(NASA-CR-155736) HIGH RESCLUTION 10 MU SPECTROMETRY AT DIFFERENT PLANETARY LATITUDES. A PRACTICAL HADAMARD TRANSFORM SPECTROMETER FOR ASTRONOMICAL APPLICATION Final Report, 1 Sep. 1973 - (Cornell Univ., G3/91. 05334

N78-17976

Unclas

CORNELL UNIVERSITY

Center for Radiophysics and Space Research

ITHACA, N.Y.

CRSR 1686

FINAL REPORT

for

HIGH RESOLUTION 10µ SPECTROMETRY AT DIFFERENT PLANETARY LATITUDES

NASA Grant NGR 33-010-210

September 1, 1973 through April 28

Principal Investigator: Prof. Martin

FINAL REPORT

for

HIGH RESOLUTION 10μ SPECTROMETRY AT DIFFERENT PLANETARY LATITUDES

NASA Grant NGR 33-101-210 September 1, 1973 through April 28, 1977

Principal Investigator: Prof. Martin Harwit

CRSR

Cornell University Ithaca, New York 14853

1. Introduction

Jupiter's bands are a clear indication of atmospheric differences at different lattitudes on the planet. The aim of the present study was to attempt infrared observations at different lattitudes in order to obtain spectra in the 10½ region. These spectra might then help one to understand differences in chemical composition or physical structure of the well known optical features.

In order to obtain such spectra of a rotating planet, it seemed well to attempt simultaneous observations at different lattitudes. We planned to use a Hadamard transform spectrometer with 15 entrance slits in order to obtain 15 simultaneous spectra, at a resolution of 0.01μ . The spectral band covered contained 255 spectral elements.

2. Results

The results obtained during the course of the study are covered in ten publications which include seven journal articles, two general review papers, and a Ph.D. thesis. These publications are listed in section 3 below. The thesis which is the best single summary of the work done under the present contract appears as the Appendix to this report.

The publications fall into two main groups: those that deal with technical aspects of the instrumentation we had to develop in order to make observations; and those that deal with observational work.

The technical difficulties encountered turned out to be rather more severe than had been initially anticipated. Many of the problems we had to solve are of a very general nature that applies to other varieties of multiplex instrumentation, as well as to other classes of Hadamard transform spectrometers. As a result, all the technically innovative work was of sufficiently general interest to warrant publication.

The astronomical observations that were undertaken are described in the thesis of Ming-Hing Tai, the graduate student who worked on the project (see Appendix). The results cited there represent the first observations undertaken with our instrument. The instrument did in fact perform with the spectral resolving power and the number of spatial and spectral elements we had anticipated in our design. Because of the above mentioned technical difficulties, we suffered considerable delays in in initiating observations. Ultimately we therefore had to content ourselves with far less observing time than we had originally hoped to obtain, and the observational side of the program had to be carried out at far more modest levels than anticipated because important technical requirements had drained a disproportionately large fraction of our available funds.

Despite these setbacks, however, we feel that the results obtained—while not precisely in line with what we had set out to do—are interesting, led to a large number of publications, and constitute a worthwhile contribution to observational planetary science.

3. Publications

- 1. Two asymmetric Hadamard transform spectrometers, Martin Harwit, Perry G. Phillips, Leon W. King, and Daniel A. Briotta, Jr. Applied Optics, 13, 2669 (1974).
- 2. Infrared astronomy and the shuttle, Martin Harwit, Astronautics and Aeronautics 12, 23 October (1974) 1.
- 3. Masks for Hadamard transform optics, and weighing designs, Neil J. A. Sloane and Martin Harwit, Applied Optics 15, 207 (1976).
- 4. A practical multi-spectrum Hadamard transform spectrometer, Ming Hing Tai, D. A. Briotta, Jr., N. Kamath and Martin Harwit, Applied Optics 14, 2533 (1975).
- 5. Errors in Hadamard spectroscopy or imaging caused by imperfect masks, Ming Hing Tai, Martin Harwit and Meil J. A. Sloane,
 Applied Optics 14, 2678 (1975).
- 6. Fourier and Hadamard transform spectrometers: a limited comparison, Ming Hing Tai and Martin Harwit, Applied-Optics 15, 2664 (1976).
- 7. "Hadamard Transform Analytical Systems", Martin Harwit, to be published in "Transformations in Analytical Chemistry," P. Griffiths, Ed., Plenum Press (1978).
- 8. Fourier and Hadamard transform spectrometers: a limited comparison II. M. Harwit and Ming Hing Tai, Applied Optics 16, 3070 (1977).
- 9. Distortion in Hadamard Transform Optics, N.J.A. Sloane, Martin Harwit and Ming-Hing Tai, accepted for publication, Applied Optics (1978).

10. A practical Hadamard transform spectrometer for astronomical application, Ming-Hing Tai, Cornell University Ph.D. thesis and Center for Radiophysics and Space Research Report CRSR 655 (1977).

4. Personnel Participating on the Grant

Prof. M. Harwit, principal investigator

Mr. Ming Hing Tai, graduate student

Mr. Gary Melnick, graduate student

Mr. Frank W. Dain, undergraduate student (part time)

Mr. Gerald Stasavage, research technician (part time)

Mr. Daniel A. Briotta, Jr., graduate student (part time)

Mr. Leon W. King, graduate student (part time)

Mr. Narayana Kameth, programmer (part time)

5. Financial Status

All funds provided under this contract have been spent by this time.

CENTER FOR RADIOPHYSICS AND SPACE RESEARCH CORNELL UNIVERSITY ITHACA, NEW YORK

January, 1977

A PRACTICAL HADAMARD TRANSFORM SPECTROMETER FOR ASTRONOMICAL APPLICATION

bу

Ming-Hing Tai

DEDICATION

To my parents

献给 爸爸、妈妈

ACKNOWLEDGEMENTS

This project is by no means one man's product. Many people have devoted their talents to the completion of this project. I am just the one to make a summary of it.

My special thanks go to Prof. Martin Harwit, my thesis advisor. Martin set himself up as an admirable example: he always moved the heaviest equipment himself; tackled the most difficult jobs in the experiment so that he himself was responsible for any misfortunes; was earnest in discussions about problems with his student; and was modest in sharing the credit for the results. Above all, he truly expressed concern about his student, as a respectable advisor and as a warm friend.

My second thanks go to Dr. Daniel A. Briotta. Dan helped to automize the whole process and taught me the mini computer technique. Dan has shown me how to run the computer as though he were showing me how the lines in his palm run.

My thanks also go to the infrared astronomy group at Cornell. Prof. J. Houck has served on my committee and has always been available for discussion of astronomical and experimental problems. I especially thank him for his help in finishing up my degree while Martin was on sabbatical leave. Dr. Phillips built the spectrometer. The late L. King modified it. G. Stasavage built some electronic parts and H. Kondracki built the dewer. G. Melick helped with the obser-

vation, data processing and electronic parts, G. Gull with the field trip, and Drs. W. Forrest, Diward, and D. Shacck were involved in many valuable discussions. Thanks also go to Westy Dain for not only being always willing to help on chilly night's observations and tedious laboratory work, but also for proof reading my thesis.

I thank Prof. E.E. Salpeter for serving on my committee, Prof. A. Siever and Allen Chin for helping the He₃ cooled dewer, and Prof. P. Gierasch for always being available for discussing astronomical problems. I also thank G. Vincent for building many mechanical parts, B. Boettcher for figures and Eckelmaun for photographs.

The author thanks the staffs of the Kitt Peak National
Observatory and McDonald Observatory for generous allotments
of observing time and for assistance during the observing runs.

Finally, my thanks go to Divan Sun, Adeline Wu, and W.W. Chiu, for typing the thesis for me, and to N.H. Cheung, K.K. Mon, K.M. Lo and many of my Chinese friends for their continual help during these years.

Portions of this work were supported by the NGR 33-010-210 $\,$ and NSG 1263.

TABLE OF CONTENTS

			PAGE
LIST	OF FI	GURES	vii
LIST	OF TA	BLES	xi
ABSTI	RACT		xii
I.	HISTO	RICAL INTRODUCTION TO HADAMARD TRANSFORM	1
	SPECT	ROMETRY	
II.	HADAM	ARD MATRICES	10
	(A).	Weighing Designs	10
	(B).	General Mathematical Formulation	13
	(C).	Hadamard Matrix	16
	(D).	Optical Realization of Hadamard Encoding	20
	(E).	Errors in Hadamard Spectroscopy	34
III.	INSTE	RUMENTATION	37
	(A).	Multislit Spectrometer	37
	(B).	The Optics	42
	(C).	The Electronics	54
	(D).	Laboratory Calibration	60
IV.	COMPA	ARISONS BETWEEN FOURIER TRANSFORM AND	65
-	HADAN	MARD TRANSFORM SPECTROSCOPY	
	(A).	Mathematically	65
	(B).	Computer Requirements	67
	(C).	Optics	68
	(D).	Mechanical Requirements	73

V. PROGRAMMING FOR HADAMARD TRANSFORM SPECTRAL	75
DATA REDUCTION	
(A). HTS Program	⁻ 75
(B). DHTS Program	81
(C). Correction Program	89
VI. ASTRONOMICAL OBSERVATION	90
(A). Correction Procedure	90
(B). Observation of α -Orionis	91
(C). Observation of Jupiter	100
(D). Observation of Mercury	121
APPENDIX A. ESTIMATE OF CODING ERROR FOR FOURIER	136
TRANSFORM SPECTROMETRY	
APPENDIX B. SINGLY HADAMARD TRANSFORM PROGRAM	139
APPENDIX C. DOUBLY HADAMARD TRANSFORM PROGRAM	168
APPENDIX D. CORRECTION PROGRAM	201
BTBI:TOGRAPHY	203

LIST OF FIGURES

FIGURE	TITLE			
1-1	An 8x8 Hadamard matrix and two 7x7 cyclic matrices that can be derived from it.	3		
2-la	Hadamard transformation of a Sine wave input.	21		
2-1b	Hadamard transformation of a square wave input.	22		
2-lc	Hadamard transformation of a straight line input.			
2-2	Schematic representation of HTS using the \underline{S} code.			
2-3	The 509 exit slit mask and the 255-element \underline{S} code.			
2-4	Comparison spectrum of the mercury emission lines in the 1.4-1.8µm region: (a, bottom) as obtained in the Hadamard-transform mode, (b, top) as obtained under identical conditions using the same optical system as a conventional monochromator. This figure is taken from Decker, 1971b.			
2-5	Schematic representation of DHTS.	29		
2–6	The 29 entrance slit mask and the 15-element \underline{S} code.	33		
2–7	(a) Spectrum of the 1.7µm mercury vapor doublet showing negative peaks to the left at the emission peaks; (b) Shows the response we would obtain to a single spectral line with a perfect mask; (c) Shows the response for a single line with the radiation simulated as passing through a mask with slits too narrow because each opaque mask element protrudes into the adjacent transparent slot by a tenth of a slot width: (d) Shows the effect of simulating slits that are systematically too wide. Note that the main spectral line has been placed in different positions for the synthetic runs (b),(c), and (d).	36		

FIGURE	TITLE	PAGE
3-1	The flow chart of the data taking process, starting with radiation from the telescope and ending with the output of the computer.	41
3–2	Optical path through the spectrometer. The dedisperser and exit mask are shown rotated by 90°.	43
3-3	Grating diffraction efficiency as a function of slit position at 8 and 14 μm .	45
3-4	Liquid helium cooled post optics.	47
3-5	HTS alignment circuit.	55
3–6	Logic diagram for mask motion and data processing.	56
3-7	HTS drive unit circuit.	58
3-8	Basic detector bias and preamplifier circuit.	59
3-9	Spectrum of the mercury vapor 1.7µm line using the 1x255 mode.	62
3-10	Calibration spectra obtained for the - mercury vapor emission lines at 1.69 µm and 1.71 µm: (a) The eighth of a series of fifteen individual spectra obtained; (b) An average of all fifteen spectra; (c) A diaplay of the fifteen spectra, each spectrum being displaced vertically from the next. The diagonal pattern near the right-hand edge represents a displacement of the peak between suc- cessive spectra. This represents the actual shift in spectral range between adjacent spatial elements.	
5-1	The flow chart of the 1x255 inverse transform program.	79
5-2	The flow chart of the 15x255 inverse transform_program.	83
5-3	Matrices generated by the computer during the reduction of the spectral data.	86

FIGURE	TITLE	PAGE
6-1	The spectral emissivity of various regions as calculated from the flight data (Murcray et al, 1970).	92
6-2	The raw spectra of α -orionis and the Moon.	94
6-3	The ratio spectrum of a-orionis to the Moon corrected for lunar temperature.	95
6-4	(a) Low resolution spectrum taken by Gillett et al (1969). Different symbols represent spectra taken on different nights. (b) High resolution spectrum taken by Treffers and Cohen (1973).	99
6-5	The raw spectrum of Jupiter and the Moon.	101
6-6	The ratio spectrum of Jupiter to the Moon corrected for lunar temperature.	102
6-7	The atmospheric profile of Jupiter for a solar-composition model.	103
6-8	 (a) Schematic representation of the NH₃ molecule. The components of angular momentum and the motion in the ν₂ vibrational mode are also shown. (b) Energy levels of the ν₂ vibrational mode of ammonia. Superscripts a and s refer to the antisymmetric and symmetric levels which arise due to inversion splitting. 	108
6-9	Low resolution spectrum taken by Gillett et al (1969). Different symbols represent spectrum taken on different nights. This figure is taken from their paper.	109
6-10	(a) Room temperature absorption spectrum of ammonia, p=0.06 atmos, w=0.6 cm atmos. (b) Brightness temperature; (c) Surface brightness of the central region of Jupiter from 8 to 13.5 µm. (Taken from Aitken and Jones).	111

FIGURE	TITLE	PAGE
6-11a	Spectrum of the N and S polar regions of Jupiter at 3-4 cm ⁻¹ resolution divided by the spectrum of the Moon. Data points are shown as solid circles, and the solid line represents the best fitting synthetic spectrum calculated from the model calculated by Lacy et al (1975) (The graph is taken from Lacy et al). The dotted curve is our observed spectrum by matching Lacy's spectrum at points A and B.	113
6-115	Same as 6-lla except matching our spectrum with Lacy's at A' and B'.	114
6-12	(a) Thermal emission spectrum of Jupiter corrected for absorption in the earth's atmosphere observed by Ridgway (1973). The dashed line is the predicted form of the H ₂ continuum. (b) The ratio of the	117
	Jovian spectrum to the atmospheric absorption spectrum observed by Combes et al (1974). The solid and dashed lines are the blackbody curves at 135°K and 120°K respectively.	
6-13	The raw spectra of Mercury and the Sun.	123
-6 -1 4 ·	Diurnal path of the Sun about Mercury, drawn to scale. The relative positions of the Sun are marked at 11 day intervals with the planet held as a fixed reference. Planeto-graphic longitude are indicated for Mercury. (Taken from Soter and Ulrichs, 1967)	
6-15	Two coordinate systems on the surface of Mercury. The unprimed system is the "solar system" with the Z-axis pointing towards the Sun. A is the subsolar point. The primed system is the "earth system" with the Z'-axis pointing towards the earth. A' is the subearth point.	129
6-16	The final Mercury spectrum, corrected for solar temperature, with a number of blackbody slopes shown to match.	135

LIST OF TABLES

TABLE	TITLE		
2-1	The Value of A for Different Matrices	18	
2-2	Comparison of Three Different Grating	34	
	Spectrometer		
3-1	A Brief Description of Each Filter	48	
6-1	The Main Constituents of The Jovian	105	
	Atmosphere		

忆秦娥

娄 山 关

一九三五年二月

西风烈, 长空雁叫霜晨月。 霜晨月, 马蹄声碎, 喇叭声咽。

雄关漫道真如铁, 而今迈步从头越。 从头越, 苍山如海, 残阳如血。

毛泽东主席

CHAPTER I

HISTORICAL INTRODUCTION TO HADAMARD TRANSFORM SPECTROMETRY (HTS)

The idea of modulating or encoding the optical output of a spectrometer goes back to the original work of Golay (1949) and Fellgett (1951). Its purpose is to allow many different wavelengths of radiation to fall on a detector simultaneously, and thereby to increase the signal-to-noise ratio (SNR) of the resulting spectrum. This improvement comes about because each element of the spectrum is effectively viewed a larger fraction of the total available observing time. One idea is to encode or modulate each spectral wavelength exiting the spectrometer output with an audio frequency that contains the optical wavelength information. The use of a conventional wave analyzer then allows recovery of the original optical spectrum. There are many variations of this technique.

In 1968, Ibbett et al and Decker et al independently suggested the use of sequentially stepped multiplex spectrometers. In both systems radiation enters a dispersive instrument through a single slit and is analyzed at a number of exit slits. Decker et al pointed out that two constraints should be imposed on the encoding scheme:

- (1) To obtain the optimum signal to noise ratio, each spectral element should be viewed during exactly half the step positions.
- (2) To impose the smallest dynamic range requirements on the

detector amplifier system, each step position should pass light from exactly half the spectral elements. They also worked out a scheme that satisfied the two constraints for masks having elements m=4n+2, where n is an arbitrary integer or zero. Ibbett et al introduced the Hadamard pattern for the mask. As discussed below, this is a pattern based on a set of binary orthogonal matrices first studied by the French mathematician Jacques Hadamard. Ibbett et al also described the application of their scheme to a real time computer aided measurement.

In 1969, Sloane et al worked out a number of binary cyclic coding schemes for multiplex spectrometry and evaluated the performance of each scheme in terms of a linear, least mean square, unbiased estimate. These schemes include a Hadamard matrix \underline{H} , and various modified Hadamard matrices, which these authors refer to as \underline{G} matrix and \underline{S} matrix (Fig. 1-1).

A Hadamard matrix \underline{H} of order N is an N x N matrix \underline{H}_N of +1's and -1's which satisfies:

$$H_N H_N^T = N I_N$$

where $\mathbf{I}_{\mathbf{N}}$ is an N x N unit matrix

A modified Hadamard matrix \underline{G} of order M is a partitioned matrix from the H matrix:

$$\underline{H} = \begin{bmatrix} 1 & \cdots & \ddots & \overline{1} \\ \vdots & \vdots & \ddots & \overline{1} \\ \vdots & \vdots & \ddots & \overline{1} \end{bmatrix} \qquad (\overline{M} = \overline{N-1})$$

Figure 1-1. An 8 x 8 Hadamard matrix and two 7 x 7 cyclic matrices that can be derived from it.

where the first row and first column of H are all +1's. A feature of the G matrix is that it can be written in cyclic form—a factor which we will show to be of considerable practical importance.

A modified Hadamard matrix \underline{S} is a matrix obtained from \underline{G} by replacing +1's by 0's and -1's by +1's.

The properties of \underline{H} , \underline{G} , and \underline{S} will be discussed in section 2-6.

When we talk of encoding by means of a Hadamard matrix we have the following in mind. A mask is used to modulate - open or close - a series of entrance and exit slits in a spectrometer. If a certain slit location is open, we can designate it by a +1; if it is closed we can designate it by a 0; if it can be used to subtract from the signal incident on the detector, we designate it by -1. The sequence of +1's and -1's characterizing a mask in a given modulating position corresponds to a row of a matrix. The whole set of mask positions corresponds to the set of rows of the matrix. If the sequence of mask patterns corresponds to the rows of a Hadamard matrix we say we are encoding with a Hadamard pattern.

Sloane et al also introduced the idea of using a cyclic matrix for coding masks. This greatly decreases the experimental cost and facilitates operation, since any N slits of a single mask-2N-1 slits long can be used to provide one of the required mask patterns.

The first single entrance Hadamard spectrometer (HTS) was built by Decker and Harwit (1969). The spectrometer had

a single entrance slit and 19 exit slits. The exit mask was stepped manually. The authors used this spectrometer to take the spectrum of the mercury vapor 1.7 μ band to demonstrate the Hadamard transformed spectrum's fidelity and freedom from systematic errors.

With 19 exit slits, the HTS had a theoretical signal-tonoise advantage of 2.18 over the conventional spectrometer,
which is rather hard to verify experimentally, Decker (1971)
therefore proceded to build a 255-slit HTS. In this spectrometer, the radiation, after being decoded by the exit mask,
exits along the same path it comes in. This reverse pass dedisperses the beam and allows it to be brought to a focus at
the entrance plane. Thus the dimensions of the focused image
are roughly the same as the dimensions of the entrance aperture,
and the detector size can be minimized. This is important since
sufficiently large detectors sometimes do not exist, and if
available tend to be noisy. Decker experimentally verified
the theoretically predicted multiplex advantage of an HTS.

DeGraauw and Veltman (1970) were the first to use an HTS for astronomical work during the 1970 solar eclipse. Houck et al (1973) subsequently used an HTS to obtain near infrared spectra of Mars from airplane altitudes.

Besides putting an encoding mask at the exit plane, one can also put another encoding mask at the entrance plane of a spectrometer. In that way the radiation is modulated at both the entrance and exit apertures. Harwit et al (1970) worked out this scheme of doubly multiplexed dispersive spec-

trometry. The double multiplexing scheme allows one to increase the total amount of radiation that can be transmitted through a spectrometer. Furthermore, by a proper reduction of the data, one can also obtain a one dimensional picture of the source at the entrance plane. For a spectrometer of m entrance slits and n exit slits, one needs m x n data points to recover m spatial spectra, with each spatial spectrum containing n spectral elements. For a homogeneous source one does not need the spatial information, so (n + m - 1) data points will be enough to recover the spectra. Harwit et al (1974a)describe two schemes for recovering the spectrum with (n + m - 1) data points.

In 1975 Tai et al (1975a) finished the construction of a doubly coded Hadamard transform spectrometer. The spectrometer has 15 entrance slits and 255 exit slits, which can simultaneously obtain 15 spatial spectra, each having 255 spectral elements. Tai et al (1975b) went on to give an analysis of the errors in Hadamard spectrometry caused by imperfect masks.

Besides coding the radiation at both the entrance and the exit aperture, one can go one step further and use a two dimensional mask at the entrance aperture (Harwit, 1971).

This yields a two dimensional picture at the entrance aperture, where each spatial point at the entrance has its own spectrum.

To put it a different way, one obtains a two dimensional picture of the source at the entrance aperture for each color of the spectral elements.

Harwit (1973) experimentally verified the operation of imaging spectrometry, and Swift et al (1976) constructed the first Hadamard imaging spectrometer.

There are other discussions of Hadamard transform spectrometry in the literature, mostly of theoretical aspects.

Nelson and Fredman (1970) give a more complete theoretical treatment of Hadamard matrix encoding. They also rediscovered a theorem due initially to Hotelling (1944) showing that the Hadamard matrix is the best design for a singly coding mask. Sloane and Harwit (1976) show the connection between Hadamard spectrometry and the mathematics of weighing designs in statistics.

There have been various comparisons of Hadamard transform spectrometry with other spectrometry. Larson et al (1974) makes a theoretical comparison of singly multiplexed Hadamard transform spectrometers and scanning spectrometers. They present a general mathematical framework for the comparison of relative performance and also verify their prediction by computer simulation of various characteristic spectra. Their results show that where the noise level is constant and independent of the incident photon flux, the determined multiplex advantage is $\sqrt{N/2}$, as predicted by Fellgett (1951). This is usually the case in a low energy region, such as the infrared. For a noise level that is signal-dependent, such as in the UV energy region, the detector is characterized by an output with statistics approaching a Poisson distribution and variance therefore proportional to the input signal. In that case the

HTS technique will be advantageous only for spectra that are characterized by a few well-defined and intense peaks on a very low intensity background. For spectra with high background, for dense spectra, or for spectra having very weak spectral features, the HTS will have no advantage over the conventional single slit (SS) technique.

Hirschfeld and Wyntjes (1973) compare Fourier transform and Hadamard transform spectrometry. They also describe various limitations of Hadamard transform spectrometry. This paper was followed by an exchange of notes between Decker (1973) and Hirschfeld and Wyntjes (1973) in the journal Applied Optics in which some of these limitations are disputed. These papers concern themselves with a number of practical matters on which opinions can vary. Here we mention these controversial papers mainly for completeness. Their contents will be discussed further below.

Wyatt and Esplin (1974) analyzed the effect of band width on noise equivalent power (NEP) for multiplex spectrometry with cryogenically cooled, cooled-background extrinsic long wavelength infrared detectors. They find that the NEP is directly proportional to band width, so multiplex schemes that require increased band width are not of real advantage. They further conclude that doubly encoded systems that are based on m+n-1 measurements would have a real throughput advantage

Various other aspects of Hadamard matrices and Hadamard transform spectrometry which have not been mentioned above are covered in articles by: Baumert, Pratt et al (1969), Hirschy

et al (1971), Allen et al (1972,1973), Kowalski et al (1973), Planky et al (1974), Oliver et al (1974).

In this thesis Chapter II will describe the mathematical properties of Hadamard matrices and their application to spectroscopy. Chapter III describes the Hadamard transform spectrometer, and gives results on laboratory performance. Chapter IV gives a comparison of Hadamard transform and Fourier transform encoding in spectrometry. The output of an HTS is fed into a mini computer. The computer performs a real time inverse Hadamard transform to recover the spectrum. Chapter V describes the algorithm and programming of inverse Hadamard transform. Chapter VI discusses observational results and their interpretation.

CHAPTER II

HADAMARD MATRICES

(A) Weighing Designs

In order to understand the mathematical advantage of Hadamard transform encoding, let us look at the following examples (Sloane et al, 1976).

Suppose four objects are to be weighed, using a spring balance which makes an error e each time it is used. Assume that e is a random variable with mean zero and variance σ .

First suppose the objects are weighed separately. If the unknown weights are ψ_1 , ψ_2 , ψ_3 , ψ_4 , the measurements are η_1 , η_2 , η_3 , η_4 , and the errors made by the balance are e_1 , e_2 , e_3 , e_4 , then the four weighings give four equations:

$$\eta_1 = \psi_1 + e_1 \qquad \eta_2 = \psi_2 + e_2$$

$$\eta_3 = \psi_3 + e_3 \qquad \eta_4 = \psi_4 + e_4$$

The best estimate of the unknown weights are the measurements themselves:

$$\hat{\psi}_1 = \eta_1 = \psi_1 + e_1$$

$$\hat{\psi}_2 = \eta_2 = \psi_2 + e_2$$

These are unbiased estimates:

$$\hat{E}\psi_2 = \psi_2$$
 (E denotes expected value)

with variance or mean square error

$$E(\hat{\psi}_1 - \psi_1)^2 = E\sigma_1^2 = \sigma^2$$

On the other hand, suppose the balance is a chemical balance with two pans, and the four weighings are made as follows:

$$\eta_{1} = \psi_{1} + \psi_{2} + \psi_{3} + \psi_{4} + e_{1}$$

$$\eta_{2} = \psi_{1} - \psi_{2} - \psi_{3} - \psi_{4} + e_{2}$$

$$\eta_{3} = \psi_{1} + \psi_{2} - \psi_{3} - \psi_{4} + e_{3}$$

$$\eta_{4} = \psi_{1} - \psi_{2} - \psi_{3} + \psi_{4} + e_{4}$$
(2-1)

This means that in the first weighing all four objects are placed in the left hand pan, and in the other weighings two objects are in the left pan and two in the right. (Note that the e are independent of the weights on the balance. This point is crucial). It is easy to solve for ψ_1 , ψ_2 , ψ_3 , ψ_4 , as long as the coefficient matrix for ψ is not singular. Thus the best estimate for ψ_1 is

$$\hat{\psi}_1 = \frac{1}{4}(\eta_1 + \eta_2 + \eta_3 + \eta_4)$$

$$= \psi_1 + \frac{1}{4}(e_1 + e_2 + e_3 + e_4)$$

The variance of Ce, here C is a constant, is C^2 times the variance of e, and the variance of a sum of independent random variables is the sum of the individuals variances. Therefore the variance of $\hat{\psi}_1$ (and also of $\hat{\psi}_2$, $\hat{\psi}_3$, $\hat{\psi}_4$) is $\frac{4\sigma^2}{16} = \frac{\sigma}{4}$

Weighing the objects together has reduced the mean square error by a factor of 4. In effect the signal to noise ratio (SNR), which is given by the root mean square (rms) error is reduced by a factor of 2.

Finally, suppose the balance is a spring balance with only one pan, so only coefficients 0 and 1 can be used. A good method of weighing the four objects is:

$$\eta_1 = \psi_2 + \psi_3 + \psi_4 + e_1$$
 $\eta_2 = \psi_1 + \psi_2 + e_2$
 $\eta_3 = \psi_1 + \psi_3 + e_3$
 $\eta_4 = \psi_1 + \psi_4 + e_4 (2-2)$

In this case the variances of ψ_1 , ψ_2 , ψ_3 , ψ_4 , are $\frac{4\sigma^2}{9}$, $\frac{7\sigma^2}{9}$, $\frac{7\sigma}{9}$, $\frac{7\sigma}{9}$, respectively, a smaller improvement than in the previous case.

The theory of weighing designs is of immediate interest to multiplex optics, since the simultaneous measurement of the intensities of different bundles of rays is completely ana-

logous to the simultaneous weighing of different groups of weights. In measuring the intensity of radiation passed through slits in a mask, we are effectively 'weighing' that radiation.

(B) General Mathematical Formulation

One can put the problem into a more general form. Let ψ_i be the ith unknown, η_j be the jth measurement, e_j be the error associated with the jth measurement. Let ψ_{ji} be the weighing coefficient of the jth measurement with the ith unknown. Then

$$\eta_j = w_{ji}\psi_i + e_j$$
 $j=1\cdots n$ (2-3)

In matrix notation:

$$\underline{n} = \underline{W} \underline{\psi} + \underline{e} \tag{2-4}$$

With the notation < > for ensemble averages, the error e has the following properties:

- (1) $\langle e_{i} \rangle = 0$
- (2) e_i is independent of ψ

=
$$\sigma^2$$
 if i=j

The problem now is the following: (i) For a particular coding matrix W, what should be the decoding matrix A? i.e. What is A such that $\hat{\psi} = \underline{A} \ \underline{n}$ where $\hat{\psi}$ is an unbiased estimate of $\underline{\psi}$.

(ii) What is the best choice of \underline{W} (or \underline{A}) that will minimize the error of measurement i.e. What is \underline{W} such that

$$\varepsilon = \langle \sum_{j=1}^{n} (\hat{\underline{\psi}}_{j} - \underline{\psi}_{j})^{2} \rangle$$

is a minimum.

In the absence of noise, i.e. n=0, it is clear from (2-4) that

$$\underline{\psi} = \underline{w}^{-1}\underline{n}$$

and therefore

$$\underline{\mathbf{A}} = \underline{\mathbf{W}}^{-1}$$

and

$$\hat{\underline{\psi}} = \underline{\underline{A}} \underline{\underline{\eta}} = \underline{\underline{\psi}}$$

In the presence of noise,

$$\frac{\hat{\Psi}}{\hat{\Psi}} = \underline{A} \cdot \underline{n}$$

$$= \underline{A} \underline{W} \underline{\Psi} + \underline{A} \underline{n}$$

and with the assumed properties of the noise $\langle \underline{\psi} \rangle = \underline{\psi}$, one obtains

$$\langle \underline{\hat{\psi}} \rangle = \underline{A} \underline{W} \langle \underline{\psi} \rangle + \underline{A} \langle \underline{e} \rangle$$

$$= \underline{A} \underline{W} \underline{\psi}$$

Assuming no prior knowledge of the unknowns, one may use the unbiased condition $\langle \hat{\psi} \rangle = \psi$. This again implies

$$A = W^{-1}$$

So with the assumed properties of noise and unbiased condition, the decoding matrix is just the inverse of the coding matrix.

One still has to find a coding matrix which will minimize

the uncertainty, ϵ .

The second question can be solved in the following way: Let $\hat{\eta}_{\bf i}$ be the $i^{\rm th}$ measurement in the absence of noise, then for each measurement

$$\eta_{i} = W_{i1}\psi_{1} + W_{i2}\psi_{2} + \cdots + W_{in}\psi_{n} + e_{i} \\
= \hat{\eta}_{i} + e_{i} \\
\psi_{j} = A_{j1}\eta_{1} + A_{j2}\eta_{2} + \cdots + A_{jn}\eta_{n} \\
= A_{j1}(\hat{\eta}_{1} + e_{1}) + A_{j2}(\hat{\eta}_{2} + e_{2}) + \cdots \\
+ A_{jn}(\hat{\eta}_{n} + e_{n}) \\
= (A_{j1}\eta_{1} + \cdots + A_{jn}\eta_{n}) + (A_{j2}e_{2} + \cdots + A_{jn}e_{n}) \\
= \psi_{j} + \text{noise}$$

The mean square of the noise term corresponding to the jth unknown is therefore

$$\varepsilon_{j} = (A_{j1}^{2} + \cdots + A_{jn}^{2}) \sigma^{2}$$

$$= \Delta_{\frac{1}{2}}^2 \sigma^2 \tag{2-7}$$

where

$$\Delta_{j} = (A_{j1}^{2} + \cdots + A_{jn}^{2})^{\frac{1}{2}}$$
 (2-8)

and Δ_j represents the improvement in the SNR for the weighing design, compared to the SNR for individual weighings.

Hence, the problem of maximizing the signal to noise ratio becomes the problem of minimizing ϵ_j ; or Δ_j (Nelson and Fredman (1970)).

Sloane et al (1969) independently developed an expression for ϵ/σ^2 where

$$\varepsilon/\sigma^2$$
 = Trace $\underline{W}^{-1}(\underline{W}^{-1})^{\mathrm{T}}$
= Trace $\underline{A} \underline{A}^{\mathrm{T}}$ (2-9)

Equation (2-8) and (2-9) amounts to the same thing because it can be seen very easily that

Trace
$$\underline{A} \ \underline{A}^{T} = \sum_{j=1}^{n} \Delta_{j}^{2}$$

The question of minimizing ϵ had been answered by Hotelling (Hotelling, 1944) and rediscovered by Nelson and Fredman. Hotelling has shown that for any choice of mask W with $|W_j| \le 1$, the ϵ_j are bounded by $\epsilon_j \ge \frac{\sigma^2}{N}$, and that it is possible to have $\epsilon_j = \frac{\sigma^2}{N}$ for $j = 1, \ldots, N$ if and only if a Hadamard Matrix H_N of the order N exists (by taking W= H_N). This leads to the discussion

(C) Hadamard Matrix

of the Hadamard Matrix.

A Hadamard matrix of order N is an NxN matrix \mathbf{H}_{N} of +1's and -1's which satisfies:

$$\underline{\mathbf{H}}_{\mathbf{N}}\underline{\mathbf{H}}_{\mathbf{N}}^{\mathbf{T}} = \underline{\mathbf{H}}\mathbf{I}_{\mathbf{N}} \tag{2-10}$$

where I_N is an NxN unit matrix.

A Hadamard matrix has following properties: (Golomb(1964))

- (1) Its row vectors (or equivalently, its column vectors) are mutually orthogonal.
- (2) The Hadamard properties will not be disturbed by:
 - a. Interchanging rows,
 - b. Interchanging columns,
 - c. Changing the sign of every element in a row, or

d. Changing the sign of every element in column.

These properties enable the first row and column of every Hadamard matrix to be normalized to contain only +1's. If \underline{G} represents the remaining M x M matrix (M= N-1), then \underline{H} can be partitioned into

It is conjectured that Hadamard matrices exist for all multiples of four. Further, if one of the following conditions is also satisfied,

- (1) N = P + 1 P prime
- (2) N = P(P + 2) + 1 P and P + 2 prime
- (3) $n = 2^m$ m an integer

then \underline{G} can be made cyclic. That is, the $(j + 1)^{th}$ row can be generated by shifting the j^{th} row one position to the left. For example, when N=8, we have matrices of the form shown in Fig. 1-1. Note that \underline{H} and \underline{G} are symmetrix.

Another choice for \underline{W} is the matrix \underline{S} obtained from \underline{G} by replacing +1's by 0's and -1's by +1's.

The properties of the \underline{H} , \underline{G} and \underline{S} are discussed by Sloane \underline{et} al. If rows i and j are any two rows of \underline{H} , \underline{G} or \underline{S} , it can be shown that their dot product is:

In
$$H_N$$
: row i row j = $\begin{pmatrix} 0 & i \neq j \\ N & i = j \end{pmatrix}$

In
$$G_{M}$$
: row i row j = $-1 \stackrel{i \neq j}{=} M$ i=j

In
$$S_M$$
: row i row j = $\frac{M/4}{M/2}$ $\stackrel{i\neq j}{i=j}$

The inverse of each matrix is:

$$\underline{H}_{N}^{-1} = \frac{1}{N} \underline{H}_{N} ; \underline{G}_{M}^{-1} = \frac{1}{M+1} (\underline{G}_{N} - \underline{J}_{M}) ; \underline{S}_{M}^{-1} = \frac{2}{M+1} (2\underline{S}_{M} \underline{J}_{M})$$

where \underline{J} is a M x M matrix consisting entirely of -1's and N= M+1.

Table 2-1 gives the value of Δ for different matrices. The matrix I represents the weighing scheme weighing each object separately. This corresponds to a conventional single slit spectrometer or to a wedge filter monochromator.

	Table 2	-1	
MATRIX A	ELEMENTS OF A	Δ ⁻¹	(FOR LARGE N)
I	1,-0	1	1
Ħ	1,-1	√ <u>N</u>	$\sqrt{\overline{\mathrm{N}}}$
<u>G</u>	1,-1	$\sqrt{N}(2-\frac{2}{N})^{-\frac{1}{2}}$	$\sqrt{\frac{N}{2}}$
<u>s</u>	1, 0	$\sqrt{N}(2-\frac{2}{N})^{-1}$	ু <u>দ্</u> √ <u>দ্রু</u> √ <u>দ্রু</u> √ <u>দ্রু</u>
<u>4</u> *	cosine squared functions	$\frac{N}{4} \frac{2}{N+1}$	$\sqrt{\frac{\overline{N}}{8}}$

^{*} F is the Fourier Transform case which will be disscussed in Chapter IV.

If the number of measurements N is a multiple of 4, and the matrix coefficients are +1, the best weighing scheme is the Hadamard matrix H. ϵ will be reduced by a factor $\frac{1}{\sqrt{N}}$ compared to weighing the unknown separately. This is the maximum advantage a weighing scheme can obtain with weighing coefficient $|W_{ij}| \le 1$. If N is not a multiple of 4, or if the weighing coefficients are 0's and 1's, it is not possible to simultaneously minimize $\epsilon_1 \dots \epsilon_n$ and some other criterion must be used (Sloane et al, 1976). Also the errors are uniformly larger than for the H-matrix, as shown for the \underline{G} and \underline{S} matrices in Table 2-1 above.

It is interesting to see that a spectrometer using the Fourier Transform, such as a Michelson interferometer, has a multiplex advantage a factor of $\sqrt{8}$ lower than the H-matrix and a factor of $\sqrt{2}$ lower than the S-matrix encoding instrument.

Following are some computer simulations for S-matrix transformations with various inputs (See Fig. 2-1(a) to (c)).

INPUT OUTPUT

- 1. Constant Constant
- Hadamard code: representing Single line single line emission
- 3. Single line: l at the lst Hadamard code.

 element and 0 for the rest. Note, unlike the monoThis represents an unknown chromater, the error impulse coming in during the propagates to other

INPUT

OUTPUT

observation.

elements.

4. Sine wave.

sine wave with different phase.

5. Square wave.

Not a perfect square wave.

The input is not a perfect wave because we have an odd number of elements. The input values have amplitudes 0 or 1 for each element.

6. Straight line at a slope 1/255. Refer to figure (2-10). This may represent a shift in baseline.

Optical Realization of Hadamard Encoding (D)

We have made use of (modified Hadamard) S-matrices in two optical instruments: One is a Hadamard transform spectrometer having an encoding mask at the exit aperture. The other is a doubly encoded HTS which has encoding masks at both the entrance and exit apertures.

S codes can be used for both the entrance and exit masks for the HTS, with +1 standing for an open slot through which radiation is transmitted, and with 0 standing for a closed slot where radiation is blocked.

The cyclic property of the S-matrix is very desirable, for then only a single mask 2N-1 slots wide need be constructed. Successive encoding positions are generated by stepping the mask one slot width along its length. This avoids the consturction of N masks with N2 slots.

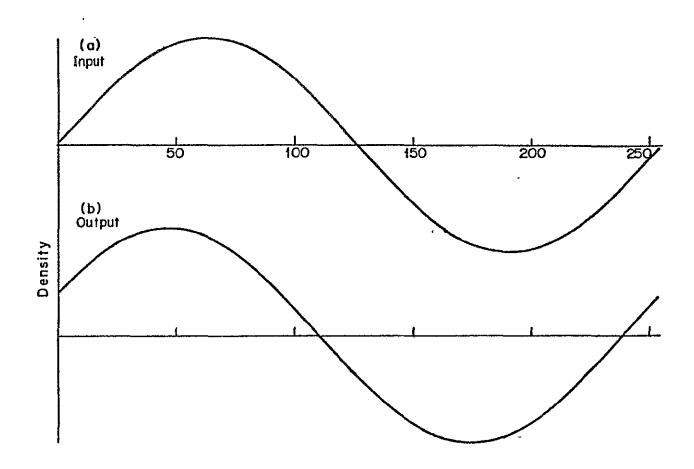


Figure 2-la. Hadamard transformation of a Sine wave input.

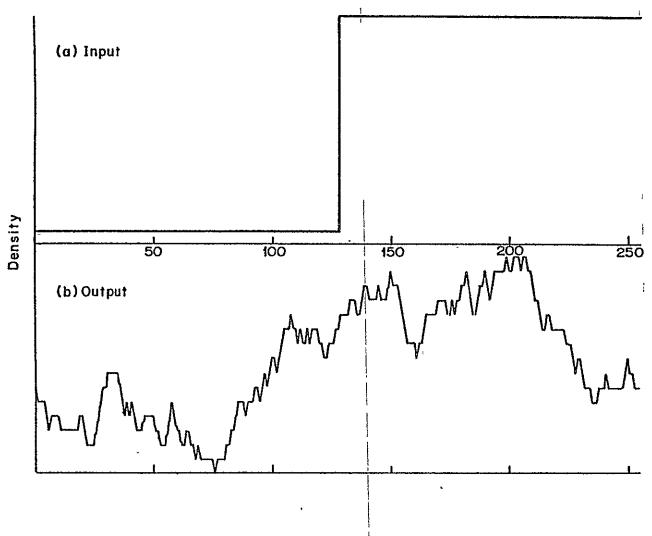


Figure 2-lb. Hadamard transformation of a square wave input

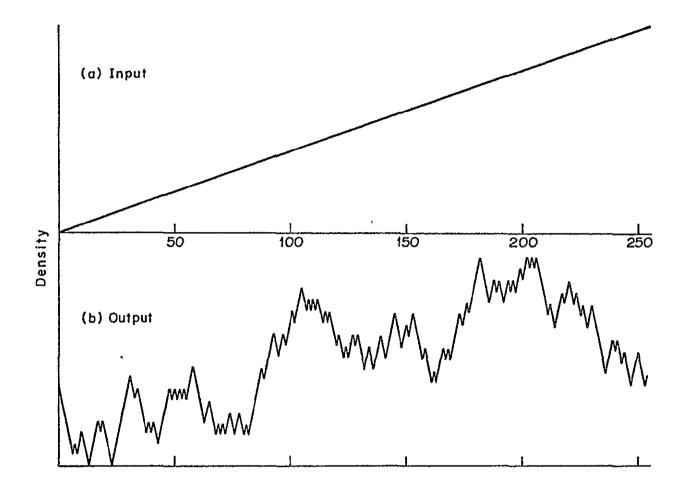


Figure 2-lc. Hadamard transformation of a straight line input.

Although H and G matrices have better coding efficiency than the S matrix, they introduce technical difficulties when used for spectrometer coding schemes. To utilize H and G matrices, one must measure the reflected as well as the transmitted radiation. In this case +1's represent reflecting slots and -1's represent transmitting slots. Therefore a minimum of two detectors must then be used, one in a subtracting mode, the other in the normal mode. The use of two detectors, however, increases the noise. Furthermore, the H matrix, with all elements +1 in the first row, makes the dynamic range of the detector system change by about a factor of two. Also its lack of the cyclic property does not allow one to generate the rest of the masks by the simple stepping technique mentioned above.

1. Hadamard Transform Spectrometer (HTS)

For the singly encoded HTS, we use the following optical arrangement (figure 2-2). Radiation passing through the single entrance slot is rendered parallel and directed to the dispersing element. The dispersed radiation is then de-collimated and focused upon the multi-slot mask at the exit aperture. The spectral elements transmitted by the mask pass through suitable post-optics and are collected onto a detector. One then makes N (in our case N=255) measurements by sequentially stepping the mask N times. The inversion procedure $\hat{\psi}=\underline{S}^{-1}\underline{n}$ recovers the spectrum. Figure (2-3) gives a 255 cyclic S-matrix code for the exit mask.

Theoretically, the mean square error in the spectrum

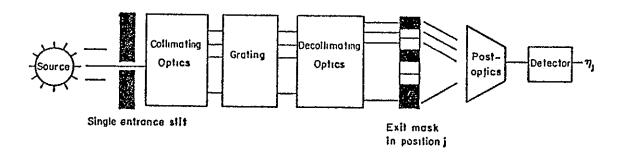


Figure 2-2. Schematic representation of HTS using the \underline{S} code.

 00000	00101	10001	11101	00001	11111	11001	00001
01001	11110	10101	01110	00001	10001	01011	00110
01011	11110	11110	01101	11011	10010	10100	10100
01001	01101	00011	00111	00111	10001	10110	
00101	11010	11110	11011	11100	00110	10011	01011
	01000	00100	11101	10010	01001	10000	00111
01001	00011	10001					

Figure 2-3. The 509 exit slit mask and the 255-element \underline{S} code.

given by a monochromator is σ^2 . For an HTS using the S code, this error is $\frac{1}{N}(2-\frac{2}{N})^2\sigma^2$ (Sloane et al, 1969). Hence the rms gain in S/N for the HTS is $G = \frac{N\sigma^2}{(2-\frac{2}{N})^2\sigma^2} = \frac{\sqrt{N}}{2-\frac{2}{N}}$. For N=255, $G \sim 8.0$ (figure 2-4 gives Decker's results. The experimental gain was measured as 8.0 ± 0.3). Note that the scale in figure (2-4) are in arbitrary units, and the zero point appears to be shifted between parts (a) and (b).

2. Doubly Encoded Hadamard Transform Spectrometer (DHTS)

Figure (2-5) is a schematic representation of an optical system which has a number of entrance as well as exit slits. Instead of passing radiation through only one entrance slit, a mask M slits wide is placed at the entrance aperture. Radiation passed into the spectrometer through different combinations of open and closed slits. The dispersed radiation at the exit plane is analyzed in the same fashion as in the HTS. Encoding is accomplished by sequentially stepping one of the masks through its N different positions for each position of the other mask.

In a DHTS the entrance aperture is modulated by a $P \times P$ S matrix.

Let $\epsilon=\epsilon_{ir}$ be the P x P matrix whose rows represent P different entrance masks. $\epsilon_{ir}=1$ for open slots and 0 for closed slots ($1\leq i\leq P$, $1\leq r\leq P$). Similarly let $\chi=\chi_{ij}$ represent the exit mask. When the entrance mask is in position i and the exit mask is in position j, the detector measurement η_{ij} is

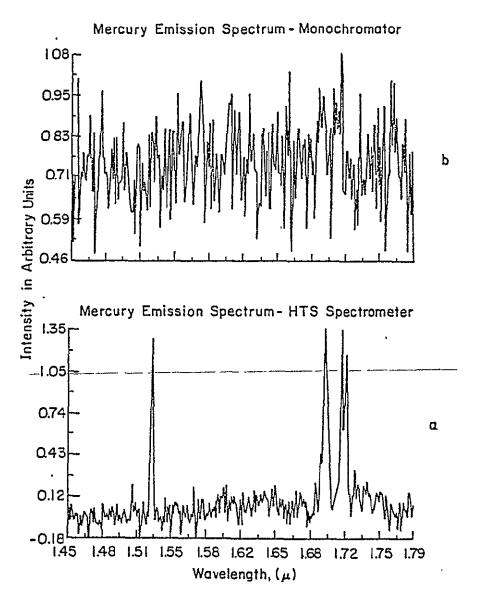


Figure 2-4. Comparison spectrum of the mercury emission lines in the 1.4-1.8µm region: (a, bottom) as obtained in the Hadamard-transform mode, (b, top) as obtained under identical conditions using the same optical system as a conventional monochromator. This figure is taken from Decker, 1971b.

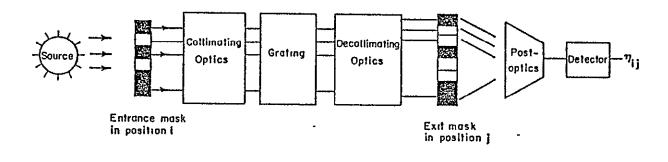


Figure 2-5. Schematic representation of DHTS.

$$\eta_{ij} = \sum_{r=1}^{p} \sum_{s=1}^{N} \epsilon_{ir} \psi_{rs} \chi_{sj} + v_{ij}$$
 (2-11)

where ψ_{rs} is the spectral element produced by radiation passing through the r^{th} entrance slot and the S^{th} exit slot, v_{ij} is the noise in the $(i,j)^{th}$ measurement; it has the following properties:

$$\langle v_{ij} \rangle = 0$$
 $\langle v_{ij}, v_{kl} \rangle = \sigma^2 \delta_{ik} \delta_{jl}$

If the instrument has no optical magnification, the spectrum of radiation that passes solely through the $r^{\rm th}$ entrance slot to first order is shifted by r spectral channels from the spectrum passing solely through the first entrance slot. Hence, only P+N-1 distinct spectral elements exist:

$$\psi_{-(P-1)}, \dots, \psi_{-1}, \psi_0, \psi_1, \dots, \psi_{N-1}$$

where

$$\psi_{rs} \equiv \psi_{r-s} \equiv \psi_{t}$$
 (t=r-s)

In matrix notation one may write

$$\underline{n} = \underline{\varepsilon} \underline{\psi} \underline{\chi}^{\mathrm{T}} + \underline{\nu} \qquad (2-12)$$

Employing the same analysis as one does for the HTS, i.e. using the unbiased condition $<\underline{\psi}>=\underline{\psi}$ and the properties of $\underline{\nu}$,

one obtains

$$\hat{\underline{\psi}} = \underline{\varepsilon}^{-1}\underline{\eta}(\underline{\chi}^{\mathrm{T}})^{-1}$$

where

$$\hat{\psi}_{0} \qquad \hat{\psi}_{-N+1} \\
\hat{\psi}_{1} \qquad \hat{\psi}_{-N} \\
\vdots \\
\hat{\psi}_{P-1} \quad \hat{\psi}_{P-2} \qquad \hat{\psi}_{-N-P+2}$$

Each row i of $\hat{\underline{\psi}}$ represents a spectrum at the exit mask for radiation that enters the instrument through the ith entrance position. Hence the jth diagonal gives a one-dimensional spatial picture across the entrance aperture for the spectral element j.

One may obtain an average spectrum $\hat{\underline{\psi}}_{\hat{1}}$ by averaging all the elements in each diagonal.

$$\hat{\psi}_{i} = \frac{1}{N-|t|} \sum_{r=1}^{P} \psi_{r,r-t} \qquad t \ge 0$$

$$= \frac{1}{N-|t|} \sum_{r=1}^{P} \psi_{r,r-t} \qquad t < 0$$

Harwit et al (1970) showed that if both the entrance and exit masks are S matrices and we define

$$\sigma_t^2 = \langle (\underline{\psi}_t - \hat{\underline{\psi}}_t)^2 \rangle$$

Then

$$\sigma_{t}^{2} = \frac{16}{(N+1)} \frac{N^{2}-1}{N-|t|} \sigma^{2}$$

$$\frac{16\sigma^{2}}{(N-|t|)N^{2}} \quad \text{for N large} \quad (2-13)$$

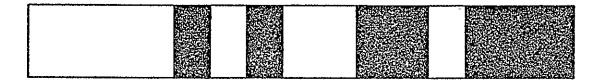
where

$$t = -(N-1), \dots (N-1)$$

If the total mean square error for the unknown is

$$t = \frac{N-1}{2}$$

$$\epsilon = \sum_{t=-N-1}^{\infty} \sigma_t^2$$


where one sums only the central element, then for the S-code

$$\varepsilon = \sigma^2 \left[\frac{22.18}{N} + O(\frac{1}{N^2}) \right] \qquad N \text{ large}$$

where σ^2 = constant $\frac{N}{T}$.

There are two points that should be made about the DHTS.

(1) It has not been shown that Hadamard codes are the best codes for such an instrument. In fact some evidence suggests that Hadamard codes are not precisely optimum for this "two-ended" operation (Harwit et al,1974b). (2) For PxN data points the spectrum yields only P+N-1 spectral elements, plus a one-dimensional image. It is also possible to reconstruct the (P+N-1) elements with (P+N-1) data points only (Harwit et al, 1974b). Fig. (2-6) gives a 15 element cyclic S-matrix code for the entrance mask.

111101011001000

Figure 2-6. The 29 entrance slit mask and the 15-element \underline{S} code.

Table 2-2 compares three different grating spectrometers. The first column represents the conventional single entrance and exit slot instrument. N measurements are made in time T, with a mean square error σ^2 in each. The second column is for a singly multiplexed instrument with an exit mask S, and is taken from Sloane et al (1969). The last column is for the doubly multiplexed system, using Equation (2-13) for σ_t^2 , and has been multiplied by a factor of N to allow for having to make N² measurements in time T.

	Table 2-2					
	NO MASK	SHT	DHT			
Δ-1	1	$\sqrt{\frac{N}{2}}$	$\frac{N}{\sqrt{22.2}}$			

(E) Errors in Hadamard-Spectroscopy

During the manufacture of the masks, whether by deposition of metal or by removal of metal through an etching process, it is possible to obtain a systematic error that leaves each of the opaque portions of the mask either too wide or too narrow by a fixed amount. This will cause a systematic variation in signal passing through the slit. For example if the open slit is too narrow by a fixed amount ε , the light passing through an open slit position will be

I when the open slit is bounded by two open slits.

 $I_{o}(1-\epsilon)$ when the open slit is bounded by one open slit and one closed slit.

 $I_{o}(1-2\epsilon)$ when the open slit is bounded by two closed slits.

A similar analysis holds for open slits that are too wide, except that the minus sign in these expressions is replaced by a plus sign.

The spectrum of a single (spectral line resulting from such imperfect masks) is remarkably simple (Tai et al, 1975 b). Independent of the particular S-matrix mask to be used, there are always precisely four false blips present in the final spectrum. The amplitude of these blips is always the same for a fixed narrowing or widening of the transmitting slits. Two of the blips always surround the main spectral line, and a pair of adjacent blips always are some distance removed from that line. For the 255 element S-matrix, these two are located 24 and 25 elements away to the left of the parent line. The amplitude of the displaced blips is positive when the transparent slits are too wide and is negative when the slits are too nar-In contrast, the two blips surrounding the parent line always are positive. Figure (2-7) shows the negative features accompanying the 1.7 µm mercury vapor doublet and the computer simulation of a pure spectral line input and its distorted spectrum. For the general case the reader may refer to Tai et al (1975 b).

ORIGINAL PAGE IS OF POOR QUALITY

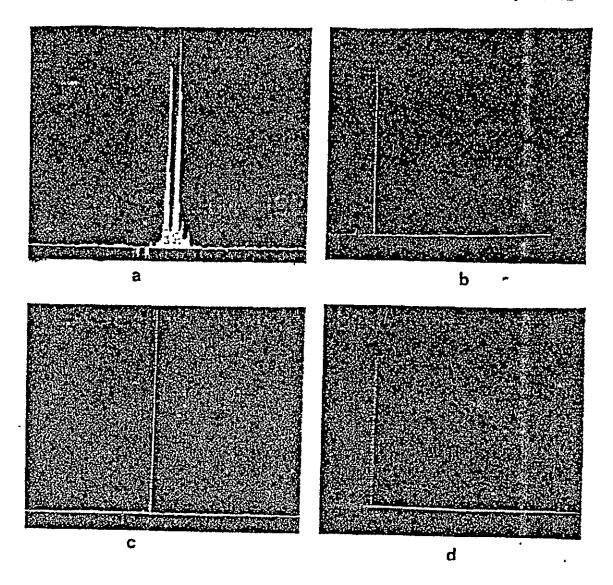


Figure 2-7. (a) Spectrum of the 1.7µm mercury vapor doublet showing negative peaks to the left at the emission peaks; (b) Shows the response we would obtain to a single spectral line with a perfect mask; (c) Shows the response for a single line with the radiation simulated as passing through a mask with slits too narrow because each opaque mask element protrudes into the adjacent transparent slot by a tenth of a slot width; (d) Shows the effect of simulating slits that are systematically too wide. Note that the main spectral line has been placed in different positions for the synthetic runs (b),(c), and (d).

CHAPTER III

INSTRUMENTATION

(A) Multislit Spectrometer

A conventional spectrometer has four essential elements, an entrance slit, a dispersive device such as a grating or prism, a set of imaging optics, and an exit slit.

Such a spectrometer has two important parameters. The first is the "resolution" R, which is a measure of how well the spectrometer can separate two neighboring lines. The second parameter is the "throughput" E. This is a measure of the light gathering capability of the system. The two parameters, R and E, are lumped together into what is called "luminosity" L, defined as (Vanasse, 1974).

$$-L = E \cdot R -$$

For a conventional grating spectrometer having a grating of area A_g given by WH, where W and H are the width and height respectively of the grating, the throughput is determined by the product of A_g with the solid angle Ω subtended by the slit at the collimating mirror (or lens). The solid angle is given by

$$\Omega = \frac{W \cdot 1}{H^2}$$

where w and l are the width and height respectively of the slit

and F is the focal length of the collimating mirror

$$E \sim W \cdot H \cdot \frac{W \cdot h}{F^2}. \tag{3-1}$$

The resolution of this instrument is

$$R = \frac{\lambda}{\Delta \lambda}$$

$$= nN$$

$$= n \cdot \frac{W}{d}$$
(3-2)

where λ is the wavelength, $\Delta\lambda$ the closest wavelength that can be separated, n the order, N the total number of lines on the grating, W the width of the grating and d the spacing between rulings.

Since
$$d \sin \alpha = n\lambda$$
 (3-3)
substitute (3-2) into (3-3)

$$\frac{W}{R} \sin \alpha = n\lambda$$
 (3-4)

if the slit width is limited by diffraction, which is the minimum slit width, then

$$\frac{F\lambda}{W \cos \alpha} \tag{3-5}$$

substituting (3-5) into (3-4) one gets

$$R \sim \frac{F}{W} \tan \alpha$$
 (3-6)

Comparing equation (3-1) and (3-6) one sees immediately that, for a fixed grating area W·H, and fixed optical system, E is proportional to the slit width w and R is inversely proportional to the slit width w. This means that an increase in luminosity of the system by increasing the slit width is made at the sacrifice of resolution, and vice versa.

From (3-1) and (3-6) one obtains

Another feature of a conventional spectrometer is that it transmits only one narrow spectral range of light to the detector, and all other spectral elements are wasted. As a result, the instrument is inefficient.

Within the past two decades there has been much research done in an effort to design new spectrometric systems with a view to maximizing the luminosity L, and to observe a number of spectral elements simultaneously. This can provide a multiplex advantage, or a wide aperture advantage. Two quite distinct modulation techniques have been employed in the past. The first depends on the wave nature of radiation, and makes use of interferometry. The Fabry-Perot interferometer, Michelson interferometer, and Mach-Zehnder interferometer (Jacquinot, 1954, 1960; Vanasse and Sakai, 1967) are instru-

ments of this type. The other technique employs dispersing spectrometers in which entrance and exit slits are replaced by opaque or transmitting masks. Golay's multislit spectrometer, Girard's Grill spectrometer and Hadamard spectrometers (Harwit et al, 1974a) are representative of these instruments.

A spectrometer, whether interferometric os mask-multiplexed, yields a multiplex advantage mainly for detector noise or amplifier noise limited applications. In these cases it can be shown that for N spectral elements, one can achieve of the order $N^{\frac{1}{2}}$ improvement in the overall spectral signal-to-noise ratio, S/N, over a conventional spectrometer (Chapter II).

For photon noise limited applications, the multiplexing advantage is cancelled by the N-fold increase in the photon noise attributed to the N-fold increase in the energy falling onto the detector. Nevertheless, for photon noise limitations. the throughput advantage can still be realized. The large throughput will become a disadvantage when the noise is background noise which increases faster than the noise due to the source (Harwit et al, 1974a).

In this chapter we will describe the experimental study of a Hadamard transform spectrometer (HTS) and calibration in the laboratory. Figure (3-1) is the flow chart of the whole process, starting with radiation from the telescope and ending with the output of the computer. Each component will be described.

ORIGINAL PAGE IS OF POOR QUALITY.

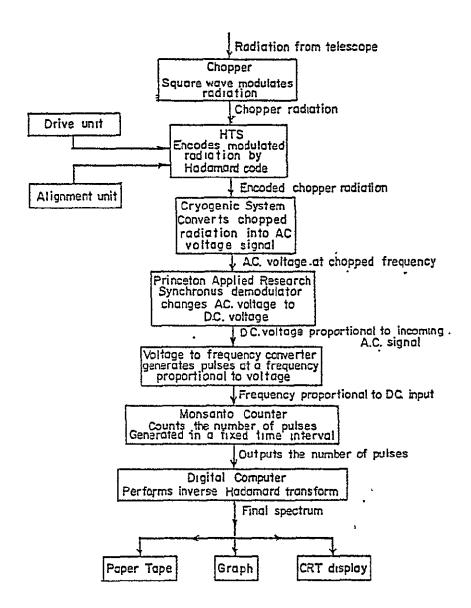


Figure 3-1. The flow chart of the data taking process, starting with radiation from the telescope and ending with the output of the computer.

(B) The Optics

1. Spectrometer

Fig. (3-2) shows the basic spatial design of the spectrometer. It works in the Ebert-Fastie mode. Radiation passing through the entrance aperture S falls upon the spherical mirror M which, in turn, renders it parallel and directs it to the grating G. The dispersed radiation is collimated by the other half of the spheroid and focused upon the exit aperture S'. A 255-slot encoding mask is located at this position. The exit focal plane is positioned in such a way that it bisects a 90° corner reflection. The corner reflector returns the radiation through the spectrometer again and displaces the beam from the center of the principal plane to one side. This reverse process dedisperses the beam and allows it to be brought to a focus at the entrance plane. The dimensions of the focused -image-are-roughly the same as the dimensions of the entrance aperture (Decker 1971). These procedures allow one to use a smaller detector.

A diagonal mirror at the entrance directs the dedispersed radiation to the liquid helium cooled post optics.

The entrance mask can be a single entrance slit with any width between zero to 1.5 mm for the 1x255 program, or it can be a fifteen S-matrix code with each slit having width 0.1 mm for the 15x255 element program. In normal use the height of of entrance slit is 3.5 mm. It can be increased up to 10 mm.

 $exttt{M}_1$ is a spherical mirror with a 49.5 cm focal length. On its back it is held in place with three teflon-tippled

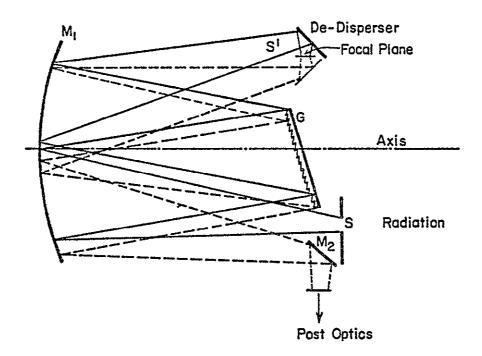


Figure 3-2. Optical path through the spectrometer. The dedisperser and exit mask are shown rotated by 90°.

screws. Three teflon-tippled springs bear on the front edges of the mirror. This design allows one to make slight adjustments in the position of M when aligning the instrument. The central part of the mirror is blocked off to reduce stray radiation.

G is a 75 mm x 75 mm grating with 20 lines/mm and blaze angle 5°11°. The corresponding blaze wavelength at first order is 9.03μ. Figure (3-3) is the calculated grating efficiency as a function of slit position, at two wavelengths. At 8μ the energy imaged within one slit width is 80% of the total. For 14μ the energy within one slit is 52%. The grating is mounted on a yoke which allows it to be adjusted in three mutually perpendicular directions. It is located at 0.82 focal length from the primary mirror M.

All mirrors inside the spectrometer are silver coated with a protective coating of SiO₂. The reflectivity of silver coating at 10µ is better than 97%.

For a multiplexing spectrometer which has N entrance and N exit slits, one wishes to image entrance slits S_1 , S_2 ,...., S_n onto exit slits $S_1^{'}$, $S_2^{'}$,...., $S_n^{'}$ such that $S_1^{'}$ is imaged onto $S_1^{'}$,...., $S_n^{'}$ onto $S_n^{'}$ at a particular wavelength λ . Let δ be the angle subtanded by S. Where δ and δ ' are measured from the center of M. The grating equation for imaging S onto S' is

$$\sin \alpha + \sin \beta = \frac{m\lambda}{a}$$
 (3-7)

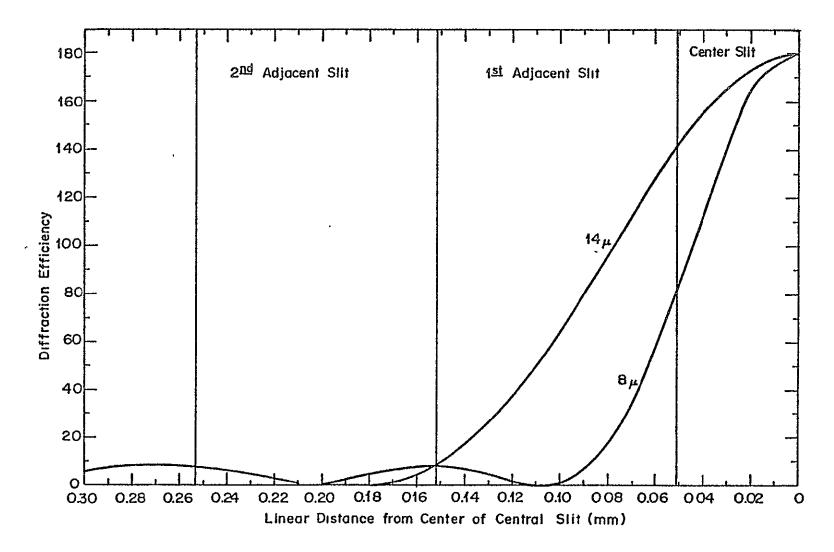


Figure 3-3. Grating diffraction efficiency as a function of slit position at 8 and 14 μm .

Differentiating (3-7) with respect to α gives

$$\frac{d\beta}{d\alpha} = -\frac{\cos \alpha}{\cos \beta} \tag{3-8}$$

The minus sign indicates that α and β change in opposite directions. $d\alpha$ is the width of the entrance slit and $d\beta$ is the width of exit slit, so $\delta \neq \delta$! unless $\alpha = \beta$.

In our spectrometer, the exit slit width is 0.1024 mm, 2.4% larger than the entrance slit width. This is the effect of anamorphic dispersion—a magnification produced by the grating (3-8), when the lower limit on the slit width is set by diffraction. The total number of spectral elements that can be observed simultaneously is limited by the optical aberrations of any particular optical system, which set a limit on the total useful width over which the spectrum can be displayed.

2. Post Optics

The post optics consist of a liquid helium cooled Arsenic-doped silicon (As:Si) detector, with appropriate optics for focusing the radiation onto the detector (Fig. 3-4). Radiation enters the evacuated dewar through a barium fluoride window, passing through a filter with pre-selected band-width. The filtered radiation then passes through a cooled barium-fluoride filter and is focused onto the detector inside the housing by a gold coated mirror. A light baffle is partitioned in front of the detector housing.

Below is a brief discussion of each of the cryogenic components

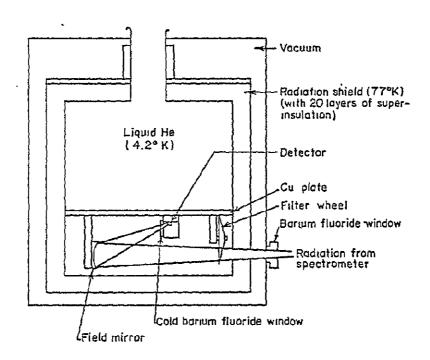


Figure 3-4. Liquid helium cooled post optics.

(a) Barium Fluoride Window

The barium fluoride window is 2 mm thick and 0.75" in diameter. It is used to cut off wavelengths longer than 14 μ . It has a transmission efficiency of around 90% out to 11μ before it starts to cut off. At 14.29μ (700 cm⁻¹), its transmission efficiency is 50%.

(b) Filters

A liquid helium cooled filter wheel with 8 filter positions is housed inside the dewar. Table 3-1 gives a brief description of each filter.

Table 3-1

Filter position	Range I	Band-width	Peak transmission efficiency
1	no filter		
2	closed _(blocked-by- aluminum fo		
3	8µ - 9.91	1.9ր	71%
4	8.7µ - 11.11	μ 2.4μ	83%
5	11µ - 12.41	1.4µ	82%
6	11.1µ - 13.8 ₁	μ 2.7μ	86%
7	8.4µ - 15µ	6.0µ	85%
8	glass	shorter t	han 2µ

Filter positions 1 and 2 are for testing purposes.

The filter wheel is held in place by a spring-loaded screw.

The wheel was originally connected to the outside world through a stainless steel rod and could be changed to different positions by turning the rod. It was found that the stainless steel rod conducts too much heat from the outside into the helium containing can. When the stainless steel is replaced by a G-10 Glass Epoxy Lamitex rod, the holding time for the liquid helium of the dewar increases from 9 hours to 15 hours.

(c) Field Mirror

A gold coated mirror with focal length 7 mm and f/0.41 is used as a field mirror to focus the radiation onto the detector. The reflection efficiency for gold mirrors at 10µ is over 99%. The mirror has 3 degrees of freedom of adjustment, one translational and two rotational adjustments.

(d) Liquid Helium Cooled Barium Fluoride Filter

This barium fluoride window is also used to cut off the radiation longer than 14 μ . Although the filter barium fluoride window cuts off radiation longer than 14 μ from the outside world, it will emit radiation of its own because it is at room temperature. Since all the interference filters have a long wavelength leak between 20 μ to 26 μ , and since the detector will cut off radiation longer than 24 μ only, there is still radiation from 20 μ to 24 μ that gets into the detector as background radiation. The insertion of the liquid helium cooled barium fluoride filter eliminates this peak. It was found to cut down the background radiation by a factor of four.

(e) Detector

An arsenic doped silicon detector with dimension 1.2 mm x

3.2 mm is positioned inside a housing, which has a baffle at its entrance.

Arsenic doped silicon is a N-type extrinsic semiconductor. When the detector absorbs radiation, free carriers are provided for the conduction band, thus changing the resistence of the detector. The following discussion follows the work of Putley. For further details, one can refer to Putley (1964) and Kittel (1966).

Let σ be the conductivity of the detector

e be the electric charge of the carrier

 τ be the life time of free carriers

N be the density of free carriers, and

 μ be the mobility of free carriers

Then,

$$\sigma_{\rm D} = NeP\mu$$
 (3-9)

 $\Delta \sigma_D = \Delta J = \tau \mu \eta$.

$$= \frac{\Delta P}{h\nu} er\mu\eta \tag{3-10}$$

where

 $\Delta\sigma_{D}$ is the change in conductivity of the detector

AJ is the number of photons incident in unit time

AP is the radiation power incident

- v is the frequency of the incoming photons, and
- η is the quantum efficiency, i.e. nmuber of electrons freed per photon.

Since

$$R_{D} = \frac{1}{\sigma_{D}} \frac{\ell}{A}$$
 (3-11)

where R_{D} is the resistance of the detector

1 is the length of the detector, and

A is the area of the detector

Then

$$\Delta R_{D} = -\frac{\ell}{A} \frac{\Delta \sigma_{D}}{\sigma_{D}^{2}}$$

$$= -\frac{\ell}{A} \frac{\Delta P}{h\nu} \frac{\eta}{N^{2}e\mu\tau}$$
 (3-12)

`Let

$$I_{D} = \frac{V_{B}}{R_{D}} \tag{3-13}$$

where I_D is the detector current, and

 $\boldsymbol{V}_{\boldsymbol{B}}$ is the bias voltage across the detector

Then

$$\Delta I_{D} = -\frac{V_{B}}{R_{D}} \Delta R_{D}$$

$$= \frac{V_{B}}{R_{D}} \frac{\ell}{A} \frac{\Delta P}{h \nu} \frac{\eta}{N^{2} e \mu \tau}$$
(3-14)

Let

$$V_{o} = I_{D}R_{L}$$

$$= \frac{R_{L}}{R_{D}} V_{B}$$
(3-15)

where V_0 is the voltage across the load resistor

 $R_{T.}$ is the load resistance

Then

$$\Delta V_{o} = \Delta I_{D} R_{L}$$

$$= R_{T} V_{B} \frac{\Delta P}{h\nu} \frac{A}{\ell} \eta e \mu \tau \qquad (3-16)$$

From equation (3-16) one can calculate ΔP from ΔV_0 .

- (f) Procedures for Alignment of the Optics
- i) Place all components in their respective positions and line them up visually. Be sure there is no mechanical binding in the mask and in the driving mechanism.
- ii) Using a laser, put the spot from the entrance slot on the middle of the grating. It is suggested that only one entrance slot be used.
- <u>iii) Adjust the grating tilt until the line of dispersed</u>
 dots exits at the proper position at exit. As the grating is rotated, this line of spots should remain level, not displaced normal to itself.
- iv) Put one half of the dedispersing mirror combination in place. Use a T square to line it up roughly. At this point, use a mercury emission lamp with proper f-number to simulate the beam coming from the telescope. A number of colored image of the single entrance slot will be seen at the exit.
- v) Adjust the spherical mirror for coarse adjustment and the position of the dedispersing mirror as a fine adjustment to bring the image to a focus on the exit plane.
 - vi) Adjust the grating position in its yoke until the

color image from the mercury lamp is parallel to the exit slit length.

- vii) Adjust the angle of the dedisperser so that the color image reflected by it is perpendicular to the exit mask.
- viii) Put in the other half of the dedisperser and line it up at an angle so the radiation falls back upon the grating. Adjust with fine adjustment screws so the grating is fully illuminated. The image of the grating will appear on itself when viewed from the diagonal, 45°, mirror which diverts the radiation to the dewar.
- ix) Place the dewar on the spectrometer using %" spacers to represent the thickness of the dewar bottom cover. Adjust the 45° mirror so that the dedispersed image (with color) falls on the center of the filter on the filter wheel.
- x) Turn the filter wheel to position one (no filter), so that radiation can fall on the field mirror. Adjust the field mirror until the dedispersed radiation impinges upon the detector. Be sure that all the light falls onto the detector. Be sure that the mirrors accept all the radiation.
- xi) Insert the housing. Be sure that the incoming radiation is clear of the housing.
- xii) Put in the liquid helium shield, and the radiation shield. Put on the nose. Use GE varnish and aluminum foil to reduce openings in the baffles so that they will transmit only the bright white fringes.
- xiii) When the spectrometer is on the telescope, maximize the signal by tilting and rotating the dewar.

(C) The Electronics

The data-taking process is controlled electronically to ensure a smooth process. The operator only needs to turn the switch on. The spectrometer will then automatically take date in, process it, and stop at the end of the transform indicated by the operator. All the operator has to do in the whole observation is to keep the astronomical object in the beam. Figure 3-5 shows the block diagram of electronic and computer set up. The following are brief descriptions of the electronic parts incorporated in the system.

1. Alignment Sensor

The alignment sensor (figure 3-6) is used to synchronize a Monsanto electronic counter, and the computer with the spectrometer. The circuit is shown in figure (3-6). The exit mask is continuously moving. When the exit mask is at its starting position, i.e. the first 255 slots are at the exit aperture, a light pulse goes through an alignment slot on the exit mask and is detected by a photo-cell on the other side of the exit mask. Two transistors amplify the output light curve and two IC chips change the light curve into an alignment pulse. alignment pulse, through the drive unit, readies the counter for counting, readies the computer to accept data, and to turn on an indicator light showing that the system is taking data. One can adjust the starting position of the exit mask by adjusting the intensity of the light. After 255 data points have been obtained, the exit mask is at its other end, and another alignment pulse turns off the counter and the indicator light.

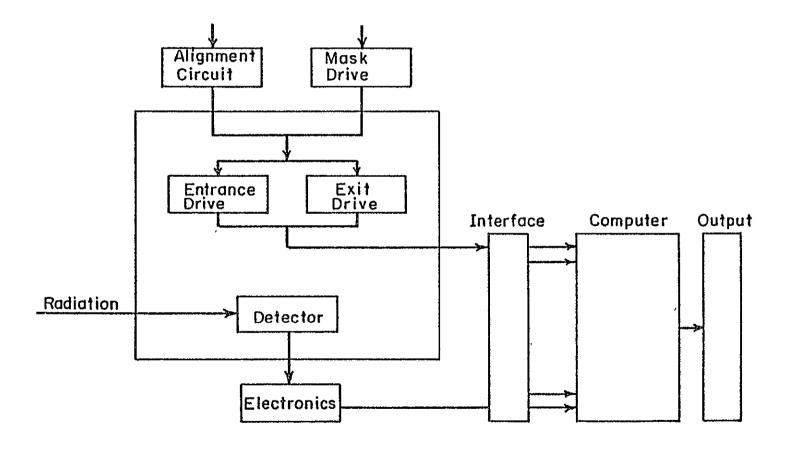


Figure 3-5. HTS drive unit block diagram.

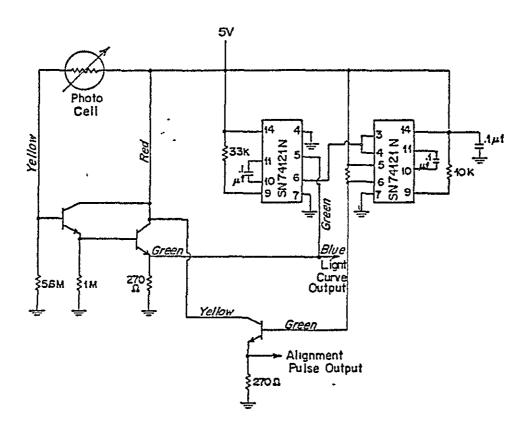


Figure 3-6. HTS alignment circuit.

The computer after taking 25,5 readings checks that the indicator light is off. This step ensures the synchronization of computer and spectrometer.

2. Drive Unit

A drive unit (Fig. 3-7) is used to drive the entrance and exit masks of the spectrometer. It can be set to be adjusted by pulse streams at 100 Hz, 200 Hz, or 400 Hz. The unit performs the following functions:

- (a) It receives an alignment pulse from the sensor circuit(18) and generates a pulse to reset the counter for counting(17). The pulse will also ready the computer for taking the data.
- (b) It drives the exit mask in a continuous mode at a displacement rate of one slot for every 41 pulses(18).
- (c) After each set of 41 pulses the unit instructs the the mini-computer to read the integrated signal off the counter and then reset the counter for the next data integration.
- (d) After 255 reset pulse the unit advances the entrances mask by one slot by sending the entrance mask advance motor 40 pulses (11).

3. Preamplifier

The circuit (Fig. 3-8) shows a transimpedance amplifier implemented with a Burr Brown operational amplifier. The circuit has the advantage of high speed, low susceptibility to microphonics, and detector operation at constant voltage with a high resistance load resistor.

Neglecting the voltage noise and current noise in the

ORIGINAL PAGE IS OF POOR QUALITY

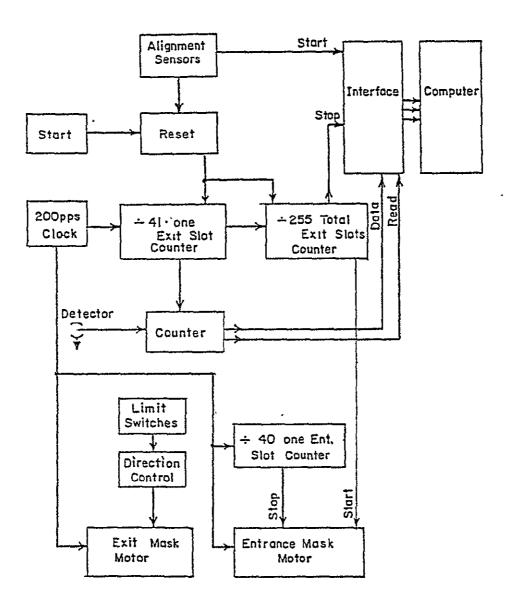
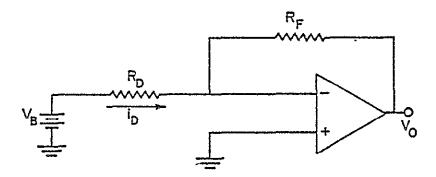



Figure 3-7. Logic diagram for mask motion and data processing.

first order approximation, the current through the detector, $I_{\rm D}$, also goes through the load resistor $R_{\rm F}$ because the input impedance of the operational amplifier can be taken to be very large, so

$$v_o = I_D R_F$$

$$= v_B \frac{R_F}{R_D}$$

where V_0 is the output voltage,

 $\boldsymbol{v}_{\boldsymbol{B}}$ is the constant bias voltage, and

R is the load resistance

(D) Laboratory Calibration

1. Calibration of Post Optics

Liquid nitrogen is used to calibrate the efficiency and sensitivity of the post optics. Liquid nitrogen is in a dewar with black paper along the wall to simulate a blackbody. Through a chopping device, the post optics will alternately see radiation from the liquid nitrogen and from the room. The difference between these two radiations gives the A.C. signal. D.C. measurements are obtained by putting liquid nitrogen directly in front of the dewar window. The following are the results of the calibration:

Dewar profile: $f_H = 7.6$ $f_V = 10.3$ Wavelength region: $8.7\mu - 11.1\mu$

Band-width:	2.4 _µ
Bias voltage:	15µ
Load resistor at LH2 temperature:	1.2 MΩ
A.C. power:	9x10 ⁻¹⁰ watt.
A.C. signal:	272.7 mv
A.C. noise:	4.4µv
(NEP) A.C. detector:	5.2x10 ⁻¹³ H _z
(NEP) A.C. system:	$1.25 \times 10^{-12} H_z^{\frac{1}{2}}$
A.C. responsivity:	1.2 amp/watt.
D.C. power:	3.05×10^{-6} watt.
D.C. signal:	11.32V
D.C. noise:	4 µ v
(NEP) D.C. system:	1.47x10 ⁻¹² H _z
D.C. responsivity:	2.58 amp/watt.
Background noise:	$NEP_{Blip} = \sqrt{2 P_{BG}hv}$
	$=3.5 \times 10^{-13}$

where $P_{\mbox{\footnotesize BG}}$ is the D.C. power

 ν $\,$ is the frequency that is assumed to be $10 H_{_{\hbox{\scriptsize Z}}}.$ The system is a factor of 3.57 away from background limited.

2. Test of the Spectrometer

A mercury vapor lamp with emission at 1.7 μ is used with the spectrometer to test the computer program. A PbS detector and an appropriate blocking filter isolates the 1.7 μ doublet of mercury. The slit width and length for each mask is 0.15 mm and 3.5 mm. Fig. (3-9) is the mercury vapor spectrum at 1.7 μ for the 1 x 255 mode. Fig. (3-10) is the mercury vapor spectrum

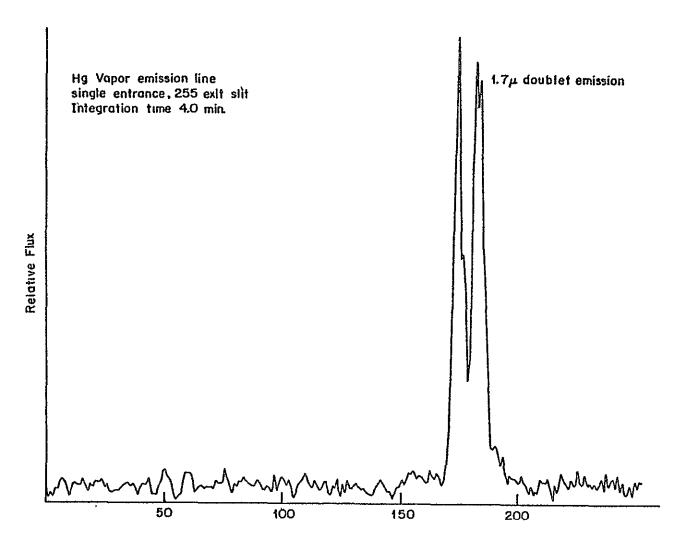


Figure 3-9. Spectrum of the mercury vapor 1.7 μ m line using the 1x255 mode.

for 15 x 255 mode. Figure (3-10a) shows the eighth of a series of fifteen individual spectra. Figure (3-10b) shows an average of all fifteen spectra, and (3-10c) shows all 15 spectra, each spectrum being displaced vertically from the next. The diagonal pattern near the right-hand edge represents a displacement of the peak between successive spectra. This represents the actual shift in spectral range between adjacent spatial elements.

Once it was clear that the instrument with the computer program worked properly in the 1.7 μ region, the spectrometer was tested with the cryogenically cooled, arsenic-doped silicon detector. The transmission spectrum of polystyrene with a soldering iron as the source was obtained. The shape of the filter profile and the transmission spectrum of polystyrene showed that the instrument worked in the 10μ region.

The wavelength calibration of the spectrometer is obtained by comparing the polystyrene transmission spectrum obtained by the spectrometer and the spectrum obtained by a Perkin-Elmen monochromator. The wavelength calibration is then checked against the moon spectra at 9.5μ where the atmosphere has strong absorption features.

ORIGINAL PAGE IS OF POOR QUALITY

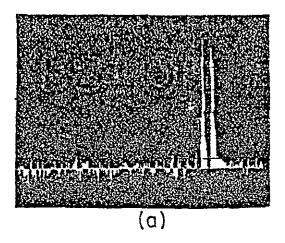
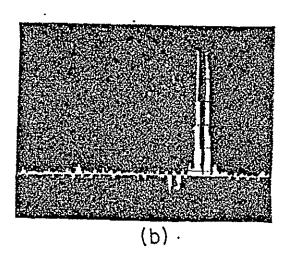
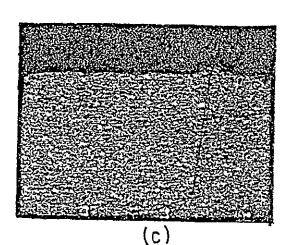




Figure 3-10.
Calibration spectra obtained for the mercury vapor emission lines at 1.69µm and 1.71µm: (a) The eighth of a series of fifteen individual spectra obtained;

(b) An average of all fifteen spectra;

(c) A display of the fifteen spectra, each spectrum being displaced vertically from the next. The diagonal pattern near the right-hand edge represents a displacement of the peak between successive spectra. This represents the actual shift in spectral range between adjacent spatial elements.

CHAPTER IV

CCMPARISONS BETWEEN FOURIER TRANSFORM AND HADAMARD TRANSFORM SPECTROSCOPY

Since the Michelson interferometer spectrometer (MIS) and Hadamard transform spectrometer (HTS) both have the multiplex advantage and the advantage of large through-put, there are a number of comparisons between them in the literature. In this chapter the comparisons are carried out in four different aspects: mathematically, computationally, optically and mechanically.

(A) Mathematically

Fourier transforms and Hadamard transforms can be viewed as using two different weighing schemes. Appendix A gives the mathematical analysis of the coding error for Fourier transform.

Let ξ be the path difference in a two beam interferometer. $P(\nu)$ is the power at wave number ν (i.e. the spectral density function). ν here is taken to be the inverse of wavelength, then $S(\xi)$, the power received for path difference ξ , is:

$$S(\xi) = \int_{0}^{\infty} P(v) \cos^{2}(2\pi\xi v) dv . A-1$$

$$= 1/2P_{0} + 1/2\int_{0}^{\infty} P(v) \cos(4\pi\xi v) dv . A-2$$

In the Fourier transform each spectral element can be viewed as having a phase modulation by a cosine squared term.

Its argument depends on the stepped distance and the particular

wavelength. In the Hadamard transform each spectral element is modulated by a step function of 1 and 0 for a S-matrix coding.

One can ask oneself whether these modulating or encoding schemes are equally efficient?

In table 2-1 we stated that for large N the multiplex advantage, or the efficiency, of the H-matrix coding of elements 1 and -1 is \sqrt{N} , the S matrix coding of element 1 and 0 is $\frac{\sqrt{N}}{2}$, and for a single detector MIS the Fourier coding is $\sqrt{N/8}$.

This last figure is based on calculations shown in Appendix A. The other two values were described by Sloane et al (1968). The H-matrix is an orthornormal matrix. The element -1 means "subtract" the radiation, while the +1 element means "add" the radiation. No radiation is wasted and thus the coding scheme has the highest efficiency. For S-matrix coding half the slits are open, 1, letting light pass through; and half the slits are 0, blocking the light. Half the radiation is therefore wasted each time and one can intuitively see why the efficiency of the S-matrix is only half that of the H-matrix.

Although the S-matrix is less efficient, it has the important advantage that it is cyclic; that is, the (i+1)th column of the S-matrix is obtained by shifting the ith column cyclically one place downwards. Instead of constructing a mask of N² slits for N spectral elements, one constructs only one mask with 2N-1 slits. Such a mask has two advantages. First, the cost of mask construction is reduced by ^N/2 and the design of the advance mechanism is considerably simplified,

since the total weight of the mask also decreases as, N/2. Secondly, it can be self-supporting and therefore permits the construction of a spectrometer which requires no transmission materials. In operation the mask is stepped one slit width - along the length of the mask- for each successive encoding position.

In the Fourier case, equation (A-2) of Appendix A

$$S(\xi) = 1/2P_0 + 1/2\int_0^\infty P(\nu)\cos(4\pi\xi\nu)d\nu \qquad (A-2)$$

shows that half the power goes into $1/2P_0$, the first term on the right hand side, which is not modulated at all. This reduces the efficiency by a factor of two as in the S-matrix case. The other half of the power is modulated by a cosine term. Cosine modulation gives a factor $1/\sqrt{2}$ because cosines functions do not form an orthronormal set themselves. The total Fourier modulation efficiency is therefore $1/2(\sqrt{N}/2)$. Mathematically, the S-matrix is a factor of $\sqrt{2}$ better in SNR than the Fourier transform. The true Hadamard code, which cannot be realized experimentally, as yet, is a factor of $\sqrt{8}$ better that the Fourier code.

(B) Computer Requirements

Both MIS and HTS require a digital computer to decode the data. However, in the HTS case this reduces to nothing more than a series of additions and subtractions. Hence, as much as an order of magnitude in computer time can be gained over

the Fourier decoding procedure required by MIS (Decker, 1971). In addition, HTS do not have the large zero path-length spike which is characteristic of MIS, and hence can be operated with a substantially lower dynamic range.

(C) Optics

HTS attempts to "liberate" the grating instrument from its inferior position and offers a possibility to convert a conventional scanning spectrometer into a multiplex instrument at a moderate cost. However, it is also the grating and optics that limit the capabilities of HTS.

1. Resolution

The resolution of a grating instrument is

$$R = \frac{\lambda}{\Delta \lambda}$$

$$= mN \qquad (4-1)$$

$$= m\frac{W}{G} \qquad (4-2)$$

where m is the order of diffraction. N is the total number of rulings in the grating. W is the width of the grating. d is the separation of lines.

The MIS introduces variable path differences between two interfering beams. The resolution is determined by the maximum permissible path difference in the interferogram.

$$\Delta v = \frac{1}{2x} \tag{4-3}$$

$$= \frac{1}{4 \, \xi} \tag{4-4}$$

where x is the maximum path difference between interfering beams.

is the displacement of one of the two mirrors from
 the white light fringe position, and

Av is the increment in wavenumber.

Since

$$R = \frac{\lambda}{\Delta \lambda}$$

$$= \frac{1}{\lambda \Delta \nu}$$

$$= \frac{2x}{\lambda}$$
(Mertz a, P.5)

A MIS can have a resolutuion as high as $\sim 10^6$.

2. Slit Width

In the HTS, the minimum usable slit width is determined by the diffraction pattern

$$w \sim \frac{\lambda}{W} F \tag{4-6}$$

where F is the focal length of the imaging mirror.

It has been argued that a boxcar profile is a poor match to a sine diffraction pattern(Hirschfeld, et al, 1973, Mertz, 1976 b). In the presence of diffraction, the transmission at each point of the mask will be a complex function of the spectral distribution, the mask position, and the relative width of the nearby transparent and opaque slits.

One way to correct this is to make the slits, wider than the diffraction limit, allowing the mask's transmission to

approach the geometric optical limit. This way, however, not only the resolution of the instrument is reduced, but the total number N of spectral elements that can be observed simultaneously, also decreases.

There is another way to look at the same problem. grating is an operator that changes the frequency domain into the spatial domain, so that intensity as a function of frequency, after passage by the grating, becomes a function of position. With diffraction effects included, the intensity has a new functional dependence on distance. The Hadamard mask code and the subsequent decoding process just translate this spatial distribution function back into its spectral domain. Therefore, an intensity pattern which is complicated by the diffraction pattern, after the Hadamard coding and decoding, should still show up the same intensity pattern. Since one knows the diffraction pattern for a given optical system, the diffraction effect on the spectral intensity distribution can be computed and corrected, so that the sine 2 diffraction effect would not make the slit width any larger than the diffraction limit. One point, however, should still be noted. rection that would have to be applied is wavelength dependent because diffraction is wavelength dependent.

A similar problem exists in MIS (Stewart P.296) because the moveable mirror must be stopped when its maximum displace—ment is reached.

The sidelobes in the interferometric case is of the form

$$S(\omega^{\dagger}) = \frac{\sin (\omega - \omega^{\dagger})T}{\omega - \omega^{\dagger}} \qquad \omega = \omega^{\dagger} \qquad (4-7)$$
(Stewart P.295)

which has considerably stronger side lobes than the diffraction pattern. Here, T is the time for the mirror to travel from one end to the other, and ω is the central frequency. Various schemes of apodization have been introduced to compensate for the side lobes in the interferometric case.

3. Multiplex Number

The total number of elements N that can be observed simultaneously yields the multiplex advantages. In HTS, the total aperture size is limited by aberrations largely due to off axis radiations. The aperture width is (Hirschfeld, 1973)

$$w = F \cdot S_w \tag{4-8}$$

where F is the instrument focal length and $S_W/2$ is a factor of the order of 0.05 $^{\sim}$ 0.1, that describes how far off axis one can go before the aberration pushes the individual slit width up to the point where no further gain in N is possible. Since the minimum slit width, determined by diffraction effects, is $^{\sim}1.22\lambda f$, the total number N is

$$N = \frac{FS_W}{1.22\lambda f} \tag{4-9}$$

and is of the order of 10^3 .

For our HTS at Cornell, we have

$$F = 49.5$$

$$S_W \sim 0.08$$
 (assume \sim medium value) $\lambda \approx 10.0 \mu \text{m}$ f= 7.5 $N \sim 250$

Actually, however, Mertz and Flamand (1976) suggested that $S_{\rm w}$ values >>0.1 may be realized in practice.

The MIS has a very large effective value of N. This is its main gain. The total wave number range observed in MIS is

$$v_{\text{max}} - v_{\text{min}} = \frac{1}{4\Delta}$$

$$= \frac{1}{4\Delta}$$

where Δ is the step size of the mirror, σ is the resolution in wave number. N for the MIS can be 10^6 .

4. Spectral Range

The MIS also has a broad free spectral range. Its range is limited by the beam splitter efficiency which usually varies approximately as the cosine of the wavelength. HTS free spectral range is usually about one grating order. Its free spectral range can be increased by using order sorting, but this increases the technical difficulty. Although the HTS has a smaller spectral free range, it can be set to recover only those spectral bands of particular interest throughout any spectral regions (Decker, 1971). This is impractical with a MIS.

5. Throughput

The throughput is defined in section 1-A as the product of aperture A and angular acceptance Ω

$$E = A\Omega$$

For a MIS it can be shown that $\Omega R=2\pi$ and

$$E_{MIS} = A_m \cdot \frac{2\pi}{R}$$

where R is the resolution of the instrument. A_m is the area of the interferometer mirror. Typically, Avl cm², and for $R \sim 10^3$, $E_{MTS} \sim 6 \times 10^{-3}$.

For the HTS, from equation (3-1) one obtains

$$E_{HTS} = A_g(\frac{w \cdot h}{E^2})$$

where h and w are slit height and width and F is the focal length. For a double multiplexed spectrometer, the throughput of MIS and DHTS are about the same, of the order 10^{-2} cm². For the same throughput, the HTS may have a worse system transmission because the HTS requires a dedispersing process.

DHTS has the additional advantage that one can construct a one dimensional picture of the source.

(D) Mechanical Requirements

The HTS mask can be made self-supporting hence no beamsplitters or transmission optics, are required. Furthermore,
in the MIS, construction tolerances usually involve dimensions

and motions that have to be maintained to within fractions of wavelengths. For a HTS, the corresponding tolerances are fractions of a slit width, and these tolerances are normally two orders of magnitude more relaxed, so that this instrument will be more suitable for rugged applications and less costly.

It is clear from the above comparison that the MIS has the advantages of highest resolution, very large multiplex number and free spectral range. The HTS has the mechanical advantages and computational advantages for large N. The HTS can have on the order of 10³ spectral elements and a resolution sufficient to resolve the rotational lines of many molecules. For most IR astronomical observations this will be sufficient. Furthermore, its potential for modifying the existing sacnning spectrometer at a moderate cost make this a very worthwhile field for further study.

CHAPTER V

PROGRAMMING FOR HADAMARD TRANSFORM SPECTRAL DATA REDUCTION

An 8K Computer Automation minicomputer model L.S.I. or model Alpha-16 can be used to interface with the output of a Monsanto scalar counter which digitized the output of the detector used with the Hadamard transform spectrometer. The computer processes each data point as soon as it receives it and when the data gathering run is completed, the computed spectrum is also ready within a fraction of a second. The final spectrum can be displayed on a cathode ray tube for quick visualization, or printed on paper by a teletype machine for more detailed analysis. Also, it can be stored on paper tape for future use.

There are two inverse transformation programs: 1 x 255 for the single entrance slit and 255 exit slit Hadamard transform spectrometer, HTS, and 15 x 255 for the 15 entrance slit and 255 exit slit instrument, DHTS.

(A) HTS Program

The inverse HTS program processes the raw data obtained by the combination of a single entrance slit and 255 exit slit. This program is in double precision format. Two areas in the memory are reserved by the program to store the final spectrum. The final spectrum can be stored in either the plus beam or the

minus beam area. The plus and minus beams are arbitrarily named.

Data can come in at a rate of 10 data points per sec.,

5 data points per sec., or 2.5 data points per sec., depending
on how the clock driving the spectrometer is set. Since a complete pass has 255 points, each pass takes 25.5 sec., 51 sec.,
or 102 sec., depending on the data rate. Each pass yields one
spectrum. One can take as many passes as one wants until one
is satisfied with the SNR of the spectrum.

The whole program (Appendix B) is linked by the following subprograms: COMMAND, TRANSFORM, INPUT/OUTPUT, READ, CLEAR, PUNCH, GRAPH, DISPLAY, MATHMATICAL PACKAGE and MASK. The function of each subprogram is described briefly in the following sections.

- 1. COMMAND: This subprogram performs two functions.
- (a) It commands the computer to do one of the following functions: TRANSFORMATION, CLEAR, READ, PUNCH, GRAPH or DISPLAY.
- (b) If two distinct spectra are stored in two different beam areas, the COMMAND program can take the difference and ratio of the two spectra.
- 2. INVERSE TRANSFORM: This is the most important subprogram in the whole program. It will take data points from the counter, transform them and enter them into either the plus or minus beam areas, or it will read the data points from the paper tape into one beam area, transform them and enter them into the other beam area. This program is called the inverse transform, since it inverts the transformation performed by the coding mask, and

yields a spectrum. The program also performs the Hadamard transform, i.e. transforms the spectrum back to raw data, from either input.

The algorithm is based on the following idea: Let ψ_j be the jth spectral element and w_{ij} be the weight of the jth element of the ith mask. w_{ij} equals 1 for transmitted radiation and 0 for blocked radiation. Each measurement then has a value

$$\eta_{i} = \sum_{j=1}^{255} S_{ij}\psi_{j} + v_{i}$$

where ν_i is the random detector noise satisfying the properties mentioned in Section II-B. \underline{S} is the 255 x 255 matrix. η_i is the i^{th} data point entered into the computer. The computer's job is to decode η_i to reconstruct the original spectral values ψ_j . Therefore

$$\hat{\psi}_{j} = \sum_{i=1}^{255} S_{ji}^{-1} \eta_{i}$$

where $\hat{\psi}_j$ is the unbiased estimate of ψ_j and \underline{S}^{-1} is the inverse of the S matrix.

According to the relation

$$\underline{s}^{-1} = \frac{2}{N}(2\underline{s} - \underline{J})$$

one obtains \underline{S}^{-1} by keeping all +1's in the S-matrix and replacing all 0's by -1. The matrix obtained in this way is the

inverse matrix of S except for a constant factor $\frac{2}{255}$, which only gives a different normalization.

To reconstruct the spectral values ψ_j one needs to add or subtract each measured value to η_i different bins, according to whether \underline{S}^{-1} is plus or minus. Fig. (5-1) is a flow chart for the 1 x 255 transform program.

By a Hadamard transform we mean a program that transforms the spectrum back to its raw data *. This procedure is useful because by inspecting the raw data display which usually appears quite smooth, any bad data point can be easily identified, and for example, replaced by the average of its two adjacent data points. This procedure will improve the final spectrum.

The Hadamard transform turns out to be extremely easy. All one has to do is to change one statement in the inverse transform program. When S_{ij}^{-1} is -1, instead of negating the data, one just sets it to zero.

Data points are taken both with the exit mask moving in a forward and in a reverse direction. The inverse transform program takes care that when the exit mask moves in the forward direction, the spectrum is transformed into the plus beam area. When the exit mask moves in the reverse direction, the final spectrum is stored in the minus area. Not adding the

^{*} The notation here may be a bit confusing. We use the \underline{S}^{-1} to transform the raw data into an intensity spectrum. The inverse transform uses \underline{S} to transform the intensity spectrum back into raw data.

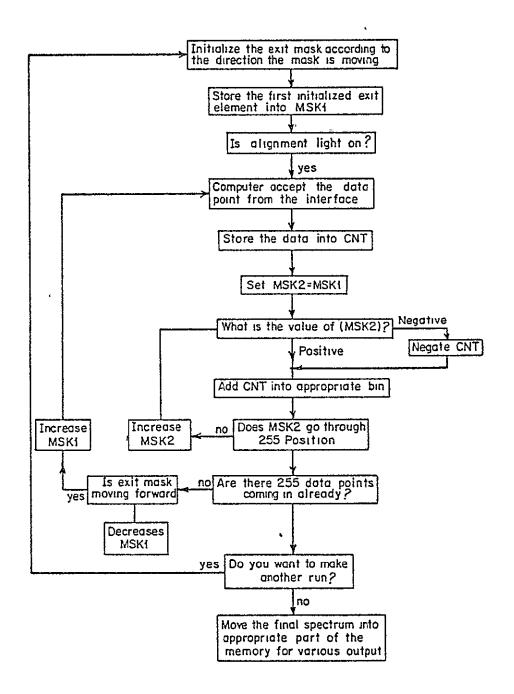


Figure 5-1. The flow chart of the 1x255 inverse transform program.

forward and backward spectrum eliminates a degradation of the final spectrum due to any asymmetry between the data taking for different directions of motion of the mask.

- 3. <u>INPUT/OUTPUT</u>: This program links up the computer, the teletype and high speed reader. It consists of the following functions: Keyboard Input, Paper Tape Input, Output to Teletype, Output Text from Buffer, Output Floating Point Number, Wait for Execute Signal, Command Error Exit, Carriage ReturnLine Feed.
- 4. READ, CLEAR, PUNCH: This program reads the spectrum from the paper tape into either plus or minus beam areas for further manipution, or punches the spectrum out from the beam area; it also can clear the beam area. The speed of teletype for reading is 100 words per sec. Hence it takes about 12 min. to read the spectrum. Punching has the same rate.
- 5. GRAPH: This program plots the graph on teletype paper, with its numerical value in floating point format. This procedure offers one the chance to inspect the spectrum in detail if it is needed. It takes about fifteen to twenty minutes to finish a spectrum, depending on the complexity of the spectrum.
- 6. CRT: A cathode ray display is interfaced with the output of the computer. It takes about 2 sec. to display the spectrum, with a factor of 5 higher resolution than the graph printed by the teletype on paper. One can display the spectrum at the end of any pass to see how good it is.
- 7. MATHMATICAL PACKAGE: This package is supplied by the Computer Automation library tape, with a little modification

from our own on its double precision part.

8. MASK: This part contains the S^{-1} matrix, the 255 elements exhibited in the first mask position plus an additional 254 elements representing the further cycling of this mask.

(B) DHTS

The doubly encoded Hadamard transform program processes the data obtained by the various combinations of fifteen entrance slots and 255 exit slots. It is a single precision program. It can accept data at a rate of 5 data points per sec. and 2.5 data points per sec. only, because it takes a longer time to process each data point. The whole transform. takes about 14 minutes. The final spectrum consists of 15 separate spectra, representing a one-dimensional color picture across the spectrometer entrance aperture. Each separate spectrum contains 255 spectral elements. The program can co-add all fifteen separate spectra yielding a sum spectrum with improved SNR.

The program consists of the following subprograms:

COMMAND, TRANSFORM, DATA, INPUT/OUTPUT, READ, CLEAR, PUNCH,
GRAPH, DISPLAY, ENTRANCE MASK, EXIT MASK. (Appendix C).

Since most of the subprograms are preforming the same function
as their counterpart in the 1 x 255 case, except written in
single precision format, their description will not be repeated
here. Only the TRANSFORM, DATA, and DISPLAY programs will be
discussed because they are different from those in the 1 x 255
scheme.

1. INVERSE TRANSFORM: The program can accept data eigher from the counter or from paper tape. In order to eliminate any asymmetry due to the different directions of motion of the exit mask, the computer will accept data only when the mask is moving in a given direction, either forward or backward, depending on the operator. If one wants to save time, one can still choose the mode in which the computer will accept data in both directions of mask motion. Hence, the program provides six modes for operation: accepting data from the counter, in the forward, backward, or both directions, and accepting data stored on the paper tape, in the forward, backward and both directions. Figure (5-2) shows the flow chart for 15 x 255 program.

Let both the entrance and the exit masks be linear arrays encoded by Reed-Muller codes. Then the matrix of spatial-spectral elements ψ is related to the matrix of measurements η by

$$s \psi S = r$$

To obtain the spatial-spectral information about the viewed scenc we solve this equation by premultiplying the data matrix by \underline{s}^{-1} and postmultiplying by \underline{s}^{-1}

$$\underline{\psi} = \underline{s}^{-1}\underline{n} S^{-1}$$

Now consider the element η_{11} . It is multiplied only by elements of the first column of \underline{s}^{-1} ; and in turn it multiplies only the elements of the first row of \underline{s}^{-1} . To a given spectral-

ORIGINAL PAGE IS OF POOR QUALITY

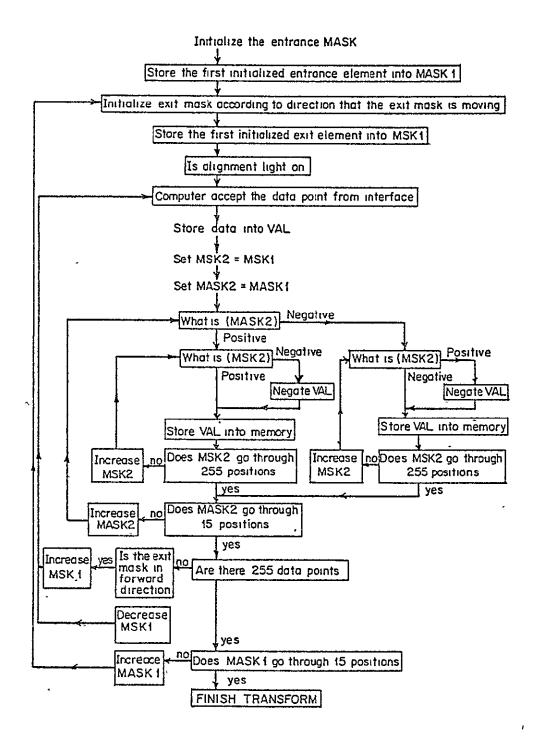


Figure 5-2. The flow chart of the 15x255 inverse transform program.

spatial element ψ_{ij} , it therefore contributes an amount $s_{il}^{\eta}_{ll} s_{lj}^{\zeta}$. But the elements s_{il}^{-1} and s_{ij}^{-1} all have values, either +l or -l, and the result is that each element ψ_{ij} of the matrix ψ receives a contribution $+\underline{\eta}_{ll}$, or $-\underline{\eta}_{ll}$ from the reading, η_{ll} .

This procedure is generally valid. Any reading $\eta_{k\ell}$ will make additive contributions that can only have values $+\eta_{k\ell}$ or $-\eta_{k\ell}$ to each element $\psi_{i,j}$ of the ψ matrix.

For real time decoding we therefore need the following:

- (a) A memory that consists of bins containing the contributions to the elements ψ_{ij} accumulated up to any given time t in the cycle of measurements. For a device that can resolve m spatial and n spectral elements, this memory reruires mn bins and of the order of mn memory words.
- (b) For each acquired reading n_{kl} we perform a series of additions of values either $+n_{kl}$ or $-n_{kl}$, one to each of the ψ_{ij} memory bins. But before that can be done, we need to decide on the assignment of + or needed for a given bin. This is done in the following way.

We store the sequence of + and - signs in one column of \underline{s}^{-1} and in one row of \underline{S}^{-1} and in one cycled permutation of each of these vectors. Let us designate these signs by their positions in these two vectors, as $\underline{s}_{\underline{i}}^{-1}$ and $\underline{S}_{\underline{j}}^{-1}$, respectively, $\underline{i}=1,\ldots,\underline{m};\ \underline{j}=1,\ldots,\underline{n}.$ (Since each of these sequences is cyclic it can, respectively, be brought into its kth and lth cycling position after a measurement $\eta_{\underline{k}\underline{l}}$). The elements of the two vectors then are multiplied in all possible combinations to

give a matrix having mn elements.

$$\Sigma_{ij} = s_i^{-1} s_j^{-1}$$
 $i=1 \cdots m; j=1 \cdots n$

Each element Σ_{ij} is either + or - depending only on whether the signs s^{-1} and S_j^{-1} are similar or dissimilar for a particular combination of i and j values.

The additions $+\eta_{kl}$ or $-\eta_{kl}$ to the bins ψ_{ij} are made as successive elements, Σ_{ij} are computed, so that the elements Σ_{ij} need never be stored. Figure (5-3) shows the relation of Σ_{ij} to a superarray containing the set of all elements that are constructed at various stages of the computation.

When only a restricted number of spectral elements are of interest, we need to compute elements ψ_{ij} representing only selected j values. This might be useful, for example, if only certain atmospheric CO_2 absorption lines needed to be studied, and the spectral elements between were of lesser interest. In that case only $\Sigma_{k+i-1,\ell+j-1}$ elements corresponding to given j values need to be used, and the computing time decreases as p/n, where n is the total number of available spectral elements, and p is the actual number of interest.

One starts with the inverse of the codes, s⁻¹ and S⁻¹, for the entrance and exit masks stored in the computer. One stores 509 elements of the exit mask, i.e., the 255 elements exhibited in the first mask position plus an additional 254 elements representing the further cycling of this mask. Similarly one stores twenty-nine elements for the entrance mask,

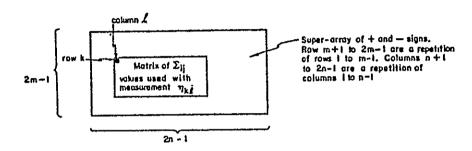


Figure 5-3. Matrices generated by the computer during the reduction of the spectral data.

representing the first fifteen elements used, plus the further cycling of fourteen elements.

For each reading η_{kl} one essentially makes use of the matrix (figure 5-3) making use of elements k to k+14 of the stored entrance code and elements l to l+254 of the stored exit code. This matrix consists of + and - signs. When s_{ik}^{-1} and s_{kj}^{-1} have the same sign, both being + or both being -, the matrix position ij is assigned a + sign, and the reading η_{kl} is added to the accumulatively stored value of ψ_{ij} . If the elements s_{ij}^{-1} and s_{kj}^{-1} have dissimilar signs, a - sign is assigned to ij and the reading η_{kl} is subtracted from the stored ψ_{ij} values. This whole process takes ~100 msec, and is carried out while the succeeding intensity measurement is being made.

In pratice, we start with the first spatial element, i=1 and add or subtract the contributions to all the ψ_{1j} values, successively going from j=1 to j=255. We then repeat this procedure for i values going from 2 to 15. This whole procedure is carried out while the exit mask is moving from position £ to £+1 depending on whether the exit mask is moving forward or back. The entire process is then repeated for the next reading $\eta_{k, £+1}$. When the exit mask reaches its 255th position, £ remains unchanged, but the entrance mask moves from the position k to k+1.

For odd values of k, the exit mask moves in the direction of increasing & values, and for even values of k, it moves toward decreasing values. In short, the exit mask moves back and forth as readings are taken. After the entrance mask has

moved through all its fifteen positions, and the total 3825 readings have been taken and added onto or subtracted from the $\psi_{\text{i,i}}$ elements, the run is completed.

- 2. <u>DATA</u>: Instead of processing a data point immediately as it comes in, this program stores the data in the memory, so one can display the raw data points first, correct them if there are any obvious bad points, and then transform them. This program serves the same function as the inverse transform in the 1 x 255 system.
- 3. <u>DISPLAY</u>: The display program allows one to display the information in a number of different ways:
- (a) One can call for the spectrum corresponding to any one of the entrance slit positions and display it individually.
- (b) One can display the sum of the different spectra. In order to do this, one has to take into account that the spectrum for a given entrance slit is displaced by one spectral position from adjacent entrance slit position. In other words, the wavelength for element ψ_{ij}^{-1} corresponds to the wavelength for element $\psi_{l+1,j+1}^{-1}$, because of the slightly displaced light paths through the spectrometer.
- (c) Finally one can display all fifteen of these spectra simultaneously, with the zero baseline of each spectrum vertically displaced from the next one. While this format is somewhat crowded, it does allow a quick comparison of the individual spectra.

(C) Correction Program:

This program is shown in Appendix D written in BASIC language. It corrects the error introduced by the imperfect mask. Instead of correcting the mask which in practice is not possible, the program corrects the final spectrum. That is much easier.

As seen in section II-D, for any spectral line I_{0} , the distorted spectrum shows a line $I_{0}^{'}=I_{0}(1-\epsilon)$, two positive blips with amplitude $(1/2)(\epsilon I_{0}^{'}/1-\epsilon)$ adjacent to the line on both sides, and two negative blips with same amplitude, i.e. $(\epsilon/2)(I_{0}^{'}/1-\epsilon)$ at 24, 25 elements to the left. The correction program takes the intensity of every element, $I_{0}^{'}$, multiplies it by $\epsilon/2$, adds it to the elements 24 and 25 positions to the left, and subtracts it from the two adjacent elements, one on each side of the line. The final spectrum is complete except for a different normalization factor. This is a linearized correction procedure valid only for small values of ϵ , $\epsilon<<1$.

CHAPTER VI

ASTRONOMICAL OBSERVATION

(A) Correction Procedure

The correction of the spectra for telluric absorption and for instrumental response is a critical procedure. The correction is carried out by comparing the source spectrum (either stellar or planetary) with a lunar or solar spectrum which is taken on the same day at an airmass as close as possible to the star. The following procedures are used in the data reduction:

- (1) Correct the raw star spectrum and lunar spectrum (or sun) for negative dip due to the imperfect mask as described in section II-D.
- (2) Correct for different entrance slit width if necessary because different slit widths will give different resolution.
- (3) Most of the astronomical infrared sources to be observed are weak sources, hence a positive offset is always added to the signal to prevent the signal becoming negative. (The electronics are confused by negative signals.) The correction procedure shown previously also take out this offset. One can take out the offset from the raw spectrum if one knows how large the offset is. Another way to correct this is by substracting a constant intensity from the stellar spectrum until the ratio of the stellar spectrum over the Moon spectrum,

around any large telluric absorption reigon, such as the ozone band, is optimally corrected. By optimal correction we mean that the atmospheric feature appears as neither a positive, nor a negative band. The Moon is a strong infrared signal and does not require an offset, so the result can be used as a calibration for base line.

(4) Align the stellar spectrum and the lunar spectrum by the telluric absorption feature. The final stellar spectrum is obtained by taking the ratio of the stellar spectrum and the lunar spectrum and multiplying it by the black body temperature of the Moon. The lunar temperature is obtained by noting the phase angle of the lunar east limb where it has usually been observed, and extrapolating the temperature from the value given by Linsky (1973). This procedure assumes the lunar infrared emissivity at 8-14 µm as unity, which is not true. Murcray et al's (1970) results for the lunar emissivity of 8-14µm region are shown in figure (6-1). The observation was done from a balloon. The strong feature centered at 9.6 m is a result of telluric ozone absorption. Murcray's result has not been used in our analysis because in the region to be discussed, 8.5µm-14µm, the Moon's emissivity is about constant except for the ozone absorption.

(B) <u>Observation of α-Orionis</u>

The observations of α -orionis were carried out with the 50" infrared telescope at Kitt Peak National Observatory, Arizona, in May 1974. The beam size is 18 sec. x 47 sec. The Kitt Peak 50" telescope bolometer was used with the Hadamard spectrometer. The dewer has a band pass of 8 - 14 μ m. The spec-

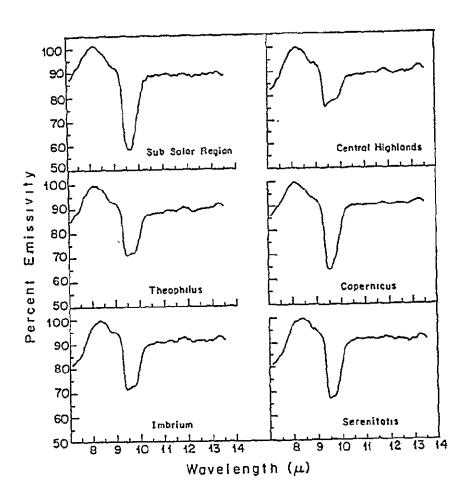


Figure 6-1. The spectral emissivity of various regions as calculated from the flight data (Murcray et al, 1970).

trometer operated in the 8-llµm region with a resolution $\lambda/\Delta\lambda$ around 500. The chopping frequency was 10 cycles per second.

Three runs were taken. Each run consisted of 10 scans of the sources. Two lunar spectra were taken on the same day for correction purposes. For the lunar temperature we used 383° K. Figure (6-2) shows the raw spectra of α -orionis and the Moon. The α -orionis spectrum is the sum of two independent runs.

Figure (6-3) shows the ratio spectrum of α -orionis corrected for lunar temperature. Except for the region immediately around the ozone band all the telluric absorption features are gone. The region between 9.35 μ m to 9.7 μ m is unreliable because the ozone band has a very low transmission.

 $\alpha\text{-orionis}$ is a late type super-giant with temperature around 3000°K. A stellar continuum corresponding to a 3000°K blackbody is also shown in figure(6-3), normalized to arbitrary units. The broad emission feature around $10\mu\text{m}$, which is due to silicate emission, is clearly shown in the spectrum. This $10\mu\text{m}$ 'silicate' emission feature of $\alpha\text{-orionis}$ has been previously discussed by others.

Woolf and Ney (1969) renormalized Gillett et al's spectra (1968) of α -orionis and interpreted the $10\mu m$ emission as coming from circumstellar dust which absorbs starlight and reradiates at infrared wavelengths. Since the emission is far more sharply peaked than a black body, the wavelength dependence of the emission probably closely mimics the wavelength dependence of the opacity of the material. In the same paper, Woolf and Ney

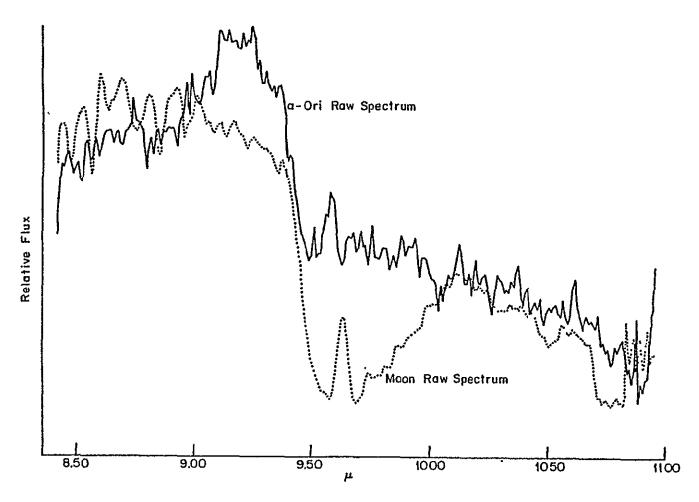


Figure 6-2. The raw spectra of α -orionis and the Moon.

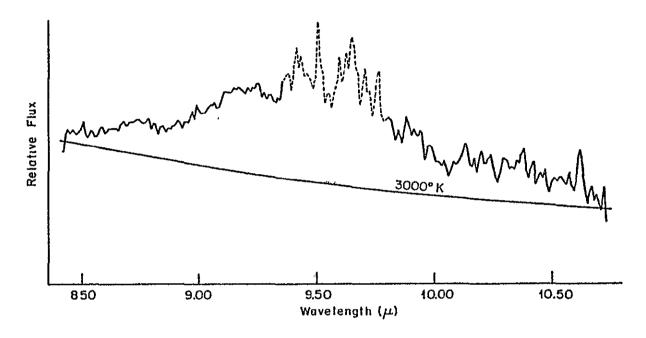
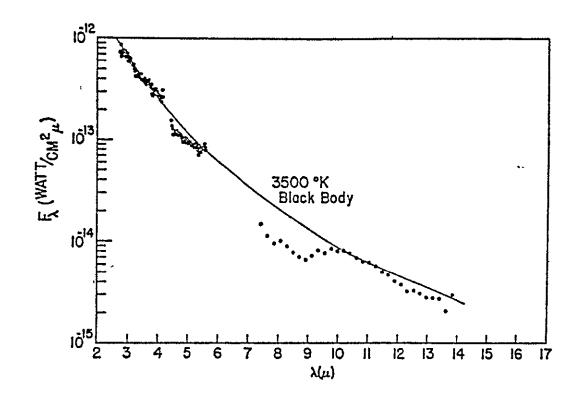


Figure 6-3. The ratio spectrum of α -orionis to the Moon corrected for lunar temperature.

also proposed that it is silicate grains which one is observing in the circumstellar dust cloud. This suggestion has been strengthened by high resolution spectra of Gamown et al (1972) with resolution $\lambda/\Delta\lambda=250$ from 850 cm⁻¹ to 1100 cm⁻¹. The emissivity of silicate grains should have a second peak near 20 µm. This second emission feature was observed by Low and Swamy (1970) in narrow-band photometry of α -orionis. Another supporting piece of evidence for the silicate model of the a-orionis dust cloud comes from observations of silicon monoxide (SiO). Silicon monoxide is expected to be among the most abundant molecules present in the atmospheres of cool stars of normal composition. It is also a reagent in the condensation mechanism thought to produce circumstellar silicate grains (Mass et al, 1970). The presence of silicon monoxide in α -orionis was confirmed by Cuduback et al (1971). They observed SiO absorption features around 4µm.

The silicates are expected to form from the material ejected by cool stars. Gilman (1969) calculated what solids would condense from gas of stellar composition as it moved away from a star and cooled. This is critically dependent on the ratio of oxygen to carbon in the gas. These elements first combine to form carbon monoxide; the subsequent development depends on which of the two is left over when all the other has been used up in this way. If carbon predominates, graphite will be the principal condensate, or under certain circumstances silicon carbide. If oxygen wins, the grains which should form are the silicates of calcium, magnesium, aluminium and iron;

combinations of these are responsible for the 10 and 20 µm spectral features. Aluminium and calcium silicate may be rare because of the low cosmic abundance of aluminium and calcium.


Woolf and Ney (1969) expected magnesium silicate, MgSiO₃, with some iron silicate, FeSiO₃, to be most abundant. For recent work on dust grains one can refer to Salpeter's paper (1974 a) on the theory of nucleation and dust grains in carbon-rich stellar atmosphere and his paper (1974 b) on formation and flow of dust grains in cool stellar atmospheres.

Laboratory spectra exist for silicate absorption features (Day, 1974). Any fine feature of the astronomically observed silicate emission may be washed out by different particle sizes and shapes, uncertainty in temperature and mixture of composition. Gammon et al (1972) examined the excess in XY Seg and 0 Cet and concluded that the type of silicates involved are basic rather than acidic. Day (1974) synthesized the amorphous magnesium silicate and obtained an absorption band quite similar to the material causing the interstellar 10µm absorption feature. He suggested that the existance of disordered structures seems a more reasonable expectation than crystalline terrestrial-type minerals. For the momnet, the nature of the silicates is certainly at an unsettled stage.

Penman (1976) had measured the middle infrared reflectivities of five silicate minerals, and used Kramers-Konig analysis to obtain the optical constants of the samples. He then used the optical constants in Mie computations of the absorption properties of very small mineral grains. The final absorption

cross-section spectra compared to the observed 10µm silicate of the source W3/IRS5. All the calculated spectra have sharper features than the astronomical features due to the application of Mie theory. However, the hydrated silicate, Chloritite (hydrated Mg/Fe/Al silicate) and serpenlenite (hydrated Mg/Fe silicate) fits the observed astronomical positions correctly. They fall almost exactly at the center of the astronomical features.

To the author's knowledge only two spectra of α-orionis in 8-14µm exist in the literature. Gillett et al (1968) (figure 6-4a) obtained results in the wavelength region from 2.8 to 14µm, with a resolution $\lambda/\Delta\lambda=50$. Treffers and Cohen (1973) (figure 6-4b) obtained a spectrum from 8-14um, and in the 20µm region with resolution 1000. Gillett's and Treffers and Cohen's spectra are shown in figure (6-4). Compared with our result, all show the 10µm emission feature if Gillett's black body curve is lowered instead of being drawn tangent to the observed data at 10 µm. Our spectrum shows a rather rapid dip at wavelengths beyond 10 µm while Treffers and Cohen show a slower nearly constant decline. Further high resolution observations should clear this matter up. Our own instrument now operates at a resolution similar to that of Treffers and Cohen, and if used on a telescope as large as the 120 inch Lick Observatory reflector that they used, sufficiently high signal to noise ratios should be obtained.

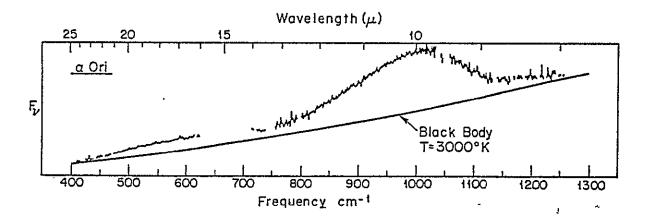


Figure 6-4. (a) Low resolution spectrum taken by Gillett et al(1969). Different symbols represent spectra taken on different nights. (b) High resolution spectrum taken by Treffers and Cohen (1973).

(C) Observations of Jupiter

The observations of Jupiter were also carried out with the 50" infrared telescope at Kitt Peak. The beam size is $18" \times 47"$. The Kitt Peak bolometer assigned to the 50" telescope with band pass 8-14µm was used with the Hadamard spectrometer. For our Jupiter observations, the spectrometer operated in the 10.8-13.4µm region with an effective resolution $\lambda/\Delta\lambda$ around 250. The chopping frequency was 10 cycles per second.

Two runs were taken. Each run consisted of twelve scans of the whole Jovian disk. Two lunar spectra were taken on the same day for correction purposes. For the lunar temperature we used a value of 383°K. Figure (6-5) shows the raw spectrum of Jupiter and the Moon. Both the Jovian and lunar spectra are the sums of two independent runs. Figure (6-6) shows the ratio spectrum of Jupiter corrected for lunar temperature. The arrows labeled by H₂O show the position of telluric water vapor features. Most of the telluric features have been cancelled properly.

Jupiter is covered by clouds which in the visible part of the spectrum are seen from earth. Current models show three distinct cloud layers (figure 6-7, Ingersoll). The lowest layer is water ice, with maximum density at about 270°K. The middle cloud is solid ammonium hydrosulfide (NH₄SH) at about 200°K. Lewis and Prinn (1970) suggested that ultraviolet radiation from 2200 to 2700 Å is not absorbed by H₂, He, CH₄ and absorbed a little by NH₃. Therefore, the radiation in this

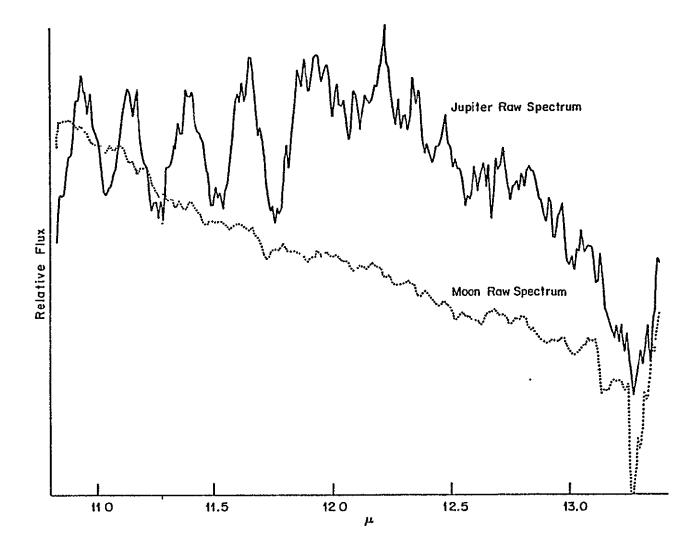


Figure 6-5. The raw spectrum of Jupiter and the Moon.

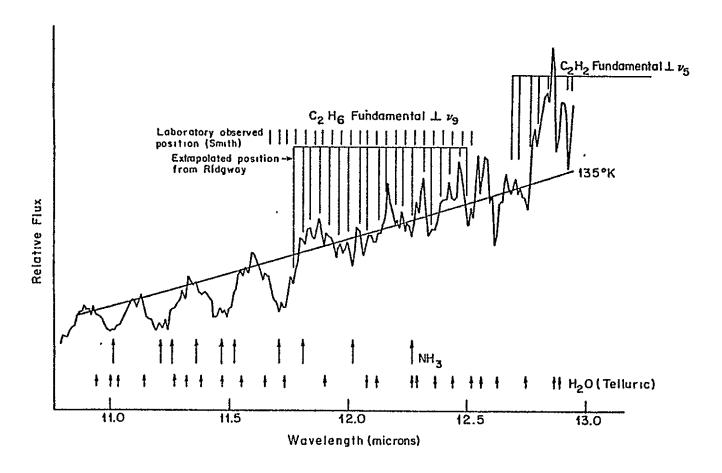


Figure 6-6. The ratio spectrum of Jupiter to the Moon corrected for lunar temperature.

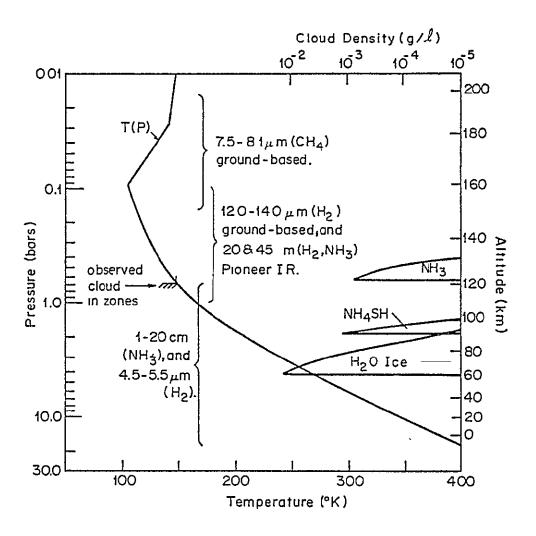


Figure 6-7. The atmospheric profile of Jupiter for a solar-composition model.

region may reach the ammonium hydrogen cloud and photolyze hydrogen sulfide there into hydrogen polysulfides ($\mathrm{H_2S}_{\mathrm{x}}$), elemental sulfur, and ammonium polysulfides $(NH_4)_2S_x$. All of these species are yellow, orange, or brown and may explain the color of zones. However, Sagan and Salpeter (1976) suggested that even under the most optimistic assumption that every H2S photo dissociation event leads to polymerics, the implied optical depth falls short by two orders of magnitude from matching the observed values. Moreover, pure polymeric sulfur fits the observed optical properties of the Jovian red chromophores only poorly (Rages and Sagan, 1977). The upper cloud is solid ammonia at around 150°K. Solid ammonia is whitish and probably forms the white zones on the Jovian disk. The color of the Great Red Spot may be due to high altitude ultraviolet photolysis of phosphine (PH2) into P2H1 and amorphous red phosphorus. The total depth of the cloud system is about 70 Km, and the pressure range probably runs from about 0.5 bar at the top to 4.5 bar at the cloud base. It is the cloud tops and above where the 10µm infrared radiation originates. Our spectrum measures .a .color temperature of 135°K which is consistent with Ingersoll's picture. The radiation should come from the cloud tops because the Jovian atmosphere at 10.5 to $13\mu m$ has appreciable opacity, as discussed in the next paragraph.

The main constituents of the Jovian atmosphere are hydrogen molecules, helium molecules, methane and ammonia, with minor constituents hydrogen sulfide, water, ethane and acetylene. Table 6-1 shows their observed abundance ratio by number.

Solar composition atmosphere (fraction by number)

TABLE 6-1

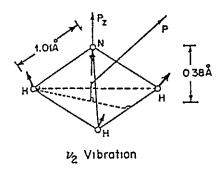
Species	(1)	(2)
Н ₂	0.886	0.870
He	0.112	0.128
H ₂ 0	1.05×10^{-3}	8.80×10^{-4}
CH ₄	6.30×10^{-4}	6.17×10^{-4}
NH3	1.52×10^{-4}	1.49×10^{-4}
H ₂ S	.2.90 x 10 ⁻⁵	2.56×10^{-5}
_		

- (1) Weidenschilling and Lewis (1973).
- (2) Podolak and Cameron (1974); Cameron (1973).

 The table is taken from Ingrosell.

The abundances of hydrogen, methane, ammonia, and helium seem consistent judged from solar atomic abundances. For detailed information one can refer to McElroy (1973).

The opacity due to hydrogen molecules is caused by pressure induced dipole absorption. The hydrogen molecule has no permanent dipole moment, and consequently, no permanent dipole spectrum. Gaseous H2, however, has a weak pressure - induced dipole spectrum which absorbs significantly over the long path lengths and low pressure of the Jovian atmosphere. The induced dipole moment results from two distinct physical process (Kranendonk and Kiss, 1959). The first takes place when the permanent quadrapole moment of one molecule induces a dipole moment in another molecule by virtue of the neighbor's polarizability. This is a long range interaction. The second physical process takes place when the overlap forces of the two adjacent molecules cause an asymmetrical distortion of their electronic charge clouds. The net induced dipole moment is modulated by the relative translational and rotational motion of the colliding pair and this modulation produces the absorption of infrared radiation. The translational spectrum is predominant at long wavelengths with its peak at 100µm at 100°K (Trafton and Munch, 1969). In our wavelength region $(10.5 - 13\mu\text{m})$ its contribution to the opacity is negligible. The rotational hydrogen collisional spectrum, however, has its peak at 17µm and contributes a continuous opacity in our wavelength region (Th. Encrenaz, 1972).


The helium molecule also has no permanent dipole moment.

Its opacity comes from the collision with the hydrogen molecules and resembles the H₂-H₂ collision process. The collision is less important due to the smaller abundances of helium.

Ammonia is an important source of opacity at 10 m under Jovian atmospheric conditions. The 10 µm band of ammonia arises from transitions through the ν_2 mode. In the ν_2 mode of vibration, the nitrogen atom oscillates vertically relative to the plane of the hydrogen atoms (figure 6-8a). The nitrogen atom is able to penetrate through the potential barrier to the other side of the hydrogen plane. This inverted position leads to inversion splitting of the levels of the ammonia molecules. The splitting generates both symmetric and antisymmetric energy levels with a given vibrational quantum number. The $10\mu m$ band of ammonia arises from transitions from the ground vibrational state to the first excited state in the ν_2 mode (figure 6-8b). Another transition, from the first excited symmetric vibrational state to the second excited asymmetric state is also in 10µm range, but the contribution due to this "hot band" is small for the low temperature in the Jovian atmosphere.

The ammonia is clearly seen in abosrption in the spectrum. The centers of the bands are shown by the arrows labeled NH3. The ammonia absorption has been observed by different groups.

Gillett et al (1969)(figure 6-9) observed Jupiter from $2.8-14\mu m$ with low resolution $\lambda/\Delta\lambda=50$. Briefly, their results show the following: The spectrum has a depression at $3.3\mu m$ caused by CH_{ll} . Solar heating of the upper atmosphere via this band results in warming of the upper atmospheric layers. This

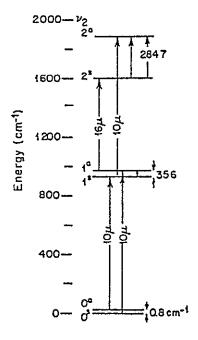


Figure 6-8. (a) Schematic representation of the NH $_3$ molecule. The components of angular momentum and the motion in the ν_2 vibrational mode are also shown. (b) Energy levels of the ν_2 vibrational mode of ammonia. Superscripts a and s refer to the antisymmetric and symmetric levels which arise due to inversion splitting.

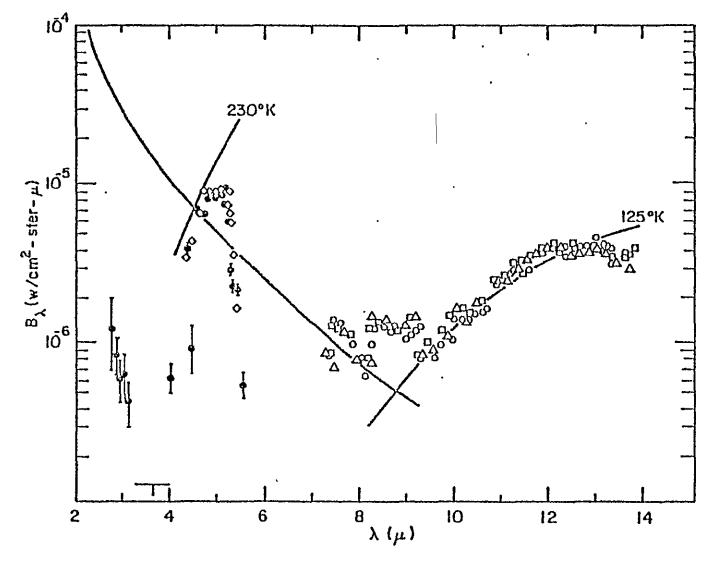
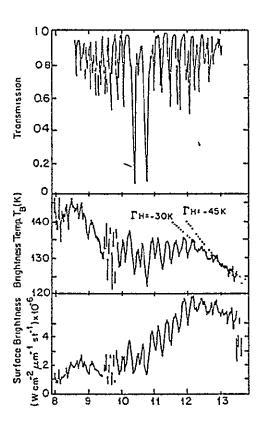



Figure 6-9. Low resolution spectrum taken by Gillett et al (1969). Different symbols represent spectrum taken on different nights. This figure is taken from their paper.

proceeds until energy is radiated at the same rate via the 7.7 µm band of CH_{μ} . Ammonia absorption around $10 \mu m$ was also detected. Judging from the CH_{μ} emission, these authors were the first to suggest a temperature inversion on Jupiter caused by solar heating of the 3.3 µm band of CH_{μ} . They also showed that the NH₃ band at $10 \mu m$ is saturated, and calculated that the H₂ abundance at $12.5 \mu m$, assuming a temperature of $125 \, ^{\circ} K$, is $12 \, km$ -atm. with a pressure $P_{H_{2}} \sim 1/4 atm$.

Aitken and Jones (1972) obtained a Jovian spectrum from $8-13\mu m$ at a resolution $\lambda/\Delta\lambda \sim 143$ (figure 6-10). The ammonia absorption band is again seen. They estimated that the ammonia abundance in the band is about 2.7 cm-atm. and a lapse rate $\Gamma = \frac{\partial T}{\partial h}$ at $13\mu m$ given by H=-30K, where H is the scale height $\sim 20 km$.

The most recent published infrared spectrum is by Lacy et al (1975) who used the Lick Observatory 120" telescope. High resolution spectra were obtained at 890 cm $^{-1}$ (11.24µm) with $\lambda/\Delta\lambda$ =1780. Medium resolution data were observed from 1000 cm $^{-1}$ to 850 cm $^{-1}$ (10 \sim 12.75µm) with $\lambda/\Delta\lambda$ from 250 to 333 (figure 6-11 a,b). The authors also calculated synthetic spectra, assuming that NH $_3$ and H $_2$ are the only sources of opacity. Their conclusions from comparison between observed and computed spectra follow: All of the prominent lines in their observed spectrum are saturation NH $_3$ bands broadened to a width many times the pressure - broadened line width. The observed 135°K continuum is primarily formed by the wings of the NH $_3$ line. The H $_2$ opacity may be important if NH $_3$ is unsaturated

(a) Room temperature absorption spectrum of ammonia, p=0.06 atmos, w=0.6 cm atmos.
(b) Brightness temperature; (c) Surface brightness of the central region of Jupiter from 8 to 13.5 µm. (Taken from Aitken and Jones).

near 135°K. A pressure of 0.125 atm. at 135°K is required to form the continuum. The minimum temperature in their synthetic model is 118±5°K while the observed minimum temperature is 123°K, about 5°K larger than the derived temperature due to incomplete resolution of the features. The lapse rate at 135°K is 7.5±2.5°K/SH. Gillett et al (1969) estimated the lapse rate at the NH₃ saturation level is 4°K/SH. A discrepancy occurs in the comparision of the medium resolution data between 870 and 890 cm⁻¹. In this region the Jovian spectrum seems to be depressed by about 2°K relative to the calculated curve. The authors suggested that it may be due to an as yet unidentified minor constituent of the Jovian atmosphere.

Our spectrum has about the same resolution as the medium spectra of Lacy et al's and so the two spectra can be compared. The line positions match well. The vertical matching shows a drift towards longer wavelength. Figure (6-lla) is obtained by matching points A and B. The short wavelength side matches but the end of the long wavelength side is about 1.5 times higher. Also our spectrum seems to match the theoretical curve better at 870 to 890 cm⁻¹. Figure (6-llb) is obtained by matching A' and B'. Then the long wavelength side matches better than before but the short wavelength side is different. Also now our spectrum matches better with Lacy et al's observed result at 870 - 890 cm⁻¹. A conclusion about the discrepancy at 870 cm⁻¹ between Lacy's observed and calculated spectra can not be reached at present until there is a better way for matching our and Lacy's et al's spectrum. Also it is not clear

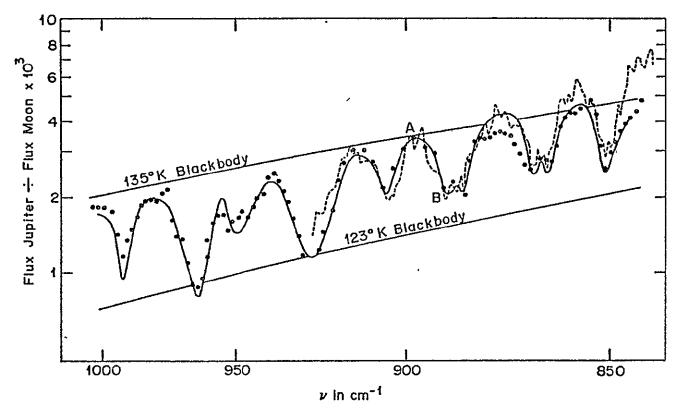


Figure 6-lla. Spectrum of the N and S polar regions of Jupiter at 3-4 cm⁻¹ resolution divided by the spectrum of the Moon. Data points are shown as solid circles, and the solid line represents the best fitting synthetic spectrum calculated from the model calculated by Lacy et al (1975) (The graph is taken from Lacy et al). The dotted curve is our observed spectrum by matching Lacy's spectrum at points A and B.

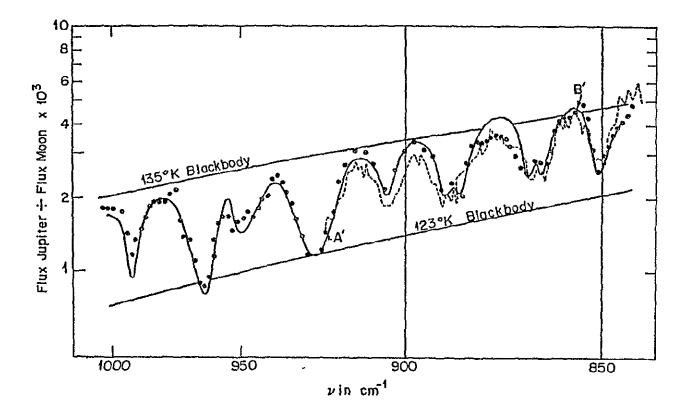


Figure 6-11b. Same as 6-11a except matching our spectrum with Lacy's at A' and B'.

whether the difference in matching of our spectrum and Lacy

et al's between long wavelength and short wavelength is real
or not. There could be several reasons for the difference.

It could be due to the inaccuracy of the end of the spectra,
because the short wavelength side is the end of our spectrum
and the long wavelength side is the end of Lacy's spectrum;
or it may just be due to the matching technique. More effort
is needed to clearify this point.

The absorption due to NH $_3$ is much less important beyond 12μ , so one may be able to use the H $_2$ opacity to estimate the lapse rate in that region. The lapse rate can be estimated by the equation

$$T_B(\lambda_1) - T_B(\lambda_2) = \frac{rH}{2} lu \frac{a(\lambda_1)}{a(\lambda_2)}$$

where $T_B(\lambda_1)$ is the brightness temperature at λ_1 $T_B(\lambda_2)$ is the brightness temperature at λ_2 Γ is the lapse rate $a(\lambda_1)$ is the absorption coefficient at λ_1 $a(\lambda_2)$ is the absorption coefficient at λ_2 Π is the scale height

If one chooses λ_1 =11.95, λ_2 =12.34 with measured brightness temperature T_1 =133.94, T_2 =133.64, $\alpha(\lambda_1)$, $\alpha(\lambda_2)$ are taken from Calpa and Ketebaar (1957), one obtains a result Γ H=-43.2°K for an H_2 opacity dominated atmosphere. Gillett <u>et al</u> (1969) calculated the adiabatic lapse rate (Γ H)ad=-42°K for an H_2 atmosphere, while Aitken and Jones (1972) measured a value of Γ H=-30°K from their spectrum. Our value seems closer to the

value calculated by Gillett rather than to Aitken's. It is emphasized here that the estimate is based on the assumption that the $\rm H_2$ opacity is the dominant opacity at wavelengths $\rm 11.95\mu$ and $\rm 12.34\mu$, which may not be true.

Methane has a strong emission band at 7.7μ but does not have any band structure in our region. Methane has two important contribution to the overall thermal structure of the Jovian atmosphere. The first one is that methane has an absorption band at 3.3µm which absorbs solar energy and reradiates at 7.7µm producing an inversion temperature layer with a maximum temperature of 150° K at an altitude 160 - 200 km. Secondly, methane is photo dissociated by ultraviolet light in the upper atmosphere. This results in products such as ethane (C_2H_6) , acetylene (C_2H_2) , and ethylene (C_2H_4) . Strobel (1973) estimated that column densities of C_2H_6 , C_2H_2 , C_2H_4 above the cloud top are approximately 10^{21} , 3 x 10^{16} , $3 \times 10^{15} \text{cm}^{-2}$ respectively. C_{2}H_{6} and C_{2}H_{2} were first observed by Ridgway (1973) using the 60" Kitt Peak solar telescope in the 750 - 875 cm^{-1} (11.42 - 13.33 $\mu \hat{m}$)range with resolution $\lambda/\Delta\lambda=770$, (figure 6-12a). The lines are shown in strong emission at the 140°K temperature. The apparent lines are superpositions of many lines, each group corresponding to a subband. Ridgway calculated that the mixing ratios are $N(C_2H_6)/$ $N(H_2)=4 \times 10^{-3}$ and $N(C_2H_2)/N(H_2)=8 \times 10^{-5}$. The ratio $N(C_2H_6)/$ $N(C_2H_2)=50$ where Strobel predicts about 200. Combes et al (1974)'s (figure 6-12b) observation confirms the presence of very strong emission lines of C2H2 and C2H6. The abundance of

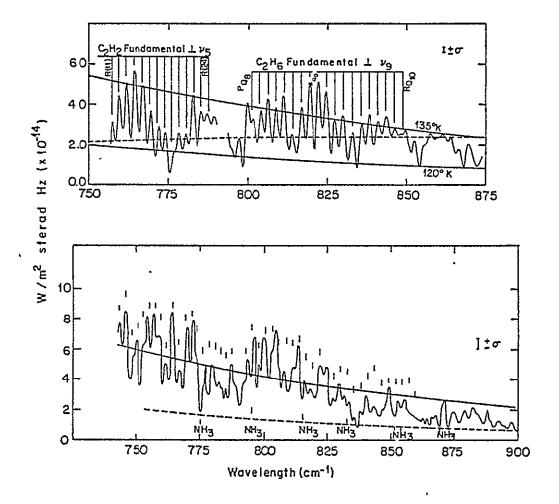


Figure 6-12. (a) Thermal emission spectrum of Jupiter corrected for absorption in the earth's atmosphere observed by Ridgway (1973). The dashed line is the predicted form of the H₂ continuum. (b) The ratio of the Jovian spectrum to the atmospheric absorption spectrum observed by Combes et at (1974). The solid and dashed lines are the blackbody curves at 135°K and 120°K respectively.

ethane estimated from Ridgway's spectra depends strongly on the distribution of gas temperature, which is not well-determinded. If the temperature in the mesospheric inversion layer turns out to have a maximum value of 150 °K, the observations indicate ~ (Ridgway 1974) 2 x 10⁻² gm cm⁻¹ of ethane in this high temperature region. Sagan and Salpeter (1976) estimate the column density of ethane molecules to be 3 x 10⁻³ gm cm⁻² by assuming that ethane is produced by photolysis of methane by solar ultraviolet photon and destroyed mainly by eddy diffusion into the troposphere, followed by pyrolysis in deeper, hotter layers. This would be in very serious conflict with the observations, especially since only a small fraction of the theoretical column density refer to the hotter inversion region.

The ethane emission band is also shown in our spectrum (figure 6-6). In the figure the indicated emission line position was extrapolated from Ridgway's spectrum, and the laboratory observed position by Smith (1949) are also shown for comparison. Our positions agree with Ridgway's reasonable well, while Smith's seem displaced from ours by $0.01\mu\text{m}$, possibly due to a uncertainty in position calibration. Only a portion of the C_2H_2 spectrum can be seen in our spectral coverage. The abundance of C_2H_6 is not estimated here because the absolute amplitude of our spectrum is not well calibrated.

Our spectrum contains both ammonia and ethane features while other observers have not shown both. This will be useful because one can compute the synthetic spectra including both. Ammonia will provide us with information about the top

of the cloud layer while ethane provides us with the information about the inversion layer. A synthetic spectrum including both ethane and acetylene would be interesting because the inclusion of these new gases would affect the models, especially around the inversion. Acetylene would appear around 13 µm. The absorption of solar radiation by CH_{li} at 3.3 μ m used to be thought to be radiated solely by $CH_{\underline{\mu}}$ at 7.7 μm . The 7.7 μm emission intensity is a critical test of a temperature inversion model and the emission intensity calculated by Wallace et al (1974) is within 25% of the value observed by Gillett et al (1969). If ethane and acetylene do contribute to emission in the thermal infrared, there must be some additional source of solar absorption in order to produce the observed inversion temperature. Additional absorption at this altitude, perhaps due to particles, is suggested by the low ultraviolet albedo of Jupiter in the wavelength region 2100 to 3600 $^{\circ}$ Wallace, Caldwell and Savage, 1972).

Terrile and Westphal (1976) had imaged Jupiter at high spatial resolution at 8 - 14µm. All images reveal a belt and zone structure similar to visible photographs. In the 8 - 14µm broad-band data, belts appear to be about 2°K hotter than the zone. The lowest belt-zone contrast is found in the hydrogen opacity dominated region at 12.5µm, while images at 9.5µm have the greatest contrast. This is consistant with the dynamic picture that zones are rising columns of air and belts are sinking columns of air. Ammonia gas being carried upward in zones will freeze out and form a thick cloud on top of the zones,

giving a low infrared temperature to the zones, and the crystalized NH_{Q} particle will be carried down to the deep atmosphers in the belt where they will get sublimated. One can look deeper into clouds in the belt because of the lack of the ammonia cloud on top of it and therefore see a higher infrared temperature. Although there are a number of high resolution spectra of good spectra for methane. The observation of methane will be interesting not only because it provides us with information about the inversion layer, it is also useful to find out the temperature profile. If the temperature profile of the Jovian atmosphere is known, one can use it to find the ammonia abundance profile. Ammonia itself is not a very good tool for probing the temperature profile because it has a low vapor pressure and its variation is very sensitive to temperature changes. Observations of methane at 3.3µm and 7.7µm, should be able to accomplish this.

The Hadamard transform spectrometer described in this thesis would be able to make these observations, with small modifications that would permit observations to be made at these wavelength. In addition, observations should be undertaken at 8.0 to 9.5 microns where neither ammonia nor methane have strong absorption features. At these wavelengths one would be observing the clouds. In this 8.0 to 9.5 micron region our instrument should be able to image the bands and zones of Jupiter, to probe for spectral differences and cloud features. Such observations should increase our understanding of Jupiter's cloud structure.

(D) Observations of Mercury

The observations of Mercury were made with the newly built Cornell 25" telescope at Mount Pleasant, Ithaca, New York. The telescope has a focal ratio f/13.5. The spectrometer's acceptance beam size is 7.8" x 78". The dewar described in section III-B was used with the spectrometer. The spectrometer operated in the $10.5 \sim 13 \mu m$ region with a resolution $\lambda/\Delta\lambda$ around 300. The chopping frequency was 10 cycles per second.

The observational procedure was carried out a little differently from the observations of α -orionis and Jupiter. First, Sun spectra were used for correction spectra rather than lunar spectra. There are no known molecular lines in this region. Its temperature at 11.10 µm is 5030 K(Saildy & Goody). The observations were made on August 3, 1976. At that time the Sun was about an hour away from Mercury, and was observed through roughly the same air mass as Mercury. Secondly, Mercury is so faint in broad day light that we were unable to see it in visible light. The way to find Mercury was the following: We pointed the telescope in the correct region and scanned for the infrared signal. The signal is so strong that one can see it go off scale on the synchronous demodulator. The pointing accuracy of the telescope is 6 sec. of time in right ascension and 25 sec. of arc in declination. Thirdly, since we could not see Mercury visually for tracking, we adapted a different method for tracking Mercury. Since our computer programming is set up in such a way that the data taken when the mask is moving forward and moving backward are stored in different

areas, we only took data when the mask was moving forward. When the mask was moving backward we maximized the signal to assure correct pointing and waited for the next forward pass. Any noise introduced when moving the telescope for maximizing the signal would have gone into the backward-pass data bins and those data points were thrown away anyway. Since each pass takes 51 sec. only, Mercury remained at essentially the same position during the forward data taking pass.

Two runs of Mercury and two runs of the Sun were taken. Each run consisted of ten scans of the sources. Figure (6-13) shows the raw spectra of Mercury and the Sun. Since Ithaca has a lot of moisture in the air during the summer time, the correction for atmospheric features is more difficult than at Kitt Peak and is done in a different way. A constant was added to the Mercury spectra such that atmospheric features in the Mercury/Sun ratio spectrum were minimized. This step ensures that the atmospheric features are largely corrected. The Mercury spectrum which has a constant added to it was then multiplied by another constant to make its amplitude as close to that of the solar spectrum as possible. The solar spectrum was then subtracted from the modified Mercury spectrum. multiplication of the Mercury spectrum by a constant assured that atmospheric features in the two spectra had similar amplitudes before the subtraction step. This difference spectrum was then added to a "perfect" solar spectrum which is calculated according to the blackbody function appropriate to the solar temperature. What one gets from these procedures is:

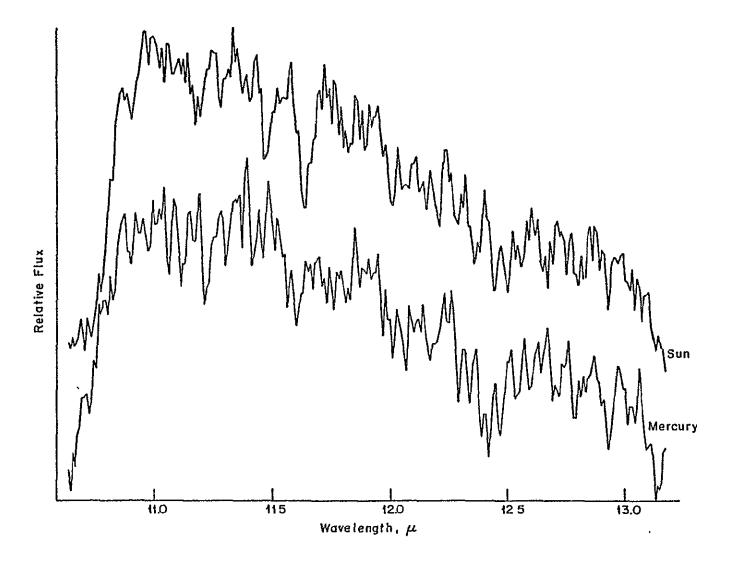


Figure 6-13. The raw spectra of Mercury and the Sun.

Final Mercury Spectrum

- = observed corrected Mercury spectrum observed solar
 spectrum + perfect solar spectrum
- = ("perfect" Mercury spectrum + noise in the Mercury spectrum) ("perfect" solar spectrum + noise in the solar
 spectrum) + "perfect" solar spectrum
- = "perfect" Mercury spectrum + (noise in the Mercury spectrum - noise in the solar spectrum)

Any systematic noise such as emission and absorption due to the sky or to the telescope will be subtracted away. The advantage of this method is that the final spectrum is obtained through subtraction rather than by division. Division, in the low signal portion of the spectrum, produces deceptive high noise spikes in the ratio spectrum. The method we have used tends to eliminate these.

Since this will be the first high resolution Mercury spectrum obtained, we will calculate Mercury's disk integrated infrared temperature and compare this temperature with the observed one. Morrison and Sagan (1967) had calculated the infrared brightness temperature of the center-of-disk as a function of phase angle and heliocentric longitude, but there is no disk integrated infrared temperature available in the literature. In the following we will discuss the factors that may affect the brightness temperature, and then present a method of calculating the disk integrated infrared brightness and compare it with our observation. A good review of thermophysics of Mercury is given by Morrison (1970).

In 1965, Pettingill and Dyce (1965) used radar to discover that Mercury has a rotation period of 59 days, two thirds of the orbital period, instead of an 88 day synchronous rotation around the Sun. This implies that Mercury has a solar day, on the planet, about 176 terrestrial days long, equal to two orbital revolutions in three rotations. Mercury's non-synchronous rotation leads to time-dependent thermal emission of the planet due to the diurnal variation of the insolation. This diurnal variation would not happen for a synchronously rotating Mercury. The diurnal variation changes the brightness temperature as a function of both phase angle and heliocentric longitude. It also allows a measurement of the thermal properties of Mercury's surface.

Because of the high eccentricity of Mercury's orbit, (e=0.2), the diurnal cycle of insolation is markedly different from longitude to longitude, and can differ by a factor of 2.5. The eccentricity enters in two ways. First, the variation in distance from the Sun produces a solar constant that varies by more than a factor of 2 from perihelion to aphelion. Second, the changing orbital angular velocity causes the apparent speed of the Sun across the sky to vary; near perihelion the angular velocity of revolution actually slightly exceeds the angular velocity of rotation, and the apparent planetocentric solar motion is retrograde (figure 6-14, Soter and Ulrichs, 1967). The two effects of the eccentricity reinforce one another, with the larger flux coming at a time when the angular rate of the Sun across the sky is largest. The two longitudes (180° apart)

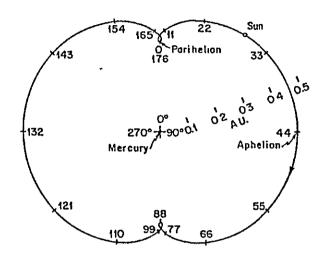


Figure 6-14. Diurnal path of the Sun about Mercury, drawn to scale. The relative positions of the Sun are marked at 11 day intervals with the planet held as a fixed reference. Planeto-graphic longitude are indicated for Mercury. (Taken from Soter and Ulrichs, 1967).

that see the Sun overhead at perihelion receive more than two and a half as much energy per period as the longitude 90° away, where the Sun is always small and rapidly moving while near the zenith.

Besides the insolation geometry, a possible atmosphere on Mercury will also affect the thermal emission. ${\rm CO}_2$ is a major product for a possible secondary atmosphere, furthermore, since ${\rm CO}_2$ could have been photodissociated and reduced to CO by preferential loss of oxygen, Fink et al (1973) had set up a search for a possible Mercury atmosphere of ${\rm CO}_2$ and CO. They set up an upper limit 1.0 x 10^{-4} mb surface pressure for ${\rm CO}_2$ and 2.0 x 10^{-5} mb for CO. Mariner 10's results also suggest that Mercury has no atmosphere although it may have a thin layer of He and other inert gas trapped by Mercury's magnetic field.

The optical observations of Mercury show that the integral spectral reflectivity of Mercury is quite similar to that for the integral moon (McCord and Adams, 1972). The Bond albedo of Mercury (de Vancouleurs, 1964) is 0.058.

In our model calculation we assume the following things. This model has been described by Murdock (1974):

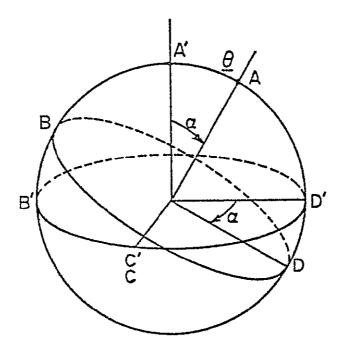
l. The emission from the dark side at the phase angle we observed is negligible. On the day we made our observations, August 3, 1976, the illuminated portion amounted to 0.973 of the total disk and the dark portion was 0.017. The dark side temperature is about 110° K, which at 10μ m has a flux 6.7181 x 10^{-8} watt-cm⁻²- μ -1-sr⁻¹. The flux for 500° K at 10μ m is 7.1007 x 10^{-3} watt-cm⁻²- μ -1-sr⁻¹, so the contribution from the dark side

is negligible.

- 2. At infrared wavelengths, the radiation that reaches the observer originates very near the surface, so the infrared temperature is assumed equal to the insolation temperature. Soter and Ultichs' (1967) results show that the day time temperature is independent of the thermal properties of the surface material and determined largely by the insolation temperature.
- 3. The infrared emissivity we assumed was 0.9, which is the lunar value. We choose this value since Mercury's surface may be similar to the lunar surface.

In figure (6-15) we choose two coordinate systems on Mercury surface. The unprimed system is the "solar system" with the z-axis pointing towards the Sun. A is the subsolar point. The hemisphere above the plane BCD facing the Sun is the illuminated part. The primed system is the "earth system" with the z'-axis pointing towards the earth. A' is the subearth point. The hemisphere above the plane B'C'D' facing the earth is the portion that is being seen from earth. The two systems are different by an angle α with the x-axis as the common axis.

If the surface is in equilibrium with sunlight and cannot conduct heat away, the subsolar point temperature is:


$$T_0 = \frac{S(1-A)}{g_E R^2} 1/4$$
 (6-1)

where S is solar constant at earth, equal to 1.360x10⁶ erg cm⁻²s⁻¹

A is the Bond albedo for Mercury, assumed to be 0.058.

o is the stefan-Boltzmann constant equal to 5.67x10⁻⁵

erg cm⁻²s⁻¹

Pigure 5-15. Two coordinate systems on the surface of Mercury. The unprimed system is the "solar system" with the Z-axis pointing towards the Sun. A is the subsolar point. The primed system is the "earth system" with the Z'-axis pointing towards the earth. A' is the subearth point.

 ϵ is the infrared emissivity at 10 μ m from the surface, assumed to be 0.9

R is the distance between Mercury and the Sun in astronomical units

Mercury's subsolar point temperature varies with distance from the Sun as $R^{-1/2}$ and therefore is a function of heliocentric longitude due to the eccentricity we discuss above.

In the unprimed system the temperature distribution on the surface will be concentric isothermal bands around the subsolar point. The temperature of a band at colatitude θ is given by

$$T(\theta) = T_0 \cos^{1/4}\theta \qquad (6-2)$$

The total intensity at any wavelength region will be composed of the contributions at that wavelength from many isothermal regions each with its own apparent area.

Since one is interested in the flux coming to the earth one will have,

$$dF_{\lambda}^{!} = I_{\lambda}(\theta^{!}, \phi^{!}) dA^{!}$$
 (6-3)

=
$$I_{\lambda}(\theta',\phi') r^2 \sin\theta' d\theta' d\phi'$$
 (6-4)

=
$$\Xi_{\lambda}(\theta',\phi') \cos\theta' r^2 \sin\theta' d\theta' d\phi'$$
 (6-5)

where dF' is the flux at wavelength λ coming from the area dA' $I_{\lambda} \quad \text{is the intensity at } (\theta^{\dag}, \phi^{\dag})$

dA' is the differential area on Mercury

r is the radius of Mercury

 $\Xi_{\lambda}(\theta',\phi') = I_{\lambda}(\theta',\phi')/\cos\theta'$ is the component of flux that radiates toward the earth.

 $\Xi_{\lambda}(\theta^{\,\prime},\phi^{\,\prime})$ is a complicated function of $(\theta^{\,\prime},\phi^{\,\prime})$ bacause the temperature distribution is a complicated function of $(\theta^{\,\prime},\phi^{\,\prime})$. However, one can convert the system to the "sun coordinate" where $\Xi_{\lambda}(\theta,\phi)$ is a simple function.

Since
$$dA^{\dagger} = dA$$
 (6-6)

$$\cos\theta' = \cos\theta\cos\alpha - \sin\theta\sin\phi\sin\alpha$$
 (6-7)

equation(6-5) becomes

 $dF_{\lambda} = \Xi_{\lambda}(\theta) \left[\cos\theta\cos\alpha - \sin\theta\sin\phi\sin\alpha\right] r^2 \sin\theta d\theta d\phi$

where

$$\Xi_{\lambda}(\theta) = \frac{C_1}{\lambda^5} \frac{1}{e^{C_2/kT(\theta)}-1}$$
 (6-8)

where $C_1 = 1.1909 \times 10^4 \text{watt cm}^{-1} \text{µ}^{-1} \text{sr}^{-1}$ $C_2 = 1.4388 \times 10^4 \text{µK}$

and $T(\theta)$ is given by (6-2)

SO

$$F_{\lambda} = r^2 \int d\theta \int d\phi \, \Xi_{\lambda}(\theta) (\sin\theta \cos\theta \cos\alpha - \sin^2\theta \sin\phi \sin\alpha)$$
(6-9)

The integral (6-9) can be separated into two parts, for $\theta \leq \underline{\theta}$ where $\underline{\theta} = \frac{\pi}{2} - \alpha$ (6-10)

is the limit of the cap shared by both the Sun and the earth, i.e. the limit of integration over $d\theta$ can ϕ go from 0 to 2π . For $\theta > \underline{\theta}$, the limit of the integral over d is constrained by

the physical condition that some part on ϕ that is illuminated by the Sun can not be seen from the earth.

So (6-9) becomes

$$F_{\lambda} = r^{2} \int_{0}^{\frac{\theta}{2}} d\theta \int_{0}^{2\pi} d\phi \, \Xi_{\lambda}(\theta) (\sin\theta\cos\theta\cos\alpha - \sin^{2}\alpha \, \sin\phi\sin\alpha)$$

$$+ r^{2} \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2\pi} d\phi \, \Xi_{\lambda}(\theta) (\sin\theta\cos\theta\cos\alpha - \sin^{2}\theta\sin\phi\sin\alpha)$$

$$\frac{\theta}{2\pi} = \phi_{1}(\theta) \qquad (6-11)$$

To find $\phi_1(\theta)$ and $\phi_2(\theta)$ one notices that ϕ is given when $\theta'=90^\circ$. From (6-7)

$$\cos \theta' = \cos \theta \cos \alpha - \sin \theta \sin \phi \sin \alpha$$

$$\theta' = \frac{\pi}{2} \implies \sin\phi = \cot\alpha\cot\theta$$
 (6-12)

and

$$\phi \cdot = \sin^{-1}(\cot\alpha\cot\theta) \tag{6-13}$$

Since ϕ will also be symmetric about the y-axis, equation (6-11) can be rewritten as:

$$F_{\lambda} = r^{2} \int_{0}^{\frac{\pi}{2}} e^{-\alpha} d\theta \int_{0}^{2\pi} d\phi = \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$+ \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2\pi + \sin^{-1}(\cot\alpha \cot\theta)} = \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\alpha + \cos\alpha - \sin\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\alpha + \cos\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\alpha)$$

$$= \sum_{\lambda} (\theta) (\sin\theta \cos\alpha)$$

$$= \sum_{\lambda} (\theta) (\cos\alpha)$$

After evaluating the integral one obtains the following:

$$F_{\lambda} = 2\pi r^{2} \cos \alpha \left[\frac{\Xi_{\lambda}(\theta)}{2} \frac{\sin^{2}\theta}{2} \right]_{0}^{\frac{\pi}{2} - \alpha} + \pi r^{2} \cos \alpha \left[\frac{\Xi_{\lambda}(\theta)}{2} \frac{\sin^{2}\theta}{2} \right]_{\frac{\pi}{2} - \alpha}^{\frac{\pi}{2}}$$

+
$$2r^2\int^{\frac{\pi}{2}}$$
 d θ $\sin^{-1}(\cot\alpha\cot\theta)$ $\sin\theta\cos\theta\cos\alpha$ $\Xi_{\lambda}(\theta)$ $\frac{\pi}{2}$ $-\alpha$

$$+ r^{2} \begin{bmatrix} \frac{1}{2} - \alpha \\ \frac{1}{2} - \alpha \end{bmatrix} = \frac{\pi}{2} - \alpha$$

$$= \frac{\pi}{2} - \alpha$$

$$= \frac{\pi}{2} - \alpha$$

$$= \frac{\pi}{2}$$

$$= \frac{\pi}{2}$$

$$= \frac{\pi}{2}$$

where

$$\frac{\Xi_{\lambda}(\theta) \frac{\sin^2 \theta}{2}}{0}$$

is the mean of ($\Xi_{\lambda}(\theta) \frac{\sin^2 \theta}{2}$) in the interval of θ from 0 to $\frac{\pi}{2} - \alpha$. The same meaning applies to the third term of (6-15).

As a check of equation (6-15), if $\alpha=0$, that means when subsolar point and subearth point coinside, let $\Xi(\theta)=$ constant evaluating (6-15) gives:

$$F = \pi r^2 \Xi$$

If $\alpha = \frac{\pi}{2}$, that means the subsolar point and subsarth point are 90° apart. With E(0) assumed to be constant, equation (6-15) gives

$$F = \frac{\pi r^2}{2} \Xi$$

which is as one expects since one is seeing half of Mercury.

Equation (6-15) can be readily integrated on a computer.

It is applied to our case with the following physical parameters:

Date: August 3, 1976 .

Phase Angle: 53°

Radius vector: 0.414 A.U.

Orbital longitude: 198.09°

Mercury perihelion point: 0.3075 A.U.

Subsolar temperature at perihelion point: 700°K

Subsolar temperature at $\alpha=53^{\circ}$: 603° K

Equation (6-15) was computed on a LSI mini computer at each wavelength, from 10.6 to 13.2 μ m. The program and the result are shown in the Appendix D. The integral was divided into twenty steps. $\Xi(\theta)$ was evaluated from equation (6-8)

$$\Xi_{\lambda}(\theta) = \frac{C_1}{\lambda^5} \frac{1}{e^{C_2/kT(\theta)}-1}$$

where $T(\theta) = T_0 \cos^{1/4} \theta$

The calculated spectrum is a measure of color temperature and is used to compare with the observed spectrum. Figure (6-16) shows the final Mercury spectrum conected for solar temperature, with a number of blackbody slopes shown to match. The calculated spectrum (cross) matches the blackbody temperature 525°K, which also matches the observed spectrum. We concluded that the best fit lies in the 500°K region. Murdock (1974) measured a effective brightness temperature at 10.8µm at the same phase angle to be around 650°K. Our results disagree with his results.

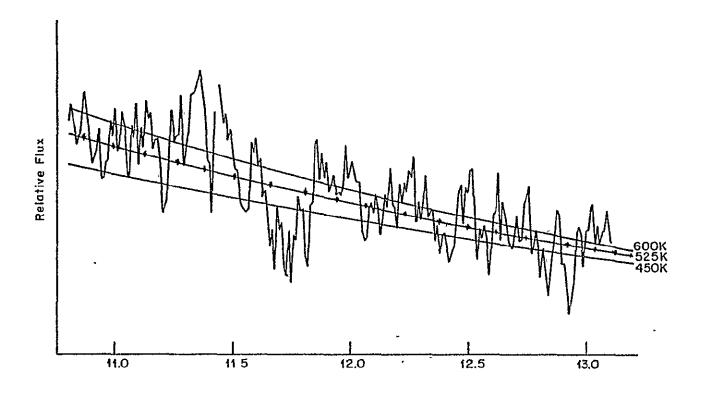


Figure 6-16. The final Mercury spectrum, corrected for solar temperature, with a number of blackbody slopes shown to match.

APPENDIX A

ESTIMATE OF CODING ERROR FOR FOURIER TRANSFORM SPECTROMETRY

Let ξ be the path difference in a two beam interferometer. $P(\nu)$ is the power at wavelength ν , (i.e. the spectral density function) ν here is taken to be $1/\lambda$. $S(\xi)$ is the power received for path difference ξ . Then (p.96 Stewart)

$$S(\xi) = \int_{0}^{\infty} P(v) \cos^{2}(2\pi \xi v) dv \qquad A-1$$

$$\vdots \qquad \vdots$$

$$= \frac{1}{2P_{o}} \div \frac{1}{2} \int_{0}^{\infty} P(v) \cos(4\pi \xi v) dv \qquad A-2$$

The reciprocal Fourier property is (Morse and Feshback P.454) that if

$$F(\xi) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos(\xi v) f(v) dv$$

Then $f(v) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos(\xi v) F(\xi) d\xi$

which implies, neglecting the constant term, that

$$P(v) = 16 \int_{0}^{\infty} \cos(4\pi \xi v) s(\xi) d\xi \qquad A-3$$

Suppose we take measurement at (N+1) equally seperated steps in the variable ξ . Let the step length be τ , then

$$E = n_7$$

In general τ is chosen such that

$$\tau = \frac{1}{4(v_{\text{max}} - v_{\text{min}})}$$
 A-4

which, if $v_{min} << v_{max}$, effectively implies sampling twice per cycle (Stewart, p.303).

One can now write the integral for P(v) as

$$P(v) = 16\Sigma \tau S(n\tau) \cos(4\pi v n\tau) \qquad A-5$$

Now consider frequency $v = v_{min} + m\delta$

where
$$\delta = \frac{v_{\text{max}} - v_{\text{min}}}{N}$$
 A-6

and m is an integer. $m=0,1\cdots N$

The $\delta P(\nu)$ is the power in the resolved spectral band width δ about frequency ν

$$\delta P(v) = 16\tau \delta \sum_{n=0}^{N} S(n\tau) \cos(4\pi v n\tau) \qquad A-7$$
but
$$\tau \delta = \frac{\delta}{4(v_{\text{max}} - v_{\text{min}})}$$

$$= \frac{\delta}{4N\delta}$$

$$= \frac{1}{4N}$$
 A-8

Therefore

$$\delta P(v) = \frac{\mu}{N} \sum_{n=0}^{N} S(n\tau) \cos(4\pi v_n \tau) \qquad A-9$$

Writing this out in matrix form, with $\theta_1 = 4\pi\tau v_{min}$, $\theta_2 = 4\pi\tau (v_{min} + \delta)$ and with $\pi(v_{min}) = \delta P(v_{min})$ we have

The SNR improvement is the reciprocal of this quantity.

APPENDIX B

0001 0002 0003 0004 0005 0006 0007 0008	0100	0110 F900	*PRINT	NAM EXTR EXTR EXTR ABS NAME ZAR JST	CMN D IER, ØTT, ERR, XEQ, XA, XB, FI : 100	
0009	0102	0000 017B		DATA	N AM E	
0010 0011	0103	F201	*	JMP	S+2	
0012				ND INTE	RPRETER	
0013			*			
0014	0104	03 00	CAIN D	EN T		
0015	0105	00A0		EIN		
0016	0106	4005		CIE		ENABLE PANIC BUTTON
∞17	0107	F900		J ST	CRL F	PRINT PROMPT CHARACTER
0018	0.1.02	0000			6 5	
0019	0108 0109	C65 <i>7</i> F9 00		LAP	:87	
0019	0109	0000		JST	ØTT	
0020	010A	C6AA	•	LAP	**	
0021	010B	F9 00		JST	ØTT	
		0000		0.0.	2	
0022	0100	1200		RØV		CLEAR MATH FLAG
0023	010D	0103		ZXR		
0024	010E	F900		JST	I ER	INPUT COMMAND
		0000				
0025	010F	COD3		CAI	*S*	
0026	0110	F25C		JMP	STATUS	
0027	0111	COD4		CAI	T	
0028	0112	E24E		LDX	TRANS	
0029	0113	COD2		CAI	'R'	
0030	0114	E24D		LDX	READ	
0031 0032	0115 0116	C0C3		CAI	'C'	
0032	0117	E24C 38 09		L DX JXN	CL EAR	
0034	0118	1400		SØ V	ØKF	פביד אומדט דו מפ
0035	0119	CODO		CAI	трт	SET MATH FLAG
0036	011A	E249		L DX	PUJ CH	
0037	011B	COC7		CAI	'G'	
0038	0110	E248		L DX	GRÄPH	
0039	011D	COD6		CAI	* V *	
0040	Olie	E249		LDX	CRT	
0041	011F	38 0 1		JXN	ØKF	
0042	0120	F900	BAD	JST	ERR	
	0101	0000-	~ ~			
0043	0121	EA48	ØK F	STX	FUN C	SAVE CALL ADDRESS
0044 0045	0122 0123	0108		ZXR	T 500	NAME OF THE PARTY
0045		F900 0000		JST	I ER	FETCH BEAM
0046	0124	COAB		CAI	!+!	
22-20		COAD		OFF	~ ~	

0047	0125	E24C		LDK	NР	
0048	0126	CUAD		CAI	T 1	
0049	0127	E24F		LDX	M1 -	
0050	0128	38 35		JXN	ØKB	
0051	0129	3249		JØR	BAD	IF MATH FLAG CLEAR
0052	012A	0523		XRP		RESET INDICES
0053	012B	E900		STX	XA	-
		0000				
0054	0120	E9 Ú.		STX	XB	
		0000				
0055	0122	≟B1D		STX	*X C	A
0056	012E	C5FF		LXM	255	RESET CØUNT
0057	012F	EA3B		STX	Ci) T	
005୪	0130	0108		ZXR		
0059	0131	COC4		CAI	'D'	
0060	0132	E233		L DX	FSB	
0061	0133	COD2		CAI	*R*	
0062	0134	E232		LDX	FDV	
0063	0135	28 55		JXZ	BAD	
0064	0136	EA35		STX	MATH	SAVE MATH PØINTER
0065	0137	F900		J ST	XEQ	WAHT FØR GØ
	-	0000				
0066			#MAN#	LØØP		
0067	0138	FB33	ML P	JST	*MATH	
8600	0139	9002		DATA	:9002,:	9202,:9402
	013A	9202				
	013B	9402				
0069	013C	D9 0 0		IMS	ΧA	BUIP COUNTERS
	-	0000		•		
0070	013D	D9 0 0		IMS	XB	
		0000				
0071	013E	211A		J AZ	ØKM	MATH ØK?
0072	013F	1340		SAØ		NØ!
0073	0140	C6D2		L AP	*R*	PRINT ERRØR MSG.
0074	0141	3203		JØR	ØVFL	
0075	0142	F900		JST	ØTL	
		0000		-		•
0076	0143	0184		DATA	UN DER	
0077	0144	F202		JMP	FLØV	
0078	0145	F900	ØVFL	JST	Ø TL.	
	•	0000			- - 	
0079	0146	0187		DATA	ØVER	
008 0	0147	C600	FLØW	LAP	0	
003 1	0148	F900		JST	ØTL	
•		0000			J 1_	
0082	0149	A 51 0		DATA	MSG	
008 3	014A	F900		JST	FLT	
	U = -,	0000		V 2 .	****	
0034	014B		ХC	REF		
008 5	014C	0179	-	DATA	XCF	
008 6	014D	F900		JST	ØFPA	
	J - 10	0000			J	
0087	014E	0179		DATA	XCF	
		U - 1 /				

0088 0088	014F 0150	C68 D F9 00 0000		L AP J ST	:8D ØTL			
009 4	0151 0152 0153 0154 0155	0197 B707 1050 8A14 0043		DATA L DA AL A ADD TAX	Z ERØ *X C 1 TP	CL EAI	R BAD E	lment
009 5 009 6 009 7 009 8 009 9 01 00 01 01	0156 0157 0158 0159 015A 015B	0110 9C00 9C01 DF0E DA10 F623 E20C	ØKM	ZAR STA STA IMS IMS JMP LDY	@0 @1 *XC CNT MLP TP			
0102 0103	015D 015E	F201 F900	ØKB	JMP JST	X EØ	TIAU	FØR GØ	j
0104 0105 0106 0107 0103 0109 0110 0111 0112 0113	015F 0160 0161 0162 0163 0164 0165 0166 0167 0168	0000 FB0A F65B	TRAN S READ CL EAR PUN C!! GRAPH FSB FDV CRT	JST JMP REF REF REF REF REF REF	* FUN C CMN D+ 1		FUN CTI	ØN
0114 0115 0116	0169 016A 016B	1400 0000 0000	TP FUN C	DATA DATA DATA	: 1400 0 0			
0117 0118 0119 0120	016C 016D 016E 016F	0000 4006 0110 F900	MATH STATUS	DATA CI D Z AR J ST	0 ØTL	KILL	PANIC	SWI TCH
0121	0170 0171	0000 01A1 F9 00 0000		DATA J ST	TATUS ØFPA			
0123 0124 0125	0172 0173 0174	1000 0110 F900	NP	DATA Z AR J ST	: 1000 ØTL			
0126 0127	0175 0176	0000 01A7 F900 0000		DATA JST	NMM ØFPA			
0128 0129 0130 0131	0177 0178 0179 017B	1200 F673 0000 8 D3 A	nm x cf n am e	DATA JMP RES DATA	: 1200 CMN D+ 1 2, 0 : 8 D3 A,			
0132	017C 017D 017E	8 AAO C8 D4 D3BA		TEXT	- 'HTS:	IX255		

```
017F A0B1
     0180 D3B2
     0181 B5B5
     0182 8D8A
                       DATA :8D8A,0
0133
     0183 0000
0134
     0184 8AD5 UNDER DATA :8AD5
     0185 CEC4
                        TEXT
                             'N DER '
0135
     0186 C5D2
     0187 8ACF ØVER DATA
0188 D6C5 TEXT
0136
                              :8ACF
0137
                              'VER'
     0189
          D2A0
                              'FLØW ØCCURRED'
0138
     018A C6CC MSG TEXT
     018B
          CFD7
     018C
          AOCF
     018D C3C3
     018E D5D2
     018F
          D2C5
     0190 C4A0
                              'AT ELEMENT'
0139 0191 C1D4
                        TEXT
     0192 A0C5
     0193 CCC5
     0194 CDC5
     0195 CED4
0140
     0196 A000
                       DATA : A000
0141 0197 ACAO ZERØ TEXT ', REPLACED'
          D2C5
     0198
     0199 DOCC
     019A C1C3
019B C5C4
0142 019C A0C2
                      TEXT ' BY ZERØ'
     019D D9A0
     019E
          DAC5
     019F
          D2CF
0143
     01A0 AE8D
                        DATA : AES D
     01A1 D4C1
01A2 D4D5
0144
                 TATUS TEXT 'TATUS: N+='
     01A3
          D3BA -
     01A4
          AOCE
          ABBD
     01A5
0145
     01A6 A000
                       DATA : A000
                             ', N-= '
     01A7 ACAO NMM
                       TEXT
0146
     01A8
          CEAD
     01A9
           BDAO
     0000 AA10
0147
                       DATA
                               0
0148
                        EN D
0000 ERRØRS
```

ORIGINAL PAGE IS OF POOR QUALITY

```
1000
                         NAM
                               TRANS
0002
                               RTTR RTOP
                         NAM
0003
                         EXTR DISP
0004
                          EXTR IKB ØTL, ØFPA CRLF, ERR
0005
                          EXTR DPACC, DPFLT
                          EXTR DPN:, DPSUB:, DPDIV:, DPSM:
0006
0007
                          EXTR XB, XC, FAD
8000
                          EXTR DPFIX
0009
      0000
                          REL
                               0
0010
0011
                  * 1X255 HTS PRØCESSØR
0012
0013
     0000 0800
                 TRANS
                         ENT
0014
      0001
            E2BC
                         LDX
                               BPNT
0015
      0002 1328
                                        INDIRECT BIT ØN
                         LLX
                               1
0016
      0003
           1400
                         5Ø V
                               1 .
0017
      0004
                        RRX
           11A8
0018
      0005
           EA88
                         STX
                               BEAM
      0006 EA88
0019
                         STX
                              BEAM+ 1
0020 0007
                                       CLEAR BUFFERS
            B2A0
                        LDA ZCT
0021 0008
            9AA0
                         STA
                               CNT
0022
      0009
            E2A1
                         LDX
                               NT
      000A 0110
0023
                         ZAR
0024
      000B 9000 CLR
                        5TA 00
           0128
0025
      0000
                         IXR
0026
      000D
           DA9 B
                         IM5
                               CNT
0027
      000E
           F603
                         JMP
                               CLR
      000F C6BF
0028
                              121
                        LAP
0029
      0010 F900
                        JST
                               ØTL
0030 001I
           0137
                        DATA MØDE
      0012 F900
0031
                        JST
                               IKB
0032
    0013
           COCD
                        CAI
                               M.
0033
      0014
           F205
                        JMP
                              MØN
0034
      0015 COD4
                               'T'
                         CAI
                        JMP
0035
      0016 F208
                               TAPE
                               * I * '
0036
      0017
           CDC9
                         CAI
0037
      0018
           F209
                         JHP
                               INVS
0038
      0019
           F9 00
                         JST
                               ERR
0039
      001A 0110
                 MØN
                        ZAR
      001B
           0210
                         CAR
0040
0041
      DDIC 9AAB
                         STA
                               TETR
0042
      Cico
           0110
                         ZAR
0043
           F20D
                         JMP
      ODIE
                              NEXT
                  TAPE
      OOIF
                         ZAR
0044
           0110
0045
      0020
            9 A9 C
                         STA
                               TETR
                         JMP
0046
      0021
            F202
                               T4
                 INVS
                         LAP
0047
      0022
            C601
                               1
0048
      0023 9A99
                         STA
                              TETR
0049
                  T4
                         ZXR
      0024
           0108
0050
                         J ST
                               IKB
      0025
            F900
                               1+1
0051
      0026
            COAB
                         CAI
0052
      0027
            0408
                         CXR
                               ·- ·
0053
      0028
            COAD
                         CAI
                         ZXR
0054
      0029
            0108
```

```
0055
      DO2A EASE
                        STX TREM
0056
     002B
          0110
                        ZAR
0057
      OOSC ESAS NEXT FDX
                            MASK
0058
      002D 0128
                        IXR
0059
      002E
          0210
                        CAR
                                    CHANGE DIRECTION
0060 002F 9A7F
                        STA DIR
0061
      0030 · COFF
                       CAI
                            : FF
0062
     0031 F203
                       JMP FØWD
0063 0032 0030
                       TXA
0064 0033 8A7A
                       ADD H255
0065 0034 0048
                       TAX
0066
     0035 EA76 FØWD STX MSK1
     0036 C7F5
0037 9A79
0067
                        LAM 245
0068
                        STA DCT2
0069
                                     START DATA COUNT
     0038 C7FF
                       LAM 255
0070 0039 9A76
                       STA DCT
      003A FAB1
0071
                       JST TURNON WAIT FOR LIGHT
0072
                 *INPUT LØØP
0073 003B FABB
                ILP JST MØNS
                                    INPUT
0074 003C 9A6C
                        STA CNT
                                     &SAVE
0075
    003D EA6C
                        STX CNT+1
0076 003E C7FF
                        LAM 255
                                   SPECTRUM COUNT
     003F 9A72
                    · STA SCT
0077
0078
     0040. B26B
                       LDA MSKI
                                     RESET MASK PØINTER
0079 0041 9A6B
0080 0042 B271
                        STA MSK2
                        LDA IB
                                     GET BUFFER PØINTER
008 1
     0043 9A0F
                        STA IBP
0082
                 *TRANSFØRM COLUMN TØ INPUT BUFFER
0083
     0044 E265 TLP LDX CNT+1
0084
     0045 0110
                        ZAR
0085 0046 D366
0036 0047 F208
                       CMS *MSK2
JMP T1A
0087
     0048 B274
                       LDA TETR
8800
     0049 2153
                       JAL
                             5+4
     004A 0110
0089
                       ZAR
0090 0048 0108
                       ZXR
    004C F204
004D B25B
009 1
                        JMP TI
0092
                    . LDA CNT
0093
    004E F900
                        JST
                             DPN:
0094 004F F201
                        JMP
                             T 1
0095 0050 B258
                 TIA
                       L DA CNT
0096 0051 DA5B
                 T1
                       IMS MSK2
0097 0052 F900
                        JST DPACC
                                    ADD
0098
     0053 0000
                 IBP
                        DATA 0
0099
     0054 C202
                        AXI
                                     BUMP PØINTER
                             2
0100 0055 EE02
                       STX IBP
     0056 DA5B
0101
                       IMS SCT
                                     DØN E?
0102 0057 F613
                       JMP TLP
                                     NØ
          E253
0193
    0058
                      L DX
IXR
                            M SK 1
                                     YES, MOVE COLUMN
0104
     0059 0128
                                     +11F FWD
    005A B254
                      LDA DIR
CAI O
0105
0106 005B C000
0107
     005C
          C302
                       SXI
                             2
                                    -lif REV.
8010
     005D
          EA4E
                      STX
                            MSK 1
```

```
0109
         005E
                DA52
                              IMS DCT2
 0110
        005F
                F201
                              JMP S+2
 0111
        0060 4007
                               SEL
                                      24,7
 0112
        0061 DA4E
                               IMS
                                      DCT
                                                 END OF ROW?
                                      ILP
 0113
                F627
        0062
                               JMP
                                                NØ
 0114
                       *END ØF RØW STØP TEST
 0115
        0063
                B259
                        L DA
                                      TETR
        0064 2081
 0116
                              J AM
                                      $+2
 0117
        0065 F209
                              JMP
                                      STØP
                                            SS DØWN?
NØ, STØP DØWN?
YES
 0118
        0066 3408
0067 4807
                             J 55
850
                                    STØP
 0119
                                      : C7
 0120
        0068 F206
                             JMP STØP
                              JST ACC
LDX NØBA
 0121
        0069 FA56
                                                NØ, SAVE DATA
 0122
        006A E24D
 0123
        006B 0110
                              ZAR
                       JMP
RTTR LDA
 0124
        006C F100
                                      DI SP
 0125
        006D B241
                                     DIR
 0126
        006E F642
                             JMP
                                     NEXT
 0127
       006F E243 STØP LDX
                                     ΝI
                       LAP 1 JMP DISP
 0128 0070 0601
 0129
       0071 F100
 0130 0072 C6BF RTØP LAP '?'
        0073 F900
                     JST
DATA
 0131
                                      ØTT
 0132
        0074 011F
                              DATA MSG
 0133 0075 F900
0134 0076 COCE
0135 0077 F203
                             JST IKB
CAI 'N'
                                               ABØRT LAST PASS?

      0078
      COD9
      CAI
      'Y'
      YES

      0079
      F203
      JMP
      YES
      YES

      007A
      F608
      JMP
      RTØP
      WRØNG
      ENTRY

      007B
      FA44
      NØ
      JST
      ACC
      SAVE
      DATA

      007C
      F203
      JMP
      Y2

                             JMP NØ~
 0136
 0137 0079 F203
0138 007A F608
 0139
 0140 007C F203
        007D C6AC YES LAP ','
 0141
                                                PRINT ABORT
                             JST
 0142 007E F900
                                     ØTL
 0143 007F 0128
                              DATA ABT
                             L DA
 0144 0080 B234 Y2
                                     CT
                                                SET COUNTER
 0145 0031 9A30
                              STA
                                     SCT
 0146 0082 0350
                              ARP
                                                RESET SUBSCRIPTS
        0083 9900
 0147
                               STA XB
        0084 9900
0035 E230
 0148
                               STA XC
 0149
                               LDX
                                     NPBM
                      *ADD TØ BEAM ARRAY
 0150
       0036 EE33 ALP STX
0037 B400 LDA
 0151
                                     IBP
 0152
                                              GET DATA
                                     e 0
 0153
        0038 E401
                              L DX
                                     e 1
                                     DPFLT FLØAT IT
MSK1 SAVE IT
 0154
        0089 F900
                             J ST
 0155
        008A 9A21
                              STA MSK1
01-56
                              STX MSK2
        005,B
              EA2-1
                      JST FAD
DATA MSKI
BEAM RES 2,0
        003C F900
 01:57
                                             ADD TØ BEAM
 0158
        0 08 D
              OOAC
0159
        0000 E 800
                     IMS XB
IMS XC
LDX IBP
             D9 0 0
0160
        0090
                                                BUMP SUBSCRIPTS
 0161
        0091
             D9 0 D
       0092 E63F
 0162
```

```
0163
       0093
              C202
                              AXI
                                    2
0164
       0094
              DAID
                              IMS
                                    SCT
                                              DØN E?
0165
       0095
              F60F
                             JMP
                                   AL P
                                              NØ
0166
                     *PRINT PASS COUNT
0167
       0096
              F900
                             J ST
                                    CPL F
0168
       0097
              C702
                             LAM
                                    2
0169
       0098
              9A23
                              STA
                                   CØN 1
0170
       0099
              E21C
                             L DX
                                   NPEM
0171
       009A
              0110
                             ZAR
                     MK
0172
       009B
              E401
                             LIX
                                    ₽1
0173
       009 C
              F900
                             JST
                                   DPFL T
0174
       009 D
              9 AOE
                              STA
                                   MSK I
0175
       009 E
              EAOE
                              STX
                                   MSK2
0176
       009F
              F900
                             J ST
                                   ØFPA
0177
       DOAO
              00AC
                             DATA MSKI
0178
       00A1
              0110
                             ZAR
0179
       2A00
              F900
                             JST
                                   ØTL
0180
       00A3
              0130
                             DATA RUNS
0181
       00A4
              E212
                             L DX
                                   NMB4
0182
       00A5
              DAI6
                             IMS
                                   CØN 1
0183
       00A6
              F60C
                             JMP
                                   MK
0184
       00A7
              F7A7
                     T2
                             RTN
                                   TRANS
0185
                     *DATA STØRAGE
0186
       00A8
              FA00
                     ZCT
                             DATA -1536
0187
       00A9
              0000
                     CNT
                             DATA 0:0
       DOAA
              0000
0188
       00AB
              1400 NT
                             DATA: 1400
0189
       OOAC
              0000
                     MSK I
                             DATA 0
0190
       OOAD
              0000
                     MSK2
                             DATA 0
0191
       ODAE
              OOFF
                     H255
                             DATA 255
0192
       OOAF
                     DIR
              0000
                             DATA 0
0193
       00B0
              0000
                     DCT
                             DATA 0
0194
       00B1
              0000
                     DCT2
                             DATA O
0195
       0032
              0000
                     SCT
                             DATA 0
0196
       00B3
              1800
                     NI
                             DATA: 1800
0197
       00B4
              1802
                     IB
                             DATA: 1802
0198
       0035
              FEOO
                     CT
                             DATA -512
0199
       00B6
              1400
                     NPE
                             DATA : 1400
0200
       0037
              1600
                     NMEM
                             DATA: 1600
0201
       00B8
              0000
                     NØM
                             DATA 0
0202
       00B9
              0000
                     TREM
                             DATA 0
0203
       00BA
              9002
                     PL S
                             DATA: 9002
0204
       DOBB
             9202
                     MINS
                             DATA: 9202
0205
       OBBC
              0000
                     CØN 1
                             DATA 0
0206
       OOBD
              0000
                     TETR
                             DATA 0
0207
       OOBE
              1000
                     BPNT
                             DATA: 1000
0208
       OOBF
                     MASK
                             REF
0209
                     *
0210
                     *ADD INPUT ARRAY TO TEMP ARRAY
-0211
                     *
0212
       0000
              08 00
                     ACC
                             ENT
0213
       00C1
              B604
                             L DA
                                   TETR
0214
       0002
              2083
                             JAI
                                   5+4
0215
       0003
              B60A
                             L DA
                                   TREM
```

```
0216
       00C4
              0210
                             CAR
0217
       00C5
              F201
                             JMP
                                   $+2
0218
       0006
              B617
                             L DA
                                   DIR
0219
       00C7
              0000
                             CAI
                                   0
0220
       0008
              F202
                             JMP
                                   5+3
1220
       0009
              E613
                             LDX
                                   NPEM
0222
       OOCA
              F201
                             JMP
                                   5+2
0223
       OOCB
              E614
                             LDX
                                  NMEM
0224
       DOCC
              EE14
                             STX
                                   NØBM
0225
       OOCD
              DCOI
                             IMS
                                             BUMP COUNTER
                                   @ 1
0226
       OOCE
              C202
                             AXI
                                   2 -
0227
       OOCF
                                             SAVE TEMP PØINTER
              EA12
                             STX
                                   TBP
0228
       QQQQ
              C7FF
                            LAM
                                   255
                                             DATA COUNT
0229
       00D1
              9 E28
                             STA
                                   CNT
0230
       00D2
              E61F
                                             INPUT PRINTER
                            LDX
                                  NI
0231
       00D3
              C202
                             AXI
                                             BUMP COUNTER
                     A1
                                   2
0232
       00D4
              EES 1
                             STX
                                   IBP
                                             +SAVE
0233
       00D5
              B618
                            L DA
                                   TETR
0234
       00D6
              2188
                             JAL
                                   T5
0235
             B400 1
       00D7
                                   @ O
                            L DA
0236
       OODS
              E401
                            LDX
                                   0 I
0237
       00D9
              1328
                            LLX
                                   1
0238
       OODA
              1BS 6
                            LLR
                                   7
0239
       SCOO
              13A8
                            LRX
                                   1
0240
      OODC
              1356
                            LLA
                                   7
0241
       OODD
              10D6
                             ARA
                                   7
0242
       OODE
             F202
                            JMP
                                   T6
0243
       OODF
              B400
                     T5
                            L DA .
                                   60
0244
       OOEO
              E401
                            L DX
                                   @1
0245
       00E1
              F900
                            JST
                     T6
                                   DPACC
0246
       00E2
              0000
                     TBP
                             DATA 0
       00E3
0247
              C202
                             AXI
                                   2
                                             BUMP TEMP
0248
       00E4
              EE02
                             STX
                                   TBP
0249
       00E5
              E692
                            LDX
                                   IBP
0250
              0110
       00E6
                            ZAR
0251
       00E7
             9000
                                   @ O
                             STA
0252
       OOES
             9 CO1
                             STA
                                   @ 1
0253
       00E9
             DE40
                             IMS
                                   CNT
                                             DØN E?
0254
       00EA
             F617
                            JMP
                                   Αl
                                             NØ
0255
       00EB
             F72B
                            RTN
                                   ACC
0256
0257
                    *WAIT, FOR ALIGNMENT PULSE
0258
0259
      OOEC
             08 00
                    TURNON ENT
0260
      OOED
             4006
                             CID
                                             DI SAELE AUTØ
0261
      OOEE
             48 C I
                             SSN : C1
                                            LIGHT ØFF?
0262 -00EF
             F601
                            JMP - 5-1
                                            NØ
02,63
      OOFO
             0E00
                             SE
                                            YES BYTE ON
0264
      COF1
             49 C I
                             SEN
                                  : C1
                                            LIGHT ØN?
0265
      00F2
             F601
                            JMP
                                  5-1
                                            NØ
0266
      00F3
             OFOO
                            SWM
                                            YES, BYTE OFF
0267
      00F4
             40C4
                            SEL
                                  : C4
                                             CLEAR FLAG
0268
      00F5
             4005
                            CIE
                                             ENABLE AUTØ
0269
      00F6
             F70A
                            RTN
                                  TURNØN
```

```
0270
0271
                    *INPUT FRØM MØNSANTØ
                       CONVERT BCD TO BINARY
0272
0273
0274
      00F7
             08 0 0
                    MØNS
                            ENT
\0275
      ODFB
             B63B
                            LDA
                                  TETR
0276
      0079
             208F
                            JAM
                                  T3
0277
      DOFA
             C6FF
                            LAP
                                  255
0278
      OOFB
             BE4B
                            ADD
                                  DCT
0279
      COFC
             1050
                            AL A
                                  1
0280
      OOFD
                            LDX
             E644
                                  TREM
028 1
      OOFE
             38 02
                            JXN
                                  S+ 3
0282
      OOFF
             8A08
                            ADD
                                  DMTR
0283
      0100
            F201
                            JMP
                                  $+2
0284
      0101
                            ADD
                                  DPTR
            8A05
0285
       0102
             0048
                            TAX
0286
       0103
             B400
                            L DA
                                  60
0287
       0104
             E401
                            LDX
                                  91
0288
       0105
             F900
                            JST
                                  DPFIX
0289
       0106
             F70F
                            RTN
                                 MØNS
0290
       0107
             1002
                   DPTR
                            DATA: 1002
029 1
       0108
                            DATA: 1202
             1202
                    DMTR
0292
       0109
             49 C 6
                    TЗ
                            SEN
                                  : 06
                                            FL AG
0293
       010A
            F601
                            JMP
                                  5-1
                                            NØ
                                            YES, INPUT TO X
0294
                                  : C6
       E010
             5AC6
                            INX
       0100
                            JXZ
                                  $-3
                                            IGNORE ZEROES
029 5
             28 43
0296
             C704
                            LAM
                                  4
                                            SET DIGIT COUNT
       0100
0297
       OICE
                            STA
                                 ·CNT
             9 E 6 5
0293
       DIOF
             0110
                            ZAR
                                            CLEAR TALLY
0299
       0110
            9 E63
                            STA MSK2
0300
       0111
             F206
                            JMP
                                 M2
0301
       0112
                            LLA
                                            X10
             1350
                                 1
                    M1
                            STA
                                 M 5K 2
       0113
            9 E66
0302
                            LLA
0303
      0114
            1351
0304
       0115
            8 E68
                            ADD
                                 MSK2
             9 E 69
                            STA
                                 MSK2
0305
       0116
             0110
                            ZAR
0306
       0117
                                            GET NEXT DIGIT
0307
       0118
             1B03
                    21
                            LLL
                                  4
                            ADD
                                 MSK2
                                            ADD TØ TALLY
0308
       0119
             8 E6C
                            IMS
                                  CVT
                                            LAST DIGIT?
0309
       011A
             DE71
                            JMP
                                  MI
                                            NØ
0310
       0118
             F609
                            TAX
0311
       OIIC
              0048
                            ZAR
       011D
             0110
0312
                                            YES
0313
       OIIE
             F727
                            RTN
                                  MØNS
                    *TEXT STØRAGE
0314
                            DATA:8D3A
       011F
                    M S G
0315
             8 D3 A
                            TEXT 'ABORT LAST RUN?'
       0120
              C1C2
0316
       0121
              CFD2
       0122
              D4A0
       0123
             CCC1
       0124
             D3D4
       0125
              A0D2
       0126
              D5CE
       0127
              BFAD
```

```
0317 0128 8DSA ABT DATA :8DSA 0318 0129 BIAO TEXT '1 RUN
                               TEXT 'I RUN ABORTED, '
       012A D2D5
       012B CEAD
       0120 0102
       012D CFD2
012E D4C5
012F C4AC
0319 0130 A0D2 RUNS TEXT RUNS KEPT
0131 D5CE .
       0133 CBC5
0134 D0D4
0320 0135 8D8A
                            DATA:8D8A.O
       0136 0000
0321 0137 8D8A MØDE DATA:8D8A
0322 0138 CDCF TEXT 'MØNSANTØ, TAPE ØR INVERSE?'
0139 CED3
       013A CICE
013B DACF
       013C ACD4
       013D C1D0
013E C5A0
013F CFD2
       0140 A0C9
       0141 CED6
0142 C5D2
       0143 D3C5
       0144 BFA0
0323
                                EN D
0000 ERRØRS
```

1000				n an		BI PT, X EQ
0002				N AM	ØTT, ERR.	CRL F
0003				na n	ØTL, ØFPA	j
0004	0000			REL	0	
0005			*			•
0006			* PANI	C SWITC	CH	ORIGINAL PAGE IS
0007			*			OF POOR QUALITY
0008	0000	FB00	•	JST	* CMN D	
0009	0001		CMN D	REF	. 0.11.7 2	
0010	••••		*	11444		
0011			-	ARD INF	ייווי	
0012			**	WUD IME	0.	
0012	0002	08 00	-	ייי זאינו		
			IKB	ENT		A********
0014	0003	4038		SEL	7 0	AUTØ-ECHØ
0015	0004	4039		SEL	7.1	KBD MØDE
0016	0005	59 39		RDA	7, 1	READ ØN FLAG
0017	0006	403¢		SEL	7,4	RESET
0018	0007	F705		RTN	IKB	
0019	0008	08 0 0	I ER	EN T		
0020	0009	FE07		J ST	IKB	
0021	A000	CODF		CAI	DF	BACK ARRØW?
0022	000B	FFOA		JST	* CMN D	YES
0023	0000	C08 A		CAI	:8A	LINE FEED?
0024	000D	FFOC		JST	* CMN D	YES
0025	000E	F706		RTN	I ER	NEITHER RETURN
0026			*	•	:	
0027				TAPE I	NPUT	
0028				= 0 FØ		
0029			*		R HSR	
0030			*	:	11 11 211	
0031	000F	03 0 0	BIPT	EN T		
0032	0010	5801	BIP2	ISA		READ SWITCHES
0033	0011	1300	D112	LRA	1	
0034	0012	220A				DSO UP FØR TTY
0034				JØS	HSR	DØWN FØR HSR
	0013	49 3B		SEN	7, 3	TTY BUSY?
0036	0014	F604		JNP	BI P2	YES
0037	0015	403A		SEL	7. 2	NØ, STEP READER
0038	0016	48 39	WT	SSN	7. 1	FL AG?
0039	0017	F203		JMP	IT -	YES
0040	0018	0150		IAR		NO. BUMP COUNT
0041	0019	2149		J AZ	BI P2	RESTART IF TIME UP
0042	001A	F604		JMP	WT	ELSE CHECK FLAG AGAIN
0043	001B	58 38	ΙT	INA	7 , 0	INPUT FRØM TTY
0044	0010	F70D		RTN	BIPT	& RETURN
0045	001D	49 33	HSR	SEN	6 , 3	HSR BUSY?
0046	001E	F60E		JMP	BI P2	YES
0047	001F	4032		SEL	6, 2	NØ, STEP READER
0048	0020	48 35	∙WH	SSN	6 , 5	FL AG?
0049	0021	F203		JNP	IH	YES
0050	0022	0150		IAR		NØ, BUMP CØUNT
0051	0023	2153			BIP2	RESTART IF TIME UP
0052	0024	F604		JMP	WH	ELSE CHECK FLAG AGAIN
ω53	0025	58 35	IH	INA	6 , 5	INPUT FRØM HSR
						TIME HOLL

```
0054
      0026
             F717
                           RTN
                                   BIPT
                                              & RETURN
0055
                    *UAIT FØR EXECUTE SIGNAL
0056
0057
0058
      0027
             08 00
                   XEQ
                            ENT
                            J ST
                                              INPUT
      0028
             FE20,
                                   I ER
0059
0060
      0029
             C 03 D
                            CAI
                                  ':8D
                                              CARRIAGE RETURN?
                                   X = 0
                                             YES, RETURN
                            RTN
0061
      002A
             F703
                                   XEQ+1,
                            JMP
                                             NØ, GET MØRE
0062
      002B
             F603
0063
                    *ØUTPUT TØ TTY
0064
0065
                            ENT
0066
      0020
                    ØTT
             08 00
0067
      002D
             403C
                            SEL
                                    7,4
                                              RESET INTERFACE
                                    7,3
0068
      002E
             6D3B
                            WRA
                                              WRITE ON NOT BUSY
      002F
                                    7, 3
                                              DØN E?
0069
             49 3B
                            SEN
0070
      0030
             F601
                            JMP
                                    5-1
                                             NØ
                                    ØTT
0071
      0031
             F705
                            RTN
                                             YES
0072
0073
                    *COMMAND ERROR EXIT
0074
0075
      0032
             03 00
                    ERR
                            ENT
0076
      0033
             C6DF
                           LAP
                                   : DF
                                              PRINT ARRØW
                                   ØTT
      0034
                           υ ST
0077
             FE08
                                              RESTART COMMAND
0078
      0035
             FF34
                           J ST
                                   * CMN D
0079
                    *CARRIAGE-RETURN, LINE FEED
0 800
0081
                    ×
      0036
             08 00
                    CRLF
                            ENT
2 800
0083
      0037
             C68 D
                           LAP
                                   :8D
                                              CR
      0038
0084
             FEOC
                           J ST
                                    ØTT
0085
      0039
             C68A
                           LAP
                                    :8A
                                              LF
0086
      003A
             FEOE
                           J ST
                                   ØTT
0087
      003B
             F705
                            RTN
                                    CRL F
0088
                    *ØUTPUT TEXT FRØM BUFFER
0089
0090
0091
      003C
             08 00
                    ØTL
                            ENT
0092
      003D
             8A0F
                            ADD
                                    CAI
                                              MAKE COMPARE INSTRUCTION
      003E
0093
             9 A 0 6
                                   ØT2
                                              &SAVE IT
                            STA
0094
      003F
             9 A 09
                            STA
                                   ØT3
0095
      0040
             E704
                           \Gamma DX
                                   *ØTL
                                              GET TEXT PØINTER
                                              SET RETURN ADDRESS
0096
      0041
             DE05
                            IMS
                                    Ø TL
             B400
                                              GET WØRD
0097
      0042
                    ØT1
                           L DA
                                    ΘO
0098
      0043
             11D7
                           RRA
                                   8
                                              PRINT FIRST BYTE
0099
      0044
             FE18
                           J ST
                                   ØTT
0100
      0045
             C000
                    ØT2
                                             LAST ØNE
                            CAI
                                    0
0101
      0046
                                             YES, RETURN
             F70A
                            RTN
                                   Ø TL
0102
      0047
             1157
                            RL A
                                   8
                                              PRINT SECOND BYTE
0103
      0048
                                   ØTT
             FEIC
                           JST
0104
      0049
             C000
                    ØT3
                                    0
                                             LAST ONE?
                            CAI
                                  OTL
0105
                                             YES RETURN
      004A
             F70E
                            RTN
0106
             0128
                                              BUMP PØINTER
      004B
                            IXR
```

0107 0108 0109	004C 004D	F60A C000	CAI	JMP CAI	ØT1 O	LØØP
0110			•	r fløati	ING PØINT	NUMBER
0111			*			
0112	004E	08 0 0	ØFPA	EN T		
0113	004F	E701		LDX	*ØFPA	GET PØINTER
0114	0050	DE02		IMS	ØFPA	SET RETURN ADDRESS
0115	0051	EA01		STX	ØPT	SAVE PØINTER
0116	0052	FBOE		J ST	*FAS	CØNVERT TØ ASCII
0117	0053	0000	ØPT	DATA	0	
0118	0054	0059		DATA	BUF	
0119	0055	0110		Z AR		SET END FLAG
0120	0056	FEIA		JST	ØTL	PRINT NUMBER
0121	0057	0059		DATA	BUF	
0122	0058	F70A		RTN	ØFPA	
0123	0059	0000	BUF	RES	8,0	
0124	0061		FAS	REF		
0125				EN D		
0000	ERRORS					

0001 0002 0003 0004 0005 0006	0000			NAM NAM EXTR EXTR EXTR REL	READ, CLE PUN CH, GR IKB, ØTT, ØTL, CRLF XA, XB, XC	APH BIPT ,FPLOT,OFPA	
0007 0008 0009			* * READ *	PAPER	TAPE & AD	D TØ BUFFER	ORIGINAL PAGE IS OF POOR QUALITY
0010 0011	0000	08 00	READ *INITI	ENT ALIZE V	JARI ABL ES		
0012 0013	0001 0002	1128 1400		RLX T SØV	<u>1</u>	SET INDEX BIT	
0014	0003	1 1 AS		RRX	1		
0015	0004	EA33		STX	R5	& SAVE PØINTE	R
0016	0005	EA34		STX	R5+2		
0017	0006	0528		XRP		RESET SUBSCRI	PTS
8100	0007	E9 00		STX	XA		
•		0000					
0019	8000	E9 00		STX	XВ		
•		0000					
0020	0009	E900		STX	ХC		
		0000					
0021	000A	B236		L DA	TP	SET INPUT BUF	FER PØINTER
0022	000B	9 A38		STA	MPT		
0023	0000	B235		L DA	CT	SET INPUT COU	NΤ
0024	000D	9A37		STA	CN T		
0025			*SKIP		& LABEL		
0026	000E	C68 A		LAP	:8A	LINE FEED	
0027	000F	F900		J ST	ØTT	•	
		0000					
0028	0010	F900		J ST	BIPT		
	•	0000					
0029	0011	2141		J AZ	s - 1	SKIP LEADER	
0030	0012	F900	Rl	J ST	ØTT	ECHØ LABEL	
		0000					
0031	0013	F900	•	J ST	BIPT	READ TAPE	
•		0000					
0032	0014	C 09 2		CAI	:92	END ØF LABEL?	
0033	0015	F201		JMP	R2	YES	
0034	0016	F604		JMP	RI	ИQ	
0035	0017	F900	R2	J ST	BIPT	READ TAPE	
		0000					
0036	0018	COFF		CAI	:FF	FILE MARK?	
0037	0019	F201		JMP	R3	YES	
0038	001A	F603		JMP	R2	NØ	
0039			*READ I				
0040	001B	F9 00 0000	R3	J ⁻ ST	BI-PT	LØWER BYTE	
0041	001C	1 B8 7		LLR	8	SAVE	
0042	001D	F900		JST	BIPT	UPPER BYTE	
		0000			•	- 	
0043	001E	1807		LLL	8	RESTØRE	

ORIGINAL PAGE IS OF POOR QUALITY

004	4 (OOIF	E224		LDX	MPT	SAVE LOW BITS
004	5 (020	9001		STA	Q 1	
004	6 (0021	F900		JST	BIPT	LØWER BYTE
			0000			-	
004	7 (0022	1B87		LLR	8、	
004	g (0023	F900		JST	BIPT	UPPER BYTE
			0000			₹	
004	9 (0024	1B07		LLL	8	
005	0			* CØN VE	RT BASI	(C-F.P. TØ	
005	1 (0025	2109		JAZ	Z1	0= 0= 0
005	2 (0026	0048		TAX		SAVE SIGN
005	3 (0027	308 i		JAP	S+ 2	ABS. VAL.
005	4 (0028	0310		NAR		• •
005	5 (0029	1B87		LLR	8	REMØVE MSB
005	6 (002A	1328		LLX	1	
005	7 (002B	8A17		ADD	D64	FIX CHARACTERISTIC
∞ 5	8 (002C	1B07		LLL	8	
005	9 (002D	1300		LAØ		RECØVER SIGN
006	0 (002E	11D0		RRA	1	-
006	1 (002F	9B14	Z 1	STA	*MPT	SAVE HI BITS
006	2 (0030	DA13	•	IMS	MPT	BUMP PØINTER
006		0031			IMS	MPT	TWICE!
006		0032	DA12		IMS	CNT	MØRE?
006		0033	F618		JMP	R3	YES
006				*ADD IN		UFFER TØ B	
006							FØR DURATIØN
006		0034	4006		CID		DISABLE AUTØ
006		0035	B20C		L DA	CT	RESET CØUNTER
007		3036	9 A 0 E		STA	CNT	
007		0037	F900	R4	JST	FAD	F.P. ADD
001	•	, 000	0000	11-1	0.5.		
007	'2 (0038	0000	R5	DATA	0.:9400	0
•••		0039	9400			0,0,400,	
		003A	0000				
007		003B	D9 0 0		IMS	ΧA	BUMP SUBSCRIPTS
00.	•	0000	0000			••••	20.1. 202201.1 2
007	' <u> </u>	003C	D9 0 0		IMS	XB	
001	,	0000	0000		****		
007	5 (003D	D9 0 0		IMS	хс	
00 ;	•	0000	0000		-	ΛO	
007	۰ ۸	003E	DA06		IMS	CNT	MØRE?
007		003F	F608		JMP	R4	YES
007		0040	F740		RTN	READ	1 43
007		0040	1.140	*STØRA		READ	
008		0041	1400	TP	DATA	: 1400	
008		0041	FF00	GT		-256	
008					DATA		
800		0043 0044	0040	D64 NBT	DATA	64 0	
			0000	MPT	ATAC	O'	
008		0045	0000	CNT	DATA	0	
008				*	בא ביו ביו	Λ T) D Λ3ζ	
008				*CL EAR	prev	ARRAY	
008		0044	በጀለብ	* CI EAD	ביוע ייי	•	
800	0 (0046	08 0 0	CL EAR	ENT		

0089	0047	B605		L DA	CT	SET COUNT
0090	0048	9 E03		STA	CN T	
009 1	0049	0110		ZAR		CL EAR
0092	004A	9000	C1	STA	60	HI BITS
009.3	004E	9 0.0.1		5TA	@ 1	LØ BITS
0094	004C	C202		AX I	5.	BUMP POINTER
0095	004D	DE08		IMS	CN T	DØN E?
009 6	004E	F604		JMP	C 1	NØ
009 7	004F	F709		RTN	CL EAR	
0098			*			
0099			* PUN CH	BEAM	ARRAY -	BASIC FORMAT
0100			*		•	
0101	0050	08 00	PUN CH	ENT		
0102	0051	FA22		JST	L EAD	L EADER
0103	0052	B610		L DA	CT	START COUNTER
0104	0053	9 E0E		STA	CN T	
0105	0054	F9 00	PI	JST	IKB	ECHØ LABEL
0101		0000				•
0106	0055	C 09 2	•	CAI	:92	CTRL/TAPE?
0107	0056	F201		JMP	P2	YES
0108	0057	F603		JIIP	PI	NØ
0109	0058	C6FF	P2	LAP	: FF	PUNCH FILE MARK
0110	0059	F9 00		JST	ØTT	
0111	0050	0000	77.0			533-63-
0112	005A	B401	P3	L DA	@ 1 	PUNCH LØ BITS
0112	005B	F9 00		J ST	ØTT	
0113	0050	0000 13D7				
0114	005D	F900		LRA	8 ~ ~ ~	
0114	0000	0000		JST	ØTT	
0115	005E	B400		L DA	@ O	OPT III DING
0116	005F	C202		AX I	2	GET HI BITS
0117	0060	EE1C		STX	MPT	BUMP PØINTER AND SAVE
0118	0000	2210	*CØNVE			BASIC-F.P.
0119	0061	210A	-1. ODIV V 12	J AZ	. Z5.	0= 0= 0
0120	0062	0048		TAX	4	SAVE SIGN
0121	0063	1350		LLA	1	CLEAR A15
0122	0064	1B87		LLR	g	SPLIT
0123	0065	9622		SUB	D64	FIX CHARACTERISTIC
0124	0066	1400		sov	204	IN SERT MSB
0125	0067	1150		RL.A	1	2.102.11. (122)
0126	0068	1B06		LLL	7	RE- FØRMAT
0127	0069	1329		LLX	2	RECØVER SIGN
0128	006A	3201		JØR	\$+2	CØRRECT FØR IT
0129	006B	0310		NAR		
0130	0060	F900	Z 2	JST	ØTT	PUNCH HI BITS
•		0000				-
0131	006D	1B87		LLR	8	•
0132	006E	F900		JST	ØTT	
		0000			-	
0133	006F	E62B		L DX	MPT	RECOVER POINTER
0134	0070	DE2B		IMS	CN T	DØN E?
0135	0071	F617		JMP	P3	NØ
		-				

0136 0137	0072 0073	FA01 F723		JST RTN	L EAD PUN CH	YES,	PUN CH LEADER
0138			* PUN CH	5" ØF 1			
0139	0074	08 00	LEAD	ENT			
0140	0075	C732		L AM	50		
0141	0076	9E31		STA	CNT		
0142	0077	0110		ZAR			
0143	0078	F900	L 2	J ST	ØTT		
-		0000					
0144	0079	DE34		IMS	CNT		
0145	007A	F602		JMP	L2		
0146	007B	F707		RTN	L EAD		
0147			*				
0148			*PLØT	DATA AR	RAY		
0149			*				
0150	007C	03 00	GRAPH	ENT			
0151	007D	EA06		STX	T	SAVE	COUNT POINTER
0152	007E	0202		AX I	2		
0153	007F	EAOS		STX	PT		DATA PØINTER
0154	0 80 0	0110		Z AR		PRIN	T CØUNT
0155	0 08 1	F9 00		J ST	ØTL		
_		0000					
0156	0 08 2	A 800		DATA	CTX		
0157	0 08 3	F900		JST	ØFPA		
		0000					
0158	0084	0000	T	DATA	0		
0159	0085	F900		JST	CRL F		
		0000					
0160	0 08 6	C7FF		L AM	255	PLØT	DATA
0161	0087	F9 00		JST	FPLØT		
01.60	0077	0000			_		
0162	8800	0000	PT	DATA	0		
0163	0089	F70D	a.m.r.	RTN	GRAPH		
0164	003 A	A SA B	CTX	DATA	:8A3A	_	
0165	E 800	C3CF		TEXT	'CØUNT =	•	
	2 80 0	D5CE					
	0 08 D	D4A0					
0166	008 E	BDAO		5.000	_		
0166	008 F	0000		DATA	0		
0167	הממתמת			Ev D			
0000	ERRØRS						

```
0001
                     ×
                         FPLOT - FLOATING POINT PLOTTER
0002
                     *
0003
                     *
                              CALLING SEQUENCE:
0004
                     *
                                                     LDA MDIM
0005
                     *
                                                     JST *FPLØT
0006
                     *
                                                     DATA ARRAY
0007
                     *
                                                    (RETURN)
8000
0009
                                      FPLØT
                              MAM
0010
                                       0
       0000
                              REL
0011
                              evi
       0000
              08 00
                     FPLØT
0012
0013
       0001
              9 A 4 C
                              STA
                                      NRØW
                              STA
                                      CN T
0014
       0002
              9 A4C
                              LDA
                                      \times FPL ØT
0015
       0003
              B703
                              STA
                                      RP3
0016
       0004
              9AIF
                              STA
                                      RP4
0017
       0005
              9A24
                              IØR
                                      B15
0018
       0006
              A249
                                      RP1
                              STA
0019
       0007
              9A05
0020
       0008
              9 A 03
                              STA
                                      RP2
                              ARP
0021
       0009
              0350
                                      AX*
                              STA
0022
       000A
              9B4F
                                      MØVE
0023
       000B
              F204
                              JMP
0024
       0000
              FB4E
                     LP1
                              J ST
                                      *FCP
                              DATA
                                       O. MAX
0025
       000D
              0000
                     RP1
       OOOE
              0051
                                      INC
0026
       000F
              2183
                              JAL
      0010
                              JST
                                      *FMV
0027
              FB4B
                     MOVE
                              DATA
                                       O, MAX
              0000
                     RP2
       0011
0028
       0012
              0051
                                      *XA
                              IMS
0013
              DB46
                      INC
                              IMS
                                       CN T
       0014
              DA3A
0030
                                      LP1
                              JMP
0031
       0015
              F609
                              J ST
                                      * CRL F
00,32
       0016
              FB41
0033
       0017
              FB40
                              J ST
                                      * CRL F
                                       *= *
                              LAP
0034
       0018
              C6BD
                                      *0TL
              FB3F
                              J ST
0035
       0019
                              DATA
                                       SF
0036
       001A
              0061
                              J ST
                                      *FDV
0037
       001B
              FB43
                              DATA
                                      F50, MAX, SCALE
              0055
       001C
0033
       001D
              0051
       001E
              0053
                              J ST
                                      *ØFPA
0039
       001F
              FB40
                              DATA
                                       SCALE
       0020
              0053
0040
                              J ST
                                      *CRLF
0041
       0021
              FB36
       0022
              FB35
                              J ST
                                      * CRL F
0042
                              J ST
                     LP2
                                      *ØFPA
       0023
              FB3C
0043
                      RP3
                              DATA
                                       0
0044
       0024
              0000
0045
       0025
              DE01
                              IMS
                                      RP3
                              ÌMS
                                      RP3
              DE05
0046
       0026
                              LAP
0047
       0027
              C6A0
                                     · #ØTT
                              JST
       0028
              FB2E
0048
                              J ST
                                      *FMP
0049
       0029
              FB34
```

0050	002A 002B	0000 0053	RP4	DATA	O, SCALE, MAX
0051 0052 0053	002C 002D 002E 002F	0051 DE03 DE04 FB2D		IMS IMS JST	RP4 RP4 *FIX
0054	0030 0031	0051 004F		DATA	MAX, CNT
0055 0056	0032	B21C 0048		L DA Tax	CNT
0057 0058	0034 0035	3085 C6AD		JAP LAP	PØS
0059	0036	FB20		J ST	¥0TT
0060	0037	C6B0		LAP	101
0061	0038	FB1E		JST	≉gTT gut
0062 0063	0039 003A	F20E C6A0	PØS	JMP LAP	1 1
0064	003B	FB1B	195	JST	*0TT
0065	003C	52 09		JXZ	MARK
0066	003D	C6B0		LAP	'0'
0067	003E	FB18		JST	≆0 T T
0068	003F	0503		NXP	C1.00
0069	0040	EAOE		STX LAP	CN T **
0070 0071	0041 0042	C6AA F201		JMP	\$ + 2
0071	0042	FB13		JST	*ØTT
0073	0044	DAOA		IMS	CNT
0074	0045	F602		JMP	5- 2
0075	0046	C6AA	MARK	L AP	**
0076	0047	FBOF	a ttm	JST	≨Ø T T
0077	0048 0049	FBOF	ØUT	JST INS	*CPL F NRØV
0078 0079	0049 004A	DA04 F627		JMP	LP2
0080	004II	FBOC		JST	* CRL F
008 1	004C	DE4C		IMS	FPLØT
0032	004D	F74D		RTN	FPLØT
008 3	004E	08 00	NRØV	HLT	
008 4	004F	00 00	CNT	HLT	. 0.00
008 5 008 6	0050 0051	0000 0000	B15 NAX	DATA RES	:8000 2,0
0087	0053	0000	SCALE	RES	2,0
8800	0055 0056	4348 0000	F50	DATA	: 4348, 0
0089	0057		ØTT	REF	
009 0	0058		CRL F	REF	
009 1	0059		ØTL	REF	
0092	005A		XA	REF	
009 3 009 4	005B 005C		FCP F11V	REF REF	
009 5	0050 005D		FIX	REF	
0096	005E		FMP	REF	
0097	005F		FDV	REF	
009 ೮	0060		ØFPA	REF	

0099	0061	D3C3	SF	TEXT	'SCAL FACTOR = '
	0062	CICC			
	0063	8506			
	0064	C1C3			
	0065	D4CF			
	0066	D2A0			
	0067	BDA0			
0100				EN D	

0001 0002 0003 0004			* *CRT - *	FL G ATI	NG POINT G SEQUENC	
0005 0006			* *	Crists 110	G SEROTA	JST *CRT (RETURN)
0007 0008 0009	0000		*	n am rel	CRT O	_
0010	0000	08 00 C7FF	CRT	ENT LAM	255	
0012 0013	0002 0003	9 A5F 9 A5F		STA STA	NRØV CNT	
0014	0004 0005	49 C4 F601		SEN JMP	24, 4 \$-1	
0016 0017 0018	0006 0007 0008	40C7 C202 0030		SEL AXI TXA	24 , 7 2	
0019 0020	0009 000A	A261 9A0B		IØR STA	B15 RP1	
0021	000B 000C	9A0E 9A10		STA STA	RP2 RP3	
0023 0024 0025	000D 000E 000F	9A13 9A36 0110		STA STA Z AR	RP4 RP5	
0026 0027	0010 0011	9 A54 9 A54		STA STA	NIN 1+NIN	
0028 0029 0030	0012 0013 0014	0350 9B5B F204		ARP STA JMP	*XA MØVE	
0031 0032	0015	FB5A 0000	LPI RPI	J ST DATA	*FCP 0,11AX	
0033	0017	0067 2183		J AL	INCI	
0034 0035	0019 001A 001B	FB57 0000 0067	MØVE RP2	J ST DATA	*FMV O.MAX	
0036 0037	001C 001D	FB53 0000	INC1 RP3	JST DATA	*FCP O,MIN	
00 38 00 39	001E 001F 0020	0065 3083 FB50		JAP JST	IN C2 * FM V	
0040	0021	0000 0065	RP4	DATA	O, MIN	
0041 0042 0043	0023 0024 0025	DB4B DA3E F610	İNCS	IMS IMS JMP	*XA CNT LP1	
0044 0045	0026	· FB4F	*	JST	* CRL F	
0046 0047 0048	0027 0028 0029	FB4E C6BD FB4D		JST LAP JST	* CRL F '= ' '#ØTL	
0048	0029 002A	0079		DATA	SF	

0050			*		*- F C D
0051	002B	FB46		JST	*FSB
0052	002C	0067		DATA	MAX,MIN,MAX
	002D	0065			-
	002E	0067			
0053	002F	FB43		J ST	*FDV
0054	0030	0060		DATA	F250, MAX, SCALE
0054	0031	0067			
		0069			
	0032			JST	*ØFPA
0055	0033	FB44		DATA	SCAL E
0056	0034	0069			* CRL F
0057	0035	FB40		J ST	* 01111
0058			*		. 1747
0059	0036	FB3D		J ST	*FMP
0060	0037	0069		DATA	SCALE, MIN, MAX
	0038	0065			
	0039	0067			
0061	003A	FB3A		J ST	*FIX
0062	003B	0067		DATA	MAK,MIN
0002	003C	0065			
0063	003D	B227		L DA	MIN
0064	003E	0310		N AR	-
		3081		JAP	\$+2
0065	003F			ZAR	.
0066	0040	0110		STA	Х
0067	0041	9 A 2 2			Α
0068	0042	0350		ARP	137.0
0069	0043	9 B2B		STA	*XA
0070			*		
0071	0044	FB2F	LP2	J ST	*FMP
0072	0045	0000	RP5	DATA	O, SCAL E, MAX
	0046	0069			
	0047	0067			
0073	0048	DB26		IMS	*XA
0074	0049	FB2B		J ST	*FIX
0075	004A	0067		DATA	max, cn t
0010	004B	0063			
0076	004C	E217		LDX	x
	004D	B215		L DA	CN T
0077		49 C4	DØT	SEN	24, 4
0078	004E	F601	<i>DD</i> 1	JMP	S- 1
0079	004F	49 C2		SEN	24, 2
0 800	0050			JMP	S-1
008 1	0051	F601			24, 2
0082	0052	6EC2		ØTX	
008 3	0053	2107		J AZ	DØN E
003 4	0054	3183		JAG	PØS
008 5	0055	CAOO		DXR	
୍ ୦୦୪ ୧	0056	0150		_ I AR	
00୫'7	0057	F609		\mathtt{JMP}	DØT
0038	0058	0128	PØS	IXR	
0089	0059	00D0		DAR	
009 0	005A	F60C		JMP	DØT
009 1	005B	B208	DØN E	L DA	x
009 2	005C	8A11		ADD	н256
0076	5555	~ ·			

```
Х
0093
      005D
             9A06
                            STA
                            IMS
                                    NRØV
             DA03
0094
      005E
                            JMP
                                    LP2
             F61B
0095
      005F
                                    * CRL F
                            J ST
0096
      0060
             FB15
                                     CRT
0097
             F761
                            RTN
      0061
0098
                                     0
      0062
             0000
                    NRØW
                             DATA
0099
                             DATA
                                     0
0100
      0063
             0000
                    CN T
             0000
                    Х
                             DATA
                                     0
0101
      0064
                             RES
                                     2,0
0102
      0065
              0000
                    MIN
                    MAX
                             RES
                                     2,0
0103
              0000
      0067
0104
      0069
              0000
                    SCALE
                            RES
                                     2,0
                                                 ORIGINAL PAGE IS
                                     :8000
0105
      006B
             8000
                    B15
                             DATA
                                                 OF POOR QUALITY
             447A
                    F250
                             DATA
                                     : 447A 0
0106
       0060
              0000
       006D
                                     256
0107
                             DATA
       006E
              0100
                    H256
0108
                    ×
                    AX
                             REF
0109
       006F
                             REF
0110
       0070
                     FCP
0111
                     FHV
                             REF
       007 L
                             REF
0112
                     FSB
       0072
0113
                     FDV
                             REF
       0073
                             REF
0114
       0074
                     FIP
                             REF
0115
                     FIX
       0075
                             REF
0116
                     CRL F
       0076
                             REF
0117
       0077
                     ØTL
0118
       0078
                     ØFPA
                             REF
0119
                                     'SCALE FACTOR = '
0120
                             TEXT
              D3C3
                     SF
       0079
       007A
              CICC
              C5A0
       007B
       007C
              C6C1
       007D
              C3D4
       007E
              CFD2
       007F
              AOBD
0121
                     *
                             EN D
0122
0000 ERRØRS
```

```
1000
                             N Ad
                                      VIEW
0002
                             EXTR
                                      DPW:, DPSUE:, DPDI V:, DPS1:
                                      DI SP
                             NA1
0003
                                      RTTR, RTØP
0004
                             DK TR
0005
       0000
              08 00
                     VI EW
                             ENT
                                      VEVR
0006
       0001
              9A71
                     DI SP
                              STA
                                      2 -
0007
       0002
                             ΑXΙ
              C202
8000
       0003
              EA66
                              STX
                                      RP1D
                                                PØINTER
0009
       0004
                              STX
                                      RP2D
              EA66
       0005
0010
                             L AM
                                      255
              C7FF
       0006
0011
              9A6A
                             STA
                                      CNT
0012
       0007
             9A64
                             STA
                                     NRØW
                                                 INITIALIZE MAX AMD MIN
0013
       8000
              0110
                             ZAR
\infty 14
       UUU9
              9A63
                                     MIN
                              ~1A
0015
       A000
              9A63
                             STA
                                     111N+1
0016
       000B
                                     M AX
              9A63
                             STA
0017
       000C
              9A63
                             STA
                                     MAX+1
0018
       000D
              B400
                     STCH
                             LDA
                                      e0
0019
       000E
                             CM S
                                     MAX
              D260
0020
       000F
              F20A
                             JMP
                                     MINI
                                                XAM>IA
0021
       0010
              F205
                             JMP
                                     MAX I
                                                AI>MAX
0022
       0011
              B401
                             L DA
                                     Q 1
                                                A I=MAX
0023
       0012
              D25D
                             CM S
                                     MAX+1
0024
       0013
              F206
                             JMP
                                     MIN 1
                                                A1=MAX A2<MAX+1
0025
       0014
              9A5B
                             STA
                                     MAX+1
                                                A1=MAX A2>MAX+1
0026
       0015
              F211
                             JMP
                                     FI CM
0027
       0016
              9 A 58
                     MAX1
                             STA
                                     MAX
0028
       0017
              B401
                             LDA
                                      € 1
0029
       0018
              9A57
                             STA'
                                     MAX+1
0030
       0019
                             JMP
                                      FI CM
              F20D
0031
       001A
              B400
                     MIN1
                             L DA
                                      €0
0032
       001B
              D251
                             CM S
                                     MIN
0033
       001C
              F206
                             JMP
                                     MIN2
                                                AI<MIN
0034
       001D
              F209
                             JMP
                                     FI CM
                                                A1>MIN
0035
       OOIE
              B401
                             L DA
                                      61
                                                A1=:1IN
0036
       001F
              D24E
                             CHS
                                     MIN+1
0037
       0020
             F202
                             JMP
                                     MIN 2
                                                AI=MIN A2<MIN+1
0038
       1200
              F205
                             JMP
                                     FICM
                                                Al=MIN A2>MIN+1
0039
       0022
             F204
                             JMP
                                     FICM
                                                A1=WIN A2=MIN+1
0040
       0023
             B400
                    MIN2
                             L DA
                                      60
0041
       0024 9A48
                             STA
                                     MIN
0042
       0025
             B401
                             L DA
                                      @ 1
                             STA
0043
       0026
             9A47
                                     MIN+1
0044
       0027
              E242
                     FI CH
                             L DX
                                     RPID
0045
       0028
              C202
                             ΑXΙ
                                     2
0046
       0029
              EA40
                             STX
                                     RP1D
0047
       002A
              DA46
                             IMS
                                     CN T
0048
                             JMP
       002B
             F61E
                                     STCM
0049
             B242
0050
      00SC
                             L DA
                                     MAX
0051
      002D
                             LDK
             E242
                                     MAX+1
0052
      002E
             F900
                             J ST
                                     DPSUB:
              0000
```

0053	002F	006D		DATA	MIN
0054	0030	1050		ALA	1
0055	0031	1329		LLX	2
0056	0032	3201		JØR	5+2
0057	0032	0150		I AR	5+2
0058	0034	13A3		LRX	1
0059	0034	9 A 39		STA	M AX
0060	0033	EA39		STX	MAX+1
0061	0030	LHOP	*	SIX	PIFECTI
0062	0037	B235	4	L DA	
0063	0037	E235		L DX	MIN+I
0064	0039	F900		JST	DPDI V:
0004	0009	0000		021	DP DI VI
0065	003A	006F		DATA	MAX
0066	003B	9 A2D		STA	TEM
0067	0035	10D1		ARA	2
0068	003D	0310		nar Nar	2
0069	003E	8A2A		ADD	TEM
0070	003E	10D5		ARA	
0070	oosr	במס ז	*	AKA	6
0072	0040	0310	ጥ	NAR	
0073	0040	3031		J AP	S÷2
0074	0042	0110		Z AR	۵۰ ک
0075	0042	9A2E		STA	Х
0076	0040	711611	*	514	11,
0077	0044	E226	*F	T DX	RP2D
0078	0045	B400	LPD	L DA	60
0079	0046	E401	410	L DX	e1
0030	0047	F900		JST	DPDI V:
000 0	0047	0000		0.51	DPDI V.
003 1	0048	006F		DATA	M AX
0032	0049	9AIF		STA	TEM
003 3	004A	10D1		ARA	2
003 4	004B	0310		NAR	2
008 5	004C	SAIC		ADD	TEM
003 6	004D	10D5		ARA	6
0037	00.10	: 556	*		Ŭ
0088	004E	E223	•	LDX	Х
0089	004F	49 C4	DØT	SEN	24, 4
009 0	0050	F601		JMP	S-1
009 1	0051	49 C2		SEN	24.2
0092	0052	F601		JMP	S-1
0093	0053	6EC2		ØTX	24.2
009 4	0054	2107		J AZ	DØN E
009 5	0055	3183		JAG	PØS
0096	0056	00AS		DXR	100
0097	0057	0150		I AR	
0098	0053	F609		JMP	DØT
0099	0059	0128	PØ S	IXR	
0100	005A	00D0		DAR	
0101	005B	F60C		JMP	DØT
0102		- 555	*	J	
0103	005C	B215	DØN E	L DA	Х
				-	

0104 0105 0106	005D 005E 005F	8A16 9A13 E20B		ADD STA LDX	H256 X : RP2D	
0107	0060	C202		AX I	2	
0108	0061	EA09		STX	RP2D	
0109	0062	DÃO9		IM S	N-RØ U	
0110	0063	F61E		JMP	LPD	
0111	0064	B20E		L DA	VEVR	
0112	0065	2101		J AZ	S+2	
0113	0066	F100		JMP	RTØP	
		0000		****	ר שיים	
0114	0067	F100		JMP	RTTR	
		0000		משנ	VI EW	
0115	0068	F768		RTN		
0116	0069	0000	TEM	DATA	0 0	
0117	006A	0000	RP1D	DATA	0	
01 18	006B	0000	RPŽD	DATA DATA	0	ORIGINAL PAGE IS
0119	0060	0000	NRØV	RES	2,0	OF POOR QUALITY
0120	006D	0000	MIN MAX	RES	2, 0	42
0121	006F	0000	CNT	DATA	0	
0122	0071 0072	0000	X	DATA	Ŏ	
0123		0000	VEVR	DATA	Ö	
0124 0125	0073 0074	0100	H256	DATA	256	
0125	0014	0100	200	EN D		
0000	ERRØRS	;				
0000	1717171171 LT-	,				

```
0001
                            NA4
                                     DPACC
0002
                            NAI
                                     DPFL T
0003
                            NAM
                                     DPFIX
                                     DPN:
0004
                             EXTR
0005
                             EX TR
                                     DPN
0006
      0000
                             REL
                                     0
0007
                    *DØUBLE PRECISION ACCUMULATE
0008
0009
0010
      0000
                    DPACC
             00 80
                             EN T
0011
                             STA
                                     TE1P
      1000
             9A10
0012
      0002
             0030
                             TXA
0013
                            LDX
      0003
             E703
                                     * DPACC
0014
                             RØ V
      0004
             1200
0015
      0005
             8 CO1
                             ADD
                                     e i
0016
      0006
             820C
                             AN D
                                     MASK
0017
      0007
             9001
                             STA
                                     @ <u>I</u>
                                     TEMP
0018
      8000
             B209.
                            LDA
0019
                             JØR
      0009
             3204
                                     DC1
0020
      A000
             1200
                             RØV
0021
      000B
             0150
                             IAR
                                     DC1
0022
             3201
                             JØR
      0000
0023
      000D
             0110
                             ZAR
0024
      000£
             8000
                     DCI
                             ADD
                                     @0
0025
             9 COO
                             STA
      000F
                                     60
0026
      0010
             DE10
                             IMS
                                     DPACC
             F711
0027
      0011
                             RTiv
                                     DPACC
0028
      0012
             0000
                     TE1P
                             DATA
                                     0
0029
                    mASK
                             DATA
       0013
              7FFF
                                     : 7FFr
JU
                    *DØUELE PRECISIØN TØ CAI-F. P.
0031
0032
0033
       0014
              08 00
                     DPFL T
                             ENT
0034
       0015
              38 0 1
                             NXU
                                     DPF1
0035
       0016
             2113
                             J AZ
                                     DPF4
                     DPF 1
0036
             BA13
                             EMA
                                     BITS
       0017
0037
       0018
              0110
                             ZAR
0038
             BA11
                             EMA
                                     BITS
       0019
0039
             9AII
                             STA
                                     SIGN
       001A
              3081
0040
                             J AP
                                     DPF2
       001B
0041
       001C
             F900
                             J ST
                                     DPN:
              0000
       001D
             1328
                             LLX
                                     1
0042
                     DPF2
             1B00
                     DPF3
                             LLL
0043
       001E
                                     1
0044
       001F
             DAOB
                             IMS
                                     BITS
0045
       0020
              3242
                             JØR
                                     DPF3
              1B88
                             LLR
0046
       0021
                                     9
                             EMA
                                     BITS
0047
       0022
             BA08
0048
       0023
             0310
                             NAR
             80A8
                             ADD
                                     D160
0049
       0024
0050
              1356
                             LLA
       0025
0051
              Å204
                             IØR
                                     BITS
       0026
0052
       0027
              BA04
                             EMA
                                     SI GN
```

0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067	0028 0029 002A 002B 002C 002D 002E 003F 0031 0032 0033 0034 0035 0036	8205 A202 F716 0000 0000 00A0 8000 9E04 8210 13D6 9E09 B609 8218 A218 BE0D	DPF4 BITS SIGN D160 DPM DPFIX	AN D I ØR RTN DATA DATA DATA DATA ENT STA AN D LRA SUB STA L DA AN D I ØR EM A	DPM SIGN DPFLT 0 0 160 :8000 SIGN DPP 7 D160 BITS SIGN MANT SBIT BITS
0069 0070	0038 0039	2109		J AZ	DPFX2
0071	003A	3190		J AG	DPFX 4
0072	003B	PE10		EMA	BITS
0073	003C	1B07		LLL	8
0074	003D	1 B3 0	DPFX 1	LLR	1
0075	003E	DE13		IMS	BITS
0076	003F	F602		JMP	DPFX 1
0077	0040	1B00		LLL	I
0073	0041	13A8		LRX	1
0079	0042	F201		JMP	5+2
008 0	0043	BE18	DPFX 2	EMA	BITS
003 1	0044	BE13		EMA	SI GN DPFX 3
0082	0045	3083		JAP	SI GN
008 3	0046	BE1A		ema Jst	DPN:
003 4	0047	F900		0.21	Ditt.
00% =	0040	0000 F201		JMP	\$ + 2
0085	0048 0049	BEID	DPFX 3	EIA	SIGN
008 6	0049 004A	F71B	DFTAG	RTN	DPFIX
008 <i>7</i> 003 <i>8</i>	004A 004B	0118	DPFX 4	Z AX	<i>D.</i> 1 2.1
0038	004C	1400	D: 111.4	SØV	
009 0	004D	F71E		RTN	DPFIX
009 1	004E	7FFF	DPP	DATA	:7FFF
0092	004E	007F	m an t	DATA	:7F
0093	0050	0 08 0	SBIT	DATA	:80
009 4	444	-		EN D	
0000	ERRØRS	5			

٠

APPENDIX C

```
0001
                              N AM
                                      CMN D
0002
                              EXTR
                                      IER, ØTT, ØTL, CRLF
0003
                              EXTR
                                      ERR, XEQ
       0100
0004
                                      :100
                              ABS
0005
                     *-PRINT NAME
0006
       0100
               0110
                              ZAR
0007
       0101
               F900
                              JST
                                      ØTL
               0000
       0102
8000
               012B
                              DATA
                                      NAME
0009
       0103
               F201
                              JMP
                                      $+2
0010
0011
                     *COMMAND INTERPRETER
0012
                     *
       0104
0013
               0800
                      CM<sub>N</sub> D
                              ENT
       0105
0014
               00A0
                              EIN
0015
       0106
              4005
                                                 ENABLE PANIC BUTTON
                              CIE
W16
       0107
              F900
                                      CRL F
                                                 PRINT PRØMPT CHARACTER
                              J ST
               0000
0017
       0108
               C687
                              LAP
                                      :87
0018
       0109
              F900
                              JST
                                      ØTT
               0000
0019
       010A
              C6AA
                                      '*'
                              L AP
0020
       0103
              F900
                              JST
                                      ØTT
               0000
0021
       0100
              0108
                              ZXR
0022
       010D
              F900
                              JST
                                      I ER
                                                 IN PUT COMMAND
              0000
                                      1 T 1
0023
       010E
              COD4
                              CAI
0024
       OIOF
              E213
                              LDX
                                      TRÂNS
0025
       0110
              COD2
                              ÇAI
                                      'R'
0026
       0111
              E212
                              LDX
                                      READ
0027
       0112
              COC3
                                      * C 1
                              CAI
0028
       0113
              E211
                                      CL EAR
                              L DX
0029
       0114
              38 0A
                              JXN
                                      ØKF
0030
       0115
              CODO
                              CAI
                                      ıpı
       0116
0031
              E20F
                             LDX
                                      PUN CH
0032
       0117
              COC7
                              CAI
                                      * G *
       0113
0033
              E20F
                             \Gamma DX
                                      FPLØT
0034
       0119
              COD6
                              CAI
                                      * V *
0035
       011A
              E20E
                             LDX
                                      CRT
0036
       011B
              COC4
                              CAI
                                      'D'
0037
       0110
              E20A
                             LDX
                                      DATUM
0038
       011D
              38 0 1
                              JXN
                                      ØKF
0039
       011E
              F900
                     BAD
                             JST
                                      ERR
              0000
0040
       011F
                              STX
              EA0A
                     ØKF
                                      FUNC
                                                 SAVE CALL ADDRESS
0041
       0120 F900
                             J ST
                                   , XEQ
                                               _ VAIT FOR GO
              0000
0042
       0121
              FB08
                             J ST
                                      * FUN C
                                                 CALL FUNCTION
0043
       0122
                             JMP
              F61D
                                      CMN D+ 1
0044
       0123
                             REF
                     TRANS
0045
       0124
                     READ
                             REF
0046
       0125
                     CL EAR
                             REF
```

0047 0048 0049 0050 0051 0052	0126 0127 0128 0129 012A 012B 012C 012D 012E 012F 0130 0131	0000 B1B5 AAB2 B5B5 A0C6 D5CC CCA0 C3 D4 D3A0	PUN CH DATUM FPLØT CRT FUN C N AM E	REF REF REF DATA TEXT	0 '15*255	FULL	нтѕ•
0053	0133 0134	A EG 8		DATA	.8 D3 A. 0		
0054 0000	ERRØRS	0000		EN D			

0001 0002 0003 0004 0005 0006 0007	0000 0000 0001 0002	08 00 C6BF F9 00 8 127 013E	TRAN'S	NAM NAM EXTR REL ENT LAP JST DATA JST	TRANS RTTR DISP 0 '?' *ØTL MØTA *IKB	
00 09	0004	F9 00 8 128		ປລາ	4 1 1 t D	
0010 0011 0012 0013 0014	0005 0006 0007 0008 0009	1200 COCD F203 COD4 F204		RØV CAI JMP CAI JMP	'M' MØJ 'T' TAP	ORIGINAL PAGE IS OF POOR QUALTE
0015	000A	F900		J ST	* ERR	OF POOR QUALITY
0016	8000	812A F900 8129	MØN	JST	*CRLF	
0017	0000	0108		ZXR		
0018	000D	F20F		JMP	BEG *CRLF	
0019	000E	F9 00 8 129	TAP	J ST	4 OTT	
0020	000F	C68A		LAP	:8A	
0021	0010	F900		J ST	*ØTT	
0022	0011	8126 F900 8125		J ST	*BIPT	
0023	0012	2141		J AZ	\$ - 1	
0024	0013	F900	T1	JST	*ØTT	
		8126	•	. ca	ታ ከተገጥ	
0025	0014	F900 8125		JST	*BIPT	
0026	0015	C092		CAI	:92	
0027	0016	F201		JMP	T2	
0028	0017	F604		JMP	TI	
0029	0013	F900 8125	T2	J ST	*BIPT	
0030	0019	COFF		CAI	: FF	
0031	001A	F201		JMP	T4	
0032	001B	F603		JMP	T2	
0033	0010	C401	T4	LXP	1	
0034	001D	E9 0 0	BEG	STX	TETR	
0035	001E	012B B100 01-22		L DA	MASK O	
0036	001F	9 AF 3		STA	MASK 1	
0037	0020	F900		JST	* CRL F	
		8 129				
0038	0021	C6BF		LAP	ጉር ረ ጥ	
0039	0022	F900 8127		JST	∓ØTL	
		0121				

0040 0041	0023 0024	0130 F900		DATA JST	DIRE *IKB
		8 1 28			-
0042	0025	COC6		CAI	1 F 1
0043	0026	F205		JMP	FØRD
0044	0027	C0C2		CAI	'B'
0045	0028	F208		JMP CAI	Back 'ø'
0046 0047	0029 002A	COCF F20A		JMP	BØTH
0048	002R	FBFE		JST	* ERR
0049	0020	C71E	FØRD	LAM	30
0050	002D	9 AE2		STA	CNTS
0051	002E	0108		ZXR	
0052	002F	0403		CXR	
0053	0030	F207		JMP	TK F
0054	0031	C71E	BACK	LAM	30
0055	0032	9 ADD		STA	CNT2
0056	0033.	0103		ZXR	
0057	0034	F203		JMP	TK F
0058	0035	C70F	BØ TH	LAM	15
0059	0036	9 AD9		STA	CNTS
0060	0037 0038	0358 EAF5	THE TO	AX P STX	DIRI
0061 0062	0035	EAF5	TK F	LDK 21V	TETR
0063	0039 003A	23 02		JXZ	\$+3
0064	003B	C70F		LAM	15
0065	003C	9 AD3		STA	CNT2
0066	003D	B2D4		LDA	ZCT
0067	003E	9 AD2		STA	CNT3
0068	003F	E2E3		LDX	IBC
0069	0040	0110		ZAR	
0070	0041	9000	CL R	STA	@O
0071	0042	0128		IXR	
0072	0043	DÂCD		IMS	CN T 3
0073	0044	F603		JNP	CLR
0074	0045	EADI		STX	I BP
0075 0076	0046 0047	E2T4 23 03		L DX JXZ	TETR NEXT
0077	0047	E2E5		LDX	DIRI
0078	0049	38 0 1		JXN	NEXT
0079	004A	0210		CAR	•
0 800	004B	E2D3	NEXT	LDX	MASK
003 1	004C	0123		IXR	
2 800	004D	0210		CAR	
003 3	004E	0000		CAI	0
008 4	004F	C2FF		AX I	255
008 5	0050	EAB8		STX	msk 1
0086	0051	9 ABA		STA	DIR
0087	0052	C7F5		LAM	245 DCT0
0088 0089	0053 0054	9ACC C7FF		STA L Al1	DCT2 255
009 0	0054	9 A B 7		STA	DCT
009 1	0056	B2D4		L DA	TETR

0092	0057	2107		J AZ	TURİ
0093	0058	FBCC	T3	JST	*BIPT
0094	0059	1357		LLA	8
009 5	005A	9 AD4		STA	TEMT
009 6	005B	FBC9		J S.T	*BIPT
0097	005C	A2D2		IØR	TEMT
0098	005D	9 AB0		STA	VAL
0099	005E	F209		JMP	PRØ C
0100	005F	FAS 9	TUR1	j ST	TURNØN
0101	0060	FA9 3	ILP	JST	MØNS
0102	0061	9 AAC		STA	VAL
0103	0062	B2CB		L DA	DIRI
0104	0063	C001		CAI	1-
0105	0064	F203		JMP	PRØC
0106	0065	D2A6		C:4 S	DIR
0107	0066	F235		JMP	FINØNE
0108	0067	F234		JMP	FÌNØNE
0109	0068	C70F	PRØC	LAM	15
0110	0069	9 A A 5		STA	CNT1
0111	006A	B2A8		L DA	MASK 1
0112	006B	9 AA8		STA	MASK2
0113	0060	B2B6		L DA	IBC
0114	006D	9 A A S	a	STA	IB
0115	006E	C7FF	SPA	LAM	255
0116	006F	9 A A 5		STA	SCT
0117	0070	B298		L DA	M SK 1
0118	0071	9 A98		STA	MSK2 IB
0119	0072	B2A3		L DA STA	IBP
0120	0073	9AA3		ZAR	TPt
0121	0074	0110 D39 E		CM S	≄MASK2
0122	0075	F201		JMP	\$+2
0123	0076 0077	F213		JMP	TLP2
0124 0125	0078	E295	TL P I	L DX	VAL
0126	0079	0110		Z AR	V. –
0127	007A	D38 F		CMS	*M SK 2
0128	007B	F201		JMP	5+2
0129	0076	0508		NXR	
0130	007D	0030		TXA	
0131	007E	8 E98		ADD	*IBP
0132	007F	9 B9 7		STA	*IBP
0133	0 08 0	DAS9		II1S	MSK2
0134	0081	DA9 5		IMS	IBP
0135	0082	DA9 2		IMS	SCT
0136	0083	F60B		JMP	TLPi
0137	0034	DAS F		IMS	MASK2
0138	0085	C6FF		LAP	255
0139	0 08 6	8 A8 F		ADD	IB
0140	0087	9 A8 E		STA	IB
0141	0088	DAS 6		IMS	CN T 1
0142	0089	F61B		JMP	SPA
0143	A 80 0	F211		JMP	· FINØNE
0144	008B	E282	TL P2	LDX	VAL.

0145 0146 0147 0148	008 C 008 D 008 E 003 F	0110 D37C 0508 0030		Z AR CM S NX R TX A	*M SK 2
0149	0090	8 B8 6		ADD	*IBP
0150	0091	9 B8 5		STA	*IBP
0151	0092	DA77		IMS	M SK 2
0152	0093	DAS 3		IMS	IBP
0153	0094	DAS 0		IMS	SCT
0154	0095	r 60A		JMP	TLP2
0155	0096	DA7D		IMS	MASK 2
0156	0097	C6FF		LAP	255
0157	0098	8A7D		ADD	IB
0158	0099	9A7C		STA	ĪB
0159	009 A	DA74		IMS	CNTI
0160	009B	F62D		JMP	SPA
0161	0 09 C	E26C	FINGNE		M SK 1
0162	009 D	0128		IXR	
0163	009E	B26D		L DA	DIR
0164	009F	0000		CAI	0
0165	00A0	C302		SXI	2
0166	00A1	EA67		STX	m sk 1
0167	00A2	DA7D		IMS	DCT2
0168	00A3	F201		JMP	s÷2
0169	00A4	40C7		SEL	24,7
0170	00A5	DA67		IMS	DCT
0171	00A6	F201		JMP	TUR2
0172	00A7	F204		JMP	TUR3
0173	8A00	B282	TUR2	L DA	TETR
0174	00A9	2101		J AZ	\$+2
0175	00AA	F652		JMP	Т3
0176	00AB	F64B		JMP	ILP
0177	OOAC	C7FF	TUR3	L AM	255
0178	00AD	9A6E		STA	CN T 7
0179	OOAE	E263		LDX	IBP
0180	OOAF	0110		Z AR	-
0131	00B0	9000	CLR1	STA	@O
0182	00B1	0128		IXR	
0183	00B2	DA69		IMS	CNT7
0184	00B3	F603		JMP	CLR1
0185	00B4	C7F1		LAM	241
0186	00B5	9A63		STA	CN T4
0187	00B6	C70F		L AM	15
0188	00E7	9A62		STA	ĊN T 5
0189	8400	9A62		STA	CN T 6
0190	00B9	B269		L DA	IBC
0191	OOBA	9A63		STA	IBD
0192	OOBB	C70E		LAM	14
0193	OOBC	9A60	\14# C~~~	STA	HM 14
0194	OOBD	B260	NXBIN	L DA	IBD
0195	OOBE	9A60	\$1\Z == <-+	STA	IBE
0196 0197	OOBF	B35F	NXRØV	L DA	*IBE
013 /	0000	10D3		ARA	4

0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0211 0212 0213 0214 0215 0216 0217	00C1 00C2 00C3 00C4 00C5 00C6 00C7 00C8 00C9 00CB 00CD 00CE 00CD 00CE 00D1 00D2 00D3 00D4 00D5	8B55 9B54 B254 8A5A 9A59 DA53 F6252 9A50 DA4B DA4C F610 B24B 0150 9A4A 9A48 C701 9A45 DA48 F618		ADD STA LDA ADD STA IMS IMS IMS IMS LDA IMS IMS LAM STA IMS STA IMS IMS IMS IMS IMS IMS IMS IMS IMS IMS	*IBP *IBP H256 IBE IBE CNT5 NXRØV CNT6 CNT5 IBD IBP CNT4 NXBIN CNT5 CNT5 CNT5 CNT6
0219	00D6	0110		ZAR	
0220 0221	00D7 00D8	9 A49 F100		STA JMP	ØFFSET DI SP
0222 0223 0224 0225 0226 0227 0228 0229 0231 0232 0233 0234 0235 0236 0237 0238	00D9 00DA 00DB 00DC 00DD 00DE 00E0 00E1 00E2 00E3 00E4 00E5 00E6 00E7 00E8	0000 B251 2104 B252 3184 0210 F206 B24E 2182 B22A F202 B228 3101 DA2D DA29 F69C F7E8 0800	RTTR T5 T6 T7	L DA J AZ A J AG J CAR J DA L AL J DA L MP L AL J MP L MS L MS L MS L MS L MS RTN ENT	TETR T5 DIRI T6 T7 DIRI S+3 DIR T7 DIR S+2 MASKI CNT2 NEXT TRANS
0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249	00EA 00EB 00EC 00ED 00EE 00CF 00F0 00F1 00F2 00F3	4006 48C1 F601 0E00 49C1 F601 0F00 40C4 4005 F70A 0300		CI D SSN JMP SBM SEN JMP SWM SEL CI E RTN ENT	: C1 \$-1 : C1 \$-1 : C4

0250	00F5	49 C 6		SEN	: 06
0251	00F6	F601		JMP	S- 1
0252	00F7	5AC6		INX	: C6
0253	00F8	28 43		JXZ	s- 3
0254	00F9	C704		L Ati	4.
0255	OOFA	9A10		STA	CN T
0256	OOFB	0110		ZAR	· · ·
0257	OOFC	9 A O D		STA	M SK 2
0258	OOFD	F206		JMP	M 2
0259	OOFE	1350	M 1	LLA	1
0260	OOFF	9A0A		STA	M SK 2
0261	0100	1351		LLA	2
0262	0101	80A8		ADD	MSK2
0263	0102	9A07		STA	MSK2
0264	0103	0110		Z AR	
0265	0104	1B03	M2	LLL	4
0266	0105	8A04		ADD	MSK2
0267	0106	DA04		IMS	CNT
0268	0107	F609		JMP	M 1
0269	0108	F714		RTN	MØNS
0270	0109	0000	M SK 1	DATA	0
0271	010A	0000	M SK 2	DATA	0
0272	010B	0000	CNT	DATA	0
0273	0100	0000	DIR	DATA	0
0274	010D	0000	DCT	DATA	0
0275	010E	0000	VAL	DATA	0
0276	010F	0000	CIJ T I	DATA	0
0277	0110	0000	CN T 2	DATA	0
0278	0111	0000	CNT3	DATA	0
0279	0112	F010	ZCT	DATA	- 4080
028 0	0113	0000	MASK I	DATA	٥
028 1	0114	0000	MASK2	DATA	0
028 2	0115	0000	SCT	DATA	0
028 3	0116	0000	ΙB	DATA	0
028 4	0117	0000	IBP	DATA	0
028 5	0118	0100	H256	DATA	256
028 6	0119	0000	CNT4	DATA	0
0287	011A	0000	CNT5	DATA	0
0288	OliB	0000	CNT6	DATA	0
0289	0110	0000	CN T7	DATA	0
0290	011D	FFF2	HM I 4	DATA	-14
029 1	011E	0000	IBD	DATA	0
0292	011F	0000	I BE	DATA	0
029 3	0120	0000	DCT2	DATA	0
029 4 029 5	0121	0000	ØFFSET	DATA	0
	0122		MASKO	REF	
029 6 029 7	0123 0124		IBC	REF	
029 7 02 9 8	0124		MASK BIPT	REF	
0299	0125		ØTT	REF	
0300	0126		ØTL	REF	
0301	0127		IKB	REF	
0301	0128		CRLF	REF	
USUZ	0129		Crurr	REF	

 $egin{array}{l} ORIGINAL \ PAGE \ IS \ OF \ POOR \ QUALITY \end{array}$


```
0303
      012A'~
                    ERR
                            REF
      012B
0304
             0000
                    TETR
                            DATA
                                    0
                            DATA
0305
      0120
                    TEDA
                                    0
             0000
                            DATA
                                    4080
0306
      012D
             OFFO
                    TCT1
030.7
      0.12E
             0000
                    DI R-I
                            DATA
                                    0
0308
      012F ^
             0000
                    TEMT
                            DATA
                                    0
                            DATA
                                    :8D8A
0309
      0130
             8 D3 A
                    DIRE
0310
                            TEXT
                                    'FØRVARD, BACKVARD, ØR BØTH?'
      0131
             C6CF
      0132
             D2D7
      0133
             C1D2
      0134
             C4AC
      0135
             C2C1
      0136
             C3CB
      0137
             D7C1
      0138
             D2C4
      0139
             ACCF
      013A
             D2A0
      013B
             C2CF
      013C
             D4C8
      013D
             BFA0
0311
      013E
             8 D3 A
                   MØTA
                            DATA
                                    :8D3A
0312
                            TEXT
                                    'FROM MONSANTO OR FROM TAPE?'
      013F
             C6D2
      0140
             CFCD
      0141
             AOCD
      0142
             CFCE
      0143
             D3C1
      0144
             CED4
      0145
             CFA0
      0146
             CFD2
      0147
             A006
      0148
             D2CF
      0149
             CDAO
      014A
             D4C1
      014B
             DOC5
      014C
             BFA0
0313
                            END
0000 ERRØRS
```

0001				N AM	DATU4, RTDA
2000	0000	02.00	DATUM	EX TR EN T	DISD
0003 0004	0000	03 00 C6BF	DATON	LAP	171
0004	0001	FB63		JST	#01L
0005	0002	0067		DATA	DIRE
0007	0004	FB71		JST	*IKB
0008	0005	C0C6		CAI	* E *
0009	0006	F205		JMP	FØRD
0010	0007	C0C2		CAI	*B*
0011	0008	F208		JMP	BACK
0012	0009	COCF		CAI	101
0013	000A	F20A		JMP	BØ T H
0014	000B	FB6C		JST	*ERR
0015	0000	C71E	FØRD	L AM	30
0016	000D	9A73		STA	DNT2
0017	000E	0108		ZXR	
0018	000F	0408		CXR	
0019	0010	F207		JMP	PKF
0020	0011	C71E	BACK	L AM	30
0021	0012	9A6E		STA	DNIS
0022	0013	0108		ZXR	
0023	0014	F203		JMP	PK F
0024	0015	C70F	BØTH	L AM	15
0025	0016	9 A6A		STA	DNTS
0026	0017	0353	_	AX P	
0027	0018	EA60	PK F	STX	DIR1
0028	0019	B260		L DA	Z CT 1
0029	A100	9A60		STA	CT 1
0030	001B	E25B		L DX	IBC
0031	0100	EA5F		STX	IB
0032	001D	0110 9C00	CLR	Z AR STA	@O
0033 0034	001E 001F	0128	OLK	IXR	eu
0034	0017	DA5A		IMS	CT 1
0035	0020	F603		JMP	CLR
0037	0022	9A61		STA	RØN
0038	0023	0210	NEXT	CAR	
0039	0024	9 A 58		STA	DIRO
0040	0025	C7F5		L AM	245
0041	0026	9 A 58		STA	DDT2
0042	0027	C7FF		LAM	255
0043	0028	9A55		STA	DDT
0044	0029	FA19		J ST	DURNØN
0045	AS00	FA23	DL P	J ST	DØN S
0046	002B	9 A 5 4		STA-	DAT
0047	002C	B24C		L DA	DIRI
0048	002D	C001		CAI	1
0049	002E	F203		JMP	STØ
0050	002F	D24D		CM S	DIRO
0051	0030	F232		JMP	DLP2
0052	0031	F231		JMP	DLP2
0053	0032	B24D	STØ	L DA	DAT

					• •
0054	0033	E248		LDX	IB
0055	0034	9000		STA	@ O
0056	0035	DA46		IMS	IB
0057	0036	DA48		IMS	DDT2
0058	0037	F201		JM-P	S+2
0059	0038	4007		SEL	24,7
0060	0039	DA44		IMS	DDT
				JMP	DL P
0061	003A	F610		IMS	RØN
0062	003B	DA48	m. m.		
0063	0030	B247	DLP1	L DA	RØN
0064	003D	2101		JAZ	\$+2
0065	003E	F100		JMP	DISD
		0000			
0066	003F	B23D	RTDA	L DA	DI RO
0067	0040	DA40		IMS	STVD
0068	0041	F61E		JMP	N EX T
0069	0042	F742		RTN	DATUM
0070	0043	08 00	DURNØN	ENT	
		4006	DOIMBIN	CID	
0071	0044				: C1
0072	0045	43 C 1		S SiV	
0073	0046	F601		JMP	S- 1
0074	0047	0E00		SBM	
0075	0048	49 C I		SEN	: C1
0076	0049	F601		JMP	S- 1
0077	004A	0F00		SWA	•
0078	004B	40C4		SEL	: C4
0079	004C	4005		CIE	
008 0	004D	F70A		RTN	DURNØN
	004E	08 0 0	DØN S	ENT	20121211
1 800			ב מומת	SEN	: C6
008 2	004F	49 C 6			\$-1
0033	0050	F601		JMP	
0084	0051	5AC6		INX	: C6
003 5	0052	28 43		JXZ	\$- 3
008 6	0053	C704		LAM	4
0087	0054	9 A2D		STA	CN T
8800	0055	0110		Z AR	
0089	0056	9A2C		STA	MSK2
0090	0057	F206		JMP	112
009 1	0058	1350	M I	LLA	1
0092	0059	9 A 2 9	-	STA	MSK2
0093	005A	1351		LL A	2
		8 A27		ADD	M 5K 2
0094	005B				
0095	005C	9 A 2 6		STA	M SK 2
0096	005D	0110		ZAR	
0097	005E	1B03	MS	LLL	4
0098	005F	8 A23		ADD	M SK 2
009-9	0060	DA2-1		IM-S	CN T
0100	0061	F609		JMP	M 1
0101	0062	F714		RTN	DØN S
0102	0063	DAIA	DL P2	IMS	DDT
0103	0064	F63A		JMP	DL P
0104	0065	F629		JMP	DLPI
		1069	Ø TL	REF	
0105	0066		مباد ري		

0106 0107	0067 0068 0069 006A 006B 006C 006D 006E 0070 0071 0072 0073	8 D3 A C6CF D2D7 C1D2 C4AC C2C1 C3CB D7C1 D2C4 A0CF D2AO C2CF D4C8 BFAO	DI RE	DATA TEXT	:8 D3 A 'FØRWARD, BACKWARD ØR BØTH?'
01 08 01 09	0075 0076	2.110	CRL F	REF	
			IKB	REF	
0110	0077		IBC	REF	
0111	0078 0079	0000	ERR	REF	0
0113	0079 007A	FOOB	DIRI ZCTI	DATA DATA	0 408 5
0114	007B	0000	CT1	DATA	0
0115	007C	0000	IB	DATA	0
0116	007D	0000	DI RO	DATA	0
0117	007E	0000	DDT	DATA	0
0118	007F	0000	DDT2	DATA	0
0119	0 08 0	0000	DAT	DATA	0
0120	0.08.1	0000	DNTS	DATA	0
0121	0082	0000	CN T	DATA	0
0122	0 03 3	0000	M SK 2	DATA	0
0123	0084	0000	RØN	DATA	0
0124				EN D	
0000	ERRØRS				

```
1000
                            MAM
                                    IKB, IER, BIPT, XEQ
0002
                            NAM
                                    ØTT, ERR, CRLF
0003
                                    ØTL. ØFPA. ØDEC
                            NAM
0004
       0000
                            REL
0005
0006
                    * PANIC SWITCH
0007
                    ж
0008
       0000
             FB00
                                    * CMN D
                            JST
0009
       0001
                    CMN D
                            REF
0010
0011
                    *KEYBØARD INPUT
0012
0013
       0002
             08 00
                    IKB
                            ENT
0014
       0003
             4033
                            SEL
                                    7,0
                                              AUTØ-ECHØ
0015
       0004
             4039
                            SEL
                                    7, 1
                                              KBD MØDE
0016
       0005
             59 39
                            RDA
                                    7.1
                                              READ ON FLAG
0017
       0006
             403C
                            SEL
                                    7,4
                                              RESET
0018
       0007
             F705
                            RTN
                                    IKB
0019
       0003
             08 00
                    I ER
                            ENT
0020
       0009
             FE07
                            J ST
                                    IKB
0021
       A000
             CODF
                            ÇAI
                                    : DF
                                              BACK ARROW?
0022
       000B
             FFOA
                            JST
                                    * CMN D
                                              YES
0023
       0000
             C 08 A
                            CAI
                                    :8A
                                              LINE FEED?
0024
       0000
            FFOC
                            JST
                                    * CMN D
                                              YES
0025
       000E
             F706
                            RTN
                                    I ER
                                              NEITHER RETURN
0026
0027
                    *PAPER TAPE INPUT
0028
                    * DSO = 0 FØR TTY
0029
                    * 1 FØR HSR
0030
                    *
0031
      OOOF
             08 00
                    BIPT
                            ENT
0032
      0010
             58 0 1
                    BIP2
                            ISA
                                              READ SWITCHES
0033
                                    1
      0011
             13D0
                            LRA
                                              DSO UP FØR TTY
0034
      0012
             220A
                            JØS
                                    H SR
                                              DØWN FØR HSR
0035
      0013
             49 3B
                            SEN
                                    7,3
                                              TTY BUSY?
0036
      0014
             F604
                            JMP
                                    BIP2
                                              YES
0037
      0015
             403A
                            SEL
                                    7,2
                                              NØ, STEP READER
0038
      0016
            48 39
                            SSN
                    WT
                                    7, 1
                                              FL AG?
0039
      0017
             F203
                            JMP
                                    IT
                                              YES
0040
      0018
             0150
                            IAR
                                              NØ BUMP COUNT
0041
      0019
             2149
                            JAZ
                                    BIP2
                                              RESTART IF TIME UP
0042
      001A
                                              ELSE CHECK FLAG AGAIN
             F604
                            JMP
                                    WT
0043
      001B
             58 38
                    IT
                            INA
                                    7,0
                                              INPUT FRØM TTY
0044
      0010
             F70D
                            RTN
                                    BIPT
                                              & RETURN
0045
                                              HSR BUSY?
      001D
             49 33
                    HSR
                            SEN
                                    3 تو
0046
      OOLE
                            JIIP
             F60E
                                    BIP2
                                              YES
            4032
0047
      OOIF
                            SEL
                                    6,2
                                              NØ, STEP READER
0048
      0020
                            SSN
             48 35
                    VH
                                    6, 5
                                              FL AG?
0049
      0021
             F203
                            JMP
                                              YES
                                    IH
0050
      0022
             0150
                            IAR
                                              NØ, BUMP CØUNT
0051
      0023
             2153
                           J AZ
                                    BIP2
                                              RESTART IF TIME UP
\infty52
      0024
             F604
                            JIIP
                                  - WH
                                             ELSE CHECK FLAG AGAIN
\infty53
      0025
             58 35
                            INA
                                    6, 5
                    ΙH
                                              INPUT FRØM HSR
```

0054	0026	F717		RTN	BIPT	& RETURN
0055		-	*		-	
0056				FØR EXE	CUTE SIGN	AL.
0057	0007	09.00	X	EN T		
0058 0059	0027 0028	08 00 FE20	VEG	JST	I ER	INPUT
0060	0028	C 02 D		CAI	:8D	CARRIAGE RETURN?
0061	002) 002A	F703		RTN	XEQ	YES, RETURN
0062	002B	F603		JMP	XEQ+1	NØ, GET MØRE
0063	0000		*	J		
0064			*ØUTPU	T TØ TI	Y	
0065			*			
0066	0020	08 00	ØTT	ENT		
0067	002D	403C		SEL	7, 4	RESET INTERFACE
0068	002E	6D3B		WRA	7.3	WRITE ØN NØT BUSY
∞69	002F	49 3B		SEN	7 , 3	DZN E?
0070	0030	F601		JMP	S- 1	NØ
0071	0031	F705		RTN	ØTT	YES
0072			*			
0073				ND ERRO	R EXIT	
0074 0075	0032	08 00	* ERR	ENT		
0076	0032	C6DF	ENA	LAP	: DF	PRINT ARRØV
0077	0033	FE03		JST	ØTT	1 1/11/4 1 11/1/15 M
0078	0035	FF34		JST	* Crin D	RESTART CØMMAND
0079	0000	1104	*	0.5.	0.11.1 2	
008.0			* CARRI	AGE-RET	TURN, LINE	FEED
008 1			*	•	-	
003 2	0036	08 0 0	CRLF	ENT		
0083	0037	C68 D		LAP	:8D	CR
008 4	0033	FEOC		J ST	ØTT	
008 5	0039	C 68 A		LAP	:8A	LF
003 6	003A	FEOE		J ST	ØTT	
008 7	003B	F705		RTN	CRL F	
8800			*	ነጥ ጥርሄጥ	FROM BUFF	21,00
0089				DI IEAI	FRUM BUFF	'ER
009 0 009 1	0030	03 00	* ØTL	ENT		
009 2	0030	8A0F	N III	ADD	CAI	MAKE CØMPARE INSTRUCTIØN
0093	003E	9A06		STA	ØT2	&SAVE IT
0094	003F	9 A 09		STA	ØT3	-
009 5	0040	E704		LDX	*ØTL	GET TEXT PØINTER
009 6	0041	DE05		IMS	ØTL	SET RETURN ADDRESS
0097	0042	B400	ØTI	L DA	@O	GET WØRD
0098	0043	11D7	•	RRA	8	PRINT FIRST BYTE
0099	0044	FE13		JST	ØTT	
0100	0045	C000	ØT2	CAI	0	LAST ØNE
0101	0046	F70A		RTN	ØTL	YES, RETURN
0102	0047	1157		RLA	8	PRINT SECOND BYTE
0103	0048	FE1C		J ST	ØTT	
0104	0049	C000	ØT3	CAI	0	LAST ØNE?
0105	004A	F70E		RTN	ØTL	YES RETURN
0106	004B	0128		IXR		BUMP PØINTER

```
004C F60A JMP ØTI. LØØP
004D C000 CAI CAI 0
0107
0108
0109
                             *
                              *GUTPUT FLØATING PØINT NU1BER
0110
0-111
0112
        004E 0800 ØFPA
                                       EN T

        004E
        0800
        0FPA
        ENT

        004F
        E701
        LDX
        *ØFPA
        GET PØINTER

        0050
        DE02
        IMS
        ØFPA
        SET RETURN ADDRESS

        0051
        EA01
        STX
        ØPT
        SAVE PØINTER

        0052
        FB0E
        JST
        *FAS
        CØNVERT TØ ASCII

        0053
        0000
        ØPT
        DATA
        O

        0054
        0059
        DATA
        BUF

        004F E701
0113
        0050 DE02
0051 EA01
0114
0115
0116
0117
0118
                                      ZAR
JST ØTL
DATA BUF
RTN ØFPA
0119
         0055 0110
                                                                    SET END FLAG
       0056 FEIA
0057 0059
0058 F70A
0120
                                                                    PRINT NUMBER
0121
0122
                                                     Ø FPA
       0059 0000 BUF RES
0123
                                                     8,0
         0061
                            FAS
0124
                                         REF
0125
                            *
                           * ØDEC ØUTPUT DECIMAL (+/-DDDDDD)
0126
                         ** ØDEC CØNVERTS THE BINARY VALUE IN THE
*A REG AND PRINTS IT AS A SIGNED 5
* DIGIT DECIMAL NUMBER ØN THE TELETYPE.
* AR AND OV ARE DESTRØYED.
0127
0128
0129
0130
0131
0132
                           * LDA VAL AR = VALUE
0133
                           * SVM MUST BE IN WORD MODE
                     * JST *ØDEC CALL RØUTINE
0134
                           * *** RETURN XR UNCHANGED
0135
0136
        0062 0800 ØDEC ENT
       0063 EA19
0064 C4AB
0065 3082
                                      STX S
LXP '+'
JAP $+3
                                        STX
                                                                     SAVE XR
0137
0138
0139
                                      NAR MAKE VALUE
AXI 2 MAKE SIGN -
STA V SAVE VALUE
       0066 0310
0067 C202
0140
                                                                    MAKE VALUE +
0141
                                 STA
TXA
JST ØTT
LDA STRT
STA PTR
LAM 5
STA T
LDA V
LXP :AF
SUB *PTR
IXR
        0068 9A15
0142
        0069 0030
0143
       006A FE3E
006B B215
0144
                                                                    PRINT SIGN
0145
0146
       006C 9A13
                                                                    INITIALIZE TEL PTR
        006D C705
0147
        006E 9A10
0148
                                                                    SET FØR 5 DIGITS
0149
        006F B20E Ø1
        0070 C4AF
                                                                    ZERØ TØ -1
0150
       0071 930E
0151
                                      IXR
JAP
ADD
STA
        0072 0128
0152
                                                 $-2.
*PTR
       0073 30C2
0074 8B0B
01-53
0154
0155
        0075 9A08
        0076 0030
0077 FE4B
0156
                                       A XT
                                     JST
IMS
IMS
                                                 ØTT
                                                                    PRINT DIGIT
0157
         0078 DA07
                                                   PTR
0158
         0079
0159
                   DA05
```

0160 0161 0162 0163 0164 0165 0166 0167 0168	007A 007B 007C 007D 007E 007F 003 0 003 1 008 2 008 3	F60B E201 F71A 0800 0800 0800 0800 0032 2710 03E8	S V T PTR STRT TBL	JMP LDX RTN HLT HLT HLT HLT DATA DATA	Ø1 S ØDEC TH. 10000,	RESTØRE XR RETURN TEMP FØR XR VALUE CØUNT PØINTER TABLE ADDR
	0084	0064		5 A 17 A	10.1	
0169	0 08 5 0 08 6	000A 0001		DATA	10-1	
0170				EN D		
0000	ERRORS					

0001 0002				N AM EX TR		CH, CLEAR BIPT, ØTL, CRLF, I	er, err
003	0000	07.00	55.0	REL	0		
0004 0005	0001	08 0 0 F9_0 0	READ	ent JST	CRL F		
0006	0002	0000 F900		JST	I ER		
		0000					
0007	0003	030		CAI	'0'		
8000	0004	F203		JAP	REZE 'G'		
0009	0005	COC7 F204		CAI JHP	RESN		
0010 0011	0006 0007	F900		JST	ERR		
0011	0007	0000		02.	_,,,,		
0012	0008	E21F	REZE	LDX	IBC		
0013	0009	B21F		LDA	ZCTO		
0014	A000	F204		JMP	RDLP		
0015	000B	B21C	RES.I	L DA	IBC		
0016	0000	BAIE		ADD	SN 0		ODIODIAL DAGE TO
0017	000D	0048		TAX	7.001		ORIGINAL PAGE IS
0018	000E	B21B		L DA	Z CT 1		OF POOR QUALITY
0019	000F	9A1C	RDL P	STA LAP	Cn t :8 a		
0020	0010	C68 A		J ST	ØTT		
0021	0011	F900 0000		0.21	911		
0022	0012	F900		JST	BIPT		
0022	0012	0000		• • •			
0023	0013	2141		J AZ	S- 1	SKIP LEADER	
0024	0014	F900	RI	J ST	ØTT		
		0000					
0025	0015	F900		JST	BIPT	READ TAPE	
		0000			0.0	DID OF LARE	
0026	0016	C092		CAI	:92	END ØF LABEL YES	
0027	0017	F201		JMP JMP	R2 R1	NØ	
0028	0018	F604	R2	JST	BIPT	READ TAPE	
0029	0019	F9 00 0000	π2	031	51	11.00.10	
0030	001A	COFF		CAI	:FF	FILE MARK	
0031	001B	F201		JMP	R3	YES	
0032	0010	F603		JMP	R2	ИØ	
0033	001D	F900	R3	JST	BIPT		
		0000			_		
0034	001E	1357		LLA	8		
0035	001F	9 A 0 E		STA	TEMP		
0036	0020	F900		J ST	BIPT		
000#	0001	0000 A20C		IØR	TEMP		
0037	0021 0022	8 C O O		ADD	60 60		
0033 0039	0022	9000		STA	@O		
0040	0023	0128		IXR			
0040	0025	DA06		IMS	CNT		
0042	0026	F609		JMP	· R'3		
0043	0027	F727		RTN	READ		

0044	0028		IBC	REF			
0045	0029	F010	ZCTO	DATA	- 4030		
0046	002A	FF01	Z CT 1	DATA	- 255		
0047	002B	CEF1	SN O	DATA	33 25		
0043	002C	0000	C.V T				
0049	0020			DATA	0		
		0000	PNT	DATA	0		
0050	002E	0000	TEMP	DATA	O		
0051			*				
0052			* PUNC				
0053	002F	08 00	PUN CH	EN T			
0054	0030	F900		J ST	CRL F		
		0000					
0055	0031	F9 0C		JST	I ER		
		0000					
0056	0032	COBO		CAI	101		
0057	0033	F203		JMP	PNZE		ODICINIATI DA COM
0058	0034	COC7		CAI	'G'		ORIGINAL PAGE IS
0059	0035	F204		JMP	PN SN		OF POOR QUALITY
0060	0036	F900		JST	ERR		
		0000		•			
0061	0037	E60F	PNZ E	L DX	IBC		
0062	0038	B60F		L DA	ZCTO		
0063	0039	F204		JMP	PNL P		
0064	003A	B612	PN SN	L DA	IBC		
0065	003B	3E10		ADD	Si 0		
0066	003C	0048		TAX	2		
0067	003D	B613		L DA	Z CT 1		
0068	003E	9E12	PNL P	STA	CNT		
0069	003F	FAOD		J ST	TEAD		
0070	0040	F900	Ρi	J ST	IKB ,	ECHØ 1	V D EL
		0000	•	05.	1112	TOILE F	ADEL
0071	0041	0092		CAI	:92	CTRL/	TADE
0072	0042	F201		JMP	P2	YES	HPE
0073	0043	F603		JMP	P1	NØ	
0074	0044	C6FF	P2	LAP	:FF		ETT E MANUE
0075	0045	F900	1 2,	J ST		PUNCA	FILE MARK
00,0	0045	0000		0.21	ØTT		
0076	0046	B400	P3	L DA	60	Diblou	D* # C
0077	0047	FAOD	1.5	JST	@O	PUN CH	BIIZ
0078	0048	0128		IXR	ØTW		
0079	0049	DEID		IMS	CALT		
0080	0049 004A	F604			CN T		
008 1	004B			JMP	P3		
008 2		FA01		JST	L EAD		
	004C	F71D	DINIGH	RTN	PUN CH		
008 3 008 4	00.50	02.00	* PUN CH		L EADER		
	004D	08 00	LEAD	ENT	= 0		
008 5	004E	C732		LAM	50		
0086	004F	9 E22		STA	PNT		
0087	0050	0110		ZAR	=		
0088	0051	F9 00	L 2	JST	ØTT		
0000	005-	0000			_		
0089	0052	DE25		IMS	Pn T		
0090	0053	F602		JMP	ΓS		

009 1	0054	F707		RTN	L EAD
009 2 009 3	0055	03 0 0	* ØTV	EN T	
009 4	0056	11D7	Ø I W		8
				RRA	ØTŤ
009-5	0057	F9 00		JST	ווט
000 6	0058	0000 1157		DI A	8
0096				RL A	
0097	0059	F900		JST	ØTT
0000	0054	0000		ואיים בי	a Tu
0098	005A	F705	. 0. 5.5	RTN	ØTW
0099	0055	07.00	* CL EAR	PRØGRA	4
0100	005B	08 0 0	CL EAR	ENT	051 E
0101	005C	F9 00		JST	CRL F
		0000			
0102	005D	F900		JST	I ER
		0000			
0103	005E	COBO		CAI	'0'
0104	005F	F203		JMP	CLZ E
0105	0060	COC7		CAI	'G'
0106	0061	F204		JMP	CL SN
0107	0062	F9 00		JST	ERR
		0000			
0103	0063	E63B	CLZ E	L DX	IBC
0109	0064	B63B		L DA	ZCTO
0110	0065	F204		JMP	CLL P
0111	0066	B63E	CL SN	L DA	IBC
0112	0067	8 E3C		ADD	SN O
0113	0068	0048		XAT	
0114	0069	B63F		L DA	ZCTI
0115	006A	9 E3E	CLLP	STA	CN T
0116	0C6B	0110		ZAR	
0117	006C	9000	CR	STA	@O
0118	006D	0128		IXR	
0119	006E	DE42		IMS	CN T
0120	006F	F603		JMP	CR
1210	0070	F715		RTN	CL EAR
0122				EN D	
0000	ERRØRS				

0001				N AM	FPLØT		
0002	0000			REL	0		
0003	0000	05 00	FPLØT	EN T			
0004	0001	C70F		LAM	15		
0005	0002	9 ABB		STA	NRØV		
0006	0003	B2D0		L DA	1BC		
0007	0004	9 ABA		STA	ΙB		
0003	0005	0108		ZXR			
0009	0006	FBCF		J ST	* CRL F		
0010	0007	FBD1		JST	*!ER		
0011	8000	COBO F221		CAI JMP	FZ RØ		
0012 0013	0009 000A	COB1		CAI	111		
0013	000A	F222		JMP	FØN E		
0015	3000	COB2		CAI	121		
0016	000D	F222		JMP	FTQØ		
0017	000E	COB3		CAI	131		
0018	000F	F222		JIIP	FTHRE		
0019	0010	COB4		CAI	141		
0020	0011	F222		JMP	FFØUR		
0021	0012	COB5		CAI	'5'		
0022	0013	F222		JMP	FFIVE		
0023	0014	C0B6		CAI	161		
0024	0015	F222		JMP	FSIX		
0025	0016	COB7		CAI	171		
0026	0017	F222		JMP	FSEVE		
0027	0018	COBS		CAI	18 1		
0028	0019	F222		JMP	FEI GH		
0029	001A	COB9		CAI	191 EN EN E		
0030	001B	F222		JMP	FNINE		
0031	0010	0001		CAI	'A' FTEN		
0032 0033	001D 001E	F222 C0C2		JMP CAI	B.		
0033	001E	F222		JMP	FECE		
0034	0020	C0C3		CAI	'C'		
0035	0020	F222		JMP	FTWVE		
0037	0022	COC4		CAI	'D'		
0038	0023	F222		JMP	FTHD		
0039	0024	C0C5		CAI	·E·		
0040	0025	F222		JMP	FFRTN		
0041	0026	C0C6		CAI	'F'		
0042	0027	F222		JMP	FFOTN		
0043	0028	COC7		CAI	'G'		
0044	0029	F222		JMP	FSX TN		
0045	002A	FBAF		J ST	*ERR		
0046	002B	0110	FZ RØ	Z AR			
0047	002C	9 A9 C		STA	CALL		
00,48	002D	F22A		JMP	FØØP1		
0049	002E	C601	FØNE	LAP	l Total	ORIGINAL PAC	E IS
0050	002F	F21E	rsm***	JMP	FSTØ	OF POOR QUA	
0051	0030	2090	ftwø	LAP	.2 	· · · · · · · · · · · · · · · · ·	
0052	0031	F21C	TO WHAT TO TO	JMP	FSTØ		
0053	0032	C603	FTHRE	LAP	3		

0054	0033	F21A		JMP	FSTØ
0055	0034	C604	FFØUR	LAP	4
0056	0035	F218		JMP	FSTØ
0057	0036	C605	FFI VE	LAP	5
0058	0037	F216		JMĒ	FŠTØ
0059	0038	C606	FSIX	LAP	6
0060	0039	F214	• ====	JMP	FSTØ
0061	003A	C607	FSEVE	LAP	7
	003B		1,71,01	JMP	FSTØ
0062		F212	FEI GH	LAP	8
0063	0030	C608	reign	JMP	FSTØ
0064	003D	F210		LAP	5 1210
0065	003E	C609	FNINE		FSTØ
0066	003F	F20E		JMP	
0067	0040	C60A	FTEN	LAP	10
0063	0041	F20C		JMP	FSTØ
0069	0042	C60B	FEL. E	LAP	11
0070	0043	F20A		JMP	FSTØ
0071	0044	C60C	FTWVE	LAP	12
0072	0045	F208		JMP	FSTØ
0073	0046	C60D	FTHD	L AP	13
0074	0047	F206		JMP	FSTØ
0075	0048	C60E	FFRTN	LAP	14
0076	0049	F204		JMP	FSTØ
0077	004A	C6OF	FFVTN	LAP	15
0078	004B	F202		JMP	FSTØ
0079	004C	C610	FSXTN	LAP	16
008.0	004D	F200	• •	JMP	FSTØ
003 1	004E	9 A 7 A	FSTØ	STA	CALL
008 2	004F	0310	7 – – –	NAR	
008 3	0050	9A79		STA	FRØV
0084	0051	B26D		L DA	IB
008 5	0052	DA77	FRØNØ	IMS	FRØV
008.5	0052	F201	1,17514.0	JMP	\$+2
				JMP	s + 3
0087	0054	F202			
8800	0055	8A75		ADD	H255
0089	0056	F604		JMP	FRØNØ
009 0	0057	9 A 6 7		STA	IB
009 1	0058	B270	FØØP1	L DA	CALL
009 2	0059	2101		JAZ	•\$+2
009 3	005A	F204		JMP	\$+5
009 4	005B	B26C		L DA	ZCT
009 5	005C	0150		I AR	
009 6	005D	9A63		STA	C/V T
0097	005E	F203		JMP	S+ 4
0098	005F	C7FF		LAM	255
0099	0060	0150		IAR	
-0100	0061	9 Å5F		STA	en t
0101	0062	B25C		L DA	IB
0102	0063	9 A5E		STA	IPB1
0103	0064	B35D		L DA	*IPB1
0104	0065	9 A 5 E		STA	M AX
0105	0066	DA5B	LØØP2	IMS	IPB1
0105	0067	B35A		L DA	*IPB1
0100	0007	200H			

0107	0068	D25B		CM S	M AX
0108	0069	F201		JiiP	5+2
0109	006A	9 A 59		STA	MAX
0110	006B	DA55		IMS	CNT
0111	006C	F606		JMP	LØØP2
0112	006D	0350		ARP	
0113	006E	9A56		STA	SCALE
0114	006F	9A56		STA	RØUND
0115	0070	B256		LDA	H50
0116	0071	D252		CM S	XA M
0117	0072	F202		JMP	\$÷3
0118	0073	F20C		JMP	LØØP
0119	0074	F20B		JMP	LØØP
0120	0075	B24E		LDA	M AX
0121	0076	0108		ZXR	
0122	0077	924F		SUB	H50
0123	0078	0128		IXR	
0124	0079	31C2		JAG	S-2
0125	007A	EA4A		STX	SCALE
0126	007B	1200		RØ V	
0127	007C	11A8		RRX	1
0128	007D	3201		JØR	\$+2
0129	007E	0128		IXR	
0130	007F	EA46		STX	RØ UN D
0131	0 08 0	FB55	LØØP	JST	* CRL F
0132	0051	FB54		JST	* CRL F
0133	0 03 2	C6BD		LAP	t == t
0134	0.08.3	FB54		J ST	₹ØTL
0135	0084	OOCD		DATA	SF
0136	0 08 5	C6A0		LAP	1 1
0137	0 08 6	FB50		J ST	∓øtt
0138	0037	B23D		L DA	SCALE
0139	8800	FB4C		JST	*ØDEC
0140	0 08 9	C601		LAP	1
0141	A 800	9 A 4 I		STA	RØNØ
0142	008B	FB4A		JST	* CRL F
0143	0 08 C	FB49		J ST	* CRL F
0144	0 03 D	B23E		L DA	RØNØ
0145	008 E	FB48		JST	*ØTT
0146	003 F	C7FF		L AM	255
0147	0 09 0	9 A2F		STA	N CØL
0148	0 09 1	B22D		L DA	ΙB
0149	0092	9 A 3 0		STA	IPB2
0150	0 0 9 3	FB42	LØØPI	JST	* CRL F
0151	0094	B32E		L DA	*IPB2
0152	0095	FB3F		JST	∗Ø DEC
0153	0096	C6A0		LAP	1 1
0154	0097	FB3F		JST	₹ØTT
0155	0098	C6B0		LAP	101
0156	0099	FB3D		JST	*ØTT
0157	A 600	B328		L DA	*IPB2
0158	009B	2192		JAL	CLØSE
0159	0 09 C	0103		ZXR	

```
SCALE
0160
       009 D
             9227
                             SUB
                             IXR
0161
       009E
             0128
0162
       009 F
              31C2
                             J AG
                                     S-2
0163
       00A0
                             ADD
                                     SCALE
             8 A24
                             DX R
0164
      00A1
              00A3
0165
      SA00
                             Cl4 S
                                     RØ UN D
             D223
0166
                             JMP
                                     $+3
      00A3
             F202
0167
                             NØP
       00A4
              0000
                             IXR
0168
       00A5
              0128
0169
       00A6
              0030
                             TXA
                                      CLØSE
0170
       00A7
              2186
                             JAL
                                     <u>'*'</u>
0171
       2A00
                             LAP
              C6AA
0172
                             NXR
       00A9
              0503
                                     CNT
0173
       00AA
              EA16
                             STX
                             JST
                                     *ØTT
0174
       OOAB
              FB2B
0175
                                     CNT
       OOAC
              DA14
                             IMS
                             JMP
                                     5-2
0176
       OOAD
              F602
0177
       OOAE
              DA14
                     CLØSE
                             IMS
                                     IPB2
0178
                             NØP
       OOAF
              0000
0179
              DAOF
                             IMS
                                     NCØL
       00B0
0180
              F61E
                             JMP
                                     LØØPI
       00B1
0181
       00B2
             FB23
                             J ST
                                     *CRLF
0182
              B215
                             L DA
                                     CALL
       00B3
                             JAZ
                                      $+2
0183
       00B4
              2101
0184
       00B5
              F206
                             JMP
                                     FSH
0185
              C6FF
                             LAP
                                     255
       00B6
                             ADD
0186
       00B7
             8A07
                                     IΒ
                             STA
0187
       00B8
             9A06
                                     IB
0188
       0039
              DA12
                             IMS
                                     RØNØ
                             IMS
                                     NRØW
0189
       00BA
              DA03
              F628
                             JMP
                                     LØØPI
0190
       00BB
                             JST
                                     *CRLF
0191
       OOBC
             FB19
                     FSH
                                     FPLØT
0192
       OOBD
              F7BD
                             RTN
0193
       OOBE
              0000
                    NRØV
                             DATA
                                      0
              0000
                             DATA
                                      0
0194
       OOBF
                     IΒ
                                      0
0195
       0000
              0000
                     NCØL
                             DATA
0196
       00C1
              0000
                     CNT
                             DATA
                                      0
                             DATA
0197
       0002
              0000
                     IPB1
                                      0
              0000
                     IPB2
                             DATA
                                      0
0198
       0003
0199
       00C4
              0000
                    MAX
                             DATA
                                      0
                             DATA
              0000
                     SCALE
                                      0
0200
       00C5
                     RØUND
                             DATA
                                      0
0201
       0006
              0000
              0032
                     H50
                             DATA
                                      50
0202
       00C7
                    ZCT
                             DATA
                                     -3825
0203
       0008
              FIOF
                     CALL
                             DATA
              0000
                                      0
0204
       00C9
                     FRØV
                             DATA
0205
       00CA
              0000
                                      0
                             DATA
                                      255
0206
       00CB
              OOFF
                     H255
                             DATA
02,07
              0000
                     RØNØ
       0000
                                     'SCALE FACTOR='
                             TEXT
0208
       OOCD
              D3C3
                     SF
       OOCE
              CICC
       OOCF
              C5A0
       OODO
              C6C1
       00D1
              C3D4
```

	00D2	CFD2		
	00D3	BDAO		
0209	00D4		IBC	REF
0210	00D5		ØDEC	REF
0211	00D6		CRL F	REF
0212	00D7		ØTT	REF
0213	00D3		ØTL	REF
0214	00D9		I ER	REF
0215	OODA		ERR	REF
0216				EN D
0000	ERRØRS			

0001				n am	CRT	
0002				NA1	DISP	
0003				MA Vi	DI SD	
0004				EXTR	RTDA	
0005				EXTR	RTTR	
0006	0000			REL	ο ˙	
0007	0000	08 00	CRT	EN T		
8000	0001	C70F		L AM	15	
0009	0002	9900		STA	n rø v	
		0112				
0010	0003	49 C4		SEN	24, 4	
0011	0004	F601		JMP	5-1	
0012	0005	4007		SEL Zar	24,7	
0013 0014	0006 0007	0110 9900		STA	ØFFSET	
0014	0007	0113		514	B11321	
0015	8000	C601		LAP	1	
0016	0009	9900	DI SP	STA	TRI	
0010		0116	52.55			
0017	000A	3106		J AN	\$+ 7	
0018	000B	Bioo		L DA	AD16	
		0126			•	ORIGINAL PAGE IS
0019	0000	8900		ADD	IBC	ORIGINAL PAGE OF POOR QUALITY.
•		0133				Oh. LOOM of
0020	000D	9900		STA	ΙB	
0001	7000	0114		7 AD		
0021	3000	0110		Z AR STA	CALL	
0022	000F	9900 0117		SIH	ما بالاس	
0023	0010	F25F		JMP	MXMI	
0023	0011	B100		L DA	IBC	
••ш-г	70.7	0133				
0025	0012	9900		STA	IB	
		0114				
0026	0013	0103		ZXR		
0027	0014	F9 00		J ST	* CRL F	
		8 1 38				
0023	0015	F900		JST	%IER	
0000	0016	8134 COBO		CAI	101	
0029 0030	0016 0017	F221		JMP	ZERØ	
0030	0018	COBI		CAI	11	
0032	0100	F222		JMP	ØNE	
0033	001A	COB2		CAI	121	
0034	001B	F222		JMP	Twø	
0035	001C	C0B3		CAI	131	
0036	001D	F222		JMP	THREE	
0037	001E	C0B4		CAI .	4 1	
0038	001F	F222		JMP	FØUR	
0039	0020	COB5		CAI	151	
0040	0021	F222		JMP	FIVE	
0041	0022	COB6		CAI	161	
0042	0023	F222		JMP	ŠIX	

0043 0044 0045 0046 0047 0048 0049 0050	0024 0025 0026 0027 0028 0029 002A 002B 002C	COB7 F222 COB3 F222 COB9 F222 COC1 F222 COC2		CAI JMP CAI JMP CAI JMP CAI JMP CAI JMP	'7' SEVEN '8' EI GHT '9' NINE 'A' TEN 'B'	ORIGINAL PAGE IS OF POOR QUALITY
0052 0053	002D 002E	F222 C0C3		JMP CAI	ELE 'C'	
0054	002F	F222		JMP	TWVE	
0055	0030	C0C4		CAI	'D'	
0056	0031	F222		JMP	TH D	
0057	0032	COC5		CAI	1E1	
0058	0033	F222		JMP	FRTN	
0059	0034	0006		CAI	*F*	
0060	0035	F222		JMP	FUTN	
0061	0036	COC7		CAI	*G*	
0062	0037	F222		JMP	SX Tiv	
0063	0038	FBFC	7 550	JST	× ERR	
0064	0039	0110	Z ERØ	ZAR	0.41.1	
0065 0066	A800	9 ADC		STA	CALL	
	003B	F22E	an E	JMP	LØØPI	
0067	0030	C601	ØN E	LAP	1	
0068	003E	F222	TITO	JMP	STØRE	
0069	003E	2060	TWO	LAP	2	
0070 0071	003F 0040	F220	מינו מיני	JMP	STØRE	
0071	0040	C603 F2IE	THREE	LAP	3	
0072	0041	C604	מנוסם	JMP	STØRE	
0073	0042	F21C	FØUR	LAP	4 CTODE	
0074	0043	C605	FIVE	JMP LAP	STØRE 5	
0076	0044	F21A	LIVE	JMP	STØRE	
0077	0045	C606	SIX .	LAP	6 5184E	
0078	0047	F218	SIA	JMP	STØRE	
0079	0048	C607	SEVEN	LAP	7	
008.0	0049	F216	22421	JMP	STØRE	
003 1	004A	C 6 0 3	EIGHT	LAP	8	
003 2	004B	F214		JMP	STØRE	
0083	004C	C609	NINE	LAP	9	
008 4	004D	F212		JMP	STØRE	
008 5	004E	C60A	TEN	LAP	10	
0086	004F	F210		JMP	STØRE	
0087	0050	C60B	EL E	LAP	11	
0088	0051	F20E	-	JMP	STØRE	
0089	0052	C60C	TWVE	LAP	12	
0090	0053	F20C		JMP	STØRE	
009 1	0054	C60D	TH D	LAP	13	
0092	0055	F20A		JMP	STØRE	
0093	0056	C60E	FRTN	LAP	14	
0094	0057	F208		JMP	STØRE	
009 5	0058	C60F	FVTN	LAP	15	

009 6	0059	F206		JM P	STØRE
0097	005A	C610	SX TN	LAP	16
0098	005B	F204		JMP	STØRE
0099	005¢	0108	DI SD	ZXR	
01-00	005D	EAB8		STX	ŤR I
0101	005E	E2D4		LDX	IBC
0102	005F	EAB4		STX	ΙB
0103	0060	9 AB6	STØRE	STA	CALL
0104	0061	0310	D. 3	NAR	
0105	0062	9 AB5		STA	RØWVA
0106	0063	B2B0		L DA	IB
0107	0064	DAB3	RØWNØ	IMS	RØVVA
0108	0065	F201	110 1110	JMP	\$+2
0109	0066	F202		JMP	\$÷3
0110	0067	8 ABB		ADD	H255
0111	0068	F604		JMP	RØWNØ
0112	0069	9 AAA		STA	I B
0113	006A	B2AC	LØØPI	L DA	CALL
0114	006B	2101	700.	JAZ	\$+ 2
0115	0060	F203		JMP	5+4
0116	006D	B2AC		L DA	ZCT
0117	006E	9 AAC		STA	CNT
0118	006E	F202		JIIP	5+ 3
0119	0001	C7FF	IMXM		255
0120	0070	9 AA9	MARIT	LA11	CN T
0120	0071	B2A1		STA L DA	IB
0121	0072	9 AAS			IBP1
0123	0073			STA	IBPI
0123	0074	0110 8AA 9		Z AR STA	M T NI
0124	0075			STA	MIN MAX
0123	0078	9-AA8 B3A4	ממסס		*IBPI
0125		D2A6	LØØP2	L DA CM S	*IBFI MAX
0128	0078 0079	F202			
0128	0079 007A	9 AA4		JMP STA	\$+3
0130	007A			JMP	MAX
		F203			S+4
0131	007C	D2A1		CM S	MIN
0132 0133	007D	9 AA 0		STA	MĪN
0133	007E 007F	0000 DA9 C		NØP	ו תמז
0134	0077	DA9 C DA9 A		IMS	IBPI
	0031	F60A		IMS	CNT LØØP2
0136				JMP	LOGPS
0137 0138	0082	0350 9 A9 C		ARP	COALE
	0083			STA	SCAL E
0139	0 08 4	9 A9 C		STA	RØUND
0140	0.08.5	B299		L DA	MAX
0141	0 08 6	9 29 7		SUB	MIN
0142	0087-	9.A9.7		STA	MAX
0143	8800	B28 D		L DA	TRI
0144	0089	2106		JAZ	SCA
0145	A 800	B28 C		LDA	CALL
0146	008B	2101		J AZ	\$+2
0147	0 08 C	F203		JMP	5+4
0148	0 08 D	B294		L DA	н 100

0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159	008 E 008 F 009 0 009 1 009 2 009 3 009 4 009 5 009 6 009 7 009 8	9 A98 F202 B29 3 9 A9 5 B29 4 D23 B F202 F20C F20B B23 7 0103	SCA	STA JMP L DA STA L DA CMS JMP JMP JMP L DA ZXR	TØTDØT \$+3 H200 TØTDØT TØTDØT MAX \$+3 LØØP LØØP MAX	
0160	0099	9 28 D		SUB	TØTDØT	ORIGINAL PAGE IS OF POOR QUALITY
0161	0 09 A	0128		IXR	e 0	O1, 10010 d
0162 0163	009B 009C	3102		J AG	\$-2 504 F	
0163	009 D	EA8 3 1200		STX RØV	SCALE	
0165	009 E	11A3		REX	1	
0166	009 F	3201		JØR	\$+2	
0167	00A0	0128		IXR		
0168	00A1	EA7F		STX	RØ UN D	
0169	00A2	B273	LØØP	L DA	TRI	
0170	00A3	210B		J AZ	MI	
0171	00A4	FB9 3		JST	* CRL F	
0172 0173	00A5	FB92		JST	* CRL F	
0173	00A6 00A7	C6BD FB5 F		lap jst	.≡. ≨ø t l	
0175	8A00	0120		DATA	SF	
0176	00A9	C6A0		LAP	1 1	
0177	AA00	FB8B		J ST	*ØTT	
0178	00AB	B274		L DA	SCALE	
0179	OOAC	FB8 C		J ST	*ØDEC	
0180	OOAD	FBSA		JST	* CRL F	
0181	OOAE	FB39	1.6 T	JST	* CRL F	
0182 0183	00AF 00B0	B26E 0310	MI	L DA N AR	MIN	
013 4	00B0	0108		ZXR	-	
018 5	00B2	926D		SUB	SCAL E	
0186	00B3	0128		IXR		
0187	00B4	3102		J AG	\$-2	
0188	0095	8 Å6A		ADD	SCALE	
0189	00B6	8A00		DXR	_~	
019 0 019 1	0087	D269		CM S	RØUN D	
0191	00B3 00B9	F202 0000		JMP NGP	\$+3	
0193	00BA	0128		IXR		
0194	00BB	EA6C		STX	X 1	
0195	OOBC	B26B	LØØP4	L DA	Хi	
0196	OOBD	9 A6B		STA	Х	
0197	OOBE	C7FF		L AM	255	
0198	OOBF	9 A59		STA	n cøl	
0199	0000	B253		L DA	IB	
0200	0001	9A5B	r aano	STA	.IBbS	
0201	0002	B250	LØØP3	L DA	ØFFSET	

0202 0203 0204 0205 0206 0207 0208 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221	00C4 00C5	1200 1150 2207 1 JD0 0108 9254 0128	N EG	ADD STA L DA RØV RL A JØS RRA ZXR SUB IXR JAG ADD JMP SØV RRA ZXR ADD SØV RRA ZXR ADD SØV RRA SUB JA1 SUB	X TØTØFF *IBP2 I NEG 1 SCALE \$-2 SCALE \$+7 I SCALE \$-2 SCALE
0221 0222 0223 0224 0225 0226 0227 0228 0239 0231 0232 0233	00D7 00D8 00D9 00DA 00DB	00A8 D248 F202 0000 0128 0030 9A4C E24C 49C4 F601 49C2 F601	DØ T	DXR CMS JMP NØP IXR TXA STA LDX SEN JMP SEN JMP	DØ TNØ TØ TØ FF 24, 4 5-1 24, 2 5-1 24, 2
0235 0236 0237 0233 0239 0240 0241 0242 0243 0244 0245 0246 0247	00E4 00E5 00E6 00E7 00E8 00E9 00EA 00EB 00EC 00ED 00EF 00F0	B231		L DA J AZ L DA J AZ JMP L DA ADD TAX Ø TX JMP L DA J AZ J AZ	TRI \$+9 CALL \$+2 \$+6 DØTNØ TØTØFF 24, 2 DØN E DØTNØ DØN E PØS
0247 0248 0249 0250 0251 0252 0253 0254	00F0 00F1 00F2 00F3 00F4 00F5 00F6	00A3 0150 9A36 F615 0123 00D0 9A32	PØ S	DXR TAR STA JHP IXR DAR STA	DØ TNØ DØ T

0055	0.057	E (10		****	,
0255	00F3	F619	Dans	JMP	DØT
0256 0257	00F9	B22F	DØN E	L DA	X
0257	00FA 00FB	8 A2A 9 A2D		ADD STA	Н256 Х
0259	OOFC	DA20		IMS	I BP2
0260	00FD	DAIB		IMS	NCOL
0261	OOFE	F63C		JMP	LØØP3
0262	OOFF	B216		L DA	TRI
0263	0100	3104		JAV	\$÷5
0264	0101	B215		L DA	CALL
0265	0102	2101		J AZ	\$+ 2
0266	0103	F100		JMP	RTDA
	•	0000			
0267	0104	F100		JMP	RTTR
		0000			
0263	0105	B211		L DA	CALL
0269	0106	2101		JAZ	\$+2
0270	0107	F203		JMP	FIN
0271	8010	C60A		LAP	10
0272	0109	8 A 09		ADD	ØFFSET
0273	010A	9A03		STA	ØFFSET
0274	010B	B217		L DA	H255
0275	0100	8 A O 7		ADD	IB
0276 0277	010D 010E	9 A 0 6 DA 0 3		STA	IB
0277	010E	F653		IMS JMP	NRØV LØØP4
0279	0110	FB27	FIN	JST	* CRL F
023 0	0111	F100	1.114	RTN	CRT
0200	• • • • • • • • • • • • • • • • • • • •	8000		11114	
023 1	0112	0000	NRØW	DATA	0
028 2	0113	0000	ØFFSET		0
028 3	0114	0000	ΙB	DATA	0
0284	0115	0000	IBQ	DATA	0
023 5	0116	0000	TRI	DATA	0
023 6	0117	0000	CALL	DATA	0
0237	0118	0000	RØVVA	DATA	0
0288	0119	0000	NCOL	DATA	0
0289	011A	FIOE	ZCT	DATA	- 38 2 6
029 0	011B	0000	CN T	DATA	0
029 1	0110	0000	IBPI	DATA	0
029 2 029 3	011D 011E	0000	IBP2	DATA	0
0293	011E	0000	MIN MAX	DATA	0
029 5	0117	0000	SCALE	DATA DATA	0 0
029 6	0121	0000	RØ UN D	DATA	0
0297	0122	0064	H100	DATA	100
0298	0123	OOFF	H255	DATA	255
0299	0124	00C2	H200	DATA	200
0300	0125	0100	H256	DATA	256
0301	0126	OEF1	ADI6	DATA	38 25
0302	0127	0000	TØTDØT	DATA	0
0303	0128	0000	X 1	DATA	0
0304	0129	0000	X.	DATA	0
	•				

0305 0306	012A 012B	0000	DØTNØ TØTØFF	DATA DATA	0 0	
0307	0120	D3C3	SF	TEXT		FACTØR= '
	012D	CICC			~	~
	0-1-2-E	C5A0		-		
	012F	C6C1				
	0130	C3D4				
	0131	CFD2				
	0132	BDA0				
0308	0133		IBC	REF		
0309	0134		I ER	REF		
0310	0135		ERR	REF		
0311	0136		ØTT	REF		
0312	0137		ØTL	REF		
0313	0138		CRL F	REF		
0314	0139		ØDEC	REF		
0315	•			EN D		
0000	ERRØRS					

PAGE	1000				
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027	0000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0000 000D 000E 0010 0011 0012 0013 0014 6015 0016 0017 0018	0001 0001 0001 FFFF 0001 FFFF 0001 FFFF FFFF 0001 FFFF 0001 FFFF 0001 FFFF 0001 FFFF FFFF	MASK O	NAM REL DATA DATA DATA DATA DATA DATA DATA DAT	MASK 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0027 0028 0029 0030 0031 0032 0000	0018 0019 001A 001B 001C	FFFF 0001 FFFF FFFF			_

0001 0002 0003 0004 0000	0000 0000 ERRURS	0000	IBC -	nam REL Data End	0000 0000
--------------------------------------	------------------------	------	----------	---------------------------	--------------

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX D ORIGINAL PAGE IS OF POOR QUALITY

```
1
      DEF FNR(X) = INT(100*X+0.5)/100
10
      DIM Ø(255), F(255), X(255)
20
      PRINT "SPECTRUM CORRECTED FOR NEGETIVE DIP"
25
      PRINT
26
      PRINT
30
      CALL (20)
40
      CALL (5,0(0),256,2)
50
      LET F(0) = \emptyset(0)
60
      FOR N=1 TO 255
70
      LET II=N-1
75
     IF 11>0 THEN 85
80
     LET 11=255
85
     LET 12=N+1
90
      IF I2<256 THEN 100
95
     LET 12=12-255
100
    LET I3=N+24
105
     IF 13<256 THEN 115
     LET I3=13-255
110
115
    LET 14=N+25
120
     IF 14<256 THEN 130
      LET 14=14-255
125
130
     LET C=(\emptyset(13)+\emptyset(14)-\emptyset(11)-\emptyset(12))/20
140
    LET F(N) = \emptyset(N) + C
150
     NEXT N
160
      PRINT "A: 1 FØR DISPLAY, 2 FØR GRAPH, 3 FØR TAPE"
      PRINT "B: O FØR ØRIGINAL, I FØR FINAL"
170
13 0
     PRINT
200
     PRINT "A=";
     INPUT A
210
220
    PRINT "B=";
230
     INPUT B
      PRINT "RESØLUTIØN D=";
240
250
    INPUT D
     PRINT "INITIAL WAVE LENGTH LO=";
260
270
      INPUT LO
25.0
     PRINT
29 0
    PRINT
300
     IF A= 3 THEN 730
    LET Z=0
310
320
    LET M= 1E10
330
    FØR N=1 TØ 255
```

202

```
350
       IF B= 1 THEN 400
360
      LET X(N) = \emptyset(N)
370
       GØTØ 410
400
      LET X(N) = F(N)
410
      IF X(N)>=4 THEN 430
420
      LET M=X(N)
430
      IF X(N) \le Z THEN 450
440
      LET Z=X(N)
450
      NEXT N
460
       IF 11>= 0 THEN 510
470
      LET SO= 255/(Z-M)
48 0
      LET Sl = 48/(Z-M)
490
      LET YO -M*S
500
      GØTØ 540
510
      LET SO= 255/Z
      LET S1= 48/Z
520
530
      LET YO= 0
540
      PRINT "MAX="3Z;"AIN="3M
550
       IF A= 2 THEN 630
560
      PRINT "SCALE FACTOR="; SO
570
      FØR N=1 TØ 255
53 0
      LET E=INT(S0*X(N)+0.5)
59.0
       CALL (3, N, Y 0, 2, E)
600
      NEXT N
620
       GØTØ 160
630
       PRINT "SCALE FACTOR="; SI
635
      PRINT
636
      PRINT
640
      FØR N=1 TØ 255
650
      LET E=INT(S1*X(N)+0.5)
660
      LET L=L0+(N-1)*D
670
      PRINT FNR(L); TAB(8); X(N)
715
      NEXT N
730
      IF B= 0 THEN 760
      IF B= 1 THEN 780
740
750
       GØTØ 200
760
       CALL (6, Ø(0), 256, 2)
770
       GØTØ 790
78 0
      CALL(6, F(0), 256, 2)
790
      CALL (6, 0, 0, 3)
800
      STØP
```

BIBLIOGRAPHY

- 1. Aitken, D.K., and Jones, B., (1972), Nature, 240, 230.
- Allen, J.D., Jr., and Schweitzer, G.K., (1972, 1973),
 J. Electron Spectroscopy <u>1</u>, 509.
- 3. Baumert, L.D., (1964), Digital Communication with Space Application, Prentice-Hall Inc., Canada, S.W. Golomb, Ed. pp.17-32.
- 4. Combes, M., Encrenaz, TH., Vapillon, L., and Ze'au, Y., (1974), Astron & Astrophys, 34, 33.
- 5. Colpa, J.P., and Keltelaar, J.A.A., (1958), Mol. Phys., 1,14.
- 6. Cudaback, D.D., and Gaustad, J.E., (1971), 166, L49.
- 7. Day, K.L., (1974), Ap.J., 192, L15.
- 8. Decker, J.A., Jr., and Harwit, M., (1968), Appl. Opt., 7, 2205.
- 9. Decker, J.A., Jr., (1969), Appl. Opt., 8, 2552.
- 10. Decker, J.A., Jr., (1971), Appl. Opt., <u>10</u>, 510.
- 11. Decker, J.A., Jr., (1974), Appl. Opt., <u>13</u>, 1296.
- 12. Encrenaz, Th., (1972), Astron and Astrophys, <u>16</u>, 237.
- 13. Fellgett, P., (1951), Cambridge Univ., PH.D. thesis.
- 14. Féllgett, P., (1958), J. Phys., 19, 187.
- 15. Fink, U., Larson, H.P., and Poppen, R.F., (1974), Ap.J.,
 187, 407.
- 16. Finkbeiner, D.T., II(1960), <u>Introduction to Matrices and</u>
 <u>Linear Transformations</u>, W.H. Freeman and Co., San Francisco.

- 17. Gamown, R.H., Gaustad, J.E., and Treffers, R.R., (1973), Ap.J., <u>175</u>, 687.
- 18. Gillett, F.C., Low, F.J., and Stein, W.A., (1968), Ap.J., 154,677.
- 19. Gillett, F.C., Low, F.J., and Stein, W.A., (1969), Ap.J., 157, 925.
- 20. Gilman, R.C., (1969), Ap.J., 155, L185.
- 21. Golay M.J.E., (1949), J. Opt. Soc. Amer. 39, 437.
- 22. de Graauw, Th., Veltman, B.P. Th., (1970), Appl. Opt., 9, 2658.
- 23. Hall, M., Jr., (1967), <u>Combinational Theory</u>, Blaisdell Publ. Co., Waltham, Mass., 204.
- 24. Harwit, M., Phillips, P.G., Fine, T., and Sloane, N.J.A., (1970), Appl. Opt., 9, 1149.
- 25. Harwit, M., (1971), Appl. Opt., 10, 1415.
- 26. Harwit, M., (1973), Appl. Opt., <u>12</u>, 285.
- 27. Harwit, M., Phillips, P.G., King, L.W., and Briotta, D.H., (1974a), Appl. Opt., <u>13</u>, 2669.
- 28. Harwit, M., and Decker, J.A., Jr., (1974b), Progress in Optics XII, North-Holland.
- 29. Hirschfeld, T., and Wijntjes, G., (1973), Appl. Opt., <u>12</u>, 2876.
- 30. Hirschfeld, T., and Wijntjes, G., (1974), Appl. Opt., <u>13</u>, 1740.
- 31. Hirschy, V.L., and Aldridge, J.P., (1971), Rev. Sci. Inotrum. 42, 381.
- 32. Hotelling, H., (1944), Ann. Math. Stat. 15, 297.

- 33. Houck, J., Pollack, J.B., Schaack, D., Sagan, C., and Decker, J.A., (1973), Icarus, 18, 470.
- 34. Ibbett, R.N., Aspinall, D., Grainger, J.F., (1968), Appl. Opt., 7, 1089.
- 35. Ingersoll, A.P., submitted to space Sci. Rev. July, 1975.
- 36. Jacquinot, P., (1954), J.O.S.A., 44, 761.
- 37. Jacquinot, P., (1960), Rep. Prog. Phys., 23, 267.
- 38. Kittel, C., (1966), <u>Introduction to Solid State Physics</u>,
 John Wiley and Sons, N.Y., 548.
- 39. Kowalski, B.R., and Bender, C.F., (1973), Anal. Chem. <u>45</u>, 2234.
- 40. Kranendonk, J. Van. and Kiss, Z.J., (1959), Can. J. Phys., 37, 1187.
- 41. Lacy, J.H., Larrabee, A.I., Wollman, E.R., Geballe, T.R., Townes, L.H., Bregman, J.D., and Rank, D.M., (1975), Ap. J., 198, L145.
- 42. Larson, N., Crosmun, R., and Taimi, Y., (1974), Appl. Opt., 13, 2662.
- 43. Lewis, J.S., and Prinn, R.G., (1970), Science, <u>169</u>, 472.
- 44. Linsky, J.L., (1973), Ap.J., Supp., <u>216</u>, 25, 163.
- 45. Low, F.J., and Swamy, K.S.K., (1970), Nature, <u>227</u>, 1333.
- 46. Maas, R.W., Ney, E.P., and Woolf, N.J., (1970), Ap.J., letters, <u>160</u>, L101.
- 47. McCord, T.B., and Adams, J.B., (1972), Icarus, 17, 585.
- 48. McElroy, M.B., (1973), Space Sci. Rev., 14, 460.
- 49. Mertz, L., (1965), <u>Transformation in Optics</u>, John Wiley and Sons, Inc., N.Y.

- 50. Mertz, L., (1976) Private communication.
- 51. Mertz, L., and Flamand, J., (1976), Private communication.
- 52. Morrison, D., and Sagan, C., (1967), Ap.J., 150, 1105.
- 53. Morrison, D., (1970), Spa. Sci. Rev., 11, 271.
- 54. Murcray, F.H., Murcray, D.G., and Williams, W.J., (1970), J. Geo. Res. 75, 14, 2662.
- 55. Murdock, T.L., (1974), Ap.J., <u>79</u>, 1457.
- 56. Nelson, E.D., and Fredman, M.L., (1970), J.O.S.A., 60, 1664.
- 57. Oliver, C., and Pike, E., (1974), Appl. Opt., 13, 158.
- 58. Penman, (1976), Mon. Not. R. Astr. Soc., <u>175</u>, 149.
- 59. Pettingill, G.H., and Dyce, R.B., (1965), Nature, 206, 1240.
- 60. Phillips, P.G., and Harwit, M., (1971), Appl. Opt., 10, 1415.
- 61. Planky, F.W., Winefordner, J.D., (1974), paper No.200,
 Pittsburgh Conference on Analytical Chemistry and Applied
 Spectroscopy.
- 62. Podolak, M., and Cameron, A.F.W., (1974), Icarus, 22, 123.
- 63. Pratt, W.K., Kane, J., and Andrew, H.C., (1969), Proc IEEE, 57, 58.
- 64. Putley, E.H., (1964), Phys, Stat. Solidi, 6, 571.
- 65. Rage and Sagan, C., (1977), in preparation.
- 66. Ridgway, S.T., (1974), Ap.J., 187, L41.
- 67. Sagan, C., and Salpeter, E.E., (1976), Ap.J., Suppl <u>76</u>.
- 68. Saiedy, F., and Goody, R.M., (1959) R.A.S.M.N. 119, 213.
- 69. Salpeter, E.E., (1974a), Ap.J., 193, 579.
- 70. Salpeter, E.E., (1974b), Ap.J., 193, 585.

- 71. Sloane, N.J.A., Fine, T., Phillips, P.G., and Harwit M., (1969), Appl. Opt., 8, 2103.
- 72. Sloane, N.J.A., and Harwit, M., (1976), Appl. Opt., 15, 107.
- 73. Smith, L.G., (1949), J. Chem. Phys., <u>17</u>, 139.
- 74. Soter, S.L., and Ulrichs, J., (1967), Nature, 214, 1315.
- 75. Stewart, J.E., (1970), <u>Infrared Spectroscopy</u>: Experimental Methods and Techniques, Marcel Dekper, Inc., N.Y.
- 76. Strobel, D.F., (1973), J. Atmos, Sci., 30, 489.
- 77. Swift, R.D., Wattson, R.B., Decker, J.A., Paganetti, R., and Harwit, M., (1976), Appl. Opt., 15, 1595.
- 78. Tai, M.H., Briotta, D.A., Kamath, N.S., and Harwit, M., (1975a), Appl. Opt., <u>14</u>, 2533.
- 79. Tai, M.H., Harwit, M., and Sloane, N.J.A., (1975b), Appl. Opt., 14, 2678.
- 80. Terrile, R.J., and Westphal J.A., (1976), preprint.
- 81. Trafton, L.M., and Munch, G., (1969), J. Atm. Sci., 26, 813.
- 82. Treffers, R., and Cohen, M., (1974), Ap.J., <u>188</u>, 545.
- 83. Vanasse, G.A., Sakai, H., (1967), Progress in Optics, T., 298, E. Welf, Ed., Wiley-Interscience, N.Y.
- 84. Vanasse, G.A., (1974), Application of Walsh Functions and Sequency Theory. The Institute of Electronic Engineering, Inc., New York, N.Y. 10017.
- 85. de Vanceuleurs, G., (1964), Icarus, <u>3</u>, 187.
- 86. Wallace, L., Caldwell, J.J., and Savage, B.D., (1972), Ap. J., <u>172</u>, 755.
- 87. Wallace, L. Prather, M., and Balton, M.J.S., (1974), Ap.J., 192, 481.

- **88.** Weidenschilling, S.J., and Lewis, J.S., (1973), Icarus, <u>20</u>, 465.
- 89. Woolf, N.J., and Ney, E.P., (1969), Ap.J., 155, L181.
- 90. Wyatt, C., and Esplin, R., (1974), Appl. Opt., 13, 2651.