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ABSTRACT
 

A major difficulty in the practical application of linear-quadratic
 

regulator theory is how to choose the weighting matrices in quadratic
 

cost functions. In this work, the control system design with optimal
 

weighting matrices is applied to a helicopter in the hover and approach
 

phase. The weighting matrices are calculated to extremize the closed
 

loop "Total System Damping" subject to constraints on the determinants.
 

The extremization is really a minimization of the effects of disturbances,
 

and interpreted as a compromise between the generalized system accuracy
 

and the generalized system response speed. The trade-off between the
 

accuracy and the response speed is adjusted by a single parameter--the
 

ratio of determinants, which is the only arbitrariness left for designer's
 

choice.
 

By this approach an objective measure can be obtained for the design
 

of a control system. The measure is to be determined by the system re­

quirements.
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CHAPTER I
 

INTRODUCTION
 

This study will explore the use of linear optimal control methods
 

to design the automatic controller of a hovering helicopter. Generally
 

the pilots workload is rather high for stabilizing a hovering helicopter
 

[Fig. 2] and keeping position in the presence of gust over a designated
 

point. Furthermore, to keep an accurate position may become more diffi­

cult if the motions [Fig. 3] among each axis are highly coupled.
 

In design of the multivariable and multi input systems, the conven­

tional techniques such as root locus, frequency response, and describing
 

function analysis which are based on the single input-single output systems,
 

have been employed in trial and error fashion. Design techniques using the
 

optimal control theory applied to multivariable systems in the state space
 

have become popular and have been applied for the flight controller design
 

or optimal control of aircraft [Ref. 1&2].
 

The optimal control design technique utilizes the minimization of a
 

performance criteria; one of which is a quadratic cost function, such as
 

Eq. (311). Adequate selection of weightings in the quadratic cost function
 

yields a stable closed loop system [Ref. 3]. However, the following questions
 

remain to be answered:
 

How should the weighting matrices be-selected.
 

Where are the poles of the closed loop system in s plane located when
 

control technique is used.
 

What are the system responses for a command input.
 

How is the system influenced by random gust inputs.
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This work attempts to provide an answer to these questions and exa­

mines two methods for selecting weighting matrices, namely; the method
 

of authorities [Ref. 6] and the optimal weighting selection method (OWEM)
 

[Ref. 7]. The approach used in this investigation is as follows: First,
 

the equation of motion of a helicopter comparable to a CH54B are decoupled,
 

and the results are confirmed by an analogue computer study. Secondly,
 

for each set of decoupled equations are derived the optimal controls with
 

its feedback gains. For a range of selected factor weightings, analysis
 

has been made for the root loci of the closed loop system, optimal feed­

back gains, the integral squared position error (ISE), attitude errors (ISO,
 

IS4) and controls (ISU) to a command input. Also are investigated the root
 

mean squared position errors, attitude errors and control motion for a ran­

dom gust input. For the chosen pole location in s plane, the closed loop
 

gains are determined, and command inputs response (ISE, ISe, etc.) and gust
 

responses (rms errors) are calculated.
 

In Chapter II, is reviewed the application of optimal linear control
 

theory, and an outline of the performed work is given. Als is discussed
 

the areas that need further study and investigation..
 

In Chapter III, the details of optimal controller design are described
 

for the vertical and yawing motion, followed by the longitudinal and lateral
 

motions of the hover helicopter.
 

In Chapter IV, conclusionsand recommendationson the optimal flight con­

troller design using these methods are discussed. 
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In the appendices are reviewed some of the theoretical aspects of
 

linear optimal control theory and model following. It appears that the
 

OWEM design method is also applicable to model following, as outlined in
 

Chapter II. Theoretical work has been extracted from Ref. [7], applications
 

and calculations from Ref. [34] and he Appendix [6] from Ref. [35].
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CHAPTER 2
 

REVIEW OF THE APPLICATION OF LINEAR OPTIMAL CONTROL THEORY
 

The purpose of this study is to apply optimal control methods for a
 

controller design for helicopter at hover and in the approach phase. The
 

design procedures in this report utilize first the decoupling of the heli­

copter dynamics (Appendix B). The system to be controlled consists of the
 

decoupled helicopter dynamic equations.
 

In state variable form, the equations of motion are given by:
 

x(t) = Ax(t) + Bu(t) (2-1) 

In most cases, x (n dimensional state vector), represents the state
 

variables of motion of a hovering helicopter, which are, respectively, x,
 

u, 0, q, z, w, y, v, p, p, i, and r. The control variable u (m dimensional
 

vector), represents control inputs which are respectively Bls' Als' 6r' and
 

6 c. In a few cases, the state vector x also can include the output of servo
 

controller and so on.
 

The output vector y(t) of helicopter is assumed to be the state vector
 

x(t) itself,
 

y(t) Hx(t) = x(t) (2-2) 

H = I n x n identity matrix 
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The advantages of state variable formulation is significant in
 

the case of multi-variable and multi-input systems.
 

The design nethod uses an optimal control method with a quadratic 

performance index that minimizes the performance index given by the 

following equation: 

21 of (xT(t) Qx(t) + uT(t) Ru(t)) dt (2-3) 

The matrices Q and R in Eq. (2-3) are respectively n by n and n by
 

m weighting matrices which place relative weights on quadratic quantities
 

2 2 2x , u 82 ...,Bls 2 ... , . These state variables represent small dis­

placements and their incremental rates from an equilibrium point. There­

fore, the minimization of the performance index (2-3) minimizes the energy 

in the state and control displacements. 

The linear optimal quadratic control law yields linear feedback of
 

states and results in a reasonable damped,stable closed loop system. The
 

quadratic cost function may be regarded as a generalized weighted mean
 

square error criterion for the multi-variable system working under the
 

penalties on the control variables.
 

The quadratic cost function for this problem is written with a
 

weighting matrix Q for the state (or the output), and a scalar weighting
 

R = p2 for the control as follows:
 

fJ* = Min [x(t) Qx(t) + p 2u2 (t)] dt (2-4) 
u o 
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The optimal control law u(t) is obtained as
 

u(t) = -R-BTKx(t) (2-5) 

It has been shown that the gain matrix K must satisfy the algebraic
 

matrix Riccati equation:
 

KA + ATK - I KBBK +Q = 0 ; where Q > 0 (2-6) 

pa 

which yields a feedback control system with the stable, closed loop roots:
 

Re{Xi[F]} H Re{Xi[A _ IBTK]} < 0 for all i = 1,2,3,4
p
 

To solve Eq. (2-6) for K matrix, the weighting matrix Q must be selected.
 

For example, the longitudinal dynamic equations for a hovering helicopter
 

(4th order system), one can write:
 

u(t) = -R-IBTKx(t) = -Glxl(t) - G2x2 (t) - G3x3 (t) - G4x4 (t) (2-7) 

where 

K {kij ; i, j = 1,2,3,4 

G = (XBlk2l + MkBI41) p
 

2
G2 = (XBIk22 + MBlk 42) / p

(XBIk23 + MBIk43 ) /p
33 


2G4 (XBIk 2 4 + MBlk44 ) / p

6 



After the Laplace transform, the control law Eq. (2-7) can be written as:
 

BIs(s) = - G(Txs + 1) x(s) - Ge(Tes + 1) e (s) (2-8) 

where
 

Gx = Gi, G = G3 , Tx = G2/Gi T0 = G4/G3 (2-9) 

The optimal control system theory attempts to provide an analytical
 

design procedure that lessens the designer's load in the design task, and
 

locates more of the load on the computational machines. The problem is to find
 

an optimal linear controller for a linear plant by minimizing the above
 

quadratic system performance criterion or a quadratic cost function. The
 

optimal linear-quadratic control theory provides a well organized design
 

procedure for a linear system with a feedback structure. The linear feed­

back structure would probably be, from the practical point of view, the
 

most beneficial result of optimal linear-quadratic control theory. The
 

application of the theory, even the multiloop system design, which is often
 

difficult in the conventional approach, may be thought to become easily
 

accessible for system designers. All the possible feedback loops are taken
 

into account and all the corresponding feedback gains are determined in
 

the design procedure. The resulting closed loop system appears to be not
 

only a stable system, but also a minimum weighted mean square error system.
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The benefits and the mathematical beauty of the optimal linear­

quadratic control theory -might give a false impression that almost all
 

the difficulties in linear system design have been eliminated. The
 

entire theory has been developed under the presumption that the weighting
 

matrices in the quadratic cost function are somehow given a priori. They
 

are completely left open for the designer's choice.
 

The weighting matrices are usually selected only for their diagonal
 

elements by the practical system designer on the basis of his engineering
 

experience, coupled with simulation runs for different trial values. One
 

can be obliged to do a tediously long trial-and-error approach, especially
 

in the design of multiloop systems., Many of the attractive features of
 

optimal linear-quadratic control theory seem to disappear., The optimal
 

linear-quadratic control theory may be even worse than the conventional
 

methods for multiloop system designs, because the weighting matrices have
 

no apparent quantitative relationships with the closed loop system dyna­

mical characteristics. None the less, the weighting matrices determine, to
 

a large extent, on the resulting system dynamical characteristics. Hence,
 

the selection of weighting matrices often become a considerably difficult
 

task. One may be able to say that most of the potential difficulties of
 

multiloop system design have been concentrated on the selection of weighting
 

matrices, and the optimal control theory does not ease essential difficulties
 

in the system design.
 

Accordingly, the selection of weighting matrices really has a crucial
 

significance in the practical system design through the optimal linear­

quadratic control theory. Some of the qualitative properties of weighting
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matrices are summarized in Ref. [26). They may help designers to select
 

the trial weighting matrices. In order for the theory to be practically
 

applicable, however, it is necessary to develop a reasonable and unified
 

way for the quantitative selection of weighting matrices. This is one of
 

the topics considered in this work.
 

Two methods for the quantitative selection of these weighting matrices
 

have been available.
 

1. Method of Authorities of Variables (Refs. [271 and [281)
 

This method is based on the normalization of output variables and
 

control variables. Every weighting factor for the output variables and
 

the control variables is inversely proportional to the square of the pre­

scribed maximum for that variable. The quadratic cost function becomes
 

a linear combination of normalized mean square errors and controls. This
 

method only provides an initial estimate for the weighting matrices, which
 

are assumed to be of diagonal forms. However, there are no clear-cut
 

reasons for the weighting matrices to be necessarily of a diagonal form,
 

since the output components are usually coupled with one another. In order
 

to refine the resulting system, a trial-and-error approach would be inevi­

table. Besides, it is often a difficult task to estimate the maximum values
 

of all the output and the control components. Even if it is possible, there
 

is no guarantee that all the outputs and the controls of the resulting sys­

tem are suppressed within the prescribed maximum values.
 

2. 	Closed Loop Pole Allocation (Refs. [20] and [6])
 

This method achieves the specified closed loop poles by appropriately
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choosing the weighting matrices in the quadratic cost function. The ori­

gina-1 work for this method has probably been done by E.J. Ellert (Ref. [6 ]. 

W.M. Wonham proved in Ref. [35] that it is possible to implement arbitrarily 

assigned poles on the complex plane with some linear feedback control law,
 

if the open loop system is completely controllable. However, this has been
 

proved independently of quadratic cost functions. More recent studies (Refs.
 

[36] and [37) on the inverse problem of linear feedback control show that
 

every linear feedback control minimizes a quadratic cost function with cer­

tain weighting matrices. Combining Wonham's work and the results out of the
 

inverse problem, it is possible to place the closed loop poles anywhere on
 

the complex plane by choosing appropriate weighting matrices. However, the
 

difficulty is how to allocate all (but not some) of the closed loop poles,
 

especially in high-order systems. The dominant closed loop pole allocation
 

has also been studied (Ref.[20]). This is a method to approximately obtain
 

the desired dominant poles. However, this does not answer the essential
 

difficulties in deciding the number of dominant poles, and in choosing the
 

dominant poles. Besides, this approach usually yields a system with very
 

high feedback gains, and requires complicated computational procedures.
 

If the desired closed loop poles can be assigned, the optimal linear-quad­

ratic control theory may not be necessary, but some other direct approach
 

may be more convenient (example: Ref. [31]).
 

Thus, there is still a large gap between the optimal linear-quadratic
 

control theory and its application to practical system design. Until such
 

a gap is bridged by developing a reasonable, simple, and well-unified method
 

to select the weightingmatrices, the optimal linear-quadratic control
 

theory would remain to be just a "theory" and would not be accessible to the
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designers of practical systems.
 

This work is based upon Ref. [7], which attempts to bridge the gap.
 

Below and in Appendix E is given a summary of the two new methods described 

in Ref. [7], to select the weighting matrices of general forms (not
 

necessarily diagonal matrices).
 

3. OWEM Design Method (Ref. [7])
 

Based on the thought that the quadratic cost function is a legitimate
 

system performance measure in the linear-quadratic control theory, the
 

minimum quadratic cost function with the optimal linear feedback control
 

law is actively used as the criterion to select the weighting matrices.
 

First, the nature of the minimum quadratic cost function has been examined
 

for particular sequences of weighting matrices. It leads to the necessity
 

of some constraints on the weighting matrices, as a minimum equal to zero
 

occurs when the weighting matrices are zero. In Ref. [7], reasonable con­

straints are explored to make the optimal weighting matrices not equal to
 

zero or finite, and this appears to be a determinant constraint. Under this
 

constraint, the minimum quadratic cost function is further minimized with
 

respect to weighting matrices. The resulting weighting matrices are based
 

upon the system noise characteristics, and hence, the minimum of the quad­

ratic cost function becomes a function of the noise N or Jmin,Q,R). The
 

resulting closed loop system dynamics is a system that minimizes the effect
 

of the noise or disturbance for which it was designed. It was also shown
 

that the resulting optimal weighting matrices Q and R were inversely pro­

portional to the output covariance matrix, and the induced covariance matrix
 

of optimal controls, respectively. Obviously, they are not necessarily dia­

gonal matrices. Note that these results are quite similar to the weightings
 

proposed by Gauss for the weighted least-square estimation problem.
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The optimal weighting matrices appropriately normalize the output
 

and the control variables, and also equalize in groupwise a-li the addi­

tive terms appearing in the quadratic cost function. The two functions,
 

i.e., the normalization and the equalization, are fundamental roles re­

quired for the weighting matrices in quadratic cost functions. Because
 

of the normalizing effect of weighting matrices, the resulting closed
 

loop system dynamics became irrelevant to the physical dimensions which
 

were used to express the plant dynamical equations.
 

It was also shown that the ratio p = IRI/IQI between the prescribed 

determinants of R and Q represented some kind of measure about the trade­

off between the contribution of control variables, and that of system out­

put variables to the quadratic cost function. The tradeoff parameter p
 

would play the key role for determining the closed loop system bandwidth.
 

The method described above provided a well formulated set of necessary and
 

sufficient conditions for reasonable optimal weighting matrices with only
 

one unknown parameter or trade-off parameter equal to p. It required the
 

a priori knowledge about the system noise intensity matrix N since the
 

criterion Jmin (N;Q,R) was a function of N. The a priori knowledge about
 

the plant noise may not be available in many cases. Then, the second
 

method for the selection of the weighting matrices was developed by intro­

ducing a new criterion which is independent of the noise intensity matrix N.
 

The concept of n-dimensional hyper error ellipsoid (state error set) 

is used and a measure of the state error set was defined by its n-dimensional 

volume (V(t)). The "Relative Rate of Convergence of Error Sets" was defined 

as 1 V(t) , and this represents a sort of generalized system re­
V(t) dt
 

sponse speed. This new criterion is independent of the plant noise intensity
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matrix N, and was shown to be exactly the same as the so-called "Total 

System Damping". The well formulated necessary and sufficient conditions
 

for the noise-free optimal weighting matrices are derived as the solution
 

of the Mini-Max problem for the RERACES (or TSD).
 

It has been shown that, using the second method selection of the Q
 

matrix yields the same result as the first method, if the noise character­

- .
istics (see Fig. 1) are assumed to be white noise disturbances with Ne=kR


In other words, a white noise disturbance in u(t). The effect of noise or
 

disturbance bandwidths in the helicopter application is discussed in Chap­

ter 3, and is often small for the range of operating conditions used in 

that application.
 

The initial application of this method for determining the Optimal
 

Weighting Matrices to second through fifth order example in Ref. [38] in­

dicates the advantages of this approach. For these examples, the conven­

tional and optimal methods have been used extensively, and the results are
 

well known. For these examples, the area of the pole location for the pre­

cision hover of a helicopter has been well established, and each of the
 

above methods can be applied yielding(often by trial and error), about the
 

same results. However, it has been demonstrated, by these examples, that
 

the application of the OWEM method yields,without a trial and error method,
 

a good and well damped solution to the problem.
 

This solution is independent of scaling (dimensions) of the problem
 

statement, and assumes in the first instance, that there is no a priori
 

different penalty on error, gain,frequency, etc., among the state variables.
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In summary, for the OWEM design method it is required to know:
 

1. the system matrix
 

2. the control matrix
 

3. the noise or disturbance matrix
 

The OWEM design method then determines the weighting mattices Q and 

R for minimizing the quadratic performance index under the assumption 

that all errors are equally important, and hence, these matrices for the 

calculation of the feedback gains. When the noise N is unknown, Q and R 

can be computed by the mini-maximization of TSD with respect to Q 'and R 

under prescribed determinant constraints. This is equivalent to a white 

noise disturbance with a magnitude Ne inversely proportional to the con­

trol weighting R, and the minimization of TSD is equivalent to the mini­

mization of Jmin(Ne; O,R). 

The OWEM design method is based upon minimization of known or esti­

mated disturbances and results in a control system with adequate stability
 

or damping. In the generalized formulation no consideration is given to
 

system limitations, such as acceleration limits, gain limitations, and so
 

on. Hence, in the design of a flight controller, the performance and con­

trol boundaries must be considered. These boundaries are essential in the
 

practical application of the design method. For example, take the case of
 

a hovering helicopter (longitudinal).
 

A design is to be made for an automatic control system. However, the
 

assumption is made that when the system is switched to manual control, it
 

is desirable that the mode frequencies do not change appreciably. Hence,
 

14
 



the boundaries for the automatic system should be similar to those of manual
 

control. The longitudinal control of the precision hover of a helicopter
 

is in principle dominated by 2 modes; a "position" mode corresponding to
 

the "outer loop" and a "attitude mode" corresponding to the "inner loop" 

of the feed control system.
 

An estimate of the boundaries of the "position" mode is given in 

Ref. [22], and summarized below.
 

A massless point controlled according to a linear error control law, 

e = -Ke, would result in a first order system with a closed loop bandwidth 

WCL = I/CCL = K. Instantaneous speed changes not being possible, even the 

simplest model has to incorporate the inertia. This leads to a second order 

system for control. The most significant assumption in this very simple 

model is that tilting the thrust vector and changing its magnitude, is pos­

sible with negligible delay compared with the position keeping bandwidth. 

The block diagram of such a simplified model is shown in Illustration C2-1 ). 

Acceleration
 

i -- (gust) 
-- ta- i/slLLi 

_AL Au 1 .+ 

Helicopter
 

- _ -- AuN - Au 

AxN - Ax
 

Illustration 2-1. Simplified Block Diagram of a Hovering Helicopter
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The input to the longitudinal positioning loop is shown as AaN, the
 

acceleration disturbance. The gains gG and gG. determine the accelera­
x 

tion per foot error and per ft/sec error rate, respectively. The following
 

fundamental relationships are easily deduced from the block diagram.
 

The natural frequency and therefore, the bandwidth of the position
 

loop is
 

W = r (2-10)
p x 

oG is the "spring constant" of the position loop. The relative damping
 

ratio is
 

C = (Vg12) (G-/IV )= 2.83 (G*I/G) (2-11) 

The relationship between the bandwidth and the damping ratio is determined
 

by 

G /Gx = 2C l/wp) (2-12) 

and, for a predetermined bandwidth and damping ratio
 

2
Gx = (l/g) p and G = (2/g) p wp 

In the case of a constant acceleration disturbance, the steady state error
 

is ag/zp = a/Gx . The simple model provides reasonable estimates of the
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relationship between bandwidth gains and errors as long as the bandwidth
 

of the attitude control loops is several times faster than that of the
 

station keeping loop. Such a separation is feasible and appears desirable
 

in most applications.
 

For the choice of bandwidth of the position loop, the following con­

siderations can be made. A large w leads to a high error gain Gx, a small
 

W results in a large steady state error for constant acceleration distur­p
 

bance.
 

The table below shows some characteristic values of bandwidth, gain
 

and error.
 

wo (rad/sec) .1 .2 .5 1.0P
 

G (deg/ft) .018 .07 .45 1.8
 

steady state error (ft)
 

for .lg acceleration 320 80 13 3.2
 

This table helps to narrow the choice of wo to between approximately
 p
 

.3 and .5. With values under .3, the error becomes excessive, above .5 the
 

thrust angle variations with even small errors are rapidly becoming too
 

large.
 

The desirability to make the bandwidth of the "attitude" mode faster
 

than that of the "position" mode is limited by the manual attitude control
 

loop. This results in an "attitude" mode of frequency in the order of w > 

1.0 to 2 rad/sec.
 

In the conventional control system design method, the gain limitations
 

are taken into account for choosing the "inner" and "outer" loops. In these
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hovering helicopter examples a "tight" inner loop (altitude) is designed
 

with sufficient damping by adjusting G6 and G6, the outer loop 'position)
 

is determined by the position gain limitation Gx; the velocity gain G. is
 

adjusted to provide sufficient damping.
 

In the OWEM design method as developed does not take into considera­

tion gain limitations. When there are no gain limitations, the operating
 

point in the linear quadratic optimal design is determined by the control
 

weighting. This number is determined by the control limitations, and the
 

maximum expected disturbances, and/or command inputs.
 

However, the OWEM design method can be easily adapted by additional
 

information, into the design.
 

When no additional information is used, the computational procedure
 

regards the errors and the associated feedback gains, etc., equally im­

portant. Hence, in this design method, the root location tends to be cir­

cular with more damping than the Butterworth configuration. After the
 

initial design is made, the resulting mode frequencies, errors, gains, etc.,
 

can be analyzed. When the value of these quantities are not in conflict
 

with the practical design requirements, then one can consider the design
 

to be completed.
 

However, in many cases, practical physical limitations have to be
 

imposed on errors, loop gains, mode frequencies, etc. For example, in
 

the hovering helicopter, the position mode frequency is acceleration limited
 

e.g., .3 to .5 radians/sec.
 

On the other hand, the attitude loop should be a much higher frequency,
 

e.g., 1-3 rad/sec.
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In Appendix B is shown in the calculation of the optimal weighting 

matrices the groups wise equalization matrix (S) is equal to the unity 
T 

matrix. This imposes an equal weighting on the elements of the y Q y. 

In engineering termsthis implies that all the mean square error associated 

control, gains, etc., are of equal importance. 

The initial design is done on the digital computer using S = I. The 

resulting design is then examined with respect to errors, control and gain 

limitations. For example, one can examine errors and mode frequencies as 

a function of the control weighting p. Wfhen this examination shows that the 

control weighting p determined by the control limitation, no other boun­

daries (imposed or desired) are violated, then the design is finished. If, 

however, one finds that for the desired control weighting p, one of the pre­

determined requirements i not met or gain boundaries are violated, then one 

should determine the violated boundary on the Optimal Root Location (ORL) plot. 

In the example shown for the longitudinal hovering helicopter, the 

position acceleration limitation limits the p to approximately equal to 800 

(.3 to .5 rad/sec.), while the desired altitude boundary yields a 

p approximately equal to 3200. This implies that in order to reach the con­

trol boundary and acceleration boundary at the same time, one should use an 

equalization matrix which has a value of 1/4 for the state variables associated 

with this limitatioh. 

In other words, one can assign a different weighting on the system 

errors if this also is equivalent to assigning a diagonal Error Scaling Matrix 

(ESM). The designer is free to investigate the effect of the ESM matrix upon 

the final system design. Note that the ESM matrix is a diagonal matrix, so 

that the elements of the matrix are easily interpreted. 
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In this manner, an objective measure of an error criteria is used
 

to determine the weighting matrices. The approach taken in this work
 

imposes the boundaries more or less by engineering judgement in terms
 

of errors. A very important further theoretical investigation with
 

significant practical aspects is the introduction of constraints in the
 

OWEM design.
 

The OWEM design method is also directly applicable in model following
 

for the determination of the weighting matrix Q (Appendix Gi, Eq. Gl-22).
 

The weighting matrix Q in the model reference system is composed of the
 

original weighting factors Q of linear feedback systems. The OWEM method
 

determines the Q matrix for minimization of disturbances. Hence, a weight­

ing matrix determined by this principle should yield a prefilter model
 

reference control system that minimizes the errors due to the disturbances.
 

Another important investigation will be the practical aspects of the
 

use of OWEM design criteria for incomplete measurement and feedback of all
 

state variables.
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CHAPTER 3 

CONTROLLER DESIGN FOR A HELICOPTER (OWEM) 

I A Helicopter system and control equations 

In this chapter the optimal control design will be illustrated on the 

controller design of a helicopter. The system to be controlled is a sys­

tem representative of an uncoupled hovering helicopter CHS4B given by Eq. 

5-I. 
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For the optimal design, the following equations are used and solved
 

with the aid of a digital computer.
 

System dynamics: x(t) = Ax(t) + Bu(t) + Cn(t) (3.2) 

y(t) = Hx(t) (3.3) 

where x(t): n dimensional state vector 
u(t): m dimensional control vector (m<n) 
y(t): p dimensional output vector (p<_n) 
n(t): k dimensional noise vector (.Z<n) 

E.{n(t)} = 0 
Cov{n(t);n (-)I = N6(t-T)(unknown) 

A,B,C and H: nxn, nxm, nx and pxn constant 
matrices, respectively. 
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Cost function: J . (N;Q,R) = Min Lim 1 [yT(t)Qy(t)+JT(t)Ru(t)]dtl
ut) T -T [ 

= Tr[CNCTK]. (N:'unknown) C3.4) 

If N = kC+BR-IBT(C+)T, then e (3.5) 
Jmin (Ne ;QR) = kTr[BR_'BTK] 

where C+: Zxn pseudo-inverse matrix of C,i.e., 

(=(cTC)-ICT) 

Optimal control law: u(t) = - R-IBTKx(t) (3.6) 

where K: nxn unique positive definite solution of (3.7) 

KA + ATK - KBR-1BTK + JQH = 0 (3.7) 

The optimal control law (3.7) can be computed without knowing 
N if Q and R are given. 

If the Q and R matrices are estimated, then for these Q and R values the
 

optimal control law can be calculated.
 

When the values for the matrices Q and R are not estimated, then one needs
 

an additional criteria. For example, minimizing total system error in total
 

system damping, etc. as discussed in Ref. (7). Assuming that gust or noise
 

information is not available, the selection of optimal weighting matrix is
 

done by minimizing the criterion LCQ,p 2), as discussed in Ref. 7 and Appendix
 

E. 

Auxiliary performance index 

Total System Damping = TSD: the negative sum of the closed loop roots 

L* =Min Max {TSD} = Min Max {Tr[-(A-BR- BTK)]} (3.8)
Q R Q R 

or equivalently
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L* = Min Max {Tr[BR-IBTK]} ('." A = constant matrix)
 
Q R 

subject to KA + ATK - KBR-IBTK + H TQH = 0
 

Note: (1) TSD is equivalent to the Relative Rate of Change of Error Sets
 

(RERACES, see Ref. [7], Chapter IV), and is a generalized system
 

response speed.
 

(2) The extremum (minimax) of TSD does not exist unless Q and R are
 

appropriately constrained.
 

Constraints on Q and R
 

2
JQI = 1, JRI = p

where
 

I (.)I : the determinant of (') (3.9) 

Optimal weighting matrices
 

Q = PT (HPHT]-l (3.10) 

R =z/m BT KB- BTKPKB (3.11)
 

lJBTKB BTKPKBI
 

where FP + PFT + BR-IBT = 0 (3.12)
 

F = A - BR- BTK
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The latter equations are solved on the digital computer for the
 

matrix Q. The optimal weighting matrices are then used in the Riccati
 

Eq. 3-8 which yields the optimal control law (Eq. 3-7).
 

For a hovering helicopter CH54B, the numerical values for Eq. 3-2
 

are shown in Eq. 3-13.
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These equations can be divided into four separate systems of equations,
 

namely:
 

1. Vertical Control System
 

2. Yaw Control System
 

3. Longitudinal Control System
 

4. Lateral Control System
 

For a helicopter in the approach phase, the numerical values for
 

Eq. 3-2 are shown below in Eq. 3-14.
 

-.0221 -32.2 l.SlS 
i 

0.0 
I 

0.0 0 0.0 0.0 

1.0 

.0020 0 -.4251 ' 0.0 ' 0.0 0 0.0 ' 0.0 
I - 1- - - - - 4 

A*= 0.0 0 0.0 '-.5333 0.0 0 0.0 0.0 

0.0 0 0.0 0.0 -.0711 32.2 -1.788' 0.0 

1.0 

0.0 0 0.0 0.0 -.0113 0 -1.488: 0.0 

_0.0 0 0.0 0.0 0.0 0 0.0 -.937 

33.12 0.0 0.0 0.0 

0 0 0 0 

-5.35 0.0 0.0 0.0 (3-14) 

B* = 0.0 -304.4 0.0 0.0 

0.0 0.0 35.35 0.0 

0 0 0 0 

0.0 0.0 24.06 0 

0.0 0.0 0.0 -9.53 

26
 



B Controller Design for Vertical and Yaw Control
 

In hovering, the helicopters have inherent rate damping in vertical
 

and yawing motions with stable vertical speed and yaw rate characteristics.
 

However, with regard to the position stability, both the position control equa­

tions are neutrally stable due to pole located at origin. This means that
 

the helicopter, if uncontrolled and if exposed to disturbances, will drift
 

away from desired hover points. Taking these into account, the following
 

design objectives are recommended for precision hovering.
 

(1) To obtain the stable well damped position control system
 

(2) Good system response to position command input, with a small or
 

no overshoot, and minimizing integral square error (ISE)
 

(3) Minimizing root mean square position errors and resulting controls
 

to random gust input.
 

Some of these requirements oppose each other and a compromise becomes
 

necessary.
 

The characteristics of the decoupled Cuncoupled) motion of vertical and
 

yawing equations are of the second order rate command systems as in Eq. (3-14).
 

x(t) + ax t) = b&(t) + (Cw (t)3 (3-15) 

where
 

x(t) : position z, ft or , rad 

xCt) : rate of position Z, ft/sec or r, rad/sec 

-1
 
a : rate damping Zw or Nrsec
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b : control derivatives Ze, ft/sec2rad or N6 , rad/sec 2rad 
r 	 . . 

6
6(t): control input6 c or , tad
 

w(t): vertical gust or sideway gust, ft/sec
 

c : gust derivatives, ZW, I/sec or Nv, I/sec ft
 

We assume for calculation purposes that disturbances even in decoupled yaw
 

equation has effect on control through Nvterm.
 

Design Method by Conventional Selection of Weighting Factors
 

The optimal control is derived by minimizing, in a disturbed system
 

the followng integral without W
/9 
12 o	 + 2t r22t)df (q11 x (t)+q 22 x()+r(tdt(3-16) 

0 

Where qll : weighting factor for position
 

q22 : weighting factor for rate
 

r : weighting factor for control
 

Selection of Weighting Elements ql,, q22 and r
 

In both systems the closed loop system characteristics are covered 
by
 

selection of non-zero diagonal qll, q22 and r only, as shown in Appendix 
D.
 

The weighted quadratic terms in the integral should be non-dimensionalized.
 

The following units are selected for ql, q22 and r.
 

Yaw
Vertical 


ft- 2 rad-2 (3-17)
qll 


a- 2 ec2
 
q22 ft	-2.sec2 rad-sec
 

d -2 rad-2
 ra
r 
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The values of weighting factors are specified by choosing an equiva­

lence of the values of position errors (Z,4),rate errors (Zr)and re­

sulting control (6c' 6r ). The selection is as follows:
 

Vertical (10 ft) 2 = (5 ft/sec)2 = (0.1 rad)2 (3-18)
 

Yawing (0.2 rad)2 = (0.1 rad/sec)2 = (0.1 rad) 2 (3-19)
 

These weighting factors correspond to the case (5) with r = 100 in
 

Table 1 below, where a number of computed numerical examples are listed.
 

Table 3.1. Computed Numerical Examples
 

Case No. Weighting factors
 

qll q22 r
 

(1) 1.0 0 0 

(2) 1.0 0.25 0 + 

(3) 1.0 1.0 0 

(4) 1.0 2.0 0 

(5) 1.0 4.0 0 

(6) 1.0 16.0 0 + cc 

Note that only the relative magnitudes (values) have effects on the
 

characteristics of the closed loop system (see Appendix D).
 

Optimal Control. The optimal control to minimize the performance index (Eq.
 

3-16) is given as function of qll, q22 and r (Appendix D).
 

o(t) = - + + 1 1 L 2 (3-20) 
OT Ab11b) r 
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Substituting this into Eq. (3-15) gives the closed loop system
 

J2 rl q22x'(tt)lx(t)+ a + 2b - + b2 2 t; +b x(t): 0 (3-21) 
r r 

This derivation and its properties are shown in Appendix D.
 

The optimal control, in general, has been solved for the system without
 

noise as shown in Appendix D. The separation theory in Refs. C2O, 27, 39)
 

warrants the optimal control to be optimal for the system with gaussian white
 

noise. However, unfortunately it is not guaranteed to be still optimal for
 

the system with nonwhite or nongaussian gust.
 

Root Locus for some q22 Is and qll = 1.0. The root loci with varying r are
 

shown in Figs. (6 and 7) for vertical and yaw equations, respectively. The
 

complex roots are circumferently distributed to the origin. These numerical
 

examples are of the following numbers.
 

Vertical
 

a = Z= -.269 1/sec

w 

b = Z -292 ft/sec2/rad (3-22)
 
c
 

c = -Z = -.269 1/sec

w 

Yawing
 

a = N =-.482 1/sec

r 

b = N = -8.95 rad/sec2/rad (3-23) 
r 

c = -N = -.0019 rad/ft/sec 
v 

Notice that the closed loop system is sufficiently stabilized by weighting
 

qll and r only, and the damping ratio approaches .707 as r becomes smaller.
 

These poles are called 2nd order Butterworth poles (Ref.9 ). Addition of q22
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gives rise to a more damped systein. The damping ratio and undamped natural
 

frequency are given as:
 

2+r 4 + bq (3-24) 

03 =~ qlY(-25) 

The latter determines the system response speed, or accuracy, which is in­

versely proportional to quartic root of control weighting r. When the
 

weighting q22 satisfies the following inequality
 

q211l < lal
a (3-26) 

Then all roots are on negative real axis, since S1 has the role
 

of a zero in the root locus. It is observed that such selection of weightings
 

as in this case 'that is' no cross product terms in Eq. (3-16), place the
 

closed loop system poles in certain limited left half plane. A desirable re­

gion of pole location closely relate with the requirements (2) and (3). In
 

spite of increasing accuracy or speed of response, placing poles too far away
 

in the left half plane, by increasing feedback gains or control action, is
 

likely to excite the structural vibration mode of the helicopter. On the other
 

hand, poles near the origin present a slow response and roughness of control.
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The feedback gains are shown in Figs. (8) and (9), which also show
 

the corresponding augmented damping and stiffness. The feedback gains
 

increase as r becomes smaller, and increase in q22 raises the rate feed­

back gains.
 

The optimal feedback controls for both vertical and yawing systems do
 

not yield a system which has an overshoot for a step input. Hence, some
 

of our design objectives (stable, no overshoot) are definitely obtained.
 

ISE and ISU Evaluation for Command Input. In general, the ISE and ISU for
 

the second order system to a unit command step input are given as
 

ISE 1- (c + =) (3-27a)
n 

f- x2dt (3-27b) 

0 k(o) =0.0 

+ 2~WA(a 2 

ISU = 4C (3-28a)
 

S 62dt (3-28b) 

±(o) 1.00(o) 0 

where
 

n : closed loop undamped natural frequency rad/sec
 

: closed loop damping ratio
 

a : open loop damping
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which are sketched as a function of in Figure 10 where the minimum ISE 

is attained when = 0.500, and the ISU is inversely proportional to . 

In the s-plane the curves for ISE = const. and ISU = const. are shown in 

Figure (18). 

Using Eqs. (3-24), (3-25), (3-27) and (3-28), the integrated square
 

errors and controls to command step input are computed with varying r, 

some q22 's and qll = 1.0 as shown in Figs. (11) and (12). The ISE value 

approaches the minimum as r goes zero, while the ISU goes to infinity. 

The minimum ISE value of the optimal control system is given by substituting 

Eqs. (3-24) and (3-25) into Eq. (3-27), 

Min. I = 1 q22 (3-29)
2 1 qll 

at r = 0 where the ISU becomes infinity. This value would become criterion
 

for selection of qll and q22 ' known as that of the model equation given by
 

Eq. (D2-21) in Appendix D. For reference of ISE values, it is desirable to
 

compare with the ISE of the first order system of which command response is
 

easily depicted in mind. Therefore, the following time constant may become
 

an index:
 

Te = time constant of the first order system \ith same TSE
 

(3-30)
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which is labeled in Figs. (10), (11), (12), (38) and (63). Similarly , one 

may define the following equation as mean control acceleration.
 

Ur 1 (3-31)

SFTe ISU
 

which would be a rule of thumb for the upper limit of ISU. It is interesting 

to see that ISE of the optimal control system is a little bit larger than the 

true minimum ISE as shown in Figure 10. 

Gust Response. The requirement for gust response supercedes that for com­

mand input in position keeping such as hovering. In addition, knowledge of
 

the gust response is important since the optimal control is obtained in­

dependently of the random gust. The assumed gust model is of the following
 

power spectrum density (p.s.d.).
 

S = 2a2d (3-32)
rr d2 + WZ­

where 

d : bandwidth of p.s.d. of the random gust 

a: rms value of random gust
 

The numerical examples are given by 

a = 10 ft/sec 
(3-33) 

d = .314, 1.0, 2.0 rad/sec
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which is a considerable gusty condition.
 

The rms position error and control are calculated with varying r as
 

shown in Figs. (13) to (16) for both vertical and yawing equations. From
 

these figures, the gust response would be alleviated by increasing q22 ' or
 

increasing rate feedback (see Figs. 8,9), with less control effort. It is
 

much more reduced by decreasing r 'that is' increasing nms control action.
 

As r goes to zero, the rms control force (acceleration) increases to cancel
 

the random gust force with little excess as shown in Figs. (13) and (14).
 

Note that excess control action is caused by control system time lag.
 

For different bandwidths of p.s.d. of random gust under its constant 

intensity, the rms position errors and controls are studied in Figs. (15) 

and C16). These results show that random gust with higher frequency compo­

nent bring less effect on both rms position error and resulting control.
 

These results are explained by the frequency domain analysis as follows:
 

The rms value of the gust response is described as (Appendix GI-3)
 

RIIS value =IGULw)I S rr) dw (3-34) 

where Gjw) is the frequency response of the transfer function to the gust.
 

For example, the frequency responses of the transfer function of ver­

tical position error and control to the gust input are shown in Figs. (17)
 

and (18). The following three cases are pictured here:
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Weighting factors Undamped
 

Case No. qll q22  r Damping Natural Frequency
 

(1) 1.0 0 13130 0.71 0.9
 

(2) 1.0 0 8190 0.71 1.8 (3-35)
 

(3) 1.0 4.0 8190 1.9 1.8
 

The broken lines indicate the p.s.d. of the random gust. The rms position
 

error in case (1)becomes larger than the others because of the higher gain
 

as shown in Fig. (17). On the other hand, the control action becomes smaller
 

since the relative magnitude of control is smaller. In case (3), though the
 

control response can be influenced by a high frequency component of random
 

gust, the gust under consideration does not include such frequency component,
 

and therefore the rms resulting control is smaller compared to case (2).
 

Similarly, it is recognized that the random gust with higher bandwidth of its
 

power spectrum density has less effect on both rms position errors and con­

trol.
 

Now, assume that requirements are chosen as follows:
 

rms vertical position error < 5 ft (3-36a) 

Integral squared position error < 5 ftZ sec(Te =1.0) (3-36b) 

-Integral squared control < 9.0 ft2 sec 8 (Um=3.0 ft/sec 2) (3-36c) 

Eq. (3-36a) would supercede the others in keeping position. 

The lower limit of r is prescribed by only ISE requirement. We should 

choose q,, and q22 as necessary, 

q22/qll < 1.0 (3-37) 
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and r should satisfy the following inequality
 

1200(8.5) < r__ <- 2,200(6.2) (3-38)-qll
 

for qll = 1.0 and q22 = 0.0. 

The requirements for yawing cases are chosen as follows: 

rms yawing error < 1.0 degrees (3-39a) 

S <..50 deg2sec (Te =1.0 sec) (3-39b) 

ISU < 9. deg2sec-s(Um=30 deg/sec )(3-39c) 

Then, we should choose as necessary 

q22/qll < 1.0 (3-40) 

and r should satisfy, for qll = 1.0, q22 = 0
 

1.1 (8.5) < r/qlI < 3(5.2) (3-41) 

Note that numerical numbers in the parenthesis indicate ratios of expected
 

controls and position errors due to weightings,and the ratios are almost the
 

same in both cases. There is a big difference between selected r due to the
 

differences in control derivatives.
 

The desirable root location to meet all requirements (Eq. 3-36), which 

varies as requirements alternate, is sketched in Fig. (18). 

Owem Design Method. The optimal control is given by, as shown in Appendix 

E2.
 

1 (3-42) 

o(t) = - _- - + a2 + 3 ) k(t) ( 
6opt -yxt) 2 2 

T 
37 b5r3 
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Note that the optimal control is determined only by r which is called 'trade
 

off parameter' in the Appendix E. This optimal control is also designed to
 

be optimal for the system with a gaussian white noise as shown in the Appendix
 

E, but not for a nonwhite gust. 

The close loop system is given by, (See Eq.E2- ) 

4 4
 
x2 3b(t) 	 +* + 2 3 (t) + b-x(t) = 0 (3-43) 

r T 

of which undamped natural frequency and damping ratio are:
 

2 
b T(3-44)
 

a-r 

2 2' C3-45)
3=+ -S2. 3+5 

Root Locus for Varying r
 

The root loci are-sketched in broken lines for vertical and yawing
 

equation in Figs. (6) and (7), respectively. The closed loop system app­

roaches the system with damping ratio = .866 while the poles are pushed away 
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in the left half s plane as r goes to zero. The distance of the complex
 

roots from the origin is inversely proportional to cubic root of control
 

weighting r. By this method, no overshoot and sufficiently stable system
 

can be obtained and some of our design objectives are achieved.
 

ISE and ISU for Command Input
 

The ISE and ISU values are shown in broken lines in Figs. (11) and (12),
 

respectively. These(ISE and ISU with varying r)are calculated by substituting
 

(3-44) and (3-45) into (3-27) and (3-28) and as r goes zero, obviously
 

ISEr=0 = 0 (3-46)
 

ISUT=0 = infinity (3-47)
 

The requirements described in Eqs. (3-36b,c) and (3-39 b,c) would be satisfied
 

by choosing r properly.
 

Gust Response
 

The rms position errors and controls of the gust responses are also
 

shown with broken lines in Figs. (13) and (14). Decreasing a weight r on
 

control or increase in available control reduces the rms position error.
 

The requirements described in Eqs. (3-36) and (3-39 are satisfied
 

by choosing
 

2700 (5.6)<r<7500 (3.4) (3-48) 

2.6(S.6)<r<5.8(3.5) (3-49) 
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Note that the numbers in parenthesis indicate the ratio of expected controls
 

and state errors due to r called tradeoff parameter in the single input cases
 

[see Appendix E]. 

In this way, all the design requirements would be satisfied by this
 

method.
 

Helicopter in Approach Phase
 

The numerical values for the helicopter in the approach phase (Eq. 3-14),
 

are not sufficiently different from those in Eq. 3-22 and 3-23 to employ a
 

control system with variable gain, especially as the control system is of the
 

first order.
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C Controller Design for Longitudinal Equation
 

A hovering helicopter can have an unstable, oscillatory mode in
 

the longitudinal equation, as shown in Figure 2. Furthermore, the position
 

control equation has another pole at origin. That places much workload on the
 

pilot for precision hovering, especially in gusty conditions. Therefore, the
 

design objectives become, for the automatic controller:
 

1. To obtain the stable system
 

2. Good response, such as little-overshoot, minimizing the ISE, ISe,
 

ISU to a command input 

3. To minimize RMS of the position error, attitude error, and resulting 

control to gust input
 

The longitudinal equation is given by
 

Xu -X +ge B -Xu 
u q BsBs u g 

-M U-+ -MO=M B -Mu (-0 
u q BlsBIs u g 

In the state variable form, including position variables
 

x 0 1 0 0 x 0 0 
* Bs + -X u
 
u 0 X -g X u + X Bis u g

u q Bis 
0 0 (3-51)
0 0 0 1 


0 Mu 0 M q -M
u
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where
 

x : longitudinal position , ft 

u longitudinal velocity , ft/sec 

e : 	pitch attitude angle , rad 

q : 	pitch rate ,rad/sec
 

B : 	longitudinal cyclic pitch , rad 

u : 	gust input , ft/sec 
g
 

Xu : rate of change of longitudinal force, 1/sec
 
with velocity
 

Xq rate of change of longitudinal force, ft/sec
 
with pitch rate
 

Mu : 	rate of change of pitching moment , rad/ft sec
 
with velocity
 

Mq pitch rate damping , I/sec
 

XBIs :longitudinal control derivatives , ft/sec2/rad
 
MB s longitudinal control derivatives , rad/sec2/rad
 

, 32.2 ft/sec 2
 g 	 gravitational force 


The performance index to be minimized is given as follows:
 

I f + q22+ u +332 	 1f-	 qllXu2 +448e2"2 rB2 s ) dt (3-52) 

Selection of qii(i = 1,2,3,4) and r.
 

The selection of diagonal Q or qii places the poles of the closed loop
 

system in a restricted part of the left half s plane. (Appendix E). The
 

following units are selected for q1 l, q22 ' q33, q44 and r,
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ft-2
q11 


ft-2sec2
q22 


ad- 2
q r33 (3-53)
 

rad-2sec2
 q44 

-2
rad
r 


Their values are specified by choosing an equivalence of x, u, e,q and B1 s
 

in the integral of Eq. (3-52). The selection is as follows:
 

1 ft = 1 ft/sec = 1 degree = 1 degree/sec = 0.1 rad
 

(3-54) 

Equation (3-54) is expressed as Case No. (7) with r = 100 in Table 3.2 where 

the selected diagonal weighting qii (i= 1,2,3,4) are shown. Note that attitude 

errors e,0 are specified in degrees,while in the equation the units are radians. 

Table 3-2. Numerical Examples for qii
 

Case No. qll q22  q33  q44
 

(i) 1.0 .........
 

(2) 1.0 --- 820 --­

(3) 1.0 --- 3,280 --­

(4) 0.1 --- 3,280 

(5) 0.01 --- 3,280 --­

(6) 1.0 --- 3,280 3,280
 

(7) 1.0 1.0 3,280 3,280
 

(8) 0.1 0.1 3,280 --­

(9) 0.1 0.1 3,280 3,280
 

(10) 0.1 0.4 3,280 13,130
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Root Square Locus.
 

The root loci for the longitudinal system is shown in Figs. (19) through
 

(27). A stable system is obtained using only a weighting qll of the Q matrix
 

and r. Two of the poles approach the asymptote = 0.707 while attitude poles
 

approach the zeroes, as shown in Fig. (19). The root loci starts from stable
 

poles which are then shifted to mirror image in the left half plane of the origi­

nal unstable poles. Increasing the attitude weighting factors q33 from a zero
 

value, induces the more damping to the attitude poles, and further increases in
 

q3, moves the attitude poles away from the asymptote and shifts the position
 

poles into the left half plane as shown in Figs. (20) to (23). As a result, the
 

attitude control or inner loop control becomes much faster than the outer loop
 

or position control. The boundary condition, whether or not the locus of the
 

attitude poles bends inwards, depends on the weighting ratio of qll and q33.
 

The zero locus is drawn as a function of q33/q1l in Fig. (22). This indicates
 

that an increase in the relative weighting q33 to qll brings two zeroes to the
 

origin. Addition of either q22 or q44 yields another zero on real axis and pro­

vides more damping to both the attitude and position poles, as shown in Figs.
 

C24) to (27). Especially, imposition of q33 on S locate a zero near Z1 __X
 

Hence, only one root goes to infinity along the negative real axis, while the
 

others approach the zeroes, and the system is more damped. The closed loop sys­

tem with damping ratio more than 0.707 would be achieved by the adequate selec­

tion of qll, q22, q33, q44 and r, where obviously more weighting would be imposed
 

on q33 and q44 "
 

By the OWEM method, the root locus is uniquely determined with choice of r
 

only. Four poles move to infinity along g . .65 and C ; .95, and the closed loop
 

systems are sufficiently damped.
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In this way, some of the design requirements are attained without diffi­

culty. The feedback gains are shown in Figs. (28) to (37). Using these
 

diagrams, the optimal control is obtained as:
 

BBIs =Kx++KU uKOu + KqqKx q3-55) 

At infinite r, both feedback gains K0 and K approaches nonzero gains,
 

so that the unstable poles are shifted to the mirror image in the left half
 

plane.For the conventional selection method of qii and r, the outer loop,
 

feedback gain is given by:
 

K = 1 [3-56)

X r 

which specifies the systems accuracy. From this point of view, Eq. (3-56)
 

helps select qll and r.
 

ISE, ISO and ISU for a Command Input.
 

The integral squared position and attitude error to a 10 ft. command
 

input is shown in Fig. (38). In position control, the hovering helicopter is
 

desirable to follow the command input as fast as possible without excessive
 

attitude change or its rate. As r goes to zero, the ISE value approaches the
 

minimum given by that of model equation corresponding the zeroes, while the
 

ISO reaches the maximum as shown in Fig. (38). These values at null r are
 

sketched as a function of ratio of weighting factors qll and q33 in Fig. (39).
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They show that the reduction in ISE increases ISO in Fig. (39). Hence, a
 

compromise is necessary. The addition of the weighting factor, q44 de­

creases the ISe considerably, with little increase in the ISE. Finally,
 

the amount of control available in Fig. (40) is limited by the power limita­

tion and mechanical strength of the helicopter.
 

As shown in Fig. (38), the integral squared control increases as r
 

decreases and decreases more when a weighting is placed on the attitude or
 

its rate.
 

It is observed that the OWEM has features similar to, but better than, 

Case 1 in Table 2, indicating ISE = 0, ISO = ISU = at r = 0. 

Gust Response
 

The rms position and attitude errors to the random gust are shown in
 

Figs. (41) and (42), for some qii's and varying r. The assumed gust model is
 

of the same as Eq. (3-33) and numerical example is made assuming quite strong
 

gusty conditions.
 

a= 20 ft/sec (3-58) 

d = .314, 1.0, 2.0 rad/sec 

The rms position error decreases as r/qll becomes smaller and depends slightly
 

on q33/q,,. Effects of q22 and q44 are negligible, and hence, not shown in the
 

figure. On the other hand, the rms attitude error, due to the gust, depends
 

strongly on r/q11 and selected qii (i = 1,2,3,4). Adding a weighting factor, q22
 

or q44 improves the error considerably. In the range of qii considered here,
 

the ratio of q35/q,, governs entirely the order of magnitude of the rms value.
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The rms longitudinal cyclic control and position error is shown in
 

Fig.(41). The root mean squared position, attitude errors, and different
 

bandwidths of the power spectrum density for a gust with constant intensity
 

are computed. It is clear that the rms positLon errors are less influenced
 

by the gust with higher bandwidth. On the other hand, the rms attitude errors
 

are affected less at a large r, but become more affected at smaller r by the
 

gust components of higher frequency, as shown in Fig.(67).
 

The gust responses for the OWEM, shown with broken lines in Figs. (41)
 

and (42) are better than Case 1.
 

A ranking of all requirements for precision hover can be done as shown
 

below. A compromise between them must be found as it is desirable that all
 

requirements are simultaneously satisfied. Take, for example, the following
 

case:
 

root mean squared position error < 1.0 ft. (3-57a) 

root mean squared attitude error < 0.3 deg. (3-57b) 

integral squared position error < 400 ft2sec (Te<8) (3-S7c) 

integral squared attitude < 16 deg 2sec (6m<2 deg.) (3-57d) 

integral squared control < 0.05 rad2 sec (Blsm< .05 rad) 

(3-57e)
 

acceleration limits < none
 

The righthandside of Eqs. (3-57a) and (3-57b) vary depending on rms
 

gust velocity or its rate. The upper limits on Eqs. C3-57c) to (3-S7e) are
 

altered proportionally to squared magnitudes of command inputs. However,
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Tem , max, and Umax may be independently prescribed. 

Equation (3-57a) exclusively determines the upper limits of r, though 

ISE and rms attitude error requirements may influence this considerably. The 

lower limit of r is described by Eqs. (3-S7d) and (3-57e-. The way of choosing 

qii could be found out by requirements (3-57b), (3-57d), and (3-57e). 

If one considers the above requirements, then the following set of qii
 

and r can be chosen as one of desirable sets of q and r.
 

r = 2.0 • 104
 

(3-58)
 
qll = .1,q33 = 3280
 

With the feedback gains
 

K = -. 0071 
x 

K = -.026 (3-59)
u
 

K6 = 1.58
 

K = .56
 
q 

It is easily understood in the process of choosing these sets that Case
 

(5)does not satisfy Eq. (3-57c) and Case (1) is unsatisfactory-with Eq. (3-57d),
 

because of excessive attitude error. An OWEM method which does not take into
 

account the difference in position and attitude error weighting should also
 

be unsatisfactory (for example, see Eq. (3-57d).
 

Helicopter in Approach Phase
 

The numerical values for the helicopter in the approach phase are given
 

in Eq. (3-14). The root location for the optimal roots as a function of the
 

control weighting r are shown in Figure 67. It appears that the difference
 

in numerical values compared to the hovering case is not sufficiently large
 

enough to justify a control system with variable gains.
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OWEM Design Method
 

Applying the OWEM design method for the longitudinal motion of the
 

helicopter gives a root location as a function of r = p obtained by a
 

computer solution as shown in Figure 19.
 

In the initial approach of an OWEM design, all the constants k3 of
 

the group-wise equalization of the terms of {y*TQ y*} are chosen to be
 

equal. This corresponds to an equalization matrix S = I. Making the
 

equalization matrix not equal to the identity matrix corresponds to an
 

equalization factor of the diagonal terms of the matrix qi.. This prin­

ciple is illustrated in this example in Figure 19.
 

In this figure is shown the root location obtained by the initial
 

application of the OWEM method (equalization matrix = identity matrix).
 

The desired root location with associated optimal Q matrix is determined
 

by the acceleration limitation of the helicopter (corresponding to an w
 

of .3 to 5 rad/sec). Take, for example, that an equalization was desired
 

of one to two for the ratio of the position error to attitude error. The
 

diagonal terms of the Q matrix are associated with the variables x, x, 6,
 

respectively. Hence, the equalization is chosen to be 1:1:4:1.
 

Figure 69 is shown, the root location obtained by the OWEM method, modi­

fied with an error scaling matrix (ESM) of 1:1:4:1. For this ESM Q matrix a
 

root square locus diagram is given as a function of the control weighting p.
 

The ESM matrix should also change the weighting of the derivatives of 6, as
 

this increases the damping. By trial and error, one can investigate the error
 

scaling matrix for the 6 error weighting. In this particular case, 1:1:4:4
 

was chosen.
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In the same illustration is shown the chosen optimal Q matrix, modified
 

with an equalization matrix of 1:1:4:4.
 

For this equal-ized Q matrix a root square locus diagram is given as a
 

function of the control weighting r = p. (curve no. 2)
 

For a control weighting of 3200, the (negative) feedback gains are:
 

G = -.0015 rad/ft = -.084 deg/ft.
x 

G. = -.0074 rad/ft = -.420 deg/ft.
x 

G = .56 rad/rad = .56 deg/deg. (3-60)
 

6 = .42 rad/rad = .42 deg/deg.
 

The root locations are shown in Figure 69, with the associated feed­

back gains in Figure 72. The corresponding error and control measures
 

are shown in Figures 40, 41 and 42.
 

It should be emphasized that, in this work the acceleration limitations
 

have been introduced as an "afterthought" in the OWEM design. In the OWEM
 

calculations the acceleration limitations were simulated by an "error
 

weighting". In principle, it should be possible to introduce constraints di­

rectly into the OWEM design method, thereby eliminating the trial and error
 

aspect.
 

In the hovering helicopter example, feedback gain limitations on the po­

sition state variable (equivalent to an acceleration limit) should more or less
 

"freeze" the position mode when a certain control power is reached. A fur­

ther increase in control power should only affect the 6 mode. This procedure
 

would eliminate the trial and error procedure of the 6 error weighting. How­

ever, these theoretical aspects need first to be further investigated.
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D Controller Design for Lateral Equation
 

In a hovering helicopter, the lateral equation uncoupled with yaw be­

comes unstable and poses a comparatively short period mode (see Figs. (2,3)).
 

Therefore, our design objectives are composed of the same ones as the longi­

tudinal case. The lateral equations are given by:
 

v-Yv- Ypp- g =YYA - Yvg
 

Yvv pAls Y is Yvvg
 

(3-61) 
- Lv+ - Lw = LsAs - Lvg
 

L v p = LAls Is Lvg
 

In the state variable form, including position variable
 

y 0 1 0 0 Y 0 0
 

0 Yv g Yp v YAls -Yv
 

= 0 0 0 1 0 + 0 Ais + 0 v (3-62) 

Lv p LAls L-v 
L 0Lp 0 C p pJ LAsJ-L J 

where
 

y : lateral position ,ft
 

v 
 : lateral velocity ,ft/sec
 

: oll angle ,rad
 

-1

,radsec
p : roll rate 
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Als lateral cyclic pitch ,rad
 

v : gust input ,ft/sec
g
 

Y : rate of change of lateral force
v 

with velocity ,sec
 

YP rate of change of lateral moment 

-i 
with roll velocity ,sec 

L : rate of change of lateral moment 
V 

with velocity ,rad/sec ft
 

L : roll rate damping ,sec
p
 

YAls : lateral control derivatives, ,ft.sec-2rad
 

LAls : lateral control derivatives, ,I/sec 2
 

g gravitational force ,32.2 ftsec -2
 

The performance index to be minimized is given by:
 

2 2 2
(q, + + q 3 2 + q44p1 y q22v + 2 (3-63) 

Selection of qiI, i = 1,2,3,4 and r.
 

The diagonal weighting matrices Q might place the poles of the closed
 

loop systems in restricted parts of the left half plane. The selection of
 

Q would be done in the same way as in the longitudinal case and the same
 

qii's are used as numerical examples [see Table 3.2].
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Root Square Locus
 

The root loci are shown in Figs. (43) to (51). The stable closed loop
 

system is obtained by a weighting factor qll only. Addition of q33 gives
 

more damping to the system, especially to attitude control loop. Further
 

increase in q33 finally moves the poles of the attitude loop further in the
 

left half plane, while the poles of position move to the right, 'that is'
 

the position loop reduces stability as shown in Figs. (45 to (47). It is
 

seen in Fig. (46) that the attitude poles start going far away for a set of
 

qll=.l, q33=3280 unlike the longitudinal case. These tendancies seem de­

sirable since the inner loop control is desirable to be much faster than the
 

outer loop position control. The broken line of Fig. (44) indicates the
 

zero locus as a function of the parameter of q 3/qll. It starts from the
 

point &=-2.33±j4.06 and approaches the zero along the asymptote &=.707. Addi­

tion of q22 or q44 yields another zero on negative real axis and provides more
 

damping to both the attitude and position poles as shown in Figs. (48, 49, 50
 

and 51). Selection of q22 locates the zero in the far left of the negative real
 

axis. On the other hand, selection of q44 locates the zero on Z = 33 . As a
 

result, only one root goes to infinity on the negative real axis while the
 

others approach zeroes and the system is more damped. The closed loop system
 

with damping ratio more than 0.707, if desired, would be achieved by adequate
 

selection of qll, q2 2, q33, q44 and r.
 

The feedback gains are shown in Figs. (52) to (61), where it is noted
 

that the augmented dampings are equivalent to those of longitudinal ones at
 

the same r/qll, though feedback gains being smaller than longitudinal ones
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except Ky given by
 

Ky lIP (3-64) 

which specify the system control precision. At infinite r, K and Kp are
 

nonzero simularly as in longitudinal cases. Using these gain diagrams,
 

the optimal control is obtained as:
 

Ais = K + Kv + K + K p (3-65) 

ISE, IS, and ISU for Command Input
 

The integral squared position error, attitude and control to a 10 ft.
 

command input is shown in Figs. (62) to (63). Effects of r and qii on these
 

results are almost the same as the longitudinal case. When compared to the
 

longitudinal case, the ISe came out larger in spite of the use of less con­

trol amount (ISU) due to the larger control derivative. Accordingly, the
 

command input response becomes faster, that is, less ISE. The min. ISE and
 

max. ISe at zero r are nearly equivalent to those of the longitudinal case
 

because both model equations are almost the same. Note that the ISE goes
 

zero while the Ise increases to infinity as r goes zero for the OWEM.
 

Gust Responses
 

Figs. (64) to (67) show that rms lateral position error (ISE), attitude
 

error (IS) and resulting control (ISU). From these figures, it is confirmed
 

that the lateral motion is much stronger influenced by gust through large
 

gust derivatives, Yv and Lv, compared to longitudinal motion. The control
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necessary to trim the translational force and upset moment due to gust
 

amounts is twice as large as that of a longitudinal case. Keeping lateral
 

position as precise as longitudinal control requires more feedback gains
 

corresponding to smaller r.
 

Figure (66) indicates the effect of gust with different frequency
 

components under its constant intensity to attitude errors. It turns out
 

that the gust with cut-off frequency d = 1.0 rad/s influences the lateral
 

attitude most, while the pitch attitude is most influenced with cut-off
 

frequency d = .314 rad/s at large r. These characteristics are explained by
 

the fact that the basic helicopter dynamics have modes excited around fre­

quency of .36 rad. in longitudinal motion and frequency of .85 rad. in la­

teral axis.
 

Take, for example, the following case similarly to the Eqs. (3-57a) to
 

(3-57e):
 

rms position error < 1.0 ft. (3-66a)
 

rms roll attitude error < 0.3 deg. (3-66b) 

ISE < 400 ft2sec (T < 8 sec) 
em - (3-66c) 

Ise < 16 deg sec (0 < 2 deg)
2 - (3-66d) 

ISU < 0.05 rad sec (Alsm < .05 rad) 
(3-66e)

Acceleration limits < none 

The design approach is similar to that of the longitudinal case.
 

For the closed loop system, to satisfy all requirements, the following set of
 

qii and r is chosen as one of the desirable sets of qi, and r
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r = 1.5 • 1O3 (3-67) 

qll = .1, q33 = 3280 

Then,the feedback gains are:
 

K =-.026 rad/ft
y
 

K =-.087 rad/ft/s
v (3-68) 
K =-4.8 rad/rad
 

K. =-.46 rad/rad/s
 

In a practical application, the acceleration limits will show that
 

these gains are too high.
 

Helicopter in Approach Phase
 

The numerical values for the helicopter in the approach phase are given
 

in Eq. (3-14). The root location for the optimal roots as a function of the
 

control weighting p is shown in Figure 68. It appears that the difference in
 

numerical values, compared to the hovering case, is not sufficiently large
 

enough to justify a control system with variable gains.
 

OWEM Design Method
 

Using the approach similar to that of the longitudinal case, the root
 

locations using the OWVEM design is shown in Figure 43. For an error scaling
 

matrix, chosen was 1:1:4:3, and, the feedback gains for p = 1300 are:
 

K =-.00075 
y 

K =-.0025 
y (3-69) 

K- =-.09
 

The root locations as a function of r = p are shown in Figure 70 with the
 

associated feedback gains in Figure 72. The corresponding errors and con­
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trol measures are shown in Figures 62, 63 and 64. 
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CHAPTER 4
 

CONCLUSIONS AND RECOMMENDATIONS
 

The optimal linear-quadratic control theory provides a well
 

organized design procedure for the automatic controller design of a
 

multivariable system. In this design process an optimal linear
 

feedback control law is found, which minimizes a quadratic cost function.
 

It is usually assumed that the weighting matrices in quadratic cost
 

functions are given a priori. However, the resulting optimal feedback
 

control system is a function of the selected weighting matrices. The
 

functional relationships between the weighting matrices and dynamical
 

characteristics of the resulting system are rather obscure. Therefore,
 

the selection of weighting matrices is often a major problem in the
 

practical applications of the optimal linear-quadratic control theory.
 

In this report the weighting matrices are selected by the OWEM
 

design method as described in Ref. [7] and Appendix E. Also in this work
 

the weighting matrices using the OWEM design method are obtained by direct
 

calculation and not mainly by a creative trial and error approach. The
 

OWEM design method is compared with other methods for finding the weighting
 

matrices. The results indicate that the use of this approach gives at
 

least as good results as obtained by other classical design methods.
 

Much work still has to be done, especially in the case of multivariable
 

input-output systems, and a priori imposed limitations of the practical system.
 

However, from the examples in this work, it can be recommended that the OWEM
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design method is a good candidate to use for the selection of weighting
 

matrices. Moreover, the OWEM design method does not require any lengthy
 

and laborous estimations of weighting matrices in quadratic cost function.
 

A completely computerized system design becomes possible, which can provide
 

quick results even for complicated systems. The decision which has to be
 

made by the designer after the computerized system design is to choose an
 

appropriate trade-off parameter by considering the corresponding feedback
 

gains, system dynamical characteristics and other practical situations.
 

Practically, of course, further refinements for such a computerized system
 

design would have to be done for a few choices of trade-off parameters. In
 

the long run, when the given system is highly complicated, for example, a
 

system with many feedback loops and/or multiple controls, the computerized
 

system design procedure associated with the OWEM method can save large amounts
 

of time usually required in the early stage of system designs.
 

In conclusion, the OWEM method provides an ob3ective measure to determine
 

the weighting factors in the performance index based upon an error criteria.
 

Initially, the system errors are assumed to be equally important, however, di­

rectly from missions requirements one can determine which are the important
 

errors, and use this additional information together with the other system re­

quirements to obtain an improved design. The resulting OWEM design is a con­

trol system that minimizes the errors due to disturbances and has good transient
 

responses.
 

This work explores the application of the OWEM design method to an auto­

matic controller design for a helicopter at hover and approach. The examples 

demonstrate that this approach is feasible and is a good candidate for the 

control system design. 
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Areas of further studies are:
 

1. 	Further investigation of the practical aspects of system dis­

turbances in the selection of the weighting matrices, i.e., how
 

are the weighting matrices and the resulting optimal feedback
 

gains changed if the noise characteristics are varied.
 

2. 	Investigation of the effect of a priori imposed limitations
 

(control and/or system boundaries) on the OWEM design method, i.e.,
 

in this work imposed limitations were combined with an assigned
 

error scaling matrix ESM derived from physical limitations. Fur­

ther investigation of the practical aspects of a priori imposing
 

design limitations would be highly desirable.
 

3. 	An investigation of the practical aspects of the effects of an
 

incomplete measurement system and feedback of the state variables
 

in the OWEM design method.
 

4. 	Further investigation of the application of the OWEM design method
 

in model following control systems. In theory, the OWEM method can
 

yield the weighting or Q matrix for the prefilter model reference
 

control system. However, the practical aspects should be investi­

gated.
 

60
 



REFERENCES
 

1. 	 Robinson, A.C., "Survey of Dynamics Analysis Methods for Flight
 
Control Design", Journal of Aircraft, Vol. 6, No. 2, March-

April 1969.
 

2. 	 Paiewonsky, B., "Optimal Control: A Review of Theory and Practice",
 
AIAA Journal, Vol. 3, No. 11, November 1965.
 

3. 	 Athans, M. and Falb, P.L., "Optimal Control", McGraw Hill Inc., 
New York, 1966. 

4. 	 Chang, S.S.L., "Synthesis of Optimal Control Systems", McGraw Hill
 
Book Company, Inc., New York, 1961.
 

5. 	 Kalman, R.E., "When is a Linear Control System Optimal", Journal
 
of Basic Engineering, March 1964.
 

6. 	 Ellert, F.J., "Indices for Control System Design Using Optimization
 
Theory", Ph.D. Thesis, Dept. of Electrical Engineering, Rensselaer
 
Polytechnic Institute, New York, 1963.
 

7. 	 Kawahata, N., "Linear Control System Optimization by Optimal Selec­
tion of the Weighting Matrices in Quadratic Cost Functions", Ph.D.
 
Thesis, Dept. of Aerospace and Mechanical Sciences, Princeton Uni­
versity, Princeton, N.J., September 1972.
 

8. 	 Skelton, G.B., "Investigation of the Effects of Gust on V/STOL Craft
 
in Transition and Hover", AFFDL TR-68-65, Wright Patterson AFB, Ohio,
 
October 1968.
 

9. 	 Seckel, E., "Stability and Control of Airplanes and Helicopters",
 
Academic Press Inc., New York, 1964.
 

10. 	 Nikolsky, A.A., "Helicopter Analysis", John Wiley and Sons, Inc.,
 
New York, 1951.
 

11. 	 Curtiss, H.C., Jr., "Some Notes on VTOL Stability and Control",
 
Princeton University Course Notes, August 1971.
 

12. 	 McRuer, D.I., Ashkenas, I., and Graham, D., "Aircraft Dynamics and
 
Automatic Control", System Technology Inc., Hawthorn, California,
 
Princeton University, 1974.
 

13. 	 Morgan, B.S., Jr., "The Synthesis of Linear Multivariable Systems by
 
State Variable Feedback", IEEE Transactions on Automatic Control,
 
Vol. AC-9, October 1964.
 

61
 



REFERENCES
 

(2) 

14; 	 Falb, P.L. and Valvoich, W.A., "Decoupling in the Design and Syn­
thesis of Multivariable Control Systems", IEEE Transaction of Auto­
matic 	Control, Vol. AC-12, No. 6, December 1967.
 

15. 	 Gilbert, E.G., "The Decoupling of Multivariable Systems by State
 
Feedback", SIAM J. Control, Vol. 7, No. 1, February 1969.
 

16. 	 Panda, S.P., "Compensator Design for Decoupling of Multivariable
 
Systems by State Feedback", Int. J. Control, Vol. 13, No. 1971.
 

17. 	 Mufti, T.H., "Some Results on the Decoupling of Multivariable Sys­
tems", Int. J. Control, Vol. 14, No. 3, 1971.
 

18. 	 McRuer, D.T., et al, "Human Pilot Dynamics in Compensatory Systems",
 
System Technology, Inc., AFFDL-TR-65-15, July 1965.
 

19. 	 Kwakernaak, H. and Sivan, R., "Linear Optimal Control Systems", John
 
Wiley & Sons, Inc., New York 1972.
 

20. 	 Anderson, B.D.O and Moore, J.B., "Linear Optimal Control", Prentice
 
Hall Inc., Englewood Cliffs, New Jersey, 1971.
 

21. 	 Rynaski, E.G. and Whitbeck, R.F., "The Theory and Application of
 
Linear Optimal Control", Cornell Aeronautical Laboratory, Cal. No.
 
IH-1943-F-I, Buffalo, New York, October 1965.
 

22. 	 Dukes, T.A., "Helicopter Station Keeping", Princeton University, USA
 
ECOM-TR-02412-9, September 1972.
 

23. 	 Kalman, R.E. and Bucy, R.S., "New Results in Linear Filtering and
 
Prediction Theory", Trans. ASME J. Basic Engineering, Ser. D, Vol.
 
83, March 1961.
 

24. 	 Luenberger, D.G., "Observers for Multivariable Systems", IEEE Tr. on
 
AC, Vol. AC-li, No. 2, April 1966.
 

25. 	 Bryson, A.E. and Hall, W.E., "Synthesis of Hover Autopilots for
 
Rotary-Wing VTOL Aircraft", Stanford University, SUDAAR Rpt. No. 446,
 
November 1971.
 

26. 	 Athans, M., "The Role and Use of the Stochastic Linear-Quadratic-

Gaussian Problem in Control System Design", IEEE Trans. Auto. Control,
 
Vol. AC-16, No. 6, December 1971.
 

62
 



REFERENCES 

(3) 

27. 	 Bryson, A.E. and Ho, Y.C., "Applied Optimal Control",Blaisdell
 
Publishing Company, Waltham, Massachusetts, 1969.
 

28. 	 Ellert, F.J. and Merriam, C.W., III, "Synthesis of Feedback Con­
trols Using Optimization Theory - An Example", IEEE Trans. Auto. 
Control, Vol. AC-8, No. 2, April 1963. 

29. 	 DeRusso, P.M., Roy, R.J. and Close, C.M., "State Variables for
 
Engineers",John Wiley and Sons, Inc., New York, 1965.
 

30. 	 Astr6m, K.J., "Introduction to Stochastic Control Theory", Aca­
demic Press, New York, 1970.
 

31. 	 Muller, J.F., "Stability-Augmentation System Gain Determination by
 
Digital Computer", J. Aircraft, Vol. 4, No. 5, September-October
 
1967.
 

32. 	 Kai, Tadao, "Optimal Control Theory Applied to Helicopter in Hover",
 
Princeton University Thesis (M.S.E.) No. 1242-T, MIS Department,
 
July 1975.
 

33. 	 Born, Gerard and Kai, Tadao, "Linear Optimal Control Applied to a
 
Helicopter in the Hover and Approach Phase", Princeton University
 
Report No. 1205, Princeton, N.J., January 1975.
 

34. 	 Berman, N. and Born, Gerard, "A Review of Model Following", Prince­
ton University, Instrumentation and Control Laboratory (to be pub­
lished).
 

35. 	 Wonham, W.M., "On Pole Assignment in Multi-Input Controllable Linear
 
Systems", IEEE Trans. Auto. Control, Vol. AC-12, No. 6, December 1967.
 

36. 	 Kreindler, E. and Jameson, A., "Optimality of Linear Control Systems",
 
IEEE Trans.Auto.Control, Vol. AC-17, No. 3, June 1972.
 

37. 	 Yokoyama, R. and Kinnen, E., "The Inverse Problem of the Optimal Regulator", 
IEEE Trans.Auto.Control, Vol. AC-17, No. 4, August 1972. 

38. 	 Born, G.J. and Kawahata, N., "Control System Design with Optimal Weighting
 
Matrices (OWEM), Princeton University Report No. 1145, January, 1974.
 

39. 	 Wonham, W.M., "On the Separation Theorem of Stochastic Control", SIAM J. 
Control, Vol. 6, No. 2, 1968.
 

63
 



YR( t )  IC 

nt) SYSTEM = V/STOL 

Error 
+ x(t) 

I 1 

Figure 1. Block Diagram for Decoupling 

System dynamics: k(t) = Ax(t) + Bu(t) + Cn(t) 

y(t) = Hx(t) 

where x(t) : n dimensional state vector 

u(t) m dimensional control vector (m<n) 

y(t) p dimensional output vector (pjn) 

nCt) : Z dimensional noise vector (2<n) 
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APPENDIX Al
 

REVIEW OF HELICOPTER DYNAMICS
 

Introduction
 

In a synthesis or analysis of a control system of helicopters, we are
 

confronted with the complexity of the overall helicopter dynamics. There­

fore, simplifications often are made and are considered the simplified equa­

tions. However, this can be an oversimplification and when the system is
 

constructed, the resulting system my have undesirable properties.
 

Although the higher order equation can be manipulated by the computer,
 

the analysis and synthesis cannot be easily done. Also the physical in­

sight into the dynamics is often lost during a process of computation. Fin­

ally, we would be obliged to use brute forces of computing all parameter
 

variations in order to know their effects. The synthesized controller may
 

become complex, and often becomes more expensive and less reliable. In prac­

tice, the precision of hovering can be diminished because of coupling ef­

fects.
 

In general, the complicated dynamics are due to many coupling terms
 

which come from asymmetrical body and power sources. With the exception of
 

a few terms such as (Lr and Nv) which contribute to dynamic stability, they 

usually bring undesirable effects into the dynamics. These effects can be 

shown from a sensitivity analysis on coupling terms.
 

In order to circumvent these things, the dynamics are required to be
 

decoupled. The control of the helicopter then becomes simpler and easier.
 

The analysis and synthesis can be applied to such conventional techniques
 

such as root locus and frequency methods which basically deal with the single
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input-single output system. The dynamics can be evaluated by hand calcula­

tion. Even in such modem control techniques as optimal control using state
 

space concepts, the analysis and synthesis technique becomes more tractable.
 

This method will be dealt with in the other appendices.
 

Helicopter Dynamics
 

In general, the helicopter dynamics are written with respect to the sta­

bility axis [Ref. Al]. The following small angle conditions are assumed and
 

higher order terms are neglected.
 

sin e = 0, cos 0 =1, sin = ccoss,p=1 (Al-I) 

O= q, 4'= p, ip = r 

u + gcosy08 = Xu + XvV + Xww + Xpp + Xqq + X r + AXc 

v - gcosy 0 = Yuu + Yvv + Yww + Ypp + Yqq + (Yr-Uo r + Ayc 

w + gsiny0 = Zuu + Zv + Zw + Zpp + (Zq + Uo)q + Zrr +AZc 

- - = Lu + Lv + Lw + Lpp + Lqq + Lrr +AL 

I = Mu + M V + M + pw + q + Mr c 

Ix z r p -- = Nu + N+v + Nw + N p + N q++ N + A c 

z
 

(Al-2)
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where
 

aXc =XBIs Bis + XAIsAIs + X6C+ X r 6 

c IsIi + AIsAis + cC
 

AZ = zB IsBis + ZAIsAis + Z c 2 rrC+6r
 

c Bisis AIsis SC+d r
 

AL = L B + L A + y6 6C+ l ~r 6r (A-3) 

Bis isACsi
 

AZC = MBis + M A +
+ M 6 r r 

c Bis is sIs 6cC T
 
ANc =NBIsBIs +NNAs s+N 6e+Nr 6
 

The new derivatives for cancelling the inertia coupling terms are intro­

duced into the last two equations of (A1-2) [Ref. AZ] 

+ Lu + L'v + L'w + L'p + Lqq + LJr + ALc = 0 
q r C (AI-4) 

-i + Nu + Nv + NWw + Nip + Nq + Nr + AN' = 0
 
u V W p q r C
 

where
 

I IL + xz 

L T L . etc.

CLLxz--- v 1 -Uxz ) z AI S 
L1- -1 -I (Al-5) 

II IIXz X z 



I I 
N' N+ u N'= N ' L ..ec 

= U 17. 1 N- V IvecZ 
.
u (Ixz v CIXZ 


I zl i
 
II I z
 

In the same way,
 

AL= His +L A 1 + c6+ C 
C r 

(Al-6)
 

AN= NB B +N B + N + N
 
il~s c 6 r
 

c BIs is+ A is i


where
 
II T NB~sxz
LB~+-x~ Le x--

LB Ix B L + 
Ix
 
= is x is 0 Xetc
 

BIs ixz ) z c (Ixz 2
1 

l1 1-

II II
 
x z x z
 

(Al-7)

II 

N + xz L N xz
 
B I B 6 I 6 

= is z is Netc.
BIs Cixz) N c (Ixz) e 

II 
 I I
 

In hovering,the helicopter dynamics are desirable to be decoupled
 

into the longitudinal, vertical, lateral and yawing motions, though these
 

conditions change in transition and forward flight. The dynamic equations
 

to be decoupled are rewritten in state variable form in Eq. Al-8. The broken
 

lines make 4 x 4 submatrices which clarify main diagonal and off diagonal terms.
 

The uncoupled equations with the noise terms added become as given in Eq.
 

Al-9.
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0 

L-
p 

N-
p 

L"-u 
r 0 

a N­
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B s 

0 0 

1I4 
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00 

LB~ 
BlsL 

N'
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-

as 

L 
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a 

-f-
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' 

0 

L'~ 
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N' 
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0 
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x -gcosy 0 Xq 0 0 0 0 

e 0 0 1 0 0 0 0 0 

uqZ0Mq0H 0 0 0 0 

w 

V 

Zu -gsiny 

0 

uo w 

- - -
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- -

Y gcos Y P 
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-Uo 

¢ 0 0 0 0 0 0 1 0 

p 0 0 0 L-v 0 L-p 0 p 

r A 0 o0 ~N 
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In near hover flight one often assumes u0 = O,70 = 0, and the following 

stability derivatives are often neglibly small and often assumed to be 

zero or: 

=M = Z 0;X = M =ZBi=0 

N" = N = L = 0; Y6 = = N 0
N N=L O;Y =LS r 	 ANIsils 

With these assumption Equation Al-9 then becomes:
 

u Xu -g Xq 0 0 0 0 0 u 

e 0 0 1 0 0 0 0 0 

0 0 0 0 0 qq 	 0 


w = 0 	 w 0 0 0 0 w 

w 0YY v 

Yv 	 p~ r
 
" I 

0 0 0 0 0 0 1 0
 

p o 0 0 0.- p1 

-0 0 0 0' N- [rL 0 0 0 

(continued next page)
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X 0 0 0 Bls 

0 0 0 0 6C 

M
BIs 

0 0 0 A s 

0 z : 0 

0 0 Y 0 
i s 

0 o 0 0 

0 0 L Lis 0 

0 0 0 Na 
r 

-Xu 0 0 Ug 

0 0 0 w 
g (Al-IO) 

-Mu 10 0 Vg 

0 -Z w 0 

0 0 -Yv 

0 o 0 

0 1 0 -L-
I V 

0 0 -N' 
V 
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Helicopter Transfer Functions
 

For conventional analysis, the equations of motions are often written
 

in the Laplace domain. The longitudinal and lateral uncoupled equations of
 

motion for the control rate derivatives and gust inputs are:
 

Longitudinal-Vertical Equations of Motion
 

Assumptions
 

X.= = 0 , e0 0 

X =Z =M =M. =0
 

s-X -x -XS + g cosy u X s+ XR Xi
I o c 

-Zu s-Z w (Z+U)s+gsi( w Zi s+Z Z + 

w q is15 1 6 ls 

qi Hs H1 c 

-M-s-M I2-Mq Mt s+MB M 
uw w -qLi s 1 c 

Ug 
 C(Al-lla)
 
-Zu 
 -Zw
 

Lateral-Directional Equations of Motion
 

Assumptions 

Y. = L. = N. = 0 
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s -Y -YS-g cosy -Y s+U Y v As FA 
v p 0 r 0 V YA3 Y6r Isi 

-'1/ 2-Ls -L's+tJ 1/ 1L L' aS
 
v p r o v Als
 

-' -N's s2N'S+UoN ' N N'
 
- is 

-Yv -L's 1 

+ 

(Al-lb)
-N'
:V
 

The basic equations of motion for a helicopter near hover withY =0; 

Ui = 0
0 

Longitudinal:
 

s-Xu -x w XqS+g u Xgis +XB x [l1 ls c 

-Z S-Z -Z S w ZA s +ZB1s Z6 c + 

w q MglS +M-MUu -M s2-MqS G] 1BB. C 

-x -x 

-Zu w -Z- (Al-12a)
 

-M -M
 
u w 
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Lateral:
 

s-Y v -YpS-g -Yrs v A I -Y 
p i rt -v vi 

-L s2-L s -Ls = LA L + -L 
v Lp r ]r AIs a6 v 

N -N's s2 -N' -Nv P r AIs 6 -L~r v 

(Al-12b) 

Often are negligible, small and neglected:
 
XM = =0 X6 = M =Z =0~
 

Xw Mw Zu 6 6 B
 
c c is
 

N' N' L 0 Y =L =N 0
 
p is r 6c 6rr Ilc A1

Also are often neglected the control rate terms
 

B BII= and =XZ* =Mi 0 Xq = Zq 0.1 

The analog computer diagram of the longitudinal and lateral equations of mo­

tions are shown in Illustration Al-i and Al-2.
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Input-output Relationships (Hover)
 

The uncoupled sets of equations can be used to determine the input­

output relationships and the effects of gust inputs. 

The longitudinalxiequations are:-go[-U­xl
[40 Q (A113)
[0 1 


The basic equations are:
 

x + xx ge +M z X B -Xu 
U . q is Ug CAl-14)
 

Mx +S + MO M B -M u
SqBls Is ug 

or 

5[_B (AlL:Mx::1[M3:]U-15)+ 


The characteristic equation is:
 

(Al-16)A = S(S-Mq)(S-Xu) + MuXqS + gMu 


= s 3 - +Xu)S2 + CXuMq+MuXg)s + g9M
 

Nu = X Xs+g 
Bis X ls q
 

(A1-17) 

MBI s s (S-M q) 
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Bis u 
 XBI
 

-M MB(Ai-18)u B I
 

XE
 

- (s-X + ls
BIs u Bis
 

The Input-Output Relationships are:
 

q2 B s MBls 
XE Cs -(N - g) 

MIsBis Bs (Al-I9) 

Is s -(Xu+Mq )s + (X M -MuXq)s + Mug 

X ~1 u
 
Bis s BIs 
 (Ai-20)
 

32Bs u XB is (Al.-21)Is
 
BIs s3-s2(Xu+Mq) + (XuMq-MuXq)s + Mug

(9 B u u
MIs MBI
s AI-2 )
 

Es (S-Xu+ T-M)
 
= is B M)(Al-22)
 

is s-s(X+M) + XN-MX)s+Mg 
SOs
 

se 
ils
 

-As-a 



u 
g 

X 
-

g 

-

MX M-X( 2 ( m X ) s u 
--- q 3u, 

3_2 
s -s (X+M) + (XuMq-MuXq)S + Mug 

Xu (2 _ q uq) u 
U U 

3 U 

s[s s (Xu+Mq) + CXuMq-Mu Xq)s + Mug] 

CAl-23) 

(Al-24) 

The lateral equations are: 

y 
v 

g Yp 
Yp 

v "yA 
1. 

-Y 

9 

L-V 

=A00 

0 

1 

LU 
p 

p 

0 

LA 

s+A+ 0 

-LV 

v (Al-25) 

The basic equations are: 

Yvv 

LV 

+ g 

+ 

+ YP p+ YA sAIls-

Lp+L As 

A - 6(Al -26) 

or 

;C]4 

5(1+Y 

j F=V[:As [v] Vg AI-27) 

-Lv ~~ LA-s+
~ 15 -~- ­



The characteristic equation is:
 

A s -Y -(erys-) 

-Lv s(s-Lp) (AI-28) 

3 (+Y.' 2 

Ls + L Yv-LvYp)s Lg 

NAAls= Yis -(g+Yps) 

LA s s(s-L ) (Al-29) 

- AAIs LA-- Y)S LA g][s 2 -(L pYAIs p + YAIs 

A v 
 AIs o(AI-30)Lis v LA v ± 

- v LA4= -y s-Y Y s Al
 
- - s L
LAs[s-Y v , ]I 

is
 

Nv v 
 A 5 s
 

-Lv s (S-Lp) (Al-31) 

N -y=v -g+Y
vY)s + g)-Y S2_ LL 

2S2 L
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0 s-Y -Y
 
g
 

(Ai-32)-L -L 
V V 

-Lv (s-Y~v vs 

The input-output relationships are:
 
L LA 

YA s 2-(L - As Yp)s + is (AI-33) 

= is YAIs P A s 
Als s[s 3_(Lp+Yv)s2 + (LpYV-LvY)s - Lvg] 

2 LA LA 
yA [s2-(Lp - As Yp)s + AIs g] (AI-34) 

v Is
-AIs 


Als [s 3 - (Lp+Y )s
2 + (L Y -LvY)s - Lvg] 

p v pL vp V
 

SYAs
LAIs (LAI
 s
 

A~s S3 (Lp+Y )S 2 + (LpYv-LrYP)s - Lvg A-) 

L s(s-Y + is L 
=
is A 1
 (Al-36)
 

§5 ~ s 323 (Lp+Yv)s2 + (L Y )s- L g 

L L
 
gy_ L- Yv s+ (Al-7) 

S s[s 3 -(L +Y)S 2 + (LPYv- LY) s - IV g] 
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2 L L 
V - S_(L Lp Yuv Y )s + yu g)

-2 (AI-38) 

g s-(Lp+Yv)s (LY-LvYP)s L g
 

TLv (AI-39) 

g s 3 (Lp+v)s 2 -1 (LYv -LvYp)s - L g 

-L4s22 
v 

S_ 2 (Al-40) 
g s-(L +Y )s + (LY-LY)s-Lg

p v pv vpP v 

The vertical equation of motion is:
 

U = Zww + Z6 6c - Z w (Al-41)wg 

The input-output relationships are:
 

w &Ca - = c A -42)A-2
6cs-Z 


Z Z c-6c s (S-z W) (AI-43) 

wg -zw w(A-44) 
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The yawing equation of motion is:
 

(A1-46)
r= Nr + N6 
r 

The input-output relationships are:
 

R N6
 
6 s-Nr (Al-47)
 

N 	 (Al-48)
 

67 s(s-Nr) 
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Table Al. Numerical Data
 

In this table the numerical data used in the example is listed.
 

The data is comparable to a heavy lift helicopter CH54B gross weight
 

47000 lbs.
 

The inertia are:
 

M = 1460 slugs
 

I = 47,020 slug ft
2
 

xx 

Iyy = 192,700 
slug ft2
 

I = 164,100 slug ft
2
 

zz
 

I = -19,570 slug ft
2
 

xz
 

The full control range is:
 

6c (41.0) .3 rad
 

AIs (40) .28 rad
 

Bls (28.5 .455 rad
 

6t (13.6) .54 rad w/o.t. with over travel T.R.
 

The limitations on the controls are (in degrees):
 

Cyclic 260 C60
 

+10
 

Lateral 160 f+2.50
 
+13.5g0
 

Collective 6.60 - 23.80
 

Directional 310 C20' without over travel)
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Table A2. Numerical Values CH54B Hover O.G.E.
 

The dimensional numerical values are normalized by the inertia 

G.W. = 47,000 lbs. 

u V w P4 r=4 

X -.0169 -.0008 .0057 -2.3082 .6612 -.2853 

Y .0016 -.0405 -.0160 -.8945 -2.1780 1.2315 

Z .0044 -.0150 -.2689 -.0244 .2014 2.6315 

L .0012 -.0153 -.0032 -1.0937 -1.2943 .3496 

M .0024 .0003 -.0008 .3513 -.3569 -.0072 

N -.0002 .0088 .0028 -.0147 .0750 -.5199 

c Als BIs St 

X 6.1041 -1.2890 +35.6438 -.0159 

Y -18.0959 +36.1232 +1.1884 23.952 

Z -292.260 -2.2376 1.0596 -.0339 

L -5.387 23.4155 -.1215 6.5737 

M -.1719 .0648 -5.6617 -.1756 

N 11.627 .0521 .2236 9.5612 
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Table A3. Numerical Values CH54B Airspeed 60 Knots 

The dimensional numerical values are normalized by the inertia
 

G.W. - 47,000 lbs. 

U 

X -.0221 


Y .0027 


Z -.100 


L .0016 


M .0020 


N -.003 


ac 


X -5.4716 

Y -15.229 

Z -304.04 

L -2.2480 

M 1.2833 

N 7.6112 

V 

-.0028 

-.0717 

-.030 


-.0168 


-.0003 


.0144 


Ais 


-2.4573 


35.353 


-1.440 


22.82 


.2814 


-.1179 


w A q=6 

.0049 -2.073 1.515 -.2431 

-.0286 -1.7885 -2.024 1.990 

-.5533 -1.3915 1.0951 2.1848 

-.0046 -1.402 -1.2729 .5149 

-.0016 .2814 -.4254 .0228 

-.0002 .0297 .2506 -.8294 

Bis t 

33.1214 -.3398 

4.720 20.842 

57.749 .3203 

.9092 5.7422 

-5.355 .0710 

.224 -8.3729 



APPENDIX B1 

DECOUPLING METHOD (LEAST SQUARES) 

Decoupling Using the Least Squares Method
 

When the number of outputs of interest exceed that of control in­

puts, the least squares method is employed by minimizing values of
 

coupling terms. Consider the following algebraic matrix equation.
 

AX = B CB-I ) 

where 

A : n x m matrix 

B : n x 1 matrix 

X : m x 1 unknown matrix Cm<n)
 

An approximate solution is obtained by minimizing the following:
 

Minimize [[AX-B[l CJBl-21 

where 1" I stands for an enclidean norm given byI 

[AX-B [[ = {Trace[CAX-B(AX-B t Y CB1-3) 

Then, the solution becomes: 

X = CATAl-1BTB CBI-4)
 

And
 

T -1 T
AX = A(AA) BB B CBI-5) 

The proof is as follows: 

The solution matrix X is given by: 

x [[AX - B[I = 0 CB-61 
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•W- {Trace[(AX-B)(AX-B) 112 = 0 (Bl-7) 

AT(AX-B) = 0 (Bl-8) 

X = (ATA)-IATB, if A has no same column. CBI-9) 

This proof uses the following properties of the Trace: 

AT
- Trace[Ax] = (B1-10) 

@ Trace[XXT = 2X (El-i) 

A weighting for rows of the matrix equation CB3-1) can be used to in­

crease the relative accuracy of approximation. The norm becomes:
 

I 

IIQ(AX-B) I[ ={Trace[EAX-B)TQTQEAX-B)j 12 B1-12) 

where the weighting matrix Q is given by: 

-q1 
 0 ----0 -


N 
N 

0 q (BI-13)
 

S6nn
 

igo
 



The solution is:
 

X= (ATQA)- - 1 A Q B (BI-14) 

where
 

Q
T CBI-is)
 

The limitations of this method can be illustrated as follows:
 

The dynamic equation of the system is:
 

x = Ax + Bu CB!-16) 

y = x CBI-17) 

(A) If B.(ith row) = 0, the corresponding i-th state equation 

should not include coupling terms. 

CB) If y = px, the output matrix P has only one non-zero element
 

in the same column so that desirable state matrix A* and control matrix
 

B* can be defined.
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APPENDIX B2
 

DECOUPLING OF HELICOPTER DYNAMICS
 

Decoupling in the multivariable systems has been studied by many
 

authors. Morgan (Ref. Bl) first posed the decoupling problem. Falb
 

and Volvoich (Ref. B2) gave necessary and sufficient condition for de­

coupling. Gilbert and some authors (Ref. B3, B4, and BS) extended this
 

method. However, these methods are still cumbersome in algebraic manipu­

lation and are often not applicable to control problems where the number
 

of controls is less than the number of control system outputs.
 

In this work is used a decoupling method of least squares.
 

The dynamical equations are given by:
 

x = Ax + Bu (B2-1) 

y = x (B2-2) 

u = Ckx + C6 (B2-3)
 

where
 

x : n - state vector
 

y : n - output vector
 

u : m - control vector
 

6: m - control input vector
 

A : n x n system matrix
 

B : n x m control matrix
 

C : m x m control decoupling matrix
 

K : m x n decoupling state feedback matrix
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Substituting Eq. B2-3 into B2-1 and obtain the following equation:
 

x = (A+ BCKjx + BC6 (B2-4) 

y = x (B2-5) 

Then, the block diagram for decoupling is shown in Illustration B2-1. 

Control De- Control Helicopter output 

coupling Matrix D ics Matrix 
Matrix 

F K , 

State Decoupling
 
Mlatrix 

Illustration R2-1. Block Diagram for Decoupling 

When the desirable decoupled control matrices are respectively B*
 

and A-, then the following relations are satisfied:
 

BC = B* (B2-6) 

A + BCK = A* (B2- 7) 

From these equations, using a pseudo-inverse matrix which is a solution of 

least squares method, as show in Appendix B1, one obtains the decoupling 

matrices C and K. 
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C = CBTB) -1 BT B CB2-8-) 

K = (CTBTBc) -

* *T -1 *T 
SB*TB) BT 

CBT A-

(A -Al 

A*) (B2-9) 

Now, the decoupling matrices CC,Kj decouple the system completely or 

approximately. The practical example of the almost decoupled system is 

shown in Illustration B2-1. This method is used for decoupling of 

the helicopter dynamics at hover and approach phase. 

as 

Decoupling the helicopter (at hover) 

The dynamic equation is rewritten, using a numerical hover example, 

follows: feg. 2.8) with cancelled inertia coupling term) 

S 

!0 

-.0169 

I 

-32.2 .661 

1.0 
I•I 

.0057 -.000o8 0 -2.31 -.28S u 

0 

q 

w 

.0024 

.0044 

0 

0 

-.257 

.201 

-.0008 

-.269 

.0003 

-.015 

0 

0 

.352 

-.0244 

-.0072 

2.63 

q 

w 

.0016 0 -2.18 -.016 -.0405 32.2 -.895 1.231 v 

- 0 1.0 

S.0014 

r 

- - - ­

-.0004 

0 

0 

-1.39 
-

.241 

-
-.0046 
. 

.0034 

, 
-.0200 

.0112 

0 

0 

-1.14 

.120 

.595 

-.591 

p 

r 
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35.6 6.10 -1.29 -. 016 Bls 	 (B2-10) 

0 0 0 0 

-5.66 -. 172 .065 -. 176 A is
 
+ -r------­

1.06 	 -.292 -2.24 .034 6r
 
r - - r - ­

1.19 	:-18.1 36.1 23.9
I
 

0 0 
I 

0 0
 
I
 

-. 223 -10.8 I 24.6 11.1
 

--. -. -I. .I - ­

.246 12.9 -2.87 -10.9
 

And the desirable control matrix B* and the desirable system matrix A*
 

are assumed to be given by Eq. (UZ2) and Eq. CB2-12).
 

35.6 0.0 0.0 0.0
 

0 0 0 0
 

-5.66 0.0 0.0 0.0
 
B 	 (B2-11)


IBII 0.0 -292. 0.0 0.0 

0.0 	 0.0 36.1 0.0
 

0 0 0 0
 

0.0 0.0 24.6 0
 

0.0 0.0 0.0 -10.9
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C 

-.0169 -32.2 .661 0.0 0.0 0 0.0 0.0
 

1.00 

.0024 0 -.257 0.0 0.0 0 0.0 0.0 

0.0 0 0.0 -.269 0.0 0 0.0 0.0
 

0.0 0 0.0 0.0 -. 0405 32.2 -. 895 0.0 (B2-12) 

- 1.00 

0.0 0 0.0 0.0 :-.0200 0 -1.14 0.0
 

0.0 0 0.0 0.0 0.0 0 0.0 -.591
 

These matrices B* and A* are chosen in such a way that characteristics
 

of the decoupled helicopter are similar to those of the basic helicop­

ter. After being decoupled, the characteristics would be improved by
 

the conventional technique or the optimal control technique.
 

After simple calculations following Eq. (B2-8) and(Eq. B2-9),
 

one obtains the decoupling matrices C and K given by Eq. 02-13)and
 

Eq. CB2-14).
 

.998 -.176 .042 -. 025
 

(B2-13)
.004 1.000 - .009 .004 


-.014 -.159 1.152 -.576
 

-.005 1.085 -.266 .977
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-------------------------------

- "	 " -. 16S"0 - s 0.0 -.611 .10-4 .155.10 1' .232"I0 4 0.0 -.648"i0 ,-.761"10 - 2 

K -.is1C'l4 0.0 .692.10-31-.237"10 q1410--	 -61  0.0 .83410-4 ,.900.10 -2
 

.478.10 - 4 0.0 -. 590"10 " 1 ,-.358C10 - 3 ' .166"10 - 7 0.0 .170-10 - s .308"10 - 1 

-
.240.10 " 4 0.0 -. 255.10 " 1,-.531.10 - 3 ' -. 103 . 10 -2 0.0 .110"10 ' .865-10-2 

(92-14) 

The member of the diagonal submatrices of the matrix K are about a factor
 

-
10 less than those of the same column and rows. This means that the
 

feedbabk gains of the main diagonal submatrices, which artificially gov­

ern characteristics of the helicopter dynamics, have no effect on de­

coupling with exception of the yawing motion. However, the latter is
 

sufficiently stable as is apparent from Eq. (B2-14). This indicates that
 

there exist free choice of main diagonal feedback gains without deficiency
 

in decoupling.
 

Substituting Eq. (B2-14), (B2-13) into Eq. (B2-4), gives the almost
 

decoupled helicopter dynamics as follows:
 

u .0169 -32.2 .661 ' .0001 '-.0001 0 -.0056 ,-.0131 u 
I I 

o 1.0 '0 	 0 6 

.0024 -.266 ' .0000 ' .0001 0 -.0174 : -.0403 q 

--00 --­-	 -oo- - .6 06- --
W = 0000 -.0005 -.269 .0006 0 .0013 1 .0030 w 

v .0001 -.0203 ' -.0021 '-.0381 32.2 -.836 .137 y
Ji 

i0 	 0 
1.0
 

P 	 .0002 .0279 .0029 '-.0233 0 -1.22 -.189 
- --- -- --- ---- - -..---..........- .... 

ra -.0001 -.0159 -.0016 ' .0019 0 .0466 -.482 a 

(B2-15)
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----

In order to study the degree of decoupling for a control input, an
 

analogue simulation was done as shown in Figures- B2-1) to (B2-8). The
 

decoupling reduces the longitudinal/lateral coupling terms by a factor of
 

10 or more. The coupling between the vertical mode and other modes also
 

decreases, showing significant reduction between the vertical and yawing
 

mode. The yawing response is improved for the control input, while its
 

coupling with the other axises decreases significantly. A change in some
 

control derivatives signs accompany turning direction of initial motion
 

opposite to that of basic derivatives. An evaluation of this sign change
 

may require a simulator test by a pilot in the case of an unstable helicopter.
 

Decoupling the Helicopter (at approach phase)
 

The dynamic equation, using the numerical example for the approach plane,
 

becomes as follows: (with cancelled inertia coupling term)
 

-.0221 -32.2 1.515 1 .0049 -.002 0 -2.73 -.2481 u
 

0 0 1.0 1 0 0 0 0 10 e 

q .0020 0 -.42511 .0016 .0003 0 .281 -.228 q 

w - -.100 0 7.845 1 -.5333 -.030 0 -1.3915 12.1898 + w 

V .0027 0 -2.024 -.0286 -.0711 52.2 -1.788 1.990 v 

0 0 0 I 0 0 0 1.0 1 0 

p .0629 0 -1.4491 -.0047 -.0113 0 -1.488 ,2.169 p
 
-- -- -- -- --------- ----------- -- -T--­ r 

r -.0003 0 .423' .0057 .0172 0 .207 ,-.937 _ j 

(B2-16) 
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33.12 

0 


-5.35 


+ 57.75 

4.72 


o 

.86 


.122 


-5.470 -2.44 -. 361 Bils 

0 0 0 
c 

1.28 .28 .076 - -

Als 
-304.04 -1.44 .32 

-15.221 35.35 20.84 
r 

0 0 0 

-5.69 24.06 9.70 

8.29 -2.98 -9.53 
(B2-17) 

and the desirable control matrix B* and the desirable system matrix 

A* are assumed to be given by Eq. (B2-18) and Eq. (B2-19). 

33.12 0.0 0.0 0.0
 

0 0 0 0 

-5.35 0.0 0.0 0.0
 

B* 0.0 -304.4 0.0 0.0 (B2-18) 

0.0 0.0 35.35 0.0 

0 0 0 0 

0.0 0.0 24.06 0 

0.0 0.0 0.0 -9.53 
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-. 0221 -32.2 1,515 0.0 0.0 0 0.0 0.0 
II 

1.0
 

.0020 0 -. 4251 0.0 0.0 0 0.0 0.0 
- -- -- - - - - t - - . .- -. 	 . . - ­

0.0 0 0.0 1-.s3s 0.0 0 0.0 1 0.0 
-A*= ----- r - ------ r­

0.0 	 0 0.0 1 0.0 -. 0711 32.2 -1.7881 0.0 
I I 
I I 	 1.0
 
I II 

0.0 0 - - - 0.0 - _1 00.1 L - 0113 0 - -1.488 _0.0
I II 

0.0 	 0 0.0 0.0 1 0.0 0 0.0 i-.937 

(B2-18) 

These matrices B* and A* are chosen in such a way that characteri'tics
 

of the decoupled helicopter are similar to those of the basic helicopter.
 

After being decoupled, the characteristics would be improved by the con­

ventional technique or the optimal control technique.
 

After simple calculations following Eq. (B2-16) and Eq. (B2-17), one
 

obtains the decoupling matrices C and K given by Eq. (B2-21) and-Eq. (B2-22).
 

1.02 .17 .08 -.034
 

.19 1.03 .010 .003

C=
 

-.1 -.14 1.15 -.5 (B2-19)
 

.13 .95 -.30 .986
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- -

- 4 ­
0.0 0.0 0.0 , .l5ILlO3 ' .10210 0.0 -. 81610 ' :.621 10 - 2 

-a- 2- ------- 1 0-a--------- ---- 4 - a -. 36010- 2 0 .986.10 - 0.0 .457-10- 1-717 
K -. 328-10 0.0 

- 4 " - 1.903.10 0.0 -. 581-10- ]-.603 10 - 3 0.0 0.0 0.0 .670-10 
- -- - - - - - - I -. ..-. - . ..-.- - .--- - f 

-
.314.10-" 0.0 -.443.10 1 r-.388.10 3 -.181.10-2 0.0 .220-10 1 0.0 

(B2-20) 

Substituting Equation B2-9 and B2-20 into Equation B2-S, gives the almost
 

decoupled helicopter dynamics as follows.
 

ii -. 0219 -32.2 1.575 .0001 ' 0 0 .025 -. 042 u 

1.0 ' 0 0 e 

.0020 -.425 .0007 .0002 0 -_155 ;-.26 q 

w .0000 -.00S '-.533 ' 0 0 0 i 0 w 

-.0004 -.035 .0066 -.0716 32.2 -1.788 .379
I I 

0 0 ' 1.0 

p .0007 -.0514 .0038 -.0109 0 1.48 '-.557 p 

r 0 0 ' 0 ' 0 0 0 '.936 r 
-IL L 

(B2-21) 

Ift
 

http:r-.388.10


ORIGflqt.,PA
 

33.02 .077 .041 -.210 B 

0 0 0 0 6c 

-5.24 .43 -.137 .106 Als 

-.0008 -304.04 .0003 -.0018 L6 

.01 .077 34.76 2.10 (B2-22) 

0 0 0 0 

1,39 .11 24.8 -.029 

.79 z.057 -.459 -7.88 

Note that in the "decoupled" equations, the coupling terms are an order of
 

ten smaller, compared to those of basic equations,
 

In the numerical values of the above equations is used (Zq-U ) with
 

U0 = 0. If Zq-U is used with U0 = 60 knots/hr, the feedback gains kii
 

remain the same with the exception of k34, which becomes equal to -100 i.e.,
 

directly proportional to speed.
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Evaluation of Decoupling
 

The root configuration for basic, decoupled and uncoupled simpli­

fied dynamics are shown in Figure 2. The roots of the decoupled longi­

tudinal equations are very close to those of the uncoupled equations.
 

However, decoupling of the lateral equations shifts one of the modes to
 

the right hand side in the s plane, resulting in an unstable mode.
 

In order to study the degree of decoupling for a control input, an
 

analog simulation was done in Reference (32). The decoupling reduces con­

siderably the longitudinal/lateral coupling terms. The coupling between the
 

vertical mode and other modes also decreases, showing significant reduction
 

between the vertical and yawing mode. The yawing response is imporved for
 

the control input, while its coupling with the other axes decreases signifi­

cantly. A change in some control derivatives signs accompany turning direction
 

of initial motion opposite to that of basic derivatives. An evaluation of
 

this sign change may require a simulator test by a pilot in the case of an
 

unstable helicopter.
 

Consideration for Practical Design
 

In general, the stability derivatives and control derivatives are a
 

function of air velocity, altitude and time. Therefore, each element of the
 

decoupling matrices [C,K] must be given by:
 

Ci. = Ci (V,h,t) 
(B2-23)
 

K.. = Ki. (V,h,t) 
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However, the derivatives are determined at a given air velocity and
 

altitude. In practice, the altitude and time dependence can often
 

be neglected and the derivatives are only a function of air velocity
 

or: 

c.. =c.. Cv)
1i ij 

K.. = K.. Cv) (B2-24) 
'3 '3 

When the derivatives between different velocities can be approxi­

mated by straight lines or simple curves variations in C.. and K..
 
j 13
 

would be easily programmed.
 

The decoupling matrices C and K are constructed as shown inMJllstration B2­

3. The assumptions for the design of the helicopter controller are
 

as follows:
 

CI) The state variables u, v, w, e,q, 0, p and r can be mea­
sured by sensors or approximated.
 

C111 The fly-by wire system would be desirable.
 

(III) The measurement of air velocity V is possible.
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APPENDIX C1
 

SENSITIVITY ANALYSIS
 

Sensitivity of Characteristic Roots to Variation in the System 

Coefficients Ca.j I 

The system equation with control free is given by (C1-1). 

SCt) = Ax(t) (C-1) 

where 

x(t) : n-state vector 

A : n x n system matrix
 

the n-tL order characteristic equation is given by (CI-2) 

IsI - Al = 0 (C1-2) 

The sensitivity is defined as 

S k. aArk 
-- (Cl-3J
j ij W..ij
 

where,
 

Sk sensitivity of k-t- characteristic root
 
j
 

to a..
ij variation 

a.. : non-zero Ci,j) element of AiJ 

Aa.. : variation in a.

1J 1J 

Ark k-th root of the characteristic equation
 

kk
 
And, S1 . is a vector since Ark is represented by:
 

Ark IIArklI tan-1 Im[Ark]

RekArk] (C14) 

Also, the following equations are easily proved with respect to Sk 

since Trace [A] is the sum of all roots. 

-1-7 6
 



Z S.. = a.. i j, i,j= 1,2 ...... n (Cl-5)k=l 1) i 

Z s.. = 0 i j, i,j = 1, 2 ...... n (Cl-6) 
k=l 

Furthermore, the poles and zeros of the root locus of a.. varia­
3 

tion are given by roots of (C-7) and (Cl-8) respectively. 

IsI - Al = 0 (C1-7) 

cofactor (-ai) = 0 (C1-8) 

These are derived as follows:
 

Letting the variation of the system matrix, AA, the characteristic
 

equation is rewritten by:
 

Isl - A - AAJ = 0 V-9) 

This equation can be equivalent to (CI-10) 

II - (sI - A)- 1 AAJ = 0 (C1-10) 

I - adj(st-A)L\A 
det(s1-A) 7 0 (C -i) 
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cof(s-a11 ), cof(-a 2 1). .... , cofC-ai) ...... , cofC-anl) 

cof(-a1 2), cof Cs-a 2 2). ..... , cof(-ai2) ....... cofC-an2) 
I I 

I I I 

adj(sI-A) = cofC-a). .................. cofC-ai) cofc-an)
 

cof(-aln)................... cof(-ain). ...... cofCs-ann) 

(C1-12) 

If one assumes that 

0 0...... 0...... 
0 
o I 

A = CC 1-13)
,ij
0.....Aa0 .. ..0
 

I I 

0 ..... .0 ...... 0
 

then: 0 0..... Aa. cofC-a.l) ...... 0
 

0 Aaij. cofC-ai2)
I 

adj (sI-A)AA = 0 .......... Aaij. cof C-aij) ...... 0 (CI-14) 

0.......... Aaij, cof C-ain) ...... 0 

Aai. cof C-aij)adj CsI-A)AA 
- det[sI-A] 1 - det[sI-A] (Cl-is) 

That is, the characteristic equation is:
 

Aaij cofC-a)ij
 
1 - detLsI-A] = 0 (C16) 

The poles and zeros are given from (C1-16)
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Sensitivites of the Characteristic Roots to the Stability Derivatives 

The contributions of stability derivatives to control and dynamic 

stability are shown in Figures (-1Y to CC-36}, with- mostly expanded 

sensitivities. By these figures we can appreciate the following:
 

ClI Which. roots Cor modes) are most sensitive to the specific
 

stability derivative?
 

C2)_ W ich roots Eor modes) are more sensitive to which stability 

derivatives? 

C3) Existence of zeroes on real axis can be known. 

(4) From Cl) and C2) we can infer degree of coupling. 

With respect to Lr and N , root locus are shown with reducing Lr and Nu 

in Figure C -37) and Figure (0-38), in order to study reduction in 

stability due to decoupling.
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APPENDIX DI1
 

REVIEW OF LINEAR OPTIMAL REGULATOR
 

Optimal Time-Invariant Linear Regulator (Deterministic)
 

The general results of optimal time-invariant linear regulator
 

problems are summarized in this section.
 

System Dynamics
 

Given is a deterministic, tine-invariant, linear dynamical system
 

with n-dimensional state vector (or variable) x(t) and m-dimensional
 

control vector Cor variable) u(t).
 

iCt)= Axt) + Bu(t) (Dl-l) 

xCt) = x0I-2) 

where A and B are n x n and n x m constant coefficient matrices, and x
0
 

is the initial state vector at time t . Usually, the dimensional of state
 

vector is larger than that of control vector (n>m).
 

The p-dimensional output vector yCt) consists of a linear combina­

tion of the components of state vector xCt):
 

y(t) = Hx(t) (l-3) 

Without loss of generality, the p x n'output matrix H has its maximum
 

rank p (p<n). The output vector yCt) can be regarded as p independent
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measurements of the system state x(t). Note that, in many or most of
 

the practical cases, the output matrix H can be an n x n identity matrix.
 

In Illustration (Dl-1) is shown the block diagram of the system.
 

Throughout this work, the lower case character usually stands for
 

a column vector and the upper case for a matrix. The argument "t" usu­

ally means time and C') represents the time derivative of the argument.
 

Cost Function
 

By properly chosen output weighting matrix Q and control weighting
 

matrix R, the quadratic cost function without cross coupled term of the
 

output vector and the control vector is expressed as follows
 

J(xo, u(t)) f [yT(t)oy(t) + uT(t)Ru(t)]dt

t
o 
 31-4)
 

where the matrices Q and R are pxp and mxm constant symmetric matrices,
 

and throughout this report, the superscript T C)T) stands for the
 

transpose of vector or matrix.
 

The pxp symmetric output weighting matrix Q and the mxm symmetric
 

control weighting matrix R are both assumed to be positive definite, or
 

Q>0
 
I (Dl -5) 

R> 0
 

Hence, the integrand of quadratic cost function J(x ,u(t)) in Eq. (DI-4)
 

is non-negative for any output yCt) and any control uCt) during the pro­

cess interval [to, ).
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Controllability
 

An optimal control law u*(t) has to be determined, that minimizes
 

the quadratic cost function J(x0 , u(t).) subj.ect to the system dynamics
 

represented by Eqs. @I-i), 01-2) and @1-3).
 

The assumption of the positive definiteness for Q and R weighting
 

matrices guarantees the convexity of quadratic cost function Jmin(x ,U(t)),
 

but it does not imply that the minimum of cost function Jmn(x ) is finite.
 

The cost function is finite by the "complete controllability condition".
 

The condition of "Complete Controllability" for stationary system
 

(Eqs. @11-1) and @1-2) considered here is that the following n rows by
 

nxnm composite matrix has the maximum rank (=n):
 

Rank [B AB A2B ................. An-IB] = n (DI-6)
 

A matrix pair of A and B satisfying Eq. (oI-6) is usually said as "Com­

pletely Controllable pair [A, B]".
 

Complete controllability guarantees the finiteness of the minimum
 

cost function J .i(t, uCt)). Also, since the quadratic cost function Eq.

man o
 

(DI-4)_ is a convex function, the JminCxo, uCt)) exists and is unique.
 

Optimal Control Law
 

The optimal control problem can be solved by the aid of calculus
 

of variations, or Pontryagin's maximum principle and/or Bellman's dynamic
 

programming. Since there is no active constraint involved except the dy­

namical equation, the simplest straightforward way may be to use the cal­

culus of variations. The result of this calculation is that matrix K must
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satisfy the "Algebraic Matrix Riccati Equation".
 

KA+ATK - KDK + HTQH = 0 (pl-7) 

(note HTQH>0) 

where D is a n x n constant, symmetric, positive semidefinite matrix 

defined by 

D - BR- 1 BT (>0) 031-8) 

Let the matrix K be a proper solution of Eq. (DI-7 ). Then the optimal 

control law is expressed in the linear feedback form. Using Eq. (D-15) 

and CDl-17), 

u*Ct) = -R-BTKx*(t) 

(D1-9) 
= -Gx*(t) 

where G is the feedback gain matrix (m x n) defined by
 

G - R-IBTK (D1-10)
 

By using the optimal feedback control law to the plant dynamics Eq. (DI-I),
 

the optimal closed loop system dynamics become
 

x (t) 1 TK) = FxCt) (Di-11)CA-BR xCt) 
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where the asterisks on x(t) have been dropped off, and the n x n matrix F
 

is the closed loop system matrix defined by
 

F H A-BR-IBTK F A-DK F A-BG (Dl-12)
 

The eigenvalues of matrix F indicate the poles of the optimal closed
 

loop system. The stability of the system depends on the signs of the real
 

parts of the eigenvalues. There exist many real symmetric solution ma­

trices CK's) of the algebraic matrix Riccati equation (Eq. D1-7) for given
 

positive definite matrices Q and R. It has been shown by R.E. Kalman in
 

Ref. (Al) that if [A, B] is a completely controllable pair, there exists
 

a unique solution matrix K of Eq. (D1-19), which is a n x n positive defin­

ite symmetric matrix and makes the real parts of all the eigenvalues of F
 

be negative (itmeans a stable system); namely,
 

K > 0, unique and symmetric
 

for Q>O and R>0
 

and
 

Refli[" ]} means the real part of the i- th eigenvalue of a matrix.
 

Therefore, the closed loop system expressed by Eq. (DI-11) is asymptotically
 

stable. Thus, the optimal control law u*Ct) in Eq. W1-9) exists and is
 

unique for given weighting matrices Q and R.
 

It is important to note that the matrix Riccati equation (Eq. (DI-7)
 

is independent of the system state and time, and so is the optimal feedback
 

gain matrix G in Eq. (DX-10).
 

-202
 



observed vector) yet), despite the attempt to use the output y(t) as the
 

feedback signal. Hence, the optimal controller requires all the infor­

mation about the system state x(t), which has to be computable out of the
 

observed vector y(t). If the output vector y(t) could not generate the
 

(unique) state vector x(t) or if the state vector x(t) could not be di­

rectly observed (or measured), then the obtained optimal system would not
 

be realizable.
 

A "state x is observable at t " if, given any control u(t), there 

is a time tlt O such that knowledge of u(t) and the output y(t) over [to,tl] 

is sufficient to determine x . If the argument is true for every state
 

x at time to, then the system is said to be "observable at to". If every
 

x is observable at every time to in the interval of definition of the sys­

tem, then the system is said to be "completely observable". Since the sys­

tem under consideration here is stationary (constant coefficient), the sys­

tem (Eqs. (DI-I), (D1-2), (DI-3)) is assumed to be completely observable.
 

The condition of complete observability for time-invariant linear sys­

tem is that the following n-rows by np-columns composite matrix has the
 

maximum rank =n)
 

T1..
T T n-lHTRank [H A H :(A )2HT ....... CA) H = n (D-12)
 

A matrix pair of A and H satisfying Eq. (DI-30) is said "Completely Ob­

servable pair [A,H]".
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Minimum of Quadratic Cost Function
 

By using the unique optimal feedback control law (Eq. 0b1-9)), the
 

minimum of quadratic cost function J in(xo) can be uniquely evaluated in
 

terms of K matrix and the initial state x and equals:
 

Ji. (x ; Q, R) = T Kx1-13
 

min 0 0 0
 

Block Diagram Optimal Regulator
 

The block diagram of the optimal system described above is shown as
 

Illustration D 1-i.
 

System 

Controller I 

x I 
+ ~~~u(s) ~), ys 

Illustration Dl-l. Block Diagram of Linear Optimal Control System
 

Observability
 

Eq. Qi-21) and the block diagram shows that the optimal control
 

u*(t) is a function of the state vector xCt) rather than a function of
 

the state vector xCt) rather than a function of the output vector Cor the
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Note that, combining Eq. (DI-6) with Eq. (Dl-12), the system is
 

assumed to be both completely controllable and completely observable.
 

The observability condition Eq. (DI-12) guarantees that one can
 

compute the unique state x(t) from knowledge of the output y(t) and the
 

control u(t) over [tot]. When the output matrix H is the n x n iden­

tity matrix (In), the problem is called "State-Regulator Problem", where­

as the problem with a nonidentity H matrix is called "Output-Regulator
 

Problem".
 

Summary of the Deterministic Optimal Regulator
 

The deterministic optimal regulator for a completely controllable
 

and observable system can be summarized as follows
 

System dynamics: xCt) = AxCt) + Bu(t); xCt 0 x° 

yct) = Hx(t)
 

where x(t) : n dimensional state vector
 

u(t) : m dimensional control vector (m>n)
 

yCt) : p dimensional output vector (p>n)
 

A,B and H: nxn, nxm and pxn constant matrices
 

Cost function:.QR) J n Cx = Min f yT(t)Qyct) + u T(t)RuCt)Jdt (3)

mn ° u(t) t
 

0 

T
 
= x K x [ I
 

o o Cadl
 

where Q and R: positive definite symmetric constant
 

matrices
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Variables and equations: 

Number of Variables Number of Equations 

x(t) n (1) n 

u(t) : m (1) : p 

y(t) : p (3) 1 

J(.) : 1 (11) or (4) : m 

Q 	 : p2 () n2 

2R 	 : m

2:nK 

Total: Cn+m+p+l+p2 +m2+n2) unknowns. Total: (n+p+l+m+n2) eqs.
 

Conclusion: 1. If Q, R are given, then number of variables = number
 

of equations.
 

2. 	If Q and R are not given, then the number of equations 

is n2 + m2 less than the number of unknowns. 
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APPENDIX D2
 

OPTIMAL LINEAR CONTROLLER DESIGN APPLIED TO A SECOND ORDER SYSTEM
 

The system equation is represented by the following differential
 

equation
 

where 

3(t) = ax(t) + bu(t) (D2-1) 

x(t) = position 

i(t) = rate of position 

uCt) = control input 

a = rate damping 

b = control derivatives 

In the state variable form 

where 

=t)= Ax(t) + Bu(t) (D2-2) 

= t 
L2t) 2i 

FX(tl(D2-3)
Lxct)i 

A = 0 j
10a 

B =BI0 
(D2-4) 

(D2 -5) 

u(t) = (D2-6) 
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The Optimal Linear Regulator Approach
 

The quadratic performance index be minimized is:
 

M

J (x(t)Tqx(t) + ru(t) 2)dt (D2-7) 

Of 

where
 

q : 2 by 2 non-negative, symmetrix weighting matrix for
 

qll, q12, q12, q2 1 > 0 states
 

r : a scalar weighting factor for control
 

The optimal control which minimize (D2-7) is
 

u =-GX(t) 

I BlTKX t (D2-8) 
r 

where P is a feedback gain matrix and K is a solution matrix of the
 

following Riccati matrix equation.
 

KA + ATk - 1KBBT +Q= 0 (D2-9)
 
r 

Expanding the latter equation gives:
 

b2 k 12 k21 - q1I = 0
 
r 
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2 b
 

= (2-10)Sk- - (a . + k )-q 0 
12 22 12 11 12
 

b- k k - (ak +k } -q =0 
r 12 22 21 11 21
 

7-._ k 2 2 - 2ak 22 - (k-1 2 + k21 ) - q22 = 0 r 

From the symmetric property of weighting matrix Q follows q12 = q21 . The 

solution of Eq. D2-10 becomes 

k11 = r {(a2 + r r 

2
= = r (D2-11) 

k22 = (a + a? + 2b + -q
 
r 
 r


bz 


Substitution into (D2-8) gLves the optimal control
 

b [Gx + GJzc](D2-12)u-= [x 1 G2]
 

where G is a position feedback gain and Gx is its rate feedback gain
 

given as follows:
 

GX - (D2-13) 

X4 . 
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G. = a / a__2 + g~2 (D2-14)
G - 'a+ + !2 

a b2
 
x 17 b r (Dr4 

Note that the weighting factors q12 or q21 are irrelevant to the op­

timal feedback gains. 

From (D2-2), o2-12), (D2-13) and (D2-14), the equation for the 

closed loop system becomes: 

+ b 2 q(t)+ /a2+2b/ 11 2 2  + bq X(t) 0 (D2-15) 

r r r 

When this closed loop system is described by
 

(t) + 2 Onx(t) + w 2x(t)= 0 (D2-16) 

then 

r_n r 

i/++bqZ2 1 
2 b'q2 bq0) rqI (ql (D2-17) 

Closed Loop System Properties as a Function of Control Weighting
 

When the control weighting R approaches infinity, (R-o)
 

Gx = 0 
 (D2-18) 

G- = 0 (a<o) 

x - 2a (aD)(2-19) 

The feedback gains do not all go to zero; therefore the closed loop system
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approaches the stable original system or the adjoint system in the case
 

of an unstable original system because:
 

R(t- + jal x(t) = 0 (D2-20) 

always guarantees a stable system.
 

When the weighting for control approaches zero, (r = 0), which means
 

there is no limitation on the control, the closed loop system approaches
 

D2 -21) which is called model control equation in (D2UI).
 

q?2 (t)+ x(t) =0 (D2-21) 
q1
 

when the weighting factor q22 0, the undamped natural frequency and
 

damping become, from (D2-7): 

n (D2-22)
 

4 = .707
 

which are the second order Butterworth poles.
 

The Minimum Value of the Performance Index
 

The minimum value of the performance index, in general, is obtained
 

by substitution of the optimal control (D2-8) into (M2-7). This yields:
 

1 T
 
=_min xo Kx (D2-23)
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This is obtained by substituting D2-11 into the latter equation:
 

1 2 + b g 22 
min- x2 o LvO 2 r r 

+ 2 x 	 (D2-24) 
2
b Xio
 

+ (a-	 b2 q2-) ( X2' 21
 

1-(a+/22/-1 	 + Lj q22) Xi0 

r r
b2 

(xio # 0) 

The formula, in general, is given as a function of initial states and
 

solution of the Riccati equation. Minimizing this value is done by de­
l
 

creasing r and also by decreasing q1i and qzz. Therefore, without any
 

constraints,minimizing J itself is meaningless, Hence, constraints are
 

necessary, which leads to the discussion of the OWEM method. (Appendix E).
 

REFERENCE
 

D2-1 	 Schultz, D.G. and Mersa, J.L., "State Functions and Linear Control
 
Systems", McGraw Hill Inc., New York, 1967.
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APPENDIX El
 

REVIEW OF OWEM DESIGN METHOD
 

The Optimal Weighting Matrices Controller Design Method (OWEM) 

This appendix is a summary of the OWEM design method as presented
 

in Refs. (El ) and ( E2 ). The results of the method are given without
 

proofs; for the details of mathematical derivations and proofs, see Ref.
 

( El). 

The goal of the linear optimal control theory is to find a linear
 

control law such that the following quadratic cost function is minimized
 

J(uct); Q,R) = LimT Tt)Ru(t)dtGt)Qyt) + uTT 
-T 

subject to i(t) = Ax~t) + Bu(t) + Cn(t) 

y t) = HxCt) 

S{nct)} o, 8{nct n T)} = N6Ct_-T) 

where xCt) : n dimensional state vector 

uCt) : m dimensional control vector 

yCt) : p dimensional output vector 

nCt} : 	k dimensional stationary, Gaussian, white
 

noise vector
 

Q : pxp output weighting matrix, weightings for the
 

output errors, (positive definite, symmetric,
 

constant matrix)
 

N : nxn noise intensity matrix 

6C-) : Dirac's delta function 
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R 	 : mxm control weighting matrix (positive definite,
 

symmetric, constant matrix)
 

() : transpose of (*) 

S {-} : expectation or average of {'} 

The optimal control law U*Ct) is obtained in the state feedback form
 

(a linear function of xCt)) as follows
 

u*(t) = -R- BTKx(t) E -Gx(t) 	 (El-2) 

where () represents the inverse of C), and nxn matrix K is the unique 

positive definite solution of the following so-called "Algebraic Matrix
 

Riccati 	(AMR)" equation:
 

KA + ATK - KBR- BTK + H T QH = 0 	 (EI_3)
 

Thus, if the matrices A, B, H, Q, and R are given, the controller can be
 

designed by solving Eq. (E1 )for K and using it in Eq. (E1 7 )
 

Note that the optimal controller can be designed independently of the
 

noise intensity (covariance) and the matrix C as long as the noise nCt)
 

is stationary, gaussian, white and of zero-mean.
 

Denote the corresponding state and output vectors to the optimal con­

trol u*ct) as x*Ct) and ywt) respectively. Namely,
 

x*Ct) = Ax*(t) + Bu*Ct) + Cn(t) 	 (EI-4) 

y* Ct) = Hx* Ct) 	 (E1-S) 

The equation should minimize J(u(t);Q,R).
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Assuming the stationarity of the system and the ergodic property,
 

the minimum cost JCu*(t),Q,R) rs obtained as follows (Ref. Fl )
 

JMin (Q,R) J(u*(t);Q,R) = {y*(t)Qy*(t) + u*T(t)Ru*(t)) 

Tr[QYj] + Tr[RU*] (El-6) 

= Tr[CNCTK] (E-7) 

where Tr[-] = Trace of ['] 

= the sum,of the diagonals of [-] 

Y*Ct) =S{yw(t)y*T(t)} : output covariance matrix 

U*(t) =c{u*Ct)u*T Ct)} : control covariance matrix
 

The matrices A, B, C and H are inherent to the given controlled
 

system and normally available a priori. In order to design the controller,
 

the immediate question to be asked is how to choose Q and R matrices. They
 

affect the solution matrix K in AMR equation and thereby the feedback gain
 

matrix GC=R- BTK). Hence, the closed loop characteristics and the minimum
 

quadratic cost Jm n(Q,R) have considerable effects of Q and R.
 

First will be investigated how the minimum quadratic cost Jmin (N;Q,k)
 

behaves with respect to Q and R:
 

Suppose there is an ordered sequence of trial weighting matrices Q's.
 

[Qi j = Q11 Q2' Q3, ... Qi' Qi+1 
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If Qi+l - Qi > 0 or positive semidefinite, then [Qi] is called a monotoni­

cally increasing definite sequence (MIDS). For an example, consider one 

Qo>o and a scalar sequence [kiJ 1, 2, 3. i, i+l, ......Tfen 

Qi = kiQo
 

[Qi] = Qi, Q2, Q3, -' Qi' Qi+l
 

= Qo, 2Q, 3Qo, " iQo,(i+l)Qo ....
 

is MIDS. Because
 

QI+I - Qi = (i+l)Qo - iQo = Qo > 0 for all i = 1, 2, 3, ..... 

Likewise, [Ri and [Ki] are defined. 

Using these special sequences, the parametric behavior of the minimum 

quadratic cost Jmin (N;Q,R) is summarized below CRef. [El]). 

A solution sequence fKiI of AfR equation corresponds to the above 

defined sequences [Qi] and [Ri]. 

Corresponding to the above defined sequence [Qi],-and [R] respec­

tively, one obtains solution sequences {KiI's of AMR equation. The solu­

tion sequences {K.}'s can be shown to be also monotonically increasing1 

definite sequences [KiJ's. This is shown in Illustration E-1.
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I 	 I 

[K.] 	 1Ki 

[Qi] 	 [Ri]
 

Illustration E-i. 	 Behavior of (Ki] with respect to [Qi] and [Ri]
 

The Jmin (N;Q,R) with respect to a monotonically increasing definite
 

sequence [Ki] also increases monotonically.
 

min
 

[Ki]
 

Illustration E-2. 	 Behavior of Jmin [K.] (N;Q,R) with respect to [Ki]
 

The arrow in-the illustration indicates the direction
 

that is desirable for a design.
 

DJ - (N;Q.,R) 
Define J . (K.) Tr[CNcTK ] or EI-8)

IJM(N;Q,Ri)
 

Then if Ki+ I - Ki > 0, then Jmin (Ki) 	 (E-9)
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The behavior of JminC;Q,R) with respect to [Qi and [Ri] is shown
 

in Illustration E-3. The sequences [Qi] and [R.] are monotonically in­

creasing definite sequences.
 

J in
 
nunn
 

[Qi] [Ri]
 

Illustration E-3. Jmin with Respect to [Qi and [Ri]
 

The arrows in the illustration indicate the direction that is desirable in
 

a design.
 

The monotonic property of JCN;Q,R) indicates that Jmin will not remain
 

finite unless the weighting matrices Q and R are limited within some finite
 

allowable sets during their selection. When the elemental matrices of the
 

allowable sets for choosing the Q and R matrices can be ordered and a
 

definite differential matrix among any two of them is obtained; then the
 

smallest weighting matrix yields the smallest J . (N;Q,R). Hence, the

m2n
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allowable sets for the weighting matrices Q and R should not contain any
 

matrices which can be ordered in the sense of definite differential matrix.
 

To bound Jmn(N;Q,R) from both below and above, consider Eq. (EI6)
 

Jmin (N;QR) = Tr[QY*] + Tr[RU*]. 

The general form to be bounded is
 

-T
-Th 

Tr[A B] where A corresponds to Q or R
 

B corresponds to Y* or U*.
 

This trace indicates a sum of the products:
 

Tr[A B] = ZS a.. b. (El-i)
'3 ' iJ1 

where =A {ai 1, B = Lb.. 

Foi a sum of productes of finite values, the lower bound is given by the
 

arithmetic geometric average, the upperbound by the Cauchy-Schwarz theorem.
 

For an example,
 

+ta2 (El-fl)2 2 < aib1 + a2b 2< VlFT2I 

where a,b,>O and a2b2> 0 for the left hand side inequality.
 

In matrix form this becomes [Ref.El-3]:
 

When A and B are non singular (nxn) matrices then
 

< ITr[2B]1 II - 11 11 (EI-1 )
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where
 

SI: Determinant
 

i i'l: Matrix norm, flil = TA
 

The equalities occur at 

the left hand side when T = k1 k1O 

the right hand side when T = 2 k2>0. 

Hence Jmin (N;Q,R) is bounded by
 

pIQ[i/PIY*I/P + mIRIl/mIUPI/m Jmin (N;Q,R) < 

IIQII "ilY*ll + IIRI- IU*Il (El-is) 

Eq. E-12 indicates that: 

1. 	When IQI and IRI are prescribed, the minimum of Jmin (N;Q,R) with 

respect to Q and R can be obtained with Q = k3Y*- and R = k4u*-l. 

2. 	When IIQ11 and j I are prescribed, the maximum of Jmin (N;Q,R) 

with respect to Q and R can be obtained with Q = k Y* and R = k U*. 
5 6 

where k3, k4, k5 and k6 are appropriate positive scalars for Q and
 

r to satisfy the prescribed determinants and norms.
 

The minimum and maximum values of J in(N;Q,R) occur when:
 

Min J in(N;Q,R} when Q = k3y*-i and R = k4U*-i
 

Max Jmin N;Q,R) when Q = ksY* and R = k 6 U*
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The design method with Optimal Weighting Matrices COWEM) is basi­

cally a linear optimal quadratic control system design method with calcu­

lated weighting factors such that the effect of disturbances on the per­

formance index is minimized.
 

The OWEM design method can be summarized as follows:
 

The system is assumed to be completely controllable and observable and is
 

shown in Illustration (El-i).
 

n(t) SYSTEM 
= V/STOL 

YR(t) 	 C
 

Error 	 x
 

+uti 	 X t HY 

Illustration El-i. Block Diagram of an Optimal Linear Regulator
 

=System dynamics: 	3(t) Ax(t) + Bu(t) + Cn(t) (El-14) 

y(t) = Hx(t) (El-is) 

where x(t) : n dimensional state vector 

u(t) : m dimensional control vector Cm<n)
 

y(t) : p dimensional output vector (pjn)
 

nCt) : k dimensional noise vector (!kn)
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S{nCt} = 0, Cov{n(T)} = N6(t-T) 

AB,C and H: nxn, nxm, nxt and pxn constant 

given matrices. (Ei- 16) 
-- 1 IT [T tOt+Tt)ut]} 

Cost function: Jmin(N;Q,R) = Min {Lim -- yTt)OY(t)+uT (t)Ru(t)]dt}

u (t) T-)o2 -T (El-17) 

= Tr[CNC TK] (Ei-18) 

where Q and R: positive definite symmetric matrices.
 

Optimal control law: u'(t) = -R-I BTKx(t) (El-19) 

where K: nxn unique positive definite solution of (El-20)
 

KA + ATK - KBR-IBTK + HTQH = 0 (El-20) 

TT 

Covariance,matrices: FX + XF + CNCT = 0 (Ref. E2) (El-21) 

where X = 8{x(t)xT(t)}, F = A - BR- B TK 

y = {y(t)yT Ct) } = HXHT (El-22) 

IU = S.{u(t)uT(t)} = R- BTKXKBR - (El-23) 

2+m2In the above equations, the number of equations is p less than
 

the number of unknowns if Q and R are not given. To augment the lacking
 

number of equations, an auxiliary performance index is minimized with re­

spect to Q and R.
 

Auxiliary performance index:
 

Min J . (N;QR) Min Tr[CNc TK] (El-24) 
Q,R min Q,R 

subject to KA + ATK - KBRIBTK + HTQH = 0 (E1-25) 

- 2-2 
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2
Constraints on Q and R: IQI = i. I= JRI = p (El-26) 

Optimal weighting matrices Q and R: 

Q = V HPHr [. (HPHT)-I1 y-i (El-27) 

R = p2/m 	 BTKPKB U-1 (El-28)
 

IsRPKBI
 

where FP + PFT + CNCT = O P E X in this case. (El-2) 

-
F = A - BR	I BTK
 

Conclusion:
 

If p2 is given, then Q and R can be determined provided the noise
 

intensity matrix N is known. If the noise intensity matrix (or covariance
 

matrix) N cannot be estimated, then the approach in this summary cannot be
 

used.
 

It has been shown in Ref. (El ) that the introduction of a new per­

formance index independent of N can remove this deficiency. This performance
 

index extremizes the total system damping. It has been shown in Ref. [El]
 

that if one 	assumes that the disturbance is white noise entering the system
 

at the controls with a magnitude N = R-I and C = B then the results of both
 

approaches yield the same result for the optimal calculation of the weight­

ing matrix Q, however the optimal weighting matrix R is different. Using
 

the same system dynamics as above, with Cov{n(t); nCz} = N6(-T) unknown,
 

one can summarize this approach as follows:
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Cost function: Jin(N;Q,R) = umi) Urn 2- T [yT(t)Qy(t)+uT(t)Ru(t)]dt}MT .T_,R 1 

n u(t)T -T (E1-30)
 

= TrCNCTK]. (N: unknown) (El-31) 

If N = kC+CBR-BT(c+) T , then (E1-32)e
 

-
Jmin (Ne;Q,R) = kTr[BR	IBTK] (E1-3)
 

where C+: xn pseudo-inverse matrix of C,i.e.,
 

(=(CTc)-IcT )
 

Optimal control law: 	u(t) = -R-I BTKx(t) (E1-34) 

where K: nxn unique positive definite solution of (1I-21) 

KA + AK - KBR-IBTK + HQH = 0 (EI-35) 

This optimal control law C22) can be computed without knowing N if
 

Q and R are given.
 

Covariance matrices (unknown):
 

FX + XFT + CNCT = 0 (EI-36)
 

where X = {x(t)xT(t)1, F = A - BR BTK (EI-37)
 

Y = {y(t)yT (t)}, HXHT 

U = fu(t)uT(t)} = R-I BTKXKBR-I CEIL38)
 

Note: These covariances are all unknown since N is unknown
 

Auxiliary performance index:
 

Total System Damping = TSD: the negative sum of the closed loop
 

roots
 

L* = Min Max {TSD} = Min Max {Tr[-(A-BR- BTK)]} E1-39)
Q R Q 	 R 

or equivalently
 

L* = Min Max {Tr[BR-IBTK} C'." A = constant matrix) (EI-40)

Q R 
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subject to KA + A K - KBR- IBTK + HTQH = 0
 

Note: (1) TSD is equivalent to the Relative Rate of Change of
 

Error Sets (RERACES, see Ref. [1], Chapter IV), and is
 

generalized system response speed.
 

02) The extremum (minimax) of TSD does not exist unless Q
 

and R are appropriately constrained.
 

Constraints on Q and R: IQI = 1, IRI = p2 (EI-41) 

where I('I the determinant of () 

Optimal weighting matrices: 

Q = P IHPHT I (HPHT)-	 CEI-42)
 

R = p2/m . BTKB BTKPKB (El-4a) 

mB KB - B KPKBJ 

where FP + PFT + BR-IBT = 0 (EI-44)
 

F = A - BR BTK
 

Conclusions:
 

Cl) 	When N is unknown, Q and R can be computed by the minimaximization
 

of TSD with respect to Q and R under prescribed determinant con­

straints.
 

C2) 	The optimal Q matrix slows down the entire system response or
 

error convergence speed by minimizing TSD. However, for an equi­

valent white noise distrubance with a magnitude Ne inversely pro­

portional to the control weighting R, the minimization of TSD is
 

equivalent to the minimization of Jmin CNe ;Q,R).
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Note: 	 a faster system response can be obtained only at the expense 

of the entire system accuracy, i.e., a larger TSD accompanies 

a larger JMin ( ) . 

(3) The optimal R is chosen such that the system response speed (with 

a given Q selection) is maximized. 

(4) The optimal Q matrix equalizes the closed loop poles in fre­

qurncy-wise, while the optimal R matrix tries to separate them.
 

The trade-off between these two effects is controlled by p2 .
 

(5) p2 	is the only scalar parameter to be determined by designers.
 

(6) The approach summarized here can be directly applied for the
 

deterministic case in Summary 1 since Q and R can be determined 

independently of N and C matrices.
 

Properties of the optimal weighting matrix determined by the OWEM design
 

method 	 (under determinant constraint), which can be of large significance 

in engineering applications, are the "Normalization and the Group-Wise
 

Equalization". 

Normalization
 

The state variables can be dimensionally different, and the weighted
 

state and control variables are compared in the performance index. Hence,
 

for a meaningful comparison, the weighted state and control variables should 

have the same dimensions. The resulting weighting matrices from the OWEM
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design are inversely proportional to the output covariance matrix Y and the
 

optimal control covariance.
 

Group-Wise Equalization
 

In the development of the OWEM design the followingexpression was
 

obtained:
 

y -I where k5 = I C>O) 

Hence the Q is inversely proportional to the covariance matrix Y.
 

The effect of the group-wise equalization constant k5 can be
 

evaluated as follows:
 

x{y*TQ*y-l} = Tr [Q*6 { y *y*T}J i=i# qI j YIYi 

Q* {q} k.Y* k
 

Yr. (i-j)th Cofactor of Y* {T
 

P P
 

Z qt. Uy-y = k _ ytyt k ; i=l,2,.-., p
1j-l i1 j 1 3 j=l LY*I 
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1=1: l~ Y*+ 12l Y*Y*1 + . *y = k
1 1 *... +q*l Y 1
 

i2 q* y*y- + q* y~y* - .----+ q* Y
22 = * 2 32 

p-groups 

i =p q* iYlY p + p2 Y2p + ' " + q *y*y =k= k3 

Similarly
 

p p Y.. 
= 11 (YjY) k3 3JL yjyt k j=l,2, ... p. 

3 jil 3
F i 

This evaluation shows a group-wise equalization of the terms of
 

{y*,Q y*}. 

In the initial approach all the constants k3 are chosen to be equal. 

This corresponds to an Error Scaling Matrix (ESM) = 1. Making the ESM 

matrix not equal to the identity matrix corresponds to an error scaling 

factor (ESF) of the diagonal elements of the weighting matrix q 

The elements of the ESM matrix are diagonal, hence, an easier inter­

pretation is often possible. In general, the elements corresponding to
 

the quantities to be controlled determine the error weighting,while the
 

elements corresponding to the derivatives of the quantities to be controlled
 

influence the damping of that mode. In practical application, one should
 

first use a ESM matrix with only elements that affect the quantity to be 

controlled. If mode damping increase is desirable, then elements of the 

ESM matrix that affect the mode damping can be introduced. This method, 

using a step by step approach, is preferable as the effects of the ESM matrix 

and Q matrix are not yet fully investigated. 
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APPENDIX E2
 

THE OWEM METHOD APPLIED TO A SECOND ORDER SYSTEM 

A second order system equation is represented by the following
 

differential equation
 

i(t) = ax(t) + bu(t) (E2-1) 

where
 

xCt) = position 

kCt) = rate of position 

uCt) = control input
 

a = rate damping
 

b = control derivatives
 

In the state variable form
 

x(t) = Ax(t) + Bu(t) (E2-2) 

where 

x (t ) F= t 

Ctj (E2-3)I: 
A =[ (E2-4) 

0a
 

(E2-S) 

u (t) = 6 (E2-6) 
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An analytical approach using the example clarifies the method and
 

yields a solution for the choices of the Q matrix. The closed loop
 

system obtained by conventional optimal design method assigning values
 

for qIl, q22 and r yields:
 

2 + b 2 +5(t) + a + 2b q 22 .jf) b r x(t)=O (E2-7) 

r rr
 

The total system damping is (Ref. El-i),
 

TSD 4 2 + 2b n11 + b2 2(E2-8)
 
r r
 

The determinant constraint on weighting matrix Q becomes:
 

-(E2-9)
jQ1 = 1 = qil q22 


This determinant constraint only specifies the lower limit of the mini-


Note that for decreasing qti, q2 and

mized performance index value. 


r, the value of the performance index decreases and the minimized value
 

becomes meaningless. The determinant constraint is used to avoid this.
 

Substituting Eq.(E2-3) into Eq. (B2-2) reduces the TSD to
 

Eb22
TSD= 2b 1 
r rq11  (E2-10)
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The TSD value with respect to q 1 is illustrated in Illustration (2-1).
 

TSD
 

qll
 

Illustration 2-1. TSD as 
a Function of the Weighting q11
 

The minimization of TSD with respect to q11 
elements leads to mini­

mization of the performance index with determinant constraint. 
The mini­

mization of TSD is obtained by differentiating (B2-10)with respect to q1a,
 

And TSD, q11 and qz2 are:
 

4
 23b 

A2 +TSD 2 3- CE2-I) 

ry
 

2
 
b3
 q
t 1 

(E2-12)
 

1
 

q~z 
 2 
b 2 (E2-13)
 

Note that when the weighting factor Q is obtained, the OWEM method minimizes
 

the performance index.
 

2 1 
I b73 rT 2 

Jmin " (-y-x 1 (t)+ --- xz(t)+ r u2(t)) dt
5W- bS 

(E2-14)
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Substituting the optimal weighting factors into (E2-1) gives the optimal
 

closed loop system
 

4 4 

2 2 x-t)­
r 3 

a(t)++ 3b 3 + b 3 x(t) (E2-15) 

And the undamped natural frequency wn and the damping ratio 1 are re­n 

spectively
 

2-2
 
a3 r3 (2-16)

2 b 4 

2 
b 3 (E2-17)n 1 

The optimai control is given by substituting (E2-12) and (E215) into
 

(D2-13), 2-14), and from (D2-l2). 

1 
-- a + 32-18)X(t)a 2 

ut 2 t (_ L (-Xt +4- -'r 
r 3 (Cbr ) 

The solution of the Ricatti equation is as follows:
 

/7-2 2 r 3­k1l = V3+ a 


±2 

klia = =2 :: 

S2 (2-19) 

2
kcza :£ Ca + a b3 2 
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Closed Loop System Properties as a Function of Control Weighting
 

When the control weighting r goes to infinity, the closed loop system
 

reduces the original basic one or its adjoint one
 

5 (t) + lal i(t) = 0 CE2-20) 

When the control weighting r goes to zero, then
 

n= W (E2-21) 

C = 0.866 (22-22) 

which is more damped than that of the Butterworth poles for the second
 

order system.
 

Minimized Value of the Performance Index
 

The minimized value of the performance index is:
 

1 i [kii xio 
2 2 

f rain 2 + 2k12 k21 xio x 1 0 + kao ] 

2 " 2 -j 

br. r 102 [3o + a 2- b 3 

3 1 

2 

+ b2r3 xio2r1 Z 1 0  (E2-23) 

3
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when 	 r = 0, 

1 /3 2 (E2-24) 
2 	 10
2 min 

Note that its value for conventional selection is given by
 

IiJ 	 = 1 q22 x102a 
f min 2f 

which becomes zero when q22 = 0, 

REFERENCES 

E2-1. 	 Bryson, A.E. and Ho, Y.C., "Applied Optimal Control", Blaisdell 
Publishing Company, Waltham, Massachusetts, 1969. 
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APPENDIX F1
 

THE ROOT SQUARE LOCUS
 

The Root Square Locus Method
 

In the optimal control problem is minimized
 

f (YQy +.uTRu)adt (Fl-1) 

subject to
 

x(t) = Ax(t) + Bu (FI-2) 

Y = Hx , H = I (FI-3) 

where x(t) n dimensional state vector 

u(t) m diemsnioani control vector (m<nJ 

y(t) : p dimensional output vector (p<n) 

A,B and H: nxn, nxm and pxn constant matrices
 

The solution of this problem yields the optimal control
 

u* = R-I BTKx(t) (FI-4) 

where K is a solution of the Riccati matrix equation
 

KA + AK - KBR-IBTK + Q = 0 (FI-5) 
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The optimal closed loop system is given by
 

x(t) 	= Ax(t) + Bu* (t) 

= Ax(t) + B(-R-IBTKx(t) (Fl-6) 

= (A-GK)x(t) (FI-7) 

where 

G = BRIBT 	 (Fl-8) 

The characteristic equation is:
 

=IsI -	 A + BK[ 0 (Fl-9) 

The roots of the characteristic equation can be obtained by solving
 

(Eq. Fl-9) with a priori-known K. The relationship between K,Q and R is
 

given by (Eq. Fl-5), and is non-linear.
 

The spectral form product of the characteristic Eq. FI-9 

IsI -	 A + BK( j-st - (A-BK)TI = 0 (Fl-10) 

The characteristic equations of the optimal system and its adjoint
 

i- Ax + BR-1BTX 0 (FI-il) 
±~ + ATx 

QHx + A 0 
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Is - A BR- BT = 0 (Fl-1.2) 

-HTQH -IS-AT 

and 	the following relationship is satisfied.
 

ISI 	- A + BKJ j-sI - (A-BK)TI Is -A BRIBT 

-HTQH -Is-A T 

(F1-13)
 

The roots can be obtained by solving (Eq. FI-12) with respect to Q and R
 

or graphically by making the "root square locus". Equation Fl-13 yields
 

expressions relating the feedback gains K with A, B, H, and Q.
 

Adding the control equation to (Fl-i) one obtains:
 

S- Ax + BR-IBTA = 0
 

T T

H QH + X + ATX = 0 (F1-14) 

Ru + BTX = 0 

and substituting u = -R-1BTX into the top equation of (FI-14), we can obtain 

the characteristic equation, 

AT-Is 	- -HTQH 0 

0 Is-A -B =0 (Fl-IS) 

BT 
 0 R
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In the transfer function form, this becomes: 

I + R-I [Y{(_) ] T q[11csj] 0 (P1-16) 

where 

{s) = HCIs-A)-
I B 

-(s) 
u1 

-(s) 
u2 

-(s) 
uM 

(F1-17) 

Cs) (s) ... I(s) 

u 1 (s) u2 m 

For single input system with R equal to a scalar p, the characteristic
 

equation becomes:
 

1 + P-2 [(_s)] T [y =[(s)] 

where
 

!'y1
 

U 

Irs) 2 (FI-18) 
UL ­

u 
v 

2-39 
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The root square locus can be made by using similar rules as used for the
 

root locus method, e.g.:
 

N number of poles of L(s)
 

p number of zeroes of L(s)
u 

Angle condition:
 

(N-p) = odd number 0 degree condition
 

(N-p) = even number 1800 degree condition 

Asymptotes:
 

2nr=
 
2(N-p) N-p = odd n=0, ±1, ±2, 2(N-p)-1
 

2nTr N-p = even n=0, ±1, ±2, 2(N-p)
 
2(-p)
 

Center of asymptotes: always at origin
 

2(N-p) poles go to infinity along asymptotes, as p2 +0
 

2(p) poles to zero, as p2 0 
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APPENDIX F2
 

ROOT SQUARE 	 LOCUS METHOD APPLIED TO A HELICOPTER (HOVER) 

The following is a summary from [Ref. Fl ]. Consider a single 

input, dynamic system of the form: 

y(t)=Ay() 	 RBu(t) (F2-1) 

where 	y(c) = n-dimensional state vector 

u(t) = m-dimensional control vector 

A, B = nxn and nxm constant matrices 

For an optimal control law, we seek to minimize the cost function.
 

J(Q,R) = 	 I PT(t)0Y(t) + uT(t)Ru(t)] dt (F2-2), 
t 
0 

where Q,R = 	positive definite symmetric constant
 

weighting matrices.
 

For this analysis, Q is chosen co be:
 

qia 0 0 0 

0 q22 0 0 

0 0 q33 0 
(F2-3) 

0 0 0 q4q 

and R =p 2, a scalar 	 (F2-4) 

2A__
 



The performance index (cost function) then becomes
 

1 f (TQ + 	uTp2u) dt (F2-S) 
0 

The cnaracteristic equation of the single input syscem is shown
 

to be (Appendix FI). 

l+P2[u _S) TIQF~] oL 	 (P-

The characteristic equation then becomes:
 

+i rY1 y2 Y (, y l qI 0 -L (S)
-U2 (-s), U- (-s),--- I C-). -) o o 

0 qzz 0 e Y2- S 

0 0 q3s 0 	 n (s) = 0 

o 	 a CF4 (a) 

(F2-7) 

The change in roots of'this equation, resulting from varying a given
 

parameter may be described by a root-square locus. The root-square
 

locus technique is described in (Appendix Fl).
 

A simplified longitudinal model for a helicopter is:
 

(S-Xu)u + g=X B 	 (F2-8) 

-Mu u + s(S-Mq)= MBIB 	 (F2-9) 
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and may be expressed in state variable form as:
 

L 00 Li 
Y 0 u 0 J= (F2-10) 

Y _O M 0 MY 

dY3 0s Y
 

where Y
 

Y3 u
=B1s(F2-11)
 

From Eq. (F2-7) , the characteristic equation is 

1 + L (qj -- (-s) LL (s) + q22 -(-s) - (s) + q33 3 (-S) 3­

q44 5-- (_S) L4 CS) : (F2-12) 

where Yi L2 3 and Y-- are given by: 

u s3ru+ )s2 + 2uM + g M] 

Y2 _ L \'_ i_ ] (F2-14) 

u 
 u [s3-cXli±Mq)sa 
+ XuMq5 + gM]
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BIs -
u 

g]
 

U u 3X )s2 + %I
 

IS ls+ s X+ U qS+Bmu
 

y__ u _u - [ Bs + (F2-16)IS 3_(X u+Mq)S2 V XuMq s + gMu] 

In order to determine the effect of qii on the roots of Bquation F2-12, vie
 

apply the root-square locus technique. These cases will be examined.
 

First, weighting in the performance index will be applied only to yl,
 

position. Next, the performance index will weight position and velocity.
 

Weighting will then be applied to position, velocity and attitude. Then all
 

four state variables will be weighted. 

Finally,is given a weighting for position and attitude. 

Case I 

Characteristic equation: I + q1 Y- (-s) L (s) = 0 

21 i y P 2u2) dt(F2-17)J= Of (q y' Pu' dt 
I (F2-18) 

The root-square locus is shown in Illustration F2-1.
 

or
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Case II
 
q Y Y q y y 

Characteristic equation: 1 + 11 - (-s) - (s) + 2 -!-(_S) 2 (s) 
p2 U U p uU U 

(F2-19) 

or:
 

+ -Cs)s (ls2 qz2i = 0 (F2-20)P_ u 

(q yji + q Ya +p u2) dt 

The root-square locus is shown in Illustration F2-2.
 

Case iIa 

Characteristic equation: 

I+ 2 u (S) U' (-sJ + p-a u_s) (-s) =0 (F2-22) 

i+ ql l(S) C-s)

pa u
 

Mz (s-X +B~ ( u X BIs 
1+ q33(-s) J3 I s BIs 

2 Mq S XBls g) (s q -- (s _ xBI + M XBls1Sg) 

CF2 -23) 

J1 q (q Y + q3sy +p2u2 ) dt MF2-24) 

The root square locus is shown in Illustration F2-3 .
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0 

Case IlIb
 

Characteristic equation:
 

q11
i+ 
I -

L 
u + 

q2 2 Y2 q33 Y3 Y2 u L (_) (-S)--I (S) 
p p p2 u
 

or
 

-q y q 

2-T (s) j (s) + T (S2j) 

2
m (s-X + k M )(-s-X + BIs M) 
q BIs u MB s U u s u
 

X 2iL~s qq _i qj
Xq M q)(s 2+ M s- q)(l + !l-2(_S)) 

is Bs q- XBis
 

=0 

The root-square locus is shown in Illustrations F2-4. (P2-25)
 

Case IV
 

Characteristic equation:
 
y y t
q y q y q y y
 

1 + , -1 (-s) uI (s) + 22 2 Q-s) -- (s)+ 2 (-s) (S)
p2 u up2 u u p u
 

+ q4----4 Y(_S)k (S) = (F2-26)0 
U


p2 
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or:
 

1 + __/ ...	 _ (s) (-)(j + _ (-s 2 )) 
p 2 u 	 u qj, 

M2 (s-4 + u ) (- X M- qXE 

-(SSM )(-s-X + -5M )(l + q 44 (-sq BIs u mB	 q3 3
s	 s 


21 + 11 (-s	 ) 

X2 (s2-M 	 S - q) (s2+ M s - 2 )g) (1 + 2_ 	 (_sq11

Is q XBIs 	 XBIs 

= 0 

(F2-27) 

The root square locus is shown in Illustrations fF2-5).
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Conclusions
 

1. 	In Case I, called position error control, where weighting is applied
 

only to position in the performance criterion, the short period mode
 

is not highly damped and the best possible phugoid damping is .707.
 

2. 	In Case IT, called velocity error control, where weighting is applied
 

to both position and velocity, the damping of the attitude mode is
 

still not high, but the position mode can be more damped than in Case I.
 

3. 	In Case III, called acceleration error control, where weighting is
 

applied to position, velocity and attitude, the damping of the attitude
 

mode can be made greater than either of the two preceding cases.
 

4. 	In Case IV, called accurate rate control, where weighting is applied to
 

position, velocity, attitude, and attitude rate, the attitude mode is
 

further damped.
 

5. For precision flight path control with minimum (position) error, the
 

velocity error control is minimum desirable.
 

6. Acceleration and acceleration rate error control do not have a large
 

effect upon the position error, but yield a reduction in control effort.
 

7. 	In conclusion, for precision flight path control, only the short term
 

dynamics for velocity, acceleration and accurate rate are important, hence
 

one needs to consider only the "dynamic error control" for precision in
 

flight path control.
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(zeros are determined by the
 

zeros of X or -2 )
BlIs u-2 jw 


mirror image omitted 

PI 

1 2-2 -1 


-2 

IlustratiQn F2-1. Root-Square Locus - Weighting Applied to qxI, Position 

-with varying 

tthe zeros are determined by the zeros of - or X 
u Bs
 

is 
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p2
 

21 

-2 

Illustration F2-2. Root Square Locus Weighting
-

Applied to qlI (Position) and
 

qaz (Velocity)with varying qa2
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Illustration F2-4. Root Square Locus Weighting Applied
 

to qxx (Position),q22 (Velocity)
 

and q33 (Attitude) with varying q33
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jw 
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q44 

-1 

-­ 2 a 

-2 

Illustration F2-5. Root Square Locus Weighting Applied 

to qij (Position), q22 (Velocity), 
q33 (Attitude), and q44 (Attitude Rate) 
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APPENDIX G
 

REVIEW OF MODEL FOLLOWING BY LINEAR OPTIMAL CONTROL
 

Introduction
 

Given the system:
 

x(t) : Ax(t) + Bu(t) (GI-1) 

where: x(t) : n dimensional state vector, and output vector
 

uCt) :m dimensional control vector (mn)
 

A, B : nxn, nxm and pxn constant matrices
 

The "ideal" model is given by:
 

y(t) = Am y(t) CGI-2) 

where: 

A is nxn constant matrix of the model
 m 

There are in principle two methods to provide a good match between the
 

dynamic of the system and the dynamic of the "ideal model". Namely, 1.
 

model in the performance index and 2. model in the system.
 

Model in the Performance Index
 

This approach is shown in Illustration GI and uses the minimization
 

of the norm:
 

IX- Am x(t) (G-3) 
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Illustration Gl-l. Model Following (4odel in the Performance Index)
 

Hence, the following performance index is defined.
 

T 
2V = Lim f (x(t) - A x(t)) T Q (x(t) - A x(t)) + uT(t)Ru(t) dt 

T- o o 

(Gl-4) 

Using the Hamiltonian and maximum principle of Pontryagin (Ref. [Gl-2], 

[G-9]), one obtains the optimal control law:
 

u(t) = - (R B P + R B Q(AAm) x(t) (Gl-S) 

where P is the nxn steady state solution to the Riccati equation:
 

-PBR BTP + AP + (A-A) = 0 (Gl-6) 

255 



and
 
A BT 
R = B QB+R 

A = A-BR B Q A-A (GI-7) 

B= B 

When the dimensions of the model matrix are the same as that of system ma­

trix and when the system and model are exactly matchable (Ref. G2 and G9),
 

the optimal control is of the following form:
 

u*(t) = -(A-A ) x(t) (GI-8) 

Substituting Eq. (GI-6) into (Gl-l) the optimal closed loop becomes:
 

x(t) = A x(t) (G1-9) 

which has the dynamic of the model. This exact matching is achieved (in
 

general) as iqi/lR becomes large. (Ref. [Gl-2]).
 

When the model and system are exactly matchable, there is no need in
 

using optimal control and the optimal control *(t) can be derived from
 

algebraic considerations (Ref. [G1-6]). The algebraic conditions for "perfect"
 

following are derived in Ref.[Gl-6] . In order that the dynamics of the model
 

and system be the same, it is required that: 

x(t) = A x(t) (GI-10) 
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Substituting (G1-8) into G-1),
 

A x(t) = Ax(t) + Bu(t) (01-11)m 

hence
 

Bu(t) = (A.-A) x(t) (GI-12) 

Multiplying both sides of (GI-10) by B+ (where B+ is the pseudoinverse of B)
 

one obtains
 

u(t) = B+Am-A] x(t) (G1-13) 

It has been shown in Ref. [GI-6] that necessary and sufficient conditions
 

for perfect matches between the dynamics of the plant and that of the model
 

are:
 

[B B+-I][Am-A] = 0 (G1-14) 

This equation indicates that for u(t) (given by GI-13) to exist, there must
 

be a great structural similarity between the system matrix A and the model
 

matrix L. Moreover, B must have sufficient rank. However, it is clear that
 

for this limited class of problems, this approach involves much less computa­

tion than the quadratic cost integral approach.
 

Model in the System
 

This approach is shown in Illustration G2 and is based on the minimization
 

of the square error between the output of the given plant and the output of the
 

257
 



c 

desired plant model; thus forcing the output of the given system to
 

follow the model.
 

u~~(t Us'(t) [()Yt x 

Model Feedforward x System H
 

Feedback
 
Matrix
 

Illustration G1-2. Model Following (Model in the System)
 

Given the system:
 

Xs(t) =Ax (t) + Bu (t)xS S
S S(GI-I5) 

where: 

xs(t) : n dimensional state vector, and output vector 

us (t) : m dimensional control vector (r<n) 

AS,B : nxn, nxm and pxn constant matrices 

The model is given by: 

xM(t) = AMxM(t) + BMum(t) (Gl-16) 
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where: 

xm(t) : n dimensional state vector, and output vector 

u (t) : m dimensional control vector (mn) 

Am, BM: nxn, nxm and pxn constant matrices 

In general, the dimension of the system's output may be different from that
 

of the model (Ref. [Gl-10], G1-7] and [G1-2]). The appropriate performance
 

index is defined as:
 

TVT 

J f [xCt) -x s(t) Q (x (t) -x s(t) uT (t)R u(t)]dt 

(GI-17) 

where:
 

9 : nanpositive-semi definite matrix 

R : vxv positive-definite matrix
 

The performance index J is to be minimized with respect to the control
 

u(t). This problem can be treated as tracking problems or servo-problems.
 

(Ref.[Gi-8], G1-3], [G1-10]). There are basically two different approaches
 

to the problem. One is established by Ref. [GI-6]; in that work algebraic
 

conditions for perfect following are derived. The second is developed by
 

Ref. 	[Gl-l], and[Gi-9] and others. The development in[ Ref. G1-1]is basically
 

the same as in Bef. G1-9 with the exception that the input to the model is a
 

zero 	input.
 

When given the system (G1-15) and the model (GI-16), and suppose that u
 

can be produced by ordinary differential equations such that:
 

S= D(D1-18) 
m m 
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then one 	can define the enlarged state vector x(t):
 

x (It) 

x(t) x (t) 	 (G1-19)
 

um Ct)
 

The dynamic of the new system is given by:
 

x(t) + Bu(t) CG1-20) 

where: 

A 0 0S 

A= 	 0 Fin Bin
 

0 0 0
 

where:
 

A is a (2n+m) x(2n+m) matrix
 

B is a (2n+m)x v matrix
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Considering the new system a regulator problem (Ref. [Gl-l],[GI-lO]),
 

one can define the following performance index:
 

T t + T 
J o [x (t)Qx(t) + u (t) R u(t)] dt (Gi-21) 

where R is a constant positive definite matrix, and J is to be minimized
 

with respect to uCt). In order that J is meaning full, Q must be defined
 

in appropriate ways. Since the error between the system and the model is
 

to be minimized, the weighting matrix Q is defined as follows:
 

S= -QQ (G1-22) 

10 0 01 

It is easy to verify that with the definition Eq. (GI-22) substituted into
 

Eq. (Gl-21), the performance index in Eq. (GI-3) is identical to that in Eq.
 

(GI-9). Hence, the model following is formulated by defining the performance
 

index. Using the Hamiltonian for the system, Eq. (G1-6) and the performance
 

index Eq. (Gl-9) and applying Pontryagin's maximum principle, one obtains the
 

following optimal control (Ref.[Gl-l],[GI-7] and others).
 

u*(t) = -R-1BsT[Pxs(t) + P1 2 xm(t) + P13uM(t)] 

(G1-23)
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or 

u*(t) = -Ksx s(t) + Kmxm(t) + Kum(t) (G1-24) 

where
 

K= R-I1B Tp
 

Km = s P2 
 (GI-25)
 

K = -R-1 BsTPI3 

P is the solution to ricatti equation, and is nxn symmetric matrix. 

P11 + PIIAs + ASTPI1 + -P APII = 0 (GI-26) 

The solution P11 of Eq. (GI-26) is independent of the other two gain­

matrices : P12' p 3" These two matrices (Eq. GI-25) are the solutions to 

the following algebraic equations:
 

P12 + (As-Al ) T ?12 + P1A = Q (G1-27) 

+ =P13 (As-APII)T PI3 + P13 D Pl2Bm (G1-28) 

where 

A = B R-
1 B T
 

S S 
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The solution of Equation (GI-28) depends on D which is undesirable.
 

Therefore, it usually makes D equal to zero which means designing the system
 

to step input (see for example, Ref. [GI-9]).
 

For linear systems with time-invariant parameters, it is very desirable
 

to find a solution (Pij matrices) which is time-invariant which means constant
 

gains. The question which arises is if there exists the limit of the perfor­

mance index J as T approaches infinity. It is well known that sufficient con­

dition for this limit to exist is that the system (Eq. G1-1) is completely con­

trollable. Unfortunately the system (Eq. GI-1) is uncontrollable by defini­

tion, so that the existence of the limit of (Eq. G1-3) is not guaranteed.
 

In Ref. Gl-5 is shown that partially controlled systems can be divided
 

into two parts, the part being independent of each other. Hence, the Ricatti
 

equation has the well known steady state solution. Similarly as in the de­

velopment of the model in the performance index in Ref. G1-1 and GI-3.
 

Conditions are established for perfect model following. In Ref. GI-3
 

is taken the difference between the system and the model equations (61-15,
 

G1-16) and substituted to that the optimal control given by Eq. (GI-25), we
 

have
 

x (t) - Xm(t)) = (As - BsKs )xs(t) + (BmKm-Am)xM(t) 

+ (BsKv - B)umCt) (GI-29) 
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If one equates:
 

B K -B K + A 

(G1-30)
 
BK =B
 

As - s5s = pm m 

s v m
 

Then from Eq. (G1-29)
 

(xs (t) - m(t)) = (As-BsKs) x (t) - xm (t)) (G1-31) 

and K may be chosen to make the system less sensitive to variations of
 

parameters. Up to this point, this condition (Eq. G1-30) for perfect following
 

seems to be equivalent in both approaches. Conditions require that Bs is
 

invertible, which often is not the case.
 

In the case where B is not invertible, Ref. [G1-7] canonical forms
 

(for derivation, see Ref. G1-12) in order to solve (Eq. G1-30).
 

It has been said that for any pair (As, Bs) there exists a transformation
 

T such that:
 

T }n-m
 

TAs [A B
 

(G1-31) 

L }n-m
=T 1 B 
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where 0 is null matrix. However, such transformation does not exist in
 

general (see Ref. GI-13). Hence, Eq. (GI-30) does not have a solution for
 

every system and model, and this reduces the number of cases which can be
 

solved.
 

In Ref.(Gl-3) is derived the algebraic solution for model following;
 

following that derivation for model following a command input and using the
 

previous notation, one obtains:
 

A 

xm(t) = Amx(t) + B u (t) 

Where uc(t) is command input and B as a constant command control matrix. 

For perfect matching:
 

x (t) = x(t) 

and also its first derivatives should be equal. This yields the control law:
 

u(t) = (B)(Am-As ) x(t) + B B uc(t) 

The first derivatives of xs(t) and xm(t) will be equal for all x(t) and u c(t) 

if 

[BB+-I][A -AS] x(t) = [BBt-I]B u c(t) 
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which yields the conditions
 

+ 

[BsB s - I] (Am-As) = 0 

(Gl-32)
+ 
[BsBs - I] B = 0
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