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	 FOREWORD

The pool boiling experiment developed herein was motivated by
preliminary experiments and rationale done by Nanik Bakhru as his
doctoral dissertation under the direction of John H. Lienhard at
the University of Kentucky and under the support of an earlier
NASA research grant (NGR18-001 -035). This conceptual design study
was done under NASA Contract NAS3-20397 in the Boiling and Phase
Change Laboratory of the University of Kentucky's Mechanical Engineering
Department. Mr.. Thomas H. Cochran served as Project Manager both for
this Contract and the antecedent Grant. His contributions to the
success of both were varied, unselfish, and substantial.

The Principal Investigator in this work was Professor John H. Lienhard. 	 {
He and Professor Robert E. Peck of the University of Kentucky
co-authored this report. Dr. R. Bhatti also worked on the contract
in its early stages, and developed much of the material in section II-C.
This experiment is eventually to be incorporated into the much larger
Flow Boiling experiment being designed by R.D. Bradshaw and C.D. King
of General Dynamics Convair Division under NASA Contract NAS3-20389.
Their design reports have also been very helpful in the present work.
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A simple experiment-is formulated to facilitate the study of

pool boiling in the low gravity environments of the spacelab.

The experiment is contrived in such a way as to corroborate (or

correct) and extend the scope of Bakhru's earth-normal gravity

experiments. Bakhru's work showed, through the use of proven scaling

laws, that the hydrodynamically determined peak and minimum heat

fluxes would .cease to occur at low enough gravity. He also noted

many features of the character of boiling at low gravity. The

experiment will investigate these characteristics under the conditions

for which they were predicted.

The apparatus will consist of a set of small, sealed test cells,

each containing a single cylindrical platinum electric heating

j	 element immersed in liquid water, methanol, or Freon-113. Various

combinations of fluid properties, heater diameter, and g-level

^+	 (10 
2 

and 10-4g	 ) will provide information over a range of twelvet_ earth

test conditions.
a

The experimental procedure will require preconditioning the cells

to the prescribed saturation temperature. An independent battery

power supply to the heater will then be linearly increased for 45

seconds or until the heater temperature exceeds 500°C. It has

been verified that the test conditions in the cell will remain

nearly constant during this brief test period.

The cylinder heat flux and temperature and the cell temperature
t :.E

and pressure will be continuously recorded during the run in

conjunction with high-speed  filming`of the boiling process. The

total time needed, to complete all ofthe twelve tests is estimated

Xi_
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to be about two hours. The data will be used to construct complete

boiling curves for each set of test parameters. The photographic

data will show the nature of vapor removal and the motion of vapor

a
patches, once boiling has begun.

The experimental system is designed to be operated within the
z

two-phase flow experiments being designed by General Dynamics

Corvair Division. The weight of the experiment package will be r

about 60 kg. The estimated preflight cost of the experiment is

$46,500.

i
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TASK I: SCIENTIFIC JUSTIFICATION

A problem that has long vexed NASA (see, e.g., an early review by

Siegel [1] 1) is that of understanding what the limit of nucleate boiling

will be in reduced gravity. Siegel was one of the first people who

devoted serious attention to low-gravity phenomena and one of his main

concerns was determining the influence of gravity on the peak heat

flux, gmaX. Reference [1] refers to many studies of low gravity burnout

which, like the pioneering high-gravity studies of Costello (see, e.g.,

[2]), sought to validate or disprove the one--fourth power dependency of

gmax on gravity, g, that the Zuber-Kutateladze hydrodynamic theory [3]

predicted.

These studies generally showed that the one-fourth power law was

shaky at best. Costello, who pointed to this shakiness in expressing his

doubts about the hydrodynamic theory in the early 1960's, was just
>t

starting to perceive `the real reason for the failure of Zuber's theory

n	 at the time of his premature death in 1965 141. The reason was that

`	 Zuber's theory was being erroneously applied to finite heaters of all

shapes, when it had only been derived for an infinite, horizontal,'

upward-facing heater.

In 1968, Lienhard, [51 showed formally that Costello and Adams' idea

was correct -- that in a finite heater configuration, the influence of

L'	 gravity entered, not only as g1^4 in Zuber's flat plate expression, but

also through a geometrical, function of R' where:
a;

R. HE R g (Pf - PgUa	 (l)

j

ff 	 1Numbers  in square brackets denote entries in REFERENCES.	 1
1
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in which pf and pg are the saturated liquid and vapor densities, and

a is the surface tension, all evaluated at the local saturation

temperature, Tsat

NASA was interested in this discovery and, in 1967, they funded an

extended program at the University of Kentucky Boiling and Phase-Change

Laboratory to explore it fully. 	 By 1973 this program had produced an

extensive study of interacting geometrical and gravity effects which is A

summarized in the NASA contractor reports:[6,71. 	 This work resulted in

a complete hydrodynamic theory of the peak and minimum pool boiling

heat fluxes for large classes of finite heaters.	 The influence of 1

I
viscosity, the electrolysis analogue, related questions of the influence

3

of induced convection in certain configurations, were among the many
Z

=	 ;i

factors considered in the effort.

But the key issue in this exploration was that of determining how

gmax behaved as g approached zero. 	 A number of specific predictions
3

for 
gmax 

were developed for different configurations.	 They all took the form
9

q	 -max	 = fn (R')	 (`)

gmaxZuber k

These expressions were highly successful but they failed to correlate

data for R' on the order of 0.1 or less. 	 This failure was entirely

understandable since R' is the square root of the ;ratio of gravity to _a
F

capk1lary forces. 	 When R' is below 0.1,gravity is swamped by surface

tension, and the hydrodynamic mechanisms (which depend upon the balancing

of both forces) can nb longer take place.
9

This result placed the study -- and NASA -- in an awkward position.

If hydrodynamic "burnout" no longer occurred at low gravity, then what

did?	 Siegel and others had observed some sort of change of behavior
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that they might have viewed as a hydrodynamic transition. The literature

was shot through with the idea that there was a peak heat flux at a

low gravity. The final step in the NASA study was therefore to study

q
max 

closely at very small values of R'.

To make observations at small values of R' one must either make

extended studies in-a low-gravity environment or obtain data on extremely

small wires at earth normal gravity. only the latter course was then

open, and Bakhru [6] undertook to develop such an experiment. The

result of his effort was the basic paper which demonstrated the need

for the present space shuttle experiment. Because of its importance

we include it in its entirety in Appendix A. The key ideas from this

paper are:

1) The visual details of boiling when RI is on the order of 0.01
r	

show a complete absence of the hydrodynamic processes.

2) Plots of the wall superheat against the heat flux, q, from

K
the wire, show that the conventional multivalued behavior

vanishes as R' decreases and the curves are entirely monotonic

when R' is on the order of 0.01.	 3

3) There is no nucleate boiling in the range: R' < 0.01.
7

Instead the wire is blanketed with patches of film boiling.
j

Under some conditions the patches grow and collapse (or

"flicker") and under others they are stationary. In either

case the fraction of the wire that is blanketed increases

with heat flux until blanketing is complete.

4) Whether the vapor patches flicker or remain stationary

depends on the magnitude of a "flickering parameter", A, where2:

2 Symbols not defined in contetit are explained in the nomenclature section
of the paper in Appendix A. 	 3
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A H 2cghv 
fg T sat /kh 

fgAT 	 (3)

In water, for which A was about 0.17, the vapor patches

flickered on and off. In the organic fluids, A was always

less than about 0.02 and flickering never occurred.

r+
1

LJ,
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1 TASK II:	 CONCEPTUAL DESIGN OF EXPERIMENTS

y
A.	 Objectives

Bakhru's	 makes it s^work	 absolutely clear that; under low gravity

there should be radical changes from conventional boiling behavior. rr
{R M The hydrodynamic mechanisms cease to exist and are replaced by something

different.

Theroblem is that modeling low gravity conditions with smallp	 g	 g	 Y E..;

wires might possibly give a wrong impression of the nature of the j

r^ replacement phenomenon.	 Not only did Bakhru's wires have very low

" thermal capacities, but their surface finishes are inherently smoother

than those of tare rods.	 Furthermore	 theg	 ,	 previous work at earth-normal

and elevated gravity has shownthat gravity only enters through

certain dimensionless groups, but it hasn't eliminated the possibility f
i

that other groups might be important only at very low gravity.	 For

these reasons we propose an experiment in which the relation between i
£ q and AT, and other aspects of boiling, can be studied in the very r

low gravity environment of the space-shuttle.

s
The objectives of this experiment are as follows:

k

1)	 It should verify the existing prediction of q	 for cylinders
max

in the range R' 	 > 0.1	 (See, e.g., page 36 in [7] and the

surrounding discussion.)

2)	 It should provide low gravity observations of boiling
r

^_. (comparable with those in Appendix A) in the ranges: 	 R' < 0.01

and 0.01 < R' < 0.1.	 Entire curves of heat flux against]

temperature difference should be constructed, especially in the
a

low R' range.
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3) heaters, both with higher thermal capacities, and thermal

capacities comparable to those in earth-gravity experiments,

should he used to avoid confusing effects of thermal capacity

with those of low gravity. In particular the phenomenon

of flickering should be investigated. It should be ascertained

whether or not the flickering criterion developed for small

wires also works at low gravity.

B. Approach

Geometrical considerations. The heater configuration in a low

gravity boiling experiment must be a "finite" geometrical configuration.

We have already seen that size and gravity are interrelated. There

is thus no obvious way in which a large -- effectively infinite -- flat 	 j

plate, with no characteristic dimension would reveal the special

influence of reduced gravity. Indeed, an infinite, plate would be

hard to approximate at reduced gravity since the vapor jet spacing

would be very large. The simplest and most reasonable configuration to 	 ia Y

i

deal with is that of a horizontal cylinder since we already have a
iwealth of information dealing with it. It is the configuration that

we propose for study in the space shuttle.

Independent variables. The proposed experiments are designed

to study systematically the influence of R' and g on boiling from
t

horizontal cylinders. We are interested in the following three

ranges of R' values;

R_'<0.01	 (Something on the order of R'=0.005.) This will

permit observation of low-gravity boiling in the

regime in which the hydrodynamic processes have

vanished and there is no peak heat flux.

1

i
k	 a
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0.OU 'Q-1tl	 tSomothinq an thy? order of 1'-0.030.)	 This Will

r..
f

a	 a - .. 	 `facilitate, observation of boiling in th 	 transition

region in which the hydrodynamic mochanisms are

}	 ;
^I

only partially established.

r	 0 . 1)	 WcSmo thing on the order of It s -0.20.)	 This will
is

k fatilitate low-gravity observation of boil.;iny in

the re i o in which the cst5blishod hydrodynamic
Y

processes should prevail. 	 i

The oypwrim e n& will be run at two reduced gravity levels;

g ,;lAO	 Ws" and 9-SX10 	 t11A l .	 The latter is the lowest lzY&	 s

ux that Will be ro sonhbly ;free of g-jitter 'effects. 	 The former,
f

availab le only in short: bursts up to 45s each, is the highest S.evel,	 q

available.	 Togethor: they provide two Very different low\ gravity i

levels and Will allow confirmation of any sealing laws deduced from,

or verified by, those tests.

Mpesimontal Achniam,	 The heater will be immersed to 4 fluid;

a
reservoir and heated electrically.	 we envision a sot of small;

sealed, thermally cond:1 Ctitq test cells, each of a;hj%c,b oonta i.bs a

single c ylindrical Tester mounted horizontally A th y+ minimal

gravity fiela.

The specification of heater sizes and fluid properties 1',\t1ich

are a:eloted tt 1 1 , and the box dimensions will be discussed in

subseRvent Sections.	 One reusable box will be Asigmted for each

set tai test conditi=; backup test tolls Will also be provided.	 F

A prohoator will be vZod to raise the saturation pressure and

temperature in the test cool to an appropriate lnvol to be specified

.	 'F Power Will then be applied to the heater wire and i.ncr:easedn linearly

LmA
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with time until the average Nvire temperature reaches 
a Pro-set shut-off

value. Continuous heat flux,	 and photographic data

Will be obtained and subsequently used to analyze the boiling process.

Xf the tests are of short duration, the pressure and temperature

rise in the test cell should not be excessive and no external

cooling apparatus will be required. The shift 
in the saturation

state will subsequently be shown to be. small enough that it can

easily be toleratod during such brief heating in a constant volume

process.

it is also easy to Show that the amount Of evaporation is

virtually negligible in such processes, thus the liquid level is

practically constant. ro ,.r example, in a closed container SO percent

filled with liquid water undergoing a toiiipe-ratura alvanxj-a from

2 100C to GG 
0 
C only 0.04 percent of the water will evaporate. 'Thus

the proposed technique should give nearly constant test conditions.

we shall also show that the scaling parameter R I is insensitive to

the cell pressure and saturation temperature.

The proposed oxperimental system offers many advantages, e.q.:

photography can be made continuous during the run; if the temperature

rises the liquid will romain saturated in the closed, boxes that are

used; and operator intervention is minimized. A schematic diagram

of the overall experiment system is presented in Figure 1. The

design and specification Of 
the Various System 

cOukPOnclits, the

experimental procedure, and the data reduction scheme are addressed

in subsequent sections.

C. Liquid Selection and S.1-ing Of heaters

Tile problegi of selecting appropriate liquids for the ex^ r ipe imenLs

And the probloiii of setting the dj.iipeter 
of 

the test ht~ators are

-- __ .-e_ 	 LA
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interrelated through the scaling parameter, R', and to a lesser extent

through the flickering parameter, A. The fluids chosen for evaluation

included those studied by Bakhru (water, benzene, methanol, acetone,

and isopropanol), and two others. These were ethanol which is

similar to (but less toxic than) methanol 3 , and Freon 113 which

promises many advantages as an experimental fluid. 	 i

Physical properties. Before turning to the specification

of values of R' and A, we need to identify the physical properties

of the fluids. The evaluations were carried out by Bhatti and

details are included in the second monthly progress report for the

present work [9]. The main source of these data was a collection of

data fits made earlier for NASA by Reich [10], and a DuPont report

on data for Freon 113 [11]. The specific data sources are as follows:

- vapor pressure data [10], [11]

- liquid density [10], [11]

- latent heat of vaporization [10]

- vapor density [10], [11], and the ideal gas law at very low pressure. 1
liquid viscosity [10], [12]

specific heat at constant pressure, for the liquid [10], [11]

- surface tension: calculated from an earlier version of a

new correlation [13]

- thermal conductivity linear extrapolations in temperature were run

through the limited data given by Reid and

Sherwood [14] for the five organic liquids,

through the Freon 113 data in [14], and

through Bretsznajder's [15] data for water.

3And which, after all, can be drunk if the trip home waxes long.

__- .0



4
1

-1

r
1	 r	 i

11

- Coefficient of thermal expansion, s: These were obtained

by differentiating Washburn's [16] liquid

density formula for ethanol, Reich's densities

for the remaining organic liquids [10]',

and densities from [11] for Freon 113.

These data are listed for four typical pressure levels in Tables 1,2,3,

and 4. The numbers in these tables are generally a bit less

accurate than the sources from which they were derived, since the
F

original data were curve-fitted with equations to facilitate

computerized calculations.4

-1	 Selection. As noted in the preceding section, we wish to

S^

;,•^	 investigate boiling in the hydrodynamic region, the non-hydrodynamic

t
region, and the transition region, at two different low gravity

conditions. Accordingly we use the data in Tables _1,2,3, and 4 to
^a	 t

plot the heater radius that will give R'=,0.005, 0.03, and 0.2 	 3

'
a

at 9/ge=10- 2 and 10-4 , as a function of pressure in Figures 2a to 2f.

is These figures all reveal that the pressure can vary (as we

have proposed) without influencing R' by more than a few percent

in the pressure range of interest. 	 This means that no extra-

ordinary measures need be undertaken to keep the cell pressure

at design values.	 This in turn will result in great simplification

`.
i

of the experiment.

Two factors restrict the absolute size of heaters. 	 One is

thepower required by heaters of large surface area. 	 The other is
i

the aspect ratio, or ratio of heater length to diameter. 	 In

,i 3

4Generally they lie within what we could have termed "slide-rule
accuracy", a scant five years aqo.
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Bakhru's experiments this ratio was on the order of 10 3 so that

end effects were inconsequential. We should like to keep this

ratio as large as possible.

Figure 2e shows clearly that no experiments should be attempted

at the lower gravity level with R'=0.2 since the heaters would be

too large.

There are basically three reasonable choices of fluids: water,

Freon 113, and one from among the remaining organic substances.

We shall eliminate all but one of the organic liquids:

benzene:	 Because it is too toxic and highly flammable.

ethanol:	 Because it was not among Bakhru's liquids, while

the rest of this group was.

acetone and i,sopropanol: Since Bakhru reported only one run with

each of them.

Methanol remains. Bakhru provided data for six values of

R' in methanol. It is not toxic in modest dilution with air and it

is less incendiary than acetone or benzene. Thus we specify water,

Freon 113, and methanol for use in the experiment.

The water-filled container will be used to observe fairly

small platinum cylinders at low pressure and R'=0.005 or less.

The largest, of these can also be run at R' =0.03 under 10-2gearth.

conditions. Sizes in the water capsule will include:

u:u ,



Condition 2xR, cm g/ge R' press,atm. T°C

1 0.1524 10-4 0.003 0.17 57

-22 0.1524 10 0.03 0.17 57

-43 0.0254 10 0.0005 0.17 57

4 0.0254 10 ` 0.005 0.17 57

t

The methanol filled container will be used to observe both-

large and small heaters under all three conditions of R'.

Condition 2xR, cm g/ge R' press,atm. T C

-25 0.64 10 0.2 0.33 39

10-46 0.64 0.02 0.33 39

,4
7 0.17 10 0.005 0.33 39

-28 0.10 10 0.03 0.33 39

The Freon-filled container will also be usedto observe the range

of R' values.

1

Condition 2xR, cm g/g
e ,

R' press,atm. T°C

-49 0.061 10 0.003 0.67 36

210 0.061 10 0.03 0.67 36

-4ll 0.61 10 0.03 0.67 36

-2
12 0.61 10 0.3 0.67 36



gravity and six are at the lower gravity level. The sizes above

are not precise. They can be altered slightly with unimportant

proportional alterations inR'. Thus we can standardize on five

heater sizes. The lengths of the wires will be specified as 19 cm

for the two largest (0.61 and 0.64 cm dia.) wires and 5.1 cm for

I	 the remaining ones. This will give a minimum length to diameter

G
ratio of 30 which should be sufficient.

The Flickering Phenomenon. The flickering parameter, A,

involves the heat transfer coefficient, h, at the inception of

boiling. This is a natural convection value, and to calculate it

we use the expression recommended by Bakhru on the basis of Herman's 	 i

equation, subjected to Langmuir's correction:

2k
h =

	

	
f	

1/4	
(4)

D In (1 + 5/RaD )

where kf is the thermal conductivity to the liquid, D is the

diameter of the cylinder and Ra D is the Rayleigh number based on

diameter. Thus equation (3) can be expressed as:

4av
fg Tsat

uk'	
1/4

ADT Dh In 1 + 5	

(5)

fg
gsAT D3
	

2Pf cp
f

The problem with the use of equation (5) is that we do not know

the inception temperature, AT, and any attempt to predict it will

be chancy. Bakhru's values, obtained for very small wires, might

serve as an upper bound. This would appear to bereasonable because on
3

Bakhru's small wires the first nucleation corresponds with a site
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density, n, of about 10 active nucleation sites per cm 2 .	 It could

not begin at a lesser value because, on his small wires, n>10/cm 2 when	 }

the first bubble nucleated. 	 The site density at which sites begin to

reinforce one another sous to enhance heat transfer is far less than

this -- about 0.3 sites/cm 
2

[17).	 Thus, if a wire is larger, we can

surely expect a far lower value of n, and with it a lower AT, at

r ŝ
L

inception.
o o

Bakhru's inception values of AT were about 40 C for water

c

t"
and 440C for methanol.	 For Freon 113, AT could be either larger

or smaller.	 However, the tendency of AT for organic liquids is to

"onexceed the value for water.	 Since Freon 113 is	 the other

l;f side of the organics from vater 	 (lower latent heat and vapor

{ pressure, for example) we shall conservatively guess that AT is

0
about 70 C in this case.

These extremely rough estimates of AT are used to estimate

the R.H.S.. 	 of equation (5) 	 since it is very weakly dependent on

6T.	 The resulting values of AAT are plotted as a function of

r, pressure, heater size, and liquid in Figure 3.
I:

With reference to Figure 3, and recalling that Bakhru showed

only that:'

-flickering definitely occurred when A<0.02,

flickering did not occur when A>0.17, and

the flickering situation was unknown in between,

I we can anticipate what will happen in the proposed tests:

Freon on the smallest wire would definitely not flicker,
_o	

0
only if AT were as small as l C.	 Since we expect DT»1 C,

anything can happen.	 (It probably will flicker.)
to

[
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- The larger wire that is used in water probably will flicker.

- Methanol will most likely fall in the unknown region,

except for the largest heater which.can function in the

established flickering region if AT is less than 20
0
 C.

- The smaller wire that is used in water will probably be in

z
the indeterminate region.

- Freon on the large wire should definitely flicker.

Thus, the proposed experiments promise to test Bakhru's

flickering correlation over the full range of possibilities and

1

to further delineate that correlation.

Thermal Capacity.	 Thermal capacity poses a problem which can

easily be sidestepped. 	 Appendix A (see pages A-10 and A-11) shows

that the flickering phenomenon depends upon a Peclet number and	 {

a Biot number.	 The Biot number would remain unimportant in the

phenomenon unless the cylinder radius were increased to more than

1 cm, in the case of a platinum wire. 	 The Peclet number is a

3

dimensionless velocity of the vapor patch front and the analysis

suggests that to maintain similar behavior, the physical velocity

must slow as 1/+rR'.	 These difficulties will be overcome, and

'
similarity with the small wire behavior will be maintained, bya

i

using a thin layer of resistance heater material plated onto an
d

insulating cylinder.

D.	 Heat Flux Predictions

In the present section we estimate,. the cylinder heat fluxes

that will enable us to observe the complete boiling process for
u;^ G

each of the twelve test conditions identified in the preceding

section.	 This information will allow us to complete the heater

design and to specify the heater power requirements.	 We may also
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1

assess the need for external cooling to maintain the various test
Y

cells at the desired saturation conditions. 	 The heat flux data
d

are presented in a series of curves (Figures 4a-f) which display

cylinder heat flux as a function of the temperature difference

between the heater surface 
(Twall) 

and the bulk fluid saturation

temperature 
(Tsat) 

for each of the twelve test environments.

The curves represent the initial (natural convection) and

final (film boiling) heat fluxes for increasing heater temperatures.

a

The natural convection heat flux for small wires was calculated

using the heat transfer coefficient from equation (4).	 The film

boiling heat transfer coefficient was obtained from equation (19)

in Appendix A.	 Fluid properties were evaluated at (T 	 + T	 )/2.wall	 sat

The curves do not predict where the transition from natural

convection to film boiling will occur, but indicate for design

purposes the	 expected range of temperatures and power requirements.

The actual transition point will be learned from the spacelab

experiments.	 Since film boiling should be well-established below
1'.

AT=5000C, we will designate this temperature difference as a
i

reference point for terminating each test run and for determining

the maximum heat load requirements. 	 It should be noted that the
r

heater power requirements do not exceed 120 watts in any case. j,

E.	 Mechanical Design

The test heaters.	 The test heaters will be electrical resistance

heaters supplied by a low voltage battery that is independent of the

higher voltage cabin power supply. 	 The temperature of all heaters

will be obtained by thermocouples which give a sequence of local I

measurements along the inside of a thin tubular resistance heater.
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Condition # 2
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u
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4

r	 I	 10	 100	 1000
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y

3

Fig.. 4a Predicted heat removal from a 0.1524cm
cy lindrical platinum heater in water: peat

0.17atm, Tsat 57°C
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Fig. 4b Predicted heat removal from a 0.0254cm
cylindrical platinum heater in water: plat =
0.17 a tm , Tsa t = 57 °_C
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condition #6N
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v
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g	 ri

	

Cr	 .00
0.1

1
O

= 0.01
10	 100	 1000

wall superheat, Tw011 - Tsat (°C)

Fig. 4c Predicted heat removal from a 0.635 cm
cylindrical platinum heater in methanol:

Psat 0.33 atm, Tsa t = 39 °C_
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3: 1 E	 I	 condition # 8	 .`off
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Fig. 4d Predicted heat removal from a 0.17 cm
cylindrical platinum heater in methanol:
psat' 0.33 atm', Tsat = 39°C
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Fig. 4e Predicted heat removal from a 0.061 cm i
cylindrical platinum heater in Freon 113:

i

}}`"	 peat 0.67 atm, Tsa t - 36°C	
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condition # 12

	

0.1	 R 0.3	 ,\oc
g =10-2 J^^

0	 9e	 Goy	
.\\^^'

X
Cr 0.01	 4^J^
I^	 }

0.001

	

1	 10	 100	 1000
wall superheat, Twaii -Tsat (°C) j

condition #I l

	

3  0.1

	

	 R = 0.0
^E	 v

9 10- 4
ge 	 Goy .\^^

^oN ^^\
p	

^.

X'	 J	 J

Crx 0.01	 c`

1

0.001

	

1	 10	 100	 1000	 j ,
y wall superheat, Twari-Tsat ('0C)

Fig. 4-f Predicted heat removal from a 0.61cm
cylindrical platinum heater in Freon 113:
p s a t = 0.67atm, Tsat = 36°C
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' These heaters will be of two basic t ypes:	 1) thin small-bore tubing

for all diameters 0.17 cm or less, and 2) heating cylinders which have

been electroplated or sputtered or otherwise deposited onto dielectric

elements in which the thermocouples have been embedded, for the large

diameter elements.	 A standard wall thickness of .0051 cm is chosen	 t,
ti

for the tubular heaters, and a platinum layer of .00254 cm is to be

E
electroplated on the surface of the larger ceramic core heaters.

The two arrangements are depicted at the top and bottom, respectively,

of Figure S.

In each case we propose at least six thermocouples which will be

led out of the box through the rod, as shown.	 The thermocouples should
hj probably be chromel-alumel, although that decision could be influenced

by the plating process in the case of the larger rods.r

The configuration of the electrical connection to the rod can best
i

r

a
be arranged as follows: 	 A tapered copper sheath should be affixed to

each end as shown in Figure 6. 	 Such a sheath can very effectively be made
a

- by the electro-deposition of copper onto the platinum. 	 Whether or not

the entire sheath is deposited, or a larger diameter copper element is 	 (3
t3

soldered onto a thin sheath which has been electro-deposited, does not

matter.	 The length of the sheath should he such as to allow a clear

` run of 5.1 cm of the small rods between the sheaths, and 19.0 cm of the

large rods.	 They should extend far enough outside of the boa to

t accommodate.the necessar y electrical connections.	 The sheath design

shown here will serve the purposes of:	 minimising end effects,

.-, carrying current to the rod, and eliminating voltage drop between the
x

test length of the rod and the outside of the box.	 Since we have now:r

t	 'i

specified the heater dimensions, we may, examine the heat removal curves

(Figures 48L-f) to resolve the power requirements.
i
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butt welded	 very small gauge thermocouple
junctions-	 wires, one metal from left, the

other from the right with painted
insulation platinum sheath

The Small Rod Configuration

a deposited sheath of platinum
the two lead wires
of a thermocouple

junction
^predrilled holes

insulating core of ceramic
or other insulating
material	 ^y

F

Large Rod Configuration

Fig. 5 The configuration of heater rods with
six thermocouples in each one.
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The heater power supply. 	 Before specifying the heater power

supply we must resolve the electrical load into voltages and amperages.
1

e

This task is accomplished by determining the electrical resistance

of the platinum heating element and the required power dissipation.

^j

The maximum power demand for each test condition corresponds to the

4 film boiling heat flux at = 5000C in Figure 4.	 The detailed heater

configuration and power requirements are summarized in Table 5.

3

Since the voltage demands of the system are low, and since D.C.

is required, the current may be conveniently supplied by a small

battery operating through a rheostat. 	 The power supply for the small

heaters should be provided by a conventional three-cell battery with

about 11% volts per cell.	 one to three of these cells is to be imposed

in series according to the 'voltage required for the heater in question
i..a

(see Table 5).	 If each of the twelve experiments were to be conducted
1

twice for a period of about 45 seconds per run, the demand on the

battery would be on the order of only 10 amp-hrs, so a single small

battery should be adequate for the entire test.

The heating elements will be connected in series with a motor

driven variable resistor that is programmed to ramp the heater current

linearly from zero to maximum amperage during the test period. 	 The

heater power will be initiated when the test cell reaches the preheater

set temperature and will be cut off when the heater temperature reaches

°•500 C or when the elapsed time exceeds the allowable test period.
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4 ,

{

The circuit will be instrumented with voltage and amperage meters

to continuously record the heater power.

The test cells. The test cell configuration is set on the basis

of several constraints: The cross-section should be round on top and

rectangular on the bottom to encourage the liquid to cling to the

bottom under minimal gravity. It should be conceived with the notion

that it will be 80 percent filled with liquid during operation. It

should be wide enough to minimize sidewall effects and long enough

to minimize end effects. Finally it should be fairly narrow with

respect to its width.

Figure 7 shows the two test cells that we propose to satisfy

these requirements. Certain dimensions and other features of these

cells are set as follows: All of the small heaters are put in 8.18 cm

long boxes, and the large ones are put in 25.05 cm long boxes.

These lengths, Z , will give sufficient aspect ratio to the heaters

to avoid end effects. The height, h, is likewise specified as 5.1 cm

and 12.1 cm respectively; and the width, w, is chosen between 1.21 cm

and 3.81 cm to Lgive enough wall clearance without letting the boxes

_get heavy.

The boxes are to have pure copper walls which can be safely

assembled with a good grade of soft solder since their temperatures

remain low with respect to the softening temperatures; of even the

lowest grades of solder.

The windows of the test cells should be of a' good ,optical

quality plate glass,, on the order of 1/2 cm in thickness. They

should be mounted so as to give positive resistance to both imploding

and exploding, as indicated in Figure 8 The heater and test cell

i

3
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specifications will now enable us to resolve the heat removal

problem and to complete the preheater design.

The heat rejection problem. Figure 2 indicates that the scale

parameter, R', is insensitive to the cell pressure. Figure 3 shows

that the flickering parameter, A, is more sensitive to pressure; and

to learn more about its role we lva:vts su?gested keeping the pressure

somewhat above 
psat at room. t:empeature, in each case. Since the

exact operating pressure is not critical, we propose that no special

care be taken to regulate the cell pressure closely. Instead we

plan to let it drift a little with the temperature in the cell.

Nevertheless., to assure that A is low enough to give useful information

about the flickering phenomenon it will be necessary to assure that the

temperature of the cell starts near the previously specified operating

temperature and does not stray too far from it.

We calculate the temperature rise in each experimental test
I

by presuming conservatively that the maxim= heat flux is dissipated

over the entire test duration in a volume of liquid, determined by 	 -;1 4

rs

the test cell dimensions... Since a 45 second test period was

advantageous from the standpoint of the battery lifetime, we will

stand by that figure for the temperature rise predictions.	 ri

(Ultimately it will turn out that a 45 sec run is consistent with
Ga

'	
1

motion picture camera limitations as well.) Table 6 summarizes

the results of these calculations.

The twelve 'test conditions are described on the L.H.S. of

Table 6. The liquid, the operating pressure, 
psat and the corresponding

saturation temperature, Tsat' are listed first. The temperature

difference 
AT-Tsai ro (where the cabin temperature TC. 

is taken to be

i

s

3
s
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L. 21
0 C)is also listed.	 The final cell dimensions, maximum heat

fluxes, and the calculated temperature rise during a 45 second run

are listed on the F.H.S.

lr The resulting liquid temperature rises are all small enough

that they will not seriously alter the test condition. 	 Thus we

k are safe making 45 second runs, and no external cooling of the test

r' cell will be required.

L a
The cell preheater. 	 A preheater will be employed to condition

a

I.

)
the test cell internal environment to the prescribed temperature

and pressure at the start of each experiment.	 The preheater will

consist of an electrical resistance heating element fixed to the }

bottom of the test cell and powered by the 24 'VDC spacelab power

lr_a
isupply.	 The preheater will be turned full on or off by a thermostat

which is controlled by a thermocouple located in the vapor region

of the test cell.
j.

a A major constraint on the preheater operation is that the heat

input to the cells must be very slow to avoid nucleation. 	 The

preheater will therefore be operated in two steps. 	 First, the test

cells will be placed in an insulated chamber and "warmed" to the

desired saturation temperature. 	 Second,- the cells will be transferred

to the test section and the preheater will be used to maintain the

desired test conditions by supplying any heat that is lost to the

cabin environment.

In the first step of the preheater operation, the test cells

containing water will be kept in one chamber and heated to the
x^

o

55-60 C temperature range.. Another chamber will house the methanol

and Freon filled test cells while they are being heated to the
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35-4000 temperature range. The preheater resistance will be

(2421w)P so that each test cell will draw a specified number of

watts, W, when it is matched to the 24 VDC electrical supply.

Since the heat transfer will occur predominately by conduction, the test

cells should be placed in close thermal contact inside the insulated

chambers. A transient heat transfer analysis of the temperature

rise of liquid in the cells indicates that the minimum warm up time

of the largest cells will be on the order of one hour.

During the second step of the preconditioning operation involving

the transfer of the cell from the chamber to the test stand, the

preheater will again be powered. The power input, W, will be selected

to match the radiation heat loss from the test cell to the cabin

environment. The power requirements to maintain steady state

conditions in the cell are summarized in Table 7.

The cell pressure. We have _specified operating pressures for each of

the test conditions and have stated that we will allow the cell pressure

to vary with the temperature. Since the pressure may vary over a small range,

pressure transducers will be inserted through the top of the test cells to

enable continuous monitoring of the cell pressure. The transducers will

also be coupled to pressure relief valves that will be set to open at 2 atm.

The values should vent overboard -- probably through the forced convection

experiment's venting system.

Preflight test cell preparation. Prior to the flight, each cell

must be filled with its respective fluid, and four instrumentation elements

must be sealed in. The following instrumentation elements should be

located near the middle cross-sectional plane of the cell:

1. a vapor-phase thermocouple entering from the top of the box,



x

0
1^

a
m

a • a N N N N H '-I O O m m O O
H II	 3 N N N N tp ^ H H O O tr1 Lf1

W.
CX

a

E-1	 U ^n m w m rn ui t o to ui
d O M M M M H H H H r-1 H H H

H
wo m m m LO m M m M M M M Mv

z0 4J

H ro	 f r-I H H H M M M M l0 l0 l0 l0
p ul rt,SH

04Q
0
U

H •r-I l4 ^4 S4 } M M M M

t7i 4-1W

3 3

4-)
it

4J 41 41 H r-I H H
E

E S r F.;

O

-W	 a)

b
H N M V Ln W r• co 0)

0 CNrH-i
-O zU

1

t,	 I

N

41

a,^ M o
P4

^Ia
r

N
H

t
A

i
E

i

i

f
1

Z

I

^'	 k

l^

47	 ^I

a

r

Li

I. a

tr.



48
i

2, a liquid-phase thermocouple located between the heater and

the bottom of the cell,	 i

3. another liquid thermocouple located between the wall and the

cylindrical heating element just out of the window view,

4. a combination pressure probe and pressure relief valve in the

top of the test cell.

The last three items will be sealed in place before the box is filled.

But the vapor-phase thermocouple will be held out since that port is

to be used as a filling hole.

The box will then be heated to the normal boiling temperature

of the liquid it is to contain. A tube will be inserted through the

open port (with a little clearance) and directed into the bottom of

the box. Saturated vapor will then be blown through the tube. Most

of it will scavenge air from the box and some will condense. The

liquid level in the box will be adjusted to that desired by controlling

the inlet temperature of the vapor. The scavenging process will be

permitted to proceed for an hour or so to remove almost all of the

air. Then the top thermocouple will be inserted and the box will

be permanently sealed.	 z;;
f

F. Sù pporting Requirements
i

Environmental. , No fewer than six, and no more than twelve,

45 sec bursts of elevated gravity (10_2 times earth-normal) will be	 i

required. These will be required for the six 10
-2g	

runs and
earth

and zero to six replications of these runs. A 
10-4gearth 

environment

will be required for the remaining six runs and zero to six replications	 i

s
of these runs.

a
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Volume and Weight.	 Integration of the present experiment into

the flow boiling experiment [18] should minimize space and weight

requirements.	 A motion picture camera will be shared.	 We presume that

about 114,000 frames, or 6,000 ft of movie film must be added to

.;'
7,

the existing magazine. 	 The weight increase amounts to 34 kg.

Hardware for mounting this experiment should be minimal -- between

one and ten kg. 	 The test cells (depending upon whether it is decided

to include backup units, and upon the details of the final design)

should weigh between eight and 12 kg. 	 Two warming boxes should

{ weigh one to two kg and the battery about one kg. 	 Other valving,

{ instrumentation, and wiring should be light -- between one and five kg.

The total weight should be somewhere between 46 and 64 kg with film,

JI being the major contributor.	 All payload items from this experiment

should be returned to the earth.

tt
Volume will also be minimal and we presume that the modest

F	 y requirements can be fit into the two phase experiment	 space.

G.	 Procedure
y

The test cells should not be removed from their warming boxes

prior to the tests.	 When an experiment is to be made the operator

should:

1.	 load the camera and switch it to the pool boiling experimental
i

circuit,	 a

2.	 set the camera lens,

3.	 remove a test cell from the warming box and set it in its

experimental rack. 	 (He should tap it into place once or

twice to get all of the test fluid in the "bottom".)

4.	 attach the "umbilical"	 cord containing the thermocouple,

preheater, and power leads to the pool boiling experimental circuit,



50

5.	 connect the overboard dump line 'to the safety valve,

G.	 tale pencil and pad in Band to make any notes on visual

observations during the test,

7.	 push the experiment activation button and watckl closely as

the experiment proceeds,

S.	 wait for ground-control to recommend on rerunning the experiment,

g .	 do a second run at the second gravity level, with any

replications called for by ground control, and

10.	 disconnect the cell and return it to the warming box.

This process should tame about 15 to 20 minutes for each of

six test cells, with a reasonable number of replications (only a few

of which will employ film). 	 if the data acquisition is arranged to

give immediate computer printout of the boiling curves, the decision

to replicate can be made promptly.
'i

,y

Ii.	 Data ,Acquisition

The following items should be monitored continuoiisly during

each experimental run:
. 	 l

a thermocouples recording cell temperatures

6 (or more) thermocouples recording hater temperatures

1 pressure transducer R	 1

I voltage across the heater 4

1 amperage through the heater

I accelerometer

The following events must be noted as a, function of time during

each tests a

The initiation of the catnora

q
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Any activation of:

- the pressure relief valve

Y r J

- the electric power cutoff if it terminates a run before the

maximum duration of 45 seconds has been reached.

The data acquisition system is designed to be extensively

automated so that the operator will be free to record his own

observations of the boiling process.' The experiment control system and

data acquisition system will be initiated simultaneously by one switch.

After battery power has been applied to the heaters, a two
Ysal

{{

second time delay before starting the movie camera will permit a

performance check of the other equipment to ensure that the experiment

is operating properly.

Motion picture records of each run will be a very important

}{'} component of the data acquisitionp	 qu	 process.	 The movies should be made

with an appropriate high speed motion picture camera.	 We recommendi

that each run be sampled at about 200 frames per second with a

20 or 50-to-one shutter.	 This framing-rate is about as slow as it is

possible to go without being in danger of .missing events.* 	 Bakhru used

a camera speed of 500 fps with a ten-to-one shutter and typically obtained

pictures like that shown in Figure 9. 	 By reducing the framing rate,

to 200 we reduce the information collected to 40 percent ofthat shown

in Figure 9.	 That should be adequate and it will permit recording

38 seconds of each run on a 400 ft reel of film.	 This will fit

nicely with the previously specified maximum duration of 45 seconds

for any run.

*A somewhat higher "minimum" value was suggested in Progress Report #6.

;iF
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shown in Figure 1, at an angle of 10
0
 off the axis of the camera lens. r9

It should be passed through a diffuser at the back window of the test

cell.	 The light should be bright enough to permit an f-setting which

will give a depth of field equal to most of the width of the cell.

Each box should have an identifying symbol on a lower corner of the

t* front window.	 It should be designed so that.it will be clearly

identifiable within the focus at that point.

I.	 Cost Analysis

The costs of the experiment can only be guessed very roughly and,

we hope, without underestimating.	 Costs can be resolved into five

categories:	 Design, Materials and Processes, Fabrication, Equipment,r

Preflight Testing, and Data Processing Softwear.

Design.	 Two months work by a designer and a detailer at $25,000

and $12,000 per year subject to 150 percent overhead. 	 $15,400 s

" Materials and Processes.	 It will be necessary to experiment with

the methodology for manufacturing the heaters. 	 The only materialL`
cost that promises to be substantial will be the platinum. A very

rrough idea of costs is:	 $ 5,000

r; Fabrication. Fabrication should require about two man-months at

about $18,000 per year with 150 percent overhead. 	 $ 7,500	 1

Equipment.  We presume that.. appropriate cameras are owned. by NASA.

Data acquisition systems already exist and need notbe charged to

this experiment. Batteries must be purchased, so too must other 	 L

r .	 minor hardware connected with control. These items should come
{

in below	 $ 3,000
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Preflight Testing. Two man-months of engineering time ($4,000)

and one man-month of technician's time ($1,250) with 150 percent

overhead.	 $13,000

Data Processing Software. An experienced programmer should be

able to develop the software to deal with the data within two

weeks time ($1,000 with 150 percent overhead.) 	 $ 2,500

Total estimated costs, less than 	 $46,500

J. An Alternate Experimental Arrangement

The use of sealed cells introduces the concern that the cell

pressure will be increased when boiling begins, whereupon simultaneous

condensation might occur on the periphery of the bubbles. Such condensa-

tion could conceivably distort the the boiling process. We believe,

although we are not certain, that the pressure rise should be modest,

and condensation suff-iciently slow, as to cause no serious distortion.	
i

One way to circumvent this problem would be to maintain the cell

pressure close to the design saturation pressure. This could be accomplished

by providing a seal on each test cell which would be punctured just

prior to the experimental run. The seal would be housed in such a way

that the vapor is exposed to an appropriately sensitive and quick-acting

pressure regulatingvalve leading to the overboard vent.
>s

If this change were deemed necessary, the additional hardware would 	 -
i

probably lead to modest increases in the cost and complexity of the

proposed experiment. The change would also nullify reusing the cells and

it would require means of dealing with the cells once they had been

used.

t
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BOILING FROM SMALL CYLINDERS*

NANIK BAKHRU

113M Corporation, Hopewell Junction. New York 12533, U,S.A.

and

JOHN H. LIENHARD

Dept. of Mechanical Engineering. University of Kentucky, Lexin gton, Kentucky 40506, U.S.A.

(Received 27 Septernber 1971)

Abstract—Heat transfer is observed as to function of temperature on small horizontal wires is water and
Four organic liquids, when the wire radius is sufliciently small, the hydrodynamic transitions in the
boiling curve disappear and the curve becomes monotonic. Three mode of heat removal are identified
for the monotonic curve and described analyticall y : a natural convection mode, a mixed film boiling and
natural convection mode. and a pure film boiling mode. Nucleate boilin g does not occur on the small
wires.

The iiudv was moti%awd by an interest in predictin g the behavior of large heaters at low gravity. The
application of the present results to such circumstances is therefore discussed. It is proposed that the peak

and minimum heat fluxes will vanish at low eravit y as well as on small wires.

No^tENC1.ATl^Re	 qb,	 heat flux on the blanketed portion

Bi,	 Biot number. IiR:2k„.:	 of the wire:

11R').	 a function of R':	 ymin, peak and minimum -boilin g heat

q,	 acceleration of a system in a force 	 fluxes, respectively;

field:	 r,	 radius of a bubble:
/t,	 heat transfer coefficient. q,0,,:	 qm„F..	 Zuber's predicted peak heat lux
It f”	 latent heat of vaporization: 	 for a flat plate:

Il y,	 latent heat of evaporation plus	 R	 characteristic dimension, usually
L. 3

34 per cent of the sensible heat 	 used to denote the radius of a
of vapor at heater wall; 	 cylindrical wire:;

k, ky , k„,,	 thermal conductivity of liquid;.	 R`,	 dimensionless characteristic di-
vapor and heater, respectively; 	 mension (usually the radius).

tYtr,	 Nusselt number, 21tRlk 	 R[9(pf	 pa)/tr]^,
Pe,	 dimensionless velocity, or P666t 	 Ru*,	 modified Ravleieh number, equa-

number. defined by equation (8): 	 tion (16);

P.	 pressure:	 T,	 temperature;
q,	 average heat flux on the entire	 T,,	 heater surface temperature

heater. Also heat flux on the un-	 AT,	 wall superheat, T,, — T,,,; 	 °.

blanketed portion of the heater	 AT,	 temperature overshoot, T at
when used with qe	 nucleation minus minimum T for

q beyond nucleation:
• This work was supported by NASA Grant NGR,	 r,	 time:

13-001-035. under the co g nizance of the NASA Lewis
Research Center. The paper is extracted from the first 	 tr,	 speed of vapor patch propagation:
author's doctoral dissertation at the University of Kentucky.	 U f9 ,	 (_I ipy ) — (Lipp.):
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axial	 distance	 coordinate:	 sub- description of y,,,,, and q 	 for an infinite flat
script h denotes reversed coordi- plate heater, For q,,,,, he found
mate under the blanketed portion
of the wire: gnu%r• =	 P I',.,-'^(Q9(Pf _ Ps))•	 (1)

t`.	 distance measured from solid wall
,
`

-into liquid. The Zuber—Kutateladze theory says that q,,,,,
occurs when the vapor jets leaving the surface

Greek symbols becomes Helmholtz unstable. it also says that
M.	 thermal diffusivity of heater; the jets are arranged on a grid that is sized

a dimensionless function. according to the .Taylor unstable wavelength.
2ahe f,,T,, AThlvk: in the liquid—vapor interface. These instabilities

11,.	 viscosity of vapor: arise as a consequence of inertial, interfacial.
PpAr	 saturated liquid and vapor den- and buoyant forces.

shies, respective)}': The	 hvdrodvnamic	 theory	 has also	 been
cr,	 surface tension between a satur- formulated	 for qmy ,	 in	 two	 finite geometries

ated liquid and its vapor; (cylinders [5] and spheres [6]) and for qm, 	 on
k^ 0,	 temperature measured above Ty,; cylinders [7, S]. For	 finite geometries	 it was

r - 0",	 equilibrium temperature	 in	 the shown independently by Bobrovich er aL [9]
wire, qih and by Lienhard and Watanabe [10] that if

" Qt,,	 vapor patch tri ggering tempera-po	 p	 p the characteristic dimension of a bads is R, then
Lure:

e, e	 dimensionless temperatures, (1'(),, gmyrym^ • F = ./' (R`i 	 where

and 004,., respectively: R' = R te' opr — Pa)%Q]•	 (2)
dimensionless	 axial	 parameters
dei►ned after equation (10). Equation (2) has been shown [11] to apply as

Lone as: the contact angle is small. the system
General subscripts is not close	 to	 the critical	 pressure, and	 the

b,	 denoting conditions related to the viscosity of the liquid is not great.
portion	 of heater	 blanketed	 by Ender conditions. of very low gravity, or for
vapor; very	 small	 heaters.	 R'	 (which	 characterizes

sat,	 dcnoting conditions at saturation, the ratio of buoyant forces to surface tension
forces)	 becomes	 small.	 Figure 	 1	 shows	 the

INITRODI'CTtON q,,,n	 correlation. equation	 ('_),	 3s	 applied	 to
THE t:. RLi' experiments of Nukirama [1] and about 900 horizontal cylinder data in [5]. In
of Drew and )Mueller ['_] demonstrated that this case, an R' based on the radius. R. must
the	 plot	 of	 heat	 flux,	 q..	 against	 the	 liquid exceed	 0-15	 if the Zuber-Kutateladze	 wave
superheat at the heater surface, AT, exhibited mechanisms which define g n,x, are to stay intact.
local maximum	 and	 minimum	 points. This For smaller value of R', surface tension so

•	 discovery set the stage for a program of study over balances inertia	 that these mechanisms
that has lasted a third of a century. Since heat deteriorate, and a sampling of data by K uta-
transfer is remarkably efficient near the local teladze er at. [12], Sun and Lienhard [5]. and
maximum. great effort has been directed to- Siegel and Howell [13] no longer correlate on

1 ward predicting this limiting heat flux. yy,;gm„r vs. R' coordinates.
In	 1948	 l utateladze	 [2]	 discussed	 the i't was likewise shown in [8] 	 that there is

mechanism-tliat dictated these extrema- and in still good visual evidence of the wave stability
1958 Zuber (see e,g; [4]) provided an analytical mechanisms	 for	 all	 R' = 0 . 12,	 during	 film
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FIG, 1, Deterioration of y _correlation at small R'.

boiling on horizontal cylinders.	 But for R' < for greatly reduced gravity. The forces of surface
0 .06 these mechanisms cease to be identifiable. tension and buoyancy remain important, how- 	

1

If equation (2) fails, and the Zuber—Kutate- ever the process is slowed down and the effects
ladze	 mechanism	 fails	 with	 it,	 what	 exactly of	 inertia	 are	 greatly	 reduced.	 Indeed,	 the
happens to the boiling process at small R"? The soundtrack of a movie by Siegel and Keshock
photographs of Sun [5], of Pitts and Leppert (associated	 with	 [16])	 specifically	 notes	 the
[141, and of Kutateladze er al. [12] for small reduced	 inertia	 effects	 in	 boiling 	under	 low
wires provide some clue. Bubbles grow on the gravity.
wire until they are large enough to buoy off The problem that we face is then this: "If,
and there is no evidence of the inertial waves at low gravity or for small wires, inertia becomes
that are apparent on large wires. The photo- insignificant and the Zuber—Kutateladze mech-
eraphs of Sie gel and	 Lsiskin [ 15] and Siegel anisms	 fail, what	 replaces	 them?" We must
and Howell [13] show the same kind of process now ask what the various investigators who

cĉ ^ cocks to

control

^- --	
vacuum1	 '

I^	
I'

thermometer

rkmfe-edges
^U 4S	 I rpiatinum "

'	 ! heater wire ice	 vacuum
PumpI mercury

specsimen) manometer

1,000 R
i 2 ^^	 1

—	 .IIOV1
^scdre 	 i	 variac	 Q	 variable	 OCpower

tG 5 ' 1300watts `sourcetest capsuleL	 plate	 preheater

FIG. 2. Schematic representation of experimental apparatus.
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have given q m ,, and gmin data for low R' have
actually observed. Without the inertial wave
mechanisms it is hard to see how there could
have been any q... or qm;,, points to report.

EXPERIMENT

To answer the question raised in the Intro-
duction we set out to measure the full q vs. AT
curve for very small wires heating a variety
of liquids. The apparatus used to do this is
shown in Fi g . 2.

A small platinum wire, which serves as both
a resistance heater and a resistance thermo-
meter, is suspended in the liquid of interest
and boiling is observed at successive heat
fluxes. The temperature of the wire was calculated
from the resistance which in turn was computed
from the ratio of volta ge to currz;m usine the
method detailed by van Stralen and Sluyter
[17]. Since complete details of the experimental
method are given by Bakhru [18], we shall only
list a few major features of the tests here:

The wires were cleaned in soap and then
rinsed in the test liquid. Reagent grade liquids
were used in all cases. During actual obscrva-
tions the preheater, which was used to maintain

10

1-mil pt wire in acetone
saturated at I atm

R'=,00802

0

nucleation starts •O 

p

°— patchy boiling

0_A\
000 ^ nucleation stops
••

0	 o increasing q
•	 • decreasing q

soI	
I	 I	 I 1 11A l

10	 100	 1000
wall superheat, AT (OF)

FIG. 4. Boiling curve for 1-mil platinum wire in acetone..
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saturation	 conditions,	 was momentarily
switched off. Since the wires would melt durin g 	7
atmospheric pressure runs in water, the water
runs were all made at pressures in the nei gh-
borhood of 3 in. H- abs. The maximum probable
error in q was found to be 2; per cent. The
maximum probable error in AT varied from	 i
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FIG. - 3. Boiling curve for 1-mil platinum wire in benzene. 	 FIG, 5, Boiling curve for 1-mil platinum wire in methanol:
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1-mil pt wire in isopropanol
saturated at I atm

R' = .0083

dwo 
oor/

•	 nucleation starts

patchy boiling—
^ I

^nucleatlon stops
o ^+

0 •	 o Increasing
•	 •

0	
decreasing

o •
o •

0,1
10 	 100	 1000

wall superheat, AT ('F)
FiG. 6. Boiling cur e I'or 1-mil platinum wire in isopropanol.

36 per cent or about 5 `F at the very lowest
AT's to 1 ,8 per cent or about 13 F at the highest
AT's.

Our complete raw data are given in the form
of 13 boilin g curves in Fi gs. 3-14, These have
been arranged- in order of increasing R' From
0 .0076 up to 0 .0806. In each case data are
presented for both increasing and decreasing

---

2-mil pt wire in water
Tsat = 110° F

R'=,0096

nucleation	 o	 filmnucleation	 starts
STOPS	 000	 °	 boiling

1

ou
•	 Range of mixed mode

oc+	 (film 81 natural convection)
0

0	 o increasing

0	 • decreasing
•
•

1I

I	 1	 11	 1	 III	 1

3-mil pt wire in water
Tsai=116°F

R'=.0144

hydrod namic 0*0 cW
transition • •

I	 •
°••nucleation starts
•	 o increasing

5	 nucleation stops 	 • decreasing

0.2 
L	 50	 100	 500 1000

wall superheat, dT(°F)

FIG. 3. Builing curve for 3-mil platinum wire in water.

heat flux to expose any hysteresis effects.
Figure 5 combines data for two wires under
identical conditions to assure reproducibility
of results.

The major si`_nificance of the present study
is readily apparent from these curves. As AT
is increased on the smaller wires, y rises mono-
tonically without passing through a maximum
and minimum. Only as R' increases to about
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Fla. 7. Boiling curve Par 2-mil platinum wire in water.	 FiG. 9. Boilin g curve for '_-ml platinum wire in methanol.
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