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T.la9UL GICAL PROPEERI'iES OF SURFACES

by Donald H. Buckley

Lewis Research Center

ABSTRACT

'Elie real area of contact between two solid surfaces is only a small

portion of the apparent area. Deformation of these areas can result in

solid state contact through surface films. For clean solid to solid con-

tact strong adhesive bonding occurs across the interface. Under these

conditions many properties of the solid such as the met ­" _­
_I --'

chemical nature of metals can influence adhesion, frict

havior. The presence of gases, liquids, and solid film

of solids alter markedly tribological characteristics.

films can also considerably change the mechanical effec

contact on bulk material behavior.
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TRIBOLOGICAL PROPERTIES OF SURFACES

by Donald H. Buckley

Lewis Research Center

INTRODUCTION

Tribology involves the adhesion, friction, wear, and lubrication of

solids in contact. The adhesion, friction, wear, and lubrication of

solids is extremely dependent upon the physical, chemical, mechanical,

and metallurgical properties of the surface. For example, even fractions

of a monol.ayer of an adsorbed gas can have a marked effect upon the tri-

bological behavior of materials. 1-3

The introduction in recent years of a host of analytical surface

tools for the structural, elemental, and chemical identification of sur-

faces and surface films has contributed considerably to the understanding

of the surface properties and films important to tribology. The use of

these surface tools in tribology is discussed in Refs. 4 and 5.

Tile objective of this paper is to review those properties of solid

surfaces which influence tribology and more specifically, adhesion, fric-

tion, wear, and lubrication. Basic properties of solid surfaces in the

absence of films including metallurgical and chemical will be included.

The effects then of the presence of films on the solid surface will be

addressed.

NATURE OF SOLID SURFACES

When a solid surface is examined either microscopically with the

scanning electron microscope or mechanically with a surface profilometer

it is found to contain irregularities; that is, the surface is not flat

and smooth. A typical surface displaying these irregularities or nsner-
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ities as they are cotimionly called is presented schematically in Fig. 1(a).

Nearly all real surfaces contain the asperities indicated in

Fig. 1(a) except brittle materials, when cleaved along natural cleavage

planes of single crystals and metallic pin tips the surface of which have

been field evaporated in the field ion microscope. Even with brittle

materials the cleavage process results in the generation of surfaces which

contain cleavage steps. It is only the terraces between steps that have

an atomically smooth nature.

The actual shape and distribution of surface asperities has been the

object of considerable research. An excellent review of the subject can

be found in Ref. 6.

The surface of the asperities are not atomically clean but contain

surface films as indicated in Fig. 2(b). For metals and alloys these

films generally consist of oxides and adsorbed gases usually water vapor,

carbon monoxide, and carbon dioxide. With many nonmetals the surface

films may simply consist of adsorbates. All of the reacted and adsorbed

film materials can exert a strong effect upon the mechanical and metal-

1_urgical behavior of the solids to which they are attached as indicated

in the collection of paper appearing in Ref. 7.

In addition to the films present on the surface of a solid the sur-

ficial (near surface) layers of the solid itself may vary considerably in

structure from the bulk of the solid. With crystalline solids these

layers may consist of recrystallized material, strain hardened regions,

and/or texturing. The aforementioned which may develop when any type of

finishing or polishing of the surface is attempted and particularly when

0
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that surface is a metal. It can also be a region rich in bulk impuri-

ties. 8 In amorphous solids these layers may contain voids and microcracks.

When two solid surfaces are brought together as indicated in Fig. 1(c)

contact occurs at the asperity tips. Either under the weight of the sol-

ids, or when a load is applied, depending upon the materials, first elastic

and then plastic deformation will occur in the asperities. Deformation

will continue until the real asperity contact area is sufficient to sup-

port the load and then at that point deformation will cease with the re-

sultant real area of contact being a small percentage of the apparent area

of contact.

At sufficiently light loads and again depending upon the materials

the surface films indicated in Fig. 1(b) may not be disrupted by the de-

formation process. With most materials, however, disruption of these

films will occur with the result that nascent solid surface contact will

take place. The extent of that contact will depend upon the properties

of the solid as well as that of the film.

CLEAN SURFACES

Adhesion and Friction

The removal of adsorbed films and oxide layers from surfaces such as

those of metals results in very strong interfacial adhesion when two such

solids are brought into contact. This fact has been known for metals in

contact with metals for some time. 9 It also occurs with metals contact- 	 4

ing nonmetals. When, for example, a clean gold surface is brought into

contact with a clean semiconductor surface such as silicon,the adhesive

bonds formed at the solid to solid interface are sufficiently strong so

MOM
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as to result in fracture of cohesive bonds in the gold and transfer of
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gold to the silicon surface. This is indicated in the photomicrograph
t

and x-ray map presented in Fig. 2.

In general when two solid surfaces are brought into contact and ad-

hesion occurs the interfacial bond is stronger than the cohesive bond in

the cohesively weaker of the two materials. 
10 

This results, upon sepa-

ration of the two solids in the transfer of the cohesively weaker mate-

rial to the cohesively stronger. Thus, in Fig. 2 gold transfers to the

cohesively stronger silicon.

Silicon and germanium are both semiconductors having many very sim-

ilar properties. One property in which they differ, however, is cohesive

binding energy, germanium being much weaker than silicon and having a

cohesive binding energy comparable to that of gold. 
11 

If the adhesion

experiment of Fig. 2 is then repeated with germanium substituted for the

silicon the results presented in Fig. 3 are obtained.

The photomicrographs of Fig. 3 indicate the contact region between

the gold and germanium surface. instead of gold transferring to the ger-

manium, fracture occurred in the germanium with transfer of germanium to

the gold taking place. The higher magnification photomicrograph of

Fig. 3 indicates chevron shaped fracture cracks that have developed in the

(111) crystal surface of the germanium. Thus, metal to nonmetallic con-

tacts behavior in a manner similar to that observed for metal to metal

contacts in Ref. 10.

Iron is cohesively much stronger than germanium and gold. When a

similar adhesion experiment is conducted with iron in place of gold, ger-

manium, as would be predicted, transfers to the iron. Further, if tan-

I
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gential force is applied to the iron-germanium contact, the resistance

to that tangential motion (friction force) reflects the fracture behavior.

Figure 4 presents the friction torce recorded with time for the iron

sliding (tangentially) along the germanium surface. The trace has a "saw-

tooth" appearance reflecting what is commonly referred to as stick-slip

behavior. ` file stick portion is the adhesion of the solid surfaces at

the interface which accounts for the gradually rising value in friction

force of Fig. 4. At the point where the tangential force applied exceeds

the adhesive bond strength or the cohesive strength of the cohesively

`	

weaker of the two materials, as in this case, fracture occurs in the ger-

manium and sliding commences. The slip portion reflects this and is indi-

cated in Fig. 4 by the periodic sharp drop in the friction force.

The adhesive bonding force measured for two solids in contact is, as

already discussed, a function of the cohesive binding energy of the co-

liesively weaker of the two materials. It is also a function of the real

area of contact. The greater the load, the greater the plastic and elastic

deformation and the larger will be the real area of contact (see Fig. 1(c)).

The adhesion data for nickel in contact wish gold in Fig. 5 indicates that

the adhesive force increases with increasing load.

When tangential motion or sliding is initiated between two clean sur-

faces in contact, the resultant applied forces in the materials can pro-

duce material changes other than those associated with adhesion and prin-

cipally tensile fracture. For example, prolific cracking can occur in a

relatively brittle material such as silicon. Such fracture cracking can

be seen in the photomicrographs of Fig. 6 for a single crystal silicon

(111) surface after an iron single crystal (110) slid across the surface.
J
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Metallurgical Effects

With metals in solid state contact many of the basic metallurgical

properties exert an influence on observed adhesion, friction, and wear

behavior. Crystal structure, orientation, texturing, order-disorder, sur-

face segregation, alloying, and ductile-brittle transitions all have an

effect. 
13 The friction behavior of an iron single crystal in sliding con-

tact with a tin single crystal at various temperatures reflects the effect

of one of these properties, namely crystal structure. Below 13° C tin has

a diamond type structure while above that temperature its structure is

body-centered tetragonal.

Tile data of Fig. 7 indicate that the diamond crystallographic form

of the tin exhibits higher friction than the tetragonal form. Other poly-

morphia metals also manifest a change in friction and also wear behavior

with crystal transformation.

Small amounts of alloying element can produce very noticeable changes

in both friction and wear characteristics. This subject is reviewed in

Ref. 14 and shall be discussed later in reference to solid surface films.

Chemical Effects

In the 1940's Pauling recognized differences in the amount of d

bond character associated with the transition metals. 
15 

These differences

can be related to the chemical affinity of surfaces for other materials.

The greater the amount or percent d bond character of a metal the less

active should be its surface. It might therefore be reasonably anticipated

that the adhesive interaction between two metals would be related to the

chemical activity of the metal surfaces. The data of Fig. 8 indicate the

I^
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relationship between tfie d bond character of some of the transition	 t'

1

elements and friction coefficient, which of course reflects adhesive

behavior.

	

Titanium, which is chemically very active, exhibits in contact with
	 1I

itself a very strong interfacial adhesive bonding to itself as indicated

by the friction coefficient reported in Fig. 8. In contras_, rhodium and

ruthenium which have a very high percent d bond character have rela-

tively low friction coefficients.

Very frequently metals are not contacted by metals, or themselves

but rather by nonmetallic substances already discussed. As indicated

earlier for metals in contact with other metals as well as nonmetals

fracture will occur in the cohesively weaker of the two materials and

this effects adhesion, friction, and wear. Whit properties of metals

will effect these latter tribological characteristics where the nonmetallic

material is of such a cohesive strength that fracture always occurs in the

metal?

The d valence bond character of the metal influences the friction

coefficient for metals in contact with nonmetals just as it does for

metals in contact with themselves. This is indicated in the data of

Fig. 9 for various metals in contact with manganese-zinc ferrite. 
16 

All

	

of the metals indicated in Fig. 9 are observed to transfer to manganese- 	 I'

zinc ferrite. These data indicate tfle same kind of relationship observed

I

for the metals in contact with themselves in Fig. 8, that is friction co-

efficient decreases with the increasing percent of d bond character of

the metal. Thus, the chemical nature of the metal surface plays a role

in observed tribological behavior.

— -	 -	 ^--rt—^	 — -1
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It is apparent from the foregoing data that material properties of

the solid surfaces in contact exert an influence on adhesion, friction, 	 . 1

and wear. Even bulk structure or composition can w,th mechanica:

activity at the surface have notable effects in tribology. For example, 	 I

alloying elements in metallic materials have many ways of influencing

surface activity. They reduce surface energy 17 and in some cases can
even provide a solid film lubricant at the surface.

A typical and somewhit classic example of alloy constituent acting

as solid film lubricants s the mechanism involved in the low friction

anti wear characteristics of gray cast iron, a traditionally good tribo-

. gical material. Friction and wear data for gray cast iron as a func-

.:on of carbon content are presented in Fig. 10. "the data of Fig. 10 indi-

.rte that as the carbon content increases.both friction and wear decrease.

"'lie mechanism underlying this behavior is revealed in the photomicrograph
	

I^

of Fig. 11.

The sliding wear track generated on the cast iron surface is visible

in the center of the photograph with virgin undisturbed cast iron and its

I	

characteristic graphite islands to either side. In the track proper the

graphite islands, be_iuse of the mechanical rubbing of the steel ball,

have become smeared out over the iron matrix. The smeared out graphite

acts as a solid film lubricant to prevent adhesion of the iron matrix to

the steel ball. The greater the graphite content, the more complete is

the film and protection of the iron matrix.

'I
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SURFACE FILM EFFECTS

f

Gases

Most gases with the exception of the noble gases adsorb readily to

clean metal surfaces and many adsorb to nonmetals as well. 
18 

Adhesion

and friction are so sensitive to the presence of these gases both quali-

tatively and quantitatively that even hydrogen  and fractions of a mono-

layer of other gases have an effect.3

Iron in sliding contact with silicon was examined earlier in this

i
	

paper in the clean state. The effect of exposing that couple to oxygen
r

on friction can be seen in the data of Fig. 12. In Fig. 12 the presence

of oxygen on the surface reduced the coefficient of friction to half or

less that observed for th- clean surfaces in contact.

Liquids

Tribological surfaces are most frequently lubricated with liquids.

The liquid may be a relatively simple structure such as a hydrocarbon or

it may contain additives to achieve greater reduction in wear. Data are

presented in Fig. 12 for the lubrication of iron sliding on silicon with

mineral oil containing as an additive 0.2 percent oleic acid. The fric-

tion coefficient is extremely low and commensurate with effective boundary

lubrication.

the mineral oil containing oleic acid not only reduced friction bat

also completely eliminated the formation of fracture cracks wi.ich were 	
I
i

observed in Fig. 6 for this material couple in contact with their surfaces

clean. The wear contact zone on the silicon surface deformed plastically
	

II
with sliding, a manifestation of the Rebinder effect.
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While adhesion and friction are extremely sensitive to initial con-

taminanc layer:; and fractions thereof on clean surfaces, they are less

sensitive to more subtle differences in liquid structure once the initial

contaminant films are already present. This is indicated in the data of

Fi b . 13.

In Fig. 13 friction coefficient is plotted as a function of load for

gold in sliding contact with iron and lubricated with two fluids, hexane

and benzene. Both hexane and benzene contain six carbon atoms but they

are in a ring structure for benzene and straight chain for hexane. This

structural difference in the liquid molecule is not reflected in measured

friction coefficients.

Differences are observed with, however, the number of carbon atoms

in a straight chain hydrocarbons. 
20 

The lcnger the chain length the lower

i	
is the observed friction coefficient. Tile addition of very active ele-

ments or functional groups in the molecular structure of a simple hydro-

carbon can also effect tribological behavior.

Tile friction coefficients plotted in Fig. 14 for gold sliding on

iron indicate the effect of adding the halogen atoms to the basic benzene

molecular structure. With both fluorobenzene and chlorobenzene at loads

of less than 10 grams friction coefficients are considerably higher than

for bromubenzene and iodobenzene.

Auger emission spectroscopy analysis of the iron surface containing

chlorobenzene Is compared with a surface containing iodobenzene in

Fig. 15. The surface containing chlorobenzene reveals the presence of

chlorine, carbon, and iron peaks while that for iodobenzene contains only

carbon. The absence of iodine on the surface indicates dissociative ad-
1

^-	 t
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sorption of the iodobenzene.

Since Auger emission spectroscopy can detect elements to a depth of

four to five atomic layers and iron peaks are completely absent in Fig.

15(b), the carbon has very effectively covered and protected the iron

from interacting with the gold. While the chlorobenzene did not disso-

ciate, it did not as effectively cover the iron because iron Auger peaks

are present in Fig. 15(a).

Solids

There exists an ever increasing use of solids for the lubrication of

tribological surfaces. Solids can be applied to the surfaces in solid

state contact by a number of means. One mechanism for achieving such

l ubrication has already been discussed in reference to gray cast iron,

:•.nely by the incorporation of `lie lubricating phase directly into the

material.

Another method for lubricating with solids is to apply the solid as

a coating to the surface by soi:ie deposition or coating technique. Some

techniques which have been employed include burnishing, electroplating,

spraying with a binder in tire lub icant film material, sputtering and ion-

plating.

Still :.pother method fo. applying solid films to surfaces is by the

addition of compounds to a liquid lubricant which can decompose with the

mechanical activity at contacting asperities to liberate solid films on

the surface which have inherently good lubricating properties. 21 Soft,

low shear strength metals make good solid film lubricants. By adding

organome tall ics cor.caining these metals to oils, lubrication by such a



I
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mecl • inism can be accomplished.

Tile Auger spectrum of Fig. 16 is for a wear surface of stainless

steel which had been lubricated with dimethyl cadmium in mineral oil. A

film of cadmium is detected on the surface. Lubrication by such a tech-

nique is concentration sensitive because sufficient organometallic must

be present to provide for the deposition of a protective film. Tlie data

of Fig. 17 indicates the importance of concentration.

At concentrations of less than 0.5 percent in Pig. 17 the surface is

not effectively being lubricated because the friction coefficient is too

high.. Above 0.5 percent organometallic effective lubrication has peen

achieved. Auger spectroscopy of the wear surfaces at less than 0.5 per-

cent organometallic failed to reveal the presence of cadmium on the sur-

face. Above that concentration it was detected.

CONCLUDING REMARKS

When two solid surfaces are brought into contact, strong bonding

forces can develop across the i. , terface, particularly where the surface

films are penetrated by the deformation of the regions of real contact,

which is only a small portion of the apparent contact area. Many metal-

lurgical and chemical properties of metals and alloys can very markedly

influence adhesion, friction, wear, and lubrication behavior. Gases,

liquids, and solids which interact with either contacting solid surface

can strongly influence tribological properties of surfaces. They not

only reduce adhesion, friction, and wear but can alter the mechanical

behavior if the solid surfaces themselves.
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Figure 4. -Friction trace for single-crystal iron 11101 sliding on a
germanium plli single-crystal surface. Sliding velocity,
0.7 mm/min; load, 30 grams; temperature, 23 o C; pressure,
10-8 NIm2.
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Figure 5. - Force of adhesion as function of applied load for
gold (111) surface contactincLClean nickel i01U surface.
Arr,bj nt pressure, 1.33x10 - newton per square meter
110 -1^+orrn; temperature. 230 C.
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Figure 6.. Wear tracks made by single-crystal iron (110) sliding across silicon (1111
surface. Sliding velocity, 0 7 mm min ; temperature, 23° C; pressure. 10 ,8 N m2.
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50 grams; argon atmosphere; temperature. 230 C; duration,
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Figure 11.- Wear track on 3.02 percent carbon in gray cast iron after having
been in sliding contact with a 52100 steel ball for 1 hour Sliding velocity,
5 centimeters per minute; load, 50 grams; argon atmosphere; temperature,
23° C.
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