NASA Technical Memorandum 78668

AN INTRODUCTION TO SHUTTLE/LDEF RETRIEVAL OPERATIONS: THE R-BAR APPROACH OPTION

```
\because(NASA-TM-78668) AN INTRODUCTION TO N78-18105
SHOTTLE/LDEF RETRIEVAL OPERATIONS: THE
R-BAR: APPROACH OPFION (NASA) 180 p HC
A09/MF A01 CSCL 22A Unclas
G3/16 05989
```

William M. Hall

February 1978

Section Page
1.0 Introduction 1
2.0 Pre-TPI Maneuvers 7
3.0 TPI. 7
4.0 Post-TPI 9
5.0 The LVLH Coordınate System 12
6.0 Some Important Cockpit Instrumentation 15
6.1 The Crewman Optical Alinement Sight (COAS). 16
6.2 LOS Rate Needles 16
6.3 Range and Range Rate. 21
6.4 The Orbiter Attitude Director Indicator (ADI) 22
7.0 Transferrıng to Vısual LOS Navıgatıon 29
8.0 Entering the Braking Schedule 32
9.0 Updating the Orbiter's State Vectors 35
10.0 Translating to \bar{R} 36
11.0 Inctializing on \bar{R}. 39
12.0 The \bar{R} Approach 41
13.0 \bar{R} Approach Sensitivity 60
14.0 The Digatal Auto Pılot 67
15.0 Usang the COAS During an $\overline{\mathrm{R}}$ Approach 73
15.1 Determining Range with the COAS 73
15.2 LDEF Ranging Targets 74
15.3 COAS Ranging Sensıtivıty 74
15.4 Determining Range Rate with the COAS 79
15.5 Target Wadth 81
15.6 COAS Range Error vs. Resolution 83
15.7 Optımızing Target Sıze 89
15.8 COAS Ranging Error due to LDEF/Orbiter Yaw Attıtude Skew. 104
Section Page
15.9 Combining the Resolution and Skew Errors 111
16.0 Man-In-the-Loop Simulation Findings 117
17.0 Establishing Zero Range Rate wath the Aft P/L Bay CCTV 120
18.0 A Specıfic \bar{R} Approach Strategy 138
19.0 Applying the Approach Strategy - an Example. 148
20.0 The Rationale for Two LDEF Grapple Fixtures and Station-Keeping Targets 165

List of Figures

Figure Page
1-1 Typıcal Apollo/Gemıni Rendezvous Termanal 2 Braking Schedule
3-1 Terminal Phase Inıtıation Burn 8
4-1
Post TPI Trajectory 11
5-1 LVLH Frame 13
5-2 Typical Intercept Trajectory in the LVLH Frame 14
6.1-1 'COAS Reference Image (Crewman Optıcal Alignment Sight) 17
6.1-2 COAS Schematic 18
6.2-1 LOS Inertial Rate Indicator (Ku-Band Radar Antenna). 19
6.4-1 The Attztude Director Indicator (ADI) 23
6.4-2 The Three LOS Attitude Frames. 24
6.4-3 Rotating to the Aft LOS Frame 26
$6.4-4$ Rotating to the Upper LOS Frame 27
6.4-5 Usıng the COAS and "Eight Ball" to Determine Orbiter 28Approach Direction
7-1 Initial Conditions at 2 to 4 miles prior to Commanding 31 Attatude Hold
8-1 Proposed Orbıter Brakıng Schedule 33
8-2 Typıcal Orbiter Trajectory During Brakıng Wıth an 34 Inertially Stationary LOS
10-1 Orbiter Translating to LDEF \bar{R} 38
12-1 Phasing of Two Circular Geocentrac Orbats 42
12-2 Releasing the Orbıter from \bar{R}_{L} 43
12-3 The $\overline{\mathrm{R}}$ Approach in the LVLH Frame 44
12-4 The $\overline{\mathrm{R}}$ Approach in the State Domann of Range and 53 Range Rate

List of Figures (Cont'd)

Figure Page
12-5 Range Versus Time. When Followang the Hyperbolic 57 Asymptote in the \dot{R} versus R Domain
13-1 Hot and Cold \bar{R} Approaches 62
13-2 Allowable Range Rate Errors Versus True Range 65
13-3 $\delta \dot{R}$ in the \dot{R} versus R_{T} Domann 66
14-1 Digital Auto Pılot (DAP) Control Panel Confıgured for an 69 $\overline{\mathrm{R}}$ Approach
14-2a Normal 2 Jet Brakıng ($0.45 \mathrm{ft} / \mathrm{sec}^{2}$ at $30 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$) 71
$14-2 \mathrm{~b} \pm \mathrm{X}$ Jet Braking ($0.05 \mathrm{ft} / \mathrm{sec}^{2}$ at $280 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$) 71
15.2-1 Deployment and Retrieval Markings - Operational Aids 75(LaRC Dwg. LE-815713A)
15.2-2 Ranging with the 0.83 ft . LDEF Target 76
15.2-3 Ranging with the 3.36 ft . LDEF Target 77
15.2-4 Ranging with the 14 ft . LDEF End Face Target 78
15 6-1 COAS Resolution Error 85
15.7-1 COAS Ranging Error $\left|\varepsilon_{R}\right|$ Versus $R / R_{\text {min }}^{\prime}$ 94
15.7-2 $\left|\varepsilon_{R}\right|$ Versus Range 95
15.7-3a Utilizzng the LDEF Targets 96
15.7-3b Utılizing the LDEF Targets 97
15.7-3c Utılizing the LDEF Targets 98
15.7-3d Utılızing the LDEF Targets 99
15.7-3e Utılizing the LDEF Targets 100
15.7-3f Utılızing the LDEF Targets 101
15.7-3g Utilizing the LDEF Targets 102
15.7-3h Utilizing the LDEF Targets 103

List of Figures (Cont'd)

Figure Page
15.8-1 Skewed Orbıter/LDEF Yaw Attıtudes Durıng Approach 105
15.8-2 Target/Reticle Skew 106
15.8-3 Circular Target Positioning Errors in COAS 110
17-1 Establishing Zero Range Rate with the Aft P/L Bay CCTV 121
17-2 Aft CCTV Image Nozse, $\triangle \mathrm{D}$ 131
17-3 Image Noise, $\triangle D$, Superimposed on LDEF at a Range of 224 Feet 132
$17-4 a$ Initial CCTV Alinement at 224 feet 134
17-4b The first major positıve peak at 224 feet 134
17-4c The first major negative peak at 224 feet 135
17-4d The second major positive peak at 224 feet 135
18-1a Burn Constraints When Utilızing Only Radar Data 139
18-1b Burn Constraints When Utilizing Only Radar Data 140
18-1c Burn Constraints When Utılizing Only Radar Data 141
18-1d Burn Constraints When Utilızing Only Radar Data 142
18-2a Burn Constraints When Range Rate is Known to be ZERO 145
18-2b Burn Constraints When Range Rate is Known to be ZERO 146
18-2c Burn Constraints When Range Rate 1 s Known to be ZERO 147
19-1a Plotting the Approach Example on the Decision Graphs 150
19-1b Plotting the Approach Example on the Decision Graphs 151
19-1 Plotting the Approach Example on the Decision Graphs 152
19-1d Plotting the Approach Example on the Decision Graphs 153
19-1e Plotting the Approach Example on the Decision Graphs 154
19-1f Plotting the Approach Example on the Decision Graphs 155

List of Figures (Cont'd)

Figure Page
19-1g Plotting the Approach Example on the Decision Graphs 156
20-1 Defining Grappling Operation Limits in the COAS 166
20-2 Accommodating the Varıous LDEF Yaw Attitudes for 168Grappling Operations (A11 views are through the COAS)

List of Tables

Table Page
Unit Conversion Tāblē - ix
12-1 Orbital Mechanics Forces During an $\overline{\mathrm{R}}$ Approach 48
12-2 Optamum $\overline{\mathrm{R}}$ Approach Times 59
15.5-1 Allowable Positioning Error about $\overline{\mathrm{R}}$ 82
15.6-1 Range Error Vs. COAS Resolution Error for LDEF Station Keeping Target, $W=0.83 \mathrm{ft}$. 86
15.6-2 Range Error Vs. COAS Resolution Error for LDEF Approach Target, $W=3.36 \mathrm{ft}$. 87
15.6-3 Range Error Vs. COAS Resolution Error for LDEE End Face Target, $W=14.0 \mathrm{ft}$. 88
15.9-1 Combined Resolution and Skew Errors for LDEF Station Keeping Target, $W=0.83 \mathrm{ft}$. 114
15.9-2 Combined Resolution and Skew Errors for LDEF Approach Target, $W=3.36 \mathrm{ft}$. 115
19-1 An Approach Trajectory Example 157

Unit Conversion Table

The following table may be used to convert from the U.S. Customary Units used in this report to the International System of Units (SI).

To convert from	to	multiply by
foot	meter	0.3048
Inch	meter	0.0254
lbf (pound force, avolrdupois)	newton	4.4482
Ibm (pound mass,	kilogram	0.45359
avoirdupols)	meter/second ${ }^{2}$	0.3048
nautical mıle (U.S.)	meter	1852
foot/second	meter/second	0.3048
degree (angle)	radıan	0.017453

1.0 Introduction

The task of rendezvousing and station keeping with another orbiting body has never been simple. Nevertheless, considerable experience has been derived from the Gemini and Apollo programs. The scenario of systematic maneuvers has become somewhat standardized over the years.

In the final phase of a Gemini/Apollo rendezvous, the TPI (Terminal Phase Inctiation) burn placed the chase vehicle on a collision course with the target vehicle. High rates of closure (approximately 30 feet per second at one mile) were utilized in order to minimize navigational dispersions. An orderly line of sight braking schedule provided a range rate gradient of approximately 5 feet per second per 1000 feet (See Figure 1-1.)

The final 5 fps of closing range rate was not scheduled to be dissipated untıl the station keeping range, R_{S}, was achieved. R_{S} was less than 100 feet. During the entire braking sequence the target vehicle suffered plume impingement from the chase vehicle's jets. The impangement imparted momentum to the target vehicle and contaminated its surfaces with exhaust products. Impangement consequences were not significant for two reasons: first, the target vehicle was not especially sensitive to contamination; and second, the imparted momentum, rotational and translational, caused minor perturbations of the target vehicle's motion To be sure, the ratio of the target vehicle mass to the chase vehicle mass was near unity; furthermore, the target vehicle usually had significant attitude control capability \therefore , which could ımmediately dump any imparted angular momentum.

With the advent of shuttle, the ratio of target vehicle mass to chase vehicle mass enters a new regime. In stark contrast to even the 18,000 -pound LDEF, the Orbiter is essentially an order of magnztude heavier at approximately 180,000 pounds. Braking from 30 feet per second wall require a significantly greater expulsion of thruster combustion products. Whether it is a long burn from small thrusters or shorter burns from larger thrusters, a large translational momentum must be dumped into thruster exhaust products.

Only a small percentage of the plume's momentum is transferred to the target vehucle. Nonetheless, sumulations ${ }^{1}$ have clearly demonstrated that if the Orbiter follows the direct approach used by Geminy/Apollo, the momentum transfer to the target vehicle can be significant. In the case of LDEF, for example, the sum of the magnitudes of the angular ımpulses imparted by the plume field exceeded $500 \mathrm{ft}-1 \mathrm{~b}-\mathrm{sec}$. (To place this into perspective, only 80 ft-1b-sec of net impulse about the LDEF pitch axis is capable of tumbling LDEF at 0.09° per second.) Although the vector sum of the imparted angular impulse could be considerably less, the vector sum is not a totally controllable parameter during an approach. Some simulated direct approaches, for example, caused the LDEF inertial rate to change as much as 0.3° per second. Yet, 0.1° per second relatave to the Orbiter is thought to be the upper limit for grappling operations. A corollary to these findings is that the LDEF surfaces would suffer considerable contamanation during a direct approach.

[^0]All of this has precıpıtated a reassessment of the final approach strategy. One solution, which at this time appears to be very viable, is commonly known as the R -bar $(\overline{\mathrm{R}})$ approach. To be sure, the $\overline{\mathrm{R}}$ approach is but one of several proposals being developed and studied at JSC. But the $\overline{\mathrm{R}}$ approach has one very distingulshing attribute orbatal mechanıcs forces are utilized to brake the final closing velocity as the target is approached. It is, therefore, theoretically possible to approach LDEF without any braking plume impıngement.

Because the \bar{R} approach is still in its infancy, descriptive documentation is sparse and scattered. The untent of this working paper ls to give a general description of an LDEF rendezvous which Incorporates the $\overline{\mathrm{R}}$ approach.

For the uninitzated reader, plunging into a document on rendezvous operatıons can be a disaster. Termınology is foreıgn, orbital mechanics ls foreign, and the pertinent aspects of the Orbiter system are forengn. To help alleviate this problem, Sections 2.0 through 7.0 are provided. First, a typıcal intercept trajectory is introduced in the familiar geocentric frame. Next, a new but very convenient coordinate system (the LVLH, or Local Vertıcal Local Horizontal Frame) is defined and used to show trajectory progress as the Orbıter nears LDEF. Third, the most relevant Orbiter cockpit instrumentation is introduced. Throughout these sections and the paper in general, an attempt is made to explain $\therefore \approx$ rendezvous operations in terms of pllot actuvity and the controls and instruments he uses.

Section 8.0, Enterıng the Braking Schedule, discusses how the pilot must dissipate his closing range rate before the resulting plume fields can significantly disturb LDEF. Then, sections 9.0, 10.0, and 11.0 explain the procedures for translating the Orbater to a position below LDEF and setting up for the R-bar final approach.

Section 12.0 , The \mathbb{R} Approach, presents the most important aspects of Orbiter dynamics when operating along the LDEF radius vector. It is shown, for example, why orbital mechanics forces are always acting in a direction to drive the Orbiter away from LDEF or to decelerate the Orbiter during an approach to LDEF. In addıtion, equations are derived to describe Orbiter motion in the relative state domaln of range rate versus range and in the time domans of range versus time and range rate versus time. Throughout the section, particular attention $1 s$ given to providing physical explanations of the more useful and important equations of motion.

Section 13.0, 죠 Approach Sensituvity, addresses an important reality of the $\overline{\mathrm{R}}$ approach, namely, its exceptional sensitivity to Orbiter/LDEF relative state errors and/or 1 mperfect Orbiter control. Respect for this characteristic is so important that the remainder of the paper $1 s$ almost totally devoted to assessing state measurement errors and how they may be accommodated in a practical $\overline{\mathrm{R}}$ approach strategy.

Section 14.0, The Digital Auto Pilot, explains, how the Orbiter Attitude Control System (ACS) is'configured to minimize plume ampangement and provide fine ΔV control resolution during an \bar{R} approach. Some
disadvantages of the approach configuration and the basic ACS design are ālso presented.

Radar errors (which are introduced in Section 6.3) become unacceptable well before an $\overline{\mathrm{R}}$ approach can be completed. The current solution to the problem lies in using a COAS (Crewman Optical Alıgnment Sight) from the Apollo Program. Sections 15.1 through 15.9 explain the errors and limitations of this device $1 n$ measuring the relative state of the Orbzter with respect to LDEF. Perhaps to the surprise of many readers, the design requirements for large pannted targets on LDEF are developed and optimized.

Section 16.0, Man-in-the-Loop Samulatıon Findings, gives a brief overview of some important findings from simulated $\overline{\mathrm{R}}$ approaches. It is revealed, for example, that in spite of an apparent incompatibility of state measurement errors with the \bar{R} approach sensitıvity, special technlques have evolved which make the $\overline{\mathrm{R}}$ approach workable. The discovery of the aft payload bay television camera as a relative motion sensor $1 s$ shown to be especially fortuitous. Its use and limitations are discussed $1 n$ Section 17.0.

Finally, Section 18.0 coalesces \bar{R} approach theory, state measurement error analysis, and Orbıter control capabilıty into a possıble \vec{R} approach strategy. A demonstration of the strategy in Section 19.0 reveals to the reader how imperfect state knowledge significantly increases the approach time over that required for an optimal approach. Then the use of Orbiter braking allowances near LDEF is shown to be a trade-off between margin for state errors and reductions in approach tame.

Although grappling operations per se are outside the scope of this paper, Section 20.0 provides an explanation of LDEF's dual grapple fixtures and station-keeping targets. The intent is to show that Orbiter attıtude constraints during an $\overline{\mathrm{R}}$ approach (a subject covered in Section 14.0) 1 mpact the LDEF design.
2.0 Pre-TPI (Terminal Phase Inıtlation) Maneuvers - After orbit insertıon, the Orbiter, always behınd and below LDEF, executes a series of maneuvers to catch up with and climb to LDEF. These maneuvers shape the Orbiter's orbit untal it is essentially identical to the LDEF orbat but 10 nautical miles below it. They also adjust the phasing of the two orbits such that the proper TPI conditions (time and elevation angle) are achleved.
3.0 TPI - The TPI burn is the last burn performed wath the 6000 -poundthrust OMS (Orbital Maneuvering System) rocket engines. The burn places the Orbiter on an intercept trajectory to LDEF. The TPI ΔV (typically 20 fps) 1 s directed along the line of sight vector to LDEF and occurs when LDEF is at 27 degrees elevation with respect to the Orbiter local horizontal (See Figure 3-1).

The term "1ıne of sight" in this case implies that the pilot is observing the LDEF durang the burn. Indeed, if the lighting conditions were appropraate, the pulot could observe the LDEF through his front window sance the Orbiter $+X$ axis (body frame) would be pointed at LDEF during the burn. However, the TPI must be constrained to occur very close to the orbital midnight. This sophisticated task of timing that

Figure 3-1.- Terminal Phase Inıtiation Burn
provides an elevation angle of 27 degrees at midnight was accomplished by the combined effect of the pre-TPI maneuvers. There are two reasons for this timing constraint. First, sunrise must occur in sufficient time to establısh visual contact for final lateral corrections to the intercept trajectory. (No trajectory will be free of errors since all burns are with respect to the Orbiter's state vectors which are maintained through on-board, autonomous navigation). Second, sunset must not occur before the pilot can inntialize the R -bar approach and rely on upward pointing payload bay flood lights to illuminate the LDEF. Although trajectory errors and the β angle (sun vector WRT orbit plane) wıll affect timıng, sunrise typically occurs approximately 25 manutes after TPI.
4.0 Post-TPI

Immediately following the TPI burn, the Orbiter's Unıversal Poantıng System (UPS) provides commands to the DAP (Digital Auto Palot) such that the Orbıter's $-Z$ axis (body frame) is durected along the best estimate of the LDEF LOS (1ine of sight). The commands cause the Orbiter to pitch down 90 degrees from the burn attitude. LOS to LDEF Is now out the pilot's upper window at his aft station. The UPS also causes the Orbiter - Y axis to point along the orbital angular momentum vector, \bar{H}. This is provided by specifying to the UPS an Omicron of 0°. (Omıcron serves the basic purpose of defining a unique Orbiter attitude about a directed pointing vector).

The -Z body axis is sometimes referred to as the "Orbiter rendezvous axīs." ${ }^{\text {- The }}$ COAS (crewman optical alıgnment slght) for rendezvous has 1ts optical axis collinear with $-Z_{B}$. In addition, the Ku-band (microwave) doppler rendezvous radar antenna tracking angle limits are defined with respect to the Orbiter's - Z body axis.

Though rendezvous requires both radar and optical tracking of LDEF, contact after the TPI burn is established (in darkness) with the rendezvous radar. Since $L D E F$ has no beacon transponder, the rendezvous radar is utilızed in its passive mode. The range capabılity can be as short as 12 nautical miles for a minımal target, but LDEF's large cross section should increase this to $T B D \mathrm{n}$. miles. (TPI occurs at a LOS range of approximately 23 miles).

It takes the Orbiter approximately 33 minutes from TPI to intercept LDEF (this time assumes no Orbiter braking). During this interval, the Orbiter flles through an orbital path of 130° (See Figure 4-1). Usually two small trajectory adjustments (TPM1 and TPM2) are made at approximately TPI +12 minutes and TPI +24 minutes. They are prancipally used to reduce $\operatorname{In}-\mathrm{pl}$ ane dispersions.

At TPI plus 25 minutes the Orbiter passes through the LDEF radius vector but some 14,000 feet below the LDEF. The Universal Pounting System continues to point the Orbiter $-Z$ axis along the best estimate of the LDEF LOS. About this time the LDEF and Orbiter begin to experience orbital sunrise and the pilot (now at his aft station) begins to visually scan his upper wandow ($-Z_{B}$ axis) and rendezvous COAS for the LDEF. The UPS should have the LDEF well wathin the COAS's 5 degree

Fagure 4-1.- Post TPI Trajectory
half-cone angle field of view about the $-Z_{B}$.

5.0 The LVLH Coordinate System

It is convenzent at this point to transfer one's reference from a geocentric coordinate system to an LDEF centered frame. This transformation facılıtates a discussion of the relative orbital motion of LDEF and the Orbiter during the final stages of rendezvous. The new frame is shown in flgure 5-1 and is commonly known as the LVLH (local vertical - local horizontal) Frame.

The LVLH coordinate frame is situated as follows: $+Z$ axis directed toward the center of the earth, $+Y$ axis perpendicular to the orbit plane with direction opposite the angular momentum vector, and +X axis positioned to complete the right-handed triad so that it is horizontal in the orbit plane, and in the direction of orbit travel. The frame rotates about the earth at a rate of Ω radians/second (referred to as "orb rate"). The position, altitude, etc. of the LVLH frame is a function of the gravatational force of the celestial body it is orbiting and can be defined completely by the parameter Ω. For example, an LVLH frame orbiting the earth at a constant 1.11 millıradians/second has an altıtude of approximately 263 nautical miles.

The target spacecraft, LDEF, remains centered at ($0,0,0$) in the LVLH frame and the Orbiter position and velocity relative to LDEF is given by (X, Y, Z) and $(\dot{X}, \dot{Y}, \dot{Z})$, respectively.

For example, it was stated previously that at TPI+25 minutes the Orbiter passes through the LDEF radius vector but sofe " 14,000 feet ,

To Center of Earth
$\overline{\mathrm{V}}$ - "V-Bar" - Tangential Velocity Vector (horizontal component)
\bar{R} - "R-Bar" - Radius Vector
$\overline{\mathrm{H}}$ - "H-Bar" - Orbital Momentum Vector

Figure 5-1.- LVLH Frame
$\overline{\mathrm{V}}$ or +X

NOTE:
Niew is along - $\overline{\mathrm{H}}$ or +Y axıs into the page

TPI +25 min.
Elevation $=90^{\circ}$ Range $=14,000 \mathrm{ft}$.
\& Coordinates
$(X, Y, Z)=(0,0,14000)$
$(X, Y, Z)=(16,0,-33)$

Figure 5-2.- Typıcal Intercept Trajectory in the LVLH Frame
below LDEF. The position in the LVLH frame is ($0,0,14,000$) in feet. The corresponding velocity components are $(16,0,-33)$ in feet per second. In other words, the Orbiter is rapidly climbing to $L D E F$ and moving ahead of LDEF. A typical LDEF intercept trajectory in the LVLH frame is shown in figure 5-2.

One of the unique aspects of the intercept trajectory is the rotation rate of the LOS vector. Note that any stationary line in the $\bar{V}-\bar{R}$ plane of the LVLH frame is actually rotating inertially at the orb-rate, Ω; conversely, any anertially stationary line rotates clockWIse at Ω in the LVLH frame. The latter descrabes what happens to the LOS during the final phases of the approach trajectory. Within 22 minutes after TPI the n nertial LOS rotatıonal rate decreases from -0.8 millıradians per second to zero and remanns essentially zero for the remainder of the intercept trajectory. In the LVLH frame the trajectory has the appearance of a spiral because the LOS is rotating clockwise at Ω as the range is collapsing.

6.0 Some Important Cockpit Instrumentation

A discussion of the rendezvous scenario from the inntial braking phase to LDEF station keeping is more anteresting and less enigmatic If it includes descrıptions of crew activities. However, a basic understanding of some important cõckpit instrumentation is a prerequisite to such a discussion. To be sure, the pllot and co-pilot monltor and react to numerous cockpit displays, but during the phases of interest there are four instruments which receave "prime time". These are:
(1) the COAS, (2) the LOS Rate Needles, (3) Ku-band radar range and range rātê dısplays, and (4) the $A D \bar{I}$ or "Eıght Baī1."
6.1 The Crewman Optical Alıgnment Sight (COAS) -

The COAS is a collimating device which is similar to an aircraft gun sight. The device is located in the pllot's aft station overhead window. It serves two purposes:

* 1. It provides to the pilot a fixed line of sight attitude reference 1 mage which, when viewed through the rendezvous window, appears to be the same distance away as the target. The image is boresighted parallel to the Orbiter's - Z_{B} axis and perpendicular to the Orbiter's $X_{B}-Y_{B}$ plane.

2. It provides a measurement of the target vehicle's subtended angle from which range and range rate information may be derived. The COAS reference image is a reticle which consists of a 10 -degree circle indexed in 10 degree increments, and vertical and horizontal cross hairs indexed in one degree increments (see figure 6.1-1). The image is projected on a rectangular plece of combinnng glass which resides at the forward edge of the window as shown in figure 6.1-2.

6.2 LOS Rate Needles

In addition to providing range and range rate information, the $\mathrm{Ku}-$ band radar system also measures components of the radar LOS inertial rotation rate. The data is presented on the LOS Inertial Rate Indicator shown an figure 6.2-1. The azimuth needle registers the component of radar LOS inertial angular rate along the Orbiter's -X body axis and the

Figure 6.1-1.- COAS Reference Image (Crewman Optical Alignment Sight)
17

Figure 6.1-2.- COAS Schematic

NOTE Pllot may select a Readout Sensitivity of 1X or IOX

Figure 6.2-1.- LOS Inertial Rate Indicator (Ku-Band Radar Antenna)
elevation needle registers the component of radar LOS inertial angular rate along the Orbıter's $-Y$ body axıs.

An appreciation of what the LOS rate data represents may be obtanned through studyıng some examples. First, assume that the Orbater Is in perfect anertial attitude hold (no attıtude limit cycling) and the target vehicle is centered in the COAS. If the position of the target vehicle in the COAS remanns stationary, both LOS Rate Needles wall register zero. If the target vehicle $1 m a g e$ starts moving toward the Orbater's nose (along the X_{B} axis of the COAS), the elevation needle wall read the angular rate of the radar LOS with respect to the inertıally statıonary COAS LOS. If the target vehicle umage moves off center along the Y_{B} axis of the COAS, the azimuth needle will register the angular rate.

For a second example, assume once again that the Orbiter is in perfect inertial attitude hold and that the target is stationary in the COAS. Then assume that the pilot commands an Orbiter pitch rotation rate. In this case the target vehicle amage will start moving in the COAS, but the LOS needles will remain zeroed. The result assumes of course that absolutely no increment of translational velocıty was introduced anto the Orbiter's motion by the patch command. The important point is that Orbiter rotations do not affect the inertial angular rate of the radar LOS; they can, however, affect the components of the radar LOS inertial rate as presented by the LOS Rate Needles.

The final example is most relevant to rendezvous operations. Assume that the Orbiter is sitting on a runway at the Earth's equator
and the Orbiter's X_{B} axis as parallel to the equator. Further assume that an appropriate radar target balloon (in the presence of no wind) Is above the Orbiter and on a 1000 foot tether Ine attached to the Orbiter's cockpit. In this case the elevation rate needle will read the Earth's sidereal rotation rate of approximately 15.04 degrees per hour*, or the inertial angular sweep rate of the local vertical. The balloon would be within the COAS field of view and its lmage stationary with respect to the COAS reticles.

As a side note, the LOS Inertial Rate indicator is a "fly to" type display. For example, if the elevation needle registers +1 millıradian per second, the pilot may null the rate by pushing the aft station translational hand controller (THC)"UP."

6.3 Range and Range Rate

The LOS range and range rate data is simply presented by two digital displays which are drıven by the Ku -band radar system. The uncertainties associated whth this data greatly influence the operational technıques employed in an \bar{R} approach. The specıfıed uncertannties (as opposed to expected uncertainties in the flight hardware) are as follows:

$$
\delta \mathrm{R}= \pm 80 \mathrm{ft} . \quad 3 \sigma
$$

$$
\dot{\delta \mathrm{R}}= \pm 1 \mathrm{ft} / \mathrm{sec} . \quad 3 \sigma
$$

These uncertannties represent the scatter (or nolse) about the mean. A similar specification exists on any blas in the mean; however, bias is

[^1] Rate Needles.
not considered an error source because it is assumed that it may be elimınated through compensation.
6.4 The Orbiter Attıtude Dırector Indicator (ADI) -

The ADI, commonly known as the "Elght Ball" (see figure 6.4-1), 1s an instrument which constantly relates the pilot's Ine of sight attitude frame to a reference frame. Some defingtions are required at this point.

- Line of Sight Attitude Frame - There are 3 LOS attıtude frames In the Orbiter. They correspond to the 3 views avallable to the pılot from the cockpit, i.e., out the nose, out the payload bay bulkhead, and out the cockpit celling. The definctions of the 3 LOS frames with respect to Orbiter body axes are shown in figure 6.4-2. Loosely speaking, in each LOS frame the X axis is the palot's LOS, the Y axis is out his right shoulder and the Z axis emerges from the soles of his feet.
- Reference Frame - The pilot has a choice of two reference frames, LVLH or inertial. The LVLH reference, as defined in Section 5.0 , is used during the final phases of rendezvous.
- Rotation Sequence - The "elght ball" displays the attitude of the LOS frame in terms of patch, yaw, and roll rotations (in that order) which are necessary to take the LOS frame from an mntial alignment with the reference frame to the present attatude. The pıtch, yaw, and roll rotations are rotations about the LOS's Y, Z and X axes, respectively. Sign convention is according to the right hand rule. The sequence and angle constraints, in summary,

Figure 6.4-1.- The Attatude Director Indicator (ADI)
ORIGINAL PAGE IS OF POOR QUALIIIX.

LOS	Body
Frame	Frame
X	$-\mathrm{X}_{\mathrm{B}}$
Y	$-\mathrm{Y}_{\mathrm{B}}$
Z	$+\mathrm{Z}_{\mathrm{B}}$

$\frac{\text { Upper }}{\text { LOS }}$	
$\frac{\text { Frame }}{\text { Fody }}$	
X	$-\frac{Z_{B}}{\text { Frame }}$
Y	$-Y_{B}$
Z	$-X_{B}$

Figure 6.4-2.- The Three LOS Attıtude Frames

1. Pitch-up (positive rotation about

LOS $+Y$ axis $) 0$ to 360 degrees
2. Yaw right (positive rotation about

LOS +Z axis) 0 to +90 degrees
or
Yaw left (negative rotation about

$$
\text { LOS }+Z \text { axls) } 0 \text { to }-90 \text { degrees }
$$

3. Roll right (positive rotation about

$$
\text { LOS }+X \text { axis) } 0 \text { to }+360 \text { degrees }
$$

There are three "eaght balls" in the cockpit. Two are located at the forward station for the pılot and co-pilot; both display the attitude of the forward LOS frame. The third is located at the pilot's aft station and is switchable to display the attitude of either the aft LOS frame ($-X$ Sense Switch position) or the upper LOS frame ($-Z$ Sense Switch position). Though only the aft eight ball in the $-Z$ Sense Switch mode is used during the final stages of rendezvous, it is frequently helpful (for explanatory reasons only) to compare the readings at a given attıtude.

Suppose that the Orbiter is oriented as follows:

$$
\begin{aligned}
& X_{B} \text { along } \overline{\mathrm{V}} \\
& \mathrm{Y}_{\mathrm{B}} \text { along }-\overline{\mathrm{H}} \\
& \mathrm{Z}_{\mathrm{B}} \text { along } \stackrel{\rightharpoonup}{\mathrm{R}}
\end{aligned}
$$

The forward elght ball will read:

Pıtch	0
Yaw	0

Step \#1

Pitch 180°

Orbiter Attitude

Step \#2 Roll 180°

Figure 6.4-3.- Rotating to the Aft LOS Frame

Step \#1
Pitch 90°

X

Figure 6.4-4.- Rotating to the Upper LOS Frame

Figure 6.4-5.- Using the COAS and "Eıght Ball" to Determine - Orbiter Approach Direction

Roll 0
The aft eight ball (with the Sense Switch in - $\dot{\mathrm{X}}$ to dısplay the aft LOS frame attıtude) will read:

p1tch	180
yaw	0
ro11	180

The rotation sequence is shown in figure 6.4-3.
The AFT "eight ball" with the Sense Switch in -Z to display the upper LOS frame attitude) will read:
pitch 90
yaw 0
roll 180
The rotation sequence is shown in figure 6.4-4.
As a final example, assume that the pilot has LDEF centered in the COAS as the Orbiter is closing on LDEF at a range of one male. Further assume that the aft "eight ball" (Sense Switch to $-Z$) is reading
pitch 135
yaw 0
ro11 180
An experienced pilot immediately knows that he is approaching LDEF
In the quadrant defined by $+\overline{\mathrm{V}}$ and $+\overline{\mathrm{R}}$. See figure $6.4-5$.
7.0 Transferring to Visual LOS Navigation

Somewhere between two and four miles from the target, the pilot begins to rely on visual navagation and manual control of the Orbıter.

Heretofore, the Unıversal Pointing System (UPS) was automatıcally pointing the $-Z_{B}$ axis at the best estimate of the LDEF relatuve position. But the pointing, as well as the trajectory, usually contanns errors which are derived from imperfect maintenance of the Orbater's state vectors. These errors are surprisingly small. Indeed, simulations (which model error sources) typically show the target to be well within one degree of the COAS center at four miles. Nonetheless, even small errors, if allowed to propagate, can result in intercept "misses" of up to two males. It is, therefore, necessary to elamanate them.

Three possible cases may exist and are presented in figure 7-1. In each case the Orbiter's attitude and path relative to the perfect trajectory is shown at time t_{1} and later at time t_{2}. In the perfect trajectory, Case A, the LDEF is centered in the COAS and LDEF does not move with respect to the star field behind it, l.e., the LOS direction Is Inertially fixed. Case B shows the effects of an attitude error, and Case C shows the effects of a trajectory error. Regardless of the sıtuation, the pılot first assumes that any error in the COAS is due to a pointing or attıtude error. The pllot reconfigures the DAP from the "Auto Mode" (which was accepting UPS commands) to the "Manual Mode." This immediately places the Orbiter in inertial attıtude hold. Any further pointing commands to the DAP are entered via the RHC (rotational hand controller). (The UPS essentially had the Orbiter in Inertial attıtude hold because the computed LOS direction at this point Is inertially fixed). The pllot, using the RHC, centers LDEF in the COAS. When he releases the RHC, inertial attitude hold is resumed at

a. LDEF Stationary WRT Star Fteld
b LDEF Remans Centered in COAS

CASE B: LDEAL TRAJECTORY BUT ATTITUDE ERROR
$\underset{\sim}{\omega}$

a. LDEF Stationary WŔT Star Field
b. Constant LDEF Error of 1° in COAS
c. COAS LOS Stationary WRT Star Field

CASE C ATTITUDÉALINED TO TRAJECTORY BUT TRAJECTORYINERROR

b. LDEF Error in COAS increases from 1° to 2°
c. COAS Los Stationary WRT Star Field

$$
\text { 7-1. - Inıtıal Condıtıons at } 2 \text { to } 4 \text { mıles prıor to Commanding Attitude Hold }
$$

the new attitude. If LDEF remains centered in the COAS, the trajectory is correct and an attıtude error was just elimināted. If LDEF moves in the COAS, the pılot, using the THC (translational hand controller), draves the Orbiter onto a new trajectory defined by a COAS LOS centered on LDEF. The THC is moved up, down, left, or right to position the LDEF in the COAS. No RHC commands are used.

8.0 Entering the Braking Schedule

Braking the Orbiter velocity relatuve to LDEF is a manual operation. It is performed according to the schedule shown in figure 8-1. The pilot relies on the Ku -band radar displays for range and range rate Information. The first "braking gate" occurs at 6,000 feet where the closing range rate should not be greater than 25 fps. (R is approximately 30 fps as this gate $1 s$ approached.) The pilot can "kz11" 5 fps of R by pulling back on the THC for 10 seconds as each-gate is approached, or he may anticipate the gates by removing the R in smaller increments which would more closely approxımate a linear deceleration. The latter technique is generally used during the last phases of the schedule because it minnmazes plume $1 m p i n g e m e n t$ on the LDEF.

The typical braking schedule for Apollo/Geminn is also shown in figure 8-1. The major difference is that braking must be completed before the Orbater enters an amaginary sphere (surrounding LDEF) in Which jet firings would have deleterious effects on LDEF, namely, motion perturbations and contaminatıon. The sphere's radius is commonly denoted as $R_{\text {IMP }}$ and is proposed to be at least 1000 feet for an LDEF type payload.

Figure 8-1.- Proposed Orbiter Braking Schedule

Figure $8-2 t_{1}$ Typacal ${ }_{2}$ Orbiter Trajectory During Braking With an Inertially Stationary LOS

During braking the pilot continually maintains the LDEF centered in the COAS by using only the THC. This assures an LOS trajectory which greatly sımplıfıes visual navigation and mınimizes fuel usage. In addition, the pilot follows the braking schedule as closely as possible. Because of orbital mechanıcs effects, the braking perturbs the orıginal Intercept trajectory signıficantly. Getting ahead of the braking schedule worsens this situation and demands more fuel usage to maintain the LOS trajectory.

A typical trajectory during braking is shown in figure 8-2. The trajectory assumes a constant deceleration which just satisfies the braking schedule; in other words, the average velocity between any two consecutive gates is the mean of the two gate velocities. The LOS angle (measured from $\overline{\mathrm{R}}$) rotates clockwise at the LDEF orb rate, Ω_{L}, because the direction of the trajectory is fixed in space. This trajectory ended at 66° at 1000 feet. But, because of trajectory errors before and during braking, the final position at 1000 feet could be anywhere in the quadrant defined by $+\bar{V}$ and $+\overline{\mathrm{R}}$.

9.0 Updating the Orbiter's State Vectors

At the completion of the burn schedule, the state of the Orbiter may be updated. The LDEF state in the inertial frame is very accurately known (wath respect to tame) from many weeks of ground track data. When the Orbater is withan 1000 feet of LDEF, the LDEF state vectors more accurately reflect the Orbiter's position than the Orbiter's state vectors, which were maintained by autonomous on-board navigation. As a
result, the crew "dumps" the Orbiter's state and substitutes LDEF's state vēctōrs.

10.0 Translatang to $\overline{\mathrm{R}}$

While the Orbiter was braking, the co-pılot was preparing a new load of directions for the Universal Pointing System. After the state vector update and the completion of braking the load is entered and the DAP is placed in the Auto Mode. In response, the UPS provides commands to the DAP which causes the Orbiter's $+Y_{B}$ to point at a celestial reference equivalent to $L D E F^{\prime} s-\bar{H}$ (negatıve orbital momentum vector). In addition, the UPS load commands a "open loop" rotation rate about the vector. This UPS configuration is commonly referred to as the "barbecue mode." The rotation rate is presently proposed to be twice the LDEF orb rate and in the negative direction (i.e., counter clockwhse about $-\overline{\mathrm{H}})$.

As the orbiter begins rotating the COAS LOS also starts rotating. The effect is that the LDEF image in the COAS begins moving off center and towards $-X_{B}$ or the Orbiter's tall. The pilot reacts to this by translating the Orbiter with the THC (firing his nose jets and moving aft). This action causes the LDEF 1 mage to move back to the COAS center. The pilot continues to pull back on the THC (firing the nose jets) until the radar LOS Needle Display indicates an elevation rate of +2.27 mıllıradians per second (or $+2 \Omega_{L}$). But Needle Display has poor resolution at thas rate and the pllot must concentrate on stopping " and centering the LDEF image in the COAS. When this occurs, the COAS

LOS and the radar LOS vectors are synchronously rotating in space. The Orbiter's attitude and trajectory during this combined rotation and translation is shown in Figure 10-1.

Though the COAS LOS and radar LOS are rotating inertially at $2 \Omega_{L}$, they are only rotating at Ω_{L} an the LVLH frame. As a consequence it takes

$$
t=\frac{66 \mathrm{deg} \cdot}{\Omega_{L}}=\frac{66 \mathrm{deg} .}{.065 \mathrm{deg} / \mathrm{sec}}
$$

or 1015 seconds to reach \bar{R}. During this thme it is very important to maintain the range at 1000 feet as indicated by radar. Orbital mechanıcs are always accelerating the Orbiter away from the LDEF. This acceleration is non-existent on \bar{V} and increases to a maximum at \bar{R} even though the range is manntanned at 1000 feet. Allowing the range to open as \bar{R} Is approached causes the effect to become even more pronounced and would result in a significant fuel expenditure to recover.

The pilot can monitor his progress to $\overline{\mathrm{R}}$ by observing the Aft ADI (sense switch to $-Z_{B}$). The $A D I$ as in the LVLH mode. Since the Orbiter state was updated, the $A D I$ reference is wath respect to an LDEF centered LVLH frame. Some sampled readings are shown in fagure 10-1. When the ADI reads 90,0 , 180 (pitchis yaw and roll respectively), the pllot knows he 1 s directly below LDEF or on the LDEF radius vector to the center of the earth.

As a side note, suppose for some reason the rendezvous with LDEF should be delayed or aborted after the braking sequence. There is only one place where the Orbiter may efficiently station keep with the LDEF and

Figure ${ }^{10} 0$ - $1 .-$ Orbiter Translating to LDEF $\overline{\mathrm{R}}$
that is on the LDEF orbital path or \vec{V}. Here there are no relative accelerations. The range rate may be nulled and a stand-off range maintalned without thrusting (assuming no differential aerodynamic drag). To move to \bar{V} the palot need only retain attitude hold (DAP in Manual Mode) at the end of braking, maintain his range at 1000 feet, and translate to manntain LDEF centered in the COAS. Under these carcumstances the Orbiter will move to $\overline{\mathrm{V}}$ in the LDEF LVLH frame at an LOS angular rate of Ω_{L}. Inertially speaking the $L O S$ is not rotating. Indeed, the radar LOS Needle DIsplay reads 0 and 0 . Instead, the LDEF $\overline{\mathrm{V}}$ is rotating down to the Orbiter at $+\Omega_{I}$. Once again the plot knows he has arrived on \bar{V} when the aft $A D I$ (sense switch to $-Z_{B}$) reads 180 , 0, 180. From a fuel economy standpoint, moving $\overline{\mathrm{V}}$ is a very cheap maneuver. The anıtialization of the Orbiter on $\overline{\mathrm{V}}$ is simalar to an InItıalızation on \bar{R}, which will be discussed. Once a decision is made to rendezvous, moving the Orbiter to \bar{R} is accomplished as explanned.

11.0 Inytialız1ng on $\overline{\mathrm{R}}$

When the Orbiter arrives at the LDEF \bar{R}, the UPS load is changed to place the Orbiter in an earth track mode. The new UPS load is:

1. Polnt $+Z_{B}$ at the earth.
2. Omicron $=0$ degrees.

The Omicron specifies an orlentation about $+Z_{B}$ such that $+Y_{B}$ is pounted along the negative LDEF momentum vector, $-\bar{H}_{L}{ }^{1}$

[^2]The new UPS load does not cause an Orbiter attitude change. Instead; it removes the Orbite \bar{F} from the "open loop," constant rate, barbecue mode about $+Y_{B}$ to a "closed loop," controlled orientation about $+Y_{B}$. If LDEF $1 s$ in a circular orbit, the angular rate about $+Y_{B}$ will be constant (at Ω_{L}) as H_{B} tracks the earth's center. If LDEF is in an elliptical orbıt, the angular rate will vary because the sweep rate of $\overline{\mathrm{R}}$ varıes wath the LDEF position in the orbat.

Next, the pilot must concentrate on maintaining his position on $\bar{R}_{\text {LDEF }}$. It will be recalled that the radar $L O S$ is rotating at $2 \Omega_{L}$ as $\overline{\mathrm{R}}$ is approached. But now the radar LOS must be slowed to the $\overline{\mathrm{R}}$, sweep rate. Using the THC the pilot fires the Orbiter's tail jets until the radar LOS Needle Display indicates +1.13 mıliiradians per second, the LDEF orb rate. At the same time the pilot observes the LDEF position in the COAS. His objective is to have the LDEF centered in the COAS when the LOS Needles Indicate the LDEF orb rate. When this occurs, the radar LOS (representing relatuve position) is once again synchronized. with the UPS controlled COAS LOS. If the LDEF is centered in the COAS and the LOS Needles read less than orb rate, the Orbiter is moving ahead of LDEF in the LVLH frame. If the LDEF is centered in the COAS and the LOS Needles read more than orb rate, the Orbiter is falling behind LDEF. Throughout these adjustments, the pilot uses only the THC. Touching the RHC would ammediately drop the DAP from the Auto Mode to the Manual Mode; the Orbiter would revert to anertial attitude hold and UPS commands would be Ignored.

12.0 The $\overline{\mathrm{R}}$ Approach

During initialization on \bar{R}_{L}, the Orbiter is constantly accelerat1ng away from LDEF. The pilot must thrust upward just to maintain his range at 1000 feet. An explanation of this lies in orbital mechanics. But even in the world of engineers, orbital mechanics is a relatively mysterious and esoteric subject. Fortunately the $\overline{\mathrm{R}}$ approach possesses characteristics which make it amenable to straightforward explanations.

Station keeping on \bar{R}_{L} at 1000 feet below LDEF is not a natural situation. This can be explained with the and of figures 12-1 and 12-2. Assume that the Orbiter and LDEF are in two concentric circular orbits but LDEF is in the higher orbit. The Orbiter's orbit will have a shorter period, or its orbital rate, Ω_{0}, will be faster than LDEF's orbital rate, Ω_{L}. If at some time, t_{o}, the two orbits share a common radius vector, they wall subsequently separate with a phase angle of ($\Omega_{0}-\Omega_{L}$) times ($t-t_{0}$) as shown in figure 12-1. When inftializing on \bar{R}_{L}, the differential orbital rate is reduced to zero, but the differential altitude is maintained at 1000 feet. In this situation the tangential velocity of the Orbiter is insufficient for a circular orbit. Indeed, If the Orbiter were released from the $\overline{\mathrm{R}}_{\mathrm{L}}$ through lack of THC commands from the pilot, the Orbater would fall away from LDEF and along an elliptical orbit. An exaggerated depiction of this is shown in figure 12-2. Figure $12-3$ shows this same effect in the LVLH frame. Note that the first motion after release is downward. This reduces the radius vector, or moment arm, and through conservation of angular momentum the Orbiter's orbital sweep rate, Ω_{0}, Increases and the Orbiter moves ahead of LDEF.

Figure 12-1.- Phasing of Two Circular Geocentric Orbits

Figure 12-2.- Releasing the Orbiter from $\overline{\mathrm{R}}_{\mathrm{L}}$

Figure 12-3.- The $\overline{\mathrm{R}}$ Approach in the LVLH Frame

Now consider the thrusting requirements to maintain the Orbiter's position on \bar{R}_{L} at 1000 feet. This may be accomplished by writing an equation which relates all of the forces acting on the Orbiter and directed along \bar{R}_{L}, or

$$
\mathrm{F}_{\mathrm{T}}+\mathrm{F}_{\mathrm{C}}=\mathrm{F}_{\mathrm{g}}
$$

where $\quad F_{T}=$ upward thrusting force along \bar{R}_{L}
$F_{c}=$ centrifugal force (upward)
$\mathrm{F}_{\mathrm{g}}=$ gravıtational force (downward)
Rearranging,

$$
F_{T}=F_{g}-F_{c}
$$

Most engineers will recall that

$$
F_{g}=G \frac{m_{1} m_{2}}{r^{2}}
$$

where $\quad F_{g}=$ gravitational attraction force between two bodies
$G=$ universal gravitational constant
$m_{1}=$ mass of the furst body
OF POOR QUALITY
$m_{2}=$ mass of the second body
$r=$ distance between the centers of the two bodies
In orbital mechanics terminology,

$$
F_{g}=\frac{\mu_{e^{m}}}{r_{0}^{2}}
$$

where $\quad \mu_{e}={\text { Earth's gravitational constant }=G m_{e}}$
$m_{0}=$ mass of the Orbiter

```
ro = Orbiter's radial distance from the center of the
    Earth
```

It should also be recalled that the common expression for centrifugal acceleration, \ddot{r}_{c}, is

$$
\dot{r}_{c}=\omega^{2} r
$$

where

$$
\begin{aligned}
& \omega=\text { angular velocity in radıans per second } \\
& r=\text { moment arm }
\end{aligned}
$$

Returning to orbital mechanics terminology

$$
F_{c}=m_{0} x_{c}=m_{0} \Omega_{0}^{2} r_{0}
$$

where

$$
\Omega_{\mathrm{o}}=\text { Orbiter's orbital sweep rate an radians per second }
$$

Thus,

$$
F_{T}=\frac{\mu m_{o}}{r_{0}^{2}}-m_{o} \Omega_{o}^{2} r_{0}
$$

If the orbiter were in its own natural circular orbit, F_{T} would be equal to zero because

$$
m_{0} \Omega_{o}^{2} r_{0}=\frac{\mu_{m_{0}}}{r_{0}^{2}}
$$

or

$$
\Omega_{0}=\frac{1}{r_{0}}\left(\frac{\mu}{r_{0}}\right)^{1 / 2}
$$

But during the $\overline{\mathrm{R}}$ approach Ω_{o} Is initialized to be equal to the LDEF orbital rate, Ω_{L}, or

$$
\Omega_{0}=\Omega_{L}=\frac{1}{r_{L}}\left(\frac{\mu}{r_{L}}\right)^{1 / 2}
$$

Substituting Ω_{L} for Ω_{0} gives

$$
F_{T}=\frac{\mu_{0}}{r_{0}^{2}}-\frac{\mu_{0} r_{0}}{r_{L}^{3}}
$$

but

$$
r_{0}=r_{L}-R
$$

where R is the Orbiter's range from LDEF along $\overline{\mathrm{R}}_{\mathrm{L}}$. Fanally,

$$
F_{T}=\frac{\mu m_{o}}{\left(r_{L}-R\right)^{2}}-\frac{\mu m_{0}\left(r_{L}-R\right)}{r_{L}^{3}}
$$

where

Let

$$
\begin{aligned}
m_{o} & =\frac{W_{o}}{g_{e}}=\frac{\text { Orbiter's weight }}{\text { one earth } g} \\
r_{L} & =h_{L}+r_{e} \\
& =\text { LDEF orbital altitude }+ \text { Earth's equatorıal radıus }
\end{aligned}
$$

$$
\mu=1.4077 \times 10^{16} \mathrm{ft}^{3} / \mathrm{sec}^{2}
$$

$$
\mathrm{W}_{\mathrm{o}}=180,000 \mathrm{lbs} .
$$

$$
\mathrm{h}_{\mathrm{L}}=190 \mathrm{n} . \text { mıles }=1.154462 \times 10^{6} \mathrm{ft} .
$$

$$
r_{e}=6378.163 \mathrm{~km}=2.0925732 \times 10^{7} \mathrm{ft} .
$$

Some representative values of the F_{g}, F_{c}, and their differences, F_{T}, are listed in Table 12-1 as a function of range, R.

Two facts are readily apparent from table 12-1. First, over the ranges presented, F_{T} grows Inearly with R . This suggests that the equation for F_{T} may be reduced to a simpler form. Second, wath opening range the gravitational force, F_{g}, increases twice as fast as the centrifugal force, F_{c}, decreases. This is confirmed by taking the partial of F_{T} with respect to R, that $1 s$,

$$
\frac{\partial F_{T}}{\partial R}=\frac{\partial F_{g}}{\partial R}-\frac{\partial F_{c}}{\partial R}
$$

Table 12-1. - Orbital Mechanics Forces During an \bar{R} Approach

$R(f t)$.	$F_{g}(1 b s)$	$F_{c}(I b s)$	F_{T} (Ibs)
0	161406.48	161406.48	0.00
20	161406.78	161406.34	0.44
100	161407.95	161405.75	2.19
200	161409.41	161405.02	4.39
300	161410.87	161404.29	6.58
400	161412.33	161403.56	8.77
500	161413.79	161402.83	16.97
600	161415.26	161402.10	13.16
700	161418.18	161400.63	15.35
800	161421.10	161399.90	17.54
900	161422.57	161399.17	19.74
1000	161424.03	161398.44	21.93
1100	161335.73	161391.86	24.12
1200	1500		

$$
\begin{aligned}
& \frac{\partial F_{c}}{\partial R}=\frac{\partial}{\partial R}\left\{\frac{\mu m_{o}\left(r_{L}-R\right)}{r_{L}^{3}}\right\}=\frac{-\mu m_{o}}{r_{L}^{3}} \\
& \begin{aligned}
\frac{\partial F_{g}}{\partial R} & =\frac{\partial}{\partial R}\left\{\frac{\mu m_{0}}{\left(r_{L}-R\right)^{2}}\right\} \\
& =2 \mu m_{0}\left(r_{L}-R\right)^{-3} \\
& =\frac{2 \mu m_{0}}{r_{L}^{3}}\left(1-\frac{R}{r_{L}}\right)^{-3}
\end{aligned}
\end{aligned}
$$

Using the binomal expansion,

$$
\left(1-\frac{R}{r_{L}}\right)^{-3}=1+\frac{3 R}{r_{L}}+\frac{3(4)}{2!}\left(\frac{R}{r_{L}}\right)^{2}+\ldots
$$

Sance

$$
\frac{R}{r_{L}}=\frac{10^{3}}{22 \times 10^{6}}=4.5 \times 10^{-5}
$$

$$
\left(1-\frac{R}{r_{L}}\right)^{-3}=1 \text { within } 136 \mathrm{ppm}
$$

and

$$
\frac{\partial F_{g}}{\partial R}=\frac{2 \mu m_{o}}{r_{L}^{3}}
$$

Finally,

$$
\frac{\partial F_{T}}{\partial R}=\frac{2 \mu m_{o}}{r_{L}^{3}}+\frac{\mu_{0}}{r_{L}^{3}}
$$

and

$$
F_{T}=R \frac{\partial F_{T}}{\partial R}=\frac{3 \mu m_{0} R}{r_{I}^{3}}
$$

This is the reduced but very accurate form of F_{T} for proximity operations.

It is important at this point that the real significance of F_{T} be appreciated. That is, an "artificial" circular orbit with an orbital rate of Ω_{L} can be maintained at some reasonable range below $1 D E F$ if the appropriate thrust, F_{T}, is precisely and continuously applied. The initialized range remains constant which dictates that the orbiter's angular momentum is invariant. Thus no thrusting either along or against the orbiter's velocity vector is required to maintain the orbiter on \bar{R}_{L} as the two bodies circle the Earth. If less than F_{T} is applied, the Orbiter starts to fall and move forward. If more than F_{T} is applied, the Orbiter climbs toward LDEF and moves behind. In each case congervation of angular momentum applies if no forward or aft jets are fired.

Since the Orbiter is always accelerating away from LDEF, It is possible to insert a closing range rate which would decay to zero as a desired range is achieved. The history of R versus R is not obvious because the acceleration decays as the range collapses. The solution $1 s$ simplified if it is assumed that the plot maintains the Orbiter on \vec{R}_{L} during the ascent. Then,

$$
\ddot{R}=\frac{F_{T}}{m_{0}}=\frac{3 \mu R}{r_{L}^{3}}
$$

Letting

$$
\begin{aligned}
& C=\frac{3 \mu}{r_{L}^{3}} \\
& R-C R=0
\end{aligned}
$$

but. $\quad \dot{\mathrm{R}}=\frac{\dot{\mathrm{R}}}{\mathrm{dt}}=\frac{\dot{\mathrm{d}}}{\mathrm{dR}} \frac{\mathrm{dR}}{\mathrm{dt}}=\frac{\dot{\mathrm{d}}}{\mathrm{dR}} \dot{\mathrm{R}}$

Therefore

$$
\begin{aligned}
& \dot{R} \frac{\dot{d R}}{d R}=C R \\
& \int_{\dot{R}_{0}}^{\dot{R}} \dot{R} d \dot{R}=C \int_{R_{0}}^{R} R d R \\
& \frac{\dot{R}^{2}}{2} \left\lvert\, \begin{array}{ll|l}
\dot{R}=\dot{R} \\
& =\frac{C R^{2}}{2} & R^{\prime}=R \\
\dot{R}=\dot{R}_{0} & \\
R=R_{0}
\end{array}\right.
\end{aligned}
$$

Finally,

$$
\dot{R}^{2}-\dot{R}_{0}^{2}=C\left(R^{2}-R_{0}^{2}\right)
$$

where

$$
\begin{aligned}
& \dot{R}^{\prime}=\text { openıng range rate } \\
& \dot{R}_{0}=\text { inıtıal opening range rate } \\
& R=\text { range } \\
& R_{0}=\text { inıtıal range below }{ }^{\prime} \text { LDEF }
\end{aligned}
$$

The first integral solution is a hyperbolic function. If \dot{R}_{0} is set equal to zero,

$$
\dot{R}=m\left(R^{2}-R_{o}^{2}\right)^{1 / 2}
$$

'where' $: \quad \mathrm{m}=(\mathrm{C})^{1 / 2}=\left(\frac{3 \mu}{r_{\mathrm{L}}^{3}}\right)^{1 / 2}=1.98 \times 10^{-3} \mathrm{sec}^{-1}$

Plots* of this equation for a varlety of $\mathrm{R}_{0}{ }^{\prime} \mathrm{s}$ are shown in figure 12-4. They are a family of hypērbolas with a sẗranght line asymptote of mR. Each plot shows the range rate versus range if the Orbiter is allowed to separate along the LDEF radius vector. For example, if the range is 300 feet at release, the Orbiter will accelerate from a zero range rate to approximately 1.8 fps at 1000 feet. Conversely, if a closing range rate of 1.8 fps is inserted at 1000 feet, the Orbater wall stop and begin to fall back at a range of 300 feet. In the latter case, the parameters may be redefined such that the equation reads

$$
\dot{R}=m\left(R^{2}-R_{S}^{2}\right)^{1 / 2}
$$

where

$$
\begin{aligned}
\dot{R}= & \text { closing range rate, at } R \text {, which is required to stop } \\
& \text { at } R_{S} \\
R_{S}= & \text { desired station keeping range for retrieval operations }
\end{aligned}
$$ Obviously upward thrust would stall be required to maintain a fixed station keepıng range. But the magnitude of the thrust would become quite small for close proximity operations.

As previously mentioned, conservation of angular momentum dictates that the Orbiter's tangential velocity will decrease during the ascent to LDEF. Therefore, some thrusting along $\overline{\mathrm{V}}$ is requared to remain on

[^3]

Figure 12-4.- The \bar{R} Approach in the State Domaln of Range and Range Rate
$\overline{\mathrm{R}}_{\mathrm{L}}$ during the ascent. This may be expressed by

$$
\frac{d V_{o}}{d t}=-\Omega_{L} \frac{d R}{d t}=-\Omega_{L} \dot{R}
$$

where V_{0} is the Orbiter's tangential velocity. Since \dot{R} is maximum when the ascent is initiated, the tangential thrusting requirements are also maximum at that point. The total ΔV_{0} requared during the ascent 15

$$
\Delta V_{o}=-\Omega_{L} \Delta R=-\frac{1}{r_{L}}\left(\frac{\mu}{r_{L}}\right)^{1 / 2} \Delta R
$$

If R_{S} equals 20 feet and the initial R equals 1000 feet,

$$
\Delta R=-\left(R-R_{S}\right)=-980 \text { feet }
$$

and

$$
\Delta V_{0}=\left(1.14 \times 10^{-3}\right) \Delta \mathrm{R}=1.12 \mathrm{fps}
$$

Heretofore, the Orbiter's motion along \bar{R}_{L} has been described in the state domain of R versus R. The motion may be described in the time doman by completely solving the original differential equation of

$$
\dot{R}-R C=0
$$

Using Laplace transforms, let the initial conditions be defined as

$$
\begin{aligned}
& \dot{R}\left(0^{+}\right)=\dot{R}_{0} \\
& R\left(0^{+}\right)=R_{0}
\end{aligned}
$$

then,

$$
s^{2} R(s)-s R_{0}-\dot{R}_{0}-C R(s)=0
$$

and,

$$
\begin{aligned}
& R(s)=\frac{R_{0} s+\dot{R}_{0}}{(s-\sqrt{C})(s+\sqrt{C})} \\
&=\frac{K_{1}}{s-\sqrt{C}}+\frac{K_{2}}{s+\sqrt{C}} \\
& K_{1}=\left[\frac{R_{0} s+\dot{R}_{0}}{s+\sqrt{C}}\right]_{s=\sqrt{C}}=\frac{R_{0} \sqrt{C}+\dot{R}_{0}}{2 \sqrt{C}} \\
& K_{2}=\left[\frac{R_{0} s+\dot{R}_{0}}{s-\sqrt{C}}\right]_{s=-\sqrt{C}}=\frac{R_{0} \sqrt{C}-\dot{R}_{0}}{2 \sqrt{C}}
\end{aligned}
$$

Substatuting and taking the inverse of $R(s)$ yields the general solution, or

$$
R=\left(\frac{R_{0}}{2}+\frac{\dot{R}_{0}}{2 \sqrt{C}}\right) e^{\sqrt{C} t^{\prime}}+\left(\frac{R_{0}}{2}-\frac{\dot{R}_{0}}{2 \sqrt{C}}\right) e^{-\sqrt{C} t}
$$

Let

$$
\tau=\frac{1}{\sqrt{\mathrm{C}}}=\text { time constant }
$$

Then

$$
R=\frac{1}{2}\left(R_{0}+\tau \dot{R}_{0}\right) e^{t / \tau}+\frac{1}{2}\left(R_{0}-\tau \dot{R}_{0}\right) e^{-t / \tau}
$$

and

$$
\dot{R}=\frac{d R}{d t}=\frac{1}{2}\left(\frac{R_{0}}{\tau}+\dot{R}_{o}\right) e^{-t / \tau}-\frac{1}{2}\left(\frac{R_{0}}{\tau}-\dot{R}_{o}\right) e^{-t / \tau}
$$

The time constant, τ, can be expressed in terms of a variety of parameters. For example,

$$
\tau=\frac{1}{m}=\frac{1}{1.96 \times 10^{-3}}=510.20 \mathrm{sec}
$$

where m is the slope of the straight line asymptote of R versus R. Also,

$$
\tau=\frac{1}{\sqrt{3} \Omega_{L}}=\frac{T_{L}}{2 \pi \sqrt{3}}=\frac{T_{L}}{10.88}
$$

where T_{L} is the LDEF orbital period.
A physical understanding of the general solutions for R and \dot{R} may be obtained from some special cases. The first example is perhaps the most poignant. Assume that a closing \dot{R}_{o} equivalent to $\frac{R_{o}}{\tau}$ (or $m R_{o}$, the asymptote value) is introduced at a range of R_{0}. The general solution for R reduces to

$$
R=R_{0} e^{-t / \tau}
$$

In other words, an infinite amount of time is required to reach LDEF. (Sometimes this is more easily understood in terms of separating from LDEF, $1 . e .$, if the 1 nitial range is extremely small, the acceleration at release will also be extremely small). If m equals $1.96 \times 10^{-3} \mathrm{a}$ closing rate of 1.96 fps at 1000 feet will create this situation, or

$$
R=1000 e^{-t / \tau}
$$

A plot of this equation is shown in fagure 12-5. In reality the desired final range is 20 feet. The time to travel from 1000 feet to 20 feet 1s expressed by

$$
t=-\tau \ln \left(\frac{R_{S}}{1000}\right) \text { where } R_{S}=20 \mathrm{ft}
$$

Thus,

Figure 12-5.- Range Versus Time when following the Hyperbolic Asymptote in the $\dot{\mathrm{R}}$ versus R Domann

$$
t=1996 \text { seconds or } 33.3 \text { minutes }
$$

It is interesting to note that the range collapses to 50 feet in 3 time constants or 1531 seconds. But, 465 seconds is requared to travel the remaining 30 feet. The closing rate at 20 feet, where some braking is required, is obviously quite small. For this special case,

$$
\dot{R}=\frac{d R}{d t}=\frac{-R_{o}}{\tau} e^{-t / \tau}
$$

Thus, R equals -0.039 fps at 20 feet.
Another special case may be created by setting \dot{R}_{0} equal to zero In the general solution. This makes

$$
\frac{R}{R_{0}}=\frac{e^{t / \tau}+e^{-t / \tau}}{2}=\cosh \left(\frac{t}{\tau}\right)
$$

Thus, if the Orbiter is released along \bar{R}_{L} with zero inıtial range rate, the same amount of time is required to fall from 10 feet to 100 feet as $1 s$ required to fall from 100 feet (with zero inntial rate) to 1000 feet. Conversely, if the requared closing \dot{R}_{o}^{\prime} 's to stop at 100 and 10 feet are precrsely inserted at 1000 feet and 100 feet, respectively, both' the 900 feet and 90 feet of travel require the same amount of time.

A very useful form of the last equation is obtanned by solving for the inverse hyperbolic cosine; that is,

$$
\frac{t}{\tau}=\cosh ^{-1}\left(\frac{R}{R_{0}}\right)
$$

or

Table 12-2. - Optimum $\overline{\mathrm{R}}$ Approach Times

$\frac{R}{R_{0}}$	$\frac{t}{\tau}$	t (sec)	t (man)
1.5	0.962	491	8.18
2.0	1.317	672	11.20
3.0	1.763	899	14.99
4.0	2.063	1053	17.55
5.0	2.292	1170	19.49
10.0	2.993	1527	25.45
20.0	3.688	1882	31.36
30.0	4.094	2089	34.81
40.0	4.382	2236	37.26
50.0	4.605	2350	39.16
100.0	5.298	2703	45.05
1000.0	7.601	3878	64.63

$$
\frac{t}{\tau}=\ln \left\{\frac{R}{R_{O}}+\left[\left(\frac{R}{R_{0}}\right)^{2}-1\right]^{1 / 2}\right\}\left(\text { for } \frac{R}{R_{0}} \geq 1\right)
$$

Some values of t / τ and t (for a τ of 510.2 sec) corresponding to a variety of representative $\frac{R_{n}}{R_{o}}$'s are provided in Table 12-2. Note that if the desired station keeping range is 20 feet, it should take, theoretically, only 6 minutes longer to start from 2000 feet rather than 1000 feet.

Some readers may find the following expansion ${ }^{1}$ to be useful.

$$
\begin{aligned}
\frac{t}{\tau} & =\cosh ^{-1}\left(\frac{R}{R_{0}}\right) \\
& =\ln \left(\frac{2 R}{R_{0}}\right)-\frac{1}{4}\left(\frac{R_{0}}{R}\right)^{2}-\frac{3}{32}\left(\frac{R_{0}}{R}\right)^{4}-\ldots
\end{aligned}
$$

$$
\text { (for }\left|\frac{R}{R_{0}}\right|>1 \text {) }
$$

If one minute is the required accuracy, It may be shown that

$$
\frac{t}{\tau} \cong \ln \left(\frac{2 R}{R_{0}}\right) \quad\left(\text { for } \frac{R}{R_{0}} \geq 1.566\right)
$$

13.0 $\overline{\mathrm{R}}$ Approach Sensituvity

Referring to the family of curves gaven in fagure 12-4, the top curve (In the $10 X$ scale) represents the range rate, at a given range,

[^4]which will cause the Orbiter to stop at 35 feet. This curve is a plot of the hyperbolic function,
$$
\dot{R}_{\max }=m\left(R_{T}^{2}-R_{S}^{2}\right)^{1 / 2}
$$
where
\[

$$
\begin{aligned}
& \dot{R}_{\text {max }}=\text { maximum allowable closing range rate to avold } \\
& \quad \text { braking at } R_{S} \\
& m=\text { slope of the hyperbola's straight Ine asymptote } \\
& R_{T}=\text { true range } \\
& R_{S}=\text { station keeping range (in this case } 35 \text { feet) }
\end{aligned}
$$
\]

Because the pilot has amperfect knowledge of range and range rate, any attempt to follow the optimum curve can result in either a "hot" or "cold" approach. Cold trajectories are those which stop short of R_{S}. Hot trajectories are those which have a residual velocity when R_{S} is reached. When using the 1 X scale of figure $12-4$, four hot trajectories are presented. They stop at $30,20,10$ and 3.5 feet. Each hot trajectory is the result of exceeding $\dot{R}_{\text {max }}$, In increasing amounts, at any range out to the start point or 1000 feet. The hyperbolic asymptote defines a special $\dot{R}_{\max }$ which if exceeded, causes a residual \dot{R} to exist at zero range. The trajectories in this category are defined by a family of hyperbolas which have their foci on the \dot{R} axis. A complete set of representative hot and cold trajectories for ascending and descending $\overline{\mathrm{R}}$ approaches is shown in figure 13-1.

The sensitivity of the $\overline{\mathrm{R}}$ approach to range rate errors, $\dot{\delta}$, can be shown by differencing the equations for two hyperbolas.

Figure 13-1.- Hot and Cold $\overline{\mathrm{R}}$ Approaches

$$
\dot{\mathrm{R}}=\dot{\mathrm{R}}_{\max _{2}}-\dot{\mathrm{R}}_{\max }
$$

where

$\delta R=$ the difference in range rate at some given range which wall cause the Orbiter to stop at $\mathrm{R}_{\mathrm{S}_{2}}$ instead of $\mathrm{R}_{\mathrm{S}_{1}}$.
This may be simplified by letting $\mathrm{R}_{\mathrm{S}_{2}}$ equal zero and $\mathrm{R}_{\mathrm{S}_{1}}$ equal the desired station keeping range, R_{S}. Then,

$$
\begin{aligned}
\overrightarrow{\delta \mathrm{R}} & =m R_{\mathrm{T}}-m\left(R_{T}^{2}-R_{\mathrm{S}}^{2}\right)^{1 / 2} \quad\left(\text { for } R_{T} \geq R_{\mathrm{S}}\right) \\
& =\text { asymptote 1imıt }-\dot{R}_{\max }
\end{aligned}
$$

When R_{T} equals R_{S}, $\dot{\delta R}$ equals $m R_{S}$. As R_{T} becomes larger and larger, $\mathrm{R}_{\text {max }}$ approaches $m \mathrm{R}_{\mathrm{T}}$, the asymptote, and $\delta \mathrm{R}$ approaches zero.

Now suppose that the R limit defined by the asymptote 1 s exceeded at some time during the approach. In this case, orbital mechanics braking is still decelerating the Orbiter with respect to the target, but insufficient range exists to entirely "bleed off" the closing range rate. In such situations the trajectories are defined by

$$
\dot{R}_{\max }^{\prime}=\left[\dot{R}_{o}^{2}+\left(\mathrm{mR}_{\mathrm{T}}\right)^{2}\right]^{1 / 2}
$$

where

$$
\begin{aligned}
& \dot{R}_{o}=\text { residual closing range rate at zero range } \\
& m=\text { slope of the asymptote common to both hot and cold } \\
& \text { approaches } \\
& \dot{R}_{\max }^{\prime}=\text { maximum allowable closing rate to avoid exceeding }
\end{aligned}
$$

(As mentioned earlier, this equation defines a family of hyperbolas which have thear focs on the R axis). If R equals $R_{S}, R_{\max }^{\prime}$ is the braking $\Delta V, \dot{R}_{b}$, requared to stop at R_{S}. Or,

$$
\dot{R}_{b}=\left(\dot{R}_{\max }^{\prime}\right)_{R=R_{S}}=\left[\dot{R}_{o}^{2}+\left(m R_{S}\right)^{2}\right]^{1 / 2}
$$

The objective is to get $\dot{R}_{\max }^{\prime}$ in a form where it is expressed as a function of \dot{R}_{b} and R. Rearranging the preceding equation gives

$$
\dot{R}_{o}^{2}=\dot{R}_{b}^{2}-\left(m R_{S}\right)^{2}
$$

Substitutang this anto $\dot{R}_{\max }^{\prime}$ gives

$$
\dot{R}_{\max }^{\prime}=\left[\dot{\mathrm{R}}_{\mathrm{b}}^{2}-\left(\mathrm{mR}_{\mathrm{S}}\right)^{2}+\left(\mathrm{mR}_{\mathrm{T}}\right)^{2}\right]^{1 / 2}
$$

Now the difference between $\dot{R}_{\max }^{\prime}$ and $\dot{R}_{\max }$ is the allowable range rate error, $\dot{\delta} \dot{R}$, as a function of range which will create a braking requirement of \dot{R}_{b} at R_{S}. That 1 s ,

$$
\begin{aligned}
\dot{\delta} & =\dot{R}_{\max }^{\prime}-\dot{R}_{\max } \\
& =\left[\dot{R}_{b}^{2}-\left(m R_{S}\right)^{2}+\left(m R_{T}\right)^{2}\right]^{1 / 2}-m\left[R_{T}^{2}-R_{S}^{2}\right]^{1 / 2}
\end{aligned}
$$

$$
\left(\text { for } R_{T} \geq R_{S}\right)
$$

Figure 13-2 presents representative plots of $\delta \dot{R}$. Both curves assume that R_{S} equals 20 feet and m equals $1.96 \times 10^{-3} \mathrm{sec}^{-1}$. The top curve assumes that 0.5 fps may be removed near the target. The bottom curve

Figure 13-2.- Allowable Range Rate Errors Versus True Range

FIgure 13-3.- $\delta \dot{\mathrm{R}}$ in the $\dot{\mathrm{R}}$ versus R_{T} Domann
assumes only 0.25 fps of braking is allowable. Figure 13-3 shows $\delta \dot{R}$ in the \dot{R} versus R_{T} domann. There are several ways of interpreting these figures. For example, when R_{T} ls large, only very small excursions above $\dot{R}_{\max }$ precıpıtate large requirements for braking near the target. Or, for a given \dot{R}_{b} the allowable error increases as the range collapses.

- Perhaps the most important conclusions become evident if the pilot whshes to follow the optimum trajectory to the target. They are:

1. Very accurate range and range rate knowledge is required.
2. Very tight control of the Orbiter is required.

These areas, state knowledge and Orbiter control, are the subjects in the remainder of this paper. They are the areas which separate the theoretical from the practical.

14.0 The Digital Auto Pilot

The DAP (Digital Auto Pılot) is not a plece of hardware but a module of software in an Orbiter computer. Its function is to control the Orbiter's attitude and translation by using the Reaction Control.溇
System (RCS). The DAP performs this function by first differencing a desired Orbiter state with the current Orbiter state and second, commanding the appropriate RCS jets to drive this difference close to zero. (The term "close to zero" Is used because the manamum avallable jet "ON" time is 40 milliseconds):"During the $\overline{\mathrm{R}}$ approach, the desired Orbiter attitude is provided to the DAP by the UPS (Universal Polnting System). Translational inputs are provided to the DAP by the THC (Translational Hand Controller).

The DAP may be placed into ezther of two software configurations or modes. These are called DAP A and DAP B. The character of these modes is dependent on the mission phase. During the $\overline{\mathrm{R}}$ approach they assume the following significance:

DAP A -

1. All upward firıng jets are n nhibıted for attitude control.
2. All jets are active for translational control.
3. Each "hat" of THC wall provide a ΔV of 0.25 fps in the commanded direction.

DAP B -

1. All upward firing jets are inhıbited for attitude control.
2. The upward firing $+Z$ jets are inhibited for translational control.
3. Simultaneous firing of the $+X$ and $-X$ jets occurs in lieu of all $+Z$ jet commands for translation. (The X jets have ten percent of their thrust directed downward along $+Z_{B}$.)
4. Each "hit" of the THC will provide a ΔV of 0.03 fps in the commanded direction.

Regardless of which configuration is selected, the DAP $1 s$ placed In the Automatic Mode to respond to the UPS. In addition, the Translational Pulse Mode $1 s$ called; this mode computes the proper number of 40 millisecond jet commands required to achieve the specified ΔV for each THC deflection from detent. Figure 14-1 shows the DAP Control Panel in its \vec{R} approach configuration.

Although the Rotatıonal Discrete Mode is also called during an \bar{R}

Figure 14-1.- Digital Auto Pılot (DAP) Control Panel Configured for an $\overline{\mathrm{R}}$ Approach
approach, it has no meaning unless the DAP, for some reason, is placed In the Manual Mode. Then, holding the RHC (Rotational Hand Controller) out of detent causes the Orbiter to assume and manntain a. preprogrammed rotation rate until the RHC is released; at release the Orbiter reverts to inertial attitude hold at the current attıtude. Though the Manual Mode may be called from the DAP Control Panel, any momentary deflection of the RHC will also change the DAP from the Automatic Mode to the Manual Mode.

The DAP A and DAP B designs serve two purposes. First, they manimize plume impangement on LDEF. In particular, using the +X jets for any close in braking has, been shown ${ }^{1}$ to be significantly less disturbing to LDEF than using the more direct Z jets (See figure 14-2a and $14-2 b$). Second, the designs provide the fine ΔV control resolution demanded by an $\overline{\mathrm{R}}$ approach.

The designs also cause an undesirable side effect. Since only downward firing jets are used for $p \neq t c h$ and roll attitude control, each correction introduces an increment of closing ΔV. Translations along X or Y also affect range rate. In the case of X translations, ten percent of the thrust is along $+Z_{B}$. This us partially offset by the creation of a pitching moment which requires an upward thrust to correct. In the case of Y translations the problem is more serious. Thrustang the Y jets creates a signifıcant roll torque. Roll jets

[^5]Figure 14-2a.- Normal Z Jet Brakıng ($0.45 \mathrm{ft} / \mathrm{sec}^{2}$ at $30 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$)

Figure $14-2 \mathrm{~b} . \pm \mathrm{X}$ Jet Braking ($0.05 \mathrm{ft} / \mathrm{sec}^{2}$ at $280 \mathrm{Ib} / \mathrm{ft} / \mathrm{sec}$)
exist only in the tall of the Orbiter and have relatively short moment -arms. When the upward firıng jēts are inhibited, half of the roll torque capabılıty is lost. Indeed, if enther the $+Y$ or $-Y$ jets are held ON, the Orbiter's roll attitude diverges even though the downward firing roll jet is 0 N . This single 875 lb . roll jet is also thrusting the Orbiter along $-Z_{B}$ (or toward the LDEF). The resultant pitching moment is counteracted by an upward thrusting nose jet, which aggravates the situation.

The most important conclusion of the preceding paragraph is obvious: minimaze Y translation requirements. This imposes an attitude constraint during the \bar{R} approach. As the Orbiter ascends along \bar{R}_{L}, the tangential velocity must be increased. This is best accomplished by thrustang eather the $+X$ or $-X$ jets. Thus durang an $\overline{\mathrm{R}}$ approach the Orbiter's X axis must always reside in the orbit plane.

Another important conclusion 1 s that the Orbiter will probably not follow the \dot{R} versus R curves of figure 12-4. The curves are ideal in that they assume accelerations along \bar{R} are derived solely from orbital mechanics effects. As was mentioned, several incremerts of ΔV are randomly mparted along Z_{B} during the $\overline{\mathrm{R}}$ approach. The net effect may manıfest atself as an apparent increase or decrease in the natural braking along $\overline{\mathrm{R}}$.

As a final note, $\pm \mathrm{X}$ jet braking does have two potentıal drawbacks which, if ignored, can cause problems. First, $\pm \mathrm{X}$ jet braking is very Inefficient with respect to fuel usage. $+Z$ jet braking expends 30

[^6]pounds of fuel per foot per second. Second, $\pm \mathrm{X}$ jet braking acceleration Is only $0.05 \mathrm{ft} / \mathrm{sec}^{2}$ compared to $0.45 \mathrm{ft} / \mathrm{sec}^{2}$ for $+Z$ jet brakıng. In summary, therefore, precautions must still be taken during an $\overline{\mathrm{R}}$ approach to assure that the need for braking is minimized.
15.0 Using the COAS During an $\overline{\mathrm{R}}$ Approach. Prior to the $\overline{\mathrm{R}}$
final approach the use of the COAS us limited to that of aiding the pılot in laterally positioning and/or pointing the Orbiter's $-Z_{B}$ axis. During the \vec{R} approach the COAS continues to be used as a lateral positioning ald while the UPS controls the pointing of the $-Z_{B}$ axis. But in addition, there is a point in the approach where the third function of the COAS comes into play, namely, that of providing range and range rate data.

The transition point, where COAS data is used in lieu of radar data, is dependent on the errors in the two measurement schemes. Therefore, the development of any \vec{R} approach strategy must be preceded by some quantification of the errors in both systems. The radar errors have already been presented. The purpose of this section is to address the errors and limitations associated wath the use of the COAS.
15.1 Determining Range with the COAS

Range to the target is determined with the COAS by the following equation:

$$
\mathrm{R}=\frac{\mathrm{W}}{2}\left(\frac{1}{\tan \left(\frac{\theta}{2}\right)}\right)
$$

where

$$
\begin{aligned}
& R=\text { range to the target in feet } \\
& W=\text { target width in feet } \\
& \theta=\text { degrees of COAS field of view subtended by the target }
\end{aligned}
$$

For small subtended angles as experienced in the COAS,

$$
\mathrm{R}=\frac{\mathrm{W}}{\theta}\left(\frac{180}{\pi}\right)
$$

15.2 LDEF Ranging Targets

LDEF provides at least three targets for approach and station keeping. They are shown in figure 15.2-1. A duplicate set of targets are provided on the forward end to accommodate an LDEF end-for-end tumble after release by the Orbiter. ${ }^{1}$ The first target is the total LDEF end face, which has an average diameter or target width, W, of 14.0 feet. The second target is a painted pair of dashed lines whose centers are at $Y_{0}=-19.93$ and $Y_{0}=-60.23$. This provides a target width of 40.3 inches or 3.36 feet. The third target is formed by the dashed $l_{\text {Ines }}$ with centers at $Y_{0}=-60.23$ and $Y_{0}=-70.23$, which provide a target width of 10 inches or 0.83 feet. (A duplicate 10-inch target is oriented 90 degrees to the first. The purpose of this duplication is discussed later). Figures 15.2-2, 15.2-3, and 15.2-4 present the COAS angle versus range curves for the three targets. A copy of these curves or a tabular representation will be used by the pilot during the $\overline{\mathrm{R}}$ approach.

15.3 COAS Ranging Sensituvity

Sensituvity, S, is defined as the change in target image size for a given change in range, or,
1_{A} descending $\overline{\mathrm{R}}$ approach is just as viable as an ascending $\overline{\mathrm{R}}$ approach. But, operationally speaking, there is a distinct preference for the asčending approach because there is no visual background noise (cloud patterns, etc.) in the COAS field of view.

Figure 15.2-1.- Deployment and Retrieval Markings - Operational Aıds (LaRC Dwg. LE-815713A)

Figure 15.2-2.- Ranging wath the 0.83 ft. LDEF Target

Figure 15.2-3.- Ranging with the 3.36 ft . LDEF Target

Figure 15.2-4.- Ranging with the 14 ft. LDEF End Face Target

$$
\mathrm{S}=\frac{\mathrm{d} \theta}{\mathrm{~d} \mathrm{R}}=-\frac{\mathrm{W}}{\mathrm{R}^{2}}\left(\frac{180}{\pi}\right) \mathrm{deg} / \mathrm{ft}
$$

If a target must be useful over a range of R and $3 R$, the sensitivity wall vary 9 fold. The highest sensitivity occurs at R and the lowest occurs at 3R.
15.4 Determining Range Rate with the COAS

One of the most strıkıng amplications of this varıable sensıtivıty Is that the pilot's direct perception of range rate in the COAS is acutely dependent on range. Suppose that the pilot attempts to percelve \dot{R} as a tume rate of change of the subtended target angle, $\dot{\theta}$. If R_{2} equals $3 R_{1}$ and $\dot{\theta}_{1}=\dot{\theta}_{2}$, how does \dot{R}_{1} compare to \dot{R}_{2} ?

$$
\frac{\mathrm{S}_{1} \dot{\mathrm{R}}_{1}}{\mathrm{~S}_{2} \tilde{\mathrm{R}}_{2}}=\frac{\dot{\theta}_{1}}{\dot{\theta}_{2}}=1
$$

and

$$
\begin{aligned}
& \because \because_{1} \quad \dot{\mathrm{R}}_{2}=\binom{\mathrm{S}_{1}}{\mathrm{~S}_{2}} \dot{\mathrm{R}}_{1}=9 \dot{\mathrm{R}}_{1}
\end{aligned}
$$

In other words, a constant image growth rate over a range spread of 3 times yields a 9 fold change in the actual range rate. The conclusion is that developing an inturtive feeling for the magnitude of range rate based on lmage growth rate is extremely difficult if not impossible.

Even differencing COAS readıngs over an interval, t, can provide an erroneous indication of range rate. This method only provides an
indication of the mean range rate over the interval. If the orbiter is experzencing any acceleration relatıve to the target, the computed R will always be in error. This can be shown as follows:

$$
\begin{aligned}
\dot{\delta R} & =\dot{\mathrm{R}}-\dot{\mathrm{R}}_{\mathrm{T}} \\
& =\frac{\mathrm{R}-\mathrm{R}_{\mathrm{o}}}{\Delta \mathrm{t}}-\dot{\mathrm{R}}_{\mathrm{T}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \dot{\delta} \dot{R}^{\prime}=\text { uncertainty in the computed } \dot{R} \\
& \dot{R}=\text { computed } \dot{R} \\
& \dot{R}_{T}=\text { true } \dot{R} \\
& \mathrm{R}=\text { range at time } \mathrm{t} \\
& \mathrm{R}_{\mathrm{O}}=\text { range at time } \mathrm{t}_{\mathrm{O}} \\
& \Delta \mathrm{t}=\mathrm{t}-\mathrm{t}_{\mathrm{O}}
\end{aligned}
$$

Assuming, for simplicity, that R equals a constant,

$$
\begin{aligned}
& R=R_{0}+\dot{R}_{0} \Delta t+\frac{\ddot{R}(\Delta t)^{2}}{2} \\
& \dot{R}_{T}=\dot{R}_{0}+\ddot{R} \Delta t
\end{aligned}
$$

Substatuting,

$$
\dot{\delta R}=\frac{-R \Delta t}{2}
$$

In other words, the computed \dot{R} is always behind the current \dot{R}. Though the error equation moplies that the error may be minımized by reducing the interval between COAS readings, the situation is not that stralghtforward. Each reading of the COAS is corrupted by a minimum
resolution error. Thus, sufficient time must exist to allow the target image to grow some $\Delta \theta$ which is large compared to the resolution error.

Only one conclusion can be drawn from the foregoing discussion: determining the magnitude of range rate with the COAS leaves a lot to be desired.

15.5 Target Width

COAS readout errors, $\delta \theta$, map into range estimation errors through sensitivaty, S. That is,

$$
\delta \mathrm{R} \approx \frac{1}{\mathrm{~S}} \delta \theta=\frac{-\mathrm{R}^{2}}{\mathrm{~W}} \delta \theta
$$

Clearly, δ R may be minimized by making W, the target width, as large as possible.

The available field of view in the COAS constrans target size as the range collapses. If the target must be useful down to a minimum range, $R_{\text {min }}$, the target width is constrained by

$$
W_{\max }<\theta_{a}\left(-\frac{\pi}{180}\right) R_{\min }
$$

where θ_{a} usithe available field of view in degrees.
Not all of the ten degree COAS field of view is considered to be available. Some margin must exist to accommodate (1) In- and out-ofplane position errors while ascending along \bar{R}, and (2) the limit cycle motion of the Orbiter. For example, assume that the target is centered in the COAS. The remanning available field of view, θ_{r}, on each side of the target image is
Table 15.5-1 Allowable Positionang Error about \vec{R}
A. LDEF Station Keeping Target, $W=0.83 \mathrm{ft}$.
Range (ft) x (ft)
50 3.95
40 3.08
30 2.20
20 1.33
15 0.89
B. LDEF Approach Target, $W=3.36 \mathrm{ft}$.
Range (ft) x (ft)
200 15.77
150 11.41
100 7.05
50 2.68
25 0.50
C. LDEF End Face, $W=14.0 \mathrm{ft}$.
Range (ft) $x(f t)$
1000 80.27
600 45.36
400 27.91
200 10.45

$$
\theta_{r}=5\left(\frac{\pi}{180}\right)-\frac{W}{2 R} \text { (in radians) }
$$

θ_{r} subtends an arc length, x, at the target, of

$$
x \dot{=} R \theta_{r}=R(5)\left(\frac{\pi}{180}\right)-\frac{W}{2}
$$

This x is also the allowable positioning error, in the Orbiter's $\overline{\mathrm{V}}-\overline{\mathrm{H}}$ plane, which will assure manntenance of the target image in the COAS field of view. Table 15.5-1 gives the values of x for the LDEF targets as a function of range.
15.6 COAS Range Error Vs. Resolution

When rangang wath the COAS, the pilot must mentally record and difference two COAS readings (one reading for each edge of the target). 'The uncertainty in the difference is a function of the uncertainty in each of the two readings. That is,

$$
3 \sigma_{\theta}=3\left(\sigma_{\theta_{L}}^{2}+\sigma_{\theta_{R}}^{2}\right)^{1 / 2}
$$

where

$$
\begin{aligned}
\sigma_{\theta}= & \text { varıance in the target's total subtended angle, } \theta \\
\sigma_{\theta_{L}}= & \text { varıance in the COAS angle for left edge of the } \\
& \text { target } \\
\sigma_{\theta_{R}}= & \text { varıance in the COAS angle for the right edge of } \\
& \text { the target }
\end{aligned}
$$

No speciflc study exlsts to quantıfy $3 \sigma_{\theta}$. However, personnel who have
partıcıpated in sımulations at JSC generally belıeve that each edge of "a target may bē read to within 0.25 degrees 3σ (even though the COAS cross halrs are indexed in one degree increments). This makes $3 \sigma_{\theta}$ equal to 0.35 degrees.

The ranging errors resulting from the COAS angle uncertainty may be computed by referrang to figure 15.6-1. Let

$$
\begin{aligned}
& \mathrm{R}=\text { computed range } \\
& \mathrm{R}_{\mathrm{T}}=\text { true range } \\
& \delta \mathrm{R}=\text { range error } \\
& \theta=\text { estimated subtended target angle } \\
& \theta_{\mathrm{T}}=\text { true subtended target angle } \\
& \delta \theta=\text { angle measurement error }
\end{aligned}
$$

Then,

$$
\begin{aligned}
\frac{\delta R}{R_{T}} & =\frac{R-R_{T}}{R_{T}} \\
& =\frac{\frac{W}{\theta}-R_{T}}{R_{T}}=\frac{\frac{W}{\theta_{T}+\delta \theta}-R_{T}}{R_{T}} \\
& =\frac{\frac{W}{\frac{W}{R_{T}}+\delta \theta}-R_{T}}{R_{T}} \\
& =\frac{-1}{1+\frac{W}{R_{T} \delta \theta}}
\end{aligned}
$$

$$
\frac{W}{\delta \theta}=k
$$

R - Computed Range
R_{T} - True Range
δ_{R} - Range Error
θ - Estimated Subtended Target Angle
$\theta_{\text {T }}$ - True Subtended Target Angle
δ_{A} - Angle Measurement Error

Figure 15.6-1.- COAS Resolution Error

TABLE 15.6-1 Range Error Vs. COAS Resolution Error for LDEF Station Keepıng Target, $W=0.83 \mathrm{Ft}$.

TABLE 15.6-2 Range Error Vs. COAS Resolution Error for LDEF

TABLE 15.6-3 Range Error Vs. COAS Resolution Error for LDEF End

Then

$$
\frac{\delta \mathrm{R}}{\mathrm{R}_{\mathrm{T}}} \%=\frac{-100}{1+\frac{\mathrm{k}}{\mathrm{R}_{\mathrm{T}}}}
$$

If $\delta \theta$ is expressed in degrees,

$$
k=\frac{W}{\delta \theta}\left(\frac{180}{\pi}\right)
$$

For posituve $\delta \theta$'s the range error approaches -100% as R_{T} approaches infinity. For negative $\delta \theta^{\prime}$ s, the error is less straight forward. For example, as R_{T} approaches $\left|\frac{k}{2}\right|$, the range error approaches $+100 \%$, the physical significance is that when θ_{T} equals $+2 \delta \theta, \theta$ equals $+\delta \theta$.

Tables $15.6-1,15.6-2$, and $15.6-3$ provide, as a function of range, the values of the important parameters for each target.

15.7 Optimizing Target Size

Any target becomes less accurate as range increases. Therefore, uf accuracy is the most important parameter, the minimum target width, $W_{m i n}$, is constrained by the accuracy requirement at the maximum range, $R_{\max }^{\prime}$. Referring to the preceding paragraphs, note that

$$
W=-\delta \theta\left(\frac{\pi}{180}\right)\left[\frac{\frac{1}{\delta \mathrm{R}}}{\mathrm{R}_{\mathrm{T}}}+1\right] \mathrm{R}_{\mathrm{T}}
$$

If $R_{T}=R_{\text {max }}^{\prime}$, then $W=W_{\text {min }}$ for a specified $\delta \theta$ and $\frac{\delta R}{R_{\max }^{\prime}}$, or

$$
W_{\min }=-\delta \theta\left(\frac{\pi}{180}\right)\left[\frac{1}{\varepsilon_{\mathrm{R}}}+1\right] \mathrm{R}_{\max }^{\prime}
$$

where $\quad \varepsilon_{R}=\frac{\delta R}{R_{\max }^{\mathrm{T}}}$
Since $W_{m i n}$ is maximized when $\varepsilon_{R}>0$ (corresponding to a $\delta \theta<0$), the preceding equation may be rewritten as

$$
\mathrm{W}_{\operatorname{man}}=|\delta \theta|\left(\frac{\pi}{180}\right)\left[\frac{1}{\left|\varepsilon_{\mathrm{R}}\right|}+1\right] \mathrm{R}_{\max }^{\prime}
$$

Correspondingly, the minamum usable range, $R_{m i n}^{\prime}$, for a target width, $W_{m ı n}$, is constraıned by the COAS's avallable field of view, θ_{a}. Or,

$$
R_{\min }^{\prime}=\frac{W_{m i n}}{\theta_{a}}\left(\frac{180}{\pi}\right)
$$

The $R_{\min }^{\prime}$ and $R_{\text {max }}^{\prime}$ are annotated wath "primes" because they may not bound the total $R_{\min }$ to $R_{\max }$ spread for which targets are required. That is, usually more than one target is necessary. The number of targets may be determined as follows.

A range spread factor, J, may be defined for each target, where

$$
J=\frac{R_{\max }^{\prime}}{R_{\min }^{\top}}=\frac{\theta_{a}}{|\delta \theta|\left[\frac{1}{\left|\varepsilon_{R}\right|}+1\right]}
$$

Assuming each target is fully utilızed over its optimum range (1.e., $R_{\min }^{\prime}$ to $R_{\max }^{\prime}$),

$$
\mathrm{R}_{\min }(\mathrm{J})^{\mathrm{n}}=\mathrm{R}_{\max }
$$

$$
\mathrm{n}=\frac{\log \left(\frac{R_{\max }}{R_{\operatorname{man}}}\right)}{\log (\mathrm{J})}
$$

where n is the number of targets, with equal J factors, required to cover a total range of $R_{\min }$ to $R_{\max }$. For two consecutive targets, $\mathrm{R}_{\min _{1}}^{\prime}$ equals $\mathrm{R}_{\max _{2}}^{\prime}$. Therefore,

$$
\frac{W_{\mathrm{min}_{1}}}{\mathrm{~W}_{\mathrm{min}}^{2}}=\mathrm{J}
$$

The following example may be used to show the application of the preceding equations.

The LDEF end face 1 s the first avallable target during the $\overline{\mathrm{R}}$ approach. Assuming $\delta \theta=-0.35$ degrees, there is a range where ε_{R} will be the same for radar ranging and COAS ranging. This range is 390 feet where ε_{R} equals $0.2051 .^{1}$ Assuming 20.51% is the maximum allowable error from 390 feet to 10 feet, and that θ_{a} equals 8 degrees, what are the target requarements?

$$
\begin{aligned}
& \mathrm{J}=\frac{8}{0.35\left[\frac{1}{.2051}+1\right]}=3.89 \\
& \mathrm{n}=\frac{\log \left(\frac{390}{10}\right)}{\log (3.89)}=2.70
\end{aligned}
$$

[^7]\[

$$
\begin{aligned}
& \text { OR'GINAL PAGE IS } \\
& \text { OF POOR QUALITITI }
\end{aligned}
$$
\]

In other words, at least three LDEF targets are required. The target width requirements ${ }^{2}$ and their respective ranges are as follows:

Target \#1

$$
\begin{aligned}
& \mathrm{R}_{\max _{I}}=390 \text { feet } \\
& \mathrm{W}_{\min _{1}}=14 \text { feet } \\
& \mathrm{R}_{\min _{1}}=\frac{\mathrm{R}_{\max _{1}}}{\mathrm{~J}}=\frac{390}{3.89}=100.26 \text { feet }
\end{aligned}
$$

Target ${ }^{\text {\# }}$

$$
\begin{aligned}
& \mathrm{R}_{\max _{2}}=100.26 \text { feet } \\
& \mathrm{W}_{\min _{2}}=\frac{\mathrm{W}_{\operatorname{mIn}_{1}}}{\mathrm{~J}}=3.60 \text { feet } \\
& \mathrm{R}_{\min _{2}}=\frac{\mathrm{max}_{2}}{J}=25.77 \text { feet }
\end{aligned}
$$

Target \#3

$$
\begin{aligned}
& \mathrm{R}_{\max _{3}}=25.77 \text { feet } \\
& \mathrm{W}_{\min _{3}}=\frac{\mathrm{W}_{\min }}{} \frac{\mathrm{R}_{\max _{3}}}{J}=0.93 \text { feet } \\
& \mathrm{R}_{\min _{3}}=\frac{\mathrm{J}}{}=6.62 \text { feet }
\end{aligned}
$$

${ }^{2}$ Note that the optimum targets are essentially the same as those on LDEF. The minor exceptions are:

Actual	Optimum	\triangle
14.00 ft .	14.00 ft .	0
3.36 ft .	3.60 ft.	-2.88 inches
0.83 ft .	0.93 ft .	$\because-1.20$ anches

.The two Inch width of each line representing the edges, of each target essentially nulifies these differences.

Each target is utilized until it subtends an eight degree angle in the COAS. In each case the error at that point is identical. Note that:

$$
\frac{W_{\min }}{\mathrm{R}_{\min }^{1}}=|\delta \theta|\left(\frac{\pi}{180}\right)\left[\frac{1}{\left|\varepsilon_{R}\right|}+1\right]
$$

but

$$
\theta_{a}\left(\frac{\pi}{180}\right)=\frac{W_{m 1 n}}{R_{m 1 n}^{T}}
$$

Substituting and rearranging gives

$$
\left|\varepsilon_{R}\right|=\frac{1}{\left\lvert\, \frac{\theta_{a}}{\left.\delta \theta\right|_{*}}-1\right.}
$$

For θ_{a} equal to 8 degrees and $|\delta \theta|$ equal to 0.35 degrees,

$$
\left|\varepsilon_{R}\right|=4.58 \%
$$

This is the manimum ranging error for each target.
A plot of $\left|\varepsilon_{R}\right|$ versus $\frac{R}{R_{\text {min }}^{1}}$ is shown in figure 15.7-1. The curve
is obtained from the following equation. ${ }^{1}$

$=$
$\overline{1}_{\text {This equation }}$ is just another form a previously developed equation, $1 . e .$,

$$
\frac{\delta R}{R_{T}}=\frac{-1}{1+\frac{W}{R_{T} \delta \theta}}
$$

Figure 15.7-1.- COAS Ranging Error $\left|\varepsilon_{R}\right|$ Versus $R / R_{\text {min }}^{\prime}$

Figure 15.7-2.- $\left|\varepsilon_{R}\right|$ Versus Range

Figure 15.7-3a.- Utilızang the LDEF Targets

FIgure 15.7-3b.- Utュlızing the LDEF Targets

Figure 15.7-3c.- Utilızing the LDEF Targets

Figure 15.7-3d.- Utilizing the LDEF Targets

Figure 15.7-3e.- Utilızing the LDEF Targets

Figure 15.7-3f.- Utılızing the LDEF Targets

Figure 15.7-3g - Utalizang the LDEF Targets

Figure 15.7-3h.- Utilizing the LDEF Targets
where

$$
B=\frac{\theta_{a}}{|\delta \theta|}=\frac{8}{.35}=22.86
$$

$\left|\varepsilon_{R}\right|$ traces out three of these essentially sawtooth patterns as the range collapses from 390 feet to 6.62 feet. This is shown an figure 15.7-2 (straight line approximations are used).

Figures 15.7-3a through $15.7-3 \mathrm{~h}$ show how the targets may be utilızed during an approach.

15.8 COAS Rangang Error due to LDEF/Orbiter Yaw Attitude Skew

During an \vec{R} approach the Orbiter's yaw axis $\left(Z_{B}\right)$ and the LDEF's yaw axls (X_{L}) are essentially alined to \bar{R}_{L}, the LDEF orbital radius vector. The yaw attitude of each body determines the orientation the targets with respect to the COAS reticles. (See Figure 15.8-1.) Any misalignment introduces a ranging error. Referring to figure 15.8-2,

$$
\begin{aligned}
\delta \mathrm{R} & =\mathrm{R}-\mathrm{R}_{\mathrm{T}} \\
& =\frac{\mathrm{W}}{\theta}-\mathrm{R}_{\mathrm{T}}
\end{aligned}
$$

$$
\text { but } \quad \theta=\frac{W}{R_{T} \cos \psi}
$$

After substituting and simplıfying,

$$
\frac{\delta \mathrm{R}}{\mathrm{R}_{\mathrm{T}}} \%=100(\cos \psi-1)
$$

Note that the percent error is independent of range. Some representative values are:

Figure 15.8-1.- Skewed Orbiter/LDEF Yaw Attıtudes during Approach

Figure 15.8-2.- Target/Reticle Skew

ψ degrees	$\frac{\delta R}{R} \%$
5	-0.4
10	-1.5
15	-3.4
20	-6.0
25	-9.4
30	-13.4
35	-18.1
40	-23.4
45	-29.4
50	-35.7
55	-42.6

The equation for $\frac{\cdot \delta R}{R_{T}}$ indicates that the error may grow to a maximum of -100% as ψ approaches 90 degrees. The physical signıfıcance is that the apparent target width grows to infinity, which collapses the computed range to zero. In realıty, there are constrannts which cause the maximum error to be considerably less.

First, the pilot will always measure the subtended angle with the optımum reticle. That 1s, as ψ passes through 45 degrees, he would switch from one reticle to the other. This limits the maximum error to -29.4%.

Second, the available field of view, θ_{a}, will at some ranges limit the maximum ψ to less than 45 degrees. This may be expressed by

$$
\frac{W}{R_{T} \cos \psi} \leq \theta_{a}\left(\frac{\pi}{180}\right)
$$

which gives

$$
\psi_{\max }=\cos ^{-1}\left(\frac{180 \mathrm{~W}}{\pi \mathrm{R}_{\mathrm{T}} \theta_{a}}\right)
$$

Assuming θ_{a} equals 8 degrees, the $\psi_{\max }$ (and corresponding $\frac{\delta \mathrm{R}}{\mathrm{R}_{\mathrm{T}}}$) for each target 1 s .

1. LDEF Approach Target, $W=3.36 \mathrm{ft}$.

$$
\psi_{\max }=\cos ^{-1}\left(\frac{24.06}{R_{T}}\right) \text { for } R_{T} \geq 24.06 \mathrm{ft}
$$

$$
24.06
$$

0
15.8
36.7

25
30
45.0 0
-3.8
-19.8
-29.3
2. LDEF Station Keeping Target, $W=0.83 \mathrm{ft}$.
$\psi_{\max }=\cos ^{-1}\left(\frac{5.94}{R_{T}}\right)$ for $R_{T} \geq 5.94 \mathrm{ft}$.

R

$\psi_{\text {max }}$
$\underbrace{\frac{\delta \mathrm{R}}{\mathrm{R}_{\mathrm{T}}} \%}$
5.94

7
8
8.4

0
31.9
42.1
45.0

0
-15.1
-25.8
-29.3

Operationally speaking, any yaw skew forces the pilot to swatch from the approach target to the station keeping target prematurely (i.e., before the optimum range is achieved). For example, if ψ equals 45 degrees, the pilot must switch to the station keeping target at 34 feet instead of 24.06 feet. This causes the $\frac{\delta R}{R_{T}}$ due to yaw skew to remain the same, but the $\frac{\delta R}{R_{T}}$ due to resolution error steps from $+6.59 \%$ to $+33.37 \%$ (assuming the effects of the two error sources are uncorrelated).

For an obvzous reason the LDEF end face target as omitted from this discussion. A circular target does not suffer from a yaw skew error.

Instead, circular targets are sensituve to lateral positioning errors about the LOS. If the center of a clrcular target does not fall on either the vertical or horizontal reticle, the retıcles will measure a chord of the carcle, not the diameter. In thas case, the apparent range is always greater than the true range. For any circular target (see figure 15.8-3),

$$
\ell=2\left(r^{2}-d^{2}\right)^{1 / 2}
$$

where

$$
\begin{aligned}
\ell= & \text { chord length } \\
I= & \text { circle's radius }=\frac{W}{2} \\
d= & \text { the chord's distance from the circle's center } \\
& \text { measured along the radius normal to the chord (i.e., } \\
& \text { position error about } \overline{\mathrm{R}}_{\mathrm{L}} \text {). } \\
\mathrm{W}= & \text { target width }
\end{aligned}
$$

Therefore,

$$
\theta=\frac{2\left[\left(\frac{W}{2}\right)^{2}-d^{2}\right]^{1 / 2}}{R_{T}}
$$

where θ is the apparent subtended angle.
Recalling that

$$
\frac{\delta R}{R_{T}}=\frac{\frac{W}{\theta}-R_{T}}{R_{T}}
$$

and substitutang the preceding equation for θ gives

1
Figure 15.8-3.- Circular Target Positioning Errors in COAS ;

$$
\frac{\delta \mathrm{R}}{\mathrm{R}_{\mathrm{T}}} \%=100\left\{\frac{1}{\left[1-4\left(\frac{\mathrm{~d}}{\mathrm{~W}}\right)^{2}\right]^{1 / 2}}-1\right\}
$$

Once again, the percent error is independent of range. Also, large target wadths (or diameters) minimaze the error. Some representative values of the percentage error (for W equal to 14 feet) are:

d feet	$\frac{\delta R}{R_{T}} \%$
2	1.0
3	4.3
4	10.7
5	21.9
6	42.9
	94.1

At farst the growth in error is shocking; in fact it approaches infinity as the positioning error about \bar{R}_{L} approaches 7 feet. But two operational considerations help to keep the error in check. First, the pllot can measure a mental projection of the total target wadth on the nearest reticle. Second, the pilot can control to a large extent the position of the target in the COAS. Although the target may never by stationary, the pilot can defer a reading until the cyclic, translational motion causes the target center to pass near or across a reticle. 15.9 Combining the Resolution and Skew Errors

Heretofore, the two rangang errors were treated as being independent of one another. In reality, they operate collectively and their combined effect is different than a simple sum of the two. Once again,

$$
\frac{\delta R}{R_{T}}=\frac{\frac{W}{\theta}-R_{T}}{-R_{T}}
$$

But now

$$
\theta=\frac{\mathrm{W}}{\mathrm{R}_{\mathrm{T}} \cos \psi}+\delta \theta
$$

Agaln let

$$
\mathrm{k}=\frac{W}{\delta \theta}\left(\frac{180}{\pi}\right)
$$

where $\delta \theta$ is specified in degrees.
Substituting and rearranging gives

$$
\frac{\delta R}{R_{T}} \%=\left\{\frac{-1+\left(1-\frac{R_{T}}{k}\right) \cos \psi}{1+\frac{R_{T}}{k} \cos \psi}\right\}^{*} 100
$$

Establıshing a finate value for ψ is difficult. Assume that the Orbiter's X_{B} axis (because of the previously discussed coupling problems) is maintained in the orbit plane. In addition, the reference Image of the baseline COAS cannot be rotated with respect to the Orbiter's body axis. Therefore, the reference lmage is fixed with respect to the LVLH frame. This reduces the problem of defining ψ to one of describing the LDEF yaw attitude with respect to the LVLH frame. *Note when ψ equals zero degrees, $\cos \psi$ equals one and this equation reduces to the resolution error equation,

$$
\frac{\delta \mathrm{R}}{\mathrm{R}_{\mathrm{T}}} \%=\frac{-100}{1+\frac{\mathrm{k}}{\mathrm{R}_{\mathrm{T}}}}
$$

The LDEF attitude state at retrieval is specified in the LDEF Mission Requirements Document (MRD). The September 15, 1977 1ssue of the MRD essentially descrıbes the LDEF yaw attitude, ψ_{L}, as follows:

$$
\psi_{\mathrm{L}}=\psi_{\mathrm{B}}+\psi_{0}
$$

where $\quad \psi_{b}=$ bias or time invariant component of ψ_{L} in degrees $\psi_{o}=$ oscillatory component of ψ_{L} in degrees When ψ_{L} equals zero, the LDEF approach target ($\left.W=3.36 \mathrm{ft}.\right)$ and station keeping target $(W=0.83 \mathrm{ft}$.$) are normal to a COAS reticle$ (assuming the Orbiter's X_{B} resides in the orbit plane). The MRD values for $\psi_{b}, \psi_{\text {omax }}$, and $\dot{\psi}_{\max }$ (which are reproduced below) bound the non-zero values for ψ_{L}.

Maximum Value

Parameter	$\begin{gathered} 215 \mathrm{n} . \text { mıles } \\ \text { (nominal retrieval) } \end{gathered}$	$\begin{gathered} 175 \mathrm{n}, \text { males } \\ \text { (contingency retrueval) } \end{gathered}$
ψ_{b}	$\pm \begin{gathered} 21.0 \mathrm{deg} . \\ \text { or } \end{gathered}$	$\pm \begin{gathered} \pm 33.0 \mathrm{deg} . \\ \text { or } \end{gathered}$
	$180 \pm 21.0 \mathrm{deg}$.	$180 \pm 33.0 \mathrm{deg}$.
$\psi_{0} \max$	$\pm 10.8 \mathrm{deg}$.	$\pm 10.2 \mathrm{deg}$.
$\psi_{\text {max }}$	$\pm 0.007 \mathrm{deg} / \mathrm{sec}$	$\pm 0.007 \mathrm{deg} / \mathrm{sec}$.

For a nommal retrieval, $\left|\psi_{\mathrm{L}}\right|$ can assume a value anywhere from zero to 31.8 degrees. For a contingency retrieval, the corresponding spread is zero to 43.2 degrees. (In each case 180 degrees may be added to the spread because the LDEF us bistable about yaw; however, assessing either of the two stable states suffices for both). For the two affected t'argets, tables 15.9-1 and 15.9-2 give representative, combined

TABLE 15.9-1 - Combined Resolution and Skew Errors

for LDEF Station Keeping Target, $W=0.83 \mathrm{ft}$.

A. $\psi=10^{\circ}$		
$\underline{\mathrm{R}_{\mathrm{T}} \text { (ft) }}$	$\delta \theta=+0.35 \mathrm{deg}$.	$\delta \theta=-0.35 \mathrm{deg}$.
5	- 5.0	2.2
10	- 8.1	6.1
15	-11.1	10.4
20	-13.9	15.1
25	-16.6	20.2
30	-19.1	25.7
35	-21.4	31.8
B. $\psi=30^{\circ}$		
5	-16.1	-10.6
10	-18.6	- 7.5
15	-20.9	-4.3
20	-23.2	-0.8
25	-25.3	+ 2.9
30	-27.3	7.0
35	-29.1	11.3
C. $\psi=45^{\circ}$		-
$5{ }^{*}$	-31.1	-27.4
10	-32.8	-25.4
15	-34.4	-23.3
20	-35.9	-21.1
25	-37.4	-18.8
30	-38.8	-16.3
35	-40.1	-13.6

TABLE 15.9-2 - Combined Resolution and Skew Errors
for LDEF Approach Target, $W=3.36 \mathrm{ft}$.
A. $\psi=10$ degrees
$\underline{R_{T}(f t)}$
20
30
40
50
60
70
80
90
100
110

B. $\psi=30$ degrees

20	-16.0	-10.6
30	-17.3	-9.1
40	-18.3	-7.6
50	-19.7	-6.0
60	-20.9	-4.4
70	-22.0	-2.7
80	-23.1	-0.9
90	-24.1	+0.9
100	-25.2	2.8
110	-26.2	4.7

C. $\psi=45$ degrees

$\because 20$	-31.1	-27.4
$: 30$	-31.9	-26.5
40	-32.7	-25.5
50	-33.6	-24.4
60	-34.4	-23.4
70	-35.1	-22.3
80	-35.9	-21.2
90	-36.6	-20.0
100	-37.3	-18.9
110	-38.0	-17.6

error values for ψ equal to 10,30 , and 45 degrees.
When tables 15.9-1 and 15.9-2 are compared to tábles $15.6-1$ and 15.6-2, the effect of combining errors is apparent. For example the errors in the approach target ($W=3.36 \mathrm{ft}$.) versus ψ at 80 feet are:

$\psi(\mathrm{deg})$	$-\quad \frac{\delta \mathrm{R}}{\mathrm{R}_{\mathrm{T}}} \%$	
	$\delta \theta=+0.35 \mathrm{deg}$.	$\delta \theta=-0.35 \mathrm{deg}$.
0	-12.7	+17.0
10	-13.9	+14.9
30	-23.1	- 0.9
45	-35.9	-21.2

At ψ equal to zero, the percent error is unbalanced about zero. When ψ equals ten degrees, the percent error tends to balance itself about zero. For larger values of ψ, the skew error predominates. In fact, at ψ equal to 45 degrees, the percent error becomes relatively insensituve to range as shown below.

R_{T} (ft)	$\frac{\delta \mathrm{R}}{\mathrm{R}_{\mathrm{T}}} \%$		
	$\overline{\delta \theta}=+0.35 \mathrm{deg}$.	mean	$\delta \theta=-0.35 \mathrm{deg}$.
30	-31.9	-29.2	-26.5
50	-33.6	-29.0	-24.4
80	-35.9	-28.6	-21.2
100	-37.3	-27.8	-18.2

ORIGINAL PAGE IS OF POOR QQUALITY

Note that the mean error closely approximates -29.4% which is the percent error for a skew of 45 degrees and no resolution error. All of this implies that the palot should have a set of ranging tables which would minimize errors by accommodating a range of $\psi^{\prime} s$. Unfortunately
this adds complexity to the approach operation.
Even if addıtional ranging tables were available, a change from an inftial selection (based on ψ_{L} at $1000 \mathrm{ft}$.) may be indicated as the approach progresses ψ_{0} is the time varying component of ψ_{L}. It is a periodic function which consists of several components at different frequencles. However, the maximum change in ψ_{L} over the approach interval, Δt_{a}, is bounded by

$$
\Delta \psi_{\mathrm{L}}=\psi_{\max } \Delta t_{\mathrm{a}} \leq 2 \psi_{\mathrm{o} \max }
$$

where

$$
\begin{aligned}
& \dot{\psi}_{\max }=0.007 \mathrm{deg} / \mathrm{sec} \\
& \psi_{0}= \pm 10.8 \mathrm{deg}
\end{aligned}
$$

As previously stated, a typical $\overline{\mathrm{R}}$ approach (from SES runs) takes approxamately 45 manutes. Thas allows $\Delta \psi_{\mathrm{L}}$ to be as great as 18.9 degrees. Thus, as the approach proceeds, ψ_{L} may (for example) change from 0 to 18.9 degrees or 43.2 to 24.3 degrees. The operational need and technique to accommodate ψ and its changes will be studied by JSC in the near future.
16.0 Man-in-the-Loop Simulation Findings

On the surface, the Orbiter state uncertainties with respect to LDEF appear unreconcilable with the $\overline{\mathrm{R}}$ approach sensıtıvity. $\mathrm{A}+1.0$ fps R error (due to radar uncertannty) at 1000 feet requires 2.2 fps of braking near the target. To a lesser degree the radar range error also appears to be a problem. The radar $\delta \mathrm{R}$ of 80 feet 3σ maps into an equivalent range rate error of $m \delta R$ or 0.052 fps , which still results in
0.45 fps of braking at LDEF. When the LDEF ranging targets come into play, range rate magnitude information is exceptionally poor.

But one fact remains: Durıng July, August, and September of 1977, successful $\overline{\mathrm{R}}$ approaches were beang performed on a regular basis in the Shuttle Enganeering Simulator at JSC. Many important operational techniques became apparent during this perlod* Some of the most relevant findings are presented below.

1. When the pilot was utilizing the radar for range and range rate information, he was found to mentally average consecutive radar updates. This effectively faltered the scatter to the point that the residual uncertannty in the average was reduced to almost one third of the specified radar uncertalnties.
2. Establishing the magnitude of the range rate wath the COAS was confirmed to be very difficult and subject to large exrors. But the COAS was found to be of some use in differentiating between opening, closing, and zero range rates.
3. Knowledge of elther a zero or opening range rate was found to be particularly useful. Under such situations the pilot knew that he could introduce a closing ΔV at least equivalent to the $R_{\max }$ allowed for his current range. The ΔV could be inserted very accurately by utilızang the DAP's translational pulse mode.

[^8]4. The aft payload bay CCTV (closed cırcuit television camera) was found to be even more effective than the COAS in differentiating between opening, closing, or zero range rates. This was due to the fact that motion is more easily detected If the LOS is at some angle to the path of motion*. A description and analysis of this measurement technique is provided in the following section.
5. Some degree of $\pm X$ jet braking was found to be acceptable. That is, the LDEF could tolerate some plume impingement (disregarding contamanation) without violating the LDEF to Orbiter relative state constraints for RMS grappling operations. At least three pılots performed $\overline{\mathrm{R}}$ approaches in the SES. Each pilot's technaque had its nuances but the principles behind each case were the same. These were:

1. In order to accommodate range and range rate errors, margins were always maintained between the allowable $\dot{R}_{\max }$ and the closing velocity inserted at any range.
2. When radar range rate became useless, no further range rate adjustments were made until the range rate was determined to be either zero or opening.
s,
In other words, state knowledge uncertainties always demanded that the
*Future simulations will study the feasibility of obtaining non-zero range rate magnitudes wath the aft CCTV. In addıtion, a camera elevation angle display will be added to the SES cockpit. The display will be used to study the technique and utility of CCTV ranging in lieu of COAS/target ranging.
pilot fly the approach in a conservative manner. Instead of the optimal single bür̆n approach, multiple small burns were utilized to reach LDEF. In contrast to the 37.9 minute optimal approach, the elapsed time was approximately 45 minutes.

17.0 Establishıng Zero Range Rate with the Aft P/L Bay CCTV

The basic technique of establıshing zero range rate with the aft P/L bay CCTV is stralghtforward. Referring to figure 17-1, the camera elevation, θ_{c}, is adjusted to alm the CCTV LOS at the facing lower edge of LDEF. With elevation fixed, the'LDEF is observed on a cockpit monıtor to either drift up or down or remain stationary. Sensitivity $1 s$ maximized by zooming the camera lens to approximately a 9 degree (diagonal) field of view. When the LDEF 1 mage is statıonary, range rate is assumed to be zero.

The specific technique of utılızing the aft CCTV is more involved. Even though range rate occaszonally goes to zero, the LDEF image on the CCTV may not be stationary. This is because the movement on the screen Is subject to Orbiter motions other than range rate along the COAS LOS. For example, if range rate is zero but the Orbiter is pitching up, the LDEF mmage will fall on the screen. Or, if range rate is zero but the Orbiter is moving forward, the LDEF image wall climb on the screen. Such image motion (i.e., from sources other than range rate) is "nolse" or an error in the measurement system. Since by definition pitchang motion and translation normal to the COAS LOS must be cyclic, the pılot under some circumstances may filter the nolse by observing the

Figure 17-1.- Establıshang Zero Range Rate with the Aft P/L Bay CCTV
average motion on the screen. But if the cycles are long, there may be tumes wheñ the noise must be accepted as an error. It is necessary, therefore, to assess both situations.

Assume that range rate is zero. Referring again to figure 17-1 point P represents the intersection of the camera LOS and a line which is collinear with the facing vertical edge of LDEF. When point P rises or falls, the LDEF image falls or rises, respectively, on the monitor. P is positioned at a vertical distance, D, from a local horizontal reference line which passes through the Orbiter c.m. The distance, D, may be expressed as

$$
D=S_{1} \tan \theta_{s}-S_{2} \theta_{0}
$$

where
$S_{1}=S_{3}-X-\ell$
$S_{3}=$ distance between the COAS LOS and the CCTV or 63 ft .
$\mathrm{X}=\mathrm{n}-\mathrm{pl}$ ane positioning error of the COAS LOS WRT the LDEF radius vector (positive along $\overline{\mathrm{V}}$)
$\ell=$ LDEF radius or 7 feet
$S_{2}=$ camera distance from the Orbiter c.m.
$\theta_{s}=\theta_{0}+\theta_{c}$
$\theta_{0}=$ Orbiter pitch WRT the local horizontal reference
$\theta_{c}=$ camera LOS elevation WRT Orbiter X axis
Image motion is related to the time derivative of D which is

$$
\begin{aligned}
\dot{D} & =\frac{d}{d t}\left(S_{1} \tan \theta_{s}-S_{2} \theta_{o}\right) \\
& =\dot{S}_{1} \tan \theta_{s}+\frac{s_{1} \dot{\theta}_{s}}{\cos ^{2} \theta_{s}}-s_{2} \dot{\theta}_{o} \\
& =\dot{x} \tan \left(\theta_{o}+\theta_{c}\right)+\frac{\left(S_{3}-x-\ell\right) \dot{\theta}_{o}}{\cos ^{2}\left(\theta_{o}+\theta_{c}\right)}-s_{2} \dot{\theta}_{o}
\end{aligned}
$$

The physical significance of the last equation is more apparent if the equation is assessed in 2 parts, some simplifyyng assumptions are made, and the parts are expressed in terms of range, R. That is, let

$$
\dot{\mathrm{D}}=\dot{\mathrm{D}}_{1}+\dot{\mathrm{D}}_{2}
$$

First,

$$
\dot{\mathrm{D}}_{1}=\dot{\mathrm{X}} \tan \left(\theta_{0}+\theta_{c}\right)
$$

If it is assumed that θ_{0} and X equal zero, a condition exists where $\tan \theta_{c}$ as equal to $\frac{R}{S_{3}-\ell}$. Then,

$$
\dot{D}_{1}=\frac{\dot{\mathrm{X}}}{\mathrm{~S}} \mathrm{~S}_{3}-\ell \quad-\mathrm{n} \dot{\mathrm{X}}
$$

where

$$
S_{3}-\ell=A=56 \text { feet }
$$

, : and, :,$x \quad n=\frac{R}{A}$

This equation represents the sensitivity of the camera system to in-plane horızontal velocities relative to the LDEF LVLH frame. The "mapping ratio ${ }^{\prime \prime}$, n , grows linearly with R , and at a range of 56 feet (where $\theta_{c}=$
45°) the horizontal velocities map one for one anto the indicated range rate.

Proceeding to the second part of \dot{D},

$$
\dot{D}_{2}=\frac{\left(S_{3}-x-\ell\right) \dot{\theta}_{o}}{\cos ^{2}\left(\theta_{o}+\theta_{c}\right)}-S_{2} \dot{\theta}_{o}
$$

Again let X and θ_{0} equal zero. Then

$$
\begin{aligned}
\dot{D}_{2} & =\frac{\dot{\theta}_{o}}{\cos ^{2} \theta_{c}}-S_{2} \dot{\theta}_{o} \\
& =A \dot{\theta}_{o}\left(1+\tan ^{2} \theta_{c}\right)-S_{2} \dot{\theta}_{o} \\
& =A \dot{\theta}_{o}+\frac{\dot{\theta}_{o} R^{2}}{A}-S_{2} \dot{\theta}_{o} \\
& =A \dot{\theta}_{o}\left\{\left(1-\frac{S_{2}}{A}\right)+n^{2}\right\}
\end{aligned}
$$

where, once again, n equals $\frac{R}{A}$. Since S_{2} equals 18 feet,

$$
1-\frac{\mathrm{S}_{2}}{\mathrm{~A}}=0.68
$$

And, if $\dot{\theta}$ is expressed in degrees

$$
\dot{\mathrm{D}}_{2}=\dot{\mathrm{A}}_{\mathrm{o}}\left(\frac{\pi}{180}\right)\left(0.68+\mathrm{n}^{2}\right)
$$

But

$$
\frac{\mathrm{A} \pi}{180}=0.977 \mathrm{ft} / \mathrm{deg}
$$

Finally,

$$
\dot{D}_{2} \simeq \dot{\theta}_{0}\left(0.68+n^{2}\right)(w \operatorname{th} 1 n 2.3 \%)
$$

where $\dot{\theta}_{0}$ is in degrees per second and \dot{D}_{2} is in feet per second. The equation shows that the camera system's sensitivity to Orbiter pıtch rates $1 s$ never less than 0.68 and grows rapidly with increasing range. For example, for n equal to 3 (corresponding to a range of 168 feet) the mapping ratio, $0.68+\mathrm{n}^{2}$, is 9.68.
\dot{X} and $\dot{\theta}_{0}$ are directly related to Orbiter control system performance. For example, in a minımum impulse attıtude limit cycle, each jet pulse causes a $\Delta \dot{\theta}_{0}$ of $\pm 0.1 \mathrm{deg} / \mathrm{sec}$. Simılarly, mınimum $\Delta V^{\prime} \mathrm{s}$ of $\pm 0.25 \mathrm{fps}$ and ± 0.03 fps are available from single THC hits in DAP A and DAP B respectively. Therefore, \dot{X} and $\dot{\theta}_{0}$ may assume the following range of values.

$$
\begin{aligned}
& -0.1 \mathrm{deg} / \mathrm{sec} \leq \dot{\theta}_{\mathrm{O}} \leq+0.1 \mathrm{deg} / \mathrm{sec} \\
& -0.25 \mathrm{fps} \leq \dot{\mathrm{X}} \leq+0.25 \mathrm{fps}(\mathrm{DAP} \mathrm{~A}) \\
& -0.03 \mathrm{fps} \leq \dot{\mathrm{X}} \leq+0.03 \mathrm{fps}(\mathrm{DAP} \mathrm{~B})
\end{aligned}
$$

The DAP controls the pitch attitude error, θ_{0}, to within ± 0.2 degrees of the UPS reference (the local horizontal). The pllot controls the posation er'ror, X, to assure proper use of the COAS (see the section on target width). Therefore, \dot{X} and $\dot{\theta}_{0}$ are cyclic and have zero means.

As mentioned earlier, the periods of the \dot{X} and $\dot{\theta}_{0}$ cycles will influence the pilot's course of action. If the periods are relatively short the pılot will attempt to "filter" the corrupting image motion to establish zero range rate. But if the periods are long, the motion
is characterızed by small angular rates and normal velocities which are inter̃rupted by short bursts of relatively high rates and velocities. In such situations the pilot does not average the motion but accepts the error during the "quiet" phases of the cycles. The errors in this case are expressed by the equations for \dot{D}_{1} and $\dot{\mathrm{D}}_{2}$. For example, assume the following conditions.

$$
\begin{aligned}
& \dot{\theta_{0}}=0.002 \mathrm{deg} / \mathrm{sec} \\
& \dot{\mathrm{X}}=0.030 \mathrm{fps} \\
& \mathfrak{n}=4(\mathrm{R}=224 \mathrm{ft}) \\
& \mathrm{X}= \pm 3 \mathrm{ft} . \\
& \theta_{o_{\max }}= \pm 0.2 \mathrm{deg}
\end{aligned}
$$

The period of $\dot{\theta}_{0}$ is 204 seconds in which 200 seconds is spent rotating at $0.002 \mathrm{deg} / \mathrm{sec}$ and 4 seconds is spent returning at close to $0.1 \mathrm{deg} /$ sec. The period of X is 227 seconds in which 200 seconds is spent translating at 0.03 fps and 27 seconds is spent returning at 0.22 fps. If the pilot elects to establish zero range rate during the quiet phases, the errors will be

$$
\begin{aligned}
& \dot{\mathrm{D}}_{1}=4(.030)=0.12 \mathrm{fps} \\
& \dot{\mathrm{D}}_{2}=0.002(0.68+16)=0.033 \mathrm{fps}
\end{aligned}
$$

The total error 1 s , depending on the phasing of the two motions, 0.15 fps or 0.09 fps.

As the cyclic motions approach symmetry about zero in the attitude rate and translational velocity domains, the periods become shorter and shorter. When symmetry exists (a reasonable probability in this random process),

$$
\begin{aligned}
& \dot{\theta}_{0}= \pm 0.05 \mathrm{deg} / \mathrm{sec} \\
& \dot{X}= \pm 0.125 \mathrm{fps} \text { for } \mathrm{DAP} A \\
& \dot{X}= \pm 0.015 \mathrm{fps} \text { for } \mathrm{DAP} B
\end{aligned}
$$

Inserting these values into the previous example gives,

$$
\begin{aligned}
& \dot{\mathrm{D}}_{1}=4(0.125)=0.5 \mathrm{fps} \\
& \dot{D}_{2}=0.05(0.68+16)=0.83 \mathrm{fps}
\end{aligned}
$$

But in such situations, \dot{D}_{1} and \dot{D}_{2} are not the errors in establishing zero rate. Instead, \dot{D}_{1} and \dot{D}_{2} represent the "noise" which exists in the system. The errors in this case are due to the inability of the pilot to precisely establish zero range rate in the presence of the nolse.

The pilot's task of mentally filtering image motion corrupted by noise is better understood in the ΔD_{1} and ΔD_{2} versus time domain, where ΔD_{1} and ΔD_{2} are treated as independent components of D due to X and θ_{0} respectively. If X is initially zero and θ_{0} is always zero, the inntial value of D is
where

$$
\begin{aligned}
& D_{0}=\left(S_{3}-\ell\right) \tan \theta_{c} \\
& \tan \theta_{c}=\frac{R}{S_{3}-\ell}=n
\end{aligned}
$$

If at some time later X is non-zero and θ_{c} remains unchanged.

$$
D_{t}=\left(S_{3}-\ell-x\right) n
$$

and

$$
\Delta D_{1}=D_{t}-D_{0}=-X n
$$

$$
D_{0}=\left(S_{3}-\ell\right) \tan \theta_{c}
$$

If at some time later θ_{0} is non-zero,

$$
D_{t}=\left(S_{3}-\ell\right) \tan \left(\theta_{c}+\theta_{o}\right)-S_{2} \theta_{0}
$$

and

$$
\begin{gathered}
\Delta D_{2}=D_{t}-D_{0} \\
=\left(S_{3}-\ell\right)\left[\tan \left(\theta_{0}+\theta_{0}\right)=\tan \theta_{c}\right]-S_{2} \theta_{0} \\
\text { But, } \quad \tan \left(\theta_{c}+\theta_{o}\right)=\frac{\tan \theta_{c}+\tan \theta_{0}}{1-\tan \theta_{c} \tan \theta_{o}}
\end{gathered}
$$

Substituting,

$$
\Delta D_{2}=\left(s_{3}-\ell\right)\left\{\frac{\tan \theta_{0}\left(1+\tan ^{2} \theta_{c}\right.}{1-\tan \theta_{0} \tan \theta_{c}}\right\}-s_{2} \theta_{0}
$$

Since

$$
\theta_{0} \leq 0.2 \mathrm{deg}
$$

$$
\tan \theta_{0}=\theta_{0} \text { radians }
$$

Also

$$
\tan \theta_{c}=\text { constant }=\frac{R}{S_{3}-\ell}=n
$$

Substituting

$$
\Delta D_{2}=\left(s_{3}-\ell\right)\left\{\frac{\theta_{0}\left(1+n^{2}\right)}{1-\theta_{0} n}\right\}-s_{2} \theta_{0}
$$

Since

$$
\left(1-\theta_{0} n\right)^{-1}=1+\theta_{0} n+\left(\theta_{0} n\right)^{2}+\left(\theta_{0} n\right)^{3}+\ldots
$$

and

$$
\mathrm{n} \leq 5 \text { (for } \mathrm{R} \leq 280 \mathrm{ft})
$$

$$
\left(1-\theta_{0} n\right)^{-1}=1(\text { within } 1.7 \%)
$$

$$
\Delta D_{2}=\theta_{0}\left(S_{3}-\ell\right)\left\{\left(I-\frac{S_{2}}{S_{3}-\ell}\right)+n^{2}\right\}
$$

(Note the relationship of $\Delta \mathrm{D}_{2}$ to the exact time derivative, \dot{D}_{2}). If θ_{0} is expressed in degrees,

$$
\Delta \mathrm{D}_{2}=\theta_{0}\left(0.68+\mathrm{n}^{2}\right)(\text { within } 2.3 \%)
$$

where ΔD_{2} is in feet.

$$
\begin{aligned}
& \text { Returning to the example where } \\
& \qquad \begin{array}{l}
\dot{\theta}_{0}= \pm 0.05 \mathrm{deg} / \mathrm{sec} \\
\dot{\mathrm{x}}= \pm 0.125 \mathrm{fps} \\
\theta_{o_{\max }}= \pm 0.2 \mathrm{deg} \\
\mathrm{x}= \pm 3 \mathrm{ft} \\
\mathrm{n}=4
\end{array}
\end{aligned}
$$

the noise on D is characterized by a pair of triangular wave forms wath peak values of

$$
\Delta \mathrm{D}_{1}=\mathrm{nx}= \pm 12 \text { feet }
$$

and

$$
\Delta \mathrm{D}_{2}=\theta_{0}\left(0.68+\mathrm{n}^{2}\right)= \pm 3.34 \text { feet }
$$

The periods are

$$
\begin{aligned}
& T_{1}=\frac{4 \theta_{0}}{\dot{\theta}_{0}}=16 \text { seconds } \\
& T_{2}=\frac{4 X}{\dot{X}}=96 \text { seconds }
\end{aligned}
$$

Plots of $\Delta D_{1}, \Delta D_{2}$, and their algebraic sum, $\Delta D_{1}+\Delta D_{2}$, versus time are shown $1 n$ figure 1-7-2. When the pılot is observing image motion, two thoughts are passang through his mind. First, no -Z THC hits are to be executed until \dot{R} is observed to be essentially zero. Second, any image noise is cyclic. His task, therefore, is one of testing the amage motion for a zero mean. Procedures for accomplishing this can be explanned with the and of figure 17-3.

In figure 17-3 a closing range rate of 0.05 fps (represented by a ramp) has been added to $\Delta D_{1}+\Delta D_{2}$. In essence a constant 0.05 fps is "buried" in a $\Delta \mathrm{D}$ wave form whach has a peak velocity of $0.83+0.5+$ 0.05 or 1.18 fps. The composite wave form is superimposed on an orthographic projection of LDEF. The projection closely resembles the true perspectuve from the aft bay camera at a COAS LOS range of 224 feet and a camera elevation of 76 degrees. If the linear dimension of the $\Delta \mathrm{D}$ time scale is collapsed to zero while centered on LDEF, the wave form represents the locus of point P on LDEF. Initially the center of the monitor recticles (which always represents point P) lies on the facing lower edge of LDEF. As time elapses point P "walks" up and down the facing side of LDEF.

There are several ways in which the mean value of the motion may be tested, but all of them are based on observing and remembering the relative positions of the mage and the reticles during major positive or negative peaks in the motion. For example, at time t_{1}, the horizontal reticle falls on the LDEF center ring or point P_{1}. Subsequently at time t_{2}, the horizontal reticle momentarily stops at a higher position on

Figure 17-2.- Aft CCTV Image Noise, $\Delta \mathrm{D}$

Figure 17-3 - Image Nolse, $\triangle D$, Superimposed on LDEF at a Range of 224 Feet

LDEF or point P_{2}. Point P_{2}, in this case, is situated 4.8 feet higher than P_{1}, which corresponds to a mean motion of 0.05 fps (closing) over the interval $t_{2}-t_{1}$, or 96 seconds. Ideally the pilot's detection of this position difference is all that is required to establish some true range rate.

In order to better appreciate the pilot's task, some "snapshots" of the CCTV monntor screen have been created. They are presented in figures 17-4a through 17-4d. The snapshot at $t=0$ can be considered the set-up orıentation in which the CCTV LOS is directed at the lower facing edge of LDEF. Exact positioning is not very important: The subsequent snapshots depıct the image position at major positıve or negative peaks in the motion. The scenes at 20 seconds and 116 seconds are those which must be compared to test the mean value. The screen is slzed to comply wath the latest avaılable CCTV specıfication. In addition, all scenes are presented with maximum camera zoom, which gives a diagonal field of view of 9 degrees.

Heretofore, only the technnque of testing the mean value has been discussed. The reader at this point is probably asking, "What are the constrannts and uncertannties of the test, and are they acceptable?" The answer to the last question is apparently yes, since successful $\overline{\mathrm{R}}$ approaches have been accomplıshed in the Shuttle Englneering Simulator at JSC. But because flight samulation activities are far from being complete, specific answers to the first question are not avalable. A paper analysis would be quite involved and may never truly reflect what the pilot is capable of accomplıshing. For example, by controlling his

Figure 17-4a.- Inltial GCTV Alınement at 224 feet

Figure 17-4b.- The first major posituve peak at 224 feet

Figure 17-4c.- The first major negative peak at 224 feet

Figure 17-4d.- The second major positive peak at 224 feet
position error beneath LDEF, the pilot is actually controling the peak value of $\Delta \mathrm{D}_{2}$. From observing LDEF in the COAS, he knows when $\Delta \mathrm{D}_{2}$ will be at its peaks; therefore, he may anticipate and mentally prepare for a CCTV observation. On the other hand, it is not diffacult to see from analysis that the results of the mean value test are sensitive to anconslstent boundaries on X. Normally,

$$
T=\frac{4 X}{X}
$$

where

$$
\begin{aligned}
& T=\text { period between positive peaks in } \Delta D_{2} \\
& X_{\max }=\text { desired boundary on } X \\
& \dot{X}=\text { velocity along } X
\end{aligned}
$$

But if upon nearing the completion of a position cycle the pilot reverses the motion at some ΔX short of $X_{\text {max }}$, the period between positive peaks in $\Delta \mathrm{D}_{2}$ changes to T^{t} where

$$
T^{\prime}=\frac{4 X_{\max }-\Delta X}{\dot{X}}
$$

In addition, ΔD_{2} wall fall short of its previous reference peak by $n \Delta X$. The combined effect (Ignoring changes in the phasing between $\Delta \mathrm{D}_{1}$ and $\Delta \mathrm{D}_{2}$) is a mean value error of

$$
\mathrm{E}_{\text {mean }}=\frac{\mathrm{n} \Delta X}{T^{\prime}}=\frac{\mathrm{n} \dot{\mathrm{X}}}{\frac{4 X_{\max }}{\Delta X}-1}
$$

To 111 ustrate, let

$$
\begin{aligned}
& X_{\max }= \pm 3 \mathrm{ft} . \\
& \Delta \mathrm{X}=1 \mathrm{ft} . \\
& \dot{X}=0.125 \mathrm{fps}
\end{aligned}
$$

Then,

$$
\mathrm{E}_{\text {mean }}=0.045 \mathrm{fps}
$$

On the surface 0.045 fps appears small. But referring to the section on $\overline{\mathrm{R}}$ approach sensitivity only 0.07 fps in excess of the approach asymptote at 224 feet requires 0.25 fps of braking when the station keeping range at 20 feet 1 s reached.

Without doubt the Aft CCTV System of establıshing zero range rate is superior to using the COAS. At 224 feet, for example, 0.07 fps of closing range rate causes the 14 foot LDEF target image to change approximately 0.11 degrees ${ }^{1}$ over a 96 second interval. For an $X_{\text {max }}$ of ± 3 feet and an \dot{X} of 0.125 fps , the pllot would have to detect the 0.11 dégree change in the presence of a 1.53 degree ${ }^{2}$ peak-to-peak lateral 1mage movement. The lateral movement would demand that the 0.11 degree change be determined by reading the edges of the image twice. Thus the 0.11 degrees would be derived from four COAS readings, each with a resolution error of less than

```
\(1 \quad \Delta \theta=\operatorname{SR} \Delta t\)
    \(=-0.017(-0.07)(96)\)
    \(=0.11\) degrees
2
    \(1.53 \mathrm{deg} .=2\left(\frac{3}{224}\right)\left(\frac{180}{\pi}\right)\)
```

$$
\sigma=\frac{0.11}{6}=0.018 \text { degrees }
$$

This is obviously an unrealistic requirement to place on the pilot.

18.0 A Specific $\overline{\mathrm{R}}$ Approach Strategy

A specific \bar{R} approach strategy is best 111 ustrated by two categories of "decision graphs".* One category covers the portion of the approach when only radar data is used; these graphs are presented in figures 18-la through 18-1d. The second category covers the situations where range rate is permitted to decay to zero before inserting the appropriate range rate; these graphs are presented in figures 18-2a through 18-2c.

The development of the decision graphs is stralghtforward. For the first category

$$
\text { True } \dot{R}_{\max }=m\left(R_{T}^{2}-R_{S}^{2}\right)^{I / 2}
$$

where

$$
\begin{array}{ll}
R_{T}=\text { true range } & \text { ORIGIN } \\
R_{S}=\text { station keeping range or } 20 \text { feet } & \text { OF POC } \\
m= & \text { slope of the hyperbolıc asymptote or } 1.96 \times 10^{-3} \\
& \sec ^{-1} \text { at } 190 \mathrm{n} . \text { miles }
\end{array}
$$

OF POOR QUALITY

This equation is represented by the solind line and is the allowable range rate based on perfect state knowledge. However, the pilot is reading indicated range from the radar. This can be represented by

$$
R=R_{T}+\delta R
$$

[^9]

Figure 18-1a.- Burn Constraints When Utilizing Oniy Radar'Data

Figure 18-lb.- Burn Constraınts When Utilizıng Only Radar Data

Figure 18-1c.- Burn Constraints When Utilizing Only Radar Data

Figure 18-1d.- Burn Constraints When Utilizing Only Radar Data
where

$$
\begin{aligned}
R= & \text { indicated range } \\
\delta \mathrm{R}= & \text { radar range uncertainty or } \pm \frac{80}{3} \mathrm{ft} .3 \sigma \text { (based on } \\
& \text { PDRS III simulation findings) }
\end{aligned}
$$

Rearranging,

$$
R_{T}=R-\delta R
$$

Substituting this expression for R_{T} into $\dot{\mathrm{R}}_{\text {max }}$ gives,

$$
\dot{R}_{\max }=m\left[(R-\delta R)^{2}-R_{S}^{2}\right]^{1 / 2}
$$

Assuming that $\delta \mathrm{R}$ is always +26.7 feet, this equation is represented as the first dashed line beneath true $\dot{R}_{\text {max }}$. Correcting further for a possible radar range rate error, $\dot{\delta \mathrm{R}}$, gives

$$
\dot{R}_{\max }=m\left[(R-\delta R)^{2}-R_{S}^{2}\right]^{1 / 2}+\delta \dot{R}
$$

Assuming that $\delta \mathrm{R}$ is always -0.33 fps , the last equation is represented by the second dashed Ine below true $\dot{R}_{\max }$. A very conservative approach allows no THC "hits" if the indicated range and range rate coordinates fall above this line. In essence $\dot{R}_{\text {max }}$ has been transformed from the true \dot{R} versus R domain to the indicated \dot{R} versus R domain. All subsequent dashed lines are in increments of 0.25 fps , the equivalent of one DAP A pulse. ${ }^{1}$ For example, if at the start of the \bar{R} approach radar indicates an opening R of 0.20 fps and an R of 1000 feet, the pilot may introduce 7 DAP A pulses whthout any reasonable probability of exceeding the true

[^10].
$\mathrm{R}_{\text {max }}$ Similarly, all subsequent burn decisions are made on the basis of where the indrcated range and range rate coordinates fall on the decision graphs.

For the second category of decision graphs, the range rate is always assumed to be zero.* Thus, the allowable $R_{\max }$ is adjusted to accommodate only range uncertainty. Once again,

$$
R_{T}=R-\delta R
$$

But when the COAS is used,

$$
\delta R=\left\{\frac{-1+\left(1-\frac{R_{T}}{k}\right) \cos \psi}{1+\frac{R_{T}}{k} \cos \psi}\right\}_{R_{T}}
$$

Substatuting and solving for R_{T} in terms of R gives,

$$
R_{T}=\frac{1}{\left(\frac{I}{R}-\frac{1}{k}\right) \cos \psi}
$$

where

$$
\begin{aligned}
\mathrm{k} & =\frac{\mathrm{W}}{\delta \theta}\left(\frac{180}{\pi}\right) \\
\psi & =\text { yaw skew ang1e }
\end{aligned}
$$

Therefore,

$$
\dot{R}_{\max }=m\left\{\left[\frac{1}{\left(\frac{1}{\mathrm{R}}-\frac{1}{k}\right) \cos \psi}\right]^{2}-\mathrm{R}_{\mathrm{S}}^{2}\right\}^{1 / 2}
$$

[^11]

Figure 18-2a.- Burn Constraints When Range Rate Is Known to be ZERO :

Figure 18-2b.- Burn Constraints When Range Rate is Known to be ZERO

Figure 18-2c.- Burn Constraints When Range Rate is Known to be ZERO

The conservatuve approach assumes that the inducated range is always greater than the actual; accordingly, $\delta \theta$ is assumed to be -0.35 degrees. Figures 18-2a through 18-2c present plots of the adjusted $\dot{R}_{\max }$ for each of the three targets and the radar. A yaw skew of zero degrees is assumed when using the 0.83 and 3.36 foot targets. Hand over from radar occurs ideally at 261 feet where the error associated with the 14 foot target is equivalent to the radar error. The hand over range from one target to the next is based on $a \theta_{a}$ (avallable field of view) of 8 degrees. The allowable number of THC hits at any range is determined as follows:

$$
\begin{aligned}
\mathrm{n}_{A} & =\text { number of DAP A pulses } \\
& =\text { integral part of } \frac{\dot{R}_{\max }}{0.25} \\
\mathrm{n}_{B} & =\text { number of DAP B pụlses } \\
& =\text { integral part of } \frac{\mathrm{R}_{\max }-\mathrm{n}_{A}(0.25)}{0.03}
\end{aligned}
$$

This process is graphically shown by the series of horizontal lines starting from zero in increments of 0.03 fps and then 0.25 fps . The ranges at which the horizontal lines intercept $\dot{R}_{\text {max }}$ represent points in the approach where integral numbers of DAP B and/or DAP A pulses may be introduced.

19.0 Applying the Approach Strategy - An Example

Assume that after initializing on the LDEF $\overline{\mathrm{R}}$ the radar andications are.

```
Range = 1000 feet
Range Rate = 0.2 fps, opening
```

The declsion graphs (see figure 19-1a) would allow the pilot to insert 7 DAP A pulses or a $\Delta \mathrm{R}$ of 1.75 fps . Because the inltıal radar readings would be subject to errors, the true range rate after the burn would be anywhere between 1.22 fps and 1.88 fps closing. Thus, the Orbıter could be on coasting $\overline{\mathrm{R}}$ trajectories which, if allowed to continue, would stop anywhere from 817 feet to 163 feet from LDEF. Since the radar readings would continue to be affected by errors, it becomes apparent that the pilot's action after the first burn would have many possibilities. In order to continue illustrating the approach strategy, It is clear, therefore, that some slmplifying assumption about the radar errors ls required. The writer has chosen to assume that the pllot's interpretation of the radar readings reflects the actual range and range rate. The pilot, of course, would not be aware of such a situatzon.

Continuing with the example, the radar would indicate a range rate of 1.55 fps after the anztial burn. This rate would cause the Orbiter to stop at 612 feet from LDEF. But as shown by the trajectory in figure 19-1c another DAP A pulse could be inserted at 742 feet where the range rate fell to 0.822 fps . The closing range rate would then jump to 1.072 fps and the Orbiter would be on a new trajectory which would stop at 501 feet. But when the range collapsed to 551 feet, the radar would indicate 0.448 fps and another DAP A pulse could be inserted.

This repetitive process (i.e., inserting DAP pulses, observing the trajectory on the decision graphs, and inserting additzonal pulses when allowed) would be continued until the desired station keepang range

Figure 19-1ą.- Plotting the Approach Example on the Decision Graphs

Figure 19-1b.- Plotting the Approach Example on the Decısion Graphs

Figure 19-1c.- Plotting the Approach Example on the Decision Graphs

Figure 19-1d.- Plotting the Approach Example on the Decision Graphs

Figure 19-1e.- Plotting the Approach Example on the Decision Graphs

Figure 19-1f.- Plotting the Approach Example on the Decision Graphs

Figure 19-1g.- Plotting the Approach Example on the Decision Graphs

TABLE 19-1. An Approach Trajectory Example

$\Delta t(\mathrm{sec})$	t (sec)	\underline{R} (ft)	\dot{R} (fps)	\underline{R}^{*} (ft)	$\Delta \mathrm{R}$ (ft)
-	0	1000.0	-0.200	-	-
	0	(insert 7 DAP A pulses)			
221	0	1000.0	1.550	612.0	258
-	221	742.0	0.822	612.0	-
	221	(insert 1 DAP A pulse)			
257	221	742.0	1.072	501.4	191
-	478	551.0	0.448	501.4	-
259	478	(Insert 1 DAP A pulse)			
	478	551.0	0.6980	420.4	116
-	737	435.0	0.2187	420.4	-
	737	(1nsert 1 DAP A pulse)			
254	737	435.0	0.4687	363.4	69
-	991	(Insert 1 DAP A pulse)			-
	991				
260					42.6
	991	366.0	0.3358	323.4	
-	1251	323.4	0	323.4	-
	1251	(Insert 2 DAP A pulses)			124.6
545	1251	323.4	0.5000	198.8	
-	1796	$\begin{aligned} & 198.8 \\ & \text { (insert } \end{aligned}$	${ }^{0}$	198.8	-
	1796		1 DAP A + 3 DAP	B pulses)	
686	1796	198.0	0.3400	97.13	101.7
-	2482	97.13	0	97.13	-
	2482	(1nsert 5 DAP B pulses)			
544	2482	97.13	0.1500	59.8	37.3
-	3026	59.8	0	59.8	-
	3026	(insert 3 DAP B pulses)			
519	3026	59.8	$.0900$	38.3	21.5
-	3545	38.3	0	38.3	-
	3545	(insert 2 DAP B pulses)			
558	3545	38.3	0.06	23.1	15.2
-	4103	23.1	0	23.1	-

TOTAL TIME $=4103$ seconds $=68.38$ manutes
TOTAL PULSES: $14 \mathrm{DAP} A=\quad 3.50 \mathrm{fps} \quad$ ORIGINAL PAGE IS $13 \mathrm{DAP} \mathrm{B}=\quad 0.39 \mathrm{fps} \quad$ OF POOR QUALHYY

[^12]was achieved. The complete sequence of approach trajectories is overlayed on the decision graphs shown in figures 19-la through 19-1g. In addıtion, table 19-1 lists the entire process in the time domain.

The most interesting point in the approach occurs when the radar range rate data becomes unmeaningful to burn decisions and a transition to establashing a zero range rate condition must be made. In the example this point occurred at 323.4 feet. The graphs allowed almost a whole DAP A pulse at 323.4 feet, but such action would have taken the Orbiter to only 297.2 feet before stopping - a gain of just 26.2 feet. Instead, it was assumed that a zero range rate condition could be accurately established at 323.4 feet. This assumption permitted at least two DAP A pulses (and, in addition, perhaps two DAP B pulses) to be inserted. Thus, the Orbiter moved to a range of 198.8 feet - a gain of 124.6 feet.

Was the assumption of 323.4 feet correct? Only man-in-the-loop simulations of the specific circumstances can provide an undisputable answer. Certainly the margin for error is still very small; at 323.4 feet only 0.048 fps above $\dot{R}_{\text {max }}$ will produce a braking requirement of 0.25 fps at 20 feet. If the aft CCIV is utilized,

$$
\begin{aligned}
& \text { fint ! !: f: } n=\frac{323.4}{56}=5.78
\end{aligned}
$$

Consequently, if the mean value test is not applied, the Orbiter motion must be very quiet. Specifically,

$$
\dot{\mathrm{x}} \leq \frac{\dot{\mathrm{D}}_{1}}{\mathrm{n}}=\frac{0.048}{5.78}=0.008 \mathrm{fps}
$$

$$
\text { or, } \quad \dot{\theta}_{0} \leq \frac{\dot{D}_{2}}{0.68+\mathrm{n}^{2}}=\frac{0.048}{34.09}=0.001 \mathrm{deg} / \mathrm{sec}
$$

If the mean value test is applied, the 1 mage motion may be quite large. For example, if the pilot is holding the Orbiter within a one degree half cone angle about the LDEF $\overline{\mathrm{R}}$,

$$
\begin{aligned}
\Delta D_{1} & =n X_{\max }=5.78(323.4)\left(\frac{\pi}{180}\right) \\
& = \pm 32.6 \text { feet }
\end{aligned}
$$

Thus, the peak-to-peak amplitude of this component alone can be more than twice the length of LDEF. The remaining component, which is not controlled by the pilot, would be

$$
\begin{aligned}
\Delta \mathrm{D}_{2} & =\theta_{o_{\max }}\left(0.68+\mathrm{n}^{2}\right) \\
& =0.2(34.09)= \pm 6.8 \text { feet }
\end{aligned}
$$

Unfortunately, the period of ΔD_{1} becomes more and more critical at large ranges. In this case the shortest ΔD_{1} period would be 180.6 seconds. If the Orbiter were released at 323.4 feet wath zero initial range rate, it would fall 20.5 feet in 180.6 seconds. In other words, at large ranges Orbiter acceleration is a significant source of error ${ }^{1}$ in the mean value test.

The change in the COAS reading is another source of information for the pilot. But the sensitivity of the 14 foot target is only 0.008 deg/ft at 323.4 feet. If 0.048 fps is the allowable error, the rate of

[^13]change in the COAS reading would be
$$
\dot{\theta}=0.008(0.048)=0.0004 \mathrm{deg} / \mathrm{sec}
$$

Thus, Ignoring the acceleration error source, the subtended angle would change less than 0.07 degrees in 180 seconds.

The third source of information lies in the radar range indicator. If after faltering the readouts the true 3σ uncertannty is 26.7 feet, the 3σ error in the difference between any two readings should be 38.8 feet. Again, lgnoring the acceleration error source, the derived range rate error over 180 seconds would be 0.210 fps.

In the final analysis (and as previously stated) only man-in-the-loop simulations can provide an undisputable answer to the assumption made at 323.4 feet. Perhaps only one DAP A pulse would actually be anserted. But the situation wouldn't improve much at 297 feet. Note that if the plot waits until he "senses" an opening rate before insertang two DAP A pulses, the net effect could very well approach that of insertang one pulse at zero range rate.

The total time of the approach, 4103 seconds or 68.38 minutes, merıts some discussion. For comparison, the time of an optrmum approach from 1000 feet to 23.1 feet may be computed. Referring to the section entitled "The \bar{R} Approach",

$$
\frac{R}{R_{o}}=\frac{1000}{23.1}=43.29
$$

Thus, 4.461 time constants or 37.93 minutes is required for a perfect approach. r The difference between the optimum and actual trajectories is, therefore, 30.45 minutes. It is convenient, for analysis purposes,
to apportion this additional time between the two phases of the approach. For the phase covering 323.4 feet into 23.1 feet,

$$
\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{o}}}=\frac{323.4}{23.1}=14
$$

Therefore, 3.331τ is optimally required over the last approach phase, and the remainder, $4.461 \tau-3.331 \tau$, or 1.130τ, is optimally required over the first phase. In tabular form, the comparisons are:

The time differences represent the penalties for having imperfect state knowledge and for not allowing any Orbiter braking in the approach strategy.

To be sure, some payloads may be capable of withstanding some braking plume impingement, both from a dynamic viewpoint and from a contamination viewpoint. It is appropriate, therefore, to assess the benefits of some braking allowance as the station-keeping range is achieved.

In essence, any braking allowance has the effect of raising by some $\dot{\Delta R}$ the true $\dot{R}_{\max }$ line on the decision graphs. This produces one or two benefits. First, if the additional R is inserted during the approach, the approach time may be reduced. Or second, if the additional \dot{R} is not inserted, more margin for error will exist in the decision graphs. Clearly, either benefit is insignificant during the first phase of the
approach. As pointed out 0.25 fps of braking allows an addıtional range rate of only 0.048 fps at 323.4 feet. And, of course, the allowance for additional range rate diminishes with increasing range. ${ }^{1}$

Braking allowances become much more meanıngful in the second phase of the approach. If, for example, 0.25 fps of braking is allowed at 20 feet, $\dot{R}_{\max }$ may be increased by the following amounts:

$\frac{R_{T}(f t)^{2}}{323.4}$	$\frac{\Delta \dot{R}_{\max }(f p s)}{}$
198.8	0.048
97.1	0.074
59.8	0.125
38.3	0.163
23.1	0.194
	0.228

Since a good assessment of the aft CCTV errors does not exist, it might be argued that the additional $\mathrm{R}_{\max }$ should be "saved" for added margin. Unfortunately, the added margin diminıshes rapidly with range while the CCIV uncertainties grow with range. But this also implies that there is some point where the additional $\dot{R}_{\max }$ is more than adequate to protect agannst the aft CCTV system errors. At that point, some or all of the additional $\dot{R}_{\max }$ may be used to reduce the approach time.

Due to the sensitivity of the \bar{R} approach, any addition to $\dot{R}_{\max }$

[^14]usually causes dramatic changes in the time domain. In the approach example, 2307 seconds or 38.45 minutes was required to travel from 198.8 feet to the station keeping range of 23.1 feet. Suppose that the approach strategy had allowed 0.25 fps of braking at 20 feet. Further assume that the additional $\dot{R}_{\max }$ could be fully utilized because a perfect zero rate condition could be established at 198.8 feet. How would the approach time change? The original decision graph (which assumed a zero rate condition) allowed one DAP A pulse plus " $3+$ " DAP B pulses to be inserted for a total \dot{R} of $0.34+$ fps. The braking allowance would add another 0.074 fps at 198.8 feet such that one DAP A pulse plus 6 DAP B pulses or 0.43 fps could be inserted. Referring to the section entitled "The $\overline{\mathrm{R}}$ Approach,"
$$
R=\frac{1}{2}\left(R_{o}+\tau \dot{R}_{0}\right) e^{t / \tau}+\frac{1}{2}\left(R_{o}-\tau \dot{R}_{o}\right) e^{-t / \tau}
$$
where, in thas case,
\[

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{o}}=198.8 \mathrm{ft} \\
& \dot{R}_{0}=-0.43 \mathrm{fps} \\
& \tau=510.2 \mathrm{sec}
\end{aligned}
$$
\]

When t / τ equaled $1.259, R$ would equal 23.1 ft , the station keepıng range in the original example. Thus, only a single burn would be required and the tame would be cut from 38.45 manutes to only 10.71 minutes, a reduction of 27.7 minutes. The braking requirement at 23.1 feet would be opposite in sign but equal in magnituside to

$$
\dot{R}=\frac{1}{2}\left(\frac{R_{0}}{\tau}+\dot{R}_{o}\right) e^{t / \tau}-\left(\frac{R_{0}}{\tau}-\dot{R}_{0}\right) e^{-t / \tau}
$$

where

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{o}} \equiv \mathrm{I} 98.8 \mathrm{ft} . \\
& \dot{R}_{\mathrm{o}}=-0.43 \mathrm{fps} \\
& \tau=510.2 \mathrm{sec} \\
& \mathrm{t} / \tau=1.259
\end{aligned}
$$

Or, $\dot{\mathrm{R}}$ would be -0.187 fps. ${ }^{1}$
In conclusion, the reader should remember that some simplifyang assumptions had to be made to proceed through the \bar{R} approach example. These included.

1. Ignoring Orbiter RCS interaction wath the orbital mechanics forces along \bar{R}_{L}, which can corrupt the "pure" trajectorıes used in the example.
2. Ignoring the scatter in interpreting the radar data, which can randomly increase or decrease the progress of an approach or even eliminate (on a random basis) a messy transition point.
3. Predicting pilot response in a robot fashion, perhaps the most questionable assumption of all.

But these are the areas which should be pursued in a man-in-the-loop simulator. The purpose of this section was to bring to the desk of the reader a basic understanding of:

1. Approach strategy and tactics.
2. The significance of Orbiter state uncertainties.
3. The benefits of braking allowances.
$I_{\text {The brakang requirement }}$ is not closer to 0.25 fps because the decision graphs are still providing margin for range measurement errors.

A by-product may be an appreciation of the pilot and co-pilot's tasks during the approach.
20.0 The Rationale for Two LDEF Grapple Fixtures and Station Keeping

Targets

As stated previously there is some uncertannty in predicting the yaw attıtude of LDEF when rendezvous operatıons begin. In addition, it has been pointed out that there are advantages to maintaining the Orbiter's X axis in the orbital plane during an \bar{R} approach. This raises the question of how the various Orbiter/LDEF yaw attitudes are accommodated durang grappling operations.

The RMS reach capability for grappling is very dependent on the relative positioning of the LDEF and Orbiter. Therefore, some early and perhaps prelıminary positioning constraints have been established. These are:

1. The LDEF 0.83 foot target must be observable in the COAS. This permits the pilot to establish a desired station keeping range while nulling relative motion along the X and Y axes. The aft CCIV is used to null motion along the Z axis.
2. The grappling operation must be observable by both the pilot and RMS operator.

The 0.83 foot LDEF target has been designed to aid the pilot in 'establishıng the proper position. See Figure 20-1. Note that an abbreviated target cross exists to locate the grapple fixture. If the pllot-centers the COAS cross hairs on the point representing the base

Figure 20-1. - Defining Grappling Operation Limits in the COAS
of the grapple, he can perform his station keeping operations while observing the grappling operation. It wall be recalled that the pılot's view 18 not bounded by the COAS combınıng glass but by his much larger upper window. Thus he wall observe the RMS end effector's approach well before contact whth the grapple fixture.

If a port side RMS is used for grappling operations, grappling may be accomplished if the relative yaw attitude of the Orbiter and LDEF satısfies the following criteria:

Assume that the COAS cross halrs defane a set of axis, X_{C} and Y_{C}, which are parallel to the Orbiter's body axes X_{B} and Y_{B}, respectively.

Also define a grapple fixture vector which emanates from the grapple's base and passes out its tip. Then grappling may be accomplished If and only if the projection of the grapple vector onto the $X_{C}-Y_{C}$ plane has a positive clock angle between 90° and 180° whth respect to $+X_{C}$ as viewed along $-Z_{B}$, or the COAS LOS. If the 0.83 foot target is centered in the COAS (as shown in figure 20-1), the yaw attitude constraint essentially means that the grapple fixture w111 be observed to reside in the COAS quadrant defined by $-X_{C}$ and $-Y_{C}$. Since the Orbiter crew has the option of initializing the \bar{R} approach with the Orbiter's X axis directed along or against $\overline{\mathrm{V}}$, grappling may occur if the LDEF grapple vector lies in either of two LVLH frame quadrants, specifically, that defined by $-\overline{\mathrm{V}}$ and $\mathrm{m}^{\overline{3}}-\overline{\mathrm{H}}$ or that defined by $+\overline{\mathrm{V}}$ and $+\overline{\mathrm{H}}$. To assure that this sıtuation will always exist, a second LDEF grapple fixture is mounted 90 degrees to the first. The complete coverage provided by the two grapples and the Orbiter attitude

Figure 20-2, Accommodating the Varıous LDEF Yaw Attıtudes for Grappling Operations (All views are through the COAS)
attitude options $1 s$ depicted in figure 20-2.
For reasons previously mentioned, a separate station keepıng target is provided for each grapple. In addition, a total set of targets, approach and station keeping, are duplicated on the opposite end of LDEF to accommodate a tumbled LDEF condition.

[^15]
[^0]: $1_{\text {Reference }}$ the PDRS III Shuttle Engineering Simulator Post Simulation Report, CG5-77-246, November 7, 1977.

[^1]: *

 This rate is actually near or below the measurement threshold of the LOS

[^2]: $I_{\text {There }}$ are situations (see section 20.0) where an $0 m i$ cron of 180 degrees would be specified. This would cause $+X_{B}$ to point along $-\bar{V}_{L}$ instead of
 $+\bar{V}_{L}$. $+\bar{V}_{L}$.

[^3]: *The curves an figure $12-4$ were plotted by a JSC computer which used the Clohessy Wiltshire equations of relatıve orbital motion and assumed the Orbiter was maintanned within one degree of \bar{R} after release. Although an m of $1 ., 98 \times 10^{-3}$ sec. ${ }^{-1}$ was computed by the writer, the curves indicate an mof $1.96 \times 10^{-3} \mathrm{sec} .^{-1}$. This can be explained by small differences in the input parameters.

[^4]: $I_{\text {Milton }}$ 篤ramowitz and Irene A. Stegun (ed.), Handbook of Mathematical Functions (New York: Dover Publications, Inc., 1965), p. 88.

[^5]: IReference the JSC PDRS III Post-Simulation Report, CG5-77-222, November 7, 1977.

[^6]: I in pounds of fuel per foot per second of ΔV. $+X$ jet braking uses 280

[^7]: ${ }^{1}$ Assuming a 30 radar range error of 80 feet.

[^8]: *The results are presented and discussed by JSC in the PDRS III PostSımulation Report.

[^9]: *The decision graphs developed in this section were not used during the PDRS III simulation runs at JSC. However, the writer believes that they reduce a description of the approach strategy to its fundamentals.

[^10]: $1_{\text {Each }}$ increment of 0.25 fps may be subdivided into 8 DAP B pulses of 0.03 fps each. But, the scatter in range rate data makes the merats of such subdivision questionable.

[^11]: *As stated in the preceding section, a quantitative assessment of the errors in determining zero range rate does not exist.

[^12]: *R Is the destination of the present trajectory if R is permatted to decay to zero.

[^13]: $I_{\text {This error source was previously introduced in the section entitled }}$.
 "Determining Range Rate with the COAS."

[^14]: $I_{\text {See the section entitled }}$ " \bar{R} Approach Sensitivity."
 $\mathbf{2}_{\text {The }}$ values for R_{T} correspond to the decision points in the example.

[^15]: *For sale by the National Technical Information Service Springield Virginia 22161

