An Interstellar Precursor Mission

(NASA-CR-156152) AR IMTERSTELLAR PRECURSOR
MISSION Jet Propulsion Lab.) 111 p HC A06/[1F 201
CSCI 22A

National Aeronautics and
Space Admınıstratıon
Jet Propulsion Laboratory
California Institute of Technology

- Pasadena, Calıfornia

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

An Interstellar Precursor Mission

L. D. Jaffe
C. Ivie
f.E. Lewis
R. Lipes
H. N. Norton
J. W. Stearns
L. D. Stimpson
P. Weissman

October 30, 1977

Natıonal Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, Calıfornıa

Prepared Under Contract No NAS 7-100
National Aeronautics and Space Admınistration

PREFACE-

The work described in this report was performed by the Earth'and Space Sciences, Systems, Telecommunications Science and Engineering, Control and Energy Conversion, Applied Mechanics, and Information Systems Divisions of the Jet Propulsion Laboratory for NASA Ames Research Center under NASA OAST Program 790, "Space Systems Studies," Stanley R. Sadin, sponsor.

A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. A mission to a star is not expected to be practical around 2000 because the flight time with the technology then available is expected to exceed $10,000 \mathrm{yr}$.

Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested.

The mission should extend to 500-1000 AU from the sun. A heliocentric hyperbolic escape velocity of $50-100 \mathrm{~km} / \mathrm{s}$ or more is needed to attain this distance within a reasonable mission duration. The trajectory should be toward the incoming interstellar wind. For a year 2000 launch, a Pluto encounter can be included. A second mission targeted parallel to the solar axis would also be worthwhile.

The mission duration is 20 years, with an extended mission to a total of 50 years. A system using 1 or 2 stages of nuclear electric propulsion was selected as a possible baseline. The most promising alternatives are ultralight solar sails or laser sailing, with the lasers in Earth orbit, for example. The NEP baseline design allows the option of carrying a Pluto orbiter as a daughter spacecraft.

Within the limited depth of this study, individual spacecraft systems for the mission are considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of $50-\mathrm{yr}$ spacecraft lifetime and development of a long-life NEP system.

RECOMMENDATIONS FOR TECHNOLOGY DEVELOPMENT

FOR EXTRAPLANETARY MISSION
To permit an extraplanetary mission, such as that described in this report, to commence about the year 2000, efforts are recommended on the following topics. In general, a study should be initiated first, followed by development effort as indicated by the study.

First priority

Starting work on the following topics is considered of first priority, in view of their importance to the mission and the time required for the advance development.

1) Design and fabrication techniques that will provide 50 -year spacecraft lifetime.
2) Nuclear electric propulsion with operating times of 10 years or more at full power and able to operate at low power levels for attitude control and spacecraft power to a total of 50 years.
3) Ultralight solar sails, including their impact upon spacecraft and mission design.
4) Laser sailing systems, including their impact upon spacecraft and mission design.
5) Detailing and application of spacecraft quality assurance and reliability methods utilizing test times much shorter than the intended lifetime.

Second priority

Other topics that will require advance effort beyond that likely without special attention include:
6) Spacecraft bearings and moving parts with 50-yr lifetime.
7) Neutral gas mass spectrometer for measuring concentrations of 10^{-2} -10^{-10} atom $/ \mathrm{cm}^{3}$, with $50-\mathrm{yr}$ lifetime.
8) Techniques to predict long-time behavior of spacecraft materials from short-time tests.
9) Compatibility of science instruments with NEP.
10) Methods of calibrating science instruments for 50-yr lifetime.
11) Optical vs. microwave telecommunications with orbiting DSN.
12) Stellar parallax measurements in deep-space.

FOR STAR MISSION
For a star mission, topics which warrant early study include:
13) Antimatter propulsion.
14) Propulsion alternatives for a star mission.
15) Cryogenic spacecraft.

TABLE OF CONTENTS
Page
PREFACE iii
ABSTRACT iv
RECOMMENDATIONS FOR TECHNOLOGY DEVELOPMENT v
For Extraplanetary Mission v
First Priority v
Second Priority v
For Star Mission vi
INTRODUCTION 1
Background 1
Study Objective 1
Study Scope 1
STUDY APPROACH 3
Task 1 3
Task 2 3
Star Mission 4
SCIENTIFIC OBJECTIVES AND REQUIREMENTS 5
Scientific Objectives 5
Primary Objectives 5
Secondary Objectives 5
Trajectory Requirements 5
Scientific Measurements 8
Heliopause and Interstellar Medium 8
Stellar and Galactic Distance Scale 9
Cosmic Rays 9
Solar System as a Whole 10
Observations of Distant Objects 10
Pluto 10
Simulated Stellar Encounter 11
Gravity Waves 12
Measurements Not Planned 12
Advantages of Using Two Spacecraft 12
Candidate Science Payload 13
TRAJECTORIES 14
Units and Coordinate Systems 14
Units 14
Coordinate Systems 14
Directions of Interest 14
Extraplanetary 14
Pluto 15
Solar System Escape Trajectories 15
Launchable Mass 15
Page
TRAJECTORIES (continued)
Direct Launch from Earth 18
Jupiter Assist 18
Jupiter Gravity Assist 18
Jupiter Powered Flyby 25
Launch Opportunities to Jupiter 25
Venus-Earth Gravity Assist 28
Powered Solar Flyby 28
Low-Thrust Trajectories 28
Solar Sailing 30
Laser Sailing 30
Solar Electric Propulsion 31
Laser Electric Propulsion 31
Nuclear Electric Propulsion 32
Fusion 32
Antimatter 32
Low Thrust Plus Gravity Assist 32
Solar Plus Nuclear Electric 33
Choice of Propulsion 33
MISSION CONCEPT 38
MASS DEFINITION AND PROPULSION 40
INFORMATION MANAGEMENT 44
Data Generation 44
Information Management System 44
Operations 45
Data Transmission Rate 46
Telemetry 46
The Telecommunication Model 47
Range Equation 47
Data Coding. Considerations 47
Tracking Loop Considerations 47
Baseline Design 49
Parameters of the System 49
Decibel Table and Discussion 50
Options 50
More Power 50
Larger Antennas and Lower Noise Spectral Density 53
Higher Frequencies 53
Higher Data Rates 55
Selection of Telemetry Option 55
RELATION OF THE MISSION TO SEARCH FOR EXTRATERRESTRIAL INTELITGENCE 58
TECHNOLOGY REQUIREMENTS AND PROBLEM AREAS 59
Lifetime 59
Propulsion and Power 59
Page
TECHNOLOGY REQUIREMENTS AND PROBLEM AREAS (continued) Propulsion/Science Interface 60
Interaction of Thrust with Mass Measurements 61
Interaction of Thrust Subsystem with Particles and. Fields Measurements 61
Interaction of Power Subsystem with Photon Measurements 61
Telecommunications 62
Microwave vs. Optical Telemetry Systems 62
Space Cryogenics 63
Lifetime of Telecommunications Components 63
Baseline Enhancement vs. Non-Coherent Communication System 64
Information Systems 64
Thermal Control 64
Components and Materials 67
Science Instruments 67
Neutral Gas Mass Spectrometer 69
Camera Field of View vs, Resolution 69
ACKNOWLEDGEMENT 71
REFERENCES 72
APPENDICES 75
Appendix A - Study Participants 76
Appendix B - Science Contributors 77
Appendix C - Thoughts for a Star Mission Study 78
Propulsion 78
Gryogenic Spacecraft 79
Locating Planets Orbiting Another Star 81
Appendix D - Solar System Ballistic Escape Trajectories 83
TABLES

1. Position of Pluto, 1990-2030 16
2. Summary of Solar System Ballistic Escape Trajectories Initial Condition: Circular Orbit at 1 AU 17
3. Capabilities of Shuttle with Interim Upper Stage 19
4. Solar System Escape Using Direct Ballistic Launch from Earth 20
5. Solar System Escape Using Jupiter Gravity Assist 23
6. Jupiter Gravity Assist Versus Launch Energy 24
7. Jupiter Powered Flyby 26
8. Launched Mass for 300 kg Net Payload After Jupiter Powered Flyby 27
9. Powered Solar Flyby 29
10. Performance of Ultralight Solar Sails 35
Page
TABLES (continued)
11. Mass and Performance Estimates for Baseline System 43
12. Baseline Telemetry at 1000 AU 52
13. Optical Telemetry at 1000 AU 54
14. Telemetry Options 56
15. Proposed Data Rates 57
16. Thermal Control Characteristics of Extraplanetary Missions 66
17. Technology Réquirements for Components \& Materials 68
FIGURES
18. Some Points of Interest on the Celestial Map 7
19. Geometry of Jupiter Flyby 21
20. Solar System Escape with Ultralight Solar Sails 34
21. Performance of NEP for Solar Escape plus Pluto 41
22. Data Rate vs. Ratio of Signal Power to Noise Spectral
Power Density 51

INTRODUCTION

BACKGROUND

Even before the first earth satellites were launched in 1957 , there was popular interest in the possibility of spacecraft missions to other stars and their planetary systems. As space exploration has progressed to the outer planets of the solar system, it becomes appropriate to begin to consider the scientific promise and engineering difficulties of mission to the stars and, hopefully, their accompanying planets.

In a conference on "Missions Beyond the Solar System", organized by L. D. Friedman and held at JPL in August 1976, the idea of a precursor mission out beyond the planets, but not nearly to another star, was suggested as a means of bringing out and solving the engineering problems that would be faced in a mission to a star. At the same time, it was recognized that such a precursor mission, even though aimed primarily at engineering objectives, should also have significant scientific objectives.

Subsequently, in November 1976, this small study was initiated to examine a précursor mission and identify long lead-time technology development which should be initiated to permit such a mission. This study was funded by the Study, Analysis, and Planning Office (Code RX) of the NASA Office of Aeronautics and Space Technology.

STUDY OBJECTIVE
The objective of the study was to establish probable science goals, mission concepts and technology requirements for a mission extending from outer regions of the solar system to interstellar flight. An unmanned mission was intended.

STUDY SCOPE

The study was intended to address science goals, mission concepts, and technology requirements for the portion of the mission outward from the outer portion of the planetary system.

Because of the limited funding available for this study, it was originally planned that the portion of the mission between the earth and the outer portion of the planetary system would not be specifically addressed; likewise, propulsion concepts and technology would not be included. Problems encountered at speeds approaching that of light were excluded for the same reason. In the course of the study, it became clear that these constraints were not critical, and they were relaxed, as indicated later in this report.

STUDY APPROACH

The study effort consisted of two tasks. Task 1 concerned science goals and mission concepts, Task 2 technology requirements.

TASK 1

In Task 1, science goals for the mission were to be examined, and the scientific measurements to be made. Possible relation of the mission to the separate effort on Search for Extraterrestrial Intelligence was also to be considered. Another possibility to be examined was that of using the data, in reverse time sequence, to examine a star and its surroundings (in this case, the solar system) as might be done from an approaching spacecraft.

Possible trajectories would be evaluated with respect to the interaction of the direction of the outward asymptote and the speed with the science goals. A very limited examınation might be made of trajectories within the solar system and accompanying propulsion concepts to assess the feasibility of the outward velocities considered.

During the study, science goals and objectives were derived by series of conversations and small meetings with a large number of scientists. Most of these were from JPL, a few elsewhere. Appendix B gives their names.

The trajectory information was obtained by examination of pertinent work done in other studies and a small amount of computation carried out specifically for this study.

TASK 2

In this task, technology requirements that appear to differ significantly from those of missions within the solar system were to be identified. These would be compared with the projected state-of-the-art for the year 2000 ± 15. It was originally planned that requirements associated with propulsion would be addressed only insofar as they interact with power or other systems.

This task was carried out by bringing together study team participants from each of the technical divisions of the Laboratory. (Participants are listed in Appendix A-:) Overaill concepts were dēveloped and discussed at study team meetings. Each participant obtained inputs from other members of his division on projected capabilities and development needed for individual subsystems. These were iterated at team meetings. In particular, several iterations were needed between propulsion and trajectory calculations.

STAR MISSION

Many of the contributors to this study, both scientific and engineering, felt an actual star mission should be considered. Preliminary examination indicated, however, that the hyperbolic velocity attainable for solar system escape during the time period of interest (year 2000 ± 15) was of the order of $10^{2} \mathrm{~km} / \mathrm{s}$ or $3 \times 10^{9} \mathrm{~km} /$ year. Since the nearest star is at a distance of 4.3 light years or about $4 \times 10^{13} \mathrm{~km}$, the mission duration would exceed 10,000 years. This did not seem worth considering for two reasons.

First, attaining, and especially establishing, a spacecraft lifetime of 10,000 years by the year 2000 is not considered feasible. Secondly, propulsion capability and hence hyperbolic velocity attainable is expected to increase with time. Doubling the velocity should take not more than another 25 years of work, and would reduce the mission duration to only 5000 years. Thus, a spacecraft launched later would be expected to arrive earlier. Accordingly, launch to a star by 2000 ± 15 does not seem reasonable.

For this reason, a star mission is not considered further in the body of this report. A few thoughts which arose during this study and pertain to a star mission are recorded in Appendix C. It is recommended that a subsequent study address the possibility of a star mission starting in 2025, 2050, or later, and the long lead-time technology developments that 'will be needed to permit this mission.

Preliminary examination of trajectory and propulsion possibilitues indicated that a mission extending to distances of some hundred or perhaps a few thousand AJ from the sun with a launch around the year 2000 was reasonable. The following science objectives and requirements are considered appropriate for such a mission.

SCIENTIFIC OBJECTIVES

Primary Objectives

1) Determination of the characteristics of the heliopause, where the solar wind presumably terminates against the incoming interstellar medium.
2) Determination of the characteristics of the interstellar medium.
3) Determination of the stellar and galactic distance scale, through measurements of the distance to nearby stars.
4) Determination of the characteristics of cosmic rays at energies excluded by the heliosphere.
5) Determination of characteristics of the solar system as a whole, such as its interplanetary gas distribution and total mass.

Secondary Objectives

1) Determination of the characteristics of Pluto and its satellites and rings, if any. If there had been a previous mission to Pluto, this objective would be modified.
2) Determination of the characteristics of distant galactic and extragalactic objects.
3) Evaluation of problems of scientific observations of another solar system from a spacecraft.

TRAJECTORY REQUIREMENTS

The primary science objectives necessitate passing through the heliopause, preferably in a relatively few years after launch to increase the
reliability of data return. Most of the scientists interviewed preferred a mission directed toward the incoming interstellar gas, where the heliopause is expected to be closest and most well defined. The "upwind" direction with respect to neutral interstellar gas is approximately R.A. 250°, Decl - 16° (Weller and Meier, 1974; Ajello, 1977) . (See Fig. 1. The sun's motion with respect to interstellar charged particles and magnetic fields is not known.) Presumably any direction within, say, 40° of this would be satisfactory. A few scientists preferred a mission parallel to the sun's axis (perpendicular to the ecliptic), believing that interstellar magnetic field and perhaps particles may leak inward further along this axis. Some planetary scientists would Iike the mission to include a flyby or orbiter of Pluto, depending on the extent to which Pluto might have been explored by an earlier mission. Although a Pluto flyby is incompatible with a direction perpendicular to the ecliptic, it happens that in the period of interest (arrival around the year 2005) Pluto will lie almost exactly in the "upwind" direction mentioned, so an "upwind" trajectory could include a Pluto encounter.

The great majority of scientists consulted preferred a trajectory that would take the spacecraft out as fast as possible. This would minimize time to reach the heliopause and the interstellar medium. Also, it would, at any time, provide maximum earth-S/C separation as a base for optical measurements of stellar parallax. A few scientists would like to have the S / C go out and then return to the solar system to permit evaluating and testing methods of obtaining scientific data with a future S/C encountering another solar system. Such a return would, roughly, halve the duration of the outward portion of the flight for any fixed mission duration. Also, since considerable propulsive energy would be required to "stop and turn around", this approach would considerably reduce the outward hyperbolic velocity attainable. These two effects would greatly reduce the maximum distance that could be reached for a given mission duration.

As a "strawman mission", it is recommended that a no-return trajectory with an asymptote near R.A. 250°, Dec1 -15° and a flyby of Pluto be

Fig. 1 Some Points of Interest on the Celestral Map.
From Sergeyevsky (1971) modıfıed.
considered, with a hyperbolic excess velocity of $40-90 \mathrm{~km} / \mathrm{s}$ or more. Higher velocities should be used if practical. Propulsion should be designed to avoid interference with scientific measurements and should be off when mass measurements are to be made.

A number of scientific observations (discussed below) would be considerably improved if two spacecraft, operating simultaneously, were used, with asymptotic trajectories at approximately right angles to each other. Thus, use of a second spacecraft, with an asymptotic trajectory approximately parallel to the solar axis, is worthwhile scientifically.

SCIENTIFIC MEASUREMENTS

Heliopause and Interstellar Medium

Determination is needed of the characteristics of the solar wind just inside the heliopause, of the heliopause itself, of the accompanying shock (if one exists), and of the region between the heliopause and the shock. The location of the heliopause is not known; estimates now tend to center at about 100 AU from the sun. (As an indication of the uncertainty, estimates a few years ago ran as low as 5 AU.)

Key measurements to be made include magnetic field, plasma properties (density, velocity, temperature, composition, plasma waves) and electric field. Similar measurements, extending to low energy levels, are needed in the interstellar medium, together with measurements of the properties of the neutral gas (density, temperature, composition of atomic and molecular species, velocity) and of the interstellar dust (particle concentration, particle mass distribution, composition, velocity). The radiation temperature should also be measured.

The magnetic, electric, and plasma measurements would require only conventional instrumentation, but high sensitivity would be needed. Plasma blobs could be detected by radio scintillation of small sources at a wavelength near 1 m . Radiation temperature could be measured with a radiometer at wavelengths of 1 cm to 1 m , using a detector cooled to a few Kelvins. Both in-situ and remote measurements of gas and dust properties are desirable. In-situ measurements of dust composition could be made
by an updated version of an impact-ionization mass spectrometer. In-situ measurements of ions could be made by a mass spectrometer and by a plasma analyzer. In-situ measurements of neutral gas composition would probably require development of a mass spectrometer with greater sensitivity and signal/noise ratio than present instruments. Remote measurements of gas composition could be made by absorption spectroscopy, looking back toward the sun, Of particular interest in the gas measurements are the ratios $\mathrm{D} / \mathrm{H}, \mathrm{H} / \mathrm{H}_{2} / \mathrm{H}^{+}$, $\mathrm{He} / \mathrm{H}, \mathrm{He}^{3} / \mathrm{He}^{4}$; the contents of $\mathrm{C}, \mathrm{N}, \mathrm{O}$, and if possible of Li, Be, B; and the flow velocity. Dust within some size range could be observed remotely by changes in the continuum intensity.

Stellar and Galactic Distance Scale

Present scales of stellar and galactic distance are probably uncertain by 20%. This in turn leads to uncertainties of 40% in the absolute luminosity (energy production), the quantity which serves as the fundamental input data for stellar model calculations. Uncertainties in galactic distances make it difficult to provide good input data for cosmological models.

The basic problem is that all longer-range scales depend ultimately on the distances to Cepheid varıables in nearby clusters, such as the Hyades and Pleiades. Distances to these clusters are determined by statistical analysis of relative motions of stars within the clusters, and the accuracy of this analysis is not good. With a baseline of a few hundred $A U$ between S / C and earth, triangulation would provide the distance to nearby Cepheids with high accuracy. This will require a camera with resolution of a fraction of an arc second, implying an objective diameter of 30 cm to 1 m . Star position angles need not be measured relative to the sun or earth line, but only with respect to distant stars in the same image frame. To reduce the communcations load, only the pixel coordinates of a few selected objects need be transmitted to earth.

Cosmic Rays

Measurements should be made of low energy cosmic rays, which the solar magnetic field excludes from the heliosphere. Properties to be
measured include flux, spectrum, composition, and direction. Measurements should be made at energies below 10 MeV and perhaps down to 10 keV or lower. Conventional instrumentation should be satisfactory.

Solar System as a Whole

Determinations of the characteristics of the solar system as a whole include measurements of neutral and ionized gas and of dust. Quantities to be measured include spatial distribution and the other properties mentioned above.

Column densities of ionized material can be observed by low frequency radio dispersion. Nature, distribution and velocity of neutral gas components and some ions can be observed spectroscopically by fluorescence under solar radiation. To provide adequate sensitivity, a large objective will be needed. Continuum observation should show the dust distribution.

The total mass of the solar system should be measured. This could be done through dual frequency radio doppler tracking.

Observations of Distant Objects

Observations of more distant objects should include radio astronomy observations at frequencies below 1 kHz , below the plasma frequency of the interplanetary medium. This will require a VLF receiver with a very long dipole or monopole antenna.

Also, both radio and gamma-ray events should be observed and timed. Comparison of event times on the S / C and at earth will indicate the direction of the source.

In addition, the galactic hydrogen distribution should be observed by UV spectrophotometry, outside any local concentration due to the sun.

[^0]and nearby charged particles and magnetic fields. Surface temperature and composition should also be observed. Suitable instruments include a TV camera, infrared radiometer, ultraviolet/visible spectrometer, particles and fields instruments, infrared spectrometer.

For atmospheric properties, UV observations during solar occultation (especially for H and $H e$) and radio observations of earth occultation should be useful.

The mass of Pluto should be measured: radio tracking should provide this.

If a Pluto orbiter is included in the mission, measurements should also include surface composition, variable features, rotation axis, shape, and gravity field. Additional instruments should include a gamma-ray spectrometer and an altimeter.

Simulated Stellar Encounter

If return to the solar system is contemplated, as a simulation of a stellar encounter, observations should be made, during approach, of the existence of possible stellar companions and planets, and later of satellites, asteroids, and comets, and of their characteristics. Observations of neutral gas, dust, plasma, and energetic emissions associated with the star should be made, and any emissions from planets and satellites. Choice(s) should be made of a trajectory through the approaching solar system (recog-" nizing the time-delays inherent in a real stellar mission), the choice(s) should be implemented, and flyby measurements made.

The approach measurements could probably be made using instruments aboard for other purposes. For flyby, it would probably be adequate to use data recorded on earlier missions rather than carry additional instruments.

An alternative considered was simulating a stellar encounter by
"looking backwards while leaving the solar system and later replaying the data backwards". This was not looked on with favor by the scientists contacted because the technique would not permit making the operational decisions that would be key in encountering a "new" solar system: locating
and flying by planets, for example. "Looking backwards" at the solar system is desired to give solar system data per se, as mentioned above. Stellar encounter operations are discussed briefly in Appendix C.

Gravity Waves

A spacecraft at a distance of several hundred AU offers an opportunity for a sensitive technique for detecting gravity waves. All that is needed is precision 2-way radio doppler measurements between S / C and earth.

Measurements Not Planned

Observations not contemplated include:

1) Detecting the Oort cloud of comets, if it exists. No method of detecting a previously unknown comet far out from the sun is recognized unless there is an accidental encounter. Finding a previously seen comet when far out would be very difficult because the orbits of long-period comets are irregular and their aphelia are hard to determine accurately; moreover, a flyby, far from the sun, would tell little about the comet and nothing about the Oort cloud. The mass of the entire Oort cloud might be detectable from outside, but the mission is not expected to extend the estimated $50,000 \mathrm{AU}$ out. If Lyttleton's comet model is correct, a comet accidentally encountered would be revealed by the dust detector.
2) VLBI using an earth-S/C baseline. This would require very high rates of data transmission to earth, rates which do not appear reasonable. Moreover, it is doubtful that sources of the size resolved with this baseline are intense enough to be detected and that the required coherence would be maintained after passage through inhomogeneities in the intervening medium. Also, with only 2 widely separated receivers and a time-varying baseline, there would be serious ambiguity in the measured direction of each source.

Advantages of Using Two Spacecraft

Use of two spacecraft, with asymptotic trajectories at roughly right angles to each other, would permit exploring two regions of the heliopause
(upwind and parallel to the solar axis) and provide significantly greater understanding of its character, including the phenomena occurring near the magnetic pole direction of the sun. Observations of transient distant radio and gamma-ray events from two spacecraft plus the earth would permit location of the source with respect to two axes, instead of the one axis determinable with a single S / C plus earth.

CANDIDATE SCIENCE PAYLOAD

1) Vector magnetometer
2) Plasma spectrometer
3) Ultraviolet/visible spectrometers
4) Dust impact detector and analyzer
5) Low energy cosmic ray analyzer
6) Dual-frequency radio tracking (including low frequency with high frequency uplink)
7) Radio astronomy/plasma wave receiver (including VLF; Iong antenna)
8) Mass spectrometer
9) Microwave radiometer
10) Electric field meter
11) Camera (aperture 30 cm to 1 m)
12) Gamma-ray transient detector

If Pluto flyby or orbiter is planned:
13) Infrared radiometer
14) Infrared spectrometer

If Pluto orbiter is planned:
15) Gamma-ray spectrometer
16) Altimeter

TRAJECTORIES

UNITS AND COORDINATE SYSTEMS

Units

Some useful approximate relations in considering an extraplanetary mission are:
$1 \mathrm{AU} \quad=1.5 \times 10^{8} \mathrm{~km}$
1 Iight year $=9.5 \times 10^{12} \mathrm{~km}=6.3 \times 10^{4} \mathrm{AU}$
1 parsec $\quad=3.1 \times 10^{13} \mathrm{~km}=2.1 \times 10^{5} \mathrm{AU}=3.3$ light years

1 year $\quad=3.2 \times 10^{7} \mathrm{~s}$
$1 \mathrm{~km} / \mathrm{s} \quad=0.21 \mathrm{AU} / \mathrm{yr}=3.3 \times 10^{-6} \mathrm{c}$
where $c=$ velocity of light

Coordinate Systems

For objects out of the planetary system, the equatorial coordinate system using right ascension (α) and declination (δ) is often more convenient than the ecliptic coordinates, celestial longitude (λ) and celestial latitude (β) . Conversion relations are:

```
\(\sin \beta \quad=\cos \varepsilon \sin \delta-\sin \varepsilon \cos \delta \sin \alpha\)
```

$\cos \beta \sin \lambda=\sin \varepsilon \sin \delta+\cos \varepsilon \cos \delta \sin \alpha$
$\cos \beta \cos \lambda=\quad \cos \delta \cos \alpha$
where $\varepsilon=$ obliquity of ecliptic $\simeq 23.5^{\circ}$

DIRECTIONS OF INTEREST

Extraplanetary

Most recent data for the direction of the incoming interstellar neutral gas are:

Weller \& Meier (1974):
Right ascension $\quad \alpha=252^{\circ}$
Declination $\quad \delta=-15^{\circ}$
Ajello (1977):
Right ascension $\quad \alpha=252^{\circ}$
Declination $\quad \delta=-17^{\circ}$

Thus, these 2 data sources are in excellent agreement.
At $\alpha=250^{\circ}$ the ecliptic is about $20^{\circ} \mathrm{S}$ of the equator, so the wind comes in at celestial latitude of about 4°. Presumably, it is only a colncidence that this direction lies close to the ecliptic plane.

The direction of the incoming gas is sometimes referred to as the "apex of the sun's way", since it is the direction toward which the sun is moving with respect to the interstellar gas. The term "apex", however, conventionally refers to the direction the sun is moving relative to nearby stars, rather than relative to interstellar gas. These two directions differ by about 45° in declination and about 20° in right ascension. The direction of the solar motion with respect to nearby stars, and some other directions of possible interest, are shown in Fig. 1.

Pluto

Table 1 gives the position of Pluto for the years 1990 to 2030. Note that, by coincidence, during 2000 to 2005 Pluto is within a few degrees of the direction toward the incoming interstellar gas (see Fig. 1). At the same time it is near its perihelion distance, only 30-31 AU from the sun.

SOLAR SYSTEM ESCAPE TRAJECTORIES

As a step in studying trajectorıes for extraplanetary missions, a series of listings giving distance and velocity vs. time for parabolic and hyperbolic solar system escape trajectories has been generated. These are given in Appendix D and a few pertinent values extracted in Table 2. Note, for example, that with a hyperbolic heliocentric excess velocity $V_{\infty}=50 \mathrm{~km} / \mathrm{s}$, a distance of 213 AU is reached in 20 years and a distance of 529 AU in 50 years. With $\mathrm{V}_{\infty}=100 \mathrm{~km} / \mathrm{s}$, these distances would be doubled approximately.

LAUNCHABLE MASS

Solar system escape missions typically requare high launch energies, referred to as C_{3}, to achieve either direct escape or high flyby velocity

TABLE 1

Year	Position on 1 January		Declination,
	Distance from sun, AU	Right ascension,	
1990	29.58	227.03	-1.37
1995	29.72	238.51	-6.30
2000	30.12	249.98	-10.89
2005	30.78	261.39	-14.92
2010	31.64	272.61	-18.20
2015	32.67	283.53	-20.69
2020	33.81	294.02	-22.37
2025	35.04	304.00	-23.32
2030	36.31	313.37	-23.63

TABLE 2
Summary of Solar System Ballistic Escape Trajectories
Initial Condition: Circular Orbit at 1 AU

(See Appendix D for detail)
at a gravity assist planet. Table 3 gives projected C_{3} capabilities in (km/s) ${ }^{2}$ for the three versions of the Shuttle/Interim Upper Stage assuming net payloads of 300,400 , and 500 kg . It can be seen that as launched mass increases the maximum launch energy possible decreases. Conceivably higher $\mathrm{C}_{3}{ }^{\text {'s }}$ s are possible through the use of in-orbit assembly of larger IUS versions, or development of more powerful upper stages such as the Tug. The range of C_{3} values found here will be used in the study of possible escape trajectories given below.

DIRECT LAUNGH FROM EARTH

Direct launch from the Earth to a ballistic solar system escape trajectory requires a minimum launch energy of $152.2(\mathrm{~km} / \mathrm{s})^{2}$. Table 4 gives the maximum solar system V_{∞} obtainable (in the ecliptic plane) and maximum ecliptıc latitude obtainable (for a parabolic escape trajectory) for a range of possible C_{3}.

The relatively low V_{∞} and inclination values obtainable with direct launch make it an undesirable choice for launching of extra-solar probes as compared with those techniques discussed below.

JUPITER ASSIST

Jupiter Gravity Assist

Of all the planets, Jupiter is by far the best to use for gravity assisted solar system escape trajectories because of its intense gravity field. The geometry of the Jupiter flyby is shown in Figure 2. Assume that the planet is in a circular orbit about the Sun with orbital velocity $V_{J h}=13.06 \mathrm{~km} / \mathrm{s}$.

The spacecraft approaches the planet with some relative velocity, $V_{\text {in }}$, directed at an angle β to $V_{J h}$, and departs along $V_{\text {out }}$ after having been bent through an angle α. The total bend angle

$$
\alpha=2 \arcsin \left[1 /\left(1+V_{\text {in }} r_{p}^{2} / \mu\right)\right]
$$

where r_{p} is the closest approach radius to Jupiter and $\mu=G M J$, the gravitational mass of Jupiter. Note that $V_{J h}, V_{i n}$ and $V_{\text {out }}$ need not all

TABLE 3

Capabilities of Shuttle with Interim Upper Stage

> | Launch energy C_{3}, |
| :---: |
| $(\mathrm{km} / \mathrm{s})^{2}$ |
| for indicated |
| payload (kg) |

Launch Vehicle
Shutt1e/2-stage IUS
Shuttle/3-stage IUS
Shutt1e/4-stage IUS

Launch energy C_{3}, $(\mathrm{km} / \mathrm{s})^{2}$		
for indicated		
payload (kg)		

TABLE 4

Solar Sys̄tem Escape Ūsing Direct Ballistic Launch from Earth

	Maximum	Maximum
	hyperbolic	ecliptic latitude,
	excess velocity,	$\lambda_{\text {max }}$, for parabolic
Launch	V_{∞}, in ecliptic	trajectory
energy, C_{3}	plane	
$(\mathrm{km} / \mathrm{s})^{2}$	(km / s)	(${ }^{\circ}$)

152.2	0.00	0.00
155.	3.11	2.73
160.	5.15	4.53
165.	6.57	5.80
170.	7.73	6.84
175.	8.72	7.74

Fig. 2 Geometry of Jupiter F1yby
be in the same plane, so the spacecraft can approach Jupiter in the ecliptic plane and be ejected on a high inclination orbit. The heliocentric velocity of the spacecraft after the $f l y b y, V_{s h}$, is given by the vector sum of $V_{J h}$ and $V_{\text {out }}$. If this velocity exceeds approximately $1.414 \mathrm{~V}_{\mathrm{Jh}}$; shown by the dashed circle in Figure 2, the spacecraft achieves by hyperbolic orbit and will escape the solar system. The hyperbolic excess velocity is given by $V^{2}{ }_{s h}-2 \mu / r$ where μ here is $G M_{S}$, the gravitation mass for the Sun, and r is the distance from the Sun, 5.2 astronomical units. The maximum solar system escape velocity will be obtained when the angle between $V_{J h}$ and $V_{\text {out }}$ is zero. This will necessarily result in a near-zero inclination for the outgoing orbit. Around this vector will be a cone of possible outgoing escape trajectories. As the angle from the central vector increases the hyperbolic excess velocity relative to the Sun will decrease. The excess velocity reaches zero (parabolic escape orbit) when the angle between $V_{J h}$ and $V_{s h}$ is equal to arc cos $\left[\left(3-V_{i n}^{2} / V^{2}{ }_{J h}\right) / 2 \sqrt{2}\right]$. This defines then the maximum inclination escape orbit that can be obtained for a given V in at Jupiter. Table 5 gives the dependence of solar system hyperbolic escape velocity on $V_{i n}$ and the angle between $V_{J h}$ and $V_{s h}$. The maximum angle possible for a given $V_{i n}$ is also shown.

For example, for $a V_{i n}$ at Jupiter of $10 . \mathrm{km} / \mathrm{s}$ the maximum inclination obtainable $1 s 31.41^{\circ}$, and the solar system escape speed will be $13.03 \mathrm{~km} / \mathrm{s}$ for an inclination of 10°, $10.45 \mathrm{~km} / \mathrm{s}$ for an inclination of 20°. Note that for $V_{\text {in }}{ }^{\prime} \mathrm{s}$ greater than $20 \mathrm{~km} / \mathrm{s}$ it is possible to eject along retrograde orbits. This is an undesirable waste of energy however. It is preferable to wait for Jupiter to move 180° around its orbit when one could use a direct outgoing trajectory and achieve a higher escape speed in the same direction.

To consider in more detail the opportunities possible with Jupiter gravity assist, trajectories have been found assuming the Earth and Jupiter in circular, co-planar orbits, for a range of possible launch energy values. These results are summarized in Table 6. Note that the orbits with $C_{3}=180(\mathrm{~km} / \mathrm{s})^{2}$ have negative semi-major axes indicating that they are hyperbolic. With the spacecraft masses and launch vehicles discussed above it is thus possible to get solar systém escape velocities

TABLE 5
Solar System Escape Using Jupiter Gravity Assist

Approach velocity relative						
to Jupiter, $\mathrm{V}_{\text {in }}$ (km / s) :	6.0	10.0	15.0	20.0	25.0	30.0
Angle between outbound heliocentric velocity of $\mathrm{S} / \mathrm{C}, \mathrm{V}_{\mathrm{sh}}$, and of Jupiter, $J_{s h} \quad$ Solar system hyperbol ${ }^{\circ}$) for above approach						
0.0	4.70	13.81	21.12	27.42	33.28	38.90
5.0	4.01	13.61	21.00	27.32	33.19	38.82
10.0	*****	13.03	20.63	27.02	32.93	38.58
15.0	*****'	12.00	20.01	26.53	32.50	38.19
20.0	*****	10.45	19.13	25.85	31.91	37.65
25.0	*****	8.12	17.99	24.97	31.16	36.97
30.0		3.93	16.57	23.91	30.25	36.15
40.0	*****	*****	12.73	21.25	28.01	34.13
50.0	*****	*****	6.47	17.89	25.28	31.69
60.0		*****	*****	13.75	22.13	28.92
70.0	※ᄎ***	*****	*****	8.32	18.65	25.94
80.0	*****	*****	*****	*****	14.86	22.83
90.0	*****	*****	*****	*****	10.65	19.70
	Maximum angle between outbound heliocentric velocity of $\mathrm{S} / \mathrm{C}, \mathrm{V}_{\mathrm{Sh}_{\mathrm{h}}}$, and of Jupiter, $\mathrm{V}_{\mathrm{Jh}},\left({ }^{\circ}\right)$, for above approach velocity					
	9.58	31.41	53.53	76.60	103.57	143.56
***** indicates unobtainable combination of $\mathrm{V}_{\text {in }}$ and angle.						

Jupiter Gravity Assist versus Launch Energy

on the order of $25 \mathrm{~km} / \mathrm{s}$ in the ecliptic plane and inclinations up to about 67° above the ecliptic plane using simple ballistic flybys of Jupiter. Thus a large fraction of the celestial sphere is available to solar systen escape trajectories using this method.

Jupiter Powered F1yby

One means of improving the performance of the Jupiter flyby is to perform a maneuver as the spacecraft passes through periapsis at Jupiter. The application of this ΔV deep in the planet's gravitational potential well results in a substantial increase in the outgoing $V_{\text {out }}$ and thus the solar system hyperbolic excess velocity V_{∞}. This technique is particularly useful in raising relatively low $V_{\text {in }}$ values incoming to high outgoing $V_{\text {out }}$'s. Table 7 gives the outgoing $V_{\text {out }}$ values at Jupiter obtainable as a function of $V_{i n}$ and ΔV applied at periapsis. A flyby at $1.1 R_{J}$ is assumed. The actual $V_{\text {out }}$ might be fractionally smaller because of gravity losses and pointing errors but the table gives a good idea of the degrees of performance inprovement possible.

Carrying the necessary propulsion to perform the ΔV maneuver would require an increase in launched payload and thus a decrease in maximum launch energy and $V_{\text {in }}$ possible at Jupiter. Table 8 gives the required launched mass for a net payload of 300 kg after the Jupiter flyby, using a space storable propulsion system with $I_{s p}$ of 370 seconds, and the maximum C_{3} possible with a Shuttle/4-stage IUS launch vehicle, as a function of ΔV capability at Jupiter. These numbers may be combined with the two previous tables to find the approximate $V_{\text {in }}$ at Jupiter and the resulting $\mathrm{V}_{\text {out }}$.

Launch Opportunities to Jupiter
Launch opportunities to Jupiter occur approximately every 13 months. Precise calculations of such opportunities would be inappropriate at this stage in a study of extra-solar probe possibilities. Because Jupiter moves about 33° in ecliptic longitude in a 13 month period, and because the cone of possible escape trajectories exceeds 30° in halfwidth for V out above about $10 \mathrm{~km} / \mathrm{s}$, it should be possible to launch to any ecliptic longitude over a 12 year period by properly choosing the launch date and flyby date at Jupiter. With sufficient $V_{o u t}$ the

TABLE 7
Jupiter Powered Flyby

Approach velocity relative to Jupiter, $\mathrm{V}_{\text {in }}$, (km/s)	Outbound velocity relative to Jupiter, $V_{\text {out }}$, (km / s), for indicated $\Delta V(\mathrm{~km} / \mathrm{s})$ applied out' at periapsis of $1.1 R_{j}$				
	. 50	1.00	1.50	2.00	2.50
6.0	9.66	12.30	14.48	16.38	18.11
8.0	11.03	13.41	15.44	17.25	18.90
10.0	12.57	14.71	16.59	18.29	19.86
12.0	14.22	16.16	17.00	19.50	20.99
14.0	15.96	17.72	19.33	20.83	22.24
16.0	17.76	19.37	20.86	22.37	23.61
18.0	19.59	21.08	22.47	23.80	25.06
20.0	21.46	22.83	24.14	25.39	26.00

TABLE 8
Launched Mass for 300 kg Net Payload
after Jupiter Powered Flyby

ΔV at Jupiter	Required launched mass for $\mathrm{S} / \mathrm{C}_{\mathrm{S}_{\mathrm{p}}}=370 \mathrm{~s}$	Maxımum launch energy, C_{3}, attainable with shuttle/4-stage IUS $(\mathrm{km} / \mathrm{s})^{2}$
$(\mathrm{~km} / \mathrm{s})$	(kg)	
.0	300.	178.4
.5	428.	157.4
1.0	506.	147.4
1.5	602.	137.0
2.0	720.	127.2
2.5	869.	114.9

high ecliptic latitudes would be available as described in an earlier section. Flight times to Jupiter will typically be 2 years or less.

Venus-Earth Gravity Assist

One means of enhancing payload to Jupiter is to launch by way of a Venus-Earth Gravity Assist (VEGA) trajectory. These trajectories launch at relatively low $C_{3}{ }^{\prime} \mathrm{s}, 15-30(\mathrm{~km} / \mathrm{s})^{2}$, and incorporate gravity assist and ΔV maneuvers at Venus and Earth to send large payloads to the outer planets. The necessary maneuvers add about 2 years to the total flight time before reaching Jupiter. The extra payload could then be used as propulsion system mass to perform the powered flyby at Jupiter. An alternate approach is that VEGA trajectories allow use of a smaller launch vehicle to achieve the same mission as a direct trajectory.

POWERED SOLAR FLYBY

The effect of an impulsive delta-V maneuver when the spacecraft is close to the Sun has been calculated for an extra-solar spacecraft. The calculations are done for a burn at the perihelion distance of 0.1 AU , for orbits whose V_{∞} value before the burn is 0,5 , and $10 \mathrm{~km} / \mathrm{s}$ respective1y. Results are shown in Table 9. It can be seen that the delta-V maneuver deep in the Sun's potential well can result in a significant increase in V_{∞} after the burn, having its greatest effect when the preburn V_{∞} is small.

The only practical means to get 0.1 from the Sun (other than with a "super sail", discussed below) is a Jupiter flyby at a V_{∞} relative to Jupiter of $12 \mathrm{~km} / \mathrm{s}$ or greater. The flyby is used to remove angular momentum from the spacecraft orbit, and "dump" it in towards the Sun. The same flyby used to add energy to the orbit could achieve V_{m} of 17 km / s or more without any delta-V, and upwards of $21 \mathrm{~km} / \mathrm{s}$ with $2.5 \mathrm{~km} / \mathrm{s}$ of delta-V at Jupiter. The choice between the two methods will require considerably more study in the future.

LOW-THRUST TRAJECTORIES

A large number of propulsion techniques have been proposed that do not depend upon utilization of chemical energy aboard the spacecraft.

Powered Solar Flyby

$\Delta \mathrm{V}$
$(\mathrm{km} / \mathrm{s})$
.1
. 3
. 5
1.0
1.5
2.0
2.5

Heliocentric hyperbolic excess velocity, $V_{\infty},(\mathrm{km} / \mathrm{s})$, after burn 0.1 AU from Sun and initial V_{∞} as indicated (km / s)

$\frac{0}{5.16}$	$\frac{5}{7.19}$	$\frac{10}{11.25}$
8.94	10.25	13.42
11.55	12.59	15.29
16.35	17.10	19.19
20.05	20.67	22.42
23.17	23.71	25.26
25.93	26.41	27.82

Among the more recent reviews pertinent to this mission are those by Forward (1976), Papailiou et al (1975), and James et al (1976). A. very useful bibliography is that of Mallove et al (1977).

Most of the techniques provide relative low thrust and involve long periods of propulsion. The following paragrāphs consider methods that seem the more promising for an extraplanetary mission launched around 2000.

Solar Sailing

Solar sails operate by using solar radiation pressure to add or subtract angular momentum from the spacecraft (Garwin, 1958). The basic design considered in this study is a helio-gyro of twelve 6200-meter mylar strips, spin-stabilized.

According to Jerome Wright (private communication), the sail is capable of achieving spacecraft solar system escape velocities of 15-20 km / s. This requires spiralling into a close orbit approximately 0.3 AU from the sun and then accelerating rapidly outward. The spiral-in maneuver requires approximately one year and the acceleration outward, which involves approximately $1-1 / 2-2$ revolutions about the sun, takes about 1-1/2 - 2 years, at which time the sail/spacecraft is crossing the orbit of Mars, 1.5 AU from the sun, on its way out.

The sail is capable of reaching any inclination and therefore any point of the celestial sphere. This is accomplished by performing a "cranking" maneuver when the sail is at 0.3 AU from the sun, before the spiral outward begins. The cranking maneuver keeps the sall in a circular orbit at 0.3 AU as the inclination is steadily raised. The sail can reach 90° inclination in approximately one year's time.

Chauncey Uphoff (private communication) has discussed the possibility of a super sail capable of going as close as 0.1 AU from the sun, and capable of an acceleration outward equal to or greater than the sun's gravitational attraction. Such a sail might permit escape V_{∞} 's on the order of $100 \mathrm{~km} / \mathrm{s}$, possible up to $300 \mathrm{~km} / \mathrm{s}$. However, no such design exists at present and the possibility of developing such a sail has not been studied.

Laser Sailing

Rather et al (1976) have recently re-examined the proposal (Forward, 1962, Marx, 1966, Moeckle, 1972) of using high energy lasers, rather than sunlight, to illuminate a sail. The lasers could be in orbit
around the earth or moon and powered by solar collectors.
Rather et al found that the technique was not promising for star missions but could be useful for outer planet missions. Based on their assumptions*, a heliocentric escape velocity of $60 \mathrm{~km} / \mathrm{s}$ could be reached with a laser output power of about $30 \mathrm{~kW}, 100 \mathrm{~km} / \mathrm{s}$ with about 1500 kW , and $200 \mathrm{~km} / \mathrm{s}$ with 20 MW . Acceleration is about 0.35 g and thrusting would continue until the S/C was some millions of kilometers from earth.

Solar Electric Propulsion
Solar electric propulsion uses ion engines, where mercury or other atoms are ionized and then accelerated across a potential gap to a very high exhaust velocity. The electricity for generating the potential comes from a large solar cell array on the spacecraft. Current designs call for a 100 kilowatt unit which is also proposed for a future comet rendezvous mission. A possible improvement to the current design is the use of mirror "concentrators" to focus additional sunlight on the solar cells at large heliocentric distances.

According to Carl Sauer (private communication) the solar powered ion drive 1s capable of escape V_{∞} 's on the order of $10-15 \mathrm{~km} / \mathrm{s}$ in the ecliptic plane. Going out of the ecliptic is more of a problem because the solar cell arrays cannot be operated efficiently inside about 0.6 AU from the sun. Thus the solar electric drive cannot be operated close into the sun for a cranking maneuver as can the solar sail. Modest inclinations can still be reached through slower cranking or the initial inclination imparted by the launch vehicle.

Laser Electric Propu1sion

An alternative to solar electric propulsion is laser electric: lasers, perhaps in earth orbit, radiate power to the spacecraft, which is collected and utilized in ion engines. The primary advantage is that higher energy flux densities at the spacecraft are possible. This would permit reducing the receiver area and so, hopefully, the spacecraft weight. To take advantage of this possibility, receivers that can operate at considerably higher temperatures than present solar cells will be needed. A recent study by Forward (1975) suggests that a significant performance gain, as compared to solar electric, may be feasible.

* Rather et al assumed an allowable flux incident on the sail of $10^{6} \overline{\mathrm{~W} / \mathrm{m}^{2}}$, laser wavelength $0.5 \mu \mathrm{~m}$, and laser ${ }_{2}$ beam size twice the diffraction limit. For this calculation, $10 \mathrm{~km}^{2}$ of sail area and $20,000 \mathrm{~kg}$ total mass were assumed.

Nuclear Electric Propulsion

Nuclear electric propulsion (NEP) may use ion engines like solar electric, or, alternatively, magnetohydrodynamic drive. It obtains electricity from a generator heated by a nuclear fission reactor. Thus, NEP is not power-1imited by increasing solar distance.

Previous studies indicate that an operational S/C is possible by the year 2000 with power levels up to a megawatt (electric) or more (James et al, 1976).

Preliminary estimates were made based on previous calculations for a Neptune mission. Those indicated that heliocentric escape velocity of $50-60 \mathrm{~km} / \mathrm{s}$ can be obtained.

Fusion

With a fusion energy source, thermal energy could be converted to provide ion or MHD drive and charged particles produced by the nuclear reaction can also be accelerated to produce thrust.

A look at one fusion concept gave a V_{∞} of about $70 \mathrm{~km} / \mathrm{s}$. The spacecraft weight was $3 \times 10^{6} \mathrm{~kg}$. Controlled fusion has still to be attained.

Bussard (1960) has suggested that interstellar hydrogen could be collected by a spacecraft and used to fuel a fusion reaction.

Antimatter

Morgan (1975, 1976), James et al, (1976), and Massier (1977a and b) have recently examined the use of antimatter-matter annihilation to obtain rocket thrust. A calculation based on Morgan's concepts suggests that a V_{∞} over $700 \mathrm{~km} / \mathrm{s}$ could be obtained with a mass comparable to NEP.

Low Thrust Plus Gravity Assist

A possible mix of techniques discussed would be to use a lowthrust propulsion system to target a spacecraft for a Jupiter gravity assist to achieve a very high V_{∞} escape. If for example one accelerated a spacecraft to a parabolic orbit as it crossed the orbit of Jupiter, the $V_{i n}$ at Jupiter would be about $17.2 \mathrm{~km} / \mathrm{s}$. One could use gravity assist then to give a solar system escape V_{∞} of $24 \mathrm{~km} / \mathrm{s}$ in the ecliptic plane, or inclinations up to about 63° above the plane. Powered swingby at Jupiter could further enhance both V_{∞} and inclination.

A second possibility is to use a solar sail to crank the spacecraft into a retrograde (180° inclination) orbit and then spiral out to encounter Jupiter at a $V_{\text {in }}$ of over $26 \mathrm{~km} / \mathrm{s}$. This would result in escape V_{∞} 's on the order of $30 \mathrm{~km} / \mathrm{s}$ and inclinations up to 90°, thus covering the entire celestial sphere. Again, powered swingby would improve performance but less so, because of the high $V_{i n}$ already present. This method is somewhat limited by the decreasing bend angle possible at Jupiter as $V_{\text {in }}$ increases. With still higher approach velocities the possible performance increment from a Jupiter swingby continues to decrease.

Solar Plus Nuclear Electric

One might combine solar electric with nuclear electric, using solar first and then, when the solar distance becomes greater and the solar distance becomes greater and the solar power falls off, switching to NEP. Possibly the same thrusters could be used for both. Since operating lifetime of the nuclear reactor can limit the impulse attainable with NEP, this combination might provide higher V_{∞} than either solar or nuclear electric single-stage systems.

CHOICE OF PROPULSION
Of the various propulsion techniques outlined above, the only ones that are likely to provide solar system escape velocities above $50 \mathrm{~km} / \mathrm{s}$ utilize either sails or nuclear energy.

The sail technique could be used with two basic options: solar sailing, going in to perhaps 0.1 AU from the sun, and laser sailing. In either case, the requirements on the sail are formidable. Figure 3 shows solar sall performance attainable with various spacecraft lightness factors (ratios of solar radiation force on the S/C at normal incidence to solar gravitational force on the S / C). The sail surface mass/area ratios required to attain various V_{∞} values are 1isted in Table 10. For a year 2000 launch, it may be possible to attain a sail surface mass/area of $0.3 \mathrm{~g} / \mathrm{m}^{2}$, if the perihelion distance is constrained to 0.25 AU or more (W. Carroll, private communication). This ratio corresponds to an aluminum film about 100 nm thick, which would probably have to be fabricated in orbit. With such a sail, a V_{∞} of about $120 \mathrm{~km} / \mathrm{s}$ might be obtained.

Fig. $3 \quad \begin{aligned} & \text { Solar System Escape with Ultralight Solar Sails. } \\ & \text { Lightness factor } \lambda=\text { (solar radiation force on S/C at normal } \\ & \text { incidence) } /(\text { solar gravitational force on S/C). }\end{aligned}$
From C. Uphoff (private communication).

TABLE 10

PERFORMANCE OF ULTRALIGHT SOLAR SAILS

Initial	Heliocentric	Lightness	Sail	Saı1
Perihelion	Excess	Factor	Load/	Surface
Distance	$\begin{gathered} \text { Velocity, } \\ \mathrm{V}_{\infty} \end{gathered}$	λ	$\begin{gathered} \text { Efficiency } \\ \sigma_{\mathrm{T}} / \mu \end{gathered}$	$\begin{gathered} \text { Mass/Area } \\ \sigma_{F} \end{gathered}$
AU	km/s		$\mathrm{g} / \mathrm{m}^{2}$	$\mathrm{g} / \mathrm{m}^{2}$
0.25	60	0.8	2.0	0.9
0.25	100	1.8	0.85	0.4
0.25	200	5.5	0.3	0.12
0.1	100	0.6	2.7	1.2
0.1	200	2.2	0.7	0.3
0.1	300	5.0	0.3	0.14

Notes:
$\lambda=$ (solar radiation force on S / C at normal (incidence)/(solar gravitational force on S / C)
$\sigma_{\mathrm{T}}=$ (total S / C mass) $/$ (sail area)
$\mu=$ sail efficiency
$\sigma_{F}=$ includes sail film, coatings, and seams; excludes structural and mechanical elements of sail and non-propulsive portions of S / C. Assumed here: $\sigma_{\mathrm{F}}=0.5 \sigma_{\mathrm{T}} ; \mu=0.9$.
Initial orbit assumed: semi-major axis $\simeq 1 \times 10^{8} \mathrm{~km}$. Sail angle optimized for maximum rate of energy gain.

If the perihelion distance is reduced to 0.1 AU the solar radiation force increases but so does the temperature the sail must withstand. With a reflectivity of 0.9 and an emissivity of 1.0 the sail temperature would reach $470^{\circ} \mathrm{C}$ (740 K), so high temperature material would have to be used. Further, according to Carroll (ibid), it may never be possible to obtain an emissivity of 1.0 with a film mass less than $1 \mathrm{~g} / \mathrm{m}^{2}$, because of the emitted wavelength/thickness ratio. For such films an emisslvity of 0.5 is probably attainable; this would increase the temperature to over $600^{\circ} \mathrm{C}$ (870 K). Carbon films can be considered, but they would need a smooth highly reflective surface. It $1 s$ doubtful a sail surface mass/area less than $1 \mathrm{~g} / \mathrm{m}^{2}$ could be obtained for use at $600^{\circ} \mathrm{C}$. This sail should permit reaching V_{∞} of $110 \mathrm{~km} / \mathrm{s}$: no better than for the 0.25 AU design.

For laser sailing, higher reflectivity, perhaps 0.99 , can be attained because the monochromatic incident radriation permits effectuve use of interference layers (Carroll, ibid). Incident energy flux equivalent to 700 "suns" (at I AU) is proposed, however. The high reflectivity coating reduces the absorbed energy to about the level of that for a solar sail at 0.1 AU , with problems mentioned above. V_{∞} 's up to $200 \mathrm{~km} / \mathrm{s}$ might be achieved if the necessary very high power lasers were available in orbit.
'Considering nuclear energy systems, a single NEP stage using fission could provide perhaps 60 to $100 \mathrm{~km} / \mathrm{s} \mathrm{V}_{\infty}$. NEP systems have already been the subject of considerable study and some advanced development. Confidence that the stated performance can be obtained is therefore higher than for any of the competing modes. Using 2 NEP stages or a solar electric followed by NEP, higher V_{∞} could be obtained: one preliminary calculation for 2 NEP stages (requiring 3 shuttle launches or the year 2000 equivalent) gave $V_{\infty}=150 \mathrm{~km} / \mathrm{s}$.

The calculation for a fusion propulsion system indicates 30% spacecraft velocity improvement over fission, but at the expense of orders of magnitude heavier vehicle. The cost would probably be prohibitive. Moreover, controlled fusion has not yet been attained, and development of an operational fusion propulsion system for a year 2000 launch is questionable. As to collection of hydrogen enroute to refuel a fusion reactor, this is further in the future and serious question exists as to whether it will ever be feasible (Martin, 1972, 1973).

An antimatter propulsion system is even more speculative than a fusion system and certainly would not be expected by 2000. On the other
hand, the very rough calculations indicate an order of magnitude velocity improvement over fission NEP without increasing vehicle mass. Also, the propulsion burn time is reduced by an order of magnitude.

On the basis of these considerations, a fission NEP system was selected as baseline for the remainder of the study. The very lightweight solar sail approach and the high temperature laser sail approach may also be practical for a year 2000 mission and deserve further study. The antimatter concept is the most "far out", but promises orders of magnitude better performance than NEP. Thus, in future studies addressed to star missions, antimatter propulsion should certainly be considered, and a study of antimatter propulsion per se is also warranted.

MISSION CONCEPT

The concept which evolved as outlined above is for a mission outward to 500-1000 AU , directed toward the incoming interstellar gas. Critical science measurements would be made when passing through the heliopause region and at as great a range as possible thereafter. The location of the heliopause is unknown but is estrmated as 50-100 AU. Measurements at Pluto are also desired. Launch will be nominally in the year 2000.

The maximum spacecraft lifetime considered reasonable for a year 2000 launch is 50 years. (This is discussed further, below). To attain 500-1000 AU in 50 years requires a heliocentric excess velocity of $50-100 \mathrm{~km} / \mathrm{s}$. The propulsion technique selected as baseline is NEP using a fission reactor. Either 1 or 2 NEP stages may be used. If 2 NEP stages are chosen, the first takes the form of an NEP booster stage and the second is the spacecraft itself. The spacecraft, with or without an NEP booster stage, is placed in low earth orbit by some descendant of the Shuttle. NEP is then turned on and used for spiral earth escape. Use of boosters with lower exhaust velocity to go to high earth orbit or earth escape is not economical. The spiral out from low earth orbit to earth escape uses only a small fraction of the total NEP burn time and NEP propellant.

After earth escape, thrusting continues in heliocentric orbit. A long burn time is needed to attain the required velocity: 5 to 10 years are desirable for single stage NEP (see below), and more than 10 years if two NEP stages are used. The corresponding burnout distance, depending on the design, may be as great as 200 AU or even more. Thus, propulsion may be on past Pluto (31 AU from the sun in 2005) and past the heliopause. To measure the mass of Pluto, a coasting trajectory is needed; thrust would have to be shut off temporarily during the Pluto encounter. The reactor would continue operating at a low level during the encounter to furnish spacecraft power. Attitude control would preferably be by momentum wheels to avoid any disturbance to the mass measurements. Scientific measurements, including imagery, would be made during the fast flyby of Pluto.

After the Pluto encounter, thrusting would resume and continue until nominal thrust termination ("burnout") of the spacecraft. Enough propellant is retained at spacecraft burnout to provide attitude control (unloading the momentum wheels) for the 50 year duration of the extended mission. At burnout the reactor power level is reduced and the reactor provides power for the spacecraft, including the ion thrusters used for attitude control.

A very useful add-on would be a Pluto Orbiter. This daughter spacecraft would be separated early in the mission, at approximately the time solar escape is achieved. Its flight time to Pluto would be about 12 years and its hyperbolic approach velocity at Pluto about $8 \mathrm{~km} / \mathrm{s}$.

The orbiter would be a full-up daughter spacecraft, with enough chemical propulsion for midcourse, approach, and orbital injection. It would have a full complement of science instruments (including imaging) and RTG power sources, and would communicate directly to Earth.

Because the mass of a dry NEP propulsion system is much greater than that required for the other spacecraft systems, the added mass of a daughter S/C has relatively little effect on the total inert mass and therefore relatively little effect on propulsive performance. The mother NEP spacecraft would fly by Pluto 3 or 4 years after launch, so the flyby data will be obtained at least 5 years before the orbiter reaches Pluto. Accordingly, the flyby data can be used in selecting the most suitable orbit for the daughter-spacecraft.

If a second spacecraft is to be flown out parallel to the solar axis, it could be like the one going toward the incoming interstellar gas, but obviously would not carry an orbiter. Since the desired heliocentric escape direction is almost perpendicular to the ecliptic, somewhat more propulsive energy will be required than for the S / C going upwind, if the same escape velocity is to be obtained. A Jupiter swingby may be helpful. An NEP booster stage would be especially advantageous for this mission.

MASS DEFINTTION AND PROPULSION

The NEP system considered is similā to those discussed by Pawlik and Phillips (1977) and by Stearns (1977). As a first rule-of-thumb approximation the dry NEP system should be approximately $30-35$ percent of the spacecraft mass. A balance is then required between the net spacecraft and propellant, with mission energy and exhaust velocity being variable. For the very high energy requirements of the extraplanetary mission, spacecraft propellant expenditure of the order of 40-60 percent may be appropriate. A booster stage, if required, may use a lower propellant fraction, perhaps 30 percent.

Power and propulsion system mass at $100-140 \mathrm{~km} / \mathrm{s}$ exhaust velocity will be approximately $17 \mathrm{~kg} / \mathrm{kWe}$. This is based on a 500 kWe system with 20% conversion efficiency and ion thrusters. Per unit mass may decrease slightly at higher power levels and higher exhaust velocity. Mercury propellant is desired because of its high 1 iquid density, $\sim 13.6 \mathrm{~g} / \mathrm{cm}^{3}$ or $13,600 \mathrm{~kg} / \mathrm{m}^{3}$. Mercury is also a very effective gamma shield. If an NEP booster is to be used, it is assumed to utilize two 500 kWe units.

The initial mass in low earth orbit (M) is taken as $32,000 \mathrm{~kg}$ for the spacecraft (including propulsion) and as $90,000 \mathrm{~kg}$ for the spacecraft plus NEP booster. $32,000 \mathrm{~kg}$ is slightly heavier than the 1977 figure for the capability of a single shuttle launch. The difference is considered unimportant, because 1977 figures for launch capability will be only of historical interest by 2000. $90,000 \mathrm{~kg}$ for the booster plus S/C would require the year 2000 equivalent of three 1977 Shuttle launches.

Figure 4 shows the estimated performance capabilities of the propulsion system for a single NEP stage.

A net spacecraft mass of approximately 1200 kg is assumed and may be broken out in many ways. Communication with Earth is a part of this and may trade off with on-board automation, computation and data processing. Support structure for launch of daughter spacecraft may be needed. Adaptive science capability is also possible. The science instruments may be of the order of $200-300 \mathrm{~kg}$ (including a large telescope) and utilize 200 kg of radiation shielding (discussed below) and in excess of 100 W of power. Communications could require as much as 1 kW .

Fig. 4 Performance of NEP for Solar Escape plus Pluto. $\alpha=$ Ratio (propulsion system dry mass less tankage)/(power input to thrust subsystem) $=17 \mathrm{~kg} / \mathrm{kWe}$. $M_{0}=$ initial mass (in low Earth orbit) $=32,000 \mathrm{~kg}$. $\mathrm{M}_{\mathrm{PS} / \mathrm{C}}=$ mass of a Pluto S / C separated when heliocentric escape velocity is attained (kg). $\mathrm{V}_{\mathrm{e}}=$ exhaust velocity (km/s).

One to two kWe of auxiliary power is a first order assumption.
The Pluto Orbiter mass is taken as 500 kg plus 1000 kg of chemical propellant. This allows a total ΔV of approximately $3500 \mathrm{~m} / \mathrm{s}$ and should permit a good capture orbit at Pluto.

The reactor burnup is taken to be the equivalent of 200,000 hours at full power. This will require providing reactor control capability beyond that in existing NEP concepts. This could consist of reactivity poison rods or other elements to be removed as fission products build up, together with automated power system management to allow major improvement in adaptive control for power and propulsion functions. The full power operating time is, however, constrained to $70,000 \mathrm{~h}$ (approximately 8 yr). The remaining burnup is on reduced power operation for S / C power and attitude control. At $1 / 3$ power, this could continue to the 50 yr mission duration.

Preliminary mass and performance estimates for the selected system are given in Table 11. These are for a mission toward the incoming interstellar wind. The Pluto orbiter, separated early in the mission, makes very little difference in the overall performance. The NEP power level, propellant loading, and booster specific impulse were not optimized in these estimates; optimized performance would be somewhat better.

According to Table 11, the performance increment due to the NEP booster is not great. Unless an optimized calculation shows a greater increment, use of the booster is probably not worthwhile.

For a mission parallel to the solar axis, a Jupiter flyby would permit deflection to the desired 83° angle to the ecliptic with a small loss in V_{∞}. (The approach $V_{\text {in }}$ at Jupiter is estimated to be $23 \mathrm{~km} / \mathrm{s}$).

TABLE 11

Mass and Performance Estimates for Baseline System ($I_{s p}$ and propellant loading not yet optimized)

Allocation	Mass kg
Spacecraft	1200
Pluto orbiter (optional)	1500
NEP (500 kWe)	8500
Propellant: Earth spiral	2100
Heliocentric	18100
Tankage	600
Total for l-stage (M_{0}, earth orbit)	32000
Booster	58000
Total for 2-stage (M_{0}, earth orbit)	90000
Performance	1 Stage 2 Stages
Booster burnout: Distance	8 AU
Hyperbolic velocity	$25 \mathrm{~km} / \mathrm{s}$
Time	4 yr
Spacecraft burnout: Distance (total)	65 155 AU
Hyperbolic velocity	105 [$150 \mathrm{~km} / \mathrm{s}$
Time (total)	$8 \quad 12 \mathrm{yr}$
Distance in: 20 yr	$370 \quad 410 \mathrm{AU}$
50 yr	10301350 AU

INFORMATION MANAGEMENT

DATA GENERATION

In cruise mode, the particles and fields instruments, if reading continuously, will generate 1 to $2 \mathrm{~kb} / \mathrm{s}$ of data. Engineering sensors will provide less, Spectrometers may provide higher raw data rates but only occasional spectrometric observations would be needed. Star TV, if run at 10 frames/day (exposures would probably be several hours) at $10^{8} \mathrm{~b} /$ frame would provide about $10 \mathrm{~kb} / \mathrm{s}$ on the average. A typical TV frame might include 10 star images whose intensity need be known only roughly for identification. Fifteen position bits on each axis and 5 intensity bits would make $350 \mathrm{~b} /$ frame or $0.04 \mathrm{~b} / \mathrm{s}$ of useful data. Moreover, most of the other scientific quantities mentioned would be expected to change very slowly, so that their information rate will be considerably lower than their raw data rate. Occasional transients may be encountered, and in the region of the hellopause and shock rapid changes are expected.

During Pluto flyby, data accumulates rapidly. Perhaps 10^{11} bits, mostly TV, will be generated. These can be played back over a period of weeks or months. If a Pluto orbiter is flown, it could generate $10^{10} \mathrm{~b} /$ day or more: an average of over $100 \mathrm{~kb} / \mathrm{s}$.

INFORMATION MANAGEMENT SYSTEM

Among the functions of the information handling system will be storage and processing of the above data. The system compresses the data, removing the black sky that will constitute almost all of the raw bits of the star pictures. It will remove the large fraction of bits that need not be transmitted when a sensor gives a steady or almost-steady reading. It will vary its processing and the output data stream to accommodate transients during heliopause encounter and other unpredictable periods of high information content.

The spacecraft computers system will provide essential support to the automatic control of the nuclear reactor. It will also support control, monitoring, and maintenance of the ion thrusters, and of the attitude control system, as well as antenna pointing and command processing.

According to James et al (1976), the following performance is projected for a S/C information management system for a year 2000 launch:

Processing rate:	10^{9} instruction/s
Data transfer rate:	$\sim 10^{9} \mathrm{~b} / \mathrm{s}$
Data storage:	$\sim 10^{14} \mathrm{~b}$
Power consumption:	$10-100 \mathrm{~W}$
Mass:	$\sim 30 \mathrm{~kg}$

This projection is based on current and foreseen state of the art and ignores the possibility of major breakthroughs. Obviously, if reliability requirements can be met, the onboard computer can provide more capability than is required for the mission.

The processed data stream provided by the information management system for transmission to earth is estimated to average $20-40 \mathrm{~b} / \mathrm{s}$ during cruise. Since continuous transmassion is not expected (see•below), the output rate during transmission will be higher.

At heliosphere encounter, the average rate of processed data is estimated at $1-2 \mathrm{~kb} / \mathrm{s}$.

From a Pluto encounter, processed data might be several times 10^{10} bits. If these are returned over a 6 -month period, the average rate over these months is about $2 \mathrm{~kb} / \mathrm{s}$. If the data are returned over a 4 -day period, the average rate is about $100 \mathrm{~kb} / \mathrm{s}$.

OPERATIONS

For a mission lasting 20-50 years, with relatively little happening most of the time, it is unreasonable to expect continuous DSN coverage. For the long periods of cruise, perhaps 8 h of coverage per month, or 1% of the time, would be reasonable.

When encounter with the heliopause is detected, it might be possible to increase the coverage for a while; $8 \mathrm{~h} /$ day would be more than ample. Since the time of heliosphere encounter is unpredictable, this possibility would depend on the ability of the DSN to readjust its schedule quickly in near-real time.

For Pluto flyby, presumably continuous coverage could be provided. For Pluto orbiters, either 8 or $24 \mathrm{~h} / \mathrm{day}$ of coverage could be provided for some months.

DATA TRANSMISSION RATE

On the basis outined above, the cruise data, at 1% of the time, would be transmitted at a rate of $2-4 \mathrm{~kb} / \mathrm{s}$.

If heliopause data is merely stored and transmitted the same 1% of the time, the transmission rate rises to $100-200 \mathrm{~kb} / \mathrm{s}$. An alternative would be to provide more DSN coverage once the heliosphere is found. If 33% coverage can be obtained, the rate falls to $3-7 \mathrm{~kb} / \mathrm{s}$.

For Pluto flyby, transmitting continuously over a 6 -month period, the rate is $2 \mathrm{~kb} / \mathrm{s}$. At this relatively short range, a higher rate, say, $30-100 \mathrm{~kb} / \mathrm{s}$, would probably be more appropriate. This would return the encounter data in 4 days.

The Pluto orbiter requires a transmission rate of $30-50 \mathrm{~kb} / \mathrm{s}$ at $24 \mathrm{~h} /$ day or $90-150 \mathrm{~kb} / \mathrm{s}$ at $8 \mathrm{~h} /$ day.

TELEMETRY

The new and unique feature of establishing a reliable telecommunications link for an extraplanetary mission involves dealing with the enormous distance between the spacecraft (S / C) and the receiving stations on or near Earth. Current planetary missions involve distances between the S / C and receiving stations of tens of astronomical units (AU) at most. Since the extraplanetary mission could extend this distance to 500 or 1000 AU , appropriate extrapolation of the current mission telecommuncation parameters must be made. Ideally, this extrapolation should anticipate technological changes that will occur in the next 20-25 years and accordingly incorporate them into the telecommunications system design. In trying to achieve this ideal we have developed a "baseline" design that represents reasonably low risk. Other options which could be utilized around the year 2000 but which may require technological advancement (e.g. development of solid state X-band or Ku-band transmitters) or may depend upon NASA's committing substantial funds for telemetry link reconfiguration (e.g., construction of a spaceborne deep space receiver) are examined to determine how they might affect link capabilities.

In the following paragraphs, the basic model for the telecommunications link is developed. Through the range equation, transmitted and received powers are related to wavelength, antenna dimensions, and separation between antennas. A currently used form of coding is
assumed while some tracking loop considerations are examined. A baseline design is outlined. The contributions and effects of various components to link performance is given in the form of a "dB" table breakdown. Other options of greater technological or funding risk are treated. Finally, we compare capability of the various telemetry options with requirements for various phases of the mission and identify the telemetry - operations combinations that provide the needed performance.

THE TELECOMMUNICATION MODEL

Range Equation

We need to know how much transmitted power is picked up by the receiving antenna. The received power P_{r} is given approximately by

$$
\begin{equation*}
P_{r}=n P A_{r} /(\lambda R)^{2} \tag{I}
\end{equation*}
$$

where

```
\(\eta=\) product of all pertinent efficiencies, i.e., transmitter
                                    power conversion efficiency, antenna efficiencies, etc.
\(P=\) power to transmitter
\(A_{t}, A_{r}=\) areas of transmitter, receiver antennas respectively
\(\lambda=\) wavelength of transmitted radiation
\(R=\) range to spacecraft
```

This received signal is corrupted by noise whose effective power spectral density will be denoted by N_{0}.
Data Coding Considerations
We are assuming a Viterbi (1967) coding scheme with constraint length $K=7$ and rate $v=1 / 3$. This system has demonstrated quite good performance producing a bit exror rate (BER) of 10^{-4} when the information brt $S N R$ is $\rho_{D}=3.2 \mathrm{~dB}$ (Layland, 1970). Of course, if more suitable schemes are developed in the next $20-25$ years, they should certainly be used.

Tracking Loop Considerations

Because of the low received power levels that can be expected in this mission, some question arises as to whether the communication
system should be coherent or non-coherent. The short term stability of the received carrier frequency and the desired data rate R_{D} roughly determine which system is better. From the data coding considerations we see that

$$
\begin{equation*}
\mathrm{P}_{\mathrm{D}} / \mathrm{N}_{\mathrm{O}} \gtrsim \rho_{\mathrm{D}} \mathrm{R}_{\mathrm{D}} \approx 2 \mathrm{R}_{\mathrm{D}} \tag{2}
\end{equation*}
$$

where P_{D} is the power allocated to the data. Standard phase-locked loop analvsis (Lindsey, 1972) gives for the variance σ^{2} of the phase error in the loop

$$
\begin{equation*}
\sigma^{2} \approx N_{0} B_{L} / P_{L} \tag{3}
\end{equation*}
$$

where P_{L} is the power allocated to phase determination and B_{L} is the closed loop bandwidth (one-sided). In practice, $\sigma^{2} \lesssim 10^{-2}$ for acceptable operation, so

$$
\begin{equation*}
P_{L} / N_{0} \gtrsim 100 B_{L} \tag{4}
\end{equation*}
$$

The total received power P_{r} (eq. (1)) is the sum of P_{L} and P_{D}. To minimize P_{r} / N_{0} subject to the constraint eqs. (2) and (4), we see that a fraction

$$
\begin{equation*}
\frac{2 \mathrm{R}_{\mathrm{D}}}{100 \mathrm{~B}_{\mathrm{L}}+2 \mathrm{R}_{\mathrm{D}}} \tag{5}
\end{equation*}
$$

of the received power must go into the data. Since, coherent systems are 3 dB better than non-coherent systems for binary signal detection (Wozencraft and Jacobs, 1965), coherent demodulatıon is more efficient whenever

$$
\begin{equation*}
R_{D} \gtrsim 50 B_{L} \tag{6}
\end{equation*}
$$

Current deep space network (DSN) receivers have $\mathrm{B}_{\mathrm{L}} \gtrsim 10 \mathrm{~Hz}$, so for data rates roughly greater than 500 bits/s coherent detection is desirable. However, the received carrier frequencies suffer variations from Doppler rate, atmospheric (ionospheric) changes, oscillator drifts, etc. If received carrier instabilities for the extraplanetary mission are sufficiently small so that a tracking loop bandwidth of I Hz is adequate, then data rates greater than $50 \mathrm{bits} / \mathrm{s}$ call for coherent demodulation.

These remarks are summarized by the relation between $\mathrm{P}_{\mathrm{r}} / \mathrm{N}_{0}$ and data rate R_{D} :

$$
P_{r} / N_{0}=\left\{\begin{array}{cc}
2 R_{D}+100 B_{L} & \text { for } R_{D} \geq 50 B_{L} \quad \text { (coherent system) } \tag{7}\\
4 R_{D} & \text { for } R_{D} \leq 50 B_{L} \text { (non-coherent system) }
\end{array}\right\}
$$

This relation is displayed in Figure 5 where $\mathrm{P}_{\mathrm{r}} / \mathrm{N}_{0}$ is plotted vs R_{D} for B_{L} having values 1 Hz and 10 Hz . In practice for $R_{D}>50 \mathrm{~B}_{\mathrm{L}}$ the approach of $\mathrm{P}_{\mathrm{r}} / \mathrm{N}_{0}$ to its asymptotic value of $2 \mathrm{R}_{\mathrm{D}}$ could be made slightly faster by techniques employing suppressed carrier tracking loops which utilize all the received power for both tracking and data demodulation. However, for this study these curves are sufficiently accurate to ascertain P_{r} / N_{0} levels necessary to achieve desired data rates. BASELINE DESIGN

Parameters of the System

For a "baseline" design we have tried to put together a system that has a good chance of being operational by the year 2000. Consequently in certain areas we have not pushed current technology but have relied on fairly well established systems. In other areas, we have extrapolated from present trends, but hopefully not beyond developments that can be accomplished over $20-25$ years. This baseline design will be derived in sufficient detail so that the improvement afforded by the "other options" discussed in the next section can be more easily ascertained.

First, we assume that received carrier frequency stabilities allow tracking with a loop bandwidth $\mathrm{B}_{\mathrm{L}} \leqq 1 \mathrm{~Hz}$. This circumstance is quite likely if an oscillator quite stable in the short term is carrıed
on the S / C, if the propulsion systems are not operating during transmission at 1000 AU (Doppler rate essentially zero), and if the receiver is orbiting Earth (no ionospheric disturbance). Second, we assume data rates R_{D} of at least $100 \mathrm{bits} / \mathrm{s}$ at 1000 AU or $400 \mathrm{~b} / \mathrm{s}$ at 500 AU are desired. From the discussion preceding eq. (6) and Figure 5 we see this implies a coherent demodulation system with $\mathrm{P}_{\mathrm{r}} / \mathrm{N}_{\mathrm{O}}$ to exceed 25 dB .

As a baseline we are assuming an X-band system ($\lambda=3.55 \mathrm{~cm}$) with 40 watts transmitter power. We assume the receiving antenna is on Earth (if this assumption makes $\mathrm{B}_{\mathrm{L}}=1 \mathrm{~Hz}$ unattainable, then the value of $\mathrm{P}_{\mathrm{r}} / \mathrm{N}_{\mathrm{O}}$ for the non-coherent system only increases by 1 dB) so the system noise temperature reflects this accordingly.
Decibel Table and Discussion
In Table 12 we give the $d B$ contributions from the various parameters of the range eq. (1), loop tracking, and data coding. By design the parameters of this table give the narrowest performance margins. If any of the "other options" of the next section can be realized, performance margin and data rate should correspondingly increase.

The two antenna parameters that are assumed require some explanation. A current mission (SEASAT-A) has an imaging radar antenna that "unfurls" to a rectangular shape $10.75 \mathrm{~m} \times 2 \mathrm{~m}$, so a 15 m diameter spaceborne antenna should pose no difficulty by the year 2000. A 100 m diameter receiving antenna is assumed. Even though the largest DSN antenna is currently 64 m , an antenna and an array both having effective area $\gtrsim(100 \mathrm{~m})^{2}$ will be available in West Germany and in this country in the next five years. Consequently, a receiver of this collecting area could be provided for the year 2000.

OPTIONS

More Power

The 40 watts transmitter power of the baseline should be currently realizable being only a factor of 2 above the Voyager value. This might be increased to 0.5 -' 1 kW , increasing received signal power by almost $10-15 \mathrm{~dB}$, allowing (after some increase in performance margin) a tenfold gain in data rate: $1 \mathrm{~kb} / \mathrm{s}$ at $1000 \mathrm{AU}, 4 \mathrm{~kb} / \mathrm{s}$ at 500 AU . The problem of coupling this added energy into the transmission efficiently may cause some difficulty and should definitely be investigated.

Fig. 5. Data Rate vs. Ratio of Signal Power to Noise Spectral Power Density

Table 12. BASELINE TELEMETRY AT 1000 AU

No.	Parameter	Nominal Value
1.	Total Transmitter power (dBm) (40 watts)	46
2.	Efficiency (dB) (electronics and antenna losses)	-9
3.	Transmitting antenna gain (dB) (diameter = 15 m)	62
4.	Space loss (dB) ($\lambda / 4 \pi \mathrm{R})^{2}$	-334
	$\lambda=3.55 \mathrm{~cm}, \mathrm{R}=1000 \mathrm{AU}$	
5.	Receiving antenna gain (dB) (diameter $=100 \mathrm{~m}$)	79
6.	$\text { Total received power (dBm) (} \mathrm{P}_{\mathrm{r}} \text {) }$	-156
7.	Receiver noise spectral density ($\mathrm{dBm} / \mathrm{Hz}$) $\left(\mathrm{N}_{0}\right)$	
	kT with $\mathrm{T}=25 \mathrm{~K}$	-185
	Tracking (if $\mathrm{B}_{\mathrm{L}}=1 \mathrm{~Hz}$ is achievable)	
8.	Carrier power/total power 9dB)	-5
	$\left(100 \mathrm{~B}_{\mathrm{L}} /\left(100 \mathrm{~B}_{\mathrm{L}}+2 \mathrm{R}_{\mathrm{D}}\right)\right.$)	
9.	Carrier power (dBm) ($6 .+8$)	-161
10.	Threshold SNR in $2 \mathrm{~B}_{\mathrm{L}}$ (dB)	20
11.	Loop noise bandwidth (dB) (B_{L})	0
12.	Threshold carrier power (dBm) $(7+10+11)$	-165
13.	Performance margin (dB) (9-12)	4
	Data Channel	
14.	Estimated loss (waveform distortion, bit sync, etc.) (dB)	-2
15.	Data power/total power (AB)*	-2
	$\left(2 R_{D} /\left(100 \mathrm{~B}_{\mathrm{L}}+2 \mathrm{R}_{\mathrm{D}}\right)\right)$	
16.	Data power (dBm) $(6+14+15)$ *	-160
17.	Threshold data power (dBm) $(7+17 \mathrm{a}+17 \mathrm{~b})$	-162
	a. Threshold $\mathrm{P}_{\mathrm{r}} \mathrm{T} / \mathrm{N}_{0}\left(\mathrm{BER}=10^{-4}\right)$	3
	b. Bit rate (dB BPS)	20
18.	Performance margin (dB) (16-17)*	2

*If a non-coherent system must be used each of these values are reduced by approximately 1 dB .

Larger Antennas and Lower Noise Spectral Density
If programs calling for orbiting DSN station are funded, then larger antennas operating at lower noise spectral densitites should become a reality. Because structural problems caused by gravity at the Earth's surface are absent, antennas even as large as 300 m in diameter have been considered. Furthermore, assuming problems associated with cryogenic amplifiers in space can be overcome, current work indicates X -band and Ku-band effective noise temperatures as low as 10 K and 14 K respectively (R. C. Clauss, private communication). These advances would increase $\mathrm{P}_{\mathrm{r}} / \mathrm{N}_{\mathrm{O}}$ by approximately $12-13 \mathrm{~dB}$ making a link at data rates of $2 \mathrm{~kb} / \mathrm{s}$ at 1000 AU and $8 \mathrm{~kb} / \mathrm{s}$ at 500 AU possible. Higher Frequencies

Frequencies in the $K u m b a n d$ could represent a gain in directed power of $5-10 \mathrm{~dB}$ over the X -band baseline, but probably would exhibit noise temperatures 1-2 dB worse (Clauss, ibid) for orbiting receivers. Also, the efficiency of a Ku-band system would probably be somewhat less than that of X-band. Without further study, it is not apparent that dramatic gains could be realized with a Ku-band system.

Frequencies in the optical or infrared potentially offer tremendous gains in directed power. However, the efficiency in coupling the raw power into transmission is not very high, the noise spectral density is much higher than that of X-band, and the sizes of practical antennas are much smaller than those for microwave frequencies. To present these factors more quantitatively, Table 13 gives parameter contributions to P_{r} and N_{0}. We have drawn heavily on Potter et al (1969) and on M. S. Shumate and R. T. Menzies (private communication) to compile this table. We assume an orbiting receiver to eliminate atmospheric transmission losses. Also, we assume demodulation of the optical signal can be accomplished as efficiently as the microwave signal (which is not likely without some development). Even with these assumptions, P_{r} / N_{0} for the optical system is about 8 dB worse than that for X-band with a ground receiver.

Pointing problems also become much more severe for the highly directed optical, infrared systems. Laser radiation at wavelength $10 \mu \mathrm{~m}$ from a 1 m antenna must be pointed to 5×10^{-6} radians accuracy. The corresponding pointing accuracy of the baseline system is 10^{-3} radians.

Table 13. OPTICAL TELEMETRY AT 1000 AU

No.	Parameter	Nominal Value
1.	Total Transmitter power (dBm) (40 watts)	46
2.	Efficiency (dB) (optical pumping, antenna losses, and quantum detection)	-16
$\begin{aligned} & 3 . \\ & 4 . \end{aligned}$	Transmitting antenna gain (dB) (diameter $=1 \mathrm{~m}$) Space loss (dB) $(\lambda / 4 \pi r)^{2}$	110
	$\lambda=10 \mu \mathrm{~m}, \mathrm{r}=1000 \mathrm{AU}$	-405
5.	Receiving antenna gain (dB) (diameter $=3 \mathrm{~m}$)	119
6.	Total Received power (dBm) (P_{r})	-146
7.	Receiver noise spectral density ($\mathrm{dBm} / \mathrm{Hz}$) (N_{0}) (2×10^{-20} watt/ Hz)	-167

Higher Data Rates

This mission may have to accommodate video images from Pluto. The Earth-Pluto separation at the time of the mission will be about 31 AU. The baseline system at 31 AU could handle approximately $10^{5} \mathrm{~b} / \mathrm{s}$. For rates in excess of this, one of the "other option" enhancements would be necessary.

SELECTION OF TELEMETRY OPTION

Table 14 collects the performance capabilities of the various telemetry options. Table 15 shows the proposed data rates in various S/C systems for the different phases of the mission. In both tables the last column lists the product, (data rate) x (range) ${ }^{2}$, as an index of the telemetry capability or requirements.

Looking furst at the last column of Table 15 , it is apparent that the limiting requirement is transmittal of heliopause data if DSN coverage can be provided on 1 y 1% of the time. If DSN scheduling is sufficiently flexible that 33% coverage can be cranked up within a month or so after the heliosphere is detected, then the limiting requirement is transmittal of cruise data (at 1% DSN coverage). For these two limiting cases, the product (data rate) x (range) ${ }^{2}$ is, respectively, $2-40 \times 10^{8}$ and $5-10 \times 10^{8}(\mathrm{~b} / \mathrm{s}) \cdot \mathrm{AU}^{2}$.

Looking now at the last column of Table 14 , to cover the cruise requirement some enhancement over the baseline option will be needed. Either increasing transmitter power to $0.5-1 \mathrm{~kW}$ or going to orbiting DSN stations will be adequate. No real difficulty is seen in providing the increased transmitter power if the orbiting DSN is not available.

If, however, DSN coverage for transmittal of recorded data from the unpredictable heliosphere encounter is constrained to 1% of the time ($8 \mathrm{~h} /$ month), then an orbital DSN station (300-m antenna) will be needed for this phase of the mission, as well as either increased transmitter power or use of K -band.

TELEMETRY OPTIONS

OPTIONS

Baseline ($40 \mathrm{~W}, 100-\mathrm{m}$ receiving antenna, X-band)

More power (0.5-1 kW)
Orbating DSN (300-m antenna)
X-band (10 K noise temperature)
K -band (14 K noise temperature)
Both more power and orbiting DSN X -band
Improvement
Over Baseline,
dB

Data Rate (b/s)			
		At	At
1000 AU	$\underline{500 \mathrm{AU}}$	150 AU	$\underline{\mathrm{At} \mathrm{AU}}$

(Data Rate)
\times (Range)
$(\mathrm{b} / \mathrm{s}) \cdot \mathrm{AU}^{2}$

1×10^{2}	4×10^{2}	4×10^{3}	1×10^{5}	1×10^{8}
1×10^{3}	4×10^{3}	4×10^{4}	1×10^{6}	1×10^{9}

$2 \times 10^{3} \quad 8 \times 10^{3} \quad 9 \times 10^{4} \quad 2 \times 10^{6} \quad 2 \times 10^{9}$
$5 \times 10^{3} \quad 2 \times 10^{4} \quad 2 \times 10^{5} \quad 5 \times 10^{6} \quad 5 \times 10^{9}$

23-28
$3 \times 10^{4} 1.2 \times 10^{5} 1 \times 10^{6}$
3×10^{7}
3×10^{10}

TABLE 15
PROPOSED DATA RATES

Mission Phase	Tele- Communi- cation Range AU	Raw Data	ated Data Rate, Processed Data, Average	Transmitted Data	Fraction of Time Transmitting	$\begin{aligned} & \text { (Data } \\ & \text { irate } \\ & \times(\text { Range })^{2} \\ & \text { b/s } \cdot \mathrm{AU}^{2} \end{aligned}$
Cruise	500	1.2-1.5 $\times 10^{4}$	$2-4 \times 10^{1}$	$2-4 \times 10^{3}$	0.01	$5-10 \times 10^{8}$
Heliopause	$\begin{array}{r} 50- \\ 150 \end{array}$	$1.2-1.5 \times 10^{4}$	$1-2 \times 10^{3}$	$\left\{\begin{array}{l} 1-2 \times 10^{5} \\ 3-7 \times 10^{3} \end{array}\right.$	0.01 0.33	$\begin{aligned} & 2-40 \times 10^{8} \\ & 0.8-15 \times 10^{7} \end{aligned}$
		$1-10^{5}$	104	$\int^{1 \times 10^{5}}$	0.33*	1×10^{8}
Pluto Flyby	~ 31	$\left\{\begin{array}{c} 1-2 \times 10^{5} \\ \left(10^{11}\right. \text { total } \end{array}\right.$	$\begin{aligned} & 3-5 \times 10^{4} \\ & \left(3 \times 10^{10} \text { bits }\right) \end{aligned}$	$\left\{\begin{array}{l} 10^{4} \\ 3 \times 10 \end{array}\right.$	1.00*	3×10^{7}
P1uto Orbiter	~ 31	$1-2 \times 10^{5}$	$3-5 \times 10^{4}$	$\left\{\begin{array}{l} 9-15 \times 10^{4} \\ 3-5 \times 10^{4} \end{array}\right.$	$\begin{aligned} & 0.33 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 9-15 \times 10^{7} \\ & 3-5 \times 10^{7} \end{aligned}$

*To return flyby data in 4 days.

RELATION OF THE MISSION TO SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE

The relation of this mission to the search for extraterrestrial intelligence appears to lie only in its role in development and test of technology for subsequent interstellar missions.

TECHNOLOGY REQUIREMENTS AND PROBLEM AREAS

LIFETIME

A problem area common to all S / C systems for this mission is that of lifetime. The design lifetime of many items of spacecraft equipment is now approaching 7 years. To increase this lifetime to 50 years will be a very difficult engineering task.

These consequences follow:
a) It is proposed that the design lifetime of the S / C for this mission be limited to 20 years, with an extended mission contemplated to a total of 50 years.
b) Quality control and reliability methods, such as failure mode effects and criticality analysis, must be detailed and applied to the elements that may eventually be used in the spacecraft, so as to predict what the failure profile will be for system operating times that are much longer than the test time and extend out to 50 years. One approach is to prepare for design and fabrication from highly controlled materials whose failure modes are completely understood.
c) To the extent that environmental or functional stresses are conceived to cause material migration or failure during a 50 -year period, modeling and accelerated testing of such modes will be needed to verify the 50 -year scale. Even the accelerated tests may require periods of many years.
d) A major engineering effort will be needed to develop devices, circuits, components, and fabrication techniques which, with appropriate design, testing, and quality assurance methods, will assure the lifetime needed.

PROPULSTON AND POWER

The greatest need for subsystem development is clearly in propulsion. Further advance development of NEP is required. Designs are needed to permit higher uranium loadings and higher burnup. This in turn will require better control systems to handle the increased reactivity, including perhaps throw-away control rods. Redundancy must be increased to assure long life and moving parts will need especial attention. Development should also be aimed at reducing system size and mass, improving efficiency, and providing better and simpler thermal control and heat disslpation. Simpler and lighter power conditioning
is needed, as are ion thrusters with longer lifetime or self-repair capability. Among the alternatives to fission NEP, ultralight solar sails and laser sailing look most promising. A study should be undertaken of the feasibility of developing ultralight solar sails (sails sufficiently light so that the solar radiation pressure on the sail and spacecraft system would be greater than the solar gravitational pull) and of the implications such development would have for spacecraft design and mission planning. Similarly, a study should be made of the possibility of developing a high power orbiting laser system together with high temperature spacecraft sails, and of the outer planet and extraplanetary missions that could be carried out with such laser sails.

Looking toward applications further in the future, an antimatter propulsion system appears an exceptionally promising candidate for interstellar missions and would be extremely useful for missions within the solar system. This should not be dismissed as merely "blue sky": matter-antimatter reactions are routinely carried out in particle physics laboratories. The engineering difficulties of obtaining an antimatter propulsion system will be great; containing the antimatter and producing it in quantity will obviously be problems. A study of possible approaches would be worthwhile. (Chapline (1976) has suggested that antimatter could be produced in quantity by the interaction of beams of heavy ions with deuterium/tritium in a fusion reactor). Besides this, a more general study of propulsion possibilities for interstellar flight (see Appendix C) should also be considered.

PROPULSION/SCIENCE INTERFACE

Three kinds of interactions between the propulsion/attitude control system and science measurements deserve attention. They are:

1) Interaction of thrust and attitude control with mass measurements.
2) Interaction of electrical and magnetic fields, primarily from the thrust subsystem, with particles and fields measurements.
3) Interactions of nuclear radiation, primarily from the power subsystem, with phaton measurements.

Interaction of thrust with mass measurements
It is desired to measure the mass of Pluto and of the solar system as a whole through radio tracking observations of the spacecraft accelerations. In practice, this requires that thrust be off during the acceleration observations.

The requirement can be met by temporarily shutting off propulsive thrusting during the Pluto encounter and, if desired, at intervals later on. Since imbalance in attitude control thrusting can also affect the trajectory, attitude control during these periods should preferably be by momentum wheels. The wheels can afterwards be unloaded by attitude-control ion thrusters.

Interaction of thrust subsystem with particles and fields measurements
A variety of electrical and magnetic interference with particles and fields measurements can be generated by the thrust subsystem. The power subsystem can also generate some electrical and magnetic interference. Furthermore, materials evolved from the thrusters can possibly deposit upon critical surfaces.

Thruster interferences have been examined by Sellen (1973), by Parker et al. (1973), and by others. It appears that thruster interferences should be reducible to acceptable levels by proper design, but some advanced development will be needed. Power system interferences are probably simpler to handle. Essentially all the thruster effects disappear when the engines are turned off.

Interaction of power subsystem with photon measurements
Neutrons and gamma rays produced by the reactor can interfere with photon measurements. A reactor that has operated for some time will be highly radioactive even after it is shut down. Also, exposure to neutrons from the reactor will induce radioactivity in other parts of the spacecraft. In the suggested science payload the instruments most sensitive to reactor radiation are the gamma-ray instruments, and, to a lesser degree, the ultraviolet spectrometer.

A very preliminary analysis of reactor interferences has been done. Direct neutron and gamma radiation from the reactor was considered and also neutron-gamma interactions. The latter were found to be of little significance if
the direct radiation is properly handled. Long-lived radioactivity is no problem except possibly for structure or equipment that uses nickel. Expected flux levels per gram of nickel are approximately $0.007 \gamma / \mathrm{cm}^{2}-\mathrm{s}$.

The nuclear reactor design includes neutron and gamma shadow shielding to fully protect electronic equipment from radiation damage. Requirements are defined in terms of total integrated dose. Neutron dose is to be limited to 10^{12} nvt and gamma dose to $10^{6} \mathrm{rad}$. A primary mission time of 20 years is assumed, yielding a LiH neutron shield thickness of 0.9 m and a mercury gamma shield thickness of 2.75 cm (or 2 cm of tungsten). Mass of this shielding is included in the 8500 kg estimate for the propulsion system.

For the science instruments, it is the flux that is important, not total dose. The reactor shadow shield limits the flux level to 1.6×10^{3} neutrons or gammas $/ \mathrm{cm}^{2}$. This is apparently satisfactory for all science sensors except the gamma-ray detectors. They require that flux levels be reduced to 10 neutrons/ $\mathrm{cm}^{2}-\mathrm{s}$ and 0.1 gamma/ $\mathrm{cm}^{2}-\mathrm{s}$. Such reduction is most economically accomplished by local shielding. The gamma ray transient detector should have a shielded area of possibly $1,200 \mathrm{~cm}^{2}(48 \mathrm{~cm} \times 25 \mathrm{~cm})$. Its shielding will include a tungsten thickness of 8.7 cm and a lithium-hydride thickness of 33 cm . The weight of this shielding is approximately 235 kg and is included in the spacecraft mass estimate. It may also be noted that the gamma ray transient detector is probably the lowest-priority science instrument. An alternative to shielding it would be to omit this instrument from the payload. (The gamma ray spectrometer is proposed as an orbiter instrument and need not operate until the orbiter is separated from the NEP mother spacecraft). A detailed Monte Carlo analysis and shield development program will be needed to assure a satisfactory solution of spacecraft interfaces.

TELECOMMUNICATIONS

Microwave vs. Optical Telemetry Systems

Eight years ago JPL made a study of weather-dependent data links in which performance at six wavelengths ranging from S-band to the visible was analyzed (Potter et al., 1969). A similar study for an orbiting DSN (weather-
independent) should determine which wavelengths are the most advantageous. The work of this report indicates X-band or K-band are prime candidates, but a more thorough effort is required that investigates such areas as feasibility of constructing large spaceborne optical antennas, efficiency of power conversion, feasibility of implementing requisite pointing control, and overall costs.

Space Cryogenics

We have assumed cryogenic amplifiers for orbiting DSN stations in order to reach 4-5 K amplifier noise contributions. Work is being done that indicates such performance levels are attainable (R. C. Clauss, private communication; D. A. Bathker, private communication) and certainly should be continued. At the least, future studies for this mission should maintain awareness of this work and probably should sponsor some of it.

Lifetime of Telecommunications Components
The telecommunications component most obviously vulnerable to extended use is the microwave transmitter. Current traveling-wave-tube (TWT) assemblies have demonstrated 11-12 year operating lifetimes (H. K. Detweiler, private communication; also, James et al., 1976) and perhaps their performance over 20-50 year intervals could be simulated. However, the simple expedient measure of carrying $4-5$ replaceable TWT's on the missions might pose a problem since shelf-lifetimes (primarily limited by outgasing) are not known as well as the operating lifetimes. A more attractive solution is use of solid-state transmitters. Projections indicate that by 1985 to 1990 power transistors for X-band and $K u-b a n d$ will deliver $5-10$ watts/device and a few watts/device respectively with lifetimes of $50-100$ years (J. T. Boreham, private communication). Furthermore, with array feed techniques, 30-100 elements could be combined in a near-field Gassegrainian reflector for signal transmission (Boreham, ibid). This means a Ku-band system could probably operate at a power level of $50-200$ watts and an X-band system could likely utilize 0.2 - 1 kW .

Other solid state device components with suitable modular replacement strategies should endure a 50 year mission.

Baseline Enhancement vs. Non-Coherent Communication System

The coherent detection system proposed requires stable phase reference tracking with a closed loop bandwidth of approximately 1 Hz . Of immediate concern is whether tracking with this loop bandwidth will be stable. Moreover, if the tracking is not stable, what work is necessary to implement a non-coherent detection system?

The most obvious factors affecting phase stability are the accelerations of the S / C, the local oscillator on the S / C, and the medium between transmitter and receiver. If the propulsion system is not operating during transmission, the first factor should be negligible. However, the feasibility of putting on board a very stable (short term) local oscillator with a 20-50 year lifetime needs to be studied. Also, the effect of the Earth's atmosphere and the planetary or extraplanetary media on received carrier stability must be determined.

If stability cannot be maintained, then trade-off studies must be performed between providing enhancements to increase $\mathrm{P}_{\mathrm{r}} / \mathrm{N}_{\mathrm{O}}$ and employing non-coherent communication systems.

INFORMATION SYSTEMS

Continued development of the on-board information system capability will be necessary to support control of the reactor, thrusters, and other portions of the propulsion system, to handle the high rates of data acquisition of a fast Pluto flyby, to perform on-board data filtering and compression, etc. Continued rapid development of information system capability to very high levels is assumed, as mentioned above, and this is not considered to be a problem.

THERMAL CONTROL

The new thermal control technology requirement for a mission beyond the solar system launched about $2000 \mathrm{~A} . \mathrm{D}$. involve significant advancements in thermal isolation techniques, in heat transfer capability and in lifetime extension. Extraplanetary space is a natural cryogenic region ($\sim 3 \mathrm{~K}$). Advantage may be taken
of it for passive cooling of detectors in scientific instruments and also for the operation of cryogenic computers. If cryogenic computer systems and instruments can be developed, the gains in reliability, lifetime, and performance can be considered. However, a higher degree of isolation will be required to keep certain components (electronics, fluids) warm in extraplanetary space and to protect the cryogenic experiments after launch near Earth. This latter is especially true if any early near-solar swingby is used to assist escape in the mission. A navigational interest in a 0.1 AU solar swingby would mean a solar input of 100 suns which is beyond any anticipated nearterm capability.

More efficient heat transfer capability from warm sources (e.g., RTG's) to electronics, such as advanced heat pipes or active fluid loops, will be necessary along with long life (20-50 years). The early mission phase also will require high heat rejection capability, especially for the cryogenic experiments and/or a near solar swingby.

NEP imposes new technology requirements such as long-term active heat rejection (heat pipes, noncontaminated radiators), and thermal isolation. NEP also might be used as a heat source for the S/C electronics.

Beyond this, the possibility of an all-cryogenic spacecraft has been suggested by Whitney and Mason (see Appendix C). This may be more appropriate to missions after 2000 but warrants study. Again, there would be a transition necessary from Earth environment (one g plus launch, near solar) to extraplanetary environment (zero g, cryogenic). The extremely low power ($\sim 1 \mathrm{~W}$) requirement for superconducting electronics and the possibility of further miniaturation of the S / C (or packing in more electronics with low heat dissipation requirements) is very attractive. Also looking ahead, the antimatter propulsion system mentioned above would require cryogenic storage of both solid hydrogen and solid antihydrogen using superconducting (cryo) magnets and electrostatic suspension.

Table 16 summarizes the unusual thermal control features of an extraplanetary mission.

TABLE 16

THERMAL CONTROL CHARAC̄TERISTICS OF EXTRAPLANETARY MISSIONS

Baseline Mission

1. Natural environment will be cryogenic
a) Good for cryogenic experiments - can use passive thermal control.
b) Need for transition from near Earth environment to extraplanetary space.
i. Can equipment take slow cooling?
ii. Well insolated near sun. ${ }^{*}+$
iii. Cryogenic control needed near Earth?* \dagger
2. 'NEP
a) Active thermal control - heat pipes - lifetime problems.*
b) Heat source has advantages \& disadvantages for S / C design.

Not Part of Baseline Mission

3. Radioisotope thermal electric generator (RTG) power source provides hot environment to cold S/C
a) Requires high isolation.*
b) Could be used as source of heat for warm S/C.
i. Fluid loop - active devices will wear - lifetime problem.*
ii. Heat pipes.
c) Must provide means of cooling RTG^{\prime} s.
4. Close Solar Swingby ~ 0.1 AU*
a) 100 "suns" is very high thermal input - must isolate better.*
b) Contrasts with later extraplanetary environment: almost no sun.
c) Solar Sail requirements 0.3 AU (11 suns), Super Sail 0.1 AU.*
[^1]
COMPONENTS AND MATERIALS

By far the most important problem in this area is prediction of long-term materials properties from short-term tests. This task encompasses most of the other problems noted. Sufficient time does not exist to generate the required material properties in real time. However, if in the time remaining we can establish the scaling parameters, the required data could be generated in a few years. Hence development of suitable techniques should be initiated.

Another critical problem is obtaining bearings and other moving parts with 50 years lifetime. Effort on this should be started.

Less critical but also desirable are electronic devices that are inherently radiation-resistant and have high life expectancy. DOE has an effort underway on this looking both at semiconductor devices, utilizing amorphous semiconductors and other approaches that do not depend on minority carriers, and at non-semiconductor devices, such as integrated thermionac circuits.

Other special requirements are listed in Table 17.

SCIENCE INSTRUMENTS
Both the problem of radiation compatibility of science instruments with NEP propulsion and the problem of attaining 50-year lifetime have been noted above. Many of the proposed instruments have sensors whose lifetime for even current missions is of concern and whose performance for this mission is at best uncertain. Instruments in this category, such as the spectrometers and radiometers, should have additional detector work performed to insure reasonable-performance.

Calibration of scientific instruments will be very difficult for a 20-50 year mission. Even relatively short term missions like Viking and Voyầger pose serious problems in the area of instrument stability and calibration verification. Assuming that "reliable" 50-year instruments could be built, some means of verifying the various instrument transfer functions are needed. Calibration is probably the most serious problem for making quantitative measurements on a 50-year mission.

The major problems in the development of individual science instruments are 1isted below. These are problems beyond those likely to be encountered and resolved in the normal course of development between now and, say, 1995 or 2000 .

1. Diffusion Phenomena
1.1 Fuses
1.2 Heaters
1.3 Thrusters
1.4 Plume Shields
1.5 RTG's
1.6 Shunt Radiator
2. Sublimation and Erosion Phenomena
2.1 Fuses.
2.2 Heater
2.3 Thrusters
2.4 Plume Shields
2.5 RTG's
2.6 Polymers
2.7 Temperature Control Coatings
2.8 Shunt Radiator
3. Radiation Effects
3.1 Electronic components
3.2 Polymers
3.3 Temperature Control Coatings
3.4 NEP and RTG Degradation
4. Materials Compatibility
4.1 Thrusters
4.2 Heat Pipes
4.3 Polymeric Diaphragms \& Bladders
4.4 Propulsion Feed System
5. Wear and Lubrication
5.5 Bearings
6. Hermetic Sealing and Leak Testing
6.1 Permeation Rates
6.2 Pressure Vessels
7. Long-Term Material Property Prediction from Short-Term Tests
7.1 Diffusion
7.2 Sublimation
7.3 Wear and Lubrication
7.4 Radiation Effects
7.5 Compatibility
7.6 Thermal Effects
8. Size Scale-Up
8.1 Antennae
8.2 Shunt Radiator
8.3 Pressure Vessels
9. Thermal Effects on Material Properties
9.1 Strength
9.2 Creep and Stress Rupture

Neutral Gas Mass Spectrometer
Designing a mass spectrometer to measure the concentration of light gas species in the interstellar medium poses difficult questions of sensitivity. Current estimates of H concentration in the interstellar medium near the solar system are $10^{-1}-10^{-2}$ atom $/ \mathrm{cm}^{3}$ and of He contraction about 10^{-2} atom $/ \mathrm{cm}^{3}$ (Bertaux and Blamont, 1971; Thomas and Krassna, 1974; Weller and Meier 1974; Freeman et al., 1977; R. Carlson, private communication; Fahr et al., 1977; Ajello, 1977; Thomas, 1978). On the basis of current estimates of cosmic relative abundances the corresponding concentration of C, N, O is 10^{-5} to $10^{-4} \mathrm{atom} / \mathrm{cm}^{3}$ and of $\mathrm{Li}, \mathrm{Be}, \mathrm{B}$ about 10^{-10} atom $/ \mathrm{cm}^{3}$.

These concentrations are a long way beyond mass spectrometer present capabilities, and it is not clear that adequate capabilities can be attained by 2000. Even measuring H and $H e$ at 10^{-2} to H^{-1} atom/cm ${ }^{3}$ will require a considerable development effort. Included in the effort should be:
a) Collection: Means of collecting incoming gas over a substantial frontal area and possibly of storing it to increase the input rate and so the S / N ratio during each period of analysis.
b) Source: Development of ionization sources of high efficiency and satisfying the other requirements.
c) Lifetime: Attaining a 50-year lifetime will be a major problem, especially for the source.
d) S / N : Attaining a satisfactory S / N ratio will be a difficult problem in design of the whole instrument.
Thus, if a mass spectrometer suitable for the mission is to be provided, considerable advanced development work will be needed.

Camera Field of View vs. Resolution

Stellar parallax measurements present a problem in camera design because of the limited number of pixels/frame in conventional and planned spacecraft cameras. For example, one would like to utilize the diffraction-limited resolution of the objective. For a 1-m objective, this is $0!12$. To find the center of the circle of confusion accurately, one would like about 6 measurements across it, or, for a 1-m objective, a pizel slze of about 0! 02 or 0.1 prad. (Note that this also implies fine-pointing stability similar to that for earth-
orbiting telescopes). But according to James et al. (1976) the number of elements per frame expected in solid state cameras by the year 2000 is 10^{6} for a single chip and 10^{7} for a mosaic. With 10^{7} elements, or 3000×3000, the field of view for the case mentioned would be $3000 \times 0.02=1$ minute of arc. At least five or six stars need to be in the field for a parallax measurement. Thus, a density of 5 stars per square minute or 18,000 stars per square degree is needed. To obtain this probably requires detecting stars to about magnitude 26 near the galactic poles and to magnitude 23 near galactic latitude 45°. This would be very difficult with a 1-m telescope.

A number of approaches could be considered, among them:
a) Limit parallax observations to those portions of the sky having high local stellar densities.
b) Use film.
c) Find and develop some other technique for providing for more pixels per frame than CCD's and vidicons.
d) Sense the total irradiation over the field and develop a masking technique to detect relative star positions. An example would be the method proposed for the Space Telescope Astrometric Multiplexing Area Scanner (Wissinger and McCarthy, 1976).
e) Use individual highly accurate single-star sensors, like the Fine Guiding Sensors to be used in Space Telescope astrometry (Wissinger, 1976).

Other possibilities doubtless exist. A study will be needed to determine which approaches are most promising and development effort may be needed to bring them to the stage needed for project initiation.

The problems of imaging Pluto, it may be noted, are rather different than those of star imagery. For a fast flyby, the very low light intensity at Pluto plus the high angular rate make a smear a problem. Different optical trains may be needed for stellar parallax, for which resolution must be emphasized, and for Pluto flyby, for which image brightness will be critical. Besides this, image motion compensation may be necessary at Pluto; it may be possible to provide this electronically with CCD's. It is expected that these needs can be met by the normal process of development between now and 1995.

ACKNOWLEDGEMENT

Participants in this study are listed in Appendix A, contributors to the science objectives and requirements in Appendix B. Brooks Morris supplied valuable comments on quality assurance and reliability.

REFERENCES

J. M. Ajello (1977), "An interpretation of Mariner $10 \mathrm{He}(584 \mathrm{~A}$) and H (1216 A) Interplanetary emission observations", submitted to Astrophysical Journal.
J. L. Bertaux and J. E. Blamont (1971), "Evidence for a source of an extraterrestrial hydrogen Lyman Alpha emission", Astron. and Astrophys., 11, 200-217.
R. W. Bussard (1960), "Galactic matter and interstẻ̉lar flight", Astronautica Acta, 6, 179-194.
G. Chapline (1976), "Antimatter breeders?", Preprint UCRL-78319, Lawrence Livermore Laboratory, Livermore, CA.
H. J. Fahr, G. Lay, and C. Wulf-Mathies (1977), "Derivation of interstellar hydrogen parameters from an EUV rocket observation", Preprint, COSPAR.
R. L. Forward (1962), "Pluto - the gateway to the stars", Missiles and Rockets, 10, 26-28.
R. L. Forward (1975), "Advanced propulsion concepts study. Comparative study of solar electric propulsion and laser electric propulsion", Hughes Aircraft Co. D3020, Final Report to Jet Propulsion Laboratory, JPL Contract 954085.
R. L. Forward (1976), "A programme for interstellar exploration", Jour. British Interplanetary Society, 29, 611-632.
J. Freeman, F. Paresce, S. Bowyer, M. Lampton, R. Stern, and B. Margon (1977), "The local interstellar helium density", Astrophys. Jour., 215, L83-L86.
R. L. Garwin (1958), "Solar sailing - A practical method of propulsion within the solar system", Jet Propulsion, 28, 188-190.
J. N. James, R. R. McDonald, A. R. Hibbs, W. M. Whitney, R. J. Mackin, Jr., A. J. Spear, D. F. Dipprey, H. P. Davis, L. D. Runkle, J. Maserjian, R. A. Boundy, K. M. Dawson, N. R. Haynes, and D. W. Lewis (1976), A Forecast of Space Technology 1980-2000. SP-387, NASA, Washington, D.C. Also, Outlook for Space 1980-2000. A Forecast of Space Technology, JPL Doc. 1060-42.
J. W. Layland (1970), JPL Space Programs Summary 37-64, II, 41.
W. C. Lindsey (1972), Synchronization Systems in Communication and Control, Prentice-Hal1, Englewood Cliffs, N. J.
E. F. Mallove, R. L. Forward, and Z. Paprotney (1977), "Bibliography of interstellar travel and communication - April 1977 update", Hughes Aircraft Co. Research Rpt. 512, Malibu, California.
A. R. Martin (1972), "Some limitations of the interstellar ramjet", Spaceflight, 14, 21-25.
A. R. Martin (1973), "Magnetic intake Iimitations on interstellar ramjets", Astronautica Acta, 18, 1-10.
G. Marx (1966), "Interstellar vehicle propelled by terrestrial laser beam", Nature, 211, 22-23.
P. F. Massier (1977a), "Basic research in advanced energy processes", in JPL Publ. 77-5, 56-57.

P: F. Massier (1977b), "Matter-Antimatter", Symposium on New Horizons in Propulsion, JPL, Pasadena, California.
W. E. Moeckel (1972), "Propulsion by impinging laser beams", Jour. Spacecraft and Rockets, 9, 942-944.
D. L. Morgan, Jr. (1975), "Rocket thrust from antimatter-matter annihilation. A preliminary study", Contractor report CC-571769 to JPL.
D. L. Morgan (1976), "Coupling of annihilation energy to a high momentum exhaust in a matter-antimatter annihilation rocket", Contractor report to JPL, P.O. JS-651111.
D. D. Papailiou, E. J. Roschke, A. A. Vetter, J. S. Zmuidzinas, T. M. Hsieh, and D. F. Dipprey (1975), "Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange, thermonuclear fusion', JPL Tech. Memo. 33-722.
R. H. Parker, J. M. Ajello, A. Bratenah1, D. R. Clay and B. Tsurutani (1973), "A study of the compatibility of science instruments with the Solar Electric Propulsion Space Vehicle", JPL Technical Memo. 33-641.
E. V. Pawlik and W. M. Phillips (1977), "A nuclear electric propulsion vehicle for planetary exploration", Jour. Spacecraft and Rockets, 14, 518-525.
P. D. Potter, M. S. Shumate, C. T. Stelzried; and W. H. Wells (1969), "A study of weather-dependent data links for deep-space applications", JPL Tech. Report 32-1392.
J. D. G. Rather, G. W. Zeiders, and R. K. Vogelsang (1976), Laser Drıven Light Sails -- An Examination of the Possibilities for Interstellar Probes and Other Missions, W. J. Schafer Associates Rpt. WJSA-76-26 to JPL, JPL P.O. EF-644778, Redondo Beach, CA.
J. M. Sellen, Jr. (1973), "Electric propulsion interactive effects with spacecraft science payloads", AIAA Paper 73-559.
A. B. Sergeyevsky (1971), "Early solar system escape missions - An epilogue to the grand tours", AAS Preprint 71-383. Presented to AAS/AIAA Astrodynamics Specialist Conference.
D. F. Spencer and L. D. Jaffe (1962), "Feasibility of interstellar travel", Astronautica Acta, 9, 49-58.
J. W. Stearns (1977), "Nuclear electric power systems: Mission applications and technology comparisons", JPL Document $760-176$ (internal document).
G. E. Thomas and R. F. Krassna (1974), "OGO-5 measurements of the Lyman Alpha sky background in 1970 and $1971^{\prime \prime}$, Astron. and Astrophysics, 30, 223-232.
G. E. Thomas (1978), "The interstellar wind and its influence on the interplanetary environment", accepted for publication, Annual Reviews of Earth and Planetary Science.
A. J. Viterbi (1967), "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm", IEEE Transactions on Information Theory, IT-13, 260.
C. S. Weller and R. R. Meier (1974), "Observations of helium in the anterplanetary/interstellar wind: The solar-wake effect", Astrophysical Jour., 193, 471-476.
A. B. Wissinger (1976), "Space Telescope. Phase B Definition Study. Final Report", Vol II-B, "Optical Telescope Assembly, Part 4, Fine Guidance Sensor", Perkin Elmer Corp. Report ER-315 to NASA Marshall Space Flight Center.
A. B. Wissinger and D. J. McCarthy (1976), "Space Telescope Phase B Definition Study. Final Report", Vol. II-A, "Science Instruments. Astrometer", Perkin Elmer Corp. Report ER-320(A) to NASA Marshall Space Flight Center.
J. M. Wozencraft, and I. M. Jacobs (1965), Principles of Communication Engineering, Wiley, New York.

APPENDIX A

STUDY PARTICIPANTS

Participants in this study and their technical areas were as follows:

Systems

Paul Weissman
Harry N. Norton

Space Sciences

Leonard D. Jaffe (Study Leader)

Telecommunications
Richard Lipes

Contro1 \& Energy Conversion

Jack W. Stearns
Dennis Fitzgerald
William C. Estabrook

Applied Mechanics
Leonard D. Stimpson
Joseph C. Lewis
Robert A. Boundy
Charles H. Savage

Information Systems
Charles V. Ivie

APPENDIX B

SCIENCE CONTRIBUTORS

The following individuals contributed to the formulation of scientific objectives, requirements and instrument needs during the course of this study:

Jay Bergstrah1
Robert Carlson
Marshall Cohen (CaItech)
Richard W. Davies
Frank Estabrook
Fraser P. Fanale
Bruce A. Goldberg
Richard M. Goldstein
Samuel Gulkis.
John Huchra (SAO)
Wesley Huntress, Jr. Charles V. Ivie
Allan Jacobson
Leonard D. Jaffe
Walter Jaffe (NRAO)
Torrence V. Johnson
Thomas B. H. Kuiper
Raymond A. Lyttleton (Cambridge University)
Robert J. Mackin
Michael C. Malin
Dennis L. Matson
William G. Melbourne
Albert E. Metzger
Alan Moffett (Caltech)
Marcia M. Neugebauer
Ray L. Newburn
Richard H. Parker
Roger J. Phillips
Guenter Riegler
R. Stephen Saunders

Edward J. Smith
Conway W. Snyder
Bruce Tsurutani
Glenn J. Veeder
Hugo Wahlquist
Paul R. Weissman
Jerome L. Wright

APPENDIX C

THOUGHTS FOR A STAR MISSION STUDY

The primary problem in a mission to another star is still propulsion: obtaining enough velocity to bring the mission duration down enough to be of much interest. The heliocentric escape velocity of about $100 \mathrm{~km} / \mathrm{s}$ believed feasible for a year 2000 launch, as described in this study, is too low by two orders of magnitude.

PROPULSION

A most interesting approach, discussed recently in Papailou in James et al. (1976) and by Morgan (1975, 1976) is an antimatter propulsion system. The antimatter is solid (frozen antihydrogen), suspended electrostatically or electromagnetically. Antimatter is today produced in small quantities in particle physics laboratories. Chapline (1976) has suggested that much larger quantities could be produced in fusion reactors utilizing heavy-ion beams. For spacecraft propulsion, antimatter-matter reactions have the great advantage over fission and fusion that no critical mass, temperature, or reaction containment time is required; the propellants react spontaneously. (They are "hypergolic"). To store the antimatter (antihydrogen) it would be frozen and suspended electrostatically or electromagnetically. Attainable velocities are estimated at least an order of magnitude greater than for fission NEP.

Spencer and Jaffe (1962) showed that multistage fission or fusion systems can theoretically attain a good fraction of the speed of light. To do this, the products of the nuclear reaction should be used as the propellants and the burnup fraction must be high. The latter requirement may imply that fuel reprocessing must be done aboard the vehicle.

The mass of fusion propulsion systems, accorđing to James et al. (1976) is expected to be much greater than that of fission systems. As this study shows, the spacecraft velocity attainable with fusion, for moderate payloads, is likely to be only a little greater than for fission.

CRYOGENIC SPACECRAFT
P. V. Mason (private communication, 1975) has discussed the advantages for extraplanetary or interstellar flight of a cryogenic spacecraft. The following is extracted from his memorandum:
"If one is to justify the cost of providing a cryogenic environment, one must perform a number of functions. The logical extension of this is to do all functions cryogenically. Recently William Whitney suggested that an ideal mission for such a spacecraft would be an ultraplanetary or interstellar voyager. Since the background of space is at about 3 Kelvin, the spacecraft would approach this temperature at great distances from the Sun using only passive radiation (this assumes that heat sources aboard are kept at a very low level). Therefore, I suggest that we make the most optimistic assumptions about low temperature phenomena in the year 2000, and try to come up with a spacecraft which will be far out in design, as well as in mission. Make the following assumptions:

1. The mission objective will be to make measurements in ultraplanetary space for a period of 10 years.
2. The spacecraft can be kept at a temperature not greater than 20 Kelvin merely by passive radiation.
3. Superconductors with critical temperatures above 20 Kelvin will be available. A11 known superconducting phenomena will be exhibited by these superconductors (e.g., persistent current, Josephson effect, quantization of flux, etc.).
4. All functions aboard the spacecraft are to be performed at 20 Kelvin or below.

I have been able to think of the following functions:
I. SENSING
A. Magnetic Field

Magnetic fields in interstellar space are estimated to be about 10^{-6} Gauss. The Josephson-Junction magnetometer will be ideal for measuring the absolute value and fluctuations in this field.
B. High Energy Particles

Superconducting thin films have been used as alpha-particle detectors. We assume that by 2000 A.D. superconducting devices will be able to measure a wide variety of energetic particles. Superconducting magnets will be used to analyze particle energies.
C. Microwave and Infrared Radiation

It is probable that by 2000 A.D. Josephson Junction detectors will be superior to any other device in the microwave and infrared regions.

II. SPACECRAFT ANGULAR POSITION DETECTION

We will navigate by the visible radiation from the fixed stars, especially our Sun. We assume that a useful optical sensor will be feasible using superconductive phenomena. Alternatively, a Josephson Junction array of narrow beam width, tuned to an Earth-based microwave beacon could provide pointing information.
III. DATA PROCESSING AND OTHER ELECTRONICS

Josephson Junction computers are already being built. It takes very little imagination to assume that all electronic and data processing, sensor excitation and amplification and housekeeping functions aboard our spacecraft will be done this way.
IV. DATA TRANSMISSION

Here we have to take a big leap. Josephson Junction devices can now radiate about one-billionth of a watt each. Since we need at least one watt to transmit data back to Earth, we must assume that we can form an array of 10^{+9} elements which will radiate coherently. We will also assume that these will be arranged to give a very narrow beam width. Perhaps it could even be the same array used for pointing information, operating in a time-shared mode.
V. SPACECRAFT POINTING

We can carry no consumables to point the spacecraft--or can we? If we can't, the only source of torque available is the interstellar magnetic field. We will point the spacecraft by superconducting coils interacting with the field. This means that all other field sources will have to be shielded with superconducting shields.

It may be that the disturbance torques in interstellar space are so small that a very modest ration of consumables would provide sufficient torque for a reasonable lifetime, say 100 years.

Can anyone suggest a way of emitting equal numbers of positive and negative charged particles at high speed, given that we are to consume little power, and are to operate under 20 Kelvin? These could be used for both attitude control and propulsion.
VI. POWER

We must have a watt to radiate back to Earth. All other functions can be assumed to consume the same amount. Where are we to get our power?

First try--we assume that we can store our energy in the magnetic field of a superconducting coil. Fields of one mega-Gauss will certainly be feasible by this time. Assuming a volume of one cubic meter, we can store 4×10^{9} joules.

This will be enough for a lifetime of 60 years.
If this is unsatisfactory, the only alternate I can think of is a Radio Isotope Thermal Generator. Unfortunately, this violates our ground rule of no operation above 20 Kelvin and gives us thermal power of 20 watts to radiate. If this is not to warm the rest of the spacecraft unduly, it will have to be placed at a distance of (TBD) meters away. (No doubt we will allow it to unreel itself on a tape rule extension after achieving our interstellar trajectory.) We will also use panels of TBD square meters to radiate the power at a temperature of TBD."

LOCATING PLANETS ORBITING ANOTHER STAR
Probably the most important scientific objective for a mission to another star here would be the discovery of planets orbiting it. What might we expect of a spacecraft under such circumstances?

1) As soon as the vehicle is close enough to permit optical detection techniques to function, a search must begin for planets. Remember, at this point we don't even know the orientation of the ecliptic planet for the system in question. The vehicle must search the region around the primary for objects that
a) exhibit large motion terms with respect to the background stars and
b) have spectral properties that are characteristic of reflecting bodies rather than self luminous ones. When one considers that several thousand bright points (mostly background stars) will be visable in the field of view and that at most only about a dozen of these can be reasonably expected to be planets, the magnitude of the problem becomes apparent.

Some means of keeping track of all these candidate planets or some technique for comprehensive spectral analysis is in order. Probably a combination of these methods will prove to be the most effective.

Consider the following scenario. When the vehicle $1 s$ about 50 AU from the star, a region of space abont 10 or 15 AU in radius is observed. Here the radius referred to is centered at the target star. This corresponds to a total field of interest that is about 10 to 15 degrees in solid angle.

Each point of light (star, maybe planet) must be investigated by spectrographic analysis and the positions of each candidate object recorded for future use. As the vehicle plunges deeper into the system, parallax produced by its
own motion and motion of the planets in their orbits will change their apparent position relative to the background stars. By an iterative process, this technique should locate several of the planets in the system.

Once their positions are known then the onboard computer must compute the orbital parameters for the objects that have been located. This will result in, among other things, the identification of the ecliptic plane. This plane can now be searched for additional planets.

Now that we know where all of the planets in the system may be found, a gross assumption, we can settle down to a search for bodies that might harbor Iife.

If we know the total thermal output of the star, and for Barnard we do, we can compute the range of distances where black body equilibrium temperature ranges between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. This is where the search for life begins.

If one or more of our planets falls between these boundaries of fire and ice, we might expect the vehicle to compute a trajectory that would permit either a flyby or even an orbital encounter with the planet. Beyond observation of the planet from this orbit, anything that can be discussed from this point on moves rapidly out of the range of science and into science fiction and as such is outside the scope of this report.

APPENDIX D

SOLAR SYSTEM BALLISTIC ESCAPE TRAJECTORIES

The listings which follow give distance (RAD) in astronomical units and velocity (VEL) in km / s for ballistic escape trajectories with perihelia (Q) of $0.1,0.3,0.5,1.0,2.0$, and 5.2 AU , and hyperbolic excess velocities (V_{∞}) of 0., 1., 5., 10., 20., 30., 40., 50., and $60 \mathrm{~km} / \mathrm{s}$. For each V_{∞} output is given at 0.2 year intervals for time (T) less than 10 years after perihelion, and one year intervals for time between 10 and 60 years after perihelion.

For higher V_{∞} and long times, the distance (RAD) can be scaled as proportional to V_{∞} and the velocity VEL V_{∞}.

	V－INFINITY＝		． $0 \mathrm{~km} / \mathrm{S}$											
	$T-Y_{R S}$	$\begin{gathered} Q \\ R A D \end{gathered}$	$.1 \text { AU }$	$\begin{gathered} 0 \\ \operatorname{RAD} \end{gathered}$	． 3 A！ VEL	$\begin{gathered} n \\ \text { PAD } \end{gathered}$	$.5 \mathrm{nU}$	$\begin{gathered} \therefore \\ \operatorname{RAD} \end{gathered}$	$\begin{aligned} & A \\| 1 \\ & V F_{L} \end{aligned}$	${ }_{o A n}^{0}=2.1$	$\begin{aligned} & \text { AII } \\ & \text { VEI. } \end{aligned}$	${ }_{\text {OAD }}^{n}=5$	$U_{V F 1}$	
	． 00	． 1000	133.2018	． 3 n00	76． 9041	．50nn	50．5¢аб	$1.00 n 0$	49．1031	2．nnon	20．7047	5.20 nn	19．4747	
	． 20	1.8279	31.1552	1.5749	32.5553	1．57ヶ2	23．5R＞0	1.5605	＜3．710n	P．1857	PR．4013	5.92 Cl	1R．＂nns	
	． 40	？． 9552	24.5029	2．783？	25．24A4	P．6474	25．9175	2.4411	96．9507	2．6430	25．0n51	5.2151	10.9736	
	． 60	3.9016	21.3250	3．7226	21.8315	3.5666	22.3038	3.2875	93．0314	3.9751	2x．4559	5.15544	10.0×58	
	． 80	4.7466	19.3339	4.563 A	19.7172	4.3096	？n．0R18	4．077A	2n．R50n	3.8465	21．4769	5.6410	17．7297	
	1.00	5.5233	17.9270	5.3381	18.2312	5．1986	1月．5p77	4.8107	12.186 G	4.4730	10.0149	$5.071 n$	17．9041	
	1.20	6.2496	16.8493	6.0627	17.1071	5.8995	17．356a	5.5216	17．0ア5号	5.09935	19.6577	6．1＊58	17．nn5？	
	1.40	6.9365	15．903？	6.7483	15．？14a	6.5723	15.4304	6．1904	16．0アロ7	5.7017	17．8434	6．upas	1R．f．al	
	1.60	7.5914	15.2879	7.4021	15．4R？1	7.2240	15．671A	6．P31？	16.1151	6.9097	16．7015	6．74fa	1F．3ing	
	1.80	8.2195	14.6032	8.0294	14．8551	7．8405	15.0244	7.44 Pn	15.4344	6.9707	1F．7R07	7．nR×1	95．asto	
	2.00	ค． 2247	14.1794	R．6330	14.3357	R．4526	14.4981	R．04\％ 0	14.9517	7.4345	15．4408	7.4341	15．1447	
	2.20	9.4100	13.7313	Q． 218 K	13．Rフィ3	O．n×6s	14.0125	8．6P14	14.3456	7．0854	$14.9 n 50$	7.7967	f15．ne5s	
	2.40	9.9779	13.3349	－． 786 n	13.4650	9．fnn＞	12．503n	a．trib	12．0nn\％	9.58 \％	14.4975	R．967n	910．7785	
	2.60	10.5302	1？．9805	1 C .3378	1×1077	10.1535	17．2191	9．720i．	13.5043	9．05n7	14．0n1？	R．5457	pritunon	
	2.80	11.0584	12．66n9	10.8757	17.7796	10．6ank	17．8P97	10．pfipu	13.1487	9．5iga	13．6183	R．a＞a，	1110 nnth	
	3.00	11.5940	12.3706	11.4010	13.4740	$11.215 ?$	12．577a	10.7835	1？．8つ71	10．n7＞0	13.9719	9．71＊0	9x．anon	
	3.20	12.1081	$1 ? .1052$	11.9148	$12.20{ }^{1} n$	11.7983	12.9096	11.9076	19．5310	in．56af	13．9563	9.7 918	17．との天3	
	3.40 3.60 3.80	12.6115 $13.105 ?$	11.8611	12.4179	11.953 ？	17.2300	19．n44？	11.7085	12．9655	11．05975	12．657？	in．nana	9x．3ann	
	3.60	$13.105 ?$	11.6355	12.9114	11.79 ¢	12.7939	11.8 Raf	17．7840	12．019？	11.5371	$13.4 n 11$	10．agn5	12．nt1s	
	3.80 4.00	13.5898 14.0660	11.4262	13.3958	11.5087	13．2n7R	11．5anx	12：7657	11．7807	12．nnan	12.1550	10．07nn	19.7759	
	4.20	14．5343	11.0487	14．339	11.10314	14．1519	11．3871	13.2309 13.7051	11.6765 11.3781	12.4775 19.9312	11.9369 11.7135	$11.257 n$ 11.8470	19.5593 10.7105	
	$4.4 n$	14.9952	17.8776	14．ROOR	1 n .94 RA	14．6115	11.0195	14.1637	11．109	13．38＞5	11.5144	12．nสス7	19.1405	
$\stackrel{\infty}{\sim}$	4.60	15.4492	10.7165	15.2544	10.7847	15．745n	10．85？	14.6156	11．0170	13．8Р75	11.3276	12．419n		
	4.80	15.8967	1 n .5646	15.7017	10.6307	$15.512 n$	10.6048	15.0612	10．8537	14． 356 F	11.1519	12．anak	11.7739 L	
	5.00	16.3380	10.4210	16.1420	1n．4R3A	15.9529	10．546n	15．50n7	1n．fara	14．7001	1n．0rk？	13.1844	11．ann5 0	
	5.20	16.7734	10.2848	16.5788	10．345？	16．3879	$10.4 n 51$	15.0×44	10．55＞1	15．198 ${ }^{\text {a }}$	in．roak	12．554\％	11.4359	
	5.40	17.2033	10.1555	17．0080	10．？177	16．9175	10.2714	16.3697	1n．4131	15．5514	10.6813	13．0430	11．38n9	
	5.60	17.6279	10.0325	17.4325	10.0885	17．2417	1 n .144 ？	16.7850	1n．pain	15．9607	1n．5un5	14．017 ${ }^{\text {1 }}$	11.1718	
	5.80	18.0475	9.9152	17．852n	0.9603	17．6F10	10.0231	17．0341	17.1553	15．78311	10．4n65	14．fala	10．08ロ号	
	6.00	18.4623	9.8031	18.2667	9．8555	19.0755	0.00775	17.6176	10.0354	16.7095	$1 \mathrm{n} \cdot \mathrm{P79n}$	15．0624	10．pesa	
	6.20 6.40	18.8725 19.2784	9.6961 9.5934	18．6758	9．7467	19.4954	$9.797 n$	1R．nP6G	0.0979	17.1975	$1 \mathrm{n} .157 ?$	$15.43>8$	10．7nッ？	
	6.40 6.60	19.2784 19.6800	9.5934 9.4950	19.0825 19.4841	0.6425 0.5426	18.8910 10.2023	9.6013 0.5099	18.4812 18.8317	a． 8114 $0.7 n 65$	17.5987 17.095%	$1 n .0440$ 0.9096	$15.08 n 9$ 16.1659	1n．fnf 10.4765	
	6．80	20.0776	9.4005	19.9816	0.44 AR	10.5807	0.44927	18.8317 $10 . p p 83$					1n．4765 in． 2 man	
	7.00	20.4713	9.3097	20．275？	0.3545	2n．0931	a．309？	19．f？io	9．5naz	18．7777	Q．73n5	ifigan	in．oaas	
	7.20	20.8612	9.2223	20.6651	0.2659	？ n .47 Pa	$9.3 n 93$	20.0100	0.4154	10．153A	O．fア刀t	17.9477	10．9194	
	7.40	21.2476	9.1380	21.0514	？．1805	pn． m an	9．2ア2R	20.3055	a．3ア7n	19.5461	9.5275	17．6043	10．nアn2	
	7.60	21.6305	9．0568	21.4343	0.0082	21.2417	9．1393	20.7775	$9.04{ }^{\text {a }}$ 8	19．035\％	0.4×64	17．0589	n．nxof	
	7.80	22.0101	${ }^{8.9784}$	21．A138	9.0187	21.6911	9.1588	21．1569	9．1578	20． 3014	9．34Af	18．711？	0.811×5	
	8.00	22.3864	8.9026	$22.190 n$	8.9419	21.9073	8．gain	P1．5318	9．0．7775	20．674 ${ }^{\text {\％}}$	9.7630	IR．fitif	－．Pan	
	8.20	22.7596	8． 8293	22.563 ？	8.8676	22．3703	8．an5s	21.904 ？	a．0กกก	21．044	9．1R＞1	10．ntnn	0．finna	
	8.40	23.1298	R． 7583	22.9333	8.7958	22．74n3	R．A33n	29.9737	A．0351	21.4114	$9.1 n 3 n$	10． 3564	$0.974 n$	
	8.60	23.4971	R． 6896	23.3005	R．7262	$23.1 n 74$	R．7626	22．6473	A．R5P5	21.7757	9．nつks	10．70na	0.4 ann	
	8.80	23.8615	R． 6230	23.6649	R．6588	23.4717	8． 6043	23.0040	A．7aアオ	23．137\％	8.9575	2n．0434	0.43895	
	9.00	24.2232	8．5584	24.0265	8.5934	23．873？	R．6PR！	23． 3650	R．7141	23．496？	A．gans	20．3941	0.3906	
	9.20 9.40	24.5822 24,9386	8.4957 8.4347	24.3855 24.7419	8.5299 8.4682	24.1921 24.5484	A． 5630	23：7234	9．64R1	22．A5p6	R．8113	30.7390	$0.353 n$	
	9.40 9.60	24．9386	8.4347 8.3755	24.7419 25.0957	8.4682 8.40 BJ	24.5484 24.9721	R．5615 8.4400	24.0793 24.4326	R．5R39 R． 5216	23.7064 23.5570	A．7439 8.6784		0.1787 0.1 0.1	
	9.80	25.6440	8.3179	25.4471	8.3500	25.2534	B．3A20	24.7835	8．4611	23．907n	R．6148	21．7アP4	0.7364	
	10.00	25．9931	8.2619	25.7962	8.2934	25.6024	A．3247	25．132n	A．40？2	24.2538	A． 5530	？2．060n	A． 6 ¢82	

V－INFINITY $=1.0 \mathrm{KM} / \mathrm{S}$

T－YRS	$\begin{gathered} \therefore= \\ \text { RAD } \end{gathered}$	$.1 \text { AU }$	$\begin{gathered} \therefore= \\ \text { RAD } \end{gathered}$	nu VEL
． 00	.1000	133．2050	－30กの	76．9103
． 20	1.8283	\％1．1677	1．8745	32．5663
． 40	2．956？	24.5189	2.7847	25.3633
． 60	3.9034	21.3435	3.7245	21.8490
． 80	4.7492	10.3543	4.5665	19.7367
1.00	5.5269	17.9450	5.3417	18．2595
1.20	6.2542	16.8728	6.7677	17．1270
1.40	6.9421	16.0181	6.7530	16．P390
1.60	7．598．1	15．313月	7．4n8a	15．5n74
1.80	R． 2273	$14.719 ?$	R．037）	14.8915
2．0n	8.8337	14.2074	A．6427	14.36 .96
$2 \cdot 20$	a． 4202	13.7603	9．2アス7	13．9015
2.40	9.9893	13.3647	9．7975	17．494\％
2.60	10.5429	13.0111	10.3506	17.1307
$2 \cdot 80$	11.0925	13.6973	10．8898	17.8034
3.00	11.6095	12．4728	11.4165	13.5065
3.20	12.1249	1 1．13An	11.0316	12.2353
3.40	12．6297	11.8946	12．4369	11．986？
3.60	13.1249	11.6697	12.931 n	11.7542
3.80	13.6109	11.4610	13.4160	11.543 n
4.00	14.0886	11.2 ¢66	13.8944	11.3444
4.20	14.5584	11.0847	14.3640	11.1590
4.40	15．0209	$10.914 ?$	14.8263	10．985n
4.60	15.4765	10.7537	15.2817	10.8214
4.80	15.9255	10.6023	15.7306	20．6672
5.00	16.3684	10.4592	16.1734	10．5p15
5.20	16.8055	10.3236	16.6103	10.3835
5.40	17.2370	10.1947	17.0417	10.25 .94
5.60	17.6633	10.0732	17.4670	10.1278
5.80	19.0846	9.9553	17.8891	10.0030
6.00	18.5011	9.8438	19.3055	9．8957
6.20	18．9131	9．7371	18．7174	0．7873
6.40	19.3206	9． 6349	19.1240	9．6R36
6.60	19.7240	9．5370	19.5287	9．584？
6.80	20.1234	9.4429	19．0275	9.4887
7.00	20.5189	9.3525	20．7229	9.3970
7.20	20.9107	0.2655	20.7146	a．3087
7.40	21.2989	9.1816	21．102R	a．2．37
7.60	21.6937	Q． 1008	21.4875	9．1419
7.80	22．0651	9.0277	21．9688	0.0627
R． 00	22.4434	8． 9473	22.3470	A．98f？
8.20	22．8185	R． 8744	22．6221	R．9124
8.40	23.1906	R． 80.38	2？．9941	R．8409
A． 60	23.5598	A． 7355	23.3633	R． 7717
8.80	23.9262	8． 6692	23.7296	8．7046
9.00	24．2898	8． 6050	24．093？	R．6395
9.20	24.6508	A． 5426	24．4549	R． 5764
9.40	25．0092	8.4820	24．8125	8.5151
9.60	25．3651	8.4231	25.1684	R． 4555
9.80	25．7186	8.3658	25．5218	R． 3976
10.00	26，0697	8.3102	25．1728	R． 3412

V－INFINITY $=1.0 \mathrm{kM} / \mathrm{S}$

	T－YRS	$\underset{R A D}{Q}=$	AU VEL	$\begin{gathered} Q \\ \text { RAD } \end{gathered}$	$A U$ VEL	$\underset{\operatorname{RAn}}{ }=$	A VEL	$\begin{gathered} Q= \\ \text { RAN } \end{gathered}$	All VFL	$\begin{gathered} \theta= \\ 0 A D \end{gathered}$	$\begin{aligned} & \text { A!! } \\ & \text { VF! } \end{aligned}$	$\begin{gathered} n= \\ \text { QAN } \end{gathered}$	VFt
	10.00	26.0697	R．3101	25．8778	A． 3412	25．6791	A．372？	25．2n9）	A．44AR	24．330n	A． 9976	29．1455	O．nnas
	11.00	27.7918	8.0524	27．5947	A．0806	27.4007	A．InAA	26．9．87	$\cdots .1795$	PR． 1438		27．7Rロ！	－．rova
00	12.00	29.4630	7.8243	29.2658	7．A5n？	P0．0714	7．8760	PR．5978	7.9790	27.7069	A． 7646	75． 7976	A．4184
바ํ	13.00	31.0890	7.6204	30.8917	7.6443	30.6970	7．6681	30．？${ }^{\text {P20 }}$	7.7271	29．3246	7．A4，${ }^{\text {a }}$	36.9610	8.1745 .057
\square	14.00	32.6744	7.4365	32.4769	7.4586	32.9819	7．4R07	31：8058	7．5355	30.9032	7.6479	PA．497n	9．0527 7.7550
\％ 2	15.00	34.2229	7.2694	34.0253	7.2901	33．8301	7.3107	33.3529	7.3618	32．4459	7.4621 7.2074	30．4113	7．9741
－	16.00	35.7379	7.1166	35.5402	7.1360	35.3448	7.1553	34．8666	7.203%	33.9556 35.4351	7.2974 7.1464	31．4．0p56	7.4096
E	17.00	37.2222	6.9761	37.0244	6.9944	36．9PR	7.0125	36.3497	7.0577 6.993	35.4351 36.8866	7．1484 $7.0 n 7 ?$	32.985 34.3407	7.3582
e_{-1}^{∞}	18.00	38.6780	6.8463	$38.480 ?$ 39.9097	6.8636 6.7472	38.2944 39.7138	6.8807 6.7584	37.8046 39.2372	6.9783 6.7988	36.8 \％6K 38.312π	7.017 6.978%	34.3407 35.7504	7．35R2
	19.00 20.00	40.1076 41.5128	6.7259 6.6136	39.9097 41.3148	6.7422 6.6291	79.7138 41.1187	6.7584 6.6445	79.2372 40.6375	6.7988 $6.6 A P 0$	38.312% 30.7130	6.7504	37.1709	R．O． 0.47
（x）	21.00	42.8951	6.5087	42.6970	f． 5734	42．5nna	6．5AR1	42.0191	6.5746	41．0¢\％	6.6465	3R．4R74	6． $\mathrm{a}_{6} 90$
－	22.00	44.2561	6.4102	44.0580	6.4242	4x．RG17	6．4783	43.3793	6.4731	42．45na	6.5419	30.8969	6.7401
$\boldsymbol{\sim}$	23.03	45.5970	6.3176	45.3988	6.3310	$45.7 n 24$	6.3444	44.7195	6.3777	47.7809	5.4475	41.1456	K． 6473
	24.00	46.9190	6.2302	46.7208	6.2431	46.5247	6.9559	46.0409	6.2878	45.1084	6．35nA	4P．4496	6．5419
	25.00	48.2231	6.1476	48．02．48	6.1599	47．8283	6．172？	47．3444	6.9 209	46．41爯	6.9534	43.	6.4473
	26.00	49.5103	6.0693	49.3120	6.0811	49.1153	6.0930	48．f311	6.1224	47．6951	6．12n6	45.0 ก67	K． 2578
	27．00	50.7815	5.9949	50.5831	6.0063	50.3 ¢¢4	6.0177	49．9718	6.0461	48．064？	6.1 ¢？	46．9695	K．ご天1
	28．00	52.0374	$5.924 ?$	51.8390	$5.935 ?$	51．54？？	$5.046 ?$	51.157 ？	5.9735	50．？ 181	6． $0 \rightarrow 75$	47．504n	F．1037
	29.00	53.2788	5.8567	53.0804	5.3674	52．9835	5．R780	52.3981	5.9047	51.4576	5.9565	48．7710	6．1143
	30.00	54.5063	5.7924	54.3078	5.8076	54.1109	5.8129	53．6P5？	5.9307	52．6834	5．RRRA	49.9465	A． n 434
∞	31.00	55.7206	5.7308	55．5221	5.7407	55.3351	5.7506	54.8791	5.7753	53.8967	5.8941	51.1487	5．9n76
	32.00	56.9222	5.6718	56.7237	5.6815	56.5266	5.6010	56.0403	5.7149	55.0960	5．76P？		$5.9 n 76$
	33.00	58.1117	5．6153	57.9131	5.6246	57.7160	5.6739	57．2394	5.6571	$56.784 n$	$5.7 n 79$	53.5176	5．9440
	34.00	59.2895	5.5611	59.0909	5.5701	58．8937	5.5791	58．4n69	5.6016	57.46 n 4	5.6461	54.6859	5.7032
	35.00	60.4561	5.5089	60.2575	5.5177	6n．0fin？	5.5264	59．573？	5.548 ？	58.6757	5.5014	55.8430	5.7348
	36.00	61.6120	5.4597	61.4133	5.4672	61．？160	5.4757	60.7287	5.4969	59．7An？	5.5789	5 F ．0ARA	5．FifRA
	37.00	62.7575	5.4103	62.5588	5.4186	62．3614	5.4769	61.8739	5，4475	60.9245	5.4984	5月．195\％	F．f147
	38.00	63.8930	5.3637	63.6947	5.3718	67.4969	5.3798	$6 \pi .0019$	5.3909	6． 058 AR	5.4797	59．9592	5．5R27
	39．0n	65.0188	5.3187	64.8201	5.3265	64.6725	5.3744	64.1347	5． 3579	63．18x	5.3777	60.2701	5． 5137
	40.00	66.1353	5.2752	65．9366	5．？RP9	65.7371	5．9005	65.9510	5.3095	64．${ }^{\text {a a an }}$	5.3477	61.4789	5.4644
	41.00	67.2429	5.2331	67.0441	5.2476	66.9466	5.2481	6fi．358x	5. P6ta	65.4 月55	5．3n75	6 R ． 5791	5．4178
	42.00	68.3417	5.1925	68.142°	5.1997	67.9454	$5 \cdot 2070$	67.4560	5.2951	66.5037	5.7611	63．6708	F． 2757
	43.00	69.4321	5.1530	69.2333	5.1602	69.0357	5.1673	6R．5470	5.1950	67．59？	5.23 ก1	64.7545	$5.7 n n 1$
	44.00	70.5144	5.1148	70．3155	5.1718	7n．1179	5.1787	69．6791	5.1460	68.6741	5.1 An3	65．R3\％	5．）R7\％
	45.00	71.5887	5.0778	71．3898	5．0846	71.1927	5.0914	70．7n3？	5.1 AR3	69.7476	5.1418	6figars	－2mF1
	46.00	72.6553	5.0418	72.4565	5.0485	72.958 A	5.0551	71.760_{6}	5.0716	7n． 8184	5.1044	67.9528	5.3 OR5
	47.00	73.7145	5.0069	73.5156	5.0134	7月．3179	5.0199	72．89 6	5.0761	71.9717	5.0 FRR	69．n179	5.18 A ！
	48.00	74.7664	4.9730	74.5675	4.9794	74.3698	4.9857	73．8903	5.0015	72．92？9	5．0イx	70.0595	E． $13 n \mathrm{l}$
	49.00	75．8113	4.9400	75.6124	4.9462	75.4145	4.9524	74.9750	4.9670	7\％．067	4．9087	71．n9An	c．ñ4k
	50.00	76．8493	4.9079	76.6504	4.9140	76.4526	4.9901	75.9629	4.9353	75．0047	4．9654	7？．13nの	＊．n594
	51.00	77．8807	4.8767	77.6818	4．88P6	77.4939	4.8886	76.9941	4．9の75	76．0イ5	$4.9 \times 7 \%$	7＊．1571	F．nつ5
	52.00	78.9056	4.8462	78．7066	4.8521	79．5088	4．8579	78．7198	4.8735	77．0591	4.9015	74.1771	4.7010
	53.00	79.9241	4.8166	79．725？	$4.82 ? 3$	79．5273	4．RPRR	$79.1037 ?$	4.8494	78．077n	4．87n9	75.19 9a	4.0595
	54.00	80.9365	4.7876	80.7376	4.7033	An． 5396	4.7089	A0．0494	4.8170	79．0889	4.94 तR	76．19AR	4.0379
	55.00	81.9429	4.7594	81.7439	4.7650	81.5460	4.7705	A1．0556	4.7843	80．0945	4.9117	77.9 กn7	$4.8 n 7 ?$
	56.00	82.9434	4.7319	82． 7444	4.7374	R2． 5464	4.7428	R2． 0560	4.7563	81.0944	4．7a3？	78．19\＆の	4．967？
	57.00	83.9382	4.7051	82.7393	4.7104	$83.541 ?$	4.7157	83．0506	4.7890	AP．NRAK	4.7554	79．1875	4. AR79
	58.00	84.9274	4.6788	84.7284	4.6841	84.5204	4．6997	R4．0397	4.7074	83．077	4.758%	R日． 1797	$4.8 n 04$
	59.00	85.9111	4.6532	85．7121	4.6583	25.5141	4.6635	85．023\％	4.6763	84．0604	$4.7 n 18$	R1．1595	4.7916
	60.00	86.8895	4.6281	86.6905	4．6372	Af．4024	4．6783	86.0015	4．6509	R5． 3 38	4.6759	8P．1271	4.7543

V －INFINITY $=5.0 \mathrm{KM} / \mathrm{S}$

	T－YRS	$\underset{0}{Q}=$	$.1 \mathrm{AU}$	$\underset{\operatorname{RAD}}{\theta}=$	$.3 \mathrm{AU}$	$\underset{\operatorname{RAD}}{Q}=$	． 5	$\stackrel{A U}{V F_{1}}$	$\underset{\text { RAD }}{\theta}=1.0$	$\stackrel{A U}{V F L}$	$\underset{\text { RAD }}{A}=2.0$	$\stackrel{A!}{V}{ }^{\prime}$	$\underset{\text { RAD }}{A}=5.2$	$u_{V F 1}$
	10.00	27．8549	9.4179	27．65RR	9.4418	27．4669		9.4655	27.0045	9．5238	26.1557	0.6351	24．1907	9．9363
	11.00	29．8149	9.1929	29.6187	0.2143	29.4263		9.2×55	28：9521	9．9R77	2R．1057	9．3A77	Pf．nlf？	0.6589
	12.00	31．7306	8.9953	31.5343	9.0147	31.3416		9.0338	3 C .875 A	9．0A10	30．01pa	9.1715	27．9609	9.6161
	13.00	33.6074	A．8201	33.4109	8.8377	33.2179		R．8559	32，7508	A．R9RO	31．RAP\％	R．9an5	29．697，	C．）ncta
	14.00	35.4493	8.6632	35.2527	8.6793	35.0595		A．6052	34.5911	A． 7345	33.7178	A．R1ns	31.4883	a．n19？
	15.00	37.2600	8． 5216	37.0633	8.5365	36．8698		R．551？	36.4004	A． 5874	35．52？7	A．657？	33.9578	0.9515
	16.00	39.0423	8.3931	38．8455	8.4068	3R．6519		R．4204	38.1815	R．4529	37．70nn	A．G196	35.910×5	0.8099
	17.00	40.7989	8.2757	40.6020	8． 2895	40.4081		A． 3011	39.9370	8.3523	29.0519	8.3925	36.727%	口．afis
	18.00	42.5318	R． 1680	42.334 R	8.1799	42．1408		8.1016	41．66A9	R．？2n7	40.7807	R． 2769	38.4307	R，4×61
	19.0 O	44．2430	R．06R6	44.0450	8.0797	43．8518		R．000R	43．3791	R．11R0	42.48 Al	$8.17 \pi 6$	4 n ＋1154	R． $\mathrm{Sanc}^{\text {a }}$
	20.00	45.9341	7.9766	45.7370	7.9870	45.54 .7		7.9974	45.0694	A．nファa	44.1752	8.0724	41．781A	0.3187
	21.00	47.6066	7.8911	47.4094	7.9009	47.9149		7.9106	46.7411	7.0347	45．8451	7.9813	43.4310	A． 1149
	22.00	49.2616	7.8113	49.0644	7.8206	48.8699		7.8298	49.3955	7.8575	47.4973	7．Ra65	45.7855	A．n531
	23.00	50.9005	7.7368	50.7037	7.7455	50.5086		7.754 ？	50.0×37	7.7757	49.1335	7． 7173	4F．GRAC	7．0275
	24.00	52.5242	7.6668	52.3269	7.6751	59.1221		7.6833	51.6568	7.7037	59.7547	7.7432	48.9026	7.0575
	25.00	54.1337	7.6010	53.9363	7.60 Ra	53.7414		7.6167	53． 2657	7．636t	52． 26.19	7.6736	49.8457	7.7834
	26.00	55.7297	7.5390	55．532？	7.5455	55.3373		$7.554 n$	54：．8611	7.5724	53.0557	7.6081	51.4565	7.7199
	27.00	57．3130	7.4805	57．1155	7.4876	56.9305		7.4047	$56.444 n$	7.5133	55.537 n	7.5463	53.0359	7.6455
	28.00	58．8844	7.4250	58．6868	7.4319	58.4918		7.4386	58.0149	7.4554	57.1064	7.4879	54.5937	7.5038
	29.00	60.4444	7.3725	60.2468	7.3790	60.0517		7.3855	59.5744	$7.4 n 15$	58.6647	7.4396	56.1417	7.5025
	30.00	61.9936	7.3226	61.7960	7.3788	61.6008		7.3750	61．1933	7.3503	60.2193	7.3808	57.6787	7.4673
∞	31.00	63.5326	7.2751	63.3350	7.2811	63.1397		$7.287 n$	62.6619	7．3n17	61.7496	7.3303	59.7 7f6	7．444n V
\bigcirc	32.00	65.0618	7.2298	64．864？	7.2356	64．f689		7.2413	64.1907	7.7554	$63.277 \times$	7．2928	6 n .7954	7.25×3
	33.00	66．5818	7.1866	66.3841	$7.192 ?$	66.1987		7.1076	65.7103	7.2112	64.7959	7．9376	62.9354	$7{ }^{7} 9150$
	34.00	68.0928	7.1454	67．8951	7.1507	67.6997		7.1560	67.2210	$7.16{ }^{\circ} 0$	66.3056	7.1944	$63.737 n$	7.3689
	35.00	69.5954	7.1059	69.3977	7.1110	69.2022		7.1161	68.7233	$7.12 \mathrm{R6}$	67．806R	7.15×1	65.9307	7.3949
	36.00	71.0898	7.0681	70.8921	7.07×0	7 7 .6065		7.0779	70.9174	7.01006	69.3001	7.1135	6F．716F	$7.10>9$
	37.00	72.5765	7.031 R	72.3787	7.0366	72.1831		7.0413	71.703 B	7.0578	70.7855	7.0757	68．1959	7.11785
	38.00	74.0556	6.9970	73．8578	7.0016	73．669？		$7.006 ?$	73．1827	7.0174	72． 7685	7.0394	6a．f666	7.1941
	39.00	75.5276	6.9636	75.3298	F．96R7	75.1341		6.9724	74.6544	6.9833	73.7345	7.0045	71.1313	7.0671
	40.00	76.9927	6.9314	76.7949	6.9357	76．599？		6.9790	76.1197	6.9505	75．19R6	6.9710	72.5803	7.0×15
	41.00	78.4512	6.9004	78．？533	6.9046	7R．0576		6．9nR7	77.5774	6.9189	76.6560	6．9887	$74 . n 41 n$	R．0974
为	42.00	79.9032	6.8706	79.7053	6.8746	79.5095		6．R786	79.0797	K．RRR4	78.1079	$6.9 n 77$	75.4965	A．7545
\％ 0	43.00	81，3491	6.8418	81.151 ？	6.8457	AN． 9554		6． 8496	81.4749	6.8991	$79.55{ }^{2} 1$	6.8777	76.0767	R．083R
82	44.00	82.7890	6.8140	82.5911	6．8178	A2．305？		G．RP15	R1． 9146	G．ATnR	An．991？	6． 2489	78．96n3	
	45.00	84.2232	6.7872	$84.025 ?$	6.7909	83.8994	＇	6.7045	83.3486		8 BP .4245	G．R21n	79．78R7	R．8739 R． 2445
	46.00	85.6518	6.7613	85.4538	6.7648	85.2579		6.7683 6.7431	84.7770 R6．p001	6.7771 6.7515	83.8584 85.9748	6．7a4 f．76an	R1．${ }^{\text {RP．fyan }}$	
co	48.00	88.4931	6.7119	88.2951	6.7153	RR， 099 ？		6．7186	R7．6179	6．7P68	86.5978	6.7479	R4．n4PR	6．70n5
E	49.00	89.9061	6.6884	89.7081	6.6916	R9．5121		6.6949	R9．0208	6．7n＞0	88.1045	6．7185	R5．45na	6．7649
	50.00	91.3143	6.6656	91.1163	f．finh	90．9ア0\％		6.6710	90．43A8	6.6707	89.5119	6.6949	96．954 ${ }^{\text {a }}$	R．9\＃nn
	51.00	92.7177	6.6435	92.5197	6.6456	92.3236		6．6496	91.8420	6.6572	90.9147	6．6730	RA．953？	6．7160
ar	52.00	94.1166	6.6221	93.9185	F．6251	97．7P25		6．6p8n	93.2407	6.6354	92.3179	6．6498	R9．6476	R．fnct
	53.00	95.5110	6.6012	95.3129	6．604？	05.1168		6.6071	94.6350	6.6143	93，7067	K．6PR3	91.0×77	R．K7nn
	54.00	96.9010	6.5810	96．7030	6.5839	96.5069		6.5867	96.0249	6.5037	95．0969	6．6n74	99.4277	R．f4A1
	55.00	98．2869	6.5614	98.0889	6.5642	97．8927		6.5669	97.4107	6.573 B	96.4815	G．5R71	93．01755	Rorotr
	56.00	99.6687	6.5423	99.4707	6.5450	99， 2745		6.5477	98.7923	f． 51543	97．R697	6．567\％	95.1875	R．fnct
	57.00	101.0466	6.5937	100．8485	6.5264	100.6523		6．5990	100．1700	6.5355	9a．p4nn	6．548？	96．5576	f．5R6n
	58.00	102.4205	6.5056	102．2224	6.50 A ？	102．006P		6．5108	101．5439	6.5171	100．6134	6.5995	97．227a	f．5R64
	59.00	103.7908	6.4880	103.5927	6.4905	103．7064		6.4031	102．914n	6．490？	101．9871	6.511^{3}	90．0946	R．5474
	60.00	105.1573	6.4709	104．9592	6.4733	104．7630		6.4758	$1 \mathrm{n}_{4.2804}$	g．4A1A	103．3403	6.4037	10n．6577	6． 5389

V-INFINITY $=10.0 \mathrm{KM} / \mathrm{S}$

$T-Y_{R S}$	$\begin{gathered} Q= \\ \text { RAD } \end{gathered}$	$\begin{gathered} .1 \text { AIJ } \\ \text { VEL } \end{gathered}$
. 00	. 1000	133.5761
- 20	1.8696	27.3 ARP
. 40	3.0591	26.0767
-60	4.0789	33.1207
. 80	5.0056	21.3179
1.00	5.9709	20.0554
1.2n	6.6912	19.1092
1.40	7.4771	18.3655
1.60	8.2354	$27.76 \cap 7$
1.80	8.9709	17.2563
2.00	9.6871	16.8273
$2 \cdot 20$	10.3868	15.4566
2.40	11.0721	16.1321
2.60	11.7447	15.8452
2.80	12.4060	15.5800
3.00	13.0573	15.3585
3.20	13.6994	15.1497
3.40	14.3332	14.9595
3.60	14.9595	14.7853
3.80	15.5787	14.6250
4.00	16.1915	14.4768
4.20	16.7984	14.3395
4.40	17.3998	14.2116
4.60	17.9960	14.0923
4.80	18.5873	13.9805
5.00	19.1742	13.8756
5.20	19.7568	13.7770
5.40	20.3354	13.6839
5.60	20.9102	13.5960
5.80	21.4814	13.5128
6.00	22.0492	13.433R
6.20	22.6138	13.3589
6.40	23.1754	13.2875
6.60	23.7340	13.2195
6.80	24.2899	13.1547
7.00	24.8431	13.0927
7.20	25.3937	13.0334
7.40	25.9420	17.9766
7.60	26.4879	12.9222
7.80	27.0316	12.8700
8.00	27.5731	12.8198
8.20	28.1125	12.7716
8.40	28.6500	12.7251
8.60	29.1856	12.6804
8.80	29.7193	12.6373
9.00	30.2513	12.5957
9.20	30.7815	12.5555
9.40	31.3101	12.5167
9.60	31.8371	12.4792
9.80	32.3625	12.4428
10.00	32.8864	12.4077

PAn $=.5 \mathrm{Al}$
A)
PAN VFI
$n=1.0 \mathrm{AlO}$
DAT
ロAT
VFL.
$n=2.0$
BAn
$2.00 n n$
VFL

2.00nn
. 3 .754
. 7697
3.44A4
4.17n
. 8904
5.6735
6. 3371
7.0307
-7907
9.4nan
- 0778
. 7 \% 6
.3960

V-INFINITY $=10.0 \mathrm{kM} / \mathrm{S}$

V－INFINITY $=20.0 \mathrm{KM} / \mathrm{S}$

	$Y=Y R S$	$\begin{gathered} Q= \\ R \wedge D \end{gathered}$	－ 1 AU VEL	$\begin{gathered} \theta= \\ \text { PAD } \end{gathered}$	$.3 \mathrm{AU}$	$\underset{\text { pAn }}{2}=$	$\begin{gathered} .5 \mathrm{Al} \\ \quad V F L \end{gathered}$	$\begin{gathered} n= \\ \operatorname{RAn} \end{gathered}$	All VFL	$\begin{gathered} n=2 \\ \text { RAN }^{2} \end{gathered}$	$\begin{aligned} & \text { All } \\ & \text { VFI } \end{aligned}$	$\underset{\operatorname{nan}}{n}=$	$V_{V=1}$	
	－ 00	.1000	174.6943	． 300 ก	70.4619	． 5000	$69.8 \times 7 ?$	1.0000	4F．6．69a	？．00nn	＊5． 2766	C．jnnn	27．925n	
	－ 20	1.9905	55．9357	1.8471	36．8R57	1．7509	37．5ア61	1.7614	77．514n	7．34n9	74．n＞0	5.3087	2\％．11n4	
	． 40	3.3546	30.4778	3.1945	$30 . a_{0} a_{6}$	3.1773	31.2559	P．9177	71．7506	3.1185	21．1977	5.6757	P6．7005	
	． 60	4.5759	pR．06G7	4.4094	29．3263	4.2739	29．5505	$4.057 ?$	P8．0763	4．0518	29．94R\％	6．nnos	3R．शa 77	
	． 80	5.7225	P6．6457	5.5525	2f．AP4？	5.4110	96．9an ${ }^{\text {a }}$	5.1597	27．974n	5.0710	27．4336	6.562 A	pe．ann4	
	1.00	6.8217	25.6922	6.6495	25．8ア30	6.5024	75．9306	6：33na	96．1677	6.0271	26．3548	7．2n94	95．1503	
	1.20	7.8875	24.9789	7.7137	25.10 nn	7．5636	25．10n0	7.9774	25．37ス3	7.0137	25．5536	7.0184	20．an！	
	1.40	8.9283	24.46 AB	8.7534	$24.54{ }^{\circ} \mathrm{A}$	R．finia	24.6729	R． 3039	24．7793	7．99p\％	24．9xat	A．A．754	94．5nka	
	1.60	9.9497	24.0483	9.7730	24.1149	0.6196	24．175？	9．3143	24．3nn	R．076\％	24．4471	9．146F5	Pt． 2 \％RR	
	1.80	10.9554	23．7055	10．7780	22．7644	10．5フォ1	P＊．R1？1	10.3119	23．0．an	0.0476	24．74n1	10．38つ3	2\％．nのタ1	
	2.00	11.9481	23.4200	11.7710	97．4677	11．5141	23．5110	11．2067	2x．fnP1	10．a12\％	2\％．710n	11．11an	2x．fafi	
	2.20	12.9290	23.1780	12.7527	23．219？	13.5044	23．256i	17． 17 7ク5	23．7ス¢1	$11.87 \cap 9$	27．4月n7	11．nfin	の7．1961	
	2.40	13.9023	27.9700	13.7243	23．0061	17．5656	27．0780	13.7300	23．1拞	17．9285	27．9nつ¢	1p．Rアのn	23．3n＊4	
	$2 \cdot 60$	14.8667	2？．7891	14.6883	22．82ก9	14．5989	23．8490	14.1 ana	23．0117	13.7710	23．7nat	13．684\％	$\mathrm{P}^{2} \cdot 0143$	
	2.80	15．824n	2？．6302	15.6453	23．6584	15.4953	？？．684\％	15．1535	29．7205	14.713 R	2？．A164	14．55119	2？，atct	
	3.00	16.7751	22.4993	16．596？	22.5146	16．4．356	22．5378	16.1013	29．5R75	15．659 ${ }^{\text {a }}$	3P．6574	15．4＞09	2？．RCTA	
	3.20	17.7207	22.3634	17.5415	？2．3R63	17.3504	23．4n73	17．0439	23．4539	16．5Ran	29．5161	16．xn5？	P9．E5¢a	
	3.40	18．6612	？2．2503	18.4818	23．2711	18．3）n3	2P．pan1	17．9R19	39． $2 \times n 0$	17．5164	39．3n0¢	17．18tug	30．4マス	
	3.60	19.5073	22.14 RO	19.4177	2？．1659	19．7558	23．1843	18．9155	29．2916	19.4434	29．9755	1A．nGFA	29．30n7	
	3.80	20.5293	2？．0551	20.3495	2？．0724	10．107\％	P？．กロa？	10．8454	23．1975	10．367\％	39.1793	18.3470	pn．990	
	4.00	21.4576	21.9701	21.2776	21．986n	21.1151	2？．0nob	20.7718	29．172？	Pn．pAR1	39．n783	10．月711	29．1929	
	4.20	22.3825	P1．89P？	22.2024	21．9nfia	22．0305	21.9904	21.6940	21．9405	P1．Plas	31.0034	？n．714R	P9．nス95	
	4.40	23．3043	21.8205	$23.124 n$	21.8341	22．9600	31．8466	22．615n	21．8736	23．1719	71．9176	21．50po	24．0578	
0	4.60	24.2231	21.7542	24.0427	21.76 Áa	23．8704	21．7784	33．5324	21． 1 ก36	23.7350	91．R4na	$39.49 *$	24．9041	$\xrightarrow{1}$
N	4.80	25.1393	21.6928	24.958 A	21.7045	24．705？	21.7153	24.4473	91．739R	23.7450	91．7747	27．2672	21．9458	\pm
	5.00	26.0531	21.6357	25．8725	21.6466	25．7087	29．6567	25．3597	31．67RG	24.854 A	21．7114	24．3515	71．7533	0
	5.20	26.9645	21.5824	26.7838	21.5927	？6．fica	$31 \cdot 6 \pi 21$	26．27n0	$31.62>7$	P5．7617	31.6534	25.1354	31．6nzn	
	5.40	27.8737	21.5326	27.6920	21.5423	27．5P88	21．5511	37．1789	29．57n4	26．666R	21．5094	26．0101	21．4．77	
	5.60	28.7810	21.4860	28.6001	21.4050	28.4357	21.5034	PR． 1844	21.5915	27.57 nl	21.54 .99	？6．0n95	29．5059	
	5.80	29.6863	21.4422	29.5054	21.4507	29.34 ก9	21.4596	2R．9R87	29．4757	29．4718	91．5n15	77．7856	79．5873	
	6.00	37.5899	21.4010	30.4080	21.4090	30.9447	21．4965	29.8914	21.4376	20．3710	21.4571	2R．fGRD	P9．4nt 6	
	6.20	31.4918	21.3621	31.3107	21.3697	31．1459	21.3768	30.7985	31.3031	$30.37 \% \mathrm{~F}$	99．495x	20．55n5	39.41306	
	6.40	32.3921	21.3254	32.210°	21.3327	32．0460	29．3＊9\％	$31.693 n$	31.3539	31.1678	39．3759	3 \％．uアフ2	24．tunan	
	6.60	33.2909	21.2907	33.1097	21.2976	32.9446	21．3n30	32．59nn	71.3176	37．0639	29．3xAf	31．21＊7	21．3R06	
	6.80	34.1883	21.2579	34.0070	21.2544	33．8418	21.2704	33.4967	$31.28 \pi / 4$	35．0585	21.3034	3p．1047	91．2273	
	7.00	35.0844	21.2267	34.9030	21．23P9	34.7377	21．2アA5	34．3R21	91．351	33．85pn	91．270n	33．n75	21．9nR9	
	7.20	35.9791	21.1970	35.7977	21.2029	35.6393	21.2 n 87	35．276？	91．23n？	34．7447	31.3787	33．055\％	91．0RR？	
	7.40	36.8727	21．1688	$36.691 ?$	21.1744	76．5957	91.1796	36．169？	21.1909	＋5．6756	P9．PnR？	34.2348	91．9\＃5？	
	7.60	37.7651	21.1419	37.5836	21.1473	37.41 An	21．1522	47.161 n	31.163	36．5P59	71.1796	35.7170	21．3n57	
	7.80	38.6564	21.1163	38.474 R	21.1214	3ค．3nas	21．1961	37：951A	31.1365	$37.415 n$	31.1523	36．5936	91．1775	
	8.00	39.5467	21.0918	30．3651	21.0967	39.1993	P1．1n1？	79．8415	21．1111	38.3037	31.1963.	37.47 のタ	21．1507	
	8.20	40.4359	21.0684	40.2543	21.0731	4n．nAR4	21.0774	30.7303	21.0 RRa	39.1976	31.1015	\％ R_{0} 74RA	21．1950	
	B． 40	41.3242	21．0460	41.1425	21.0505	40.9766	21.0547	40．6181	31.0637	4n． 0771	21.0777	3a．325a	21．10n5	
	8.60	42.7116	21.0246	42.0298	21.0289	41．8638	31.0×20	41．5050	71.0416	40．969R	21．0550	4n．1739	31.0791	
	8.80	43.0981	21.0040	42.9163	21.00 Al	42.7502	21．0120	42．3910	31.0203	41.8476	21.0337	4n．07as	21．nctu	
	9.00	43.9837	20.9843	43．8019	$2 \mathrm{C} \cdot 98 \mathrm{AR}$	43.5358	P0．9919	4\％．2763	91．0nno	42.7316	P1．n1p4	41．8ら5\％	21．nアア1	
	9.20	44．8685	20.9653	44.6867	20.9691	44.5205	20．9727	44.1607	？n．7an4	43.5150	2n．9n34	$42.43 n 0$	21．0194	
	9.40	45.7526	20.9471	45.5707	20.9508	45.4044	20．954？	45.0444	30.9616	44.4975	30.9732	47．ROK1	9n．añ6	
	9.60	46.6359	213.9295	46.4540	20.9331	46．2876	20．9764	45．0273	20．9435	45.3704	20．0547	44．1t8in	9月， 9785	
	9．80	47.5185	20.9126	47.3365	20.9161	47.1701	20.9192	4R．An95	20．0962	46.2607	Pn．9369	45.2554	2n．0n¢？	
	10.00	48．4003	20.8964	48.2184	20.8997	48．0519	20.9027	47．6910	20．9094	47．1419	20.9198	46.32^{94}	2 2．0775	

V-INFINYTY $=20.0 \mathrm{KM} / \mathrm{S}$
r-YRS $\quad Q=.1$ AU

	10.00
	11.00
	12.00
	13.00
	14.00
	15.00
	16.00
	17.00
	18.00
	19.00
	20.00
	21.00
	22.00
	23.00
	24.00
	25.00
	26.00
	27.00
	28.00
	29.00
	30.00
	31.00
$\stackrel{6}{\omega}$	32.0n
	33.00
	34.00
	35.00
	36.00
	37.00
	38.00
	39.00
	40.00
	41.00
2	42.00
-	43.00
	44.00
	45.00
	46.00
	47.00
	48.00
	49.00
	50.00
	51.00
	52.00
	53.00

10.00	48.4003	20.8964
11.00	52.8001	20.8231
12.00	57.1857	
13.00	61.5593	
14.00	65.9224	
15.00	70.2765	
16.00	74.6226	
17.00	78.9616	
18.00	83.294	
19.00	87.6212	
20.00	91.941	
21.00	96.260	
22.00	100.530	
23.00	$104.8 B 23$	

$V=$ INFINITY $=30.0 \mathrm{KM} / \mathrm{S}$

T- YRS	$\underset{R A D}{Q}=$	$\begin{gathered} 1 \mathrm{AU} \\ \text { VEL } \end{gathered}$
.00	.1000	136.5378
. 20	2.1796	41.4007
. 40	3.8036	36.9657
. 60	5.3147	35.1760
-80	6.7699	34.0893
1.00	R. 1909	3*.4158
1.20	9.5ARG	3?.9399
1.40	10.9694	32.5844
1.60	$17.337 ?$	37.3081
1. Bn	13.6947	37.0867
2.00	15.0439	31.9057
2.20	16.3862	71.7534
2.40	17.7226	31.6946
2.60	19.0541	31.5138
2.80	20.3813	31.4174
3.00	21.7047	\$1.3328
3.20	23.0247	31.2570
3.40	24.3418	31.1912
3.60	25.6563	31.1313
3.80	26.9684	31.0772
4.00	28.2783	31.02R1
4.20	29.5863	30.9834
4.40	30.9924	30.9424
4.60	32.1970	30.9048
4.80	33.5000	20.8701
5.07	34.8016	30.8380
5.20	36.1019	30.8082
5.40	37.4010	30.7805
5.60	38.69an	30.7546
5.80	39.9959	30.7×15
6.00	41.2919	30.7078
6.20	42.5869	30.6865
6.40	43.R811	70.6665
6.60	45.1744	30.6476
6.80	46.4670	30.6298
7.00	47.7589	30.6129
7.20	40.0500	30.5969
7.40	50.3405	30.5818
7.60	51.6304	30.5674
7.80	52.9197	30.5537
8.00	54.2084	30.5406
8.20	55.4966	3n.5282
8.40	56.7843	30.5163
8.60	58.0715	30.5050
8.80	59.3583	30.4941
9.00	60.6446	30.4837
9.20	61.9304	30.4737
9.40	63.2159	30.4642
9.60	64.5009	30.4550
9.80	65.7856	30.4462
10.00	67.0699	30.4377

'V-INFINITY $=30.0 \mathrm{KM} / \mathrm{S}$

$T \sim Y_{R S}$	$\begin{gathered} Q= \\ R A D \end{gathered}$	AU VEL
10.00	67.0699	30.4377
11.0n	73.4865	30.3997
12.00	79.8957	30.3679
13.00	86.298R	30.3407
14.00	92.6965	30.3173
15.00	99.0897	30.2970
16.00	105.4788	30.2791
17.00	121.8644	30.2632
18.00	118.2468	30.2490
19.00	124.6264	30.2363
20.00	131.0035	30.2249
21.00	137.3783	30.2145
22.00	143.7510	30.2050
23.00	150.1218	30.1963
24.00	156.490R	30.1894
25.00	162.8582	30.1810
26.00	169.2341	30.1742
27.00	175.5887	30.1679
2R.0n	181.9519	30.1621
29.00	188. 3140	30.1566
30.00	194.6750	30.1515
31.00	201.0349	30.1467
32.00	207.393R	30.1422
33.00	213.7518	30.1380
34.00	220.1090	30.1340
35.00	226.4654	20.1.303
36.00	232.8209	30.1267
37.00	239.1759	30.1234
38.00	245.5300	30.1202
39.00	251.8835	30.1172
40.00	259.2364	30.1143
41.00	P64.5886	30.1116
42.00	270.9404	30.1089
43.00	277.2915	30.1065
44.00	283.642?	30.1041
45.00	289.9924	30.1018
46.00	296.3422	30.0996
47.0n	302.6914	30.0975
48.00	309.0403	30.0955
49.00	315.3887	30.0936
50.00	321.7367	30.0918
51.00	328.0844	30.0900
52.00	. 34.4317	30.0 RA3
53.00	340.7786	30.0866
54.00	$347.125 ?$	20.0851
55.00	353.4714	30.0835
56.00	359.8174	30.0821
57.00	366.1630	30.0807
58.00	372.5084	30.0793
59.00	378.8534	30.0780
60.00	385.1932	30.0767

V-INFINITY $=40.0 \mathrm{KM} / \mathrm{S}$

	T - YRS	$\begin{gathered} 0= \\ R A D \end{gathered}$	$.1 \text { AU }$	$\begin{gathered} Q= \\ R A D \end{gathered}$	AIJ VFL.
	. 00	. 1000	139.0775	-300n	86. 5844
	. 20	2.4236	48.2917	2.3050	49.6799
	. 40	4.3647	44.7940	4.7320	44.9350
	. 60	6.2188	43.4201	6.0821	43.4930
	. 80	8.0316	42.6721	7.8925	43.7177
	1.00	9.820 2	42.1981	9.6793	42.22^{9}
	1.20	11.5922	41.8675	11.4504	41.8921
	1.47	13.3527	41.6278	13.7101	41.6451
	1.60	15.1045	41.4423	14.061?	41.4559
	1.80	16.8493	41.2053	16.7056	41.3053
	2.00	18.5886	41.1758	18.4445	41.1849
	2.20	20.3234	41.0768	20.1790	41.08^{44}
	$2.4 n$	22.0544	40.9933	21.9097	40.9098
	2.60	23.7822	40.9219	23.637?	4 n .9775
	2.80	25.5072	40.8602	25.3620	40.8651
	3.00	27.2299	40.8064	27.0845	40.8906
	3.20	28.9502	40.7589	28.8049	40.7627
	3.40	30.668R	40.7167	30.5233	4n.72n1
	3.60	32.3858	40.6790	32.340n	4n.6871
	3.80	34.1012	40.6452	33.0554	40.6479
	4.00	35. 115%	40.6145	35.6693	$40.617 n$
	4.20	37.5281	40.5867	37.3821	4n.5499
	4.40	39.2308	40.5613	30.0937	4n.5633
6	4.60	40.9506	40.5380	40.8044	4n.5309
0	4.80	42.6603	40.5165	42.5141	4n.5983
	5.00	44.3692	40.4968	$44.223 n$	40.4084
	5.20	46.0774	40.4785	45.0310	4n.48n号
	5.40	47.7847	40.4615	47.6387	40.4620
	5.60	49.4914	40.4456	49.3450	4n.4470
	$5 \cdot 80$	51.1975	40.4309	51.0510	40.4321
	6.00	5P.9029	40.4271	52.7564	$40.41^{\text {R2 }}$
	6.20	54.6078	40.4041	$54.461 ?$	$40.405 ?$
	6.40	56.3121	40.3919	56.1655	4n.39?9
	6.60	5月.0160	40.3805	57.8697	4n.3914
	6.80	59.7194	40.3697	59.5727	40.3706
	7.00	61.4223	40.3595	61.2756	40.3603
	7.20	63.1249	40.3498	62.9781	4n.3506
	7.40	64.8270	40.3407	64.6807	40.3414
	7.60	66.5288	40.3320	66.3819	40.3327
	7.80	68.2302	40.3237	68.0133	40.3244
	8.00	69.9312	40.3159	69.7844	40.3166
	8.20	71.6320	40.3084	71.4851	40.3091
	8.40	73.3324	40.3013	73.1855	40.3019
	8.60	75.0326	40.2945	74.8856	40.2951
	8.80	76.7324	40.2880	76.5855	40.2885
	9.00	78.4320	40.2818	78.2850	4n.2823
	9.20	80.1314	40.2758	79.9844	4 n .2763
	9.40	81.8305	40.2701	81.6834	40.2706
	9.60	83.5293	40.2646	83.3823	4n.2651
	9.80	05.2279	40.2594	85.0809	40.2598
	10.00	86.9264	40.2543	86.7793	40.2548

PRW＊＊										Sate 033077		DAGF 14	
$V-I N F I N Y T Y=40.0 \mathrm{KM} / \mathrm{S}$													
	T－	$\begin{gathered} Q \\ \text { RAD } \end{gathered}$	$\text { . } 1 \begin{gathered} A U \\ \\ V E L \end{gathered}$	$\underset{\text { RAD }}{Q}=$	$.3 \mathrm{AU} \mathrm{VEL}$	$\begin{gathered} 0 \\ \operatorname{RAN} \end{gathered}$	$.5 \text { AU VEL }$	$\underset{\operatorname{RAn}}{0}=$	$\stackrel{A 1 S}{V E L}$	$\hat{R A D}^{n}=9$	$\begin{aligned} & \text { A! } \\ & \text { VEI. } \end{aligned}$	$\underset{\operatorname{san}}{n}=$	AIS VFI．
	10.00	86.9264	40.2543	86.7793	40.2548	86.6642	40.2551	86．4551	40.2557	A6．p01R	40.2585	A5．0075	4n．9473
	11.00	95.4155	40.2318	95.2684	40.2321	95.1531	40.2324	94.9435	40.2389	94.6881	4 n .23 .35	94.8759	4n．9343
	12.00	103.9003	40.2129	103.7531	40.2132	103.6377	40.2134	103.4276	40.2139	103．17n6	40.2944	102.8471	$4 n .9151$
	13.00	112.3814	40.1969	112．2341	40.1971	112．1186	40.1973	111．ana？	40.1977	111.6498	40.1081	111．x166	$4 n .1087$
	14.00	120.8593	40.1831	120.7121	40.1833	120.5965	40.1835	120.3857	40.1838	120．1769	$40.194 ?$	119.7847	$4 n .1947$
	15.00	129.3346	40.1711	129.1873	40.1713	129.0717	40.1715	128.8606	40.1717	12 c ．6nnn	40.1721	178．9517	4 CH 1796
	16.00	137.8075	40.1606	137．660）	40.1608	137.5445	40.1609	137．333？	$40.161 ?$	137.7715	40.1615	136.7167	45.1519
	17.00	146.2784	40.1513	146．1310	40.1515	146.0153	40.1516	145．8037	47.1518	145．5414	4n．1591	145．98na	40.1595
	18.00	154.7474	40.1431	154．6000	40.1432	154．4842	40.1433	154.2724	47.1435	154．0794	40.1437	153．6439	40.1441
	19.00	163.2147	40.1357	163．0673	40.1358	1 fr .9514	4 n .1350	162．7395	40.1360	162．475R	47.1463	169．1050	4\％．176\％
	20.00	171.6806	40.1290	171．5331	40.1291	171.4173	40.1998	171：2052	40.1973	$170.94 n 9$	40.1795	17n．567n	40.1908
	21.00	180.1451	40.1229	179．9976	40.12 万	179．8817	40.1031	179．6695	4n．193？	179.4047	40.1284	179．nP72	4 n ＋10\％7
	22.00	188.6084	40.1174	188.4609	40.1175	18 AR .345 n	$4 \pi .1176$	18R． 1378	40.1177	187．967\％	$4 n .1179$	197．4866	4n．1191
	23.00	197.0706	40.1124	196．9231	40.1125	106．Rn7s	40.1125	196.5947	$4 n .1197$	196． 72 Ra	40.1178	195．0459	4n．1120
	24.00	205．5318	40.1078	205．3843	$4 \mathrm{n} .1 \mathrm{n}^{7} \mathrm{~A}$	？ 05.2683	40.1179	205.0557	4 n .10 R n	PR4．7896	$40.1 n 89$	2n4．4n7n	40.1 n24
	25.00	213.9920	40.1035	213．8445	40.1035	P13．72R5	40.1136	213．5158	40.1037	213．2407	$4 n .1 n 30$	219．96ns	$4 n .1 n 4 t$
	26.00	222.4514	40.0906	222．3039	40.0936	29P．1月7n	40.0997	291．9750	$4 \pi .0998$	221．7093	$40 . n 909$	291．716a	4n－inns
	27.00	230.9100	40.0959	23n．7624	40.0960	23n．6464	40.0960	P30．4335	$4 n .0061$	P3n．1564	4n．naks	330．779R	4 n .0054
	28.00	239.3678	40.0925	239．2207	40.0096	239．1042	40.0926	238．R912	$4 n .0037$	238．6238	4 n ．naps	23R．アPR	$4 n .0 n \times n$
	29.00	247．8250	40.0894	247.6774	40.0894	247．5613	40.0895	247．74R3	40.0896	247．n8nk	40.0897	246.69831	4n．mana
	30.00	256． 2815	40.0864	256.1339	40.0865	256．0178	40.0965	255．8047	4 n ． $\mathrm{HRG6}$	255.5367	$4 n \cdot n$ R67	255．1576	4 H ． Hag a
$\stackrel{\sim}{v}$	31.00	264.7374	40.0837	264.5898	40.0837	264.4737	40.083 P	？64．2505	4π, HRTA	263．992＊	$4 n .0 n 89$	263．2015	4 n .1041
	32.00	273.1928	40.0811	273．045？	40.0811	272．979n	$40.081 ?$	272.7158	$4 n .781{ }^{\text {a }}$	273．4474	4 n ．n913		$4 n . n$ n14
	33.00	281.6476	40.0787	281．5000	40.0787	2R1．383R	40.0787	281.1705	4 n ． 1278 R	280．0010	40.7789	PRn．4081	$40 . n \rightarrow 00$
	34.00	290.1019	40.0764	289．9543	40.0764	P80．8381	40.0764	PR9．f248	40.0765	289，356n	40.0765	2RR．05AR	4n．n767
	35.00	298.9558	40.0742	298．408？	40.0743	299．2020	40.0743	29R．n7as	40.0743	297．8nak	$4 n .0744$	297．4071	4 n ．n745
	36.00	307．0092	40.0722	306．8615	$40.072 ?$	3n6． 7454	$40.072 ?$	306.5319	40.0793	306．7697	40.07794	305．8551	40.0724
	37.00	315.4622	$40.07 n 2$	315.3146	$4 n .0703$	315.1983	47.0703	314.9848	$40.07 \pi 3$	314.7155	40.0784	314．2067	$4 n .07045$
	38.00	323.9148	40.0684	323.7671	40.0684	373.6509	40.0685	323.4374	4 n .06 A 5	723.1670	40．n6at	392．754n	4 n －n697
	39.00	332.3670	40.0667	332.2194	40.0667	7x2．1n31	40.0667	331.989_{6}	4 n ． 066 R	721．6199		$33^{3} .300 n$	4 n －nFiga
	40.00	340．9189	40.0650	340．671？	40.0650	34n．5550	40.0651	34n． 3414	40.0651	340.7715	4n．065\％	339.5505	
	41.00	349．2704	40.0634	349.1227	40.0635	349．0n65	40.0635	348．7928	4 n 0665	348．5290	4n．nakg	348．11 10	4 n ，nam 7
	42.00	357.7216	40.0620	357.5739	40.0690	357.4577	$40.062 n$	357.2440	4 n － 5690	256，9739	4n－nfit	K5¢．56n？	40.0639
	43.00	366.1725	40.0605	366.0248	40.0605	365．9nR6	4 H .0 ¢ng	365.6948	4 n －n6ng	365，4246	4n．nang	365．0101	4 n ．nant
	44.00	374.6231	49.0592	374.4754	$40.059 ?$	374.3591	$40.059 ?$	374.1454	40.0159	＊73．8751	40.0608	373.4507	4 n ．n50x
	45.00	383.0734	40.0579	382，9257	40.0579	389.8094	$40 . n 570$	382．5957	40.0579	382．375？	40.0588	721．0001	4 n ．neRn
$\begin{aligned} & \text { Q } \\ & 0 \\ & 2 \end{aligned}$	46.00	391.5234	40.0566	391．3758	40.0565	301.2595	40.0566	391.0457	40.0567	390.7751	40.06667		4 nonkRa
	47.00 48.00	399.9732 408.4228	40.0554 40.0543	399.8256 408.2751	40.0554 40.0543	$300.7 n 93$ 408.1588	$4 n .0 n 554$ $4 n .0543$	399.4054 477.9449	40.0555 40.0543	309.7248 407.674	40.7555 40.0944	308． 2077 477.9559	$4 n \cdot n 555$ $4 n .0544$
	49.00	416.8721	40.0532	416，7244	4n．053？	416．6n81	40.053 ？	416.3947	40.0538	416．1234	40．05z3	415．7n44	4n．n5³
	50.00	425.3212	40.0521	425.1735	40.0521	425．0578	40.0521	474．A43？	40.0592	424．572\％	40．05？	434．1598	4 n ．ncos
	51.00	433.7700	40.0511	433．6223	4 n .051 .1	433.5060	40.0511	433．2921	40.0512	433．n211	$4 \mathrm{CaF1} \mathrm{\%}$	432．anna	4nonct？
	52.00	442.2187	40.0501	442．0710	40.0501	441.9547	$40.05 \pi 2$	441．7407	4n．05n？	441.4606	4 n －n5n？	441．n4R9	4n．nans
	53.00	450.6671	40.0492	450.5194	40．049？	450.4031	40.0498	450.1801	4non49？	449.9179	40.01103	449．4968	4 n .01103
	54.00	459.1154	40.0483	458，9677	$40.04{ }^{\text {P3 }}$	458.8514	40.0483	458．6373	110.0483	458.3669	40.0484	457．0448	4 n ．n4R4
	55.00	467.5635	40.0474	467．4158	40.0474	467.9994	40.0474	467.0854	40.0475	466．R14n	40.7475	46F． 7017	40.01275
	56.00	476.0114	40.0466	475，8636	40.0465	475．7473	40.0466	475.5332	40.0466	475，P69R	40.0466	474．a3an	40.04467
	57.00	484.4591	40.0458	484.3114	40.0458	484.1050	40.0458	483．9809	4 n ． 0458	4R3．70a4	40.0459	4R才．गRA	4 n ．n459
	58．0n	492.9066	40.0450	492．75Ra	40.0450	$49 P .6425$	40.0450	492.4284	17.0450	492.1569	4 n .0450		4 n ． 1451
	59.00	501.3540	$4 \pi .044$ ？	501．206	40.0442	501．n499	$40.044 ?$	5no．R75R	$4 \pi .0443$	507.6042	40.1443	500．180n	$4 n .0 n 43$
	60.00	509.8012	40.0435	509.6535	40.0435	509.5371	40．0435	509.3230	40.7435	509.0513	40.0435	508．6P67	$4 n .04 * 6$

$V-$ INFINITY $=50.0 \mathrm{KM} / \mathrm{S}$

$T-Y R S$	$\begin{gathered} 0 \\ \text { RAO } \end{gathered}$
. 00	.1000
. 20	2.7095
. 40	5.0041
. 60	7.2315
-80	9.4283
1.00	11.6073
1.20	13.7746
1.40	15.9336
1.60	1R.0864
1.80	20.2344
$2 \cdot 00$	22.3786
2.20	24.5197
2.40	26.6581
$2 \cdot 60$	28.794 3
2.80	30.9287
3.00	33.0614
3.20	35.1926
3.40	37.3226
3.60	39.4514
3.80	41.5793
4.00	43.7062
4.20	45.8323
4.40	47.9577
4.50	50.0824
4.80	52.2064
$5.0 n$	54.3299
5.20	56.452R
5.40	58.5753
5.60	60.6973
5.80	62.8188
6.00	64.9400
6.20	67.0608
6.40	69.1812
6.60	71.3013
6.80	73.4211
$7 \cdot 00$	75.5406
7.20	77.6599
7.40	79.7788
7.60	81.8975
7.80	84.0160
8.00	86. 1343
8.20	88. 2523
8.40	90.3702
8.60	92.4879
8.80	94.6053
9.00	96.7226
9.20	98.8397
9.40	100.9567
9.60	103.0735
9.80	105.1902
10.00	107.3067

V INFINITY $=50.0 \mathrm{KM} / \mathrm{S}$
$r-Y R S \quad \begin{array}{ll} & Q=-1 \text { AU } \\ \text { RAD }\end{array}$

10.00	107.3067
11.00	117.8874
12.00	128.4652
13.00	139.0406
14.00	149.6140
15.00	160.1856
16.00	170.7556
17.00	181.3243
18.00	191.8918
19.00	202.4583
20.00	213.0237
21.00	223.5883
22.00	234.1521
23.00	244.7152
24.00	255.2777
25.00	265.8395
26.00	276.4008
27.00	286.9615
28.00	297.5218
29.00	308.016
30.00	318.6410
31.00	329.2000
32.00	339.7587
33.00	350.3170
34.00	360.8750
35.00	371.4327
36.00	381.9901
37.00	392.5472
38.00	403.1041
39.00	413.6607
40.00	424.2171
41.00	434.7733
42.00	445.3293
43.00	455.8851
44.00	466.4406
45.00	476.9961
46.00	487.5513
47.00	498.1063
48.00	508.6613
49.00	519.2160
50.00	529.7706
51.00	540.3251
52.00	550.8794
53.00	561.4336
54.00	571.9877
55.00	582.5416
56.00	593.0955
57.00	603.6492
58.00	614.2028
69.00	624.7563
60.00	635.3098
10	

50.1379 50.1274
$\underset{\text { RAD }}{\theta=}$
3 AU VEL $\quad \theta=.5 \mathrm{AU}$
$\begin{array}{cc}\text { RAN } & \text { VEL }\end{array}$ $\begin{array}{ll}50.1184 & 149.4851\end{array}$ 5n．1504 107．nR45 117．6R50 50.12^{76} 13R．818n $\begin{array}{ll}50.1186 & 149.3913\end{array}$ $\begin{array}{ll}50.1107 & 159.9628\end{array}$ $\begin{array}{ll}50.11079 & 170.532 R\end{array}$ 50.0924 191．6689 $\begin{array}{ll}50.0876 & 202.2353 \\ 50.0833 & 212.8007\end{array}$ 50.0793 2？3．3653 50．0758 233.9790 $\begin{array}{ll}51.0758 & 243.9290 \\ 50.0725 & 244.4921\end{array}$ $\begin{array}{ll}50.1695 & 255.0545 \\ 50.0657 & 255.6163\end{array}$ 50．064？？76．1775
 50.0596297 .2085 50.0576 50.0557 50.0539 50.0506 37．5353 50.0492 550．0936 50.047 B 371．2n93 50.0454 3R1．2193 50.0452 3aの． 5237 50.0440 4n？．8206 50.0429413 .4373 50.0418 50.0418 $50.0408 \quad 434.5498$ $50.039 \mathrm{R} \quad 445.1$ 17R $50.0389 \quad 455.6616$ 5n．0380 466．2171 50.0372476 .7725 50．0354 487．327A 50．0356 497．RR2R 50．0349 50～．4377 5n．034？518．9925 50.0335 50.0335529 .5471 5n．03P8 540.1015 50.0322550 .6558 $50.0316 \quad 561.2100$ 50.0310571 .7641 50.0305 5R2．31A1 50.0299597 .8719 50.0294603 .4256 50.0299613 .9792 50.0294624 .5327 50.0279 635． 2 RE
50.1654 106．0759 50.1654
50.1506 50.13 AR
50.137 F 50.1186 $\begin{array}{ll}50.1186 & 149.7312 \\ 50.110 \mathrm{~A} & 159.8 n 22\end{array}$ 50.110 R 159．8R25 $50.1 n 39$ 170．3723 $\begin{array}{ll}50.0979 & 180.0407 \\ 50.0925 & 101.5080\end{array}$ $\begin{array}{ll}50.0925 & 191.508 n \\ 50.0877 & 2 n 2 . n 743\end{array}$ 5n．ก13\％212．6396 50.0794 5n．075R 233．7677 5n． 11725 244．33n7 5n．तद75 254.892π 5n．OFGR PG5．4547 50．n64？ 376.0150 50．061A 2RG．5765 5 n．0．096 297．1367 50.0576 3n7．6965 50.0557 50.0557 50.0539 5n．n52？ 3×2.8148 5n．0507 340．9316 50.1492 360．4996 $50.0478 \quad 371.0478$ 50.0465 389．047？ 5n．045？3R1．6045 50.044 n 302．1616 50.0429413 .2750 50．041A 423．9314 50.040 H 44.3876 50.039 A 444.9435 $50.039 R \quad 444.9435$ 5n． 1838 455．499？ $\begin{array}{ll}50.0381 & 466.014 R \\ 50.037 ? & 476.6102\end{array}$ $50.0764 \quad 487.1654$ 50．0356 497．79n4 50．0ス40 508．2753 5n．0ヶ4？51R．87n 50.0935 ．539．3846 50.072 F 59.9790 50．0ネアR 539．999ก $\begin{array}{ll}5 \text { 0．032？} & 550.4933 \\ 50.0316 & 561.0475\end{array}$ $50.0716 \quad 561.0475$ $50.0310 \quad 571.6016$ $50.07 \pi 5$ 5R2． 1555 50.0290 592．709\％ 5n． 0794 6n3．263n 5n．02RO 617．R166 5n．02R4 634．37n1 50.0279634 .9235
5ก．1657 1067467 5n．15n9 106．7467 117.3240 50.177 A $13 A .4749$ 5n． 11 Rタ $149.047 n$ 50.1109159 .6175 50.1040 17n．1RFR $\begin{array}{ll}50 . n 99 n & 18 n .7545 \\ 50 . n 026 & 191.3217\end{array}$ $\begin{array}{ll}50 . n 076 & 191.3217 \\ 5 n .0877 & 201.887 n\end{array}$ 50．nR34 312.451 A 5n．0704 ？2＊． 1159 5n．0759 $3 \pi 3.5799$ 50.0796244 .1418 5ก．ก696 954．7nzの 5n．nfigh 265．Р659 50． 06 fit？ 275.9267 5 5．nf19 PRG．उRAK 5त．0597 296．046k 5 5．n576＊n7．5n6i 5п． 5557 ₹18．n65＊ 5ก．ก5ア9 xว9．674n 5 n． 1523 339．18＞5 $50.0507 \quad 3497406$ 5n． 149 ？xin 29 p4 $50.0478 \quad 37 ก .8599$ 50.0465 3R1．4131 50.0459 291．07nत 50． 0440 407．5？67 5n．nupa 413．nイz？ 5月．1141月 423．お行 50．ก4n8 434.1955 50.0390444 .7514 5n．n389 455． $217 n$ $\begin{array}{ll}50 . n 2 R 1 & 465.8675 \\ 50.027 ? & 476.4177\end{array}$ $50.037 ? 476.4177$
 50． 1 756 407．527A 5n．nx49 5nR．nApA 5n．n342 518．6377 5n．0735 529．199A 5n．ñクロ 5\％9．74к刀 5n．nxp？550． 3 nn4 $50 . n 716$ 560．8545 $\begin{array}{ll}5 n .0310 & 571.4 n 85 \\ 5 n .02 n 5 & 581.9624\end{array}$ 5ก． n 9 a 9 592．5162 5n． 1794 кп3．nGaR 5n．nPRq 617．6234 50．nPR4 624．176月 5n． 10279 634．73n？
50.1659
$5 n .1659$
$5 n .1590$ $\underset{\text { DAD }}{\sim}$ M 19.1974 50．1ห月5 197．6946 5N．ITRN 138．2611 50.1189 50.1110 14 A .8267
159.297 50.1041169 .0559 mnenari lRn．EIol 5n．กap7 191．nRつ\％
 5n．na34 ？1？．0n64 En．ก7a5 P3p．7677 50.0759 $50 . n 726$ 5n•กロロ
 5n．nffr 265 nnal 50．n64 275.5673 50．nfin pRf．175a 5n．0597 p96．6847 5n．n577 3 ก7．04つけ 5n．ก55タ $317.20 n 3$ 5n． 1540 50.05 5ス 5n．n5n7 33R．a15n 5n．ก5ก7 240．4719 5n．nル9？3fn．nวR7 $5 n .0478 \quad 370.5 R 57$ $\begin{array}{ll}51.0465 & 3 A_{1} .1414 \\ 50.0459 & 299.6075\end{array}$ 5n．n45 591.6075 50.0441 4n2．2574 5n．ก14＞0 4t2．8nロ1 5n．0419 473．2546 5n．П4nR 4x\％．0100
 5n．0290 45天．nzan 5n．0290 45K．n2nn
 5n．ñद4 4Rf．6941 5n．0256 407．24R5 5n．ก249 5n7．RกつR

 $5 ก .0399530 .4649$ 50．กスのค 55n． 1 197 $\begin{array}{ll}5 n . n x 2 ? & 55 n \cdot n 187 \\ 5 n . n \pi 16 & 56 n .5794\end{array}$ $5 n .0316 \quad 56 n .5734$ 50．0र17 571．176n
 5n．nクQ4 fn？．TRKi
 5n．nつA4 6P3．2924 5n． 0279 634．4454

5月．1RR？ 5n．1543 5n．17月A 5n．19R？ 5n．1191 5n．111？ 5n．in 43 5n．noss 5n．nors 5n．nora
 5n．nフas 5n． 0 フィス 5n． 1 プフ 5n． 1 フラ 5 n ． 1507 5n．nfイa 5n．nfily
5n．nx？
 5n，nenR 5n．n5ク7
5n．n55R 5n，n55R 5n．ncun
5n．nne？ 5n，n5：3 5n，n5n7 5n．nuas 5．nu79 5月．niff 5n． 1453 5n． 51441 5n．$n 430$ 5n． 1419 5n．n4na 5n．nyoa 5n．n yoa そn．n そon 5n． 0 スR1 5n，ก27？ $5 n . n 354$ 50. nx57 50.0749 50．nर4？ 5n．n¥35 5n．nマクの 5n．nマク？ 5n．nर？ 5n．nश1！ 5n．n711 5n．ñn5 5n．n フロa $5 n .1204$ 5n．nのR9
 5n．nsan
$\begin{array}{llll}60.00 & 635.3098 & 50.0284 & 624.6271 \\ & 50.0279 & 635.1805\end{array}$

VMINFINITY $=60.0 \mathrm{KM} / \mathrm{S}$

$T-Y_{R S}$	$\begin{gathered} Q= \\ R A D \end{gathered}$	-1 AU	$\begin{gathered} Q= \\ R A D \end{gathered}$
. 00	.1000	146.09no	. 300 n
- 20	3.0269	64.7005	2.9354
. 40	5.6975	62.5413	5.5961
. 60	8.3159	61.7524	8.2110
. 80	10.9109	61.3401	10. 2047
1.00	13.4926	61.0860	13.3849
1.20	16.0656	60.9134	15.9572
1.40	18.6325	60.7884	18.5236
1.60	21.1940	60.6936	21.0855
1.80	23.7538	60.6193	23.6441
2.00	26.3099	60.5594	26.1990
2.20	28.8637	60.5101	2R.753 6
2.40	31.4157	67.4688	31.305*
2.60	33.9660	60.4337	33.8555
2.80	36.5150	60.4036	36.4044
3.00	39.0628	60.3773	38.9521
$3.2 n$	41.6096	60.3543	41.4987
3.40	44.1554	60.3339	44.0445
3.60	46.7005	60.3158	45.5895
3.80	49.2448	60.2095	49.1338
4.00	51.7885	60.2448	51.6774
4.20	54.3316	60.2715	54.2204
4.40	56.8742	60.2594	56.7629
4.60	59.4162	$60.24 \mathrm{A3}$	59.3050
4.80	61.9579	60.2382	61.8466
5.00	64.4991	60.2988	64.3877
5.20	67.0399	50.2201	66.9286
5.40	69.5804	60.2121	69.4697
5.60	72.1206	60.2047	72.009?
5.80	74.6605	60.1977	74.5400
6.00	77.2001	60.1912	77. ก895
6.20	79.7394	60.1851	79.6.278
6.40	82.2784	60.1794	82.166°
6.60	84.8173	60.1741	84.7057
6.80	87.3559	6it. 1690	87.2443
7.00	89.8943	60.1643	89.7827
7.20	92.4325	60.1597	92.3200
7.40	94.9706	60.1555	94. 8580
7.60	97.508.4	60.1514	97. 296R
7.80	100.0461	60.1476	99.9344
8.00	102.5837	60.1440	102.4720
8.20	105.1210	60.1405	105.009
8.40	107.6583	60.1372	107.5466
B. 60	110.1954	60.1340	110.0837
8.80	112.7324	60.1310	112.6206
9.00	115.2692	60.1281	115.1575
9.20	117.8060	60.1254	117.694?
9.40	120.3426	60.1227	120.2308
9.60	122.8791	60.1202	122.7673
9.80	125.4155	60.1178	125.3037
10.00	127.9518	60.1154	127.8400

V-INFINITY $=60.0 \mathrm{KM} / \mathrm{S}$

[^0]: Pluto
 If a Pluto flyby is contemplated, measurements should include optical observations of the planet to determine its diameter, surface and atmosphere features, and an optical search for and observations of any satellites or rings. Atmospheric density, temperature and composition should be measured,

[^1]: * Significant technology advancement required.
 \dagger Not part of baseline mission.

