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1.0 SUMMARY

An Electrical Prototype Power Processor Unit was designed, fabricated
and tested for use with the 30cm Mercury Ion Thruster. The ion engine was
operated with the power processor for over 77 hours at TRW under all oper-
ating conditions - startup, shutdown, arcing and recovery, steady-state
operation at fixed (1100V) and variable (1100V-600V) beam voltage and
over the 0.5A to 2.0A beam current extremes. Continued Ion Engine Power
Processor testing is in progress at NASA/Lewis Research Center.

The power processor includes three series resonant inverter power
stages to process the 200 to 400Vdc input to meet the output requirements
for (12) separate ion engine functions. The beam inverter supplies 2.4kW
to the screen/accelerator electrodes. The discharge inverter supplies a
maximum 700W to the ion engine for the generation of the mercury ions.
The multiple output inverter supplies a maximum of 389W for the remaining
(9) ion engine heater, vaporizer, keeper, and magnetic baffle supplies.

Extensive component improvement work was performed on the thyristor,
transistor, filter capacitors, series resonant capacitors, series resonant
inductor and high voltage high power transformers. As a result of this
component work, the component weight was reduced about 30% from previous
power processor designs, while at the same time, controlling the maximum
component operating temperatures.

The power processor was configured into seven separate modules that
would allow subassembly testing and then integration into a complete
power processor unit assembly. The conceptual packaging of the electrical
prototype power processor unit demonstrated the relative location of power,
high voltage and control electronic components to minimize electrical
interaction and to provide adequate thermal vacuum cooling in conjunction
with a heat pipe simulator attached to the base of the module.

Based on the results of this packaging effort, NASA Lewis Research
Center is designing and fabricating a Functional Model Unit that would
further improve the packaging concept to reduce weight and improve com-
ponent thermal control.
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Special test equipment was designed and fabricated in support of
the electrical prototype power processor test program. The test program
at TRW included:

• Module test (seven types)
• Unit load bank test
• Thermal vacuum test
• Ion engine integration test
• Electromagnetic interference test

It was most rewarding that during this entire development program,
which included numerous repeated short circuit and arc over testing
not a single power semiconductor has failed.
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2.0 INTRODUCTION

Solar Electric Propulsion (SEP) using mercury bombardment ion
thrusters has been in a research and development stage for well over
a decade. Two experimental flights, SERT I in 1964 and SERT II in
1970, have demonstrated the feasibility of this type of propulsion
for long-term space flights.

Recent achievements in standardization, reliability and perform-
ance of the 30cm ion thruster have brought operational SEP missions
nearer to reality. The proposed missions cover a wide range of envir-
onmental conditions from near Sun to deep space planetary probes. The
electric thrust subsystem for the SEP missions under consideration
would consist of a cluster of from two to ten 30cm ion thrusters each
with its associated power processor unit (PPU). The power processor
unit provides the interface function between the thruster and various
spacecraft subsystems such as the central computer, command/telemetry
units, and the solar array power bus. Additionally, the power processor
unit contains internal logic which provides rapid corrective control
action during periods of abnormal thruster operation.

The basic characteristics of an ion thruster, namely the generation
acceleration, discharge, and neutralization of an ionized gas plasma re-
quire rather unique electrical power supplies. In all, twelve separate
power supplies with widely varying requirments of power, voltage and
regulation are needed to operate a thruster. A characteristically severe
requirement is placed upon the power processor unit due to the natural
tendency of ion thrusters to arc. Consequently, all power supplies have
to be able to sustain direct shorts between their output terminals, while
selected outputs have to be able to sustain shorts between one another
and some outputs have to be able to sustain direct shorts to ground.

TRW Systems has developed 30cm Ion Thruster Power Processors under
Contracts NAS3-14383, "Development and Improvement of Ion Engine Power
Processor," and NAS3-18924, "Breadboard Power Supply," for NASA Lewis
Research Center.
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In the process of performing these programs, new power processing
technology has been developed that ensures superior performance and
protection characteristics of the power processor and the electric
propulsion subsystem. These features include:

• Series LC Resonant Inverter power stage which acts as
a current source and protects the ion engine, power
source and power switching semiconductors from any over-
stress condition during startup, steady-state or arc-
over conditions.

• High frequency series resonant circuit operation of thyristors
and transistors thereby assuring a low weight power processor.

• A low part count design, since high power thyristors can
readily handle the peak power requirement of the 30cm
ion thruster.

• A simplified recycle system due to the current source
power stage that allows the clearing of ion engine
faults without an elaborate turn-off and sequencing of
output power supplies.

t Output fault protection circuitry that allows a short
circuit across any output or between high and low volt-
age outputs without any damage or overstress of com-
ponents .

• Demonstrated high operating efficiency over the 1/4 to
full power throttling range due to power processor
system mechanization.

• Extensive use of the multiple feedback loop control
system to provide the required regulation, the no load
to full load transient response and the low impedance
output that eliminates any oscillation with the negative
impedance of ion engine plasma discharge.

The two breadboards delivered on the previous contracts have demon-
strated reliable circuit operation for a combined total of over 18,000
hours with no power switching semiconductor failures during all the
different test phases including extensive operation with the various
30cm ion thrusters.

The Electrical Prototype/Power Processor Unit (EP/PPU) Program is
seen as a logical step in producing the flight type power processing
equipment necessary for Solar Electric Propulsion mission planned for
the future.
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The EP/PPU is a fully functional electronic package which meets the
requirements of the 30cm ion engine. The design philosophy is such that
the electrical design is of flight-type quality, and it is thermally and
structurally packaged in a form similar to the Lewis Research Center's
projection of the Functional Model. (FM) mechanical configuration, yet pro-
viding maximum electrical circuit accessibility, (refer to NASA TM X-71683,
"A Thruster Subsystem Module for Solar Electric Propulsion," and NASA TM
X-71686, "A Structural and Thermal Packaging Approach for Power Processing
Units for 30cm Ion Thrusters"). The electrical design utilizes commercial
equivalents of Hi Rel parts in all cases except for special contractor
fabricated magnetic devices which were of flight configuration with screen-
ing of high voltage magnetics. Selection and/or design of electrical com-
ponents was such as to minimize weight and assure their direct utilization
in the Lewis Research Center FM/PPU.

t*

All high voltage isolation was accomplished within the EP/PPU.
The serial digital-to-parallel digital command and control interface unit
(IU) is considered part of the EP/PPU.

The program was divided into eight basic tasks:

TASK I EP/PPU Design and Analysis
TASK II EP/PPU Fabrication
TASK III Test Support Equipment
TASK IV EP/PPU Testing
TASK V Reliability
TASK VI Reports of Work
TASK VII Project Management
TASK VIII Electrical Components for the NASA FM/PPU1s

The contracted effort involved the design, fabrication and testing of
an Electrical Prototype Power Processor Unit (EP/PPU) which meets the
requirements of potential future solar electric propulsion missions. The
direct utilization of applicable technology from past and present related
activities was maximized to the extent practicable. This approach pro-

vided the most useful and cost effective EP/PPU.
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Specifically, the technology produced under three contracts, NAS12-2183
(Development of a Multikilowatt Ion Thruster Power Processor), NAS3-14383
(Improvement of Ion Engine Power Processor) and NAS3-18924 (Breadboard Power
Supply) provided the baseline for the EP/PPU program. These three previous
contracts dealt solely with developing the Series Resonant Inverter circuit
technology using silicon controlled rectifiers and with demonstrating the
ability to suitably power and control ion thrusters using this technology.
The new contracted effort used the successful results of the previous
efforts and took the next logical steps, i.e., updating the existing tech-
nology to meet the requirements of the current generation of ion thrusters
and the proposed missions, and secondly, to take the initial steps toward
packaging the circuitry into a flight configuration.

As part of the technology updating, the series resonant inverter tech-
nology was extended to the use of transistors in addition to thyristors.
The lowest power rated inverter, namely the 389W multiple output inverter
was implemented as a series resonant inverter with transistor power switches
at a 50kHz operating frequency. The higher operating frequency of the
transistorized series resonant inverter not only resulted in lower weight
of the EP/PPU but it also paved the way to further weight reduction by
pointing to the use of a transistorized series inverter for the 700W dis-
charge supply as well.

2-4



3.0 ELECTRICAL PROTOTYPE POWER PROCESSOR DESIGN

A detail block diagram was generated for the power processor to
identify both the input/output power and control interface. Special
attention was placed on the grounding/isolation system to improve the
noise susceptibility of the low level electronics and input power lines
to output power transients.

Detail electrical designs were performed for each function which
includes schematic diagrams, part list, magnetic design and component
electrical stress analysis to ensure adequate component derating.

In order to minimize component weight and to control component max-
imum hot spot temperature for high reliability, component development
were performed on the following type of components:

• Semiconductors
0 Capacitors
• Magnetics i

As a result of the power circuits and components design optimization,
a savings in component weight of 6.25 Ibs was obtained over the thermal
vacuum breadboard developed under contract NAS3-14383 and reported in
NASA CR-134785, "Power Processor for a 30cm Ion Thruster." This weight
improvement was achieved in addition to having realized a 3% higher
EP/PPU efficiency compared to the efficiency of the thermal vacuum
breadboard.

The electrical design was subdivided into seven separable mechan-
ical module assemblies to develop a mechanical spacecraft structure. The
modularization of the EP/PPU was implemented so as to minimize the inter-
wiring and electrical interference between modules, to isolate the high
voltage supplies from the low voltage supplies and to form independently
testable subassemblies for ease of integration and maintenance of the
power processor unit.

All heat generated in the modules were removed by means of a heat
pipe simulator attached to the base flanges of each of the modules.

The electrical prototype design was analyzed to determine the com-
ponent weight, losses and efficiency, part count and finally the reli-
ability projection for the design. Additional areas of improvement
have been identified forthe final power processor configuration.
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3.1 POWER PROCESSOR SYSTEM BLOCK DIAGRAM

Figure 3-1 presents the power processor block diagram. Each
function is identified with its respective mechanical module sub-
assembly to illustrate where the particular function is located in
the power processor mechanical package.

The 200 to AOOVdc power bus goes into a common input line filter
which attenuates the high frequency switching currents being generated
by three separate dc to ac series resonant inverters. The series
resonant inverters include the following:

• 50kHz transistor multiple series resonant inverter
power stage (A5A1).

• 20kHz thyristor discharge series resonant inverter
power stage (A4A1).

• 20kHz thyristor beam series resonant inverter power
stage (A3A1).

Each inverter includes its respective transistor drive circuit
or SCR firing network for the turn-on of power semiconductors, inverter
control logic which senses the power stage current and voltage levels
to ensure correct sequencing of the turn-on and off of the power semi-
conductors and output regulator control electronics that establishes the
turri-on frequency or duty cycle of the power semiconductors as a function
of the output voltage.or current requirement.

The 50kHz ac current source from the multiple inverter is fed to the
respective low voltage output stages of supplies VI, V2, V3, V4, V5, V6,
V7, V8 and V12. Each of the respective output stages has its own output
isolation transformer and output rectifier filter network.

The output regulator electronics and reference electronics sub-
assemblies that control the respective outputs are also noted in the
block diagram.

The ramp generator A5A5 is used in conjunction with the different
output regulators of the multiple inverter, and is synchronized with the
multiple inverter operation.
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The discharge inverter power stage supplies the output power to the
discharge output transformer and its output rectifier-filter network.

The beam inverter power stage supplies output power to the main
high voltage transformer for the screen electrodes. A separate voltage is
generated for the accelerator regulator and supplies power to the accel-
erator electrodes. The negative line of the screen supply output goes to
a power zener diode clamp to limit the maximum voltage that the ion engine
ground can separate from spacecraft structure or neutraltzer ground re-
turn.

An internal 28Vdc/dc converter processes the unregulated dc input
power and establishes the different supply voltages for the respective
digital and analog control electronics.

A common 2kHz oscillator is used to supply power to the different
output current telemetry monitors.

The input/output serial command data is processed within the inter-
face unit. Parallel output lines are decoded by the PPU Command Elec-
tronics to establish the t i.rn-on or off of the different outputs and
to establish the many different set points for the different output
reference generators.

The PPU Control and Protection Electronics monitors both the 200
to 400Vdc bus and 28Vdc bus and provides correct sequential shutdown
of the power processor unit if either of the two supply busses are out
of specification. The PPU Control Protection Electronics also provides
the correct recycling during ion engine arcing and the necessary inter-
rupt signals during abnormal ion engine operation or power source out of
1imi ts.

Figure 3-2 illustrates the grounding/isolation system that was de-
signed into the electrical prototype power processor unit. The grounding
philosophy includes:

• Isolation of 200 to 400Vdc bus
• Isolation of 28Vdc bus
• Isolation of ion engine
• Isolation of spacecraft computer control box
• Isolation of digital interface unit
• Isolation of PPU commands
• Isolation of PPU telemetry conditioning
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By means of this magnetic and optical isolation, ground loop current and
ground return noise is greatly reduced during ion engine arcing and for
normal operation of the power processor, switching power electronics.
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3.2 ELECTRICAL DESIGN

Electrical design was performed on all major elements of the Power
Processor Unit consisting of:

Beam Supply
Discharge Supply
Multiple Inverter and Its Nine (9) Separate Outputs
Command and Protection
Digital Interface Unit

The electrical design Included schematic diagrams, selection of com-
ponents, magnetic design, generation of part lists and electrical stress
analysis to ensure that all components were operating within their
allowable stress levels and did not violate the predetermined stress
derating factors during normal and abnormal operation due to ion engine
startup or arcing.

3.2.1 Beam Supply

The main design changes for the beam supply from contract MASS-18924,
"Breadboard Power Supply," are:

• Operation at 20kHz

t Use of Gate Assisted Turn-Off Thyristor (GATT) as the
power switching element to obtain the-required turn-
off time.

Figure 3-3 presents the schematic of the power stage and its interfaces
with the different control electronics.

SCR 1 and 2 are the main power switching semiconductors and the
series resonant tank is formed by capacitors C3 and C4 and inductors LI
and L2. The different voltage sensing dividers and current sensing
magnetics are identified.

Figure 3-4 presents the schematics of the output power transformer
and the high voltage rectifier/filter network. All voltage sensing
dividers and magnetic current sensor are Identified along with their inter-
faces with the control electronics.

Figure 3-5 Illustrates the thyristor current and voltage during
normal operation for 200, 300 and 400Vdc input line voltages. The
maximum peak current is 80A and the maximum peak voltage is 620V block-
Ing at the high Input line condition of 400Vdc.
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FIGURE 3-4 SCREEN SUPPLY - Vll OUTPUT (A3A1) Sheet 2 of 2
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Figure 3-6 Illustrates the thyristor current and voltage during
output short circuit where the peak current is 58A and the peak block-
ing voltage is 560V at the high input line condition of 400Vdc.

These two figures demonstrate the inherent current limiting feature
of the series resonant tank circuit to pass only sine wave currents
in the power semiconductors and of the protection logic to also keep
the system under energy control over the input voltage range and abnormal
load conditions.

The transformer primary current and series capacitor voltage during
normal output and with a shorted output respectively are given in the
Appendix, Figures A-l and A-2. The transformer current is the combina-
tion of the shunt diode current used for energy control of the series reso-
nant capacitors and the higher peak due to the normal conduction of the
power thyristors.

Figure A-3 in the Appendix presents transformer current and voltage
over the different line conditions.

Figure 3-7 presents the schematic of the accelerator output, regu-
lator and different set points for changing the voltage reference. The
schematic of the SCR firing network, Transformers Tl and T2 are the gate
control transformers for the two power thyristors, is given in the
Appendix, Figure A-4. Each transformer has three different output states:

• Turn on of thyristor (forward gate drive)
• Turn off of thyristor (reverse gate drive)
• Short on control transformer

A short is placed on the transformer during the off period to ensure
that no noise pulses will cause premature thyristor turn on. This
firing network is controlled by the inverter control logic shown in
the Appendix, Figures A-5 and A-6.

The inverter control logic of Figure A-5 provides the basic command
signals as a function of the regulator input signal, as a function of the
thyristor turn-off signal from the thyristor current monitor and as a
function of the series resonant capacitor voltage sensor which limits the
maximum energy stored in the capacitors.
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The inverter control logic of Figure A-6 generates the signals for the
turn-on, turn-off and clamping of the thyristor gate control transformers.

The schematic of the screen voltage regulator is given in the Appendix
Figure A-7. The regulator circuit is configured for 2 out of 3 majority
voting in order to improve circuit reliability. The circuit includes the
output voltage regulator (Ul, U2 and U3), primary current regulator (U4,
U5, U6) and the accelerator current regulator (U7, U8, and U9). The
three different regulator circuits are or-gated together so that each
function can independently control the operating condition of the screen
supply. During normal operation, the voltage regulator is in command and
during engine arcing, the accelerator or screen current regulator takes
over control of the screen supply to limit input power current demand.
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3.2.2 Discharge Supply

The discharge supply power stage (Figures 3-8 and -9) is very similar
to that of the beam supply* discussed in Section 3.2.1, except the maximum
output power level is 700W instead of 2.4kW for the discharge supply. The
power capacitors, inductors and transformers are scaled down for the lower
power level. The power thyristor is the same part type as used In the
beam supply. The thyristor firing system is the same as shown in Figure
A-4. The inverter control logic is the same as shown in Figures A-5 and A-6.

The output regulator electronics, to provide the necessary current
regulation and voltage limit, is given in the Appendix, Figure A-8.

The power component voltage and current waveforms are very similar to
those presented in Figures 3-5, 3-6, A-l, A-2 and A-3, except that the
peak current is about one-third of the beam inverter current values. The
voltage levels are the same.
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3.2.3 Multiple Inverter

Circuit design and development were performed on the multiple inverter
in order to increase the frequency of the internal ac power distribution
from 20kHz to 50kHz and thereby reduce the power transformer and filter
capacitor weight of the low power, low voltage supplies.

Figure 3-10 presents the schematic of the 50kHz transistorized series
resonant inverter used to supply power to nine separate regulated low
voltage outputs. Transistors are used, because of their inherent faster
turn-off time, of about IMS compared to the seven us turn-off time for
the power thyristors used in the beam and discharge supplies.

The schematic of the transistor inverter drive network is given in the
Appendix, Figure A-9. The turn-on signal initiates current flow in the
proportional current drive transformers T6 and T7 (one for each power
transistor).

The inverter control logic is the same as used in the beam and dis-
charge supplies and is shown in Figures A-5 and A-6, and the schematic of
the output regulator is given in the Appendix, Figure A-10.

Figure 3-11 presents the power transistor voltage and current wave-
forms and the power transistor turn-on characteristics. The power trans-
former current and voltage waveshapes are given in the Appendix, Figure
A-ll.

Figure 3-12 presents the schematic of the Cathode Tip Heater Supply
(V3) output stage. This is typical for the other eight low voltage out-
puts. The 50kHz output current passes through the series connection of the
primary winding of all nine power transformers, where transformer Tl is a
typical unit. Transformer Tl has an isolated output winding (terminals
3, 4, and 5) and a regulation winding (terminals 6, 7, and 8).

Transistor Ql is turned on to terminate power flow from the primary
winding to the output rectifier filter network. By controlling the duty
cycle of Ql, both output voltage and current regulation is obtained.

The V3 supply output regulator electronic schematic with its 2 out of
3 majority voting circuit redundancy is given in the Appendix, Figure•A-ll.
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The schematic of the ramp generator which is used in conjunction with
the output regulator to provide stable control system operation is given
in the Appendix, Figure A-13. The output transformers Tl, T2 and T3 have
multiple windings where one winding on each transformer is fed to the
appropriate redundant output regulator channel.

Figure A-13 presents the operation of shorting transistor Ql (Figure
A-ll), both at normal operation and short circuit output delivering
regulated output current.
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FIGURE 3-70 MULTIPLE INVERTER (A5A1)
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FIGURE 3-12 V3 OUTPUT-CATHODE TIP HEATER (A6A1)
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3.2.4 Interface Unit. Command, Control and Protection System

The command and protection system was designed to meet the new
requirements for the electrical prototype power processor unit. Figure
3-13 shows the basic block diagram for the Interface unit, PPU commands,
control and protection system.

The Interface unit provides electrically isolated, compatible
Interface between the system computer and the power processor. The
following functions are performed:

• Decodes commands
• Performs hard wire logic functions such as turning off

appropriate heaters when cathode or neutralIzer commission
occurs and provides a recycle sequence to allow the thruster
to recover from accelerator or screen shorts or current
overloads.

• Generates an Interrupt when the following abnormal system
operation occurs: Input voltage out-of-range, neutralizer
failure, excessive arcing, and when excessive accelerator
current, beam current out-of-range or screen supply voltage
out-of-range.persists for more than one second.

t Provides requested telemetry

The Input Includes 40kHz clock line, enable line, and 16 bit serial
Input data line. Each line goes through an optical Isolator to provide
the necessary ground Isolation and to eliminate ground loop currents and
false digital Input data.

The heart of the Interface unit Includes Its own timing logic and
shift registers to store the serial input data. The parallel output
lines are decoded and provide the necessary type of commands:

• Reference set point
• ON/OFF command for each power supply
t Analog references for the beam current, discharge

current, magnetic baffle current and screen voltage.
t Selection of a telemetry channel

The return data includes an echo back of the input serial data and
the digital coding of a particular TLM channel if commanded and an inter-
rupt signal to the control computer when there 1s an abnormal operational
condition existing In the power processor unit and ion engine combination.
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The following schematic diagrams are provided in the Appendix:

Figure A-15, the schematic showing the generation of timing logic
and input shift register.

Figure A-16, the schematic of the response data, interrupt line
drivers and interrupt status register.

Figure A-17, the schematic of the arc counter register, arc
interrupt signal, and two spare status registers.

Figure A-18, the schematic of the 2kHz clock used in the timing
of the arc counter and the input address decoder.

Figure A-19 and A-20, the schematics of the decoding and command
latches for the different set points.

Figure A-21, the schematic of the decoding and command latches
for the power supply ON/OFF commands.

Figure A-22, the schematic of the analog reference commands
for beam current,discharge current, magnetic baffle current and screen
voltage. Ground isolation is provided for the beam current and mag-
netic baffle current reference signals.

Figure A-23, the schematic of the TLM channel selector, A to D
converter and the 200 to 400VDC voltage sensor used for the PPU power
electronics protection during input under or overvoltage operation.

Figure A-24, the schematic of the neutralizer failure detector
circuit, beam current interrupt signal, and accelerator current inter-
rupt and screen voltage interrupt signal circuits.

Figure A-25, the schematic of the PPU recycle circuit when there
is an arc in the ion engine.

Figure A-26, the schematic of the screen voltage and discharge
current analog signal isolator and the 28VDC bus voltage under and
overvoltage sensor to turn off the PPU in case of abnormal condition on
the control logic power bus.
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3.3 ELECTRICAL COMPONENT DEVELOPMENT

The power processor electrical design greatly benefited by the
power component development work performed on the contract. The devel-
opment effort included the following:

a) Power thyristor mechanical package for component thermal
control.

b) Power transistors evaluation for application in the 50kHz
transistor series resonant inverter.

c) High voltage output diodes with good thermal control.

d) Series resonant and input/output filter capacitors with
reduced weight, good electrical termination with low
losses and good mechanical mounting configuration.

e) High voltage output transformer with good internal voltage
gradient control and low internal corona; with good thermal
control to maintain low hot spot temperature; and with an
impregnation material that will stand the thermal cycling
and not develop cracks that could lead to failures due to
corona occurring at these crack sites.

The predominant design problem area for these high power, high
voltage components is to determine the best thermal control while
operating in a thermal vacuum environment where the predominant heat
removal is by conduction to a cold plate or heat pipe, and the remainder
is by radiation to the surrounding mechanical package.

The EP/PPU design objective of high reliability, high efficiency
and minimum weight was translated to the design of all magnetics and,
in particular, the beam power transformer. Prior experience with the
high voltage transformer used in the Transmitter Experiment Package of
the Communication Technology Satellite emphasized the importance of
controlling transformer internal temperature rise when operating in
space environments. It was decided early in the program that the maxi-
mum average winding temperature, as measured by winding dc resistance,
would be limited as a goal to 85°C or 35°C rise over the maximum allowable
50°C baseplate or heat sink. The basic reason for this temperature limit
is the desire for long life performance of the polyurethane potting com-
pound. Since there is no data for determination of reduced dielectric
strength behavior as a function of life for polyurethane operating in
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space vacuum conditions, a most conservative approach was taken. While
polyurethane is used for long life applications between 100°C and 125°C,
it is generally agreed that there is no evidence of polyurethane degrada-
tion at 85°C or below.

The transformer electrical, mechanical and thermal designs were
governed by the design philosophy to first minimize the losses and
second to permit short, direct, low thermal impedance paths to the :
heat sink.

The results were worth the effort. Maximum temperature rise of any
winding when tested at full load in vacuum met the design objectives. A
calorimeter loss measurement of the transformer was 28W loss at full load
at a 50°C heat sink. Voltage control objectives were verified by corona
test data.

The beam power transformer design features are highlighted in
Figures 3-14 and 3-15.

A more detailed discussion on the power transformers design and
testing, power capacitors selection and development, and power semi-
conductors characterization and development can be found in the Appendix,
Section B.

Continued component work is recommended to further reduce the weight
of components, to enhance thermal control, to develop final flight compo-
nent specification and to qualify these few special components for space
flight.
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FIGURE 3-14 SCREEN TRANSFORMER

FIGURE 3-15 SCREEN TRANSFORMER, REAR VIEW
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3.4 MECHANICAL DESIGN

The electrical prototype power processor unit (EP/PPU) brassboard
was fabricated having the modular configuration, shown in Figure 3-51.
It represents the logical division Into seven functional modules provides
the necessary thermal control of the components in thermal vacuum, and
provides the necessary separation between the power components, high
voltage components and low level control electronics.

In Figure 3-16 the input connectors are located on the left side
and include, from top to bottom, the interface unit, 28Vdc input, 200
to 400Vdc input and temperature sensor connectors. Separate cover
assemblies are placed over each cable assembly to provide the necessary
shielding between the power and signal cabling.

The high voltage output cabling is seen on the right side of the
unit. The high and low voltage outputs are connected to the power
processor by means of terminal strips and lugs instead of connectors.

Figure 3-17 illustrates the relative location of each of the modules
providing shielding for low level electronics and shielding between high
voltage and low voltage components.

The EP/PPU includes the relative location of each of tlie modules
providing shielding for low level electronics and shielding between
high voltage and low voltage components.

The EP/PPU includes the following modules:

Al, Input power
A2, Command interface
A3, Screen supply
A4, Discharge supply
A5, Multiple Inverter
A6, High voltage output
A7, Low voltage output

Figure 3-18 shows the seven modules with the interconnecting cable
harness in the open position. The functional module power processor unit
(FM/PPU) being designed by NASA Lewis Research Center will reduce the
overall size. The intent of the EP/PPU program was to develop the

modular concept and allow for ease of checkout during development
testing of the initial brassboard design.
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FIGURE 3-16 ELECTRICAL PROTOTYPE POWER PROCESSOR
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3.5 THERMAL CONTROL

All power components dissipating more than one watt were mounted
on the bottom flange of each module. A heat pipe simulator was then
connected to the base in order to remove the internally generated heat.

Figure 3-19 shows the heat pipe simulator connected to the elec-
trical prototype unit. Due to the unbalanced heat distribution in the
power processor, one saddle had two pipes and the other saddle had
three pipes in order to handle the thermal heat and still provide a
redundant pipe in case of a heat pipe failure.

Figure 3-20 shows the relative module location and the power dis-
sipation estimated at each heat pipe saddle connection.

Additional thermal control was provided on each printed circuit
board in order to transfer heat from hot low level electronic components
to the printed circuit board mounting frame and then into the module
flange.

During the mechanical layout of each module, critical components
were identified which were monitored with a thermistor. During thermal
vacuum tests these temperatures were recorded in support of the detail
mechanical and thermal design being performed at NASA Lewis Research
Center on the Functional Module.
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FIGURE 3-19 EP/PPU HEAT PIPE SIMULATOR
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3.6 DESIGN ANALYSIS

The electrical prototype power processor design was reviewed
in the following areas in order to better understand the power processor
design characteristics and to identify design areas for further improve-
ment:

• Weight
t Loss/efficiency
t Part count
• Reliability

Table 3-1 presents component weight information. This table identifies

the different mechanical subassemblies and the component weight as to
the type of component (control electronics, power magnetics, power capac-
itors, power semiconductors, magnetic sensors and miscellaneous parts).
In reviewing the weight totals, the following basic observations and
conclusions can be projected:

(1) Power magnetic components account for 48% of the total
component weight.

(2) Magnetic current sensor components account for 5% of the
total component weight.

(3) Low voltage outputs (A5, A6, A7) account for 24% of the
total component weight.

(4) Power capacitors components account for 23% of the total
component weight.

(5) Control electronic components account for 14% of the
total component weight.

The EP/PPU weight can be further reduced by improved com-
ponent thermal characteristics, by improved component packaging con-
figurations or by circuit simplification.

Table 3~II presents an estimate of the component losses for each
mechanical subassembly in the control electronics, power magnetics,
power capacitors, power semiconductors, magnetic sensors and miscellan-
eous components. In reviewing the loss data, the following basic observations
and conclusions can be projected:
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TABLE 3-1 EP/PPU COMPONENT HEIGHT ANALYSIS

A) Nodule A1A) DC Input Ftlt.r
A1A2 28V Converter-Poaer Stage

Input POOT A1AJ 28» Cowerter-Centrol
AIM TU Oscillator
Al Nodule Subtotal

tt IMult A2A1 Digital Interface
A2A2 Digital InUrftci
A2A3 Digital InUrfKt
UM Digital Interface

- _. . AIM rvutaejMdi
i.£r£?. «** »» '»«••*»Interface ,̂ 7 mi Coimidt

A2A8 Ml Control end Pirouette*
UA9 PUT Control and Protection
A2AIO mi Contra) end Protection
AiA',1 PPU Control «nd Protection
A2AI2 PPU Control litd Protection
A2A13 Tel entry

A2 Nodule Subtotal

A) Itodule AMI Powr Stage-Baseplate
A1A2 Accelerator «egul«tor

1MB A3A3 SCR Firing
Supply A3A4 Control logic

A3A5 Screen Result tor
A3A6 Telmtry

A3 Nodule Subtotal

A4 Nodule A4A1 Po»»r SUge-lueplite
A4A2 High VolUge Assembly

01sch.ro. A4A3 SCO Firing
Supply **A4 Control logic

A4AS DlKhirge ftcguletor
A4A6 Telemtry

M NoOule Subtotal

AS Module ASA1 Po«r Suge-hupUte
AU2 Transistor Drive NeUora

NultlDle *SA3 Control logic .
7;'",': ASA4 Hjltlple Inverter Regulatorinverter ^^ ftm> 6eMrttm

AS Module Subtotal

AC Nodule A6
A6A1 V3 Output
UK M Output
AU2A Delay Driver
A6A3 V8 Output
A6A4 V12 Output

uioh vnlt.o. ***5 " legulator
Ktout^ **** »«"h*ilitorOutputs ^j n g.junto,

A6A8 012 Regulator
A6A9 Telewtry
A(A10 Reference ,

A6 Nodule Subtotal

A7 Nodule A7
A7AI VI Output
A7A2 n Output
A7A1 « Output
A7A4 Vt Output
A7A5 11 Output

La. Valua. *7** »' »»9ulator
t̂2{^ "" VzSwlatorwtputs WA8 y, .ĵ ^ ,̂

A7A9 n Regulator
A7A10 V7 Regulator
A7A11 Telewtry
A7A12 Reference
A7A1) Reference
A7A14 Reference
A7A1S Reference

A7 Nodule Subtotal

Total EP/mj

~atma
tun.

20.2
24. IS

44. SS

IS.H
11. OS
8.0S

I4.6S
2S.2S
20.*
21.4
az.a
41.11
S7.9
71.0

103.15
49.95

sts

13.7
35. S

107.35
84.5

102.95
364

35.5
107.35
83. as
51

Z77.7

72.9
88.4S
SB. 6
u. as

?36 8

42.75
42.45
44.5
41.6
S3. S
48.45

273.25

M.«
54.6
64.6
42.75
44.45
S8.1S
74.15
69.9
70.95
18.1

S62.45

2281.75

" 'NUEI
weinies
ii»
245.1

41.2

1621. S

-"

--

3180

12.8

1212.8

1715

12.8

1747.8

III. 8

122.4

234.2

126.1
75.7
17.6

112.1
94.49

446.19

67.3
59 .
59

126.3
478:95

790.55

8055.04

CuWOfttin
Nktt

CAPACITORS

1660
244

1109

--

--

939.1
10.5

949.6

244.8
123.2

568

132.4
18.6

151

19. B
19.8
20.5
28.4
95

183.5

19.8
19.8
19.8
19.8
28.4

107.6

H6B.7

«W-J"«
•OKI

son -cow

47.1

47.)

--

-

617. 5
65.6
20.4

703. S

488.4
68.6

20.4

577.4

17.6
20.4

58

39.95
8.4
5.2

31.3

15.1

99.95

7.1
7.)
7.1

19.95
56.75

118

1601.95

SOBORS
(NA6KTIC)

12.3
13

25.3

-

--

122

122

46.5
88.4

134.9

53

53

62.5
54.55

tl.8
35.5

234.35

49.5
49.5
49.5
82.5

10B.8

139.8

909.35

rase
10.1
44.1

74.6

-

-

82.9
3.5

86.4

SO.l
I.IS

51.25

40.1

40.1

63
1.8
0.2

40.15
2.0
0.1

107.25

81
1.0
0.2
0.2
1.SS
2.7S

86.7

446.3

TOTAL

3038.6
698.7

20.2
. «:».

1724.05

15.55
11.05
8.0$

14.6$
25.25
10.9
11.4
82.8
41.1$
57.9
71.0

1D3.35
49.95

525

4941.5
113.3

88.7
107.35

84.5
102.95

6418.3

2544.8
441.15

88.7
107.35
83.85
51

1357.05

174.9
111.9
88.45
58.6

139.25

773.1

63
270. 35
158.65
103.45
21$. 6
240.19
62.7$
42.45
44.5
41.4
$1.5
48.45

1344.49

81
144.7
135.6
115.6
270.1
67S.65

$4.6
$4.6
$4.6
42.7$
44.4$
11.1$
74.3$
W.t
70.95
M.1

2005.1

17147.09
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TABLE 3-II EP/PPU COMPONENT LOSS ANALYSIS

1
NODULE SUMSSDM.T

«! Nodule A1A1 OC Input Filter
A1A2 28V Converter-Po«er Sug*

Input Powr A1A3 28V Converter-Control
AIM TLN Oscillator

Al Moduli Subtotal

« Nodule WAI 01J1U1 Inttrfict
A2A2 Digital Interface
A2A3 01(lt*l Interface
A2A4 Digital Interface

CoMMnd AZA5 PW Coamnds
Inurftct A2A6 mi CoVBlnds

«2A7 «u Ce»inds
A2M mi Control and Protection
A2A9 mi Control tod Protection
A2A10 mi Control and Prottctlon
A2AI1 mj Control end Protection
A2A12 PPU Control ind Prottctlon
A2AI3 Teleoetry

A2 Module Subtotal

A3 Nodule A3A1 Pooer Stage-Baseplate
A1A2 Accelerator Regulator
A3A3 SCR Firing

S*** Supply MM Control Logic" ' W5 Scrten R,,,,,,̂ ,.
AIM Telemetry

A3 Module Subtotal

A4 Nodule MAI Powr Stage-Baseplate
A4A2 High Voltage Assnbly

DllCharoi A4A3 SCR Firing
Supply A4A4 Contra) Logic

MAS Discharge Regulator
MM Telmtry

M Nodule Subtotal

AS Nodule ASA1 Powr Staje-taseplate
iklrlDl. "S*2 Transistor Orl»e HetKOrt
i...,?.̂  ***' Control Logic
inxrur ^^ p ,̂,̂ ,, jn,,rter ReguUtor

ASAS tap Generator

AS Nodule Subtotal

A6 Nodule M
A6A1 V3 Output
A6A? V4 Output

A6A2A Relay Driver
High Voltage A6A3 V8 Output
Outputs A6A4 V12 Output

A6AS V3 Regulator
A6A6 V4 Regulator
A6A7 V8 Regulator
A6A8 V12 Regulator
A6A9 Televtry

A6A10 Reference

A6 Itodule Subtotal

A7 Nodule A7
A7AI VI Output
A7A2 V2 Output
A7A3 V6 Output
A7M VS Output
A7AS V7 Output

lo. »«it«i. *7** *' Regulator
£t21^ *7*7 « ««9"'«tor0utpuU A7AS V6 Regulator

A7A9 VS Regulator
A7A10 A7 Regulator
A7A11 Ttlowtry
A7AI? Reference
A7A13 Reference
A7A14 Reference
A7AIS Reference

A7 Nodule Subtotal

Total trVmi

COMPONENT LOSS-WHS

COHTROL
acer.

.235
2. SOB

2.7M

1.930
I.ISO
1.490
I.ISO

.(SO
1.197
1.210
2.290
1.780
1.910
2.660
2.320

.156

20.143

.55?

.410
* 3.40B

2.020
.110

6. SOI

.430
3-408
1.115

.110

S.063

1.672
3.286

.639

.494

6.091

.736

.745

.896

.683

.120

.818

3.998

.998

.899

.886

.737

.738

.ISO
.855

1.013
1.060

.809

a. us
S2.676

•OCR
marries

6.400
2.62S

.2SO

9.27S

-

--

5?. 000

.200

52.200

n.ooo

.200

17.200

4.000

.050

4 050

4.620
1.500

.638
1.140

.960

8.858

.900

.900

.900
4.620
3.815

11.135

102.718

POWR
CAPACITORS

2.100

2.100

--

-•

7.600

7.600

1.100
3.000

4.100

1.220

1.2?0

""

--

"

-- '

15.020

POHtR
SEMI -CORD.

12.60

12.60

--

--

81.000
1.200
4.575

86.775

18.000
19.000
4.575

41.575

15.700
1.717

17.437

1.984
.643
.267

1.902
2.S67

7.363

.954

.954

.954
1.984
9.328

14.174

179.R4

SEHSOK
jNAttTTIC)

.080

.525

.60S

-

--

3.000

3.000

.600

.500

1.000

1.000

*.-

1.010

.050

.050

.050

.050

.200

050
050
050
OSO
050

.250

6.05S

MISC.

1.050

l.OSO

~

-•
12.970
2.268
6.672

21.910

.500

.500
6. 652

7.652

1.000
4.S91

5.S9I

.855

.277

.120

.166

.177

1.595

.175

.175
.175
.855
.611

1.991

39.789

Total CrVW Output Powr i 2190 Matt!

TOTAL

6.480
18.900

.235
2.750

28.365

1.930
I.t80
1.490
I.ISO

.805
1.197
1.210
2.290
1.780
1 .910
2.660
2.320

.156

20.143

156.570
4.021

11.857
3.408
2.020

.110

177.986

37. 100
23.000
11.857
3.408
1.115

.110

76.590

22.920
8.000
3.286

.639
-544

35.189

7. 509
2.470
1.02S
3.»M
3.754

.736

.745

.896

.683

.120

.818

22.014

2.079
2.079
2.079
7.509

13.804
.998
.899
•at*
.737
.718
.150
.ass

1.013
1.0(0

.809

35.695

396.182

r
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(1) The power semiconductor losses account for 45% of the total
component losses.

(2) The power magnetic losses account for 25% of the total com-
ponent losses.

(3) The control electronic losses account for 13% of the total
component losses.

By reducing the losses in these areas, the overall efficiency of the
power processor can be further Improved. These Improvements include improved
power semiconductors with lower forward drops and switching losses, improved
magnetic designs and simplification of the control electronics.

Table 3-III presents the component parts count for each mechanical
suaassembly as a function of control electronics, power magnetics, power
capacitors, power semiconductors, magnetic sensors and miscellaneous com-
ponents.

The following observation and conclusion can be made based on the
results of the analysis of the total part count:

The control electronics account for 85% of the total
part count.

The EP/PPU part count can be reduced by circuit simplification and micro-
miniaturization of Control Electronics. Prime candidates are elimination
of non-essential auxiliary functions, the use of multiple voltage com-
parators and resistors in a single package and the use of hybridized
regulators (Standard Control Module with multiple loop control concept,
developed on the NASA/LeRC sponsored SCM Program, of which 24 are used
on the EP/PPU).

In many areas circuit redundancy was included for reliability im-
provements. In general the high part count was also affected by the
large number of commands and operating set points for the different
power processor outputs.

Figure 3-21 shows power processor unit.reliability block diagram, where
each mechanical subassembly is identified with its particular redundancy
configuration. The command Interface module A2 does not have any redundancy
1n the present design, but the reliability estimate was performed including
redundancy in this particular high part count area.
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TABLE 3-111 EP/PPU COMPONENT PART COUNT ANALYSIS

•DBULE SMASSCWlf

U IMult AMI OC Input filter
I.,... im_ A1A2 »V Comerter-»w*r Stageinput FO»er Hu jgy Cawet.ttT..Col,troi

AIM TIN (hell later
A1 IMult Subtotal

U IMult MAI Digital Interface
AZA2 Digital Interface
AZAJ oigiui interface
A2M Digital Interface

naaiiil MAS mi Coamnitt
Interface MM W Comndi

A2A7 miComds
«2AS mi Control «nd *ratectloii
MM mi Control end Rroteitlon
MAID mi Contra) ind Protection
A2A11 mi Control end Prottctlon
MA12 mi Control end Protection
«A13 Telemetry
M Nodult Subtotal

A3 IMule A3A1 PoMr SUge-ta»eplate
A3A2 Accelerator Regulator

tttm A3A3 SCR Firing
Supply A1A4 Control Logic

A3A5 Screen Regulator
AIM Telemetry
A3 iMule Subtotal

A4 IMule MAI Pc-er Stage-8eieplete
MM High ¥oltage AlMrtly

Di.rk.n. **" SW "ring
s££ll* *«** «"««' ^»'c*"""* A4AS OlKharge Regulator

MAS Ttle«tr»
M Module Subtotal

AS Nodule ASAI toner Stage-taicplate
ASM Transistor Drive Hetwrk

Nultlple ASA3 Control Logic
Inverter ASM Nultlple Inverter- Regulator

ASAS Knv Stnerator
AS IMule Subtotal

•AS Nodule At
A6A1 tt Output
ASM »4 Output
ASA2A Relay Driver
ASA3 n Output

Mat. Volt.n. **A4 VII Output
Xt2i^ *«« «««Mlatorout|*" ASM ra oMUUtor

ASA7 VB Regulator
ASAS VIZ Regulator
ASA9 Telemetry
ASA10 Reference
AS Ngdute Subtotal

A7 Nodule A7
AMI VI Output
A;M n output
A7A3 V6 Output
A7M VS Output
A7AS V7 Output

ln_ *.><.„ *'** •' Regulator
L̂EuS* uu W«W'«t»r0ut«>Ilti A7A8 W Regulator

A7A9 VS Regulator
AM10 V7 Regulator
AJA11 Ttlevtry
A7AI2 ReYermce
A7A1J Refermce
A7A14 Reference
AMIS Reference
A; IMule Subtotal

Total OVmi

CONPOKRT »AT COUNT

CONTRA
ain.

IS
K
48

49
45
»
19
40
18
38
S3
79
82
94

110
2S

725

82
88

131
119
47

487

88
131
147
2S

191

95
124
82
24

325

9S
99
98
93
18
88

S12

123
123
123
98 .
98
SO

too
104
109
M

990

M78

KHCR
NACNET1CS

3
10

1

14

--

--

1

2

S

S

2

7

1

3

4

1
1
1
2
1

6

1
1
1
1
3

7

43

MKER
CAMCITORS

20
16

SS

--

--

16
2

18

«
5

11

4
2

6

1
1
1
3
2

8

1
1
1 .
1
3

7

106

Mute
lOU-CONO

17

17

~

--

27
10
4

41

6
11
4

21

4
4

e

6
8
7

20
6

47

7
7
7
6

21

48

182

SENSORS
(NASKT1C)

1
2

1

--

--

11

11

S
6

11

8

8

4
4

4
3

IS

3
3
3
4
6

19

S7

NISC.

7
28

IS

'•'-

--

23
1

24

7
4

11

9

9

7
' 2

2
2
S
2

20

9
2
I
2
2
S

21

112

TOTAl

n
93
26
23

173

49
45
23
19
40
» •
18'
83
79
82
94

110
K
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80
95
94

131 .
139
47

S86

29
26
94

131
147
25

4S2

26
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124
82
27

380

7
14
16
11
M
14
96
99
98
93
18
81

608

9
14
14
14
14
39
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113
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H

W
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M

1094
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Table 3-IV shows the reliability estimate for each module sub-
assembly at two different component temperatures and with different
levels of component reliability. In order to maximize the reliability,
it is necessary that both component operating temperatures be minimized
and that screened components be used throughout.

Table 3-V presents the reliability estimate for each module
and for the total unit. The following observations can be reached
from the analysis of Table 3-V:

(1) The A2 module accounts for 33% of the total failure rate.

(2) The low voltage outputs (A5, A6 & A7) account for 35% of
the total failure rate.

Redundancy techniques would greatly improve the reliability of
the A2 module. Reliability can also be improved by optimizing or
simplifying the design of the low voltage outputs and by the redesign
of the control electronics using improved integrated circuit components
microminiaturized standard control modules and by the minimization of
command requirements.
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TABLE 3-IV PPU BOARD RELIABILITY SUMMARY

NODULE/
BOARD

A? A1A2

A1A3

A1A4

A1A5

SUBTOTAL

A2 A2A1

A2A2

A2A3

A2A4

A2A51

A2A61

A2A71

A2A8

A2A9

A2A10

A2A11

A2A12

A2A132

SUBTOTAL

A3 A3A1

A3A2

A3A3

A3A4

A3A5

A3A62

SUBTOTAL

A4 A4A1

A4A2

A4A3

A4A4

A4A5

A4A62

SUBTOTAL

FAILURE RATE X 10"' FAILURES/HOUR
706C AMBIENT

HIGH Q

26.30

120.27

59.63

37.75

243.95

200.56

164.14

163.47

192.67

362.07

213.71

254.98

249.89

376.55

2178.04

109.77

243.65

52.53

422.87

73.25

902.07

59.22

22.59

54.17

422.63

84.80

643.41

LOWER Q

49.40

247.45

121.41

77.74

496.20

402.85

329.29

327.22

386.68

726.56

428.33

514.40

505.25

741.70

4362.28

225.95

491.84

107.58

849.78

148.74

1823.89

119.71

46.77

113.84

849.39

175.62

1305.33

BO'C AMBIENT
HIGH Q

32.45

177.61

98.03

61.16

369.27

270.59

234.35

332.43

286.70

659.59

328.67

563.38

421.92

650.53

3748.15

129.50

434.72

63.32

717.53

113.46

1458.53

72.42

26.79

64.82

715.89

127.21

1007.13

LOWER TJ

65.23

364.84

198.67

124.47

753.21

545.19

470.03

465.22

575.01

1321.99

658.52

1091.59

849.84

1310.33

7287.72

365.42

874.75

130.42

1453.71

229.46

3053.76

146.46

55.64

136.40

1441.01

259.01

2038.52

TOI/
AS A5A1

A5A2

A5A3

A5A4

A5A5

SUBTOTAL

A6 A6A1

A6A2

A6A2A

A6A3

A6A4

A6A5

A6A6

A6A7

A6A8

A6A92

A6A10

SUBTOTAL

A7 A7A1

A7A2

A7A3

A7A4

A7A5

A7A6

A7A7

A7A8

A7A9

A7A10

A7A112

A7A12

A7A13

A7A14

A7A15

SUBTOTAL

FAILURE RATE X 10'9 FAILURES/HOUR
70°C AMBIENT

HIGH Q

50.05

70.11

258.88

71.66

138.63

589.33

32.33

27.57

22.08

. 36.78

20.12

19.15

19.36

19.36

16.73

247.56

462.04

36.64

19.45

19.45

25.74

47.89

29.77

29.77

29.77

10.04

10.04

279.97

336.95

290.84

182.58

349.10

LOWER Q

101.41

142.94

524.35

141.21

278.43

1188.34

65.97

55.72

44.80

75.20

41.21

29.71

30.16

30.16

34.90

502.48

910.31

74.46

39.47

39.47

52.79

98.28

61.31

61.31

61.31

21.00

21.00

603.52

683.85

710.55

370.04

2898.36

80°C AMBIENT .

HIGH Q

58.64

87.55

719.54

110.62

239.99

1216.34

39.87

32.38

29.40

43.76

23.79

23.45

23.58

23.58

20.72

442.46

702.99

45.23

22.75

22.75

31.93

71.96

35.49

35.49

35.49

12.79

12.79

530.32

600.80

532.88

294.66

2285.33

LOWER Q

118.64

178.45

1448.57

222.63

481.40

2449.69

82.06

65.64

60.05

90.23

49.11

48.31

48.65

48.65

42.93

893.97

1429.60

91.87

46.39

46.39

66.18

150.51

73.59

73.59

73.59

26.64

26.64

1070.13

1211.20

1075.36

594.74

4626.82

1 - Set Point not Required for Mission Success.
2 - TLM not Required for Mission Success.
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TABLE 3-V PPU MODULE RELIABILITY SUMMARY

Module

Al x
MTBF

A2 X1

MTBF1

X2

MTBF2

A3 X
MTBF

A4 X
MTBF

A5 X
MTBF

A6 X
MTBF

A7 X
MTBF

Totals

Mission3

Reliability
For 15,OOOHr
Mission

X -Failure Rate x 10'3

70°C Ambient
High Q

244
4.10xl06

2178
4. 59x1 O5

436
2. 29x1 O6

902
l.llxlO6

643
1.56xl06

589
1.70xl06

462
2.16xl06

1349
7.14xl05

6367 i ,
1.56xl05

46252
2

2.1xl05

.91911

.93422

Lower Q

496
2.01xl06

4362
2. 92x1 0s

872
1.14xl06

1824
5.48xl05

1305
7.66xl05

1188
8. 42x1 O5

910
l.lOxlO6

2898
3.45xl05

129831 i
7.7x10"
9493 2 2

1.05xl05

.82511

.86952

Failures/Hr & MTBF iHrsJ^
80°C Ambient

High Q

369
2.71xl06

3748
2. 67x1 O5

750
1.33xl06

1459
6.69xl05

1007
9. 93x1 05

1216
8.82xl05

703
1.42xl06

2285
4. 38x1 O5

107871 j
9.2x10"
77892

 2
1.28xl05

.85191

.89122

Lower Q

753
1.33xl06

7288
1.37xl05

1458
6.86xl05

3054
3.27xl05

2039
4. 90x1 O5

2450
4. 08x1 O5

1430
6. 99x1 O5

4627
2.16xl05

21 641 l i
4.6x10*
15811
6.32x10"

.72521

.79152

1 - Non Redundant A2 Module.
2 - 80% Redundant A2 Module
3 - Heater Power Modules A6A1, A6A5, A7A4 and A7A9 on only During Startup.
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4.0 ELECTRICAL PROTOTYPE POWER PROCESSOR TEST RESULTS

Test plans were generated for the power processor unit. The tests
performed on the EP/PPU included:

(a) Load bank tests, where the power processor was loaded
with nominal and light loading on the 12 separate outputs,
and regulation, input ripple and efficiency was measured
over the ZOOVdc to 400Vdc input voltage range.

(b) Ion engine integration tests, where the power processor
started up a 30cm mercury ion engine and demonstrated
operation in tne range of 0.5 to 2.0A beam current.

(c) Thermal vacuum tests, where the power processor demonstrated
cold temperature starting capability at -10°C and steady-
state operation at 0°C and at 20°C so that thermal mapping
of component temperatures could be performed.

(d) Electromagnetic Interference Tests, where conducted inter-
ference tests were performed with the ion engine and both
radiated and conducted interference tests were performed
with the load bank simulator in a screen room.

The following section presents a summary of the test data and
analyses of the test results.
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4.1 LOAD BANK TESTS

Tests were conducted to verify the electrical design and performance
of the EP/PPU, and to provide test data concerning important performance
parameters. A resistive load bank was used to simulate the ion engine
loads for all of the tests.

4.1.1 Line/Load Regulation and Ripple Test

Tests were conducted to verify performance of the EP/PPU for varia-
tions in input line voltage and output load changes. Telemetry data were
also recorded. Table 4-1 is a summary of the input ripple and effic-
iencies for several operating conditions. Figure 4-1 is a plot of input
ripple for the above operating conditions. Input ripple varied between
0.07% at JB = 2A, Vin = 200V to 1.08% at OB = 0.5A, Vin = 400V. Figure
4-2 is an efficiency plot of the EP/PPU for the same operating conditons.
The efficiency varied between 76% at JB = 0.5A to 87% at JB = 2.0A.

Tables 4-II through 4-VT,and tables C-I through C-XX in the Appendix,
document the detail data for the EP/PPU load bank tests. Startup power
data is presented in Table 4-1I. Maximum load data is presented in Table
4-III. Tables C-I through C-IX lists the steady state data for JB = 0.5A
to JB = 2.0A.

Tables C-X through C-XX documents the efficiency data for the beam,
discharge and multiple inverters separately. The efficiency numbers repre-
sent power stage efficiencies only and do not include the losses associated
with the inverter control logic or regulators. Table C-XX lists the summary
of EP/PPU data.

Tables 4-IV and 4-V document the EP/PPU output regulation, ripple
and telementry for several different loading conditions and line condi-
tions.

Table 4-VI lists output regulation as a function of heat pipe
simulator temperature and input line variations.

Since all outputs have a variable set point output voltage or
current, the voltage and current regulations in tables 4-V and 4-VI
were calculated with reference to the maximum specified voltage or
respectively current of each output, as given in table 4-IV.
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1* Limit

I. -Amps 15

FIGURE4-1EP/PPU INPUT RIPPLE-LOAD BANK TESTS
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iOOVoov
400V

Note :

JB-AMPS 0-5

The efficiency at 1.5A is probably better than shown. Data
reflects test result at the three specified operating con-
ditions of 0.5, 1.0 and 2A beam current.

FIGURE 4-2 EP/PPU EFFICIENCY-LOAD BANK TESTS
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TABLE 4-1I EP/PPU LOAD BANK TESTS

OB s Startup Power

- 300V

POWER SUPPLY

VI

V2

V3

V4

V5

V6

V7

V8

' V9

V10

Vll

V12

V

•»•>

8.9820

19.695

—
20.159

8.8778

24.263

20.345
38.302

—
—

3.9926

' .1 ' :;

_„

1.8716

4.4174
—

4.4100

1.9434

1.1965

1.0100

4.0657
--
-_

4.8229

TOTAL OUTPUT POWER

Input

Ripple (mA p-p)

200 - 400V

28v

Power

200 - 400V

28v

300.40

28.226

1.8113

3.0193

TOTAL INPUT TOWER

EFFICIENCY

POWER

— —

16.811

87.001
--

88.901

17.253

29.031

20.548

155.724
—

--

19.256

434.525

-

544.130

85.223

;629.353

69.04%
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TABLE 4-III EP/PPU LOAD BANK TESTS

JB = Max Load

Vin * 3QOV

V SCR*

POWER SUPPLY

VI

V2

V3

V4

V5

V6

V7

V8

V9

V10

Vl l

V I Z

V

11.09

7.49

14.43

7.58

14.83

7.41

20.97

20.68

40,49

299.60

1099.77

2.615

I

1.001

2.011

4.441

2.512

4.425

1 . 998

3.022

.500

11.951

.0039

1.966

2.464

TOTAL OUTPUT POWER

Input

Ripple (mA p-p)

200 - 400V

28v
Power

200 - 400V

28v
300.58

27.398

10.780

3.831

TOTAL INPUT POWER
s^

EFFICIENCY

POWER

11 .10

15.06

64.08

19.04

65.62

14.80

63.37

10.34

483.89

1.17

2162.15

6.44

2917.06

3240.25

104.96

3345.21

87.20%
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TABLE 4-IV
LINE AND LOAD REGULATION; RIPPLE AND TELEMETRY DATA

MAXIMUM VOLTAGE AND CURRENT RATINGS

POWER SUPPLY

VI (bin Vaporizer
#

V2 Cathode
Vaporizer

V3 Cathode
Heater

V4 Isolator
Heater

VS Neutra liter
Heater

V6 Neutrallzer
Vaporizer

LOADING

V
Volts

0

7

14

0

7

10

0

10

20

10

10

10

0

10

20

0

s

I
taps

2

2

2

2

2

2

4.4

4.4

4.4

0

1.25

2.5

4.4

4.4

4.4

2

2

10 2

TttDtfT

Volts

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400
200
300
Aim

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

OUTPUT

V
Volts

.977

.976

.960

7.070
7.057
7.065

12.119
12.089
12.130

.516

.513

.507

4.938
4.934
4.934

9.326
9.279
9.243

.783

.793

.793

10.620
10.664
10.648

19.173
19.123
19.017

10.118
10.124
10.120

10.151
10.166
10.101
9.769
9.849
9.863

1.654
1.658
1.652

9.964
9.990

10.019

19.378
19.419
19.429

1.021
1.021
1.002

8.127
5.122
5.131

9.190
9.173

.9.172

I
Aflps

2.001
1.998
2.000

.996

.992

.996

.993

.990
1.993

2.007
2.005
2.004

2.001
2.000
1.999

2.000
1.996
1.996

.402

.409

.415

.397

.407

.413

.393

.402

.409

0
0
0

1.162
1.163
1.15?
2.499
2.512
2.517

.388

.402

.392

.383

.399

.407

.376

.393

.404

.997

.996

.999

.994

.992

.996

.992

.991

.994

Regulation
Type

I

I

I

V

I

I

tl

0.27

0.27

0.25

1.98

0.3S

0.20

Ripple

^P-P
160nA
200
250

90
100
140

60
70
90

120mA
160
260

100
100
150

80
80

105

90mA
140
230

50
75

130

48
60

100

--

—

--

240mA
200
640

130
140
260

190
120
220

140mA
240
360

90
130
190

80
100
120

J

••

4.5
5
7

3
'3.5
4.5 .

~"

5
5
7.5

4
4
5.2

--

1.1
1.7
2.9

1.1
1.4
2.3

--

--

—

—

2.9
3.2
5.9

4.3
2.7
5

— •

4.5
6.5
9.5

4
5
6

Telemetry
V

--

--

—

--

-

—

0.356
0.357
0.358

2.657
2.696
2.657

4.722
4.682
4.721

--

--

—

0.595
0.595
0.595

2.538
2.577
2.538

4.801
4.761
4.761

--

~

—

I

4.841
4.880
4,880

4.841
4.880
4.880

4.841
4.880
4.880

4.841
4.880
4.880

4.841
4.880
4.880

4.841
4.880
4.880

2.144
2.143
2.143

2.144
2.144
2.182

2.144
2.143
2.144

0.040
0.040
0.040

0.595
0.595
0.595
1.271
1.310
1.271

2.144
2.143
2.144

2.143
2.143
2.144

2.144
2.143
2.144

.880

.880

.920

.880

.880

.880

.880

.881
4.920
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TABLE 4-IV (Cont'd)
LINE AND LOAD REGULATION; RIPPLE AND TELEMETRY DATA

MAXIMUM VOLTAGE AND CURRENT RATINGS

POWER SUPPLY

V7 Neutral ix«r
KMper

V8 Cathode
Keeper

V9 Discharge

VI 0 Accelerator

VI 1 Screen

VIZ Magnetic
Baffle

i

LOADING
V

Volts

0

1?.5

25

0

12.5

25

0

25

50

500

500

500

1100

1100

1100

0

2

4

I
taps

3

3

3

1

1

1

14

14

14

0

0.01

0.02

ID

i

2

5

5

5

VOLTS

200
300
400

200
300
400
200
300
400

200
300
400

200
300
400

200
300
400
200
300
400

200
300
400

200
300
400

200
300
400
200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

OUTPUT

V
Volts

1.595
1.599
1.602

12.649
12.684
12.768
24.919
24.770
24.599

.890

.882

.883
13.047
13.026
13.029
23.657
23.629
23.639
6.468
6.755
7.217

25.309
25.285
25.789
45.520
45.620
45.869
500.74
500.80
500.83
500.41
500.45
500.48
500.23
500.27
500.13
1100.54
1100.52
1099.95
1101.59
1101.64
1101.24
1100.15
1099.94
1099.54

1.874
1.854
1.830

2.207
2.200
2.210
3.654
3.649
3.653

I
Anps

3.012
3.014
3.017

3.006
3.008
3.012
2.995
2.981
2.967

1.021
1.019
1.019

1.016
1.015
1.014

1.012
1.012
1.011

13.547
14.132
15.097
14.074
14.057
14.331
13.930
13.942
14.008

0
0
0
.010
.010
.010

.020

.020

.020

0
0
0

1.007
1.007
1.007

1.990
1.996
1.992

5.076
5.069
5.066

5.074
5.062
5.059

5.070
5.067
5.063

Regulation
Type

I

I

I

V

V

I

tX

0.83

0.50

1.43

0.06

0.09

0.17

Ripple

Vp
16mA
16
16
10
12
16
16
16
16

180mA
260
600

40
46
72
24
28
40
36mA
40
36

64
50
59

64
52
64
2.5V
2.5
2.6
2.5
2.5
2.6

2.5
2.5
2.5
31V
30
34

9.5
15
24

6
10.5
15
8QnA
70

100

70
50

100
60
50
80

S

••

.33

.4

.53

.53

.53

.53

--

4
4.8
7.2
2.4
2.8
4

—

.46

.36

.42

.46

.37

.46

.5

.5

.52

.5

.5

.52

.5

.5

.5

2.82
2.73
3.09

.86
1.36
2.18

.54

.95
1.36

—

1.4
1
2
1.2
1
1.6

Telemetry
V

0.516
0.516
0.517

,1.430
1 .469
1.429
2.500
2.501
2.538
0.319
0.318
0.319
1.509
1.469
1.509
2.577
2.538
2.577
0.517
0.516
0.556

2.421
2.382
2.460
4.444
4.524
4.404

3.938
3.978
3.938
3.968
3.966
3.999
3.978
3.965
3.965

«

—

— •

—

..

—

I

3.649
3.688
3.689
3.649
3.649
3.688
3.649
3.649
3.609
3.848
3.848
3.888
3.848
3.888
3.888
3.848
3.848
3.888
4.166
4.245
4.721

4.245
4.444
4.444
4.206
4.364
4.483
0.197
0.198
0.197

0.280
0.278
0.278

0.355
0.355
0.358

0.278
0.278
0.278
2.025
2.025
1.985
3.968
3.967
3.968
3.927
3.927
3.927

3.927
3^927
3.928
3.927
3.927
3.928
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TABLE 4-V
LINE WO LOAD REGULATION! RIPPLE AND TELEMETRY DATA

NOMINAL VOLTAGE AND CURRENT RATINGS

*

VI N*1n Vaporizer

V2 Cathode
Vaporizer

V3 Cathode
Heater

V4 Isolator
Heater

V5 MeutraHzer
Heater

V6 Neutral 1zer
Vaporizer

LOADING

V
Volts

0

7

14

0

5

10

0

10

20

4

4

4

0

10

20

0

5

10

I
taps

0.9

0.9

0.9

0.82

0.82

0.82

2.2

2.2

2.2

0

1.25

J.s

2.2

2.2

2.2

0.7

0.7

0.7

INPUT
Volts

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
303
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

OUTPUT

V
Volts

.482

.481

.485

6.701
6.776
6.775

13.111
13.175
13.146

.287

.284

.277

5.129
5.120
5.116

9.539
9.511
9.479

.402

.407

.387

10.193
10.173
10.152

19.700
19.685
19.577

5.604
5.704
5.647

4.052
4.124
3.799

4.250
4.250
4.242

.862

.861

.858

9.319
9.327
9.326

19.965
19.918
19.775

.522
.522
.527

5.134
5.116
5.135

9.410
9.382
9.425

I
Asps

1.007
1.003
1.007

1.002
.998

1.003

.999
.996
.998

1.079
1.076
1.073

1.071
1.070
1.069

1.068
1.067
1.066

2.508
2.506
2.460

2.503
2.501
2.501

2.499
2.497
2.489

0
0
0

1.174
1.194
1.112

2.522
2.521
2.522

2.504
2.505
2.502

2.499
2.501
2.502

2.493
2.496
2.489

1.052
1.048
1.051

1.048
1.044
1.048

1.045
1.042
1.045

Regulation
Type

I

I

I

I

I

*t

0.27

0.32

0.54

0.18

0.25

Ripple

ACp-P

90mA
130
300

40
60
90

40
40
60

80mA
100
200

50
70
80

30
35
50

190mA
240
800

95
130
200

60
80 •

126

--

--

--

120mA
250
500

100
120
180

60
80

105

80mA
150
250

50
70

100

35
50
70

X

—

21
3
4.5

2
2
31

--

2.51
3.5
4

1.5
1.5
2.5JS

--

2.2*
2.9
4.5

1.4
1.6
2.9%

—

—

—

—

2.31
2.7
4.1

1.4
1.8
2.4*

--

2.SS
3.5
5

1.71

2.5
3.SS

Telemetry
V

-'-

—

• —

—

—

—

0.278
0.278
0.278

2.537
2.577
2.537

4.880
4.880
4.880

-

-

-

0.397
0.397
0.397

2.381
2.381
2.341

4.880
4.880
4.880

— •

—

E

i

2.381
2.420
2.420

2.388
2.380
2.420

2.380
2.420
2.420

2.576
2.576
2.577

2.576
2.577
2.577

2.577
2.576
2.576

1.190
1.190
1.190

1.190
1.190
1.190

1.190
1.190
1.190

0.040
0.040
0.040

0.590
0.590
0.551

1.260
1.260
1.260

1.190
1.190
1.190

1.190
1.190
1.190

1.190
1.190
1.190

2.538
2.538
2.538

2.538
2.538
2.538

2.538
2.538
2.538
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TABLE 4-V (Cont'd)
LINE M«> LOAD REGULATION; RIPPLE AND TELEMETRY DATA

NOMINAL VOLTAGE AND CURRENT RATINGS

POWER SUPPLY .

V? Neutral Izer
Keeper

V8 Cathode
Keeper

V9 Discharge

VI 0 Accelerator

VII Screen

VIZ Magnetic
Baffle

LOADING
V

Volt*

0

12.5

25

0

12.5

25

0

25

50

300

300

300

900

900

900

0

t

4

I
taps

2

2

2

0.5

0.5

0.5

10.3

10.3

10.3

0

0.01

0.02

0

1

2

2

2

2

INPUT
VOLTS

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

200
300
400

OUTPUT

V
Volts

.951

.951

.953

12.834
12.825
12.820

24.468
24.416
24.450

.673

.665

.66?

11.958
1 1 . 929
11.906

24.164
24.160
24.156

4.643
5.248
5.578

23.962
24.028
24.653

47.396
47.434
47.864

300.74
300.77
300.78

300.27
300.30
300.32

300.06
300.09
300.11

900.49
900.53
908.41

902.73
902.65
902.30

902.13
901.85
901.42

.741

.723

.700

2.148
2.140
2.147

3.995
3.981
3.985

I
A«ps

1.807
1.805
1.806

1.800
1.798
1.798

1.793
1.792
1.792

.510

.508
L_ .507

.505

.504

.503

.501

.500

.499

11.323
12.787
13.596

10.243
10.270
10.533

10.220
10.226
10.315

0
0
0

.010

.010

.010

.020

.020

.020

0
0
0

1.006
1.006
1.006

1.997
2.001
1.997

2.073
2.065
2.061

2.050
2.045
2.043

2.045
2.040
2.038

Regulation

Type

I

1

I

V

V

I

*x

0.25

0.55

1. 11

0.07

0.36

0.35

Ripple

AC P-P
6mA

10
6

4
4
8

10
5

10

90mA
150
200

12
17
25

9
10
14

32mA
40
36

50
60
68

48
60
80

2V
2
2

2
2
2.1

2
2
2.2

10.5V
19
38

9
15
24

6.5
9.5

14

200mA
10
90

30
SO
SO

60
40
40

t

-,--

.1

.1

.2

.3

.2 "

.3

"

1.2
1.7
2.5

.9
1.0
1.4

—

.36

.43

.48

.34

.43

.57

.4

.4

.4

.4

.4

.4

.4

.4

.4

.9
1.7
3.4

.8
1.4
2.2

.6

.9
1.3

—

2.6
1
1

1.2
.8
.8

Telemetry

V

0.437
0.438
0.437

1.429
1.429
1.429

2.461
2.461
2.461

0.278
0.278
0.278

1.389
1.389
1.389

2.577
2.577
2.577

.358

.398
.398

2.342
2.342
2.421

4.762
4.760
4.761

2.403
2.402
2.4U3

2.401
2.400
2.401

2.401
2.401
2.401

—

--

—

—

I

2.143
2.143
2.143

2.143
2.143
2.143

2.143
2.143
2.143

1.865
1.865
1.865

1.865
1.865
1.865

1.865
1.865
1.865 •

3.371
3.967
4.285

3.133
3.014
3.173

3.094
3.133
3.054

0.158
0.158
0.158

0.236
0.236
0.236

0.354
0.354
0.355

0.080
0.080
0.080

2.063
2.024
2.048

3.939
3.899
3.938

.544

.544

.544

.544

.544
I .544

.544

.544
1.544
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4.1.2 Shorting and Overload Test

The EP/PPU power supplies were tested for overload capability and
recovery by application of a short across the designated output given
in Table 4-VII. The power supplies suffered no degradation after complet-
ion of the snorting test.

4.1.3 Transient and Recycle Test

The main advantage of the series resonant inverter is that it is
a current source and does not reflect a high peak surge current back to
the power source. Figure 4-3 is an oscilloscope photo of the input cur-
rent during turn on of the high power beam supply.

Figure 4-4 is an oscilloscope photo of the input current upon
application and release of a short on the output of the screen supply.

Figure 4-5 is an oscilloscope photo of the screen voltage, accel-
erator voltage, and discharge current during a simulated recycle event.

During all of these transient conditions, no large current surge
was drawn from the dc power bus. No additional current regulator cir-
cuitry was needed to provide this protection feature which is inherent
in the series resonant Inverter design.
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TABLE 4-VII SHORTING LIST FOR EP/PPU OUTPUTS

FROM

1

2

3

4

5
6

7
8
9

10

11
12

13
14

15.

16

17

18

19

20

21
22

23

24

25

26

Main vaporizer (VI)
Cathode vaporizer (V2)
Neutral izer vaporizer (V6)
Main and cathode isolator (V4)
Neutral izer heater (V5)
Neutral izer keeper (V7)
Cathode heater (V3)
Cathode keeper (V8)
Discharge (Anode- V9)
Accelerator (V10)
Cathode common (Screen)
Magnetic baffle positive (V12)
Power output common (S/C com. )
Power output common
Power output common
Power output common
Power output common
Neutral izer common
Neutral izer common
Cathode common
Neutral izer keeper (V7)
Neutral izer keeper (V7)
Neutral izer keeper (V7)
Cathode Keepre (V8)
Cathode Keeper (V8)
Discharge (Anode- V9)

TO

Vaporizer return
Vaporizer return
Vaporizer return
Cathode common (Screen)
Neutral izer common
Neutral izer common
Cathode common
Cathode common
Cathode common
Neutral izer common
Neutral izer common
Magnetic baffle negative
Cathode common
Neutral izer keeper (V7)
Cathode keeper (V8)
Discharge ( Anode- V9)
Accelerator (V10)
Cathode keeper (V8)
Cathode keeper (V8)
Accelerator (V10)
Cathode keeper (V8)
Discharge (Anode-V9)
Accelerator (V10)
Discharge (Anode- V9)
Accelerator (VI 0)
Accelerator (V10)
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I in; 2A/div

FIGURE 4-3 INPUT CURRENT, BEAM INVERTER TURN-ON

I in; 2A/div

FIGURE 4-4 INPUT CURRENT, SHORT APPLIED AND
RELEASED ON SCREEN OUTPUT
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Screen Voltage

Accel Voltage

Discharge Current

FIGURE 4-5 ARC RECYCLE - LOAD BANK
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4.2 EP/PPU ION ENGINE INTEGRATION TEST

The EP/PPU - Ion Engine integration test followed an extensive testing
program of the EP/PPU using a resistive load bank to represent the thruster.
Load bank testing alone cannot simulate the dynamic conditions of the ion
engine as a load on the EP/PPU, therefore, it was necessary to perform the
integration tests to fully evaluate the performance of the EP/PPU.

The integration testing consisted of four sections: EP/PPU functional
checkout, EP/PPU steady state operational checks, an eight hour uninterrupted
run, and an EMI measurement of the inputs and outputs of the EP/PPU.

4.2.1 EP/PPU Functional Checkout

The ion engine was installed in a vertical vacuum chamber and the EP/
PPU and the test console was positioned alongside the chamber. After plumb-
ing and electrical connections were completed to the ion engine, the chamber
was brought to hard vacuum and the EP/PPU energized. The following functional
operations were demonstrated:

1.) Neutralizer keeper ignition
2.) Neutralizer keeper-neutralizer vaporizer control loop.
3.) Cathode keeper ignition
4.) Discharge ignition
5.) Discharge voltage - cathode vaporizer control loop
6.) Magnetic baffle operation
7.) High voltage application to accelerator and screen
8.) Beam current regulation from 0.5 amps to 2.0 amps
9.) Recovery from internal engine arcs
10.) Shut down of ion engine

The time constants for the fault or arc clearing circuitry was modified to
provide reliable recycles after an engine arc. Figure 4-6 shows the screen and
accelerator voltage and input current during the recycle mode of operation.

Figure 4-7 shows screen and accelerator voltage and current during a re-
cycle. Perturbations of the screen and accelerator voltages and input current
are minimal during the recycle interval.
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Vll; 500V/div

VI0; 500V/div

I in; 4A/div

FIGURE 4-6 ARC RECYCLE 2Amp Beam; 300V Input

VII; 500V/div

V10; 500V/div

110; 50ma/div

111; lAmp/div

FIGURE 4-7 ARC RECYCLE 2Amp Beam; 300V Input
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4.2.2 EP/PPU Ion Engine Steady State Operation

After It was determined that the EP/PPU and the ion engine was
operating normally, the following tests were performed:

1.) Ion engine operation at 2.0 Amp beam current
2.) Ion engine operation at 1.0 Amp beam current
3.) Ion engine operation at 0.5 Amp beam current

Noise in all power lines to the ion engine and the input power line
was monitored and oscilloscope photos taken of the current waveforms.

Figures 4-8 through 4-11 show the ripple on the input and output
lines of the EP/PPU when operating the ion engine at a beam current of
2.0 A and input voltages of 200, 300, and 400 V.

Tables 4-VIII through 4-X show typical EP/PPU characteristics when
operating an ion engine at a beam current of 2A.

Current waveform photographs were also taken at 0.5 Amp and 1.0 Amp
beam currents and are given in the Appendix, Figures D-l through D-6.

Tables D-I through D-VI in the Appendix show the EP/PPU character-
istics at beam currents of 0.5 Amp and 1.0 Amp.

Overall efficiency of the EP/PPU when operating with an engine as a
function of input voltage and beam current is plotted in Figure 4-12.

The EP/PPU efficiency measurements during engine integration, Tables
4-VIII through 4-X, D-l through D-VI, and Figure 4-12 are inherently in-
accurate because the engine represents a continuously varying load. An
accurate efficiency measurement requires the simultaneous reading of all
the input and output voltages and current whereas the above data was read
and recorded sequentially.
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l in ; 2A/div lin Expanded; 400ma/div
IS

19; 4A/div 19 Expanded ; 400ma/div

110; 5ma/div 111; 0.5A/div

FIGURE 4-8 EP/PPU CURRENT WAVEFORMS WITH ION ENGINE 2Amp Beam; 300V Input
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I I ; lA/div 12; lA/div

16; lA/d iv 17; 0.5A/div

18; 0.5A/div 112; lA/div

FIGURE 4-9 EP/PPU CURRENT WAVEFORMS WITH ION ENGINE 2Amp Beam; 300V Input
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I in; 4A/div I in Expanded; 400ma/div

19; 4A/div 19 Expanded; 400ma/div

0-

111; 0.5A/div

FIGURE 4-10 EP/PPU CURRENT WAVEFORMS WITH ION ENGINE 2Amp Beam; 200V Input
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-AJXJ^JX
•wvv -irwvj V-W-VTT-

lin Expanded; 400ma/div

19; 4A/div

0-

•VU-irv

ir—\r

•vTrvTri rrrvTrvi rwvv

L=J

19 Expanded; 400ma/div

0-

-w-in*-w

v-X^ee

111; 0.5A/div

*«=s=o= =0*0* *o*«fco**

0-

FIGURE 4-11 EP/PPU CURRENT WAVEFORMS WITH ION ENGINE 2 Amp Beam; 400V Input
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TABLE 4-VIII EP/PPU ENGINE INTEGRATION TESTS
JB = 2A

= 200V

1100V
Vin

SCR

POWER SUPPLY

VI
V2

V3

V4

V5

V6

V7

V8

V9

V10

Vll

V12

V

5.2
2.9

«»•

2.7
15.09
6.07

39,57
299.64

1095.10
1.36

I

.76-

.8

.86-
1.80
11019
13.04
.00713
2.005
2.40

TOTAL OUTPUT POWER

200 - 400V
•28V

232.12

28.15
13.28
3,73

TOTAL INPUT POWER

EFFICIENCY

POWER

3.95
2.32

1.945

27.16
6.83

515.9S

2.14
2195.67

3.26

2759.64

3082.55

105.00

3187.55

86.57

VAPORIZER THERMOCOUPLE TEMPERATURE °C

MAIN VAPORIZER 3le

CATHODE VAPORIZER 211
NEUTRAL I ZER VAPORIZER 242

TANK PRESSURE 2.3X10"6 TORR
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TABLE 4-IX EP/PPU ENGINE INTEGRATION TESTS

JB = 2A

300VVin
uVSCR 1100V

POWER SUPPLY

VI

V2

V3

V4 .

V5

V6

V7

V8

V9

V10

vn
V12

V

6.4

3.7
—

_

2.7

15.08

6.88

39.60

299.58

1098.0

1.32

I

.1,01

1.07

.86

1 . 799

1.018

13.04

.00784

2.008

2.39

TOTAL OUTPUT POWER

200 - 400V

28V
300.10

28.26

TOTAL INPUT POWER

10.27

3.59

EFFICIENCY

POWER

6.46

3.96

2.32

27.13

7,00

516.38

2.35

2204.78

3.15

2773.53

3082.03

101.45

3183.48

87.12%

VAPORIZER THERMOCOUPLE TEMPERATURE
MAIN VAPORIZER

CATHODE VAPORIZER '
NEUTRALIZER VAPORIZER

314

175
240

TANK PRESSURE 2.25xlO"6TORR

4-25



TABLE 4-X EP/PPU ENGINE INTEGRATION TESTS
JB = 2A

'In
'SCR

400V
1100V

POWER SUPPLY

VI

V2

V3

V4

V5

V6

V7

V8

V9

V10

vn
V12

V

4.5

3.2
-

-

- -

2.5

15.09

6.73

39.54

299.76

1097.4

1.32

I

.75

.65
.
_

_

.83

1.799

1.018

13.09

'.00746

2.005

2.33

TOTAL OUTPUT POWFR

200 - 400V

28V

390.95

28.35

TOTAL INPUT POWER

7.93

3.46

EFFICIENCY

POWER

3.37

2.08
_

„

'„

2.07

27.15

6.85

517.58

2.24

2200.29

3.07

2764.70

3100.23

98.09

3198.32

86.44%

VAPORIZER THERMOCOUPLE TEMPERATURE
MAIN VAPORIZER

CATHODE VAPORIZER
NEUTRALIZER VAPORIZER

314

206
242

TANK PRESSURE 2.42xlO"6TORR
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90

85

80

75

EFF%

JB-AMPS

300V
200V
400V

1.5 2.0

FIGURE 4-12 EP/PPU EFFICIENCY-ENGINE INTEGRATION
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4.2.3 Uninterrupted EP/PPU Operation

An eight hour continuous operation of the EP/PPU - ion engine
combination was run to demonstrate control loop compatibility and re-
cycle capability of the EP/PPU. Table 4-XI lists the operating parame-
ters of the EP/PPU during the eight hour test period. The test was
conducted at a beam current of 2 amperes and input voltage of 300V.
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4.3 EP/PPU THERMAL VACUUM TEST

The EP/PPU was installed in the thermal vacuum chamber and after the
coolant lines and electrical connections were completed, an operational
test was conducted to check the cable connections and instrumentation.
The chamber door was then closed and the chamber was brought to high
vacuum. The EP/PPU was left at high vacuum for 72 hours to allow the
unit to outgas.

After the 72 hour outgas period, the heat pipe simulator temperature
was decreased to -10°C and after temperature stability, the EP/PPU was
turned ON.

The following functional tests were conducted:

o Startup of the EP/PPU at -10°C heat pipe simulator
temperature.

o Steady state operating test at nominal conditions.

o A low temperature storage test followed by an oper-
ational test at ambient temperature.

4.3.1 EP/PPU Thermal Vacuum Test Setup

Thermal vacuum test of the EP/PPU was conducted in a 5ft x 6ft
horizontal thermal vacuum chamber. The EP/PPU was suspended edgewise
by cables from an overhead bar in the vacuum chamber. The temperature
of the EP/PPU was controlled by a heat pipe simulator mounted to the
EP/PPU. Fluid was circulated through the simulator at a rate which
maintained the temperature difference between the inlet and the outlet
at less than one degree Fahrenheit. A thermal blanket was wrapped around
the EP/PPU to minimize the effects of radiation from the EP/PPU to the
chamber walls.

The EP/PPU was instrumented with thermistors on all representative
critical components and structural elements. Table 4-XII lists the ther-
mistor number and locations in the EP/PPU.

The resistive load bank and the control console was placed along-
side the vacuum chamber and connections to the EP/PPU made through
feed-thru connectors mounted on the access ports of the vacuum chamber.
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TABLE 4-XII

EP/PPU THERHISTOR LOCATIONS

Nodule Thermistor Location
Ito.

Al 1 Input Fllter-Tst Stage
2 Input F11ter-2nd Stage
3 Hot Spot-TLM Osc.
4 Hot Spot-28VDC Conv. Pwr. Stage
5 Hot Spot-28VDC Conv. Control
6 Al Module Flange '•

A2 1 Hot Spot-A2Al
2 Hot Spot-A2A3
3 Hot Spot-A2A8
4 Hot Spot-A2A9
5 Hot Spot-A2A10
6 Hot Spot-A2All
7 A2 Module Flange
8 Hot Spot-A2A6

9 Hot Spot-A2A12

A3 1 SCR 1 or Output Transformer

2 SCR 2
3 Diode 1
4 Diode 2
5 Series Resonant Inductor
6 Output Transformer

7 H.V. Bridge Diode
8 Hot Spot A3A3
9 Hot Spot-SCR Firing
10 Hot Spot-A3A5

11 Hot Spot-A3A4-A

12 A3 Module Flange
13 Hot Spot-A3A4-A
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TABLE 4-XII (Cont'd)

EP/PPU THERMISTOR LOCATIONS

Module Thermistor
No.

A4 1
2
3
4

5
6
7
8
9
10
11
12
13

A5 1
2
3
4

5
6
7

8

9

Location

SCR 1
SCR 2
Diode 1
Diode 2
Series Resonant Inductor
Output Transformer
Output Diode
Output Inductor
Hot Spot-SCR Firing Circuit
Hot Spot-A4A5
Hot Spot-A4A4-A
A4 Module Flange
Hot Spot-A4A4-A

Transistor 1
Transistor 2
Shunt Diode
Series Resonant Inductor
Hot Spot-A5A2
Hot Spot-A5A5
Hot Spot-A5A3-B
A5 Module Flange
Hot Spot-A5A3-A
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TABLE 4-XII (Continued)

EP/PPU THERMISTOR LOCATIONS

j
Module Thermistor

No.

A6 1
2
3

4

5

6

7

8
9

10

A7 1
2

3

4

5

6

7
8

9

10

11

12-

13

- -

Location

Hot Spot-V3 Output
Hot Spot-V4 Output
Hot Spot-V8 Output
Hot Spot-V8 Boost
Hot Spot-V12 Output
Hot Spot-V6A10
Hot Spot-A6A6
Hot Spot-A6A7
Hot Spot-A6A8
A6 Module Flange

Hot Spot-Vl Output
Hot Spot-V2 Output
Hot Spot-V5 Output
Hot Spot-V6 Output
Hot Spot-V7 Output
Hot Spot-V7 Boost
Hot Spot-V7 Output Inductor
Hot Spot-A7A15
Hot Spot-A7A14
Hot Spot-A7A9
Hot Spot-A7A8
Hot Spot-A7A10
A7 Module Flange
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4.3.2 EP/PPU Thermal Vacuum Test

Thermal vacuum testing of the EP/PPU was conducted after a single cold
solder joint, which, manifested itself at low pressures only and resulted in
normal EP/PPU performance whenever the vacuum chamber was returned to atmos-
pheric pressure, was identified and resolved.

Cold Start

The EP/PPU was cold soaked in vacuum for 16 hours at a heat pipe simu-
lator temperature of -10°C. After the 16 hour soak period, the EP/PPU was
commanded ON with startup loads of Condition A in Table 4-XIII applied.
Data was recorded when the temperatures had stabilized (2°C/hr. max. change).,
Table E-I in the Appendix lists the data for Condition A operation. Loads
were changed to Condition D in Table 4-XIII and after temperature stability,
data was recorded. Table E-II in the Appendix lists the data for Condition
D operation. Mounting and component temperatures were all within limits
under the above two operation conditions.

Steady State Operation

The temperature of the heat pipe simulator was set at 0°C. After tem-
perature stabilization the EP/PPU was turned on with loads of Condition D
applied. When component temperatures had stabilized, data was recorded.
Table E-III in the Appendix lists the data for Condition D, 0°C operation.
Tests were conducted for load Conditions C and B as well. At each instant,
component temperatures were allowed to stablize before data were taken. At
0°C heat pipe simulator temperature, and under all line and load conditions,
all component temperatures were within prescribed limits.

The heat pipe simulator temperature was increased to 20°C. Tests were
conducted for load Condition A, B, C, and D. Data for Condition D, 2A beam
current is presented in Table 4-XIV. Condition D loading represents the
most severe operating condition. At 20°C heat pipe simulator temperature,
all component temperatures were below the maximum limits.

Low Temperature Storage

The EP/PPU was subjected to a 16 hour storage test at a pressure of
less than 1x10" torr and a temperature of -35°C. After the 16 hour soak
period, the temperature of the EP/PPU was increased. The EP/PPU res-
ponded to all input commands and the outputs were operating normally.

4-35



UJ _
CO 1-1

o o
CM

CO t-i

g|

p-^ C

> < r > C V I > e £ > c a : > e t >
i — c n o c o m r - ^ o c o o i n i n in § ^ c§ s I
v o o « a - o c o o v o c M i n o o c M O O o o i n c \ i o o o

CO r- . r- ' . ' '.f-

o tf o u>
• o •

> ^ > C M > < C > « C > < > < > « t _ _ _i— c n o o o m r - ^ O « a - o m i n o in o • o • O
V O O ^ - O C O O v O V O V O O O C M O O O O i n C M O O O p - ^ O •

CO r— r— CO

CD
z:
i—i
a

a.
0.

S2
CO

in _
dS

> «t > CM >
p- cy> o co in o in o in in < > <

o o o in in
o co o

co

o «s: o in
• in • o

o • o o
O O C M O O « S - C M i n C M O O O O O •

p- P- CO

ca<c

o. o

?i
CO O
»—o

o o o o o o o o o o o o c o o
o c M O C M v o p - d p - ^ p - ^ i n r ^ ^
p— p— CO r- CM p—

O t— CO O
• • • •

CM P-
o o o

an
o
CO

CO

LU

§
o.

<J O
> --3

p— CM VO

>-> II
•—« o o c o c a i —

CO CM CO

ce.ce. ce.ce.
t tr ** ** t *~ ° w^z _ac c c _z z _co co «t <c

r>- in P- o

4-36



TABLE 4-XIV EP/PPU THERMAL VACUUM TESTS - CONDITION D

HEAT PIPE SIMULATOR COOLANT TEMPERATURE 20°C - (WITH RTV ON H.P.S.)

JB
Vin

= 2A
= 300V

POWER SUPPLY

VI
V2

V3

V4

V5

V6

V7
V8
V9

VI 0
VI 1

V12

. '

V

6.262
4.203

—

—
.

3. 625

16.186

5.844

38.160
300.29

1097.95

.946

I

1.005
1.074

• • —

—
—
1.051
1.809
.5060

12.2526
.0039
2.0043
2.098

*•

TOTAL OUTPUT POWER

Input !

Ripple (mA p-p) :

200 - 400V ;

28V

Power^
200 - 400V
28V

300.33

27.528
'•

6

32

10.0396
3.696

TOTAL INPUT POWER

EFFICIENCY

POWER

6.293
4.514

—
—

—
3.810
29.280
2.957

467.560
1.162

2200.655
1.985

2718.216

3015.185
101.743

3116.928

87.21%
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TABLE 4-XIV (Cpnt'd)EP/PPU THERMAL VACUUM TEST - CONDITION D

HEAT PIPE SIMULATOR COOLANT TEMPERATURE 20°C - (WITH RTV ON H.P.S.)

OB
Vin

= 2A
= 300V

MODULE THERMISTOR
*'• NO.

-, A l 1
2

3

4

5

6

A2 '~ 1

2
3

4

5

6
7

8

9

A3 1

2

r 3
4

J 5 -::.'.

6
7
8
9

10
11

12
13

Input Filter Inductor-lst Stage
Input Filter Inductor-2nd Stage
Hot Spot-TLM Osc.

Hot Spot-28Vdc Conv. Pwr. Stg.
Hot Sppt-28Vdc Conv . Control
Al Module Flange

H6tJSpPt-A2Al
Hot Spot-A2A3 J

Hot Spot-A2A8
Hot Spot-A2A9

Hot Spot-A2A10
Hot Spot-A2All

A2 Module Flange
HotfSpot-A2A6

Hot»Spot-A2A12
, •. . , > •,: <• ?«•*-.'> .''. ,

Output Transformer
SCR 2
Diode 1
JPtede 2
Series sRe^sonant Inductor
Output Transformer
H.V. Bridge Diode
Hot Spot-A3A3
Hot Spot-SCR Firing Circuit
Hot Spot-A3A5
Hot Spot-A3A4-A

A3 Module Flangw
Hot Spot-A3A4-A

LIMIT
?C
85

85

70

70

70

70 ;

70 5
70
70 '
70

70

"'< 70 \ 3

70 ?

85 ;

75

86 :,

86 i

/I 85

85

72
70
70
70
70

70

TEMP
°C

25
23
27
40
35
23

35
, 39

38
38
33
43
24 i

?36 !
1 41

41
59

I 50

50
53
34
44
48
34
43
57
30
47
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TABLE 4-XIV (Cont'd) EP/PPU THERMAL VACUUM TEST-CONDITION D

HEAT PIPE SIMULATOR COOLANT TEMPERATURE 20°C (WITH RTV ON H.P.S.)

JB - 2A

V - 300V

MODULE

A4

A5

THERMISTOR
NO.

1
2

3
4

5

6
7
8
9

10
11

12

13

1

2

3

4

5
6

7

8

9

LOCATION

SCR 1
SCR 2

Diode 1

Diode 2
Series Resonant Inductor
Output Transformer
Output Diode
Output Inductor
Hot Spot-SCR Firing Circuit
Hot Spot-A4A5
Hot Spot-A4A4-A
A4 Module Flange
Hot Spot-A4A4-A

Transistor 1
Transistor 2
Shunt Diode
Series Resonant Inductor
Hot Spot-A5A2
Hot Spot-A5A5
Hot Spot-A5A3-B
A5 Module Flange
Hot Spot-A5A3-A

LIMIT
°C

78
78
95
93
85
85
85
85
70
70
70

70

90
90
70
85
70
70
70

70

TEMP
°C

30
32
38
37
40
55
57
45
38
52
57
26
46

38
38
34
46
36
40
45
30
36
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TABLE 4-XIV (Cont'd)EP/PPU THERMAL VACUUM TEST - CONDITION D

HEAT PIPE SIMULATOR COOLANT TEMPERATURE 20°C (WITH RTV ON H.P.S.)

JB = 2A

V. = 300Vin

MODULE THERMISTOR
NO.

A6 1

2

3

4

5

6

7
8

9

10

A7 1

2

3

4

5

6

7

8

9

10

11

12

13

LOCATION

Hot Spot-V3 Output

Hot Spot-V4 Output

Hot Spot-V8 Output

Hot Spot-V8 Boost
Hot Spot- VI 2 Output
Hot Spot-A6A10

Hot Spot-A6A6
Hot Spot-A6A7

Hot Spot-A6A8

A6 Module Flange

Hot Spot-Vl Output
Hot Spot-V2 Output
Hot Spot-V5 Output
Hot Spot-V6 Output
Hot Spot-V7 Output
Hot Spot-V7 Boost
Hot Spot-V7 Output Inductor
Hot Spot-A7A15
Hot Spot-A7A14
Hot Spot-A7A9
Hot Spot-A7A8
Hot Spot-A7ATO
A7 Module Flange

LIMIT
°C

87
70
86
83
85
70
70
70
70

70
70

87
70
58
83
85
70
70
70
70
70

TEMP
°c
27
30
25
26

40
38

39

40

39

24

27
28
24

28
30
28

31

36

34

37
39
37
22

I
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4.4 ELECTROMAGNETIC INTERFERENCE TESTS

Electromagnetic interference tests were performed on the 30cm elec-
trical prototype power processor so that baseline information would be
available to spacecraft system engineers to conduct interaction studies
for spacecraft subsystems and scientific experiments.

Good engineering practices were used in the design of the input
power line filters and the application of EMI feedthrough filters, both
on the high voltage and low voltage outputs of the EP/PPU. The EMI test
data will also serve as a data base for EMC requirements versus filter
weight trade-off studies and thereby help define realistic EMI levels
and EMC system design approaches.

Two basic sets of tests were performed:

(1) Conducted narrowband and broadband interference with the
power processor and ion engine operating at the 2A beam
current level.

(2) Radiation and conducted narrowband and broadband interference
with the power processor operating with an ion engine load
bank simulator in an EMC screen room.

A summary of the conducted narrowband and broadband interference test
results for the power processor operating with an ion engine is presented,
since this mode of operation produces the higher electromagnetic inter-
ference levels.

Data is presented for the following lines:

• 200-400VOC main input power line
• 28VDC auxiliary input power line
• V9 discharge supply output line (current level of 12-14 ADC)
0 Vll screen output line (high output power of 2.2W)
• Interface unit command line bundle.

The narrowband radiation levels for these five lines are presented in
Figures 4-13 through 4-17. Figures F-l through F-5 in the Appendix pre-
sent the broadband data for the above five lines.

The narrowband data is close to meeting the MIL-461A, Notice 3,
Specification levels.
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It is suspected that the high broadband conducted emissions are due
to the operational noise of the ion engine coupling from the unshielded
output cables.
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5.0 CONCLUSIONS

An Electrical Prototype/Power Processor Unit (EP/PPU; a brass-
board model) was designed to meet the latest 30cm Ion Engine power
requirements. The EP/PPU packaging demonstrates the relative place-
ment and thermal control techniques of the electrical components
recommended for the layout and thermal design of the Functional Model/
Power Processor Unit (FM/PPU). The FM/PPU is being designed by NASA
LeRC to meet all the environmental requirements including structural
and operation over the full thermal-vacuum temperature range.

The EP/PPU was fabricated with electrical parts that have flight
types equivalents, wherever possible, and all magnetic devices are
flight type components. Extensive power component improvements were
performed on the program to reduce weight and to control component
temperature rise. Additional component work is required to generate
flight component specifications and component qualification. Power
losses and part count of the control electronics have shown to be
potential problem areas. Circuit and component areas were identified
where additional development effort can improve overall efficiency
weight and reliability.

The EP/PPU is composed of seven separate testable modules. The
conceptual mechanical design identified the logical separation of
functions, relative location of power components for thermal control
and voltage control. Additional packaging effort is required in the
command interface unit to increase its noise immunity and service-
ability.

The test program demonstrated the overall capability of the
EP/PPU to be operated in a thermal vacuum environment so that meaning-
ful thermal control information can be obtained in support of the
Functional Model Unit mechanical and thermal design, and to operate
a 30cm Ion Thruster over its total output power range by means of an
external central computer system. The series resonant inverter used
as the main dc to ac inversion power stage demonstrated reliable
trouble free operation throughout all the testing phases.



6.0 APPENDICES

TABLE OF CONTENTS

A - ELECTRICAL DESIGN

B - ELECTRICAL COMPONENT DEVELOPMENT

C - EP/PPU LOAD BANK TEST RESULTS

D - EP/PPU-ION ENGINE TEST RESULTS

E - EP/PPU THERMAL VACUUM TEST RESULTS

F - EP/PPU-ION ENGINE EMI TEST RESULTS

NOTE; Appendices are available upon request from
Robert J. Frye, NASA-Lewis Research Center,
Cleveland, Ohio. Mall Stop 501-4.
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