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A BIAXIAL METHOD FOR INPLANE SHEAR TESTING 

BY 

Harold 6. Bush and Tanchun Ueller* 

INTRODUCTION 

Effor ts t o  deternine the mechanical properties o f  a material subjected 

t o  an inplane shear loading haw resulted i n  the developmnt o f  many techniques; 

each being characterized by certa in advantages and d i  sadvan t aps .  These 

various nethods are iden t i f i ed  and discussed a t  length i n  the l i t e ra tu re  (see, 

f o r  instance, references 1 and 2). Among the methods currently used i s  the 

"picture frame" technique. 

The conventional picture frame technique of applying an inplane shear 

deformation t o  a material o r  structural specimen ccnsists o f  applying a 

uniaxial force (usually tensi le)  a t  two diagonally opposite comers o f  a frame, 

o r  f ixture, having very s t i f f  members and which i s  attached t o  the edges o f  a 

square o r  rectangular specimen. The frame i s  pinned a t  a1 1 comers; therefore 

shear deformation of the specimen i s  not resisted by bending moments a t  the 
s 

frame comers. Two major problems which plague t h i s  method are bending and 

extension of the frame members. Efforts t o  eliminate these deformations 

include both oversizing the edge meniher cross-section t o  minimize axia l  and 

znding deformations, and taperirig these members to  improve load transfer f r o m  

thc frame to  the specimen. Neither method has proven t o  be a satisfactory 
sc:  tio on. The purpose o f  t h i s  report i s  t o  present a new method f o r  per- 

forming inplane shear tests which shows a marked improvement over the conven- 

tional, uniaxial picture frame technique. 
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BIAXIAL SHEAR HETHOD 

The b iax ia l  method f o r  subjecting a tes t  specimn t o  an inplane shear 

d e f o m t i o n  i s  depicted i n  Figure 1, which shows a square sandwich specimen 

ins ta l led i n  a very s t i f f  f i x tu re  wi th pinned comers. Frame deformations 

resul t ing frola the conventional, uniaxial nethod o f  loading i s  depicted i n  

f igure 2a, where the edge members are shown to  undergo both extension and 

bending. The b iax ia l  method consists o f  simultaneo~sly applying equal tens i le  

and conpressive forces along the frame diagonals through the comer pins. 

Figure 2b depicts the frame deformations resul t ing f r o m  t h i s  loading method, 

and indicates that  i t  kinelnatically deforms i n to  a parallelogram whose sides 

are unchanged i n  length. This type of frame deformation i s  required 

t o  subject the tes t  specimen t o  a uniform shear strain. I n  the case of 
isotropic o r  orthotropic materials, th i s  process i s  also equivalent t o  subjec- 

t i n g  the specimn t o  a uniform shear stress. It i s  shown i n  f igure 2b that  the 

applied forces required w i t h  the b iax ia l  method are one-half the magnitude re- 

quired by the uniaxial method shown i n  figure 2a. This s i tuat ion reduces the 

force transmitted local ly, and consequently reduces local  p in deformations. 

Sta t ic  considerations show that  the loading methods, given i n  figures 2a and 

Zb, resu l t  i n  applying the same shear load t o  the specimens. 

EXPERIMENTAL INVESTIGATION 

A shear tes t  f i x tu re  incorporating the features o f  the biaxia l  mthod 

was designed and fabricated. The specimen configuration used i s  shown i n  

Figure 3. Since composite materials are usually used as th in shel ls o r  plates, 

a sandwich configuration was selected t o  s tab i l ize  the th in  f l a t  laminates 

against shear buckling a t  a low v3lue of load. The assembled tes t  f i x tu re  and 

specimer! i s  shown i n  Figure 4. The teasi le load component i s  applied 

ve r t i ca l l y  by a standard tensi le tes t  machine. Attachment of the tes t  machine 

t o  the f ix ture and specimen i s  by the pin and c levis arrangement shown i n  the 

figure. The compressive load component i s  applied horizontal ly by the 



hydraul ic cylinder, load c e l l  and tension bar arrangement a lso s h m  i n  

Figure 4. The compressive load i s  masured by t h i s  load ce l l ,  whi le the 

tens i l e  load i s  measured b$ a s im i la r  device b u i l t  i n t o  the tens i l e  t e s t  

machine. Output from both load c e l l s  are recorded e lectronical ly .  The 

pressure source f o r  the compressive load component i s  an i den t i ca l  hydraul ic 

cy l inder  i n s t a l l e d  i n  a conpression t e s t  machine as shown by the i n s e r t  i n  

Figure 5. The compression t e s t  machine i s  cal ibrated w i th  the load c e l l  i n  

the load path. The tens i l e  and compressive load components are appl ied 

equally and simul caneously. 

Extreme care i s  used t o  assemble the f i x t u r e  and specimen i n  the t e s t  

machine tn insure uniform load t ransfer  i n t o  the specimen by the loading frame. 

A f te r  the specimen i s  bonaea t u ~ z t h e r  from the component parts, the outside 

surfaces o f  the steel doublers are ground f l a t  and para l le l .  The specimen i s  

then j i g - d r i l l e d  s l i g h t l y  undersize t o  f i t  the frame. Indiv idual  b o l t  holes 

are hand reamed f o r  f i t  during f i n a l  assembly i n t o  the frame. Bolts are 

toqued evenly around the frame periphery. A f te r  frame and specimn are 

assembled and torqued i n  such a manner t h a t  the corner pins remain f ree t o  

rotate, the loading apparatus i s  assemble f on the frame. 

Uniaxial and Biax ia l  Comparison 

To quanti fy the difference between uniax ia l  and b iax ia l  loading o f  the 

shear frame, four ident ica l  a1 uminum faced sandwich specimens wi th  a1 uminun 

honeycomb core were fabricated and instrumented w i th  s t ra in  gages. Three of 

the sandwich specimens were tested un iax ia l l y  t o  fa i lu re .  The four th specimen 

was i n i t i a l l y  tested uniaxial  l y  i n  the e l a s t i c  range and subsequently tested 

b i a x i a l l y  t o  fa i lu re .  Results o f  these tests are shown i n  Figure 6 where the 

average value o f  the pr inc ipa l  tens i le  t o  compressive s t r a i n  r a t i o  Ict/cc 

over the specimen face i s  p lo t ted  as a funct ion o f  t o t a l  applied load. A 
I 

specimen subjected t o  a uniform shearing deformation w i  11 exhi b i  t pr inc ipa l  

tens i le  and compressive st ra ins which are equal i n  magnitude. The r a t i o  o f  

these s t ra in  components indicates how wel l  a shear frame applies a uniform 

shear deformation t o  a specimen. An envelope o f  the experimental resu l ts  f o r  

the uniaxial  tests o f  three specimens i s  shown as the cross-hatched area i n  

Figure 6. It i s  shown tha t  these specimens d id  not exh ib i t  a unifcrm shear de- 

formation, e i t he r  i n  



the e las t i c  o r  ine last ic  range. The fourth specimen (c i rc les  i n  Figure 6) 

showed simi lar  behavior when tested uniaxial ly  i n  the e las t i c  range as 

indicat td by the c i rc les  i n  the cross-hatch area. Hawever, when the same 

spec i r~n  was tested b iax ia l l y  to failure, a uniform shearing cleforination was 

achieved i n  both the e las t i c  and ine last ic  regions as shown i n  Figure 6 

(c i rc les almglr t / rc(= 1). The frame was also instrumented wi th s t ra in  gages 

which ver i f ied that  using the b iax ia l  loading techniqa, both extension and 

bending of the edge mrberr was essential ly eliminated. These tests show tha t  

the b iax ia l  slethod of loading a shear frame subjects 2 specimen to  a much more 

uniform shear &fornation, than does the w i a x i a l  method. 

Frane Fr ic t ion Tests 

Two aluninun plate specimens, having the same planform configuration as 

shown i n  Figure 3, were fabricated and tested t o  determine i f  any f r i c t i ona l  

effects were present i n  the a s s d l e d  shear fra:.ii and loading apparatus to  

cause errors i n  the experimental results. Experimentally measuring the shear 

modulus o f  a known, w e l l  characterized material such as aluninun, w i l l  expose 

any f r i c t i o n  which i s  present. The results of two aluminum plate tests are 

shown i n  Figure 7 as the so l id  curve. Both tests yielded ident ical  -esults f o r  

the shear modulus of aluninun which was calculated by the following n'lthod. 

The shear stress ,r, i s  given by the relat ion 

where 

a = Shear specimen depth 

t = Total membrane thickness 

The shear modulus, G, i s  calculated from the relat ion 



where y = shear s t r a i n  = l e t l * l  eel 
Using the aluminum p l a t e  response shown i n  Figure 7, the e l a s t i c  shear modulus 

was ca lcu la ted t o  be approximately 27.6 GPa which i s  equal t o  the value given 

i n  reference 3. Thus, i t  may be concluded t h a t  f r i c t i o n a l  e f f e c t s  are 

neg l ig ib le .  

Core S t i f f ness  Tests 

Honeycomb core, unattached t o  face sheets, does o t  have any s i g n i f i c a n t  

shear s t i f f n e s s  i n  a plane p a r a l l e l  t o  the facings. However, when bonded t o  

face sheets, honeycomb core becomes an i n teg ra l  p a r t  o f  the s t r u c t u r a l  

assembly and can provide add i t iona l  s t i f f ness  i n  the plane of the sandwich 

which i s  normally no t  considered. I n  the case of t e s t  specimens used t o  

measure mater ia l  proper t ies  i t  i s  necessary t o  consider a l l  e f f e c t s  which may 

be present i n  the experiment. Considering a sandwich panel subjected t o  an 

inplane shear load, i t  may be w r i t t e n  t ha t  

The shear load can be expressed as 

N = Gty 

and equation 3 becomes 

Assuming t h a t  inplane shear deformations of  the faces and core are equal 

r esu l t s  i n  

- - - 
'sand - 'core 'faces 



Therefore, equation ( 5 )  becomes 

The shear s t i f f n e s s  o f  the sandwich may be determined exper imental ly,  and i s  

given from equation 2 as 

Using a known mater ia l  f o r  the  fac ing  (such as aluminum) determines (Gt)fa,e, 

i n  equation (7) .  Therefore, the shear s t i f f n e s s  of the core mate r ia l  i s  

given by 

Two aluminum faced sandwich spec i~ens  were fabr icated as shown i n  Figure 3. 

The experimental s t r ess - s t r a i n  r e s u l t s  obtained from t e s t s  o f  these sandwich 

specimens are a lso shown i n  Figure 7 as a dashed l i n e .  The d i f fe rence  i n  slope 

between the sandwich and p l a te  resu l ' ;  shown i n  Figure 7 i s  a measure o f  the 

s t i f f e n i n g  e f f e c t  o f  the aluminum honeycomb core i n  the plane o f  the faces. 

Using equation (9), the apparent inplane shear modulus o f  honeycomb core, i n  

the e l a s t i c  range, i s  found eo be 

G core = 0.21 GPa (30,000 p s i )  

3 f o r  5056 A1/Hc (Density = 91.3 kg/m ). 

Thus, f o r  specimens having the same honeyconb core mate r ia l  t h i s  value o f  core 

modulus can be used t o  reduce the inplane s t i f f n e s s  measured dur ing she3r t es t s  

o f  those specimens. 



Graphi te-Epoxy Tests 

Stress concentrat ions t h a t  e x i s t  a t  the  specimen corners (see Figure 8) 

must be considered when t e s t i n g  h igh strength,  f i lament r e i n fo r ced  composite 

mater ia ls.  The polymeric mat r i x  mate r ia l s  normal ly used i~ such h igh  s t reng th  

mater ia ls  do no t  d isp lay any s i g n i f i c a n t  d u c t i l i t y .  Rather, the mat r i x  appears 

t o  behave i n  a  b r i t t l e  fashion. Therefore, s t ress  concentrat ions i n  such 

mate r ia l s  are ap t  t o  p r e c i p i t a t e  f a i l u r e  a t  load l e v e l s  l ess  than the  mate r ia l  

u l  t imate stress.  

Ten graphi te-epoxy (Thornel 300/Narmco 5208) sandwich specimens w i t h  8  p l y  

faces were fabr icated.  The faces were (45,-45)2s laminates because t h i s  con- 

f i g u r a t i o n  has t he  h ighest  shear s t i f f n e s s  and strength.  Five specimens were 

tes ted  as fab r i ca ted  and f i v e  were tes ted  w i t h  t i t an i um doublers (.86 mm t h i c k )  

bonded i n t o  the fac ing  corners as shown i n  Figure 8. These small doublers were 

l o c a l  reinforcement t o  reduce the h igh t e n s i l e  s t r a i ns  ( E ~ )  shown i n  the 

f igu re .  Shear s t ress -s t ra in  r e s u l t s  f o r  these t es t s  are shown i n  Figure 9. 

For s i m p l i c i t y  the core e f f e c t s  were i n i t i a l l y  neglected. The average shear 

modulus fo r  the t i v e  reinforced and f i v e  unreinforced specimens were found t o  

be essen t i a l l y  the  sane (as noted on the  f i gu re ) .  Therefore, the corner 

doublers d i d  not  have any apparent s t i f f en i ng  e f f ec t  on the specimen. The 

average modulus f o r  a l l  ten specimens i s  shown i n  Figure 9  t o  be 35.7 GPa 

(neglect ing core ef fects) .  Using equation 9, which considers the s t i f f e n i n g  

e f f e c t  o f  the aluminum honeycomb core, the co r rec t  shear modulus of the faces 

was found t o  be 33.4 GPa. Thus, neg lec t ing  the core s t i f f n e s s  resu l ted  i n  

ca l cu l a t i ng  a  shear modulus which was approximately 7% high. I f  the facings 
were less s t i f f  ( i . e .  un i d i r ec t i ona l  ma te r i a l )  the e r r o r  would be even la rger .  

The average u l t ima te  shear s t r a i n  f r c a  t es t s  of the f i v e  specimens w i t h  

corner doublers was found t o  be .01088 which was 22% h igher  than the un- 

re in fo rced  specimens. Using t h i s  more cor rec t  value of u l t ima te  shear s t r a i n ,  

and the cor rected shear modulus prev ious ly  calculated, the average u l t ima te  

s t rength of the (+45)Gr/E (T300/5208) laminate i s  f o l ~ n d  t o  be 363 MPa. 



S t r a i n  Gage Surveys 

During t he  aluminum and +45" G r / E  shear t e s t s  described prev ious ly ,  the 

specimen faces were heav i l y  instrumented w i t h  s t r a i n  gages which v e r i f i e d  the 

un i fo rm i ty  o f  shear s t r a i n  over the ma jo r i t y  o f  specimen surface. However, i t  

was observed t h a t  a reduced s t r a i n  zone (shown i n  Figure 10) e x i s t s  along t he  

specimen diagonals and was apparent ly caused ~y the carrier cutouts.  P r i nc i pa l  

extensional  s t r a i n s  (denoted by c t  and E,) p a r a l l e l  t o  the diagonals i n  t h i s  

region were found t o  be reduced approximately 3% f o r  the aluminum specimens 

and up t o  10% f o r  the +45" Gr/E specimens. Considering the panel center  where 

the diagonal zones cross, both p r i n c i p a l  s t r a i n  components are reduced by 

these magnitudes. Thus, shearing s t r a i n  ca lcu la ted  from the p r i n c i p a l  s t r a i n  

components measured along the diagonals o r  a t  the panel center, would be 

smal ler  than the  actua l  magnitude. The +4s0 composite laminate i s  the worst  

case, having f i laments  which run along the diagonals between f r ee  edges of 

the corner cutouts. Extensional s t r a i ns  o f  these f i laments  are induced by 

mat r i x  shear, therefore,  these s t r a i n  components 1 ag those outs ide t h i s  zone. 

Other laminate conf igurat ions were tested (reference 5 )  which contained angle 

p l y  laminae. The reduced s t r a i n  zone d i d  no t  occur f o r  any laminate except 

the  +45" conf igurat ion.  The p re fe r red  loca t ions  f o r  making p r i n c i p a l  s t r ~ i n  

measurements on any specimen i s  a t  the center of the fac ing  quadrants as shown 

i n  Figure 10. I n  order  t o  insure measurement of ove ra l l  mater ia l  aehavior, 

and no t  a l oca l  response, i t  i s  h i gh l y  recommended t h a t  the average p r i n c i p a l  

s t r a i n  measurements over both faces o f  the mater ia l  specimen be used t o  compute 

the shear s t r ess - s t r a i n  response o f  a mate r ia l  specimen. 

THEORETICAL CONSIDERATIONS 

The b i a x i a l  method o f  t e s t i n g  f o r  inp lane shear p roper t ies  o f  a mate r ia l  

described herein, subjects the specimen t o  a uni form shear s t r a i n  ins tead o f  

a uni form shear stress.  I f  the mater ia l  i s  i s o t r o p i c  o r  o r tho t rop ic ,  the 



uniform shear s t r a i n  method i s  the  same a n a l y t i c a l l y  as the uni form shear 

s t ress method. I f  the mater ia l  i s  h i gh l y  an iso t rop ic  (eg; e x h i b i t s  h igh 

membrane extension-shear coup1 i n g )  the uniform shear s t r a i n  method can d i f f e r  

appreciably from the  uniform shear s t ress methods. The an iso t rop ic  membrane 

c o n s t i t u t i v e  r e l a t i ons  are (from reference 4) 

Equations (11 ) can be w r i t t e n  i n  compliance form as 

where t he  compliances ( S )  are, i n  terms o f  the membrane s t i f f nesses  ( A )  are 



2 
where A = (Al 1A22 - A ~ ~ ~ ) A ~ ~  - Al lA26 + 2A12A.. ' , A22A1 

2 

Assuming Nx = 
N~ 

= 0, the laminate inp lane shezr s t i f f n e s s  f o r  the uni form 

shear s t ress  case may be der ived from equations (11 j and i s  given by 

Assuming cx  = E = 0, the laminate inp lane shear s t i f f n e s s  f o r  the uni form 
Y 

shear s t r a i n  case may be der ived from equations (12) and i s  g iven by 

I n  the case o f  i s o t r o p i c  and o r t ho t rop i c  laminates (eg: A16 = AZ6 = o), 
equations (14) and (15) are equiva lent .  When using the b i a x i a l  method t o  t e s t  

laminates which d isp lay inplane ani sotropy (such as requi red f o r  aeroe las t i  c 

t a i l o r i n g  o f  a i r c r a f t  wings), equation (15) i s  the more cor rec t  t heo re t i ca l  

laminate shear s t i f f n e s s  r e l a t i o n  t o  use ins tead of equation 14. Using t e s t  

methods such as r a i l  shear ( re f .  2 )  .!here tire boundary condi t ions are mixed o r  

undefined, i t  i s  unclear which r e l a t i o n  i s  more appropr iate.  An isot rop ic  

mater ia ls ,  subjected t o  a uni form shear s t r a i n  a c t u a l l y  are loaded i n  a 

combined membrane s ta te  where Nx and N are no t  equal t o  zero. I n  fact ,  due 
Y 

t o  the i n t e r a c t i o n  between extension and shear, and the r e s u l t a n t  involvement 

o f  the specimen boundary condi t ions,  i t  may be impossible t o  accurate ly  t e s t  

an isot rop ic  laminates i n  shear except i n  a f u l  i scale t e s t  which reproduces 

the boundary s t i f fnesses and load ing of thr. r ea l  s t ruc tu re .  



CONCLUDING REMARKS 

A new technique f o r  exper imental ly ob ta in ing  the inp lane shear p roper t ies  

of mater ia ls  has been developed and presented i n  t h i s  repor t .  This technique - 
the b i a x i a l  method - has been examined exper imental ly and shown t o  apply a 

shearing deformation more uni formly t o  o r t ho t rop i c  and i s o t r o p i c  mate r ia l  

specimens than the prev ious ly  used un iax i a l  p i c t u r e  frame technique. 

Furthermore, experimental e f f o r t s  have been presented which examine those 

performance cha rac te r i s t i c s  which are pecu l i a r  t o  the t e s t  method o r  specimen. 

The s t i f f e n i n g  e f f e c t  o f  honeycomb core on the inp lane shear response o f  

a sandwich panel has been i d e n t i f i e d ,  and an appropr ia te  method f o r  consider ing 

t h i s  e f f e c t  has been presented. 

The e f f e c t  o f  s t ress concentrations i n  the specimen corners has been 

presented. One technique f o r  reducing t h i s  e f f e c t  - bonding on l oca l i zed  

doublers - prevents "prc , s ture"  mater ia l  f a i l u r e  w i  t h ~ t  detectable s t i f f e n i n g  

o f  the t e s t  specimen. 

Some considerat ions o f  sub ject ing a mater i  "I a uni form shear s t r a i n  

ins tead o f  a uni form shear s t ress have been presented. The theore t i ca l  

laminate shear s t i f f n e s s  re la t ions ,  w i t h  which experimental performance should 

be compared, have been presented f o r  both the shear s t ress and shear s t r a i n  

cases. Some problems o f  t e s t i n g  an iso t rop ic  ( i  .e. - extension and shear 

coupl ing present)  mate r ia l s  i n  shear have been reviewed. The necessi ty f o r  

using the uniform shear s t r a i n  ;aminate s t i f f n e s s  r e l a t i o n  i n  conjunct ion w i t h  

the b i a x i a l  method fo r  p red i c t i on  o f  experimental performance o f  an iso t rop ic  

mater ia ls  has been discussed. 

An experimental i n ves t i ga t i on  o f  the b i a x i a l  method f o r  inplane shear 

t e s t i n g  of mater ia ls  has been presented and discussed. Results presented i n  

t h i s  repor t  and experience t o  date a t  Langley Research Center show t h i s  t o  be 

a useful  and accurate t e s t  technique f o r  ob ta in ing  the p roper t ies  o f  mate r ia l s  

subjected t o  inplane shear deformation. 
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Figure 6.- P r inc ipa l  s t r a i n  r a t i o  comparison f o r  u n i a x i a l  and b i a x i a l  
inp lane  shear t e s t s  
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F igure  7 . -  Comparison of aluminum p l a t e  and sandwich i n p l a n e  shear t e s t  r e s u l t s  



TITANIUM DOUBLERS 

Figure 8.- Locat ion o f  ti t a n i  urn doublers t o  reduce corner s t ress  concentrations 
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Figure 9. -  Shear stress-strain response o f  (+45) graphite-epoxy 
(T300/NARMCO 5208) 
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Figure 10.- Schematic o f  reduced s t r a i n  reg ion  i n  (+45)  composite laminates  
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