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PREFACE



This report is one in a series of reports in JPL's "Economics and Policy


Analysis Series". Since the author is no longer with the Jet Propulsion Lab­

oratory, questions regarding this report may be directed to Dr. R. P. O'Toole,


Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California, 91103.
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ABSTRACT



The process by which new solutions to the energy dilemma are


generated and used as a context for an overview of solar energy


economics and technologies is summarized in this report.
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SECTION I 

STAGES IN THE GROWTH OF USE OF ENERGY TECHNOLOGY 

To see a World in a grain of sand,


And a Heaven in a wild flower,


Hold Infinity in the palm of your hand,


And Eternity in an hour.



William Bl'ake 
Auguries of Innocence 

Before any energy conserving process or technology can play a 

significant role in mitigating the energy dilemma, it must become widely used. 

In the capitalistic framework of U. S. society, this means that it must achieve 

commercial use - in short, someone must be able to make money selling it. 

Despite the myth of the machine (Reference 1-1), the process by which 

a new invention is translated into a commercial product not only requires 

technological development but also social invention (Reference 1-2). 

As Wiesner (Reference 1-3) has indicated, many people believe th-t 

once technical and economic conditions are met, the innovation will be accepted 

and diffused rapidly. Unfortunately, the "Better Mousetrap" belief -7 if you 

build a better and cheaper gadget, the world will beat a path to your door - is 

largely a myth. Demonstrating technical and economic feasibility is important, 

but it is seldom sufficient to insure rapid acceptance and diffusion of a tech­

nological innovation, particularly when that innovation does not involve a new 

service but rather must compete with existing services. Experience indicates 

that significant resistance often remains after an innovation satisfies requisite 

technical and economic conditions. Organizational and cultural factors, under 

some circumstance, impede the acceptance of even feasible, demonstrably 

cost-saving devices. 

Although produced for sale in 1874 and offering large economic advantages 

(in terms of cost per word), the typewriter was not widely used for over 30 

years because of questions about the status of women typists in society and 
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social etiquette. It took more than 350 years and 13 kings to eliminate 

expensive and inflammable straw from Danish towns. The telephone was 

resisted not because of technical and economic -factors but because it was com­

monly thought to be "The Work of the Devil;" even Thorstein Veblen denounced 

it (Reference 1-4). More recently, the Urban Institute has concluded that the 

inability of cities to utilize cost-saving aerospace technologies can be traced 

in part to "the traditions of doing things the same old way with the old familiar 

equipment" (Reference 1-5). 

A. INSTITUTIONAL BARRIERS IN THE HOUSING INDUSTRY 

Experience with the housing industry leads to the definition of institutional 

conditions which, like the technical and economic factors, are capable of 

deterring the acceptance and diffusion of innovation. These institutional factors 

have generally deterred innovations, not just solar energy. W. Ewald 

(Reference 1-6) has estimated that it requires 17 years, on the average, from 

the invention to the first use of even the most successful innovations in the 

housing/construction industry. Even innovations promising significant cost­

savings have either not been accepted or have required extended time to diffuse. 

For example, it took 28 years for the industry to widely use forced air heating 

combined with air conditioning, even though there were major cost-savings 

to be realized from the combination. According to Ewald, "Changes proceeded 

piecemeal, in small segments of the industry. There has been no radical 

change of great technical and economic significance; no single invention or 

family of inventions. " 

Donald Schon (Reference 1-7), referring t9 these institutional factors as 

"self-reinforcing resistances to change," has dermonstrated that most segments 

of industry possess "fundamentally conservative formal and informal social 

systems which are aimed at perpetuating things as they are rather than at 

initiating major changes within the industry" (p. 164). Unfortunately, but 

understandably, the evidence supports this view. 

Institutional factors are composed of at least two principal subfactors: 

industry organization and industry culture. By organizational factors, I mean 
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the way the industry is set up and operates, including the roles and 

interrelationships of the various industry members. By cultural factors, I 

mean attitudes and behaviors that are widely shared among industry members. 

Of course, these two factors are themselves highly interactive; cultural factors 

in part arise from the way the industry is organized, and the industry maintains 

a stable organization because of these cultural factors. 

These factors may be-viewed as internal survival and response mechani­

sms used by the industry to cope with its external environment. They reflect 
1causal contexts"N of the environment and produce the somewhat unique industry 

characteristics (Reference 1-8) which must be understood before developing 

innovation diffusing strategies. 

1. The Innovation/Diffusion Process 

The complex process by which an idea is translated into a commercially 

available and widely accepted product is not well understood. In studying the 

potential or actual institutional barriers to the widespread use of new solar 

energy technologies, it is important to distinguish among several stages of 

evolution along which an idea progresses in the process of being translated into 

a widely diffused technology. Conceptually the'process consists broadly of three 

distinguishable, overlapping phases: innovation, the diffusion of readiness, and 

the- diffusion of innovation. I 

iThere has been a good deal of research on the diffusion of innovations. The 
model presented here was constructed with the idea of commercial adoption 
of a technical device. The more general research on the diffusion process 
identifies the elements in the diffusion process. In Communication of 
Innovations, Everett Rogers and F. Floyd Shoemaker define the elements as 
"(1) The innovation, (2) which is communicated through certain channels (3) 
over time (4) among the members of social system" (p. 18). Diffusion of 
readiness represents that time-dependent process during which the attitudes 
of industry members are altered by communicating within the industry media. 
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By innovation I mean the initial, evolutionary stages of an idea, concept 

or design before it is translated into a commercially available product or 

process, such as research leading.o the-development -and productiori of a line 

of solar collectors. 

Included in the innovation phase are two interrelated stages - invention 

and research. In the former, the new concept is invented. Often this occurs 

through speculation and can be based on no more than a hunch. In the latter, 

the underlying principles of the innovation are understood and a theory is 

developed to explain its workings. 

The theory need not be scientifically complete but it must be sufficient 

to supply an adequate rational model for the operation and development of the 

invention. Every theory presupposes an underlying paradigm (a set of assump­

tions, assertions and faiths concerning the world) through which the invention 

can be viewed and which lead to the technical understanding of the operation 

of the innovation. 

The paradigm is like a filter which provides a means for abstracting 

both from primary observation of the world and from first-order experience. 

The result is a description and interpretation of what is going on and leads 

eventually to a sound theory. This process is described by Bois (Reference 

1-9) as the structural differential and the paradigm is a semantic filter which 

provides (and limits) the abstracting process. 

Major inventions often occur when two conflicting paradigms are in 

collision. This collision begins with the failure of an older paradigm to 

explain, with adequate rationality, new observations which have produced 

puzzles to a group of investigators. The result is the birth of a new paradigm 

through which these new puzzles can be explained. This process produces 

scientific revolutions and a succeeding discovery of new inventions (Reference 
1-10). 

A good example of this process of paradigm collision is the discovery of 

oxygen. At that time the Phlogiston Theory could not adequately explain 

observations related to the burning of objects such as wood. Because 
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phlogiston was supposedly given off during burning (which was called 

de-phlogistonization), scientists could not explain the increase in the weight 

of material after burning. Lavorsier, who is given credit for the discovery of 

oxygen, presumed a different paradigm (on which modern chemistry is partly 

based) which supposed bur'ning to be explained as the addition of new material 

(oxygen) rather than the loss of phlogiston Although the new theory and under­

lying paradigm appear elegant and self-obvious, at the time it was revolution­

ary; so much so that Lavorsier was afraid to present his theory openly to 

fellow members of the Royal Scientific Society (Reference 1 -10). 

2. Invention 

The invention and research stages often overlap and are interrelated. 

Invention often comes out of research, and invention leads to new research 

areas and questions. The innovation phase provides the basic scientific theories 

and research on which technology and eventually the commercial product are 

built. It leads to the next phase in the commercial development process - the 

commercial "readiness" stage. 

3. Diffusion of Readiness 

Diffusion of readiness refers to the activities which generally precede 

the economic viability and actual commercial diffusion of a new technology, 

but which prepare the public and the industry concerned for the diffusion. In 

the case of solar energy technologies, a program to accept large scale diffusion 

would include workshops and information exchanges and labor unions, code 

officials, utilities, building departments, architects, and builders. Through 

trial installations and simulation studies of actual conditions of commercial 

implementation, many potential problems could be identified and overcome 

in advance. 

4. Commercial Readiness 

The commercial readiness phase is made up of two stages - development 

and demonstration. During the development stage, the technical feasibiiity 

of the invention is proved. Also, the technology is refined into a form suitable 
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for application. There is a big difference between the basic invention or 

concept stage and the instrumentation of the invention into a form suitable 

for the commercial readiness stage. Many new-ener-gy technologies have-not ­

yet finished the concept stage of development. Nonetheless they receive a lot 

of attention as possible solutions to the energy dilemma (even in the short 

term) because their basic concept seems to imply a virtually inexhaustible 

supply of new/nonfossil fuel based energy. Many people do not seem to under­

stand that a lot of development (and time) must often be called Research, 

Development and Demonstration (RD&D) or just Research and Development 

(R&D). At this point federal funding and assistance is removed and the inven­

tion must be finally tested in the marketplace. However, testing requires time 

and there may be long lag times before the.invention is widely accepted. For 

most products this is acceptable since quick application is not in the public 

interest and the time lag may produce a better product through operation of 

the marketplace and refinement of the product. However, with the short and 

intermediate term aspects of the energy dilemma, most of the benefits of 

government intervention are obtained only if the invention achieves rapid appli­

cation. In this case there are public benefits to a continued government role to 

encourage implementation of the demonstrated invention. 

Although the need for government action to speed implementation is often 

ignored, sometimes the need is recognized. The Federal Energy Administra­

tion (FEA) is currently taking an active role in encouraging the implementation 

of solar energy devices which have completed ( or nearly completed) demon­

stration. Frank Zarb, Administrator of the FEA, emphasized the need for 

implementation efforts in testimony to the House Subcommittee on Energy 

Research, Development and Demonstration of the Committee on Science and 

Technology. FEA's implementation program is predicated on "a realization 

that without an aggressive federal program to commercialize solar energy 

technologies, 'the significant fossil fuel savings projected as a result of solar 

energy in The Project Independence Blueprint Report will not be realized" 

(Reference 1-11, p. 8). 
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5. Diffusion of Innovation 

The last phase in commercial development is the diffusion of innovation. 

During this stage the technology is commercially manufactured, distributed, 

used, and many of the real obstacles to widespread use are encountered. It is 

diffusion of innovation which results in various social, economic, technical, 

political and environmental consequences, 

The diffusion of innovation phase may be divided into three overlapping 

stages:



(1) 	 Commercial "beachhead". implementation -the launching of 

a commercial venture by industry, possibly with assistance 

from the government, which is sufficiently large and real­

istic enough to test the marketplace in selected regional areas, 

to obtain data on the full costs of such production, distribution, 

installation and maintenance, and to determine whether the 

diffusion of readiness activities have adequately paved the way 

for overcoming market constraints that might exist; 

(2) 	 "Take-off" of commercial diffusion - increasing the-investment 

in production and distribution facilities which is matched to the 

new products rate of market penetration; growth of competition; 

falling away of government financial support or other facilitative 

mechanisms; and convincing indications of the product's market 

acceptance; 

(3) Sustained commercial activity -the new product is now firmly 

established in the marketplace in competition with other products 

and subject to normal market forces. 

During the diffusion of innovation, the innovation process itself (in terms 

of product improvement through feedback from field experience) and diffusion 

of readiness (through continuing and escalating interaction with the entire 

industry and public which is receiving the innovation) will also occur. In this 

sense, the various phases may begin at sequentially later times, but each will 

continue to interact and modify each other. Table 1-1 summarizes the activi­

ties which occur in each of these stages. 

ORIGINAL PAGE IS 
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Table 1-1. 	 Stages in Commercial Development: The Growth of a 
Technology or Process From Scientific Invention 
Through Research and Development to Diffusion of 
Innovation 

A. Innovation: Basic Science Research & Technology Stages: 

Stage I - Invention - New idea or concept, no significant 
research begun. 

Stage 2 - Research - Understanding the underlying 
principles and development of a 
sound theory or experience for 
technology development. 

B. Commercial "Readiness" Stages: 

Stage 3 - Development - Technical feasibility proven. 
Refinement of technology continues. 

a - conceptual 
b - prototype


c - technical and economic



studies 

Stage 4 - Demonstration 	 Technical application at a scale 
similar to commercial application. 
Primary economic questions are 
raised and answered. 

C. Diffusion of Innovation Stages: 

Stage 5 - "Beachhead" - Market acceptance and profitability 
Implementation tested. Final "debugging" of com-.. 

mercial operational problems. 

Stage 6 - "Take-off" or - Increasing use of the new product 
Commercial and growth of sales/distribution 
Diffusion and servicing networks. 

Stage 7 - Sustained - New product is firmly established 
Commercial in the marketplace. Penetration is 
Activity greater than 1%. 
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Frequently technological innovations are gradually diffused into an 

industry doing business as usual. Today, however, the energy situation puts 

the U.S. in the position of fostering crisis-propelled innovations. There are 

numerous pressures for more and cleaner forms of energy, while at the same 

time there are a variety of new technologies and techniques for energy use 

which offer the promise of some relief from these pressures. Research has 

shown that the recognition of a serious need, which in turn creates a potential 

market, is often a far more important stimulus to a new product development 

than industry or university based R&D projects (Reference I-I 2). 

Yet there is a danger in believing that the emergence of a crisis - and 

widespread recognition of the need for programs to address the crisis - will 

automatically lead to effective responses. While legislation must be introduced 

and passed in response to the political imperative for action in the face of a 

national problem, it may be drafted without a strategic examination of the 

issues involved, and therefore may be counter-produ6tive or simply ineffective. 

For example, legislation which requires the design and operation of buildings 

to meet energy performance specifications -without providing mechanisms for 

successful implementation - could result in criteria not being met. 

In addition, a crisis-environment can create a frantic search for instant 

panaceas by policy makers, researchers, the media, and general public. In 

such an environment, there is often failure to recognize and make known the 

problems and barriers that go along with the potential promised by new tech­

nologies. When, because of these barriers, the technologies fail to live up to 

some of their promises, the general public, whose continued support may be 

critical to effective development and commercialization, can become frustrated 

and disillusioned. However, without a sense of crisis and urgency, it is 

unlikely that any major efforts - such as legislation to promote resource 

conservation and management -would be rapidly introduced and implemented. 
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SECTION II 

OVERVIEW OF SOLAR ENERGY TECHNOLOGIES 

It is the business of the future to be 
dangerous; and it is among the merits 
of science that it equips the future for 
its duties. 

Alfred North Whitehead 

Busy old fool, unruly sun


Why dost thou thus,


Through windows, and through curtains,


Call on us ?



John Donne 
The Sun Rising 

The use of solar energy has been proclaimed at various times over the 

past 100 years as an ideal energy source. Renewed interest in solar energy 

has been sparked by energy and environmental problems. Basically, a solar 

energy system converts sunlight into heat, electricity or other forms of energy, 

which can then be used to supply various needs. The simplest of such systems 

are small solar water heaters, once widely used in southern Florida in the 

late '30s and early '40s. More complex systems - such as the conversion of 

collected solar heat into mechanical and electrical energy - have been 

demonstrated in prototype and laboratory applications; other concepts, although 

technically possible today, have yet or are about to be designed and tested. 

In many parts of the country solar technologies, if made commercially 

available, could supply over 70% of the electrical and thermal requirements 

for residential buildings as well as for many types of commercial, institutional, 

and industrial structures. Supplementary fuels and/or electricity would be 

required only during periods of cloudy weather exceeding several days. 

Solar systems promise a number of substantial benefits. Solar energy is 

a renewable energy resource rather than a depletable resource. It is widely 

available and is not subject to foreign control (except, perhaps, in a theological 
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sense). Direct conversion of sunlight into heat and electricity has no 

repercussions in terms of land destruction, air pollution, or other types of 

environmental degradation -often associated With more traditional forms of 

energy.



Although such systems will almost invariably raise the first cost of a 

heating/cooling system, the use of solar energy to provide space heating, water 

heating and cooling is competitive on a lifecycle cost basis with all electric 

systems (at 1973 electricity price levels of $0. 05/kWh); no such competitive 

advantage will be possible with natural gas until gas prices rise dramatically 

(which is not expected to occur before 1985). 

A. INTRODUCTION TO SOLAR ENERGY 

In order to understand the possibilities for solar energy in the context of 

the energy crisis, one must know something about the technology. 

Solar energy as defined by many experts covers a wide range of energy 

possibilities. Often included is wind energy, bioconversion of crops into 

either hydrogen or direct burning vs fuel, and tidal energy which'is produced 

by the relative motion of the earth/moon and sun system. In fact, the sun is a 

basic force in our lives; one that runs so deep it is almost impossible to draw a 

boundary around solar energy. Petroleum and coal were produced from living 

matter which relied on the sun and which decomposed under pressure into oil, 

coal, etc. The falling water which drives hydroelectric plants also could be 

classified as solar since the evaporative process raises water from the oceans 

and other bodies of water and effectively transfers it to the mountains as snow 

or rain which eventually can produce hydroelectric power. 

Although solar energy can be defined to embrace a wide variety of energy 

options, I shall narrow the definition to include only two direct solar energy 

processes. The first is solar thermal processes; that is, processes that rely 

on the sun to produce heat which is then used to produce usable energy. 

Included in this type of solar energy are both the low temperature (below 200 0F) 

solar energy forms which can be used to heat and cool buildings, and high 

temperature solar energy forms which can be used to produce electricity. 
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There are five basic forms of solar energy: solar thermal, photovoltaic, 

bioconversion, ocean thermal, and wind. Each of these relies on a different 

underlying basic technology and is in different stages in the application diffusion 

process. Although the details of each of the technologies used to capture a 

particular form of solar energy can be quite complex, at a more general 

descriptive level each form can be characterized by a basic technology, a type 

of application and feasibility status in terms of commercial development. 

In order to provide a context for understanding the implementation and 

policy questions regarding solar energy, a general description of each technology 

will be given in this section. Because the basic thrust of policy issues and 

implementation are in part to encourage the use of those solar technologies 

closest to commercial diffusion, the general description of solar technologies 

will be followed by a discussion of several actual applications which have been 

tried. 

ORIGINAL PAGE IS 
1. Solar Thermal OF POOR QUALM 

Solar thermal energy uses direct energy from the sun to heat a fluid in 

order to provide useful energy for some purpose. Low temperature applica­

tions can be used to heat and cool buildings, provide water heating and for 

agricultural food drying, The basic unique technology of this form of solar 

energy is the flat plate collector. 

Flat plate collectors, generally constructed of metal, glass and insulation, 

make use of both the direct sunlight and diffuse light scattered by clouds and 

atmospheric haze. A flat metal plate, painted black or otherwise treated to 

absorb most of the sunlight falling on it, heats up. At the same time, the 

absorbed plate cools by reradiation of infrared energy, by convective cooling 

from the surrounding air, and by conduction cooling to anything supporting the 

plate. The conduction losses and air convective cooling can be minimized by 

insulating the back of the plate. Heat is prevented froni radiating away by 

placing sheet glass or another clear material over the top of the plate, with a 

half-inch of space between the absorber metal plate and each of the clear 

covers. If glass is used (a greenhouse effect), light passes through the trans­

parent covers to heat up the metal plate, but reradiation of the infrared heat is 
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blocked by the cover glasses, trapping it in the space between the plate and the 

glass. The metal plate, thus, becomes much hotter than it would without the 

cover glasses and insulation. On-a clear day; even in cold weather, a flat 

plate solar collector can reach temperatures of over 300'F when oriented to 

face the sun. 

By running a fluid over the black plate, or through coils or tubing 

attached to the plate (Figure Z-1), this heat can be drawn away and used for 

water heating and space heating; it can also be used to operate a heat-actuated 

air conditioning unit. To date the simplest, and only commercial, application 

of this principle is found in solar water heating. 

The temperature of the collector drops as heat is withdrawn by the fluid 

running through it. Since even the best constructed collector will lose some 

of its energy to the surrounding environment through convection and reradiation, 

the lower its operating temperatures, the more efficiently it converts sunlight 

into heat in relative terms. In most applications, flat plate collectors operate 

between 100 to 180 0F, at efficiencies ranging between 30 and 60%. 

In addition to the flat plate collector, low temperature solar thermal 

applications generally require five other elements for normal operation, as 

shown in Figure 2-2. These are a fluid (1) which picks up the solar energy 

from the collector, and a distribution system (2) such as pipes or ducts which 

move the fluid to the place where the energy is to be used. Some of the energy 

may be put into a storage device (3) (such as a large tank). A control system 

(4) is often used to automatically transfer the stored solar energy to the place 

where it is needed. The energy is removed from the fluid (5) for the parti­

cular required application. 

Low temperature solar thermal systems have been built for a number of 

years. In several countries water heaters have achieved significant com­

mercial use. In fact, 50, 000 solar water heaters installed over 20 years ago 

in Florida were used until the advent of cheaper electricity (Reference Z-1). 

For space heating and water heating, the cost of these systems is less than 

electricity but more expensive than natural gas and they are in stage five of 
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the commercial development process. Solar space cooling has not achieved 

this advanced state and is still in the transition from development (stage three) 

to demonstration (stage four). 

The second type of solar thermal energy technology is high temperature 
sblar thermal applications. This form of solar energy can be used to produce 

electricity in central power plants by heating a boiler to the 1000 'C range and 

using this high temperature to run a turbine and produce electricity. The 

basic technology of high temperature- applications requires the use of focusing 

collectors. 

In one form of focusing collector, a fresnel lens or a parabolic cylindrical 

mirror focuses sunlight on a heat absorbing pipe enclosed in a transparent 

jacket. By removing the air from the space between the jacket and the pipe, 

heat conduction from the-pipe to the jacket is eliminated. A high boiling 
temperature fluid or a gas is passed through the pipe and picks up the heat 
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generated by the focused sunlight. In this type of collector, the heat transfer 

fluid can easily reach temperatures of 300 to 600 *F, and can be used to operate 

an engine for units as large as compression refrigerators and electric generators 

of the type used in central electric generating plants. 

Focusing collectors were used to operate engines as long ago as 1873. 

John Erricson, the designer of the iron-clad Civil War vessel, the tMonitor, 

coupled such a collector to a hot air engine of his own design. Many later 

experiments were conducted with this type of collector to show feasibility of 

using solar-generated heat to operate engines ranging from water pumps in 

Pasadena, California (1909) and in the Egyptian desert (1912), to a small 

electric generator developed by Dr. Horace Abbott of the Smithsonian Institu­

tion (1937) (Figure 2-3). There are virtually no contemporary applications of 

focusing collectors, with the exception of the experimental solar furnace in 

operation at Odeillo in the Pyrenees mountains of southwest France. 

The advantages of focusing collectors over flat plate collectors include 

the ability to reach higher temperatures and to operate engines more efficiently 

than is possible with flat plate collectors. Disadvantages include the need to 

maintain the collector oriented toward the sun (through some type of tracking 

mechanism) and the need for carefully made lenses or parabolic surfaces. For 

these reasons, focusing collectors are generally more expensive than flat plate 

units at this time. 

Two types of central power plants are proposed using this high tempera­

ture technology. The first has actually been used in a 50-kW plant in Italy 

where a set of steerable mirrors focus solar energy on a boiler as shown in 

Figure 2-3 (Reference 2-Z, p. 49). 

The 150-ft diameter, 1500-ft high tower could cost about $15 million and 

the boiler would operate at 1000 'C. A. F. Hildebrandt (Reference 2-3) esti­

mates that the total cost of heat collected by this plant would be about $0. 50 

per IvIBtu (natural gas currently costs $1. 50 for residential customers) 
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A second type of high temperature solar thermal generator station has 

been proposed by Meinel and Meinel at the University of Arizona (Reference
.2 

2-4). A solar form covering 13, 000 mi of desert in the southwest United 

States, using circulating liquid metal such as sodium or NaK to extract heat 

from a large set of focusing solar collectors has been proposed. The energy­

would be stored in a phase-change salt at temperatures about 1000°F. Electri­

city would be produced from a high pressure steam turbine at an estimated 

cost of $0. 50 per MBtu for the solar energy collected (References 2-5 and 2-6). 

A schematic of this type of system is shown in Figures 2-4 and 2-5. 

Such high temperature solar thermal systems are still in the research and 

development stage (stages 2 and 3) although prototype systems have been built 

in Italy and a bench model of the solar form has been built by the Meinels. 

The third type of solar thermal systems are, so-called solar furnaces 

which operate at very'high temperatures (above 3400 0C). These systems 

utilize large parabolic concentrators and are principally used for research and 

industrial applications such as melting tungsten. The largest solar furnace 

producing one megawatt was built at Odeillo-Font Romen in the French Pyrenees 

in the 1950s. Similar but smaller furnaces have been built in the-Soviet Union, 

Japan and the United States. Figure 2-6 is a schematic of a solar furnace. 

2. Solar Photovoltaic 

Photovoltaic is the second principal form of solar energy conversion; it is 

a process that converts solar energy into electricity and is the operating princi­

ple of solar cells used to provide power for most U. S. launched spacecraft 

(Figure 2-7). 

A solar cell is a specially treated wafer of silicon, typically 2 cm square 

and about-0. 02 cm thick. The bottom surface of the cell is coated with a metal; 

the top surface has a metallic grid covering about 10%o of the exposed silicon. 

When light strikes the cell, a voltage appears between the top and bottom 

electrodes, and current flows between them (Figure 2-8). 
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Solar panels on a model of a


RANGER spacecraft indicate


how thousands of individual


cells are mounted together


in a structural and electrical


matrix. In Skylab, these


panels supplied tens of


kilowatts.
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Conversion efficiencies range from a few percent in cadmium sulfide 

cells to over 18% in experimental silicon cells. To provide the large amounts 

of power required for a spacecraft, these cells are connected together and 

placed in large arrays, which then serve as the power sources for the space­

craft. Although these arrays are quite expensive - $100, 000 to $500, 000 per 

peak kilowatt in space - their high costs are justified in space craft applications 

where no other source of energy can be supplied as reliably and easily. For 

applications on earth, such arrays will have to produce electricity at rates 

comparable with other options. Since the photovoltaic collector converts sun­

light into electrical energy at less than 15% efficiency but absorbs over 90% of 

the sunlight falling on it, the remaining energy is converted into heat which 

must be removed to prevent it from further decreasing the operating efficiency 

of the solar cells. This heat can be used for water heating or other purposes, 

in effect causing it to behave like a flat-plate thermal collector as well as an 

electric power generator. 

Currently there is a $750 million 10-year project at the Jet Propulsion 

Laboratory to find a way of reducing the cost of solar cells from $1 -201W at 

present to $0. 20/W, the price at which most experts believe that solar cells 

will be economically competitive. Thus, solar cells are currently in the 

development phase (stage 3) even though they have achieved successful com­

mercial use in space and for remote power needs such as free buoys in the 

ocean. 

There are three principal applications for photovoltaic solar cells. The 

first is for distributed photovoltaic systems to provide electricity for individual 

experimental houses, several of which already exist. These will be discussed 

later, along with low temperature solar thermal applications. The second 

application of photovoltaic is for large scale central electric power production. 

Williams (Reference 2-2) estimates that a solar array covering 192 mi 

coupled with pumped storage, would supply about 14, 300 MW of electric energy 

for about $60 billion. These applications are in the conceptual stage and would 

not be economically justified unless the price of solar cells is reduced to 

$0. 20/w. 
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the sun. Wind energy has been around for a long time. The principal problem 

with its use seems to be the combined difficulty of storage and predicting power 

supply fluctuations. 

The potential from wind energy is very large. A committee sponsored 

by the National Science Foundation found that by the year 2000, a major wind 

energy development program could result in an annual yield of 1.5 trillion kWh 

of electricity. This is roughly the equivalent of the U. S. 1970 electrical energy 

consumption. 

In 1939 a 1 1/4-mW wind power plant was built on Grandpa's Knob near 

Rutland, Vermont. It delivered power to the utility grid during 1941. Full 

power was achieved for wind velocities in excess of 30 mph, which occurred 

70% of the time. The cost of the power plant was slightly over $1 million (132). 

However, largely because of World War II, the utility had trouble obtaining 

reliable parts and the station was finally dismantled in 1945 after one of the 

blades broke during a storm. 

One promising possibility is the combination of wind power with hydro­

electric so that the latter could be used when the wind power fell off. The 

largest generator built recently was an 800-kWe plant built in France in 

1958-60. Small wind generators (5 kW) can be purchased for about $2, 200, 

including freight. The application appears to be nearly economically competi­

tive for some cases. 

Several wind generators are in use for electric generation and pumping 

water. A company in Switzerland sells a 6-kWe wind generator with complete 

automatic controls for about $3, 000, In 1970 William Heronemus of the Univer­

sity of Massachusetts proposed a network of over 600 large wind generators 

which could provide enough electricity to meet most of the needs of the north­

eastern United States at costs competitive with fossil fuel electric plants. In 

1972 three wind generators were built by Robert Reines in New Mexico for his 

unique home. The largest generator produces 5 kW of electricity. Storage is 

provided by a bank of 16 heavy-duty batteries which can store up to 22 kWh. 
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The wind generators have supplied current to a full range of appliances 

including Hi-Fi and television sets, etc. The only commercial distributor of 

home-sized eectric wind generators.-is -the--Solar- W-ind--Company of- East Holden, 

Maine. They sell wind generators in the 12-20 kW capacity area which is 

sufficient to supply 80% of the nonthermal needs of a normal home (Refer­

ence 2-8). 

The four forms of solar energy conversion are summarized in Table 2-1 

which indicates for each form of solar conversion, the applications that com­

monly use the form, the basic technology which is required to provide the 

conversion and the status of each form's economic and technical feasibility. 

Also shown is the stage of commercial development at which each conversion 

exists. Only the forms of solar energy which are at stage 4 or 5 in the process 

will be likely to be able to provide energy in the next 10-15 yr on a scale suffi­

cient to be of use to reducing the impact of the energy dilemma. The only two 

which satisfy this criteria are low temperature solar thermal conversion and 

small scale wind generators. Low temperature solar thermal could provide a 

significant fraction (up to 10%)2 of the energy required to heat and cool buildings 

and provide water heating. Since about Z5% of the total U. S. energy use goes 

for these thermal demands, the commercial application of solar thermal 

systems could provide a significant energy savings. Similarly wind power for 

small scale applications is in the commercialization stage. Also, wind gene­

rators and low temperature solar thermal conversion devices complement each 

other in several ways. Wind generators can provide electricity while solar 

thermal devices can provide heating and cooling. Further, winds tend to be 

high on cloudy days when direct solar radiation is low. Combined systems 

would be a potentially economical way of reducing our conventional energy 

demands in buildings. Because these devices are nearly economically feasible 

on a commercial scale, the remainder of this section will discuss the general 

availability of solar energy and several applications of both of these forms of 

solar energy conversion. 

2 There is no technological barrier to sizing the energy system for 100% of the 
- energy requirement. However, the ecpnomic optimum size is about 2/3 of 
the energy use (References 2-9 and Z-10) since beyond that size diminishing 
margin returns occur. 

2-18





77-76 

Table 2-1. Summary of Basic Forms of Solar Energy 
Conversion and Applications 

Solar Energy Type Application Basic Technology 	 Feasibility and Status 

1. SOLAR THERMAL 

A. 	 Low Temperature Water Heating Flat plate collector Econonric feasibility if close 
WJell know. technology commercially available in 

Japan, Israel Australia. 
Space Heating Flat plate collector Technically demonstrated 

Well 	 known technology_ 90 buildings in the U.S. 
almost commercially 
feasible. 

Space Cooling 	 Advanced flat plate R&D stage, 3-5 years from 
Collector design real demonstration 

Agricultural Well known technology Can be practical for assist 
Food Drying in crop drying. 

B. High Temperature Central Power 	 Technology known but 10 years away from prototype 
Plant 	 requires refinement demonstration. 

Steam Electric 	 Concentrating Technical problems with large 
Liquid Metal collectors 	 scale application. 

Electric 

Very High Temper­

ature



Solar Furnace Industrial High Well known technology Can be used now for some 
Temperature purposes 

Z. 	 PHOTOVOLTAIC Electric Power Technology known Cost a factor of 50 to 100 
Central Station too high. 

Geosynchronous Unknown Requires launch of large 
spacecraft. Year 2000 if 
then. 

Distributed 	 Storage problems Cost too high (see above) but 
technically feasible. Can 
be useful now in remote 
areas.



3. 	 OCEAN THERMAL Electric Power Problems of corrosion Major technical and economic 
problems. Prototype 20 
years away



4. WIND 	 Electric Power Wind mills Storage problems and cost 
Small Scale Well known for small but practical for some 
20 Kilowatts scale applications applications. 

Large Scale 
Over 500 KWe 

ORIGINAL PAGE IS 
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Sunlight falling on a building can add a substantial amount of heat to that 

building. One needs only to recall how warm a room with large windows facing 

the south-and west .can-become -in-the late- afternoon on a clear day, even during 

the winter. In large office buildings, vast expanses of glass facing south and 

west can substantially increase the requirements for air conditioning, in con­

trast to buildings similarly designed but with the window walls facing east and 

north. In the past, the unwanted heat gain from solar radiation has been 

compensated for by mechanical means with air conditioning, shading devices, 

and more recently, reflecting and heat-absorbing glass. While there have been 

some attempts to use the incident sunlight to provide a substantial portion of 

the heating and cooling energy for a building, there have been few efforts (with 

the exception of one very reicent prototype, Solar One) to provide a substantial 

amount of electricity to a building from solar energy conversion. Only one 

solar energy conversion deirice -- the solar water heater -- has experienced 

significant use, and this has been primarily in those regions where alternative 

sources of energy for water heating are very expensive. 

Use of other forms of solar energy conversion has been limited by tech­

nical, economical and institutional considerations. Until recently, the wide­

spread and basically inexpensive availability of-a variety of energy sources 

(coal, oil, natural gas) coupled with the lack of environmental, political or 

logistical constraints on availability and use of energy have resulted in little 

interest in the development and deployment of alternative sources of energy 

or in the introduction and use of energy-conserving architecture, technologies 

and building management practices. 

5. Availability of Solar Energy 

In the form available at the earth's surface, solar energy presents some 

obstacles to efficient and economic use: it is subject to daily and seasonable 

cycles and to variable weather and climatic conditions, and it is of relatively 

low density, coming in milliwatts per square centimeter, in contrast to mega­

watts per square centimeter of a high voltage power line. Nevertheless, there 

is-a substantial amount of solar energy potentially available for conversion into 

other forms of energy for use in buildings as well as for other applications. 
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Table 2-2 compares the amount of incident sunlight on a horizontal 

surface on a clear day in various 'parts of the country and at various times of 

the year. Typically, from 200 to 700 kWh of solar energy are incident on a 

1000-ft2 flat 	 surface (such as a roof) at various times of the year in different 

parts of the country. By comparison, typical space heating requirements for 

a well-insulated home can run from 100 to over 200 kWh per day in the north­

east during the most difficult parts of the winter, with perhaps a third of that 

required to heat a similar house in the southwest. 

Table 2-2. 	 Availability of Solar Energy on a Clear Day 
(kWh/hours/i 000 ft 2 -day) 

Location 	 December March June 

New York, Chicago 150 390 660 

Southern. California, Arizona 300 480 840 

Florida 300 480 840 

Nevada 	 210 480 780



Washington, 	 D.C. 	 230 425 620 

Figure 2-10, which indicates roughly the amount of sunshine available 

around the country over the year, illustates that a substantial portion of the 

requirements of a well-insulated house could be supplied through the use of a 

rooftop solar collector, assuming reasonable efficiencies (35-50%) for conver­

sion of solar energy into useful thermal energy 3. 

Typical residential electricity needs are roughly 20 kWh per day for 

nonheating and cooling requirements (e.'g. , household appliance and other 

M, 

3 The process of conversion of solar heat into usable energy forms has asso­
ciated with it different conversion efficiencies. The direct conversion of 
solar energy into thermal energy, for example, has efficiencies in the 35-50% 
range; conversion of solar energy into electricity under current practices 
operates at up to 15% efficiency. 
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power needs) 44 . Conversion to electricity of 10% of the incident solar energy 

on a flat 1000-ft 2 roof on a clear winter day in Boston could provide two-thirds 

of this. With appropriate energy conservation measures, virtually all of the 

nonheating requirements for residential electricity could be provided under 

these conditions. Availability of a 1.5.7 conversion efficiency solar-electric 

(or photovoltaic) panel, tilted to increase winter solar collection (and thereby 

decreasing, somewhat, solar collection in summer) would in some 90 kWh 

being generated on a clear day in the southwest. If, for example, the 3 million 

residential units in Southern California were equipped with such systems, 

annual electricity production equivalent to the production of three to five 

1, 000-MW power plants would be generated from the sun. These figures are 

not meant to convince people that they should immediately begin implementing 

the use of solar/electric conversion techniques, but rather to demonstrate the 

substantial amount of solar energy which is incident on buildings. 

The use of solar energy does not require as much shifting of mental 

gears as might'be thought. From the point of view of the mechanical engineer, 

solar components can be incorporated into electrical/mechanical systems with-' 

out having to think about such systems in a new way. They are, in fact, com­

patible with off-the-shelf components such as pumps, heat pumps, heat 

exchangers and storage elements. Many of these latter components, however, 

will require newly-developed versions to achieve optimum performance when 

combined with solar elements. 

6. Applications of Solar Energy 

The simplest as well as only application of solar energy conversion that



has been widely used is for domestic water heating. In Japan, for example,



several million inexpensive solar water heaters currently are in use: they



are essentially plastic water bags with solar transparent tops and black



bottoms. They do not store heat well in cool weather, and cannot use



4 We differentiate kilowatt hours electric from kilowatt hours thermal in order 
to ,distinguish the actual electricity used from the thermal content of the fuel 
needed to generate the electricity. 
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supplementary forms of energy; therefore they usually provide heated water 

only at the end of a generally sunny day. Slightly more complex are the solar 

water heaters pQp.ular.ly .used -in--Isr-ael-and Australia: ---they-conb-iine glass and 

metal collectors with insulated storage tanks. Electric resistive boosters are 

often used to guarantee year-round availability of hot water. In southern 

Florida some 50, 000 simple solar water heaters (generally nonsupplemented) 

were installed from 1945-1960 when the local cost of electricity was very high 

and alternative fuels were unavailable. When natural gas became regularly 

available, these systems were no longer of commercial interest, and few are 

currently produced for the Florida market. 

Another commercially available product is a solar swimming pool heating 

system which utilizes an extruded plastic, low-cost solar collector that can 

maintain a typical swimming pool at 80'F with south-facing collectors equal in 

area to about half that of the pool. 

Somewhat more sophisticated fuel-assisted solar hot water heating 

systems are used in hotels and schools in Australia; they operate heating 

systems as shown in Figure 2-11. Basically, a nontoxic, noncorrosivb, and 

nonfreezing fluid is circulated through the collector. The fluid-is heated, then 

pumped to a heat exchanger mounted adjacent to or within a storage tank. The 

fluid passing through the exchanger gives up its heat to the cold water in the 

tank, which has been fed to it by an external source. The cooled fluid returns 

to the collector for reheat, and the heated drinking-quality water in the tank is 

stored until needed. At that time, the water is sent to the gas boiler of the 

house or apartment system where its temperature is further boosted as 

required for use. This is known as a two-fluid system. It allows the use of 

corrosion inhibitors and antifreeze in the working fluid without contaminating 

the house drinking water supply. It essentially functions as a preheat for the 

portable hot water system in the dwelling unit(s). The extra cost of the heat 

exchanger and other equipment is in part made up by the ability to use a lower­

cost collector. Such systems would require approximately 70 to 100 ft 2 of 

south-facing flat-plate collector for each dwelling unit. 

J Gi 1 
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Domestic water heating systems can be extended to space heating through 

the use of larger collectors and storage tanks in conjunction with conventional 

hydronic heating systems and -baseboa'rd radiators or fan-coil units in the wall 

or ceiling. Solar collectors with air as the working medium are also feasible. 

The heated air is then stored in rocks or other materials, and may be combined 

with conventional forced warm-air space heating systems. Using a variety of 

approaches, some two dozen buildings in the U.S. have solar heating systems, 

with several more now under construction or in planning stages. Figure 2-12 

illustrates the essential simplicity of such systems. 

An experimental solar heated house was constructed by Massachusetts 

Institute of Technology scientists, engineers, and architects in 1958 after many 

years of theoretical and experimental work with smaller solar heated buildings 

(Figure 2-13). This house incorporated a 600-ft2 water heating solar collector 

with 1500 gal of primary thermal storage. Auxiliary heat was provided by a 

supplementary oil burner, and hot air was distributed through a fan coil-type 

of heat exchanger. Direct conversion of solar energy into heat provided 

roughly half of the winter heating requirements for the two-story, 1450-ft 2 

house. It should be noted that heating requirements for this heavily insulated 

house were considerably less than those for more conventional- counterparts. 

The house was designed, built and evaluated as part of an ongoing solar energy 

research program at MIT, led by Professor Hoyt Hottel. 

Also completed in 1958 was a house designed for solar energy researcher 

Dr. George L5f (Figure 2-14). The LZf home is a flat-roofed one-story struc­

ture in Denver, Colorado, with-2000 ft 2 of living space. Although originally 

designed as a conventionally heated home, a solar heating system was incor­

porated into the final plans. The solar collector consists of two 300-ft2 arrays 

each containing 20 30-in. by 6-ft panels. Air passing through these panels is 

heated as high as 175°F. It passes to the basement where some of the heat is 

used for domestic hot water; then it goes on to either a storage unit or to a gas 

furnace used for supplementary heat when there is inadequate sunshine. The 

storage system consists of two fiberboard cylinders normally used as forms 

for concrete pillars. The insulated cylinders are filled with 11 tons of gravel. 
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Heat is transferred to the rock storage system, and cooled air is then 

recirculated through the rooftop collectors. This system supplies about 30% 

of the heating required for a typical winter, and virtually all of the hot water 

for a year. At today's prices the system in the L6f house would save a Denver 

resident $150/yr on gas bills (1973 prices). If mass produced, it would sell 

for as much as $1400 more than a conventional system; custom made installa­

tions would be even more expensive. 

Among solar heated houses designed more recently is a demonstration 

project for Ms. A. N. Wilson, of the National Park Service. The 1400-ft 2 

house in Shanghai, West Virginia, reflects a high level of energy conservation. 

The main solar array is a half water-half ethleneglycol solution heating collec­

tor 588 ft 2 in area, facing south at a 45-deg angle. Several storage tanks at 

different temperatures are used for thermal storage; this permits greater 

flexibility for the heating and cooling subsystems. Supplementary heat is 

provided by an oil-fired water heater. The house was designed by P. Richard 

Rittleman, an architect and mechanical engineer, and member of the NASA/NSF 

Solar Energy Panel. 

Another recently designed building using solar heating and cooling is the 

new Massachusetts Audubon Society headquarters. The Arthur D. Little 

Company and Cambridge Seven Associates, Architects, collaborated on the 

design. While most constructed solar projects have been primarily of resi­

dential scale, this one is considerably larger, involving a solar collector of 

approximately 3500 ft 2 . It is estimated that the building will supply between 

65 and 75% of the total seasonal heating load, while a solar-driven lithium 

bromide absorption refrigeration unit will be used to service the building's 

15-ton air-conditioning load. 

Another solar project, which is definitely not in the mainstream of the 

U.S. construction industry but which deserves serious mention in any overview 

of solar homes, is the dome house built near Albuquerque, New Mexico, 

designed by Robert Reines, also a member of the NASA/NSF Solar Engery 

Panel. (Figure 2-15). 
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(Photo: Richard Caputo) 

This dwelling system derives all of its energy needs from the sun and the wind. Wind driven 
generators provide all electrical energy needs, including space heating. Solar panels and an 
insulated hot water storage tank provide abundant hot water all year. Thermal and electrical 
storage is adequate to handle periods without sun or wind for up to several weeks (demonstrated 
during the Winter of 1972). Thick styrafoam insulation and an airlock entrance minimizes 
heat losses during the Winter. 

This system was conceived, designed and built (with some help from his friends) by


Robert Reines. It is located near Albuquerque, New Mexico and :epresents a serious


commiltment to demonstrating the possibilities of ecosystemic design.


Source: New Energy Technologies for Buildings, 1975. 

Figure 2-15. An Integrated Living System 
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Reines' prototype system consists of a highly insulated home structure 

with wind-generated electricity providing all the requirements for space heating, 

lighting, appliances, and other equipment. Three solar collectors and a large 

insulated hot-water storage tank provide abundant hot water all year. The 

Reines -designed community contains a number of buildings to house a small 

group of students and professionals from various fields. The prototype system, 

which represents a personal commitment on the part of Reines to an ecosystemic 

ethic, survived a rough winter without any failure of the subsystems. A simpli­

fied operating diagram (Figure Z-16) shows the system's basic elements. 

This system demonstrates that a carefully designed and operated living 

system can provide comfort and amenities without the use of energy other than 

that supplied from its own wind and solar conversion elements. Although 

neither we nor Reines would propose that future U.S. communities entirely 

resemble this system in form, the concept of systemic design, with energy 

conservation as an implicit part of the design ethic, is applicable to the design 

and operation of more conventional structures and communities. 

Only a few solar-operated air conditioning units have been assembled. 

and still fewer buildings have been constructed that have even partial solar air 

conditioning. Perhaps the approach to solar heating and cooling which is most 

akin to the direct use of natural energies exemplified by Mesa Verde is that 

developed by California chemist-engineer-inventor, Harold Hay. His approach 

is particularly well suited to the hot, dry climate of the Southwest, although it 

can also work elsewhere. The principle of operation is shown in Figure 2-17. 

The roof of a building consists of a metal ceiling, with a roof pond covered by 

a movable sheet of insulation. During the summer, the pond is cooled at night 

by nocturnal radiation, evaporation, and conduction to the atmosphere. In the 

day, the insulation, with a reflective upper surface, covers the pond, prevent­

ing solar energy from warming it; heat from the interior space is absorbed in 

the cool roof pond. During the winter, the procedure is reversed. In the day, 

the insulation is retracted and the roof pond is heated by the sun. At night, the 

pond is covered by the insulation, and the warm water in contact with the ceiling 

keeps the interior spaces warm through radiation and conduction/convection. 
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Source: Schoen. Hlrshberg. and Weingart 

Figure 2-17. 	 A Naturally Air-Conditioned Building 
(Designer: Harold Hay) 
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A prototype home has been constructed in San Luis Obispo, California, 

to demonstrate that a relatively simple system such as this can provide most 

heating and cooling needs for one-story buildings, located between 350 N. and 
35°S. latitudes, and most of the needs for two-story buildings in fairly mild 

climates in the southwest. Hay feels that the evaluation of the building will 

confirm his expectations that such a system will not add significantly to the 

first costs of homes built on a production basis. 

The approach to solar air conditioning which is being more widely pur­

sued at this time is to provide heat from solar collectors to ammonia or lithium 

bromide absorption refrigeration units similar to those which are the basis for 

residential and commercial gas air conditioning units, and to the gas refriger­

ator which used to be a common household appliance. Lithium bromide 

absorption systems can be driven by solar-generated heat at 180'F from a 

flat-plate collector, while ammonia absorption systems require heat in the 

ZZ0F range.



In addition to the absorption concept, considerable effort is currently 

being expended to develop higher temperature flat-plate collectors or low con­

centration (single-axis tracking parabolic) focusing collectors in order to 

create shaft horsepower. Rankine cycle engines could then be used to operate 

standard compression refrigeration units and to drive electrical generators. 

As with water and space heating systems using solar energy, a supple­

mentary heat source such as natural gas or fuel oil is required if economics 

of operation are to be optimized, since storage of thermal energy for long 

periods (over several days) is far more expensive than systems with supple­

mental energy sources. A simple conceptual diagram of a combined solar 

heating/cooling system is shown in Figure 2-18. 

An experimental solar-cooled house has been constructed in Brisbane, 

Australia. The house was designed with a 750-ft 2 collector driving the 3-ton 

absorption unit. The system demonstrated that solar air conditioning could be 

achieved with a reasonable collector size, but detailed evaluation has awaited 

additional funding. 
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Figure 2-18. Combined Solar Heating and Cooling With Seasonal Storage 

The use of photovoltaic thermal/electric collectors offers a number of 

potentially exciting possibilities for new energy systems. On a large scale, 

such a system might be used to provide a community of 40, 000 persons with 

energy for all purposes. The implications of such systems upon the developing 

nations and their continuing efforts to raise their standards of living (as well as 

the increasing competition for the world's resources) could have a significant 

impact upon global economics and politics by the turn of the century. 

One possible system which combines the thermal and electric conversion 

capabilities of a photovoltaic panel is shown in Figure 2-19. The system would 

provide heat directly for water and space heating; it would also provide elec­

trical requirements for buildings and some forms of transportation (such as 

electric cars). If the system were connected to a utility grid, it could supply 
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Figure 2-19. 	 Combined Solar-Thermal Electric Conversion 
(a Conceptual Sketch of one Possible System) 

energy to the grid during some parts of the day and draw electricity from the 

grid at night if supplemental energy was required. Such systems could act as 

load levelers for local electric utilities. 

A modest but significant step in this direction -- Solar One, an experi­

mental 1500 ft 2 building -- has been constructed at the University of Delaware 

under the direction of Professor Boer, Director of the Institute of Energy 

Conversion. It uses cadmium sulphide photovoltaic cells as solar collectors 

to generate electricity, and lead-acid batteries for storage. Direct current 

electricity is used for some loads (lights, stove, heating), while alternating 

current is used for other appliances (heat pump, fan motors, refrigerator). 

Thermal storage, together with a heat pump, maximizes the use of solar 

energy, and shifts the operating time of the heat pump into off-peak nighttime 

operation. Planned for the building are relays to control load switching 

between the solar system and the utility grid to provide load relief for power 

utilities during the hours of peak demand. 

Because there are no commercial, mass-produced solar conversion 

elements presently on the market, the costs of owning and operating various 
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types of solar energy systems are not yet well understood. For some of the 

simpler systems, costs have been estimated from experience with prototype 

-heating and cool-ing systems, and'frpm s6lar collector manufacturing exper­

iences in Australia, Israel, and Florida. Most reasonable estimates indicate 

that solar water heating, space heating, and air conditioning would be compet­

itive, on an annualized basis with many all-electric systems. For example, 

solar water heating and space heating could compete well with resistive 

electric heating at 1973 prices for electricity in most areas of the country. 

These solar systems generally cannot yet compete with gas or oil. But the 

rapid rise in prices for such fuels and the growing constraints on new natural 

gas hookups in many parts of the country are likely to make solar systems 

competitive in areas currently serviced by these fuels within the next one to 

ten years, depending on the locale. 

Although the cost of photovoltaic spacecraft power systems is extremely 

high, the possibility for producing commercial analogs to such systems for 

terrestrial applications at reasonable costs seems a strong possibility. Recent 

research at the University of Delaware indicates that if the processes for mass 

production of reasonable efficient (5% or greater) thin film solar cells can be 

developed, the cost of electric energy delivered by systems incorporating such 

panels is likely to be competitive with central station-generated electricity 

within the coming decade. Whether or not this can be accomplished is a matter 

of considerable debate in the solar energy community. 
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