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1. INTRODUCTION 

It has been  widely  recognized t h a t  modelling  errors  can  lead 

to sens i t i v i ty  problems  and  even  divergence  of Kalman-Bucy f i l t e r .  

In  cases where the nominal plant  parameters  used in   t he   f i l t e r   des ign  

are di f fe ren t  from the  actual   p lant  parameters, the uncompensated 

mismatched steady state Kalman-Bucy f i l t e r  exhibits bias   errors .  Athans [ll 

discussed  this  problem,  and presented a brief  survey of the  various 

schemes t o  reduce f i l t e r   s e n s i t i v i t y .  In  par t icu lar  R e f -  El1 

introduced  the  continuous time compensated Kalman f i l t e r ,  a sub- 

optimal state estimator which can  be  used to  eliminate  steady  state 

b ias   e r rors  when it is used in  conjunction  with  the mismatched 

steady state (asymptotic)  time-invariant Kalman-Bucy f i l t e r .  The ap- 

proach used r e l i e s  on the u t i l i za t ion  of the residual  (innovations) 

process  of  the mismatched f i l t e r   t o   e s t ima te ,   v i a  a Kalman-Bucy 

f i l t e r ,   t h e  state estimation  errors and subsequent improvements of 

the state estimate. The compensated Kalman f i l t e r  augments the mis- 

rmtched s teady   s ta te  Kalman-Bucy f i l t e r  by the introduction of ad- 

This note  follows the same philosophy and development a s  111, 

fo r  the discrete  time  case. Tn section 2 ,  we give  def ini t ions and 
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and  assumptions  as  well  as  the  definition  of  the  nominal  mismatched  steady 

state  Kalman-Bucy  filter.  Section 3 analyzes  the  errors  due  to  mismatching. 

Section 4 contains  the  main  contribution  which  deals  with  the  development 

of  the  compensated  filter  structure  and  equations.  Section 5 contains  the 

discussion  of  the  results. 

The  elimination of bias  errors  is  accomplished  by  having  accumulators 

(the  analog  of  integrators)  acting  upon  the  residuals.  Thus  if  persistent 

bias  errors  exist  due  to  model  mismatching,  the  accumulators  provide  the 

necessary  corrections so that  the  bias  errors  are  removed  from  the  estimates 

in  steady  state. 

The  approach  selected  was  dictated  by  issues oL' simplicity  of  design, 

namely  the  use  of  constant  gains  in  the  estimator  realization,  and  the  avoid- 

ance  of  real  time  parameter  estimation,  which  requires  extensive  real  time 

calculations.  All  calculations  of  the  constant  filter  gains  can  be  carried 

out  off-line. 
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2 .  DEFINITIONS AND ASSUMPTIONS 

Only modelling errors in   p l an t  parameters w i l l  be  considered 

throughout t h i s  paper. We be l i eve   t ha t   t h i s  is of ten  the case i n  

practice.  When there are e r ro r s   i n   t he  s ta t is t ical  parameters of the 

underlying random ProcesseSt a d i f fe ren t  approach is required and the 

results are more complicated. 

2.1 Actual  Plant Description 

We assume t h a t  the actual   p lant  is an  n-th  order  linear time- 

invariant ,   s tochast ic  dynamical  system  with state vector - x (t) & Rn, 

constant  input  vector - u E Rm and noisy measurement vec tor   z ( t )  E R' 

described by 

- 

where A, 5, 5 are respectively nxn, .mf rxn  constant matrices, 

%e plant noise i ( t)  and the measurement noise - 0 ( t )  are white 

Gaussian stationary  processes with the   fol lowing  s ta t is t ics ,  which 

are assumed to be known to  the  designer.  



-4- 

where 6 denotes  the Kronecker de l ta ,  and E, the   plant   noise  

in t ens i ty  matrix, is a constant nxn posit ive  semi-definite symmetric 

matrix, while 0,  the  measurement noise   intensi ty  matrix i s  a 

constant rxr pos i t i ve   de f in i t e  symmetric matrix.  Wreover, - c ( t )  
and 6 ( s )  are assumed to be uncorrelated  for a l l  s ,  t, i,e. 

s t  

- 

- 

2.2 Model Description 

The actual p lan t  dynamics are defined  by  the  values  of  the 

three  constant  matrices A, B, C in   equa t ions  (1) and (21, and " -  
the   no ise   s ta t i s t ics   def ined   in   equa t ions  ( 3 1 - ( 8 ) .  We s h a l l  assume 

tha t   the   ac tua l   va lues   o f  A, B and C are not  known exactly to  the 
" - 

designer.  Rather, nominal values A B C are avai lable  to the  

designer i n  addi t ion   to   per fec t  knowledge of t he   no i se   s t a t i s t i c s ,  and 

il' -n' -7l 

t h e  value of the  constant i n p u t  vector - u. Thus as   far   as   the  designer  

is concerned,  the model is given by 
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For later development, define  the  following  .parameter  error 

matrices : 

since they  represent one of  the most practical uses  of Kalman- 

Bucy f i l t e r s  from the application  viewpoint, and they  can  readily 

lead  into  steady state e r ro r  and s tab i l i ty   ana lys i s .  The following 

assumptions are necessary for  the  derivation of the  resul ts .  

1. [&,El and [%,$I are controllable  pairs.  

2.  [A,C] " and [A C 3 are observable  pairs. 
"-n 

3. I and [A ,= -1/2 =1/2] are controllable  pairs.  
"n 

4. Both A and A are s t r i c t l y   s t a b l e  matrices, i,e 

a l l  of their eigenvalues l i e  within  the  unit  

circle. This also implies that (A-I) and (s- IJ exist. 

- 11 

-1 -1 
" 

These assumptions are indeed  necessary  for  the rigorous development 

of a unique, stable, steady state Kalman-Bucy f i l t e r .  
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2.4 Definition of the Nominal Mismatched Steady-State Kahan 

Bucy Fi l ter  (NMSSKBF) 

L e t  us  suppose tha t   t he  designer constructs theNMssKBF on the 

basis  of the nominal parameter values   avai lable   to  him and the as- 

smed known statistical parameters. Then the state estimate of ECtS-, 

E (t) E Rnc generated by such a f i l t e r ,  is given by the following 
II 

mismatched f i l t e r  dynamics. 

"l 
r c t l =  z(-tl - &5&ct [ t-11 

where G is a constant nxr f i l t e r  gain m a t r i x  given by 
n 

U4al 

U4b I. 

u s  L 

and C is the nxn constant, symmetric, posi t ive  def ini te   solut ion 

of the  algebraic matrix Riccati  equation 131 

7l 

A c A' 
7-11 

The block  diagram  of  the NMSSKBF i s  shown i n  Figure 1. 

The existence  of G and 1 are guaranteed by our  assumptions. * -n 

Also it is well known that  the  closed-loop f i l t e r  matrix 



i 
Nominal 

Measurement Residual 

B u input 

Figure  1:  Discrete  Time  Nominal  Mismatched  Steady  State  Kalman-Bucy  Filter 
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3. ERR3BS DUE To MISMATCHING 

If the NMSSKBF of Figure 1 is used  without  further  compensation, 

severe  inaccuracies arise due t o   t h e   f a c t   t h a t   t h e  nominal p l a n t  

matrices A, & are used ra ther   than   the  actual (but  unknown) 

matrices &, E, c. These e f f e c t s  are pa r t i cu la r ly  bothersome  because 

b i a s   e r ro r s  i n  We estimates exist. It is ins t ruc t ive  to  i s o l a t e  

these errors,  because the s t ruc ture  of the  equation  suggests that 

compensation  techniques  can be used. 

3.1 Estimation  Errors and their Dynamics 

Define  the state est imat ion  error  2 (t) induced by the 
"n 

NMSSKBF by 

From equations (1) , (2) 8 (14) 8 (151, and (191, one can readily 

deduce that the state estimate e r r o r  &(tl sa t i s f i e s   t he   s tochas t i c  

difference  equation 

Rearranging; one obtains 
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3.2 Mean State Estimation Error 

Equation :@1) readi ly  a l l o w s  one to deduce the effects of model 

mismatching upon the estimation  errors;   bias effects are introduced. 

To compute these,  one  simply takes expected  values i n  equation (21). 

We remark that the expectations are not  conditional ones, since the 

f i l t e r   s t r u c t u r e   h a s  been fixed. Thus 

-A G AC E{x(t) 1 + hB u 
11- - - 

" 

But from equation (1) , 

( 2 2 )  

This yie lds ,   in  view of  equation L81, a non-zero mean state, L e - ,  

Thus, i f  s o m e  or all of A A r  E, and AC aze non-zero, then one can 

readi ly  conclude from (22) t h a t  bias er rors   ex is t .  Note that the  

e f f ec t  of the  constant  input u accentuates  these  errors,  even f o r  

stable system. From equations C22) and (241, 

- - 

- 
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t 
( 2 5 )  

S 

+ [A -A G C 3 t-s{ [AA -A G AC] [ As-'BI+ABh 
s=to "-n--n - - ?=to 

- " 

equation ( 2 5 )  becomes 

t S 

E { G ( t ) }  = [A -A G C It-'{[AA-A G A c I  [ A B l + A B } u  - x-n- - - " S - T  

s=t -n 7- 
0 

T = t O  (27) 

This is in   general  non-vanishing, and cannot be evaluated  since - A, E, 2, 

&AB, AC are not known exactly. I n  par t icular ,   as  t gets  large,   the 

mean steady  state  estimation  errors  are  approached, 

" - 

Both of these are non-zero.  Therefore, i n  the mismatched case,  there 

ex i s t s  a  non-zero mean steady-state  estimation  error. Again, due to 

incomplete  information, one cannot compute t h i s  mean steady-state 

estimate e r ro r  so a s  to add it to the NMSSKBF estimate &(t) to   a r r ive  
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a t  unbiased  estimates. 

3.3 Discussion 

The above  development indicates that the NMSSKBF should  not  be 

used  without  further  modification. It necessitates  the  use of com- 

pensation by a suboptimal  estimator,  because  the t r u l y  o p t i m a l   f i l t e r  

(that estimates  the unknown elements of A, 2 and - C )  is an i n f i n i t e  

dimensional  one [3] . The degree  of  suboptimality  has  to be related 

to the  extra dynamics t h a t   a r e  required to improve the  performance 

of  the nominal  mismatched Kalman-Bucy f i l t e r .  

The next  section  presents  a  compensation  technique, which is 

similar t o  [ l l .  The central   idea is that it augments the  NMSSKBF 

by a d d i t i o n a l   f i l t e r  dynamics  and t r i e s  t o  extract   fur ther  informa- 

t ion from the  residual  (innovation)  processes. It has  the merits 

t h a t   a l l  gains can be pre-computed, and it avoids  the  complexity of 

non-linear  estimation  (or  the  extended Kalman f i l t e r  algorithm) which 

is not  always  guaranteed to work properly [3]. Moreover, it compen- 

sates  the  biased mean steady  state  estimate  error  without  sacrificing 

the  accuracy  of  the  state  estimate,  i.e.  increase of RMS errors, which is 

very  often  the  case when other  techniques  are  used, e.g., increased 

artif ical   plant  noise  covariance  matrix 141. 
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4. THE DET7ELOPMENT OF PLE DYNAMIC FILTER COMPENSATJR 

F i r s t   r e c a l l   t h e   d y n a m i c   e q u a t i o n s  o f  t h e   s t a t e  

Using equations (1 1 ,  (2)  and (19) , equation  (31)  can be wri t ten as 

Note that the residual  process rJt) is l inear   in   the   s ta te   es t imat ion  

e r ro r  L (t) . It is reasonable to attempt  using  equation ( 3 2 )  as a 

'heasurement  equation" to obtain  an  estimate of %( t) , the  state 

estimation  error.  However, the  existence of the unknown matrices, h, 

AB and AC in   equat ions (30) and (32)  prohibits us from so lv ing   th i s  as 

a l inear   es t imat ion problem. Thus ce r t a in  approximati.0n.s have t o  he made, 

In  what follows, it is shown how one  can form such a l i nea r  estirna- 

t i on  problem, by making approximations  with.  reasonable  physical  inter- 

pretat ion.  

% 

- 
- - 
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4.1 Philosophy 

Define the  time sequences w ( t )  & R and v ( t )  & Rr as n 
- - 

follows : 

W ( t )  AA x ( t )  + AB u 
" " 

(33) 

(34) 

Thus equations  (30) and (32) reduce t o  

Now it is apparent  that   equations (35)  and  (36) form a l i nea r  esti- 

mation  problem, with  correlated  plant and  measurement noise,  provided 

that - w ( t )  and x(t) sat isfy  l inear   equat ions.  So t he  next   s tep is t o  

develop simple l inear   equat ions  for  w ( t )  and x( t) . If one is pr i -  

marily interested i n   t h e  development of a steady-state  constant gain 

f i l t e r ,  one  can proceed as follows. 

From equations ( 2 8 )  and  (33) , w e  can deduce t h a t  

lim E{w-(t) 1 = [AB + AA(1-A) BI: = unknown constant (37) 
tYaJ 

-1 
" - 

Also 
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Equation  (37) implies that w ( t )  - must  have a nonzero (but  unknown) 

mean steady state, while equation  (38)  indicates  that  it must contain 

a zero mean driving  noise term. Both of these  objectives  can be 

sa t i s f i ed  i f  one selects the dynamics of - w ( . t )  t o  be of the form 

where l(t) is a zero mean, white,  Gaussian  stationary  process, i.e. 

This leads up. to  select the dynamics of v(t) by the  equation 

- v( t+ l )  - x(t) = Act) ; - v( to)  # 0 

where L(t) i s  a white,  Gaussian,  stationary  noise  process  with 

statistics 

(45) 
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We remark t h a t  i f  & i s  known (or can  be  estimated  on  the  basis 

of physical  considerations) one should select 

and set 

r=AAE.' - "- (49) 

Similar ly ,   i f  - AC i s  known (or can  be  estimated)one  should select 

- X ( t )  = " AC c ( t )  
and set 

In  view of equations (48) and (sa) ,  or  physical  reasoning, 

one should  consider - y ( t )  and & i t )  as  two correlated  processes, 

i .e.  
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if AA is known (or can be  estimated), and 
P 

(t 1. Let 

problem wich plant dyna .mics  g i v e n  b y  

I - 
I - 

0 - 

-?I[ I 

0 - 
0 - 
- I 

k( t) 
and  measurement equation  given by 
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r (t) = 
7-l (59) 

Thus a Kdlman-Bucy f i l t e r  can  be  designed  to  generate  estimates of 

t (t) , ~ ( t )  a d  v(t) denoted  respectively by (t) r c(t) md 
"n "n 

h 

v(  t) , based  on pas t  measurements of r (T) , to 5 'I: 2 t. (c 

11 

Recalling that (see equation (19)) 
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where &, &, are respectively nxr, nxr and rxr   constant  

matrices (steady state f i l t e r  gains) , which w i l l  be defined below. 

The in i t ia l   condi t ions  that one  might  use are 

A 

H Ct,l = 0 
-n 

Kcto) = 0 
n 

(65) 

(66) 

They are chosen because 0~13 can view h, AB, & as random 
" 

matrices w i t h  zero means, the nominal values A B C used by 71' -' n 

me designer  represent the a p r i o r i  mean values of A, B and C, 

respectively. 

- " - 

Now referr ing back to  equations C58l and (59). define  for  

notational convenience the matrices 
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Then M plays  the role of the  composite plant  white  noise @(t) ) - 
intensity  matrix,  and - N yields the correlat ion between  the  composite 

plant  white  noise %(t) and the measurement white  noise - 8 (t) . 
Let S denote  the  steady  state  predicted  error  covariance matrix 

associated w i t h  the estimation problem defined by equations (581 and 

- 

(59). Then - S is a spmetz i c   a t   l ea s t   s emi -pos i t i ve   de f in i t e  matrix. 

In addition, it is the  positive  semi-definite matrix so lu t ion   to  the 

algebraic  Riccati  equation Ltake e.g. t h e  dual   in  151, 

Onecan then compute the  f i l ter   gain  matr ices  L L and L that appear i n  * Y 

11 L = S H' (0 + H S H') -1 
" - "- 

4.3 Simplification 

The rea l iza t ion  of Section 4.2 can  he considerably simplified. 

Define the compensated residual  process - rkl. liy 
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From  eauation (61) we deduce  that 

6 

- r(t) = z(t) - 1111 c 2 (t I t-11 - c 2 c t l  t-11 - Ect-12 
1111 

Then from equation  (151, ais becomes 

A 

Equations (611, (621, (14) and (74) yield 

h 

h 

A G C L  - 
"I7l-n- 

A G L )  
"-v 

A G @(@ 
11- - 

After a little  algebra,  it  can  be  shown  that  the  last  term  in  equation  (75) 

vanishes for all t. That is, equation (75) reduces to 

Thus  the  compensated  state  estimate - 2(t+l)  is  given by 

A 
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Figure 2 shows  tha  realization of equations (76) to (78) . From 
this  representation,  one  can  deduce  simpler  computational  procedures  for 

the  evaluation  of  the  compensated  Kalman  filter  gain  matrices L L L . 
To be  specific,  we  can  reduce  the  computations of the  augmented  matrices 

F, D, H, M, N (equations (581, (59), (68), (69) 1 and  the  matrix  solution 

I t ,  -w' -v 

" - "  
S in  the  algebraic  Riccati  equation (701, and  the  subsequent  evaluation 

of the matrices L L , and L by equation (71). After  some  algebraic 

mani@ulations  with  equations (58) , (59) , (68) - (71) and (17) , one  obtains 
-x' 7 7  Y 

the  following : 

I - 
I - 
0 - 



Measurement 
I Signal 

z ( t + l )  + 

- 
0 

- 
I 

compensated 
Residua I 

r ( t + l )  
\ -  

I "2 + 

n 

A 

r"l Delay 8' 
Compenso ted 
Kalmon Filter 
State  Estimate I 

Figure 2: Discrete Time Compensated  Kalman Filter 
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and equations (70) , (71) become. 

4.4 Discussion 

The s t ruc ture  of the discrete-time compensated K a l m a n  f i l t e r ,  

i l l u s t r a t ed   i n   F igu re  2 ,  has  certain  appealing  physical  aspects. The 

major s t ructural   d i f ference between the uncompensated Kalman f i l t e r  

of Figure 1 and  of the compensated  one of  Figure 2 ,  hinges upon the 

addition  of  distinct  accumulator  loops  driven,  through  appropriate 

gains, by the  compensated residual  vector - rCt+l). Note tha t  an 

accumulator is the   d i scre te  t i m e  analog  of an in tegra tor   in  the continuous 

time case. In  the  absence of any accumulators,  the  residual  vector  of the 

the  uncompensated Kalman f i l t e r  would exhibi t   b ias   errors .   In   the com- 

pensated f i l t e r  these residual   bias   errors  are accumulated (integratedl 

with  appropriate  weightings  (the  gain matrices L and L in  Figure 21 

i n  two d i f fe ren t  ways.  The accumulator that   generates  the sequence 

$(t) - correc ts   for   b ias   e r rors   in   the   p red ic t   cyc le ,  t o  compensate fo r  

the e r rors  modelled by the  matrices AA and AB. T h i s  makes sense,  because 

w ( t )  - w a s  defined by Eq. (33)  i n  terms of - hA and - AB. The accumulator 

that   generates  the sequence ?(t) correc ts   for  bias e r rors   in   the  

Y -w 

- L 
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residuals  due t o  modelling e r ro r s  - hC i n  the  measurement equation; 

i f  - AC = 0, the accumulator  channel that generates g(t) would be. absent. 

One can  then  think  of g(t) as being a crude estimate of  constant 

but  unknown disturbances that are add i t ive   t o   t he  s ta te  equations, and 

of G ( t )  as a crude estimate of constant  but unknown b ias   e r ro r s  i n  the 

measurement equation. 

- 

The improved estimate g(t+l) generated by the  compensated Kalman 

f i l t e r  (Figure 2)  is still instantanously  influenced by the  compensated 

instantaneous  residual r(t+l) through  the  feedforward  gain L . T h e  

nominal dynamics A B C a r e  s t i l l  being  ut i l ized and bias   correct ions 

v ia  G ( t )  - influence  the  predicted compensated estimate - 3 ( t f l  I t) and 

hence the  residual.  

-x 

" 7l' II 

Obviously the   t rans ien t  performance of the  es t imat ion  errors  of the 

compensated K a h n   f i l t e r  would hinge upon the  numerical  values  of  the 

three  gain  matrices L , L and L . These i n  time would not  only de- 

pend upon the nominal parameters,  but upon the  way the   in tens i ty  matrices 

of the  white  noise  sequences - y ( t )  - see eq. (39) - and - h: (t) - see eq. 

(45) - are  selected.  It is the  authors'opinion  that  the  suggested 

guidelines  for the covariance  selection  are  reasonable,  since  for most 

prac t ica l  problems the  designer  has a reasonable  idea  of  the  worst 

possible  modelling  errors,  exhibited  in " h, AB, and - AC, from the  nominal 

parameters. I t  is  important t o  stress that   the   white   noise   intensi ty  

matrices I' and not  only depend upon the  modelling  errors, b u t  also 

upon the intensity  matrix E of the  or iginal   p lant   noise  - c ( + l l  shown hy 

eqs. c49) and (51). Furth-ermore, -. y ( t l  and - 1 kl are  correlated  -according 

t o  eqs. (52)  t o  6 7 ) .  . Thus, the guesswork on the   pa r t  of the  designer Is 

minimized. 

-% " Y 

- 
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5.  mTRTHER S.IMPI;IFICATIONS I N  PRACTICAL DESIGNS 
". . ~ ~ 

A t  f i rs t  glance,  the compensated K a h n   f i l t e r  might seem some- 

what  complicated  than t h a t  of the NMSSKBF alone. We remark t h a t  the 

complexity is d i r ec t ly   r e l a t ed  to the dimensionality of the two 

auxi l iary  vectors  x(t) and - w ( t ) .  However, i n  most cases of prac t ica l  

interest, canonical  representations can be used t o   a r r i v e  a t  the 

smallest number of addi t ional  accumulator s i n  the real izat ion  of   the 

compensated Kalman f i l t e r .  

5.1 A Single - .  Input ~~ Single  Output Example 

To i l l u s t r a t e  these implications  consider  the desi.gn 

of the compensated Kalman f i l t e r   i n  the case  of  linear, time- 

invariant,  stable single  input  single  output  plants.  Suppose 

t h a t  the ac tua l   p lan t  i s  characterized by i ts  transfer  function 

C Z  
n-1  n- 2 

n n-i 

+ c  z +...+o 2 + c 
G ( z )  = n . . . ~ n- 1 2 1 

z + a z +...+a z + a n 2 1 

L e t  a - and c. ., i=l,...,n,denote the nominal values  of  the a 

and c , respectively. Then the standard  controllable  representation 

fo r  the actual  plant  (equation  (82) ) is 

in 111 i 

i 
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- x (t+l) 

0 1 0 ...... 0 

0 0 1 0 ... 0 

.................... 

[:l”. A 

- 

+/;j 
0 

and the nominal values of A B ,  C are ( i n  the same representation) *’ -n -n 

c =  ICln C2n ..... c 1 
-n nn 
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Thus 

" 
A B = o  

" 
AC = 6c' 

where 

- 6aI = [a -a a -a 1 In' 2 2n' ..., a -a 1 n n n  

- 6 C l  = [C1-Cln' c "c ... , c "c I n n n  

Examine the way the vector KCt).. is defined Cequatfon (331)-, 

since = 0, x(t) is given by 

which means that  although x(t) is an nxl vector, it really  contains 

only one  uncertain parameter, namely the scalar wn(t), 
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- v ( t )   i n  this case is also a scalar 

v ( t )  = dc'x(t1 (95) 
" 

Following then the procedures  described in Section 4,  one C a n  see 

that the scalars wn(t) and v(.t). should be modelled as 

v(t+P) - v ( t )  = X ( t )  

w i t h  

and 

(96) 

(97) 
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Ideally,  one selects 

n = 6a' E 6c 
Ynx 

"- 
a - 1 6 a  
-CYn 
" 

" 

In   pract ice ,   s ince 6a and 6c  are   not  known one  should  use t h e i r  
I - 

mrst possible values i n  equations (105)-(109) to  determine the 

covariances. 

Under these conditions,  the  equations  of  the compensated 

Kalman f i l t e r  become (see ecpations (76) -(78) ) 
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where 

a) -x L is a constant  nxl  gain  vector; 

b) Lwn is a constant scalar gain; 

C) LV is a constant scalar gain. 

5.2 Extension to Multi-Input  Multi-Output  Systems 

The above procedures  can be eas i ly  extended to  the multi-input 

multi-output  systems. We out l ine  the step by step  procedure that 

should  be  followed. 

step 1: Examine the st ructure   of   the  nxn matrix AA fo r  arbi t razy 

var ia t ions of the actual and  nominal plant  parameters. Let p ,  

- 

O<p<n, denote  the number of non-zero rows of AA. Define an nxp 

matrix - P according to the  following rule. L e t  j=1,2, . .  P index 

" - 

the columns of P. - 
(a) . L e t  i=l, j=l 

(b). If the  i-th row of AA is nonzero, set the j-th column of 

equal to zi (the natural  basis vec tor   in  R ) , set  j=j+l, 

- 
n 

and go t o  (c). If the i-th row of & is zero, go t o  ( c ) .  
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Example: Suppose AA has  the  s t ructure  (where x denotes a nonzero - 
element) 

Step 2: Examine the   s t ruc ture  o 

Then p=2, and the 4x2 P matrix is given by - 

_[ : 0 0  

1 0  

0 0  

0 1  

- C fo r   a rb i t r a ry  

var ia t ions of the actual  and  nominal p l an t  parameters. Let q, 

O<cr, - denote  the number of non-zero rows of &. Define  an rxq 

matrix Q according t o  the following rule. L e t  k=1,2,...,q index 

the columns of 8. 

( a ) .  L e t  i=l, k=l 

(b) - If the i - th  row of AC i s  non-zero, set the  k-th - 
column of Q equal to (the natural   basic   vector   in  

R 1 ,  set k=k+l, and go to (C) - If the i-th ltow of AC is 

zero, go to ( c ) .  

r 
L 
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k ) .  If i=r, stop; otherwise, set i=i+l and go to Cb) - 

Exanple: Suppose that - AC has the following structure 

AC = - [ 
x x o o x  

0 0 0 0 0  

0 ’ 0  0 0 0 

Then q=l and the Q matrix is given by 

Step 3 : Let xl (t) E: s, 1, (t) E R? , such t h a t  

with 



-33- 

r = P'r P -1 

w i t h  
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W e  the   ident i f ica t ion  

%Y, fu- =52 P 

5.3 Reduced Dimension Compensated  Kalman Filter: S u m m a r y  
of 'Equations 

The following  equations are obtained by substi tution  of 

equations (114) through (131) into (76) t o  (78) . 
Fi l te r  Equations 

(132a) 

U32b) 

U33a) 

U33h) 

u341 

F i l te r  Gain Equations 

The f i l t e r  gain matrices L ( n x r ) ,  L (pxrl, and L (qxrl a re  given 
IC1 -Wl -71 

by 

= Y H ' @ + H Y K ' L  - "1 - -1- -1 
-1 (135) 
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where Y is the unique (symmetric) posi t ive def in i te  solution of the 

(n+p+¶)-th order  algebraic  matrix  Riccati  equation 

- 

-2t F H  "lt  E2 are respectively (n+p+q) x(n+p+q) rx (n+p+ql (n+p+q)x 

(n+pw) constant matrices given by 

P 0' 
" 

-2 
F =  

0 1  
" 

-2 M =  

5.4 Discussion 

The compensated K a h n   f i l t e r -   e q u a t i o n s   p r e s e n t e d  i n  Section 5.3 

are the recommended ones  for  practical  design. The additional 

workload associated w i t h  the  computation of the g and 2 matrices is 

j u s t i f i e d   i n  terms of  the  simplification that results i n   s p e c i f i c  

problems. 
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From a  technical  viewpoint the essent ia l   d i f ference between 

t h e   f i l t e r s  of  Section 4.3 and 5.3 i s  t h a t  i n  the  la t ter   case  the 

compensated K a l m a n  f i l t e r  can be shown to   possess   a l l   the   requis i te  

cont ro l lab i l i ty  and observability  conditions which are  necessary 

fo r  the existance  of  a  unique  positive  definite  solution  to  the  al- 

gebraic matrix Riccati  equation and theguaranteed  s tabi l i ty  of 

the resultant filter, It also  pinpoints  the  additional number 

Cp+q) of  accumulators  required t o   s t a b i l i z e   t h e  uncompensated f i l t e r .  

The .only  "guesswork"  required by the designer is the  selection 

of the  intensity  matrices r (pxp) and A (qxq)  and the correlat ion -1  -1 

covariance  matrices (nxq) and f2 (pxq) , All 
-Yh, 

This is  evident from equations (491, (51) (53)-(55) I (119),, and 

(135) -(128), from which we obtain 

%Yl --- - C AA'P " 

%x1 " = E Aclg 
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Since - 9 is assumed known, and - P and 2 are readily  evaluated, the 

select ion of r h , Q ; and Q only  involves the use -1'4 fy, *x1 "yxl 

of judicious estimates for AA and by the des i g n e r  . AS - 
remarked before, these estimates can be usually found from a worst 

case analysis,  i.e., the worst probable  deviation of each parameter 

from its assumed nominal  value. Of course, there is still an ele- 

ment of judicious judgement to be made; a t  least i n  this design  the 

"guess~~rk" can be related  to the degree of worst deviation  of  the 

nominal plant from the actual one. 
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6. CONCLUSIONS 

A method  for  compensating  the  mismatched  constant  gain  discrete  time 

Kalman filter  has  been  presented.  The  resultant  compensated  Kalman  filter 

is  time  invariant,  and  the  gains  are  all  computed  off-line,  with  some 

added  complexity to the  estimator.  The  compensation  consists  of  the  intro- 

duction  of  feed-forward  accumulating  (integrating)  channels  between the 

residual  process  and  the  uncompensated  mismatched  filter. 

The compensated  Kalman  filter  has  the  property  that  bias  errors  in 

the  state  estimates  are  eliminated  asymptotically.  More  complex  algorithms 

have  to  be  used  if  unbiased  estimates  are  required  for  all  t. 
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