diffuse solar flux BTU/Hr·Ft ²	57.9	59	59.9	60.2	59.9	59.2	61.8	53.9
Mean total solar flux BTU/Hr•Ft ²	252	266.7	277.5	291	293.4	286.7	275	241
Mean wind speed MPH	3	3	3	2	2	3	4	3
Pressure drop across collector in. H ₂ O		_	-				·	-
$\left(\frac{T_{f,e} + T_{f,i}}{2} - T_{amb}\right)/I$	0.12	0.163	0.233	0.371	0.374	0.220	0.163	0.123
Efficiency η %	78.06	73.75	66.99	41.13	42.99	63.95	76.5	76.4

ž


TABLE IV TEST DATA AND RESULTS FOR SEPCO INCIDENT ANGLE MODIFIER TEST

· · · · · · · · · · · · · · · · · · ·	·	,		·			·	
TEST ID	,						、	-
Time of starting test	1417	1450	1515	1545	0745	0815	0845	0915
Time of ending test	1422	1455	1520	1550	0750	0820	0850	0920
Mean absorber upper plate temperature °F	129.0	156	149	141	110	126	145	154
Mean absorber lower plate temperature °F	101.0	121	116	112	90	99	106	113
Ambient temperature °F	86.0	86.5	86	86.5	66	70	75	74
Mean inlet temperature °F	97.0	98.2	97.8	98.2	66	81.2	82.5	86
Mean AT across collector °F	59.5	43.85	37.8	29.4	28.97	39.8	50.07	59.2
Mean flow rate SCFM	47.1	48	48.8	49.2	49.5	47	46.9	46.68
Mean diffuse solar flux BTU/Hr·Ft ²	44.6	53.7	46.4	43.4	43.5	47	51.7	55.7
Mean total solar flux BTU/Hr·Ft ²	226	180	170	140.5	128.3	163.2	193.6	223.7
Mean wind speed MPH	3	3	3	3	3	4	3 -	3
Pressure drop across	.07	-	-		_	-		_
Pressure drop across collector in. H_2O $\left(\frac{T_{f,e} + T_{f,i}}{2} - T_{amb}\right)/I$	0.18	0.187	0.181	0.188	0.226	0.19	0.168	0.186
Efficiency η &	52.47	49.48	45.92	43.5	47.3	48.5	51.35	52.28


ŧ.

ക്

PHOTOGRAPHS

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX I

1

Date 4/11/77 Test Identification Efficiency Test Observers J. Chiou, J. Dysart	
•	-
Collector Tilt Angle 27° Collector Azimuth Angle 0°	
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 6 (Outlet) 1 Mass Flow Rate 120 SCFM	<u>1"</u> 16"
Inlet Temperature Tamb + 10 Data I.D. Number 4-11-77-	1
Record at Start and Finish of Test Start Fini	÷ Lsh
Local Time $09:42$ $09:42$ Barometric Pressure (inches of Mercury) 29.79 29.79 Ambient Temperature (°F) 80 80 Mass Flow (SCFM) 120 120 Gauge Temperature (°F) 87 87 ΔP Across Collector ("H2O) $.35$ $.35$ Diffuse Solar Flux (BTU/Hr·Ft ²) $ -$ Upper Plate Temperature (°F) 143 144 Lower Plate Temperature (°F) 112 112	<u>, 9</u>
Record every one minute during test. Inlet Temperature (°F) 88.7	
Mean Inlet Temperature $(T_{in} \circ F) = \frac{\partial S_{\cdot} 7}{2}$	
Reduce from Strip Chart after TestORIGINAL PAMean ΔT (°F) 38.88 OF POOR QUMean Wind Speed (MPH) 4 Mean Solar Flux (BTU/Hr·Ft ²), I 254.2 Mean Mass Flow (SCFM) 120.2	GE IS ALITY
Calculate from Reduced Data	_
$\eta = \dot{m}C_p \Delta T/Q_t * A = 0.0423 * \dot{m}(SCFM) * \Delta T (°F) \div I(BTU/Hr \cdot Ft^2) = 0.0423 * \dot{m}(SCFM) * \Delta T (°F)$	77.58
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.1$	
$(T_{in} - T_{amb}) \div I = 0.034$	

Date 4/11/77 Test Identification Eff:	iciency Test
Observers J. Chiou, J. Dysart	
Collector Tilt Angle 27° Collector Az	imuth Angle <u>0°</u>
Collector Aperture Area <u>25.52 ft²</u> Height of Co Mass Flow Rate <u>20</u> SCFM	Ollector (Inlet) <u>61"</u> (Outlet) <u>116"</u>
Inlet Temperature $T_{anb} + 25$ Data I.D. Nu	mber <u>4-11-77-2</u>
Record at Start and Finish of Test	Start Finish
Jocal Time Barometric Pressure (inches of Mercury) Ambient Temperature (°F) Mass Flow (SCFM) Gauge Temperature (°F) AP Across Collector ("H ₂ O) Diffuse Solar Flux (BTU/Hr·Ft ²) Opper Plate Temperature (°F) Lower Plate Temperature (°F)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ecord every one minute during test.	
nlet Temperature (°F) <u>106.7</u>	
lean Inlet Temperature $(T_{in} \circ F) = 106.7$	
educe from Strip Chart after Test	
ean ΔT (°F) ean Wind Speed (MPH) ean Solar Flux (BTU/Hr·Ft ²), I $\frac{4}{270}$ ean Mass Flow (SCFM) $\frac{1}{167}$ alculate from Beduced Data	
alculate from Reduced Data	
$\approx \hat{m}C_p \Delta T/Q_t * A = 0.0423 * \hat{m}(SCFM) * \Delta T (°F) \div$	$I(BTU/Hr \cdot Ft^2) = .73.16$
$(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.162$	· · · · · · · · · · · · · · · · · · ·
$T_{in} - T_{amb}$) $\div I = \underline{o, obb}$	

Date 4/11/77 Test Identification E	fficiency Test
Observers J. Chiou, J. Dysart	
Collector Tilt Angle 27° Collector	Azimuth Angle <u>0°</u>
Collector Aperture Area <u>25.52 ft²</u> Height of Mass Flow Rate \20 SCFM	Collector (Inlet) <u>61"</u> (Outlet) <u>116"</u>
Inlet Temperature Tank +50 Data I.D.	Number <u>4-11-77-3</u>
Record at Start and Finish of Test	Start Finish
Local Time Barometric Pressure (inches of Mercury) Ambient Temperature (°F) Mass Flow (SCFM) Gauge Temperature (°F) ΔP Across Collector ("H ₂ O) Diffuse Solar Flux (BTU/Hr·Ft ²) Upper Plate Temperature (°F) Lower Plate Temperature (°F)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Record every one minute during test.	۰.
Inlet Temperature (°F) 132.7	
Mean Inlet Temperature $(T_{in} \circ F) = 132.7$ Reduce from Strip Chart after Test	ORIGINAL PAGE IS OF POOR QUALITY
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{36.2}{295}$ Mean Mass Flow (SCFM) J21	
Calculate from Reduced Data	
$\eta = \frac{1}{mC_p} \Delta T / Q_t * A = 0.0423 * \dot{m} (SCFM) * \Delta T (°F)$	\div I (BTU/Hr·Ft ²) = 62.8
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.233$	
$(T_{in} - T_{amb}) \div I = 0.168$	

.

TEST RESULTS
Collector Identification SEPCO, "Soloron" Model EF-212, SN-002
Date 4/11/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61</u> " (Outlet) <u>116</u> "
Mass Flow Rate 20 SCFM
Inlet Temperature Tank +100 Data I.D. Number 4-11-77-4
Record at Start and Finish of Test Start Finish
Local Time $12:1 $ $12:16$ Barometric Pressure (inches of Mercury) 29.75 29.75 Ambient Temperature (°F) 84 84 Mass Flow (SCFM) 120.2 120.2 Gauge Temperature (°F) 190 190 ΔP Across Collector ("H2O) 422 42 Diffuse Solar Flux (BTU/Hr·Ft ²) $$ $$ Upper Plate Temperature (°F) $$ $$ Lower Plate Temperature (°F) 197 $$
Record every one minute during test.
Inlet Temperature (°F) 184.6
Mean Inlet Temperature $(T_{in} \circ F) = (84.6)$
Reduce from Strip Chart after Test
Mean ΔT (°F) 20.0 Mean Wind Speed (MPH) 3 Mean Solar Flux (BTU/Hr·Ft ²), I 292 Mean Mass Flow (SCFM) 120.2
Calculate from Reduced Data
$7 = m_p \Delta T/Q_t * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ I(BTU/Hr·Ft2) = 34.79 *$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = \underline{0378}$
$(T_{in} - T_{amb}) \div I = 0.344$

-

.

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/11/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61"</u> (Outlet) <u>116"</u> Mass Flow Rate <u> 20 SCFM</u>
Inlet Temperature Taub +100 Data I.D. Number 4-11-77-5
Record at Start and Finish of Test Start Finish
Local Time $12:30$ $12:35$ Barometric Pressure (inches of Mercury) 29.74 21.74 Ambient Temperature (°F) 84 84 Mass Flow (SCFM) 120 120 Gauge Temperature (°F) 190 190 ΔP Across Collector ("H20) $.422$ $.422$ Diffuse Solar Flux (BTU/Hr·Ft ²) $ -$ Upper Plate Temperature (°F) 210 210 Lower Plate Temperature (°F) 191 191
Record every one minute during test.
Mean Inlet Temperature $(T_{in} \circ F) = 184.6$
Reduce from Strip Chart after Test OF POOR QUALITY
Mean ΔT (°F) \mathbf{z} Mean Wind Speed (MPH) $\frac{3}{271}$ Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{171}{120}$
Calculate from Reduced Data $7 = \hat{m}C_p \Delta T/Q_t * A = 0.0423 * \hat{m}(SCFM) * \Delta T (°F) \div I (BTU/Hr · Ft2) = .38.07 %$ $[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.383$ $(T_{in} - T_{amb}) \div I = 0.34\%$

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/11/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61"
Mass Flow Rate 20 SCFM (Outlet) 116"
Inlet Temperature Taul 450 Data I.D. Number 4-11-77-6
Record at Start and Finish of Test Start Finish
Local Time $13:15$ $13:20$ Barometric Pressure (inches of Mercury) 29.73 29.73 Ambient Temperature (°F) 86 86
Mass Flow (SCFM) 120.7 120.7 Gauge Temperature (°F) 142 142 ΔP Across Collector ("H2O) $.37$ $.37$ Diffuse Solar Flux (BTU/Hr·Ft ²) $.02$ $.02$
Upper Plate Temperature (°F) Lower Plate Temperature (°F) 154 154
Record every one minute during test.
Inlet Temperature (°F) 136,8
Mean Inlet Temperature $(T_{in} \circ F) = \frac{136.8}{1}$
Reduce from Strip Chart after Test
Mean ΔT (°F)30.0Mean Wind Speed (MPH)4Mean Solar Flux (BTU/Hr·Ft ²), I 278 Mean Mass Flow (SCFM) 120 ,]
Calculate from Reduced Data
$\eta = \frac{1}{mC_p} \Delta T/Q_t * A = 0.0423 * \frac{1}{m} (SCFM) * \Delta T (°F) \div I (BTU/Hr \cdot Ft^2) = \frac{5.5 \cdot 26}{3}$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.24$
$(T_{in} - T_{amb}) \div I = 0.183$

,

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/11/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61</u> " (Outlet) <u>116</u> " Mass Flow Rate <u>120</u> SCFM
Inlet Temperature $T_{amb} + 25$ Data I.D. Number $4 - 11 - 77 - 7$
Record at Start and Finish of Test Start Finish
Local Time $13 \cdot 32$ $13 \cdot 37$ Barometric Pressure (inches of Mercury) 29.73 29.73 Ambient Temperature (°F) 85 85 Mass Flow (SCFM) $1>0,9$ $1>0,9$ Gauge Temperature (°F) $11/3$ $11/3$ ΔP Across Collector ("H20) $.35$ $.35$ Diffuse Solar Flux (BTU/Hr·Ft ²) $$ $$ Upper Plate Temperature (°F) 163 162 Lower Plate Temperature (°F) 131 170
Record every one minute during test.
Inlet Temperature (°F) 11.3
Mean Inlet Temperature $(T_{in} \circ F) = 1/1.3$
Reduce from Strip Chart after Test
Mean ΔT (°F)37.2Mean Wind Speed (MPH) 3 Mean Solar Flux (BTU/Hr·Ft ²), I 270 Mean Mass Flow (SCFM) 120.7
Calculate from Reduced Data
$\eta = m_{p} \Delta T/Q_{t} * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ I(BTU/Hr·Ft2) = 70.44$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.1)2$
$(T_{in} - T_{amb}) \div I = 0.097$

-

·1101 1000110
Collector Identification <u>SEPCO</u> , "Soloron" Model EF-212, SN-002
Date 4/11/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle <u>27°</u> Collector Azimuth Angle <u>0°</u>
Collector Aperture Area <u>25.52 ft² Height of Collector (Inlet) 61"</u> (Outlet) 116"
Mass Flow Rate 120 SCFM
Inlet Temperature Tame + 10 Data I.D. Number <u>4-11-77-8</u>
Record at Start and Finish of Test Start Finish
Local Time $14:05$ $14:0$ Barometric Pressure (inches of Mercury) 29.72 29.72 Ambient Temperature (°F) 85 85 Mass Flow (SCFM) 122.3 122.3 Gauge Temperature (°F) 78 98 ΔP Across Collector ("H20) 33 $.33$ Diffuse Solar Flux (BTU/Hr·Ft ²) $ -$ Upper Plate Temperature (°F) 150 149 Lower Plate Temperature (°F) 118 117
Record every one minute during test.
Inlet Temperature (°F) 97.8
Mean Inlet Temperature $(T_{in} \circ F) = 97.8$
Reduce from Strip Chart after Test OF POOR QUALITY
Mean ΔT (°F) 33.9 Mean Wind Speed (MPH) 3 Mean Solar Flux (BTU/Hr·Ft ²), I 235 Mean Mass Flow (SCFM) $/22.3$
Calculate from Reduced Data
$\eta = \hat{m}C_{p}\Delta T/Q_{t} * A = 0.0423 * \hat{m}(SCFM) * \Delta T (°F) \div I(BTU/Hr \cdot Ft^{2}) =$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.126$
$(T_{in} - T_{amb}) \div I = 0.054$

Date 4/12/77 Test Identific	cation <u> </u>	fficiency Test	
Observers J. Chiou, J. Dysart		· · · · · · · · · · · · · · · · · · ·	<u> </u>
Collector Tilt Angle 27°	Collector	Azimuth Angle	0°
Collector Aperture Area 25.52 ft ² Mass Flow Rate 4.8 SCFM	Height of	Collector (In (Out	let) <u>61"</u> let) <u>116"</u>
Inlet Temperature Tame +10	Data I.D.	Number _ 4-12	- 77-1
Record at Start and Finish of Te	<u>est</u>	Start	Finish
Local Time Barometric Pressure (inches of M Ambient Temperature (°F) Mass Flow (SCFM) Gauge Temperature (°F) ΔP Across Collector ("H ₂ O) Diffuse Solar Flux (BTU/Hr·Ft ²) Upper Plate Temperature (°F) Lower Plate Temperature (°F)	fercur y)	10.10 29.79 80. 48. 93. 40.4 128.	10:15 29.79 80 48. 93. - 45.6 180. 128.
Record every one minute during t	est.		\$
Inlet Temperature (°F) <u>9/.7</u> Mean Inlet Temperature (T _{in} °F) Reduce from Strip Chart after Te			
Mean DT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I Mean Mass Flow (SCFM)	71.6 3 268.6 48		
Calculate from Reduced Data			n
$\eta = \text{m}C_{p} \Delta T / Q_{t} * A = 0.0423 * \text{m}(\text{SCFM})$		÷ I (BTU/Hr·F	t^2) =
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I ={(T_{in}} - T_{amb}) \div I ={0.043}$	0.177		

.

.

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/12/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116" (Outlet) 116"
Inlet Temperature $T_{amb} + 25^{\circ}$ Data I.D. Number $4 - 12 - 77 - 2$
Inlet Temperature <u>lamb / 20 1</u> Data 1.D. Number <u>+ 72 //-C</u>
Record at Start and Finish of Test Start Finish
Local Time 10.42 10.47 Barometric Pressure (inches of Mercury) 29.77 29.77 Ambient Temperature (°F) 81 91 Mass Flow (SCFM) 48 48
Gauge Temperature (°F) 108 108 ΔP Across Collector ("H2O) $.07$ $.07$ Diffuse Solar Flux (BTU/Hr·Ft ²) 47.6 Upper Plate Temperature (°F) 189 190
Lower Plate Temperature (°F) <u>141</u> <u>142</u>
Record every one minute during test.
Inlet Temperature (°F) 105.6
Mean Inlet Temperature $(T_{in} \circ F) = 10S.6$ Reduce from Strip Chart after Test ORIGINAL PAGE IS OF POOR QUALITY
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I Mean Mass Flow (SCFM) $\frac{68.6}{3}$ $\frac{3}{282.8}$ $\frac{48}{3}$
Calculate from Reduced Data
$\eta = mc_p \Delta T/Q_t * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ I (BTU/Hr·Ft2) = 4913 *$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.00$
$(T_{in} - T_{amb}) \div I = \underline{0.086}$

1E31 KESU113
Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/12/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61</u> " (Outlet) <u>116</u> " Mass Flow Rate <u>48</u> SCFM
Inlet Temperature $T_{a+b} + 55$ Data I.D. Number $4-12-77-3$
Record at Start and Finish of Test Start Finish
Local Time $1/:12$ $(1:17)$ Barometric Pressure (inches of Mercury) 29.75 ≥ 7.25 Ambient Temperature (°F) $B3$ $B3$ Mass Flow (SCFM) 48 48 Gauge Temperature (°F) (40) 140 ΔP Across Collector ("H2O) $.07$ $.07$ Diffuse Solar Flux (BTU/Hr·Ft ²) 49.7 49.9 Upper Plate Temperature (°F) 210 210 Lower Plate Temperature (°F) 166 166
Record every one minute during test.
Inlet Temperature (°F) 134.4 Mean Inlet Temperature (T _{in} °F) = 134.4
Reduce from Strip Chart after Test
Mean ΔT (°F) $S7.6$ ORIGINAL PAGE IS OF POOR QUALITYMean Wind Speed (MPH)3Mean Solar Flux (BTU/Hr·Ft ²), I 288 Mean Mass Flow (SCFM) 48
Calculate from Reduced Data
$\eta = mc_p \Delta T/Q_t * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ I(BTU/Hr·Ft2) = 40.6 g$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0^{-278}$
$(T_{in} - T_{amb}) \div I = 0.8$

--

Date $4/12/77$ Test Identification <u>Efficiency Test</u> Observers <u>J. Chiou, J. Dysart</u> Collector Tilt Angle 27° Collector Azimuth Angle <u>0°</u> Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61</u> " (Outlet) <u>116</u> " Mass Flow Rate <u>49</u> <u>SCFM</u> Inlet Temperature <u>Taul</u> +100 Data I.D. Number <u>4-12-77-4</u> Record at Start and Finish of Test Earometric Pressure (inches of Mercury) <u>29.73</u> <u>29.73</u> Ambient Temperature (°F) <u>43</u> <u>49</u> Gauge Temperature (°F) <u>44</u> <u>40</u> Diffuse Solar Flux (BTU/Hr·Ft ²) <u>502</u> <u>202</u> <u>202</u> Lower Flate Temperature (°F) <u>228</u> <u>202</u> Record every one minute during test. Inlet Temperature (°F) <u>179.5</u> Mean Inlet Temperature (°F) <u>36.5</u> Reduce from Strip Chart after Test Mean Mind Speed (MPH) Mean Selow (SCFM) <u>44</u> Hean Mass Flow (SCFM)	tor Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Collector Tilt Angle 27° Collector Azimuth Angle 0° Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" Mass Flow Rate 48 scrm (Outlet) 116" Inlet Temperature Taue 400 Data I.D. Number $4-12-77-4$ Record at Start and Finish of Test 11.67 12.00 Record at Start and Finish of Test 11.57 12.00 Barometric Pressure (inches of Mercury) $27.73 = 21.73$ Ambient Temperature (°F) 43 42 42 42 Gauge Temperature (°F) 13.0 13.0 17.2 Diffuse Solar Flux (BTU/Hr·Ft ²) 52.4 Lower Plate Temperature (°F) 32.4 22.5 Record every one minute during test. Inlet Temperature (°F) 129.5 Wean Inlet Temperature (°F) 36.5 Reduce from Strip Chart after Test Mean Wind Speed (MPH) 52.27	4/12/77 Test Identification Efficiency Test
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61"</u> (Outlet) <u>116"</u> Mass Flow Rate <u>48</u> <u>SCFM</u> Inlet Temperature <u>Taut +100</u> Data I.D. Number <u>4-12-77-4</u> <u>Record at Start and Finish of Test</u> <u>Record at Start and Finish of Test</u> Local Time Barometric Pressure (inches of Mercury) <u>27.73</u> <u>21.73</u> Ambient Temperature (°F) <u>83</u> <u>83</u> Mass Flow (SCFM) <u>42</u> <u>42</u> Gauge Temperature (°F) <u>170</u> <u>170</u> Diffuse Solar Flux (BTU/Hr·Ft ²) <u>52.44</u> <u>(7.0)</u> Lower Plate Temperature (°F) <u>228</u> <u>2*5</u> Lower Plate Temperature (°F) <u>228</u> <u>2*5</u> Lower Plate Temperature (°F) <u>2015</u> Mean Inlet Temperature (°F) <u>171.5</u> Reduce from Strip Chart after Test Mean AT (°F)' <u>36.5</u> Mean Solar Flux (BTU/Hr·Ft ²), I <u>289</u>	ersJ. Chiou, J. Dysart
Mass Flow Rate <u>48</u> <u>SCFM</u> Inlet Temperature <u>Tauk +100</u> Data I.D. Number <u>4-12-77-4</u> <u>Record at Start and Finish of Test</u> <u>Record at Start and Finish of Test</u> <u>Appendix Start and Finish of Test</u> <u>Local Time</u> Barometric Pressure (inches of Mercury) <u>27.73</u> <u>21.73</u> <u>Ambient Temperature (°F)</u> <u>48</u> <u>48</u> <u>49</u> <u>48</u> <u>49</u> <u>190</u> <u>190</u> <u>190</u> <u>190</u> <u>190</u> <u>190</u> <u>190</u> <u>190</u> <u>214</u> <u>201</u> <u>214</u> <u>201</u> <u>215</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>201</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u> <u>217</u>	tor Tilt Angle 27° Collector Azimuth Angle
Record at Start and Finish of TestStart FinishLocal TimeBarometric Pressure (inches of Mercury)29.73Ambient Temperature (°F)And Paperature (°F)And Paperature (°F)Apperature (°F)Apperature (°F)Apperature (°F)Apperature (°F)Apperature (°F)Diffuse Solar Flux (BTU/Hr·Ft ²)Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Cols	
StartFinishLocal Time Barometric Pressure (inches of Mercury) $(1:5T)$ $12:50$ Ambient Temperature (°F) Mass Flow (SCFM) Gauge Temperature (°F) 42 42 Mass Flow (SCFM) Gauge Temperature (°F) 42 42 AP Across Collector ("H20) Diffuse Solar Flux (BTU/Hr·Ft2) Upper Plate Temperature (°F) 19° 17° Lower Plate Temperature (°F) Lower Plate Temperature (°F) 22° $2\times^{\circ}$ Record every one minute during test. 12° $2\times^{\circ}$ Inlet Temperature (°F) Hean Inlet Temperature (°F) 17° 5° Reduce from Strip Chart after Test 36.5° Mean Solar Flux (BTU/Hr·Ft ²), I 36.5° Mean Solar Flux (BTU/Hr·Ft ²), I 28°	remperature Tang +100 Data I.D. Number <u>4-12-77-4</u>
Barometric Pressure (inches of Mercury) Ambient Temperature (°F) Mass Flow (SCFM) Gauge Temperature (°F) AP Across Collector ("H ₂ O) Diffuse Solar Flux (BTU/Hr·Ft ²) Upper Plate Temperature (°F) Lower Plate Temperature (°F) Record every one minute during test. Inlet Temperature (°F) Mean Inlet Temperature (°F) Reduce from Strip Chart after Test Mean Solar Flux (BTU/Hr·Ft ²), I Mean Solar Flux (BTU/Hr·Ft ²)	
Inlet Temperature (°F) 179.5 Mean Inlet Temperature (T _{in} °F) = 179.5 Reduce from Strip Chart after Test Mean ΔT (°F) Mean Wind Speed (MPH) 36.5 Mean Solar Flux (BTU/Hr·Ft ²), I 289	tric Pressure (inches of Mercury) 1273 29.73 29.73 29.73 29.73 29.73 29.73 29.73 29.73 83 93 low (SCFM) 48 Temperature (°F) 190 90 190 <tr< td=""></tr<>
Reduce from Strip Chart after Test Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I 289	
Mean $\Delta T_{\rm (°F)}$ Mean Wind Speed (MPH) 3. Mean Solar Flux (BTU/Hr·Ft ²), I 289	let Temperature $(T_{in} \circ F) = 179.5$
Mean Wind Speed (MPH) <u>3</u> . Mean Solar Flux (BTU/Hr·Ft ²), I <u>289</u>	from Strip Chart after Test
	nd Speed (MPH) 3 . lar Flux (BTU/Hr·Ft ²), I 289
Calculate from Reduced Data	
$n = m_p \Delta T/Q_t * A = 0.0423 * m(SCFM) * \Delta T (°F) \div I(BTU/Hr · Ft^2) = 25.2$	$\Delta T/Q_t * A = 0.0423 * \dot{m}(SCFM) * \Delta T (°F) \div I(BTU/Hr \cdot Ft^2) = 25.3$
$(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.396$	$+ T_{in} - T_{amb}$ $\neq I = 0.3\%$
$T_{in} - T_{amb}) = 1 = -0.334$	

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date <u>4/12/77</u> Test Identification <u>Efficiency Test</u>
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61"
Mass Flow Rate 48 SCFM (Outlet) 116"
Inlet Temperature Tawb 4100 Data I.D. Number <u>4-12-77-5</u>
Record at Start and Finish of Test Start Finish
Local Time $12:30$ $12:35$ Barometric Pressure (inches of Mercury) 29.71 29.71 Ambient Temperature (°F) 34 84 Mass Flow: (SCFM) 48 48
Mass Flow: (SCFM) 48 48 Gauge Temperature (°F) 190 190 ΔP Across Collector ("H20) 07 07 Diffuse Solar Flux (BTU/Hr·Ft ²) 50.6 50.6 Upper Plate Temperature (°F) 230 230
Lower Plate Temperature (°F)
Record every one minute during test.
Inlet Temperature (°F) 179.5
Mean Inlet Temperature $(T_{in} \circ F) = 179.5$
Réduce from Strip Chart after Test
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{28.4}{48}$
Calculate from Reduced Data
$\eta = \hat{m}C_p \Delta T/Q_t * A = 0.0423 * \hat{m}(SCFM) * \Delta T (°F) ÷ I (BTU/Hr·Ft2) = .25.82 *$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.3\beta 4$
$(T_{in} - T_{amb}) \div I = \0.33$
· · ·

.

Collector Identification <u>SEPCO</u> , "Soloron" Mo	<u>del EF-212, SN-002</u>
Date 4/12/77 Test Identification Effic	ciency Test
Observers J. Chiou, J. Dysart	· · · · · · · · · · · · · · · · · · ·
Collector Tilt Angle 27° Collector Azi	muth Angle <u>0°</u>
Collector Aperture Area 25.52 ft ² Height of Col Mass Flow Rate 48 SCFM	lector (Inlet) <u>61"</u> (Outlet) <u>116"</u>
Inlet Temperature Data I.D. Num	ber <u>4-12-77-6</u>
Record at Start and Finish of Test	Start Finish
Local Time Barometric Pressure (inches of Mercury) Ambient Temperature (°F) Mass Flow (SCFM) Gauge Temperature (°F) ΔP Across Collector ("H ₂ O) Diffuse Solar Flux (BTU/Hr·Ft ²) Upper Plate Temperature (°F) Lower Plate Temperature (°F)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Record every one minute during test.	· · ·
Inlet Temperature (°F) <u>135.2</u>	
Mcan Inlet Temperature $(T_{jn} \circ F) = 135.2$ Reduce from Strip Chart after Test	ORIGINAL PAGE IS OF POOR QUALITY
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{57.2}{271}$ Mean Mass Flow (SCFM) $\frac{48}{48}$, ,
Calculate from Reduced Data	
$n = mc_p \Delta T/Q_t * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ p$	$(BTU/Hr \cdot Ft^2) = 443$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = \underbrace{0, 2}_{i}$	- ; •
$(T_{in} - T_{amb}) \div I = 0.18$	

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/12/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61"</u> (Outlet) <u>116"</u> Mass Flow Rate <u>48</u> SCFM
Inlet Temperature Taub + 25 Data I.D. Number 4-12-77-7
Record at Start and Finish of Test Start Finish
Local Time $ 3:30 $ Barometric Pressure (inches of Mercury) 29.69 Ambient Temperature (°F) 36 Mass Flow (SCFM) 48 Gauge Temperature (°F) 114 ΔP Across Collector ("H2O) $.07$ Diffuse Solar Flux (BTU/Hr·Ft ²) 49.1 Upper Plate Temperature (°F) 195 Lower Plate Temperature (°F) 144
Record every one minute during test.
Inlet Temperature (°F) ///.2
Mean Inlet Temperature $(T_{in} \circ F) = \frac{111}{2}$
Reduce from Strip Chart after Test
Mean ΔT (°F)65.2Méan Wind Speed (MPH)3Mean Solar Flux (BTU/Hr:Ft ²), I 255 Mean Mass Flow (SCFM) 48
Calculate from Reduced Data
$\eta = m_{p} \Delta T / Q_{t} * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ I(BTU/Hr·Ft2) = .5/.39 *$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.224$
$(T_{in} - T_{amb}) \div I = \underline{a.0}$

a.

.

Collector Identification <u>SEPCO, "Soloron" Model</u>	EF-212, SN-002
Date $\frac{4/12/77}{12}$ Test Identification Efficien	cy Test
Observers J. Chiou, J. Dysart	· · · · · · · · · · · · · · · · · · ·
Collector Tilt Angle 27° Collector Azimut	h Angle <u>0°</u>
Collector Aperture Area 25.52 ft ² Height of Collec	
Mass Flow Rate 48. SCFM	(Outlet) <u>116"</u>
Inlet Temperature $T_{amb} + 10$ Data I.D. Number	4-12-77-8
Record at Start and Finish of Test	Start Finish
Barometric Pressure (inches of Mercury) Ambient Temperature (°F)	$ \begin{array}{r} 14:05 & 14:10 \\ 29.67 & > 9.67 \\ 86 & 86 \\ 48 & 48 \\ \end{array} $
Mass Flow (SCFM) Gauge Temperature (°F) AP Across Collector ("H ₂ O)	101 101
Diffuse Solar Flux (BTU/Hr·Ft ²) Upper Plate Temperature (°F) Lower Plate Temperature (°F)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Podově evenu po pisute žuvine tret	
Record every one minute during test. Inlet Temperature (°F) 978	
inter temperature ("F) _//o	
Mean Inlet Temperature (T _{in} °F) = <u>97.8</u>	
	DRIGINAL PAGE IS
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{5f.5}{2.32.3}$ Mean Mass Flow (SCFM) Calculate from Reduced Data	OF POOR QUALITY
	A
$\eta = \operatorname{mc}_{p} \Delta T / Q_{t} * A = 0.0423 * \operatorname{m}(SCFM) * \Delta T (°F) \div I (BT)$	$U/Hr \cdot Ft^2$ = 57.15.
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.176$	•
$(T_{in} - T_{amb}) \div I = \underline{0.05}$	
· •	

•

•

Collector Identification SEPCO, "Soloron" Model EF-212, SN-002
Date 4/12/77 Test Identification Incident Angle Modifier Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116"
Mass Flow Rate 48 SCFM
Inlet Temperature Tamb + 10 Data I.D. Number 4-12-77-9
Record at Start and Finish of Test Start Finish
Local Time $ 4:17 $ $ 4:21 $ Barometric Pressure (inches of Mercury) 27.67 27.67 Ambient Temperature (°F) 86 86 Mass Flow (SCFM) 47.1 47.1 Gauge Temperature (°F) 101 101 ΔP Across Collector ("H2O) $.07$ $.07$ Diffuse Solar Flux (BTU/Hr·Ft ²) 45.2 44.3 Upper Plate Temperature (°F) 101 129 Lower Plate Temperature (°F) 101 129
Record every one minute during test.
Mean Inlet Temperature $(T_{in} \circ F) = 97.0$ Reduce from Strip Chart after Test Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{59.5}{3}$ Mean Mass Flow (SCFM) $\frac{47.1}{47.1}$
Mean Mass Flow (SCFM)47.1 Calculate from Reduced Data
$\eta = \hat{m}C_{p}\Delta T/Q_{t}*A = 0.0423* \hat{m}(SCFM) * \Delta T (^{\circ}F) \div I(BTU/Hr \cdot Ft^{2}) = .52.47 $ $[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = \cdot 10^{2}$ $(T_{in} - T_{amb}) \div I = \cdot 10^{2}$
'in amb/ ; 1 _ <u>0.0-0</u>

.

~

-

Collector Identification: SEPCO, "Soloron" Model EF-212, SN-002
Date 4/14/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61"</u> (Outlet) <u>116"</u> Mass Flow Rate <u>48</u> SCFM
Inlet Temperature Tant +10 Data I.D. Number 4-14-77-1
Record at Start and Finish of Test Start Finish
Local Time $0 9.45$ 9.50 Barometric Pressure (inches of Mercury) 29.44 27.44 Ambient Temperature (°F) 80.5 80.5 Mass Flow (SCFM) 48.9 48.9 Gauge Temperature (°F) $90.$ $90.$ ΔP Across Collector ("H2O) $$ Diffuse Solar Flux (BTU/Hr·Ft ²) 73.5 73.5 Upper Plate Temperature (°F) 174 176 Lower Plate Temperature (°F) 12.3 12.5
Record every one minute during test. Inlet Temperature (°F)
Mean Inlet Temperature (T _{in.} °F) = <u>88.0</u>
Reduce from Strip Chart after TestORIGINAL PAGE ISMean ΔT (°F) 72.35 OF POOR QUALITYMean Wind Speed (MPH) 73.35 OF POOR QUALITYMean Solar Flux (BTU/Hr·Ft ²), I 250 48.9
Calculate from Reduced Data $\eta = \hat{m}C_{p}\Delta T/Q_{t}*A = 0.0423* \hat{m}(SCFM) * \Delta T (°F) \div I (BTU/Hr \cdot Ft^{2}) = .57.98_{g}$ $[\langle \Delta T \div 2 \rangle + T_{in} - T_{amb}] \div I = .0.75$ $(T_{in} - T_{amb}) \div I = .0.53$

Collector Identification SEPCO, "Soloron" Model EF-212, SN-002	
Date <u>4/14/77</u> Test Identification <u>Efficiency Test</u>	
Observers J. Chiou, J. Dysart	
Collector Tilt Angle 27° Collector Azimuth Angle 0°	
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116"	
Inlet Temperature Tamb + 25 Data I.D. Number 4-14-77-2	•
Record at Start and Finish of Test Start Finish	
Local Time 11.17 11.22 Barometric Pressure (inches of Mercury) 29.44 Ambient Temperature (°F) 34 Mass Flow (SCFM) 47.5 Gauge Temperature (°F) 111 ΔP Across Collector ("H2O) 111 Diffuse Solar Flux (BTU/Hr·Ft ²) 61.4 Upper Plate Temperature (°F) 186 Lower Plate Temperature (°F) 148	
Record every one minute during test. Inlet Temperature (°F) <u>(07.3</u>	
Mean Inlet Temperature $(T_{in} \circ F) = (0.7, 3)$	
Reduce from Strip Chart after Test	
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{74.9}{2}$ Mean Mass Flow (SCFM) $\frac{74.9}{2}$	
Calculate from Reduced Data	
$\eta = mc_p \Delta T/Q_t * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ I(BTU/Hr·Ft2) = .52.27$	<u>-</u> 8
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.21/$	
$(\mathbf{T}_{in} - \mathbf{T}_{amb}) \div \mathbf{I} = \underbrace{0.08}$	

_

.

Observers J. Chiou, J. Dysart	·
Collector Tilt Angle <u>27°</u> Collector Az	imuth Angle <u>0°</u>
Collector Aperture Area <u>25.52 ft² Height</u> of Co	llector (Inlet) 61"
Mass Flow Rate 48 SCFM	(Outlet) <u>116"</u>
Inlet Temperature Tamb +50 Data I.D. Num	nber <u>4-14-77-3</u>
Record at Start and Finish of Test	Start Finish
Local Time Barometric Pressure (inches of Mercury) Ambient Temperature (°F) Mass Flow (SCFM) Bauge Temperature (°F)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
AP Across Collector ("H ₂ O) Diffuse Solar Flux (BTU/Hr·Ft ²) Jpper Plate Temperature (°F) Lower Plate Temperature (°F)	$ \begin{array}{c} $
Record every one minute during test.	
nlet Temperature (°F) 130 v	
lean Inlet Temperature $(T_{in} \circ F) = \frac{130.0}{1000}$	
educe from Strip Chart after Test	ORIGINAL PAGE IS OF POOR QUALITY
We an ΔT (°F) He an Wind Speed (MPH) He an Solar Flux (BTU/Hr·Ft ²), I He an Mass Flow (SCFM) $\frac{59.45}{3}$ $\frac{288}{49.1}$	
alculate from Reduced Data	
$= \hat{m}C_p \Delta T/Q_t * A = 0.0423 * \hat{m}(SCFM) * \Delta T (°F) \div$	$I(BTU/Hr \cdot Ft^2) = \frac{4 \cdot 8}{8}$
$(\Delta T \div 2) + T_{in} - T_{amb}$ $\div I = \frac{J \ge 6\beta}{2}$	

.

.

. ·

-

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/14/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116"
Inlet Temperature Tamb + 100 Data I.D. Number 4-14-77-4
Record at Start and Finish of Test Start Finish
Local Time $12:45$ $12:50$ Barometric Pressure (inches of Mercury) 29.41 39.41 Ambient Temperature (°F) 845 345 Mass Flow (SCFM) 51 191 Gauge Temperature (°F) 191 191 ΔP Across Collector ("H2O) $73.r$ 73.5 Diffuse Solar Flux (BTU/Hr·Ft ²) $73.r$ 73.5 Upper Plate Temperature (°F) 228.4 228.4 Lower Plate Temperature (°F) 2201.2 201.2
Record every one minute during test. Inlet Temperature (°F) 17 β
Mean Inlet Temperature $(T_{in} \circ F) = \frac{179.8}{1}$
Reduce from Strip Chart after Test
Near Man Mind Speed (MPH) 30.1 Mean Mass Flow (SCFM) 278
Calculate from Reduced Data
$\eta = mC_p \Delta T/Q_t * A = 0.0423 * m(SCFM) * \Delta T (°F) \div I(BTU/Hr \cdot Ft^2) = \frac{24.0}{3}$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = \frac{0.39\%}{1.000}$
$(T_{in} - T_{amb}) \div I = 0.343$

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date <u>4/14/77</u> Test Identification <u>Efficiency Test</u>
Obšervers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116" Mass Flow Rate 48 SCFM
Inlet Temperature Tang +100 Data I.D. Number 4-14-77-5
Record at Start and Finish of Test Start Finish
Local Time 12.55 13.00 Barometric Pressure (inches of Mercury) 29.42 29.42 Ambient Temperature (°F) 94.5 84.5 Mass Flow (SCFM) 57.6 57.6 Gauge Temperature (°F) 190 120 ΔP Across Collector ("H2O) 73.5 73.5 Diffuse Solar Flux (BTU/Hr·Ft ²) 73.5 73.5 Upper Plate Temperature (°F) 223.4 223.4 Lower Plate Temperature (°F) 201.2 201.2
Record every one minute during test. Inlet Temperature (°F) / 90.25
Mean Inlet Temperature $(T_{in} \circ F) = \frac{1 \partial \vartheta}{25}$
Reduce from Strip Chart after TestORIGINAL PAGE ISMean ΔT (°F) 30.26 OF POOR QUALITYMean Wind Speed (MPH) 3 Mean Solar Flux (BTU/Hr·Ft ²), I 280 Mean Mass Flow (SCFM) $57/6$
Calculate from Reduced Data
$\eta = \hat{m}C_p \Delta T/Q_t * A = 0.0423 * \hat{m}(SCFM) * \Delta T (°F) \div I(BTU/Hr \cdot Ft^2) = 23.6_{\frac{3}{2}}$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.396$
$(T_{in} - T_{amb}) \div I = 0.342$

·

Collector Identification SEPCO, "Soloron" Model EF-212, SN-002
Date 4/14/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61"</u> (Outlet) <u>116"</u> Mass Flow Rate <u>48</u> SCFM
Inlet Temperature Tamb + 50 Data I.D. Number 4-14-77-6
Record at Start and Finish of Test Start Finish
Local Time $ 3:3\circ$ $ 3:35$ Barometric Pressure (inches of Mercury) 29.43 29.43 Ambient Temperature (°F) 95.5 85.5 Mass Flow (SCFM) 48.7 48.7 Gauge Temperature (°F) 141 141 ΔP Across Collector ("H2O) -64.4 -64.4 Diffuse Solar Flux (BTU/Hr·Ft ²) 64.4 -64.4 Upper Plate Temperature (°F) -201 119 Lower Plate Temperature (°F) -201 119
Record every one minute during test. Inlet Temperature (°F) 134,7
Mean Inlet Temperature $(T_{in} \circ F) = 134, 7$
Reduce from Strip Chart after Test
Mean ΔT : (°F)53.0Mean Wind Speed (MPH)3Mean Solar Flux (BTU/Hr·Ft ²), I 266.5 Mean Mass Flow (SCFM) 48.7
Calculate from Reduced Data
$\pi = \text{mC}_{p} \Delta T/Q_{t} * A = 0.0423 * \text{m}(\text{SCFM}) * \Delta T (^{\circ}\text{F}) \div I(\text{BTU/Hr} \cdot \text{Ft}^{2}) = \frac{4}{2}$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = \frac{0}{2\pi l}$
$(T_{in} - T_{amb}) \stackrel{:}{:} I = 0.185$

.

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date <u>4/14/77</u> Test Identification <u>Efficiency Test</u>
Cbservers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61"
Mass Flow Rate 48 SCFM (Outlet) 116"
Inlet Temperature Tamb +25 Data I.D. Number 4-14-77-7
Record at Start and Finish of Test Start Finish
Local Time $13:67$ $14:00$ Barometric Pressure (inches of Mercury) 29.42 21.42 Ambient Temperature (°F) 87.5 87.5 Mass Flow (SCFM) 47.78 47.78 Gauge Temperature (°F) 115 115
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Record every one minute during test.
Inlet Temperature (°F) <u> ,6</u>
Mean Inlet Temperature $(T_{in} \circ F) = \frac{11/2}{2}$
Reduce from Strip Chart after Test ORIGINAL PAGE IS
Mean ΔT (°F)5% 8OF POOR QUALITYMean Wind Speed (MPH)2Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{254}{47.78}$
Calculate from Reduced Data
$\eta = \hat{m}C_{p}\Delta T/Q_{t} * A = 0.0423 * \hat{m}(SCFM) * \Delta T (°F) \div I(BTU/Hr · Ft^{2}) = 47.65_{\%}$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = \underbrace{0.2/2}_{0.2/2}$
$(T_{in} - T_{amb}) \div I = 0.095$
•

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date <u>4/14/77</u> Test Identification <u>Efficiency Test</u>
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61</u> " (Outlet) 116"
Mass Flow Rate <u>48</u> SCFM
Inlet Temperature <u>Tamb + 10</u> Data I.D. Number <u>4-14-77-8</u>
Record at Start and Finish of Test Start Finish
Local Time $14:25$ $14:30$ Barometric Pressure (inches of Mercury) 29.36 29.36 Ambient Temperature (°F) 87.5 87.5 Mass Flow (SCFM) 50.1 50.1 50.1 Gauge Temperature (°F) $9P$ $9P$ ΔP Across Collector ("H20) 73.5 72.5 Diffuse Solar Flux (BTU/Hr·Ft ²) 73.5 72.5 Upper Plate Temperature (°F) $16P$ $16S$ Lower Plate Temperature (°F) 126 126
Record every one minute during test. Inlet Temperature (°F)
Mean Inlet Temperature $(T_{in} \circ F) = \frac{\beta g}{\beta}$
Reduce from Strip Chart after TestORIGINAL PAGE ISMean ΔT (°F) 53.7 OF POOR QUALITYMean Wind Speed (MPH) 3 OF POOR QUALITYMean Solar Flux (BTU/Hr·Ft ²), I 231 Mean Mass Flow (SCFM) 50.1
Calculate from Reduced Data
$\eta = m_{p} \Delta T/Q_{t} * A = 0.0423 * m(SCFM) * \Delta T (°F) \div I(BTU/Hr \cdot Ft^{2}) = \frac{4.9.28_{g}}{2.8_{g}}$
$[(\Delta T=2) + T_{in} - T_{amb}] = 0.162$
$(T_{in} - T_{amb}) \div I = \underline{0.46}$

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/14/77 Test Identification Time Constant Test
ObserversJ. Chiou, J. Dysart
Collector Tilt Angle 25° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61"</u> (Outlet) <u>116"</u>
Mass Flow Rate <u>48 scFM</u> Inlet Temperature Tamb +10 Data I.D. Number <u>4-14-77-9</u>
Record at Start and Finish of Test Start Finish
Local Time $ 4:33 $ $ 4:40 $ Barometric Pressure (inches of Mercury) $29.36 $ $29.36 $ Ambient Temperature (°F) $01 $ $27.36 $ Mass Flow (SCFM) $50 $ $50 $ Gauge Temperature (°F) $93 $ $97 $ ΔP Across Collector ("H2O) $0.07 $ $0.07 $ Diffuse Solar Flux (BTU/Hr·Ft ²) $66 $ $0 $ Upper Plate Temperature (°F) $168 $ $102 $ Lower Plate Temperature (°F) $125 $ $100 $
Record every one minute during test.
Inlet Temperature (°F) 98.2 98.2
Mean Inlet Temperature $(T_{in} \circ F) = \frac{9}{2}$.
Reduce from Strip Chart after Teststart FinishMean $\Delta T'_{(°F)}''$ 57Mean Wind Speed (MPH)3Mean Solar Flux (BTU/Hr·Ft ²)230Mean Mass Flow (SCFM)49.5
Calculate from Reduced Data
$\eta = \hat{m}C_{p}\Delta T/Q_{t} * A = 0.0423 * \hat{m}(SCFM) * \Delta T (°F) \div Q(BTU/Hr \cdot Ft^{2}) = $
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div Q = \underline{\qquad}$
$(T_{in} - T_{amb}) \div Q = $

Collector Identification SEPCO, "Soloron" Model EF-212, SN-002
Date <u>4/14/77</u> Test Identification <u>Incident Angle Modifier Test</u>
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116"
Inlet Temperature Taws +10 Data I.D. Number 4-14-77-10
Record at Start and Finish of Test Start Finish
Local Time $14:50$ $14:55$ Barometric Pressure (inches of Mercury) 29.35 29.35 Ambient Temperature (°F) 86.5 Mass Flow (SCFM) 48 Gauge Temperature (°F) 91 ΔP Across Collector ("H2O) 91 Diffuse Solar Flux (BTU/Hr·Ft ²) 52.44 Upper Plate Temperature (°F) 157 Lower Plate Temperature (°F) 157
Record every one minute during test.
Inlet Temperature (°F) <u>98.2</u>
Mean Inlet Temperature $(T_{in} \circ F) = \frac{j \delta \cdot 2}{2}$
Reduce from Strip Chart after TestORIGINAL PAGE ISMean ΔT (°F) 43.85 Mean Wind Speed (MPH) 3 Mean Solar Flux (BTU/Hr·Ft ²), I 120 Mean Mass Flow (SCFM) 48
Calculate from Reduced Data $\eta = \dot{m}C_{p}\Delta T/Q_{t}*A = 0.0423* \dot{m}(SCFM) * \Delta T (°F) \div I(BTU/Hr \cdot Ft^{2}) = \frac{49.48}{4.48} $ $[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = \underline{0.065}$ $(T_{in} - T_{amb}) \div I = \underline{0.065}$

Date 4/14/77 Test Identification Inc	cident Angle M	odliler les
Observers J. Chiou, J. Dysart	·	
Collector Tilt Angle 27° Collector	Azimuth Angle	<u>0°</u>
Collector Aperture Area 25.52 ft ² Height of	Collector (In	let) <u>61"</u>
Mass Flow Rate <u>48 SCFM</u>	(Out	let) <u>116"</u>
Inlet Temperature 1946 +10 Data I.D.	Number <u>4-1</u>	4-77-11
Porced at Chart and Riviah of Most	<u> </u>	
Record at Start and Finish of Test	Start	Finish
Local Time Barometric Pressure (inches of Mercury)	15:15	15:20
Ambient Temperature (°F)	86	86
Mass Flow (SCFM) Gauge Temperature (°F),	<u>48.8</u> 99	<u>48.8</u> <u>99</u>
△P Across Collector ("H ₂ O) Diffuse Solar Flux (BTU/Hr·Ft ²)	46.4	46.4
Upper Plate Temperature (°F) Lower Plate Temperature (°F)	- 150	149
		<u>-</u> , <u></u>
Record every one minute during test.		N
Inlet Temperature (°F) 97.8	<u> </u>	
Mean Inlet Temperature $(T_{in} \circ F) = \frac{97.8}{2}$		
Reduce from Strip Chart after Test		
Mean AT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr•Ft ²), I <u>170</u> Mean Mass Flow (SCFM)		
Calculate from Reduced Data		
$\eta = \tilde{m}C_p \Delta T/Q_t * A = 0.0423 * \tilde{m}(SCFM) * \Delta T (°F)$	÷ I(BTU/Hr·F	$t^2) = 45\%$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = \underline{0.18}/$		•

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/14/77 Test Identification Incident Angle Modifier Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116"
Mass Flow Rate <u>48 SCFM</u>
Inlet Temperature Tani + 10 Data I.D. Number 4-14-77-12
Record at Start and Finish of Test Start Finish
Local Time 15.45 15.50 Barometric Pressure (inches of Mercury) 39.33 Ambient Temperature (°F) 36.5 86.5 Mass Flow (SCFM) 49.2
Gauge Temperature (°F) ΔP Across Collector ("H ₂ O)
Diffuse Solar Flux ($BTU/Hr \cdot Ft^2$) Upper Plate Temperature (°F) 40.4 143 140
Lower Plate Temperature (°F) <u>113</u> <u>112</u>
Record every one minute during test.
Inlet Temperature (°F) <u>98.2</u>
Mean Inlet Temperature $(T_{in} \circ F) = \underline{g} \cdot \underline{g}$
Reduce from Strip Chart after Test
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{140.5}{49.2}$
Calculate from Reduced Data
$\eta = mc_p \Delta T/Q_t * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ I(BTU/Hr·Ft2) = 43.5$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.18\%$
$(T_{in} - T_{amb}) = I = 0.083$

•

;

•

:

Collector Identification <u>SEPCO</u> , "Soloron" Model EF-212, SN-002
Date <u>4/15/77</u> Test Identification <u>Incident Angle Modifier Test</u>
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116"
Mass Flow Rate <u>48 SCFM</u>
Inlet Temperature Tamb Data I.D. Number 4-15-77-1
Record at Start and Finish of Test Start Finish
Local Time $07:45$ $07:50$ Barometric Pressure (inches of Mercury) 29.44 39.44 Ambient Temperature (°F) 66 66 Mass Flow (SCFM) 49.5 49.5
Mass Flow (SCFM) 49.5 Gauge Temperature (°F) 67 ΔP Across Collector ("H20) $-$ Diffuse Solar Flux (BTU/Hr·Ft ²) 43.5
Upper Plate Temperature (°F) <u>107</u> <u>113</u> Lower Plate Temperature (°F) <u>70</u> <u>71</u>
Record every one minute during test.
Inlet Temperature (°F) <u>66</u>
Mean Inlet Temperature $(T_{in} \circ F) = \frac{46}{1000}$
Reduce from Strip Chart after Test
Mean ΔT (°F) 28.97 ORIGINAL PAGE ISMean Wind Speed (MPH) 3 OF POOR QUALITYMean Solar Flux (BTU/Hr·Ft ²), I 128.3 49.5
Calculate from Reduced Data
$\eta = inC_p \Delta T/Q_t * A = 0.0423 * in(SCFM) * \Delta T (°F) ÷ I(BTU/Hr·Ft2) = 47.3 %$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.226$
$(T_{in} - T_{amb}) \div I = 0.$
70

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/15/77 Test Identification Incident Angle Modifier Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61</u> " (Outlet) <u>116</u> "
Mass Flow Rate 48 SCFM
Inlet Temperature Tanb +10 Data I.D. Number 4-15-77-2
Record at Start and Finish of Test Start Finish
Local Time $08:15$ 68.20 Barometric Pressure (inches of Mercury) 29.44 29.44 Ambient Temperature (°F) 70 70 Mass Flow (SCFM) 47 47 Gauge Temperature (°F) 81 81 ΔP Across Collector ("H2O) $$ $$ Diffuse Solar Flux (BTU/Hr·Ft ²) 47 47 Upper Plate Temperature (°F) 124 128 Lower Plate Temperature (°F) 98 100
Record every one minute during test.
Mean Inlet Temperature (T_{in} °F) = $\frac{8/.2}{}$
Reduce from Strip Chart after Test
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{39.8}{163.2}$ Mean Mass Flow (SCFM) $\frac{47}{47}$
Calculate from Reduced Data
$\eta = \hat{m}c_p \Delta T/Q_t * A = 0.0423 * \hat{m}(SCFM) * \Delta T (°F) \div I(BTU/Hr · Ft^2) = 48.5 $
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.19$
$(T_{in} - T_{amb}) \div I = 0.068$

-

•

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/15/77 Test Identification Incident Angle Modifier Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116"
Inlet Temperature $\underline{Tamb + 10}$ Data T.D. Number $\underline{4 - 15 - 77 - 3}$
Record at Start and Finish of Test Start Finish
Local Time $08:45$ 08.50 Barometric Pressure (inches of Mercury) 39.44 39.44 Ambient Temperature (°F) 75 75 Mass Flow (SCFM) 46.8 477 Gauge Temperature (°F) 83 83 ΔP Across Collector ("H20) $$ $$ Diffuse Solar Flux (BTU/Hr·Ft ²) 51.77 51.77 Upper Plate Temperature (°F) 143 148 Lower Plate Temperature (°F) 107
Record every one minute during test.
Inlet Temperature (°F) <u>825</u>
Mean Inlet Temperature $(T_{in} \circ F) = \frac{82.5}{.5}$
Reduce from Strip Chart after Test ORIGINAL PAGE 15
Mean ΔT (°F) 50.07 OF POOR QUALITYMean Wind Speed (MPH) 3 Mean Solar Flux (BTU/Hr·Ft ²), I 193.6 Mean Mass Flow (SCFM) 46.9
Calculate from Reduced Data
$\eta = mC_p \Delta T/Q_t * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ I(BTU/Hr·Ft2) = 5/.35$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.168$
$(T_{in} - T_{amb}) \div I = \underline{0.038}$

•

Collector Identification <u>SEPCO</u> , "Soloron" Date <u>4/15/77</u> Test Identification <u> nc</u>	`
Observers J. Chiou, J. Dysart	J
Collector Tilt Angle 25° Collector 2	Azimuth Angle <u>0°</u>
Collector Aperture Area 25.52 ft ² Height of $($	Collector '(Inlet) <u>61"</u> (Outlet) <u>116"</u>
Mass Flow Rate <u>48 SCFM</u> Inlet Temperature <u>Tamb + 10</u> Data I.D. 1	Number 4-15-77-4
Record at Start and Finish of Test	<u>Start</u> Finish
Local Time Barometric Pressure (inches of Mercury) Ambient Temperature (°F) Mass Flow (SCFM) Gauge Temperature (°F) ΔP Across Collector ("H ₂ O) Diffuse Solar Flux (BTU/Hr·Ft ²) Upper Plate Temperature (°F) Lower Plate Temperature (°F)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Record every one minute during test. Inlet Temperature (°F) <u>86 86</u>	· · ·
Mean Inlet Temperature $(T_{in} \circ F) = \frac{36}{6}$	
Reduce from Strip Chart after Test	ORIGINAL PAGE IS OF POOR QUALITY
Mean ΔT (°F) 59.2 Mean Wind. Speed (MPH) 3 Mean Solar Flux (BTU/Hr Ft ²) 223.7 Mean Mass Flow (SCFM) 46.68	· · ·
Calculate from Reduced Data	
$\eta = \hat{m}C_p \Delta T / Q_t * A = 0.0423 * \hat{m}(SCFM) * \Delta T (°F)$	$\div Q(BTU/Hr \cdot Ft^2) = 52.$
$[(\Delta T : 2) + T_{in} - T_{amb}] : Q = 0.196$	
$(T_{in} - T_{amb}) \div Q = 0.053$	

-

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
Date 4/15/77 Test Identification Efficiency Test
Observers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61"</u> (Outlet) <u>116"</u> Mass Flow Rate <u>20</u> SCFM
Inlet Temperature Tamb +10 Data I.D. Number 4-15-77-5
Record at start and Finish of Test Start Finish
Local Time $09:47$ $09:53$ Barometric Pressure (inches of Mercury) 37.44 39.44 Ambient Temperature (°F) 79 79 Mass Flow (SCFM) 120.3 120.3 Gauge Temperature (°F) 89 89 ΔP Across Collector ("H2O) $$ $$ Diffuse Solar Flux (BTU/Hr·Ft ²) 57.9 57.9 Upper Plate Temperature (°F) 135 136 Lower Plate Temperature (°F) 106
Record every one minute during test. Inlet Temperature (°F) <u>90 </u>
Mean' Inlet Temperature $(T_{in} \circ F) = \frac{90.1}{10.10}$ $(T_{in} \circ F) = \frac{90.1}{10.100}$ $(T_{in} \circ F) = \frac{90.1}{1000}$ Reduce from Strip Chart after Test
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{38.64}{3}$ Mean Mass Flow (SCFM) $\frac{120.3}{2}$
Calculate from Reduced Data
$\eta = \dot{m}C_{p} \Delta T/Q_{t} * A = 0.0423 * \dot{m}(SCFM) * \Delta T (°F) \div I(BTU/Hr \cdot Ft^{2}) = .78.0.6_{\text{g}}$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 3.130$
$(T_{in} - T_{amb}) \div I = \frac{0.044}{100}$

	ctor lder	tificat:	ion <u>SEP</u>	CO, "Solor	on" Mod	lel EF-212	<u>, SN-002</u>
Date	4/15/	7]_Test	t Identii	fication	Effic	iency Test	
15457	vorsJ	<u>_Chiou</u> ,	J. Dysa	<u>rt</u>			
Colle	ctor Tilt	: Angle	27°	_ Collect	or Azi	muth Angle	<u> </u>
				2 Neight		lector (In	
Mass 1	Flow_Rate	. 12	LO SCFN	4			
Inie	Tempes at	ure. <u> </u> To	146 +25	_ Data I.	D. Numl	per <u>4-1</u>	5-77-6
Record	d at Stai	t and Fi	inish of	Test	: : :	Start	Finish
Ambien	etric Pre nt Temper	ature ('		E Mercury)		10:12 29:44 79 119.8	<u>10.17</u> <u>29.44</u> <u>79</u> <u>119.8</u>
Gauge AP Ac:	Flow (SCI Temperat ross Coll se Solar	ure (°F) ector ('	"H ₂ O)	, 2 \		<u> </u>	17.8 164 59 751
Upper	Plate To Plate To	mperatu	re (°F)	,		150	<u>151</u> <u>120</u>
Record	d every o	ne minut	te during	<u>g test</u> .			`
Inlet	Temperat	ure (°F)	103.				
Mean I	Inlet Ter	perature	e (T _{in} °E	?) = <u>10</u>	3	ORIGINAL	PAGE IS
Reduce	e from St	rip Char	ct after	Test		OF POOR	QUALITY
Mean V Mean S	AT (°F) Wind Spee Solar Flu Mass Flow	ix (BTU∕F	ir·Ft ²),	<u>38.8</u> <u>3</u> 1 <u>266.7</u> 1/9.8			
	late from						
$\eta = m$	C _p ∆T/Q _t *I	= 0.042	23* m(SCF	FM) * ∆T (°F) ÷]	(BTU/Hr·F	t^2) =73
[(<u>A</u> T	÷2') + T _{ir}	- T _{amb}]	÷ I =	0.163		-	
(T	- T _{amb}) -	· I = 6	0.09				

Collector Identification <u>SEPCO, "Soloron" Mo</u> del <u>EF-212, SN-002</u>
Data 4/15/77 Test Identification Efficiency Test
Coservers J. Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area <u>25.52 ft²</u> Height of Collector (Inlet) <u>61"</u> (Outlet) <u>116"</u> Mass Flow Rate <u> 20</u> SCFM
Inlet Temperature Tank +50 Data I.D. Number 4-15-77-7
Record at start and Finish of Test Start Finish
Local Time $10:37$ 10.42 Barometric Pressure (inches of Mercury) 29.40 29.40 Ambient Temperature (°F) $8!$ $8!$ Mass Flow (SCFM) 121.6 121.6 Gauge Temperature (°F) $128.$ $1^{-2}6$ ΔF Across Collector ("H2O) $$ $$ Diffuse Solar Flux (BTU/Hr·Ft ²) 59.9 57.9 Upper Plate Temperature (°F) $173.$ $173.$ Lower Plate Temperature (°F) $144.$ $144.$
Record every one minute during test.
Inlet Temperature (°F) 127.6
Mean Infet Temperature $(T_{in} \circ F) = 127.6$
Reduce from Strip Chart after Test
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{3}{277.5}$ Mean Mass Flow (SCFM) $\frac{121.8}{27.5}$
Calculate from Reduced Data
$\eta = inC_p \Delta T/Q_t * A = 0.0423 * in(SCFM) * \Delta T (°F) ÷ I (BTU/Hr·Ft2) = .66.9.9 *$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.233$
$(T_{in} - T_{amb}) = I = 0.168$

- -

Collector Identification <u>SEPCO</u> , "Soloron" M	odel EF-212, SN-002
Date 4/15/77 Test Identification Effi	iciency Test
Creering J. Chiou, J. Dysart	• <u>· · · · · · · · · · · · · · · · · · ·</u>
Collector Tilt Angle 27° Collector Az	imuth Angle <u>0°</u>
Collector Aperture Area <u>25.52 ft²</u> Height of Co Mass Flow Rate 20 SCFM	Ollector (Inlet) 61" (Outlet) 116"
injet Temperature Tank +100 Data I.D. Nu	mber 4-15-77-8
Record at Slart and Finish of Test	Start Finish
Local Time Barometric Pressure (inches of Mercury) Ambient Temperature (°F) Mass Flow (SCFM) Gauge Temperature (°F) AP Across Collector ("H ₂ O) Diffuse Solar Flux (BTU/Hr·Ft ²) Upper Plate Temperature (°F) Lower Plate Temperature (°F)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Record every one minute during test.	
Inlet Temperature (°F) 180, 25	
Mean Inlet Temperature $(T_{in} \circ F) = \frac{180.5}{1}$	
Reduce from Strip Chart after Test Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I Mean Mass Flow (SCFM) $\frac{23.5}{291}$	ORIGINAL PAGE IS OF POOR QUALITY
Calculate from Reduced Data	
$\eta = \dot{m}C_p \Delta T/Q_t * A = 0.0423 * \dot{m}(SCFM) * \Delta T (°F) =$	$I(BTU/Hr \cdot Ft^2) = 41.13$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.37/$	•
$(T_{in} - T_{amb}) = I = 0, 33)$	
77	

Collector Identification SEPCO, "Soloron" Model EF-212, SN-002
Date 4/15/77 Test Identification Efficiency Test
"ser ers Chiou, J. Dysart
Collector Tilt Angle 27° Collector Azimuth Angle
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116"
Mass Flow Rate 120 SCFM
Inlet Temperature Tamb + 100 Data I.D. Number 4-15-77-9
Record at Start and Finish of Test Start Finish
Local Time $1/:48$ $1/:53$ Barometric Pressure (inches of Mercury) $29,38$ $27,38$ Ambient Temperature (°F) 34 84 Mass Flow (SCFM) $1>0.5$ $1>0.5$ Gauge Temperature (°F) 184 184 ΔP Across Collector ("H2O) $$
Record every one minute during test.
Inlet Temperature (°F) [8],4
Mean Inlet Temperature (T_{in} °F) = 181.4
Reduce from Strip Chart after Most
Reduce from Strip Chart after TestMean $\Delta T. (°F)$ 24.73 Mean Wind Speed (MPH) 2 Mean Solar Flux (BTU/Hr·Ft ²), I 213.4 Mean Mass Flow (SCFM) $1 > 0.5$
Calculate from Reduced Data
$\eta = mC_{p}\Delta T/Q_{t} * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ I(BTU/Hr·Ft2) = 42.99 *$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.374$
$(T_{in} - T_{amb}) \div I = 0 332$
1
78

Collector Identification <u>SEPCO, "Soloron"</u>	Model EF-212, SN-002
Date 4/15/77 Test Identification Ef	ficiency Test
Chiou, J. Dysart	
Collector Tilt Angle 27° Collector	Azimuth Angle <u>0°</u>
Collector Aperture Area 25.52 ft ² Height of	
less Flow Rate 120 SCFM	(Outlet) <u>116"</u>
The Temperature Tank + 50 Data I.D.	Number 4-15-77-10
N	الله المراجع ال المراجع المراجع
Fecord at Licct and Finish of Test	Start Finish
Local Time Barometric Pressure (inches of Mercury) Ambient Temperature (°F) Mass Flow (SCFM)	$ \begin{array}{r} 12:42 \\ $
Sauge Temperature (°F) dP Across Corlector ("H ₂ O) Drifuse Solar Flux (BTU/Hr·Ft ²) Upper Plate Temperature (°F) Lower Plate Temperature (°F)	$\begin{array}{c c} 1 & 2 & 1 & 2 \\ \hline 1 & 3 & 2 \\ \hline 1 & 3 & 2 \\ \hline 1 & 3 & 2 \\ \hline 1 & 5 & 2 \\ \hline 1 & 2 & 1 \\ \hline 1 &$
Record every one minute during test.	
Inlet Temperature (°F) 130.2	
Mean Thlet Temperature $(T_{in} \circ F) = 130.2$ Reduce 1 om Strip Chart after Test	ORIGINAL PAGE IS OF POOR QUALITY
Mean ΔT (°F) Mean Wind Speed (MPH) Mean Solar Flux (BTU/Hr-Ft ²), I $2.86.7$ Mean Mass Flow (SCFM) 121.2	
Calculate from Reduced Data	
$T = \hat{m}C_{\mu}\Delta T/O_{t}^{*}A = 0.0423 * \hat{m}(SCIM) * \Delta T (°F)$	$: I(BTU/Hr \cdot Ft^2) =$
$[(\Delta T \div 2) + T_{in} - T_{amb}] \div I = 0.20$	
$(T_{in} - T_{amb}) = I = 0.157$	

-

•

Collector Identification <u>SEPCO, "Soloron" Model EF-212, SN-002</u>
e 4/15/77 Test Identification Efficiency Test
J. Dysart
Colu tor Filt Nigle 27° Collector Azimuth Angle 0°
Collector Aperture Arca <u>25.52 ft² Height of Collector (Inlet) 61</u> " (Outlet) <u>116</u>
Pass Flow Rite 120 SCFM
slot first ture Tamb + 25 Data I.D. Number $4-15-77-11$
YECOrd a coult and Finish of Test . Start Finish
Local fine 13.12 13.12 Barometric Pressure (inches of Mercury) 29.33 39.33 Ambient Temperature (°F) 86 86 Mass Flow (SCFM) 120.9 120.9 Auge Fouperature (°F) 111 111 AP, Accoss Collector ("H2C) $$
Liffuse Solar Flux (B'TU/Hr·Ft ²) Upper Plate Temperature (°F) Lower Plate Temperature (°F) 128 127
Record every one minute during test.
Inlet Temperature (°F) 110.3
Mean Inlet Temperature $(T_{in} \circ F) = 10.3$ (u) (u) (u) (u)
Veryce from Strip Chart after Test
Mean ΔT (°F) Mean Mind Speed (MPH) Mean Solar Flux (BTU/Hr·Ft ²), I Mean Mas: Flow (SCFM) $\frac{41.1}{275}$
Calculate from Reduced Data
$n_{p} \frac{17}{2t^{-1}} = 0.0423 * \dot{m}(SCPM) * \Delta T (°F) \div I(BTU/Hr · Ft^2) = 76.5 *$
$(4T^{2}) + T_{in} - T_{amb}$ $\div I =$
$(\mathbf{T}_{\mathbf{u}}, \mathbf{v}) = \mathbf{I} = (\mathbf{u}_{\mathbf{u}}, \mathbf{v}) = \mathbf{I} = (\mathbf{u}_{\mathbf{u}}, \mathbf{v})$
_: *

•

Sollector Identification SEPCO, "Soloron" Model EF-212, SN-002
Date 4/15/77 Test Identification Efficiency Test
. Chiou, J. Dysart
collector Azimuth Angle 27° Collector Azimuth Angle 0°
Collector Aperture Area 25.52 ft ² Height of Collector (Inlet) 61" (Outlet) 116"
is it Temperature Tau +10 Data I.D. Number 4-15-77-12
"coord at Start and Finish of Test Start Finish
Local Time 13.57 14.52 Barometric Pressure (inches of Mercury) 29.32 21.32 Ambient Temperature (°F) 36 36 Mars Flow (SCFM) 119.5 119.5 Sauge Temperature (°F) 96 76 AP Across Collector ("H2O) 542 53.6 Upper Plate Temperature (°F) 145 143 Lower Plate Temperature (°F) 145 143 Lower Plate Temperature (°F) 113 112
Record every one minute during test. Inlet Temperature (°F) <u>17.4</u>
Mean Inlet Temperature $(T_{in} \circ F) = \frac{97.4}{2}$
Reduce from Strip Chart after Test ORIGINAL PAGE IS Mean ΔT (°F). $\frac{364}{3}$ Mean Solar Flux (BTU/Hr·Ft ²), I $\frac{241}{2}$
Calculate from Reduced Data
$7 \cdot mc_p \Delta T/Q_t * A = 0.0423 * m(SCFM) * \Delta T (°F) ÷ I(BTU/Hr·Ft2) = -764 *$
$[(AT+2) + T_{in} - T_{amb}] + I = (12)^{3}$
$(T_{in} - T_{amb}) \neq I = \underline{ \omega 4 7}$
Ω1

APPENDIX II

 Collector Identification
 SEPCO "Soloron" Model EF-212

 Month
 December
 Tost Identification
 Weathering Test

 Weather data furnished:
 Weather data furnished:
 Weather Service, Huntsville, Alabama

 Wight, National Weather Service, Huntsville, Alabama
 OP

 Weather Tilt Angle
 45°
 Collector Azimuth Angle
 OP

 Weather Tilt Angle
 Height of Collector (Inlet)
 OP

,

									,
1	1	I						Additi	onal
ł	Solar Flux	Tampos		(°F)	Precipi	tation	(In.)	Weathe	
1 0 9	RAL 11. Er2	lligh	Low	Avg.	Rain	Snow	Other		
1		l urðu	том	hvg.	, Nain	WOILS I	lotner	Condit	Jind Mr.
· · ·	· · · ···	45°	30°	<u>38</u> °	0		{		9.6
- (***						<u> </u>			
, 11	1	56	_ 29°	43°	06	<u> </u>	╆╼╴────		-90-
j di	1		<u>35°</u>	46°		ļ	ļ	heavy tog	
	1	<u>55°</u>	340	<u>45°</u>	0	}		neavytog	7.6
1. 1.		<u>63°</u>	28°	45° 46°	0		1		6.6
18		68	35°	. <u>52</u> °	0				5.5
		66	<u>36°</u>	5/°	.05	1			8.6
19							∤	1. 110	
20.		<u>57°</u>	_ 25°	. 410_	67	<u></u>		light tog_	16.2
_ 21		. <u>29°</u>	18°	240		<u> </u> .			12.4
1 21	5	<u>.38°</u>	15°	27°.	0	(1		7.2
	j,	<u>50°</u>	200	350	0]		8.4
	. L	<u>50°</u>	200	<u>35</u> °	0	¦	1	1	6.2
L.L.I.		43°	330			{─	{	to bl P.	9.6
25	· · · · · · · · · · · · ·	73		38°	1.1.4		<u>├</u>	llight tog	7.0
26		470	290	. 38°_	0	ļ	<u></u>		
27		63°	260	45°	0	<u></u>	<u></u>	ļ	10.5
28		57°	28°	<u>43°</u>	0				11.9
. 29		41°	25	<u>33°</u>	0		-	(133
.30		56°	<u>26°</u>	<u>41</u> °	3.8	Hrace'	sleet	fog	12.8
			<u>7</u> °	2/0			sleet	<u></u>	159
31		32.	Z	210			faieer-		-1 del-
		<u>↓</u>			{	<u> </u>		_	
L					{	<u> </u>		4	
; ·	1 4					[<u>}</u>	
i				• •	•		1	1	i i
							1	1	
-					{		<u> </u>		
	{			• ·			{	+`	
1 1 ·						L		╉┈┉┈┉┈┉	
		ļ		1		L			
		1			}				
		1			}]	1	
·		1				ORI	INAL PA	TTO TO	
		<u>∤</u>				- OF 1	OOR QU	17E-18	
L	· ·	L		L	1		UUUT UU	artit	

		Ţ	• •	+ i oj	ì	SEPCO	"Sol <u>oron</u> "	<u>Model</u>	EF-212		.,
Month	Ja	<u>nuary_</u>		Test	Ident	ificati	ion hed:	Weath	ering Tes	<u>st</u>	_
059079	ers	J. Wr	ight,	Weat Nati	her data <u>onal We</u> a	a furnis <u>ather Se</u>	hed: rvi <u>ce, H</u> u	<u>untsvil</u>	<u>le, Alaba</u>	ата	
										0°	
ר:	t	<u>ን ንሶ ዮ</u> ቶ	^ւ ,ዮሶ	yrea	I	leight	of Coll	lector	(Inlet (Outlet	t)	

:	•	,						T	· · · · · · · · · · · · · · · · · · ·
5	1	4 e		(h - h			/ \	Addit	
-	Solar Flux				Precipi			Weath	
ј лау	B'ru/Hr·Ft ²	High	LOW	Avg.	Rain	Snow	Other	Condit Wind 77br.	tions
) <i></i>		70	17°	0		 	9.8	
· · · ·		3/°		240		1	clock	7.3	
,	•	38°	. <u>/6°</u>			trace	sleet		
•	Ŧ	1/20	- 270	330	08	trace	sleet	10.0	dense j
· · ·	· ·	430	.35°	390	0			13.0	_dense
	• •	140	<u> </u>	.41°_	60	trace		14.0	_light_j
	- · ·	.38°	<u>36°</u>	<u>. 37</u> °	trace_	-trace	sleet	13.0	_light_
<u> </u>	}. 	. 38°	_ <u>26°</u> _	<u>32</u> °	trace_			170	_Light_
8	ļ	42.	_ 22*_	32."	1.5			9.0	
ĹĹ		<u>45°</u>	<u>33°</u>	<u>_39</u> °_	1.52 _			250	light]
<u>10</u>		330	_110	22°	tràce	trace		21.9	
11		30'	80		. <u> 0 </u>			5.4	
\mathbb{R}] 	390	/7°	28°	0			6.2	
· · · · · ·		5/0	2/0	<u>_36°</u> _	.03		sleet	8.2	
14		480	340	410				11.2	light
15		430	300	370	0			8.0	light
16		3/0	40	18°	trace	trace		.30.0	
17		2/°	-/0	10°	0			15.0	
8		2/0	30	12°	.05	•		23.0	
		25.	.2°	140	.04			15.0	
20		<u>38°</u>	20°	290	trace			28.D	
21		420	13°	28°	0			12.0	
22		360	170	27°	0			/3.0	
1.72	•	47.0	190	33"	.04		sleet	12.0	
24		40°	_33°	.37	.63			14.0	dense
25		40°	26°	<u>.3</u> 3°_	0			10.9	
26.			210	390	.04			12.8	
27. 1		550	330	440	frace			5.8	
28		530	90	310	trace			13.5	
29		2.30	3.	13.				10.5	
30		40°	120	26°_				9.6	
31		<u>33°</u>	140	240		···		8.2	
,	· ••• •••••				·				

Consider identification _____SePCO "Soloron" Model EF-212 Month February Test Identification Weathering Test Weather data furnished: Contracts d. Wright, National Weather Service, Huntsville, Alabama i di usur "ilt Angle 45° Collector Azimuth Angle 0° Jur 'perture Area ____Height of Collector (Inlet)_____ (Outlet)_____

÷

							/	Addit:	
× .	Solar Flux	Temper	ature	$\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$	Precipi	tation	(ln.)	Weath	
<u>₽.₹</u>	stu/m et2	ligh	Low	Avg.	Rain	Snow	Other	Condit Wind The	Lons
ţ		42°	1.3°	28°_]			5.0	
- -	1	50°	190	350]			4.8	
3	1	50°	330	420 46°]			4.4	
	; ;	580	340	460	1			110	haze
-		<u>43°</u>	240	340	[16.1	
6		38°	150	270	<u></u>			9.0	
<u> </u>		360	16°	_26°	1			10.0	
8		450	170	3/0				3.8	····
8		570	220	400				5.0	
0	∫~	620	28°	150	1	<u></u>		5.0	
; i		650	310	450	Frace	blowing		6.2	
		6.10	47.	540	.40	plawing	·····	11.2	ligh
13	·	5.30	320	430	···· /0			8.9	Judu
_ <u> 3</u> _ <u> 4</u>	· ·- ·	_68°	290	490	<u> </u>		sleet	12.9	haaaa-
15		420	23.	320	trace	haild	sleet	12.4	
16		390	20°	30° 37° 5/° 141° 33°		- 1 1 24 1 1 5-		9.2	ligh
17		490	250	370	freezing			6.8	<u> </u>
18.	- ~	640	380	<u></u>	1 LEG3 MAJ	•		9.7	
19_		58	290	410				14.3	haze
20	• • • • • • • •	430	230	230	freezing			11.0	ப்பத
21	··	540	220	38°	LICCOUG			7.2	Tight
77		70°	400	_ <u>55°</u> _			·	16.4	liah
24	· · · · · ·	. 62-	490	56	1.8		hail	19.0	ligh
74		660	440	_ <u>55°</u> _		·····		14.8	-1
- 25	• • • •	770	420	<u>60°</u>			hail	9.9	
26	·	770	540	66°	1.08			16.4	
27		600	340	47°	1.20			15.2	
23		50°	29°	40°				8.7	
- dail.	·	<i>-1:U</i>	- dad	,IV					
-	· · ··· · · · · · · · · · · · · · · ·								
· · · · · · · · ·		┨╶╍╾╍╴╍┽		•	{			<u> </u>	

ORIGINAL PAGE IS OF POOR QUALITY

• •

Coll Cor Identification SEPCO "Soloron" Model EF-212 Month March Test Identification <u>Weathering Test</u> Weather data furnished: Observers J. Wright, National Weather Service, Huntsville, Alabama entroit Tilt Angle 45° Collector Azimuth Angle 0° Additional Solar Flux Temperature (°F) Precipitation (In.) BTU/Hr.Ft² High Low Avg. Rain Snow Other Weather Conditions Wind Whr. Fog_ Eax Bru/Hr.Ft2 - ----420 0 55° 60° 290 10.7 1.7 45° trace 300 10.2 ia. !- 1-1-1-550 1:46 48° 17.1 620 light <u>55°</u> 450 1.44 11.7 65° 470 580 350 . 37 6 3 5 8.2 430 light <u>35°</u> .3/_ 50° 6 1... 8.4 45° 59° 310 67° 6.6 8 . 32° 50° 3.70 9. 66° 8.4 <u>52°</u> 141 470 10 .. 690 58° trace 670 <u>5</u>4° 610 18.0 .84 <u>+hunder</u> tog Ц_ foq 67°. +hunder 13.5 510 59° 3.41 la-<u>1</u>3, .59° 71° 12.7 470 14 790 610 5.8 43. 800 45° _63° 7.1 15 12.9 650 480 <u>57°</u> 16 . . . 10.2 660 46° _56°. 17 0.0

tog

tog_

tog

+oă

18 76° 55° 66° trace	
19 62° 48° 55° 28	9.4
20 640 410 530	7.0
21. 60° 49° 55° .08	137
12 520 360 440	15.3
23	7.5
24	7.5
740 440 590	4.8
26 75° 44° 80°	6.9
27 76° 56° 66°	15.8
29. 69° 56° 63° 63 Hhunder	_17.6
29 73° 54° 64° 57 1 1	8.7
30 82° 60° 71° trace thunder	. 11.0
3/ 670 470 570	9.3
1 1	

Collector Identification _____SEPCO_"Soloron" Model EF-212_______, Fonth April __Test Identification Weathering Test _______ Weather data; furnished: Observers J. Wright, National Weather Service, Huntsville, Alabama C llector Tilt Angle _____Collector Azimuth Angle ______O Officer Aperture Area ______Height of Collector (Inlet) _______ (Outlet) ______

	······		· <u> </u>					Additi	
1 -	Solar Flux	Temper	ature		Precipi			Weathe	
Pay	BTU/Hr·Ft ²	High	Low	Avg.	Rain	Snow	Other	Condit Winds "br	LONS FOO
	· · ······	65°	460	56°	.04	 		9.1	- cy
1		76°	60°	68°	1.21		thunder	13.9	Foo
- 4 -		63°	55°	590	1.16		thunder	7.5	tog light
↓		70°	50°	60°	1.52	}	thuncer	13.0	Jugn
5		600	380	490	.03		- muniq=	172	
6		620	340	-77 -48°				10.7	
								10.1	
T		- 78-	400	590		<u>}</u>		9.0	
. 8		- 740	48"	. <u>61°</u>				7.2	
<u> . 9</u>		750	440	60°				4.0	
	······	80°	46°	630				30	
<u> </u>		820	<u>50°</u>	<u> 66 ° </u>				41	
12		820	530	680				4.6 3.8	
·13		<u>85°</u>	540	700	<u></u>			3.8	
14		<u>83°</u>	540	699				4.3	-
15		840	<u>55°</u>	<u>70°</u>			[4.1	
- 16		85°	540	<u>70°</u>				3.3	
17		<u>87°</u>	540					37	light
18		<u>85°</u>	58.		04_	·		6.3	
<u> </u>		. 850	6.30	740				8.7	
20		850	620	740				10.6	light
21.		.730	_66°	70°	1.35			9.5	light
22			65 °	68°	97		• • • • • • • • • • • • • • • • • • •	· 9.2	light
23	· · · · · ·	. 770	_ <u>57°</u>			 	thunder	7.0	
.24	· · · · · · · · · · · · · · · · · · ·	_72°	560	640				9.7	light
25		650	440	55°					
_ 26.		630	400	520				4.3	
27		.72.	_4/0_	57°				7.5	
28			470	620				10.4	
29.		-77° 74°	580	.66°				74	
30.		780	56°	67%	Ŏ/	thunder	éhaze	5.4	fog
				·					- J

87

ł

ORIGINAL PAGE IS OF POOR QUALITY

NASA-MSFC